WorldWideScience

Sample records for cell-type specific recognition

  1. Cell-Type Specific Inactivation of Hippocampal CA1 Disrupts Location-Dependent Object Recognition in the Mouse

    Science.gov (United States)

    Haettig, Jakob; Sun, Yanjun; Wood, Marcelo A.; Xu, Xiangmin

    2013-01-01

    The allatostatin receptor (AlstR)/ligand inactivation system enables potent regulation of neuronal circuit activity. To examine how different cell types participate in memory formation, we have used this system through Cre-directed, cell-type specific expression in mouse hippocampal CA1 in vivo and examined functional effects of inactivation of…

  2. Cell-type specific recognition of human Metapneumoviruses by RIG-I and TLR7 and viral interference of RIG-I ligand recognition by HMPVB1 Phosphoprotein

    OpenAIRE

    Goutagny, Nadege; Jiang, Zhaozhao; Tian, Jane; Parroche, Peggy; Schlicki, Jeanne; Monks, Brian G; Ulbrandt, Nancy; Ji, Hong; Kiener, Peter; Coyle, Anthony J.; Fitzgerald, Katherine A.

    2009-01-01

    Human Metapneumoviruses (HMPV) are recently identified Paramyxoviridae that contribute to respiratory tract infections in children. No effective treatments or vaccines are available. Successful defense against virus infection relies on early detection by germline encoded pattern recognition receptors and activation of cytokine and type I interferon genes. Recently, the RNA helicase Retinoic acid inducible gene (RIG-I) has been shown to sense HMPV. In this study, we investigated the ability of...

  3. Cell type-specific transcriptome profiling in mammalian brains.

    Science.gov (United States)

    LoVerso, Peter R; Cui, Feng

    2016-01-01

    A mammalian brain contains numerous types of cells. Advances in neuroscience in the past decade allow us to identify and isolate neural cells of interest from mammalian brains. Recent developments in high-throughput technologies, such as microarrays and next-generation sequencing (NGS), provide detailed information on gene expression in pooled cells on a genomic scale. As a result, many novel genes have been found critical in cell type-specific transcriptional regulation. These differentially expressed genes can be used as molecular signatures, unique to a particular class of neural cells. Use of this gene expression-based approach can further differentiate neural cell types into subtypes, potentially linking some of them with neurological diseases. In this article, experimental techniques used to purify neural cells are described, followed by a review on recent microarray- or NGS-based transcriptomic studies of common neural cell types. The future prospects of cell type-specific research are also discussed. PMID:27100485

  4. Type I interferon production during herpes simplex virus infection is controlled by cell-type-specific viral recognition through Toll-like receptor 9, the mitochondrial antiviral signaling protein pathway, and novel recognition systems

    DEFF Research Database (Denmark)

    Rasmussen, Simon Brandtoft; Sørensen, Louise Nørgaard; Malmgaard, Lene; Ank, Nina; Baines, JD; Chen, ZJ; Paludan, Søren Riis

    2007-01-01

    Recognition of viruses by germ line-encoded pattern recognition receptors of the innate immune system is essential for rapid production of type I interferon (IFN) and early antiviral defense. We investigated the mechanisms of viral recognition governing production of type I IFN during herpes...... fibroblasts, where the virus was able to replicate, HSV-induced IFN-alpha/beta production was dependent on both viral entry and replication, and ablated in cells unable to signal through the mitochondrial antiviral signaling protein pathway. Thus, during an HSV infection in vivo, multiple mechanisms of...

  5. Investigating Striatal Function through Cell-Type-Specific Manipulations

    OpenAIRE

    Kreitzer, Anatol C.; Berke, Joshua D.

    2011-01-01

    The striatum integrates convergent input from the cortex, thalamus, and midbrain, and has a powerful influence over motivated behavior via outputs to downstream basal ganglia nuclei. Although the anatomy and physiology of distinct classes of striatal neurons has been intensively studied, the specific functions of these cell subpopulations have been more difficult to address. Recently, application of new methodologies for perturbing activity and signaling in different cell types in vivo has be...

  6. Cell-type specific four-component hydrogel.

    Directory of Open Access Journals (Sweden)

    Timo Aberle

    Full Text Available In the field of regenerative medicine we aim to develop implant matrices for specific tissue needs. By combining two per se, cell-permissive gel systems with enzymatic crosslinkers (gelatin/transglutaminase and fibrinogen/thrombin to generate a blend (technical term: quattroGel, an unexpected cell-selectivity evolved. QuattroGels were porous and formed cavities in the cell diameter range, possessed gelation kinetics in the minute range, viscoelastic properties and a mechanical strength appropriate for general cell adhesion, and restricted diffusion. Cell proliferation of endothelial cells, chondrocytes and fibroblasts was essentially unaffected. In contrast, on quattroGels neither endothelial cells formed vascular tubes nor did primary neurons extend neurites in significant amounts. Only chondrocytes differentiated properly as judged by collagen isoform expression. The biophysical quattroGel characteristics appeared to leave distinct cell processes such as mitosis unaffected and favored differentiation of sessile cells, but hampered differentiation of migratory cells. This cell-type selectivity is of interest e.g. during articular cartilage or invertebral disc repair, where pathological innervation and angiogenesis represent adverse events in tissue engineering.

  7. Cell-type specific four-component hydrogel.

    Science.gov (United States)

    Aberle, Timo; Franke, Katrin; Rist, Elke; Benz, Karin; Schlosshauer, Burkhard

    2014-01-01

    In the field of regenerative medicine we aim to develop implant matrices for specific tissue needs. By combining two per se, cell-permissive gel systems with enzymatic crosslinkers (gelatin/transglutaminase and fibrinogen/thrombin) to generate a blend (technical term: quattroGel), an unexpected cell-selectivity evolved. QuattroGels were porous and formed cavities in the cell diameter range, possessed gelation kinetics in the minute range, viscoelastic properties and a mechanical strength appropriate for general cell adhesion, and restricted diffusion. Cell proliferation of endothelial cells, chondrocytes and fibroblasts was essentially unaffected. In contrast, on quattroGels neither endothelial cells formed vascular tubes nor did primary neurons extend neurites in significant amounts. Only chondrocytes differentiated properly as judged by collagen isoform expression. The biophysical quattroGel characteristics appeared to leave distinct cell processes such as mitosis unaffected and favored differentiation of sessile cells, but hampered differentiation of migratory cells. This cell-type selectivity is of interest e.g. during articular cartilage or invertebral disc repair, where pathological innervation and angiogenesis represent adverse events in tissue engineering. PMID:24475174

  8. Cell-type specific light-mediated transcript regulation in the multicellular alga Volvox carteri

    OpenAIRE

    Kianianmomeni, Arash

    2014-01-01

    Background The multicellular green alga Volvox carteri makes use of none less than 13 photoreceptors, which are mostly expressed in a cell-type specific manner. This gives reason to believe that trasncriptome pattern of each cell type could change differentially in response to environmental light. Here, the cell-type specific changes of various transcripts from different pathways in response to blue, red and far-red light were analyzed. Results In response to different light qualities, distin...

  9. Cell type-specific neuroprotective activity of untranslocated prion protein.

    Directory of Open Access Journals (Sweden)

    Elena Restelli

    Full Text Available BACKGROUND: A key pathogenic role in prion diseases was proposed for a cytosolic form of the prion protein (PrP. However, it is not clear how cytosolic PrP localization influences neuronal viability, with either cytotoxic or anti-apoptotic effects reported in different studies. The cellular mechanism by which PrP is delivered to the cytosol of neurons is also debated, and either retrograde transport from the endoplasmic reticulum or inefficient translocation during biosynthesis has been proposed. We investigated cytosolic PrP biogenesis and effect on cell viability in primary neuronal cultures from different mouse brain regions. PRINCIPAL FINDINGS: Mild proteasome inhibition induced accumulation of an untranslocated form of cytosolic PrP in cortical and hippocampal cells, but not in cerebellar granules. A cyclopeptolide that interferes with the correct insertion of the PrP signal sequence into the translocon increased the amount of untranslocated PrP in cortical and hippocampal cells, and induced its synthesis in cerebellar neurons. Untranslocated PrP boosted the resistance of cortical and hippocampal neurons to apoptotic insults but had no effect on cerebellar cells. SIGNIFICANCE: These results indicate cell type-dependent differences in the efficiency of PrP translocation, and argue that cytosolic PrP targeting might serve a physiological neuroprotective function.

  10. Cell-Type Specific Four-Component Hydrogel

    OpenAIRE

    Timo Aberle; Katrin Franke; Elke Rist; Karin Benz; Burkhard Schlosshauer

    2014-01-01

    In the field of regenerative medicine we aim to develop implant matrices for specific tissue needs. By combining two per se, cell-permissive gel systems with enzymatic crosslinkers (gelatin/transglutaminase and fibrinogen/thrombin) to generate a blend (technical term: quattroGel), an unexpected cell-selectivity evolved. QuattroGels were porous and formed cavities in the cell diameter range, possessed gelation kinetics in the minute range, viscoelastic properties and a mechanical strength appr...

  11. Sequence and chromatin determinants of cell-type-specific transcription factor binding.

    Science.gov (United States)

    Arvey, Aaron; Agius, Phaedra; Noble, William Stafford; Leslie, Christina

    2012-09-01

    Gene regulatory programs in distinct cell types are maintained in large part through the cell-type-specific binding of transcription factors (TFs). The determinants of TF binding include direct DNA sequence preferences, DNA sequence preferences of cofactors, and the local cell-dependent chromatin context. To explore the contribution of DNA sequence signal, histone modifications, and DNase accessibility to cell-type-specific binding, we analyzed 286 ChIP-seq experiments performed by the ENCODE Consortium. This analysis included experiments for 67 transcriptional regulators, 15 of which were profiled in both the GM12878 (lymphoblastoid) and K562 (erythroleukemic) human hematopoietic cell lines. To model TF-bound regions, we trained support vector machines (SVMs) that use flexible k-mer patterns to capture DNA sequence signals more accurately than traditional motif approaches. In addition, we trained SVM spatial chromatin signatures to model local histone modifications and DNase accessibility, obtaining significantly more accurate TF occupancy predictions than simpler approaches. Consistent with previous studies, we find that DNase accessibility can explain cell-line-specific binding for many factors. However, we also find that of the 10 factors with prominent cell-type-specific binding patterns, four display distinct cell-type-specific DNA sequence preferences according to our models. Moreover, for two factors we identify cell-specific binding sites that are accessible in both cell types but bound only in one. For these sites, cell-type-specific sequence models, rather than DNase accessibility, are better able to explain differential binding. Our results suggest that using a single motif for each TF and filtering for chromatin accessible loci is not always sufficient to accurately account for cell-type-specific binding profiles. PMID:22955984

  12. Quantitative analysis of cell-type specific gene expression in the green alga Volvox carteri

    Directory of Open Access Journals (Sweden)

    Hallmann Armin

    2006-12-01

    Full Text Available Abstract Background The multicellular alga Volvox carteri possesses only two cell types: mortal, motile somatic cells and potentially immortal, immotile reproductive cells. It is therefore an attractive model system for studying how cell-autonomous cytodifferentiation is programmed within a genome. Moreover, there are ongoing genome projects both in Volvox carteri and in the closely related unicellular alga Chlamydomonas reinhardtii. However, gene sequencing is only the beginning. To identify cell-type specific expression and to determine relative expression rates, we evaluate the potential of real-time RT-PCR for quantifying gene transcript levels. Results Here we analyze a diversified pool of 39 target genes by real-time RT-PCR for each cell type. This gene pool contains previously known genes with unknown localization of cellular expression, 28 novel genes which are described in this study for the first time, and a few known, cell-type specific genes as a control. The respective gene products are, for instance, part of photosynthesis, cellular regulation, stress response, or transport processes. We provide expression data for all these genes. Conclusion The results show that quantitative real-time RT-PCR is a favorable approach to analyze cell-type specific gene expression in Volvox, which can be extended to a much larger number of genes or to developmental or metabolic mutants. Our expression data also provide a basis for a detailed analysis of individual, previously unknown, cell-type specifically expressed genes.

  13. Towards identifying host cell-type specific response patterns to bacterial endosymbiosis

    DEFF Research Database (Denmark)

    Gavrilovic, Srdjan

    view, available techniques have relied heavily on whole organ analyses that disregard specificities of individual cell types. To address this issue we aimed to develop a technology for comparative global analysis of mature mRNA and small RNA populations at the cell type specific level in the model...... plant Lotus japonicus. A powerful approach referred to here as Defined Expression and RNA Affinity co-Purification (DERAP) was developed to study gene expression and small RNA populations in the host roots during early phases of signal exchange at the cell-type level. As a basis for DERAP analysis of......, namely epidermis with elongating root hairs, inner cortex, endodermis, phloem and xylem, were characterized in L. japonicus. In combination with tagged forms of a Ribosomal surface Protein (RP) and the viral small RNA binding protein P19, these promoters were introduced into L. japonicus ecotype Gifu...

  14. Cell type-specific interactions of transcription factors with a housekeeping promoter in vivo.

    OpenAIRE

    Stapleton, G; Somma, M P; Lavia, P

    1993-01-01

    Mammalian housekeeping promoters represent a class of regulatory elements different from those of tissues-specific genes, lacking a TATA box and associated with CG-rich DNA. We have compared the organization of the housekeeping Htf9 promoter in different cell types by genomic footprinting. The sites of in vivo occupancy clearly reflected local combinations of tissue-specific and ubiquitous binding factors. The flexibility of the Htf9 promoter in acting as the target of cell-specific combinati...

  15. Analysis of cell-type-specific gene expression during mouse spermatogenesis

    DEFF Research Database (Denmark)

    Almstrup, Kristian; Nielsen, John E; Hansen, Martin Asser;

    2004-01-01

    In rodents, changes in gene expression during spermatogenesis can be monitored by sampling testis from each day during postnatal development. However, changes in gene expression at the tissue level can reflect changes in the concentration of an mRNA in a specific cell type, changes in volume of s...

  16. Transcription factor co-localization patterns affect human cell type-specific gene expression

    Directory of Open Access Journals (Sweden)

    Wang Dennis

    2012-06-01

    Full Text Available Abstract Background Cellular development requires the precise control of gene expression states. Transcription factors are involved in this regulatory process through their combinatorial binding with DNA. Information about transcription factor binding sites can help determine which combinations of factors work together to regulate a gene, but it is unclear how far the binding data from one cell type can inform about regulation in other cell types. Results By integrating data on co-localized transcription factor binding sites in the K562 cell line with expression data across 38 distinct hematopoietic cell types, we developed regression models to describe the relationship between the expression of target genes and the transcription factors that co-localize nearby. With K562 binding sites identifying the predictors, the proportion of expression explained by the models is statistically significant only for monocytic cells (p-valueFOS, TAF1 and YY1 to a sparsely studied gene LRIG2. We also find that the activity of a transcription factor may be different depending on the cell type and the identity of other co-localized factors. Conclusion Our approach shows that gene expression can be explained by a modest number of co-localized transcription factors, however, information on cell-type specific binding is crucial for understanding combinatorial gene regulation.

  17. Targeting the hemangioblast with a novel cell type-specific enhancer

    OpenAIRE

    Teixeira Vera; Arede Natacha; Gardner Rui; Rodríguez-León Joaquín; Tavares Ana T

    2011-01-01

    Abstract Background Hemangioblasts are known as the common precursors for primitive hematopoietic and endothelial lineages. Their existence has been supported mainly by the observation that both cell types develop in close proximity and by in vitro differentiation and genetic studies. However, more compelling evidence will arise from tracking their cell fates using a lineage-specific marker. Results We report the identification of a hemangioblast-specific enhancer (Hb) located in the cis-regu...

  18. Protein conservation and variation suggest mechanisms of cell type-specific modulation of signaling pathways.

    Directory of Open Access Journals (Sweden)

    Martin H Schaefer

    2014-06-01

    Full Text Available Many proteins and signaling pathways are present in most cell types and tissues and yet perform specialized functions. To elucidate mechanisms by which these ubiquitous pathways are modulated, we overlaid information about cross-cell line protein abundance and variability, and evolutionary conservation onto functional pathway components and topological layers in the pathway hierarchy. We found that the input (receptors and the output (transcription factors layers evolve more rapidly than proteins in the intermediary transmission layer. In contrast, protein expression variability decreases from the input to the output layer. We observed that the differences in protein variability between the input and transmission layer can be attributed to both the network position and the tendency of variable proteins to physically interact with constitutively expressed proteins. Differences in protein expression variability and conservation are also accompanied by the tendency of conserved and constitutively expressed proteins to acquire somatic mutations, while germline mutations tend to occur in cell type-specific proteins. Thus, conserved core proteins in the transmission layer could perform a fundamental role in most cell types and are therefore less tolerant to germline mutations. In summary, we propose that the core signal transmission machinery is largely modulated by a variable input layer through physical protein interactions. We hypothesize that the bow-tie organization of cellular signaling on the level of protein abundance variability contributes to the specificity of the signal response in different cell types.

  19. Protein conservation and variation suggest mechanisms of cell type-specific modulation of signaling pathways.

    Science.gov (United States)

    Schaefer, Martin H; Yang, Jae-Seong; Serrano, Luis; Kiel, Christina

    2014-06-01

    Many proteins and signaling pathways are present in most cell types and tissues and yet perform specialized functions. To elucidate mechanisms by which these ubiquitous pathways are modulated, we overlaid information about cross-cell line protein abundance and variability, and evolutionary conservation onto functional pathway components and topological layers in the pathway hierarchy. We found that the input (receptors) and the output (transcription factors) layers evolve more rapidly than proteins in the intermediary transmission layer. In contrast, protein expression variability decreases from the input to the output layer. We observed that the differences in protein variability between the input and transmission layer can be attributed to both the network position and the tendency of variable proteins to physically interact with constitutively expressed proteins. Differences in protein expression variability and conservation are also accompanied by the tendency of conserved and constitutively expressed proteins to acquire somatic mutations, while germline mutations tend to occur in cell type-specific proteins. Thus, conserved core proteins in the transmission layer could perform a fundamental role in most cell types and are therefore less tolerant to germline mutations. In summary, we propose that the core signal transmission machinery is largely modulated by a variable input layer through physical protein interactions. We hypothesize that the bow-tie organization of cellular signaling on the level of protein abundance variability contributes to the specificity of the signal response in different cell types. PMID:24922536

  20. Common and cell type-specific responses of human cells to mitochondrial dysfunction

    International Nuclear Information System (INIS)

    In yeast, mitochondrial dysfunction activates a specific pathway, termed retrograde regulation, which alters the expression of specific nuclear genes and results in increased replicative life span. In mammalian cells, the specific nuclear genes induced in response to loss of mitochondrial function are less well defined. This study characterizes responses in nuclear gene expression to loss of mitochondrial DNA sequences in three different human cell types: T143B, an osteosarcoma-derived cell line; ARPE19, a retinal pigment epithelium cell line; and GMO6225, a fibroblast cell population from an individual with Kearns-Sayre syndrome (KSS). Quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR) was used to measure gene expression of a selection of glycolysis, TCA cycle, mitochondrial, peroxisomal, extracellular matrix, stress response, and regulatory genes. Gene expression changes that were common to all three cell types included up-regulation of GCK (glucokinase), CS (citrate synthase), HOX1 (heme oxygenase 1), CKMT2 (mitochondrial creatine kinase 2), MYC (v-myc myelocytomatosis viral oncogene homolog), and WRN (Werner syndrome helicase), and down-regulation of FBP1 (fructose-1, 6-bisphosphatase 1) and COL4A1 (collagen, type IV, alpha 1). RNA interference experiments show that induction of MYC is important in ρ0 cells for the up-regulation of glycolysis. In addition, a variety of cell type-specific gene changes was detected and most likely depended upon the differentiated functions of the individual cell types. These expression changes may help explain the response of different tissues to the loss of mitochondrial function due to aging or disease

  1. The roadmap for estimation of cell-type-specific neuronal activity from non-invasive measurements.

    Science.gov (United States)

    Uhlirova, Hana; Kılıç, Kıvılcım; Tian, Peifang; Sakadžić, Sava; Gagnon, Louis; Thunemann, Martin; Desjardins, Michèle; Saisan, Payam A; Nizar, Krystal; Yaseen, Mohammad A; Hagler, Donald J; Vandenberghe, Matthieu; Djurovic, Srdjan; Andreassen, Ole A; Silva, Gabriel A; Masliah, Eliezer; Kleinfeld, David; Vinogradov, Sergei; Buxton, Richard B; Einevoll, Gaute T; Boas, David A; Dale, Anders M; Devor, Anna

    2016-10-01

    The computational properties of the human brain arise from an intricate interplay between billions of neurons connected in complex networks. However, our ability to study these networks in healthy human brain is limited by the necessity to use non-invasive technologies. This is in contrast to animal models where a rich, detailed view of cellular-level brain function with cell-type-specific molecular identity has become available due to recent advances in microscopic optical imaging and genetics. Thus, a central challenge facing neuroscience today is leveraging these mechanistic insights from animal studies to accurately draw physiological inferences from non-invasive signals in humans. On the essential path towards this goal is the development of a detailed 'bottom-up' forward model bridging neuronal activity at the level of cell-type-specific populations to non-invasive imaging signals. The general idea is that specific neuronal cell types have identifiable signatures in the way they drive changes in cerebral blood flow, cerebral metabolic rate of O2 (measurable with quantitative functional Magnetic Resonance Imaging), and electrical currents/potentials (measurable with magneto/electroencephalography). This forward model would then provide the 'ground truth' for the development of new tools for tackling the inverse problem-estimation of neuronal activity from multimodal non-invasive imaging data.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. PMID:27574309

  2. Epigenetic regulation of normal human mammary cell type-specific miRNAs

    Energy Technology Data Exchange (ETDEWEB)

    Vrba, Lukas [Univ. of Arizona, Tucson, AZ (United States). Arizona Cancer Center; Inst. of Plant Molecular Biology, Ceske Budejovice (Czech Republic). Biology Centre ASCR; Garbe, James C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Center; Stampfer, Martha R. [Univ. of Arizona, Tucson, AZ (United States). Arizona Cancer Center; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Center; Futscher, Bernard W. [Univ. of Arizona, Tucson, AZ (United States). Arizona Cancer Center and Dept. of Pharmacology & Toxicology

    2011-08-26

    Epigenetic mechanisms are important regulators of cell type–specific genes, including miRNAs. In order to identify cell type-specific miRNAs regulated by epigenetic mechanisms, we undertook a global analysis of miRNA expression and epigenetic states in three isogenic pairs of human mammary epithelial cells (HMEC) and human mammary fibroblasts (HMF), which represent two differentiated cell types typically present within a given organ, each with a distinct phenotype and a distinct epigenotype. While miRNA expression and epigenetic states showed strong interindividual concordance within a given cell type, almost 10% of the expressed miRNA showed a cell type–specific pattern of expression that was linked to the epigenetic state of their promoter. The tissue-specific miRNA genes were epigenetically repressed in nonexpressing cells by DNA methylation (38%) and H3K27me3 (58%), with only a small set of miRNAs (21%) showing a dual epigenetic repression where both DNA methylation and H3K27me3 were present at their promoters, such as MIR10A and MIR10B. Individual miRNA clusters of closely related miRNA gene families can each display cell type–specific repression by the same or complementary epigenetic mechanisms, such as the MIR200 family, and MIR205, where fibroblasts repress MIR200C/141 by DNA methylation, MIR200A/200B/429 by H3K27me3, and MIR205 by both DNA methylation and H3K27me3. Since deregulation of many of the epigenetically regulated miRNAs that we identified have been linked to disease processes such as cancer, it is predicted that compromise of the epigenetic control mechanisms is important for this process. Overall, these results highlight the importance of epigenetic regulation in the control of normal cell type–specific miRNA expression.

  3. C/EBPβ Induces Chromatin Opening at a Cell-Type-Specific Enhancer▿

    OpenAIRE

    Plachetka, Annette; Chayka, Olesya; Wilczek, Carola; Melnik, Svitlana; Bonifer, Constanze; Klempnauer, Karl-Heinz

    2008-01-01

    We have used the chicken mim-1 gene as a model to study the mechanisms by which transcription factors gain initial access to their target sites in compacted chromatin. The expression of mim-1 is restricted to the myelomonocytic lineage of the hematopoietic system where it is regulated synergistically by the Myb and CCAAT/enhancer binding protein (C/EBP) factors. Myb and C/EBPβ cooperate at two distinct cis elements of mim-1, the promoter and a cell-type-specific enhancer, both of which are as...

  4. CAST-ChIP Maps Cell-Type-Specific Chromatin States in the Drosophila Central Nervous System

    Directory of Open Access Journals (Sweden)

    Tamás Schauer

    2013-10-01

    Full Text Available Chromatin organization and gene activity are responsive to developmental and environmental cues. Although many genes are transcribed throughout development and across cell types, much of gene regulation is highly cell-type specific. To readily track chromatin features at the resolution of cell types within complex tissues, we developed and validated chromatin affinity purification from specific cell types by chromatin immunoprecipitation (CAST-ChIP, a broadly applicable biochemical procedure. RNA polymerase II (Pol II CAST-ChIP identifies ∼1,500 neuronal and glia-specific genes in differentiated cells within the adult Drosophila brain. In contrast, the histone H2A.Z is distributed similarly across cell types and throughout development, marking cell-type-invariant Pol II-bound regions. Our study identifies H2A.Z as an active chromatin signature that is refractory to changes across cell fates. Thus, CAST-ChIP powerfully identifies cell-type-specific as well as cell-type-invariant chromatin states, enabling the systematic dissection of chromatin structure and gene regulation within complex tissues such as the brain.

  5. Specific residues of the GDP/GTP exchange factor Bud5p are involved in establishment of the cell type-specific budding pattern in yeast.

    Science.gov (United States)

    Kang, Pil Jung; Lee, Bongyong; Park, Hay-Oak

    2004-07-01

    Cells of the budding yeast undergo oriented cell division by choosing a specific site for growth depending on their cell type. Haploid a and alpha cells bud in an axial pattern whereas diploid a/alpha cells bud in a bipolar pattern. The Ras-like GTPase Rsr1p/Bud1p, its GDP-GTP exchange factor Bud5p, and its GTPase-activating protein Bud2p are essential for selecting the proper site for polarized growth in all cell types. Here we showed that specific residues at the N terminus and the C terminus of Bud5p were important for bipolar budding, while some residues were involved in both axial and bipolar budding. These bipolar-specific mutations of BUD5 disrupted proper localization of Bud5p in diploid a/alpha cells without affecting Bud5p localization in haploid alpha cells. In contrast, Bud5p expressed in the bud5 mutants defective in both budding patterns failed to localize in all cell types. Thus, these results identify specific residues of Bud5p that are likely to be involved in direct interaction with spatial landmarks, which recruit Bud5p to the proper bud site. Finally, we found a new start codon of BUD5, which extends the open reading frame to 210 bp upstream of the previously estimated start site, thus encoding a polypeptide of 608 amino acid residues. Bud5p with these additional N-terminal residues interacted with Bud8p, a potential bipolar landmark, suggesting that the N-terminal region is necessary for recognition of the spatial cues. PMID:15136576

  6. General and cell-type specific mechanisms target TRPP2/PKD-2 to cilia.

    Science.gov (United States)

    Bae, Young-Kyung; Qin, Hongmin; Knobel, Karla M; Hu, Jinghua; Rosenbaum, Joel L; Barr, Maureen M

    2006-10-01

    Ciliary localization of the transient receptor potential polycystin 2 channel (TRPP2/PKD-2) is evolutionarily conserved, but how TRPP2 is targeted to cilia is not known. In this study, we characterize the motility and localization of PKD-2, a TRPP2 homolog, in C. elegans sensory neurons. We demonstrate that GFP-tagged PKD-2 moves bidirectionally in the dendritic compartment. Furthermore, we show a requirement for different molecules in regulating the ciliary localization of PKD-2. PKD-2 is directed to moving dendritic particles by the UNC-101/adaptor protein 1 (AP-1) complex. When expressed in non-native neurons, PKD-2 remains in cell bodies and is not observed in dendrites or cilia, indicating that cell-type specific factors are required for directing PKD-2 to the dendrite. PKD-2 stabilization in cilia and cell bodies requires LOV-1, a functional partner and a TRPP1 homolog. In lov-1 mutants, PKD-2 is greatly reduced in cilia and forms abnormal aggregates in neuronal cell bodies. Intraflagellar transport (IFT) is not essential for PKD-2 dendritic motility or access to the cilium, but may regulate PKD-2 ciliary abundance. We propose that both general and cell-type-specific factors govern TRPP2/PKD-2 subcellular distribution by forming at least two steps involving somatodendritic and ciliary sorting decisions. PMID:16943275

  7. Gene expression profiles of hepatic cell-type specific marker genes in progression of liver fibrosis

    Institute of Scientific and Technical Information of China (English)

    Yoshiyuki Takahara; Mitsuo Takahashi; Hiroki Wagatsuma; Fumihiko Yokoya; Qing-Wei Zhang; Mutsuyo Yamaguchi; Hiroyuki Aburatani; Norifumi Kawada

    2006-01-01

    AIM: To determine the gene expression profile data for the whole liver during development of dimethylnitrosamine (DMN)-induced hepatic fibrosis.METHODS: Marker genes were identified for different types of hepatic cells, including hepatic stellate cells (HSCs), Kupffer cells (including other inflammatory cells),and hepatocytes, using independent temporal DNA microarray data obtained from isolated hepatic cells.RESULTS: The cell-type analysis of gene expression gave several key results and led to formation of three hypotheses: (1) changes in the expression of HSCspecific marker genes during fibrosis were similar to gene expression data in in vitro cultured HSCs, suggesting a major role of the self-activating characteristics of HSCs in formation of fibrosis; (2) expression of mast cell-specific marker genes reached a peak during liver fibrosis,suggesting a possible role of mast cells in formation of fibrosis; and (3) abnormal expression of hepatocytespecific marker genes was found across several metabolic pathways during fibrosis, including sulfur-containing amino acid metabolism, fatty acid metabolism, and drug metabolism, suggesting a mechanistic relationship between these abnormalities and symptoms of liver fibrosis.CONCLUSION: Analysis of marker genes for specific hepatic cell types can identify the key aspects of fibrogenesis. Sequential activation of inflammatory cells and the self-supporting properties of HSCs play an important role in development of fibrosis.

  8. Task specific image text recognition

    OpenAIRE

    Ben-Haim, Nadav

    2008-01-01

    This thesis addresses the problem of reading image text, which we define here as a digital image of machine printed text. Images of license plates, signs, and scanned documents fall into this category, whereas images of handwriting do not. Automatically reading image text is a very well researched problem, which falls into the broader category of Optical Character Recognition (OCR). Virtually all work in this domain begins by segmenting characters from the image and proceeds with a classifica...

  9. Partitioning Heritability of Regulatory and Cell-Type-Specific Variants across 11 Common Diseases

    Science.gov (United States)

    Gusev, Alexander; Lee, S. Hong; Trynka, Gosia; Finucane, Hilary; Vilhjálmsson, Bjarni J.; Xu, Han; Zang, Chongzhi; Ripke, Stephan; Bulik-Sullivan, Brendan; Stahl, Eli; Ripke, Stephan; Neale, Benjamin M.; Corvin, Aiden; Walters, James T.R.; Farh, Kai-How; Holmans, Peter A.; Lee, Phil; Bulik-Sullivan, Brendan; Collier, David A.; Huang, Hailiang; Pers, Tune H.; Agartz, Ingrid; Agerbo, Esben; Albus, Margot; Alexander, Madeline; Amin, Farooq; Bacanu, Silviu A.; Begemann, Martin; Belliveau, Richard A.; Bene, Judit; Bergen, Sarah E.; Bevilacqua, Elizabeth; Bigdeli, Tim B.; Black, Donald W.; Børglum, Anders D.; Bruggeman, Richard; Buccola, Nancy G.; Buckner, Randy L.; Byerley, William; Cahn, Wiepke; Cai, Guiqing; Campion, Dominique; Cantor, Rita M.; Carr, Vaughan J.; Carrera, Noa; Catts, Stanley V.; Chambert, Kimberly D.; Chan, Raymond C.K.; Chen, Ronald Y.L.; Chen, Eric Y.H.; Cheng, Wei; Cheung, Eric F.C.; Chong, Siow Ann; Cloninger, C. Robert; Cohen, David; Cohen, Nadine; Cormican, Paul; Craddock, Nick; Crowley, James J.; Curtis, David; Davidson, Michael; Davis, Kenneth L.; Degenhardt, Franziska; Del Favero, Jurgen; DeLisi, Lynn E.; Demontis, Ditte; Dikeos, Dimitris; Dinan, Timothy; Djurovic, Srdjan; Donohoe, Gary; Drapeau, Elodie; Duan, Jubao; Dudbridge, Frank; Durmishi, Naser; Eichhammer, Peter; Eriksson, Johan; Escott-Price, Valentina; Essioux, Laurent; Fanous, Ayman H.; Farrell, Martilias S.; Frank, Josef; Franke, Lude; Freedman, Robert; Freimer, Nelson B.; Friedl, Marion; Friedman, Joseph I.; Fromer, Menachem; Genovese, Giulio; Georgieva, Lyudmila; Gershon, Elliot S.; Giegling, Ina; Giusti-Rodrguez, Paola; Godard, Stephanie; Goldstein, Jacqueline I.; Golimbet, Vera; Gopal, Srihari; Gratten, Jacob; Grove, Jakob; de Haan, Lieuwe; Hammer, Christian; Hamshere, Marian L.; Hansen, Mark; Hansen, Thomas; Haroutunian, Vahram; Hartmann, Annette M.; Henskens, Frans A.; Herms, Stefan; Hirschhorn, Joel N.; Hoffmann, Per; Hofman, Andrea; Hollegaard, Mads V.; Hougaard, David M.; Ikeda, Masashi; Joa, Inge; Julià, Antonio; Kahn, René S.; Kalaydjieva, Luba; Karachanak-Yankova, Sena; Karjalainen, Juha; Kavanagh, David; Keller, Matthew C.; Kelly, Brian J.; Kennedy, James L.; Khrunin, Andrey; Kim, Yunjung; Klovins, Janis; Knowles, James A.; Konte, Bettina; Kucinskas, Vaidutis; Kucinskiene, Zita Ausrele; Kuzelova-Ptackova, Hana; Kähler, Anna K.; Laurent, Claudine; Keong, Jimmy Lee Chee; Lee, S. Hong; Legge, Sophie E.; Lerer, Bernard; Li, Miaoxin; Li, Tao; Liang, Kung-Yee; Lieberman, Jeffrey; Limborska, Svetlana; Loughland, Carmel M.; Lubinski, Jan; Lnnqvist, Jouko; Macek, Milan; Magnusson, Patrik K.E.; Maher, Brion S.; Maier, Wolfgang; Mallet, Jacques; Marsal, Sara; Mattheisen, Manuel; Mattingsdal, Morten; McCarley, Robert W.; McDonald, Colm; McIntosh, Andrew M.; Meier, Sandra; Meijer, Carin J.; Melegh, Bela; Melle, Ingrid; Mesholam-Gately, Raquelle I.; Metspalu, Andres; Michie, Patricia T.; Milani, Lili; Milanova, Vihra; Mokrab, Younes; Morris, Derek W.; Mors, Ole; Mortensen, Preben B.; Murphy, Kieran C.; Murray, Robin M.; Myin-Germeys, Inez; Mller-Myhsok, Bertram; Nelis, Mari; Nenadic, Igor; Nertney, Deborah A.; Nestadt, Gerald; Nicodemus, Kristin K.; Nikitina-Zake, Liene; Nisenbaum, Laura; Nordin, Annelie; O’Callaghan, Eadbhard; O’Dushlaine, Colm; O’Neill, F. Anthony; Oh, Sang-Yun; Olincy, Ann; Olsen, Line; Van Os, Jim; Pantelis, Christos; Papadimitriou, George N.; Papiol, Sergi; Parkhomenko, Elena; Pato, Michele T.; Paunio, Tiina; Pejovic-Milovancevic, Milica; Perkins, Diana O.; Pietilinen, Olli; Pimm, Jonathan; Pocklington, Andrew J.; Powell, John; Price, Alkes; Pulver, Ann E.; Purcell, Shaun M.; Quested, Digby; Rasmussen, Henrik B.; Reichenberg, Abraham; Reimers, Mark A.; Richards, Alexander L.; Roffman, Joshua L.; Roussos, Panos; Ruderfer, Douglas M.; Salomaa, Veikko; Sanders, Alan R.; Schall, Ulrich; Schubert, Christian R.; Schulze, Thomas G.; Schwab, Sibylle G.; Scolnick, Edward M.; Scott, Rodney J.; Seidman, Larry J.; Shi, Jianxin; Sigurdsson, Engilbert; Silagadze, Teimuraz; Silverman, Jeremy M.; Sim, Kang; Slominsky, Petr; Smoller, Jordan W.; So, Hon-Cheong; Spencer, Chris C.A.; Stahl, Eli A.; Stefansson, Hreinn; Steinberg, Stacy; Stogmann, Elisabeth; Straub, Richard E.; Strengman, Eric; Strohmaier, Jana; Stroup, T. Scott; Subramaniam, Mythily; Suvisaari, Jaana; Svrakic, Dragan M.; Szatkiewicz, Jin P.; Sderman, Erik; Thirumalai, Srinivas; Toncheva, Draga; Tooney, Paul A.; Tosato, Sarah; Veijola, Juha; Waddington, John; Walsh, Dermot; Wang, Dai; Wang, Qiang; Webb, Bradley T.; Weiser, Mark; Wildenauer, Dieter B.; Williams, Nigel M.; Williams, Stephanie; Witt, Stephanie H.; Wolen, Aaron R.; Wong, Emily H.M.; Wormley, Brandon K.; Wu, Jing Qin; Xi, Hualin Simon; Zai, Clement C.; Zheng, Xuebin; Zimprich, Fritz; Wray, Naomi R.; Stefansson, Kari; Visscher, Peter M.; Adolfsson, Rolf; Andreassen, Ole A.; Blackwood, Douglas H.R.; Bramon, Elvira; Buxbaum, Joseph D.; Brglum, Anders D.; Cichon, Sven; Darvasi, Ariel; Domenici, Enrico; Ehrenreich, Hannelore; Esko, Tõnu; Gejman, Pablo V.; Gill, Michael; Gurling, Hugh; Hultman, Christina M.; Iwata, Nakao; Jablensky, Assen V.; Jönsson, Erik G.; Kendler, Kenneth S.; Kirov, George; Knight, Jo; Lencz, Todd; Levinson, Douglas F.; Li, Qingqin S.; Liu, Jianjun; Malhotra, Anil K.; McCarroll, Steven A.; McQuillin, Andrew; Moran, Jennifer L.; Mortensen, Preben B.; Mowry, Bryan J.; Nthen, Markus M.; Ophoff, Roel A.; Owen, Michael J.; Palotie, Aarno; Pato, Carlos N.; Petryshen, Tracey L.; Posthuma, Danielle; Rietschel, Marcella; Riley, Brien P.; Rujescu, Dan; Sham, Pak C.; Sklar, Pamela; St. Clair, David; Weinberger, Daniel R.; Wendland, Jens R.; Werge, Thomas; Daly, Mark J.; Sullivan, Patrick F.; O’Donovan, Michael C.; Ripke, Stephan; O’Dushlaine, Colm; Chambert, Kimberly; Moran, Jennifer L.; Kähler, Anna K.; Akterin, Susanne; Bergen, Sarah; Magnusson, Patrik K.E.; Neale, Benjamin M.; Ruderfer, Douglas; Scolnick, Edward; Purcell, Shaun; McCarroll, Steve; Sklar, Pamela; Hultman, Christina M.; Sullivan, Patrick F.; Kähler, Anna K.; Hultman, Christina M.; Purcell, Shaun M.; McCarroll, Steven A.; Daly, Mark; Pasaniuc, Bogdan; Sullivan, Patrick F.; Neale, Benjamin M.; Wray, Naomi R.; Raychaudhuri, Soumya; Price, Alkes L.

    2014-01-01

    Regulatory and coding variants are known to be enriched with associations identified by genome-wide association studies (GWASs) of complex disease, but their contributions to trait heritability are currently unknown. We applied variance-component methods to imputed genotype data for 11 common diseases to partition the heritability explained by genotyped SNPs (hg2) across functional categories (while accounting for shared variance due to linkage disequilibrium). Extensive simulations showed that in contrast to current estimates from GWAS summary statistics, the variance-component approach partitions heritability accurately under a wide range of complex-disease architectures. Across the 11 diseases DNaseI hypersensitivity sites (DHSs) from 217 cell types spanned 16% of imputed SNPs (and 24% of genotyped SNPs) but explained an average of 79% (SE = 8%) of hg2 from imputed SNPs (5.1× enrichment; p = 3.7 × 10−17) and 38% (SE = 4%) of hg2 from genotyped SNPs (1.6× enrichment, p = 1.0 × 10−4). Further enrichment was observed at enhancer DHSs and cell-type-specific DHSs. In contrast, coding variants, which span 1% of the genome, explained <10% of hg2 despite having the highest enrichment. We replicated these findings but found no significant contribution from rare coding variants in independent schizophrenia cohorts genotyped on GWAS and exome chips. Our results highlight the value of analyzing components of heritability to unravel the functional architecture of common disease. PMID:25439723

  10. Cell-type specific regulation of cortical excitability through the allatostatin receptor system

    Directory of Open Access Journals (Sweden)

    Tomoko Velasquez

    2012-01-01

    Full Text Available Recent technical advances enable the regulation of neuronal circuit activity with high spatial and temporal resolution through genetic delivery of molecular activation or inactivation systems. Among them, the allatostatin receptor (AlstR/ligand system has been developed for selective and quickly reversible silencing of mammalian neurons. However, targeted AlstR-mediated inactivation of specific neuronal types, particularly diverse types of inhibitory interneurons, remains to be established. In the present study, we achieved Cre-directed expression of AlstRs to excitatory and inhibitory cell types in the cortex, and found that the AlstR-mediated inactivation was specific and robust at single cell and neuronal population levels. Bath application of the allatostatin peptide markedly reduced spiking activity of AlstR-expressing excitatory and inhibitory neurons in response to intrasomatic current injections and laser photostimulation via glutamate uncaging, but control neurons without AlstR expression were not affected. As for the cortical network activity, the peptide application constrained photostimulation-evoked excitatory activity propagation detected by fast voltage-sensitive dye (VSD imaging of the slices expressing AlstRs selectively in excitatory neurons, while it augmented excitatory activity in those slices with inhibitory neurons expressing AlstRs. In addition, AlstR-mediated inactivation effectively suppressed pharmacologically-induced seizure activity in the slices targeting AlstRs to excitatory neurons. Taken together, our work demonstrated that the genetic delivery of AlstRs can be used for regulation of cortical excitability in a cell-type specific manner, and suggested that the AlstR system can be potentially used for fast seizure control.

  11. Lim homeobox genes in the Ctenophore Mnemiopsis leidyi: the evolution of neural cell type specification

    Directory of Open Access Journals (Sweden)

    Simmons David K

    2012-01-01

    Full Text Available Abstract Background Nervous systems are thought to be important to the evolutionary success and diversification of metazoans, yet little is known about the origin of simple nervous systems at the base of the animal tree. Recent data suggest that ctenophores, a group of macroscopic pelagic marine invertebrates, are the most ancient group of animals that possess a definitive nervous system consisting of a distributed nerve net and an apical statocyst. This study reports on details of the evolution of the neural cell type specifying transcription factor family of LIM homeobox containing genes (Lhx, which have highly conserved functions in neural specification in bilaterian animals. Results Using next generation sequencing, the first draft of the genome of the ctenophore Mnemiopsis leidyi has been generated. The Lhx genes in all animals are represented by seven subfamilies (Lhx1/5, Lhx3/4, Lmx, Islet, Lhx2/9, Lhx6/8, and LMO of which four were found to be represented in the ctenophore lineage (Lhx1/5, Lhx3/4, Lmx, and Islet. Interestingly, the ctenophore Lhx gene complement is more similar to the sponge complement (sponges do not possess neurons than to either the cnidarian-bilaterian or placozoan Lhx complements. Using whole mount in situ hybridization, the Lhx gene expression patterns were examined and found to be expressed around the blastopore and in cells that give rise to the apical organ and putative neural sensory cells. Conclusion This research gives us a first look at neural cell type specification in the ctenophore M. leidyi. Within M. leidyi, Lhx genes are expressed in overlapping domains within proposed neural cellular and sensory cell territories. These data suggest that Lhx genes likely played a conserved role in the patterning of sensory cells in the ancestor of sponges and ctenophores, and may provide a link to the expression of Lhx orthologs in sponge larval photoreceptive cells. Lhx genes were later co-opted into patterning more

  12. A machine learning approach for identifying novel cell type-specific transcriptional regulators of myogenesis.

    Science.gov (United States)

    Busser, Brian W; Taher, Leila; Kim, Yongsok; Tansey, Terese; Bloom, Molly J; Ovcharenko, Ivan; Michelson, Alan M

    2012-01-01

    Transcriptional enhancers integrate the contributions of multiple classes of transcription factors (TFs) to orchestrate the myriad spatio-temporal gene expression programs that occur during development. A molecular understanding of enhancers with similar activities requires the identification of both their unique and their shared sequence features. To address this problem, we combined phylogenetic profiling with a DNA-based enhancer sequence classifier that analyzes the TF binding sites (TFBSs) governing the transcription of a co-expressed gene set. We first assembled a small number of enhancers that are active in Drosophila melanogaster muscle founder cells (FCs) and other mesodermal cell types. Using phylogenetic profiling, we increased the number of enhancers by incorporating orthologous but divergent sequences from other Drosophila species. Functional assays revealed that the diverged enhancer orthologs were active in largely similar patterns as their D. melanogaster counterparts, although there was extensive evolutionary shuffling of known TFBSs. We then built and trained a classifier using this enhancer set and identified additional related enhancers based on the presence or absence of known and putative TFBSs. Predicted FC enhancers were over-represented in proximity to known FC genes; and many of the TFBSs learned by the classifier were found to be critical for enhancer activity, including POU homeodomain, Myb, Ets, Forkhead, and T-box motifs. Empirical testing also revealed that the T-box TF encoded by org-1 is a previously uncharacterized regulator of muscle cell identity. Finally, we found extensive diversity in the composition of TFBSs within known FC enhancers, suggesting that motif combinatorics plays an essential role in the cellular specificity exhibited by such enhancers. In summary, machine learning combined with evolutionary sequence analysis is useful for recognizing novel TFBSs and for facilitating the identification of cognate TFs that

  13. Optimizing Staining Protocols for Laser Microdissection of Specific Cell Types from the Testis Including Carcinoma In Situ

    DEFF Research Database (Denmark)

    Sonne, Si Brask; Dalgaard, Marlene D; Nielsen, John Erik;

    2009-01-01

    Microarray and RT-PCR based methods are important tools for analysis of gene expression; however, in tissues containing many different cells types, such as the testis, characterization of gene expression in specific cell types can be severely hampered by noise from other cells. The laser microdis......Microarray and RT-PCR based methods are important tools for analysis of gene expression; however, in tissues containing many different cells types, such as the testis, characterization of gene expression in specific cell types can be severely hampered by noise from other cells. The laser......-containing cells, which is useful for isolation of the androgen-producing Leydig cells. Both protocols retain a morphology that is compatible with laser microdissection and yield RNA of a quality suitable for PCR and microarray analysis....

  14. The evolutionary emergence of cell type-specific genes inferred from the gene expression analysis of Hydra

    Science.gov (United States)

    Hwang, Jung Shan; Ohyanagi, Hajime; Hayakawa, Shiho; Osato, Naoki; Nishimiya-Fujisawa, Chiemi; Ikeo, Kazuho; David, Charles N.; Fujisawa, Toshitaka; Gojobori, Takashi

    2007-01-01

    Cell lineages of cnidarians including Hydra represent the fundamental cell types of metazoans and provides us a unique opportunity to study the evolutionary diversification of cell type in the animal kingdom. Hydra contains epithelial cells as well as a multipotent interstitial cell (I-cell) that gives rise to nematocytes, nerve cells, gland cells, and germ-line cells. We used cDNA microarrays to identify cell type-specific genes by comparing gene expression in normal Hydra with animals lacking the I-cell lineage, so-called epithelial Hydra. We then performed in situ hybridization to localize expression to specific cell types. Eighty-six genes were shown to be expressed in specific cell types of the I-cell lineage. An additional 29 genes were expressed in epithelial cells and were down-regulated in epithelial animals lacking I-cells. Based on the above information, we constructed a database (http://hydra.lab.nig.ac.jp/hydra/), which describes the expression patterns of cell type-specific genes in Hydra. Most genes expressed specifically in either I-cells or epithelial cells have homologues in higher metazoans. By comparison, most nematocyte-specific genes and approximately half of the gland cell- and nerve cell-specific genes are unique to the cnidarian lineage. Because nematocytes, gland cells, and nerve cells appeared along with the emergence of cnidarians, this suggests that lineage-specific genes arose in cnidarians in conjunction with the evolution of new cell types required by the cnidarians. PMID:17766437

  15. Cell type specificity of female lung cancer associated with sulfur dioxide from air pollutants in Taiwan: An ecological study

    OpenAIRE

    Tseng Ching-Yu; Huang Yi-Chia; Su Shih-Yung; Huang Jing-Yang; Lai Cheng-Hsiu; Lung Chia-Chi; Ho Chien-Chang; Liaw Yung-Po

    2012-01-01

    Abstract Background Many studies have examined the association between air pollutants (including sulfur dioxide [SO2], carbon monoxide [CO], nitrogen dioxide [NO2], nitric oxide [NO], ozone [O3], and particulate matter < 10 μm [PM10]) and lung cancer. However, data from previous studies on pathological cell types were limited, especially for SO2 exposure. We aimed to explore the association between SO2 exposure from outdoor air pollutants and female lung cancer incidence by cell type specific...

  16. Glutamine synthetase is a genetic determinant of cell type-specific glutamine independence in breast epithelia.

    Directory of Open Access Journals (Sweden)

    Hsiu-Ni Kung

    2011-08-01

    Full Text Available Although significant variations in the metabolic profiles exist among different cells, little is understood in terms of genetic regulations of such cell type-specific metabolic phenotypes and nutrient requirements. While many cancer cells depend on exogenous glutamine for survival to justify the therapeutic targeting of glutamine metabolism, the mechanisms of glutamine dependence and likely response and resistance of such glutamine-targeting strategies among cancers are largely unknown. In this study, we have found a systematic variation in the glutamine dependence among breast tumor subtypes associated with mammary differentiation: basal- but not luminal-type breast cells are more glutamine-dependent and may be susceptible to glutamine-targeting therapeutics. Glutamine independence of luminal-type cells is associated mechanistically with lineage-specific expression of glutamine synthetase (GS. Luminal cells can also rescue basal cells in co-culture without glutamine, indicating a potential for glutamine symbiosis within breast ducts. The luminal-specific expression of GS is directly induced by GATA3 and represses glutaminase expression. Such distinct glutamine dependency and metabolic symbiosis is coupled with the acquisition of the GS and glutamine independence during the mammary differentiation program. Understanding the genetic circuitry governing distinct metabolic patterns is relevant to many symbiotic relationships among different cells and organisms. In addition, the ability of GS to predict patterns of glutamine metabolism and dependency among tumors is also crucial in the rational design and application of glutamine and other metabolic pathway targeted therapies.

  17. Targeting the hemangioblast with a novel cell type-specific enhancer

    Directory of Open Access Journals (Sweden)

    Teixeira Vera

    2011-12-01

    Full Text Available Abstract Background Hemangioblasts are known as the common precursors for primitive hematopoietic and endothelial lineages. Their existence has been supported mainly by the observation that both cell types develop in close proximity and by in vitro differentiation and genetic studies. However, more compelling evidence will arise from tracking their cell fates using a lineage-specific marker. Results We report the identification of a hemangioblast-specific enhancer (Hb located in the cis-regulatory region of chick Cerberus gene (cCer that is able to direct the expression of enhanced green fluorescent protein (eGFP to the precursors of yolk sac blood and endothelial cells in electroporated chick embryos. Moreover, we present the Hb-eGFP reporter as a powerful live imaging tool for visualizing hemangioblast cell fate and blood island morphogenesis. Conclusions We hereby introduce the Hb enhancer as a valuable resource for genetically targeting the hemangioblast population as well as for studying the dynamics of vascular and blood cell development.

  18. Cell-type specific roles for PTEN in establishing a functional retinal architecture.

    Directory of Open Access Journals (Sweden)

    Robert Cantrup

    Full Text Available BACKGROUND: The retina has a unique three-dimensional architecture, the precise organization of which allows for complete sampling of the visual field. Along the radial or apicobasal axis, retinal neurons and their dendritic and axonal arbors are segregated into layers, while perpendicular to this axis, in the tangential plane, four of the six neuronal types form patterned cellular arrays, or mosaics. Currently, the molecular cues that control retinal cell positioning are not well-understood, especially those that operate in the tangential plane. Here we investigated the role of the PTEN phosphatase in establishing a functional retinal architecture. METHODOLOGY/PRINCIPAL FINDINGS: In the developing retina, PTEN was localized preferentially to ganglion, amacrine and horizontal cells, whose somata are distributed in mosaic patterns in the tangential plane. Generation of a retina-specific Pten knock-out resulted in retinal ganglion, amacrine and horizontal cell hypertrophy, and expansion of the inner plexiform layer. The spacing of Pten mutant mosaic populations was also aberrant, as were the arborization and fasciculation patterns of their processes, displaying cell type-specific defects in the radial and tangential dimensions. Irregular oscillatory potentials were also observed in Pten mutant electroretinograms, indicative of asynchronous amacrine cell firing. Furthermore, while Pten mutant RGC axons targeted appropriate brain regions, optokinetic spatial acuity was reduced in Pten mutant animals. Finally, while some features of the Pten mutant retina appeared similar to those reported in Dscam-mutant mice, PTEN expression and activity were normal in the absence of Dscam. CONCLUSIONS/SIGNIFICANCE: We conclude that Pten regulates somal positioning and neurite arborization patterns of a subset of retinal cells that form mosaics, likely functioning independently of Dscam, at least during the embryonic period. Our findings thus reveal an unexpected

  19. Genetically-directed, cell type-specific sparse labeling for the analysis of neuronal morphology.

    Directory of Open Access Journals (Sweden)

    Thomas Rotolo

    Full Text Available BACKGROUND: In mammals, genetically-directed cell labeling technologies have not yet been applied to the morphologic analysis of neurons with very large and complex arbors, an application that requires extremely sparse labeling and that is only rendered practical by limiting the labeled population to one or a few predetermined neuronal subtypes. METHODS AND FINDINGS: In the present study we have addressed this application by using CreER technology to non-invasively label very small numbers of neurons so that their morphologies can be fully visualized. Four lines of IRES-CreER knock-in mice were constructed to permit labeling selectively in cholinergic or catecholaminergic neurons [choline acetyltransferase (ChAT-IRES-CreER or tyrosine hydroxylase (TH-IRES-CreER], predominantly in projection neurons [neurofilament light chain (NFL-IRES-CreER], or broadly in neurons and some glia [vesicle-associated membrane protein2 (VAMP2-IRES-CreER]. When crossed to the Z/AP reporter and exposed to 4-hydroxytamoxifen in the early postnatal period, the number of neurons expressing the human placental alkaline phosphatase reporter can be reproducibly lowered to fewer than 50 per brain. Sparse Cre-mediated recombination in ChAT-IRES-CreER;Z/AP mice shows the full axonal and dendritic arbors of individual forebrain cholinergic neurons, the first time that the complete morphologies of these very large neurons have been revealed in any species. CONCLUSIONS: Sparse genetically-directed, cell type-specific neuronal labeling with IRES-creER lines should prove useful for studying a wide variety of questions in neuronal development and disease.

  20. Gene Expression Programs in Response to Hypoxia: Cell Type Specificity and Prognostic Significance in Human Cancers.

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available BACKGROUND: Inadequate oxygen (hypoxia triggers a multifaceted cellular response that has important roles in normal physiology and in many human diseases. A transcription factor, hypoxia-inducible factor (HIF, plays a central role in the hypoxia response; its activity is regulated by the oxygen-dependent degradation of the HIF-1alpha protein. Despite the ubiquity and importance of hypoxia responses, little is known about the variation in the global transcriptional response to hypoxia among different cell types or how this variation might relate to tissue- and cell-specific diseases. METHODS AND FINDINGS: We analyzed the temporal changes in global transcript levels in response to hypoxia in primary renal proximal tubule epithelial cells, breast epithelial cells, smooth muscle cells, and endothelial cells with DNA microarrays. The extent of the transcriptional response to hypoxia was greatest in the renal tubule cells. This heightened response was associated with a uniquely high level of HIF-1alpha RNA in renal cells, and it could be diminished by reducing HIF-1alpha expression via RNA interference. A gene-expression signature of the hypoxia response, derived from our studies of cultured mammary and renal tubular epithelial cells, showed coordinated variation in several human cancers, and was a strong predictor of clinical outcomes in breast and ovarian cancers. In an analysis of a large, published gene-expression dataset from breast cancers, we found that the prognostic information in the hypoxia signature was virtually independent of that provided by the previously reported wound signature and more predictive of outcomes than any of the clinical parameters in current use. CONCLUSIONS: The transcriptional response to hypoxia varies among human cells. Some of this variation is traceable to variation in expression of the HIF1A gene. A gene-expression signature of the cellular response to hypoxia is associated with a significantly poorer prognosis

  1. Quantitative Proteomic Analysis of the Response to Zinc, Magnesium, and Calcium Deficiency in Specific Cell Types of Arabidopsis Roots

    Directory of Open Access Journals (Sweden)

    Yoichiro Fukao

    2016-01-01

    Full Text Available The proteome profiles of specific cell types have recently been investigated using techniques such as fluorescence activated cell sorting and laser capture microdissection. However, quantitative proteomic analysis of specific cell types has not yet been performed. In this study, to investigate the response of the proteome to zinc, magnesium, and calcium deficiency in specific cell types of Arabidopsis thaliana roots, we performed isobaric tags for relative and absolute quantification (iTRAQ-based quantitative proteomics using GFP-expressing protoplasts collected by fluorescence-activated cell sorting. Protoplasts were collected from the pGL2-GFPer and pMGP-GFPer marker lines for epidermis or inner cell lines (pericycle, endodermis, and cortex, respectively. To increase the number of proteins identified, iTRAQ-labeled peptides were separated into 24 fractions by OFFGFEL electrophoresis prior to high-performance liquid chromatography coupled with mass spectrometry analysis. Overall, 1039 and 737 proteins were identified and quantified in the epidermal and inner cell lines, respectively. Interestingly, the expression of many proteins was decreased in the epidermis by mineral deficiency, although a weaker effect was observed in inner cell lines such as the pericycle, endodermis, and cortex. Here, we report for the first time the quantitative proteomics of specific cell types in Arabidopsis roots.

  2. Dual-specificity anti-sigma factor reinforces control of cell-type specific gene expression in Bacillus subtilis.

    Science.gov (United States)

    Serrano, Mónica; Gao, JinXin; Bota, João; Bate, Ashley R; Meisner, Jeffrey; Eichenberger, Patrick; Moran, Charles P; Henriques, Adriano O

    2015-04-01

    Gene expression during spore development in Bacillus subtilis is controlled by cell type-specific RNA polymerase sigma factors. σFand σE control early stages of development in the forespore and the mother cell, respectively. When, at an intermediate stage in development, the mother cell engulfs the forespore, σF is replaced by σG and σE is replaced by σK. The anti-sigma factor CsfB is produced under the control of σF and binds to and inhibits the auto-regulatory σG, but not σF. A position in region 2.1, occupied by an asparagine in σG and by a glutamate in οF, is sufficient for CsfB discrimination of the two sigmas, and allows it to delay the early to late switch in forespore gene expression. We now show that following engulfment completion, csfB is switched on in the mother cell under the control of σK and that CsfB binds to and inhibits σE but not σK, possibly to facilitate the switch from early to late gene expression. We show that a position in region 2.3 occupied by a conserved asparagine in σE and by a conserved glutamate in σK suffices for discrimination by CsfB. We also show that CsfB prevents activation of σG in the mother cell and the premature σG-dependent activation of σK. Thus, CsfB establishes negative feedback loops that curtail the activity of σE and prevent the ectopic activation of σG in the mother cell. The capacity of CsfB to directly block σE activity may also explain how CsfB plays a role as one of the several mechanisms that prevent σE activation in the forespore. Thus the capacity of CsfB to differentiate between the highly similar σF/σG and σE/σK pairs allows it to rinforce the cell-type specificity of these sigma factors and the transition from early to late development in B. subtilis, and possibly in all sporeformers that encode a CsfB orthologue. PMID:25835496

  3. Molecular Characterization of Arabidopsis GAL4/UAS Enhancer Trap Lines Identifies Novel Cell-Type-Specific Promoters.

    Science.gov (United States)

    Radoeva, Tatyana; Ten Hove, Colette A; Saiga, Shunsuke; Weijers, Dolf

    2016-06-01

    Cell-type-specific gene expression is essential to distinguish between the numerous cell types of multicellular organism. Therefore, cell-type-specific gene expression is tightly regulated and for most genes RNA transcription is the central point of control. Thus, transcriptional reporters are broadly used markers for cell identity. In Arabidopsis (Arabidopsis thaliana), a recognized standard for cell identities is a collection of GAL4/UAS enhancer trap lines. Yet, while greatly used, very few of them have been molecularly characterized. Here, we have selected a set of 21 frequently used GAL4/UAS enhancer trap lines for detailed characterization of expression pattern and genomic insertion position. We studied their embryonic and postembryonic expression domains and grouped them into three groups (early embryo development, late embryo development, and embryonic root apical meristem lines) based on their dominant expression. We show that some of the analyzed lines are expressed in a domain often broader than the one that is reported. Additionally, we present an overview of the location of the T-DNA inserts of all lines, with one exception. Finally, we demonstrate how the obtained information can be used for generating novel cell-type-specific marker lines and for genotyping enhancer trap lines. The knowledge could therefore support the extensive use of these valuable lines. PMID:27208300

  4. Improved salinity tolerance of rice through cell type-specific expression of AtHKT1;1

    OpenAIRE

    Darren Plett; Gehan Safwat; Matthew Gilliham; Inge Skrumsager Møller; Stuart Roy; Neil Shirley; Andrew Jacobs; Alexander Johnson; Mark Tester

    2010-01-01

    Previously, cell type-specific expression of AtHKT1;1, a sodium transporter, improved sodium (Na(+)) exclusion and salinity tolerance in Arabidopsis. In the current work, AtHKT1;1, was expressed specifically in the root cortical and epidermal cells of an Arabidopsis GAL4-GFP enhancer trap line. These transgenic plants were found to have significantly improved Na(+) exclusion under conditions of salinity stress. The feasibility of a similar biotechnological approach in crop plants was explored...

  5. Cell-type-specific neuroanatomy of cliques of autism-related genes in the mouse brain

    Directory of Open Access Journals (Sweden)

    Pascal eGrange

    2015-05-01

    Full Text Available Two cliques of genes identified computationally for their high co-expression in the mouse brain according to the Allen Brain Atlas, and for their enrichment in genes related to autism spectrum disorder, have recently been shown to be highly co-expressed in the cerebellar cortex, compared to what could be expected by chance. Moreover, the expression of these cliques of genes is not homogeneous across the cerebellar cortex, and it has been noted that their expression pattern seems to highlight the granular layer. However, this observation was only made by eye, and recent advances in computational neuroanatomy allow to rank cell types in the mouse brain (characterized by their transcriptome profiles according to the similarity between their spatial density profiles and the expression profiles of the cliques. We establish by Monte Carlo simulation that with probability at least 99%, the expression profiles of the two cliques are more similar to the density profile of granule cells than 99% of the expression of cliques containing the same number of genes (Purkinje cells also score above 99% in one of the cliques. Thresholding the expression profiles shows that the signal is more intense in the granular layer. Finally, we work out pairs of cell types whose combined expression profiles are more similar to the expression profiles of the cliquesthan any single cell type. These pairs predominantly consist of one cortical pyramidal cell and one cerebellar cell (whichcan be either a granule cell or a Purkinje cell.

  6. Cell-type-specific neuroanatomy of cliques of autism-related genes in the mouse brain.

    Science.gov (United States)

    Grange, Pascal; Menashe, Idan; Hawrylycz, Michael

    2015-01-01

    Two cliques of genes identified computationally for their high co-expression in the mouse brain according to the Allen Brain Atlas, and for their enrichment in genes related to autism spectrum disorder (ASD), have recently been shown to be highly co-expressed in the cerebellar cortex, compared to what could be expected by chance. Moreover, the expression of these cliques of genes is not homogeneous across the cerebellar cortex, and it has been noted that their expression pattern seems to highlight the granular layer. However, this observation was only made by eye, and recent advances in computational neuroanatomy allow to rank cell types in the mouse brain (characterized by their transcriptome profiles) according to the similarity between their spatial density profiles and the spatial expression profiles of the cliques. We establish by Monte Carlo simulation that with probability at least 99%, the expression profiles of the two cliques are more similar to the density profile of granule cells than 99% of the expression of cliques containing the same number of genes (Purkinje cells also score above 99% in one of the cliques). Thresholding the expression profiles shows that the signal is more intense in the granular layer. Finally, we work out pairs of cell types whose combined expression profiles are more similar to the expression profiles of the cliques than any single cell type. These pairs predominantly consist of one cortical pyramidal cell and one cerebellar cell (which can be either a granule cell or a Purkinje cell). PMID:26074809

  7. Optimizing Staining Protocols for Laser Microdissection of Specific Cell Types from the Testis Including Carcinoma In Situ

    OpenAIRE

    Si Brask Sonne; Dalgaard, Marlene D; John Erik Nielsen; Hoei-Hansen, Christina E.; Ewa Rajpert-De Meyts; Lise Mette Gjerdrum; Henrik Leffers

    2009-01-01

    Udgivelsesdato: May 2009 Microarray and RT-PCR based methods are important tools for analysis of gene expression; however, in tissues containing many different cells types, such as the testis, characterization of gene expression in specific cell types can be severely hampered by noise from other cells. The laser microdissection technology allows for enrichment of specific cell types. However, when the cells are not morphologically distinguishable, it is necessary to use a specific staining...

  8. Face recognition: a model specific ability

    Directory of Open Access Journals (Sweden)

    Jeremy B Wilmer

    2014-10-01

    Full Text Available In our everyday lives, we view it as a matter of course that different people are good at different things. It can be surprising, in this context, to learn that most of what is known about cognitive ability variation across individuals concerns the broadest of all cognitive abilities, often labeled g. In contrast, our knowledge of specific abilities, those that correlate little with g, is severely constrained. Here, we draw upon our experience investigating an exceptionally specific ability, face recognition, to make the case that many specific abilities could easily have been missed. In making this case, we derive key insights from earlier false starts in the measurement of face recognition’s variation across individuals, and we highlight the convergence of factors that enabled the recent discovery that this variation is specific. We propose that the case of face recognition ability illustrates a set of tools and perspectives that could accelerate fruitful work on specific cognitive abilities. By revealing relatively independent dimensions of human ability, such work would enhance our capacity to understand the uniqueness of individual minds.

  9. Face recognition: a model specific ability

    Science.gov (United States)

    Wilmer, Jeremy B.; Germine, Laura T.; Nakayama, Ken

    2014-01-01

    In our everyday lives, we view it as a matter of course that different people are good at different things. It can be surprising, in this context, to learn that most of what is known about cognitive ability variation across individuals concerns the broadest of all cognitive abilities; an ability referred to as general intelligence, general mental ability, or just g. In contrast, our knowledge of specific abilities, those that correlate little with g, is severely constrained. Here, we draw upon our experience investigating an exceptionally specific ability, face recognition, to make the case that many specific abilities could easily have been missed. In making this case, we derive key insights from earlier false starts in the measurement of face recognition’s variation across individuals, and we highlight the convergence of factors that enabled the recent discovery that this variation is specific. We propose that the case of face recognition ability illustrates a set of tools and perspectives that could accelerate fruitful work on specific cognitive abilities. By revealing relatively independent dimensions of human ability, such work would enhance our capacity to understand the uniqueness of individual minds. PMID:25346673

  10. A quantitative comparison of cell-type-specific microarray gene expression profiling methods in the mouse brain.

    Directory of Open Access Journals (Sweden)

    Benjamin W Okaty

    Full Text Available Expression profiling of restricted neural populations using microarrays can facilitate neuronal classification and provide insight into the molecular bases of cellular phenotypes. Due to the formidable heterogeneity of intermixed cell types that make up the brain, isolating cell types prior to microarray processing poses steep technical challenges that have been met in various ways. These methodological differences have the potential to distort cell-type-specific gene expression profiles insofar as they may insufficiently filter out contaminating mRNAs or induce aberrant cellular responses not normally present in vivo. Thus we have compared the repeatability, susceptibility to contamination from off-target cell-types, and evidence for stress-responsive gene expression of five different purification methods--Laser Capture Microdissection (LCM, Translating Ribosome Affinity Purification (TRAP, Immunopanning (PAN, Fluorescence Activated Cell Sorting (FACS, and manual sorting of fluorescently labeled cells (Manual. We found that all methods obtained comparably high levels of repeatability, however, data from LCM and TRAP showed significantly higher levels of contamination than the other methods. While PAN samples showed higher activation of apoptosis-related, stress-related and immediate early genes, samples from FACS and Manual studies, which also require dissociated cells, did not. Given that TRAP targets actively translated mRNAs, whereas other methods target all transcribed mRNAs, observed differences may also reflect translational regulation.

  11. Coordinated cell type-specific epigenetic remodeling in prefrontal cortex begins before birth and continues into early adulthood.

    Directory of Open Access Journals (Sweden)

    Hennady P Shulha

    2013-04-01

    Full Text Available Development of prefrontal and other higher-order association cortices is associated with widespread changes in the cortical transcriptome, particularly during the transitions from prenatal to postnatal development, and from early infancy to later stages of childhood and early adulthood. However, the timing and longitudinal trajectories of neuronal gene expression programs during these periods remain unclear in part because of confounding effects of concomitantly occurring shifts in neuron-to-glia ratios. Here, we used cell type-specific chromatin sorting techniques for genome-wide profiling of a histone mark associated with transcriptional regulation--H3 with trimethylated lysine 4 (H3K4me3--in neuronal chromatin from 31 subjects from the late gestational period to 80 years of age. H3K4me3 landscapes of prefrontal neurons were developmentally regulated at 1,157 loci, including 768 loci that were proximal to transcription start sites. Multiple algorithms consistently revealed that the overwhelming majority and perhaps all of developmentally regulated H3K4me3 peaks were on a unidirectional trajectory defined by either rapid gain or loss of histone methylation during the late prenatal period and the first year after birth, followed by similar changes but with progressively slower kinetics during early and later childhood and only minimal changes later in life. Developmentally downregulated H3K4me3 peaks in prefrontal neurons were enriched for Paired box (Pax and multiple Signal Transducer and Activator of Transcription (STAT motifs, which are known to promote glial differentiation. In contrast, H3K4me3 peaks subject to a progressive increase in maturing prefrontal neurons were enriched for activating protein-1 (AP-1 recognition elements that are commonly associated with activity-dependent regulation of neuronal gene expression. We uncovered a developmental program governing the remodeling of neuronal histone methylation landscapes in the prefrontal

  12. Identification of Cell Type-Specific Differences in Erythropoietin Receptor Signaling in Primary Erythroid and Lung Cancer Cells

    Science.gov (United States)

    Salopiata, Florian; Depner, Sofia; Wäsch, Marvin; Böhm, Martin E.; Mücke, Oliver; Plass, Christoph; Lehmann, Wolf D.; Kreutz, Clemens; Timmer, Jens; Klingmüller, Ursula

    2016-01-01

    Lung cancer, with its most prevalent form non-small-cell lung carcinoma (NSCLC), is one of the leading causes of cancer-related deaths worldwide, and is commonly treated with chemotherapeutic drugs such as cisplatin. Lung cancer patients frequently suffer from chemotherapy-induced anemia, which can be treated with erythropoietin (EPO). However, studies have indicated that EPO not only promotes erythropoiesis in hematopoietic cells, but may also enhance survival of NSCLC cells. Here, we verified that the NSCLC cell line H838 expresses functional erythropoietin receptors (EPOR) and that treatment with EPO reduces cisplatin-induced apoptosis. To pinpoint differences in EPO-induced survival signaling in erythroid progenitor cells (CFU-E, colony forming unit-erythroid) and H838 cells, we combined mathematical modeling with a method for feature selection, the L1 regularization. Utilizing an example model and simulated data, we demonstrated that this approach enables the accurate identification and quantification of cell type-specific parameters. We applied our strategy to quantitative time-resolved data of EPO-induced JAK/STAT signaling generated by quantitative immunoblotting, mass spectrometry and quantitative real-time PCR (qRT-PCR) in CFU-E and H838 cells as well as H838 cells overexpressing human EPOR (H838-HA-hEPOR). The established parsimonious mathematical model was able to simultaneously describe the data sets of CFU-E, H838 and H838-HA-hEPOR cells. Seven cell type-specific parameters were identified that included for example parameters for nuclear translocation of STAT5 and target gene induction. Cell type-specific differences in target gene induction were experimentally validated by qRT-PCR experiments. The systematic identification of pathway differences and sensitivities of EPOR signaling in CFU-E and H838 cells revealed potential targets for intervention to selectively inhibit EPO-induced signaling in the tumor cells but leave the responses in erythroid

  13. Identification of Cell Type-Specific Differences in Erythropoietin Receptor Signaling in Primary Erythroid and Lung Cancer Cells.

    Science.gov (United States)

    Merkle, Ruth; Steiert, Bernhard; Salopiata, Florian; Depner, Sofia; Raue, Andreas; Iwamoto, Nao; Schelker, Max; Hass, Helge; Wäsch, Marvin; Böhm, Martin E; Mücke, Oliver; Lipka, Daniel B; Plass, Christoph; Lehmann, Wolf D; Kreutz, Clemens; Timmer, Jens; Schilling, Marcel; Klingmüller, Ursula

    2016-08-01

    Lung cancer, with its most prevalent form non-small-cell lung carcinoma (NSCLC), is one of the leading causes of cancer-related deaths worldwide, and is commonly treated with chemotherapeutic drugs such as cisplatin. Lung cancer patients frequently suffer from chemotherapy-induced anemia, which can be treated with erythropoietin (EPO). However, studies have indicated that EPO not only promotes erythropoiesis in hematopoietic cells, but may also enhance survival of NSCLC cells. Here, we verified that the NSCLC cell line H838 expresses functional erythropoietin receptors (EPOR) and that treatment with EPO reduces cisplatin-induced apoptosis. To pinpoint differences in EPO-induced survival signaling in erythroid progenitor cells (CFU-E, colony forming unit-erythroid) and H838 cells, we combined mathematical modeling with a method for feature selection, the L1 regularization. Utilizing an example model and simulated data, we demonstrated that this approach enables the accurate identification and quantification of cell type-specific parameters. We applied our strategy to quantitative time-resolved data of EPO-induced JAK/STAT signaling generated by quantitative immunoblotting, mass spectrometry and quantitative real-time PCR (qRT-PCR) in CFU-E and H838 cells as well as H838 cells overexpressing human EPOR (H838-HA-hEPOR). The established parsimonious mathematical model was able to simultaneously describe the data sets of CFU-E, H838 and H838-HA-hEPOR cells. Seven cell type-specific parameters were identified that included for example parameters for nuclear translocation of STAT5 and target gene induction. Cell type-specific differences in target gene induction were experimentally validated by qRT-PCR experiments. The systematic identification of pathway differences and sensitivities of EPOR signaling in CFU-E and H838 cells revealed potential targets for intervention to selectively inhibit EPO-induced signaling in the tumor cells but leave the responses in erythroid

  14. Cell-Type Specific Determinants of NRAMP1 Expression in Professional Phagocytes

    Directory of Open Access Journals (Sweden)

    Mathieu F. M. Cellier

    2013-01-01

    Full Text Available The Natural resistance-associated macrophage protein 1 (Nramp1 or Solute carrier 11 member 1, Slc11a1 transports divalent metals across the membrane of late endosomes and lysosomes in professional phagocytes. Nramp1 represents an ancient eukaryotic cell-autonomous defense whereas the gene duplication that yielded Nramp1 and Nramp2 predated the origin of Sarcopterygians (lobe-finned fishes and tetrapods. SLC11A1 genetic polymorphisms associated with human resistance to tuberculosis consist of potential regulatory variants. Herein, current knowledge of the regulation of SLC11A1 gene expression is reviewed and comprehensive analysis of ENCODE data available for hematopoietic cell-types suggests a hypothesis for the regulation of SLC11A1 expression during myeloid development and phagocyte functional polarization. SLC11A1 is part of a 34.6 kb CTCF-insulated locus scattered with predicted regulatory elements: a 3' enhancer, a large 5' enhancer domain and four elements spread around the transcription start site (TSS, including several C/EBP and PU.1 sites. SLC11A1 locus ends appear mobilized by ETS-related factors early during myelopoiesis; activation of both 5' and 3' enhancers in myelo-monocytic cells correlate with transcription factor binding at the TSS. Characterizing the corresponding cis/trans determinants functionally will establish the mechanisms involved and possibly reveal genetic variation that impacts susceptibility to infectious or immune diseases.

  15. Assessment of Membrane Fluidity Fluctuations during Cellular Development Reveals Time and Cell Type Specificity.

    Science.gov (United States)

    Noutsi, Pakiza; Gratton, Enrico; Chaieb, Sahraoui

    2016-01-01

    Cell membrane is made up of a complex structure of lipids and proteins that diffuse laterally giving rise to what we call membrane fluidity. During cellular development, such as differentiation cell membranes undergo dramatic fluidity changes induced by proteins such as ARC and Cofilin among others. In this study we used the generalized polarization (GP) property of fluorescent probe Laurdan using two-photon microscopy to determine membrane fluidity as a function of time and for various cell lines. A low GP value corresponds to a higher fluidity and a higher GP value is associated with a more rigid membrane. Four different cell lines were monitored such as hN2, NIH3T3, HEK293 and L6 cells. Membrane fluidity was measured at 12h, 72h and 92 h. Our results show significant changes in membrane fluidity among all cell types at different time points. GP values tend to increase significantly within 92 h in hN2 cells and 72 h in NIH3T3 cells and only at 92 h in HEK293 cells. L6 showed a marked decrease in membrane fluidity at 72 h and starts to increase at 92 h. As expected, NIH3T3 cells have more rigid membrane at earlier time points. On the other hand, neurons tend to have the highest membrane fluidity at early time points emphasizing its correlation with plasticity and the need for this malleability during differentiation. This study sheds light on the involvement of membrane fluidity during neuronal differentiation and development of other cell lines. PMID:27362860

  16. Effect of Diffusion on the Autoradiographic Measurement of Macromolecular Synthesis in Specific Cell Types In Vitro

    International Nuclear Information System (INIS)

    Organ slices cultured in vitro lack a capillary circulation. Cells within the slice are supplied with nutrients and oxygen by diffusion from the culture medium into the slice. The rate of synthesis of macromolecules, e.g. ribonucleic acid, deoxyribonucleic acid, protein or mucopolysaccharide can be determined in these circumstances by adding labelled precursors to the culture medium. Comparisons of the rate of synthesis between different types of cell within a single organ slice or between different slices can be quantitated by autoradiography and grain counting only if the concentration of labelled precursor in tissue water is uniform throughout all the slices. To achieve this aim the precursor should rapidly saturate the tissue water at the beginning of the incubation period, and subsequently diffusion into the slice should keep pace with consumption of the precursor by the cells. Experimental methods to measure the relevant parameters of any organ slice and precursor combination will be described. These parameters are the diffusion coefficient of the precursor in the organ slice, the rate of consumption of the precursor by each cell type, and the frequency and distribution of tissue within the slice. The relation between precursor concentration and position within the slice can be calculated under differing culture conditions, using the appropriate mathematical model. It is then possible to choose those conditions which give a uniform concentration of precursor throughout the organ slice. The methods are illustrated by consideration of ribonucleic acid synthesis from 3H-uridine in full thickness slices of human skin, an organ which contains several tissues including epidermis, hair follicle, eccrine sweat gland and sebaceous gland. (author)

  17. Assessment of Membrane Fluidity Fluctuations during Cellular Development Reveals Time and Cell Type Specificity

    KAUST Repository

    Noutsi, Pakiza

    2016-06-30

    Cell membrane is made up of a complex structure of lipids and proteins that diffuse laterally giving rise to what we call membrane fluidity. During cellular development, such as differentiation cell membranes undergo dramatic fluidity changes induced by proteins such as ARC and Cofilin among others. In this study we used the generalized polarization (GP) property of fluorescent probe Laurdan using two-photon microscopy to determine membrane fluidity as a function of time and for various cell lines. A low GP value corresponds to a higher fluidity and a higher GP value is associated with a more rigid membrane. Four different cell lines were monitored such as hN2, NIH3T3, HEK293 and L6 cells. Membrane fluidity was measured at 12h, 72h and 92 h. Our results show significant changes in membrane fluidity among all cell types at different time points. GP values tend to increase significantly within 92 h in hN2 cells and 72 h in NIH3T3 cells and only at 92 h in HEK293 cells. L6 showed a marked decrease in membrane fluidity at 72 h and starts to increase at 92 h. As expected, NIH3T3 cells have more rigid membrane at earlier time points. On the other hand, neurons tend to have the highest membrane fluidity at early time points emphasizing its correlation with plasticity and the need for this malleability during differentiation. This study sheds light on the involvement of membrane fluidity during neuronal differentiation and development of other cell lines.

  18. Defining cell-type specificity at the transcriptional level in human disease

    OpenAIRE

    Ju, Wenjun; Greene, Casey S; Eichinger, Felix; Nair, Viji; Hodgin, Jeffrey B.; Bitzer, Markus; Lee, Young-Suk; Zhu, Qian; Kehata, Masami; Li, Min; Jiang, Song; Rastaldi, Maria Pia; Cohen, Clemens D; Troyanskaya, Olga G.; Kretzler, Matthias

    2013-01-01

    Cell-lineage–specific transcripts are essential for differentiated tissue function, implicated in hereditary organ failure, and mediate acquired chronic diseases. However, experimental identification of cell-lineage–specific genes in a genome-scale manner is infeasible for most solid human tissues. We developed the first genome-scale method to identify genes with cell-lineage–specific expression, even in lineages not separable by experimental microdissection. Our machine-learning–based approa...

  19. Cell-type specific oxytocin gene expression from AAV delivered promoter deletion constructs into the rat supraoptic nucleus in vivo.

    Directory of Open Access Journals (Sweden)

    Raymond L Fields

    Full Text Available The magnocellular neurons (MCNs in the hypothalamus selectively express either oxytocin (OXT or vasopressin (AVP neuropeptide genes, a property that defines their phenotypes. Here we examine the molecular basis of this selectivity in the OXT MCNs by stereotaxic microinjections of adeno-associated virus (AAV vectors that contain various OXT gene promoter deletion constructs using EGFP as the reporter into the rat supraoptic nucleus (SON. Two weeks following injection of the AAVs, immunohistochemical assays of EGFP expression from these constructs were done to determine whether the EGFP reporter co-localizes with either the OXT- or AVP-immunoreactivity in the MCNs. The results show that the key elements in the OT gene promoter that regulate the cell-type specific expression the SON are located -216 to -100 bp upstream of the transcription start site. We hypothesize that within this 116 bp domain a repressor exists that inhibits expression specifically in AVP MCNs, thereby leading to the cell-type specific expression of the OXT gene only in the OXT MCNs.

  20. Cell type specificity and structural determinants of IRES activity from the 5' leaders of different HIV-1 transcripts.

    Science.gov (United States)

    Plank, Terra-Dawn M; Whitehurst, James T; Kieft, Jeffrey S

    2013-07-01

    Internal ribosome entry site (IRES) RNAs are important regulators of gene expression, but their diverse molecular mechanisms remain partially understood. The HIV-1 gag transcript leader contains an IRES that may be a good model for understanding the function of many other IRESs. We investigated the possibility that this IRES' function is linked to both the structure of the RNA and its cellular environment. We find that in the context of a bicistronic reporter construct, HIV-1 gag IRES' activity is cell type-specific, with higher activity in T-cell culture systems that model the natural target cells for HIV-1 infection. This finding underscores how an IRES may be fine tuned to function in certain cells, perhaps owing to cell type-specific protein factors. Using RNA probing and mutagenesis, we demonstrate that the HIV-1 gag IRES does not use pre-folded RNA structure to drive function, a finding that gives insight into how conformationally dynamic IRESs operate. Furthermore, we find that a common exon drives IRES activity in a diverse set of alternatively spliced transcripts. We propose a mechanism in which a structurally plastic RNA element confers the ability to initiate translation internally, and activity from this common element is modulated by 3' nucleotides added by alternative splicing. PMID:23661682

  1. Cell type specificity and structural determinants of IRES activity from the 5′ leaders of different HIV-1 transcripts

    Science.gov (United States)

    Plank, Terra-Dawn M.; Whitehurst, James T.; Kieft, Jeffrey S.

    2013-01-01

    Internal ribosome entry site (IRES) RNAs are important regulators of gene expression, but their diverse molecular mechanisms remain partially understood. The HIV-1 gag transcript leader contains an IRES that may be a good model for understanding the function of many other IRESs. We investigated the possibility that this IRES’ function is linked to both the structure of the RNA and its cellular environment. We find that in the context of a bicistronic reporter construct, HIV-1 gag IRES’ activity is cell type-specific, with higher activity in T-cell culture systems that model the natural target cells for HIV-1 infection. This finding underscores how an IRES may be fine tuned to function in certain cells, perhaps owing to cell type-specific protein factors. Using RNA probing and mutagenesis, we demonstrate that the HIV-1 gag IRES does not use pre-folded RNA structure to drive function, a finding that gives insight into how conformationally dynamic IRESs operate. Furthermore, we find that a common exon drives IRES activity in a diverse set of alternatively spliced transcripts. We propose a mechanism in which a structurally plastic RNA element confers the ability to initiate translation internally, and activity from this common element is modulated by 3′ nucleotides added by alternative splicing. PMID:23661682

  2. Beyond Columnar Organization: Cell Type- and Target Layer-Specific Principles of Horizontal Axon Projection Patterns in Rat Vibrissal Cortex.

    Science.gov (United States)

    Narayanan, Rajeevan T; Egger, Robert; Johnson, Andrew S; Mansvelder, Huibert D; Sakmann, Bert; de Kock, Christiaan P J; Oberlaender, Marcel

    2015-11-01

    Vertical thalamocortical afferents give rise to the elementary functional units of sensory cortex, cortical columns. Principles that underlie communication between columns remain however unknown. Here we unravel these by reconstructing in vivo-labeled neurons from all excitatory cell types in the vibrissal part of rat primary somatosensory cortex (vS1). Integrating the morphologies into an exact 3D model of vS1 revealed that the majority of intracortical (IC) axons project far beyond the borders of the principal column. We defined the corresponding innervation volume as the IC-unit. Deconstructing this structural cortical unit into its cell type-specific components, we found asymmetric projections that innervate columns of either the same whisker row or arc, and which subdivide vS1 into 2 orthogonal [supra-]granular and infragranular strata. We show that such organization could be most effective for encoding multi whisker inputs. Communication between columns is thus organized by multiple highly specific horizontal projection patterns, rendering IC-units as the primary structural entities for processing complex sensory stimuli. PMID:25838038

  3. Strain Variation in Glycosaminoglycan Recognition Influences Cell-Type-Specific Binding by Lyme Disease Spirochetes

    OpenAIRE

    Parveen, Nikhat; Robbins, Douglas; Leong, John M.

    1999-01-01

    Lyme disease, a chronic multisystemic disorder that can affect the skin, heart, joints, and nervous system is caused by Borrelia burgdorferi sensu lato. Lyme disease spirochetes were previously shown to bind glycosaminoglycans (GAGs). In the current study, the GAG-binding properties of eight Lyme disease strains were determined. Binding by two high-passage HB19 derivatives to Vero cells could not be inhibited by enzymatic removal of GAGs or by the addition of exogenous GAG. The other six stra...

  4. Cell-type-specific control elements of the lymphotropic papovavirus enhancer.

    OpenAIRE

    Erselius, J R; Jostes, B; Hatzopoulos, A K; Mosthaf, L; Gruss, P

    1990-01-01

    Lymphotropic papovavirus (LPV) exhibits a highly restricted host range, in which only cells of primate B-lymphocyte origin are permissive for infection. Its enhancer element contributes to this tropism, since transcriptional potentiation is confined to cells of the hematopoietic lineage. Nuclear extracts from B and T cells, but not from HeLa cells, contain protein factors that interact specifically with the LPV 63-base-pair enhancer repeat, as demonstrated by DNase I footprinting and gel reta...

  5. Cell Type-Specific Manipulation with GFP-Dependent Cre Recombinase

    OpenAIRE

    Tang, Jonathan C. Y.; Rudolph, Stephanie; Dhande, Onkar S.; Abraira, Victoria E.; Choi, Seungwon; Lapan, Sylvain; Drew, Iain R.; Drokhlyansky, Eugene; Huberman, Andrew D.; Regehr, Wade G.; Cepko, Constance L.

    2015-01-01

    Summary There are many transgenic GFP reporter lines that allow visualization of specific populations of cells. Using such lines for functional studies requires a method that transforms GFP into a molecule that enables genetic manipulation. Here we report the creation of a method that exploits GFP for gene manipulation, Cre Recombinase Dependent on GFP (CRE-DOG), a split component system that uses GFP and its derivatives to directly induce Cre/loxP recombination. Using plasmid electroporation...

  6. Posttranscriptional Control Mediates Cell Type-Specific Localization of Catalase A during Aspergillus nidulans Development

    OpenAIRE

    Navarro, Rosa E.; Aguirre, Jesús

    1998-01-01

    Two differentially regulated catalase genes have been identified in the fungus Aspergillus nidulans. The catA gene belongs to a class whose transcripts are specifically induced during asexual sporulation (conidiation) and encodes a catalase accumulated in conidia. Using a developmental mutant affected in the brlA gene, which is unable to form conidia but capable of producing sexual spores (ascospores), we demonstrated that the catA mRNA accumulated during induction of conidiation but did not ...

  7. Comparison of the pathogen species-specific immune response in udder derived cell types and their models.

    Science.gov (United States)

    Günther, Juliane; Koy, Mirja; Berthold, Anne; Schuberth, Hans-Joachim; Seyfert, Hans-Martin

    2016-01-01

    The outcome of an udder infection (mastitis) largely depends on the species of the invading pathogen. Gram-negative pathogens, such as Escherichia coli often elicit acute clinical mastitis while Gram-positive pathogens, such as Staphylococcus aureus tend to cause milder subclinical inflammations. It is unclear which type of the immune competent cells residing in the udder governs the pathogen species-specific physiology of mastitis and which established cell lines might provide suitable models. We therefore profiled the pathogen species-specific immune response of different cell types derived from udder and blood. Primary cultures of bovine mammary epithelial cells (pbMEC), mammary derived fibroblasts (pbMFC), and bovine monocyte-derived macrophages (boMdM) were challenged with heat-killed E. coli, S. aureus and S. uberis mastitis pathogens and their immune response was scaled against the response of established models for MEC (bovine MAC-T) and macrophages (murine RAW 264.7). Only E. coli provoked a full scale immune reaction in pbMEC, fibroblasts and MAC-T cells, as indicated by induced cytokine and chemokine expression and NF-κB activation. Weak reactions were induced by S. aureus and none by S. uberis challenges. In contrast, both models for macrophages (boMdM and RAW 264.7) reacted strongly against all the three pathogens accompanied by strong activation of NF-κB factors. Hence, the established cell models MAC-T and RAW 264.7 properly reflected key aspects of the pathogen species-specific immune response of the respective parental cell type. Our data imply that the pathogen species-specific physiology of mastitis likely relates to the respective response of MEC rather to that of professional immune cells. PMID:26830914

  8. Gamma-Retrovirus Integration Marks Cell Type-Specific Cancer Genes: A Novel Profiling Tool in Cancer Genomics

    Science.gov (United States)

    Gilroy, Kathryn L.; Terry, Anne; Naseer, Asif; de Ridder, Jeroen; Wang, Weiwei; Carpenter, Eric; Mason, Andrew; Wong, Gane K-S.; Kilbey, Anna; Neil, James C.

    2016-01-01

    Retroviruses have been foundational in cancer research since early studies identified proto-oncogenes as targets for insertional mutagenesis. Integration of murine gamma-retroviruses into the host genome favours promoters and enhancers and entails interaction of viral integrase with host BET/bromodomain factors. We report that this integration pattern is conserved in feline leukaemia virus (FeLV), a gamma-retrovirus that infects many human cell types. Analysis of FeLV insertion sites in the MCF-7 mammary carcinoma cell line revealed strong bias towards active chromatin marks with no evidence of significant post-integration growth selection. The most prominent FeLV integration targets had little overlap with the most abundantly expressed transcripts, but were strongly enriched for annotated cancer genes. A meta-analysis based on several gamma-retrovirus integration profiling (GRIP) studies in human cells (CD34+, K562, HepG2) revealed a similar cancer gene bias but also remarkable cell-type specificity, with prominent exceptions including a universal integration hotspot at the long non-coding RNA MALAT1. Comparison of GRIP targets with databases of super-enhancers from the same cell lines showed that these have only limited overlap and that GRIP provides unique insights into the upstream drivers of cell growth. These observations elucidate the oncogenic potency of the gamma-retroviruses and support the wider application of GRIP to identify the genes and growth regulatory circuits that drive distinct cancer types. PMID:27097319

  9. Gamma-Retrovirus Integration Marks Cell Type-Specific Cancer Genes: A Novel Profiling Tool in Cancer Genomics.

    Science.gov (United States)

    Gilroy, Kathryn L; Terry, Anne; Naseer, Asif; de Ridder, Jeroen; Allahyar, Amin; Wang, Weiwei; Carpenter, Eric; Mason, Andrew; Wong, Gane K-S; Cameron, Ewan R; Kilbey, Anna; Neil, James C

    2016-01-01

    Retroviruses have been foundational in cancer research since early studies identified proto-oncogenes as targets for insertional mutagenesis. Integration of murine gamma-retroviruses into the host genome favours promoters and enhancers and entails interaction of viral integrase with host BET/bromodomain factors. We report that this integration pattern is conserved in feline leukaemia virus (FeLV), a gamma-retrovirus that infects many human cell types. Analysis of FeLV insertion sites in the MCF-7 mammary carcinoma cell line revealed strong bias towards active chromatin marks with no evidence of significant post-integration growth selection. The most prominent FeLV integration targets had little overlap with the most abundantly expressed transcripts, but were strongly enriched for annotated cancer genes. A meta-analysis based on several gamma-retrovirus integration profiling (GRIP) studies in human cells (CD34+, K562, HepG2) revealed a similar cancer gene bias but also remarkable cell-type specificity, with prominent exceptions including a universal integration hotspot at the long non-coding RNA MALAT1. Comparison of GRIP targets with databases of super-enhancers from the same cell lines showed that these have only limited overlap and that GRIP provides unique insights into the upstream drivers of cell growth. These observations elucidate the oncogenic potency of the gamma-retroviruses and support the wider application of GRIP to identify the genes and growth regulatory circuits that drive distinct cancer types. PMID:27097319

  10. Cell-Type-Specific Circuit Connectivity of Hippocampal CA1 Revealed through Cre-Dependent Rabies Tracing

    Directory of Open Access Journals (Sweden)

    Yanjun Sun

    2014-04-01

    Full Text Available We developed and applied a Cre-dependent, genetically modified rabies-based tracing system to map direct synaptic connections to specific CA1 neuron types in the mouse hippocampus. We found common inputs to excitatory and inhibitory CA1 neurons from CA3, CA2, the entorhinal cortex (EC, the medial septum (MS, and, unexpectedly, the subiculum. Excitatory CA1 neurons receive inputs from both cholinergic and GABAergic MS neurons, whereas inhibitory neurons receive a great majority of inputs from GABAergic MS neurons. Both cell types also receive weaker input from glutamatergic MS neurons. Comparisons of inputs to CA1 PV+ interneurons versus SOM+ interneurons showed similar strengths of input from the subiculum, but PV+ interneurons received much stronger input than SOM+ neurons from CA3, the EC, and the MS. Thus, rabies tracing identifies hippocampal circuit connections and maps how the different input sources to CA1 are distributed with different strengths on each of its constituent cell types.

  11. Measuring cell-type specific differential methylation in human brain tissue.

    Science.gov (United States)

    Montaño, Carolina M; Irizarry, Rafael A; Kaufmann, Walter E; Talbot, Konrad; Gur, Raquel E; Feinberg, Andrew P; Taub, Margaret A

    2013-01-01

    The behavior of epigenetic mechanisms in the brain is obscured by tissue heterogeneity and disease-related histological changes. Not accounting for these confounders leads to biased results. We develop a statistical methodology that estimates and adjusts for celltype composition by decomposing neuronal and non-neuronal differential signal. This method provides a conceptual framework for deconvolving heterogeneous epigenetic data from postmortem brain studies. We apply it to find cell-specific differentially methylated regions between prefrontal cortex and hippocampus. We demonstrate the utility of the method on both Infinium 450k and CHARM data. PMID:24000956

  12. Key metalloproteinases are expressed by specific cell types in experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Toft-Hansen, Henrik; Nuttall, Robert K; Edwards, Dylan R;

    2004-01-01

    Metalloproteinases (MPs) include matrix metalloproteinases (MMPs) and metalloproteinase-disintegrins (ADAMs). Their physiological inhibitors are tissue inhibitor of metalloproteinases (TIMPs). MPs are thought to be mediators of cellular infiltration in the pathogenesis of multiple sclerosis and its...... animal model, experimental autoimmune encephalomyelitis (EAE). We used real-time RT-PCR to profile the expression of all 22 known mouse MMPs, seven ADAMs, and all four known TIMPs in spinal cord from SJL/J mice and mice with adoptively transferred myelin basic protein (MBP)-specific EAE. A significant...

  13. Combinatorial topography and cell-type specific regulation of the ERK pathway by dopaminergic agonists in the mouse striatum.

    Science.gov (United States)

    Gangarossa, Giuseppe; Perroy, Julie; Valjent, Emmanuel

    2013-03-01

    Therapeutic agents and drugs of abuse regulate the extracellular signal-regulated kinase (ERK) cascade signaling in the medium-sized spiny neurons (MSNs) of the striatum. However, whether this regulation is associated with specific cortical and thalamic inputs has never been studied. We used Drd2-EGFP BAC-transgenic mice to undertake a topographical and cell-type specific analysis of ERK phosphorylation and two of its downstream targets histone H3 and ribosomal protein S6 (rS6) in the dorsal striatum following injection of SKF81297 (D1R-like agonist), quinpirole (D2R-like agonist) or apomorphine (non selective DA receptor agonist). In striatal areas receiving inputs from the cingulate/prelimbic, visual and auditory cortex, SKF81297 treatment increased phosphorylation of ERK, histone H3 and rS6 selectively in EGFP-negative MSNs of Drd2-EGFP mice. In contrast, no regulation was found in striatal region predominantly targeted by the sensorimotor and motor cortex. Apomorphine slightly enhanced ERK and rS6, but not histone H3 phosphorylation. This regulation occurred exclusively in EGFP-negative neurons mostly in striatal sectors receiving connections from the insular, visual and auditory cortex. Quinpirole administration inhibited basal ERK activation but did not change histone H3 and rS6 phosphorylation throughout the rostrocaudal axis of the dorsal striatum. This anatomo-functional study indicates that D1R and D2R agonists produce a unique topography and cell-type specific regulation of the ERK cascade signaling in the mouse striatum, and that those patterns are closely associated with particular cortical and thalamic inputs. This work evidences the need of a precise identification of the striatal areas under study to further understand striatal plasticity. PMID:22453353

  14. Cell type-specific delivery of short interfering RNAs by dye-functionalised theranostic nanoparticles

    Science.gov (United States)

    Press, Adrian T.; Traeger, Anja; Pietsch, Christian; Mosig, Alexander; Wagner, Michael; Clemens, Mark G.; Jbeily, Nayla; Koch, Nicole; Gottschaldt, Michael; Bézière, Nicolas; Ermolayev, Volodymyr; Ntziachristos, Vasilis; Popp, Jürgen; Kessels, Michael M.; Qualmann, Britta; Schubert, Ulrich S.; Bauer, Michael

    2014-12-01

    Efficient delivery of short interfering RNAs reflects a prerequisite for the development of RNA interference therapeutics. Here, we describe highly specific nanoparticles, based on near infrared fluorescent polymethine dye-derived targeting moieties coupled to biodegradable polymers. The fluorescent dye, even when coupled to a nanoparticle, mimics a ligand for hepatic parenchymal uptake transporters resulting in hepatobiliary clearance of approximately 95% of the dye within 45 min. Body distribution, hepatocyte uptake and excretion into bile of the dye itself, or dye-coupled nanoparticles can be tracked by intravital microscopy or even non-invasively by multispectral optoacoustic tomography. Efficacy of delivery is demonstrated in vivo using 3-hydroxy-3-methyl-glutaryl-CoA reductase siRNA as an active payload resulting in a reduction of plasma cholesterol levels if siRNA was formulated into dye-functionalised nanoparticles. This suggests that organ-selective uptake of a near infrared dye can be efficiently transferred to theranostic nanoparticles allowing novel possibilities for personalised silencing of disease-associated genes.

  15. oca2 Regulation of chromatophore differentiation and number is cell type specific in zebrafish.

    Science.gov (United States)

    Beirl, Alisha J; Linbo, Tor H; Cobb, Marea J; Cooper, Cynthia D

    2014-03-01

    We characterized a zebrafish mutant that displays defects in melanin synthesis and in the differentiation of melanophores and iridophores of the skin and retinal pigment epithelium. Positional cloning and candidate gene sequencing link this mutation to a 410-kb region on chromosome 6, containing the oculocutaneous albinism 2 (oca2) gene. Quantification of oca2 mutant melanophores shows a reduction in the number of differentiated melanophores compared with wildtype siblings. Consistent with the analysis of mouse Oca2-deficient melanocytes, zebrafish mutant melanophores have immature melanosomes which are partially rescued following treatment with vacuolar-type ATPase inhibitor/cytoplasmic pH modifier, bafilomycin A1. Melanophore-specific gene expression is detected at the correct time and in anticipated locations. While oca2 zebrafish display unpigmented gaps on the head region of mutants 3 days post-fertilization, melanoblast quantification indicates that oca2 mutants have the correct number of melanoblasts, suggesting a differentiation defect explains the reduced melanophore number. Unlike melanophores, which are reduced in number in oca2 mutants, differentiated iridophores are present at significantly higher numbers. These data suggest distinct mechanisms for oca2 in establishing differentiated chromatophore number in developing zebrafish. PMID:24330346

  16. In Vitro Selection of Cancer Cell-Specific Molecular Recognition Elements from Amino Acid Libraries

    Science.gov (United States)

    Williams, Ryan M.; Sooter, Letha J.

    2015-01-01

    Differential cell systematic evolution of ligands by exponential enrichment (SELEX) is an in vitro selection method for obtaining molecular recognition elements (MREs) that specifically bind to individual cell types with high affinity. MREs are selected from initial large libraries of different nucleic or amino acids. This review outlines the construction of peptide and antibody fragment libraries as well as their different host types. Common methods of selection are also reviewed. Additionally, examples of cancer cell MREs are discussed, as well as their potential applications. PMID:26436100

  17. Fucose-specific DC-SIGN signalling directs T helper cell type-2 responses via IKKε- and CYLD-dependent Bcl3 activation.

    Science.gov (United States)

    Gringhuis, Sonja I; Kaptein, Tanja M; Wevers, Brigitte A; Mesman, Annelies W; Geijtenbeek, Teunis B H

    2014-01-01

    Carbohydrate-specific signalling through DC-SIGN provides dendritic cells with plasticity to tailor immunity to the nature of invading microbes. Here we demonstrate that recognition of fucose-expressing extracellular pathogens like Schistosoma mansoni and Helicobacter pylori by DC-SIGN favors T helper cell type-2 (TH2) responses via activation of atypical NF-κB family member Bcl3. Crosstalk between TLR and DC-SIGN signalling results in TLR-induced MK2-mediated phosphorylation of LSP1, associated with DC-SIGN, upon fucose binding. Subsequently, IKKε and CYLD are recruited to phosphorylated LSP1. IKKε activation is pivotal for suppression of CYLD deubiquitinase activity and subsequent nuclear translocation of ubiquitinated Bcl3. Bcl3 activation represses TLR-induced proinflammatory cytokine expression, while enhancing interleukin-10 (IL-10) and TH2-attracting chemokine expression, shifting TH differentiation from TH1 to TH2 polarization. Thus, DC-SIGN directs adaptive TH2 immunity to fucose-expressing pathogens via an IKKε-CYLD-dependent signalling pathway leading to Bcl3 activation, which might be targeted in vaccination strategies or to prevent aberrant inflammation and allergy. PMID:24867235

  18. Visual object recognition and category-specificity

    DEFF Research Database (Denmark)

    Gerlach, Christian

    This thesis is based on seven published papers. The majority of the papers address two topics in visual object recognition: (i) category-effects at pre-semantic stages, and (ii) the integration of visual elements into elaborate shape descriptions corresponding to whole objects or large object parts...... object recognition. RACE assumes two operations: shape configuration and selection. Shape configuration refers to the binding of visual elements into elaborate shape descriptions corresponding to whole objects or large object parts (operation 1). The output of the shape configuration operation...... is a description that can be matched with structural representations of whole objects or object parts stored in visual long-term memory. The process of finding a match between the configured description and stored object representations is thought of as a race among stored object representations that compete...

  19. Balancing intestinal and systemic inflammation through cell type-specific expression of the aryl hydrocarbon receptor repressor.

    Science.gov (United States)

    Brandstätter, Olga; Schanz, Oliver; Vorac, Julia; König, Jessica; Mori, Tetsushi; Maruyama, Toru; Korkowski, Markus; Haarmann-Stemmann, Thomas; von Smolinski, Dorthe; Schultze, Joachim L; Abel, Josef; Esser, Charlotte; Takeyama, Haruko; Weighardt, Heike; Förster, Irmgard

    2016-01-01

    As a sensor of polyaromatic chemicals the aryl hydrocarbon receptor (AhR) exerts an important role in immune regulation besides its requirement for xenobiotic metabolism. Transcriptional activation of AhR target genes is counterregulated by the AhR repressor (AhRR) but the exact function of the AhRR in vivo is currently unknown. We here show that the AhRR is predominantly expressed in immune cells of the skin and intestine, different from other AhR target genes. Whereas AhRR antagonizes the anti-inflammatory function of the AhR in the context of systemic endotoxin shock, AhR and AhRR act in concert to dampen intestinal inflammation. Specifically, AhRR contributes to the maintenance of colonic intraepithelial lymphocytes and prevents excessive IL-1β production and Th17/Tc17 differentiation. In contrast, the AhRR enhances IFN-γ-production by effector T cells in the inflamed gut. Our findings highlight the physiologic importance of cell-type specific balancing of AhR/AhRR expression in response to microbial, nutritional and other environmental stimuli. PMID:27184933

  20. Cell-Type-Specific Profiling of Gene Expression and Chromatin Binding without Cell Isolation: Assaying RNA Pol II Occupancy in Neural Stem Cells

    OpenAIRE

    Southall, Tony D.; Gold, Katrina S.; Egger, Boris; Davidson, Catherine M.; Caygill, Elizabeth E.; Marshall, Owen J.; Brand, Andrea H.

    2013-01-01

    Summary Cell-type-specific transcriptional profiling often requires the isolation of specific cell types from complex tissues. We have developed “TaDa,” a technique that enables cell-specific profiling without cell isolation. TaDa permits genome-wide profiling of DNA- or chromatin-binding proteins without cell sorting, fixation, or affinity purification. The method is simple, sensitive, highly reproducible, and transferable to any model system. We show that TaDa can be used to identify transc...

  1. Cell-type-specific tuning of Cav1.3 Ca2+-channels by a C-terminal automodulatory domain

    Science.gov (United States)

    Scharinger, Anja; Eckrich, Stephanie; Vandael, David H.; Schönig, Kai; Koschak, Alexandra; Hecker, Dietmar; Kaur, Gurjot; Lee, Amy; Sah, Anupam; Bartsch, Dusan; Benedetti, Bruno; Lieb, Andreas; Schick, Bernhard; Singewald, Nicolas; Sinnegger-Brauns, Martina J.; Carbone, Emilio; Engel, Jutta; Striessnig, Jörg

    2015-01-01

    Cav1.3 L-type Ca2+-channel function is regulated by a C-terminal automodulatory domain (CTM). It affects channel binding of calmodulin and thereby tunes channel activity by interfering with Ca2+- and voltage-dependent gating. Alternative splicing generates short C-terminal channel variants lacking the CTM resulting in enhanced Ca2+-dependent inactivation and stronger voltage-sensitivity upon heterologous expression. However, the role of this modulatory domain for channel function in its native environment is unkown. To determine its functional significance in vivo, we interrupted the CTM with a hemagglutinin tag in mutant mice (Cav1.3DCRDHA/HA). Using these mice we provide biochemical evidence for the existence of long (CTM-containing) and short (CTM-deficient) Cav1.3 α1-subunits in brain. The long (HA-labeled) Cav1.3 isoform was present in all ribbon synapses of cochlear inner hair cells. CTM-elimination impaired Ca2+-dependent inactivation of Ca2+-currents in hair cells but increased it in chromaffin cells, resulting in hyperpolarized resting potentials and reduced pacemaking. CTM disruption did not affect hearing thresholds. We show that the modulatory function of the CTM is affected by its native environment in different cells and thus occurs in a cell-type specific manner in vivo. It stabilizes gating properties of Cav1.3 channels required for normal electrical excitability. PMID:26379493

  2. Cell-type-specific tuning of Cav1.3 Ca2+-channels by a C-terminal automodulatory domain

    Directory of Open Access Journals (Sweden)

    Anja eScharinger

    2015-08-01

    Full Text Available Cav1.3 L-type Ca2+-channel function is regulated by a C-terminal automodulatory domain (CTM. It affects channel binding of calmodulin and thereby tunes channel activity by interfering with Ca2+- and voltage-dependent gating. Alternative splicing generates short C-terminal channel variants lacking the CTM resulting in enhanced Ca2+-dependent inactivation and stronger voltage-sensitivity upon heterologous expression. However, the role of this modulatory domain for channel function in its native environment is unkown. To determine its functional significance in vivo, we interrupted the CTM with a hemagglutinin tag in mutant mice (Cav1.3DCRDHA/HA. Using these mice we provide biochemical evidence for the existence of long (CTM-containing and short (CTM-deficient Cav1.3 α1-subunits in brain. The long (HA-labeled Cav1.3 isoform was present in all ribbon synapses of cochlear inner hair cells. CTM-elimination impaired Ca2+-dependent inactivation of Ca2+-currents in hair cells but increased it in chromaffin cells, resulting in hyperpolarized resting potentials and reduced pacemaking. CTM disruption did not affect hearing thresholds. We show that the modulatory function of the CTM is affected by its native environment in different cells and thus occurs in a cell-type specific manner in vivo. It is required to stabilize gating properties of Cav1.3 channels required for normal electrical excitability.

  3. DETECTION OF E6, E7 AND CELL-TYPE SPECIFIC ENHANCER OF HUMAN PAPILLOMAVIRUS TYPE 16 IN BREAST CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    HE Qian; CHU Yong-lie; JIA Xiao-li; ZHANG Shu-qun; LIU Wen-kang

    2008-01-01

    Objective To detect HPV16 E6, E7 genes and cell-type specific enhancer (CTSE) of long control region (LCR) in breast carcinoma (BC).Methods HPV16 E6,E7 genes and CTSE were detected in 40 BCs and 20 normal breast tissue (NBT) using polymerase chain reaction (PCR).Results The positive rates of HPV16 E6, E7genes and CTSE were 60% (24/40),55% (22/40) and 67.5%(27/40)respectively in BCs, whereas only 5% (1/20), 5%(1/20) and 15% (3/20) in NBTs (P<0.05). There exited significant correlation between E6 gene and CTSE in BCs (P<0.05), as well as E7 gene and CTSE. The infection of HPV16 E6, E7 and CTSE had no statistic relationship with pathological features.Conclusion There were HPV16 E6, E7 genes and CTSE together in BCs and CTSE may play an important role in pathogenesis of BC.

  4. Reversal of morphine-induced cell-type-specific synaptic plasticity in the nucleus accumbens shell blocks reinstatement.

    Science.gov (United States)

    Hearing, Matthew C; Jedynak, Jakub; Ebner, Stephanie R; Ingebretson, Anna; Asp, Anders J; Fischer, Rachel A; Schmidt, Clare; Larson, Erin B; Thomas, Mark John

    2016-01-19

    Drug-evoked plasticity at excitatory synapses on medium spiny neurons (MSNs) of the nucleus accumbens (NAc) drives behavioral adaptations in addiction. MSNs expressing dopamine D1 (D1R-MSN) vs. D2 receptors (D2R-MSN) can exert antagonistic effects in drug-related behaviors, and display distinct alterations in glutamate signaling following repeated exposure to psychostimulants; however, little is known of cell-type-specific plasticity induced by opiates. Here, we find that repeated morphine potentiates excitatory transmission and increases GluA2-lacking AMPA receptor expression in D1R-MSNs, while reducing signaling in D2-MSNs following 10-14 d of forced abstinence. In vivo reversal of this pathophysiology with optogenetic stimulation of infralimbic cortex-accumbens shell (ILC-NAc shell) inputs or treatment with the antibiotic, ceftriaxone, blocked reinstatement of morphine-evoked conditioned place preference. These findings confirm the presence of overlapping and distinct plasticity produced by classes of abused drugs within subpopulations of MSNs that may provide targetable molecular mechanisms for future pharmacotherapies. PMID:26739562

  5. Cell type specificity of female lung cancer associated with sulfur dioxide from air pollutants in Taiwan: An ecological study

    Directory of Open Access Journals (Sweden)

    Tseng Ching-Yu

    2012-01-01

    Full Text Available Abstract Background Many studies have examined the association between air pollutants (including sulfur dioxide [SO2], carbon monoxide [CO], nitrogen dioxide [NO2], nitric oxide [NO], ozone [O3], and particulate matter 10] and lung cancer. However, data from previous studies on pathological cell types were limited, especially for SO2 exposure. We aimed to explore the association between SO2 exposure from outdoor air pollutants and female lung cancer incidence by cell type specificity. Methods We conducted an ecological study and calculated annual average concentration of 6 air pollutants (SO2, CO, NO2, NO, O3, and PM10 using data from Taiwan Environmental Protection Administration air quality monitoring stations. The Poisson regression models were used to evaluate the association between SO2 and age-standardized incidence rate of female lung cancer by two major pathological types (adenocarcinoma [AC] and squamous cell carcinoma [SCC]. In order to understand whether there is a dose-response relationship between SO2 and two major pathological types, we analyzed 4 levels of exposure based on quartiles of concentration of SO2. Results The Poisson regression results showed that with the first quartile of SO2 concentration as the baseline, the relative risks for AC/SCC type cancer among females were 1.20 (95% confidence interval [CI], 1.04-1.37/1.39 (95% CI, 0.96-2.01 for the second, 1.22 (95% CI, 1.04-1.43/1.58 (95% CI, 1.06-2.37 for the third, and 1.27 (95% CI, 1.06-1.52/1.80 (95% CI, 1.15-2.84 for the fourth quartile of SO2 concentration. The tests for trend were statistically significant for both AC and SCC at P = 0.0272 and 0.0145, respectively. Conclusion The current study suggests that SO2 exposure as an air pollutant may increase female lung cancer incidence and the associations with female lung cancer is much stronger for SCC than for AC. The findings of this study warrant further investigation on the role of SO2 in the etiology of SCC.

  6. Category-specificity in visual object recognition

    DEFF Research Database (Denmark)

    Gerlach, Christian

    2009-01-01

    neurologically intact subjects and functional imaging studies, it is argued that PACE can account for category-effects at both behavioural and neural levels in patients and neurologically intact subjects. The theory also accounts for the way in which category-effects are affected by different task parameters...... demonstrated in neurologically intact subjects, but the findings are contradictory and there is no agreement as to why category-effects arise. This article presents a Pre-semantic Account of Category Effects (PACE) in visual object recognition. PACE assumes two processing stages: shape configuration (the...... (the degree of perceptual differentiation called for), stimulus characteristics (whether stimuli are presented as silhouettes, full line-drawings, or fragmented forms), stimulus presentation (stimulus exposure duration and position) as well as interactions between these parameters....

  7. Cell type-specific control of protein synthesis and proliferation by FGF-dependent signaling to the translation repressor 4E-BP.

    Science.gov (United States)

    Ruoff, Rachel; Katsara, Olga; Kolupaeva, Victoria

    2016-07-01

    Regulation of protein synthesis plays a vital role in posttranscriptional modulation of gene expression. Translational control most commonly targets the initiation of protein synthesis: loading 40S ribosome complexes onto mRNA and AUG start codon recognition. This step is initiated by eukaryotic initiation factor 4E (eIF4E) (the m7GTP cap-binding protein), whose binding to eIF4G (a scaffolding subunit) and eIF4A (an ATP-dependent RNA helicase) leads to assembly of active eIF4F complex. The ability of eIF4E to recognize the cap is prevented by its binding to eIF4E binding protein (4E-BP), which thereby inhibits cap-dependent translation by sequestering eIF4E. The 4E-BP activity is, in turn, inhibited by mTORC1 [mTOR (the mechanistic target of rapamycin) complex 1] mediated phosphorylation. Here, we define a previously unidentified mechanism of mTOR-independent 4E-BP1 regulation that is used by chondrocytes upon FGF signaling. Chondrocytes are responsible for the formation of the skeleton long bones. Unlike the majority of cell types where FGF signaling triggers proliferation, chondrocytes respond to FGF with inhibition. We establish that FGF specifically suppresses protein synthesis in chondrocytes, but not in any other cells of mesenchymal origin. Furthermore, 4E-BP1 repressor activity is necessary not only for suppression of protein synthesis, but also for FGF-induced cell-cycle arrest. Importantly, FGF-induced changes in the 4E-BP1 activity observed in cell culture are likewise detected in vivo and reflect the action of FGF signaling on downstream targets during bone development. Thus, our findings demonstrate that FGF signaling differentially impacts protein synthesis through either stimulation or repression, in a cell-type-dependent manner, with 4E-BP1 being a key player. PMID:27313212

  8. LaeA control of velvet family regulatory proteins for light-dependent development and fungal cell-type specificity.

    Directory of Open Access Journals (Sweden)

    Ozlem Sarikaya Bayram

    Full Text Available VeA is the founding member of the velvet superfamily of fungal regulatory proteins. This protein is involved in light response and coordinates sexual reproduction and secondary metabolism in Aspergillus nidulans. In the dark, VeA bridges VelB and LaeA to form the VelB-VeA-LaeA (velvet complex. The VeA-like protein VelB is another developmental regulator, and LaeA has been known as global regulator of secondary metabolism. In this study, we show that VelB forms a second light-regulated developmental complex together with VosA, another member of the velvet family, which represses asexual development. LaeA plays a key role, not only in secondary metabolism, but also in directing formation of the VelB-VosA and VelB-VeA-LaeA complexes. LaeA controls VeA modification and protein levels and possesses additional developmental functions. The laeA null mutant results in constitutive sexual differentiation, indicating that LaeA plays a pivotal role in inhibiting sexual development in response to light. Moreover, the absence of LaeA results in the formation of significantly smaller fruiting bodies. This is due to the lack of a specific globose cell type (Hülle cells, which nurse the young fruiting body during development. This suggests that LaeA controls Hülle cells. In summary, LaeA plays a dynamic role in fungal morphological and chemical development, and it controls expression, interactions, and modification of the velvet regulators.

  9. Layer- and cell-type-specific subthreshold and suprathreshold effects of long-term monocular deprivation in rat visual cortex.

    Science.gov (United States)

    Medini, Paolo

    2011-11-23

    Connectivity and dendritic properties are determinants of plasticity that are layer and cell-type specific in the neocortex. However, the impact of experience-dependent plasticity at the level of synaptic inputs and spike outputs remains unclear along vertical cortical microcircuits. Here I compared subthreshold and suprathreshold sensitivity to prolonged monocular deprivation (MD) in rat binocular visual cortex in layer 4 and layer 2/3 pyramids (4Ps and 2/3Ps) and in thick-tufted and nontufted layer 5 pyramids (5TPs and 5NPs), which innervate different extracortical targets. In normal rats, 5TPs and 2/3Ps are the most binocular in terms of synaptic inputs, and 5NPs are the least. Spike responses of all 5TPs were highly binocular, whereas those of 2/3Ps were dominated by either the contralateral or ipsilateral eye. MD dramatically shifted the ocular preference of 2/3Ps and 4Ps, mostly by depressing deprived-eye inputs. Plasticity was profoundly different in layer 5. The subthreshold ocular preference shift was sevenfold smaller in 5TPs because of smaller depression of deprived inputs combined with a generalized loss of responsiveness, and was undetectable in 5NPs. Despite their modest ocular dominance change, spike responses of 5TPs consistently lost their typically high binocularity during MD. The comparison of MD effects on 2/3Ps and 5TPs, the main affected output cells of vertical microcircuits, indicated that subthreshold plasticity is not uniquely determined by the initial degree of input binocularity. The data raise the question of whether 5TPs are driven solely by 2/3Ps during MD. The different suprathreshold plasticity of the two cell populations could underlie distinct functional deficits in amblyopia. PMID:22114282

  10. Induction of long-term potentiation and long-term depression is cell-type specific in the spinal cord.

    Science.gov (United States)

    Kim, Hee Young; Jun, Jaebeom; Wang, Jigong; Bittar, Alice; Chung, Kyungsoon; Chung, Jin Mo

    2015-04-01

    The underlying mechanism of chronic pain is believed to be changes in excitability in spinal dorsal horn (DH) neurons that respond abnormally to peripheral input. Increased excitability in pain transmission neurons, and depression of inhibitory neurons, are widely recognized in the spinal cord of animal models of chronic pain. The possible occurrence of 2 parallel but opposing forms of synaptic plasticity, long-term potentiation (LTP) and long-term depression (LTD) was tested in 2 types of identified DH neurons using whole-cell patch-clamp recordings in mouse spinal cord slices. The test stimulus was applied to the sensory fibers to evoke excitatory postsynaptic currents in identified spinothalamic tract neurons (STTn) and GABAergic neurons (GABAn). Afferent conditioning stimulation (ACS) applied to primary afferent fibers with various stimulation parameters induced LTP in STTn but LTD in GABAn, regardless of stimulation parameters. These opposite responses were further confirmed by simultaneous dual patch-clamp recordings of STTn and GABAn from a single spinal cord slice. Both the LTP in STTn and the LTD in GABAn were blocked by an NMDA receptor antagonist, AP5, or an intracellular Ca chelator, BAPTA. Both the pattern and magnitude of intracellular Ca after ACS were almost identical between STTn and GABAn based on live-cell calcium imaging. The results suggest that the intense sensory input induces an NMDA receptor-dependent intracellular Ca increase in both STTn and GABAn, but produces opposing synaptic plasticity. This study shows that there is cell type-specific synaptic plasticity in the spinal DH. PMID:25785524

  11. Cell-Type-Specific Transcriptome Analysis in the Drosophila Mushroom Body Reveals Memory-Related Changes in Gene Expression.

    Science.gov (United States)

    Crocker, Amanda; Guan, Xiao-Juan; Murphy, Coleen T; Murthy, Mala

    2016-05-17

    Learning and memory formation in Drosophila rely on a network of neurons in the mushroom bodies (MBs). Whereas numerous studies have delineated roles for individual cell types within this network in aspects of learning or memory, whether or not these cells can also be distinguished by the genes they express remains unresolved. In addition, the changes in gene expression that accompany long-term memory formation within the MBs have not yet been studied by neuron type. Here, we address both issues by performing RNA sequencing on single cell types (harvested via patch pipets) within the MB. We discover that the expression of genes that encode cell surface receptors is sufficient to identify cell types and that a subset of these genes, required for sensory transduction in peripheral sensory neurons, is not only expressed within individual neurons of the MB in the central brain, but is also critical for memory formation. PMID:27160913

  12. Face recognition: a model specific ability

    OpenAIRE

    Wilmer, Jeremy B.; Ken eNakayama; Laura eGermine

    2014-01-01

    In our everyday lives, we view it as a matter of course that different people are good at different things. It can be surprising, in this context, to learn that most of what is known about cognitive ability variation across individuals concerns the broadest of all cognitive abilities; an ability referred to as general intelligence, general mental ability, or just g. In contrast, our knowledge of specific abilities, those that correlate little with g, is severely constrained. Here, we draw upo...

  13. Specific Electrostatic Molecular Recognition in Water

    DEFF Research Database (Denmark)

    Li, Ming; Hoeck, Casper; Schoffelen, Sanne;

    2016-01-01

    The identification of pairs of small peptides that recognize each other in water exclusively through electrostatic interactions is reported. The target peptide and a structure-biased combinatorial ligand library consisting of ≈78 125 compounds were synthesized on different sized beads. Peptide......-bead binding assay and by 2D NMR spectroscopy. Molecular dynamics (MD) studies revealed a putative mode of interaction for this unusual electrostatic binding event. High binding specificity occurred through a combination of topological matching and electrostatic and hydrogen-bond complementarities. From MD...

  14. Drug and cell type-specific regulation of genes with different classes of estrogen receptor beta-selective agonists.

    Directory of Open Access Journals (Sweden)

    Sreenivasan Paruthiyil

    Full Text Available Estrogens produce biological effects by interacting with two estrogen receptors, ERalpha and ERbeta. Drugs that selectively target ERalpha or ERbeta might be safer for conditions that have been traditionally treated with non-selective estrogens. Several synthetic and natural ERbeta-selective compounds have been identified. One class of ERbeta-selective agonists is represented by ERB-041 (WAY-202041 which binds to ERbeta much greater than ERalpha. A second class of ERbeta-selective agonists derived from plants include MF101, nyasol and liquiritigenin that bind similarly to both ERs, but only activate transcription with ERbeta. Diarylpropionitrile represents a third class of ERbeta-selective compounds because its selectivity is due to a combination of greater binding to ERbeta and transcriptional activity. However, it is unclear if these three classes of ERbeta-selective compounds produce similar biological activities. The goals of these studies were to determine the relative ERbeta selectivity and pattern of gene expression of these three classes of ERbeta-selective compounds compared to estradiol (E(2, which is a non-selective ER agonist. U2OS cells stably transfected with ERalpha or ERbeta were treated with E(2 or the ERbeta-selective compounds for 6 h. Microarray data demonstrated that ERB-041, MF101 and liquiritigenin were the most ERbeta-selective agonists compared to estradiol, followed by nyasol and then diarylpropionitrile. FRET analysis showed that all compounds induced a similar conformation of ERbeta, which is consistent with the finding that most genes regulated by the ERbeta-selective compounds were similar to each other and E(2. However, there were some classes of genes differentially regulated by the ERbeta agonists and E(2. Two ERbeta-selective compounds, MF101 and liquiritigenin had cell type-specific effects as they regulated different genes in HeLa, Caco-2 and Ishikawa cell lines expressing ERbeta. Our gene profiling studies

  15. Specific Electrostatic Molecular Recognition in Water.

    Science.gov (United States)

    Li, Ming; Hoeck, Casper; Schoffelen, Sanne; Gotfredsen, Charlotte H; Meldal, Morten

    2016-05-17

    The identification of pairs of small peptides that recognize each other in water exclusively through electrostatic interactions is reported. The target peptide and a structure-biased combinatorial ligand library consisting of ≈78 125 compounds were synthesized on different sized beads. Peptide-peptide interactions could conveniently be observed by clustering of the small, fluorescently labeled target beads on the surface of larger ligand-containing beads. Sequences of isolated hits were determined by MS/MS. The interactions of the complex showing the highest affinity were investigated by a novel single-bead binding assay and by 2D NMR spectroscopy. Molecular dynamics (MD) studies revealed a putative mode of interaction for this unusual electrostatic binding event. High binding specificity occurred through a combination of topological matching and electrostatic and hydrogen-bond complementarities. From MD simulations binding also seemed to involve three tightly bound water molecules in the interface between the binding partners. Binding constants in the submicromolar range, useful for biomolecular adhesion and in nanostructure design, were measured. PMID:27073143

  16. Gamma-retrovirus integration marks cell type-specific cancer genes: a novel profiling tool in cancer genomics

    OpenAIRE

    Gilroy, Kathryn L.; Terry, Anne; Naseer, Asif; De Ridder, Jeroen; Allahyar, Amin; Wang, Weiwei; Carpenter, Eric; Mason, Andrew; Wong, Gane K-S; Cameron, Ewan R; Kilbey, Anna; Neil, James C.

    2016-01-01

    Retroviruses have been foundational in cancer research since early studies identified proto-oncogenes as targets for insertional mutagenesis. Integration of murine gamma-retroviruses into the host genome favours promoters and enhancers and entails interaction of viral integrase with host BET/bromodomain factors. We report that this integration pattern is conserved in feline leukaemia virus (FeLV), a gamma-retrovirus that infects many human cell types. Analysis of FeLV insertion sites in the M...

  17. Cell Type-Specific Expression and Function of Toll-Like Receptors 2 and 4 in Human Placenta: Implications in Fetal Infection

    OpenAIRE

    Ma, Yuehong; Krikun, Graciela; Abrahams, Vikki M.; Mor, Gil; Guller, Seth

    2007-01-01

    Placental infection is associated with adverse fetal outcomes. Toll-like receptors (TLRs) are critical regulators of the innate immune response based on their ability to recognize and respond to pathogen-associated molecular patterns expressed by microbes. To date, cell-type specific expression and regulation of TLR function in human term placenta remains largely unelucidated. The goal of the current study was to examine the in vivo and in vitro patterns of TLR expression and function in majo...

  18. Cell-type-specific Jumonji histone demethylase gene expression in the healthy rat CNS: detection by a novel flow cytometry method

    Directory of Open Access Journals (Sweden)

    Stephanie M.C. Smith

    2014-05-01

    Full Text Available Our understanding of how histone demethylation contributes to the regulation of basal gene expression in the brain is largely unknown in any injury model, and especially in the healthy adult brain. Although Jumonji genes are often regulated transcriptionally, cell-specific gene expression of Jumonji histone demethylases in the brain remains poorly understood. Thus, in the present study we profiled the mRNA levels of 26 Jumonji genes in microglia (CD11b+, neurons (NeuN+ and astrocytes (GFAP+ from the healthy adult rat brain. We optimized a method combining a mZBF (modified zinc-based fixative and FCM (flow cytometry to simultaneously sort cells from non-transgenic animals. We evaluated cell-surface, intracellular and nuclear proteins, including histones, as well as messenger- and micro-RNAs in different cell types simultaneously from a single-sorted sample. We found that 12 Jumonji genes were differentially expressed between adult microglia, neurons and astrocytes. While JMJD2D was neuron-restricted, PHF8 and JMJD1C were expressed in all three cell types although the expression was highest in neurons. JMJD3 and JMJD5 were expressed in all cell types, but were highly enriched in microglia; astrocytes had the lowest expression of UTX and JHDM1D. Levels of global H3K27 (H3 lysine 27 methylation varied among cell types and appeared to be lowest in microglia, indicating that differences in basal gene expression of specific Jumonji histone demethylases may contribute to cell-specific gene expression in the CNS (central nervous system. This multiparametric technique will be valuable for simultaneously assaying chromatin modifications and gene regulation in the adult CNS.

  19. Microarray Gene Expression Analysis to Evaluate Cell Type Specific Expression of Targets Relevant for Immunotherapy of Hematological Malignancies.

    Directory of Open Access Journals (Sweden)

    M J Pont

    Full Text Available Cellular immunotherapy has proven to be effective in the treatment of hematological cancers by donor lymphocyte infusion after allogeneic hematopoietic stem cell transplantation and more recently by targeted therapy with chimeric antigen or T-cell receptor-engineered T cells. However, dependent on the tissue distribution of the antigens that are targeted, anti-tumor responses can be accompanied by undesired side effects. Therefore, detailed tissue distribution analysis is essential to estimate potential efficacy and toxicity of candidate targets for immunotherapy of hematological malignancies. We performed microarray gene expression analysis of hematological malignancies of different origins, healthy hematopoietic cells and various non-hematopoietic cell types from organs that are often targeted in detrimental immune responses after allogeneic stem cell transplantation leading to graft-versus-host disease. Non-hematopoietic cells were also cultured in the presence of IFN-γ to analyze gene expression under inflammatory circumstances. Gene expression was investigated by Illumina HT12.0 microarrays and quality control analysis was performed to confirm the cell-type origin and exclude contamination of non-hematopoietic cell samples with peripheral blood cells. Microarray data were validated by quantitative RT-PCR showing strong correlations between both platforms. Detailed gene expression profiles were generated for various minor histocompatibility antigens and B-cell surface antigens to illustrate the value of the microarray dataset to estimate efficacy and toxicity of candidate targets for immunotherapy. In conclusion, our microarray database provides a relevant platform to analyze and select candidate antigens with hematopoietic (lineage-restricted expression as potential targets for immunotherapy of hematological cancers.

  20. Single-cell RNA-seq reveals cell type-specific transcriptional signatures at the maternal–foetal interface during pregnancy

    Science.gov (United States)

    Nelson, Andrew C.; Mould, Arne W.; Bikoff, Elizabeth K.; Robertson, Elizabeth J.

    2016-01-01

    Growth and survival of the mammalian embryo within the uterine environment depends on the placenta, a highly complex vascularized organ comprised of both maternal and foetal tissues. Recent experiments demonstrate that the zinc finger transcriptional repressor Prdm1/Blimp1 is essential for specification of spiral artery trophoblast giant cells (SpA-TGCs) that invade and remodel maternal blood vessels. To learn more about functional contributions made by Blimp1+ cell lineages here we perform the first single-cell RNA-seq analysis of the placenta. Cell types of both foetal and maternal origin are profiled. Comparisons with microarray datasets from mutant placenta and in vitro differentiated trophoblast stem cells allow us to identify Blimp1-dependent transcripts enriched in SpA-TGCs. Our experiments provide new insights into the functionally distinct cell types present at the maternal–foetal interface and advance our knowledge of dynamic gene expression patterns controlling placental morphogenesis and vascular mimicry. PMID:27108815

  1. HIV-1 evades innate immune recognition through specific cofactor recruitment

    OpenAIRE

    Jane Rasaiyaah; Choon Ping Tan; Fletcher, Adam J.; Price, Amanda J.; Caroline Blondeau; Laura Hilditch; Jacques, David A.; Selwood, David L.; James, Leo C.; Mahdad Noursadeghi; Towers, Greg J.

    2013-01-01

    Human immunodeficiency virus (HIV)-1 is able to replicate in primary human macrophages without stimulating innate immunity despite reverse transcription of genomic RNA into double-stranded DNA, an activity that might be expected to trigger innate pattern recognition receptors. We reasoned that if correctly orchestrated HIV-1 uncoating and nuclear entry is important for evasion of innate sensors then manipulation of specific interactions between HIV-1 capsid and host factors that putatively re...

  2. Structural basis of sequence-specific collagen recognition by SPARC

    OpenAIRE

    Hohenester, Erhard; Sasaki, Takako; Giudici, Camilla; Farndale, Richard W.; Bächinger, Hans Peter

    2008-01-01

    Protein interactions with the collagen triple helix play a critical role in collagen fibril formation, cell adhesion, and signaling. However, structural insight into sequence-specific collagen recognition is limited to an integrin-peptide complex. A GVMGFO motif in fibrillar collagens (O denotes 4-hydroxyproline) binds 3 unrelated proteins: von Willebrand factor (VWF), discoidin domain receptor 2 (DDR2), and the extracellular matrix protein SPARC/osteonectin/BM-40. We report the crystal struc...

  3. Correlation of mRNA and protein levels: Cell type-specific gene expression of cluster designation antigens in the prostate

    Directory of Open Access Journals (Sweden)

    Deutsch Eric W

    2008-05-01

    Full Text Available Abstract Background: Expression levels of mRNA and protein by cell types exhibit a range of correlations for different genes. In this study, we compared levels of mRNA abundance for several cluster designation (CD genes determined by gene arrays using magnetic sorted and laser-capture microdissected human prostate cells with levels of expression of the respective CD proteins determined by immunohistochemical staining in the major cell types of the prostate – basal epithelial, luminal epithelial, stromal fibromuscular, and endothelial – and for prostate precursor/stem cells and prostate carcinoma cells. Immunohistochemical stains of prostate tissues from more than 50 patients were scored for informative CD antigen expression and compared with cell-type specific transcriptomes. Results: Concordance between gene and protein expression findings based on 'present' vs. 'absent' calls ranged from 46 to 68%. Correlation of expression levels was poor to moderate (Pearson correlations ranged from 0 to 0.63. Divergence between the two data types was most frequently seen for genes whose array signals exceeded background (> 50 but lacked immunoreactivity by immunostaining. This could be due to multiple factors, e.g. low levels of protein expression, technological sensitivities, sample processing, probe set definition or anatomical origin of tissue and actual biological differences between transcript and protein abundance. Conclusion: Agreement between these two very different methodologies has great implications for their respective use in both molecular studies and clinical trials employing molecular biomarkers.

  4. Classically and alternatively activated bone marrow derived macrophages differ in cytoskeletal functions and migration towards specific CNS cell types

    Directory of Open Access Journals (Sweden)

    Dijkstra Christine D

    2011-05-01

    Full Text Available Abstract Background Macrophages play an important role in neuroinflammatory diseases such as multiple sclerosis (MS and spinal cord injury (SCI, being involved in both damage and repair. The divergent effects of macrophages might be explained by their different activation status: classically activated (CA/M1, pro-inflammatory, macrophages and alternatively activated (AA/M2, growth promoting, macrophages. Little is known about the effect of macrophages with these phenotypes in the central nervous system (CNS and how they influence pathogenesis. The aim of this study was therefore to determine the characteristics of these phenotypically different macrophages in the context of the CNS in an in vitro setting. Results Here we show that bone marrow derived CA and AA macrophages have a distinct migratory capacity towards medium conditioned by various cell types of the CNS. AA macrophages were preferentially attracted by the low weight ( Conclusion In conclusion, since AA macrophages are more motile and are attracted by NCM, they are prone to migrate towards neurons in the CNS. CA macrophages have a lower motility and a stronger adhesion to ECM. In neuroinflammatory diseases the restricted migration and motility of CA macrophages might limit lesion size due to bystander damage.

  5. A specific fluorescent chemosensor for copper(Ⅱ) cation recognition

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The fluorescent spectra of 2, 6-bis(benzimidazol-2-yl) pyridine (compound 2) and its N-substituted compound (1) are studied. The fluorescent characteristics of these compounds and the complexes formed from these compounds with different metal ions have also been investigated. The results show that compound 1 possesses a specific ability to form complex with Cu2+ ions, but compound 2 has not such a property. It is proposed that the specific recognition ability of compound 1 to Cu2+ may attribute to the cyclic configuration of this compound in polar solvent.

  6. Cell-type-specific profiling of protein-DNA interactions without cell isolation using targeted DamID with next-generation sequencing.

    Science.gov (United States)

    Marshall, Owen J; Southall, Tony D; Cheetham, Seth W; Brand, Andrea H

    2016-09-01

    This protocol is an extension to: Nat. Protoc. 2, 1467-1478 (2007); doi:10.1038/nprot.2007.148; published online 7 June 2007The ability to profile transcription and chromatin binding in a cell-type-specific manner is a powerful aid to understanding cell-fate specification and cellular function in multicellular organisms. We recently developed targeted DamID (TaDa) to enable genome-wide, cell-type-specific profiling of DNA- and chromatin-binding proteins in vivo without cell isolation. As a protocol extension, this article describes substantial modifications to an existing protocol, and it offers additional applications. TaDa builds upon DamID, a technique for detecting genome-wide DNA-binding profiles of proteins, by coupling it with the GAL4 system in Drosophila to enable both temporal and spatial resolution. TaDa ensures that Dam-fusion proteins are expressed at very low levels, thus avoiding toxicity and potential artifacts from overexpression. The modifications to the core DamID technique presented here also increase the speed of sample processing and throughput, and adapt the method to next-generation sequencing technology. TaDa is robust, reproducible and highly sensitive. Compared with other methods for cell-type-specific profiling, the technique requires no cell-sorting, cross-linking or antisera, and binding profiles can be generated from as few as 10,000 total induced cells. By profiling the genome-wide binding of RNA polymerase II (Pol II), TaDa can also identify transcribed genes in a cell-type-specific manner. Here we describe a detailed protocol for carrying out TaDa experiments and preparing the material for next-generation sequencing. Although we developed TaDa in Drosophila, it should be easily adapted to other organisms with an inducible expression system. Once transgenic animals are obtained, the entire experimental procedure-from collecting tissue samples to generating sequencing libraries-can be accomplished within 5 d. PMID:27490632

  7. Delta-9-tetrahydrocannabinol accumulation, metabolism and cell-type-specific adverse effects in aggregating brain cell cultures

    International Nuclear Information System (INIS)

    Despite the widespread use of Cannabis as recreational drug or as medicine, little is known about its toxicity. The accumulation, metabolism and toxicity of THC were analyzed 10 days after a single treatment, and after repeated exposures during 10 days. Mixed-cell aggregate cultures of fetal rat telencephalon were used as in vitro model, as well as aggregates enriched either in neurons or in glial cells. It was found that THC accumulated preferentially in neurons, and that glia-neuron interactions decreased THC accumulation. The quantification of 11-OH-THC and of THC-COOH showed that brain aggregates were capable of THC metabolism. No cell-type difference was found for the metabolite 11-OH-THC, whereas the THC-COOH content was higher in mixed-cell cultures. No cell death was found at THC concentrations of 2 μM in single treatment and of 1 μM and 2 μM in repeated treatments. Neurons, and particularly GABAergic neurons, were most sensitive to THC. Only the GABAergic marker was affected after the single treatment, whereas the GABAergic, cholinergic and astrocytic markers were decreased after the repeated treatments. JWH 015, a CB2 receptor agonist, showed effects similar to THC, whereas ACEA, a CB1 receptor agonist, had no effect. The expression of the cytokine IL-6 was upregulated 48 h after the single treatment with 5 μM of THC or JWH 015, whereas the expression of TNF-α remained unchanged. These results suggest that the adverse effects of THC were related either to THC accumulation or to cannabinoid receptor activation and associated with IL-6 upregulation

  8. Intrinsic properties of Tcf1 and Tcf4 splice variants determine cell-type-specific Wnt/β-catenin target gene expression

    OpenAIRE

    Wallmen, Britta; Schrempp, Monika; Hecht, Andreas

    2012-01-01

    T-cell factor (Tcf)/lymphoid-enhancer factor (Lef) proteins are a structurally diverse family of deoxyribonucleic acid-binding proteins that have essential nuclear functions in Wnt/β-catenin signalling. Expression of Wnt/β-catenin target genes is highly dependent on context, but the precise role of Tcf/Lef family members in the generation and maintenance of cell-type-specific Wnt/β-catenin responses is unknown. Herein, we show that induction of a subset of Wnt/β-catenin targets in embryonic s...

  9. Reprogramming Caspase-7 Specificity by Regio-Specific Mutations and Selection Provides Alternate Solutions for Substrate Recognition.

    Science.gov (United States)

    Hill, Maureen E; MacPherson, Derek J; Wu, Peng; Julien, Olivier; Wells, James A; Hardy, Jeanne A

    2016-06-17

    The ability to routinely engineer protease specificity can allow us to better understand and modulate their biology for expanded therapeutic and industrial applications. Here, we report a new approach based on a caged green fluorescent protein (CA-GFP) reporter that allows for flow-cytometry-based selection in bacteria or other cell types enabling selection of intracellular protease specificity, regardless of the compositional complexity of the protease. Here, we apply this approach to introduce the specificity of caspase-6 into caspase-7, an intracellular cysteine protease important in cellular remodeling and cell death. We found that substitution of substrate-contacting residues from caspase-6 into caspase-7 was ineffective, yielding an inactive enzyme, whereas saturation mutagenesis at these positions and selection by directed evolution produced active caspases. The process produced a number of nonobvious mutations that enabled conversion of the caspase-7 specificity to match caspase-6. The structures of the evolved-specificity caspase-7 (esCasp-7) revealed alternate binding modes for the substrate, including reorganization of an active site loop. Profiling the entire human proteome of esCasp-7 by N-terminomics demonstrated that the global specificity toward natural protein substrates is remarkably similar to that of caspase-6. Because the esCasp-7 maintained the core of caspase-7, we were able to identify a caspase-6 substrate, lamin C, that we predict relies on an exosite for substrate recognition. These reprogrammed proteases may be the first tool built with the express intent of distinguishing exosite dependent or independent substrates. This approach to specificity reprogramming should also be generalizable across a wide range of proteases. PMID:27032039

  10. Tissue-specific regulatory network extractor (TS-REX): a database and software resource for the tissue and cell type-specific investigation of transcription factor-gene networks.

    Science.gov (United States)

    Colecchia, Federico; Kottwitz, Denise; Wagner, Mandy; Pfenninger, Cosima V; Thiel, Gerald; Tamm, Ingo; Peterson, Carsten; Nuber, Ulrike A

    2009-06-01

    The prediction of transcription factor binding sites in genomic sequences is in principle very useful to identify upstream regulatory factors. However, when applying this concept to genomes of multicellular organisms such as mammals, one has to deal with a large number of false positive predictions since many transcription factor genes are only expressed in specific tissues or cell types. We developed TS-REX, a database/software system that supports the analysis of tissue and cell type-specific transcription factor-gene networks based on expressed sequence tag abundance of transcription factor-encoding genes in UniGene EST libraries. The use of expression levels of transcription factor-encoding genes according to hierarchical anatomical classifications covering different tissues and cell types makes it possible to filter out irrelevant binding site predictions and to identify candidates of potential functional importance for further experimental testing. TS-REX covers ESTs from H. sapiens and M. musculus, and allows the characterization of both presence and specificity of transcription factors in user-specified tissues or cell types. The software allows users to interactively visualize transcription factor-gene networks, as well as to export data for further processing. TS-REX was applied to predict regulators of Polycomb group genes in six human tumor tissues and in human embryonic stem cells. PMID:19443447

  11. The multifunctional FUS, EWS and TAF15 proto-oncoproteins show cell type-specific expression patterns and involvement in cell spreading and stress response

    Directory of Open Access Journals (Sweden)

    Stenman Göran

    2008-07-01

    Full Text Available Abstract Background FUS, EWS and TAF15 are structurally similar multifunctional proteins that were first discovered upon characterization of fusion oncogenes in human sarcomas and leukemias. The proteins belong to the FET (previously TET family of RNA-binding proteins and are implicated in central cellular processes such as regulation of gene expression, maintenance of genomic integrity and mRNA/microRNA processing. In the present study, we investigated the expression and cellular localization of FET proteins in multiple human tissues and cell types. Results FUS, EWS and TAF15 were expressed in both distinct and overlapping patterns in human tissues. The three proteins showed almost ubiquitous nuclear expression and FUS and TAF15 were in addition present in the cytoplasm of most cell types. Cytoplasmic EWS was more rarely detected and seen mainly in secretory cell types. Furthermore, FET expression was downregulated in differentiating human embryonic stem cells, during induced differentiation of neuroblastoma cells and absent in terminally differentiated melanocytes and cardiac muscle cells. The FET proteins were targeted to stress granules induced by heat shock and oxidative stress and FUS required its RNA-binding domain for this translocation. Furthermore, FUS and TAF15 were detected in spreading initiation centers of adhering cells. Conclusion Our results point to cell-specific expression patterns and functions of the FET proteins rather than the housekeeping roles inferred from earlier studies. The localization of FET proteins to stress granules suggests activities in translational regulation during stress conditions. Roles in central processes such as stress response, translational control and adhesion may explain the FET proteins frequent involvement in human cancer.

  12. Recognition using information-optimal adaptive feature-specific imaging.

    Science.gov (United States)

    Baheti, Pawan K; Neifeld, Mark A

    2009-04-01

    We present an information-theoretic adaptive feature-specific imaging (AFSI) system for a M-class recognition task. The proposed system utilizes the recently developed task-specific information (TSI) framework to incorporate the knowledge from previous measurements and adapt the projection matrix at each step. The decision-making framework is based on sequential hypothesis testing. We quantify the number of measurements required to achieve a specified probability of misclassification (P(e)), and we compare the performances of three approaches: the new TSI-based AFSI system, a previously reported statistical AFSI system, and static FSI (SFSI). The TSI-based AFSI system exhibits significant improvement compared with SFSI and statistical AFSI at low signal-to-noise ratio (SNR). It is shown that for M=4 hypotheses, SNR=-20 dB and desired P(e)=10(-2), TSI-based AFSI requires 3 times fewer measurements than statistical AFSI, and 16 times fewer measurements than SFSI. We also describe an extension of the proposed method that is suitable for recognition in the presence of nuisance parameters such as illumination conditions and target orientations. PMID:19340282

  13. The differential loading of two barley CENH3 variants into distinct centromeric substructures is cell type- and development-specific.

    Science.gov (United States)

    Ishii, Takayoshi; Karimi-Ashtiyani, Raheleh; Banaei-Moghaddam, Ali Mohammad; Schubert, Veit; Fuchs, Jörg; Houben, Andreas

    2015-06-01

    The organization of centromeric chromatin of diploid barley (Hordeum vulgare) encoding two (α and β) CENH3 variants was analysed by super-resolution microscopy. Antibody staining revealed that both CENH3 variants are organized in distinct but intermingled subdomains in interphase, mitotic and meiotic centromeres. Artificially extended chromatin fibres illustrate that these subdomains are formed by polynucleosome clusters. Thus, a CENH3 variant-specific loading followed by the arrangement into specific intermingling subdomains forming the centromere region appears. The CENH3 composition and transcription vary among different tissues. In young embryos, most interphase centromeres are composed of both CENH3 variants, while in meristematic root cells, a high number of nuclei contain βCENH3 mainly dispersed within the nucleoplasm. A similar distribution and no preferential arrangement of the two CENH3 variants in relationship to the spindle poles suggest that both homologs meet the same function in metaphase cells. PMID:25688006

  14. Antibody-based screening of cell wall matrix glycans in ferns reveals taxon, tissue and cell-type specific distribution patterns

    DEFF Research Database (Denmark)

    Leroux, Olivier; Sørensen, Iben; Marcus, Susan E.;

    2015-01-01

    Background: While it is kno3wn that complex tissues with specialized functions emerged during land plant evolution, it is not clear how cell wall polymers and their structural variants are associated with specific tissues or cell types. Moreover, due to the economic importance of many flowering...... plants, ferns have been largely neglected in cell wall comparative studies. Results: To explore fern cell wall diversity sets of monoclonal antibodies directed to matrix glycans of angiosperm cell walls have been used in glycan microarray and in situ analyses with 76 fern species and four species of...... across the ferns and specifically associated with phloem cell walls and similarly the LM11 xylan epitope was associated with xylem cell walls. The LM5 galactan and LM6 arabinan epitopes, linked to pectic supramolecules in angiosperms, were associated with vascular structures with only limited detection...

  15. Cell-type-specific and hypoxia-inducible expression of the human erythropoietin gene in transgenic mice.

    OpenAIRE

    Semenza, G L; Koury, S. T.; Nejfelt, M K; Gearhart, J D; Antonarakis, S E

    1991-01-01

    Synthesis of erythropoietin, the primary humoral regulator of erythropoiesis, in liver and kidney is inducible by anemia or hypoxia. Analysis of human erythropoietin gene expression in transgenic mice revealed that sequences located 6-14 kilobases 5' to the gene direct expression to the kidney, whereas sequences within the immediate 3'-flanking region control hepatocyte-specific expression. Human erythropoietin transcription initiation sites were differentially utilized in liver and kidney. I...

  16. Nr2e3-directed transcriptional regulation of genes involved in photoreceptor development and cell-type specific phototransduction.

    Science.gov (United States)

    Haider, Neena B; Mollema, Nissa; Gaule, Meghan; Yuan, Yang; Sachs, Andrew J; Nystuen, Arne M; Naggert, Jürgen K; Nishina, Patsy M

    2009-09-01

    The retinal transcription factor Nr2e3 plays a key role in photoreceptor development and function. In this study we examine gene expression in the retina of Nr2e3(rd7/rd7) mutants with respect to wild-type control mice, to identify genes that are misregulated and hence potentially function in the Nr2e3 transcriptional network. Quantitative candidate gene real time PCR and subtractive hybridization approaches were used to identify transcripts that were misregulated in Nr2e3(rd7/rd7) mice. Chromatin immunoprecipitation assays were then used to determine which of the misregulated transcripts were direct targets of NR2E3. We identified 24 potential targets of NR2E3. In the developing retina, NR2E3 targets transcription factors such as Ror1, Rorg, and the nuclear hormone receptors Nr1d1 and Nr2c1. In the mature retina NR2E3 targets several genes including the rod specific gene Gnb1 and cone specific genes blue opsin, and two of the cone transducin subunits, Gnat2 and Gnb3. In addition, we identified 5 novel transcripts that are targeted by NR2E3. While mislocalization of proteins between rods and cones was not observed, we did observe diminished concentration of GNB1 protein in adult Nr2e3(rd7/rd7) retinas. These studies identified novel transcriptional pathways that are potentially targeted by Nr2e3 in the retina and specifically demonstrate a novel role for NR2E3 in regulating genes involved in phototransduction. PMID:19379737

  17. A 350 bp region of the proximal promoter of Rds drives cell-type specific gene expression

    OpenAIRE

    Cai, Xue; Conley, Shannon M.; Cheng, Tong; Al-Ubaidi, Muayyad R.; Naash, Muna I.

    2010-01-01

    RDS (retinal degeneration slow) is a photoreceptor-specific tetraspanin protein required for the biogenesis and maintenance of rod and cone outer segments. Mutations in the Rds gene are associated with multiple forms of rod- and cone-dominant retinal degeneration. To gain more insight into the mechanisms underlying the regulation of this gene the identification of regulatory sequences within the promoter of Rds was undertaken. A 3.5kb fragment of the 5′ flanking region of the mouse Rds gene w...

  18. Characterisation of CD4 T cells in healthy and diseased koalas (Phascolarctos cinereus) using cell-type-specific monoclonal antibodies.

    Science.gov (United States)

    Mangar, Chandan; Armitage, Charles W; Timms, Peter; Corcoran, Lynn M; Beagley, Kenneth W

    2016-07-01

    The koala (Phascolarctos cinereus) is an arboreal herbivorous marsupial that is an Australian icon. Koalas in many parts of Australia are under multiple threats including habitat destruction, dog attacks, vehicular accidents, and infectious diseases such as Chlamydia spp. and the koala retrovirus (KoRV), which may contribute to the incidence of lymphoma and leukaemia in this species. Due to a lack of koala-specific immune reagents and assays there is currently no way to adequately analyse the immune response in healthy, diseased or vaccinated animals. This paper reports the production and characterisation of the first anti-koala CD4 monoclonal antibody (mAb). The koala CD4 gene was identified and used to develop recombinant proteins for mAb production. Fluorochrome-conjugated anti-CD4 mAb was used to measure the levels of CD4(+) lymphocytes collected from koala spleens (41.1%, range 20-45.1%) lymph nodes (36.3%, range 19-55.9%) and peripheral blood (23.8%, range 17.3-35%) by flow cytometry. Biotin-conjugated anti-CD4 mAb was used for western blot to determine an approximate size of 52 kDa for the koala CD4 molecule and used in immunohistochemistry to identify CD4(+) cells in the paracortical region and germinal centres of spleen and lymph nodes. Using the anti-CD4 mab we showed that CD4 cells from vaccinated, but not control, koalas proliferated following in vitro stimulation with UV-inactivated Chlamydia pecorum and recombinant chlamydial antigens. Since CD4(+) T cells have been shown to play a pivotal role in clearing chlamydial infection in both human and mouse infections, using this novel antibody will help determine the role CD4(+) T cells play in protection against chlamydial infection in koalas and also enhance our knowledge of how KoRV affects the koala immune system. PMID:26905635

  19. BRAF Mutation Is Associated With a Specific Cell Type With Features Suggestive of Senescence in Ovarian Serous Borderline (Atypical Proliferative) Tumors

    DEFF Research Database (Denmark)

    Zeppernick, Felix; Ardighieri, Laura; Hannibal, Charlotte G;

    2014-01-01

    Serous borderline tumor also known as atypical proliferative serous tumor (APST) is the precursor of ovarian low-grade serous carcinoma (LGSC). In this study, we correlated the morphologic and immunohistochemical phenotypes of 71 APSTs and 18 LGSCs with the mutational status of KRAS and BRAF, the...... LGSCs, EC cells were found in only 2, and both contained BRAF mutations. The EC cells were present admixed with cuboidal and columnar cells lining the papillae and appeared to be budding from the surface, resulting in individual cells and clusters of detached cells "floating" above the papillae...... of ovarian tumors by showing that BRAF mutation is associated with cellular senescence and the presence of a specific cell type characterized by abundant EC. This "oncogene-induced senescence" phenotype may represent a mechanism that impedes progression of APSTs to LGSC....

  20. HIV-1 evades innate immune recognition through specific cofactor recruitment

    Science.gov (United States)

    Rasaiyaah, Jane; Tan, Choon Ping; Fletcher, Adam J.; Price, Amanda J.; Blondeau, Caroline; Hilditch, Laura; Jacques, David A.; Selwood, David L.; James, Leo C.; Noursadeghi, Mahdad; Towers, Greg J.

    2013-11-01

    Human immunodeficiency virus (HIV)-1 is able to replicate in primary human macrophages without stimulating innate immunity despite reverse transcription of genomic RNA into double-stranded DNA, an activity that might be expected to trigger innate pattern recognition receptors. We reasoned that if correctly orchestrated HIV-1 uncoating and nuclear entry is important for evasion of innate sensors then manipulation of specific interactions between HIV-1 capsid and host factors that putatively regulate these processes should trigger pattern recognition receptors and stimulate type 1 interferon (IFN) secretion. Here we show that HIV-1 capsid mutants N74D and P90A, which are impaired for interaction with cofactors cleavage and polyadenylation specificity factor subunit 6 (CPSF6) and cyclophilins (Nup358 and CypA), respectively, cannot replicate in primary human monocyte-derived macrophages because they trigger innate sensors leading to nuclear translocation of NF-κB and IRF3, the production of soluble type 1 IFN and induction of an antiviral state. Depletion of CPSF6 with short hairpin RNA expression allows wild-type virus to trigger innate sensors and IFN production. In each case, suppressed replication is rescued by IFN-receptor blockade, demonstrating a role for IFN in restriction. IFN production is dependent on viral reverse transcription but not integration, indicating that a viral reverse transcription product comprises the HIV-1 pathogen-associated molecular pattern. Finally, we show that we can pharmacologically induce wild-type HIV-1 infection to stimulate IFN secretion and an antiviral state using a non-immunosuppressive cyclosporine analogue. We conclude that HIV-1 has evolved to use CPSF6 and cyclophilins to cloak its replication, allowing evasion of innate immune sensors and induction of a cell-autonomous innate immune response in primary human macrophages.

  1. Probing the Specificity Determinants of Amino Acid Recognition by Arginase

    Energy Technology Data Exchange (ETDEWEB)

    Shishova, E.; Di Costanzo, L; Emig, F; Ash, D; Christianson, D

    2009-01-01

    Arginase is a binuclear manganese metalloenzyme that serves as a therapeutic target for the treatment of asthma, erectile dysfunction, and atherosclerosis. In order to better understand the molecular basis of inhibitor affinity, we have employed site-directed mutagenesis, enzyme kinetics, and X-ray crystallography to probe the molecular recognition of the amino acid moiety (i.e., the ?-amino and ?-carboxylate groups) of substrate l-arginine and inhibitors in the active site of arginase I. Specifically, we focus on (1) a water-mediated hydrogen bond between the substrate ?-carboxylate and T135, (2) a direct hydrogen bond between the substrate ?-carboxylate and N130, and (3) a direct charged hydrogen bond between the substrate ?-amino group and D183. Amino acid substitutions for T135, N130, and D183 generally compromise substrate affinity as reflected by increased KM values but have less pronounced effects on catalytic function as reflected by minimal variations of kcat. As with substrate KM values, inhibitor Kd values increase for binding to enzyme mutants and suggest that the relative contribution of intermolecular interactions to amino acid affinity in the arginase active site is water-mediated hydrogen bond < direct hydrogen bond < direct charged hydrogen bond. Structural comparisons of arginase with the related binuclear manganese metalloenzymes agmatinase and proclavaminic acid amidinohydrolase suggest that the evolution of substrate recognition in the arginase fold occurs by mutation of residues contained in specificity loops flanking the mouth of the active site (especially loops 4 and 5), thereby allowing diverse guanidinium substrates to be accommodated for catalysis.

  2. HIV-1 evades innate immune recognition through specific cofactor recruitment.

    Science.gov (United States)

    Rasaiyaah, Jane; Tan, Choon Ping; Fletcher, Adam J; Price, Amanda J; Blondeau, Caroline; Hilditch, Laura; Jacques, David A; Selwood, David L; James, Leo C; Noursadeghi, Mahdad; Towers, Greg J

    2013-11-21

    Human immunodeficiency virus (HIV)-1 is able to replicate in primary human macrophages without stimulating innate immunity despite reverse transcription of genomic RNA into double-stranded DNA, an activity that might be expected to trigger innate pattern recognition receptors. We reasoned that if correctly orchestrated HIV-1 uncoating and nuclear entry is important for evasion of innate sensors then manipulation of specific interactions between HIV-1 capsid and host factors that putatively regulate these processes should trigger pattern recognition receptors and stimulate type 1 interferon (IFN) secretion. Here we show that HIV-1 capsid mutants N74D and P90A, which are impaired for interaction with cofactors cleavage and polyadenylation specificity factor subunit 6 (CPSF6) and cyclophilins (Nup358 and CypA), respectively, cannot replicate in primary human monocyte-derived macrophages because they trigger innate sensors leading to nuclear translocation of NF-κB and IRF3, the production of soluble type 1 IFN and induction of an antiviral state. Depletion of CPSF6 with short hairpin RNA expression allows wild-type virus to trigger innate sensors and IFN production. In each case, suppressed replication is rescued by IFN-receptor blockade, demonstrating a role for IFN in restriction. IFN production is dependent on viral reverse transcription but not integration, indicating that a viral reverse transcription product comprises the HIV-1 pathogen-associated molecular pattern. Finally, we show that we can pharmacologically induce wild-type HIV-1 infection to stimulate IFN secretion and an antiviral state using a non-immunosuppressive cyclosporine analogue. We conclude that HIV-1 has evolved to use CPSF6 and cyclophilins to cloak its replication, allowing evasion of innate immune sensors and induction of a cell-autonomous innate immune response in primary human macrophages. PMID:24196705

  3. Global mapping of cell type-specific open chromatin by FAIRE-seq reveals the regulatory role of the NFI family in adipocyte differentiation.

    Directory of Open Access Journals (Sweden)

    Hironori Waki

    2011-10-01

    Full Text Available Identification of regulatory elements within the genome is crucial for understanding the mechanisms that govern cell type-specific gene expression. We generated genome-wide maps of open chromatin sites in 3T3-L1 adipocytes (on day 0 and day 8 of differentiation and NIH-3T3 fibroblasts using formaldehyde-assisted isolation of regulatory elements coupled with high-throughput sequencing (FAIRE-seq. FAIRE peaks at the promoter were associated with active transcription and histone modifications of H3K4me3 and H3K27ac. Non-promoter FAIRE peaks were characterized by H3K4me1+/me3-, the signature of enhancers, and were largely located in distal regions. The non-promoter FAIRE peaks showed dynamic change during differentiation, while the promoter FAIRE peaks were relatively constant. Functionally, the adipocyte- and preadipocyte-specific non-promoter FAIRE peaks were, respectively, associated with genes up-regulated and down-regulated by differentiation. Genes highly up-regulated during differentiation were associated with multiple clustered adipocyte-specific FAIRE peaks. Among the adipocyte-specific FAIRE peaks, 45.3% and 11.7% overlapped binding sites for, respectively, PPARγ and C/EBPα, the master regulators of adipocyte differentiation. Computational motif analyses of the adipocyte-specific FAIRE peaks revealed enrichment of a binding motif for nuclear family I (NFI transcription factors. Indeed, ChIP assay showed that NFI occupy the adipocyte-specific FAIRE peaks and/or the PPARγ binding sites near PPARγ, C/EBPα, and aP2 genes. Overexpression of NFIA in 3T3-L1 cells resulted in robust induction of these genes and lipid droplet formation without differentiation stimulus. Overexpression of dominant-negative NFIA or siRNA-mediated knockdown of NFIA or NFIB significantly suppressed both induction of genes and lipid accumulation during differentiation, suggesting a physiological function of these factors in the adipogenic program. Together, our

  4. Differential microRNA expression signatures and cell type-specific association with Taxol resistance in ovarian cancer cells

    Directory of Open Access Journals (Sweden)

    Kim YW

    2014-02-01

    downregulation of the two miRNAs was associated with better survival, perhaps increasing the sensitivity of cancer cells to Taxol. In the chemo-sensitive patient group, only miR-647 could be a prognosis marker. These miRNAs inhibit several interacting genes of p53 networks, especially in TUOS-3 and TUOS-4, and showed cell line-specific inhibition effects. Taken together, the data indicate that the three miRNAs are closely associated with Taxol resistance and potentially better prognosis factors. Our results suggest that these miRNAs were successfully and reliably identified and would be used in the development of miRNA therapies in treating ovarian cancer. Keywords: microRNA, ovarian cancer, Taxol resistance, Kaplan–Meier survival analysis

  5. Using laser micro-dissection and qRT-PCR to analyze cell type-specific gene expression in Norway spruce phloem

    Directory of Open Access Journals (Sweden)

    Nina E. Nagy

    2014-04-01

    Full Text Available The tangentially oriented polyphenolic parenchyma (PP and radially organized ray parenchyma in the phloem are central in the defense of conifer stems against insects and pathogens. Laser micro-dissection enables examination of cell-specific defense responses. To examine induced defense responses in Norway spruce stems inoculated with the necrotrophic blue-stain fungus Ceratocystis polonica, RNA extracted from laser micro-dissected phloem parenchyma and vascular cambium was analyzed using real-time RT-PCR (qRT-PCR to profile transcript levels of selected resistance marker genes. The monitored transcripts included three pathogenesis-related proteins (class IV chitinase (CHI4, defensin (SPI1, peroxidase (PX3, two terpene synthesis related proteins (DXPS and LAS, one ethylene biosynthesis related protein (ACS, and a phenylalanine ammonia-lyase (PAL. Three days following inoculation, four genes (CHI4, PAL, PX3, SPI1 were differentially induced in individual cell and tissue types, both close to the inoculation site (5 mm above and, to a lesser degree, further away (10 mm above. These resistance marker genes were all highly induced in ray parenchyma, supporting the important role of the rays in spruce defense propagation. CHI4 and PAL were also induced in PP cells and in conducting secondary phloem tissues. Our data suggests that different cell types in the secondary phloem of Norway spruce have overlapping but not fully redundant roles in active host defense. Furthermore, the study demonstrates the usefulness of laser micro-dissection coupled with qRT-PCR to characterize gene expression in different cell types of conifer bark.

  6. Regional and cell-type-specific effects of DAMGO on striatal D1 and D2 dopamine receptor-expressing medium-sized spiny neurons

    Directory of Open Access Journals (Sweden)

    Christopher J Evans

    2012-03-01

    Full Text Available The striatum can be divided into the DLS (dorsolateral striatum and the VMS (ventromedial striatum, which includes NAcC (nucleus accumbens core and NAcS (nucleus accumbens shell. Here, we examined differences in electrophysiological properties of MSSNs (medium-sized spiny neurons based on their location, expression of DA (dopamine D1/D2 receptors and responses to the μ-opioid receptor agonist, DAMGO {[D-Ala2-MePhe4-Gly(ol5]enkephalin}. The main differences in morphological and biophysical membrane properties occurred among striatal sub-regions. MSSNs in the DLS were larger, had higher membrane capacitances and lower Rin (input resistances compared with cells in the VMS. RMPs (resting membrane potentials were similar among regions except for D2 cells in the NAcC, which displayed a significantly more depolarized RMP. In contrast, differences in frequency of spontaneous excitatory synaptic inputs were more prominent between cell types, with D2 cells receiving significantly more excitatory inputs than D1 cells, particularly in the VMS. Inhibitory inputs were not different between D1 and D2 cells. However, MSSNs in the VMS received more inhibitory inputs than those in the DLS. Acute application of DAMGO reduced the frequency of spontaneous excitatory and inhibitory postsynaptic currents, but the effect was greater in the VMS, in particular in the NAcS, where excitatory currents from D2 cells and inhibitory currents from D1 cells were inhibited by the largest amount. DAMGO also increased cellular excitability in the VMS, as shown by reduced threshold for evoking APs (action potentials. Together the present findings help elucidate the regional and cell-type-specific substrate of opioid actions in the striatum and point to the VMS as a critical mediator of DAMGO effects.

  7. Distinct and atypical intrinsic and extrinsic cell death pathways between photoreceptor cell types upon specific ablation of Ranbp2 in cone photoreceptors.

    Directory of Open Access Journals (Sweden)

    Kyoung-In Cho

    2013-06-01

    Full Text Available Non-autonomous cell-death is a cardinal feature of the disintegration of neural networks in neurodegenerative diseases, but the molecular bases of this process are poorly understood. The neural retina comprises a mosaic of rod and cone photoreceptors. Cone and rod photoreceptors degenerate upon rod-specific expression of heterogeneous mutations in functionally distinct genes, whereas cone-specific mutations are thought to cause only cone demise. Here we show that conditional ablation in cone photoreceptors of Ran-binding protein-2 (Ranbp2, a cell context-dependent pleiotropic protein linked to neuroprotection, familial necrotic encephalopathies, acute transverse myelitis and tumor-suppression, promotes early electrophysiological deficits, subcellular erosive destruction and non-apoptotic death of cones, whereas rod photoreceptors undergo cone-dependent non-autonomous apoptosis. Cone-specific Ranbp2 ablation causes the temporal activation of a cone-intrinsic molecular cascade highlighted by the early activation of metalloproteinase 11/stromelysin-3 and up-regulation of Crx and CoREST, followed by the down-modulation of cone-specific phototransduction genes, transient up-regulation of regulatory/survival genes and activation of caspase-7 without apoptosis. Conversely, PARP1+ -apoptotic rods develop upon sequential activation of caspase-9 and caspase-3 and loss of membrane permeability. Rod photoreceptor demise ceases upon cone degeneration. These findings reveal novel roles of Ranbp2 in the modulation of intrinsic and extrinsic cell death mechanisms and pathways. They also unveil a novel spatiotemporal paradigm of progression of neurodegeneration upon cell-specific genetic damage whereby a cone to rod non-autonomous death pathway with intrinsically distinct cell-type death manifestations is triggered by cell-specific loss of Ranbp2. Finally, this study casts new light onto cell-death mechanisms that may be shared by human dystrophies with distinct

  8. First Evidence for the Disease-Stage, Cell-Type, and Virus Specificity of microRNAs during Human Immunodeficiency Virus Type-1 Infection

    Directory of Open Access Journals (Sweden)

    Lauren Fowler

    2016-05-01

    Full Text Available The potential involvement of host microRNAs (miRNAs in HIV infection is well documented, and evidence suggests that HIV modulates and also dysregulates host miRNAs involved in maintaining the host innate immune system. Moreover, the dysregulation of host miRNAs by HIV also effectively interferes directly with the host gene expression. In this study, we have simultaneously evaluated the expression of host miRNAs in both CD4+ and CD8+ T-cells derived from HIV-positive (HIV+ individuals (viremic and aviremic individuals while receiving highly active antiretroviral therapy (HAART, therapy-naïve long-term non-progressors (LTNP, and HIV-negative (HIV– healthy controls. miRNAs were run on Affymetrix V2 chips, and the differential expression between HIV+ and HIV− samples, along with intergroup comparisons, was derived using PARTEK software, using an FDR of 5% and an adjusted p-value < 0.05. The miR-199a-5p was found to be HIV-specific and expressed in all HIV+ groups as opposed to HIV– controls. Moreover, these are the first studies to reveal clearly the highly discriminatory miRNAs at the level of the disease state, cell type, and HIV-specific miRNAs.

  9. In Vivo Zonal Variation and Liver Cell-Type Specific NF-κB Localization after Chronic Adaptation to Ethanol and following Partial Hepatectomy.

    Directory of Open Access Journals (Sweden)

    Harshavardhan Nilakantan

    Full Text Available NF-κB is a major inflammatory response mediator in the liver, playing a key role in the pathogenesis of alcoholic liver injury. We investigated zonal as well as liver cell type-specific distribution of NF-κB activation across the liver acinus following adaptation to chronic ethanol intake and 70% partial hepatectomy (PHx. We employed immunofluorescence staining, digital image analysis and statistical distributional analysis to quantify subcellular localization of NF-κB in hepatocytes and hepatic stellate cells (HSCs. We detected significant spatial heterogeneity of NF-κB expression and cellular localization between cytoplasm and nucleus across liver tissue. Our main aims involved investigating the zonal bias in NF-κB localization and determining to what extent chronic ethanol intake affects this zonal bias with in hepatocytes at baseline and post-PHx. Hepatocytes in the periportal area showed higher NF-κB expression than in the pericentral region in the carbohydrate-fed controls, but not in the ethanol group. However, the distribution of NF-κB nuclear localization in hepatocytes was shifted towards higher levels in pericentral region than in periportal area, across all treatment conditions. Chronic ethanol intake shifted the NF-κB distribution towards higher nuclear fraction in hepatocytes as compared to the pair-fed control group. Ethanol also stimulated higher NF-κB expression in a subpopulation of HSCs. In the control group, PHx elicited a shift towards higher NF-κB nuclear fraction in hepatocytes. However, this distribution remained unchanged in the ethanol group post-PHx. HSCs showed a lower NF-κB expression following PHx in both ethanol and control groups. We conclude that adaptation to chronic ethanol intake attenuates the liver zonal variation in NF-κB expression and limits the PHx-induced NF-κB activation in hepatocytes, but does not alter the NF-κB expression changes in HSCs in response to PHx. Our findings provide new

  10. Cell-type specific photoreceptors and light signaling pathways in the multicellular green alga volvox carteri and their potential role in cellular differentiation

    OpenAIRE

    Kianianmomeni, Arash

    2015-01-01

    The formation of multicellular organisms requires genetically predefined signaling pathways in various cell types. Besides differences in size, energy balance and life time, cell types should be enable to modulate appropriate developmental and adaptive responses in ever-changing surrounding environment. One of the most important environmental cues is light which regulates a variety of physiological and cellular processes. During evolution, diverse light-sensitive proteins, so-called photorece...

  11. Cell type-specific conditional regulation of the c-myc proto-oncogene by combining Cre/loxP recombination and tamoxifen-mediated activation.

    Science.gov (United States)

    Jäger, Richard; Maurer, Jochen; Jacob, Andrea; Schorle, Hubert

    2004-03-01

    Development of inducible genetic switches for in vivo use with transgenic mice has revolutionized many areas in modern molecular biology. Combining two techniques, Cre/loxP-based genetic recombination and ligand-dependent activation of a chimeric protein, we generated transgenic mice which allow for the spatiotemporal control of expression and of activity of the proto-oncogene c-myc. To these ends, the gene encoding the tamoxifen-inducible c-mycER(T) fusion protein (mycER(T)) was inserted in the ubiquitously active ROSA 26 gene locus by gene targeting. In the resulting ROSAMER allele, generalized transcription of the mycER(T) gene is prevented by a preceding transcriptional stop sequence which is flanked by loxP sites. Crosses of ROSAMER transgenic mice with Mox2 cre transgenic mice revealed tight control of mycER(T) transcription in various tissues unless the transcriptional stop sequence was removed by cre-mediated excision. Furthermore, we were able to demonstrate tamoxifen-dependent activation of the MycER(T) protein in embryonic fibroblasts derived from such mice. As a proof of principle, we demonstrate that primary neural crest cultures established from ROSAMER mice maintain their proliferative capacity in a 4-OHT-dependent manner. Furthermore, we demonstrate that such neural crest cells retain their differentiation potential as shown by expression of NF 160, a marker of neuronal differentiation upon 4-OHT withdrawal. The transgenic mice produced may thus be valuable tools for studying the cell type-specific effects of c-myc activity in development and disease. PMID:15048812

  12. Recognition of Face Identity and Emotion in Expressive Specific Language Impairment

    OpenAIRE

    Merkenschlager, A; Amorosa, H.; Kiefl, H.; Martinius, J.

    2012-01-01

    Objective: To study face and emotion recognition in children with mostly expressive specific language impairment (SLI-E). Subjects and Methods: A test movie to study perception and recognition of faces and mimic-gestural expression was applied to 24 children diagnosed as suffering from SLI-E and an age-matched control group of normally developing children. Results: Compared to a normal control group, the SLI-E children scored significantly worse in both the face and expression recognition tas...

  13. Specificity and affinity quantification of flexible recognition from underlying energy landscape topography.

    Directory of Open Access Journals (Sweden)

    Xiakun Chu

    2014-08-01

    Full Text Available Flexibility in biomolecular recognition is essential and critical for many cellular activities. Flexible recognition often leads to moderate affinity but high specificity, in contradiction with the conventional wisdom that high affinity and high specificity are coupled. Furthermore, quantitative understanding of the role of flexibility in biomolecular recognition is still challenging. Here, we meet the challenge by quantifying the intrinsic biomolecular recognition energy landscapes with and without flexibility through the underlying density of states. We quantified the thermodynamic intrinsic specificity by the topography of the intrinsic binding energy landscape and the kinetic specificity by association rate. We found that the thermodynamic and kinetic specificity are strongly correlated. Furthermore, we found that flexibility decreases binding affinity on one hand, but increases binding specificity on the other hand, and the decreasing or increasing proportion of affinity and specificity are strongly correlated with the degree of flexibility. This shows more (less flexibility leads to weaker (stronger coupling between affinity and specificity. Our work provides a theoretical foundation and quantitative explanation of the previous qualitative studies on the relationship among flexibility, affinity and specificity. In addition, we found that the folding energy landscapes are more funneled with binding, indicating that binding helps folding during the recognition. Finally, we demonstrated that the whole binding-folding energy landscapes can be integrated by the rigid binding and isolated folding energy landscapes under weak flexibility. Our results provide a novel way to quantify the affinity and specificity in flexible biomolecular recognition.

  14. Three Human Cell Types Respond to Multi-Walled Carbon Nanotubes and Titanium Dioxide Nanobelts with Cell-Specific Transcriptomic and Proteomic Expression Patterns.

    Energy Technology Data Exchange (ETDEWEB)

    Tilton, Susan C.; Karin, Norman J.; Tolic, Ana; Xie, Yumei; Lai, Xianyin; Hamilton, Raymond F.; Waters, Katrina M.; Holian, Andrij; Witzmann, Frank A.; Orr, Galya

    2014-08-01

    The growing use of engineered nanoparticles (NPs) in commercial and medical applications raises the urgent need for tools that can predict NP toxicity. Global transcriptome and proteome analyses were conducted on three human cell types, exposed to two high aspect ratio NP types, to identify patterns of expression that might indicate high versus low NP toxicity. Three cell types representing the most common routes of human exposure to NPs, including macrophage-like (THP-1), small airway epithelial and intestinal (Caco-2/HT29-MTX) cells, were exposed to TiO2 nanobelts (TiO2-NB; high toxicity) and multi-walled carbon nanotubes (MWCNT; low toxicity) at low (10 µg/mL) and high (100 µg/mL) concentrations for 1 and 24 h. Unique patterns of gene and protein expressions were identified for each cell type, with no differentially expressed (p < 0.05, 1.5-fold change) genes or proteins overlapping across all three cell types. While unique to each cell type, the early response was primarily independent of NP type, showing similar expression patterns in response to both TiO2-NB and MWCNT. The early response might, therefore, indicate a general response to insult. In contrast, the 24 h response was unique to each NP type. The most significantly (p < 0.05) enriched biological processes in THP-1 cells indicated TiO2-NB regulation of pathways associated with inflammation, apoptosis, cell cycle arrest, DNA replication stress and genomic instability, while MWCNT-regulated pathways indicated increased cell proliferation, DNA repair and anti-apoptosis. These two distinct sets of biological pathways might, therefore, underlie cellular responses to high and low NP toxicity, respectively.

  15. Specific and Modular Binding Code for Cytosine Recognition in Pumilio/FBF (PUF) RNA-binding Domains*♦

    OpenAIRE

    Dong, Shuyun; Wang, Yang; Cassidy-Amstutz, Caleb; Lu, Gang; Bigler, Rebecca; Jezyk, Mark R.; Li, Chunhua; Hall, Traci M. Tanaka; Wang, Zefeng

    2011-01-01

    Pumilio/fem-3 mRNA-binding factor (PUF) proteins possess a recognition code for bases A, U, and G, allowing designed RNA sequence specificity of their modular Pumilio (PUM) repeats. However, recognition side chains in a PUM repeat for cytosine are unknown. Here we report identification of a cytosine-recognition code by screening random amino acid combinations at conserved RNA recognition positions using a yeast three-hybrid system. This C-recognition code is specific and modular as specificit...

  16. Conformational proofreading: the impact of conformational changes on the specificity of molecular recognition.

    Directory of Open Access Journals (Sweden)

    Yonatan Savir

    Full Text Available To perform recognition, molecules must locate and specifically bind their targets within a noisy biochemical environment with many look-alikes. Molecular recognition processes, especially the induced-fit mechanism, are known to involve conformational changes. This raises a basic question: Does molecular recognition gain any advantage by such conformational changes? By introducing a simple statistical-mechanics approach, we study the effect of conformation and flexibility on the quality of recognition processes. Our model relates specificity to the conformation of the participant molecules and thus suggests a possible answer: Optimal specificity is achieved when the ligand is slightly off target; that is, a conformational mismatch between the ligand and its main target improves the selectivity of the process. This indicates that deformations upon binding serve as a conformational proofreading mechanism, which may be selected for via evolution.

  17. Gene expression relationship between prostate cancer cells of Gleason 3, 4 and normal epithelial cells as revealed by cell type-specific transcriptomes

    International Nuclear Information System (INIS)

    Prostate cancer cells in primary tumors have been typed CD10-/CD13-/CD24hi/CD26+/CD38lo/CD44-/CD104-. This CD phenotype suggests a lineage relationship between cancer cells and luminal cells. The Gleason grade of tumors is a descriptive of tumor glandular differentiation. Higher Gleason scores are associated with treatment failure. CD26+ cancer cells were isolated from Gleason 3+3 (G3) and Gleason 4+4 (G4) tumors by cell sorting, and their gene expression or transcriptome was determined by Affymetrix DNA array analysis. Dataset analysis was used to determine gene expression similarities and differences between G3 and G4 as well as to prostate cancer cell lines and histologically normal prostate luminal cells. The G3 and G4 transcriptomes were compared to those of prostatic cell types of non-cancer, which included luminal, basal, stromal fibromuscular, and endothelial. A principal components analysis of the various transcriptome datasets indicated a closer relationship between luminal and G3 than luminal and G4. Dataset comparison also showed that the cancer transcriptomes differed substantially from those of prostate cancer cell lines. Genes differentially expressed in cancer are potential biomarkers for cancer detection, and those differentially expressed between G3 and G4 are potential biomarkers for disease stratification given that G4 cancer is associated with poor outcomes. Differentially expressed genes likely contribute to the prostate cancer phenotype and constitute the signatures of these particular cancer cell types

  18. An Electropolymerized Membrane Biosensor for Specific DNA Recognition

    Institute of Scientific and Technical Information of China (English)

    PENG,Tu-Zhi(彭图治); CHENG,Qiong(程琼); YANG,F.Catherine

    2002-01-01

    A sensitive electrochemical biosensor for detecting the sequence of short DNA oligomers is represented. The biosensor is based on a platinum electrode covered a polymerized membrane of conductive monomer N-[6-(thien-3-yl) acetoxy]-pyrrolidine-2,5-dione (TAPD). The membrane of TAPD immobilizes a probe DNA on the electrode. The hybridization of the probe with a sequence-specific DNA in sample solutions is monitored by a self-synthesized electroactive indicator, which specifically intercalates in the hybrids on the electrode surface. The current signal of the biosensor is proportional to the concentration of the target DNA in samples, and a very low detection limit of 5 ×10-10 mol/L is found. The biosensor has been used to detect the short oligomers containing of HIV-1 and mycobacterrium nucleotide sequences.

  19. Gene expression relationship between prostate cancer cells of Gleason 3, 4 and normal epithelial cells as revealed by cell type-specific transcriptomes

    Directory of Open Access Journals (Sweden)

    Page Laura S

    2009-12-01

    Full Text Available Abstract Background Prostate cancer cells in primary tumors have been typed CD10-/CD13-/CD24hi/CD26+/CD38lo/CD44-/CD104-. This CD phenotype suggests a lineage relationship between cancer cells and luminal cells. The Gleason grade of tumors is a descriptive of tumor glandular differentiation. Higher Gleason scores are associated with treatment failure. Methods CD26+ cancer cells were isolated from Gleason 3+3 (G3 and Gleason 4+4 (G4 tumors by cell sorting, and their gene expression or transcriptome was determined by Affymetrix DNA array analysis. Dataset analysis was used to determine gene expression similarities and differences between G3 and G4 as well as to prostate cancer cell lines and histologically normal prostate luminal cells. Results The G3 and G4 transcriptomes were compared to those of prostatic cell types of non-cancer, which included luminal, basal, stromal fibromuscular, and endothelial. A principal components analysis of the various transcriptome datasets indicated a closer relationship between luminal and G3 than luminal and G4. Dataset comparison also showed that the cancer transcriptomes differed substantially from those of prostate cancer cell lines. Conclusions Genes differentially expressed in cancer are potential biomarkers for cancer detection, and those differentially expressed between G3 and G4 are potential biomarkers for disease stratification given that G4 cancer is associated with poor outcomes. Differentially expressed genes likely contribute to the prostate cancer phenotype and constitute the signatures of these particular cancer cell types.

  20. Multivalent glycobiomaterials for specific recognition and binding by lectins

    OpenAIRE

    Rosencrantz, Ruben R.

    2015-01-01

    Glycans are one of the most complex biomolecules and are used in nature for various tasks from cell-cell adhesions and communication to invasion or pathogenic processes. The most important term in protein-glycan interaction is the “multivalent effect”. This describes the boost in avidity as soon as the number of presented glycans in close proximity to each other is increased. In this work, we aimed for the design and evaluation of multivalent scaffolds based on polymers for the specific recog...

  1. Specific recognition of arteriovenous malformations using xenon-133 RCBF technique

    International Nuclear Information System (INIS)

    With respect to the methodology of the atraumatic xenon-133 technique the problem whether or not the proposed and introduced arterial artifact (AA) truely represents radiation from intravascular volume and to what extent it affects regional cerebral blood flow (rCBF) calculation is unresolved. We performed rCBF measurements in 22 patients with angiomas to clarify this issue in those patients known to have pathologically enlarged intracranial vessels. P4 - the parameter suggested to represent the AA - as well as the conventional blood flow parameter for gray matter (F1) were compared to those of 50 volunteers using four criteria of abnormality: 1. Intrahemispheric distribution, 2. interhemispheric differences of homologous detector pairs, 3 differences of mean hemispheric values, 4. visual evaluation of CBF maps. 19 of the 22 patients with angioma fulfilled at least two of the four criteria of abnormality, in comparison to 1 of 50 volunteers. P 4's sensitivity for detecting angiomas proved to be higher (86%) than the perfusion parameters of gray matter. Focal increase of P4 proved to be highly specific for the presence of arteriovenous malformation (AVM, specifity 98%). A true arterial artifact exists in most instances in the presence of an AVM. Disregarding AA in the algorithm for calculation rCBF leads to an artificial overestimation of tissue flow in the region of the AVM

  2. Characterization of the Dictyostelium homolog of chromatin binding protein DET1 suggests a conserved pathway regulating cell type specification and developmental plasticity.

    Science.gov (United States)

    Dubin, Manu J; Kasten, Sonja; Nellen, Wolfgang

    2011-03-01

    DET1 (De-etiolated 1) is a chromatin binding protein involved in developmental regulation in both plants and animals. DET1 is largely restricted to multicellular eukaryotes, and here we report the characterization of a DET1 homolog from the social amoeba Dictyostelium discoideum. As in other species, Dictyostelium DET1 is nuclear localized. In contrast to other species, where it is an essential protein, loss of DET1 is nonlethal in Dictyostelium, although viability is significantly reduced. The phenotype of the det1(-) mutant is highly pleiotropic and results in a large degree of heterogeneity in developmental parameters. Loss of DET1 results in delayed and abnormal development with enlarged aggregation territories. Mutant slugs displayed cell type patterning with a bias toward the prestalk pathway. A number of DET1-interacting proteins are conserved in Dictyostelium, and the apparently conserved role of DET1 in regulatory pathways involving the bZIP transcription factors DimB, c-Jun, and HY5 suggests a highly conserved mechanism regulating development in multicellular eukaryotes. While the mechanism by which DET1 functions is unclear, it appears that it has a key role in regulation of developmental plasticity and integration of information on environmental conditions into the developmental program of an organism. PMID:21193547

  3. A multi-omics approach identifies key hubs associated with cell type-specific responses of airway epithelial cells to staphylococcal alpha-toxin.

    Directory of Open Access Journals (Sweden)

    Erik Richter

    Full Text Available Responsiveness of cells to alpha-toxin (Hla from Staphylococcus aureus appears to occur in a cell-type dependent manner. Here, we compare two human bronchial epithelial cell lines, i.e. Hla-susceptible 16HBE14o- and Hla-resistant S9 cells, by a quantitative multi-omics strategy for a better understanding of Hla-induced cellular programs. Phosphoproteomics revealed a substantial impact on phosphorylation-dependent signaling in both cell models and highlights alterations in signaling pathways associated with cell-cell and cell-matrix contacts as well as the actin cytoskeleton as key features of early rHla-induced effects. Along comparable changes in down-stream activity of major protein kinases significant differences between both models were found upon rHla-treatment including activation of the epidermal growth factor receptor EGFR and mitogen-activated protein kinases MAPK1/3 signaling in S9 and repression in 16HBE14o- cells. System-wide transcript and protein expression profiling indicate induction of an immediate early response in either model. In addition, EGFR and MAPK1/3-mediated changes in gene expression suggest cellular recovery and survival in S9 cells but cell death in 16HBE14o- cells. Strikingly, inhibition of the EGFR sensitized S9 cells to Hla indicating that the cellular capacity of activation of the EGFR is a major protective determinant against Hla-mediated cytotoxic effects.

  4. Identification of Vulnerable Cell Types in Major Brain Disorders Using Single Cell Transcriptomes and Expression Weighted Cell Type Enrichment

    OpenAIRE

    Skene, Nathan G.; Grant, Seth G.N.

    2016-01-01

    The cell types that trigger the primary pathology in many brain diseases remain largely unknown. One route to understanding the primary pathological cell type for a particular disease is to identify the cells expressing susceptibility genes. Although this is straightforward for monogenic conditions where the causative mutation may alter expression of a cell type specific marker, methods are required for the common polygenic disorders. We developed the Expression Weighted Cell Type Enrichment ...

  5. Identification of vulnerable cell types in major brain disorders using single cell transcriptomes and expression weighted cell type enrichment

    OpenAIRE

    Skene, Nathan G.; Grant, Seth G.N.

    2016-01-01

    The cell types that trigger the primary pathology in many brain diseases remain largely unknown. One route to understanding the primary pathological cell type for a particular disease is to identify the cells expressing susceptibility genes. Although this is straightforward for monogenic conditions where the causative mutation may alter expression of a cell type specific marker, methods are required for the common polygenic disorders. We developed the Expression Weighted Cell Type Enrichment ...

  6. Spoken Word Recognition in Adolescents with Autism Spectrum Disorders and Specific Language Impairment

    Science.gov (United States)

    Loucas, Tom; Riches, Nick; Baird, Gillian; Pickles, Andrew; Simonoff, Emily; Chandler, Susie; Charman, Tony

    2013-01-01

    Spoken word recognition, during gating, appears intact in specific language impairment (SLI). This study used gating to investigate the process in adolescents with autism spectrum disorders plus language impairment (ALI). Adolescents with ALI, SLI, and typical language development (TLD), matched on nonverbal IQ listened to gated words that varied…

  7. Vectorial secretion of CTGF as a cell-type specific response to LPA and TGF-β in human tubular epithelial cells

    Directory of Open Access Journals (Sweden)

    Zuehlke Jonathan

    2012-09-01

    vectorial secretion of the pro-fibrotic protein CTGF depends on the cell type, the stimulus and the signaling pathway activated. In all conditions, CTGF was secreted mainly to the apical side upon TGF-β and LPA treatment and therefore, likely contributes to increased urinary CTGF levels in vivo. Moreover, CTGF secreted basolaterally may be active as paracrine pro-fibrotic mediator.

  8. The time course of speaking rate specificity effects in spoken word recognition

    Science.gov (United States)

    McLennan, Conor T.; Luce, Paul A.

    2005-09-01

    Specificity effects in spoken word recognition were previously examined by examining the circumstances under which variability in speaking rate affects participants perception of spoken words. The word recognition and memory literatures are now replete with demonstrations that variability has representational and processing consequences. The research focuses on one of the conditions expected to influence the extent to which variability plays a role in spoken word recognition, namely time course of processing. Based on previous work, it was hypothesized that speaking rate variability would only affect later stages of spoken word recognition. The results confirmed this hypothesis: Specificity effects were only obtained when processing was relatively slow. However, previous stimuli not only differed in speaking rate, but also in articulation style (i.e., casual and careful). Therefore, in the current set of experiments, it was sought to determine whether the same pattern of results would be obtained with stimuli that only differed in speaking rate (i.e., in the absence of articulation style differences). Moreover, to further generalize time course findings, the stimuli were produced by a different speaker than the speaker in the earlier study. The results add to the knowledge of the circumstances under which variability affects the perception of spoken words.

  9. Enhanced detection with spectral imaging fluorescence microscopy reveals tissue- and cell-type-specific compartmentalization of surface-modified polystyrene nanoparticles

    OpenAIRE

    Kenesei, Kata; Murali, Kumarasamy; Czéh, Árpád; Piella, Jordi; Puntes, Victor; Madarász, Emília

    2016-01-01

    Background Precisely targeted nanoparticle delivery is critically important for therapeutic applications. However, our knowledge on how the distinct physical and chemical properties of nanoparticles determine tissue penetration through physiological barriers, accumulation in specific cells and tissues, and clearance from selected organs has remained rather limited. In the recent study, spectral imaging fluorescence microscopy was exploited for precise and rapid monitoring of tissue- and cell-...

  10. Triiodothyronine regulates angiogenic growth factor and cytokine secretion by isolated human decidual cells in a cell-type specific and gestational age-dependent manner

    OpenAIRE

    Vasilopoulou, E.; Loubière, L.S.; Lash, G.E.; Ohizua, O.; McCabe, C.J.; Franklyn, J A; Kilby, M. D.; Chan, S Y

    2014-01-01

    STUDY QUESTION Does triiodothyronine (T3) regulate the secretion of angiogenic growth factors and cytokines by human decidual cells isolated from early pregnancy? SUMMARY ANSWER T3 modulates the secretion of specific angiogenic growth factors and cytokines, with different regulatory patterns observed amongst various isolated subpopulations of human decidual cells and with a distinct change between the first and second trimesters of pregnancy. WHAT IS KNOWN ALREADY Maternal thyroid dysfunction...

  11. A specific association between facial disgust recognition and estradiol levels in naturally cycling women.

    Directory of Open Access Journals (Sweden)

    Sunjeev K Kamboj

    Full Text Available Subtle changes in social cognition are associated with naturalistic fluctuations in estrogens and progesterone over the course of the menstrual cycle. Using a dynamic emotion recognition task we aimed to provide a comprehensive description of the association between ovarian hormone levels and emotion recognition performance using a variety of performance metrics. Naturally cycling, psychiatrically healthy women attended a single experimental session during a follicular (days 7-13; n = 16, early luteal (days 15-19; n = 14 or late luteal phase (days 22-27; n = 14 of their menstrual cycle. Correct responses and reaction times to dynamic facial expressions were recorded and a two-high threshold analysis was used to assess discrimination and response bias. Salivary progesterone and estradiol were assayed and subjective measures of premenstrual symptoms, anxiety and positive and negative affect assessed. There was no interaction between cycle phase (follicular, early luteal, late luteal and facial expression (sad, happy, fearful, angry, neutral and disgusted on any of the recognition performance metrics. However, across the sample as a whole, progesterone levels were positively correlated with reaction times to a variety of facial expressions (anger, happiness, sadness and neutral expressions. In contrast, estradiol levels were specifically correlated with disgust processing on three performance indices (correct responses, response bias and discrimination. Premenstrual symptoms, anxiety and positive and negative affect were not associated with emotion recognition indices or hormone levels. The study highlights the role of naturalistic variations in ovarian hormone levels in modulating emotion recognition. In particular, progesterone seems to have a general slowing effect on facial expression processing. Our findings also provide the first behavioural evidence of a specific role for estrogens in the processing of disgust in humans.

  12. Antidepressant drugs specifically inhibiting noradrenaline reuptake enhance recognition memory in rats.

    Science.gov (United States)

    Feltmann, Kristin; Konradsson-Geuken, Åsa; De Bundel, Dimitri; Lindskog, Maria; Schilström, Björn

    2015-12-01

    Patients suffering from major depression often experience memory deficits even after the remission of mood symptoms, and many antidepressant drugs do not affect, or impair, memory in animals and humans. However, some antidepressant drugs, after a single dose, enhance cognition in humans (Harmer et al., 2009). To compare different classes of antidepressant drugs for their potential as memory enhancers, we used a version of the novel object recognition task in which rats spontaneously forget objects 24 hr after their presentation. Antidepressant drugs were injected systemically 30 min before or directly after the training phase (Session 1 [S1]). Post-S1 injections were used to test for specific memory-consolidation effects. The noradrenaline reuptake inhibitors reboxetine and atomoxetine, as well as the serotonin noradrenaline reuptake inhibitor duloxetine, injected prior to S1 significantly enhanced recognition memory. In contrast, the serotonin reuptake inhibitors citalopram and paroxetine and the cyclic antidepressant drugs desipramine and mianserin did not enhance recognition memory. Post-S1 injection of either reboxetine or citalopram significantly enhanced recognition memory, indicating an effect on memory consolidation. The fact that citalopram had an effect only when injected after S1 suggests that it may counteract its own consolidation-enhancing effect by interfering with memory acquisition. However, pretreatment with citalopram did not attenuate reboxetine's memory-enhancing effect. The D1/5-receptor antagonist SCH23390 blunted reboxetine's memory-enhancing effect, indicating a role of dopaminergic transmission in reboxetine-induced recognition memory enhancement. Our results suggest that antidepressant drugs specifically inhibiting noradrenaline reuptake enhance cognition and may be beneficial in the treatment of cognitive symptoms of depression. PMID:26501179

  13. Spoken word recognition in adolescents with autism spectrum disorders and specific language impairment

    OpenAIRE

    Loucas, Tom; Riches, Nick; Baird, Gillian; Pickles, Andrew; Simonoff, Emily; Chandler, Susie; Charman, Tony

    2013-01-01

    Spoken word recognition, during gating, appears intact in specific language impairment (SLI). This study used gating to investigate the process in adolescents with autism spectrum disorders plus language impairment (ALI). Adolescents with ALI, SLI, and typical language development (TLD), matched on nonverbal IQ listened to gated words that varied in frequency (low/high) and number of phonological onset neighbors (low/high density). Adolescents with ALI required more speech input to initially ...

  14. HIV-1 evades innate immune recognition through specific co-factor recruitment

    OpenAIRE

    Rasaiyaah, Jane; Tan, Choon Ping; Fletcher, Adam J.; Price, Amanda J.; Blondeau, Caroline; Hilditch, Laura; Jacques, David A.; Selwood, David L.; James, Leo C.; Noursadeghi, Mahdad; Towers, Greg J.

    2013-01-01

    HIV-1 is able to replicate in primary human macrophages without stimulating innate immunity despite reverse transcription of genomic RNA into double stranded DNA, an activity that might be expected to trigger innate pattern recognition receptors (PRRs). We hypothesized that, if correctly orchestrated HIV-1 uncoating and nuclear entry is important for evasion of innate sensors, then manipulation of specific interactions between HIV-1 capsid (CA) and host factors that putatively regulate these ...

  15. Challenges and Specifications for Robust Face and Gait Recognition Systems for Surveillance Application

    OpenAIRE

    Buciu, Ioan

    2014-01-01

    Automated person recognition (APR) based on biometric signals addresses the process of automatically recognize a person according to his physiological traits (face, voice, iris, fingerprint, ear shape, body odor, electroencephalogram – EEG, electrocardiogram, or hand geometry), or behavioural patterns (gait, signature, hand-grip, lip movement). The paper aims at briefly presenting the current challenges for two specific non-cooperative biometric approaches, namely face and gait biometrics as ...

  16. Two Golgi integral membrane proteins (GIMPS) exhibit region- and cell type-specific distribution in the epididymis of the adult rat.

    Science.gov (United States)

    Suarez-Quian, C A; Jelesoff, N

    1994-12-15

    The epididymis participates in the post-testicular maturation and storage of spermatozoa by secreting proteins into the tubule lumen in a region-specific fashion. The underlying molecular mechanisms leading to biogenesis of these region-specific differences, however, are not known, although components of the Golgi complex membrane container must undoubtedly be intimately involved. Two monoclonal antibodies raised against Golgi integral membrane proteins, recognizing either the cis (GIMPc) or trans Golgi (GIMPt) cisternae, were used as molecular probes of these regions to begin the characterization of the Golgi complex of in vivo and in vitro epididymal cells. Immunolocalization of GIMPs was performed on frozen sections and in cultured cells using biotin-streptavidin-peroxidase immunocytochemistry. In tissue sections, immunostaining of GIMPt was extremely robust in the supranuclear cytoplasm throughout the epididymis. In contrast, no GIMPc immunostaining was detected in the initial segment or in clear cells of the distal caput, corpus, and cauda. Immunodetection of GIMPc and GIMPt in epididymal cells in vitro revealed a reticular, perinuclear pattern, and NH4Cl treatment preferentially disrupted the GIMPt immunolocalization. These results characterizing the molecular components of the Golgi complex will form the basis of additional studies to gain further insight into mechanisms leading to generation of regional differences in epididymal function. PMID:7873795

  17. RAG-mediated DNA double-strand breaks activate a cell type-specific checkpoint to inhibit pre-B cell receptor signals.

    Science.gov (United States)

    Bednarski, Jeffrey J; Pandey, Ruchi; Schulte, Emily; White, Lynn S; Chen, Bo-Ruei; Sandoval, Gabriel J; Kohyama, Masako; Haldar, Malay; Nickless, Andrew; Trott, Amanda; Cheng, Genhong; Murphy, Kenneth M; Bassing, Craig H; Payton, Jacqueline E; Sleckman, Barry P

    2016-02-01

    DNA double-strand breaks (DSBs) activate a canonical DNA damage response, including highly conserved cell cycle checkpoint pathways that prevent cells with DSBs from progressing through the cell cycle. In developing B cells, pre-B cell receptor (pre-BCR) signals initiate immunoglobulin light (Igl) chain gene assembly, leading to RAG-mediated DNA DSBs. The pre-BCR also promotes cell cycle entry, which could cause aberrant DSB repair and genome instability in pre-B cells. Here, we show that RAG DSBs inhibit pre-BCR signals through the ATM- and NF-κB2-dependent induction of SPIC, a hematopoietic-specific transcriptional repressor. SPIC inhibits expression of the SYK tyrosine kinase and BLNK adaptor, resulting in suppression of pre-BCR signaling. This regulatory circuit prevents the pre-BCR from inducing additional Igl chain gene rearrangements and driving pre-B cells with RAG DSBs into cycle. We propose that pre-B cells toggle between pre-BCR signals and a RAG DSB-dependent checkpoint to maintain genome stability while iteratively assembling Igl chain genes. PMID:26834154

  18. Cell-Type Specific Insertion of GluA2-Lacking AMPARs with Cocaine Exposure Leading to Sensitization, Cue-Induced Seeking, and Incubation of Craving.

    Science.gov (United States)

    Terrier, Jean; Lüscher, Christian; Pascoli, Vincent

    2016-06-01

    Addiction is a behavioral disease, of which core components can be modeled in rodents. Much evidence implicates drug-evoked synaptic plasticity in cocaine-evoked locomotor sensitization, cue-induced cocaine seeking, and incubation of cocaine craving. However, the type of plasticity evoked by different modalities of cocaine administration (eg contingent vs non-contingent) and its role in reshaping circuit function remains largely elusive. Here we exposed mice to various regimens of cocaine and recorded excitatory transmission onto identified medium-sized spiny neurons (MSN, expressing fluorescent proteins under the control of either D1R or D2R dopamine receptor promotor) in the nucleus accumbens at time points when behavioral adaptations are observed. In D1-MSN, we found the presence of GluA2-lacking α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) after single or chronic non-contingent exposure to cocaine as well as after cocaine self-administration (SA). We also report an increase in the AMPA/NMDA ratio (A/N) in D1-MSN, which was observed only after repeated passive injections associated with locomotor sensitization as well as in a condition of SA leading to seeking behavior. Remarkably, insertion of GluA2-lacking AMPARs was also detected in D2-MSN after SA of a high dose of cocaine but not regular dose (1.5 vs 0.75 mg/kg), which was the only condition where incubation of cocaine craving was observed in this study. Moreover, synapses containing GluA2-lacking AMPARs belonged to amygdala inputs in D2-MSN and to medial prefrontal cortex inputs in D1-MSN. Taken together this study allows for a refinement of a circuit model of addiction based on specific synaptic changes induced by cocaine. PMID:26585289

  19. Structural basis for specific single-stranded RNA recognition by designer pentatricopeptide repeat proteins

    OpenAIRE

    Shen, Cuicui; Zhang, Delin; Guan, Zeyuan; Liu, Yexing; Yang, Zhao; Yang, Yan; Wang, Xiang; Wang, Qiang; Zhang, QunXia; Fan, Shilong; Zou, Tingting; Yin, Ping

    2016-01-01

    As a large family of RNA-binding proteins, pentatricopeptide repeat (PPR) proteins mediate multiple aspects of RNA metabolism in eukaryotes. Binding to their target single-stranded RNAs (ssRNAs) in a modular and base-specific fashion, PPR proteins can serve as designable modules for gene manipulation. However, the structural basis for nucleotide-specific recognition by designer PPR (dPPR) proteins remains to be elucidated. Here, we report four crystal structures of dPPR proteins in complex wi...

  20. In Vitro Selection of a Single-Stranded DNA Molecular Recognition Element Specific for Bromacil

    Directory of Open Access Journals (Sweden)

    Ryan M. Williams

    2014-01-01

    Full Text Available Bromacil is a widely used herbicide that is known to contaminate environmental systems. Due to the hazards it presents and inefficient detection methods, it is necessary to create a rapid and efficient sensing device. Towards this end, we have utilized a stringent in vitro selection method to identify single-stranded DNA molecular recognition elements (MRE specific for bromacil. We have identified one MRE with high affinity (Kd=9.6 nM and specificity for bromacil compared to negative targets of selection and other pesticides. The selected ssDNA MRE will be useful as the sensing element in a field-deployable bromacil detection device.

  1. Attention modulates specificity effects in spoken word recognition: Challenges to the time-course hypothesis.

    Science.gov (United States)

    Theodore, Rachel M; Blumstein, Sheila E; Luthra, Sahil

    2015-07-01

    Findings in the domain of spoken word recognition have indicated that lexical representations contain both abstract and episodic information. It has been proposed that processing time determines when each source of information is recruited, with increased processing time being required to access lower-frequency episodic instantiations. The time-course hypothesis of specificity effects has thus identified a strong role for retrieval mechanisms mediating the use of abstract versus episodic information. Here we conducted three recognition memory experiments to examine whether the findings previously attributed to retrieval mechanisms might instead reflect attention during encoding. The results from Experiment 1 showed that talker-specificity effects emerged when subjects attended to the individual speakers, but not when they attended to lexical characteristics, during encoding, even though processing times at retrieval were equivalent. The results from Experiment 2 showed that talker-specificity effects emerged when listeners attended to talker gender but not when they attended to syntactic characteristics, even though the processing times at retrieval were significantly longer in the latter condition. The results from Experiment 3 showed no talker-specificity effects when all listeners attended to lexical characteristics, even when processing at retrieval was slowed by the addition of background noise. Collectively, these results suggest that when processing time during retrieval is decoupled from encoding factors, it fails to predict the emergence of talker-specificity effects. Rather, attention during encoding appears to be the putative variable. PMID:25824889

  2. Ultrahigh molecular recognition specificity of competing DNA oligonucleotide strands in thermal equilibrium

    CERN Document Server

    Schenkelberger, Marc; Mai, Timo; Ott, Albrecht

    2016-01-01

    The specificity of molecular recognition is important to molecular self-organization. A prominent example is the biological cell where, within a highly crowded molecular environment, a myriad of different molecular receptor pairs recognize their binding partner with astonishing accuracy. In thermal equilibrium it is usually admitted that the affinity of recognizer pairs only depends on the nature of the two binding molecules. Accordingly, Boltzmann factors of binding energy differences relate the molecular affinities among different target molecules that compete for the same probe. Here, we consider the molecular recognition of short DNA oligonucleotide single strands. We show that a better matching oligonucleotide strand can prevail against a disproportionally more concentrated competitor that exhibits reduced affinity due to a mismatch. The magnitude of deviation from the simple picture above may reach several orders of magnitude. In our experiments the effective molecular affinity of a given strand remains...

  3. Specific and modular binding code for cytosine recognition in Pumilio/FBF (PUF) RNA-binding domains.

    Science.gov (United States)

    Dong, Shuyun; Wang, Yang; Cassidy-Amstutz, Caleb; Lu, Gang; Bigler, Rebecca; Jezyk, Mark R; Li, Chunhua; Hall, Traci M Tanaka; Wang, Zefeng

    2011-07-29

    Pumilio/fem-3 mRNA-binding factor (PUF) proteins possess a recognition code for bases A, U, and G, allowing designed RNA sequence specificity of their modular Pumilio (PUM) repeats. However, recognition side chains in a PUM repeat for cytosine are unknown. Here we report identification of a cytosine-recognition code by screening random amino acid combinations at conserved RNA recognition positions using a yeast three-hybrid system. This C-recognition code is specific and modular as specificity can be transferred to different positions in the RNA recognition sequence. A crystal structure of a modified PUF domain reveals specific contacts between an arginine side chain and the cytosine base. We applied the C-recognition code to design PUF domains that recognize targets with multiple cytosines and to generate engineered splicing factors that modulate alternative splicing. Finally, we identified a divergent yeast PUF protein, Nop9p, that may recognize natural target RNAs with cytosine. This work deepens our understanding of natural PUF protein target recognition and expands the ability to engineer PUF domains to recognize any RNA sequence. PMID:21653694

  4. Specific and Modular Binding Code for Cytosine Recognition in Pumilio/FBF (PUF) RNA-binding Domains

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Shuyun; Wang, Yang; Cassidy-Amstutz, Caleb; Lu, Gang; Bigler, Rebecca; Jezyk, Mark R.; Li, Chunhua; Tanaka Hall, Traci M.; Wang, Zefeng (NIH); (Beijing U); (UNC)

    2011-10-28

    Pumilio/fem-3 mRNA-binding factor (PUF) proteins possess a recognition code for bases A, U, and G, allowing designed RNA sequence specificity of their modular Pumilio (PUM) repeats. However, recognition side chains in a PUM repeat for cytosine are unknown. Here we report identification of a cytosine-recognition code by screening random amino acid combinations at conserved RNA recognition positions using a yeast three-hybrid system. This C-recognition code is specific and modular as specificity can be transferred to different positions in the RNA recognition sequence. A crystal structure of a modified PUF domain reveals specific contacts between an arginine side chain and the cytosine base. We applied the C-recognition code to design PUF domains that recognize targets with multiple cytosines and to generate engineered splicing factors that modulate alternative splicing. Finally, we identified a divergent yeast PUF protein, Nop9p, that may recognize natural target RNAs with cytosine. This work deepens our understanding of natural PUF protein target recognition and expands the ability to engineer PUF domains to recognize any RNA sequence.

  5. Specific and Modular Binding Code for Cytosine Recognition in Pumilio/FBF (PUF) RNA-binding Domains*♦

    Science.gov (United States)

    Dong, Shuyun; Wang, Yang; Cassidy-Amstutz, Caleb; Lu, Gang; Bigler, Rebecca; Jezyk, Mark R.; Li, Chunhua; Hall, Traci M. Tanaka; Wang, Zefeng

    2011-01-01

    Pumilio/fem-3 mRNA-binding factor (PUF) proteins possess a recognition code for bases A, U, and G, allowing designed RNA sequence specificity of their modular Pumilio (PUM) repeats. However, recognition side chains in a PUM repeat for cytosine are unknown. Here we report identification of a cytosine-recognition code by screening random amino acid combinations at conserved RNA recognition positions using a yeast three-hybrid system. This C-recognition code is specific and modular as specificity can be transferred to different positions in the RNA recognition sequence. A crystal structure of a modified PUF domain reveals specific contacts between an arginine side chain and the cytosine base. We applied the C-recognition code to design PUF domains that recognize targets with multiple cytosines and to generate engineered splicing factors that modulate alternative splicing. Finally, we identified a divergent yeast PUF protein, Nop9p, that may recognize natural target RNAs with cytosine. This work deepens our understanding of natural PUF protein target recognition and expands the ability to engineer PUF domains to recognize any RNA sequence. PMID:21653694

  6. Robust Recognition of Specific Human Behaviors in Crowded Surveillance Video Sequences

    Directory of Open Access Journals (Sweden)

    Satoh Shin'ichi

    2010-01-01

    Full Text Available We describe a method that can detect specific human behaviors even in crowded surveillance video scenes. Our developed system recognizes specific behaviors based on the trajectories created by detecting and tracking people in a video. It detects people using an HOG descriptor and SVM classifier, and it tracks the regions by calculating the two-dimensional color histograms. Our system identifies several specific human behaviors, such as running and meeting, by analyzing the similarities to the reference trajectory of each behavior. Verification techniques such as backward tracking and calculating optical flows contributed to robust recognition. Comparative experiments showed that our system could track people more robustly than a baseline tracking algorithm even in crowded scenes. Our system precisely identified specific behaviors and achieved first place for detecting running people in the TRECVID 2009 Surveillance Event Detection Task.

  7. Robust Recognition of Specific Human Behaviors in Crowded Surveillance Video Sequences

    Science.gov (United States)

    Takahashi, Masaki; Fujii, Mahito; Shibata, Masahiro; Satoh, Shin'ichi

    2010-12-01

    We describe a method that can detect specific human behaviors even in crowded surveillance video scenes. Our developed system recognizes specific behaviors based on the trajectories created by detecting and tracking people in a video. It detects people using an HOG descriptor and SVM classifier, and it tracks the regions by calculating the two-dimensional color histograms. Our system identifies several specific human behaviors, such as running and meeting, by analyzing the similarities to the reference trajectory of each behavior. Verification techniques such as backward tracking and calculating optical flows contributed to robust recognition. Comparative experiments showed that our system could track people more robustly than a baseline tracking algorithm even in crowded scenes. Our system precisely identified specific behaviors and achieved first place for detecting running people in the TRECVID 2009 Surveillance Event Detection Task.

  8. Structural basis for specific single-stranded RNA recognition by designer pentatricopeptide repeat proteins.

    Science.gov (United States)

    Shen, Cuicui; Zhang, Delin; Guan, Zeyuan; Liu, Yexing; Yang, Zhao; Yang, Yan; Wang, Xiang; Wang, Qiang; Zhang, QunXia; Fan, Shilong; Zou, Tingting; Yin, Ping

    2016-01-01

    As a large family of RNA-binding proteins, pentatricopeptide repeat (PPR) proteins mediate multiple aspects of RNA metabolism in eukaryotes. Binding to their target single-stranded RNAs (ssRNAs) in a modular and base-specific fashion, PPR proteins can serve as designable modules for gene manipulation. However, the structural basis for nucleotide-specific recognition by designer PPR (dPPR) proteins remains to be elucidated. Here, we report four crystal structures of dPPR proteins in complex with their respective ssRNA targets. The dPPR repeats are assembled into a right-handed superhelical spiral shell that embraces the ssRNA. Interactions between different PPR codes and RNA bases are observed at the atomic level, revealing the molecular basis for the modular and specific recognition patterns of the RNA bases U, C, A and G. These structures not only provide insights into the functional study of PPR proteins but also open a path towards the potential design of synthetic sequence-specific RNA-binding proteins. PMID:27088764

  9. Enteroendocrine cell types revisited

    DEFF Research Database (Denmark)

    Engelstoft, Maja S; Egerod, Kristoffer Lihme; Lund, Mari L;

    2013-01-01

    The GI-tract is profoundly involved in the control of metabolism through peptide hormones secreted from enteroendocrine cells scattered throughout the gut mucosa. A large number of recently generated transgenic reporter mice have allowed for direct characterization of biochemical and cell...... biological properties of these previously highly elusive enteroendocrine cells. In particular the surprisingly broad co-expression of six functionally related hormones in the intestinal enteroendocrine cells indicates that it should be possible to control not only the hormone secretion but also the type and...... number of enteroendocrine cells. However, this will require a more deep understanding of the factors controlling differentiation, gene expression and specification of the enteroendocrine cells during their weekly renewal from progenitor cells in the crypts of the mucosa....

  10. Reduced false recognition in amnesia could be a result of impaired item-specific memory: the relationship between item-specific memory and gist memory.

    OpenAIRE

    Nissan, Jack

    2007-01-01

    It is a common finding that amnesic patients produce fewer false recognitions than healthy controls, and this has led to assumptions that gist memory is damaged in these patients (Schacter et al., 1996, Budson et al., 2000). Two experiments used false recognition paradigms to ascertain whether this result could instead be a consequence of impaired item-specific memory. Experiment 1 aimed to reduce the item-specific memory of healthy adults to reflect that of an amnesic patient,...

  11. Human DNA mismatch repair: coupling of mismatch recognition to strand-specific excision

    OpenAIRE

    WANG Huixian; Hays, John B.

    2007-01-01

    Eukaryotic mismatch-repair (MMR) proteins MutSα and MutLα couple recognition of base mismatches to strand-specific excision, initiated in vivo at growing 3′ ends and 5′ Okazaki-fragment ends or, in human nuclear extracts, at nicks in exogenous circular substrates. We addressed five biochemical questions relevant to coupling models. Excision remained fully efficient at DNA:MutSα ratios of nearly 1 to 1 at various mismatch-nick distances, suggesting a requirement for only one MutSα molecule per...

  12. Challenges and Specifications for Robust Face and Gait Recognition Systems for Surveillance Application

    Directory of Open Access Journals (Sweden)

    BUCIU Ioan

    2014-05-01

    Full Text Available Automated person recognition (APR based on biometric signals addresses the process of automatically recognize a person according to his physiological traits (face, voice, iris, fingerprint, ear shape, body odor, electroencephalogram – EEG, electrocardiogram, or hand geometry, or behavioural patterns (gait, signature, hand-grip, lip movement. The paper aims at briefly presenting the current challenges for two specific non-cooperative biometric approaches, namely face and gait biometrics as well as approaches that consider combination of the two in the attempt of a more robust system for accurate APR, in the context of surveillance application. Open problems from both sides are also pointed out.

  13. Molecularly Imprinted Polymers: Thermodynamic and Kinetic Considerations on the Specific Sorption and Molecular Recognition

    Directory of Open Access Journals (Sweden)

    Kejun Tong

    2008-04-01

    Full Text Available This article presents a work aiming at thermodynamically and kinetically interpreting the specific sorption and recognition by a molecularly imprinted polymer. Using Boc-L-Phe-OH as a template, the imprinted material was prepared. The result indicates that the prepared polymer can well discriminate the imprint species from its analogue (Boc-D-Phe-OH, so as to adsorb more for the former but less for the latter. Kinetic analysis indicates that this specific sorption, in nature, can be a result of a preferential promotion. The imprint within the polymer causes a larger adsorption rate for the template than for the analogue. Thermodynamic study also implies that the molecular induction from the specific imprint to the template is larger than to the analogue, which thus makes the polymer capable of preferentially alluring the template to bind.

  14. Turning One Cell Type into Another.

    Science.gov (United States)

    Slack, Jonathan M W

    2016-01-01

    The nature of cells in early embryos may be respecified simply by exposure to inducing factors. In later stage embryos, determined cell populations do not respond to inducing factors but may be respecified by other stimuli, especially the introduction of specific transcription factors. Fully differentiated cell types are hard to respecify by any method, but some degree of success can be achieved using selected combinations of transcription factors, and this may have clinical significance in the future. PMID:26969988

  15. Epitope imprinted polymer nanoparticles containing fluorescent quantum dots for specific recognition of human serum albumin

    International Nuclear Information System (INIS)

    Epitope imprinted polymer nanoparticles (EI-NPs) were prepared by one-pot polymerization of N-isopropylacrylamide in the presence of CdTe quantum dots and an epitope (consisting of amino acids 598 to 609) of human serum albumin (HSA). The resulting EI-NPs exhibit specific recognition ability and enable direct fluorescence quantification of HSA based on a fluorescence turn-on mode. The polymer was characterized by FT-IR, X-ray photoelectron spectroscopy, transmission electron microscopy and dynamic light scattering. The linear calibration graph was obtained in the range of 0.25–5 μmol · mL−1 with the detection limit of 44.3 nmol · mL−1. The EI-NPs were successfully applied to the direct fluorometric quantification of HSA in samples of human serum. Overall, this approach provides a promising tool to design functional fluorescent materials with protein recognition capability and specific applications in proteomics. (author)

  16. Highly selective nanocomposite sorbents for the specific recognition of S-ibuprofen from structurally related compounds

    Science.gov (United States)

    Sooraj, M. P.; Mathew, Beena

    2015-07-01

    The aim of the present work was to synthesize highly homogeneous synthetic recognition units for the selective and specific separation of S-ibuprofen from its closely related structural analogues using molecular imprinting technology. The molecular imprinted polymer wrapped on functionalized multiwalled carbon nanotubes (MWCNT-MIP) was synthesized using S-ibuprofen as the template in the imprinting process. The characterization of the products and intermediates were done by FT-IR spectroscopy, PXRD, TGA, SEM and TEM techniques. The high regression coefficient value for Langmuir adsorption isotherm (R 2 = 0.999) showed the homogeneous imprint sites and surface adsorption nature of the prepared polymer sorbent. The nano-MIP followed a second-order kinetics (R 2 = 0.999) with a rapid adsorption rate which also suggested the formation of recognition sites on the surface of MWCNT-MIP. MWCNT-MIP showed 83.6 % higher rebinding capacity than its non-imprinted counterpart. The higher relative selectivity coefficient (k') of the imprinted sorbent towards S-ibuprofen than that for its structural analogues evidenced the capability of the nano-MIP to selectively and specifically rebind the template rather than its analogues.

  17. Highly selective nanocomposite sorbents for the specific recognition of S-ibuprofen from structurally related compounds

    Science.gov (United States)

    Sooraj, M. P.; Mathew, Beena

    2016-06-01

    The aim of the present work was to synthesize highly homogeneous synthetic recognition units for the selective and specific separation of S-ibuprofen from its closely related structural analogues using molecular imprinting technology. The molecular imprinted polymer wrapped on functionalized multiwalled carbon nanotubes (MWCNT-MIP) was synthesized using S-ibuprofen as the template in the imprinting process. The characterization of the products and intermediates were done by FT-IR spectroscopy, PXRD, TGA, SEM and TEM techniques. The high regression coefficient value for Langmuir adsorption isotherm ( R 2 = 0.999) showed the homogeneous imprint sites and surface adsorption nature of the prepared polymer sorbent. The nano-MIP followed a second-order kinetics ( R 2 = 0.999) with a rapid adsorption rate which also suggested the formation of recognition sites on the surface of MWCNT-MIP. MWCNT-MIP showed 83.6 % higher rebinding capacity than its non-imprinted counterpart. The higher relative selectivity coefficient ( k') of the imprinted sorbent towards S-ibuprofen than that for its structural analogues evidenced the capability of the nano-MIP to selectively and specifically rebind the template rather than its analogues.

  18. Auditory backward recognition masking in children with a specific language impairment and children with a specific reading disability.

    Science.gov (United States)

    McArthur, G M; Hogben, J H

    2001-03-01

    The auditory backward recognition masking (ABRM) and intensity discrimination (ID) thresholds of children with a specific language impairment and poor reading (SLI-poor readers), children with an SLI and average reading (SLI-average readers), children with a specific reading disability and average spoken language skills (SRD-average language), and children with normal spoken and written language (controls) were estimated with "child-friendly" psychophysical tasks. The pattern of ABRM and ID scores suggests that a subset of children with concomitant oral language and reading impairments has poor ABRM thresholds, and that a subgroup of children with an SLI or SRD has poorer ID thresholds than controls. The latter result warns against using rapid auditory processing tasks that do not actively control for auditory discrimination ability. Further, some unusually poor ABRM scores and ID scores question the validity of extreme scores produced by children on psychophysical tasks. Finally, the poor oral language scores of many of the children who had impaired reading highlight the need to test the oral language skills of SRD samples to ascertain how homogeneous and specifically disabled they really are. PMID:11303923

  19. SRSF2 Mutations Contribute to Myelodysplasia by Mutant-Specific Effects on Exon Recognition.

    Science.gov (United States)

    Kim, Eunhee; Ilagan, Janine O; Liang, Yang; Daubner, Gerrit M; Lee, Stanley C-W; Ramakrishnan, Aravind; Li, Yue; Chung, Young Rock; Micol, Jean-Baptiste; Murphy, Michele E; Cho, Hana; Kim, Min-Kyung; Zebari, Ahmad S; Aumann, Shlomzion; Park, Christopher Y; Buonamici, Silvia; Smith, Peter G; Deeg, H Joachim; Lobry, Camille; Aifantis, Iannis; Modis, Yorgo; Allain, Frederic H-T; Halene, Stephanie; Bradley, Robert K; Abdel-Wahab, Omar

    2015-05-11

    Mutations affecting spliceosomal proteins are the most common mutations in patients with myelodysplastic syndromes (MDS), but their role in MDS pathogenesis has not been delineated. Here we report that mutations affecting the splicing factor SRSF2 directly impair hematopoietic differentiation in vivo, which is not due to SRSF2 loss of function. By contrast, SRSF2 mutations alter SRSF2's normal sequence-specific RNA binding activity, thereby altering the recognition of specific exonic splicing enhancer motifs to drive recurrent mis-splicing of key hematopoietic regulators. This includes SRSF2 mutation-dependent splicing of EZH2, which triggers nonsense-mediated decay, which, in turn, results in impaired hematopoietic differentiation. These data provide a mechanistic link between a mutant spliceosomal protein, alterations in the splicing of key regulators, and impaired hematopoiesis. PMID:25965569

  20. Structural basis for sequence-specific recognition of DNA by TAL effectors

    KAUST Repository

    Deng, Dong

    2012-01-05

    TAL (transcription activator-like) effectors, secreted by phytopathogenic bacteria, recognize host DNA sequences through a central domain of tandem repeats. Each repeat comprises 33 to 35 conserved amino acids and targets a specific base pair by using two hypervariable residues [known as repeat variable diresidues (RVDs)] at positions 12 and 13. Here, we report the crystal structures of an 11.5-repeat TAL effector in both DNA-free and DNA-bound states. Each TAL repeat comprises two helices connected by a short RVD-containing loop. The 11.5 repeats form a right-handed, superhelical structure that tracks along the sense strand of DNA duplex, with RVDs contacting the major groove. The 12th residue stabilizes the RVD loop, whereas the 13th residue makes a base-specific contact. Understanding DNA recognition by TAL effectors may facilitate rational design of DNA-binding proteins with biotechnological applications.

  1. Polyhydroxylated [60]fullerene binds specifically to functional recognition sites on a monomeric and a dimeric ubiquitin

    Science.gov (United States)

    Zanzoni, Serena; Ceccon, Alberto; Assfalg, Michael; Singh, Rajesh K.; Fushman, David; D'Onofrio, Mariapina

    2015-04-01

    The use of nanoparticles (NPs) in biomedical applications requires an in-depth understanding of the mechanisms by which NPs interact with biomolecules. NPs associating with proteins may interfere with protein-protein interactions and affect cellular communication pathways, however the impact of NPs on biomolecular recognition remains poorly characterized. In this respect, particularly relevant is the study of NP-induced functional perturbations of proteins implicated in the regulation of key biochemical pathways. Ubiquitin (Ub) is a prototypical protein post-translational modifier playing a central role in numerous essential biological processes. To contribute to the understanding of the interactions between this universally distributed biomacromolecule and NPs, we investigated the adsorption of polyhydroxylated [60]fullerene on monomeric Ub and on a minimal polyubiquitin chain in vitro at atomic resolution. Site-resolved chemical shift and intensity perturbations of Ub's NMR signals, together with 15N spin relaxation rate changes, exchange saturation transfer effects, and fluorescence quenching data were consistent with the reversible formation of soluble aggregates incorporating fullerenol clusters. The specific interaction epitopes were identified, coincident with functional recognition sites in a monomeric and lysine48-linked dimeric Ub. Fullerenol appeared to target the open state of the dynamic structure of a dimeric Ub according to a conformational selection mechanism. Importantly, the protein-NP association prevented the enzyme-catalyzed synthesis of polyubiquitin chains. Our findings provide an experiment-based insight into protein/fullerenol recognition, with implications in functional biomolecular communication, including regulatory protein turnover, and for the opportunity of therapeutic intervention in Ub-dependent cellular pathways.The use of nanoparticles (NPs) in biomedical applications requires an in-depth understanding of the mechanisms by which

  2. Identification of Vulnerable Cell Types in Major Brain Disorders Using Single Cell Transcriptomes and Expression Weighted Cell Type Enrichment.

    Science.gov (United States)

    Skene, Nathan G; Grant, Seth G N

    2016-01-01

    The cell types that trigger the primary pathology in many brain diseases remain largely unknown. One route to understanding the primary pathological cell type for a particular disease is to identify the cells expressing susceptibility genes. Although this is straightforward for monogenic conditions where the causative mutation may alter expression of a cell type specific marker, methods are required for the common polygenic disorders. We developed the Expression Weighted Cell Type Enrichment (EWCE) method that uses single cell transcriptomes to generate the probability distribution associated with a gene list having an average level of expression within a cell type. Following validation, we applied EWCE to human genetic data from cases of epilepsy, Schizophrenia, Autism, Intellectual Disability, Alzheimer's disease, Multiple Sclerosis and anxiety disorders. Genetic susceptibility primarily affected microglia in Alzheimer's and Multiple Sclerosis; was shared between interneurons and pyramidal neurons in Autism and Schizophrenia; while intellectual disabilities and epilepsy were attributable to a range of cell-types, with the strongest enrichment in interneurons. We hypothesized that the primary cell type pathology could trigger secondary changes in other cell types and these could be detected by applying EWCE to transcriptome data from diseased tissue. In Autism, Schizophrenia and Alzheimer's disease we find evidence of pathological changes in all of the major brain cell types. These findings give novel insight into the cellular origins and progression in common brain disorders. The methods can be applied to any tissue and disorder and have applications in validating mouse models. PMID:26858593

  3. Inferring cell type innovations by phylogenetic methods-concepts, methods, and limitations.

    Science.gov (United States)

    Kin, Koryu

    2015-12-01

    Multicellular organisms are composed of distinct cell types that have specific roles in the body. Each cell type is a product of two kinds of historical processes-development and evolution. Although the concept of a cell type is difficult to define, the cell type concept based on the idea of the core regulatory network (CRN), a gene regulatory network that determines the identity of a cell type, illustrates the essential aspects of the cell type concept. The first step toward elucidating cell type evolution is to reconstruct the evolutionary relationships of cell types, or the cell type tree. The sister cell type model assumes that a new cell type evolves through divergence from a multifunctional ancestral cell type, creating tree-like evolutionary relationships between cell types. The process of generating a cell type tree can also be understood as the sequential addition of a new branching point on an ancestral cell differentiation hierarchy in evolution. A cell type tree thus represents an intertwined history of cell type evolution and development. Cell type trees can be reconstructed from high-throughput sequencing data, and the reconstruction of a cell type tree leads to the discovery of genes that are functionally important for a cell type. Although many issues including the lack of cross-species comparisons and the lack of a proper model for cell type evolution remain, the study of the origin of a new cell type using phylogenetic methods offers a promising new research avenue in developmental evolution. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 653-661, 2015. © 2015 Wiley Periodicals, Inc. PMID:26462996

  4. Object instance recognition using motion cues and instance specific appearance models

    Science.gov (United States)

    Schumann, Arne

    2014-03-01

    In this paper we present an object instance retrieval approach. The baseline approach consists of a pool of image features which are computed on the bounding boxes of a query object track and compared to a database of tracks in order to find additional appearances of the same object instance. We improve over this simple baseline approach in multiple ways: 1) we include motion cues to achieve improved robustness to viewpoint and rotation changes, 2) we include operator feedback to iteratively re-rank the resulting retrieval lists and 3) we use operator feedback and location constraints to train classifiers and learn an instance specific appearance model. We use these classifiers to further improve the retrieval results. The approach is evaluated on two popular public datasets for two different applications. We evaluate person re-identification on the CAVIAR shopping mall surveillance dataset and vehicle instance recognition on the VIVID aerial dataset and achieve significant improvements over our baseline results.

  5. First applications of structural pattern recognition methods to the investigation of specific physical phenomena at JET

    International Nuclear Information System (INIS)

    Structural pattern recognition techniques allow the identification of plasma behaviours. Physical properties are encoded in the morphological structure of signals. Intelligent access methods have been applied to JET databases to retrieve data according to physical criteria. On the one hand, the structural form of signals has been used to develop general purpose data retrieval systems to search for both similar entire waveforms and similar structural shapes inside waveforms. On the other hand, domain dependent knowledge was added to the structural information of signals to create particular data retrieval methods for specific physical phenomena. The inclusion of explicit knowledge assists in data analysis. The latter has been applied in JET to look for first, cut-offs in ECE heterodyne radiometer signals and, second, L-H transitions

  6. First applications of structural pattern recognition methods to the investigation of specific physical phenomena at JET

    Energy Technology Data Exchange (ETDEWEB)

    Ratta, G.A. [Asociacion EURATOM/CIEMAT para Fusion (Spain)], E-mail: giuseppe.ratta@ciemat.es; Vega, J.; Pereira, A.; Portas, A.; Luna, E. de la [Asociacion EURATOM/CIEMAT para Fusion (Spain); Dormido-Canto, S.; Farias, G.; Dormido, R.; Sanchez, J.; Duro, N.; Vargas, H. [Dpto. Informatica y Automatica-UNED, 28040 Madrid (Spain); Santos, M.; Pajares, G. [Dpto. Arquitectura de Computadores y Automatica-UCM, 28040 Madrid (Spain); Murari, A. [Consorzio RFX-Associazione EURATOM ENEA per la Fusione, Padua (Italy)

    2008-04-15

    Structural pattern recognition techniques allow the identification of plasma behaviours. Physical properties are encoded in the morphological structure of signals. Intelligent access methods have been applied to JET databases to retrieve data according to physical criteria. On the one hand, the structural form of signals has been used to develop general purpose data retrieval systems to search for both similar entire waveforms and similar structural shapes inside waveforms. On the other hand, domain dependent knowledge was added to the structural information of signals to create particular data retrieval methods for specific physical phenomena. The inclusion of explicit knowledge assists in data analysis. The latter has been applied in JET to look for first, cut-offs in ECE heterodyne radiometer signals and, second, L-H transitions.

  7. Recognition of Emotions in Mexican Spanish Speech: An Approach Based on Acoustic Modelling of Emotion-Specific Vowels

    Directory of Open Access Journals (Sweden)

    Santiago-Omar Caballero-Morales

    2013-01-01

    Full Text Available An approach for the recognition of emotions in speech is presented. The target language is Mexican Spanish, and for this purpose a speech database was created. The approach consists in the phoneme acoustic modelling of emotion-specific vowels. For this, a standard phoneme-based Automatic Speech Recognition (ASR system was built with Hidden Markov Models (HMMs, where different phoneme HMMs were built for the consonants and emotion-specific vowels associated with four emotional states (anger, happiness, neutral, sadness. Then, estimation of the emotional state from a spoken sentence is performed by counting the number of emotion-specific vowels found in the ASR’s output for the sentence. With this approach, accuracy of 87–100% was achieved for the recognition of emotional state of Mexican Spanish speech.

  8. Customer recognition and competition

    OpenAIRE

    Shy, Oz; Stenbacka , Rune

    2011-01-01

    We introduce three types of consumer recognition: identity recognition, asymmetric preference recognition, and symmetric preference recognition. We characterize price equilibria and compare profits, consumer surplus, and total welfare. Asymmetric preference recognition enhances profits compared with identity recognition, but firms have no incentive to exchange information regarding customer-specific preferences (symmetric preference recognition). Consumers would benefit from a policy panning ...

  9. Artificial receptor-functionalized nanoshell: facile preparation, fast separation and specific protein recognition

    International Nuclear Information System (INIS)

    This work combined molecular imprinting technology with superparamagnetic nanospheres as the core to prepare artificial receptor-functionalized magnetic nanoparticles for separation of homologous proteins. Using dopamine as a functional monomer, novel surface protein-imprinted superparamagnetic polydopamine (PDA) core-shell nanoparticles were successfully prepared in physiological conditions, which could maintain the natural structure of a protein template and achieved the development of molecularly imprinted polymers (MIPs) from one dimension to zero dimension for efficient recognition towards large biomolecules. The resultant nanoparticles could be used for convenient magnetic separation of homologous proteins with high specificity. The nanoparticles possessed good monodispersibility, uniform surface morphology and high saturation magnetization value. The bound amounts of template proteins measured by both indirect and direct methods were in good agreement. The maximum number of imprinted cavities on the surface of the bovine hemoglobin (Hb)-imprinted nanoshell was 2.21 x 1018 g-1, which well matched their maximum binding capacity toward bovine Hb. Both the simple method for preparation of MIPs and the magnetic nanospheres showed good application potential in fast separation, effective concentration and selective biosensing of large protein molecules.

  10. Tracker-aided adaptive multi-frame recognition of a specific target

    Science.gov (United States)

    Mahalanobis, Abhijit

    2016-05-01

    We consider the problem of recognizing a particular target of interest (i.e. the "correct" target) while rejecting other targets and background clutter. In such instances, the probability of recognizing the correct target (PCT) is a suitable metric for assessing the performance of the target recognition algorithm. We present a definition for PCT and illustrate how it differs from conventional metrics for target recognition by means of an example. It is further shown that an adaptive target recognition algorithm, which relies on track position to obtain multiple looks at the target, can significantly improve PCT while reducing the track uncertainty.

  11. Feature-specific imaging: Extensions to adaptive object recognition and active illumination based scene reconstruction

    Science.gov (United States)

    Baheti, Pawan K.

    Computational imaging (CI) systems are hybrid imagers in which the optical and post-processing sub-systems are jointly optimized to maximize the task-specific performance. In this dissertation we consider a form of CI system that measures the linear projections (i.e., features) of the scene optically, and it is commonly referred to as feature-specific imaging (FSI). Most of the previous work on FSI has been concerned with image reconstruction. Previous FSI techniques have also been non-adaptive and restricted to the use of ambient illumination. We consider two novel extensions of the FSI system in this work. We first present an adaptive feature-specific imaging (AFSI) system and consider its application to a face-recognition task. The proposed system makes use of previous measurements to adapt the projection basis at each step. We present both statistical and information-theoretic adaptation mechanisms for the AFSI system. The sequential hypothesis testing framework is used to determine the number of measurements required for achieving a specified misclassification probability. We demonstrate that AFSI system requires significantly fewer measurements than static-FSI (SFSI) and conventional imaging at low signal-to-noise ratio (SNR). We also show a trade-off, in terms of average detection time, between measurement SNR and adaptation advantage. Experimental results validating the AFSI system are presented. Next we present a FSI system based on the use of structured light. Feature measurements are obtained by projecting spatially structured illumination onto an object and collecting all of the reflected light onto a single photodetector. We refer to this system as feature-specific structured imaging (FSSI). Principal component features are used to define the illumination patterns. The optimal LMMSE operator is used to generate object estimates from the measurements. We demonstrate that this new imaging approach reduces imager complexity and provides improved image

  12. Specificity of Furanoside–Protein Recognition through Antibody Engineering and Molecular Modeling

    OpenAIRE

    Lak, Parnian; Makeneni, Spandana; Woods, Robert J.; Lowary, Todd L.

    2014-01-01

    Recognition of furanosides (five-membered ring sugars) by proteins plays important roles in host–pathogen interactions. In comparison to their six-membered ring counterparts (pyranosides), detailed studies of the molecular motifs involved in the recognition of furanosides by proteins are scarce. Here the first in-depth molecular characterization of a furanoside–protein interaction system, between an antibody (CS-35) and cell wall polysaccharides of mycobacteria, including the organism respons...

  13. Facial expression recognition based on local region specific features and support vector machines

    OpenAIRE

    Ghimire, Deepak; Jeong, Sunghwan; Lee, Joonwhoan; Park, Sang Hyun

    2016-01-01

    Facial expressions are one of the most powerful, natural and immediate means for human being to communicate their emotions and intensions. Recognition of facial expression has many applications including human-computer interaction, cognitive science, human emotion analysis, personality development etc. In this paper, we propose a new method for the recognition of facial expressions from single image frame that uses combination of appearance and geometric features with support vector machines ...

  14. Immobilization of oligonucleotides onto zirconia-modified filter paper and specific molecular recognition.

    Science.gov (United States)

    Xiao, Wei; Huang, Jianguo

    2011-10-18

    A morphologically complex cellulosic substance (e.g., commercial filter paper) was employed as a substrate for DNA immobilization and successive recognition. A uniform ultrathin zirconia gel film was first deposited on each cellulose nanofiber in bulk filter paper by a facile sol-gel process. Relying on the large surface area of filter paper and the strong affinity of zirconia for the phosphate group, terminal-phosphate probe DNA was abundantly immobilized on the zirconia-modified filter paper so as to convert the composite to a biofunctional material for the sensitive and repetitive recognition of the corresponding complementary target DNA on the nanomolar level. By contrast, in spite of the viability of the immobilization of the probe DNA and the recognition of target DNA on the quartz plate, the amount of captured probe DNA or recognized target DNA on such a flat substrate was much less than that captured or recognized on filter paper, resulting in a relatively insensitive recognition event. Moreover, control experiments on bare filter paper (without a zirconia nanocoating) suggested that the zirconia gel film was essential to probe DNA immobilization and subsequent target DNA recognition. PMID:21905718

  15. DAXX envelops a histone H3.3-H4 dimer for H3.3-specific recognition

    Energy Technology Data Exchange (ETDEWEB)

    Elsässer, Simon J; Huang, Hongda; Lewis, Peter W; Chin, Jason W; Allis, C David; Patel, Dinshaw J [MSKCC; (Rockefeller); (MRC)

    2013-01-24

    Histone chaperones represent a structurally and functionally diverse family of histone-binding proteins that prevent promiscuous interactions of histones before their assembly into chromatin. DAXX is a metazoan histone chaperone specific to the evolutionarily conserved histone variant H3.3. Here we report the crystal structures of the DAXX histone-binding domain with a histone H3.3–H4 dimer, including mutants within DAXX and H3.3, together with in vitro and in vivo functional studies that elucidate the principles underlying H3.3 recognition specificity. Occupying 40% of the histone surface-accessible area, DAXX wraps around the H3.3–H4 dimer, with complex formation accompanied by structural transitions in the H3.3–H4 histone fold. DAXX uses an extended α-helical conformation to compete with major inter-histone, DNA and ASF1 interaction sites. Our structural studies identify recognition elements that read out H3.3-specific residues, and functional studies address the contributions of Gly90 in H3.3 and Glu225 in DAXX to chaperone-mediated H3.3 variant recognition specificity.

  16. Mechanism of PhosphoThreonine/Serine Recognition and Specificity for Modular Domains from All-atom Molecular Dynamics

    OpenAIRE

    Huang, Yu-ming M; Chang, Chia-en A.

    2011-01-01

    Abstract Background Phosphopeptide-binding domains mediate many vital cellular processes such as signal transduction and protein recognition. We studied three well-known domains important for signal transduction: BRCT repeats, WW domain and forkhead-associated (FHA) domain. The first two recognize both phosphothreonine (pThr) and phosphoserine (pSer) residues, but FHA has high specificity for pThr residues. Here we used molecular dynamics (MD) simulations to reveal how FHA exclusive...

  17. Mechanism of PhosphoThreonine/Serine Recognition and Specificity for Modular Domains from All-atom Molecular Dynamics

    OpenAIRE

    Huang Yu-ming M; Chang Chia-en A

    2011-01-01

    Abstract Background Phosphopeptide-binding domains mediate many vital cellular processes such as signal transduction and protein recognition. We studied three well-known domains important for signal transduction: BRCT repeats, WW domain and forkhead-associated (FHA) domain. The first two recognize both phosphothreonine (pThr) and phosphoserine (pSer) residues, but FHA has high specificity for pThr residues. Here we used molecular dynamics (MD) simulations to reveal how FHA exclusively chooses...

  18. Stage-specific sampling by pattern recognition receptors during Candida albicans phagocytosis.

    Directory of Open Access Journals (Sweden)

    Sigrid E M Heinsbroek

    2008-11-01

    Full Text Available Candida albicans is a medically important pathogen, and recognition by innate immune cells is critical for its clearance. Although a number of pattern recognition receptors have been shown to be involved in recognition and phagocytosis of this fungus, the relative role of these receptors has not been formally examined. In this paper, we have investigated the contribution of the mannose receptor, Dectin-1, and complement receptor 3; and we have demonstrated that Dectin-1 is the main non-opsonic receptor involved in fungal uptake. However, both Dectin-1 and complement receptor 3 were found to accumulate at the site of uptake, while mannose receptor accumulated on C. albicans phagosomes at later stages. These results suggest a potential role for MR in phagosome sampling; and, accordingly, MR deficiency led to a reduction in TNF-alpha and MCP-1 production in response to C. albicans uptake. Our data suggest that pattern recognition receptors sample the fungal phagosome in a sequential fashion.

  19. Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern recognition receptors of innate immunity

    DEFF Research Database (Denmark)

    Miller, Yury I; Choi, Soo-Ho; Wiesner, Philipp;

    2011-01-01

    a major target of innate immunity, recognized by a variety of "pattern recognition receptors" (PRRs). By analogy with microbial "pathogen-associated molecular patterns" (PAMPs), we postulate that host-derived, oxidation-specific epitopes can be considered to represent "danger (or damage......)-associated molecular patterns" (DAMPs). We also argue that oxidation-specific epitopes present on apoptotic cells and their cellular debris provided the primary evolutionary pressure for the selection of such PRRs. Furthermore, because many PAMPs on microbes share molecular identity and/or mimicry with oxidation...

  20. Detection of magnetic-labeled antibody specific recognition events by combined atomic force and magnetic force microscopy

    Science.gov (United States)

    Hong, Xia; Liu, Yanmei; Li, Jun; Guo, Wei; Bai, Yubai

    2009-09-01

    Atomic force (AFM) and magnetic force microscopy (MFM) were developed to detect biomolecular specific interaction. Goat anti-mouse immunoglobulin (anti-IgG) was covalently attached onto gold substrate modified by a self-assembly monolayer of thioctic acid via 1-ethyl-3-[3-(dimethylamino) propyl] carbodiimide (EDC) activation. Magnetic-labeled IgG then specifically adsorbed onto anti-IgG surface. The morphological variation was identified by AFM. MFM was proved to be a fine assistant tool to distinguish the immunorecognized nanocomposites from the impurities by detection of the magnetic signal from magnetic-labeled IgG. It would enhance the understanding of biomolecular recognition process.

  1. Detection of magnetic-labeled antibody specific recognition events by combined atomic force and magnetic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hong Xia [Center for Advanced Optoelectronic Functional Materials Research, Key Laboratory of UV Light-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun 130024 (China); College of Chemistry, Jilin University, Changchun 130023 (China)], E-mail: xiahong@nenu.edu.cn; Liu Yanmei; Li Jun; Guo Wei; Bai Yubai [College of Chemistry, Jilin University, Changchun 130023 (China)

    2009-09-15

    Atomic force (AFM) and magnetic force microscopy (MFM) were developed to detect biomolecular specific interaction. Goat anti-mouse immunoglobulin (anti-IgG) was covalently attached onto gold substrate modified by a self-assembly monolayer of thioctic acid via 1-ethyl-3-[3-(dimethylamino) propyl] carbodiimide (EDC) activation. Magnetic-labeled IgG then specifically adsorbed onto anti-IgG surface. The morphological variation was identified by AFM. MFM was proved to be a fine assistant tool to distinguish the immunorecognized nanocomposites from the impurities by detection of the magnetic signal from magnetic-labeled IgG. It would enhance the understanding of biomolecular recognition process.

  2. Detection of magnetic-labeled antibody specific recognition events by combined atomic force and magnetic force microscopy

    International Nuclear Information System (INIS)

    Atomic force (AFM) and magnetic force microscopy (MFM) were developed to detect biomolecular specific interaction. Goat anti-mouse immunoglobulin (anti-IgG) was covalently attached onto gold substrate modified by a self-assembly monolayer of thioctic acid via 1-ethyl-3-[3-(dimethylamino) propyl] carbodiimide (EDC) activation. Magnetic-labeled IgG then specifically adsorbed onto anti-IgG surface. The morphological variation was identified by AFM. MFM was proved to be a fine assistant tool to distinguish the immunorecognized nanocomposites from the impurities by detection of the magnetic signal from magnetic-labeled IgG. It would enhance the understanding of biomolecular recognition process.

  3. General and specific responsiveness of the amygdala during explicit emotion recognition in females and males

    Directory of Open Access Journals (Sweden)

    Windischberger Christian

    2009-08-01

    Full Text Available Abstract Background The ability to recognize emotions in facial expressions relies on an extensive neural network with the amygdala as the key node as has typically been demonstrated for the processing of fearful stimuli. A sufficient characterization of the factors influencing and modulating amygdala function, however, has not been reached now. Due to lacking or diverging results on its involvement in recognizing all or only certain negative emotions, the influence of gender or ethnicity is still under debate. This high-resolution fMRI study addresses some of the relevant parameters, such as emotional valence, gender and poser ethnicity on amygdala activation during facial emotion recognition in 50 Caucasian subjects. Stimuli were color photographs of emotional Caucasian and African American faces. Results Bilateral amygdala activation was obtained to all emotional expressions (anger, disgust, fear, happy, and sad and neutral faces across all subjects. However, only in males a significant correlation of amygdala activation and behavioral response to fearful stimuli was observed, indicating higher amygdala responses with better fear recognition, thus pointing to subtle gender differences. No significant influence of poser ethnicity on amygdala activation occurred, but analysis of recognition accuracy revealed a significant impact of poser ethnicity that was emotion-dependent. Conclusion Applying high-resolution fMRI while subjects were performing an explicit emotion recognition task revealed bilateral amygdala activation to all emotions presented and neutral expressions. This mechanism seems to operate similarly in healthy females and males and for both in-group and out-group ethnicities. Our results support the assumption that an intact amygdala response is fundamental in the processing of these salient stimuli due to its relevance detecting function.

  4. Imino proton NMR guides the reprogramming of A•T specific minor groove binders for mixed base pair recognition.

    Science.gov (United States)

    Harika, Narinder K; Paul, Ananya; Stroeva, Ekaterina; Chai, Yun; Boykin, David W; Germann, Markus W; Wilson, W David

    2016-06-01

    Sequence-specific binding to DNA is crucial for targeting transcription factor-DNA complexes to modulate gene expression. The heterocyclic diamidine, DB2277, specifically recognizes a single G•C base pair in the minor groove of mixed base pair sequences of the type AAAGTTT. NMR spectroscopy reveals the presence of major and minor species of the bound compound. To understand the principles that determine the binding affinity and orientation in mixed sequences of DNA, over thirty DNA hairpin substrates were examined by NMR and thermal melting. The NMR exchange dynamics between major and minor species shows that the exchange is much faster than compound dissociation determined from biosensor-surface plasmon resonance. Extensive modifications of DNA sequences resulted in a unique DNA sequence with binding site AAGATA that binds DB2277 in a single orientation. A molecular docking result agrees with the model representing rapid flipping of DB2277 between major and minor species. Imino spectral analysis of a (15)N-labeled central G clearly shows the crucial role of the exocyclic amino group of G in sequence-specific recognition. Our results suggest that this approach can be expanded to additional modules for recognition of more sequence-specific DNA complexes. This approach provides substantial information about the sequence-specific, highly efficient, dynamic nature of minor groove binding agents. PMID:27131382

  5. Imino proton NMR guides the reprogramming of A•T specific minor groove binders for mixed base pair recognition

    Science.gov (United States)

    Harika, Narinder K.; Paul, Ananya; Stroeva, Ekaterina; Chai, Yun; Boykin, David W.; Germann, Markus W.; Wilson, W. David

    2016-01-01

    Sequence-specific binding to DNA is crucial for targeting transcription factor-DNA complexes to modulate gene expression. The heterocyclic diamidine, DB2277, specifically recognizes a single G•C base pair in the minor groove of mixed base pair sequences of the type AAAGTTT. NMR spectroscopy reveals the presence of major and minor species of the bound compound. To understand the principles that determine the binding affinity and orientation in mixed sequences of DNA, over thirty DNA hairpin substrates were examined by NMR and thermal melting. The NMR exchange dynamics between major and minor species shows that the exchange is much faster than compound dissociation determined from biosensor–surface plasmon resonance. Extensive modifications of DNA sequences resulted in a unique DNA sequence with binding site AAGATA that binds DB2277 in a single orientation. A molecular docking result agrees with the model representing rapid flipping of DB2277 between major and minor species. Imino spectral analysis of a 15N-labeled central G clearly shows the crucial role of the exocyclic amino group of G in sequence-specific recognition. Our results suggest that this approach can be expanded to additional modules for recognition of more sequence-specific DNA complexes. This approach provides substantial information about the sequence-specific, highly efficient, dynamic nature of minor groove binding agents. PMID:27131382

  6. Molecularly imprinted polymer based on MWCNT-QDs as fluorescent biomimetic sensor for specific recognition of target protein

    International Nuclear Information System (INIS)

    A novel molecularly imprinted optosensing material based on multi-walled carbon nanotube-quantum dots (MWCNT-QDs) has been designed and synthesized for its high selectivity, sensitivity and specificity in the recognition of a target protein bovine serum albumin (BSA). Molecularly imprinted polymer coated MWCNT-QDs using BSA as the template (BMIP-coated MWCNT-QDs) exhibits a fast mass-transfer speed with a response time of 25 min. It is found that the BSA as a target protein can significantly quench the luminescence of BMIP-coated MWCNT-QDs in a concentration-dependent manner that is best described by a Stern–Volmer equation. The KSV for BSA is much higher than bovine hemoglobin and lysozyme, implying a highly selective recognition of the BMIP-coated MWCNT-QDs to BSA. Under optimal conditions, the relative fluorescence intensity of BMIP-coated MWCNT-QDs decreases linearly with the increasing target protein BSA in the concentration range of 5.0 × 10−7–35.0 × 10−7 M with a detection limit of 80 nM. - Highlights: • A novel fluorescent biomimetic sensor based on MWCNT-QDs was designed. • The sensor exhibited a fast mass-transfer speed with a response time of 25 min. • The sensor possessed a highly selective recognition to BSA

  7. Molecularly imprinted polymer based on MWCNT-QDs as fluorescent biomimetic sensor for specific recognition of target protein

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Zhaoqiang [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Annie Bligh, S.W. [Department of Life Sciences, Faculty of Science and Technology, University of Westminster, 115 New Cavendish Street, London W1W 6UW (United Kingdom); Tao, Lei; Quan, Jing [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Nie, Huali, E-mail: niehuali@dhu.edu.cn [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Zhu, Limin, E-mail: lzhu@dhu.edu.cn [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Gong, Xiao [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China)

    2015-03-01

    A novel molecularly imprinted optosensing material based on multi-walled carbon nanotube-quantum dots (MWCNT-QDs) has been designed and synthesized for its high selectivity, sensitivity and specificity in the recognition of a target protein bovine serum albumin (BSA). Molecularly imprinted polymer coated MWCNT-QDs using BSA as the template (BMIP-coated MWCNT-QDs) exhibits a fast mass-transfer speed with a response time of 25 min. It is found that the BSA as a target protein can significantly quench the luminescence of BMIP-coated MWCNT-QDs in a concentration-dependent manner that is best described by a Stern–Volmer equation. The K{sub SV} for BSA is much higher than bovine hemoglobin and lysozyme, implying a highly selective recognition of the BMIP-coated MWCNT-QDs to BSA. Under optimal conditions, the relative fluorescence intensity of BMIP-coated MWCNT-QDs decreases linearly with the increasing target protein BSA in the concentration range of 5.0 × 10{sup −7}–35.0 × 10{sup −7} M with a detection limit of 80 nM. - Highlights: • A novel fluorescent biomimetic sensor based on MWCNT-QDs was designed. • The sensor exhibited a fast mass-transfer speed with a response time of 25 min. • The sensor possessed a highly selective recognition to BSA.

  8. Learning Low-Rank Class-Specific Dictionary and Sparse Intra-Class Variant Dictionary for Face Recognition

    Science.gov (United States)

    Tang, Xin; Feng, Guo-can; Li, Xiao-xin; Cai, Jia-xin

    2015-01-01

    Face recognition is challenging especially when the images from different persons are similar to each other due to variations in illumination, expression, and occlusion. If we have sufficient training images of each person which can span the facial variations of that person under testing conditions, sparse representation based classification (SRC) achieves very promising results. However, in many applications, face recognition often encounters the small sample size problem arising from the small number of available training images for each person. In this paper, we present a novel face recognition framework by utilizing low-rank and sparse error matrix decomposition, and sparse coding techniques (LRSE+SC). Firstly, the low-rank matrix recovery technique is applied to decompose the face images per class into a low-rank matrix and a sparse error matrix. The low-rank matrix of each individual is a class-specific dictionary and it captures the discriminative feature of this individual. The sparse error matrix represents the intra-class variations, such as illumination, expression changes. Secondly, we combine the low-rank part (representative basis) of each person into a supervised dictionary and integrate all the sparse error matrix of each individual into a within-individual variant dictionary which can be applied to represent the possible variations between the testing and training images. Then these two dictionaries are used to code the query image. The within-individual variant dictionary can be shared by all the subjects and only contribute to explain the lighting conditions, expressions, and occlusions of the query image rather than discrimination. At last, a reconstruction-based scheme is adopted for face recognition. Since the within-individual dictionary is introduced, LRSE+SC can handle the problem of the corrupted training data and the situation that not all subjects have enough samples for training. Experimental results show that our method achieves the

  9. Learning Low-Rank Class-Specific Dictionary and Sparse Intra-Class Variant Dictionary for Face Recognition.

    Directory of Open Access Journals (Sweden)

    Xin Tang

    Full Text Available Face recognition is challenging especially when the images from different persons are similar to each other due to variations in illumination, expression, and occlusion. If we have sufficient training images of each person which can span the facial variations of that person under testing conditions, sparse representation based classification (SRC achieves very promising results. However, in many applications, face recognition often encounters the small sample size problem arising from the small number of available training images for each person. In this paper, we present a novel face recognition framework by utilizing low-rank and sparse error matrix decomposition, and sparse coding techniques (LRSE+SC. Firstly, the low-rank matrix recovery technique is applied to decompose the face images per class into a low-rank matrix and a sparse error matrix. The low-rank matrix of each individual is a class-specific dictionary and it captures the discriminative feature of this individual. The sparse error matrix represents the intra-class variations, such as illumination, expression changes. Secondly, we combine the low-rank part (representative basis of each person into a supervised dictionary and integrate all the sparse error matrix of each individual into a within-individual variant dictionary which can be applied to represent the possible variations between the testing and training images. Then these two dictionaries are used to code the query image. The within-individual variant dictionary can be shared by all the subjects and only contribute to explain the lighting conditions, expressions, and occlusions of the query image rather than discrimination. At last, a reconstruction-based scheme is adopted for face recognition. Since the within-individual dictionary is introduced, LRSE+SC can handle the problem of the corrupted training data and the situation that not all subjects have enough samples for training. Experimental results show that our

  10. Mechanism of PhosphoThreonine/Serine Recognition and Specificity for Modular Domains from All-atom Molecular Dynamics

    Directory of Open Access Journals (Sweden)

    Huang Yu-ming M

    2011-05-01

    Full Text Available Abstract Background Phosphopeptide-binding domains mediate many vital cellular processes such as signal transduction and protein recognition. We studied three well-known domains important for signal transduction: BRCT repeats, WW domain and forkhead-associated (FHA domain. The first two recognize both phosphothreonine (pThr and phosphoserine (pSer residues, but FHA has high specificity for pThr residues. Here we used molecular dynamics (MD simulations to reveal how FHA exclusively chooses pThr and how BRCT and WW recognize both pThr/pSer. The work also investigated the energies and thermodynamic information of intermolecular interactions. Results Simulations carried out included wide-type and mutated systems. Through analysis of MD simulations, we found that the conserved His residue defines dual loops feature of the FHA domain, which creates a small cavity reserved for only the methyl group of pThr. These well-organized loop interactions directly response to the pThr binding selectivity, while single loop (the 2nd phosphobinding site of FHA or in combination with α-helix (BRCT repeats or β-sheet (WW domain fail to differentiate pThr/pSer. Conclusions Understanding the domain pre-organizations constructed by conserved residues and the driving force of domain-phosphopeptide recognition provides structural insight into pThr specific binding, which also helps in engineering proteins and designing peptide inhibitors.

  11. Characterization of the Recognition Specificity of BH2, a Monoclonal Antibody Prepared against the HLA-B27 Heavy Chain

    Directory of Open Access Journals (Sweden)

    Hui-Chun Yu

    2015-04-01

    Full Text Available BH2, a monoclonal antibody prepared against the denatured human leukocytic antigen-B27 heavy chain (HLA-B27 HC, can immunoprecipitate the misfolded HLA-B27 HC complexed with Bip in the endoplasmic reticulum and recognize the homodimerized HLA-B27 HC that is often observed on the cell membrane of patients suffered from ankylosing spondylitis (AS. However, the recognition specificity of BH2 toward the other molecules of HLA-B type and toward the different types of HLA molecules remained uncharacterized. In this study, we carried out the HLA-typing by using the Luminex Technology to characterize the recognition specificity of BH2 and analyzed the binding domain of HLA-B27 HC by BH2. Our results indicated that BH2 preferably binds to molecules of HLA-B and -C rather than HLA-A and the binding site is located within the α2 domain of HLA-B27 HC.

  12. Estimation of phoneme-specific HMM topologies for the automatic recognition of dysarthric speech.

    Science.gov (United States)

    Caballero-Morales, Santiago-Omar

    2013-01-01

    Dysarthria is a frequently occurring motor speech disorder which can be caused by neurological trauma, cerebral palsy, or degenerative neurological diseases. Because dysarthria affects phonation, articulation, and prosody, spoken communication of dysarthric speakers gets seriously restricted, affecting their quality of life and confidence. Assistive technology has led to the development of speech applications to improve the spoken communication of dysarthric speakers. In this field, this paper presents an approach to improve the accuracy of HMM-based speech recognition systems. Because phonatory dysfunction is a main characteristic of dysarthric speech, the phonemes of a dysarthric speaker are affected at different levels. Thus, the approach consists in finding the most suitable type of HMM topology (Bakis, Ergodic) for each phoneme in the speaker's phonetic repertoire. The topology is further refined with a suitable number of states and Gaussian mixture components for acoustic modelling. This represents a difference when compared with studies where a single topology is assumed for all phonemes. Finding the suitable parameters (topology and mixtures components) is performed with a Genetic Algorithm (GA). Experiments with a well-known dysarthric speech database showed statistically significant improvements of the proposed approach when compared with the single topology approach, even for speakers with severe dysarthria. PMID:24222784

  13. Computerized spatial delayed recognition span task: a specific tool to assess visuospatial working memory

    Science.gov (United States)

    Satler, Corina; Belham, Flávia Schechtman; Garcia, Ana; Tomaz, Carlos; Tavares, Maria Clotilde H.

    2015-01-01

    A new tablet device version (IOS platform) of the Spatial Delayed Recognition Span Task (SDRST) was developed with the aim of investigating visuospatial Working Memory (WM) abilities based on touchscreen technology. This new WM testing application will be available to download for free in Apple Store app (“SDRST app”). In order to verify the feasibility of this computer-based task, we conducted three experiments with different manipulations and groups of participants. We were interested in investigating if (1) the SDRST is sensitive enough to tap into cognitive differences brought by aging and dementia; (2) different experimental manipulations work successfully; (3) cortical brain activations seen in other WM tasks are also demonstrated here; and (4) non-human primates are able to answer the task. Performance (scores and response time) was better for young than older adults and higher for the latter when compared to Alzheimer’s disease (AD) patients. All groups performed better with facial stimuli than with images of scenes and with emotional than with neutral stimuli. Electrophysiology data showed activation on prefrontal and frontal areas of scalp, theta band activity on the midline area, and gamma activity in left temporal area. There are all scalp regions known to be related to attention and WM. Besides those data, our sample of adult captive capuchin monkeys (Sapajus libidinosus) answered the task above chance level. Taken together, these results corroborate the reliability of this new computer-based SDRST as a measure of visuospatial WM in clinical and non-clinical populations as well as in non-human primates. Its tablet app allows the task to be administered in a wide range of settings, including hospitals, homes, schools, laboratories, universities, and research institutions. PMID:25964758

  14. Computerized Spatial-Delayed Recognition Span Task: a specific tool to assess visuospatial working memory

    Directory of Open Access Journals (Sweden)

    Corina Satler

    2015-04-01

    Full Text Available A new tablet device version (IOS platform of the Spatial Delayed Recognition Span Task (SDRST was developed with the aim of investigating visuospatial Working Memory (WM abilities based on touchscreen technology. This new WM testing application will be available to download for free in Apple Store app (“SDRST app”. In order to verify the feasibility of this computer-based task, we conducted three experiments with different manipulations and groups of participants. We were interested in investigating if (1 the SDRST is sensitive enough to tap into cognitive differences brought by ageing and dementia; (2 different experimental manipulations work successfully; (3 cortical brain activations seen in other WM tasks are also demonstrated here; and (4 non-human primates are able to answer the task. Performance (scores and response time was better for young than older adults and higher for the latter when compared to Alzheimer’s disease patients. All groups performed better with facial stimuli than with images of scenes and with emotional than with neutral stimuli. Electrophysiology data showed activation on prefrontal and frontal areas of scalp, theta band activity on the midline area, and gamma activity in left temporal area. There are all scalp regions known to be related to attention and WM. Besides those data, our sample of adult captive capuchin monkeys (Sapajus libidinosus answered the task above chance level. Taken together, these results corroborate the reliability of this new computer-based SDRST as a measure of visuospatial WM in clinical and non-clinical populations as well as in non-human primates. Its tablet app allows the task to be administered in a wide range of settings, including hospitals, homes, schools, laboratories, universities, and research institutions.

  15. Ctip2-, Satb2-, Prox1-, and GAD65-Expressing Neurons in Rat Cultures: Preponderance of Single- and Double-Positive Cells, and Cell Type-Specific Expression of Neuron-Specific Gene Family Members, Nsg-1 (NEEP21 and Nsg-2 (P19.

    Directory of Open Access Journals (Sweden)

    Laura Digilio

    Full Text Available The brain consists of many distinct neuronal cell types, but which cell types are present in widely used primary cultures of embryonic rodent brain is often not known. We characterized how abundantly four cell type markers (Ctip2, Satb2, Prox1, GAD65 were represented in cultured rat neurons, how easily neurons expressing different markers can be transfected with commonly used plasmids, and whether neuronal-enriched endosomal proteins Nsg-1 (NEEP21 and Nsg-2 (P19 are ubiquitously expressed in all types of cultured neurons. We found that cultured neurons stably maintain cell type identities that are reflective of cell types in vivo. This includes neurons maintaining simultaneous expression of two transcription factors, such as Ctip2+/Satb2+ or Prox1+/Ctip2+ double-positive cells, which have also been described in vivo. Secondly, we established the superior efficiency of CAG promoters for both Lipofectamine-mediated transfection as well as for electroporation. Thirdly, we discovered that Nsg-1 and Nsg-2 were not expressed equally in all neurons: whereas high levels of both Nsg-1 and Nsg-2 were found in Satb2-, Ctip2-, and GAD65-positive neurons, Prox1-positive neurons in hippocampal cultures expressed low levels of both. Our findings thus highlight the importance of identifying neuronal cell types for doing cell biology in cultured neurons: Keeping track of neuronal cell type might uncover effects in assays that might otherwise be masked by the mixture of responsive and non-responsive neurons in the dish.

  16. Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5α restriction factor

    OpenAIRE

    Stremlau, Matthew; Perron, Michel; Lee, Mark; Li, Yuan; Song, Byeongwoon; Javanbakht, Hassan; Diaz-Griffero, Felipe; Anderson, Donovan J.; Sundquist, Wesley I.; Sodroski, Joseph

    2006-01-01

    The host restriction factor TRIM5α mediates species-specific, early blocks to retrovirus infection; susceptibility to these blocks is determined by viral capsid sequences. Here we demonstrate that TRIM5α variants from Old World monkeys specifically associate with the HIV type 1 (HIV-1) capsid and that this interaction depends on the TRIM5α B30.2 domain. Human and New World monkey TRIM5α proteins associated less efficiently with the HIV-1 capsid, accounting for the lack of restriction in cells...

  17. Auditory Word Recognition of Nouns and Verbs in Children with Specific Language Impairment (SLI)

    Science.gov (United States)

    Andreu, Llorenc; Sanz-Torrent, Monica; Guardia-Olmos, Joan

    2012-01-01

    Nouns are fundamentally different from verbs semantically and syntactically, since verbs can specify one, two, or three nominal arguments. In this study, 25 children with Specific Language Impairment (age 5;3-8;2 years) and 50 typically developing children (3;3-8;2 years) participated in an eye-tracking experiment of spoken language comprehension…

  18. An ultra-specific avian antibody to phosphorylated tau protein reveals a unique mechanism for phosphoepitope recognition.

    Science.gov (United States)

    Shih, Heather H; Tu, Chao; Cao, Wei; Klein, Anne; Ramsey, Renee; Fennell, Brian J; Lambert, Matthew; Ní Shúilleabháin, Deirdre; Autin, Bénédicte; Kouranova, Eugenia; Laxmanan, Sri; Braithwaite, Steven; Wu, Leeying; Ait-Zahra, Mostafa; Milici, Anthony J; Dumin, Jo Ann; LaVallie, Edward R; Arai, Maya; Corcoran, Christopher; Paulsen, Janet E; Gill, Davinder; Cunningham, Orla; Bard, Joel; Mosyak, Lydia; Finlay, William J J

    2012-12-28

    Highly specific antibodies to phosphoepitopes are valuable tools to study phosphorylation in disease states, but their discovery is largely empirical, and the molecular mechanisms mediating phosphospecific binding are poorly understood. Here, we report the generation and characterization of extremely specific recombinant chicken antibodies to three phosphoepitopes on the Alzheimer disease-associated protein tau. Each antibody shows full specificity for a single phosphopeptide. The chimeric IgG pT231/pS235_1 exhibits a K(D) of 0.35 nm in 1:1 binding to its cognate phosphopeptide. This IgG is murine ortholog-cross-reactive, specifically recognizing the pathological form of tau in brain samples from Alzheimer patients and a mouse model of tauopathy. To better understand the underlying binding mechanisms allowing such remarkable specificity, we determined the structure of pT231/pS235_1 Fab in complex with its cognate phosphopeptide at 1.9 Å resolution. The Fab fragment exhibits novel complementarity determining region (CDR) structures with a "bowl-like" conformation in CDR-H2 that tightly and specifically interacts with the phospho-Thr-231 phosphate group, as well as a long, disulfide-constrained CDR-H3 that mediates peptide recognition. This binding mechanism differs distinctly from either peptide- or hapten-specific antibodies described to date. Surface plasmon resonance analyses showed that pT231/pS235_1 binds a truly compound epitope, as neither phosphorylated Ser-235 nor free peptide shows any measurable binding affinity. PMID:23148212

  19. Interaction studies reveal specific recognition of an anti-inflammatory polyphosphorhydrazone dendrimer by human monocytes

    Science.gov (United States)

    Ledall, Jérémy; Fruchon, Séverine; Garzoni, Matteo; Pavan, Giovanni M.; Caminade, Anne-Marie; Turrin, Cédric-Olivier; Blanzat, Muriel; Poupot, Rémy

    2015-10-01

    Dendrimers are nano-materials with perfectly defined structure and size, and multivalency properties that confer substantial advantages for biomedical applications. Previous work has shown that phosphorus-based polyphosphorhydrazone (PPH) dendrimers capped with azabisphosphonate (ABP) end groups have immuno-modulatory and anti-inflammatory properties leading to efficient therapeutic control of inflammatory diseases in animal models. These properties are mainly prompted through activation of monocytes. Here, we disclose new insights into the molecular mechanisms underlying the anti-inflammatory activation of human monocytes by ABP-capped PPH dendrimers. Following an interdisciplinary approach, we have characterized the physicochemical and biological behavior of the lead ABP dendrimer with model and cell membranes, and compared this experimental set of data to predictive computational modelling studies. The behavior of the ABP dendrimer was compared to the one of an isosteric analog dendrimer capped with twelve azabiscarboxylate (ABC) end groups instead of twelve ABP end groups. The ABC dendrimer displayed no biological activity on human monocytes, therefore it was considered as a negative control. In detail, we show that the ABP dendrimer can bind both non-specifically and specifically to the membrane of human monocytes. The specific binding leads to the internalization of the ABP dendrimer by human monocytes. On the contrary, the ABC dendrimer only interacts non-specifically with human monocytes and is not internalized. These data indicate that the bioactive ABP dendrimer is recognized by specific receptor(s) at the surface of human monocytes.Dendrimers are nano-materials with perfectly defined structure and size, and multivalency properties that confer substantial advantages for biomedical applications. Previous work has shown that phosphorus-based polyphosphorhydrazone (PPH) dendrimers capped with azabisphosphonate (ABP) end groups have immuno-modulatory and anti

  20. Competitive fluorescence assay for specific recognition of atrazine by magnetic molecularly imprinted polymer based on Fe3O4-chitosan.

    Science.gov (United States)

    Liu, Guangyang; Li, Tengfei; Yang, Xin; She, Yongxin; Wang, Miao; Wang, Jing; Zhang, Min; Wang, Shanshan; Jin, Fen; Jin, Maojun; Shao, Hua; Jiang, Zejun; Yu, Hailong

    2016-02-10

    A novel fluorescence sensing strategy for determination of atrazine in tap water involving direct competition between atrazine and 5-(4,6-dichlorotriazinyl) aminofluorescein (5-DTAF), and which exploits magnetic molecularly imprinted polymer (MMIP), has been developed. The MMIP, based on Fe3O4-chitosan nanoparticles, was synthesized to recognize specific binding sites of atrazine. The recognition capability and selectivity of the MMIP for atrazine and other triazine herbicides was investigated. Under optimal conditions, the competitive reaction between 5-DTAF and atrazine was performed to permit quantitation. Fluorescence intensity changes at 515 nm was linearly related to the logarithm of the atrazine concentration for the range 2.32-185.4 μM. The detection limit for atrazine was 0.86μM (S/N=3) and recoveries were 77.6-115% in spiked tap water samples. PMID:26686107

  1. A novel fluorescent reagent for recognition of triplex DNA with high specificity and selectivity.

    Science.gov (United States)

    Chen, Zongbao; Zhang, Huimi; Ma, Xiaoming; Lin, Zhenyu; Zhang, Lan; Chen, Guonan

    2015-11-21

    A fluorescent agent (DMT) was screened for recognizing triplex DNA with a specific and selective characteristic, which was embedded into the triplex DNA structure. The triplex DNA was firstly formed by a complementary target sequence through two distinct and sequential events. The conditions including pH and hybridization time, fluorescent agent concentration and embedding time were optimized in the experiment. Under the optimum conditions, the fluorescence signal was enhanced up to 9-fold in comparison with the DMT embedding into the ssDNA, dsDNA and G-quadruplexes. Under the same fluorescence conditions, the changes of the fluorescence signal were also investigated by several kinds of base mismatched DNAs in the experiment. The results showed that our biosensor provided excellent discrimination efficiency toward the perfectly mismatched target DNA with no formation of triplex DNA. We preliminarily deduced the mechanism of the fluorescent reagent for recognizing triplex DNA with high specificity and selectivity. PMID:26456316

  2. Hantavirus N Protein Exhibits Genus-Specific Recognition of the Viral RNA Panhandle▿

    OpenAIRE

    Mir, M A; Brown, B.; Hjelle, B; Duran, W. A.; Panganiban, A T

    2006-01-01

    A key genomic characteristic that helps define Hantavirus as a genus of the family Bunyaviridae is the presence of distinctive terminal complementary nucleotides that promote the folding of the viral genomic segments into “panhandle” hairpin structures. The hantavirus nucleocapsid protein (N protein), which is encoded by the smallest of the three negative-sense genomic RNA segments, undergoes in vivo and in vitro trimerization. Trimeric hantavirus N protein specifically recognizes the panhand...

  3. Human T-Cell Clones from Autoimmune Thyroid Glands: Specific Recognition of Autologous Thyroid Cells

    Science.gov (United States)

    Londei, Marco; Bottazzo, G. Franco; Feldmann, Marc

    1985-04-01

    The thyroid glands of patients with autoimmune diseases such as Graves' disease and certain forms of goiter contain infiltrating activated T lymphocytes and, unlike cells of normal glands, the epithelial follicular cells strongly express histocompatability antigens of the HLA-DR type. In a study of such autoimmune disorders, the infiltrating T cells from the thyroid glands of two patients with Graves' disease were cloned in mitogen-free interleukin-2 (T-cell growth factor). The clones were expanded and their specificity was tested. Three types of clones were found. One group, of T4 phenotype, specifically recognized autologous thyroid cells. Another, also of T4 phenotype, recognized autologous thyroid or blood cells and thus responded positively in the autologous mixed lymphocyte reaction. Other clones derived from cells that were activated in vivo were of no known specificity. These clones provide a model of a human autoimmune disease and their analysis should clarify mechanisms of pathogenesis and provide clues to abrogating these undesirable immune responses.

  4. Expression weighted cell type enrichments reveal genetic and cellular nature of major brain disorders

    Directory of Open Access Journals (Sweden)

    Nathan Gerald Skene

    2016-01-01

    Full Text Available The cell types that trigger the primary pathology in many brain diseases remain largely unknown. One route to understanding the primary pathological cell type for a particular disease is to identify the cells expressing susceptibility genes. Although this is straightforward for monogenic conditions where the causative mutation may alter expression of a cell type specific marker, methods are required for the common polygenic disorders. We developed the Expression Weighted Cell Type Enrichment (EWCE method that uses single cell transcriptomes to generate the probability distribution associated with a gene list having an average level of expression within a cell type. Following validation, we applied EWCE to human genetic data from cases of epilepsy, Schizophrenia, Autism, Intellectual Disability, Alzheimer’s disease, Multiple Sclerosis and anxiety disorders. Genetic susceptibility primarily affected microglia in Alzheimer’s and Multiple Sclerosis; was shared between interneurons and pyramidal neurons in Autism and Schizophrenia; while intellectual disabilities and epilepsy were attributable to a range of cell-types, with the strongest enrichment in interneurons. We hypothesised that the primary cell type pathology could trigger secondary changes in other cell types and these could be detected by applying EWCE to transcriptome data from diseased tissue. In Autism, Schizophrenia and Alzheimer’s disease we find evidence of pathological changes in all of the major brain cell types. These findings give novel insight into the cellular origins and progression in common brain disorders. The methods can be applied to any tissue and disorder and have applications in validating mouse models.

  5. REC46 gene of Saccharomyces cerevisiae controls mitotic chromosomal stability, recombination and sporulation: cell-type and life cycle stage specific expression of the rec46-1 mutation

    International Nuclear Information System (INIS)

    Studies of chromosomal recombination during mitosis and meiosis of Saccharomyces cerevisiae have demonstrated that recombination at these two distinct stages of the yeast life cycle proceeds by mechanisms that appear similar but involve discrete mitosis-specific and meiosis-specific properties. UV radiation induced REC mutants are being employed as a genetic tool to identify the partial reactions comprising recombination and the involvement of individual REC gene products in mitotic and meiotic recombination. The sequence of molecular events that results in genetic recombination in eukaryotes is presently ill-defined. Genetic characterization of REC gene mutants and biochemical analyses of them for discrete defects in DNA metabolic proteins and enzymes (in collaboration with the laboratory of Junko Hosoda) are beginning to remedy this gap in the authors knowledge. This report summarizes the genetic properties of the rec46-1 mutation

  6. Murine Pregnancy-Specific Glycoprotein 23 Induces the Proangiogenic Factors Transforming-Growth Factor Beta 1 and Vascular Endothelial Growth Factor A in Cell Types Involved in Vascular Remodeling in Pregnancy1

    OpenAIRE

    Wu, Julie A.; Johnson, Briana L.; Chen, Yongqing; Ha, Cam T.; Dveksler, Gabriela S.

    2008-01-01

    Haemochorial placentation is a unique physiological process in which the fetal trophoblast cells remodel the maternal decidual spiral arteries to establish the fetoplacental blood supply. Pregnancy-specific glycoproteins (PSGs) are members of the carcinoembryonic antigen family. PSGs are produced by the placenta of rodents and primates and are secreted into the bloodstream. PSG23 is one of 17 members of the murine PSG family (designated PSG16 to PSG32). Previous studies determined that PSGs h...

  7. Molecular recognition by van der Waals interaction between polymers with sequence-specific polarizabilities

    CERN Document Server

    Lu, Bing-Sui; Podgornik, Rudolf

    2016-01-01

    We analyze van der Waals interactions between two rigid polymers with sequence-specific, anisotropic polarizabilities along the polymer backbones, so that the dipole moments fluctuate parallel to the polymer backbones. Assuming that each polymer has a quenched-in polarizability sequence which reflects, for example, the polynucleotide sequence of a double-stranded DNA molecule, we study the van der Waals interaction energy between a pair of such polymers with rod-like structure for the cases where their respective polarizability sequences are (i) distinct and (ii) identical, with both zero and non-zero correlation length of the polarizability correlator along the polymer backbones in the latter case. For identical polymers, we find a novel $r^{-5}$ scaling behavior of the van der Waals interaction energy for small inter-polymer separation $r$, in contradistinction to the $r^{-4}$ scaling behavior of distinct polymers, with furthermore a pronounced angular dependence favoring attraction between sufficiently ali...

  8. Nanostructured disposable impedimetric sensors as tools for specific biomolecular interactions: sensitive recognition of concanavalin A.

    Science.gov (United States)

    Loaiza, Oscar A; Lamas-Ardisana, Pedro J; Jubete, Elena; Ochoteco, Estibalitz; Loinaz, Iraida; Cabañero, Germán; García, Isabel; Penadés, Soledad

    2011-04-15

    The development of sensors to detect specific weak biological interactions is still today a challenging topic. Characteristics of carbohydrate-protein (lectin) interactions include high specificity and low affinity. This work describes the development of nanostructured impedimetric sensors for the detection of concanavalin A (Con A) binding to immobilized thiolated carbohydrate derivatives (D-mannose or D-glucose) onto screen-printed carbon electrodes (SPCEs) modified with gold nanoparticles. Thiolated D-galactose derivative was employed as negative control to evaluate the selectivity of the proposed methodology. After binding the thiolated carbohydrate to the nanostructured SPCEs, different functionalized thiols were employed to form mixed self-assembled monolayers (SAM). Electrochemical impedance spectroscopy (EIS) was employed as a technique to evaluate the binding of Con A to selected carbohydrates through the increase of electron transfer resistance of the ferri/ferrocyanide redox probe at the differently SAM modified electrodes. Different variables of the assay protocol were studied in order to optimize the sensor performance. Selective Con A determinations were only achieved by the formation of mixed SAMs with adequate functionalized thiols. Important differences were obtained depending on the chain lengths and functional groups of these thiols. For the 3-mercapto-1-propanesulfonate mixed SAMs, the electron transfer resistance varied linearly with the Con A concentration in the 2.2-40.0 μg mL(-1) range for D-mannose and D-glucose modified sensors. Low detection limits (0.099 and 0.078 pmol) and good reproducibility (6.9 and 6.1%, n=10) were obtained for the D-glucose and D-mannose modified sensors, respectively, without any amplification strategy. PMID:21417434

  9. Human XPA and RPA DNA repair proteins participate in specific recognition of triplex-induced helical distortions

    Science.gov (United States)

    Vasquez, Karen M.; Christensen, Jesper; Li, Lei; Finch, Rick A.; Glazer, Peter M.

    2002-04-01

    Nucleotide excision repair (NER) plays a central role in maintaining genomic integrity by detecting and repairing a wide variety of DNA lesions. Xeroderma pigmentosum complementation group A protein (XPA) is an essential component of the repair machinery, and it is thought to be involved in the initial step as a DNA damage recognition and/or confirmation factor. Human replication protein A (RPA) and XPA have been reported to interact to form a DNA damage recognition complex with greater specificity for damaged DNA than XPA alone. The mechanism by which these two proteins recognize such a wide array of structures resulting from different types of DNA damage is not known. One possibility is that they recognize a common feature of the lesions, such as distortions of the helical backbone. We have tested this idea by determining whether human XPA and RPA proteins can recognize the helical distortions induced by a DNA triple helix, a noncanonical DNA structure that has been shown to induce DNA repair, mutagenesis, and recombination. We measured binding of XPA and RPA, together or separately, to substrates containing triplexes with three, two, or no strands covalently linked by psoralen conjugation and photoaddition. We found that RPA alone recognizes all covalent triplex structures, but also forms multivalent nonspecific DNA aggregates at higher concentrations. XPA by itself does not recognize the substrates, but it binds them in the presence of RPA. Addition of XPA decreases the nonspecific DNA aggregate formation. These results support the hypothesis that the NER machinery is targeted to helical distortions and demonstrate that RPA can recognize damaged DNA even without XPA.

  10. Operating Cooperatively (OC sensor for highly specific recognition of nucleic acids.

    Directory of Open Access Journals (Sweden)

    Evan M Cornett

    Full Text Available Molecular Beacon (MB probes have been extensively used for nucleic acid analysis because of their ability to produce fluorescent signal in solution instantly after hybridization. The indirect binding of MB probe to a target analyte offers several advantages, including: improved genotyping accuracy and the possibility to analyse folded nucleic acids. Here we report on a new design for MB-based sensor, called 'Operating Cooperatively' (OC, which takes advantage of indirect binding of MB probe to a target analyte. The sensor consists of two unmodified DNA strands, which hybridize to a universal MB probe and a nucleic acid analyte to form a fluorescent complex. OC sensors were designed to analyze two human SNPs and E. coli 16S rRNA. High specificity of the approach was demonstrated by the detection of true analyte in over 100 times excess amount of single base substituted analytes. Taking into account the flexibility in the design and the simplicity in optimization, we conclude that OC sensors may become versatile and efficient tools for instant DNA and RNA analysis in homogeneous solution.

  11. Specific recognition of the HIV-1 genomic RNA by the Gag precursor.

    Science.gov (United States)

    Abd El-Wahab, Ekram W; Smyth, Redmond P; Mailler, Elodie; Bernacchi, Serena; Vivet-Boudou, Valérie; Hijnen, Marcel; Jossinet, Fabrice; Mak, Johnson; Paillart, Jean-Christophe; Marquet, Roland

    2014-01-01

    During assembly of HIV-1 particles in infected cells, the viral Pr55(Gag) protein (or Gag precursor) must select the viral genomic RNA (gRNA) from a variety of cellular and viral spliced RNAs. However, there is no consensus on how Pr55(Gag) achieves this selection. Here, by using RNA binding and footprinting assays, we demonstrate that the primary Pr55(Gag) binding site on the gRNA consists of the internal loop and the lower part of stem-loop 1 (SL1), the upper part of which initiates gRNA dimerization. A double regulation ensures specific binding of Pr55(Gag) to the gRNA despite the fact that SL1 is also present in spliced viral RNAs. The region upstream of SL1, which is present in all HIV-1 RNAs, prevents binding to SL1, but this negative effect is counteracted by sequences downstream of SL4, which are unique to the gRNA. PMID:24986025

  12. G-quadruplex RNA binding and recognition by the lysine-specific histone demethylase-1 enzyme.

    Science.gov (United States)

    Hirschi, Alexander; Martin, William J; Luka, Zigmund; Loukachevitch, Lioudmila V; Reiter, Nicholas J

    2016-08-01

    Lysine-specific histone demethylase 1 (LSD1) is an essential epigenetic regulator in metazoans and requires the co-repressor element-1 silencing transcription factor (CoREST) to efficiently catalyze the removal of mono- and dimethyl functional groups from histone 3 at lysine positions 4 and 9 (H3K4/9). LSD1 interacts with over 60 regulatory proteins and also associates with lncRNAs (TERRA, HOTAIR), suggesting a regulatory role for RNA in LSD1 function. We report that a stacked, intramolecular G-quadruplex (GQ) forming TERRA RNA (GG[UUAGGG]8UUA) binds tightly to the functional LSD1-CoREST complex (Kd ≈ 96 nM), in contrast to a single GQ RNA unit ([UUAGGG]4U), a GQ DNA ([TTAGGG]4T), or an unstructured single-stranded RNA. Stabilization of a parallel-stranded GQ RNA structure by monovalent potassium ions (K(+)) is required for high affinity binding to the LSD1-CoREST complex. These data indicate that LSD1 can distinguish between RNA and DNA as well as structured versus unstructured nucleotide motifs. Further, cross-linking mass spectrometry identified the primary location of GQ RNA binding within the SWIRM/amine oxidase domain (AOD) of LSD1. An ssRNA binding region adjacent to this GQ binding site was also identified via X-ray crystallography. This RNA binding interface is consistent with kinetic assays, demonstrating that a GQ-forming RNA can serve as a noncompetitive inhibitor of LSD1-catalyzed demethylation. The identification of a GQ RNA binding site coupled with kinetic data suggests that structured RNAs can function as regulatory molecules in LSD1-mediated mechanisms. PMID:27277658

  13. Plug-and-Play Genetic Access to Drosophila Cell Types Using Exchangeable Exon Cassettes

    OpenAIRE

    Fengqiu Diao; Holly Ironfield; Haojiang Luan; Feici Diao; William C. Shropshire; John Ewer; Elizabeth Marr; Christopher J. Potter; Matthias Landgraf; Benjamin H. White

    2015-01-01

    Genetically encoded effectors are important tools for probing cellular function in living animals, but improved methods for directing their expression to specific cell types are required. Here, we introduce a simple, versatile method for achieving cell-type-specific expression of transgenes that leverages the untapped potential of “coding introns” (i.e., introns between coding exons). Our method couples the expression of a transgene to that of a native gene expressed in the cells of interest ...

  14. The Role of Sensory-Motor Information in Object Recognition: Evidence from Category-Specific Visual Agnosia

    Science.gov (United States)

    Wolk, D.A.; Coslett, H.B.; Glosser, G.

    2005-01-01

    The role of sensory-motor representations in object recognition was investigated in experiments involving AD, a patient with mild visual agnosia who was impaired in the recognition of visually presented living as compared to non-living entities. AD named visually presented items for which sensory-motor information was available significantly more…

  15. Reduced Recognition of Dynamic Facial Emotional Expressions and Emotion-Specific Response Bias in Children with an Autism Spectrum Disorder

    Science.gov (United States)

    Evers, Kris; Steyaert, Jean; Noens, Ilse; Wagemans, Johan

    2015-01-01

    Emotion labelling was evaluated in two matched samples of 6-14-year old children with and without an autism spectrum disorder (ASD; N = 45 and N = 50, resp.), using six dynamic facial expressions. The Emotion Recognition Task proved to be valuable demonstrating subtle emotion recognition difficulties in ASD, as we showed a general poorer emotion…

  16. Circulating hemocytes from larvae of Melipona scutellaris (Hymenoptera, Apidae, Meliponini): cell types and their role in phagocytosis.

    Science.gov (United States)

    Amaral, Isabel Marques Rodrigues; Moreira Neto, João Felipe; Pereira, Gustavo Borges; Franco, Mariani Borges; Beletti, Marcelo Emílio; Kerr, Warwick Estevam; Bonetti, Ana Maria; Ueira-Vieira, Carlos

    2010-02-01

    Infection in insects stimulates a complex defensive response. Recognition of pathogens may be accomplished by plasma or hemocyte proteins that bind specifically to bacterial or fungal polysaccharides. Several morphologically distinct hemocyte cell types cooperate in the immune response. Hemocytes attach to invading organisms and then isolate them by phagocytosis, by trapping them in hemocyte aggregates called nodules, or by forming an organized multicellular capsule around large parasites. In the current investigation the cellular in the hemolymph third instar larvae of M. scutellaris has been characterized by means of light microscopy analysis and phagocytosis assays were performed in vivo by injection of 0.5 microm fluorescence beads in order to identify the hemocyte types involved in phagocytosis. Four morphotypes of circulating hemocytes were found in 3rd instar larvae: prohemocytes, plasmatocytes, granulocytes and oenocytoids. The results presented plasmatocytes and granulocytes involved in phagocytic response of foreign particles in 3rd instar larvae of M. scutellaris. PMID:19914078

  17. Face shape and face identity processing in behavioral variant fronto-temporal dementia: A specific deficit for familiarity and name recognition of famous faces

    Directory of Open Access Journals (Sweden)

    François-Laurent De Winter

    2016-01-01

    Full Text Available Deficits in face processing have been described in the behavioral variant of fronto-temporal dementia (bvFTD, primarily regarding the recognition of facial expressions. Less is known about face shape and face identity processing. Here we used a hierarchical strategy targeting face shape and face identity recognition in bvFTD and matched healthy controls. Participants performed 3 psychophysical experiments targeting face shape detection (Experiment 1, unfamiliar face identity matching (Experiment 2, familiarity categorization and famous face-name matching (Experiment 3. The results revealed group differences only in Experiment 3, with a deficit in the bvFTD group for both familiarity categorization and famous face-name matching. Voxel-based morphometry regression analyses in the bvFTD group revealed an association between grey matter volume of the left ventral anterior temporal lobe and familiarity recognition, while face-name matching correlated with grey matter volume of the bilateral ventral anterior temporal lobes. Subsequently, we quantified familiarity-specific and name-specific recognition deficits as the sum of the celebrities of which respectively only the name or only the familiarity was accurately recognized. Both indices were associated with grey matter volume of the bilateral anterior temporal cortices. These findings extent previous results by documenting the involvement of the left anterior temporal lobe (ATL in familiarity detection and the right ATL in name recognition deficits in fronto-temporal lobar degeneration.

  18. Face shape and face identity processing in behavioral variant fronto-temporal dementia: A specific deficit for familiarity and name recognition of famous faces.

    Science.gov (United States)

    De Winter, François-Laurent; Timmers, Dorien; de Gelder, Beatrice; Van Orshoven, Marc; Vieren, Marleen; Bouckaert, Miriam; Cypers, Gert; Caekebeke, Jo; Van de Vliet, Laura; Goffin, Karolien; Van Laere, Koen; Sunaert, Stefan; Vandenberghe, Rik; Vandenbulcke, Mathieu; Van den Stock, Jan

    2016-01-01

    Deficits in face processing have been described in the behavioral variant of fronto-temporal dementia (bvFTD), primarily regarding the recognition of facial expressions. Less is known about face shape and face identity processing. Here we used a hierarchical strategy targeting face shape and face identity recognition in bvFTD and matched healthy controls. Participants performed 3 psychophysical experiments targeting face shape detection (Experiment 1), unfamiliar face identity matching (Experiment 2), familiarity categorization and famous face-name matching (Experiment 3). The results revealed group differences only in Experiment 3, with a deficit in the bvFTD group for both familiarity categorization and famous face-name matching. Voxel-based morphometry regression analyses in the bvFTD group revealed an association between grey matter volume of the left ventral anterior temporal lobe and familiarity recognition, while face-name matching correlated with grey matter volume of the bilateral ventral anterior temporal lobes. Subsequently, we quantified familiarity-specific and name-specific recognition deficits as the sum of the celebrities of which respectively only the name or only the familiarity was accurately recognized. Both indices were associated with grey matter volume of the bilateral anterior temporal cortices. These findings extent previous results by documenting the involvement of the left anterior temporal lobe (ATL) in familiarity detection and the right ATL in name recognition deficits in fronto-temporal lobar degeneration. PMID:27298765

  19. Nanomaterial cytotoxicity is composition, size, and cell type dependent

    Directory of Open Access Journals (Sweden)

    Sohaebuddin Syed K

    2010-08-01

    Full Text Available Abstract Background Despite intensive research efforts, reports of cellular responses to nanomaterials are often inconsistent and even contradictory. Additionally, relationships between the responding cell type and nanomaterial properties are not well understood. Using three model cell lines representing different physiological compartments and nanomaterials of different compositions and sizes, we have systematically investigated the influence of nanomaterial properties on the degrees and pathways of cytotoxicity. In this study, we selected nanomaterials of different compositions (TiO2 and SiO2 nanoparticles, and multi-wall carbon nanotubes [MWCNTs] with differing size (MWCNTs of different diameters 50 nm; but same length 0.5-2 μm to analyze the effects of composition and size on toxicity to 3T3 fibroblasts, RAW 264.7 macrophages, and telomerase-immortalized (hT bronchiolar epithelial cells. Results Following characterization of nanomaterial properties in PBS and serum containing solutions, cells were exposed to nanomaterials of differing compositions and sizes, with cytotoxicity monitored through reduction in mitochondrial activity. In addition to cytotoxicity, the cellular response to nanomaterials was characterized by quantifying generation of reactive oxygen species, lysosomal membrane destabilization and mitochondrial permeability. The effect of these responses on cellular fate - apoptosis or necrosis - was then analyzed. Nanomaterial toxicity was variable based on exposed cell type and dependent on nanomaterial composition and size. In addition, nanomaterial exposure led to cell type dependent intracellular responses resulting in unique breakdown of cellular functions for each nanomaterial: cell combination. Conclusions Nanomaterials induce cell specific responses resulting in variable toxicity and subsequent cell fate based on the type of exposed cell. Our results indicate that the composition and size of nanomaterials as well as the

  20. Differentiation of cancer cell type and phenotype using quantum dot-gold nanoparticle sensor arrays

    OpenAIRE

    Liu, Qian; Yeh, Yi-Cheun; Rana, Subinoy; Jiang, Ying; Guo, Lin; Rotello, Vincent M.

    2012-01-01

    We demonstrate rapid and efficient sensing of mammalian cell types and states using nanoparticle-based sensor arrays. These arrays are comprised of cationic quantum dots (QDs) and gold nanoparticles (AuNPs) that interact with cell surfaces to generate distinguishable fluorescence responses based on cell surface signatures. The use of QDs as the recognition elements as well as the signal transducers presents the potential for direct visualization of selective cell surface interactions. Notably...

  1. Functional Proteomics Screen Enables Enrichment of Distinct Cell Types from Human Pancreatic Islets

    OpenAIRE

    Revital Sharivkin; Walker, Michael D.; Yoav Soen

    2015-01-01

    The current world-wide epidemic of diabetes has prompted attempts to generate new sources of insulin-producing cells for cell replacement therapy. An inherent challenge in many of these strategies is the lack of cell-surface markers permitting isolation and characterization of specific cell types from differentiating stem cell populations. Here we introduce an iterative proteomics procedure allowing tag-free isolation of cell types based on their function. Our method detects and associates sp...

  2. Lineage relationship of prostate cancer cell types based on gene expression

    Directory of Open Access Journals (Sweden)

    Ware Carol B

    2011-05-01

    Full Text Available Abstract Background Prostate tumor heterogeneity is a major factor in disease management. Heterogeneity could be due to multiple cancer cell types with distinct gene expression. Of clinical importance is the so-called cancer stem cell type. Cell type-specific transcriptomes are used to examine lineage relationship among cancer cell types and their expression similarity to normal cell types including stem/progenitor cells. Methods Transcriptomes were determined by Affymetrix DNA array analysis for the following cell types. Putative prostate progenitor cell populations were characterized and isolated by expression of the membrane transporter ABCG2. Stem cells were represented by embryonic stem and embryonal carcinoma cells. The cancer cell types were Gleason pattern 3 (glandular histomorphology and pattern 4 (aglandular sorted from primary tumors, cultured prostate cancer cell lines originally established from metastatic lesions, xenografts LuCaP 35 (adenocarcinoma phenotype and LuCaP 49 (neuroendocrine/small cell carcinoma grown in mice. No detectable gene expression differences were detected among serial passages of the LuCaP xenografts. Results Based on transcriptomes, the different cancer cell types could be clustered into a luminal-like grouping and a non-luminal-like (also not basal-like grouping. The non-luminal-like types showed expression more similar to that of stem/progenitor cells than the luminal-like types. However, none showed expression of stem cell genes known to maintain stemness. Conclusions Non-luminal-like types are all representatives of aggressive disease, and this could be attributed to the similarity in overall gene expression to stem and progenitor cell types.

  3. Cell elasticity with altered cytoskeletal architectures across multiple cell types.

    Science.gov (United States)

    Grady, Martha E; Composto, Russell J; Eckmann, David M

    2016-08-01

    The cytoskeleton is primarily responsible for providing structural support, localization and transport of organelles, and intracellular trafficking. The structural support is supplied by actin filaments, microtubules, and intermediate filaments, which contribute to overall cell elasticity to varying degrees. We evaluate cell elasticity in five different cell types with drug-induced cytoskeletal derangements to probe how actin filaments and microtubules contribute to cell elasticity and whether it is conserved across cell type. Specifically, we measure elastic stiffness in primary chondrocytes, fibroblasts, endothelial cells (HUVEC), hepatocellular carcinoma cells (HUH-7), and fibrosarcoma cells (HT 1080) subjected to two cytoskeletal destabilizers: cytochalasin D and nocodazole, which disrupt actin and microtubule polymerization, respectively. Elastic stiffness is measured by atomic force microscopy (AFM) and the disruption of the cytoskeleton is confirmed using fluorescence microscopy. The two cancer cell lines showed significantly reduced elastic moduli values (~0.5kPa) when compared to the three healthy cell lines (~2kPa). Non-cancer cells whose actin filaments were disrupted using cytochalasin D showed a decrease of 60-80% in moduli values compared to untreated cells of the same origin, whereas the nocodazole-treated cells showed no change in elasticity. Overall, we demonstrate actin filaments contribute more to elastic stiffness than microtubules but this result is cell type dependent. Cancer cells behaved differently, exhibiting increased stiffness as well as stiffness variability when subjected to nocodazole. We show that disruption of microtubule dynamics affects cancer cell elasticity, suggesting therapeutic drugs targeting microtubules be monitored for significant elastic changes. PMID:26874250

  4. Lack of gender-specific antibody recognition of products from domains of a var gene implicated in pregnancy-associated Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Jensen, Anja T R; Zornig, Hanne D; Buhmann, Caecilie;

    2003-01-01

    Gender-specific and parity-dependent acquired antibody recognition is characteristic of variant surface antigens (VSA) expressed by chondroitin sulfate A (CSA)-adherent Plasmodium falciparum involved in pregnancy-associated malaria (PAM). However, antibody recognition of recombinant products of a...

  5. Regional immune responses with stage-specific antigen recognition profiles develop in lymph nodes of pigs following Ascaris suum larval migration.

    Science.gov (United States)

    Jungersen, G; Eriksen, L; Nansen, P; Lind, P; Rasmussen, T; Meeusen, E N

    2001-04-01

    The early life-cycle of the pig round worm, Ascaris suum, involves well-defined larval development in the liver, lungs and finally the small intestine. Distinct regional immune responses to larval antigens of A. suum were observed in the draining lymph nodes of immunized and challenged pigs during larval migration. This was reflected in a transient enlargement of the stimulated lymph nodes, due to increases in numbers of B cells and CD4 T cells, and the production of A. suum-specific antibody by antibody secreting cell (ASC) cultures. Larval antigen recognition pattern of antibodies in serum, bile and draining lymph node ASC culture supernatant (ASC-probes) was examined by immunoblotting. This revealed distinct organ-specific recognition patterns of larval-specific antigens by the draining lymph nodes at different times after challenge. In particular, an early larval 42 kDa antigen was recognized specifically by ASC-probes of the liver lymph nodes at 7 but not 14 days postchallenge (pc) which was not detected in other lymph nodes, serum or bile of the same pig. Similarly, a late larval antigen of 34 kDa was uniquely detected by lung and jejunal ASC-probes at 14 days pc. These observations demonstrate how development of distinct regional immune responses in tissues with different antigen stimulation can be monitored with ASC-probes and flow cytometry. PMID:11298295

  6. CTen: a web-based platform for identifying enriched cell types from heterogeneous microarray data

    Directory of Open Access Journals (Sweden)

    Shoemaker Jason E

    2012-09-01

    Full Text Available Abstract Background Interpreting in vivo sampled microarray data is often complicated by changes in the cell population demographics. To put gene expression into its proper biological context, it is necessary to distinguish differential gene transcription from artificial gene expression induced by changes in the cellular demographics. Results CTen (cell type enrichment is a web-based analytical tool which uses our highly expressed, cell specific (HECS gene database to identify enriched cell types in heterogeneous microarray data. The web interface is designed for differential expression and gene clustering studies, and the enrichment results are presented as heatmaps or downloadable text files. Conclusions In this work, we use an independent, cell-specific gene expression data set to assess CTen's performance in accurately identifying the appropriate cell type and provide insight into the suggested level of enrichment to optimally minimize the number of false discoveries. We show that CTen, when applied to microarray data developed from infected lung tissue, can correctly identify the cell signatures of key lymphocytes in a highly heterogeneous environment and compare its performance to another popular bioinformatics tool. Furthermore, we discuss the strong implications cell type enrichment has in the design of effective microarray workflow strategies and show that, by combining CTen with gene expression clustering, we may be able to determine the relative changes in the number of key cell types. CTen is available at http://www.influenza-x.org/~jshoemaker/cten/

  7. Molecular recognition of malachite green by hemoglobin and their specific interactions: insights from in silico docking and molecular spectroscopy.

    Science.gov (United States)

    Peng, Wei; Ding, Fei; Peng, Yu-Kui; Sun, Ying

    2014-01-01

    Malachite green is an organic compound that can be widely used as a dyestuff for various materials; it has also emerged as a controversial agent in aquaculture. Since malachite green is proven to be carcinogenic and mutagenic, it may become a hazard to public health. For this reason, it is urgently required to analyze this controversial dye in more detail. In our current research, the interaction between malachite green and hemoglobin under physiological conditions was investigated by the methods of molecular modeling, fluorescence spectroscopy, circular dichroism (CD) as well as hydrophobic ANS displacement experiments. From the molecular docking, the central cavity of hemoglobin was assigned to possess high-affinity for malachite green, this result was corroborated by time-resolved fluorescence and hydrophobic ANS probe results. The recognition mechanism was found to be of static type, or rather the hemoglobin-malachite green complex formation occurred via noncovalent interactions such as π-π interactions, hydrogen bonds and hydrophobic interactions with an association constant of 10(4) M(-1). Moreover, the results also show that the spatial structure of the biopolymer was changed in the presence of malachite green with a decrease of the α-helix and increase of the β-sheet, turn and random coil suggesting protein damage, as derived from far-UV CD and three-dimensional fluorescence. Results of this work will help to further comprehend the molecular recognition of malachite green by the receptor protein and the possible toxicological profiles of other compounds, which are the metabolites and ramifications of malachite green. PMID:24226412

  8. Differentiation of cancer cell type and phenotype using quantum dot-gold nanoparticle sensor arrays.

    Science.gov (United States)

    Liu, Qian; Yeh, Yi-Cheun; Rana, Subinoy; Jiang, Ying; Guo, Lin; Rotello, Vincent M

    2013-07-01

    We demonstrate rapid and efficient sensing of mammalian cell types and states using nanoparticle-based sensor arrays. These arrays are comprised of cationic quantum dots (QDs) and gold nanoparticles (AuNPs) that interact with cell surfaces to generate distinguishable fluorescence responses based on cell surface signatures. The use of QDs as the recognition elements as well as the signal transducers presents the potential for direct visualization of selective cell surface interactions. Notably, this sensor is unbiased, precluding the requirement of pre-knowledge of cell state biomarkers and thus providing a general approach for phenotypic profiling of cell states, with additional potential for imaging applications. PMID:23022266

  9. A Web-Server of Cell Type Discrimination System

    Directory of Open Access Journals (Sweden)

    Anyou Wang

    2014-01-01

    Full Text Available Discriminating cell types is a daily request for stem cell biologists. However, there is not a user-friendly system available to date for public users to discriminate the common cell types, embryonic stem cells (ESCs, induced pluripotent stem cells (iPSCs, and somatic cells (SCs. Here, we develop WCTDS, a web-server of cell type discrimination system, to discriminate the three cell types and their subtypes like fetal versus adult SCs. WCTDS is developed as a top layer application of our recent publication regarding cell type discriminations, which employs DNA-methylation as biomarkers and machine learning models to discriminate cell types. Implemented by Django, Python, R, and Linux shell programming, run under Linux-Apache web server, and communicated through MySQL, WCTDS provides a friendly framework to efficiently receive the user input and to run mathematical models for analyzing data and then to present results to users. This framework is flexible and easy to be expended for other applications. Therefore, WCTDS works as a user-friendly framework to discriminate cell types and subtypes and it can also be expended to detect other cell types like cancer cells.

  10. A web-server of cell type discrimination system.

    Science.gov (United States)

    Wang, Anyou; Zhong, Yan; Wang, Yanhua; He, Qianchuan

    2014-01-01

    Discriminating cell types is a daily request for stem cell biologists. However, there is not a user-friendly system available to date for public users to discriminate the common cell types, embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and somatic cells (SCs). Here, we develop WCTDS, a web-server of cell type discrimination system, to discriminate the three cell types and their subtypes like fetal versus adult SCs. WCTDS is developed as a top layer application of our recent publication regarding cell type discriminations, which employs DNA-methylation as biomarkers and machine learning models to discriminate cell types. Implemented by Django, Python, R, and Linux shell programming, run under Linux-Apache web server, and communicated through MySQL, WCTDS provides a friendly framework to efficiently receive the user input and to run mathematical models for analyzing data and then to present results to users. This framework is flexible and easy to be expended for other applications. Therefore, WCTDS works as a user-friendly framework to discriminate cell types and subtypes and it can also be expended to detect other cell types like cancer cells. PMID:24578634

  11. An atlas of active enhancers across human cell types and tissues

    DEFF Research Database (Denmark)

    Andersson, Robin; Gebhard, Claudia; Miguel-Escalada, Irene;

    2014-01-01

    strongly related to enhancer activity. The atlas is used to compare regulatory programs between different cells at unprecedented depth, to identify disease-associated regulatory single nucleotide polymorphisms, and to classify cell-type-specific and ubiquitous enhancers. We further explore the utility of...

  12. Nanosilica-based molecularly imprinted polymer nanoshell for specific recognition and determination of rhodamine B in red wine and beverages.

    Science.gov (United States)

    Long, Zerong; Xu, Weiwei; Lu, Yi; Qiu, Hongdeng

    2016-09-01

    A new and facile rhodamine B (RhB)-imprinted polymer nanoshell coating for SiO2 nanoparticles was readily prepared by a combination of silica gel modification and molecular surface imprinting. The RhB-imprinted polymers (RhB-MIPs) were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and UV-vis spectroscopy; the binding properties and selectivity of these MIPs were investigated in detail. The uniformly imprinted nanoparticles displayed a rather thin shell thickness (23nm) with highly effective recognition sites, showing homogenous distribution and monolayer adsorption. The maximum MIP adsorption capacity (Qm) was as high as 45.2mgg(-1), with an adsorption equilibrium time of about 15min at ambient temperature. Dynamic rebinding experiments showed that chemical adsorption is crucial for RhB binding to RhB-MIPs. The adsorption isotherm for RhB-MIPs binding could also be described by the Langmuir equation at different temperatures and pH values. Increasing temperature led to an enhanced Qm, a decreased dissociation constant (K'd), and a more negative free energy (ΔG), indicating that adsorption is favored at higher temperatures. Moreover, the adsorption capacity of RhB was remarkably affected by pH. At pH>7, the adsorption of RhB was driven by hydrogen bonding interactions, while at pHwine and beverages using three levels of spiking, with recoveries in the range of 91.6-93.1% and relative standard deviations lower than 4.1%. PMID:27372912

  13. Dual Recognition Strategy for Specific and Sensitive Detection of Bacteria Using Aptamer-Coated Magnetic Beads and Antibiotic-Capped Gold Nanoclusters.

    Science.gov (United States)

    Cheng, Dan; Yu, Mengqun; Fu, Fei; Han, Weiye; Li, Gan; Xie, Jianping; Song, Yang; Swihart, Mark T; Song, Erqun

    2016-01-01

    Food poisoning and infectious diseases caused by pathogenic bacteria such as Staphylococcus aureus (SA) are serious public health concerns. A method of specific, sensitive, and rapid detection of such bacteria is essential and important. This study presents a strategy that combines aptamer and antibiotic-based dual recognition units with magnetic enrichment and fluorescent detection to achieve specific and sensitive quantification of SA in authentic specimens and in the presence of much higher concentrations of other bacteria. Aptamer-coated magnetic beads (Apt-MB) were employed for specific capture of SA. Vancomycin-stabilized fluorescent gold nanoclusters (AuNCs@Van) were prepared by a simple one-step process and used for sensitive quantification of SA in the range of 32-10(8) cfu/mL with the detection limit of 16 cfu/mL via a fluorescence intensity measurement. And using this strategy, about 70 cfu/mL of SA in complex samples (containing 3 × 10(8) cfu/mL of other different contaminated bacteria) could be successfully detected. In comparison to prior studies, the developed strategy here not only simplifies the preparation procedure of the fluorescent probes (AuNCs@Van) to a great extent but also could sensitively quantify SA in the presence of much higher concentrations of other bacteria directly with good accuracy. Moreover, the aptamer and antibiotic used in this strategy are much less expensive and widely available compared to common-used antibodies, making it cost-effective. This general aptamer- and antibiotic-based dual recognition strategy, combined with magnetic enrichment and fluorescent detection of trace bacteria, shows great potential application in monitoring bacterial food contamination and infectious diseases. PMID:26641108

  14. Purification and characterization of a 1,3-β-D-glucan recognition protein from Antheraea pernyi larve that is regulated after a specific immune challenge

    Directory of Open Access Journals (Sweden)

    Ma Youlei

    2013-05-01

    Full Text Available Pattern recognition receptors are known to participate in theactivation of Prophenoloxidase system. In this study, a1,3-β-D-glucan recognition protein was detected for the firsttime in Antheraea pernyi larvae (Ap-βGRP. Ap-βGRP waspurified to 99.9% homogeneity from the hemolymph usingtraditional chromatographic methods. Ap-βGRP specificallybind 1,3-β-D-glucan and yeast, but not E. coli or M. luteus.The 1,3-β-D-glucan dependent phenoloxidase (PO activity ofthe hemolymph inhibited by anti-Ap-βGRP antibody could berecovered by addition of purified Ap-βGRP. These resultsdemonstrate that Ap-βGRP acts as a biosensor of 1,3-β-Dglucanto trigger the Prophenoloxidase system. A trace mountof 1,3-β-D-glucan or Ap-βGRP alone was unable to trigger theproPO system, but they both did. Ap-βGRP was specificallydegraded following the activation of proPO with 1,3-β-Dglucan.These results indicate the variation in the amount ofAp-βGRP after specific immune challenge in A. pernyihemolymph is an important regulation mechanism to immuneresponse. [BMB Reports 2013; 46(5: 264-269

  15. Specific Recognition of Breast Cancer Cells In Vitro Using Near Infrared-Emitting Long-Persistence Luminescent Zn3Ga2Ge2O10:Cr3+Nanoprobes

    Institute of Scientific and Technical Information of China (English)

    Jinlei Li; Junpeng Shi; Jiangshan Shen; Huizi Man; Mingxi Wang; Hongwu Zhang

    2015-01-01

    In this paper, near-infrared emitting long-persistence luminescent Zn3Ga2Ge2O10:Cr3? (ZGG) nanoparticles with diameters of 30–100 nm and bright luminescence were prepared by a sol–gel synthesis method. After the surface amination, the nanoparticles were further bioconjugated with breast cancer-specific monoclonal antibody (anti-EpCAM) to form ZGG-EpCAM nanoprobes which can specifically target breast cancer cell lines (MCF7) in vitro. The results of in vitro images show that the luminescence signals from the cells treated with ZGG-EpCAM nanoprobes are stronger than those from cells treated with ZGG-unconjugated antibody, indicating that the prepared ZGG-EpCAM nanoprobes pos-sessed excellent specific recognition capability. Furthermore, due to their long afterglow properties, the imaging could persist more than 1 h. Therefore, these nanoprobes could not only provide a high specificity detection method for cancer cells but also realize the long-time monitoring. Developed near-infrared emitting long-persistence luminescent nanoprobes will be expected to find new perspectives for cell therapy research and diagnosis applications.

  16. Allergen-specific IgG antibodies purified from mite-allergic patients sera block the IgE recognition of Dermatophagoides pteronyssinus antigens: an in vitro study.

    Science.gov (United States)

    Siman, Isabella Lima; de Aquino, Lais Martins; Ynoue, Leandro Hideki; Miranda, Juliana Silva; Pajuaba, Ana Claudia Arantes Marquez; Cunha-Júnior, Jair Pereira; Silva, Deise Aparecida Oliveira; Taketomi, Ernesto Akio

    2013-01-01

    One of the purposes of specific immunotherapy (SIT) is to modulate humoral immune response against allergens with significant increases in allergen-specific IgG levels, commonly associated with blocking activity. The present study investigated in vitro blocking activity of allergen-specific IgG antibodies on IgE reactivity to Dermatophagoides pteronyssinus (Dpt) in sera from atopic patients. Dpt-specific IgG antibodies were purified by ammonium sulfate precipitation followed by protein-G affinity chromatography. Purity was checked by SDS-PAGE and immunoreactivity by slot-blot and immunoblot assays. The blocking activity was evaluated by inhibition ELISA. The electrophoretic profile of the ammonium sulfate precipitated fraction showed strongly stained bands in ligand fraction after chromatography, compatible with molecular weight of human whole IgG molecule. The purity degree was confirmed by detecting strong immunoreactivity to IgG, negligible to IgA, and no reactivity to IgE and IgM. Dpt-specific IgG fraction was capable of significantly reducing levels of IgE anti-Dpt, resulting in 35%-51% inhibition of IgE reactivity to Dpt in atopic patients sera. This study showed that allergen-specific IgG antibodies purified from mite-allergic patients sera block the IgE recognition of Dermatophagoides pteronyssinus antigens. This approach reinforces that intermittent measurement of serum allergen-specific IgG antibodies will be an important objective laboratorial parameter that will help specialists to follow their patients under SIT. PMID:24069042

  17. Allergen-Specific IgG Antibodies Purified from Mite-Allergic Patients Sera Block the IgE Recognition of Dermatophagoides pteronyssinus Antigens: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    Isabella Lima Siman

    2013-01-01

    Full Text Available One of the purposes of specific immunotherapy (SIT is to modulate humoral immune response against allergens with significant increases in allergen-specific IgG levels, commonly associated with blocking activity. The present study investigated in vitro blocking activity of allergen-specific IgG antibodies on IgE reactivity to Dermatophagoides pteronyssinus (Dpt in sera from atopic patients. Dpt-specific IgG antibodies were purified by ammonium sulfate precipitation followed by protein-G affinity chromatography. Purity was checked by SDS-PAGE and immunoreactivity by slot-blot and immunoblot assays. The blocking activity was evaluated by inhibition ELISA. The electrophoretic profile of the ammonium sulfate precipitated fraction showed strongly stained bands in ligand fraction after chromatography, compatible with molecular weight of human whole IgG molecule. The purity degree was confirmed by detecting strong immunoreactivity to IgG, negligible to IgA, and no reactivity to IgE and IgM. Dpt-specific IgG fraction was capable of significantly reducing levels of IgE anti-Dpt, resulting in 35%–51% inhibition of IgE reactivity to Dpt in atopic patients sera. This study showed that allergen-specific IgG antibodies purified from mite-allergic patients sera block the IgE recognition of Dermatophagoides pteronyssinus antigens. This approach reinforces that intermittent measurement of serum allergen-specific IgG antibodies will be an important objective laboratorial parameter that will help specialists to follow their patients under SIT.

  18. Predicting cell types and genetic variations contributing to disease by combining GWAS and epigenetic data.

    Directory of Open Access Journals (Sweden)

    Anna Gerasimova

    Full Text Available Genome-wide association studies (GWASs identify single nucleotide polymorphisms (SNPs that are enriched in individuals suffering from a given disease. Most disease-associated SNPs fall into non-coding regions, so that it is not straightforward to infer phenotype or function; moreover, many SNPs are in tight genetic linkage, so that a SNP identified as associated with a particular disease may not itself be causal, but rather signify the presence of a linked SNP that is functionally relevant to disease pathogenesis. Here, we present an analysis method that takes advantage of the recent rapid accumulation of epigenomics data to address these problems for some SNPs. Using asthma as a prototypic example; we show that non-coding disease-associated SNPs are enriched in genomic regions that function as regulators of transcription, such as enhancers and promoters. Identifying enhancers based on the presence of the histone modification marks such as H3K4me1 in different cell types, we show that the location of enhancers is highly cell-type specific. We use these findings to predict which SNPs are likely to be directly contributing to disease based on their presence in regulatory regions, and in which cell types their effect is expected to be detectable. Moreover, we can also predict which cell types contribute to a disease based on overlap of the disease-associated SNPs with the locations of enhancers present in a given cell type. Finally, we suggest that it will be possible to re-analyze GWAS studies with much higher power by limiting the SNPs considered to those in coding or regulatory regions of cell types relevant to a given disease.

  19. Droplet electrochemical study of the pH dependent redox behavior of novel ferrocenyl-carborane derivatives and its application in specific cancer cell recognition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Changyu [State Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory), Southeast University, Nanjing 210096 (China); Shah, Afzal [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Ye, Hongde [State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093 (China); Chen, Xiao; Ye, Jing; Jiang, Hui [State Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory), Southeast University, Nanjing 210096 (China); Chen, Baoan [Department of Hematology, the Affiliated Zhongda Hospital, Clinical Medical School, Southeast University, Nanjing 210009 (China); Wang, Xuemei, E-mail: xuewang@seu.edu.cn [State Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory), Southeast University, Nanjing 210096 (China); Yan, Hong, E-mail: hyan1965@nju.edu.cn [State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093 (China)

    2015-02-01

    Highlights: • Electrochemical behaviors of novel ferrocenyl based carboranes (FcCB) were explored with a droplet system. • The shifts of peak potentials with changes of pH values indicated the involvement of proton during electron transfer reaction. • Normal cells and cancer cells could be specifically recognized by using FcCB as probe. • This electrochemical method in a droplet shows great potential application for relevant diagnostics of clinical samples. - Abstract: Novel ferrocenyl based carboranes (FcCBs) and their distinguish behavior for cancer cell recognition have been explored in this contribution. The voltammetric study in a droplet of 10 μL placed on the surface of a glassy carbon electrode demonstrates the excellent electrochemical behavior of FcCBs, which could be further exploited for establishing the promising and sensitive biosensors. The FcCBs’ redox behavior is examined in a wide pH range, and square wave voltammetry revealed the reversible and irreversible nature of first and second anodic peaks. The obvious shifts in peak potentials corresponding with the change of pH values demonstrate the abstraction of electrons to be accompanied with the transfer of protons. By using the droplet electrochemical technique, FcCBs can be employed to distinguish normal and cancer cells with a linear range from 1.0 × 10{sup 3} to 3.0 × 10{sup 4} cells mL{sup −1} and the limit of detection at 800 cells mL{sup −1}. The novel carborane derivatives could be utilized as important potential molecular probes for specific recognition of cancer cells like leukemia cells from normal cells.

  20. Droplet electrochemical study of the pH dependent redox behavior of novel ferrocenyl-carborane derivatives and its application in specific cancer cell recognition

    International Nuclear Information System (INIS)

    Highlights: • Electrochemical behaviors of novel ferrocenyl based carboranes (FcCB) were explored with a droplet system. • The shifts of peak potentials with changes of pH values indicated the involvement of proton during electron transfer reaction. • Normal cells and cancer cells could be specifically recognized by using FcCB as probe. • This electrochemical method in a droplet shows great potential application for relevant diagnostics of clinical samples. - Abstract: Novel ferrocenyl based carboranes (FcCBs) and their distinguish behavior for cancer cell recognition have been explored in this contribution. The voltammetric study in a droplet of 10 μL placed on the surface of a glassy carbon electrode demonstrates the excellent electrochemical behavior of FcCBs, which could be further exploited for establishing the promising and sensitive biosensors. The FcCBs’ redox behavior is examined in a wide pH range, and square wave voltammetry revealed the reversible and irreversible nature of first and second anodic peaks. The obvious shifts in peak potentials corresponding with the change of pH values demonstrate the abstraction of electrons to be accompanied with the transfer of protons. By using the droplet electrochemical technique, FcCBs can be employed to distinguish normal and cancer cells with a linear range from 1.0 × 103 to 3.0 × 104 cells mL−1 and the limit of detection at 800 cells mL−1. The novel carborane derivatives could be utilized as important potential molecular probes for specific recognition of cancer cells like leukemia cells from normal cells

  1. A new family of zinc finger proteins in petunia: structure, DNA sequence recognition, and floral organ-specific expression.

    Science.gov (United States)

    Takatsuji, H; Nakamura, N; Katsumoto, Y

    1994-07-01

    We have previously cloned a gene for a zinc finger protein (EPF1) that is expressed specifically in petals and interacts with the promoter region of the 5-enolpyruvylshikimate-3-phosphate synthase gene in petunia. In an attempt to isolate genes encoding additional factors that interact with this promoter, we cloned four novel genes encoding zinc finger proteins (EPF2-5a, EPF2-5b, EPF2-4, and EPF2-7). Sequence analyses revealed that overall similarity between the EPF1 and the EPF2 protein family, except in the zinc finger motifs and the basic amino acid cluster, was very low, suggesting that the two groups belong to different subfamilies. DNA binding specificities of EPF1, EPF2-5, and EPF2-4 were very similar, as expected from the conserved zinc finger motifs. However, EPF2-7 showed no binding to the probes tested in spite of having the conserved motifs. DNA binding studies using a series of spacing mutant probes suggested a binding mechanism in which the EPF proteins recognize spacings in target DNA. RNA gel blot analyses and histochemical analyses with a promoter and beta-glucuronidase fusion revealed that expression of the EPF2-5 gene (EPF2-5) was petal and stamen specific. Expression of the EPF2-7 gene (EPF2-7) was sepal and petal specific and localized in vascular tissues. The preferential expression in two adjacent floral organs raises the possibility that these genes are downstream transcription factors of floral homeotic genes. PMID:8069106

  2. The specific DNA recognition sequence of the bovine papillomavirus E2 protein is an E2-dependent enhancer.

    OpenAIRE

    Hawley-Nelson, P; Androphy, E J; Lowy, D R; Schiller, J T

    1988-01-01

    The upstream regulatory region (URR) of the bovine papillomavirus (BPV) genome contains an enhancer that is activated by a BPV E2 gene product. We have previously found that a bacterially derived E2 fusion protein specifically interacted with several fragments of URR DNA, suggesting that E2 may activate transcription by directly binding to the enhancer. Each of the bound fragments contains at least one copy of a conserved motif (ACCN6GGT). To determine if this motif is required and sufficient...

  3. Laser-assisted Microdissection (LAM) as a Tool for Transcriptional Profiling of Individual Cell Types.

    Science.gov (United States)

    Florez Rueda, Ana Marcela; Grossniklaus, Ueli; Schmidt, Anja

    2016-01-01

    The understanding of developmental processes at the molecular level requires insights into transcriptional regulation, and thus the transcriptome, at the level of individual cell types. While the methods described here are generally applicable to a wide range of species and cell types, our research focuses on plant reproduction. Plant cultivation and seed production is of crucial importance for human and animal nutrition. A detailed understanding of the regulatory networks that govern the formation of the reproductive lineage (germline) and ultimately of seeds is a precondition for the targeted manipulation of plant reproduction. In particular, the engineering of apomixis (asexual reproduction through seeds) into crop plants promises great improvements, as it leads to the formation of clonal seeds that are genetically identical to the mother plant. Consequently, the cell types of the female germline are of major importance for the understanding and engineering of apomixis. However, as the corresponding cells are deeply embedded within the floral tissues, they are very difficult to access for experimental analyses, including cell-type specific transcriptomics. To overcome this limitation, sections of individual cells can be isolated by laser-assisted microdissection (LAM). While LAM in combination with transcriptional profiling allows the identification of genes and pathways active in any cell type with high specificity, establishing a suitable protocol can be challenging. Specifically, the quality of RNA obtained after LAM can be compromised, especially when small, single cells are targeted. To circumvent this problem, we have established a workflow for LAM that reproducibly results in high RNA quality that is well suitable for transcriptomics, as exemplified here by the isolation of cells of the female germline in apomictic Boechera. In this protocol, procedures are described for tissue preparation and LAM, also with regard to RNA extraction and quality control

  4. Production in vitro of antibodies directed against alloantigen-specific recognition sites on T cells and on lymphocytotoxic HLA antibodies.

    Science.gov (United States)

    Singal, D P; Blajchman, M A; Joseph, S; Roberge, B; Smith, E K; Ludwin, D

    1988-01-01

    We have examined the mechanism of immunological unresponsiveness in a recipient (P.S.) with a long-term functioning renal allograft. P.S., whose HLA type is A1, A30; B14, B18; DR1, w8; DRw52; DQw1 and in whose serum we had earlier demonstrated the presence of antiidiotypic antibodies, received a kidney from a cadaver donor of HLA type A1, A10, B8 in March, 1970. Peripheral blood B lymphocytes from the patient were transformed with Epstein-Barr virus (EBV), and by the cluster-picking technique a B cell line was propagated with continuous production of antibodies. Antiidiotypic antibodies with two distinct biological functions were demonstrable; one specifically inhibiting the lymphocytotoxic activity of anti-HLA-B8, B5, and DR3 reference typing sera, and the other specifically inhibiting proliferative responses in MLC of the recipient's lymphocytes and of third party cells sharing B14, DR1, DQw1 with the patient against stimulator cells carrying B8, DR3 antigens. Immunodepletion experiments demonstrated that the inhibitory activity was associated with the IgM fraction. Absorption experiments suggested that different antibodies may be responsible for the inhibition of lymphocytotoxic activity of anti-HLA sera and of the proliferative responses in MLC. Antiidiotypic antibodies have been postulated to be important in maintaining allograft tolerance in vivo, thereby enhancing renal allograft survival. The availability of such antibodies in large quantities, produced in vitro, could provide antisera for the immunochemical characterization of specific idiotypic receptors on immunoglobulins and T lymphocytes. PMID:2970351

  5. Development of peptide-based lineage-specific serology for chronic Chagas disease: geographical and clinical distribution of epitope recognition.

    Directory of Open Access Journals (Sweden)

    Tapan Bhattacharyya

    2014-05-01

    Full Text Available BACKGROUND: Chagas disease, caused by infection with the protozoan Trypanosoma cruzi, remains a serious public health issue in Latin America. Genetically diverse, the species is sub-divided into six lineages, known as TcI-TcVI, which have disparate geographical and ecological distributions. TcII, TcV, and TcVI are associated with severe human disease in the Southern Cone countries, whereas TcI is associated with cardiomyopathy north of the Amazon. T. cruzi persists as a chronic infection, with cardiac and/or gastrointestinal symptoms developing years or decades after initial infection. Identifying an individual's history of T. cruzi lineage infection directly by genotyping of the parasite is complicated by the low parasitaemia and sequestration in the host tissues. METHODOLOGY/PRINCIPAL FINDINGS: We have applied here serology against lineage-specific epitopes of the T. cruzi surface antigen TSSA, as an indirect approach to allow identification of infecting lineage. Chagasic sera from chronic patients from a range of endemic countries were tested by ELISA against synthetic peptides representing lineage-specific TSSA epitopes bound to avidin-coated ELISA plates via a biotin labelled polyethylene glycol-glycine spacer to increase rotation and ensure each amino acid side chain could freely interact with their antibodies. 79/113 (70% of samples from Brazil, Bolivia, and Argentina recognised the TSSA epitope common to lineages TcII/TcV/TcVI. Comparison with clinical information showed that a higher proportion of Brazilian TSSApep-II/V/VI responders had ECG abnormalities than non-responders (38% vs 17%; p<0.0001. Among northern chagasic sera 4/20 (20% from Ecuador reacted with this peptide; 1/12 Venezuelan and 1/34 Colombian samples reacted with TSSApep-IV. In addition, a proposed TcI-specific epitope, described elsewhere, was demonstrated here to be highly conserved across lineages and therefore not applicable to lineage-specific serology. CONCLUSIONS

  6. Anticodon recognition in evolution: switching tRNA specificity of an aminoacyl-tRNA synthetase by site-directed peptide transplantation.

    Science.gov (United States)

    Brevet, Annie; Chen, Josiane; Commans, Stéphane; Lazennec, Christine; Blanquet, Sylvain; Plateau, Pierre

    2003-08-15

    The highly conserved aspartyl-, asparaginyl-, and lysyl-tRNA synthetases compose one subclass of aminoacyl-tRNA synthetases, called IIb. The three enzymes possess an OB-folded extension at their N terminus. The function of this extension is to specifically recognize the anticodon triplet of the tRNA. Three-dimensional models of bacterial aspartyl- and lysyl-tRNA synthetases complexed to tRNA indicate that a rigid scaffold of amino acid residues along the five beta-strands of the OB-fold accommodates the base U at the center of the anticodon. The binding of the adjacent anticodon bases occurs through interactions with a flexible loop joining strands 4 and 5 (L45). As a result, a switching of the specificity of lysyl-tRNA synthetase from tRNALys (anticodon UUU) toward tRNAAsp (GUC) could be attempted by transplanting the small loop L45 of aspartyl-tRNA synthetase inside lysyl-tRNA synthetase. Upon this transplantation, lysyl-tRNA synthetase loses its capacity to aminoacylate tRNALys. In exchange, the chimeric enzyme acquires the capacity to charge tRNAAsp with lysine. Upon giving the tRNAAsp substrate the discriminator base of tRNALys, the specificity shift is improved. The change of specificity was also established in vivo. Indeed, the transplanted lysyl-tRNA synthetase succeeds in suppressing a missense Lys --> Asp mutation inserted into the beta-lactamase gene. These results functionally establish that sequence variation in a small peptide region of subclass IIb aminoacyl-tRNA synthetases contributes to specification of nucleic acid recognition. Because this peptide element is not part of the core catalytic structure, it may have evolved independently of the active sites of these synthetases. PMID:12766171

  7. A higher concentration of an antigen within the nucleolus may prevent its proper recognition by specific antibodies

    Directory of Open Access Journals (Sweden)

    EV Sheval

    2009-06-01

    Full Text Available Transient transfection of HeLa cells with a plasmid encoding the full-length human fibrillarin fused to a green fluorescent protein (GFP resulted in two major patterns of intensity of the nucleolar labeling for the chimeric protein: weak and strong. Both patterns were maintained in fibrillarin-GFP expressing cells after fixation with formaldehyde. When the fixed fibrillarin-GFP expressing cells were used for immunolabeling with antibodies to fibrillarin, only the nucleoli with a weak GFP-signal became strongly labeled, whereas those with the heavy signals were only lightly stained, if at all. A similar pattern was observed if the cells were immunolabeled with antibodies to GFP. These observations suggest that an increase in antigen accumulation within the nucleolus, which could take place under various physiological or experimental conditions, could prevent the antigen from being recognized by specific antibodies. These results have implications regarding contradictory data on localization of various nucleolar antigens obtained by conventional immunocytochemistry.

  8. Recognition of breast cancer cells by CD8+ cytotoxic T-cell clones specific for NY-BR-1.

    Science.gov (United States)

    Wang, Wei; Epler, Jennifer; Salazar, Lupe G; Riddell, Stanley R

    2006-07-01

    Immunotherapy for breast cancer using cytotoxic T cells (CTL) is hindered by the lack of well-characterized breast cancer antigens that are expressed in most breast tumor cells and recognized by CD8+ CTL. A recently described breast tissue differentiation antigen, NY-BR-1, is expressed in >80% breast tumors and elicits a humoral response in a subset of breast cancer patients. To identify potential NY-BR-1 epitopes that are recognized by CTL, CD8+ T cells were stimulated in vitro with autologous dendritic cells pulsed with NY-BR-1 peptides that were predicted to bind to HLA-A2. In multiple normal female donors and breast cancer patients, specific CD8+ CTL responses were detected by enzyme-linked immunospot assay against several NY-BR-1 peptides after two cycles of stimulation. CD8+ CTL clones against three NY-BR-1 epitopes were isolated and recognized peptide-pulsed target cells with high avidity. T-cell clones specific for one of the NY-BR-1 epitopes (p904) also recognized breast tumor cells expressing NY-BR-1, NY-BR-1(-) cells transfected with a cDNA encoding the NY-BR-1 protein, and autologous dendritic cells pulsed with opsonized NY-BR-1+ breast tumor cells. Taken together, these results show that the p904 epitope derived from NY-BR-1 is efficiently processed and presented endogenously and identify NY-BR-1 as a promising target for T-cell-based immunotherapy for breast cancer. PMID:16818660

  9. Impaired spatial learning strategies and novel object recognition in mice haploinsufficient for the dual specificity tyrosine-regulated kinase-1A (Dyrk1A.

    Directory of Open Access Journals (Sweden)

    Glòria Arqué

    Full Text Available BACKGROUND: Pathogenic aneuploidies involve the concept of dosage-sensitive genes leading to over- and underexpression phenotypes. Monosomy 21 in human leads to mental retardation and skeletal, immune and respiratory function disturbances. Most of the human condition corresponds to partial monosomies suggesting that critical haploinsufficient genes may be responsible for the phenotypes. The DYRK1A gene is localized on the human chromosome 21q22.2 region, and has been proposed to participate in monosomy 21 phenotypes. It encodes a dual-specificity kinase involved in neuronal development and in adult brain physiology, but its possible role as critical haploinsufficient gene in cognitive function has not been explored. METHODOLOGY/PRINCIPAL FINDINGS: We used mice heterozygous for a Dyrk1A targeted mutation (Dyrk1A+/- to investigate the implication of this gene in the cognitive phenotypes of monosomy 21. Performance of Dyrk1A+/- mice was assayed 1/ in a navigational task using the standard hippocampally related version of the Morris water maze, 2/ in a swimming test designed to reveal potential kinesthetic and stress-related behavioral differences between control and heterozygous mice under two levels of aversiveness (25 degrees C and 17 degrees C and 3/ in a long-term novel object recognition task, sensitive to hippocampal damage. Dyrk1A+/- mice showed impairment in the development of spatial learning strategies in a hippocampally-dependent memory task, they were impaired in their novel object recognition ability and were more sensitive to aversive conditions in the swimming test than euploid control animals. CONCLUSIONS/SIGNIFICANCE: The present results are clear examples where removal of a single gene has a profound effect on phenotype and indicate that haploinsufficiency of DYRK1A might contribute to an impairment of cognitive functions and stress coping behavior in human monosomy 21.

  10. Unraveling the substrate recognition mechanism and specificity of the unusual glycosyl hydrolase family 29 BT2192 from Bacteroides thetaiotaomicron.

    Science.gov (United States)

    Guillotin, Laure; Lafite, Pierre; Daniellou, Richard

    2014-03-11

    Glycosyl hydrolase (GH) family 29 (CAZy database) consists of retaining α-l-fucosidases. We have identified BT2192, a protein from Bacteroides thetaiotaomicron, as the first GH29 representative exhibiting both weak α-l-fucosidase and β-d-galactosidase activities. Determination and analysis of X-ray structures of BT2192 in complex with β-d-galactoside competitive inhibitors showed a new binding mode different from that of known GH29 enzymes. Three point mutations, specific to BT2192, prevent the canonical GH29 substrate α-l-fucose from binding efficiently to the fucosidase-like active site relative to other GH29 enzymes. β-d-Galactoside analogues bind and interact in a second pocket, which is not visible in other reported GH29 structures. Molecular simulations helped in the assessment of the flexibility of both substrates in their respective pocket. Hydrolysis of the fucosyl moiety from the putative natural substrates like 3-fucosyllactose or Lewis(X) antigen would be mainly due to the efficient interactions with the galactosyl moiety, in the second binding site, located more than 6-7 Å apart. PMID:24527659

  11. Differential recognition of calmodulin-enzyme complexes by a conformation-specific anti-calmodulin monoclonal antibody

    International Nuclear Information System (INIS)

    An anti-calmodulin monoclonal antibody having an absolute requirement for Ca2+ has been produced from mice immunized with a mixture of calmodulin and calmodulin-binding proteins. Radioimmune assays were developed for the determination of its specificity. The epitope for this antibody resides on the COOH-terminal half of the mammalian protein. Plant calmodulin or toponin C had little reactivity. The apparent affinity of the antibody for calmodulin was increased approximately 60-fold in the presence of heart calmodulin-dependent phosphodiesterase. The presence of heart phosphodiesterase in the radioimmune assay greatly enhanced the sensitivity for calmodulin. The intrinsic calmodulin subunit of phosphorylase kinase and calmodulin which was bound to brain phosphodiesterases was also recognized with high affinity by the antibody. In direct binding experiments, most of the calmodulin-binding proteins studied were unreactive with the antibody. This selectivity allowed purification of heart and two brain calmodulin-dependent cyclic nucleotide phosphodiesterase isozymes on immobilized antibody affinity columns. The data suggest that the binding of ligands to Ca2+/calmodulin induce conformation changes in calmodulin which alter reactivity with the anti-calmodulin monoclonal antibody. The differential antibody reactivity toward calmodulin-enzyme complexes indicates that target proteins either induce very different conformations in calmodulin and/or interact with different geometries relative to the antibody binding site. The anti-calmodulin monoclonal antibody should be useful for the purification of other calmodulin-dependent phosphodiesterases as well as isozymes of phosphorylase kinase

  12. Fully automatized renal parenchyma volumetry using a support vector machine based recognition system for subject-specific probability map generation in native MR volume data

    International Nuclear Information System (INIS)

    In epidemiological studies as well as in clinical practice the amount of produced medical image data strongly increased in the last decade. In this context organ segmentation in MR volume data gained increasing attention for medical applications. Especially in large-scale population-based studies organ volumetry is highly relevant requiring exact organ segmentation. Since manual segmentation is time-consuming and prone to reader variability, large-scale studies need automatized methods to perform organ segmentation. Fully automatic organ segmentation in native MR image data has proven to be a very challenging task. Imaging artifacts as well as inter- and intrasubject MR-intensity differences complicate the application of supervised learning strategies. Thus, we propose a modularized framework of a two-stepped probabilistic approach that generates subject-specific probability maps for renal parenchyma tissue, which are refined subsequently by using several, extended segmentation strategies. We present a three class-based support vector machine recognition system that incorporates Fourier descriptors as shape features to recognize and segment characteristic parenchyma parts. Probabilistic methods use the segmented characteristic parenchyma parts to generate high quality subject-specific parenchyma probability maps. Several refinement strategies including a final shape-based 3D level set segmentation technique are used in subsequent processing modules to segment renal parenchyma. Furthermore, our framework recognizes and excludes renal cysts from parenchymal volume, which is important to analyze renal functions. Volume errors and Dice coefficients show that our presented framework outperforms existing approaches. (paper)

  13. Fully automatized renal parenchyma volumetry using a support vector machine based recognition system for subject-specific probability map generation in native MR volume data

    Science.gov (United States)

    Gloger, Oliver; Tönnies, Klaus; Mensel, Birger; Völzke, Henry

    2015-11-01

    In epidemiological studies as well as in clinical practice the amount of produced medical image data strongly increased in the last decade. In this context organ segmentation in MR volume data gained increasing attention for medical applications. Especially in large-scale population-based studies organ volumetry is highly relevant requiring exact organ segmentation. Since manual segmentation is time-consuming and prone to reader variability, large-scale studies need automatized methods to perform organ segmentation. Fully automatic organ segmentation in native MR image data has proven to be a very challenging task. Imaging artifacts as well as inter- and intrasubject MR-intensity differences complicate the application of supervised learning strategies. Thus, we propose a modularized framework of a two-stepped probabilistic approach that generates subject-specific probability maps for renal parenchyma tissue, which are refined subsequently by using several, extended segmentation strategies. We present a three class-based support vector machine recognition system that incorporates Fourier descriptors as shape features to recognize and segment characteristic parenchyma parts. Probabilistic methods use the segmented characteristic parenchyma parts to generate high quality subject-specific parenchyma probability maps. Several refinement strategies including a final shape-based 3D level set segmentation technique are used in subsequent processing modules to segment renal parenchyma. Furthermore, our framework recognizes and excludes renal cysts from parenchymal volume, which is important to analyze renal functions. Volume errors and Dice coefficients show that our presented framework outperforms existing approaches.

  14. Gender and ethnicity specific generic elastic models from a single 2D image for novel 2D pose face synthesis and recognition.

    Science.gov (United States)

    Heo, Jingu; Savvides, Marios

    2012-12-01

    In this paper, we propose a novel method for generating a realistic 3D human face from a single 2D face image for the purpose of synthesizing new 2D face images at arbitrary poses using gender and ethnicity specific models. We employ the Generic Elastic Model (GEM) approach, which elastically deforms a generic 3D depth-map based on the sparse observations of an input face image in order to estimate the depth of the face image. Particularly, we show that Gender and Ethnicity specific GEMs (GE-GEMs) can approximate the 3D shape of the input face image more accurately, achieving a better generalization of 3D face modeling and reconstruction compared to the original GEM approach. We qualitatively validate our method using publicly available databases by showing each reconstructed 3D shape generated from a single image and new synthesized poses of the same person at arbitrary angles. For quantitative comparisons, we compare our synthesized results against 3D scanned data and also perform face recognition using synthesized images generated from a single enrollment frontal image. We obtain promising results for handling pose and expression changes based on the proposed method. PMID:22201062

  15. Recognition of social parasites as nest-mates: adoption of colony-specific host cuticular odours by the paper wasp parasite Polistes sulcifer.

    Science.gov (United States)

    Sledge, M F; Dani, F R; Cervo, R; Dapporto, L; Turillazzi, S

    2001-11-01

    Colonies of the polistine wasp Polistes dominulus are parasitized by the permanent worker-less social parasite Polistes sulcifer. After usurpation of the host colony, parasite females are characterized by a change in the relative proportions of their cuticular hydrocarbons to match those of the host species. In this paper we present evidence from field data and laboratory experiments that P. sulcifer females adopt a colony-specific host odour that facilitates their acceptance by host females of the usurped colony. Presentation experiments demonstrate that parasite females are recognized as foreign individuals by workers of other parasitized nests. We show that the modification of parasite cuticular compounds is sufficient for this recognition. This provides evidence that, after invasion, P. sulcifer queens do not require appeasement or propaganda substances for their acceptance by host colonies. Furthermore, multivariate discriminant analysis of the cuticular hydrocarbon proportions of the parasites after usurpation assigns the parasites together with P. dominulus females of their own host colony. To the authors' knowledge, this is the first confirmation that social parasites adopt colony-specific host odours. PMID:11674873

  16. Identification of specificity determining residues in peptide recognition domains using an information theoretic approach applied to large-scale binding maps

    Directory of Open Access Journals (Sweden)

    Sidhu Sachdev S

    2011-08-01

    Full Text Available Abstract Background Peptide Recognition Domains (PRDs are commonly found in signaling proteins. They mediate protein-protein interactions by recognizing and binding short motifs in their ligands. Although a great deal is known about PRDs and their interactions, prediction of PRD specificities remains largely an unsolved problem. Results We present a novel approach to identifying these Specificity Determining Residues (SDRs. Our algorithm generalizes earlier information theoretic approaches to coevolution analysis, to become applicable to this problem. It leverages the growing wealth of binding data between PRDs and large numbers of random peptides, and searches for PRD residues that exhibit strong evolutionary covariation with some positions of the statistical profiles of bound peptides. The calculations involve only information from sequences, and thus can be applied to PRDs without crystal structures. We applied the approach to PDZ, SH3 and kinase domains, and evaluated the results using both residue proximity in co-crystal structures and verified binding specificity maps from mutagenesis studies. Discussion Our predictions were found to be strongly correlated with the physical proximity of residues, demonstrating the ability of our approach to detect physical interactions of the binding partners. Some high-scoring pairs were further confirmed to affect binding specificity using previous experimental results. Combining the covariation results also allowed us to predict binding profiles with higher reliability than two other methods that do not explicitly take residue covariation into account. Conclusions The general applicability of our approach to the three different domain families demonstrated in this paper suggests its potential in predicting binding targets and assisting the exploration of binding mechanisms.

  17. METHOD FOR AUTOMATIC ANALYSIS OF WHEAT STRAW PULP CELL TYPES

    Directory of Open Access Journals (Sweden)

    Mikko Karjalainen,

    2012-01-01

    Full Text Available Agricultural residues are receiving increasing interest when studying renewable raw materials for industrial use. Residues, generally referred to as nonwood materials, are usually complex materials. Wheat straw is one of the most abundant agricultural residues around the world and is therefore available for extensive industrial use. However, more information of its cell types is needed to utilize wheat straw efficiently in pulp and papermaking. The pulp cell types and particle dimensions of wheat straw were studied, using an optical microscope and an automatic optical fibre analyzer. The role of various cell types in wheat straw pulp and papermaking is discussed. Wheat straw pulp components were categorized according to particle morphology and categorization with an automatic optical analyzer was used to determine wheat straw pulp cell types. The results from automatic optical analysis were compared to those with microscopic analysis and a good correlation was found. Automatic optical analysis was found to be a promising tool for the in-depth analysis of wheat straw pulp cell types.

  18. Regulatory Networks that Direct the Development of Specialized Cell Types in the Drosophila Heart

    OpenAIRE

    Lovato, TyAnna L.; Cripps, Richard M.

    2016-01-01

    The Drosophila cardiac tube was once thought to be a simple linear structure, however research over the past 15 years has revealed significant cellular and molecular complexity to this organ. Prior reviews have focused upon the gene regulatory networks responsible for the specification of the cardiac field and the activation of cardiac muscle structural genes. Here we focus upon highlighting the existence, function, and development of unique cell types within the dorsal vessel, and discuss th...

  19. New human papilloma virus E2 transcription factor mimics: a tripyrrole-peptide conjugate with tight and specific DNA-recognition.

    Directory of Open Access Journals (Sweden)

    Diana E Wetzler

    Full Text Available BACKGROUND: Human papillomavirus (HPV is the main causative agent of cervical cancer, particularly high risk strains such us HPV-16, -18 and -31. The viral encoded E2 protein acts as a transcriptional modulator and exerts a key role in viral DNA replication. Thus, E2 constitutes an attractive target for developing antiviral agents. E2 is a homodimeric protein that interacts with the DNA target through an α-helix of each monomer. However, a peptide corresponding to the DNA recognition helix of HPV-16 E2 binds DNA with lower affinity than its full-length DNA binding domain. Therefore, in an attempt to promote the DNA binding of the isolated peptide, we have designed a conjugate compound of the E2 α-helix peptide and a derivative of the antibiotic distamycin, which involves simultaneous minor- and major-groove interactions. METHODOLOGY/PRINCIPAL FINDINGS: An E2 α-helix peptide-distamycin conjugate was designed and synthesized. It was characterized by NMR and CD spectroscopy, and its DNA binding properties were investigated by CD, DNA melting and gel shift experiments. The coupling of E2 peptide with distamycin does not affect its structural properties. The conjugate improves significantly the affinity of the peptide for specific DNA. In addition, stoichiometric amounts of specific DNA increase meaningfully the helical population of the peptide. The conjugate enhances the DNA binding constant 50-fold, maintaining its specificity. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that peptide-distamycin conjugates are a promising tool to obtain compounds that bind the E2 target DNA-sequences with remarkable affinity and suggest that a bipartite major/minor groove binding scaffold can be a useful approach for therapeutic treatment of HPV infection.

  20. Structural Basis for the Sequence-specific Recognition of Human ISG15 by the NS1 Protein of Influenza B Virus

    Energy Technology Data Exchange (ETDEWEB)

    R Guan; L Ma; P Leonard; B Amer; H Sridharan; C Zhao; R Krug; G Montelione

    2011-12-31

    Interferon-induced ISG15 conjugation plays an important antiviral role against several viruses, including influenza viruses. The NS1 protein of influenza B virus (NS1B) specifically binds only human and nonhuman primate ISG15s and inhibits their conjugation. To elucidate the structural basis for the sequence-specific recognition of human ISG15, we determined the crystal structure of the complex formed between human ISG15 and the N-terminal region of NS1B (NS1B-NTR). The NS1B-NTR homodimer interacts with two ISG15 molecules in the crystal and also in solution. The two ISG15-binding sites on the NS1B-NTR dimer are composed of residues from both chains, namely residues in the RNA-binding domain (RBD) from one chain, and residues in the linker between the RBD and the effector domain from the other chain. The primary contact region of NS1B-NTR on ISG15 is composed of residues at the junction of the N-terminal ubiquitin-like (Ubl) domain and the short linker region between the two Ubl domains, explaining why the sequence of the short linker in human and nonhuman primate ISG15s is essential for the species-specific binding of these ISG15s. In addition, the crystal structure identifies NS1B-NTR binding sites in the N-terminal Ubl domain of ISG15, and shows that there are essentially no contacts with the C-terminal Ubl domain of ISG15. Consequently, NS1B-NTR binding to ISG15 would not occlude access of the C-terminal Ubl domain of ISG15 to its conjugating enzymes. Nonetheless, transfection assays show that NS1B-NTR binding of ISG15 is responsible for the inhibition of interferon-induced ISG15 conjugation in cells.

  1. Computational neuroanatomy: mapping cell-type densities in the mouse brain, simulations from the Allen Brain Atlas

    Science.gov (United States)

    Grange, Pascal

    2015-09-01

    The Allen Brain Atlas of the adult mouse (ABA) consists of digitized expression profiles of thousands of genes in the mouse brain, co-registered to a common three-dimensional template (the Allen Reference Atlas).This brain-wide, genome-wide data set has triggered a renaissance in neuroanatomy. Its voxelized version (with cubic voxels of side 200 microns) is available for desktop computation in MATLAB. On the other hand, brain cells exhibit a great phenotypic diversity (in terms of size, shape and electrophysiological activity), which has inspired the names of some well-studied cell types, such as granule cells and medium spiny neurons. However, no exhaustive taxonomy of brain cell is available. A genetic classification of brain cells is being undertaken, and some cell types have been chraracterized by their transcriptome profiles. However, given a cell type characterized by its transcriptome, it is not clear where else in the brain similar cells can be found. The ABA can been used to solve this region-specificity problem in a data-driven way: rewriting the brain-wide expression profiles of all genes in the atlas as a sum of cell-type-specific transcriptome profiles is equivalent to solving a quadratic optimization problem at each voxel in the brain. However, the estimated brain-wide densities of 64 cell types published recently were based on one series of co-registered coronal in situ hybridization (ISH) images per gene, whereas the online ABA contains several image series per gene, including sagittal ones. In the presented work, we simulate the variability of cell-type densities in a Monte Carlo way by repeatedly drawing a random image series for each gene and solving the optimization problem. This yields error bars on the region-specificity of cell types.

  2. Pattern recognition software and techniques for biological image analysis.

    Directory of Open Access Journals (Sweden)

    Lior Shamir

    Full Text Available The increasing prevalence of automated image acquisition systems is enabling new types of microscopy experiments that generate large image datasets. However, there is a perceived lack of robust image analysis systems required to process these diverse datasets. Most automated image analysis systems are tailored for specific types of microscopy, contrast methods, probes, and even cell types. This imposes significant constraints on experimental design, limiting their application to the narrow set of imaging methods for which they were designed. One of the approaches to address these limitations is pattern recognition, which was originally developed for remote sensing, and is increasingly being applied to the biology domain. This approach relies on training a computer to recognize patterns in images rather than developing algorithms or tuning parameters for specific image processing tasks. The generality of this approach promises to enable data mining in extensive image repositories, and provide objective and quantitative imaging assays for routine use. Here, we provide a brief overview of the technologies behind pattern recognition and its use in computer vision for biological and biomedical imaging. We list available software tools that can be used by biologists and suggest practical experimental considerations to make the best use of pattern recognition techniques for imaging assays.

  3. Specifications

    International Nuclear Information System (INIS)

    As part of the Danish RERTR Program, three fuel elements with LEU U3O8-Al fuel and three fuel elements with LEU U3Si2-Al fuel were manufactured by NUKEM for irradiation testing in the DR-3 reactor at the Risoe National Laboratory in Denmark. The specifications for the elements with U3O8-Al fuel are presented here as an illustration only. Specifications for the elements with U3Si2-Al fuel were very similar. In this example, materials, material numbers, documents numbers, and drawing numbers specific to a single fabricator have been deleted. (author)

  4. One-step preparation of magnetic imprinted nanoparticles adopting dopamine-cupric ion as a co-monomer for the specific recognition of bovine hemoglobin.

    Science.gov (United States)

    Gao, Ruixia; Zhang, Lili; Hao, Yi; Cui, Xihui; Liu, Dechun; Zhang, Min; Tang, Yuhai

    2015-10-01

    A novel magnetic core-shell polydopamine-cupric ion complex imprinted polymer was prepared in one-step through surface imprinting technology, which could specifically recognize bovine hemoglobin from the real blood samples. The polymerization conditions and adsorption performance of the resultant nanomaterials were investigated in detail. The results showed that the cupric ion played an important role in the recognition of template proteins. The saturating adsorption capacity of this kind of imprinted polymers was 2.23 times greater than those of imprinted polymers without cupric ion. The imprinting factor of the imprinted materials was as high as 4.23 for the template molecule. The selective separation bovine hemoglobin from the real blood sample is successfully applied. In addition, the prepared materials had excellent stability and no obvious deterioration after five adsorption-regeneration cycles. Easy preparation, rapid separation, high binding capacity and satisfactory selectivity for the template protein make this polymer attractive in the separation of high-abundance proteins. PMID:26332617

  5. Handbook of Face Recognition

    CERN Document Server

    Li, Stan Z

    2011-01-01

    This highly anticipated new edition provides a comprehensive account of face recognition research and technology, spanning the full range of topics needed for designing operational face recognition systems. After a thorough introductory chapter, each of the following chapters focus on a specific topic, reviewing background information, up-to-date techniques, and recent results, as well as offering challenges and future directions. Features: fully updated, revised and expanded, covering the entire spectrum of concepts, methods, and algorithms for automated face detection and recognition systems

  6. Mobile intention recognition

    CERN Document Server

    Kiefer, Peter

    2011-01-01

    Mobile Intention Recognition addresses problems of practical relevance for mobile system engineers: how can we make mobile assistance systems more intelligent? How can we model and recognize patterns of human behavior which span more than a limited spatial context? This text provides an overview on plan and intention recognition, ranging from the late 1970s to very recent approaches. This overview is unique as it discusses approaches with respect to the specificities of mobile intention recognition. This book covers problems from research on mobile assistance systems using methods from artific

  7. Structure-Based Analysis of Toxoplasma gondii Profilin: A Parasite-Specific Motif Is Required for Recognition by Toll-Like Receptor 11

    Energy Technology Data Exchange (ETDEWEB)

    K Kucera; A Koblansky; L Saunders; K Frederick; E De La Cruz; S Ghosh; Y Modis

    2011-12-31

    Profilins promote actin polymerization by exchanging ADP for ATP on monomeric actin and delivering ATP-actin to growing filament barbed ends. Apicomplexan protozoa such as Toxoplasma gondii invade host cells using an actin-dependent gliding motility. Toll-like receptor (TLR) 11 generates an innate immune response upon sensing T. gondii profilin (TgPRF). The crystal structure of TgPRF reveals a parasite-specific surface motif consisting of an acidic loop, followed by a long {beta}-hairpin. A series of structure-based profilin mutants show that TLR11 recognition of the acidic loop is responsible for most of the interleukin (IL)-12 secretion response to TgPRF in peritoneal macrophages. Deletion of both the acidic loop and the {beta}-hairpin completely abrogates IL-12 secretion. Insertion of the T. gondii acidic loop and {beta}-hairpin into yeast profilin is sufficient to generate TLR11-dependent signaling. Substitution of the acidic loop in TgPRF with the homologous loop from the apicomplexan parasite Cryptosporidium parvum does not affect TLR11-dependent IL-12 secretion, while substitution with the acidic loop from Plasmodium falciparum results in reduced but significant IL-12 secretion. We conclude that the parasite-specific motif in TgPRF is the key molecular pattern recognized by TLR11. Unlike other profilins, TgPRF slows nucleotide exchange on monomeric rabbit actin and binds rabbit actin weakly. The putative TgPRF actin-binding surface includes the {beta}-hairpin and diverges widely from the actin-binding surfaces of vertebrate profilins.

  8. Gene expression profiles and phosphorylation patterns of AMP-activated protein kinase subunits in various mesenchymal cell types

    Institute of Scientific and Technical Information of China (English)

    Wang Yugang; Fan Qiming; Ma Rui; Lin Wentao; Tang Tingting

    2014-01-01

    Background Recent studies on bone have shown an endocrine role of the skeleton,which could be impaired in various human diseases,including osteoporosis,obesity,and diabetes-associated bone diseases.As a sensor and regulator of energy metabolism,AMP-activated protein kinase (AMPK) may also play an important role in the regulation of bone metabolism.The current study aimed to establish the expression profiles and phosphorylation patterns of AMPK subunits in several mesenchymal cell types.Methods Reverse transcription-polymerase chain reaction (PCR) for relative quantification,real-time PCR for absolute quantification,and Western blotting were used to investigate the gene expression profiles and phosphorylation patterns of AMPK subunits in several mesenchymal cell types,including primary human mesenchymal stem cells (hMSCs) and hFOB,Saos-2,C3H/10T1/2,MC3T3-E1,3T3-L1,and C2C12 cells.Results AMPKα1 and AMPKβ1 mRNAs were abundantly expressed in all cell types.AMPKY1 mRNA was abundantly expressed in C3H/10T1/2,MC3T3-E1,3T3-L1,and C2C12 but not detected in human-derived cell types.AMPKY2 mRNA was mildly expressed in all cell types.AMPKα1 protein was highly expressed in all cell types and AMPKα2 protein was highly expressed only in hFOB and Saos-2 cells.AMPKβ1 protein was abundantly expressed in all cell types except for Saos-2,in which AMPKβ2 protein overwhelmed AMPKβ1 expression.AMPKy1 and AMPKY2 proteins were expressed in C3H/10T1/2,MC3T3-E1,3T3-L1,and C2C12 cells and only AMPKY2 protein was expressed in hMSCs,hFOB and Saos2 cells.AMPKα was phosphorylated at Thr172 and Ser485 and AMPKβ1 was phosphorylated at Ser108 and Ser182 in all cell types with a specific pattern in each cell type.Conclusion The combination of AMPK α,β,and Y subunits and phosphorylation of AMPKα (Thr172 and Ser485) and AMPKβ1 (Ser108 and Ser182) showed a specific pattern in each cell type.

  9. Elucidation of the sequence-specific third-strand recognition of four Watson-Crick base pairs in a pyrimidine triple-helix motif: T.AT, C.GC, T.CG, and G.TA.

    OpenAIRE

    Yoon, K; Hobbs, C. A.; Koch, J.; Sardaro, M; Kutny, R; Weis, A L

    1992-01-01

    We report a specific pattern of recognition by third-strand bases for each of the four Watson-Crick base pairs within a pyrimidine triple-helix motif as determined by PAGE: T.AT, C.GC, T.CG, and G.TA. Our recognition scheme for base triplets is in agreement with previous studies. In addition, we identified another triplet, T.CG, under physiological conditions, in which formation of triple helix was observed at equimolar ratios of the third strand and duplex target. Although different nearest-...

  10. Functional proteomics screen enables enrichment of distinct cell types from human pancreatic islets.

    Directory of Open Access Journals (Sweden)

    Revital Sharivkin

    Full Text Available The current world-wide epidemic of diabetes has prompted attempts to generate new sources of insulin-producing cells for cell replacement therapy. An inherent challenge in many of these strategies is the lack of cell-surface markers permitting isolation and characterization of specific cell types from differentiating stem cell populations. Here we introduce an iterative proteomics procedure allowing tag-free isolation of cell types based on their function. Our method detects and associates specific cell-surface markers with particular cell functionality by coupling cell capture on antibody arrays with immunofluorescent labeling. Using this approach in an iterative manner, we discovered marker combinations capable of enriching for discrete pancreatic cell subtypes from human islets of Langerhans: insulin-producing beta cells (CD9high/CD56+, glucagon-producing alpha cells (CD9-/CD56+ and trypsin-producing acinar cells (CD9-/CD56-. This strategy may assist future beta cell research and the development of diagnostic tools for diabetes. It can also be applied more generally for function-based purification of desired cell types from other limited and heterogeneous biological samples.

  11. Disproportionate Contributions of Select Genomic Compartments and Cell Types to Genetic Risk for Coronary Artery Disease.

    Directory of Open Access Journals (Sweden)

    Hong-Hee Won

    2015-10-01

    Full Text Available Large genome-wide association studies (GWAS have identified many genetic loci associated with risk for myocardial infarction (MI and coronary artery disease (CAD. Concurrently, efforts such as the National Institutes of Health (NIH Roadmap Epigenomics Project and the Encyclopedia of DNA Elements (ENCODE Consortium have provided unprecedented data on functional elements of the human genome. In the present study, we systematically investigate the biological link between genetic variants associated with this complex disease and their impacts on gene function. First, we examined the heritability of MI/CAD according to genomic compartments. We observed that single nucleotide polymorphisms (SNPs residing within nearby regulatory regions show significant polygenicity and contribute between 59-71% of the heritability for MI/CAD. Second, we showed that the polygenicity and heritability explained by these SNPs are enriched in histone modification marks in specific cell types. Third, we found that a statistically higher number of 45 MI/CAD-associated SNPs that have been identified from large-scale GWAS studies reside within certain functional elements of the genome, particularly in active enhancer and promoter regions. Finally, we observed significant heterogeneity of this signal across cell types, with strong signals observed within adipose nuclei, as well as brain and spleen cell types. These results suggest that the genetic etiology of MI/CAD is largely explained by tissue-specific regulatory perturbation within the human genome.

  12. Face Recognition

    OpenAIRE

    Haugen, Liv Merete; Olavsbråten, Inge

    2007-01-01

    Machine based face recognition has been a popular research area for several years, and has numerous applications. This technology has now reached a point where there already exists good algorithms for recognition for standardized still images - which have little variation in e.g. lighting, facial expression and pose. We are however in lack of good algorithms that are able to do recognition from live video. The low quality of most surveillance cameras, together with non-standardized imaging c...

  13. Face shape and face identity processing in behavioral variant fronto-temporal dementia: A specific deficit for familiarity and name recognition of famous faces

    OpenAIRE

    François-Laurent De Winter; Dorien Timmers; Beatrice de Gelder; Marc Van Orshoven; Marleen Vieren; Miriam Bouckaert; Gert Cypers; Jo Caekebeke; Laura Van de Vliet; Karolien Goffin; Koen Van Laere; Stefan Sunaert; Rik Vandenberghe; Mathieu Vandenbulcke; Jan Van den Stock

    2016-01-01

    Deficits in face processing have been described in the behavioral variant of fronto-temporal dementia (bvFTD), primarily regarding the recognition of facial expressions. Less is known about face shape and face identity processing. Here we used a hierarchical strategy targeting face shape and face identity recognition in bvFTD and matched healthy controls. Participants performed 3 psychophysical experiments targeting face shape detection (Experiment 1), unfamiliar face identity matching (Exper...

  14. Lipopolysaccharide Clearance, Bacterial Clearance, and Systemic Inflammatory Responses Are Regulated by Cell Type–Specific Functions of TLR4 during Sepsis

    OpenAIRE

    Deng, Meihong; Scott, Melanie J.; Loughran, Patricia; Gibson, Gregory; Sodhi, Chhinder; Watkins, Simon; Hackam, David; Billiar, Timothy R

    2013-01-01

    The morbidity associated with bacterial sepsis is the result of host immune responses to pathogens, which are dependent on pathogen recognition by pattern recognition receptors, such as TLR4. TLR4 is expressed on a range of cell types, yet the mechanisms by which cell-specific functions of TLR4 lead to an integrated sepsis response are poorly understood. To address this, we generated mice in which TLR4 was specifically deleted from myeloid cells (LysMTLR4KO) or hepatocytes (HCTLR4KO) and then...

  15. The Structure-Specific Recognition Protein 1 Associates with Lens Epithelium-Derived Growth Factor Proteins and Modulates HIV-1 Replication.

    Science.gov (United States)

    Lopez, Angelica P; Kugelman, Jeffrey R; Garcia-Rivera, Jose; Urias, Eduardo; Salinas, Sandra A; Fernandez-Zapico, Martin E; Llano, Manuel

    2016-07-17

    The lens epithelium-derived growth factor p75 (LEDGF/p75) is a chromatin-bound protein essential for efficient lentiviral integration. Genome-wide studies have located LEDGF/p75 inside actively transcribed genes where it mediates lentiviral integration. Although its role in HIV-1 integration is clearly established, the role of LEDGF/p75-associated proteins in HIV-1 infection remains unexplored. Using protein-protein interaction assays, we demonstrated that LEDGF/p75 complexes with a chromatin-remodeling complex facilitates chromatin transcription (FACT), a heterodimer of the structure-specific recognition protein 1 (SSRP1) and the human homolog of suppressor of Ty 16 (hSpt16). Detailed analysis of the interaction of LEDGF/p75 with the FACT complex indicates that LEDGF/p75 interacts with SSRP1 in an hSpt16-independent manner that requires the PWWP domain of LEDGF proteins and the HMG domain of SSRP1. Functional characterizations demonstrate a LEDGF/p75-independent role of SSRP1 in the regulation of HIV-1 replication. shRNA-mediated partial knockdown of SSRP1 reduces HIV-1 infection, but not Murine Leukemia Virus, in human CD4(+) T cells. Similarly, SSRP1 knockdown affects infection by HIV-1-derived viruses that express genes from the viral LTR but not from an internal immediate-early CMV promoter, suggesting a role of SSRP1 in LTR-driven gene expression but not in viral DNA integration. Together, our data demonstrate for the first time the association of LEDGF proteins with the FACT complex and give further support to a role of SSRP1 in HIV-1 infection. PMID:27216501

  16. Inhibitor recognition specificity of MERS-CoV papain-like protease may differ from that of SARS-CoV.

    Science.gov (United States)

    Lee, Hyun; Lei, Hao; Santarsiero, Bernard D; Gatuz, Joseph L; Cao, Shuyi; Rice, Amy J; Patel, Kavankumar; Szypulinski, Michael Z; Ojeda, Isabel; Ghosh, Arun K; Johnson, Michael E

    2015-06-19

    The Middle East Respiratory Syndrome coronavirus (MERS-CoV) papain-like protease (PLpro) blocking loop 2 (BL2) structure differs significantly from that of SARS-CoV PLpro, where it has been proven to play a crucial role in SARS-CoV PLpro inhibitor binding. Four SARS-CoV PLpro lead inhibitors were tested against MERS-CoV PLpro, none of which were effective against MERS-CoV PLpro. Structure and sequence alignments revealed that two residues, Y269 and Q270, responsible for inhibitor binding to SARS-CoV PLpro, were replaced by T274 and A275 in MERS-CoV PLpro, making critical binding interactions difficult to form for similar types of inhibitors. High-throughput screening (HTS) of 25 000 compounds against both PLpro enzymes identified a small fragment-like noncovalent dual inhibitor. Mode of inhibition studies by enzyme kinetics and competition surface plasmon resonance (SPR) analyses suggested that this compound acts as a competitive inhibitor with an IC50 of 6 μM against MERS-CoV PLpro, indicating that it binds to the active site, whereas it acts as an allosteric inhibitor against SARS-CoV PLpro with an IC50 of 11 μM. These results raised the possibility that inhibitor recognition specificity of MERS-CoV PLpro may differ from that of SARS-CoV PLpro. In addition, inhibitory activity of this compound was selective for SARS-CoV and MERS-CoV PLpro enzymes over two human homologues, the ubiquitin C-terminal hydrolases 1 and 3 (hUCH-L1 and hUCH-L3). PMID:25746232

  17. Lysine-Specific Demethylase 1A (KDM1A/LSD1): Product Recognition and Kinetic Analysis of Full-Length Histones.

    Science.gov (United States)

    Burg, Jonathan M; Gonzalez, Julie J; Maksimchuk, Kenneth R; McCafferty, Dewey G

    2016-03-22

    Lysine-specific demethylase 1A (KDM1A/LSD1) is a FAD-dependent enzyme that catalyzes the oxidative demethylation of histone H3K4me1/2 and H3K9me1/2 repressing and activating transcription, respectively. Although the active site is expanded compared to that of members of the greater amine oxidase superfamily, it is too sterically restricted to encompass the minimal 21-mer peptide substrate footprint. The remainder of the substrate/product is therefore expected to extend along the surface of KDM1A. We show that full-length histone H3, which lacks any posttranslational modifications, is a tight-binding, competitive inhibitor of KDM1A demethylation activity with a Ki of 18.9 ± 1.2 nM, a value that is approximately 100-fold higher than that of the 21-mer peptide product. The relative H3 affinity is independent of preincubation time, suggesting that H3 rapidly reaches equilibrium with KDM1A. Jump dilution experiments confirmed the increased binding affinity of full-length H3 was at least partially due to a slow off rate (koff) of 1.2 × 10(-3) s(-1), corresponding to a half-life (t1/2) of 9.63 min, and a residence time (τ) of 13.9 min. Independent affinity capture surface plasmon resonance experiments confirmed the tight-binding nature of the H3/KDM1A interaction, revealing a Kd of 9.02 ± 2.3 nM, a kon of (9.3 ± 1.5) × 10(4) M(-1) s(-1), and a koff of (8.4 ± 0.3) × 10(-4) s(-1). Additionally, no other core histones exhibited inhibition of KDM1A demethylation activity, which is consistent with H3 being the preferred histone substrate of KDM1A versus H2A, H2B, and H4. Together, these data suggest that KDM1A likely contains a histone H3 secondary specificity element on the enzyme surface that contributes significantly to its recognition of substrates and products. PMID:26673564

  18. 基于氧化石墨烯识别特定双螺旋DNA%Sequence specific recognition of double-stranded DNA with graphene oxide

    Institute of Scientific and Technical Information of China (English)

    吴呈珂; 郑立庆; 冯素玲

    2013-01-01

    依据三螺旋DNA的形成,以氧化石墨烯为基础建立了一种识别特定序列双螺旋DNA的方法.单链探针DNA能够通过静电引力作用吸附在氧化石墨烯表面,标记在单链DNA末端的荧光探针分子TAMRA由于荧光能量共振转移作用使得其荧光发生淬灭.加入目标双螺旋DNA后,单链探针DNA与目标DNA分子形成三螺旋DNA,探针DNA从氧化石墨烯表面脱附,标记在探针DNA上的荧光分子的荧光恢复.在最佳实验条件下,荧光恢复的强度与探针DNA的浓度在20.0 ~ 300.0 nmol/L具有良好的线性关系,检出限为16.9 nmol/L.该方法在DNA药物筛选及基因疾病的诊断方面具有一定的应用前景.%A fluorescent method for sequence specific recognition of double-stranded DNA(dsDNA) was develop based upon the hybridization of triplex DNA and graphene oxide. Single-stranded DNA(ssDNA) can adsorbed on the surface of graphene oxide(GO) and the fluorescence of TAMRA labeled on ssDNA was quenched because of fluorescence resonance energy transfer. With the addition of target dsDNA, hybridization occurred between the dye labeled ssDNA and the target dsDNA, which induced desorption of ssDNA from the surface of GO, and turned on the fluorescence of the dye. Under the optimum conditions, the enhanced fluorescence intensity was proportional to the concentration of target dsDNA in 20. 0 ~ 300. 0 nmol/L, and the detection limit was found to be 16. 9 nmol/L. This assay provided a rapid method for diagnosing genetic and pathogenic diseases in the future.

  19. Fingerprint recognition

    OpenAIRE

    Diefenderfer, Graig T.

    2006-01-01

    The use of biometrics is an evolving component in today's society. Fingerprint recognition continues to be one of the most widely used biometric systems. This thesis explores the various steps present in a fingerprint recognition system. The study develops a working algorithm to extract fingerprint minutiae from an input fingerprint image. This stage incorporates a variety of image pre-processing steps necessary for accurate minutiae extraction and includes two different methods of ridge thin...

  20. Face shape and face identity processing in behavioral variant fronto-temporal dementia : A specific deficit for familiarity and name recognition of famous faces

    NARCIS (Netherlands)

    De Winter, François-Laurent; Timmers, Dorien; de Gelder, Beatrice; Van Orshoven, Marc; Vieren, Marleen; Bouckaert, Miriam; Cypers, Gert; Caekebeke, Jo; Van de Vliet, Laura; Goffin, Karolien; Van Laere, Koen; Sunaert, Stefan; Vandenberghe, Rik; Vandenbulcke, Mathieu; Van den Stock, Jan

    2016-01-01

    Deficits in face processing have been described in the behavioral variant of fronto-temporal dementia (bvFTD), primarily regarding the recognition of facial expressions. Less is known about face shape and face identity processing. Here we used a hierarchical strategy targeting face shape and face id

  1. Autoradiographic localization of epidermal growth factor receptors to all major uterine cell types

    International Nuclear Information System (INIS)

    We have recently studied the structure and function of the uterine epidermal growth factor (EGF) receptor, its hormonal regulation, and its possible role in estrogen-induced uterine DNA synthesis. Since the uterus is composed of multiple cell types, we sought, in the work reported here, to localize EGF binding in this organ by autoradiography. Prior to the actual autoradiography, we performed a companion series of experiments to insure that EGF binding to uterine tissue in situ represented a true receptor interaction. Uteri from immature female rats were incubated in vitro with 125I-EGF at 25 degrees C. Tissue binding was maximal within 120 min and remained constant for at least an additional 120 min. This binding of labeled EGF was largely abolished by excess unlabeled EGF but not by other growth factors, indicating that binding was to specific receptors. The binding of 125I-EGF was saturable and reached a plateau at 4-8 nM; specific binding was half-maximal at 1-2 nM EGF. In situ cross-linking studies revealed that 125I-EGF was bound predominantly to a 170,000 MW EGF receptor similar to that seen in isolated uterine membranes. Incubation of uteri with 125I-EGF followed by autoradiography revealed binding to epithelial cells, stroma, and myometrium. These results provide evidence for the presence of specific EGF receptors in all major uterine cell types of the immature rat

  2. Speech recognition based on pattern recognition techniques

    Science.gov (United States)

    Rabiner, Lawrence R.

    1990-05-01

    Algorithms for speech recognition can be characterized broadly as pattern recognition approaches and acoustic phonetic approaches. To date, the greatest degree of success in speech recognition has been obtained using pattern recognition paradigms. The use of pattern recognition techniques were applied to the problems of isolated word (or discrete utterance) recognition, connected word recognition, and continuous speech recognition. It is shown that understanding (and consequently the resulting recognizer performance) is best to the simplest recognition tasks and is considerably less well developed for large scale recognition systems.

  3. Synthesis of a specific monolithic column with artificial recognition sites for L-glutamic acid via cryo-crosslinking of imprinted nanoparticles.

    Science.gov (United States)

    Göktürk, Ilgım; Üzek, Recep; Uzun, Lokman; Denizli, Adil

    2016-06-01

    In this study, a new molecular imprinting (MIP)-based monolithic cryogel column was prepared using chemically crosslinked molecularly imprinted nanoparticles, to achieve a simplified chromatographic separation (SPE) for a model compound, L-glutamic acid (L-Glu). Cryogelation through crosslinking of imprinted nanoparticles forms stable monolithic cryogel columns. This technique reduces the leakage of nanoparticles and increases the surface area, while protecting the structural features of the cryogel for stable and efficient recognition of the template molecule. A non-imprinted monolithic cryogel column (NIP) was also prepared, using non-imprinted nanoparticles produced without the addition of L-Glu during polymerization. The molecularly imprinted monolithic cryogel column (MIP) indicates apparent recognition selectivity and a good adsorption capacity compared to the NIP. Also, we have achieved a significant increase in the adsorption capacity, using the advantage of high surface area of the nanoparticles. PMID:25749280

  4. Cerebellum and processing of negative facial emotions: cerebellar transcranial DC stimulation specifically enhances the emotional recognition of facial anger and sadness

    OpenAIRE

    Ferrucci, Roberta; Giannicola, Gaia; Rosa, Manuela; Fumagalli, Manuela; Boggio, Paulo Sergio; Hallett, Mark; Zago, Stefano; Priori, Alberto

    2011-01-01

    Some evidence suggests that the cerebellum participates in the complex network processing emotional facial expression. To evaluate the role of the cerebellum in recognizing facial expressions we delivered transcranial direct current stimulation (tDCS) over the cerebellum and prefrontal cortex. A facial emotion recognition task was administered to 21 healthy subjects before and after cerebellar tDCS; we also tested subjects with a visual attention task and a visual analogue scale (VAS) for mood.

  5. Touchless palmprint recognition systems

    CERN Document Server

    Genovese, Angelo; Scotti, Fabio

    2014-01-01

    This book examines the context, motivation and current status of biometric systems based on the palmprint, with a specific focus on touchless and less-constrained systems. It covers new technologies in this rapidly evolving field and is one of the first comprehensive books on palmprint recognition systems.It discusses the research literature and the most relevant industrial applications of palmprint biometrics, including the low-cost solutions based on webcams. The steps of biometric recognition are described in detail, including acquisition setups, algorithms, and evaluation procedures. Const

  6. Plug-and-Play Genetic Access to Drosophila Cell Types using Exchangeable Exon Cassettes

    Directory of Open Access Journals (Sweden)

    Fengqiu Diao

    2015-03-01

    Full Text Available Genetically encoded effectors are important tools for probing cellular function in living animals, but improved methods for directing their expression to specific cell types are required. Here, we introduce a simple, versatile method for achieving cell-type-specific expression of transgenes that leverages the untapped potential of “coding introns” (i.e., introns between coding exons. Our method couples the expression of a transgene to that of a native gene expressed in the cells of interest using intronically inserted “plug-and-play” cassettes (called “Trojan exons” that carry a splice acceptor site followed by the coding sequences of T2A peptide and an effector transgene. We demonstrate the efficacy of this approach in Drosophila using lines containing suitable MiMIC (Minos-mediated integration cassette transposons and a palette of Trojan exons capable of expressing a range of commonly used transcription factors. We also introduce an exchangeable, MiMIC-like Trojan exon construct that can be targeted to coding introns using the Crispr/Cas system.

  7. Plug-and-Play Genetic Access to Drosophila Cell Types Using Exchangeable Exon Cassettes

    Science.gov (United States)

    Diao, Fengqiu; Ironfield, Holly; Luan, Haojiang; Diao, Feici; Shropshire, William C.; Ewer, John; Marr, Elizabeth; Potter, Christopher J.; Landgraf, Matthias; White, Benjamin H.

    2015-01-01

    Summary Genetically encoded effectors are important tools for probing cellular function in living animals, but improved methods for directing their expression to specific cell types are required. Here we introduce a simple, versatile method for achieving cell type-specific expression of transgenes that leverages the untapped potential of “coding introns” (i.e. introns between coding exons). Our method couples the expression of a transgene to that of a native gene expressed in the cells of interest using intronically inserted “plug-and-play” cassettes (called “Trojan exons”) that carry a splice acceptor site followed by the coding sequences of T2A peptide and an effector transgene. We demonstrate the efficacy of this approach in Drosophila using lines containing suitable MiMIC transposons and a palette of Trojan exons capable of expressing a range of commonly used transcription factors. We also introduce an exchangeable, MiMIC-like Trojan exon construct that can be targeted to coding introns using the Crispr/Cas system. PMID:25732830

  8. The statistical geometry of transcriptome divergence in cell-type evolution and cancer

    NARCIS (Netherlands)

    Liang, Cong; Forrest, Alistair R R; Wagner, Günter P; Clevers, J.C.

    2015-01-01

    In evolution, body plan complexity increases due to an increase in the number of individualized cell types. Yet, there is very little understanding of the mechanisms that produce this form of organismal complexity. One model for the origin of novel cell types is the sister cell-type model. According

  9. Combinatorial approaches to gene recognition.

    Science.gov (United States)

    Roytberg, M A; Astakhova, T V; Gelfand, M S

    1997-01-01

    Recognition of genes via exon assembly approaches leads naturally to the use of dynamic programming. We consider the general graph-theoretical formulation of the exon assembly problem and analyze in detail some specific variants: multicriterial optimization in the case of non-linear gene-scoring functions; context-dependent schemes for scoring exons and related procedures for exon filtering; and highly specific recognition of arbitrary gene segments, oligonucleotide probes and polymerase chain reaction (PCR) primers. PMID:9440930

  10. Cryopreservation and in vitro culture of primary cell types from lung tissue of a stranded pygmy sperm whale (Kogia breviceps).

    Science.gov (United States)

    Annalaura Mancia; Spyropoulos, Demetri D; McFee, Wayne E; Newton, Danforth A; Baatz, John E

    2012-01-01

    Current models for in vitro studies of tissue function and physiology, including responses to hypoxia or environmental toxins, are limited and rely heavily on standard 2-dimensional (2-D) cultures with immortalized murine or human cell lines. To develop a new more powerful model system, we have pursued methods to establish and expand cultures of primary lung cell types and reconstituted tissues from marine mammals. What little is known about the physiology of the deep-sea diving pygmy sperm whale (PSW), Kogia breviceps, comes primarily from stranding events that occur along the coast of the southeastern United States. Thus, development of a method for preserving live tissues and retrieving live cells from deceased stranded individuals was initiated. This report documents successful cryopreservation of PSW lung tissue. We established in vitro cultures of primary lung cell types from tissue fragments that had been cryopreserved several months earlier at the stranding event. Dissociation of cryopreserved lung tissues readily provides a variety of primary cell types that, to varying degrees, can be expanded and further studied/manipulated in cell culture. In addition, PSW-specific molecular markers have been developed that permitted the monitoring of fibroblast, alveolar type II, and vascular endothelial cell types. Reconstitution of 3-D cultures of lung tissues with these cell types is now underway. This novel system may facilitate the development of rare or disease-specific lung tissue models (e.g., to test causes of PSW stranding events and lead to improved treatments for pulmonary hypertension or reperfusion injury in humans). Also, the establishment of a "living" tissue bank biorepository for rare/endangered species could serve multiple purposes as surrogates for freshly isolated samples. PMID:21501697

  11. Self-recognition specificity expressed by T cells from nude mice. Absence of detectable Ia-restricted T cells in nude mice that do exhibit self-K/D-restricted T cell responses

    OpenAIRE

    1984-01-01

    The presence in athymic nude mice of precursor T cells with self- recognition specificity for either H-2 K/D or H-2 I region determinants was investigated. Chimeras were constructed of lethally irradiated parental mice receiving a mixture of F1 nude mouse (6-8 wk old) spleen and bone marrow cells. The donor inoculum was deliberately not subjected to any T cell depletion procedure, so that any potential major histocompatibility complex-committed precursor T cells were allowed to differentiate ...

  12. Identification of soybean proteins from a single cell type: The root hair

    Energy Technology Data Exchange (ETDEWEB)

    Brechenmacher, Laurent; Nguyen, Tran H.; Hixson, Kim K.; Libault, Marc; Aldrich, Joshua T.; Pasa-Tolic, Ljiljana; Stacey, Gary

    2012-11-01

    Root hairs are a terminally differentiated single cell type, mainly involved in water and nutrient uptake from the soil. The soybean root hair cell represents an excellent model for the study of single cell systems biology. In this study, we identified 5702 proteins, with at least two peptides, from soybean root hairs using an accurate mass and time tag approach, establishing the most comprehensive proteome reference map of this single cell type. We also showed that trypsin is the most appropriate enzyme for soybean proteomic studies by performing an in silico digestion of the soybean proteome database using different proteases. Although the majority of proteins identified in this study are involved in basal metabolism, the function of others are more related to root hair formation/function and include proteins involved in nutrient uptake (transporters) or vesicular trafficking (cytoskeleton and RAB proteins). Interestingly, some of these proteins appear to be specifically expressed in root hairs and constitute very good candidates for further studies to elucidate unique features of this single cell model.

  13. Interleukin-1 exerts distinct actions on different cell types of the brain in vitro

    Directory of Open Access Journals (Sweden)

    Ying An

    2011-01-01

    Full Text Available Ying An, Qun Chen, Ning QuanDepartment of Oral Biology, Ohio State University, Columbus, OH, USAAbstract: Interleukin-1 (IL-1 is a critical neuroinflammatory mediator in the central nervous system (CNS. In this study, we investigated the effect of IL-1 on inducing inflammation-related gene expression in three astrocyte, two microglial, and one brain endothelial cell line. Interleukin-1 beta (IL-1β is found to be produced by the two microglial cell lines constitutively, but these cells do not respond to IL-1β stimulation. The three astrocyte cell lines responded to IL-1ß stimulation by expressing MCP-1, CXCL-1, and VCAM-1, but different subtypes of astrocytes exhibited different expression profiles after IL-1β stimulation. The brain endothelial cells showed strongest response to IL-1β by producing MCP-1, CXCL-1, VCAM-1, ICAM-1, IL-6, and COX-2 mRNA. The induction of endothelial COX-2 mRNA is shown to be mediated by p38 MAPK pathway, whereas the induction of other genes is mediated by the NF-κB pathway. These results demonstrate that IL-1 exerts distinct cell type-specific action in CNS cells and suggest that IL-1-mediated neuroinflammation is the result of the summation of multiple responses from different cell types in the CNS to IL-1.Keywords: astrocyte, microglia, endothelial cells, signal transduction pathways, gene expression 

  14. Facial Recognition

    Directory of Open Access Journals (Sweden)

    Mihalache Sergiu

    2014-05-01

    Full Text Available During their lifetime, people learn to recognize thousands of faces that they interact with. Face perception refers to an individual's understanding and interpretation of the face, particularly the human face, especially in relation to the associated information processing in the brain. The proportions and expressions of the human face are important to identify origin, emotional tendencies, health qualities, and some social information. From birth, faces are important in the individual's social interaction. Face perceptions are very complex as the recognition of facial expressions involves extensive and diverse areas in the brain. Our main goal is to put emphasis on presenting human faces specialized studies, and also to highlight the importance of attractiviness in their retention. We will see that there are many factors that influence face recognition.

  15. Allergen-Specific IgG Antibodies Purified from Mite-Allergic Patients Sera Block the IgE Recognition of Dermatophagoides pteronyssinus Antigens: An In Vitro Study

    OpenAIRE

    Isabella Lima Siman; Lais Martins de Aquino; Leandro Hideki Ynoue; Juliana Silva Miranda; Ana Claudia Arantes Marquez Pajuaba; Jair Pereira Cunha-Júnior; Deise Aparecida de Oliveira Silva; Ernesto Akio Taketomi

    2013-01-01

    One of the purposes of specific immunotherapy (SIT) is to modulate humoral immune response against allergens with significant increases in allergen-specific IgG levels, commonly associated with blocking activity. The present study investigated in vitro blocking activity of allergen-specific IgG antibodies on IgE reactivity to Dermatophagoides pteronyssinus (Dpt) in sera from atopic patients. Dpt-specific IgG antibodies were purified by ammonium sulfate precipitation followed by protein-G affi...

  16. Biophysical Characterization of G-Quadruplex Recognition in the PITX1 mRNA by the Specificity Domain of the Helicase RHAU.

    Directory of Open Access Journals (Sweden)

    Emmanuel O Ariyo

    Full Text Available Nucleic acids rich in guanine are able to fold into unique structures known as G-quadruplexes. G-quadruplexes consist of four tracts of guanylates arranged in parallel or antiparallel strands that are aligned in stacked G-quartet planes. The structure is further stabilized by Hoogsteen hydrogen bonds and monovalent cations centered between the planes. RHAU (RNA helicase associated with AU-rich element is a member of the ATP-dependent DExH/D family of RNA helicases and can bind and resolve G-quadruplexes. RHAU contains a core helicase domain with an N-terminal extension that enables recognition and full binding affinity to RNA and DNA G-quadruplexes. PITX1, a member of the bicoid class of homeobox proteins, is a transcriptional activator active during development of vertebrates, chiefly in the anterior pituitary gland and several other organs. We have previously demonstrated that RHAU regulates PITX1 levels through interaction with G-quadruplexes at the 3'-end of the PITX1 mRNA. To understand the structural basis of G-quadruplex recognition by RHAU, we characterize a purified minimal PITX1 G-quadruplex using a variety of biophysical techniques including electrophoretic mobility shift assays, UV-VIS spectroscopy, circular dichroism, dynamic light scattering, small angle X-ray scattering and nuclear magnetic resonance spectroscopy. Our biophysical analysis provides evidence that the RNA G-quadruplex, but not its DNA counterpart, can adopt a parallel orientation, and that only the RNA can interact with N-terminal domain of RHAU via the tetrad face of the G-quadruplex. This work extends our insight into how the N-terminal region of RHAU recognizes parallel G-quadruplexes.

  17. Determination of the recognition site for adenine-specific methylase of Shigella sonnei 47 by hydazinolysis of DNA, followed by separation of the purine oligonucleotides by thin-layer chromatography on DEAE-cellulose

    International Nuclear Information System (INIS)

    A method has been developed for the separation of oligopurine units according to length and composition by two-dimensional thin-layer chromatography on plates with DEAE-cellulose, permitting a comparative analysis of the content of various purine isopliths in DNA of different origin. In the case of the analysis of methylated DNA, the method permits a comparison of the substrate specificity of various enzymes of methylation of the adenine residues in DNA. In conjunction with enzymatic treatment of labeled methylated isopliths, the method permits determination of the methylatable sequence and in a number of cases an ascertainment of the recognition site for adenine-specific methylase as a whole. The proposed method was used to establish the fact that the methylase Ssol recognizes the sequence 5'...G-A-A-T-T-C...3' and methylates the adenine residue closest to its 5'-end

  18. Genetic Variability Overrides the Impact of Parental Cell Type and Determines iPSC Differentiation Potential

    Directory of Open Access Journals (Sweden)

    Aija Kyttälä

    2016-02-01

    Full Text Available Reports on the retention of somatic cell memory in induced pluripotent stem cells (iPSCs have complicated the selection of the optimal cell type for the generation of iPSC biobanks. To address this issue we compared transcriptomic, epigenetic, and differentiation propensities of genetically matched human iPSCs derived from fibroblasts and blood, two tissues of the most practical relevance for biobanking. Our results show that iPSC lines derived from the same donor are highly similar to each other. However, genetic variation imparts a donor-specific expression and methylation profile in reprogrammed cells that leads to variable functional capacities of iPSC lines. Our results suggest that integration-free, bona fide iPSC lines from fibroblasts and blood can be combined in repositories to form biobanks. Due to the impact of genetic variation on iPSC differentiation, biobanks should contain cells from large numbers of donors.

  19. Genotoxic damage in polychaetes: a study of species and cell-type sensitivities.

    Science.gov (United States)

    Lewis, Ceri; Galloway, Tamara

    2008-06-30

    The marine environment is becoming increasingly contaminated by environmental pollutants with the potential to damage DNA, with marine sediments acting as a sink for many of these contaminants. Understanding genotoxic responses in sediment-dwelling marine organisms, such as polychaetes, is therefore of increasing importance. This study is an exploration of species-specific and cell-specific differences in cell sensitivities to DNA-damaging agents in polychaete worms, aimed at increasing fundamental knowledge of their responses to genotoxic damage. The sensitivities of coelomocytes from three polychaetes species of high ecological relevance, i.e. the lugworm Arenicola marina, the harbour ragworm Nereis diversicolor and the king ragworm Nereis virens to genotoxic damage are compared, and differences in sensitivities of their different coelomic cell types determined by use of the comet assay. A. marina was found to be the most sensitive to genotoxic damage induced by the direct-acting mutagen methyl methanesulfonate (MMS), and showed dose-dependent responses to MMS and the polycyclic aromatic hydrocarbon benzo(a)pyrene. Significant differences in sensitivity were also measured for the different types of coelomocyte. Eleocytes were more sensitive to induction of DNA damage than amoebocytes in both N. virens and N. diversicolor. Spermatozoa from A. marina showed significant DNA damage following in vitro exposure to MMS, but were less sensitive to DNA damage than coelomocytes. This investigation has clearly demonstrated that different cell types within the same species and different species within the polychaetes show significantly different responses to genotoxic insult. These findings are discussed in terms of the relationship between cell function and sensitivity and their implications for the use of polychaetes in environmental genotoxicity studies. PMID:18579434

  20. Cell Type-Specific Control of Spike Timing by Gamma-Band Oscillatory Inhibition.

    Science.gov (United States)

    Hasenstaub, Andrea; Otte, Stephani; Callaway, Edward

    2016-02-01

    Many lines of theoretical and experimental investigation have suggested that gamma oscillations provide a temporal framework for cortical information processing, acting to either synchronize neuronal firing, restrict neuron's relative spike times, and/or provide a global reference signal to which neurons encode input strength. Each theory has been disputed and some believe that gamma is an epiphenomenon. We investigated the biophysical plausibility of these theories by performing in vitro whole-cell recordings from 6 cortical neuron subtypes and examining how gamma-band and slow fluctuations in injected input affect precision and phase of spike timing. We find that gamma is at least partially able to restrict the spike timing in all subtypes tested, but to varying degrees. Gamma exerts more precise control of spike timing in pyramidal neurons involved in cortico-cortical versus cortico-subcortical communication and in inhibitory neurons that target somatic versus dendritic compartments. We also find that relatively few subtypes are capable of phase-based information coding. Using simple neuron models and dynamic clamp, we determine which intrinsic differences lead to these variations in responsiveness and discuss both the flexibility and confounds of gamma-based spike-timing systems. PMID:25778344

  1. Differential cell type-specific transcriptional regulation of the CYP1A1 gene

    OpenAIRE

    Adamska, Magdalena

    2005-01-01

    Cytochrome P450 1A1 (CYP1A1) monooxygenase plays an important role in the metabolism of environmental pollutants such as polycyclic aromatic hydrocarbons (PAHs) and halogenated polycyclic aromatic hydrocarbons (HAHs). Oxidation of these compounds converts them to the metabolites that subsequently can be conjugated to hydrophilic endogenous entities e.g. glutathione. Derivates generated in this way are water soluble and can be excreted in bile or urine, which is a defense mechanism. Besides de...

  2. State-dependent and cell type-specific temporal processing in auditory thalamocortical circuit

    OpenAIRE

    Shuzo Sakata

    2016-01-01

    Ongoing spontaneous activity in cortical circuits defines cortical states, but it still remains unclear how cortical states shape sensory processing across cortical laminae and what type of response properties emerge in the cortex. Recording neural activity from the auditory cortex (AC) and medial geniculate body (MGB) simultaneously with electrical stimulations of the basal forebrain (BF) in urethane-anesthetized rats, we investigated state-dependent spontaneous and auditory-evoked activitie...

  3. Cell type-specific termination of transcription by transposable element sequences

    OpenAIRE

    Conley Andrew B; Jordan I

    2012-01-01

    Abstract Background Transposable elements (TEs) encode sequences necessary for their own transposition, including signals required for the termination of transcription. TE sequences within the introns of human genes show an antisense orientation bias, which has been proposed to reflect selection against TE sequences in the sense orientation owing to their ability to terminate the transcription of host gene transcripts. While there is evidence in support of this model for some elements, the ex...

  4. Cell-type specific adhesive interactions of skeletal myoblasts with thrombospondin-1.

    OpenAIRE

    Adams, J. C.; Lawler, J

    1994-01-01

    Thrombospondin-1 (TSP-1) is an extracellular matrix glycoprotein that may play important roles in the morphogenesis and repair of skeletal muscle. To begin to explore the role of thrombospondin-1 in this tissue, we have examined the interactions of three rodent skeletal muscle cell lines, C2C12, G8, and H9c2, with platelet TSP-1. The cells secrete thrombospondin and incorporate it into the cell layer in a distribution distinct from that of fibronectin. Myoblasts attach and spread on fibronect...

  5. Innate immune response to pulmonary contusion: Identification of cell-type specific inflammatory responses

    OpenAIRE

    Hoth, J. Jason; Wells, Jonathan D.; Yoza, Barbara K.; McCall, Charles E.

    2012-01-01

    Lung injury from pulmonary contusion is a common traumatic injury, predominantly seen after blunt chest trauma such as in vehicular accidents. The local and systemic inflammatory response to injury includes activation of innate immune receptors, elaboration of a variety inflammatory mediators, and recruitment of inflammatory cells to the injured lung. Using a mouse model of pulmonary contusion, we had previously shown that innate immune Toll like receptors 2 and 4 (TLR2 and TLR4) mediate the ...

  6. The cell type-specific effect of TAp73 isoforms on the cell cycle and apoptosis

    Czech Academy of Sciences Publication Activity Database

    Holčáková, J.; Češková, P.; Hrstka, R.; Muller, P.; Dubská, L.; Coates, P.J.; Paleček, Emil; Vojtěšek, B.

    2008-01-01

    Roč. 13, č. 3 (2008), s. 404-420. ISSN 1425-8153 R&D Projects: GA ČR(CZ) GA301/05/0416; GA AV ČR(CZ) IAA500040513 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : p53 * TAp73 * DNA binding Subject RIV: BO - Biophysics Impact factor: 1.454, year: 2008

  7. Cell-type specific mechanisms of D-serine uptake and release in the brain

    Directory of Open Access Journals (Sweden)

    Magalie eMartineau

    2014-05-01

    Full Text Available Accumulating evidence during the last decade established that D-serine is a key signaling molecule utilized by neurons and astroglia in the mammalian central nervous system. D-serine is increasingly appreciated as the main physiological endogenous coagonist for synaptic NMDA receptors at central excitatory synapses; it is mandatory for long-term changes in synaptic strength, memory, learning, and social interactions. Alterations in the extracellular levels of D-serine leading to disrupted cell-cell signaling are a trademark of many chronic or acute neurological (i.e. Alzheimer disease, epilepsy, stroke and psychiatric (i.e. schizophrenia disorders, and are associated with addictive behavior (i.e. cocaine addiction. Indeed, fine tuning of the extracellular levels of D-serine, achieved by various molecular machineries and signaling pathways, is necessary for maintenance of accurate NMDA receptor functions. Here, we review the experimental data supporting the notion that astroglia and neurons use different pathways to regulate levels of extracellular D-serine.

  8. Epigenetic regulation of normal human mammary cell type-specific miRNAs

    Czech Academy of Sciences Publication Activity Database

    Vrba, Lukáš; Garbe, J.; Stampfer, M.R.; Futscher, B. W.

    2011-01-01

    Roč. 21, č. 12 (2011), s. 2026-2037. ISSN 1088-9051 Institutional research plan: CEZ:AV0Z50510513 Institutional support: RVO:60077344 Keywords : DNA metylation * gene expression * transcription Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 13.608, year: 2011

  9. Ligation-free ribosome profiling of cell type-specific translation in the brain

    OpenAIRE

    Hornstein, Nicholas; Torres, Daniela; Das Sharma, Sohani; Tang, Guomei; Canoll, Peter; Sims, Peter A

    2016-01-01

    Ribosome profiling has emerged as a powerful tool for genome-wide measurements of translation, but library construction requires multiple ligation steps and remains cumbersome relative to more conventional deep-sequencing experiments. We report a new, ligation-free approach to ribosome profiling that does not require ligation. Library construction for ligation-free ribosome profiling can be completed in one day with as little as 1 ng of purified RNA footprints. We apply ligation-free ribosome...

  10. Unique cell type-specific junctional complexes in vascular endothelium of human and rat liver sinusoids.

    Directory of Open Access Journals (Sweden)

    Cyrill Géraud

    Full Text Available Liver sinusoidal endothelium is strategically positioned to control access of fluids, macromolecules and cells to the liver parenchyma and to serve clearance functions upstream of the hepatocytes. While clearance of macromolecular debris from the peripheral blood is performed by liver sinusoidal endothelial cells (LSECs using a delicate endocytic receptor system featuring stabilin-1 and -2, the mannose receptor and CD32b, vascular permeability and cell trafficking are controlled by transcellular pores, i.e. the fenestrae, and by intercellular junctional complexes. In contrast to blood vascular and lymphatic endothelial cells in other organs, the junctional complexes of LSECs have not yet been consistently characterized in molecular terms. In a comprehensive analysis, we here show that LSECs express the typical proteins found in endothelial adherens junctions (AJ, i.e. VE-cadherin as well as α-, β-, p120-catenin and plakoglobin. Tight junction (TJ transmembrane proteins typical of endothelial cells, i.e. claudin-5 and occludin, were not expressed by rat LSECs while heterogenous immunreactivity for claudin-5 was detected in human LSECs. In contrast, junctional molecules preferentially associating with TJ such as JAM-A, B and C and zonula occludens proteins ZO-1 and ZO-2 were readily detected in LSECs. Remarkably, among the JAMs JAM-C was considerably over-expressed in LSECs as compared to lung microvascular endothelial cells. In conclusion, we show here that LSECs form a special kind of mixed-type intercellular junctions characterized by co-occurrence of endothelial AJ proteins, and of ZO-1 and -2, and JAMs. The distinct molecular architecture of the intercellular junctional complexes of LSECs corroborates previous ultrastructural findings and provides the molecular basis for further analyses of the endothelial barrier function of liver sinusoids under pathologic conditions ranging from hepatic inflammation to formation of liver metastasis.

  11. Cell-Type-Specific Cytokinin Distribution within the Arabidopsis Primary Root Apex

    Czech Academy of Sciences Publication Activity Database

    Antoniadi, I.; Plačková, Lenka; Simonovik, B.; Doležal, Karel; Turnbull, C.; Ljung, K.; Novák, Ondřej

    2015-01-01

    Roč. 27, č. 7 (2015), s. 1955-1967. ISSN 1040-4651 R&D Projects: GA ČR GA14-34792S; GA MŠk(CZ) LO1204; GA MŠk LK21306 Institutional support: RVO:61389030 Keywords : SOLID-PHASE EXTRACTION * ENDOPLASMIC-RETICULUM * MERISTEM ACTIVITY Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 9.338, year: 2014

  12. Cell-type Specific Development of NMDA Receptors in the Interneurons of Rat Prefrontal Cortex

    OpenAIRE

    Wang, Huai-Xing; Gao, Wen-Jun

    2009-01-01

    In the prefrontal cortex, N-methyl-D-aspartic acid (NMDA) receptors are critical not only for normal prefrontal functions but also for the pathological processes of schizophrenia. Little is known, however, about the developmental properties of NMDA receptors in the functionally diverse subpopulations of interneurons. We investigated the developmental changes of NMDA receptors in rat prefrontal interneurons using patch clamp recording in cortical slices. We found that fast-spiking (FS) interne...

  13. Dopamine D1 receptor expression is bipolar cell type-specific in the mouse retina.

    Science.gov (United States)

    Farshi, Pershang; Fyk-Kolodziej, Bozena; Krolewski, David M; Walker, Paul D; Ichinose, Tomomi

    2016-07-01

    In the retina, dopamine is a key molecule for daytime vision. Dopamine is released by retinal dopaminergic amacrine cells and transmits signaling either by conventional synaptic or by volume transmission. By means of volume transmission, dopamine modulates all layers of retinal neurons; however, it is not well understood how dopamine modulates visual signaling pathways in bipolar cells. Here we analyzed Drd1a-tdTomato BAC transgenic mice and found that the dopamine D1 receptor (D1R) is expressed in retinal bipolar cells in a type-dependent manner. Strong tdTomato fluorescence was detected in the inner nuclear layer and localized to type 1, 3b, and 4 OFF bipolar cells and type 5-2, XBC, 6, and 7 ON bipolar cells. In contrast, type 2, 3a, 5-1, 9, and rod bipolar cells did not express Drd1a-tdTomato. Other interneurons were also found to express tdTomato including horizontal cells and a subset (25%) of AII amacrine cells. Diverse visual processing pathways, such as color or motion-coded pathways, are thought to be initiated in retinal bipolar cells. Our results indicate that dopamine sculpts bipolar cell performance in a type-dependent manner to facilitate daytime vision. J. Comp. Neurol. 524:2059-2079, 2016. © 2015 Wiley Periodicals, Inc. PMID:26587737

  14. Partitioning Heritability of Regulatory and Cell-Type-Specific Variants across 11 Common Diseases

    DEFF Research Database (Denmark)

    Gusev, Alexander; Lee, S Hong; Trynka, Gosia;

    2014-01-01

    diseases to partition the heritability explained by genotyped SNPs (hg(2)) across functional categories (while accounting for shared variance due to linkage disequilibrium). Extensive simulations showed that in contrast to current estimates from GWAS summary statistics, the variance-component approach...

  15. Cell-Type Specific DNA Methylation Patterns Define Human Breast Cellular Identity

    Czech Academy of Sciences Publication Activity Database

    Novák, Petr; Stampfer, M.R.; Munoz-Rodriguez, J.L.; Garbe, J.C.; Ehrich, M.; Futscher, B. W.; Jensen, T.J.

    2012-01-01

    Roč. 7, č. 12 (2012), e52299. E-ISSN 1932-6203 Institutional research plan: CEZ:AV0Z50510513 Institutional support: RVO:60077344 Keywords : MAMMARY EPITHELIAL-CELLS * PLURIPOTENT STEM-CELLS * CPG ISLAND SHORES Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.730, year: 2012

  16. Molecularly imprinted optosensing material based on hydrophobic CdSe quantum dots via a reverse microemulsion for specific recognition of ractopamine.

    Science.gov (United States)

    Liu, Huilin; Fang, Guozhen; Wang, Shuo

    2014-05-15

    A novel molecularly imprinted polymer (MIP) based on hydrophobic CdSe quantum dots (QDs) was synthesized using a one-pot room-temperature reverse microemulsion polymerization, and this polymer was applied as a molecular recognition element to construct a ractopamine (RAC) optosensor. Here, hydrophobic CdSe QDs were first introduced to the hydrophilic analyte-imprinted polymer for highly selective and sensitive detection of RAC via the change in fluorescence intensity, because of the high-quality hydrophobic QDs with high quantum yield, sharp photoluminescence spectra and chemical and fluorescent stability. Under optimal conditions, the relative fluorescence intensity of MIP based on hydrophobic QDs decreased linearly with the increasing concentration of RAC in the range of 1.21 × 10(-9) -3.03 × 10(-6)mol L(-1) with a detection limit of 7.57 × 10(-10)mol L(-1), and the precision for five replicate detections of 1.51 × 10(-8)mol L(-1) RAC was 2.09% (relative standard deviation). The proposed method was successfully applied for the determination of trace RAC in pork samples, with good recoveries ranging from 82.79% to 97.23%. PMID:24370883

  17. Gene expression profile of renal cell carcinoma clear cell type

    Directory of Open Access Journals (Sweden)

    Marcos F. Dall’Oglio

    2010-08-01

    Full Text Available PURPOSE: The determination of prognosis in patients with renal cell carcinoma (RCC is based, classically, on stage and histopathological aspects. The metastatic disease develops in one third of patients after surgery, even in localized tumors. There are few options for treating those patients, and even the new target designed drugs have shown low rates of success in controlling disease progression. Few studies used high throughput genomic analysis in renal cell carcinoma for determination of prognosis. This study is focused on the identification of gene expression signatures in tissues of low-risk, high-risk and metastatic RCC clear cell type (RCC-CCT. MATERIALS AND METHODS: We analyzed the expression of approximately 55,000 distinct transcripts using the Whole Genome microarray platform hybridized with RNA extracted from 19 patients submitted to surgery to treat RCC-CCT with different clinical outcomes. They were divided into three groups (1 low risk, characterized by pT1, Fuhrman grade 1 or 2, no microvascular invasion RCC; (2 high risk, pT2-3, Fuhrman grade 3 or 4 with, necrosis and microvascular invasion present and (3 metastatic RCC-CCT. Normal renal tissue was used as control. RESULTS: After comparison of differentially expressed genes among low-risk, high-risk and metastatic groups, we identified a group of common genes characterizing metastatic disease. Among them Interleukin-8 and Heat shock protein 70 were over-expressed in metastasis and validated by real-time polymerase chain reaction. CONCLUSION: These findings can be used as a starting point to generate molecular markers of RCC-CCT as well as a target for the development of innovative therapies.

  18. Purification and characterization of human autoantibodies directed to specific regions on U1RNA; recognition of native U1RNP complexes.

    OpenAIRE

    Hoet, R M; Kastner, B; Lührmann, R; van Venrooij, W J

    1993-01-01

    Antibodies against naked U1RNA can be found in sera from patients with overlap syndromes of systemic lupus erythematosus (SLE) in addition to antibodies directed to the proteins of U1 ribonucleoproteins (U1RNP). We investigated the reactivity of these U1RNA specific autoantibodies with the native U1RNP particle both in vitro and inside the cell. For this purpose a method was developed to purify human autoantibodies directed to specific regions of U1RNA. The antibodies are specifically directe...

  19. Identification of major cell types in paraffin sections of bovine tissues

    OpenAIRE

    Pessa-Morikawa Tiina; Ekman Anna; Niku Mikael; Iivanainen Antti

    2006-01-01

    Abstract Background Identification of cell types in bovine tissue sections is complicated by the limited availability of anti-bovine antibodies, and by antigen retrieval treatments required for formalin-fixed tissue samples. We have evaluated an antibody and lectin panel for identifying major cell types in paraffin-embedded bovine tissue sections, and report optimized pretreatments for these markers. Results We selected 31 useful antibodies and lectins which can be used to identify cell types...

  20. Recognition intent and visual word recognition.

    Science.gov (United States)

    Wang, Man-Ying; Ching, Chi-Le

    2009-03-01

    This study adopted a change detection task to investigate whether and how recognition intent affects the construction of orthographic representation in visual word recognition. Chinese readers (Experiment 1-1) and nonreaders (Experiment 1-2) detected color changes in radical components of Chinese characters. Explicit recognition demand was imposed in Experiment 2 by an additional recognition task. When the recognition was implicit, a bias favoring the radical location informative of character identity was found in Chinese readers (Experiment 1-1), but not nonreaders (Experiment 1-2). With explicit recognition demands, the effect of radical location interacted with radical function and word frequency (Experiment 2). An estimate of identification performance under implicit recognition was derived in Experiment 3. These findings reflect the joint influence of recognition intent and orthographic regularity in shaping readers' orthographic representation. The implication for the role of visual attention in word recognition was also discussed. PMID:19036609

  1. DNA binding and cleavage studies of new sulfasalazine-derived dipeptide Zn(II) complex: Validation for specific recognition with 5 Prime -TMP

    Energy Technology Data Exchange (ETDEWEB)

    Tabassum, Sartaj, E-mail: tsartaj62@yahoo.com [Department of Chemistry, Aligarh Muslim University, Aligarh, UP 202002 (India); Al-Asbahy, Waddhaah M.; Afzal, Mohd.; Shamsi, Manal; Arjmand, Farukh [Department of Chemistry, Aligarh Muslim University, Aligarh, UP 202002 (India)

    2012-11-15

    A new water soluble complex [Zn(glygly)(ssz)(H{sub 2}O)]{center_dot}6H{sub 2}O, 1 derived from dipeptide (glycyl glycine) and sulfasalazine was synthesized and characterized by spectroscopic (IR, UV-vis, NMR, ESI-MS) and analytical methods. The in vitro DNA binding studies of complex 1 with calf-thymus DNA were carried out by employing various biophysical methods and molecular docking technique which reveals strong electrostatic binding via phosphate backbone of DNA helix, in addition to partial intercalation. To gain further insight into the molecular recognition at the target site, interaction studies of complex 1 with 5 Prime -TMP and 5 Prime -GMP were carried out by UV-vis titration which was validated by {sup 1}H and {sup 31}P NMR with 5 Prime -TMP, which implicate the preferential selectivity of 1 towards N3 of thymine. Complex 1 is accessible to minor groove of DNA and cleaved pBR322 DNA via hydrolytic pathway (validated by T4 ligase assay). - Graphical abstract: Synthesis, characterization, DNA binding and cleavage studies of [Zn(glygly)(ssz)(H{sub 2}O)]{center_dot}6H{sub 2}O (1) containing glycyl glycine and sulfasalazine ligand. Complex 1 recognize minor groove of DNA and show hydrolytic DNA cleavage. Highlights: Black-Right-Pointing-Pointer Novel Zn(II) complex 1 bearing bioactive glycyl glycine and sulfasalazine ligand scaffold. Black-Right-Pointing-Pointer Cleavage activity of 1 was enhanced in presence of activators: H{sub 2}O{sub 2}>MPA>GSH>Asc. Black-Right-Pointing-Pointer Complex 1 recognize minor groove as depicted in the cleavage pattern and molecular docking. Black-Right-Pointing-Pointer Complex 1 cleaves pBR322 DNA via hydrolytic mechanism and validated by T4 DNA ligase experiments.

  2. DNA binding and cleavage studies of new sulfasalazine-derived dipeptide Zn(II) complex: Validation for specific recognition with 5′–TMP

    International Nuclear Information System (INIS)

    A new water soluble complex [Zn(glygly)(ssz)(H2O)]·6H2O, 1 derived from dipeptide (glycyl glycine) and sulfasalazine was synthesized and characterized by spectroscopic (IR, UV–vis, NMR, ESI–MS) and analytical methods. The in vitro DNA binding studies of complex 1 with calf–thymus DNA were carried out by employing various biophysical methods and molecular docking technique which reveals strong electrostatic binding via phosphate backbone of DNA helix, in addition to partial intercalation. To gain further insight into the molecular recognition at the target site, interaction studies of complex 1 with 5′-TMP and 5′-GMP were carried out by UV–vis titration which was validated by 1H and 31P NMR with 5′-TMP, which implicate the preferential selectivity of 1 towards N3 of thymine. Complex 1 is accessible to minor groove of DNA and cleaved pBR322 DNA via hydrolytic pathway (validated by T4 ligase assay). - Graphical abstract: Synthesis, characterization, DNA binding and cleavage studies of [Zn(glygly)(ssz)(H2O)]·6H2O (1) containing glycyl glycine and sulfasalazine ligand. Complex 1 recognize minor groove of DNA and show hydrolytic DNA cleavage. Highlights: ► Novel Zn(II) complex 1 bearing bioactive glycyl glycine and sulfasalazine ligand scaffold. ► Cleavage activity of 1 was enhanced in presence of activators: H2O2>MPA>GSH>Asc. ► Complex 1 recognize minor groove as depicted in the cleavage pattern and molecular docking. ► Complex 1 cleaves pBR322 DNA via hydrolytic mechanism and validated by T4 DNA ligase experiments.

  3. [3H]GABA uptake as a marker for cell type in primary cultures of cerebellum and olfactory bulb

    International Nuclear Information System (INIS)

    Uptake of [3H]GABA into cell cultures of rat cerebellum and olfactory bulb was studied by autoradiography, using β-alanine and aminocyclohexane carboxylic acid to distinguish neuronal-specific and glial-specific uptake. Neurons and astrocytes were also labelled by tetanus toxin and anti-GFAP respectively. This combination of markers allowed identification and quantification of several cell types. Cerebellar cultures were found to contain 77% granule neurons, 7.5% inhibitory neurons (probably stellate and basket cells) and 15% astrocytes. Olfactory bulb cultures were over 50% in small neurons which accumulated GABA, the olfactory bulb granule neuron being GABAergic in vivo. (Auth.)

  4. Single cell transcriptional analysis reveals novel innate immune cell types

    Directory of Open Access Journals (Sweden)

    Linda E. Kippner

    2014-06-01

    Full Text Available Single-cell analysis has the potential to provide us with a host of new knowledge about biological systems, but it comes with the challenge of correctly interpreting the biological information. While emerging techniques have made it possible to measure inter-cellular variability at the transcriptome level, no consensus yet exists on the most appropriate method of data analysis of such single cell data. Methods for analysis of transcriptional data at the population level are well established but are not well suited to single cell analysis due to their dependence on population averages. In order to address this question, we have systematically tested combinations of methods for primary data analysis on single cell transcription data generated from two types of primary immune cells, neutrophils and T lymphocytes. Cells were obtained from healthy individuals, and single cell transcript expression data was obtained by a combination of single cell sorting and nanoscale quantitative real time PCR (qRT-PCR for markers of cell type, intracellular signaling, and immune functionality. Gene expression analysis was focused on hierarchical clustering to determine the existence of cellular subgroups within the populations. Nine combinations of criteria for data exclusion and normalization were tested and evaluated. Bimodality in gene expression indicated the presence of cellular subgroups which were also revealed by data clustering. We observed evidence for two clearly defined cellular subtypes in the neutrophil populations and at least two in the T lymphocyte populations. When normalizing the data by different methods, we observed varying outcomes with corresponding interpretations of the biological characteristics of the cell populations. Normalization of the data by linear standardization taking into account technical effects such as plate effects, resulted in interpretations that most closely matched biological expectations. Single cell transcription

  5. Mannose-recognition mutant of the galactose/N-acetylgalactosamine-specific C-type lectin CEL-I engineered by site-directed mutagenesis

    OpenAIRE

    Moriuchi, Hiromi; Unno, Hideaki; Goda, Shuichiro; Tateno, Hiroaki; Hirabayashi, Jun; Hatakeyama, Tomomitsu

    2015-01-01

    Background CEL-I is a galactose/N-acetylgalactosamine-specific C-type lectin isolated from the sea cucumber Cucumaria echinata. Its carbohydrate-binding site contains a QPD (Gln-Pro-Asp) motif, which is generally recognized as the galactose specificity-determining motif in the C-type lectins. In our previous study, replacement of the QPD motif by an EPN (Glu-Pro-Asn) motif led to a weak binding affinity for mannose. Therefore, we examined the effects of an additional mutation in the carbohydr...

  6. A dinucleotide motif in oligonucleotides shows potent immunomodulatory activity and overrides species-specific recognition observed with CpG motif

    OpenAIRE

    Kandimalla, Ekambar R; Bhagat, Lakshmi; Zhu, Fu-Gang; Yu, Dong; Cong, Yan-Ping; Wang, Daqing; Tang, Jimmy X.; Tang, Jin-Yan; Knetter, Cathrine F.; Lien, Egil; Agrawal, Sudhir

    2003-01-01

    Bacterial and synthetic DNAs containing CpG dinucleotides in specific sequence contexts activate the vertebrate immune system through Toll-like receptor 9 (TLR9). In the present study, we used a synthetic nucleoside with a bicyclic heterobase [1-(2′-deoxy-β-d-ribofuranosyl)-2-oxo-7-deaza-8-methyl-purine; R] to replace the C in CpG, resulting in an RpG dinucleotide. The RpG dinucleotide was incorporated in mouse- and human-specific motifs in oligodeoxynucleotides (oligos) and 3′-3-linked oligo...

  7. The RRM domain of poly(A)-specific ribonuclease has a noncanonical binding site for mRNA cap analog recognition

    OpenAIRE

    NAGATA, Takashi; Suzuki, Sakura; Endo, Ryuta; Shirouzu, Mikako; Terada, Takaho; Inoue, Makoto; Kigawa, Takanori; Kobayashi, Naohiro; Güntert, Peter; Tanaka, Akiko; Hayashizaki, Yoshihide; Muto, Yutaka; Yokoyama, Shigeyuki

    2008-01-01

    The degradation of the poly(A) tail is crucial for posttranscriptional gene regulation and for quality control of mRNA. Poly(A)-specific ribonuclease (PARN) is one of the major mammalian 3′ specific exo-ribonucleases involved in the degradation of the mRNA poly(A) tail, and it is also involved in the regulation of translation in early embryonic development. The interaction between PARN and the m7GpppG cap of mRNA plays a key role in stimulating the rate of deadenylation. Here we report the so...

  8. Structural Analysis of Semi-specific Oligosaccharide Recognition by a Cellulose-binding Protein of Thermotoga maritima Reveals Adaptations for Functional Diversification of the Oligopeptide Periplasmic Binding Protein Fold

    Energy Technology Data Exchange (ETDEWEB)

    Cuneo, Matthew J.; Beese, Lorena S.; Hellinga, Homme W.; (Duke)

    2010-05-25

    Periplasmic binding proteins (PBPs) constitute a protein superfamily that binds a wide variety of ligands. In prokaryotes, PBPs function as receptors for ATP-binding cassette or tripartite ATP-independent transporters and chemotaxis systems. In many instances, PBPs bind their cognate ligands with exquisite specificity, distinguishing, for example, between sugar epimers or structurally similar anions. By contrast, oligopeptide-binding proteins bind their ligands through interactions with the peptide backbone but do not distinguish between different side chains. The extremophile Thermotoga maritima possesses a remarkable array of carbohydrate-processing metabolic systems, including the hydrolysis of cellulosic polymers. Here, we present the crystal structure of a T. maritima cellobiose-binding protein (tm0031) that is homologous to oligopeptide-binding proteins. T. maritima cellobiose-binding protein binds a variety of lengths of {beta}(1 {yields} 4)-linked glucose oligomers, ranging from two rings (cellobiose) to five (cellopentaose). The structure reveals that binding is semi-specific. The disaccharide at the nonreducing end binds specifically; the other rings are located in a large solvent-filled groove, where the reducing end makes several contacts with the protein, thereby imposing an upper limit of the oligosaccharides that are recognized. Semi-specific recognition, in which a molecular class rather than individual species is selected, provides an efficient solution for the uptake of complex mixtures.

  9. Broad-specificity immunoassay for O,O-diethyl organophosphorus pesticides: Application of molecular modeling to improve assay sensitivity and study antibody recognition

    Science.gov (United States)

    A monoclonal antibody (MAb) against 4-(diethoxyphosphorothioyloxy)benzoic acid (hapten 1) was raised and used to develop a broad-specificity competitive indirect enzyme-linked immunosorbent assay (ciELISA) for 14 O,O-diethyl organophosphorus pesticides (OPs). Computer-assisted molecular modeling was...

  10. Production and characterization of a broad-specificity polyclonal antibody for O,O-diethyl organophosphorus pesticides and a quantitative structure-activity relationship study of antibody recognition

    Science.gov (United States)

    Polyclonal antibody (PAb) with broad-specificity for O,O-diethyl organophosphorus pesticides (OPs) against a generic hapten, 4-(diethoxyphosphoro thioyloxy) benzoic acid, was produced. The obtained PAb showed high sensitivity to seven commonly used O,O-diethyl OPs in a competitive indirect enzyme-l...

  11. Structural Basis for the Recognition of Mutant Self by a Tumor-Specific, MHC Class II-Restricted T Cell Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Deng,L.; Langley, R.; Brown, P.; Xu, G.; Teng, L.; Wang, Q.; Gonzales, M.; Callender, G.; Nishimura, M.; et al.

    2007-01-01

    Structural studies of complexes of T cell receptor (TCR) and peptide-major histocompatibility complex (MHC) have focused on TCRs specific for foreign antigens or native self. An unexplored category of TCRs includes those specific for self determinants bearing alterations resulting from disease, notably cancer. We determined here the structure of a human melanoma-specific TCR (E8) bound to the MHC molecule HLA-DR1 and an epitope from mutant triosephosphate isomerase. The structure had features intermediate between 'anti-foreign' and autoimmune TCR-peptide-MHC class II complexes that may reflect the hybrid nature of altered self. E8 manifested very low affinity for mutant triosephosphate isomerase-HLA-DR1 despite the highly tumor-reactive properties of E8 cells. A second TCR (G4) had even lower affinity but underwent peptide-specific formation of dimers, suggesting this as a mechanism for enhancing low-affinity TCR-peptide-MHC interactions for T cell activation.

  12. Crystal structures of barley thioredoxin h isoforms HvTrxh1 and HvTrxh2 reveal features involved in protein recognition and possibly in discriminating the isoform specificity

    DEFF Research Database (Denmark)

    Maeda, Kenji; Hägglund, Per; Finnie, Christine;

    2008-01-01

    segment of one HvTrxh1 molecule is positioned along a shallow hydrophobic groove at the primary nucleophile Cys40 of another HvTrxh1 molecule. The association mode can serve as a model for the target protein recognition by Trx, as it brings the Met82 C gamma atom (gamma position as a disulfide sulfur) of...... the bound loop segment in the proximity of the Cys40 thiol. The interaction involves three characteristic backbone-backbone hydrogen bonds in an antiparallel beta-sheet-like arrangement, similar to the arrangement observed in the structure of an engineered, covalently bound complex between Trx and a...... substrate protein, as reported by Maeda et al. in an earlier paper. The occurrence of an intermolecular salt bridge between Glu80 of the bound loop segment and Arg101 near the hydrophobic groove suggests that charge complementarity plays a role in the specificity of Trx. In HvTrxh2, isoleucine corresponds...

  13. GTP depletion synergizes the anti-proliferative activity of chemotherapeutic agents in a cell type-dependent manner

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Tao; Meng, Lingjun [Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A and M Health Science Center, Houston, TX 77030 (United States); Tsai, Robert Y.L., E-mail: rtsai@ibt.tamhsc.edu [Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A and M Health Science Center, Houston, TX 77030 (United States)

    2011-10-22

    Highlights: {yields} Strong synergy between mycophenolic acid (MPA) and 5-FU in MDA-MB-231 cells. {yields} Cell type-dependent synergy between MPA and anti-proliferative agents. {yields} The synergy of MPA on 5-FU is recapitulated by RNA polymerase-I inhibition. {yields} The synergy of MPA on 5-FU requires the expression of nucleostemin. -- Abstract: Mycophenolic acid (MPA) depletes intracellular GTP by blocking de novo guanine nucleotide synthesis. GTP is used ubiquitously for DNA/RNA synthesis and as a signaling molecule. Here, we made a surprising discovery that the anti-proliferative activity of MPA acts synergistically with specific chemotherapeutic agents in a cell type-dependent manner. In MDA-MB-231 cells, MPA shows an extremely potent synergy with 5-FU but not with doxorubicin or etoposide. The synergy between 5-FU and MPA works most effectively against the highly tumorigenic mammary tumor cells compared to the less tumorigenic ones, and does not work in the non-breast cancer cell types that we tested, with the exception of PC3 cells. On the contrary, MPA shows the highest synergy with paclitaxel but not with 5-FU in SCC-25 cells, derived from oral squamous cell carcinomas. Mechanistically, the synergistic effect of MPA on 5-FU in MDA-MB-231 cells can be recapitulated by inhibiting the RNA polymerase-I activity and requires the expression of nucleostemin. This work reveals that the synergy between MPA and anti-proliferative agents is determined by cell type-dependent factors.

  14. Phospho-specific recognition by 14-3-3 proteins and antibodies monitored by a high throughput label-free optical biosensor.

    Science.gov (United States)

    Wu, Meng; Coblitz, Brian; Shikano, Sojin; Long, Shunyou; Spieker, Matt; Frutos, Anthony G; Mukhopadhyay, Sunil; Li, Min

    2006-10-16

    Label-free detection of molecular interactions has considerable potential in facilitating assay development. When combined with high throughput capability, it may be applied to small molecule screens for drug candidates. Phosphorylation is a key posttranslational process that confers diverse regulation in biological systems involving specific protein-protein interactions recognizing the phosphorylated motifs. Using a resonant waveguide grating biosensor, the Epic mark System, we have developed a generic assay to quantitatively measure phospho-specific interactions between a trafficking signal-phosphorylated SWTY peptide and 14-3-3 proteins or anti-phosphopeptide antibodies. Compared with a solution-based fluorescence anisotropy assay, our results support that the high throughput resonant waveguide grating biosensor system has favorable technical profiles in detecting protein-protein interactions that recognize phosphorylated motifs. Hence it provides a new generic HTS platform for phospho-detection. PMID:17011553

  15. Recognition of social parasites as nest-mates: adoption of colony-specific host cuticular odours by the paper wasp parasite Polistes sulcifer.

    OpenAIRE

    Sledge, M. F.; Dani, F. R.; CERVO, R; Dapporto, L; Turillazzi, S.

    2001-01-01

    Colonies of the polistine wasp Polistes dominulus are parasitized by the permanent worker-less social parasite Polistes sulcifer. After usurpation of the host colony, parasite females are characterized by a change in the relative proportions of their cuticular hydrocarbons to match those of the host species. In this paper we present evidence from field data and laboratory experiments that P. sulcifer females adopt a colony-specific host odour that facilitates their acceptance by host females ...

  16. Preparation of human tau exon-2- and -10-specific monoclonal antibodies for the recognition of brain tau proteins in various mammals.

    Science.gov (United States)

    Chen, Cao; Lv, Yan; Shi, Qi; Zhang, Bao-Yun; Chen, Li-Na; Xiao, Kang; Sun, Jing; Dong, Xiao-Ping

    2015-08-01

    The aggregations of tau protein in brain tissue have been described in a large number of neurodegenerative diseases; however, due to the lack of tau isoform- or exon-specific antibodies, the exact situations under which various brain tau isoforms can be found and their exact contributions during disease progression remain unknown. Therefore, in this study, we prepared tau exon-specific monoclonal antibodies (mAbs) that recognize different mammalian tau isoforms. Briefly, 3 Balb/c mice were separately immunized (3 mice per antigen) with the recombinant GST-fusion proteins, GST-tE2 and GST-tE10. Two hybridoma cell lines, 4A8 and 3E12, secreting antibodies against human tau exon-2 and -10 were established using the hybridoma technique. The sensitivity and specificity of the prepared mAbs were evaluated using indirect ELISA and western blot analysis. The ability of the prepared mAbs, 4A8 and 3E12, to recognize endogenous tau protein in the brain tissues of various mammals was estimated by immunoprecipitation. Based on the results of various verification methods, we found that the prepared mAbs, 4A8 and 3E12, not only specifically reacted with the individual recombinant GST tau exon fusion proteins, but also correctly recognized the recombinant human tau isoforms containing respective exon sequences, as shown by western blot analysis. Furthermore, western blot analysis and immunoprecipitation assays verified that the mAbs, 4A8 and 3E12, recognized endogenous tau proteins in human brain tissue, as well as tau proteins in a series of mammalian tissues, including goat, bovine, rabbit, hamster and mouse. Thus, in the present study, using the hybridoma technique, we successfully prepared the mAbs, 4A8 against tau exon-2 and 3E12 against tau exon-10, which provide useful tools for determining potential alternations of tau isoforms in neurodegenerative diseases. PMID:26046129

  17. Substrate tRNA Recognition Mechanism of a Multisite-specific tRNA Methyltransferase, Aquifex aeolicus Trm1, Based on the X-ray Crystal Structure*

    OpenAIRE

    Awai, Takako; Ochi, Anna; Ihsanawati,; Sengoku, Toru; Hirata, Akira; Bessho, Yoshitaka; Yokoyama, Shigeyuki; Hori, Hiroyuki

    2011-01-01

    Archaeal and eukaryotic tRNA (N2,N2-guanine)-dimethyltransferase (Trm1) produces N2,N2-dimethylguanine at position 26 in tRNA. In contrast, Trm1 from Aquifex aeolicus, a hyper-thermophilic eubacterium, modifies G27 as well as G26. Here, a gel mobility shift assay revealed that the T-arm in tRNA is the binding site of A. aeolicus Trm1. To address the multisite specificity, we performed an x-ray crystal structure study. The overall structure of A. aeolicus Trm1 is similar to that of archaeal Tr...

  18. Structural analysis of an HLA-B27 functional variant: identification of residues that contribute to the specificity of recognition by cytolytic T lymphocytes.

    OpenAIRE

    Vega, M A; Ezquerra, A.; S Rojo; Aparicio, P.; Bragado, R; López de Castro, J. A.

    1985-01-01

    The structure of a variant HLA-B27 antigen, B27.2, that is distinguished from the HLA-B27.1 and HLA-B27.3 subgroups by specific cytolytic T lymphocytes has been established by comparative peptide mapping and sequence analysis. There are only three amino acid substitutions between B27.1 and B27.2: aspartate-77, threonine-80, and leucine-81 in HLA-B27.1 are changed to asparagine-77, isoleucine-80, and alanine-81 in HLA-B27.2. These changes account for their single charge difference detectable b...

  19. Activation of individual L1 retrotransposon instances is restricted to cell-type dependent permissive loci

    Science.gov (United States)

    Philippe, Claude; Vargas-Landin, Dulce B; Doucet, Aurélien J; van Essen, Dominic; Vera-Otarola, Jorge; Kuciak, Monika; Corbin, Antoine; Nigumann, Pilvi; Cristofari, Gaël

    2016-01-01

    LINE-1 (L1) retrotransposons represent approximately one sixth of the human genome, but only the human-specific L1HS-Ta subfamily acts as an endogenous mutagen in modern humans, reshaping both somatic and germline genomes. Due to their high levels of sequence identity and the existence of many polymorphic insertions absent from the reference genome, the transcriptional activation of individual genomic L1HS-Ta copies remains poorly understood. Here we comprehensively mapped fixed and polymorphic L1HS-Ta copies in 12 commonly-used somatic cell lines, and identified transcriptional and epigenetic signatures allowing the unambiguous identification of active L1HS-Ta copies in their genomic context. Strikingly, only a very restricted subset of L1HS-Ta loci - some being polymorphic among individuals - significantly contributes to the bulk of L1 expression, and these loci are differentially regulated among distinct cell lines. Thus, our data support a local model of L1 transcriptional activation in somatic cells, governed by individual-, locus-, and cell-type-specific determinants. DOI: http://dx.doi.org/10.7554/eLife.13926.001 PMID:27016617

  20. Bipartite recognition of DNA by TCF/Pangolin is remarkably flexible and contributes to transcriptional responsiveness and tissue specificity of wingless signaling.

    Directory of Open Access Journals (Sweden)

    Hilary C Archbold

    2014-09-01

    Full Text Available The T-cell factor (TCF family of transcription factors are major mediators of Wnt/β-catenin signaling in metazoans. All TCFs contain a High Mobility Group (HMG domain that possesses specific DNA binding activity. In addition, many TCFs contain a second DNA binding domain, the C-clamp, which binds to DNA motifs referred to as Helper sites. While HMG and Helper sites are both important for the activation of several Wnt dependent cis-regulatory modules (W-CRMs, the rules of what constitutes a functional HMG-Helper site pair are unknown. In this report, we employed a combination of in vitro binding, reporter gene analysis and bioinformatics to address this question, using the Drosophila family member TCF/Pangolin (TCF/Pan as a model. We found that while there were constraints for the orientation and spacing of HMG-Helper pairs, the presence of a Helper site near a HMG site in any orientation increased binding and transcriptional response, with some orientations displaying tissue-specific patterns. We found that altering an HMG-Helper site pair from a sub-optimal to optimal orientation/spacing dramatically increased the responsiveness of a W-CRM in several fly tissues. In addition, we used the knowledge gained to bioinformatically identify two novel W-CRMs, one that was activated by Wnt/β-catenin signaling in the prothoracic gland, a tissue not previously connected to this pathway. In sum, this work extends the importance of Helper sites in fly W-CRMs and suggests that the type of HMG-Helper pair is a major factor in setting the threshold for Wnt activation and tissue-responsiveness.

  1. PD-L1 expression in renal cell carcinoma clear cell type is related to unfavorable prognosis

    OpenAIRE

    Katia R. M. Leite; Reis, Sabrina T.; Junior, José Pontes; Zerati, Marcelo; Gomes, Daniel de Oliveira; Luiz H. Camara-Lopes; Srougi, Miguel

    2015-01-01

    Background PD-L1 is a glycoprotein from the family of T-cell co-stimulatory molecules that are constitutively expressed by macrophages. Aberrant expression of PD-L1 is observed in human cancers associated with inhibition of the tumor-directed T-cell immune response. There are few reports in the literature evaluating PD-L1 expression in association to prognosis specifically in renal cell cancer clear cell type (RCC-CC). Methods Immunohistochemistry using a PD-L1 polyclonal antibody was perform...

  2. Emotion Recognition using Speech Features

    CERN Document Server

    Rao, K Sreenivasa

    2013-01-01

    “Emotion Recognition Using Speech Features” covers emotion-specific features present in speech and discussion of suitable models for capturing emotion-specific information for distinguishing different emotions.  The content of this book is important for designing and developing  natural and sophisticated speech systems. Drs. Rao and Koolagudi lead a discussion of how emotion-specific information is embedded in speech and how to acquire emotion-specific knowledge using appropriate statistical models. Additionally, the authors provide information about using evidence derived from various features and models. The acquired emotion-specific knowledge is useful for synthesizing emotions. Discussion includes global and local prosodic features at syllable, word and phrase levels, helpful for capturing emotion-discriminative information; use of complementary evidences obtained from excitation sources, vocal tract systems and prosodic features in order to enhance the emotion recognition performance;  and pro...

  3. The proteasome immunosubunits, PA28 and ER-aminopeptidase 1 protect melanoma cells from efficient MART-126-35 -specific T-cell recognition.

    Science.gov (United States)

    Keller, Martin; Ebstein, Frédéric; Bürger, Elke; Textoris-Taube, Kathrin; Gorny, Xenia; Urban, Sabrina; Zhao, Fang; Dannenberg, Tanja; Sucker, Antje; Keller, Christin; Saveanu, Loredana; Krüger, Elke; Rothkötter, Hermann-Josef; Dahlmann, Burkhardt; Henklein, Petra; Voigt, Antje; Kuckelkorn, Ulrike; Paschen, Annette; Kloetzel, Peter-Michael; Seifert, Ulrike

    2015-12-01

    The immunodominant MART-1(26(27)-35) epitope, liberated from the differentiation antigen melanoma antigen recognized by T cells/melanoma antigen A (MART-1/Melan-A), has been frequently targeted in melanoma immunotherapy, but with limited clinical success. Previous studies suggested that this is in part due to an insufficient peptide supply and epitope presentation, since proteasomes containing the immunosubunits β5i/LMP7 (LMP, low molecular weight protein) or β1i/LMP2 and β5i/LMP7 interfere with MART-1(26-35) epitope generation in tumor cells. Here, we demonstrate that in addition the IFN-γ-inducible proteasome subunit β2i/MECL-1 (multicatalytic endopeptidase complex-like 1), proteasome activator 28 (PA28), and ER-resident aminopeptidase 1 (ERAP1) impair MART-1(26-35) epitope generation. β2i/MECL-1 and PA28 negatively affect C- and N-terminal cleavage and therefore epitope liberation from the proteasome, whereas ERAP1 destroys the MART-1(26-35) epitope by overtrimming activity. Constitutive expression of PA28 and ERAP1 in melanoma cells indicate that both interfere with MART-1(26-35) epitope generation even in the absence of IFN-γ. In summary, our results provide first evidence that activities of different antigen-processing components contribute to an inefficient MART-1(26-35) epitope presentation, suggesting the tumor cell's proteolytic machinery might have an important impact on the outcome of epitope-specific immunotherapies. PMID:26399368

  4. Diversity of Epithelial Stem Cell Types in Adult Lung

    OpenAIRE

    Feng Li; Jinxi He; Jun Wei; Cho, William C.; Xiaoming Liu

    2015-01-01

    Lung is a complex organ lined with epithelial cells. In order to maintain its homeostasis and normal functions following injuries caused by varied extraneous and intraneous insults, such as inhaled environmental pollutants and overwhelming inflammatory responses, the respiratory epithelium normally undergoes regenerations by the proliferation and differentiation of region-specific epithelial stem/progenitor cells that resided in distinct niches along the airway tree. The importance of local e...

  5. Adenovirus vectors targeting distinct cell types in the retina.

    Science.gov (United States)

    Sweigard, J Harry; Cashman, Siobhan M; Kumar-Singh, Rajendra

    2010-04-01

    Purpose. Gene therapy for a number of retinal diseases necessitates efficient transduction of photoreceptor cells. Whereas adenovirus (Ad) serotype 5 (Ad5) does not transduce photoreceptors efficiently, previous studies have demonstrated improved photoreceptor transduction by Ad5 pseudotyped with Ad35 (Ad5/F35) or Ad37 (Ad5/F37) fiber or by the deletion of the RGD domain in the Ad5 penton base (Ad5DeltaRGD). However, each of these constructs contained a different transgene cassette, preventing the evaluation of the relative performance of these vectors, an important consideration before the use of these vectors in the clinic. The aim of this study was to evaluate these vectors in the retina and to attempt photoreceptor-specific transgene expression. Methods. Three Ad5-based vectors containing the same expression cassette were generated and injected into the subretinal space of adult mice. Eyes were analyzed for green fluorescence protein expression in flat-mounts, cross-sections, quantitative RT-PCR, and a modified stereological technique. A 257-bp fragment derived from the mouse opsin promoter was analyzed in the context of photoreceptor-specific transgene expression. Results. Each virus tested efficiently transduced the retinal pigment epithelium. The authors found no evidence that Ad5/F35 or Ad5/F37 transduced photoreceptors. Instead, they found that Ad5/F37 transduced Müller cells. Robust photoreceptor transduction by Ad5DeltaRGD was detected. Photoreceptor-specific transgene expression from the 257-bp mouse opsin promoter in the context of Ad5DeltaRGD vectors was found. Conclusions. Adenovirus vectors may be designed with tropism to distinct cell populations. Robust photoreceptor-specific transgene expression can be achieved in the context of Ad5DeltaRGD vectors. PMID:19892875

  6. Diversity of epithelial stem cell types in adult lung.

    Science.gov (United States)

    Li, Feng; He, Jinxi; Wei, Jun; Cho, William C; Liu, Xiaoming

    2015-01-01

    Lung is a complex organ lined with epithelial cells. In order to maintain its homeostasis and normal functions following injuries caused by varied extraneous and intraneous insults, such as inhaled environmental pollutants and overwhelming inflammatory responses, the respiratory epithelium normally undergoes regenerations by the proliferation and differentiation of region-specific epithelial stem/progenitor cells that resided in distinct niches along the airway tree. The importance of local epithelial stem cell niches in the specification of lung stem/progenitor cells has been recently identified. Studies using cell differentiating and lineage tracing assays, in vitro and/or ex vivo models, and genetically engineered mice have suggested that these local epithelial stem/progenitor cells within spatially distinct regions along the pulmonary tree contribute to the injury repair of epithelium adjacent to their respective niches. This paper reviews recent findings in the identification and isolation of region-specific epithelial stem/progenitor cells and local niches along the airway tree and the potential link of epithelial stem cells for the development of lung cancer. PMID:25810726

  7. Diversity of Epithelial Stem Cell Types in Adult Lung

    Directory of Open Access Journals (Sweden)

    Feng Li

    2015-01-01

    Full Text Available Lung is a complex organ lined with epithelial cells. In order to maintain its homeostasis and normal functions following injuries caused by varied extraneous and intraneous insults, such as inhaled environmental pollutants and overwhelming inflammatory responses, the respiratory epithelium normally undergoes regenerations by the proliferation and differentiation of region-specific epithelial stem/progenitor cells that resided in distinct niches along the airway tree. The importance of local epithelial stem cell niches in the specification of lung stem/progenitor cells has been recently identified. Studies using cell differentiating and lineage tracing assays, in vitro and/or ex vivo models, and genetically engineered mice have suggested that these local epithelial stem/progenitor cells within spatially distinct regions along the pulmonary tree contribute to the injury repair of epithelium adjacent to their respective niches. This paper reviews recent findings in the identification and isolation of region-specific epithelial stem/progenitor cells and local niches along the airway tree and the potential link of epithelial stem cells for the development of lung cancer.

  8. Sparse PCA corrects for cell type heterogeneity in epigenome-wide association studies.

    Science.gov (United States)

    Rahmani, Elior; Zaitlen, Noah; Baran, Yael; Eng, Celeste; Hu, Donglei; Galanter, Joshua; Oh, Sam; Burchard, Esteban G; Eskin, Eleazar; Zou, James; Halperin, Eran

    2016-05-01

    In epigenome-wide association studies (EWAS), different methylation profiles of distinct cell types may lead to false discoveries. We introduce ReFACTor, a method based on principal component analysis (PCA) and designed for the correction of cell type heterogeneity in EWAS. ReFACTor does not require knowledge of cell counts, and it provides improved estimates of cell type composition, resulting in improved power and control for false positives in EWAS. Corresponding software is available at http://www.cs.tau.ac.il/~heran/cozygene/software/refactor.html. PMID:27018579

  9. Speaker recognition by voice

    OpenAIRE

    Kamarauskas, Juozas

    2009-01-01

    Questions of speaker’s recognition by voice are investigated in this dissertation. Speaker recognition systems, their evolution, problems of recognition, systems of features, questions of speaker modeling and matching used in text-independent and text-dependent speaker recognition are considered too. The text-independent speaker recognition system has been developed during this work. The Gaussian mixture model approach was used for speaker modeling and pattern matching. The automatic m...

  10. Iris Recognition Technique

    Institute of Scientific and Technical Information of China (English)

    XIE Mei

    2006-01-01

    The demand on security is increasing greatly in these years and biometric recognition gradually becomes a hot field of research. Iris recognition is a new branch of biometric recognition, which is regarded as the most stable, safe and accurate biometric recognition method. In these years, much progress in this field has been made by scholars and experts of different countries. In this paper, some successful iris recognition methods are listed and their performance are compared. Furthermore, the existing problems and challenges are discussed.

  11. 多载体数据流中的特定信息识别研究%Research of Specific Information Recognition in Multi-Carrier Data Streams

    Institute of Scientific and Technical Information of China (English)

    郑德权; 胡熠; 于浩; 赵铁军; 王青松

    2003-01-01

    提出了一种识别多载体数据流中包含的特定信息的新方法.该方法按照特征词及其拼音匹配规则,基于统计自然语言理论,通过自动的归纳学习,将从语料库中获得的词性间的转移值作为系统知识,利用有效的知识逼近策略判断真实数据流中的特征词与其上下文的关系,并得到特征词在真实文本中的评测值,以此来考查真实数据流中出现的全部特征词与在语料中所学到的特征词上下文搭配规则上的相似程度.如果整个数据流的评测值超过阈值,该数据流将被屏蔽.实验结果表明,根据该方法开发的识别及监控多载体数据注中不良信息的实验系统取得很好的效果.%A method is presented to identify some pieces of specific information in multi-carrier data streams byfeature words and based on PinYin matching. An effective knowledge approximation method is used to judge therelation between feature words and context by statistics theory. The part of speech transfer-value as systemknowledge can be obtained by inductive learning of training corpus. When data streams are evaluated, theevaluation value can be gained according to the system knowledge by matching all feature words and based on theirPin Yin, which examines the comparability with context regular of part of speech between all feature words in datastreams and themselves in training corpus. Further more, if the evaluation value exceeds the threshold, the datastreams will be shielded. Experimental results show that the effect of the experiment system based on this method isefficient for identifying ill information and monitoring & controlling their spreading by multi-carrier data streams.

  12. Rotavirus NSP4: Cell type-dependent transport kinetics to the exofacial plasma membrane and release from intact infected cells

    Directory of Open Access Journals (Sweden)

    Parr Rebecca D

    2011-06-01

    Full Text Available Abstract Background Rotavirus NSP4 localizes to multiple intracellular sites and is multifunctional, contributing to RV morphogenesis, replication and pathogenesis. One function of NSP4 is the induction of early secretory diarrhea by binding surface receptors to initiate signaling events. The aims of this study were to determine the transport kinetics of NSP4 to the exofacial plasma membrane (PM, the subsequent release from intact infected cells, and rebinding to naïve and/or neighboring cells in two cell types. Methods Transport kinetics was evaluated using surface-specific biotinylation/streptavidin pull-downs and exofacial exposure of NSP4 was confirmed by antibody binding to intact cells, and fluorescent resonant energy transfer. Transfected cells similarly were monitored to discern NSP4 movement in the absence of infection or other viral proteins. Endoglycosidase H digestions, preparation of CY3- or CY5- labeled F(ab2 fragments, confocal imaging, and determination of preferential polarized transport employed standard laboratory techniques. Mock-infected, mock-biotinylated and non-specific antibodies served as controls. Results Only full-length (FL, endoglycosidase-sensitive NSP4 was detected on the exofacial surface of two cell types, whereas the corresponding cell lysates showed multiple glycosylated forms. The C-terminus of FL NSP4 was detected on exofacial-membrane surfaces at different times in different cell types prior to its release into culture media. Transport to the PM was rapid and distinct yet FL NSP4 was secreted from both cell types at a time similar to the release of virus. NSP4-containing, clarified media from both cells bound surface molecules of naïve cells, and imaging showed secreted NSP4 from one or more infected cells bound neighboring cell membranes in culture. Preferential sorting to apical or basolateral membranes also was distinct in different polarized cells. Conclusions The intracellular transport of NSP4 to

  13. Implications of epigenetic variability within a cell population for cell type classification

    Directory of Open Access Journals (Sweden)

    Inna eTabansky

    2015-12-01

    Full Text Available Here we propose a new approach to defining nerve ‘cell types’ in reaction to recent advances in single cell analysis. Among cells previously thought to be equivalent, considerable differences in global gene expression and biased tendencies among differing developmental fates have been demonstrated within multiple lineages. The model of classifying cells into distinct types thus has to be revised to account for this intrinsic variability. A ‘cell type’ could be a group of cells that possess similar, but not necessarily identical properties, variable within a spectrum of epigenetic adjustments that permit its developmental path toward a specific function to be achieved. Thus, the definition of a cell type is becoming more similar to the definition of a species: sharing essential properties with other members of its group, but permitting a certain amount of deviation in aspects that do not seriously impact function. This approach accommodates, even embraces the spectrum of natural variation found in various cell populations and consequently avoids the fallacy of false equivalence. For example, developing neurons will react to their microenvironments with epigenetic changes resulting in slight changes in gene expression and morphology. Addressing the new questions implied here will have significant implications for developmental neurobiology.

  14. Self-recognition specificity expressed by T cells from nude mice. Absence of detectable Ia-restricted T cells in nude mice that do exhibit self-K/D-restricted T cell responses

    International Nuclear Information System (INIS)

    The presence in athymic nude mice of precursor T cells with self-recognition specificity for either H-2 K/D or H-2 I region determinants was investigated. Chimeras were constructed of lethally irradiated parental mice receiving a mixture of F1 nude mouse (6-8 wk old) spleen and bone marrow cells. The donor inoculum was deliberately not subjected to any T cell depletion procedure, so that any potential major histocompatibility complex-committed precursor T cells were allowed to differentiate and expand in the normal parental recipients. 3 mo after reconstitution, the chimeras were immunized with several protein antigens in complete Freund's adjuvant in the footpads and their purified draining lymph node T cells tested 10 d later for ability to recognize antigen on antigen-presenting cells of either parental haplotype. Also, their spleen and lymph node cells were tested for ability to generate a cytotoxic T lymphocyte (CTL) response to trinitrophenyl (TNP)-modified stimulator cells of either parental haplotype. It was demonstrated that T cell proliferative responses of these F1(nude)----parent chimeras were restricted solely to recognizing parental host I region determinants as self and expressed the Ir gene phenotype of the host. In contrast, CTL responses could be generated (in the presence of interleukin 2) to TNP-modified stimulator cells of either parental haplotype. Thus these results indicate that nude mice which do have CTL with self-specificity for K/D region determinants lack proliferating T cells with self-specificity for I region determinants. These results provide evidence for the concepts that development of the I region-restricted T cell repertoire is strictly an intrathymically determined event and that young nude mice lack the unique thymic elements responsible for education of I region-restricted T cells

  15. Discriminative learning for speech recognition

    CERN Document Server

    He, Xiadong

    2008-01-01

    In this book, we introduce the background and mainstream methods of probabilistic modeling and discriminative parameter optimization for speech recognition. The specific models treated in depth include the widely used exponential-family distributions and the hidden Markov model. A detailed study is presented on unifying the common objective functions for discriminative learning in speech recognition, namely maximum mutual information (MMI), minimum classification error, and minimum phone/word error. The unification is presented, with rigorous mathematical analysis, in a common rational-functio

  16. Sex-differences in lung cancer cell-types? An epidemiologic study in Ireland

    OpenAIRE

    Clancy, Luke; Kabir, Zubair; Connolly, Gregrory N.

    2008-01-01

    Objective: This study assesses the epidemiological pattern of lung cancer cell-types in Ireland, with identification of any underlying gender variations. Methods: Lung cancer incidence data, including the major cell-types: squamous-cell-carcinoma (SCC), adenocarcinoma (AC), small-cell-lung-carcinoma (SCLC) and large-cell-carcinoma (LCC) were obtained from the national cancer registry (1994–2000), together with individual characteristics, such as age, gender, smoking status, and the year of di...

  17. Mechanical stress is communicated between different cell types to elicit matrix remodeling

    OpenAIRE

    Swartz, M. A.; Tschumperlin, D. J.; Kamm, R.D.; Drazen, J M

    2001-01-01

    Tissue remodeling often reflects alterations in local mechanical conditions and manifests as an integrated response among the different cell types that share, and thus cooperatively manage, an extracellular matrix. Here we examine how two different cell types, one that undergoes the stress and the other that primarily remodels the matrix, might communicate a mechanical stress by using airway cells as a representative in vitro system. Normal stress is imposed on bro...

  18. Comparison Between Supervised and Unsupervised Classifications of Neuronal Cell Types: A Case Study

    OpenAIRE

    Guerra, Luis; McGarry, Laura M.; Robles Forcada, Víctor; Bielza, Concha; Larrañaga Múgica, Pedro; Yuste, Rafael

    2010-01-01

    In the study of neural circuits, it becomes essential to discern the different neuronal cell types that build the circuit. Traditionally, neuronal cell types have been classified using qualitative descriptors. More recently, several attempts have been made to classify neurons quantitatively, using unsupervised clustering methods. While useful, these algorithms do not take advantage of previous information known to the investigator, which could improve the classification task. For neocortical ...

  19. EBUS-TBNA gives adequate tissue information on cell type in lung cancer

    OpenAIRE

    Wong, MKY; Lam, D; IP, M; Ho, J.

    2013-01-01

    INTRODUCTION: In formulating systemic treatment in patients with advanced stage lung cancer, it is now considered imperative to know the cell type such as squamous carcinoma, adenocarcinoma and large cell carcinoma as chemotherapeutic agents would be tailored to treat different cell types. In the authors’ centre, the adoption of using epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) as the firstline treatment has been the treatment of choice in patients shown to have a...

  20. Targeting surface nucleolin with multivalent HB-19 and related Nucant pseudopeptides results in distinct inhibitory mechanisms depending on the malignant tumor cell type

    International Nuclear Information System (INIS)

    Nucleolin expressed at the cell surface is a binding protein for a variety of ligands implicated in tumorigenesis and angiogenesis. By using a specific antagonist that binds the C-terminal RGG domain of nucleolin, the HB-19 pseudopeptide, we recently reported that targeting surface nucleolin with HB-19 suppresses progression of established human breast tumor cells in the athymic nude mice, and delays development of spontaneous melanoma in the RET transgenic mice. By the capacity of HB-19 to bind stably surface nucleolin, we purified and identified nucleolin partners at the cell surface. HB-19 and related multivalent Nucant pseudopeptides, that present pentavalently or hexavalently the tripeptide Lysψ(CH2N)-Pro-Arg, were then used to show that targeting surface nucleolin results in distinct inhibitory mechanisms on breast, prostate, colon carcinoma and leukemia cells. Surface nucleolin exists in a 500-kDa protein complex including several other proteins, which we identified by microsequencing as two Wnt related proteins, Ku86 autoantigen, signal recognition particle subunits SRP68/72, the receptor for complement component gC1q-R, and ribosomal proteins S4/S6. Interestingly, some of the surface-nucleolin associated proteins are implicated in cell signaling, tumor cell adhesion, migration, invasion, cell death, autoimmunity, and bacterial infections. Surface nucleolin in the 500-kDa complex is highly stable. Surface nucleolin antagonists, HB-19 and related multivalent Nucant pseudopeptides, exert distinct inhibitory mechanisms depending on the malignant tumor cell type. For example, in epithelial tumor cells they inhibit cell adhesion or spreading and induce reversion of the malignant phenotype (BMC cancer 2010, 10:325) while in leukemia cells they trigger a rapid cell death associated with DNA fragmentation. The fact that these pseudopeptides do not cause cell death in epithelial tumor cells indicates that cell death in leukemia cells is triggered by a specific

  1. Targeting surface nucleolin with multivalent HB-19 and related Nucant pseudopeptides results in distinct inhibitory mechanisms depending on the malignant tumor cell type

    Directory of Open Access Journals (Sweden)

    Hovanessian Ara G

    2011-08-01

    Full Text Available Abstract Background Nucleolin expressed at the cell surface is a binding protein for a variety of ligands implicated in tumorigenesis and angiogenesis. By using a specific antagonist that binds the C-terminal RGG domain of nucleolin, the HB-19 pseudopeptide, we recently reported that targeting surface nucleolin with HB-19 suppresses progression of established human breast tumor cells in the athymic nude mice, and delays development of spontaneous melanoma in the RET transgenic mice. Methods By the capacity of HB-19 to bind stably surface nucleolin, we purified and identified nucleolin partners at the cell surface. HB-19 and related multivalent Nucant pseudopeptides, that present pentavalently or hexavalently the tripeptide Lysψ(CH2N-Pro-Arg, were then used to show that targeting surface nucleolin results in distinct inhibitory mechanisms on breast, prostate, colon carcinoma and leukemia cells. Results Surface nucleolin exists in a 500-kDa protein complex including several other proteins, which we identified by microsequencing as two Wnt related proteins, Ku86 autoantigen, signal recognition particle subunits SRP68/72, the receptor for complement component gC1q-R, and ribosomal proteins S4/S6. Interestingly, some of the surface-nucleolin associated proteins are implicated in cell signaling, tumor cell adhesion, migration, invasion, cell death, autoimmunity, and bacterial infections. Surface nucleolin in the 500-kDa complex is highly stable. Surface nucleolin antagonists, HB-19 and related multivalent Nucant pseudopeptides, exert distinct inhibitory mechanisms depending on the malignant tumor cell type. For example, in epithelial tumor cells they inhibit cell adhesion or spreading and induce reversion of the malignant phenotype (BMC cancer 2010, 10:325 while in leukemia cells they trigger a rapid cell death associated with DNA fragmentation. The fact that these pseudopeptides do not cause cell death in epithelial tumor cells indicates that cell

  2. Category-Specificity in Visual Object Recognition

    Science.gov (United States)

    Gerlach, Christian

    2009-01-01

    Are all categories of objects recognized in the same manner visually? Evidence from neuropsychology suggests they are not: some brain damaged patients are more impaired in recognizing natural objects than artefacts whereas others show the opposite impairment. Category-effects have also been demonstrated in neurologically intact subjects, but the…

  3. Evidence for Differential Glycosylation of Trophoblast Cell Types.

    Science.gov (United States)

    Chen, Qiushi; Pang, Poh-Choo; Cohen, Marie E; Longtine, Mark S; Schust, Danny J; Haslam, Stuart M; Blois, Sandra M; Dell, Anne; Clark, Gary F

    2016-06-01

    Human placental villi are surfaced by the syncytiotrophoblast (STB), with a layer of cytotrophoblasts (CTB) positioned just beneath the STB. STB in normal term pregnancies is exposed to maternal immune cells in the placental intervillous space. Extravillous cytotrophoblasts (EVT) invade the decidua and spiral arteries, where they act in conjunction with natural killer (NK) cells to convert the spiral arteries into flaccid conduits for maternal blood that support a 3-4 fold increase in the rate of maternal blood flow into the placental intervillous space. The functional roles of these distinct trophoblast subtypes during pregnancy suggested that they could be differentially glycosylated. Glycomic analysis of these trophoblasts has revealed the expression of elevated levels of biantennary N-glycans in STB and CTB, with the majority of them bearing a bisecting GlcNAc. N-glycans terminated with polylactosamine extensions were also detected at low levels. A subset of the N-glycans linked to these trophoblasts were sialylated, primarily with terminal NeuAcα2-3Gal sequences. EVT were decorated with the same N-glycans as STB and CTB, except in different proportions. The level of bisecting type N-glycans was reduced, but the level of N-glycans decorated with polylactosamine sequences were substantially elevated compared with the other types of trophoblasts. The level of triantennary and tetraantennary N-glycans was also elevated in EVT. The sialylated N-glycans derived from EVT were completely susceptible to an α2-3 specific neuraminidase (sialidase S). The possibility exists that the N-glycans associated with these different trophoblast subpopulations could act as functional groups. These potential relationships will be considered. PMID:26929217

  4. Recognition of Problem Drinkers

    OpenAIRE

    Cornel, Michiel; van Zutphen, Wim M.

    1989-01-01

    General practitioners often see patients with problems related to drinking behaviour, but recognize only a small proportion of these problem drinkers. The authors discuss some mechanisms of this non-recognition phenomenon and suggest ways to enhance early recognition.

  5. Speech recognition and understanding

    Energy Technology Data Exchange (ETDEWEB)

    Vintsyuk, T.K.

    1983-05-01

    This article discusses the automatic processing of speech signals with the aim of finding a sequence of works (speech recognition) or a concept (speech understanding) being transmitted by the speech signal. The goal of the research is to develop an automatic typewriter that will automatically edit and type text under voice control. A dynamic programming method is proposed in which all possible class signals are stored, after which the presented signal is compared to all the stored signals during the recognition phase. Topics considered include element-by-element recognition of words of speech, learning speech recognition, phoneme-by-phoneme speech recognition, the recognition of connected speech, understanding connected speech, and prospects for designing speech recognition and understanding systems. An application of the composition dynamic programming method for the solution of basic problems in the recognition and understanding of speech is presented.

  6. RECOGNITION OF CONTESTED STATES

    OpenAIRE

    Ali, Nanna; Ben-Ahmed, Michele; Bom, Thomas Falk; Ching, Rune Kieran; Steffensen, Lars Schmidt; Funningsstovu, Janus Hanusarson í

    2012-01-01

    Contested states have existed in many decades and been on the political agenda worldwide. A small group of entities in the world are aspiring for recognition and independence, while some entities gained recognition relatively smoothly. This project accounts for UN’s recognition process and investigates entities prospects of influencing the process for obtaining recognition. Based on theories of liberalism and constructivism as well as the opposing theories of international relations, re...

  7. Genetic Isolation of Hypothalamic Neurons that Regulate Context-Specific Male Social Behavior.

    Science.gov (United States)

    Soden, Marta E; Miller, Samara M; Burgeno, Lauren M; Phillips, Paul E M; Hnasko, Thomas S; Zweifel, Larry S

    2016-07-12

    Nearly all animals engage in a complex assortment of social behaviors that are essential for the survival of the species. In mammals, these behaviors are regulated by sub-nuclei within the hypothalamus, but the specific cell types within these nuclei responsible for coordinating behavior in distinct contexts are only beginning to be resolved. Here, we identify a population of neurons in the ventral premammillary nucleus of the hypothalamus (PMV) that are strongly activated in male intruder mice in response to a larger resident male but that are not responsive to females. Using a combination of molecular and genetic approaches, we demonstrate that these PMV neurons regulate intruder-specific male social behavior and social novelty recognition in a manner dependent on synaptic release of the excitatory neurotransmitter glutamate. These data provide direct evidence for a unique population of neurons that regulate social behaviors in specific contexts. PMID:27346361

  8. Recognition and Teleportation

    OpenAIRE

    Fichtner, K. -H.; Freudenberg, W.; Ohya, M.

    2004-01-01

    We study a possible function of brain, in particular, we try to describe several aspects of the process of recognition. In order to understand the fundamental parts of the recognition process, the quantum teleportation scheme seems to be useful. We consider a channel expression of the teleportation process that serves for a simplified description of the recognition process in brain.

  9. Derivation of rigorous conditions for high cell-type diversity by algebraic approach.

    Science.gov (United States)

    Yoshida, Hiroshi; Anai, Hirokazu; Horimoto, Katsuhisa

    2007-01-01

    The development of a multicellular organism is a dynamic process. Starting with one or a few cells, the organism develops into different types of cells with distinct functions. We have constructed a simple model by considering the cell number increase and the cell-type order conservation, and have assessed conditions for cell-type diversity. This model is based on a stochastic Lindenmayer system with cell-to-cell interactions for three types of cells. In the present model, we have successfully derived complex but rigorous algebraic relations between the proliferation and transition rates for cell-type diversity by using a symbolic method: quantifier elimination (QE). Surprisingly, three modes for the proliferation and transition rates have emerged for large ratios of the initial cells to the developed cells. The three modes have revealed that the equality between the development rates for the highest cell-type diversity is reduced during the development process of multicellular organisms. Furthermore, we have found that the highest cell-type diversity originates from order conservation. PMID:17293029

  10. Transcriptomic approaches in the brain at cell type resolution : Analysis of neuron-glia interaction in Plp1 and Cnp1 null-mutant mice

    OpenAIRE

    Wichert, Sven Peter

    2009-01-01

    Global gene expression profiling is a powerful tool to obtain deep insights into physiological and pathological cellular mechanisms. The enormous cellular complexity of the mammalian brain, however, is a major obstacle for gene expression profiling. Physiologically relevant changes of transcription that occur in specific cell populations are likely to remain undetected in cellularly complex samples. The purification of single populations of neural cell types eliminates these difficulties. We ...

  11. Cell type dependent morphological adaptation in polyelectrolyte hydrogels governs chondrogenic fate.

    Science.gov (United States)

    Raghothaman, Deepak; Leong, Meng Fatt; Lim, Tze Chiun; Wan, Andrew C A; Ser, Zheng; Lee, Eng Hin; Yang, Zheng

    2016-01-01

    Repair of critical-size articular cartilage defects typically involves delivery of cells in biodegradable, 3D matrices. Differences in the developmental status of mesenchymal stem cells (MSCs) and terminally differentiated mature chondrocytes might be a critical factor in engineering appropriate 3D matrices for articular cartilage tissue engineering. This study examined the relationship between material-driven early cell morphological adaptations and chondrogenic outcomes, by studying the influence of aligned collagen type I (Col I) presentation on chondrocytes and MSC in interfacial polyelectrolyte complexation (IPC)-based hydrogels. In the absence of Col I, both chondrocytes and MSCs adopted rounded cell morphology and formed clusters, with chondrocyte clusters favoring the maintenance of hyaline phenotype, while MSC clusters differentiated to fibro-superficial zone-like chondrocytes. Encapsulated chondrocytes in IPC-Col I hydrogel adopted a fibroblastic morphology forming fibro-superficial zone-like phenotype, which could be reversed by inhibiting actin polymerization using cytochalasin D (CytD). In contrast, adoption of fibroblastic morphology by encapsulated MSCs in IPC-Col I facilitated superior chondrogenesis, generating a mature, hyaline neocartilage tissue. CytD treatment abrogated the elongation of MSCs and brought about a single cell-like state, resulting in insignificant chondrogenic differentiation, underscoring the essential requirement of providing matrix environments that are amenable to cell-cell interactions for robust MSC chondrogenic differentiation. Our study demonstrates that MSCs and culture-expanded chondrocytes favour differential microenvironmental niches and emphasizes the importance of designing biomaterials that meet cell type-specific requirements, in adopting chondrocyte or MSC-based approaches for regenerating hyaline, articular cartilage. PMID:27041648

  12. Internalisation of engineered nanoparticles into mammalian cells in vitro: influence of cell type and particle properties

    International Nuclear Information System (INIS)

    Cellular internalisation of industrial engineered nanoparticles is undesired and a reason for concern. Here we investigated and compared the ability of seven different mammalian cell cultures in vitro to incorporate six kinds of engineered nanoparticles, focussing on the role of cell type and particle properties in particle uptake. Uptake was examined using light and electron microscopy coupled with energy dispersive X-ray spectroscopy (EDX) for particle element identification. Flow cytometry was applied for semi-quantitative analyses of particle uptake and for exploring the influence on uptake by the phagocytosis inhibitor Cytochalasin D (CytoD). All particles studied were found to enter each kind of cultured cells. Yet, particles were never found within cell nuclei. The presence of the respective particles within the cells was confirmed by EDX. Live-cell imaging revealed the time-dependent process of internalisation of technical nanoparticles, which was exemplified by tungsten carbide particle uptake into the human skin cells, HaCaT. Particles were found to co-localise with lysosomal structures within the cells. The incorporated nanoparticles changed the cellular granularity, as measured by flow cytometry, already after 3 h of exposure in a particle specific manner. By correlating particle properties with flow cytometry data, only the primary particle size was found to be a weakly influential property for particle uptake. CytoD, an inhibitor of actin filaments and therewith of phagocytosis, significantly inhibited the internalisation of particle uptake in only two of the seven investigated cell cultures. Our study, therefore, supports the notion that nanoparticles can enter mammalian cells quickly and easily, irrespective of the phagocytic ability of the cells.

  13. The β1 adrenergic effects of antibodies against the C-terminal end of the ribosomal P2β protein of Trypanosoma cruzi associate with a specific pattern of epitope recognition

    Science.gov (United States)

    Bergami, P Lopez; Gómez, KA; Levy, GV; Grippo, V; Baldi, A; Levin, MJ

    2005-01-01

    BALB/c mice immunized with recombinant Trypanosoma cruzi ribosomal P2β protein (TcP2β) develop a strong and specific antibody response against its 13 residue-long C-terminal epitope (peptide R13: EEEDDDMGFGLFD) that has a concomitant β1-adrenergic stimulating activity. However, other animals that undergo similar immunizations seem tolerant to this epitope. To evaluate further the antibody response against the ribosomal P proteins, 25 BALB/c and 25 Swiss mice were immunized with TcP2β. From the 50 animals, 31 developed a positive anti-R13 response, whereas 19 were non-responsive. From the 31 anti-R13 positive mice, 25 had anti-R13 antibodies that recognized the discontinuous motif ExDDxGF, and their presence correlated with the recording of supraventricular tachycardia. The other six had anti-R13 antibodies but with a normal electrocardiographic recording. These anti-R13 antibodies recognized the motif DDxGF shared by mammals and T. cruzi and proved to be a true anti-P autoantibody because they were similar to those elicited in Swiss, but not in BALB/c mice, by immunization with the C-terminal portion of the mouse ribosomal P protein. Our results show that the recognition of the glutamic acid in position 3 of peptide R13 defines the ability of anti-R13 antibodies to react with the motif AESDE of the second extracellular loop of the β1-adrenergic receptor, setting the molecular basis for their pathogenic β1 adrenoceptor stimulating activity. PMID:16178868

  14. Large-scale in silico modeling of metabolic interactions between cell types in the human brain.

    Science.gov (United States)

    Lewis, Nathan E; Schramm, Gunnar; Bordbar, Aarash; Schellenberger, Jan; Andersen, Michael P; Cheng, Jeffrey K; Patel, Nilam; Yee, Alex; Lewis, Randall A; Eils, Roland; König, Rainer; Palsson, Bernhard Ø

    2010-12-01

    Metabolic interactions between multiple cell types are difficult to model using existing approaches. Here we present a workflow that integrates gene expression data, proteomics data and literature-based manual curation to model human metabolism within and between different types of cells. Transport reactions are used to account for the transfer of metabolites between models of different cell types via the interstitial fluid. We apply the method to create models of brain energy metabolism that recapitulate metabolic interactions between astrocytes and various neuron types relevant to Alzheimer's disease. Analysis of the models identifies genes and pathways that may explain observed experimental phenomena, including the differential effects of the disease on cell types and regions of the brain. Constraint-based modeling can thus contribute to the study and analysis of multicellular metabolic processes in the human tissue microenvironment and provide detailed mechanistic insight into high-throughput data analysis. PMID:21102456

  15. Recognition in a social symbiosis: chemical phenotypes and nestmate recognition behaviors of neotropical parabiotic ants.

    Directory of Open Access Journals (Sweden)

    Virginia J Emery

    Full Text Available Social organisms rank among the most abundant and ecologically dominant species on Earth, in part due to exclusive recognition systems that allow cooperators to be distinguished from exploiters. Exploiters, such as social parasites, manipulate their hosts' recognition systems, whereas cooperators are expected to minimize interference with their partner's recognition abilities. Despite our wealth of knowledge about recognition in single-species social nests, less is known of the recognition systems in multi-species nests, particularly involving cooperators. One uncommon type of nesting symbiosis, called parabiosis, involves two species of ants sharing a nest and foraging trails in ostensible cooperation. Here, we investigated recognition cues (cuticular hydrocarbons and recognition behaviors in the parabiotic mixed-species ant nests of Camponotus femoratus and Crematogaster levior in North-Eastern Amazonia. We found two sympatric, cryptic Cr. levior chemotypes in the population, with one type in each parabiotic colony. Although they share a nest, very few hydrocarbons were shared between Ca. femoratus and either Cr. levior chemotype. The Ca. femoratus hydrocarbons were also unusually long-chained branched alkenes and dienes, compounds not commonly found amongst ants. Despite minimal overlap in hydrocarbon profile, there was evidence of potential interspecific nestmate recognition -Cr. levior ants were more aggressive toward Ca. femoratus non-nestmates than Ca. femoratus nestmates. In contrast to the prediction that sharing a nest could weaken conspecific recognition, each parabiotic species also maintains its own aggressive recognition behaviors to exclude conspecific non-nestmates. This suggests that, despite cohabitation, parabiotic ants maintain their own species-specific colony odors and recognition mechanisms. It is possible that such social symbioses are enabled by the two species each using their own separate recognition cues, and that

  16. Recognition in a social symbiosis: chemical phenotypes and nestmate recognition behaviors of neotropical parabiotic ants.

    Science.gov (United States)

    Emery, Virginia J; Tsutsui, Neil D

    2013-01-01

    Social organisms rank among the most abundant and ecologically dominant species on Earth, in part due to exclusive recognition systems that allow cooperators to be distinguished from exploiters. Exploiters, such as social parasites, manipulate their hosts' recognition systems, whereas cooperators are expected to minimize interference with their partner's recognition abilities. Despite our wealth of knowledge about recognition in single-species social nests, less is known of the recognition systems in multi-species nests, particularly involving cooperators. One uncommon type of nesting symbiosis, called parabiosis, involves two species of ants sharing a nest and foraging trails in ostensible cooperation. Here, we investigated recognition cues (cuticular hydrocarbons) and recognition behaviors in the parabiotic mixed-species ant nests of Camponotus femoratus and Crematogaster levior in North-Eastern Amazonia. We found two sympatric, cryptic Cr. levior chemotypes in the population, with one type in each parabiotic colony. Although they share a nest, very few hydrocarbons were shared between Ca. femoratus and either Cr. levior chemotype. The Ca. femoratus hydrocarbons were also unusually long-chained branched alkenes and dienes, compounds not commonly found amongst ants. Despite minimal overlap in hydrocarbon profile, there was evidence of potential interspecific nestmate recognition -Cr. levior ants were more aggressive toward Ca. femoratus non-nestmates than Ca. femoratus nestmates. In contrast to the prediction that sharing a nest could weaken conspecific recognition, each parabiotic species also maintains its own aggressive recognition behaviors to exclude conspecific non-nestmates. This suggests that, despite cohabitation, parabiotic ants maintain their own species-specific colony odors and recognition mechanisms. It is possible that such social symbioses are enabled by the two species each using their own separate recognition cues, and that interspecific nestmate

  17. Optical Pattern Recognition

    Science.gov (United States)

    Yu, Francis T. S.; Jutamulia, Suganda

    2008-10-01

    Contributors; Preface; 1. Pattern recognition with optics Francis T. S. Yu and Don A. Gregory; 2. Hybrid neural networks for nonlinear pattern recognition Taiwei Lu; 3. Wavelets, optics, and pattern recognition Yao Li and Yunglong Sheng; 4. Applications of the fractional Fourier transform to optical pattern recognition David Mendlovic, Zeev Zalesky and Haldum M. Oxaktas; 5. Optical implementation of mathematical morphology Tien-Hsin Chao; 6. Nonlinear optical correlators with improved discrimination capability for object location and recognition Leonid P. Yaroslavsky; 7. Distortion-invariant quadratic filters Gregory Gheen; 8. Composite filter synthesis as applied to pattern recognition Shizhou Yin and Guowen Lu; 9. Iterative procedures in electro-optical pattern recognition Joseph Shamir; 10. Optoelectronic hybrid system for three-dimensional object pattern recognition Guoguang Mu, Mingzhe Lu and Ying Sun; 11. Applications of photrefractive devices in optical pattern recognition Ziangyang Yang; 12. Optical pattern recognition with microlasers Eung-Gi Paek; 13. Optical properties and applications of bacteriorhodopsin Q. Wang Song and Yu-He Zhang; 14. Liquid-crystal spatial light modulators Aris Tanone and Suganda Jutamulia; 15. Representations of fully complex functions on real-time spatial light modulators Robert W. Cohn and Laurence G. Hassbrook; Index.

  18. Cortical networks for visual self-recognition

    International Nuclear Information System (INIS)

    This paper briefly reviews recent developments regarding the brain mechanisms of visual self-recognition. A special cognitive mechanism for visual self-recognition has been postulated based on behavioral and neuropsychological evidence, but its neural substrate remains controversial. Recent functional imaging studies suggest that multiple cortical mechanisms play self-specific roles during visual self-recognition, reconciling the existing controversy. Respective roles for the left occipitotemporal, right parietal, and frontal cortices in symbolic, visuospatial, and conceptual aspects of self-representation have been proposed. (author)

  19. History of Maternal Recognition of Pregnancy.

    Science.gov (United States)

    Bazer, Fuller W

    2015-01-01

    The mechanism for signaling pregnancy recognition is highly variable among species, and the signaling molecule itself varies between estrogens in pigs to chorionic gonadotrophin in primates. This chapter provides insight into the menstrual cycle of women and estrous cycles of rodents, dog, cat, pigs, sheep, rabbits, and marsupials, as well as the hormones required for pregnancy recognition. Pregnancy recognition involves specific hormones such as prolactin in rodents or interferons in ruminants and estrogens in pigs that in their own way ensure the maintenance of the corpus luteum and its secretion of progesterone which is the hormone of pregnancy. However, these pregnancy recognition signals may also modify gene expression in a cell-specific and temporal manner to ensure the growth and development of the conceptus. This chapter provides some historical aspects of the development of understanding of mechanisms for the establishment and maintenance of pregnancy in several species of mammals. PMID:26450492

  20. Biologically inspired emotion recognition from speech

    OpenAIRE

    Buscicchio Cosimo; Caponetti Laura; Castellano Giovanna

    2011-01-01

    Abstract Emotion recognition has become a fundamental task in human-computer interaction systems. In this article, we propose an emotion recognition approach based on biologically inspired methods. Specifically, emotion classification is performed using a long short-term memory (LSTM) recurrent neural network which is able to recognize long-range dependencies between successive temporal patterns. We propose to represent data using features derived from two different models: mel-frequency ceps...

  1. Dynamic Automatic Noisy Speech Recognition System (DANSR)

    OpenAIRE

    Paul, Sheuli

    2014-01-01

    In this thesis we studied and investigated a very common but a long existing noise problem and we provided a solution to this problem. The task is to deal with different types of noise that occur simultaneously and which we call hybrid. Although there are individual solutions for specific types one cannot simply combine them because each solution affects the whole speech. We developed an automatic speech recognition system DANSR ( Dynamic Automatic Noisy Speech Recognition System) for hybri...

  2. A New Database for Speaker Recognition

    OpenAIRE

    Feng, Ling; Hansen, Lars Kai

    2005-01-01

    In this paper we discuss properties of speech databases used for speaker recognition research and evaluation, and we characterize some popular standard databases. The paper presents a new database called ELSDSR dedicated to speaker recognition applications. The main characteristics of this database are: English spoken by non-native speakers, a single session of sentence reading and relatively extensive speech samples suitable for learning person specific speech characteristics.

  3. A New Database for Speaker Recognition

    DEFF Research Database (Denmark)

    Feng, Ling; Hansen, Lars Kai

    2005-01-01

    In this paper we discuss properties of speech databases used for speaker recognition research and evaluation, and we characterize some popular standard databases. The paper presents a new database called ELSDSR dedicated to speaker recognition applications. The main characteristics of this database...... are: English spoken by non-native speakers, a single session of sentence reading and relatively extensive speech samples suitable for learning person specific speech characteristics....

  4. Configural processing in face recognition in schizophrenia

    OpenAIRE

    Schwartz, Barbara L.; Marvel, Cherie L.; Drapalski, Amy; Rosse, Richard B.; Deutsch, Stephen I.

    2002-01-01

    Introduction. There is currently substantial literature to suggest that patients with schizophrenia are impaired on many face-processing tasks. This study investigated the specific effects of configural changes on face recognition in groups of schizophrenia patients. Methods. In Experiment 1, participants identified facial expressions in upright faces and in faces inverted from their upright orientation. Experiments 2 and 3 examined recognition memory for faces and other non-face objects pres...

  5. Pattern recognition & machine learning

    CERN Document Server

    Anzai, Y

    1992-01-01

    This is the first text to provide a unified and self-contained introduction to visual pattern recognition and machine learning. It is useful as a general introduction to artifical intelligence and knowledge engineering, and no previous knowledge of pattern recognition or machine learning is necessary. Basic for various pattern recognition and machine learning methods. Translated from Japanese, the book also features chapter exercises, keywords, and summaries.

  6. ANATOMY ON PATTERN RECOGNITION

    OpenAIRE

    MAYANK PARASHER; SHRUTI SHARMA; A .K. SHARMA,; J.P.Gupta

    2011-01-01

    Pattern Recognition is the science of recognizing patterns by machines. This is very wide research area as of today, because every newresearch tries to make machine as intelligent as human for recognizing patterns. Pattern recognition is an active research and an importanttrait of ‘artificial intelligence’. This review paper introduces pattern recognition, its fundamental definitions, and provides understanding of related research work. This paper presents different types of algorithms, their...

  7. Context dependent speech recognition

    OpenAIRE

    Andersson, Sebastian

    2006-01-01

    Poor speech recognition is a problem when developing spoken dialogue systems, but several studies has showed that speech recognition can be improved by post-processing of recognition output that use the dialogue context, acoustic properties of a user utterance and other available resources to train a statistical model to use as a filter between the speech recogniser and dialogue manager. In this thesis a corpus of logged interactions between users and a dialogue system was used...

  8. Statistical Pattern Recognition

    CERN Document Server

    Webb, Andrew R

    2011-01-01

    Statistical pattern recognition relates to the use of statistical techniques for analysing data measurements in order to extract information and make justified decisions.  It is a very active area of study and research, which has seen many advances in recent years. Applications such as data mining, web searching, multimedia data retrieval, face recognition, and cursive handwriting recognition, all require robust and efficient pattern recognition techniques. This third edition provides an introduction to statistical pattern theory and techniques, with material drawn from a wide range of fields,

  9. Identifying cell types from spatially referenced single-cell expression datasets.

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Pettit

    2014-09-01

    Full Text Available Complex tissues, such as the brain, are composed of multiple different cell types, each of which have distinct and important roles, for example in neural function. Moreover, it has recently been appreciated that the cells that make up these sub-cell types themselves harbour significant cell-to-cell heterogeneity, in particular at the level of gene expression. The ability to study this heterogeneity has been revolutionised by advances in experimental technology, such as Wholemount in Situ Hybridizations (WiSH and single-cell RNA-sequencing. Consequently, it is now possible to study gene expression levels in thousands of cells from the same tissue type. After generating such data one of the key goals is to cluster the cells into groups that correspond to both known and putatively novel cell types. Whilst many clustering algorithms exist, they are typically unable to incorporate information about the spatial dependence between cells within the tissue under study. When such information exists it provides important insights that should be directly included in the clustering scheme. To this end we have developed a clustering method that uses a Hidden Markov Random Field (HMRF model to exploit both quantitative measures of expression and spatial information. To accurately reflect the underlying biology, we extend current HMRF approaches by allowing the degree of spatial coherency to differ between clusters. We demonstrate the utility of our method using simulated data before applying it to cluster single cell gene expression data generated by applying WiSH to study expression patterns in the brain of the marine annelid Platynereis dumereilii. Our approach allows known cell types to be identified as well as revealing new, previously unexplored cell types within the brain of this important model system.

  10. Murine Coronavirus Cell Type Dependent Interaction with the Type I Interferon Response

    Directory of Open Access Journals (Sweden)

    Susan R. Weiss

    2009-11-01

    Full Text Available Coronaviruses infect many species of animal including humans, causing acute and chronic diseases of many organ systems. Murine coronavirus, mouse hepatitis virus (MHV infection of the mouse, provides animal models for the study of central nervous system disease, including encephalitis and demyelinating diseases such as Multiple Sclerosis and for hepatitis. While there are many studies of the adaptive immune response to MHV, there has until recently been scant information on the type I interferon (IFN response to MHV. The relationship between MHV and the IFN-α/β response is paradoxical. While the type I IFN response is a crucial aspect of host defense against MHV in its natural host, there is little if any induction of IFN following infection of mouse fibroblast cell lines in vitro. Furthermore, MHV is relatively resistant to the antiviral effects of IFN-α/β in mouse fibroblast cell lines and in human 293T cells. MHV can, under some circumstances, compromise the antiviral effects of IFN signaling. The nucleocapsid protein as well as the nsp1 and nsp3 proteins of MHV has been reported to have IFN antagonist activity. However, in primary cell types such as plasmacytoid dendritic cells (pDC and macrophages, IFN is induced by MHV infection and an antiviral state is established. Other primary cell types such as neurons, astrocytes and hepatocytes fail to produce IFN following infection and, in vivo, likely depend on IFN produced by pDCs and macrophages for protection from MHV. Thus MHV induction of IFN-α/β and the ability to induce an antiviral state in response to interferon is extremely cell type dependent. IFN induced protection from MHV pathogenesis likely requires the orchestrated activities of several cell types, however, the cell types involved in limiting MHV replication may be different in the liver and in the immune privileged CNS.

  11. A computer-assisted 3D model for analyzing the aggregation of tumorigenic cells reveals specialized behaviors and unique cell types that facilitate aggregate coalescence.

    Directory of Open Access Journals (Sweden)

    Amanda Scherer

    Full Text Available We have developed a 4D computer-assisted reconstruction and motion analysis system, J3D-DIAS 4.1, and applied it to the reconstruction and motion analysis of tumorigenic cells in a 3D matrix. The system is unique in that it is fast, high-resolution, acquires optical sections using DIC microscopy (hence there is no associated photoxicity, and is capable of long-term 4D reconstruction. Specifically, a z-series at 5 μm increments can be acquired in less than a minute on tissue samples embedded in a 1.5 mm thick 3D Matrigel matrix. Reconstruction can be repeated at intervals as short as every minute and continued for 30 days or longer. Images are converted to mathematical representations from which quantitative parameters can be derived. Application of this system to cancer cells from established lines and fresh tumor tissue has revealed unique behaviors and cell types not present in non-tumorigenic lines. We report here that cells from tumorigenic lines and tumors undergo rapid coalescence in 3D, mediated by specific cell types that we have named "facilitators" and "probes." A third cell type, the "dervish", is capable of rapid movement through the gel and does not adhere to it. These cell types have never before been described. Our data suggest that tumorigenesis in vitro is a developmental process involving coalescence facilitated by specialized cells that culminates in large hollow spheres with complex architecture. The unique effects of select monoclonal antibodies on these processes demonstrate the usefulness of the model for analyzing the mechanisms of anti-cancer drugs.

  12. An explorative study on pork loin recognition

    DEFF Research Database (Denmark)

    Larsen, Anders Boesen Lindbo; Hviid, Marchen Sonja; Larsen, Rasmus;

    2013-01-01

    Bag-of-words (BoW) image description has shown good performance for a large variety of image recognition scenarios. We investigate approaches to alleviating a standard BoW image description pipeline representations for the specific task of recognizing pork loins. Specifically, we extend the Bo...

  13. Variability in contrast agent uptake by different but similar stem cell types

    Directory of Open Access Journals (Sweden)

    Ketkar-Atre A

    2013-11-01

    Full Text Available Ashwini Ketkar-Atre,1 Tom Struys,1,2 Stefaan J Soenen,3 Ivo Lambrichts,2 Catherine M Verfaillie,4 Marcel De Cuyper,5 Uwe Himmelreich1 1Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Biomedical Sciences Group, Katholieke Universiteit Leuven, Leuven, Belgium; 2Lab of Histology, Biomedical Research Institute, Hasselt University, Campus Diepenbeek, Agoralaan, Diepenbeek, Belgium; 3Lab for General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, Belgium; 4Interdepartmental Stem Cell Institute, O&N IV, Katholieke Universiteit Leuven, Leuven, Belgium; 5Laboratory of BioNanoColloids, Interdisciplinary Research Centre, Katholieke Universiteit Leuven, Kortrijk, Belgium Abstract: The need to track and evaluate the fate of transplanted cells is an important issue in regenerative medicine. In order to accomplish this, pre-labelling cells with magnetic resonance imaging (MRI contrast agents is a well-established method. Uptake of MRI contrast agents by non-phagocytic stem cells, and factors such as cell homeostasis or the adverse effects of contrast agents on cell biology have been extensively studied, but in the context of nanoparticle (NP-specific parameters. Here, we have studied three different types of NPs (Endorem®, magnetoliposomes [MLs], and citrate coated C-200 to label relatively larger, mesenchymal stem cells (MSCs and, much smaller yet faster proliferating, multipotent adult progenitor cells (MAPCs. Both cell types are similar, as they are isolated from bone marrow and have substantial regenerative potential, which make them interesting candidates for comparative experiments. Using NPs with different surface coatings and sizes, we found that differences in the proliferative and morphological characteristics of the cells used in the study are mainly responsible for the fate of endocytosed iron, intracellular iron concentration, and cytotoxic responses. The quantitative analysis, using high

  14. Window Size Impact in Human Activity Recognition

    Directory of Open Access Journals (Sweden)

    Oresti Banos

    2014-04-01

    Full Text Available Signal segmentation is a crucial stage in the activity recognition process; however, this has been rarely and vaguely characterized so far. Windowing approaches are normally used for segmentation, but no clear consensus exists on which window size should be preferably employed. In fact, most designs normally rely on figures used in previous works, but with no strict studies that support them. Intuitively, decreasing the window size allows for a faster activity detection, as well as reduced resources and energy needs. On the contrary, large data windows are normally considered for the recognition of complex activities. In this work, we present an extensive study to fairly characterize the windowing procedure, to determine its impact within the activity recognition process and to help clarify some of the habitual assumptions made during the recognition system design. To that end, some of the most widely used activity recognition procedures are evaluated for a wide range of window sizes and activities. From the evaluation, the interval 1–2 s proves to provide the best trade-off between recognition speed and accuracy. The study, specifically intended for on-body activity recognition systems, further provides designers with a set of guidelines devised to facilitate the system definition and configuration according to the particular application requirements and target activities.

  15. Paradigms in object recognition

    International Nuclear Information System (INIS)

    A broad range of approaches has been proposed and applied for the complex and rather difficult task of object recognition that involves the determination of object characteristics and object classification into one of many a priori object types. Our paper revises briefly the three main different paradigms in pattern recognition, namely Bayesian statistics, neural networks, and expert systems. (author)

  16. Recognition as care

    DEFF Research Database (Denmark)

    Ahlmark, Nanna; Whyte, Susan Reynolds; Harting, Janneke;

    2014-01-01

    -based and solidarity-based recognition to analyse what was at stake in these experiences, and we engage Annemarie Mol’s concept of a logic of care to show how recognition unfolded practically during the training. We propose that participants’ wider social context and experiences of misrecognition situated the training...

  17. Pupil dilation during recognition memory: Isolating unexpected recognition from judgment uncertainty.

    Science.gov (United States)

    Mill, Ravi D; O'Connor, Akira R; Dobbins, Ian G

    2016-09-01

    Optimally discriminating familiar from novel stimuli demands a decision-making process informed by prior expectations. Here we demonstrate that pupillary dilation (PD) responses during recognition memory decisions are modulated by expectations, and more specifically, that pupil dilation increases for unexpected compared to expected recognition. Furthermore, multi-level modeling demonstrated that the time course of the dilation during each individual trial contains separable early and late dilation components, with the early amplitude capturing unexpected recognition, and the later trailing slope reflecting general judgment uncertainty or effort. This is the first demonstration that the early dilation response during recognition is dependent upon observer expectations and that separate recognition expectation and judgment uncertainty components are present in the dilation time course of every trial. The findings provide novel insights into adaptive memory-linked orienting mechanisms as well as the general cognitive underpinnings of the pupillary index of autonomic nervous system activity. PMID:27253862

  18. Cancer cell sensitivity to bortezomib is associated with survivin expression and p53 status but not cancer cell types

    Directory of Open Access Journals (Sweden)

    Chanan-Khan Asher A

    2010-01-01

    Full Text Available Abstract Background Survivin is known playing a role in drug resistance. However, its role in bortezomib-mediated inhibition of growth and induction of apoptosis is unclear. There are conflicting reports for the effect of bortezomib on survivin expression, which lacks of a plausible explanation. Methods: In this study, we tested cancer cells with both p53 wild type and mutant/null background for the relationship of bortezomib resistance with survivin expression and p53 status using MTT assay, flow cytometry, DNA fragmentation, caspase activation, western blots and RNAi technology. Results We found that cancer cells with wild type p53 show a low level expression of survivin and are sensitive to treatment with bortezomib, while cancer cells with a mutant or null p53 show a high level expression of survivin and are resistant to bortezomib-mediated apoptosis induction. However, silencing of survivin expression utilizing survivin mRNA-specific siRNA/shRNA in p53 mutant or null cells sensitized cancer cells to bortezomib mediated apoptosis induction, suggesting a role for survivin in bortezomib resistance. We further noted that modulation of survivin expression by bortezomib is dependent on p53 status but independent of cancer cell types. In cancer cells with mutated p53 or p53 null, bortezomib appears to induce survivin expression, while in cancer cells with wild type p53, bortezomib downregulates or shows no significant effect on survivin expression, which is dependent on the drug concentration, cell line and exposure time. Conclusions Our findings, for the first time, unify the current inconsistent findings for bortezomib treatment and survivin expression, and linked the effect of bortezomib on survivin expression, apoptosis induction and bortezomib resistance in the relationship with p53 status, which is independent of cancer cell types. Further mechanistic studies along with this line may impact the optimal clinical application of bortezomib in

  19. COMPARATIVE STUDY OF HAND GESTURE RECOGNITION SYSTEM

    Directory of Open Access Journals (Sweden)

    Rafiqul Zaman Khan

    2012-07-01

    Full Text Available Human imitation for his surrounding environment makes him interfere in every details of this great environment, hear impaired people are gesturing with each other for delivering a specific message, this method of communication also attracts human imitation attention to cast it on human-computer interaction. The faculty of vision based gesture recognition to be a natural, powerful, and friendly tool for supporting efficient interaction between human and machine. In this paper a review of recent hand gesture recognition systems is presented with description of hand gestures modelling, analysis and recognition. A comparative study included in this paper with focusing on different segmentation, features extraction and recognition tools, research advantages and drawbacks are provided as well.

  20. Support vector machine for automatic pain recognition

    Science.gov (United States)

    Monwar, Md Maruf; Rezaei, Siamak

    2009-02-01

    Facial expressions are a key index of emotion and the interpretation of such expressions of emotion is critical to everyday social functioning. In this paper, we present an efficient video analysis technique for recognition of a specific expression, pain, from human faces. We employ an automatic face detector which detects face from the stored video frame using skin color modeling technique. For pain recognition, location and shape features of the detected faces are computed. These features are then used as inputs to a support vector machine (SVM) for classification. We compare the results with neural network based and eigenimage based automatic pain recognition systems. The experiment results indicate that using support vector machine as classifier can certainly improve the performance of automatic pain recognition system.

  1. Temporal visual cues aid speech recognition

    DEFF Research Database (Denmark)

    Zhou, Xiang; Ross, Lars; Lehn-Schiøler, Tue;

    2006-01-01

    temporal synchronicity of the visual input that aids parsing of the auditory stream. More specifically, we expected that purely temporal information, which does not convey information such as place of articulation may facility word recognition. METHODS: To test this prediction we used temporal features of......BACKGROUND: It is well known that under noisy conditions, viewing a speaker's articulatory movement aids the recognition of spoken words. Conventionally it is thought that the visual input disambiguates otherwise confusing auditory input. HYPOTHESIS: In contrast we hypothesize that it is the...... audio to generate an artificial talking-face video and measured word recognition performance on simple monosyllabic words. RESULTS: When presenting words together with the artificial video we find that word recognition is improved over purely auditory presentation. The effect is significant (p...

  2. Transcriptome atlas of eight liver cell types uncovers effects of histidine catabolites on rat liver regeneration

    Indian Academy of Sciences (India)

    C. F. Chang; J. Y. Fan; F. C. Zhang; J. Ma; C. S. Xu

    2010-12-01

    Eight liver cell types were isolated using the methods of Percoll density gradient centrifugation and immunomagnetic beads to explore effects of histidine catabolites on rat liver regeneration. Rat Genome 230 2.0 Array was used to detect the expression profiles of genes associated with metabolism of histidine and its catabolites for the above-mentioned eight liver cell types, and bioinformatic and systems biology approaches were employed to analyse the relationship between above genes and rat liver regeneration. The results showed that the urocanic acid (UA) was degraded from histidine in Kupffer cells, acts on Kupffer cells itself and dendritic cells to generate immune suppression by autocrine and paracrine modes. Hepatocytes, biliary epithelia cells, oval cells and dendritic cells can convert histidine to histamine, which can promote sinusoidal endothelial cells proliferation by GsM pathway, and promote the proliferation of hepatocytes and biliary epithelia cells by GqM pathway.

  3. Cancer-associated fibroblasts as another polarized cell type of the tumor microenvironment

    Directory of Open Access Journals (Sweden)

    MartinAugsten

    2014-03-01

    Full Text Available Tumor- or cancer-associated fibroblasts (CAFs are one of the most abundant stromal cell types in different carcinomas and comprise a heterogeneous cell population. Classically, CAFs are assigned with pro-tumorigenic effects stimulating tumor growth and progression. More recent studies demonstrated also tumor-inhibitory effects of CAFs suggesting that tumor-residing fibroblasts exhibit a similar degree of plasticity as other stromal cell types. Reciprocal interactions with the tumor milieu and different sources of origin are emerging as two important factors underlying CAF heterogeneity. This review highlights recent advances in our understanding of CAF biology and proposes to expand the term of cellular ´polarization´, previously introduced to describe different activation states of various immune cells, onto CAFs to reflect their phenotypic diversity.

  4. Multimodal label-free growth and morphology characterization of different cell types in a single culture with quantitative digital holographic phase microscopy

    Science.gov (United States)

    Kemper, Björn; Wibbeling, Jana; Kastl, Lena; Schnekenburger, Jürgen; Ketelhut, Steffi

    2015-03-01

    For the analysis of the impact of pharmaceuticals or pathogens on different cellular phenotypes under identical measurement conditions and to analyze interactions between different cellular specimens a minimally-invasive quantitative observation of different cell types in a single culture is of particular interest. Digital holographic microscopy (DHM), a var-iant of quantitative phase microscopy (QPM), provides high resolution detection of optical path length changes that is suitable for stain-free minimally-invasive live cell analysis. Due to low light intensities for object illumination, QPM minimizes the interaction with the sample and has been demonstrated in particular to be suitable for long-term time-lapse investigations, e.g., for the detection of cell morphology alterations due to drugs and toxins. Furthermore, QPM has been demonstrated to be a versatile tool for the quantification of cellular growth and motility. Thus, we studied the feasibility of QPM for the analysis of mixed cell cultures and explored if quantitative phase images provide sufficient information to distinguish between different cell types and to extract cell specific parameters. For the experiments quantitative phase imaging with DHM was utilized. Mixed cell cultures with different cell types were observed with quantitative DHM phase contrast up to 35 h. The obtained series of quantitative phase images were evaluated by adapted algorithms for image segmentation. From the segmented images the area covered by the cells, the cellular dry mass and the mean cell thickness were calculated and used in the further analysis as parameters to quantify the reliability of the measurement principle. The obtained results demonstrate that it is possible to characterize the growth of cell types with different mor-phology features separately in a single culture.

  5. Cell type-selective disease-association of genes under high regulatory load

    OpenAIRE

    Galhardo, Mafalda Sofia; Berninger, Philipp; Nguyen, Thanh Phuong; Sauter, Thomas; Sinkkonen, Lasse

    2015-01-01

    We previously showed that disease-linked metabolic genes are often under combinatorial regulation. Using the genome-wide ChIP-Seq binding profiles for 93 transcription factors in nine different cell lines, we show that genes under high regulatory load are significantly enriched for disease-association across cell types. We find that transcription factor load correlates with the enhancer load of the genes and thereby allows the identification of genes under high regulatory load by epigenomic m...

  6. Multi-thread Parallel Speech Recognition for Mobile Applications

    Directory of Open Access Journals (Sweden)

    LOJKA Martin

    2014-05-01

    Full Text Available In this paper, the server based solution of the multi-thread large vocabulary automatic speech recognition engine is described along with the Android OS and HTML5 practical application examples. The basic idea was to bring speech recognition available for full variety of applications for computers and especially for mobile devices. The speech recognition engine should be independent of commercial products and services (where the dictionary could not be modified. Using of third-party services could be also a security and privacy problem in specific applications, when the unsecured audio data could not be sent to uncontrolled environments (voice data transferred to servers around the globe. Using our experience with speech recognition applications, we have been able to construct a multi-thread speech recognition serverbased solution designed for simple applications interface (API to speech recognition engine modified to specific needs of particular application.

  7. A Cell Type Independent Binary Grading System Does Not Significantly Improve Endometrial Biopsy Interpretation.

    Science.gov (United States)

    Nastic, Denis; Kahlin, Frida; Dahlstrand, Hanna; Carlson, Joseph W

    2016-05-01

    The revised International Federation of Gynecology and Obstetrics (FIGO) grading system is widely accepted as the standard in evaluating endometrial carcinoma on biopsy. Determination of tumor cell type [using the World Health Organization (WHO) diagnostic criteria] and grade (using FIGO) guides surgical approach. Several studies have highlighted discrepancies between biopsy and hysterectomy diagnosis. Recently, a binary grading system was proposed, yielding a low-risk and high-risk assessment but in a cell type independent (CTI) way. No study has assessed its utility in biopsy grading, a situation where this system may be particularly useful. Archived endometrial biopsies from 70 cases of endometrial carcinoma were graded by 3 independent observers using the WHO/FIGO and the CTI grading systems. The overall accuracy, interobserver agreement, and ease of use were assessed. This study found comparable substantial accuracy between the WHO/FIGO and CTI grading systems (κ=0.71 vs. κ=0.69), with the same setbacks in overgrading of 20.9% versus 25.6% of low-risk tumors. The CTI grading system was not superior to the WHO/FIGO grading system in accuracy of subtyping and grading and interobserver reproducibility. Although determination of cell type is difficult, it does not appear that the proposed CTI system confers any significant advantages over existing grading. PMID:26863477

  8. The Pandora software development kit for pattern recognition

    OpenAIRE

    Marshall, J. S.; Thomson, M.A.

    2015-01-01

    The development of automated solutions to pattern recognition problems is important in many areas of scientific research and human endeavour. This paper describes the implementation of the Pandora software development kit, which aids the process of designing, implementing and running pattern recognition algorithms. The Pandora Application Programming Interfaces ensure simple specification of the building-blocks defining a pattern recognition problem. The logic required to solve the problem is...

  9. Emotion Recognition through Physiological Signals for Human-Machine Communication

    OpenAIRE

    MAAOUI, Choubeila; PRUSKI, Alain

    2010-01-01

    In this paper we presented an approach to emotion recognition based on the processing of physiological signals. Physiological data was acquired in six different affective states and two pattern recognition methods have been tested: SVM method and Fisher linear discriminant. Recognition rates of about 90% were achieved for both classifiers. However, SVM classifier gives best results than Fisher discriminant using mixed features signals of different subjects. This study has shown that specific ...

  10. Optogenetic stimulation of prefrontal glutamatergic neurons enhances recognition memory

    OpenAIRE

    Benn, Abi; Barker, Gareth R. I.; Stuart, Sarah A; Roloff, Eva v. L.; Teschemacher, Anja G; Warburton, Clea; Robinson, Emma S. J.

    2016-01-01

    Finding effective cognitive enhancers is a major health challenge; however, modulating glutamatergic neurotransmission has the potential to enhance performance in recognition memory tasks. Previous studies using glutamate receptor antagonists have revealed that the medial prefrontal cortex (mPFC) plays a central role in associative recognition memory. The present study investigates short-term recognition memory using optogenetics to target glutamatergic neurons within the rodent mPFC specific...

  11. Human Emotion Recognition System

    Directory of Open Access Journals (Sweden)

    Dilbag Singh

    2012-08-01

    Full Text Available This paper discusses the application of feature extraction of facial expressions with combination of neural network for the recognition of different facial emotions (happy, sad, angry, fear, surprised, neutral etc... Humans are capable of producing thousands of facial actions during communication that vary in complexity, intensity, and meaning. This paper analyses the limitations with existing system Emotion recognition using brain activity. In this paper by using an existing simulator I have achieved 97 percent accurate results and it is easy and simplest way than Emotion recognition using brain activity system. Purposed system depends upon human face as we know face also reflects the human brain activities or emotions. In this paper neural network has been used for better results. In the end of paper comparisons of existing Human Emotion Recognition System has been made with new one.

  12. Forensic speaker recognition

    NARCIS (Netherlands)

    Meuwly, Didier

    2009-01-01

    The aim of forensic speaker recognition is to establish links between individuals and criminal activities, through audio speech recordings. This field is multidisciplinary, combining predominantly phonetics, linguistics, speech signal processing, and forensic statistics. On these bases, expert-based

  13. Work and Recognition

    DEFF Research Database (Denmark)

    Willig, Rasmus

    2004-01-01

    -Pierre Le Goff, Christophe Dejours and Emmanuel Renault. In spite of many differences, their work is united by a critical description of the logic of work and its consequences for individual individuation. These theorists agree that the growth of autonomy, flexibility and mobility has destabilised......The article deals with the relationship between work and recognition, taking Axel Honneth’s social-philosophical theory of the struggle for recognition as its point of departure. In order to give sociological substance to Honneth’s theory, we turn to three contemporary social theorists - Jean...... individual and collective identity formation and has led to an increase in social pathological illnesses such as stress and depression. By juxtaposing these analyses with Honneth’s theory on recognition, we conclude that the contemporary logic of work is unable to provide adequate forms of recognition...

  14. Cell-of-Origin-Specific 3D Genome Structure Acquired during Somatic Cell Reprogramming.

    Science.gov (United States)

    Krijger, Peter Hugo Lodewijk; Di Stefano, Bruno; de Wit, Elzo; Limone, Francesco; van Oevelen, Chris; de Laat, Wouter; Graf, Thomas

    2016-05-01

    Forced expression of reprogramming factors can convert somatic cells into induced pluripotent stem cells (iPSCs). Here we studied genome topology dynamics during reprogramming of different somatic cell types with highly distinct genome conformations. We find large-scale topologically associated domain (TAD) repositioning and alterations of tissue-restricted genomic neighborhoods and chromatin loops, effectively erasing the somatic-cell-specific genome structures while establishing an embryonic stem-cell-like 3D genome. Yet, early passage iPSCs carry topological hallmarks that enable recognition of their cell of origin. These hallmarks are not remnants of somatic chromosome topologies. Instead, the distinguishing topological features are acquired during reprogramming, as we also find for cell-of-origin-dependent gene expression patterns. PMID:26971819

  15. Evaluating music emotion recognition

    DEFF Research Database (Denmark)

    Sturm, Bob L.

    2013-01-01

    A fundamental problem with nearly all work in music genre recognition (MGR)is that evaluation lacks validity with respect to the principal goals of MGR. This problem also occurs in the evaluation of music emotion recognition (MER). Standard approaches to evaluation, though easy to implement, do...... not reliably differentiate between recognizing genre or emotion from music, or by virtue of confounding factors in signals (e.g., equalization). We demonstrate such problems for evaluating an MER system, and conclude with recommendations....

  16. Towards Open World Recognition

    OpenAIRE

    Bendale, Abhijit; Boult, Terrance

    2014-01-01

    With the of advent rich classification models and high computational power visual recognition systems have found many operational applications. Recognition in the real world poses multiple challenges that are not apparent in controlled lab environments. The datasets are dynamic and novel categories must be continuously detected and then added. At prediction time, a trained system has to deal with myriad unseen categories. Operational systems require minimum down time, even to learn. To handle...

  17. Automatic Licenses Plate Recognition

    OpenAIRE

    Ronak P Patel; Narendra M Patel; Keyur Brahmbhatt

    2013-01-01

    This paper describes the Smart Vehicle Screening System, which can be installed into a tollboothfor automated recognition of vehicle license plate information using a photograph of a vehicle. An automatedsystem could then be implemented to control the payment of fees, parking areas, highways, bridges ortunnels, etc. This paper contains new algorithm for recognition number plate using Morphological operation,Thresholding operation, Edge detection, Bounding box analysis for number plate extract...

  18. Human Emotion Recognition System

    OpenAIRE

    Dilbag Singh

    2012-01-01

    This paper discusses the application of feature extraction of facial expressions with combination of neural network for the recognition of different facial emotions (happy, sad, angry, fear, surprised, neutral etc..). Humans are capable of producing thousands of facial actions during communication that vary in complexity, intensity, and meaning. This paper analyses the limitations with existing system Emotion recognition using brain activity. In this paper by using an existing simulator I hav...

  19. Fingerprint Recognition System

    OpenAIRE

    Bhawna Negi; Varun Sharma

    2012-01-01

    The popular Biometric used to authenticate a person is Fingerprint which is unique and permanent throughout a person’s life. A minutia matching is widely used for fingerprint recognition and can be classified as ridge ending and ridge bifurcation. In this paper we projected Fingerprint Recognition using Minutia Score Matching method (FRMSM). For Fingerprint thinning, the Block Filter is used, which scans the image at the boundary to preserves the quality of the image and extract the minutiae ...

  20. Android object recognition framework

    OpenAIRE

    Karlsen, Mats-Gøran

    2012-01-01

    This thesis is a continuation of the author’s specialization project where the ultimate goal is to build an object recognition framework suitable for mobile devices in real world environments, where control over parameters such as illumination, distance, noise and availability of consistent network architectures are limited. Based on shortcomings related to object recognition performance and architectural issues the author’s goal was to increase the flexibility, usability and perfor...

  1. The Recognition Of Fatigue

    DEFF Research Database (Denmark)

    Elsass, Peter; Jensen, Bodil; Mørup, Rikke;

    2007-01-01

    Elsass P., Jensen B., Morup R., Thogersen M.H. (2007). The Recognition Of Fatigue: A qualitative study of life-stories from rehabilitation clients. International Journal of Psychosocial Rehabilitation. 11 (2), 75-87......Elsass P., Jensen B., Morup R., Thogersen M.H. (2007). The Recognition Of Fatigue: A qualitative study of life-stories from rehabilitation clients. International Journal of Psychosocial Rehabilitation. 11 (2), 75-87...

  2. Classically and alternatively activated bone marrow derived macrophages differ in cytoskeletal functions and migration towards specific CNS cell types

    NARCIS (Netherlands)

    Vereyken, Elly J. F.; Heijnen, Priscilla D. A. M.; Baron, Wia; de Vries, Elga H. E.; Dijkstra, Christine D.; Teunissen, Charlotte E.

    2011-01-01

    Background: Macrophages play an important role in neuroinflammatory diseases such as multiple sclerosis (MS) and spinal cord injury (SCI), being involved in both damage and repair. The divergent effects of macrophages might be explained by their different activation status: classically activated (CA

  3. Microarray gene expression analysis to evaluate cell type specific expression of targets relevant for immunotherapy of hematological malignancies

    NARCIS (Netherlands)

    M.J. Pont (Margot); M.W. Honders; A.N. Kremer; C. van Kooten (Cees); C. Out; P.S. Hiemstra (Pieter); H.C. De Boer; M.J. Jager (Martine); E. Schmelzer; R.G.J. Vries (Robert); A.S. Al Hinai; W.G. Kroes (W.); R. Monajemi (Ramin); J.J. Goeman (Jelle); S. Böhringer (Stefan); W.A.F. Marijt; J.H.F. Falkenburg (Frederik); M. Griffioen

    2016-01-01

    textabstractCellular immunotherapy has proven to be effective in the treatment of hematological cancers by donor lymphocyte infusion after allogeneic hematopoietic stem cell transplantation and more recently by targeted therapy with chimeric antigen or T-cell receptor-engineered T cells. However, de

  4. A POP-1 repressor complex restricts inappropriate cell type-specific gene transcription during Caenorhabditis elegans embryogenesis

    OpenAIRE

    Calvo, Dominica; Victor, Martin; Gay, Frédérique; Sui, Guangchao; Luke, Margaret Po-Shan; Dufourcq, Pascale; Wen, Gengyun; Maduro, Morris; Rothman, Joel; Shi, Yang

    2001-01-01

    In Caenorhabditis elegans, histone acetyltransferase CBP-1 counteracts the repressive activity of the histone deacetylase HDA-1 to allow endoderm differentiation, which is specified by the E cell. In the sister MS cell, the endoderm fate is prevented by the action of an HMG box-containing protein, POP-1, through an unknown mechanism. In this study, we show that CBP-1, HDA-1 and POP-1 converge on end-1, an initial endoderm-determining gene. In the E lineage, an essential function of CBP-1 appe...

  5. Two Functional Lupus-Associated BLK Promoter Variants Control Cell-Type- and Developmental-Stage-Specific Transcription

    Science.gov (United States)

    Guthridge, Joel M.; Lu, Rufei; Sun, Harry; Sun, Celi; Wiley, Graham B.; Dominguez, Nicolas; Macwana, Susan R.; Lessard, Christopher J.; Kim-Howard, Xana; Cobb, Beth L.; Kaufman, Kenneth M.; Kelly, Jennifer A.; Langefeld, Carl D.; Adler, Adam J.; Harley, Isaac T.W.; Merrill, Joan T.; Gilkeson, Gary S.; Kamen, Diane L.; Niewold, Timothy B.; Brown, Elizabeth E.; Edberg, Jeffery C.; Petri, Michelle A.; Ramsey-Goldman, Rosalind; Reveille, John D.; Vilá, Luis M.; Kimberly, Robert P.; Freedman, Barry I.; Stevens, Anne M.; Boackle, Susan A.; Criswell, Lindsey A.; Vyse, Tim J.; Behrens, Timothy W.; Jacob, Chaim O.; Alarcón-Riquelme, Marta E.; Sivils, Kathy L.; Choi, Jiyoung; Joo, Young Bin; Bang, So-Young; Lee, Hye-Soon; Bae, Sang-Cheol; Shen, Nan; Qian, Xiaoxia; Tsao, Betty P.; Scofield, R. Hal; Harley, John B.; Webb, Carol F.; Wakeland, Edward K.; James, Judith A.; Nath, Swapan K.; Graham, Robert R.; Gaffney, Patrick M.

    2014-01-01

    Efforts to identify lupus-associated causal variants in the FAM167A/BLK locus on 8p21 are hampered by highly associated noncausal variants. In this report, we used a trans-population mapping and sequencing strategy to identify a common variant (rs922483) in the proximal BLK promoter and a tri-allelic variant (rs1382568) in the upstream alternative BLK promoter as putative causal variants for association with systemic lupus erythematosus. The risk allele (T) at rs922483 reduced proximal promoter activity and modulated alternative promoter usage. Allelic differences at rs1382568 resulted in altered promoter activity in B progenitor cell lines. Thus, our results demonstrated that both lupus-associated functional variants contribute to the autoimmune disease association by modulating transcription of BLK in B cells and thus potentially altering immune responses. PMID:24702955

  6. Curcumin as a double-edged sword for stem cells: dose, time and cell type-specific responses to curcumin

    OpenAIRE

    Attari, Fatemeh; Zahmatkesh, Maryam; Aligholi, Hadi; Mehr, Shahram Ejtemaei; Sharifzadeh, Mohammad; Gorji, Ali; Mokhtari, Tahmineh; Khaksarian, Mojtaba; Hassanzadeh, Gholamreza

    2015-01-01

    Background The beneficial effects of curcumin which includes its antioxidant, anti-inflammatory and cancer chemo-preventive properties have been identified. Little information is available regarding the optimal dose and treatment periods of curcumin on the proliferation rate of different sources of stem cells. Methods In this study, the effect of various concentrations of curcumin on the survival and proliferation of two types of outstanding stem cells which includes bone marrow stem cells (B...

  7. Development of Cell-type specific anti-HIV gp120 aptamers for siRNA delivery

    OpenAIRE

    Zhou, Jiehua; Li, Haitang; Zhang, Jane; Piotr, Swiderski; Rossi, John

    2011-01-01

    The global epidemic of infection by HIV has created an urgent need for new classes of antiretroviral agents. The potent ability of small interfering (si)RNAs to inhibit the expression of complementary RNA transcripts is being exploited as a new class of therapeutics for a variety of diseases including HIV. Many previous reports have shown that novel RNAi-based anti-HIV/AIDS therapeutic strategies have considerable promise; however, a key obstacle to the successful therapeutic application and ...

  8. Cell type-specific deficiency of c-kit gene expression in mutant mice of mi/mi genotype.

    OpenAIRE

    Isozaki, K; Tsujimura, T; Nomura, S; Morii, E; Koshimizu, U.; Nishimune, Y; Kitamura, Y.

    1994-01-01

    The mi locus of mice encodes a novel member of the basic-helix-loop-helix-leucine zipper protein family of transcription factors (hereafter called mi factor). In addition to microphthalmus, osteopetrosis, and lack of melanocytes, mice of mi/mi genotype are deficient in mast cells. Since the c-kit receptor tyrosine kinase plays an important role in the development of mast cells, and since the c-kit expression by cultured mast cells from mi/mi mice is deficient in both mRNA and protein levels, ...

  9. Induction of long-term potentiation and long-term depression is cell-type specific in the spinal cord

    OpenAIRE

    Kim, Hee Young; Jun, Jaebeom; Wang, Jigong; Bittar, Alice; Chung, Kyungsoon; Chung, Jin Mo

    2015-01-01

    Abstract The underlying mechanism of chronic pain is believed to be changes in excitability in spinal dorsal horn (DH) neurons that respond abnormally to peripheral input. Increased excitability in pain transmission neurons, and depression of inhibitory neurons, are widely recognized in the spinal cord of animal models of chronic pain. The possible occurrence of 2 parallel but opposing forms of synaptic plasticity, long-term potentiation (LTP) and long-term depression (LTD) was tested in 2 ty...

  10. Cell type-specific modulation of lipid mediator's formation in murine adipose tissue by omega-3 fatty acids

    Czech Academy of Sciences Publication Activity Database

    Kuda, Ondřej; Rombaldová, Martina; Janovská, Petra; Flachs, Pavel; Kopecký, Jan

    2016-01-01

    Roč. 469, č. 3 (2016), s. 731-736. ISSN 0006-291X R&D Projects: GA ČR(CZ) GP13-04449P; GA ČR(CZ) GA13-00871S; GA MŠk(CZ) LH14040 Institutional support: RVO:67985823 Keywords : adipose tissue macrophages * omega-3 PUFA * protectin D1 * lipid mediators * lipidomics Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.297, year: 2014

  11. Cell-type-specific repression by methyl-CpG-binding protein 2 is biased toward long genes.

    Science.gov (United States)

    Sugino, Ken; Hempel, Chris M; Okaty, Benjamin W; Arnson, Hannah A; Kato, Saori; Dani, Vardhan S; Nelson, Sacha B

    2014-09-17

    Mutations in methyl-CpG-binding protein 2 (MeCP2) cause Rett syndrome and related autism spectrum disorders (Amir et al., 1999). MeCP2 is believed to be required for proper regulation of brain gene expression, but prior microarray studies in Mecp2 knock-out mice using brain tissue homogenates have revealed only subtle changes in gene expression (Tudor et al., 2002; Nuber et al., 2005; Jordan et al., 2007; Chahrour et al., 2008). Here, by profiling discrete subtypes of neurons we uncovered more dramatic effects of MeCP2 on gene expression, overcoming the "dilution problem" associated with assaying homogenates of complex tissues. The results reveal misregulation of genes involved in neuronal connectivity and communication. Importantly, genes upregulated following loss of MeCP2 are biased toward longer genes but this is not true for downregulated genes, suggesting MeCP2 may selectively repress long genes. Because genes involved in neuronal connectivity and communication, such as cell adhesion and cell-cell signaling genes, are enriched among longer genes, their misregulation following loss of MeCP2 suggests a possible etiology for altered circuit function in Rett syndrome. PMID:25232122

  12. Cell Type-Specific Activation of the Cytomegalovirus Promoter by Dimethylsulfoxide and 5-Aza-2′-deoxycytidine

    OpenAIRE

    Radhakrishnan, Prakash; Basma, Hesham; Klinkebiel, David; Christman, Judith; Cheng, Pi-Wan

    2008-01-01

    The cytomegalovirus promoter is a very potent promoter commonly used for driving the expression of transgenes, though it gradually becomes silenced in stably transfected cells. We examined the methylation status of the cytomegalovirus promoter in two different cell lines and characterized its mechanisms of activation by dimethylsulfoxide and 5-Aza-2′-deoxycytidine. The cytomegalovirus promoter stably transfected into Chinese hamster ovary cells is suppressed by DNA methylation-independent mec...

  13. Prolonged Exposure to NMDAR Antagonist Induces Cell-type Specific Changes of Glutamatergic Receptors in Rat Prefrontal Cortex

    OpenAIRE

    Wang, Huai-Xing; Gao, Wen-Jun

    2011-01-01

    N-methyl-D-aspartic acid (NMDA) receptors are critical for both normal brain functions and the pathogenesis of schizophrenia. We investigated the functional changes of glutamatergic receptors in the pyramidal cells and fast-spiking (FS) interneurons in the adolescent rat prefrontal cortex in MK-801 model of schizophrenia. We found that although both pyramidal cells and FS interneurons were affected by in vivo subchronic blockade of NMDA receptors, MK-801 induced distinct changes in αamino-3-h...

  14. Balancing intestinal and systemic inflammation through cell type-specific expression of the aryl hydrocarbon receptor repressor

    OpenAIRE

    Olga Brandstätter; Oliver Schanz; Julia Vorac; Jessica König; Tetsushi Mori; Toru Maruyama; Markus Korkowski; Thomas Haarmann-Stemmann; Dorthe von Smolinski; Schultze, Joachim L.; Josef Abel; Charlotte Esser; Haruko Takeyama; Heike Weighardt; Irmgard Förster

    2016-01-01

    As a sensor of polyaromatic chemicals the aryl hydrocarbon receptor (AhR) exerts an important role in immune regulation besides its requirement for xenobiotic metabolism. Transcriptional activation of AhR target genes is counterregulated by the AhR repressor (AhRR) but the exact function of the AhRR in vivo is currently unknown. We here show that the AhRR is predominantly expressed in immune cells of the skin and intestine, different from other AhR target genes. Whereas AhRR antagonizes the a...

  15. Why recognition is rational

    Directory of Open Access Journals (Sweden)

    Clintin P. Davis-Stober

    2010-07-01

    Full Text Available The Recognition Heuristic (Gigerenzer and Goldstein, 1996; Goldstein and Gigerenzer, 2002 makes the counter-intuitive prediction that a decision maker utilizing less information may do as well as, or outperform, an idealized decision maker utilizing more information. We lay a theoretical foundation for the use of single-variable heuristics such as the Recognition Heuristic as an optimal decision strategy within a linear modeling framework. We identify conditions under which over-weighting a single predictor is a mini-max strategy among a class of a priori chosen weights based on decision heuristics with respect to a measure of statistical lack of fit we call ``risk''. These strategies, in turn, outperform standard multiple regression as long as the amount of data available is limited. We also show that, under related conditions, weighting only one variable and ignoring all others produces the same risk as ignoring the single variable and weighting all others. This approach has the advantage of generalizing beyond the original environment of the Recognition Heuristic to situations with more than two choice options, binary or continuous representations of recognition, and to other single variable heuristics. We analyze the structure of data used in some prior recognition tasks and find that it matches the sufficient conditions for optimality in our results. Rather than being a poor or adequate substitute for a compensatory model, the Recognition Heuristic closely approximates an optimal strategy when a decision maker has finite data about the world.

  16. The yeast ROAM mutation--identification of the sequences mediating host gene activation and cell-type control in the yeast retrotransposon, Ty.

    OpenAIRE

    Rathjen, P D; Kingsman, A J; Kingsman, S M

    1987-01-01

    When the yeast retrotransposon, Ty, integrates into the 5' flanking region of a gene it can activate the expression of that gene. At the same time the activated gene is brought under cell-type specific control such that expression is high in haploid a or alpha cells but low in a/alpha diploids. These Ty mediated mutations are known as ROAM mutations. In this study we have used a ROAM mutation created in vitro to identify the sequences within Ty that mediate this phenomenon. We show that a sin...

  17. Face Recognition Using Deep Multi-Pose Representations

    OpenAIRE

    AbdAlmageed, Wael; Wua, Yue; Rawlsa, Stephen; Harel, Shai; Hassner, Tal; Masi, Iacopo; Choi, Jongmoo; Leksut, Jatuporn Toy; Kim, Jungyeon; Natarajan, Prem; Nevatia, Ram; Medioni, Gerard

    2016-01-01

    We introduce our method and system for face recognition using multiple pose-aware deep learning models. In our representation, a face image is processed by several pose-specific deep convolutional neural network (CNN) models to generate multiple pose-specific features. 3D rendering is used to generate multiple face poses from the input image. Sensitivity of the recognition system to pose variations is reduced since we use an ensemble of pose-specific CNN features. The paper presents extensive...

  18. Chimeric Sex-Determining Chromosomal Regions and Dysregulation of Cell-Type Identity in a Sterile Zygosaccharomyces Allodiploid Yeast

    Science.gov (United States)

    Bizzarri, Melissa; Giudici, Paolo; Cassanelli, Stefano; Solieri, Lisa

    2016-01-01

    Allodiploidization is a fundamental yet evolutionarily poorly characterized event, which impacts genome evolution and heredity, controlling organismal development and polyploid cell-types. In this study, we investigated the sex determination system in the allodiploid and sterile ATCC 42981 yeast, a member of the Zygosaccharomyces rouxii species complex, and used it to study how a chimeric mating-type gene repertoire contributes to hybrid reproductive isolation. We found that ATCC 42981 has 7 MAT-like (MTL) loci, 3 of which encode α-idiomorph and 4 encode a-idiomorph. Two phylogenetically divergent MAT expression loci were identified on different chromosomes, accounting for a hybrid a/α genotype. Furthermore, extra a-idimorph-encoding loci (termed MTLa copies 1 to 3) were recognized, which shared the same MATa1 ORFs but diverged for MATa2 genes. Each MAT expression locus was linked to a HML silent cassette, while the corresponding HMR loci were located on another chromosome. Two putative parental sex chromosome pairs contributed to this unusual genomic architecture: one came from an as-yet-undescribed taxon, which has the NCYC 3042 strain as a unique representative, while the other did not match any MAT-HML and HMR organizations previously described in Z. rouxii species. This chimeric rearrangement produces two copies of the HO gene, which encode for putatively functional endonucleases essential for mating-type switching. Although both a and α coding sequences, which are required to obtain a functional cell-type a1-α2 regulator, were present in the allodiploid ATCC 42981 genome, the transcriptional circuit, which regulates entry into meiosis in response to meiosis-inducing salt stress, appeared to be turned off. Furthermore, haploid and α-specific genes, such as MATα1 and HO, were observed to be actively transcribed and up-regulated under hypersaline stress. Overall, these evidences demonstrate that ATCC 42981 is unable to repress haploid α-specific genes and

  19. CT bronchus sign in malignant solitary pulmonary lesions: value in the prediction of cell type

    International Nuclear Information System (INIS)

    The aim of this study was to evaluate differences in the prevalence of patterns of CT bronchus sign in malignant solitary pulmonary lesions (SPLs), according to their histologic cell types and with respect to size, location, and degree of cell differentiation. Computed tomography scans of 78 patients, in whom pathologically confirmed malignant SPLs with CT bronchus sign were present, were randomly selected and reviewed by two radiologists under consensus. All 78 were CT scans done using spiral technique with 10-mm collimation and 10-mm reconstruction intervals with enhancement, and 75 included additional high-resolution CT scans. Lesions were classified into four cell types as squamous cell carcinoma (n=24), small cell carcinoma (n=12), adenocarcinoma (n=23), bronchioloalveolar carcinoma (BAC; n=9), and others (n=12), into three degrees of differentiation, into three size groups, and according to location (central or peripheral). Patterns of CT bronchus sign were classified into abruptly obstructing (I), patent (II), displacing (III), or tapered narrowing (IV) types. The relationships between the patterns of CT bronchus sign and cell type and degree of cell differentiation were evaluated. Eighty patterns of CT bronchus sign were observed in 78 patients. According to cell type, squamous cell carcinoma showed most often type-I pattern (45.8%) but no type-II pattern, which was the most common pattern observed in BAC (77.8%) and adenocarcinoma (34.8%; p<0.01). Small cell carcinoma showed a varied distribution among the four patterns of CT bronchus sign. According to location, in central squamous cell carcinomas, type-I pattern was more common(55%; p<0.01). Bronchioloalveolar carcinoma showed more peripheral lesions and in both central and peripheral lesions, type-II pattern was significantly more common (100 and 66.7%; p<0.01). In SPLs with CT bronchus sign of obstructing pattern, especially if central location, squamous cell carcinoma should be suspected, whereas in

  20. Receptor-Targeted Nipah Virus Glycoproteins Improve Cell-Type Selective Gene Delivery and Reveal a Preference for Membrane-Proximal Cell Attachment.

    Directory of Open Access Journals (Sweden)

    Ruben R Bender

    2016-06-01

    Full Text Available Receptor-targeted lentiviral vectors (LVs can be an effective tool for selective transfer of genes into distinct cell types of choice. Moreover, they can be used to determine the molecular properties that cell surface proteins must fulfill to act as receptors for viral glycoproteins. Here we show that LVs pseudotyped with receptor-targeted Nipah virus (NiV glycoproteins effectively enter into cells when they use cell surface proteins as receptors that bring them closely enough to the cell membrane (less than 100 Å distance. Then, they were flexible in receptor usage as demonstrated by successful targeting of EpCAM, CD20, and CD8, and as selective as LVs pseudotyped with receptor-targeted measles virus (MV glycoproteins, the current standard for cell-type specific gene delivery. Remarkably, NiV-LVs could be produced at up to two orders of magnitude higher titers compared to their MV-based counterparts and were at least 10,000-fold less effectively neutralized than MV glycoprotein pseudotyped LVs by pooled human intravenous immunoglobulin. An important finding for NiV-LVs targeted to Her2/neu was an about 100-fold higher gene transfer activity when particles were targeted to membrane-proximal regions as compared to particles binding to a more membrane-distal epitope. Likewise, the low gene transfer activity mediated by NiV-LV particles bound to the membrane distal domains of CD117 or the glutamate receptor subunit 4 (GluA4 was substantially enhanced by reducing receptor size to below 100 Å. Overall, the data suggest that the NiV glycoproteins are optimally suited for cell-type specific gene delivery with LVs and, in addition, for the first time define which parts of a cell surface protein should be targeted to achieve optimal gene transfer rates with receptor-targeted LVs.

  1. Development of a laser capture microscope-based single-cell-type proteomics tool for studying proteomes of individual cell layers of plant roots

    Science.gov (United States)

    Zhu, Yingde; Li, Hui; Bhatti, Sarabjit; Zhou, Suping; Yang, Yong; Fish, Tara; Thannhauser, Theodore W

    2016-01-01

    Single-cell-type proteomics provides the capability to revealing the genomic and proteomics information at cell-level resolution. However, the methodology for this type of research has not been well-developed. This paper reports developing a workflow of laser capture microdissection (LCM) followed by gel-liquid chromatography-tandem mass spectrometry (GeLC-MS/MS)-based proteomics analysis for the identification of proteomes contained in individual cell layers of tomato roots. Thin-sections (~10-μm thick, 10 sections per root tip) were prepared for root tips of tomato germinating seedlings. Epidermal and cortical cells (5000–7000 cells per tissue type) were isolated under a LCM microscope. Proteins were isolated and then separated by SDS–polyacrylamide gel electrophoresis followed by in-gel-tryptic digestion. The MS and MS/MS spectra generated using nanoLC-MS/MS analysis of the tryptic peptides were searched against ITAG2.4 tomato protein database to identify proteins contained in each single-cell-type sample. Based on the biological functions, proteins with proven functions in root hair development were identified in epidermal cells but not in the cortical cells. Several of these proteins were found in Al-treated roots only. The results demonstrated that the cell-type-specific proteome is relevant for tissue-specific functions in tomato roots. Increasing the coverage of proteomes and reducing the inevitable cross-contamination from adjacent cell layers, in both vertical and cross directions when cells are isolated from slides prepared using intact root tips, are the major challenges using the technology in proteomics analysis of plant roots. PMID:27280026

  2. Molecular characterization of neuronal cell types based on patterns of projection with Retro-TRAP.

    Science.gov (United States)

    Nectow, Alexander R; Ekstrand, Mats I; Friedman, Jeffrey M

    2015-09-01

    Retro-TRAP (translating ribosome affinity purification) technology enables the synthesis of molecular and neuroanatomical information through the use of transgenic and viral approaches. In contrast to other methods that are used to profile neural circuits such as laser-capture microdissection and FACS, Retro-TRAP is a high-throughput methodology that requires minimal specialized instrumentation. Retro-TRAP uses an anti-GFP ribosomal tag (expressed virally or using transgenesis) to immunoprecipitate translating mRNAs from any population of neurons that express GFP. The protocol detailed here describes the rapid extraction of molecular information from neural circuits in mice using retrograde-tracing GFP-expressing viruses. This approach can be used to identify novel cell types, as well as to molecularly profile cell types for which Cre-driver lines are available, in defined presynaptic loci. The current protocol describes a method for extracting translating mRNA from any neural circuit accessible by stereotaxic injection and manual dissection, and it takes 2-4 weeks. Although it is not described here, this mRNA can then be used in downstream processing applications such as quantitative PCR (qPCR) and high-throughput RNA sequencing to obtain 'molecular connectomic' information. PMID:26247298

  3. Automated computation of arbor densities: a step toward identifying neuronal cell types

    Directory of Open Access Journals (Sweden)

    Uygar eSümbül

    2014-11-01

    Full Text Available The shape and position of a neuron convey information regarding its molecular and functional identity. The identification of cell types from structure, a classic method, relies on the time-consuming step of arbor tracing. However, as genetic tools and imaging methods make data-driven approaches to neuronal circuit analysis feasible, the need for automated processing increases. Here, we first establish that mouse retinal ganglion cell types can be as precise about distributing their arbor volumes across the inner plexiform layer as they are about distributing the skeletons of the arbors. Then, we describe an automated approach to computing the spatial distribution of the dendritic arbors, or arbor density, with respect to a global depth coordinate based on this observation. Our method involves three-dimensional reconstruction of neuronal arbors by a supervised machine learning algorithm, post-processing of the enhanced stacks to remove somata and isolate the neuron of interest, and registration of neurons to each other using automatically detected arbors of the starburst amacrine interneurons as fiducial markers. In principle, this method could be generalizable to other structures of the CNS, provided that they allow sparse labeling of the cells and contain a reliable axis of spatial reference.

  4. Sprouty genes prevent excessive FGF signalling in multiple cell types throughout development of the cerebellum

    Science.gov (United States)

    Yu, Tian; Yaguchi, Yuichiro; Echevarria, Diego; Martinez, Salvador; Basson, M. Albert

    2011-01-01

    Fibroblast growth factors (FGFs) and regulators of the FGF signalling pathway are expressed in several cell types within the cerebellum throughout its development. Although much is known about the function of this pathway during the establishment of the cerebellar territory during early embryogenesis, the role of this pathway during later developmental stages is still poorly understood. Here, we investigated the function of sprouty genes (Spry1, Spry2 and Spry4), which encode feedback antagonists of FGF signalling, during cerebellar development in the mouse. Simultaneous deletion of more than one of these genes resulted in a number of defects, including mediolateral expansion of the cerebellar vermis, reduced thickness of the granule cell layer and abnormal foliation. Analysis of cerebellar development revealed that the anterior cerebellar neuroepithelium in the early embryonic cerebellum was expanded and that granule cell proliferation during late embryogenesis and early postnatal development was reduced. We show that the granule cell proliferation deficit correlated with reduced sonic hedgehog (SHH) expression and signalling. A reduction in Fgfr1 dosage during development rescued these defects, confirming that the abnormalities are due to excess FGF signalling. Our data indicate that sprouty acts both cell autonomously in granule cell precursors and non-cell autonomously to regulate granule cell number. Taken together, our data demonstrate that FGF signalling levels have to be tightly controlled throughout cerebellar development in order to maintain the normal development of multiple cell types. PMID:21693512

  5. The number of cell types, information content, and the evolution of complex multicellularity

    Directory of Open Access Journals (Sweden)

    Karl J. Niklas

    2014-12-01

    Full Text Available The number of different cell types (NCT characterizing an organism is often used to quantify organismic complexity. This method results in the tautology that more complex organisms have a larger number of different kinds of cells, and that organisms with more different kinds of cells are more complex. This circular reasoning can be avoided (and simultaneously tested when NCT is plotted against different measures of organismic information content (e.g., genome or proteome size. This approach is illustrated by plotting the NCT of representative diatoms, green and brown algae, land plants, invertebrates, and vertebrates against data for genome size (number of base-pairs, proteome size (number of amino acids, and proteome functional versatility (number of intrinsically disordered protein domains or residues. Statistical analyses of these data indicate that increases in NCT fail to keep pace with increases in genome size, but exceed a one-to-one scaling relationship with increasing proteome size and with increasing numbers of intrinsically disordered protein residues. We interpret these trends to indicate that comparatively small increases in proteome (and not genome size are associated with disproportionate increases in NCT, and that proteins with intrinsically disordered domains enhance cell type diversity and thus contribute to the evolution of complex multicellularity.

  6. Proton and Fe Ion-Induced Early and Late Chromosome Aberrations in Different Cell Types

    Science.gov (United States)

    Wu, Honglu; Lu, Tao; Yeshitla, Samrawit; Zhang, Ye; Kadhim, Munira

    2016-01-01

    An early stage of cancer development is believed to be genomic instability (GI) which accelerates the mutation rate in the descendants of the cells surviving radiation exposure. To investigate GI induced by charged particles, we exposed human lymphocytes, human fibroblast cells, and human mammary epithelial cells to high energy protons and Fe ions. In addition, we also investigated GI in bone marrow cells isolated from CBA/CaH (CBA) and C57BL/6 (C57) mice, by analyzing cell survival and chromosome aberrations in the cells after multiple cell divisions. Results analyzed so far from the experiments indicated different sensitivities to charged particles between CBA/CaH (CBA) and C57BL/6 (C57) mouse strains, suggesting that there are two main types of response to irradiation: 1) responses associated with survival of damaged cells and 2) responses associated with the induction of non-clonal chromosomal instability in the surviving progeny of stem cells. Previously, we reported that the RBE for initial chromosome damages was high in human lymphocytes exposed to Fe ions. Our results with different cell types demonstrated different RBE values between different cell types and between early and late chromosomal damages. This study also attempts to offer an explanation for the varying RBE values for different cancer types.

  7. Representation of spontaneous movement by dopaminergic neurons is cell-type selective and disrupted in parkinsonism.

    Science.gov (United States)

    Dodson, Paul D; Dreyer, Jakob K; Jennings, Katie A; Syed, Emilie C J; Wade-Martins, Richard; Cragg, Stephanie J; Bolam, J Paul; Magill, Peter J

    2016-04-12

    Midbrain dopaminergic neurons are essential for appropriate voluntary movement, as epitomized by the cardinal motor impairments arising in Parkinson's disease. Understanding the basis of such motor control requires understanding how the firing of different types of dopaminergic neuron relates to movement and how this activity is deciphered in target structures such as the striatum. By recording and labeling individual neurons in behaving mice, we show that the representation of brief spontaneous movements in the firing of identified midbrain dopaminergic neurons is cell-type selective. Most dopaminergic neurons in the substantia nigra pars compacta (SNc), but not in ventral tegmental area or substantia nigra pars lateralis, consistently represented the onset of spontaneous movements with a pause in their firing. Computational modeling revealed that the movement-related firing of these dopaminergic neurons can manifest as rapid and robust fluctuations in striatal dopamine concentration and receptor activity. The exact nature of the movement-related signaling in the striatum depended on the type of dopaminergic neuron providing inputs, the striatal region innervated, and the type of dopamine receptor expressed by striatal neurons. Importantly, in aged mice harboring a genetic burden relevant for human Parkinson's disease, the precise movement-related firing of SNc dopaminergic neurons and the resultant striatal dopamine signaling were lost. These data show that distinct dopaminergic cell types differentially encode spontaneous movement and elucidate how dysregulation of their firing in early Parkinsonism can impair their effector circuits. PMID:27001837

  8. c-MYC responds to glucose deprivation in a cell-type-dependent manner.

    Science.gov (United States)

    Wu, S; Yin, X; Fang, X; Zheng, J; Li, L; Liu, X; Chu, L

    2015-01-01

    Metabolic reprogramming supports cancer cells' demands for rapid proliferation and growth. Previous work shows that oncogenes, such as MYC, hypoxia-inducible factor 1 (HIF1), have a central role in driving metabolic reprogramming. A lot of metabolic enzymes, which are deregulated in most cancer cells, are the targets of these oncogenes. However, whether metabolic change affects these oncogenes is still unclear. Here we show that glucose deprivation (GD) affects c-MYC protein levels in a cell-type-dependent manner regardless of P53 mutation status. GD dephosphorylates and then decreases c-MYC protein stability through PI3K signaling pathway in HeLa cells, but not in MDA-MB-231 cells. Role of c-MYC in sensitivity of GD also varies with cell types. c-MYC-mediated glutamine metabolism partially improves the sensitivity of GD in MDA-MB-231 cells. Our results reveal that the heterogeneity of cancer cells in response to metabolic stress should be considered in metabolic therapy for cancer. PMID:27551483

  9. Requirements for efficient cell-type proportioning: regulatory timescales, stochasticity and lateral inhibition.

    Science.gov (United States)

    Pfeuty, B; Kaneko, K

    2016-01-01

    The proper functioning of multicellular organisms requires the robust establishment of precise proportions between distinct cell types. This developmental differentiation process typically involves intracellular regulatory and stochastic mechanisms to generate cell-fate diversity as well as intercellular signaling mechanisms to coordinate cell-fate decisions at tissue level. We thus surmise that key insights about the developmental regulation of cell-type proportion can be captured by the modeling study of clustering dynamics in population of inhibitory-coupled noisy bistable systems. This general class of dynamical system is shown to exhibit a very stable two-cluster state, but also metastability, collective oscillations or noise-induced state hopping, which can prevent from timely and reliably reaching a robust and well-proportioned clustered state. To circumvent these obstacles or to avoid fine-tuning, we highlight a general strategy based on dual-time positive feedback loops, such as mediated through transcriptional versus epigenetic mechanisms, which improves proportion regulation by coordinating early and flexible lineage priming with late and firm commitment. This result sheds new light on the respective and cooperative roles of multiple regulatory feedback, stochasticity and lateral inhibition in developmental dynamics. PMID:27172110

  10. Recognition, System Justification and Reconstructive Critique

    OpenAIRE

    Celikates, Robin

    2012-01-01

    When we think about the relations of recognition that structure a social order, exclusion is usually regarded as the problem and inclusion as the solution. In the following I will argue that in some cases inclusion—or rather the specific mode of inclusion—may very well constitute the problem. This is the case when we are dealing with ideological forms of recognition. System Justification Theory—a relatively novel approach in social and political psychology—offers an analysis of those cases in...

  11. Probabilistic Open Set Recognition

    Science.gov (United States)

    Jain, Lalit Prithviraj

    Real-world tasks in computer vision, pattern recognition and machine learning often touch upon the open set recognition problem: multi-class recognition with incomplete knowledge of the world and many unknown inputs. An obvious way to approach such problems is to develop a recognition system that thresholds probabilities to reject unknown classes. Traditional rejection techniques are not about the unknown; they are about the uncertain boundary and rejection around that boundary. Thus traditional techniques only represent the "known unknowns". However, a proper open set recognition algorithm is needed to reduce the risk from the "unknown unknowns". This dissertation examines this concept and finds existing probabilistic multi-class recognition approaches are ineffective for true open set recognition. We hypothesize the cause is due to weak adhoc assumptions combined with closed-world assumptions made by existing calibration techniques. Intuitively, if we could accurately model just the positive data for any known class without overfitting, we could reject the large set of unknown classes even under this assumption of incomplete class knowledge. For this, we formulate the problem as one of modeling positive training data by invoking statistical extreme value theory (EVT) near the decision boundary of positive data with respect to negative data. We provide a new algorithm called the PI-SVM for estimating the unnormalized posterior probability of class inclusion. This dissertation also introduces a new open set recognition model called Compact Abating Probability (CAP), where the probability of class membership decreases in value (abates) as points move from known data toward open space. We show that CAP models improve open set recognition for multiple algorithms. Leveraging the CAP formulation, we go on to describe the novel Weibull-calibrated SVM (W-SVM) algorithm, which combines the useful properties of statistical EVT for score calibration with one-class and binary

  12. Unleashing the potential of the root hair cell as a single plant cell type model in root systems biology

    OpenAIRE

    Zhenzhen eQiao; Marc eLibault

    2013-01-01

    Plant root is an organ composed of multiple cell types with different functions. This multicellular complexity limits our understanding of root biology because –omics studies performed at the level of the entire root reflect the average responses of all cells composing the organ. To overcome this difficulty and allow a more comprehensive understanding of root cell biology, an approach is needed that would focus on one single cell type in the plant root. Because of its biological functions (i....

  13. Biologically inspired emotion recognition from speech

    Directory of Open Access Journals (Sweden)

    Buscicchio Cosimo

    2011-01-01

    Full Text Available Abstract Emotion recognition has become a fundamental task in human-computer interaction systems. In this article, we propose an emotion recognition approach based on biologically inspired methods. Specifically, emotion classification is performed using a long short-term memory (LSTM recurrent neural network which is able to recognize long-range dependencies between successive temporal patterns. We propose to represent data using features derived from two different models: mel-frequency cepstral coefficients (MFCC and the Lyon cochlear model. In the experimental phase, results obtained from the LSTM network and the two different feature sets are compared, showing that features derived from the Lyon cochlear model give better recognition results in comparison with those obtained with the traditional MFCC representation.

  14. Biologically inspired emotion recognition from speech

    Science.gov (United States)

    Caponetti, Laura; Buscicchio, Cosimo Alessandro; Castellano, Giovanna

    2011-12-01

    Emotion recognition has become a fundamental task in human-computer interaction systems. In this article, we propose an emotion recognition approach based on biologically inspired methods. Specifically, emotion classification is performed using a long short-term memory (LSTM) recurrent neural network which is able to recognize long-range dependencies between successive temporal patterns. We propose to represent data using features derived from two different models: mel-frequency cepstral coefficients (MFCC) and the Lyon cochlear model. In the experimental phase, results obtained from the LSTM network and the two different feature sets are compared, showing that features derived from the Lyon cochlear model give better recognition results in comparison with those obtained with the traditional MFCC representation.

  15. The effects of conformity on recognition judgements.

    Science.gov (United States)

    Reysen, Matthew B

    2005-01-01

    Schneider and Watkins (1996) demonstrated that participants' recognition performance can be affected by responses generated by a confederate. However, it remains uncertain whether the confederate's responses actually change the participants' memories or whether participants simply attempt to conform to the confederate. The present experiments examined this issue by having participants complete a final individual recognition test following a recognition test in which the participants worked with a virtual confederate. The results suggest that responses from virtual confederates affect participants' performance in ways similar to actual confederates and that conforming to a virtual confederate's responses does appear to result in actual deficits in memory. More specifically, it impairs participants' ability to correctly recognise material presented earlier. PMID:15724910

  16. Recognition of social identity in ants

    DEFF Research Database (Denmark)

    Bos, Nick; d'Ettorre, Patrizia

    2012-01-01

    Recognizing the identity of others, from the individual to the group level, is a hallmark of society. Ants, and other social insects, have evolved advanced societies characterized by efficient social recognition systems. Colony identity is mediated by colony specific signature mixtures, a blend of...... hydrocarbons present on the cuticle of every individual (the “label”). Recognition occurs when an ant encounters another individual, and compares the label it perceives to an internal representation of its own colony odor (the “template”). A mismatch between label and template leads to rejection of the...... encountered individual. Although advances have been made in our understanding of how the label is produced and acquired, contradictory evidence exists about information processing of recognition cues. Here, we review the literature on template acquisition in ants and address how and when the template is...

  17. Molecular Mechanisms of Cell-cell Recognition

    Institute of Scientific and Technical Information of China (English)

    WANG Jia-Huai

    2004-01-01

    Cell-cell recognition is the key for multicellular organisms to survive. This recognition critically depends on protein-protein interactions from opposing cell surfaces. Recent structural investigations reveal unique features of these cell surface receptors and how they interact. These interactions are specific, but usually relatively weak, with more hydrophilic forces involved in binding. The receptors appear to have specialized ways to present their key interacting elements for ligand-binding from the cell surface. Cell-cell contacts are multivalent. A large group of cell surface molecules are engaged in interactions. Characteristic weak interactions make possible for each individual molecule pair within the group to constantly associate-dissociate-reassociate, such that the cell-cell recognition becomes a dynamic process. The immunological synapse is a good example for immune receptors to be orchestrated in performing immunological function in a collective fashion.

  18. Social appraisal influences recognition of emotions.

    Science.gov (United States)

    Mumenthaler, Christian; Sander, David

    2012-06-01

    The notion of social appraisal emphasizes the importance of a social dimension in appraisal theories of emotion by proposing that the way an individual appraises an event is influenced by the way other individuals appraise and feel about the same event. This study directly tested this proposal by asking participants to recognize dynamic facial expressions of emotion (fear, happiness, or anger in Experiment 1; fear, happiness, anger, or neutral in Experiment 2) in a target face presented at the center of a screen while a contextual face, which appeared simultaneously in the periphery of the screen, expressed an emotion (fear, happiness, anger) or not (neutral) and either looked at the target face or not. We manipulated gaze direction to be able to distinguish between a mere contextual effect (gaze away from both the target face and the participant) and a specific social appraisal effect (gaze toward the target face). Results of both experiments provided evidence for a social appraisal effect in emotion recognition, which differed from the mere effect of contextual information: Whereas facial expressions were identical in both conditions, the direction of the gaze of the contextual face influenced emotion recognition. Social appraisal facilitated the recognition of anger, happiness, and fear when the contextual face expressed the same emotion. This facilitation was stronger than the mere contextual effect. Social appraisal also allowed better recognition of fear when the contextual face expressed anger and better recognition of anger when the contextual face expressed fear. PMID:22288528

  19. Cell type-dependent induction of DNA damage by 1800 MHz radiofrequency electromagnetic fields does not result in significant cellular dysfunctions.

    Directory of Open Access Journals (Sweden)

    Shanshan Xu

    Full Text Available BACKGROUND: Although IARC clarifies radiofrequency electromagnetic fields (RF-EMF as possible human carcinogen, the debate on its health impact continues due to the inconsistent results. Genotoxic effect has been considered as a golden standard to determine if an environmental factor is a carcinogen, but the currently available data for RF-EMF remain controversial. As an environmental stimulus, the effect of RF-EMF on cellular DNA may be subtle. Therefore, more sensitive method and systematic research strategy are warranted to evaluate its genotoxicity. OBJECTIVES: To determine whether RF-EMF does induce DNA damage and if the effect is cell-type dependent by adopting a more sensitive method γH2AX foci formation; and to investigate the biological consequences if RF-EMF does increase γH2AX foci formation. METHODS: Six different types of cells were intermittently exposed to GSM 1800 MHz RF-EMF at a specific absorption rate of 3.0 W/kg for 1 h or 24 h, then subjected to immunostaining with anti-γH2AX antibody. The biological consequences in γH2AX-elevated cell type were further explored with comet and TUNEL assays, flow cytometry, and cell growth assay. RESULTS: Exposure to RF-EMF for 24 h significantly induced γH2AX foci formation in Chinese hamster lung cells and Human skin fibroblasts (HSFs, but not the other cells. However, RF-EMF-elevated γH2AX foci formation in HSF cells did not result in detectable DNA fragmentation, sustainable cell cycle arrest, cell proliferation or viability change. RF-EMF exposure slightly but not significantly increased the cellular ROS level. CONCLUSIONS: RF-EMF induces DNA damage in a cell type-dependent manner, but the elevated γH2AX foci formation in HSF cells does not result in significant cellular dysfunctions.

  20. Wavelets and Face Recognition

    OpenAIRE

    Dai, Dao-Qing; Yan, Hong

    2007-01-01

    Wavelets have been successfully used in image processing. Their ability to capture localized spatial-frequency information of image motivates their use for feature extraction. We give an overview of using wavelets in the face recognition technology. Due to limit of space the use of Gabor wavelets is not covered in this survey. Interested readers are referred to section 8.3 for references.

  1. Recognition of fractal graphs

    NARCIS (Netherlands)

    Perepelitsa, VA; Sergienko, [No Value; Kochkarov, AM

    1999-01-01

    Definitions of prefractal and fractal graphs are introduced, and they are used to formulate mathematical models in different fields of knowledge. The topicality of fractal-graph recognition from the point of view, of fundamental improvement in the efficiency of the solution of algorithmic problems i

  2. FINGERPRINT RECOGNITION SYSTEM DESIGN

    OpenAIRE

    SONMEZ, Öznur Sinem; OZTAS, Oguzhan

    2010-01-01

    In this study, a minutiae-based fingerprint recognition system is implemented which includes normalization, enhancement, thinning, extraction of minutiae, elimination of false minutiae, orientation estimation, core point detection, finding reference points and matching processes. Accordingly, the effects of enhancement and elimination of false minutiae processes, methods of reference point determination and low quality fingerprint images on system performance are analyzed using two different ...

  3. The Pandora Software Development Kit for Pattern Recognition

    CERN Document Server

    Marshall, J S

    2015-01-01

    running pattern recognition algorithms. The Pandora Application Programming Interfaces ensure simple specification of the building-blocks defining a pattern recognition problem. The logic required to solve the problem is implemented in algorithms. The algorithms request operations to create or modify data structures and the operations are performed by the Pandora framework. This design promotes an approach using many decoupled algorithms, each addressing specific topologies. Details of algorithms addressing two pattern recognition problems in High Energy Physics are presented: reconstruction of events at a high-energy e+e- linear collider and reconstruction of cosmic ray or neutrino events in a liquid argon time projection chamber.

  4. Autonomy and Recognition

    Directory of Open Access Journals (Sweden)

    Miguel Giusti

    2007-04-01

    Full Text Available Resumen:El presente ensayo contiene dos partes. En la primera se hace una breve descripción de las carencias de la reflexión moral a las que parece venir al encuentro el concepto de reconocimiento. Charles Taylor y Axel Honneth, protagonistas en estos debates, dan buenas razones para dirigir la discusión hacia el tema del reconocimiento, pero no coinciden ni en su definición, ni en el modo de recuperar la tesis de Hegel, ni tampoco en la forma de tratar la relación entre autonomía y reconocimiento. En la segunda parte se analiza la concepción propiamente hegeliana, con la intención de destacar el nexo esencial, no la ruptura, que existe entre la noción de reconocimiento y el modelo conceptual de la voluntad libre o del espíritu. Abstract:This essay is divided into two parts. The first one is a short description of the deficiencies of moral reflection, which seem to lead the discussion towards the concept of recognition. Charles Taylor and Axel Honneth, two of the protagonists of these debates, give very good reasons for turning the argument towards the issue of recognition, but they do not agree on its definition, on the way to recover the Hegelian thesis, or on how to approach the relationship between autonomy and recognition. The second part constitutes an analysis of the Hegelian conception of recognition, in order to highlight the essential link –rather than the rupture– between the notion of recognition and the conceptual model of free will or spirit.

  5. Galeotti on recognition as inclusion

    DEFF Research Database (Denmark)

    Lægaard, Sune

    2008-01-01

    Anna Elisabetta Galeotti's theory of 'toleration as recognition' has been criticised by Peter Jones for being conceptually incoherent, since liberal toleration presupposes a negative attitude to differences, whereas multicultural recognition requires positive affirmation hereof. The paper spells...

  6. Trophic significance of solitary cells of the prymnesiophyte Phaeocystis globosa depends on cell type

    DEFF Research Database (Denmark)

    Dutz, Jörg; Koski, Marja

    2006-01-01

    With the use of five different isolates of Phaeocystis globosa solitary cells from the North Sea, we conducted experiments to reveal whether grazing and development of the nauplii of the calanoid copepod Temora longicornis varies in response to the cell type. Two P. globosa strains representing n...... of mesoflagellates. Our results suggest that grazing loss and trophic transfer efficiency might be overestimated when solitary cells are treated as a single functional group with regard to their trophic position....... nonflagellated cells were ingested at intermediate to high rates and resulted in high survival and development, comparable to the Rhodomonas sp. control. In contrast, the response to three mesoflagellate strains was highly variable. Feeding on two of these strains was avoided, whereas the third strain was...... ingested; however, the mesoflagellates induced poor survival and development regardless of the feeding response. These observations differ from previous results, which generally demonstrate microzooplankton feeding on Phaeocystis. The morphological characterization of strains, together with mixture...

  7. Cell types and their status in Chlamydomonas-like algae (Chlorophyceae on agar medium culture

    Directory of Open Access Journals (Sweden)

    M.М. Pavlovska

    2014-04-01

    Full Text Available The classification of cell types under agar culture was proposed. Six cell morphotypes were allocated. The statuses were identified depending on the reduction of monade attributes of cells. The variants of transition from one cell morphotype to another under dissolving mucilage were shown. The monade, cocciod, palmeloid and gloeocysta morphotypes approximately equally represented in all clades. The asterococcus and mucogleocysta morphotypes presented only in Reinhardtinia аnd Oogamochlamydinia clades. Any morphotype isn’t typical for all clades of Chlamydomonas-like algae at once. The most of morphotypes numbers (5 from 6 are presented in Reinhardtinia clade. This demonstrates the diversity of the Reinhardtinia clade species. There are only one morphotype presented in Polytominia and Monadinia clades. There are four morphotypes presented in Oogamochlamydinia clade, three – in Moewusinia, two morphotypes – in Chloromonadinia.

  8. Concise Review: Methods and Cell Types Used to Generate Down Syndrome Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Youssef Hibaoui

    2015-04-01

    Full Text Available Down syndrome (DS, trisomy 21, is the most common viable chromosomal disorder, with an incidence of 1 in 800 live births. Its phenotypic characteristics include intellectual impairment and several other developmental abnormalities, for the majority of which the pathogenetic mechanisms remain unknown. Several models have been used to investigate the mechanisms by which the extra copy of chromosome 21 leads to the DS phenotype. In the last five years, several laboratories have been successful in reprogramming patient cells carrying the trisomy 21 anomaly into induced pluripotent stem cells, i.e., T21-iPSCs. In this review, we summarize the different T21-iPSCs that have been generated with a particular interest in the technical procedures and the somatic cell types used for the reprogramming.

  9. The asymmetric segregation of damaged proteins is stem cell-type dependent.

    Science.gov (United States)

    Bufalino, Mary Rose; DeVeale, Brian; van der Kooy, Derek

    2013-05-13

    Asymmetric segregation of damaged proteins (DPs) during mitosis has been linked in yeast and bacteria to the protection of one cell from aging. Recent evidence suggests that stem cells may use a similar mechanism; however, to date there is no in vivo evidence demonstrating this effect in healthy adult stem cells. We report that stem cells in larval (neuroblast) and adult (female germline and intestinal stem cell) Drosophila melanogaster asymmetrically segregate DPs, such as proteins with the difficult-to-degrade and age-associated 2,4-hydroxynonenal (HNE) modification. Surprisingly, of the cells analyzed only the intestinal stem cell protects itself by segregating HNE to differentiating progeny, whereas the neuroblast and germline stem cells retain HNE during division. This led us to suggest that chronological life span, and not cell type, determines the amount of DPs a cell receives during division. Furthermore, we reveal a role for both niche-dependent and -independent mechanisms of asymmetric DP division. PMID:23649805

  10. Korean Anaphora Recognition System to Develop Healthcare Dialogue-Type Agent

    OpenAIRE

    Yang, Junggi; Lee, Youngho

    2014-01-01

    Objectives Anaphora recognition is a process to identify exactly which noun has been used previously and relates to a pronoun that is included in a specific sentence later. Therefore, anaphora recognition is an essential element of a dialogue agent system. In the current study, all the merits of rule-based, machine learning-based, semantic-based anaphora recognition systems were combined to design and realize a new hybrid-type anaphora recognition system with an optimum capacity. Methods Anap...

  11. Formal Implementation of a Performance Evaluation Model for the Face Recognition System

    OpenAIRE

    Yong-Nyuo Shin; Jason Kim; Yong-Jun Lee; Woochang Shin; Jin-Young Choi

    2007-01-01

    Due to usability features, practical applications, and its lack of intrusiveness, face recognition technology, based on information, derived from individuals' facial features, has been attracting considerable attention recently. Reported recognition rates of commercialized face recognition systems cannot be admitted as official recognition rates, as they are based on assumptions that are beneficial to the specific system and face database. Therefore, performance evaluation methods and tools a...

  12. Object-Scene Convolutional Neural Networks for Event Recognition in Images

    OpenAIRE

    Wang, Limin; Wang, Zhe; Du, Wenbin; Qiao, Yu

    2015-01-01

    Event recognition from still images is of great importance for image understanding. However, compared with event recognition in videos, there are much fewer research works on event recognition in images. This paper addresses the issue of event recognition from images and proposes an effective method with deep neural networks. Specifically, we design a new architecture, called Object-Scene Convolutional Neural Network (OS-CNN). This architecture is decomposed into object net and scene net, whi...

  13. Mayo's Older Americans Normative Studies: expanded AVLT Recognition Trial norms for ages 57 to 98.

    Science.gov (United States)

    Harris, Milton E; Ivnik, Robert J; Smith, Glenn E

    2002-04-01

    This paper expands upon previously published Mayo's Older Americans Normative Studies (MOANS) Auditory Verbal Learning Test (AVLT) norms by presenting age and gender specific data for Recognition Trial accuracy (recognition 'hits' corrected for false positive errors) in a total of 836 subjects (the original sample, augmented by an additional 311 subjects). Observations are offered concerning clinical implications of AVLT Recognition Trial performance. Gender differences in recognition memory are discussed. PMID:11992204

  14. RECOGNITION AND ASSESSMENT IN ACCOUNTANCY

    Directory of Open Access Journals (Sweden)

    DIMA FLORIN CONSTANTIN

    2012-11-01

    Full Text Available The recognition and assessment of the component elements of the annual financial statements’ structures is crucial in order that the information released by them fulfils the qualitative characteristics and the reflected image is a “true and fair view”. Therefore, our approach takes into consideration the recognition and assessment methods for the component elements of the financial statements’ structures, as well as certain possible risks arising from the erroneous recognition or non-recognition of some of these elements.

  15. Forensic Face Recognition: A Survey

    NARCIS (Netherlands)

    Ali, Tauseef; Spreeuwers, Luuk; Veldhuis, Raymond; Quaglia, Adamo; Epifano, Calogera M.

    2012-01-01

    The improvements of automatic face recognition during the last 2 decades have disclosed new applications like border control and camera surveillance. A new application field is forensic face recognition. Traditionally, face recognition by human experts has been used in forensics, but now there is a

  16. 3D modelling and recognition

    OpenAIRE

    Rodrigues, Marcos; Robinson, Alan; Alboul, Lyuba; Brink, Willie

    2006-01-01

    3D face recognition is an open field. In this paper we present a method for 3D facial recognition based on Principal Components Analysis. The method uses a relatively large number of facial measurements and ratios and yields reliable recognition. We also highlight our approach to sensor development for fast 3D model acquisition and automatic facial feature extraction.

  17. Projective Methods of Image Recognition

    OpenAIRE

    Putyatin, Yevgeniy; Gorohovatsky, Vladimir; Gorohovatsky, Alexey; Peredriy, Elena

    2008-01-01

    We propose a method for image recognition on the base of projections. Radon transform gives an opportunity to map image into space of its projections. Projection properties allow constructing informative features on the base of moments that can be successfully used for invariant recognition. Offered approach gives about 91-97% of correct recognition.

  18. IRIS Based Human Recognition System

    Directory of Open Access Journals (Sweden)

    Mansi Jhamb, Vinod Kumar Khera

    2011-04-01

    Full Text Available The paper explores iris recognition for personal identification and verification. In this paper a newiris recognition technique is proposed using (Scale Invariant Feature Transform SIFT. Imageprocessingalgorithms have been validated on noised real iris image database. The proposedinnovative technique is computationally effective as well as reliable in terms of recognition rates.

  19. Spoken word recognition without a TRACE.

    Science.gov (United States)

    Hannagan, Thomas; Magnuson, James S; Grainger, Jonathan

    2013-01-01

    How do we map the rapid input of spoken language onto phonological and lexical representations over time? Attempts at psychologically-tractable computational models of spoken word recognition tend either to ignore time or to transform the temporal input into a spatial representation. TRACE, a connectionist model with broad and deep coverage of speech perception and spoken word recognition phenomena, takes the latter approach, using exclusively time-specific units at every level of representation. TRACE reduplicates featural, phonemic, and lexical inputs at every time step in a large memory trace, with rich interconnections (excitatory forward and backward connections between levels and inhibitory links within levels). As the length of the memory trace is increased, or as the phoneme and lexical inventory of the model is increased to a realistic size, this reduplication of time- (temporal position) specific units leads to a dramatic proliferation of units and connections, begging the question of whether a more efficient approach is possible. Our starting point is the observation that models of visual object recognition-including visual word recognition-have grappled with the problem of spatial invariance, and arrived at solutions other than a fully-reduplicative strategy like that of TRACE. This inspires a new model of spoken word recognition that combines time-specific phoneme representations similar to those in TRACE with higher-level representations based on string kernels: temporally independent (time invariant) diphone and lexical units. This reduces the number of necessary units and connections by several orders of magnitude relative to TRACE. Critically, we compare the new model to TRACE on a set of key phenomena, demonstrating that the new model inherits much of the behavior of TRACE and that the drastic computational savings do not come at the cost of explanatory power. PMID:24058349

  20. Spoken word recognition without a TRACE

    Directory of Open Access Journals (Sweden)

    Thomas eHannagan

    2013-09-01

    Full Text Available How do we map the rapid input of spoken language onto phonological and lexical representations over time? Attempts at psychologically-tractable computational models of spoken word recognition tend either to ignore time or to transform the temporal input into a spatial representation. TRACE, a connectionist model with broad and deep coverage of speech perception and spoken word recognition phenomena, takes the latter approach, using exclusively time-specific units at every level of representation. TRACE reduplicates featural, phonemic, and lexical inputs at every time step in a large memory trace, with rich interconnections (excitatory forward and backward connections between levels and inhibitory links within levels. As the length of the memory trace is increased, or as the phoneme and lexical inventory of the model is increased to a realistic size, this reduplication of time- (temporal position specific units leads to a dramatic proliferation of units and connections, begging the question of whether a more efficient approach is possible. Our starting point is the observation that models of visual object recognition - including visual word recognition - have grappled with the problem of spatial invariance, and arrived at solutions other than a fully-reduplicative strategy like that of TRACE. This inspires a new model of spoken word recognition that combines time-specific phoneme representations similar to those in TRACE with higher-level representations based on string kernels: temporally independent (time invariant diphone and lexical units. This reduces the number of necessary units and connections by several orders of magnitude relative to TRACE. Critically, we compare the new model to TRACE on a set of key phenomena, demonstrating that the new model inherits much of the behavior of TRACE and that the drastic computational savings do not come at the cost of explanatory power.