WorldWideScience

Sample records for cell-seeded scaffolds increases

  1. Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing.

    Science.gov (United States)

    Melchels, Ferry P W; Barradas, Ana M C; van Blitterswijk, Clemens A; de Boer, Jan; Feijen, Jan; Grijpma, Dirk W

    2010-11-01

    The advance of rapid prototyping techniques has significantly improved control over the pore network architecture of tissue engineering scaffolds. In this work, we have assessed the influence of scaffold pore architecture on cell seeding and static culturing, by comparing a computer designed gyroid architecture fabricated by stereolithography with a random pore architecture resulting from salt leaching. The scaffold types showed comparable porosity and pore size values, but the gyroid type showed a more than 10-fold higher permeability due to the absence of size-limiting pore interconnections. The higher permeability significantly improved the wetting properties of the hydrophobic scaffolds and increased the settling speed of cells upon static seeding of immortalised mesenchymal stem cells. After dynamic seeding followed by 5 days of static culture gyroid scaffolds showed large cell populations in the centre of the scaffold, while salt-leached scaffolds were covered with a cell sheet on the outside and no cells were found in the scaffold centre. It was shown that interconnectivity of the pores and permeability of the scaffold prolonged the time of static culture before overgrowth of cells at the scaffold periphery occurred. Furthermore, novel scaffold designs are proposed to further improve the transport of oxygen and nutrients throughout the scaffolds and to create tissue engineering grafts with a designed, pre-fabricated vasculature. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Biodegradable Cell-Seeded Nanofiber Scaffolds for Neural Repair

    Directory of Open Access Journals (Sweden)

    Karen C. Cheung

    2011-10-01

    Full Text Available Central and peripheral neural injuries are traumatic and can lead to loss of motor and sensory function, chronic pain, and permanent disability. Strategies that bridge the site of injury and allow axonal regeneration promise to have a large impact on restoring quality of life for these patients. Engineered materials can be used to guide axonal growth. Specifically, nanofiber structures can mimic the natural extracellular matrix, and aligned nanofibers have been shown to direct neurite outgrowth and support axon regeneration. In addition, cell-seeded scaffolds can assist in the remyelination of the regenerating axons. The electrospinning process allows control over fiber diameter, alignment, porosity, and morphology. Biodegradable polymers have been electrospun and their use in tissue engineering has been demonstrated. This paper discusses aspects of electrospun biodegradable nanofibers for neural regeneration, how fiber alignment affects cell alignment, and how cell-seeded scaffolds can increase the effectiveness of such implants.

  3. A 1-min method for homogenous cell seeding in porous scaffolds

    NARCIS (Netherlands)

    Tan, Lijun; Ren, Yijin; Kuijer, Roel

    The aim of this study was to develop and evaluate a simple and rapid cell seeding procedure for both calcium phosphate ceramic scaffolds and polymer scaffolds. Poly(D,L-lactic acid) and beta-tri-calcium phosphate scaffolds were seeded with MC3T3-E1 cells in a syringe. Scaffolds were put in the

  4. Optimization of cell seeding in a 2D bio-scaffold system using computational models.

    Science.gov (United States)

    Ho, Nicholas; Chua, Matthew; Chui, Chee-Kong

    2017-05-01

    The cell expansion process is a crucial part of generating cells on a large-scale level in a bioreactor system. Hence, it is important to set operating conditions (e.g. initial cell seeding distribution, culture medium flow rate) to an optimal level. Often, the initial cell seeding distribution factor is neglected and/or overlooked in the design of a bioreactor using conventional seeding distribution methods. This paper proposes a novel seeding distribution method that aims to maximize cell growth and minimize production time/cost. The proposed method utilizes two computational models; the first model represents cell growth patterns whereas the second model determines optimal initial cell seeding positions for adherent cell expansions. Cell growth simulation from the first model demonstrates that the model can be a representation of various cell types with known probabilities. The second model involves a combination of combinatorial optimization, Monte Carlo and concepts of the first model, and is used to design a multi-layer 2D bio-scaffold system that increases cell production efficiency in bioreactor applications. Simulation results have shown that the recommended input configurations obtained from the proposed optimization method are the most optimal configurations. The results have also illustrated the effectiveness of the proposed optimization method. The potential of the proposed seeding distribution method as a useful tool to optimize the cell expansion process in modern bioreactor system applications is highlighted. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Effect of Cell-seeded Hydroxyapatite Scaffolds on Rabbit Radius Bone Regeneration

    Science.gov (United States)

    2013-06-22

    Effect of cell-seeded hydroxyapatite scaffolds on rabbit radius bone regeneration C. R. Rathbone,1 T. Guda,1,2 B. M. Singleton,2 D. S. Oh,2,3 M. R...Library (wileyonlinelibrary.com). DOI: 10.1002/jbm.a.34834 Abstract: Highly porous hydroxyapatite (HA) scaffolds were developed as bone graft substitutes...Periodicals, Inc. J Biomed Mater Res Part A: 102A: 1458– 1466, 2014. Key Words: hydroxyapatite , rabbit radius, mesenchymal stem cells, bone, callus

  6. Shape memory activation can affect cell seeding of shape memory polymer scaffolds designed for tissue engineering and regenerative medicine.

    Science.gov (United States)

    Wang, Jing; Brasch, Megan E; Baker, Richard M; Tseng, Ling-Fang; Peña, Alexis N; Henderson, James H

    2017-08-31

    The ability of a three-dimensional scaffold to support cell seeding prior to implantation is a critical criterion for many scaffold-based tissue engineering and regenerative medicine strategies. Shape memory polymer functionality may present important new opportunities and challenges in cell seeding, but the extent to which shape memory activation can positively or negatively affect cell seeding has yet to be reported. The goal of this study was to determine whether shape memory activation can affect cell seeding. The hypothesis was that shape memory activation of porous scaffolds during cell seeding can affect both the number of cells seeded in a scaffold and the distribution (in terms of average infiltration distance) of cells following seeding. Here, we used a porous shape memory foam scaffold programmed to expand when triggered to study cell number and average cell infiltration distance following shape memory activation. We found that shape memory activation can affect both the number of cells and the average cell infiltration distance. The effect was found to be a function of rate of shape change and scaffold pore interconnectivity. Magnitude of shape change had no effect. Only reductions in cell number and infiltration distance (relative to control and benchmark) were observed. The findings suggest that strategies for tissue engineering and regenerative medicine that involve shape memory activation in the presence of a cell-containing medium in vitro or in vivo should consider how recovery rate and scaffold pore interconnectivity may ultimately impact cell seeding.

  7. Flow perfusion rate modulates cell deposition onto scaffold substrate during cell seeding.

    Science.gov (United States)

    Campos Marín, A; Brunelli, M; Lacroix, D

    2017-11-29

    The combination of perfusion bioreactors with porous scaffolds is beneficial for the transport of cells during cell seeding. Nonetheless, the fact that cells penetrate into the scaffold pores does not necessarily imply the interception of cells with scaffold substrate and cell attachment. An in vitro perfusion system was built to relate the selected flow rate with seeding efficiency. However, the in vitro model does not elucidate how the flow rate affects the transport and deposition of cells onto the scaffold. Thus, a computational model was developed mimicking in vitro conditions to identify the mechanisms that bring cells to the scaffold from suspension flow. Static and dynamic cell seeding configurations were investigated. In static seeding, cells sediment due to gravity until they encounter the first obstacle. In dynamic seeding, 12, 120 and 600 [Formula: see text] flow rates were explored under the presence or the absence of gravity. Gravity and secondary flow were found to be key factors for cell deposition. In vitro and in silico seeding efficiencies are in the same order of magnitude and follow the same trend with the effect of fluid flow; static seeding results in higher efficiency than dynamic perfusion although irregular spatial distribution of cells was found. In dynamic seeding, 120 [Formula: see text] provided the best seeding results. Nevertheless, the perfusion approach reports low efficiencies for the scaffold used in this study which leads to cell waste and low density of cells inside the scaffold. This study suggests gravity and secondary flow as the driving mechanisms for cell-scaffold deposition. In addition, the present in silico model can help to optimize hydrodynamic-based seeding strategies prior to experiments and enhance cell seeding efficiency.

  8. Autologous tendon-derived cell-seeded nanofibrous scaffolds improve rotator cuff repair in an age-dependent fashion.

    Science.gov (United States)

    Huegel, Julianne; Kim, Dong Hwa; Cirone, James M; Pardes, Adam M; Morris, Tyler R; Nuss, Courtney A; Mauck, Robert L; Soslowsky, Louis J; Kuntz, Andrew F

    2017-06-01

    Rotator cuff tendon tears are one of the most common shoulder pathologies, especially in the aging population. Due to a poor healing response and degenerative changes associated with aging, rotator cuff repair failure remains common. Although cell-based therapies to augment rotator cuff repair appear promising, it is unknown whether the success of such a therapy is age-dependent. We hypothesized that autologous cell therapy would improve tendon-to-bone healing across age groups, with autologous juvenile cells realizing the greatest benefit. In this study, juvenile, adult, and aged rats underwent bilateral supraspinatus tendon repair with augmentation of one shoulder with autologous tendon-derived cell-seeded polycaprolactone scaffolds. At 8 weeks, shoulders treated with cells in both juvenile and aged animals exhibited increased cellularity, increased collagen organization, and improved mechanical properties. No changes between treated and control limbs were seen in adult rats. These findings suggest that cell delivery during supraspinatus repair initiates earlier matrix remodeling in juvenile and aged animals. This may be due to the relative "equilibrium" of adult tendon tissue with regards to catabolic and anabolic processes, contrasted with actively growing juvenile tendons and degenerative aged tendons. This study demonstrates the potential for autologous cell-seeded scaffolds to improve repairs in both the juvenile and aged population. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1250-1257, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  9. Cell seeding chamber for bone graft substitutes

    OpenAIRE

    Hennig, J.; Schieker, Matthias; Seitz, H.

    2012-01-01

    There is an increasing demand for bone graft substitutes that are used as osteoconductive scaffolds in the treatment of bone defects and fractures. Achieving optimal bone regeneration requires initial cell seeding of the scaffolds prior to implantation. The cell seeding chamber is a closed assembly. It works like a sandglass. The position of the scaffold is between two reservoirs containing the fluid (e. g. blood). The fluid at the upper reservoir flows through the scaffold driven by gravity....

  10. Evaluation of early healing events around mesenchymal stem cell-seeded collagen-glycosaminoglycan scaffold. An experimental study in Wistar rats.

    LENUS (Irish Health Repository)

    Alhag, Mohamed

    2011-03-01

    Tissue engineering using cell-seeded biodegradable scaffolds offers a new bone regenerative approach that might circumvent many of the limitations of current therapeutic modalities. The aim of this experiment was to study the early healing events around mesenchymal stem cell-seeded collagen-glycosaminoglycan scaffolds.

  11. TRANSPLANTATION OF CRYOPRESERVED FETAL LIVER CELLS SEEDED INTO MACROPOROUS ALGINATE-GELATIN SCAFFOLDS IN RATS WITH LIVER FAILURE

    Directory of Open Access Journals (Sweden)

    D. V. Grizay

    2015-01-01

    Full Text Available Aim. To study the therapeutic potential of cryopreserved fetal liver cells seeded into macroporous alginategelatin scaffolds after implantation to omentum of rats with hepatic failure.Materials and methods.Hepatic failure was simulated by administration of 2-acetyl aminofl uorene followed partial hepatectomy. Macroporous alginate-gelatin scaffolds, seeded with allogenic cryopreserved fetal liver cells (FLCs were implanted into rat omentum. To prevent from colonization of host cells scaffolds were coated with alginate gel shell. Serum transaminase activity, levels of albumin and bilirubin as markers of hepatic function were determined during 4 weeks after failure model formation and scaffold implantation. Morphology of liver and scaffolds after implantation were examined histologically. Results. Macroporous alginate-gelatin scaffolds after implantation to healthy rats were colonized by host cells. Additional formation of alginate gel shell around scaffolds prevented the colonization. Implantation of macroporous scaffolds seeded with cryopreserved rat FLCs and additionally coated with alginate gel shell into omentum of rats with hepatic failure resulted in signifi cant improvement of hepatospecifi c parameters of the blood serum and positive changes of liver morphology. The presence of cells with their extracellular matrix within the scaffolds was confi rmed after 4 weeks post implantation.Conclusion. The data above indicate that macroporous alginate-gelatin scaffolds coated with alginate gel shell are promising cell carriers for the development of bioengineered liver equivalents.

  12. A Novel Cell Seeding Chamber for Tissue Engineering and Regenerative Medicine

    OpenAIRE

    Hennig, Jörn; Drescher, Philipp; Riedl, Christina; Schieker, Matthias; Seitz, Hermann

    2014-01-01

    There is an increasing demand for bone graft substitutes that are used as osteoconductive scaffolds in the treatment of bone defects and fractures. Achieving optimal bone regeneration requires initial cell seeding of the scaffolds prior to implantation. In order to achieve an efficient seeding of the scaffolds, a novel cell seeding chamber was developed. The cell seeding chamber is a closed assembly that works like an hourglass. The position of the scaffold is between two reservoirs containi...

  13. Cell proliferation, viability, and in vitro differentiation of equine mesenchymal stem cells seeded on bacterial cellulose hydrogel scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Favi, Pelagie M.; Benson, Roberto S. [Department of Materials Science and Engineering, College of Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Neilsen, Nancy R. [Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996 (United States); Hammonds, Ryan L. [Department of Materials Science and Engineering, College of Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Bates, Cassandra C. [Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996 (United States); Stephens, Christopher P. [Department of Surgery, Graduate School of Medicine, University of Tennessee, Knoxville, TN 37996 (United States); Center for Materials Processing, University of Tennessee, Knoxville, TN 37996 (United States); Dhar, Madhu S., E-mail: mdhar@utk.edu [Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996 (United States)

    2013-05-01

    The culture of multipotent mesenchymal stem cells on natural biopolymers holds great promise for treatments of connective tissue disorders such as osteoarthritis. The safety and performance of such therapies relies on the systematic in vitro evaluation of the developed stem cell-biomaterial constructs prior to in vivo implantation. This study evaluates bacterial cellulose (BC), a biocompatible natural polymer, as a scaffold for equine-derived bone marrow mesenchymal stem cells (EqMSCs) for application in bone and cartilage tissue engineering. An equine model was chosen due to similarities in size, load and types of joint injuries suffered by horses and humans. Lyophilized and critical point dried BC hydrogel scaffolds were characterized using scanning electron microscopy (SEM) to confirm nanostructure morphology which demonstrated that critical point drying induces fibre bundling unlike lyophilisation. EqMSCs positively expressed the undifferentiated pluripotent mesenchymal stem cell surface markers CD44 and CD90. The BC scaffolds were shown to be cytocompatible, supporting cellular adhesion and proliferation, and allowed for osteogenic and chondrogenic differentiation of EqMSCs. The cells seeded on the BC hydrogel were shown to be viable and metabolically active. These findings demonstrate that the combination of a BC hydrogel and EqMSCs are promising constructs for musculoskeletal tissue engineering applications. - Highlights: ► Critical point drying induces fibre bundling unlike lyophilisation. ► Cells positively expressed undifferentiated pluripotent stem cell markers. ► BCs were cytocompatible, supported cell adhesion, proliferation and differentiation ► Cells seeded on BC scaffolds were viable and metabolically active. ► Findings demonstrate that BC and EqMSCs are promising tissue engineered constructs.

  14. Periodontal regeneration with stem cells-seeded collagen-hydroxyapatite scaffold.

    Science.gov (United States)

    Liu, Zeping; Yin, Xing; Ye, Qingsong; He, Wulin; Ge, Mengke; Zhou, Xiaofu; Hu, Jing; Zou, Shujuan

    2016-07-01

    Re-establishing compromised periodontium to its original structure, properties and function is demanding, but also challenging, for successful orthodontic treatment. In this study, the periodontal regeneration capability of collagen-hydroxyapatite scaffolds, seeded with bone marrow stem cells, was investigated in a canine labial alveolar bone defect model. Bone marrow stem cells were isolated, expanded and characterized. Porous collagen-hydroxyapatite scaffold and cross-linked collagen-hydroxyapatite scaffold were prepared. Attachment, migration, proliferation and morphology of bone marrow stem cells, co-cultured with porous collagen-hydroxyapatite or cross-linked collagen-hydroxyapatite, were evaluated in vitro. The periodontal regeneration capability of collagen-hydroxyapatite scaffold with or without bone marrow stem cells was tested in six beagle dogs, with each dog carrying one sham-operated site as healthy control, and three labial alveolar bone defects untreated to allow natural healing, treated with bone marrow stem cells - collagen-hydroxyapatite scaffold implant or collagen-hydroxyapatite scaffold implant, respectively. Animals were euthanized at 3 and 6 months (3 animals per group) after implantation and the resected maxillary and mandibular segments were examined using micro-computed tomography scan, H&E staining, Masson's staining and histometric evaluation. Bone marrow stem cells were successfully isolated and demonstrated self-renewal and multi-potency in vitro. The porous collagen-hydroxyapatite and cross-linked collagen-hydroxyapatite had average pore sizes of 415 ± 20 µm and 203 ± 18 µm and porosity of 69 ± 0.5% and 50 ± 0.2%, respectively. The attachment, proliferation and migration of bone marrow stem cells were satisfactory on both porous collagen-hydroxyapatite and cross-linked collagen-hydroxyapatite scaffolds. Implantation of bone marrow stem cells - collagen-hydroxyapatite or collagen-hydroxyapatite scaffold in

  15. Cartilage constructs from human cord blood stem cells seeded in structurally-graded polycaprolactone scaffolds

    DEFF Research Database (Denmark)

    Munir, Samir; Koch, Thomas Gadegaard; Foldager, Casper Bindzus

    stimulation. This study demonstrated the chondrogenic potential of human cord blood-derived Multi-Lineage Progenitor Cells (MLPCs) under normoxic and hypoxic culture conditions. Second, MLPCs were seeded in a novel, structurally graded polycaprolactone (SGS-PCL) scaffold and chondrogenesis was evaluated......, safranin O), glycosaminoglycan (GAG) protein secretion, and gene expression of cartilage markers. Based on this data, MLPCs were seeded in SGS-PCL scaffolds and cultured under optimal oxygen tension for 21 days followed by chondrogenic evaluation as above. Porous SGS-PCL scaffolds were provided by i...... tensions. Histological sections revealed a cartilaginous struc¬ture as recognized by chondrocyte-like cells embedded in lacunae. Histological sections of control pellets did not stain for GAG nor show a cartilage-like morphology. Gene expression analyses (qRT-PCR), GAG protein secretion, and histology...

  16. Tissue engineering of human cartilage in bioreactors using single and composite cell-seeded scaffolds.

    Science.gov (United States)

    Mahmoudifar, Nastaran; Doran, Pauline M

    2005-08-05

    Chondrocytes isolated from human fetal epiphyseal cartilage were seeded under mixed conditions into 15-mm-diameter polyglycolic acid (PGA) scaffolds and cultured in recirculation column bioreactors to generate cartilage constructs. After seeding, the cell distributions in thick (4.75 mm) and thin (2.15 mm) PGA disks were nonuniform, with higher cell densities accumulating near the top surfaces. Composite scaffolds were developed by suturing together two thin PGA disks after seeding to manipulate the initial cell distribution before bioreactor culture. The effect of medium flow direction in the bioreactors, including periodic reversal of medium flow, was also investigated. The quality of the tissue-engineered cartilage was assessed after 5 weeks of culture in terms of the tissue wet weight, glycosaminoglycan (GAG), total collagen and collagen type II contents, histological analysis of cell, GAG and collagen distributions, and immunohistochemical analysis of collagen types I and II. Significant enhancement in construct quality was achieved using composite scaffolds compared with single PGA disks. Operation of the bioreactors with periodic medium flow reversal instead of unidirectional flow yielded further improvements in tissue weight and GAG and collagen contents with the composite scaffolds. At harvest, the constructs contained GAG concentrations similar to those measured in ex vivo human adult articular cartilage; however, total collagen and collagen type II levels were substantially lower than those in adult tissue. This study demonstrates that the location of regions of high cell density in the scaffold coupled with application of dynamic bioreactor operating conditions has a significant influence on the quality of tissue-engineered cartilage. Copyright 2005 Wiley Periodicals, Inc.

  17. The healing of bony defects by cell-free collagen-based scaffolds compared to stem cell-seeded tissue engineered constructs.

    LENUS (Irish Health Repository)

    Lyons, Frank G

    2010-12-01

    One of the key challenges in tissue engineering is to understand the host response to scaffolds and engineered constructs. We present a study in which two collagen-based scaffolds developed for bone repair: a collagen-glycosaminoglycan (CG) and biomimetic collagen-calcium phosphate (CCP) scaffold, are evaluated in rat cranial defects, both cell-free and when cultured with MSCs prior to implantation. The results demonstrate that both cell-free scaffolds showed excellent healing relative to the empty defect controls and somewhat surprisingly, to the tissue engineered (MSC-seeded) constructs. Immunological analysis of the healing response showed higher M1 macrophage activity in the cell-seeded scaffolds. However, when the M2 macrophage response was analysed, both groups (MSC-seeded and non-seeded scaffolds) showed significant activity of these cells which are associated with an immunomodulatory and tissue remodelling response. Interestingly, the location of this response was confined to the construct periphery, where a capsule had formed, in the MSC-seeded groups as opposed to areas of new bone formation in the non-seeded groups. This suggests that matrix deposited by MSCs during in vitro culture may adversely affect healing by acting as a barrier to macrophage-led remodelling when implanted in vivo. This study thus improves our understanding of host response in bone tissue engineering.

  18. Cell-seeded alginate hydrogel scaffolds promote directed linear axonal regeneration in the injured rat spinal cord.

    Science.gov (United States)

    Günther, Manuel Ingo; Weidner, Norbert; Müller, Rainer; Blesch, Armin

    2015-11-01

    Despite recent progress in enhancing axonal growth in the injured spinal cord, the guidance of regenerating axons across an extended lesion site remains a major challenge. To determine whether regenerating axons can be guided in rostrocaudal direction, we implanted 2mm long alginate-based anisotropic capillary hydrogels seeded with bone marrow stromal cells (BMSCs) expressing brain-derived neurotrophic factor (BDNF) or green fluorescent protein (GFP) as control into a C5 hemisection lesion of the rat spinal cord. Four weeks post-lesion, numerous BMSCs survived inside the scaffold channels, accompanied by macrophages, Schwann cells and blood vessels. Quantification of axons growing into channels demonstrated 3-4 times more axons in hydrogels seeded with BMSCs expressing BDNF (BMSC-BDNF) compared to control cells. The number of anterogradely traced axons extending through the entire length of the scaffold was also significantly higher in scaffolds with BMSC-BDNF. Increasing the channel diameters from 41μm to 64μm did not lead to significant differences in the number of regenerating axons. Lesions filled with BMSC-BDNF without hydrogels exhibited a random axon orientation, whereas axons were oriented parallel to the hydrogel channel walls. Thus, alginate-based scaffolds with an anisotropic capillary structure are able to physically guide regenerating axons. After injury, regenerating axons have to extend across the lesion site in the injured spinal cord to reestablish lost neuronal connections. While cell grafting and growth factor delivery can promote growth of injured axons, without proper guidance, axons rarely extend across the lesion site. Here, we show that alginate biomaterials with linear channels that are filled with cells expressing the growth-promoting neurotrophin BDNF promote linear axon extension throughout the channels after transplantation to the injured rat spinal cord. Animals that received the same cells but no alginate guidance structure did not

  19. Peculiarities of Cell Seeding on Polylactic Acid-Based Scaffolds Fabricated Using Electrospinning and Solution Blow Spinning Technologies.

    Science.gov (United States)

    Afanasiev, S A; Muslimova, E F; Nashchekina, Yu A; Nikonov, P O; Rogovskaya, Yu V; Bolbasov, E N; Tverdokhlebov, S I

    2017-12-01

    We studied the possibility of seeding bone marrow-derived stromal cells onto polylactic acid-based scaffolds fabricated by electrospinning and solution blow spinning technologies. The cells were applied to the scaffolds by dynamic seeding and scaffolds were then cultured in Petri dishes in culture medium for 3 days. Cell migration to the Petri dish surface was noted only for scaffolds fabricated by electrospinning technology, but DAPI staining confirmed the presence of cells in both scaffolds. The mean number of cells in scaffolds fabricated by electrospinning and solution blow spinning was 56±9 and 81±6, respectively. The scaffold fabricated by solution blow spinning was more effectively (p<0.05) colonized by cells due to its more optimal spatial structure.

  20. Hypoxia Enhances Chondrogenic Differentiation of Human Cord Blood Multilineage Progenitor Cells Seeded on a Novel Scaffold of Freeze Dried Polycaprolactone

    DEFF Research Database (Denmark)

    Munir, Samir; Figueroa, Ryan Jude; Koch, Thomas Gadegaard

    pattern in relation to the oxygen tension. Induced scaffolds showed cellularity and matrix deposition superficially and to adjacent scaffold fibres. Induced MLPCs pellets and scaffolds had significantly higher gene expression of aggrecan, SOX9, CD-RAP, collagen I, II and X compared with controls. Ratios...... for chondrogenic differentiation. According to recent studies combined three-dimensional (3D) culturing in low oxygen tension enhances differentiation. Aim This study evaluates the chondrogenic potential of MLPC culturing in a novel 3D-scaffold of polycaprolactone and 5% O2. Materials and methods MLPCs were...

  1. A Novel Cell Seeding Chamber for Tissue Engineering and Regenerative Medicine

    Directory of Open Access Journals (Sweden)

    Jörn Hennig

    2014-04-01

    Full Text Available There is an increasing demand for bone graft substitutes that are used as osteoconductive scaffolds in the treatment of bone defects and fractures. Achieving optimal bone regeneration requires initial cell seeding of the scaffolds prior to implantation. In order to achieve an efficient seeding of the scaffolds, a novel cell seeding chamber was developed. The cell seeding chamber is a closed assembly that works like an hourglass. The position of the scaffold is between two reservoirs containing the cell suspension (e.g., blood or autologous bone marrow. The cell suspension at the upper reservoir flows through the scaffold by gravitational force. The cell suspension is collected at the lower reservoir. When the upper reservoir is empty the whole assembly is turned and the process starts again. In this study, a new compact cell seeding chamber for initial cell seeding has been developed that can be used in situ. The basic functionality of the cell seeding chamber was demonstrated with a blood substitute.

  2. Dielectric spectroscopy for monitoring human pancreatic islet differentiation within cell-seeded scaffolds in a perfusion bioreactor system.

    Science.gov (United States)

    Daoud, J; Heileman, K; Shapka, S; Rosenberg, L; Tabrizian, M

    2015-09-21

    The long-term in vitro culture and differentiation of human pancreatic islets is still hindered by the inability to emulate a suitable microenvironment mimicking physiological extracellular matrix (ECM) support and nutrient/oxygen perfusion. This is further amplified by the current lack of a non-invasive and rapid monitoring system to readily evaluate cellular processes. In this study, we realized a viable method for non-invasively monitoring isolated human pancreatic islets in vitro. Islets are induced to dedifferentiate into proliferative duct-like structures (DLS) in preparation for potential and subsequent re-differentiation into functional islet-like structures (ILS) in a process reminiscent of islet regeneration strategies. This long-term in vitro process is conducted within a three-dimensional microenvironment involving islets embedded in an optimized ECM gel supported by microfabricated three-dimensional scaffolds. The islet-scaffold is then housed and continuously perfused within chambers of a bioreactor platform. The process in its entirety is monitored through dielectric spectroscopy measurements, yielding an accurate representation of cellular morphology, functionality, and volume fraction. This non-invasive and real-time monitoring tool can be further manipulated to elucidate important information about the optimized cellular microenvironment required for maintaining long-term culture and achieve efficient differentiation for islet regeneration.

  3. Autologous Marrow-Derived Stem Cell-Seeded Gene-Supplemented Collagen Scaffolds for Spinal Cord Regeneration as a Treatment for Paralysis

    Science.gov (United States)

    2009-11-01

    occurring crosslinking agent (genipin) in a canine model. J Thorac Cardiovasc Surg 2001;122(6):1208-18. 7. Chang Y, Tsai CC, Liang HC, Sung HW. In vivo... canine articular chondrocytes increased with the HA content of the scaffolds. The greatest amount of chondrogenesis after two weeks was found in the...seeded scaffolds Chondrocytes were isolated by enzymatic digestion of articular cartilage from the knee (stifle) joint of an adult dog. The cartilage

  4. The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds.

    Science.gov (United States)

    Van Bael, S; Chai, Y C; Truscello, S; Moesen, M; Kerckhofs, G; Van Oosterwyck, H; Kruth, J-P; Schrooten, J

    2012-07-01

    The specific aim of this study was to gain insight into the influence of scaffold pore size, pore shape and permeability on the in vitro proliferation and differentiation of three-dimensional (3-D) human periosteum-derived cell (hPDC) cultures. Selective laser melting (SLM) was used to produce six distinct designed geometries of Ti6Al4V scaffolds in three different pore shapes (triangular, hexagonal and rectangular) and two different pore sizes (500 μm and 1000 μm). All scaffolds were characterized by means of two-dimensional optical microscopy, 3-D microfocus X-ray computed tomography (micro-CT) image analysis, mechanical compression testing and computational fluid dynamical analysis. The results showed that SLM was capable of producing Ti6Al4V scaffolds with a broad range of morphological and mechanical properties. The in vitro study showed that scaffolds with a lower permeability gave rise to a significantly higher number of cells attached to the scaffolds after seeding. Qualitative analysis by means of live/dead staining and scanning electron micrography showed a circular cell growth pattern which was independent of the pore size and shape. This resulted in pore occlusion which was found to be the highest on scaffolds with 500 μm hexagonal pores. Interestingly, pore size but not pore shape was found to significantly influence the growth of hPDC on the scaffolds, whereas the differentiation of hPDC was dependent on both pore shape and pore size. The results showed that, for SLM-produced Ti6Al4V scaffolds with specific morphological and mechanical properties, a functional graded scaffold will contribute to enhanced cell seeding and at the same time can maintain nutrient transport throughout the whole scaffold during in vitro culturing by avoiding pore occlusion. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Development of a cell-seeded modified small intestinal submucosa for urethroplasty

    Directory of Open Access Journals (Sweden)

    Long Zhang

    2016-03-01

    Conclusions: A modified 3D porous SIS scaffold seeded with UC and treated with PAA produces better urethroplasty results than cell-seeded untreated SIS scaffolds, or unseeded PAA treated SIS scaffolds.

  6. Comparative analysis of adherence, viability, proliferation and morphology of umbilical cord tissue-derived mesenchymal stem cells seeded on different titanium-coated expanded polytetrafluoroethylene scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Hollweck, Trixi; Marschmann, Michaela; Hartmann, Isabel; Akra, Bassil; Meiser, Bruno; Reichart, Bruno; Eissner, Guenther [Department of Cardiac Surgery, University of Munich, Marchioninistrasse 15, 81377 Munich (Germany); Eblenkamp, Markus; Wintermantel, Erich, E-mail: Guenther.Eissner@med.uni-muenchen.d [Chair of Medical Engineering, Technische Universitaet Muenchen, Boltzmannstrasse 15, 85748 Garching (Germany)

    2010-12-15

    Umbilical cord tissue comprises an attractive new source for mesenchymal stem cells. Umbilical cord tissue-derived mesenchymal stem cells (UCMSC) exhibit self-renewal, multipotency and immunological naivity, and they can be obtained without medical intervention. The transfer of UCMSC to the ischemic region of the heart may have a favorable impact on tissue regeneration. Benefit from typical cell delivery by injection to the infarcted area is often limited due to poor cell retention and survival. Another route of administration is to use populated scaffolds implanted into the infarcted zone. In this paper, the seeding efficiency of UCMSC on uncoated and titanium-coated expanded polytetrafluoroethylene (ePTFE) scaffolds with different surface structures was determined. Dualmesh (registered) (DM) offers a corduroy-like surface in contrast to the comparatively planar surface of cardiovascular patch (CVP). The investigation of adherence, viability and proliferation of UCMSC demonstrates that titanium-coated scaffolds are superior to uncoated scaffolds, independent of the surface structure. Microscopic images reveal spherical UCMSC seeded on uncoated scaffolds. In contrast, UCMSC on titanium-coated scaffolds display their characteristic spindle-shaped morphology and a homogeneous coverage of CVP. In summary, titanium coating of clinically approved CVP enhances the retention of UCMSC and thus offers a potential cell delivery system for the repair of the damaged myocardium.

  7. Differentiation of adipose stem cells seeded towards annulus fibrosus cells on a designed poly(trimethylene carbonate) scaffold prepared by stereolithography

    NARCIS (Netherlands)

    Blanquer, Sebastien; Gebraad, Arjen; Miettinen, Susanna; Poot, Andreas A.; Grijpma, Dirk W.; Haimi, Suvi

    2016-01-01

    Cell-based therapies could potentially restore the biomechanical function and enhance the self-repair capacity of annulus fibrosus (AF) tissue. However, choosing a suitable cell source and scaffold design are still key challenges. In this study, we assessed the in vitro ability of human adipose stem

  8. An open source image processing method to quantitatively assess tissue growth after non-invasive magnetic resonance imaging in bone marrow stromal cell seeded 3D plymeric scaffolds

    NARCIS (Netherlands)

    Leferink, Anne Marijke; Fratila, R.M.; Koenrades, Maaike Anne; van Blitterswijk, Clemens; Velders, Aldrik; Moroni, Lorenzo

    2014-01-01

    Monitoring extracellular matrix (ECM) components is one of the key methods used to determine tissue quality in three-dimensional (3D) scaffolds for regenerative medicine and clinical purposes. This is even more important when multipotent human bone marrow stromal cells (hMSCs) are used, as it could

  9. Immersed Boundary Models for Quantifying Flow-Induced Mechanical Stimuli on Stem Cells Seeded on 3D Scaffolds in Perfusion Bioreactors.

    Directory of Open Access Journals (Sweden)

    Yann Guyot

    2016-09-01

    Full Text Available Perfusion bioreactors regulate flow conditions in order to provide cells with oxygen, nutrients and flow-associated mechanical stimuli. Locally, these flow conditions can vary depending on the scaffold geometry, cellular confluency and amount of extra cellular matrix deposition. In this study, a novel application of the immersed boundary method was introduced in order to represent a detailed deformable cell attached to a 3D scaffold inside a perfusion bioreactor and exposed to microscopic flow. The immersed boundary model permits the prediction of mechanical effects of the local flow conditions on the cell. Incorporating stiffness values measured with atomic force microscopy and micro-flow boundary conditions obtained from computational fluid dynamics simulations on the entire scaffold, we compared cell deformation, cortical tension, normal and shear pressure between different cell shapes and locations. We observed a large effect of the precise cell location on the local shear stress and we predicted flow-induced cortical tensions in the order of 5 pN/μm, at the lower end of the range reported in literature. The proposed method provides an interesting tool to study perfusion bioreactors processes down to the level of the individual cell's micro-environment, which can further aid in the achievement of robust bioprocess control for regenerative medicine applications.

  10. Hypoxia pretreatment of bone marrow-derived mesenchymal stem cells seeded in a collagen-chitosan sponge scaffold promotes skin wound healing in diabetic rats with hindlimb ischemia.

    Science.gov (United States)

    Tong, Chuan; Hao, Haojie; Xia, Lei; Liu, Jiejie; Ti, Dongdong; Dong, Liang; Hou, Qian; Song, Haijing; Liu, Huiling; Zhao, Yali; Fu, Xiaobing; Han, Weidong

    2016-01-01

    Bone marrow-derived mesenchymal stem cells (BM-MSCs) have properties that make them promising for the treatment of chronic nonhealing wounds. The major challenge is ensuring an efficient, safe, and painless delivery of BM-MSCs. Tissue-engineered skin substitutes have considerable benefits in skin damage resulting from chronic nonhealing wounds. Here, we have constructed a three-dimensional biomimetic scaffold known as collagen-chitosan sponge scaffolds (CCSS) using the cross-linking and freeze-drying method. Scanning electron microscopy images showed that CCSS had an interconnected network pore configuration about 100 μm and exhibited a suitable swelling ratio for maintaining morphological stability and appropriate biodegradability to improve biostability using swelling and degradation assays. Furthermore, BM-MSCs were seeded in CCSS using the two-step seeding method to construct tissue-engineered skin substitutes. In addition, in this three-dimensional biomimetic CCSS, BM-MSCs secreted their own collagen and maintain favorable survival ability and viability. Importantly, BM-MSCs exhibited a significant upregulated expression of proangiogenesis factors, including HIF-1α, VEGF, and PDGF following hypoxia pretreatment. In vivo, hypoxia pretreatment of the skin substitute observably accelerated wound closure via the reduction of inflammation and enhanced angiogenesis in diabetic rats with hindlimb ischemia. Thus, hypoxia pretreatment of the skin substitutes can serve as ideal bioengineering skin substitutes to promote optimal diabetic skin wound healing. © 2015 by the Wound Healing Society.

  11. Key role of the expression of bone morphogenetic proteins in increasing the osteogenic activity of osteoblast-like cells exposed to shock waves and seeded on bioactive glass-ceramic scaffolds for bone tissue engineering.

    Science.gov (United States)

    Muzio, Giuliana; Martinasso, Germana; Baino, Francesco; Frairia, Roberto; Vitale-Brovarone, Chiara; Canuto, Rosa A

    2014-11-01

    In this work, the role of shock wave-induced increase of bone morphogenetic proteins in modulating the osteogenic properties of osteoblast-like cells seeded on a bioactive scaffold was investigated using gremlin as a bone morphogenetic protein antagonist. Bone-like glass-ceramic scaffolds, based on a silicate experimental bioactive glass developed at the Politecnico di Torino, were produced by the sponge replication method and used as porous substrates for cell culture. Human MG-63 cells, exposed to shock waves and seeded on the scaffolds, were treated with gremlin every two days and analysed after 20 days for the expression of osteoblast differentiation markers. Shock waves have been shown to induce osteogenic activity mediated by increased expression of alkaline phosphatase, osteocalcin, type I collagen, BMP-4 and BMP-7. Cells exposed to shock waves plus gremlin showed increased growth in comparison with cells treated with shock waves alone and, conversely, mRNA contents of alkaline phosphatase and osteocalcin were significantly lower. Therefore, the shock wave-mediated increased expression of bone morphogenetic protein in MG-63 cells seeded on the scaffolds is essential in improving osteogenic activity; blocking bone morphogenetic protein via gremlin completely prevents the increase of alkaline phosphatase and osteocalcin. The results confirmed that the combination of glass-ceramic scaffolds and shock waves exposure could be used to significantly improve osteogenesis opening new perspectives for bone regenerative medicine. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  12. Cell-nanofiber-based Cartilage Tissue Engineering using Improved Cell Seeding, Growth Factor, and Bioreactor Technologies

    OpenAIRE

    LI, WAN-JU; JIANG, YI JEN; TUAN, ROCKY S.

    2008-01-01

    Biodegradable nanofibrous scaffolds serving as an extracellular matrix substitute have been shown to be applicable for cartilage tissue engineering. However, a key challenge in using nanofibrous scaffolds for tissue engineering is that the small pore size limits the infiltration of cells, which may result in uneven cell distribution throughout the scaffold. This study describes an effective method of chondrocyte loading into nanofibrous scaffolds, which combines cell seeding, mixing, and cent...

  13. Mechanical properties of cross-linked collagen meshes after human adipose derived stromal cells seeding.

    Science.gov (United States)

    Ochoa, Ignacio; Peña, Estefania; Andreu, Enrique J; Pérez-Ilzarbe, Maitane; Robles, Jose E; Alcaine, Clara; López, Tania; Prósper, Felipe; Doblaré, Manuel

    2011-02-01

    The main goal of this study was to evaluate the potential of collagen meshes derived from porcine dermis as scaffolds for repairing pelvic organ prolapses. Mechanical properties of collagen meshes with different cross-linking percentages before and after Adipose Derived Stromal Cells (ADSC) seeding were studied as well as the cell-scaffold interaction. Uniaxial tensile tests of the collagen meshes with three different cross-linking percentages (full-, partial-, and noncross-linked) were carried out along orthogonal directions. Their mechanical properties were studied with the same tests before and after seeding with human derived adipose stem cells (ADSC) after 1 and 7 days. Histological analyses were performed to determine adhesion and proliferation of ADSC. Significant differences in mechanical properties of the unseeded meshes were observed between each orthogonal direction independently of the cross-linking percentage. A better cell adhesion rate was observed in the cross-linked meshes. An increase in the mechanical properties after cell seeding was observed with a direct relation with the degree of cross-linking. All meshes analyzed showed a marked anisotropy that should be taken into account during the surgical procedure. The cross-linking treatment increased cell adhesion and the mechanical properties of the collagen meshes after seeding. These results suggest that the mechanical properties of this type of collagen mesh could be useful as scaffolds for repair of pelvic organ prolapse. 2010 Wiley Periodicals, Inc.

  14. Multilayer cell-seeded polymer nanofiber constructs for soft-tissue reconstruction.

    Science.gov (United States)

    Barker, Daniel A; Bowers, Daniel T; Hughley, Brian; Chance, Elizabeth W; Klembczyk, Kevin J; Brayman, Kenneth L; Park, Stephen S; Botchwey, Edward A

    2013-09-01

    Cell seeding throughout the thickness of a nanofiber construct allows for patient-specific implant alternatives with long-lasting effects, earlier integration, and reduced inflammation when compared with traditional implants. Cell seeding may improve implant integration with host tissue; however, the effect of cell seeding on thick nanofiber constructs has not been studied. To use a novel cell-preseeded nanofiber tissue engineering technique to create a 3-dimensional biocompatible implant alternative to decellularized extracellular matrix. Animal study with mammalian cell culture to study tissue engineered scaffolds. Academic research laboratory. Thirty-six Sprague-Dawley rats. The rats each received 4 implant types. The grafts included rat primary (enhanced green fluorescent protein-positive [eGFP+]) fibroblast-seeded polycaprolactone (PCL)/collagen nanofiber scaffold, PCL/collagen cell-free nanofiber scaffold, acellular human cadaveric dermis (AlloDerm), and acellular porcine dermis (ENDURAGen). Rats were monitored postoperatively and received enrofloxacin in the drinking water for 4 days prophylactically and buprenorphine (0.2-0.5 mg/kg administered subcutaneously twice a day postoperatively for pain for 48 hours). The viability of NIH/3T3 fibroblasts cultured on PCL electrospun nanofibers was evaluated using fluorescence microscopy. Soft-tissue remodeling was examined histologically and with novel ex vivo volume determinations of implants using micro-computed tomography of cell-seeded implants relative to nanofibers without cells and commonly used dermal grafts of porcine and human origin (ENDURAGen and AlloDerm, respectively). The fate and distribution of eGFP+ seeded donor fibroblasts were assessed using immunohistochemistry. Fibroblasts migrated across nanofiber layers within 12 hours and remained viable on a single layer for up to 14 days. Scanning electron microscopy confirmed a nanoscale structure with a mean (SD) diameter of 158 (72) nm. Low extrusion

  15. Analysis of OPLA scaffolds for bone engineering constructs using human jaw periosteal cells.

    Science.gov (United States)

    Alexander, Dorothea; Hoffmann, Jürgen; Munz, Adelheid; Friedrich, Björn; Geis-Gerstorfer, Jürgen; Reinert, Siegmar

    2008-03-01

    For bone regeneration constructs using human jaw periosteal cells (JPC) the extent of osteoinductive ability of different three-dimensional scaffolds is not yet established. We analyzed open-cell polylactic acid (OPLA) scaffolds for their suitability as bone engineering constructs using human JPC. Cell adhesion and spreading was visualized on the surface of scaffolds by scanning electron microscopy. JPC proliferation within OPLA scaffolds was compared with proliferation within collagen and calcium phosphate scaffolds. We found a significant increase of proliferation rates in OPLA scaffolds versus Coll/CaP scaffolds at three time points. Live-measurements of oxygen consumption within the cell-seeded scaffolds indicate that the in vitro culturing time should not exceed 12-15 days. OPLA scaffolds, which were turned out to be the most beneficial for JPC growth, were chosen for osteogenic differentiation experiments with or without BMP-2. Gene expression analyses demonstrated induction of several osteogenic genes (alkaline phosphatase, osterix, Runx-2 and insulin-like growth factor) within the 3D-scaffolds after 12 days of in vitro culturing. Element analysis by EDX spectrometry of arising nodules during osteogenesis demonstrated that JPC growing within OPLA scaffolds are able to form CaP particles. We conclude that OPLA scaffolds provide a promising environment for bone substitutes using human JPC.

  16. Mesenchymal stem cells seeded on cross-linked and noncross-linked acellular porcine dermal scaffolds for long-term full-thickness hernia repair in a small animal model.

    Science.gov (United States)

    Mestak, Ondrej; Matouskova, Eva; Spurkova, Zuzana; Benkova, Kamila; Vesely, Pavel; Mestak, Jan; Molitor, Martin; Pombinho, Antonio; Sukop, Andrej

    2014-07-01

    Biological meshes are biomaterials consisting of extracellular matrix that are used in surgery particularly for hernia treatment, thoracic wall reconstruction, or silicone implant-based breast reconstruction. We hypothesized that combination of extracellular matrices with autologous mesenchymal stem cells used for hernia repair would result in increased vascularization and increased strength of incorporation. We cultured autologous adipose-derived stem cells harvested from the inguinal region of Wistar rats on cross-linked and noncross-linked porcine extracellular matrices. In 24 Wistar rats, a standardized 2×4 cm fascial defect was created and repaired with either cross-linked or noncross-linked grafts enriched with stem cells. Non-MSC-enriched grafts were used as controls. The rats were sacrificed at 3 months of age. The specimens were examined for the strength of incorporation, vascularization, cell invasion, foreign body reaction, and capsule formation. Both materials showed cellular ingrowth and neovascularization. Comparison of both tested groups with the controls showed no significant differences in the capsule thickness, foreign body reaction, cellularization, or vascularization. The strength of incorporation of the stem cell-enriched cross-linked extracellular matrix specimens was higher than in acellular specimens, but this result was statistically nonsignificant. In the noncross-linked extracellular matrix, the strength of incorporation was significantly higher in the stem cell group than in the acellular group. Seeding of biological meshes with stem cells does not significantly contribute to their increased vascularization. In cross-linked materials, it does not ensure increased strength of incorporation, in contrast to noncross-linked materials. Owing to the fact that isolation and seeding of stem cells is a very complex procedure, we do not see sufficient benefits for its use in the clinical setting. Copyright © 2013 International Center for

  17. Penile urethra replacement with autologous cell-seeded tubularized collagen matrices.

    Science.gov (United States)

    De Filippo, Roger E; Kornitzer, Benjamin S; Yoo, James J; Atala, Anthony

    2015-03-01

    Acellular collagen matrices have been used as an onlay material for urethral reconstruction. However, cell-seeded matrices have been recommended for tubularized urethral repairs. In this study we investigated whether long segmental penile urethral replacement using autologous cell-seeded tubularized collagen-based matrix is feasible. Autologous bladder epithelial and smooth muscle cells from nine male rabbits were grown and seeded onto preconfigured tubular matrices constructed from decellularized bladder matrices obtained from lamina propria. The entire anterior penile urethra was resected in 15 rabbits. Urethroplasties were performed with tubularized matrices seeded with cells in nine animals, and with matrices without cells in six. Serial urethrograms were performed at 1, 3 and 6 months. Retrieved urethral tissues were analysed using histo- and immunohistochemistry, western blot analyses and organ bath studies. The urethrograms showed that animals implanted with cell-seeded matrices maintained a wide urethral calibre without strictures. In contrast, the urethras with unseeded scaffolds collapsed and developed strictures. Histologically, a transitional cell layer surrounded by muscle was observed in the cell-seeded constructs. The epithelial and smooth muscle phenotypes were confirmed with AE1/AE3 and α-actin antibodies. Organ bath studies of the neourethras confirmed both physiological contractility and the presence of neurotransmitters. Tubularized collagen matrices seeded with autologous cells can be used successfully for long segmental penile urethra replacement, while implantation of tubularized collagen matrices without cells leads to poor tissue development and stricture formation. The cell-seeded collagen matrices are able to form new tissue, which is histologically similar to native urethra. Copyright © 2012 John Wiley & Sons, Ltd.

  18. Interphotoreceptor matrix-poly(ϵ-caprolactone composite scaffolds for human photoreceptor differentiation

    Directory of Open Access Journals (Sweden)

    Petr Baranov

    2014-10-01

    Full Text Available Tissue engineering has been widely applied in different areas of regenerative medicine, including retinal regeneration. Typically, artificial biopolymers require additional surface modification (e.g. with arginine–glycine–aspartate-containing peptides or adsorption of protein, such as fibronectin, before cell seeding. Here, we describe an alternative approach for scaffold design: the manufacture of hybrid interphotoreceptor matrix-poly (ϵ-caprolactone scaffolds, in which the insoluble extracellular matrix of the retina is incorporated into a biodegradable polymer well suited for transplantation. The incorporation of interphotoreceptor matrix did not change the topography of polycaprolactone film, although it led to a slight increase in hydrophilic properties (water contact angle measurements. This hybrid scaffold provided sufficient stimuli for human retinal progenitor cell adhesion and inhibited proliferation, leading to differentiation toward photoreceptor cells (expression of Crx, Nrl, rhodopsin, ROM1. This scaffold may be used for transplantation of retinal progenitor cells and their progeny to treat retinal degenerative disorders.

  19. Universal method for protein bioconjugation with nanocellulose scaffolds for increased cell adhesion.

    Science.gov (United States)

    Kuzmenko, Volodymyr; Sämfors, Sanna; Hägg, Daniel; Gatenholm, Paul

    2013-12-01

    Bacterial nanocellulose (BNC) is an emerging biomaterial since it is biocompatible, integrates well with host tissue and can be biosynthesized in desired architecture. However, being a hydrogel, it exhibits low affinity for cell attachment, which is crucial for the cellular fate process. To increase cell attachment, the surface of BNC scaffolds was modified with two proteins, fibronectin and collagen type I, using an effective bioconjugation method applying 1-cyano-4-dimethylaminopyridinium (CDAP) tetrafluoroborate as the intermediate catalytic agent. The effect of CDAP treatment on cell adhesion to the BNC surface is shown for human umbilical vein endothelial cells and the mouse mesenchymal stem cell line C3H10T1/2. In both cases, the surface modification increased the number of cells attached to the surfaces. In addition, the morphology of the cells indicated more healthy and viable cells. CDAP activation of bacterial nanocellulose is shown to be a convenient method to conjugate extracellular proteins to the scaffold surfaces. CDAP treatment can be performed in a short period of time in an aqueous environment under heterogeneous and mild conditions preserving the nanofibrillar network of cellulose. © 2013.

  20. In vitro evaluation of marrow clot enrichment on microstructure decoration, cell delivery and proliferation of porous titanium scaffolds by selective laser melting three-dimensional printing.

    Science.gov (United States)

    Yao, Qing-Qiang; Hu, Jun; Zheng, Peng-Fei; Li, Jia-Yi; Zhou, Jin; Tian, Shu-Chang; Wei, Bo; Xu, Yan; Wang, Li-Ming

    2017-10-30

    Titanium alloy is a clinically approved material for bone substitution. Although three-dimensional printing (3DP) fabrication technique can build up porous Ti scaffolds with the designed shape and microstructure, the biomechanical performance of 3DP Ti scaffolds still need to be improved to increase the reliability of osseointegration capacity. To address this issue, rabbit bone marrow clot (MC) is used to modify 3DP Ti scaffolds by stem cell delivery and microenvironment decoration inside the pores of these scaffolds. Moreover, 3DP Ti scaffolds were built up using selective laser melting, and 3DP MC-Ti scaffolds were constructed through the enrichment of MC with Ti scaffolds in vitro. Results demonstrated that the obtained 3DP Ti scaffolds in current study has an average modulus of elasticity (ME) at 1294.48 MPa with average yield strength of 33.154 MPa. For MC-Ti scaffolds, MC enrichment obstructs the pores of 3DP scaffolds due to the large amount of fibrin and erythrocytes and leads to a decrease in ratio of live cells at 1-week culture. Cell proliferation and osteogenic differentiation performance of MC-Ti scaffolds were promoted with porous recanalization in the later 3 weeks. After 2 weeks in vitro culture, fivefold of cell number in MC-Ti scaffolds were observed than bone marrow-derived mesenchymal stem cell-seeded Ti scaffolds. Compared to Ti scaffolds, fourfold of deoxyribonucleic acid content, type I collagen-α1, osteocalcin, and alkaline phosphatase expression in MC-Ti scaffolds were observed after 4 weeks in vitro culture. Results suggested that the combination with MC is a highly efficient method that improves the biological performance of Ti scaffolds. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  1. In vivo evaluation of a neural stem cell-seeded prosthesis

    Science.gov (United States)

    Purcell, E. K.; Seymour, J. P.; Yandamuri, S.; Kipke, D. R.

    2009-04-01

    Neural prosthetics capable of recording or stimulating neuronal activity may restore function for patients with motor and sensory deficits resulting from injury or degenerative disease. However, overcoming inconsistent recording quality and stability in chronic applications remains a significant challenge. A likely reason for this is the reactive tissue response to the devices following implantation into the brain, which is characterized by neuronal loss and glial encapsulation. We have developed a neural stem cell-seeded probe to facilitate integration of a synthetic prosthesis with the surrounding brain tissue. We fabricated parylene devices that include an open well seeded with neural stem cells encapsulated in an alginate hydrogel scaffold. Quantitative and qualitative data describing the distribution of neuronal, glial, and progenitor cells surrounding seeded and control devices are reported over four time points spanning 3 months. Neuronal loss and glial encapsulation associated with cell-seeded probes were mitigated during the initial week of implantation and exacerbated by 6 weeks post-insertion compared to control conditions. We hypothesize that graft cells secrete neuroprotective and neurotrophic factors that effect the desired healing response early in the study, with subsequent cell death and scaffold degradation accounting for a reversal of these results later. Applications of this biohybrid technology include future long-term neural recording and sensing studies.

  2. In vitro culture increases mechanical stability of human tissue engineered cartilage constructs by prevention of microscale scaffold buckling.

    Science.gov (United States)

    Middendorf, Jill M; Shortkroff, Sonya; Dugopolski, Caroline; Kennedy, Stephen; Siemiatkoski, Joseph; Bartell, Lena R; Cohen, Itai; Bonassar, Lawrence J

    2017-09-14

    Many studies have measured the global compressive properties of tissue engineered (TE) cartilage grown on porous scaffolds. Such scaffolds are known to exhibit strain softening due to local buckling under loading. As matrix is deposited onto these scaffolds, the global compressive properties increase. However the relationship between the amount and distribution of matrix in the scaffold and local buckling is unknown. To address this knowledge gap, we studied how local strain and construct buckling in human TE constructs changes over culture times and GAG content. Confocal elastography techniques and digital image correlation (DIC) were used to measure and record buckling modes and local strains. Receiver operating characteristic (ROC) curves were used to quantify construct buckling. The results from the ROC analysis were placed into Kaplan-Meier survival function curves to establish the probability that any point in a construct buckled. These analysis techniques revealed the presence of buckling at early time points, but bending at later time points. An inverse correlation was observed between the probability of buckling and the total GAG content of each construct. This data suggests that increased GAG content prevents the onset of construct buckling and improves the microscale compressive tissue properties. This increase in GAG deposition leads to enhanced global compressive properties by prevention of microscale buckling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Increased lipid accumulation and adipogenic gene expression of adipocytes in 3D bioprinted nanocellulose scaffolds.

    Science.gov (United States)

    Henriksson, I; Gatenholm, P; Hägg, D A

    2017-02-21

    Compared to standard 2D culture systems, new methods for 3D cell culture of adipocytes could provide more physiologically accurate data and a deeper understanding of metabolic diseases such as diabetes. By resuspending living cells in a bioink of nanocellulose and hyaluronic acid, we were able to print 3D scaffolds with uniform cell distribution. After one week in culture, cell viability was 95%, and after two weeks the cells displayed a more mature phenotype with larger lipid droplets than standard 2D cultured cells. Unlike cells in 2D culture, the 3D bioprinted cells did not detach upon lipid accumulation. After two weeks, the gene expression of the adipogenic marker genes PPARγ and FABP4 was increased 2.0- and 2.2-fold, respectively, for cells in 3D bioprinted constructs compared with 2D cultured cells. Our 3D bioprinted culture system produces better adipogenic differentiation of mesenchymal stem cells and a more mature cell phenotype than conventional 2D culture systems.

  4. Repair of Avascular Meniscus Tears with Electrospun Collagen Scaffolds Seeded with Human Cells

    Science.gov (United States)

    Baek, Jihye; Sovani, Sujata; Glembotski, Nicholas E.; Du, Jiang; Jin, Sungho; Grogan, Shawn P.

    2016-01-01

    The self-healing capacity of an injured meniscus is limited to the vascularized regions and is especially challenging in the inner avascular regions. As such, we investigated the use of human meniscus cell-seeded electrospun (ES) collagen type I scaffolds to produce meniscal tissue and explored whether these cell-seeded scaffolds can be implanted to repair defects created in meniscal avascular tissue explants. Human meniscal cells (derived from vascular and avascular meniscal tissue) were seeded on ES scaffolds and cultured. Constructs were evaluated for cell viability, gene expression, and mechanical properties. To determine potential for repair of meniscal defects, human meniscus avascular cells were seeded and cultured on aligned ES collagen scaffolds for 4 weeks before implantation. Surgical defects resembling “longitudinal tears” were created in the avascular zone of bovine meniscus and implanted with cell-seeded collagen scaffolds and cultured for 3 weeks. Tissue regeneration and integration were evaluated by histology, immunohistochemistry, mechanical testing, and magentic resonance imaging. Ex vivo implantation with cell-seeded collagen scaffolds resulted in neotissue that was significantly better integrated with the native tissue than acellular collagen scaffolds or untreated defects. Human meniscal cell-seeded ES collagen scaffolds may therefore be useful in facilitating meniscal repair of avascular meniscus tears. PMID:26842062

  5. [Gelatin/alginate hydrogel scaffolds prepared by 3D bioprinting promotes cell adhesion and proliferation of human dental pulp cells in vitro].

    Science.gov (United States)

    Yu, Hai-Yue; Ma, Dan-Dan; Wu, Bu-Ling

    2017-05-20

    To evaluate the cytotoxicity of gelatin/alginate hydrogel scaffolds prepared by 3D bioprinting in human dental pulp cells (HDPCs) and compare the cell adhesion and proliferation of the cells seeded in the biomaterial using two different methods. HDPCs isolated by tissue block culture and enzyme digestion were cultured and passaged. Gelatin/alginate hydrogel scaffolds were printed using a bioplotter, and the cytotoxicity of the aqueous extracts of the scaffold material was tested in the third passage of HDPCs using cell counting kit-8. Scanning electron microscopy and trypan blue were used to assess the adhesion and proliferation of the cells seeded in the scaffold material at a low or high concentration. The aqueous extract of the scaffolds at different concentrations showed no obvious cytotoxicity and promoted the proliferation of HDPCs. The scaffolds had a good biocompatibility and HDPCs seeded in the scaffold showed good cell growth. Cell seeding at a high concentration in the scaffold better promoted the adhesion of HDPCs and resulted in a greater cell number on the scaffold surface compared with low-concentration cell seeding after a 5-day culture (P<0.05). Gelatinscaffolds prepared by 3D bioprinting has a good biocompatibility and promotes the proliferation of HDPCs, and can be used as a scaffold material for tooth regeneration. Cell seeding at a high concentration can better promote cell adhesion to the scaffold material.

  6. The interplay between tissue growth and scaffold degradation in engineered tissue constructs

    KAUST Repository

    O’Dea, R. D.

    2012-09-18

    In vitro tissue engineering is emerging as a potential tool to meet the high demand for replacement tissue, caused by the increased incidence of tissue degeneration and damage. A key challenge in this field is ensuring that the mechanical properties of the engineered tissue are appropriate for the in vivo environment. Achieving this goal will require detailed understanding of the interplay between cell proliferation, extracellular matrix (ECM) deposition and scaffold degradation. In this paper, we use a mathematical model (based upon a multiphase continuum framework) to investigate the interplay between tissue growth and scaffold degradation during tissue construct evolution in vitro. Our model accommodates a cell population and culture medium, modelled as viscous fluids, together with a porous scaffold and ECM deposited by the cells, represented as rigid porous materials. We focus on tissue growth within a perfusion bioreactor system, and investigate how the predicted tissue composition is altered under the influence of (1) differential interactions between cells and the supporting scaffold and their associated ECM, (2) scaffold degradation, and (3) mechanotransduction-regulated cell proliferation and ECM deposition. Numerical simulation of the model equations reveals that scaffold heterogeneity typical of that obtained from μCT scans of tissue engineering scaffolds can lead to significant variation in the flow-induced mechanical stimuli experienced by cells seeded in the scaffold. This leads to strong heterogeneity in the deposition of ECM. Furthermore, preferential adherence of cells to the ECM in favour of the artificial scaffold appears to have no significant influence on the eventual construct composition; adherence of cells to these supporting structures does, however, lead to cell and ECM distributions which mimic and exaggerate the heterogeneity of the underlying scaffold. Such phenomena have important ramifications for the mechanical integrity of

  7. Engineering biomechanically functional neocartilage derived from expanded articular chondrocytes through the manipulation of cell-seeding density and dexamethasone concentration.

    Science.gov (United States)

    Huang, Brian J; Huey, Daniel J; Hu, Jerry C; Athanasiou, Kyriacos A

    2017-08-01

    Recent work has established methods to engineer self-assembled, scaffold-free neocartilage from an expanded articular chondrocyte (AC) cell source. In continuing such work, the objective of the present study was to investigate the effects of cell-seeding density and dexamethasone concentration on these neocartilage constructs. Neocartilage discs (5 mm diameter) were formed by self-assembling passaged leporine articular chondrocytes into non-adherent agarose moulds. The cell-seeding densities (2, 3, 4, 5 and 6 million cells/construct) and dexamethasone concentrations (10 and 100 nm) in the culture medium were varied in a full-factorial study. After 4 weeks, the neocartilage constructs were assessed for morphological, biochemical and biomechanical properties. The cell-seeding density profoundly affected neocartilage properties. The two dexamethasone concentrations explored did not induce overall significant differences. Constructs formed using lower cell-seeding densities possessed much higher biochemical and biomechanical properties than constructs seeded with higher cell densities. Notably, the 2 million cells/construct group formed hyaline-like neocartilage with a collagen wet weight (WW) content of ~7% and a Young's modulus of ~4 MPa, representing the high end of values achieved in self-assembled neocartilage. Excitingly, the mechanical properties of these constructs were on a par with that of native cartilage tissues tested under similar conditions. Through optimization of cell-seeding density, this study shows for the first time the use of expanded ACs to form homogeneous self-assembled neocartilage with exceptionally high tensile strength. With such functional properties, these engineered neocartilage constructs provide a promising alternative for treating articular lesions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. In vitro biological and mechanical evaluation of various scaffold materials for myocardial tissue engineering.

    Science.gov (United States)

    Herrmann, Florian E M; Lehner, Anja; Hollweck, Trixi; Haas, Ulrike; Fano, Cornelia; Fehrenbach, David; Kozlik-Feldmann, Rainer; Wintermantel, Erich; Eissner, Gunther; Hagl, Christian; Akra, Bassil

    2014-04-01

    A cardiac patch is a construct devised in regenerative medicine to replace necrotic heart tissue after myocardial infarctions. The cardiac patch consists of a scaffold seeded with stem cells. To identify the best scaffold for cardiac patch construction we compared polyurethane, Collagen Cell Carriers, ePTFE, and ePTFE SSP1-RGD regarding their receptiveness to seeding with mesenchymal stem cells isolated from umbilical cord tissue. Seeding was tested at an array of cell seeding densities. The bioartificial patches were cultured for up to 35 days and evaluated by scanning electron microscopy, microscopy of histological stains, fluorescence microscopy, and mitochondrial assays. Polyurethane was the only biomaterial which resulted in an organized multilayer (seeding density: 0.750 × 10(6) cells/cm(2)). Cultured over 35 days at this seeding density the mitochondrial activity of the cells on polyurethane patches continually increased. There was no decrease in the E Modulus of polyurethane once seeded with cells. Seeding of CCC could only be realized at a low seeding density and both ePTFE and ePTFE SSP1-RGD were found to be unreceptive to seeding. Of the tested scaffolds polyurethane thus crystallized as the most appropriate for seeding with mesenchymal stem cells in the framework of myocardial tissue engineering. Copyright © 2013 Wiley Periodicals, Inc.

  9. Tissue regeneration: from synthetic scaffolds to self-organizing morphogenesis.

    Science.gov (United States)

    Chen, Ting-Hsuan

    2014-01-01

    Regenerative medicine offers therapeutic approaches to treating non-regenerative diseases such as spinal cord injury and heart disease. Owing to the limited donor tissue available, cell-based therapy using cultured cells with supporting scaffolds has been proposed to rebuild damaged tissue. Early attempts at repairing skin and cartilage achieved significant success thanks to the simplicity of the tissue architecture, which later fueled enthusiasm for applying the same strategy to other types of tissue. However, more complex tissue functions require a more extensive vasculature and heterogeneous cell arrangements, which together constitute a significant hurdle in practical applications. Accordingly, recent years an increased interest has been in the use of decellularized matrices that retain the natural microarchitecture as the scaffold. However, although a number of engineering approaches have been suggested, self-organizing behavior such as cell proliferation, migration, and differentiation may still disorganize and frustrate the artificial attempts. This mini-review first provides examples of the early history of tissue engineering using skin and cartilage as examples, and then elaborates on the key technologies used to fabricate synthetic acellular scaffolds and cell/scaffold constructs with more complicated architectures. It also summarizes the progress achieved in the use of decellularized matrices for cell seeding as well as the recent success seen in self-organizing two- and three-dimensional tissue formation with the aid of biomathematical modeling. The review concludes by proposing the future integration of biomathematics, developmental biology, and engineering in concert with the self-organization approach to tissue regeneration.

  10. Cell-nanofiber-based cartilage tissue engineering using improved cell seeding, growth factor, and bioreactor technologies.

    Science.gov (United States)

    Li, Wan-Ju; Jiang, Yi Jen; Tuan, Rocky S

    2008-05-01

    Biodegradable nanofibrous scaffolds serving as an extracellular matrix substitute have been shown to be applicable for cartilage tissue engineering. However, a key challenge in using nanofibrous scaffolds for tissue engineering is that the small pore size limits the infiltration of cells, which may result in uneven cell distribution throughout the scaffold. This study describes an effective method of chondrocyte loading into nanofibrous scaffolds, which combines cell seeding, mixing, and centrifugation to form homogeneous, packed cell-nanofiber composites (CNCs). When the effects of different growth factors are compared, CNCs cultured in medium containing a combination of insulin-like growth factor-1 and transforming growth factor-beta1 express the highest mRNA levels of collagen type II and aggrecan. Radiolabeling analyses confirm the effect on collagen and sulfated-glycosaminoglycans (sGAG) production. Histology reveals chondrocytes with typical morphology embedded in lacuna-like space throughout the entire structure of the CNC. Upon culturing using a rotary wall vessel bioreactor, CNCs develop into a smooth, glossy cartilage-like tissue, compared to a rough-surface tissue when maintained in a static environment. Bioreactor-grown cartilage constructs produce more total collagen and sGAG, resulting in greater gain in net tissue weight, as well as express cartilage-associated genes, including collagen types II and IX, cartilage oligomeric matrix protein, and aggrecan. In addition, dynamic culture enhances the mechanical property of the engineered cartilage. Taken together, these results indicate the applicability of nanofibrous scaffolds, combined with efficient cell loading and bioreactor technology, for cell-based cartilage tissue engineering.

  11. Design, fabrication and in vitro evaluation of a novel polymer-hydrogel hybrid scaffold for bone tissue engineering.

    Science.gov (United States)

    Igwe, John C; Mikael, Paiyz E; Nukavarapu, Syam P

    2014-02-01

    The development of a bone mechanically-compatible and osteoinductive scaffold is important for bone tissue engineering applications, particularly for the repair and regeneration of large area critically-sized bone defects. Although previous studies with weight-bearing scaffolds have shown promising results, there is a clear need to develop better osteoinductive strategies for effective scaffold-based bone regeneration. In this study, we designed and fabricated a novel polymer-hydrogel hybrid scaffold system in which a load-bearing polymer matrix and a peptide hydrogel allowed for the synergistic combination of mechanical strength and great potential for osteoinductivity in a single scaffold. The hybrid scaffold system promoted increased pre-osteoblastic cell proliferation. Further, we biotinylated human recombinant bone morphogenetic protein 2 (rhBMP2), and characterized the biotin addition and its effect on rhBMP2 biological activity. The biotinylated rhBMP2 was tethered to the hybrid scaffold using biotin-streptavidin complexation. Controlled release studies demonstrated increased rhBMP2 retention with the tethered rhBMP2 hybrid scaffold group. In vitro evaluation of the hybrid scaffold was performed with rat bone marrow stromal cells and mouse pre-osteoblast cell line MC3T3-E1 cells. Gene expression of alkaline phosphatase (ALP), collagen I (Col I), osteopontin (OPN), bone sialoprotein (BSP), Runx-2 and osteocalcin (OC) increased in MC3T3-E1 cells seeded on the rhBMP2 tethered hybrid scaffolds over the untethered counterparts, demonstrating osteoinductive potential of the hybrid graft. These findings suggest the possibility of developing a novel polymer-hydrogel hybrid system that is weight bearing and osteoinductive for effective bone tissue engineering. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Potentially increased incidence of scaffold thrombosis in patients treated with Absorb BVS who terminated DAPT before 18 months.

    Science.gov (United States)

    Felix, Cordula M; Vlachojannis, Georgios J; IJsselmuiden, Alexander J J; Fam, Jiang M; Smits, Peter C; Lansink, Wouter J; Diletti, Roberto; Zijlstra, Felix; Regar, Evelyn S; Boersma, Eric; Onuma, Yoshinobu; van Geuns, Robert J M

    2017-06-02

    The aim of this study was to investigate the impact of dual antiplatelet therapy (DAPT) termination on late and very late scaffold thrombosis (ScT) in patients treated with the Absorb bioresorbable vascular scaffold (BVS). Data from the registries of three centres were pooled (808 patients). To investigate the effect of DAPT termination on ScT after a minimum of six months, we selected a subgroup ("DAPT study cohort" with 685 patients) with known DAPT status >6 months and excluded the use of oral anticoagulants and early ScT. In this cohort, definite/probable ScT incidence for the period on DAPT was compared to ScT incidence after DAPT termination. ScT incidence was 0.83 ScT/100 py with 95% confidence interval (CI): 0.34-1.98. After DAPT termination, the incidence was higher (1.77/100 py; 95% CI: 0.66-4.72), compared to the incidence on DAPT (0.26/100 py, 95% CI: 0.04-1.86; p=0.12) and increased within the month after DAPT termination (6.57/100 py, 95% CI: 2.12-20.38; p=0.01). No very late ScT occurred in patients who continued on DAPT for a minimum of 18 months. The incidence of late and very late definite/probable ScT was acceptable. The incidence was low while on DAPT but potentially higher when DAPT was terminated before 18 months.

  13. Osteogenic differentiation of human periosteal-derived cells in a three-dimensional collagen scaffold.

    Science.gov (United States)

    Ryu, Young-Mo; Hah, Young-Sool; Park, Bong-Wook; Kim, Deok Ryong; Roh, Gu Seob; Kim, Jong-Ryoul; Kim, Uk-Kyu; Rho, Gyu-Jin; Maeng, Geun-Ho; Byun, June-Ho

    2011-06-01

    This study examined the osteogenic differentiation of cultured human periosteal-derived cells grown in a three dimensional collagen-based scaffold. Periosteal explants with the appropriate dimensions were harvested from the mandible during surgical extraction of lower impacted third molar. Periosteal-derived cells were introduced into cell culture. After passage 3, the cells were divided into two groups and cultured for 28 days. In one group, the cells were cultured in two-dimensional culture dishes with osteogenic inductive medium containing dexamethasone, ascorbic acid, and β-glycerophosphate. In the other group, the cells were seeded onto a three-dimensional collagen scaffold and cultured under the same conditions. We examined the bioactivity of alkaline phosphatase (ALP), the RT-PCR analysis for ALP and osteocalcin, and measurements of the calcium content in the periosteal-derived cells of two groups. Periosteal-derived cells were successfully differentiated into osteoblasts in the collagen-based scaffold. The ALP activity in the periosteal-derived cells was appreciably higher in the three-dimensional collagen scaffolds than in the two-dimensional culture dishes. The levels of ALP and osteocalcin mRNA in the periosteal-derived cells was also higher in the three-dimensional collagen scaffolds than in the two-dimensional culture dishes. The calcium level in the periosteal-derived cells seeded onto three-dimensional collagen scaffolds showed a 5.92-fold increase on day 7, 3.28-fold increase on day 14, 4.15-fold increase on day 21, and 2.91-fold increase on day 28, respectively, compared with that observed in two-dimensional culture dishes. These results suggest that periosteal-derived cells have good osteogenic capacity in a three-dimensional collagen scaffold, which provides a suitable environment for the osteoblastic differentiation of these cells.

  14. Comparative Analysis of the Oxygen Supply and Viability of Human Osteoblasts in Three-Dimensional Titanium Scaffolds Produced by Laser-Beam or Electron-Beam Melting

    Directory of Open Access Journals (Sweden)

    Anika Jonitz-Heincke

    2013-11-01

    Full Text Available Synthetic materials for bone replacement must ensure a sufficient mechanical stability and an adequate cell proliferation within the structures. Hereby, titanium materials are suitable for producing patient-individual porous bone scaffolds by using generative techniques. In this in vitro study, the viability of human osteoblasts was investigated in porous 3D Ti6Al4V scaffolds, which were produced by electron-beam (EBM or laser-beam melting (LBM. For each examination, two cylindrical scaffolds (30 mm × 10 mm in size, 700 µm × 700 µm macropores were placed on each other and seeded with cells. The oxygen consumption and the acidification in the center of the structures were investigated by means of microsensors. Additionally, the synthesis of pro-collagen type 1 was analyzed. On the LBM titanium scaffolds, vital bone cells were detected in the center and in the periphery after 8 days of cultivation. In the EBM titanium constructs, however, vital cells were only visible in the center. During the cultivation period, the cells increasingly produced procollagen type 1 in both scaffolds. In comparison to the periphery, the oxygen content in the center of the scaffolds slightly decreased. Furthermore, a slight acidification of the medium was detectable. Compared to LBM, the EBM titanium scaffolds showed a less favorable behavior with regard to cell seeding.

  15. Comparison of different strategies for in vivo seeding of prevascularized scaffolds.

    Science.gov (United States)

    Polzer, Hans; Volkmer, Elias; Saller, Maximilian M; Prall, Wolf C; Haasters, Florian; Drosse, Inga; Wilhelmi, Arnd; Mutschler, Wolf; Schieker, Matthias

    2014-01-01

    Scaffolds seeded with multipotent precursor cells were hypothesized to heal critically sized bone defects. However, the success of this concept was limited by low cell survival after transplantation due to a lack of nutrients and oxygen. In vivo prevascularization of scaffolds before cell seeding may improve cell survival, yet the best seeding technique and time point of cell application remain elusive. Thus, the aim of this study was to compare different strategies. Demineralized bone matrix scaffolds were implanted around the saphenous arteriovenous (AV) bundle in nude mice. In vivo seeding was performed 0, 5, or 21 days after implantation using enhanced green fluorescent protein (eGFP)-expressing mesenchymal stem cells (MSCs). Cells were applied either by injection or the repetitive dripping technique. In vitro seeded and subcutaneously implanted scaffolds served as controls. Fourteen days after cell application, the fluorescence intensity of transplanted cells and the extent of newly formed vessels were quantified. We found that the AV flow through model as well as cell application increased vessel formation. In vitro seeding resulted in significantly higher cell numbers than in vivo seeding. With increasing time of prevascularization, the number of cells declined dramatically. In vivo seeding by cell injection was superior to the repetitive dripping protocol. On subcutaneously implanted scaffolds, significantly, more cells were found than on axially perfused scaffolds. We conclude that in vitro seeding is more efficient compared to the two novel in vivo seeding techniques of prevascularized scaffolds. With increasing time of prevascularization, the seeding efficiency for the in vivo methods further decreases, presumably due to the ingrowth of connective tissue. Even though, the presence of MSCs and the longer period of prevascularization enhances vessel formation, this conceivable advantage is limited supposedly by the inferior seeding efficiency.

  16. Cell–scaffold interaction within engineered tissue

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Haiping; Liu, Yuanyuan, E-mail: Yuanyuan_liu@shu.edu.cn; Jiang, Zhenglong; Chen, Weihua; Yu, Yongzhe; Hu, Qingxi

    2014-05-01

    The structure of a tissue engineering scaffold plays an important role in modulating tissue growth. A novel gelatin–chitosan (Gel–Cs) scaffold with a unique structure produced by three-dimensional printing (3DP) technology combining with vacuum freeze-drying has been developed for tissue-engineering applications. The scaffold composed of overall construction, micro-pore, surface morphology, and effective mechanical property. Such a structure meets the essential design criteria of an ideal engineered scaffold. The favorable cell–matrix interaction supports the active biocompatibility of the structure. The structure is capable of supporting cell attachment and proliferation. Cells seeded into this structure tend to maintain phenotypic shape and secreted large amounts of extracellular matrix (ECM) and the cell growth decreased the mechanical properties of scaffold. This novel biodegradable scaffold has potential applications for tissue engineering based upon its unique structure, which acts to support cell growth. - Highlights: • The scaffold is not only for providing a surface for cell residence but also for determining cell phenotype and retaining structural integrity. • The mechanical property of scaffold can be affected by activities of cell. • The scaffold provides a microenvironment for cell attachment, growth, and migration.

  17. Nanostructured polyurethane-poly-lactic-co-glycolic acid scaffolds increase bladder tissue regeneration: an in vivo study.

    Science.gov (United States)

    Yao, Chang; Hedrick, Matt; Pareek, Gyan; Renzulli, Joseph; Haleblian, George; Webster, Thomas J

    2013-01-01

    Although showing much promise for numerous tissue engineering applications, polyurethane and poly-lactic-co-glycolic acid (PLGA) have suffered from a lack of cytocompatibility, sometimes leading to poor tissue integration. Nanotechnology (or the use of materials with surface features or constituent dimensions less than 100 nm in at least one direction) has started to transform currently implanted materials (such as polyurethane and PLGA) to promote tissue regeneration. This is because nanostructured surface features can be used to change medical device surface energy to alter initial protein adsorption events important for promoting tissue-forming cell functions. Thus, due to their altered surface energetics, the objective of the present in vivo study was to create nanoscale surface features on a new polyurethane and PLGA composite scaffold (by soaking the polyurethane side and PLGA side in HNO₃ and NaOH, respectively) and determine bladder tissue regeneration using a minipig model. The novel nanostructured scaffolds were further functionalized with IKVAV and YIGSR peptides to improve cellular responses. Results provided the first evidence of increased in vivo bladder tissue regeneration when using a composite of nanostructured polyurethane and PLGA compared with control ileal segments. Due to additional surgery, extended potentially problematic healing times, metabolic complications, donor site morbidity, and sometimes limited availability, ileal segment repair of a bladder defect is not optimal and, thus, a synthetic analog is highly desirable. In summary, this study indicates significant promise for the use of nanostructured polyurethane and PLGA composites to increase bladder tissue repair for a wide range of regenerative medicine applications, such as regenerating bladder tissue after removal of cancerous tissue, disease, or other trauma.

  18. Developing Physics E-Scaffolding Teaching Media to Increase the Eleventh-Grade Students' Problem Solving Ability and Scientific Attitude

    Science.gov (United States)

    Saputri, Affa Ardhi; Wilujeng, Insih

    2017-01-01

    This research aims at revealing (1) the suitability of physics e-scaffolding teaching media with mathematical and image/diagrammatic representation, as well as (2) the effectiveness of the e-scaffolding teaching media with mathematical and image/diagrammatic representation to improve students' problem solving ability and scientific attitude. It is…

  19. A structural model for the flexural mechanics of nonwoven tissue engineering scaffolds.

    Science.gov (United States)

    Engelmayr, George C; Sacks, Michael S

    2006-08-01

    The development of methods to predict the strength and stiffness of biomaterials used in tissue engineering is critical for load-bearing applications in which the essential functional requirements are primarily mechanical. We previously quantified changes in the effective stiffness (E) of needled nonwoven polyglycolic acid (PGA) and poly-L-lactic acid (PLLA) scaffolds due to tissue formation and scaffold degradation under three-point bending. Toward predicting these changes, we present a structural model for E of a needled nonwoven scaffold in flexure. The model accounted for the number and orientation of fibers within a representative volume element of the scaffold demarcated by the needling process. The spring-like effective stiffness of the curved fibers was calculated using the sinusoidal fiber shapes. Structural and mechanical properties of PGA and PLLA fibers and PGA, PLLA, and 50:50 PGA/PLLA scaffolds were measured and compared with model predictions. To verify the general predictive capability, the predicted dependence of E on fiber diameter was compared with experimental measurements. Needled nonwoven scaffolds were found to exhibit distinct preferred (PD) and cross-preferred (XD) fiber directions, with an E ratio (PD/XD) of approximately 3:1. The good agreement between the predicted and experimental dependence of E on fiber diameter (R2 = 0.987) suggests that the structural model can be used to design scaffolds with E values more similar to native soft tissues. A comparison with previous results for cell-seeded scaffolds (Engelmayr, G. C., Jr., et al., 2005, Biomaterials, 26(2), pp. 175-187) suggests, for the first time, that the primary mechanical effect of collagen deposition is an increase in the number of fiber-fiber bond points yielding effectively stiffer scaffold fibers. This finding indicated that the effects of tissue deposition on needled nonwoven scaffold mechanics do not follow a rule-of-mixtures behavior. These important results underscore

  20. The potential of encapsulating "raw materials" in 3D osteochondral gradient scaffolds.

    Science.gov (United States)

    Mohan, Neethu; Gupta, Vineet; Sridharan, Banupriya; Sutherland, Amanda; Detamore, Michael S

    2014-04-01

    Scaffolds with continuous gradients in material composition and bioactive signals enable a smooth transition of properties at the interface. Components like chondroitin sulfate (CS) and bioactive glass (BG) in 3D scaffolds may serve as "raw materials" for synthesis of new extracellular matrix (ECM), and may have the potential to completely or partially replace expensive growth factors. We hypothesized that scaffolds with gradients of ECM components would enable superior performance of engineered constructs. Raw material encapsulation altered the appearance, structure, porosity, and degradation of the scaffolds. They allowed the scaffolds to better retain their 3D structure during culture and provided a buffering effect to the cells in culture. Following seeding of rat mesenchymal stem cells, there were several instances where glycosaminoglycan (GAG), collagen, or calcium contents were higher with the scaffolds containing raw materials (CS or BG) than with those containing transforming growth factor (TGF)-β3 or bone morphogenetic protein (BMP)-2. It was also noteworthy that a combination of both CS and TGF-β3 increased the secretion of collagen type II. Moreover, cells seeded in scaffolds containing opposing gradients of CS/TGF-β3 and BG/BMP-2 produced clear regional variations in the secretion of tissue-specific ECM. The study demonstrated raw materials have the potential to create a favorable microenvironment for cells; they can significantly enhance the synthesis of certain extracellular matrix (ECM) components when compared to expensive growth factors; either alone or in combination with growth factors they can enhance the secretion of tissue specific matrix proteins. Raw materials are promising candidates that can be used to either replace or be used in combination with growth factors. Success with raw materials in lieu of growth factors could have profound implications in terms of lower cost and faster regulatory approval for more rapid translation of

  1. Micro-Computed-Tomography-Guided Analysis of In Vitro Structural Modifications in Two Types of 45S5 Bioactive Glass Based Scaffolds

    Directory of Open Access Journals (Sweden)

    Fabian Westhauser

    2017-11-01

    Full Text Available Three-dimensional 45S5 bioactive glass (BG-based scaffolds are being investigated for bone regeneration. Besides structural properties, controlled time-dependent alteration of scaffold morphology is crucial to achieve optimal scaffold characteristics for successful bone repair. There is no in vitro evidence concerning the dependence between structural characteristics and dissolution behavior of 45S5 BG-based scaffolds of different morphology. In this study, the dissolution behavior of scaffolds fabricated by the foam replica method using polyurethane foam (Group A and maritime sponge Spongia Agaricina (Group B as sacrificial templates was analyzed by micro-computed-tomography (µCT. The scaffolds were immersed in Dulbecco’s Modified Eagle Medium for 56 days under static cell culture conditions and underwent µCT-analysis initially, and after 7, 14, and 56 days. Group A showed high porosity (91% and trabecular structure formed by macro-pores (average diameter 692 µm ± 72 µm. Group-B-scaffolds were less porous (51%, revealing an optimal pore size distribution within the window of 110–500 µm pore size diameter, combined with superior mechanical stability. Both groups showed similar structural alteration upon immersion. Surface area and scaffold volume increased whilst density decreased, reflecting initial dissolution followed by hydroxycarbonate-apatite-layer-formation on the scaffold surfaces. In vitro- and/or in vivo-testing of cell-seeded BG-scaffolds used in this study should be performed to evaluate the BG-scaffolds’ time-dependent osteogenic properties in relation to the measured in vitro structural changes.

  2. Effects of cross-linking type II collagen-GAG scaffolds on chondrogenesis in vitro: dynamic pore reduction promotes cartilage formation.

    Science.gov (United States)

    Vickers, Scott M; Squitieri, Lee S; Spector, Myron

    2006-05-01

    Articular cartilage tissue-engineering investigations often implement bioassays for chondrogenesis in vitro using articular chondrocytes or mesenchymal stem cells in cell pellets that contract with time in culture, suggesting an association between the processes of contraction of the cell pellet and cartilage formation. The objective of the present study was to investigate this relationship further using adult canine articular chondrocyte-seeded type II collagen-GAG scaffolds. The collagen-GAG scaffolds were chemically cross-linked to achieve a range of cross-link densities. Chondrocyte-seeded scaffolds of varying cross-link densities were then cultured for 2 weeks to evaluate the effect of crosslink density on scaffold contraction and chondrogenesis. Scaffolds with low cross-link densities experienced cell-mediated contraction, increased cell number densities, a greater degree of chondrogenesis (viz., chondrocytic morphology of cells, synthesis of type II collagen), and an apparent increase in the rate of degradation of the scaffold compared to more highly cross-linked scaffolds that resisted cellular contraction. The results of this study suggest the promise of "dynamic pore reduction" for scaffolds for articular cartilage tissue engineering. In this approach, scaffolds would have an initial pore diameter large enough to facilitate cell seeding and a mechanical stiffness low enough to allow for cell-mediated contraction to yield a reduced pore volume to favor chondrogenesis. This approach may provide a useful alternative to traditional means of increasing cell number density and retention of synthesized molecules that promote cartilage formation in tissue-engineered constructs.

  3. Characterization, mechanical behavior and in vitro evaluation of a melt-drawn scaffold for esophageal tissue engineering.

    Science.gov (United States)

    Tan, Yu Jun; Yeong, Wai Yee; Tan, Xipeng; An, Jia; Chian, Kerm Sin; Leong, Kah Fai

    2016-04-01

    Tubular esophageal scaffolds with fiber diameter ranging from 13.9±1.7μm to 65.7±6.2μm were fabricated from the highly elastic poly(l-lactide-co-ε-caprolactone) (PLC) via a melt-drawing method. The morphology, crystallinity, thermal and mechanical properties of the PLC fibers were investigated. They were highly aligned and have a uniform diameter. PLC is found to be semicrystalline consisting of α- and β- lactide (LA) crystals. The crystallinity increases up to 16.8% with increasing melt-drawing speeds due to strain-induced crystallization. Modulus and strength increases while ductility decreases with an increase in crystallinity of the PLC samples. Moisture will not degrade the overall tensile properties but affect its tangent modulus at the low strain. L929 cells are able to attach and proliferate on the scaffolds very well. The cells seeded on the scaffolds show normal morphology with >90% cell viability after 6 days of culture. These results demonstrate that the PLC fibrous scaffold has good potential for use in esophageal tissue engineering application. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Increasing the strength and bioactivity of collagen scaffolds using customizable arrays of 3D-printed polymer fibers.

    Science.gov (United States)

    Mozdzen, Laura C; Rodgers, Ryan; Banks, Jessica M; Bailey, Ryan C; Harley, Brendan A C

    2016-03-01

    Tendon is a highly aligned connective tissue which transmits force from muscle to bone. Each year, people in the US sustain more than 32 million tendon injuries. To mitigate poor functional outcomes due to scar formation, current surgical techniques rely heavily on autografts. Biomaterial platforms and tissue engineering methods offer an alternative approach to address these injuries. Scaffolds incorporating aligned structural features can promote expansion of adult tenocytes and mesenchymal stem cells capable of tenogenic differentiation. However, appropriate balance between scaffold bioactivity and mechanical strength of these constructs remains challenging. The high porosity required to facilitate cell infiltration, nutrient and oxygen biotransport within three-dimensional constructs typically results in insufficient biomechanical strength. Here we describe the use of three-dimensional printing techniques to create customizable arrays of acrylonitrile butadiene styrene (ABS) fibers that can be incorporated into a collagen scaffold under development for tendon repair. Notably, mechanical performance of scaffold-fiber composites (elastic modulus, peak stress, strain at peak stress, and toughness) can be selectively manipulated by varying fiber-reinforcement geometry without affecting the native bioactivity of the collagen scaffold. Further, we report an approach to functionalize ABS fibers with activity-inducing growth factors via sequential oxygen plasma and carbodiimide crosslinking treatments. Together, we report an adaptable approach to control both mechanical strength and presence of biomolecular cues in a manner orthogonal to the architecture of the collagen scaffold itself. Tendon injuries account for more than 32 million injuries each year in the US alone. Current techniques use allografts to mitigate poor functional outcomes, but are not ideal platforms to induce functional regeneration following injury. Tissue engineering approaches using biomaterial

  5. Developmental Scaffolding

    DEFF Research Database (Denmark)

    Giorgi, Franco; Bruni, Luis Emilio

    2015-01-01

    into a functionally coordinate unit. A genetic scaffolding accounts for the inherited invariance of pattern formation during the embryo’s growth. At higher level, cells behave as agents endowed with the capacity to interpret any scaffolding variation as signs. The full hierarchy of a multi-level scaffolding...

  6. Preseeding of human vascular cells in decellularized bovine pericardium scaffold for tissue-engineered heart valve : An in vitro and in vivo feasibility study

    NARCIS (Netherlands)

    Yang, Min; Chen, Chang-Zhi; Shu, Yu-Sheng; Shi, Wei-Ping; Cheng, Shao-Fei; Gu, Y. John

    Human vascular cells from saphenous veins have been used for cell seeding on the synthetic scaffolds for constructing tissue-engineered heart valve (TEHV). However, little is known about the seeding of human vascular cells on bovine pericardium, a potential natural scaffold for TEHV. This study was

  7. Dual-Purpose Bioreactors to Monitor Noninvasive Physical and Biochemical Markers of Kidney and Liver Scaffold Recellularization.

    Science.gov (United States)

    Uzarski, Joseph S; Bijonowski, Brent M; Wang, Bo; Ward, Heather H; Wandinger-Ness, Angela; Miller, William M; Wertheim, Jason A

    2015-10-01

    Analysis of perfusion-based bioreactors for organ engineering and a detailed evaluation of physical and biochemical parameters that measure dynamic changes within maturing cell-laden scaffolds are critical components of ex vivo tissue development that remain understudied topics in the tissue and organ engineering literature. Intricately designed bioreactors that house developing tissue are critical to properly recapitulate the in vivo environment, deliver nutrients within perfused media, and monitor physiological parameters of tissue development. Herein, we provide an in-depth description and analysis of two dual-purpose perfusion bioreactors that improve upon current bioreactor designs and enable comparative analyses of ex vivo scaffold recellularization strategies and cell growth performance during long-term maintenance culture of engineered kidney or liver tissues. Both bioreactors are effective at maximizing cell seeding of small-animal organ scaffolds and maintaining cell survival in extended culture. We further demonstrate noninvasive monitoring capabilities for tracking dynamic changes within scaffolds as the native cellular component is removed during decellularization and model human cells are introduced into the scaffold during recellularization and proliferate in maintenance culture. We found that hydrodynamic pressure drop (ΔP) across the retained scaffold vasculature is a noninvasive measurement of scaffold integrity. We further show that ΔP, and thus resistance to fluid flow through the scaffold, decreases with cell loss during decellularization and correspondingly increases to near normal values for whole organs following recellularization of the kidney or liver scaffolds. Perfused media may be further sampled in real time to measure soluble biomarkers (e.g., resazurin, albumin, or kidney injury molecule-1) that indicate degree of cellular metabolic activity, synthetic function, or engraftment into the scaffold. Cell growth within bioreactors is

  8. Mesenchymal stem cell seeding promotes reendothelialization of the endovascular stent.

    Science.gov (United States)

    Wu, Xue; Wang, Guixue; Tang, Chaojun; Zhang, Dechuan; Li, Zhenggong; Du, Dingyuan; Zhang, Zhengcai

    2011-09-01

    This study is designed to make a novel cell seeding stent and to evaluate reendothelialization and anti-restenosis after the stent implantation. In comparison with cell seeding stents utilized in previous studies, Mesenchymal stem cells (MSCs) have advantages on promoting of issue repair. Thus it was employed to improve the reendothelialization effects of endovascular stent in present work. MSCs were isolated by density gradient centrifugation and determined as CD29(+) CD44(+) CD34(-) cells by immunofluorescence and immunocytochemistry; gluten and polylysine coated stents were prepared by ultrasonic atomization spray, and MSCs seeded stents were made through rotation culture according to the optimized conditions that were determined in previous studies. The results from animal experiments, in which male New Zealand white rabbits were used, show that the reendothelialization of MSCs coated stents can be completed within one month; in comparison with 316L stainless steel stents (316L SS stents) and gluten and polylysine coated stents, the intimal hyperplasia and in-stent restenosis are significantly inhibited by MSCs coated stents. Endovascular stent seeded with MSCs promotes reendothelialization and inhibits the intimal hyperplasia and in-stent restenosis compared with the 316L SS stents and the gluten and polylysine coated stents. Copyright © 2011 Wiley Periodicals, Inc.

  9. A Stem Cell-Seeded Nanofibrous Scaffold for Auditory Nerve Replacement

    Science.gov (United States)

    2015-10-01

    dissociated and plated as single cells . The next day (day 0) medium is changed to DFBN medium, a serum free medium based on DMEM/F12. Medium is...using a Pax2-reporter cell line. At day 0, mouse ESCs are aggregated into embryoid bodies using round-bottom 96-well plates. On day 1, growth...several days, these vesicles expand and push to the aggregates ’ outer surfaces. By day 20, we detect innervated hair cells at each organoid, i.e

  10. A Stem Cell-Seeded Nanofibrous Scaffold for Auditory Nerve Replacement

    Science.gov (United States)

    2014-10-01

    derived neurons for inner ear therapy : InTech. Hester ME, Murtha MJ, Song S, Rao M, Miranda CJ, Meyer K, Tian J, Boulting G, Schaffer DV, Zhu MX...Department of Defense – Army Award Period: 07/01/11 – 07/31/14 Title: Prevention and Treatment of Noise-Induced Tinnitus Role: Co-Investigator U01...Amount: $140,327 year Title: Combined Auditory-Somatosensory Stimulation to Alleviate Tinnitus Ended Awards: W81XWH-11-1-0414, PI Altschuler, Sponsor

  11. A Stem Cell-Seeded Nanofibrous Scaffold for Auditory Nerve Replacement

    Science.gov (United States)

    2013-10-01

    before continuing with the histological and electrophysiological studies. We anticipate completing Tasks 3-5 in Year 2. Some preliminary data is...strips using a razor blade . The bilayers were submerged in 0.1% 1 M HCl in order to facilitate rolling of the polymer films. Rolled polymer conduits

  12. Engineered bone scaffolds with Dielectrophoresis-based patterning using 3D printing.

    Science.gov (United States)

    Huan, Zhijie; Chu, Henry K; Liu, Hongbo; Yang, Jie; Sun, Dong

    2017-11-13

    Patterning of cells into a specific pattern is an important procedure in tissue engineering to facilitate tissue culture and ingrowth. In this paper, a new type of 3D-printed scaffold utilizing dielectrophoresis (DEP) for active cell seeding and patterning was proposed. This scaffold adopted a concentric-ring design that is similar to native bone tissues. The scaffold was fabricated with a commercial three-dimensional (3D) printer. Polylactic Acid (PLA) was selected as the material for the printer and the fabricated scaffold was coated with gold to enhance the conductivity for DEP manipulation. Simulation from COMSOL confirmed that non-uniform electric fields were successfully generated under a voltage input. The properties of the scaffold were first characterized through a series of experiments. Then, preosteoblast MC3T3-E1 cells were seeded onto the coated scaffold and multiple cellular rings were observed under the microscope. The biocompatibility of the material was also examined and mineralized bone nodules were detected using Alizarin Red S Staining after 28 days of culture. The proposed scaffold design can enable formation of multiple ring patterns via DEP and the properties of the scaffold are suitable for bone tissue culture. This new type of 3D-printed scaffold with cell seeding mechanism offers a new and rapid approach for fabricating engineered scaffolds that can arrange cells into different patterns for various tissue engineering applications.

  13. Development of porous Ti6Al4V/chitosan sponge composite scaffold for orthopedic applications

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Miao [College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Li, Xiang, E-mail: Xiangliwj@sjtu.edu.cn [School of Mechanical Engineering, Shanghai Jiao Tong University, State Key Laboratory of Mechanical System and Vibration, Shanghai 200240 (China)

    2016-01-01

    A novel composite scaffold consisting of porous Ti6Al4V part filled with chitosan sponge was fabricated using a combination of electron beam melting and freeze-drying. The mechanical properties of porous Ti6Al4V part were examined via compressive test. The ultimate compressive strength was 85.35 ± 8.68 MPa and the compressive modulus was 2.26 ± 0.42 GPa. The microstructure of composite scaffold was characterized using scanning electron microscopy. The chitosan sponge filled in Ti6Al4V part exhibited highly porous and well-interconnected micro-pore architecture. The osteoblastic cells were seeded on scaffolds to test their seeding efficiency and biocompatibility. Significantly higher cell seeding efficiency was found on composite scaffold. The biological response of osteoblasts on composite scaffolds was superior in terms of improved cell attachment, higher proliferation, and well-spread morphology in relation to porous Ti6Al4V part. These results suggest that the Ti6Al4V/chitosan composite scaffold is potentially useful as a biomedical scaffold for orthopedic applications. - Highlights: • A novel composite scaffold with sufficient mechanical properties and favorable cell affinity environment was developed. • Significantly higher cell seeding efficiency was found on composite scaffold. • The osteoblasts on composite scaffolds showed well-spread morphology, improved cell attachment and higher proliferation.

  14. Soy Protein Scaffold Biomaterials for Tissue Engineering and Regenerative Medicine

    Science.gov (United States)

    Chien, Karen B.

    Developing functional biomaterials using highly processable materials with tailorable physical and bioactive properties is an ongoing challenge in tissue engineering. Soy protein is an abundant, natural resource with potential use for regenerative medicine applications. Preliminary studies show that soy protein can be physically modified and fabricated into various biocompatible constructs. However, optimized soy protein structures for tissue regeneration (i.e. 3D porous scaffolds) have not yet been designed. Furthermore, little work has established the in vivo biocompatibility of implanted soy protein and the benefit of using soy over other proteins including FDA-approved bovine collagen. In this work, freeze-drying and 3D printing fabrication processes were developed using commercially available soy protein to create porous scaffolds that improve cell growth and infiltration compared to other soy biomaterials previously reported. Characterization of scaffold structure, porosity, and mechanical/degradation properties was performed. In addition, the behavior of human mesenchymal stem cells seeded on various designed soy scaffolds was analyzed. Biological characterization of the cell-seeded scaffolds was performed to assess feasibility for use in liver tissue regeneration. The acute and humoral response of soy scaffolds implanted in an in vivo mouse subcutaneous model was also investigated. All fabricated soy scaffolds were modified using thermal, chemical, and enzymatic crosslinking to change properties and cell growth behavior. 3D printing allowed for control of scaffold pore size and geometry. Scaffold structure, porosity, and degradation rate significantly altered the in vivo response. Freeze-dried soy scaffolds had similar biocompatibility as freeze-dried collagen scaffolds of the same protein content. However, the soy scaffolds degraded at a much faster rate, minimizing immunogenicity. Interestingly, subcutaneously implanted soy scaffolds affected blood

  15. Analysis of collagen and glucose modulated cell growth within tissue engineered scaffolds.

    Science.gov (United States)

    Chung, C A; Ho, Szu-Ying

    2010-04-01

    The strategy of tissue engineering includes seeding cells onto porous scaffolds. The cellular construct is cultured in vitro for a period of time before transplantation for the patient. Because of the intrinsic complexity of biological systems, it is valuable to have models of simulation that can assess the culture conditions and optimize experiments. This work presents a mathematical model to account for the effects of glucose and type II collagen on chondrocyte growth under static culture conditions. Dependence of cell growth on collagen was assumed as a biphasic function of collagen quantity, whereby the cell growth rate increases and then decreases with increasing collagen content. Results from simulation were compared with experimental data in literature. The model was then applied to investigate the effects of cell seeding area, demonstrating the spatiotemporal evolution of cell distribution in scaffolds. Results show that the conventional uniform seeding method may not be a good way of gaining uniform and large cell number densities at the final stage of cultivation. A seeding mode that has cells reside initially in the middle area of scaffold was shown to be able to not only reduce the diffusion limitation of nutrients but also weaken the inhibiting impact of aggregated collagen on cell growth. Therefore the middle seeding mode may result in better cell amounts and uniformities for developing tissue engineered constructs.

  16. The use of biodegradable polymers in design of cellular scaffolds

    OpenAIRE

    Joanna Orłowska; Urszula Kurczewska; Katarzyna Derwińska; Wojciech Orłowski; Daria Orszulak-Michalak

    2015-01-01

    The objective of this work was to demonstrate the usage of biodegradable polymers, made of calcium alginate and dibutyrylchitin, in the design of cellular scaffolds having broad application in reconstructive therapy (dentistry, orthopedics). To visualize cells seeded on calcium alginate and dibutyrylchitin polymers DAPI staining of fibroblasts nuclei was used. The cytotoxicity of the materials and microscopic evaluation of the viability of seeded cells was tested with a PKH 67 fluorescent dye...

  17. Wetting of silicone oil onto a cell-seeded substrate

    Science.gov (United States)

    Lu, Yongjie; Chan, Yau Kei; Chao, Youchuang; Shum, Ho Cheung

    2017-11-01

    Wetting behavior of solid substrates in three-phase systems containing two immiscible liquids are widely studied. There exist many three-phase systems in biological environments, such as droplet-based microfluidics or tamponade of silicone oil for eye surgery. However, few studies focus on wetting behavior of biological surfaces with cells. Here we investigate wetting of silicone oil onto cell-seeded PMMA sheet immersed in water. Using a simple parallel-plate cell, we show the effect of cell density, viscosity of silicone oil, morphology of silicone oil drops and interfacial tension on the wetting phenomenon. The dynamics of wetting is also observed by squeezing silicone oil drop using two parallel plates. Experimental results are explained based on disjoining pressure which is dependent on the interaction of biological surfaces and liquid used. These findings are useful for explaining emulsification of silicone oil in ophthalmological applications.

  18. The use of biodegradable polymers in design of cellular scaffolds.

    Science.gov (United States)

    Orłowska, Joanna; Kurczewska, Urszula; Derwińska, Katarzyna; Orłowski, Wojciech; Orszulak-Michalak, Daria

    2015-03-05

    The objective of this work was to demonstrate the usage of biodegradable polymers, made of calcium alginate and dibutyrylchitin, in the design of cellular scaffolds having broad application in reconstructive therapy (dentistry, orthopedics). To visualize cells seeded on calcium alginate and dibutyrylchitin polymers DAPI staining of fibroblasts nuclei was used. The cytotoxicity of the materials and microscopic evaluation of the viability of seeded cells was tested with a PKH 67 fluorescent dye. To assess the cellular toxicity the proliferation of fibroblasts adjacent to the tested polymers was examined. The vitability of cells seeded on polymers was also evaluated by measuring the fluorescence intensity of calcein which binds only to live cells. The conducted experiments (DAPI and PKH 67 staining) show that the tested materials have a positive influence on cell adhesion crucial for wound healing - fibroblasts. The self-made dibutyrylchitin dressing do not cause the reduction of viability of cells seeded on them. The in vitro study illustrated the interactions between the tested materials, constructed of calcium alginate or dibutyrylchitin and mouse fibroblasts and proved their usefulness in the design of cellular scaffolds. Examined polymers turned out to be of great interest and promise for cellular scaffolds design.

  19. The use of biodegradable polymers in design of cellular scaffolds

    Directory of Open Access Journals (Sweden)

    Joanna Orłowska

    2015-03-01

    Full Text Available The objective of this work was to demonstrate the usage of biodegradable polymers, made of calcium alginate and dibutyrylchitin, in the design of cellular scaffolds having broad application in reconstructive therapy (dentistry, orthopedics. To visualize cells seeded on calcium alginate and dibutyrylchitin polymers DAPI staining of fibroblasts nuclei was used. The cytotoxicity of the materials and microscopic evaluation of the viability of seeded cells was tested with a PKH 67 fluorescent dye. To assess the cellular toxicity the proliferation of fibroblasts adjacent to the tested polymers was examined. The vitability of cells seeded on polymers was also evaluated by measuring the fluorescence intensity of calcein which binds only to live cells. The conducted experiments (DAPI and PKH 67 staining show that the tested materials have a positive influence on cell adhesion crucial for wound healing – fibroblasts. The self-made dibutyrylchitin dressing do not cause the reduction of viability of cells seeded on them. The in vitro study illustrated the interactions between the tested materials, constructed of calcium alginate or dibutyrylchitin and mouse fibroblasts and proved their usefulness in the design of cellular scaffolds. Examined polymers turned out to be of great interest and promise for cellular scaffolds design.

  20. Polylactic Acid Nanofiber Scaffold Decorated with Chitosan Islandlike Topography for Bone Tissue Engineering.

    Science.gov (United States)

    Xu, Ting; Yang, Hongyang; Yang, Dongzhi; Yu, Zhong-Zhen

    2017-06-28

    In this work, a bicomponent scaffold with a core-shell and islandlike structure that combines the respective advantages of polylactic acid (PLA) and chitosan (CS) was prepared via electrospinning accompanied by automatic phase separation and crystallization. The objective of this research was to design nanosized topography with highly bioactive CS onto PLA electrospun fiber surface to improve the cell biocompatibility of the PLA fibrous membrane. The morphology, inner structure, surface composition, crystallinity, and thermodynamic analyses of nanofibers with various PLA/CS ratios were carried out, and the turning mechanism of a core-shell or islandlike topography structure was also speculated. The mineralization of hydroxyapatite and culture results of preosteoblast (MC3T3-E1) cells on the modified scaffolds indicate that the outer CS component and rough nanoscale topography on the surface of the nanofibers balanced the hydrophilicity and hydrophobicity of the fibers, enhanced their mineralization ability, and made them more beneficial for the attachment and growth of cells. Moreover, CS and "islandlike" protrusions on the fiber surface increased the alkaline phosphatase activity of the MC3T3-E1 cells seeded on the fibrous membrane and provided a more appropriate interface for cell adhesion and proliferation. These results illustrate that this kind of PLA/CS membrane has the potential in tissue engineering. More importantly, our study provides a new approach to designing PLA scaffolds, with combined topographic and bioactive modification effects at the interface between cells and materials, for biomedicine.

  1. Uniform tissues engineered by seeding and culturing cells in 3D scaffolds under perfusion at defined oxygen tensions.

    Science.gov (United States)

    Wendt, D; Stroebel, S; Jakob, M; John, G T; Martin, I

    In this work, we assessed whether culture of uniformly seeded chondrocytes under direct perfusion, which supplies the cells with normoxic oxygen levels, can maintain a uniform distribution of viable cells throughout porous scaffolds several milimeters in thickness, and support the development of uniform tissue grafts. An integrated bioreactor system was first developed to streamline the steps of perfusion cell seeding of porous scaffolds and perfusion culture of the cell-seeded scaffolds. Oxygen tensions in perfused constructs were monitored by in-line oxygen sensors incorporated at the construct inlet and outlet. Adult human articular chondrocytes were perfusion-seeded into 4.5 mm thick foam scaffolds at a rate of 1 mm/s. Cell-seeded foams were then either cultured statically in dishes or further cultured under perfusion at a rate of 100 microm/s for 2 weeks. Following perfusion seeding, viable cells were uniformly distributed throughout the foams. Constructs subsequently cultured statically were highly heterogeneous, with cells and matrix concentrated at the construct periphery. In contrast, constructs cultured under perfusion were highly homogeneous, with uniform distributions of cells and matrix. Oxygen tensions of the perfused medium were maintained near normoxic levels (inlet congruent with 20%, outlet > 15%) at all times of culture. We have demonstrated that perfusion culture of cells seeded uniformly within porous scaffolds, at a flow rate maintaining a homogeneous oxygen supply, supports the development of uniform engineering tissue grafts of clinically relevant thicknesses.

  2. Poly-L-lactide acid-modified scaffolds for osteoinduction and osteoconduction.

    Science.gov (United States)

    Bosetti, M; Fusaro, L; Nicolì, E; Borrone, A; Aprile, S; Cannas, M

    2014-10-01

    Poly-L-lactide acid (PLLA) scaffold has been modified to enhance its osteoconductive and osteoinductive properties in view of a bone tissue engineering application. Two approaches have been followed: (i) coating with laminin or fibronectin and (ii) grafting with arginine-glycine-aspatic acid (RGD) or SIKVAV peptides. Moreover we have added a bioactive molecule 1,25-(OH)₂ D3 into the scaffold that shows better cellular interaction to implement osteoinduction and osteogenesis. The two coatings promoted only cell adhesion in the very short term while even if grafted scaffolds had cell seeding efficiency similar to ungrafted PLLA, the grafted ones supported better the proliferation of seeded human osteoblast (hOB) and human mesenchymal stem cells (hMSCs) over 1 week of culture. Our data showed that in view of bone integration and bone regeneration, PLLA grafting with RGD can be considered a good substrate to induce hOB adhesion and proliferation but having no significant effect on the osteogenic induction, the scaffold has to be reinforced with osteoinductive molecules. It can be concluded from reverse transcriptase polymerase chain reaction results, alkaline phosphatase activity and mineralization assays that 1,25(OH)₂ D3 reinforced RGD-PLLA keeps increased cell proliferation supported by an upregulation of the studied osteogenic markers and induced hMSCs differentiation into osteoblasts demonstrating osteoinductivity and osteoconductivity of the new formulated scaffold. These results can lead to a future application of RGD-D3-PLLA as an osteogenic material for bone replacement.. © 2013 Wiley Periodicals, Inc.

  3. [Selective Laser Sintering-produced porous titanium alloy scaffold for bone tissue engineering].

    Science.gov (United States)

    Ding, Ran; Wu, Zhihong; Qiu, Guixing; Wu, Gui; Wang, Hai; Su, Xinlin; Yin, Bo; Ma, Shuo; Qi, Bing

    2014-05-20

    To evaluate the biocompatibility of SLS-produced titanium alloy scaffold in vitro and investigate the therapeutic effects in repairing segmental bone defects. Porous titanium alloy scaffolds were produced by SLS and their surfaces were either left untreated or acid etched. In vitro, mouse pre-osteoblasts (MC3T3-E1 cells) were cultured on these 2 group scaffolds, and then cell proliferation and differentiation were examined after cell seeding. In vivo, bone defects were artificially made in 15 New Zealand rabbits and the porous titanium specimens were implanted into the radius of rabbits for 3 months. The regulating checks of X-ray were determined. The osteointegration of the implants was investigated by Micro-CT and histological examination at 12 weeks after surgery. A gradual increase in cell-specific ALP synthesis by cells cultured in both groups was observed with longer culture time (14 d). ALP activity did not differ significantly between two groups (0.834 ± 0.092 vs 0.815 ± 0.081, P > 0.05) . Both Micro-CT and the histological analysis indicated that the titanium alloy scaffolds had excellent ability to facilitate the osteointegration in vivo. The results were significantly different between the empty control and the 2 different surface modifications of SLS-implants (25.4% ± 4.2% vs 23.6% ± 8.4% vs 12.3% ± 4.7%, P 0.05). Selective Laser Sintering-Produced porous titanium alloy scaffold possessed admirable biocompatibility in vitro. It also could be contributed to the healing of long tulular bone defect. The porous Ti6Al4V implant not only reduced the stress-shielding but also exerted appropriate osteoconductive properties.

  4. Microporous Nanofibrous Fibrin-based Scaffolds for Bone Tissue Engineering

    Science.gov (United States)

    Osathanon, Thanaphum; Linnes, Michael L.; Rajachar, Rupak M.; Ratner, Buddy D.; Somerman, Martha J.; Giachelli, Cecilia M.

    2008-01-01

    The fibrotic response of the body to synthetic polymers limits their success in tissue engineering and other applications. Though porous polymers have demonstrated improved healing, difficulty in controlling their pore sizes and pore interconnections has clouded the understanding of this phenomenon. In this study, a novel method to fabricate natural polymer/calcium phosphate composite scaffolds with tightly controllable pore size, pore interconnection, and calcium phosphate deposition was developed. Microporous, nanofibrous fibrin scaffolds were fabricated using sphere-templating methods. Composite scaffolds were created by solution deposition of calcium phosphate on fibrin surfaces or by direct incorporation of nanocrystalline hydroxyapatite (nHA). The SEM results showed that fibrin scaffolds exhibited a highly porous and interconnected structure. Osteoblast-like cells, obtained from murine calvaria, attached, spread and showed a polygonal morphology on the surface of the biomaterial. Multiple cell layers and fibrillar matrix deposition were observed. Moreover, cells seeded on mineralized fibrin scaffolds exhibited significantly higher alkaline phosphatase activity as well as osteoblast marker gene expression compared to fibrin scaffolds and nHA incorporated fibrin scaffolds (0.25 g and 0.5 g). All types of scaffolds were degraded both in vitro and in vivo. Furthermore, these scaffolds promoted bone formation in a mouse calvarial defect model and the bone formation was enhanced by addition of rhBMP-2. PMID:18640716

  5. Increased proliferation and adhesion properties of human dental pulp stem cells in PLGA scaffolds via simulated microgravity.

    Science.gov (United States)

    He, L; Pan, S; Li, Y; Zhang, L; Zhang, W; Yi, H; Song, C; Niu, Y

    2016-02-01

    To explore the possibility of utilizing a rotary cell culture system (RCCS) to model simulated microgravity and investigate its effects on the proliferation, adhesion, migration and cytoskeletal organization of human dental pulp stem cells (hDPSCs) on poly (lactic-co-glycolic acid) (PLGA) scaffolds. Isolated and identified hDPSCs grown on PLGA scaffolds were exposed to simulated microgravity (SMG) or normal gravity (NG) conditions for 3 days. MTT cell proliferation assays, BrdU incorporation assays, flow cytometry analysis and Western blotting were undertaken to identify the proliferation ability of hDPSCs under SMG conditions. Additionally, immunofluorescence detection, SEM observations and cell migration and adhesion assays were performed to compare adhesion, migration and cytoskeletal changes in hDPCSs subjected to SMG conditions. To further investigate the mechanisms, human pathway-focused matrix and adhesion PCR array analyses were performed. The Student's t-test was used for statistical analyses. SMG promoted proliferation and adhesion, decreased migration and reorganized the cytoskeletal organization of hDPSCs compared with the NG group. PCR array analyses revealed that following SMG treatment, ITGA6 (integrin alpha-6), ITGAV (integrin alpha-V), ITGB1 (integrin beta-1), LAMB1 (laminin beta-1) and TNC (tenascin-C) were significantly upregulated (P adhesion. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  6. Design and Functional Testing of a Multichamber Perfusion Platform for Three-Dimensional Scaffolds

    Directory of Open Access Journals (Sweden)

    Marco Piola

    2013-01-01

    Full Text Available Perfusion culture systems are widely used in tissue engineering applications for enhancing cell culture viability in the core of three-dimensional scaffolds. In this work, we present a multichamber confined-flow perfusion system, designed to provide a straightforward platform for three-dimensional dynamic cell cultures. The device comprises 6 culture chambers allowing independent and simultaneous experiments in controlled conditions. Each chamber consists of three parts: a housing, a deformable scaffold-holder cartridge, and a 7 mL reservoir, which couples water-tightly with the housing compressing the cartridge. Short-term dynamic cell seeding experiments were carried out with MC3T3-E1 cells seeded into polycaprolactone porous scaffolds. Preliminary results revealed that the application of flow perfusion through the scaffold favored the penetration of the cells to its interior, producing a more homogeneous distribution of cells with respect to dropwise or injection seeding methods. The culture chamber layout was conceived with the aim of simplifying the user operations under laminar flow hood and minimizing the risks for contamination during handling and operation. Furthermore, a compact size, a small number of components, and the use of bayonet couplings ensured a simple, fast, and sterility-promoting assembling. Finally, preliminary in vitro tests proved the efficacy of the system in enhancing cell seeding efficiency, opening the way for further studies addressing long-term scaffold colonization.

  7. Design and functional testing of a multichamber perfusion platform for three-dimensional scaffolds.

    Science.gov (United States)

    Piola, Marco; Soncini, Monica; Cantini, Marco; Sadr, Nasser; Ferrario, Giulio; Fiore, Gianfranco B

    2013-01-01

    Perfusion culture systems are widely used in tissue engineering applications for enhancing cell culture viability in the core of three-dimensional scaffolds. In this work, we present a multichamber confined-flow perfusion system, designed to provide a straightforward platform for three-dimensional dynamic cell cultures. The device comprises 6 culture chambers allowing independent and simultaneous experiments in controlled conditions. Each chamber consists of three parts: a housing, a deformable scaffold-holder cartridge, and a 7 mL reservoir, which couples water-tightly with the housing compressing the cartridge. Short-term dynamic cell seeding experiments were carried out with MC3T3-E1 cells seeded into polycaprolactone porous scaffolds. Preliminary results revealed that the application of flow perfusion through the scaffold favored the penetration of the cells to its interior, producing a more homogeneous distribution of cells with respect to dropwise or injection seeding methods. The culture chamber layout was conceived with the aim of simplifying the user operations under laminar flow hood and minimizing the risks for contamination during handling and operation. Furthermore, a compact size, a small number of components, and the use of bayonet couplings ensured a simple, fast, and sterility-promoting assembling. Finally, preliminary in vitro tests proved the efficacy of the system in enhancing cell seeding efficiency, opening the way for further studies addressing long-term scaffold colonization.

  8. Plasma treatment induces internal surface modifications of electrospun poly(L-lactic) acid scaffold to enhance protein coating

    Energy Technology Data Exchange (ETDEWEB)

    Jin Seo, Hyok; Hee Lee, Mi; Kwon, Byeong-Ju; Kim, Hye-Lee; Park, Jong-Chul [Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Jin Lee, Seung [Department of Industrial Pharmacy, College of Pharmacy, Ewha Womans University, Seoul 120-750 (Korea, Republic of); Kim, Bong-Jin; Wang, Kang-Kyun; Kim, Yong-Rok [Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of)

    2013-08-21

    Advanced biomaterials should also be bioactive with regard to desirable cellular responses, such as selective protein adsorption and cell attachment, proliferation, and differentiation. To enhance cell-material interactions, surface modifications have commonly been performed. Among the various surface modification approaches, atmospheric pressure glow discharge plasma has been used to change a hydrophobic polymer surface to a hydrophilic surface. Poly(L-lactic acid) (PLLA)-derived scaffolds lack cell recognition signals and the hydrophobic nature of PLLA hinders cell seeding. To make PLLA surfaces more conducive to cell attachment and spreading, surface modifications may be used to create cell-biomaterial interfaces that elicit controlled cell adhesion and maintain differentiated phenotypes. In this study, (He) gaseous atmospheric plasma glow discharge was used to change the characteristics of a 3D-type polymeric scaffold from hydrophobic to hydrophilic on both the outer and inner surfaces of the scaffold and the penetration efficiency with fibronectin was investigated. Field-emission scanning electron microscope images showed that some grooves were formed on the PLLA fibers after plasma treatment. X-ray photoelectron spectroscopy data also showed chemical changes in the PLLA structure. After plasma treatment, -CN (285.76 eV) was increased in C1s and -NH{sub 2} (399.70 eV) was increased significantly and –N=CH (400.80 eV) and –NH{sub 3}{sup +} (402.05 eV) were newly appeared in N1s. These changes allowed fibronectin to penetrate into the PLLA scaffold; this could be observed by confocal microscopy. In conclusion, helium atmospheric pressure plasma treatment was effective in modifying the polymeric scaffold, making it hydrophilic, and this treatment can also be used in tissue engineering research as needed to make polymers hydrophilic.

  9. Influence of endothelial cell seeding on platelet deposition and patency in small-diameter Dacron arterial grafts

    Energy Technology Data Exchange (ETDEWEB)

    Allen, B.T.; Long, J.A.; Clark, R.E.; Sicard, G.A.; Hopkins, K.T.; Welch, M.J.

    1984-01-01

    Serial platelet deposition, surface topography, and patency were evaluated in control (N . 28) and endothelial cell-seeded (N . 28) small-diameter (4 mm inner diameter) USCI Dacron grafts implanted in the carotid and femoral arteries of dogs. All dogs received aspirin (325 mg) daily for 2 weeks starting 24 hours prior to graft implantation. Endothelial cell seeding was performed by mixing suspensions of autologous endothelial cells that had been enzymatically harvested from segments of external jugular vein with blood that was used to preclot the prostheses. The platelet deposition on each graft was quantitated by means of indium 111-labeled platelets and technetium 99m-labeled red cells in a dual-isotope platelet-imaging technique. Platelet deposition on seeded grafts 24 hours after implantation was significantly higher than on the controls (p less than 0.05). Two weeks after implantation platelet deposition on seeded prostheses had decreased to a level significantly lower than that on the controls and continued to decline on serial studies up to 7 months. In contrast to seeded grafts, platelet accumulation on control grafts dramatically increased after the withdrawal of aspirin therapy and was associated with a sharp rise in control graft thromboses. Cumulative 7-month patency for seeded prostheses was significantly higher than for the controls (96% and 29%, respectively; p less than 0.001). We conclude that endothelial cell seeding in combination with short-term aspirin therapy is a simple, reliable diameter Dacron prostheses. Abrupt withdrawal of aspirin therapy may be contraindicated in nonseeded control grafts because it results in increased platelet deposition and thrombosis.

  10. Integrating K-W-L Prompts into Science Journal Writing: Can Simple Question Scaffolding Increase Student Content Knowledge?

    Science.gov (United States)

    Wagner, Brandon Joel

    Writing-to-learn strategies have been administered in the past to enrich student learning. The purpose of this study was to see if K-W-L prompts in science journal writing could benefit student content knowledge within biology. Two high school biology classes were provided with learning journals. The journals given to the students during the treatment unit were provided with K-W-L question prompts to guide student learning while during the comparison unit students were given an open ended writing assignment. Pre and posttests were administered to determine student-learning gains. Student motivations and opinions of the treatment were collected through student interviews. The combined results were used to determine to what extent could K-W-L prompts in science journal writing influence comprehension of content knowledge. This study found there to be no difference in student learning gains when utilizing the K-W-L literacy strategy versus another free-writing activity. When scored, student K-W-Ls total scores did correlate to student success on unit tests. This opens up the potential for K-W-Ls to serve as an adequate tool for formative assessment. Here the K-W-L could be expanded to enrich student question asking, potentially aid students learning English, and potentially be used by students without teacher scaffolding.

  11. Scaffolded biology.

    Science.gov (United States)

    Minelli, Alessandro

    2016-09-01

    Descriptions and interpretations of the natural world are dominated by dichotomies such as organism vs. environment, nature vs. nurture, genetic vs. epigenetic, but in the last couple of decades strong dissatisfaction with those partitions has been repeatedly voiced and a number of alternative perspectives have been suggested, from perspectives such as Dawkins' extended phenotype, Turner's extended organism, Oyama's Developmental Systems Theory and Odling-Smee's niche construction theory. Last in time is the description of biological phenomena in terms of hybrids between an organism (scaffolded system) and a living or non-living scaffold, forming unit systems to study processes such as reproduction and development. As scaffold, eventually, we can define any resource used by the biological system, especially in development and reproduction, without incorporating it as happens in the case of resources fueling metabolism. Addressing biological systems as functionally scaffolded systems may help pointing to functional relationships that can impart temporal marking to the developmental process and thus explain its irreversibility; revisiting the boundary between development and metabolism and also regeneration phenomena, by suggesting a conceptual framework within which to investigate phenomena of regular hypermorphic regeneration such as characteristic of deer antlers; fixing a periodization of development in terms of the times at which a scaffolding relationship begins or is terminated; and promoting plant galls to legitimate study objects of developmental biology.

  12. Cross-linking affects cellular condensation and chondrogenesis in type II collagen-GAG scaffolds seeded with bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Vickers, Scott M; Gotterbarm, Tobias; Spector, Myron

    2010-09-01

    The formation of cartilaginous tissue by chondroprogenitor cells, whether in vivo or in vitro, appears to require a critical initial stage of "condensation" in which intercellular space is reduced through an aggregation of cells, leading to development of cell-to-cell junctions followed by chondrocytic differentiation. The objective of this study was to investigate the association of aggregation (condensation) of mesenchymal stem cell (MSCs) and chondrogenesis in vitro. Previous work with chondrocytes indicated that the cross-link density and related cell-mediated contraction of collagen scaffolds significantly affects cartilaginous tissue formation within the cell-seeded construct. Based on this finding, we hypothesized that the cell-aggregating effect of the contraction of MSC-seeded collagen scaffolds of lower cross-link density favors chondrogenesis; scaffolds of higher cross-link density, which resist cell-mediated contraction, would demonstrate a lower cell number density (i.e., subcritical packing density) and less cartilage formation. Type II collagen-GAG scaffolds, chemically cross-linked to achieve a range of cross-link densities, were seeded with caprine MSCs and cultured for 4 weeks. Constructs with low cross-link densities experienced cell-mediated contraction, increased cell number densities, and a greater degree of chondrogenesis (indicated by the chondrocytic morphology of cells, and synthesis of GAG and type II collagen) compared to more highly cross-linked scaffolds that resisted cellular contraction. These results provide a foundation for further investigation of the mechanisms by which condensation of mesenchymal cells induces chondrogenesis in this in vitro model, and may inform cross-linking protocols for collagen scaffolds for use in cartilage tissue engineering. (c) 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  13. Nonviral Gene Delivery from Nonwoven Fibrous Scaffolds Fabricated by Interfacial Complexation of Polyelectrolytes

    Science.gov (United States)

    Lim, Shawn H.; Liao, I-Chien; Leong, Kam W.

    2008-01-01

    We investigated a novel nonwoven fibrous scaffold as a vehicle for delivery of DNA. Fibers were formed by polyelectrolyte complexation of water-soluble chitin and alginate, and PEI–DNA nanoparticles were encapsulated during the fiber drawing process. Nanoparticles released from the fibers over time retained their bioactivity and successfully transfected cells seeded on the scaffold in a sustained manner. Transgene expression in HEK293 cells and human dermal fibroblasts seeded on the transfecting scaffolds was significant even after 2 weeks of culture compared to 3-day expression in two-dimensional controls. Fibroblasts seeded on scaffolds containing DNA encoding basic fibroblast growth factor (bFGF) demonstrated prolonged secretion of bFGF at levels significantly higher than baseline. This work establishes the potential of this fibrous scaffold as a matrix capable of delivering genes to direct and support cellular development in tissue engineering. PMID:16497560

  14. Effects of initial cell seeding in self assembly of articular cartilage.

    Science.gov (United States)

    Revell, Christopher M; Reynolds, Catherine E; Athanasiou, Kyriacos A

    2008-09-01

    Current forays into tissue engineering of articular cartilage in vitro using the self-assembling method have produced constructs possessing significant extracellular matrix and resulting mechanical properties. However, large numbers of native articular chondrocytes are necessary to produce functional engineered cartilage; all previous work with the self-assembling process has used 5.5 x 10(6) cells/construct. In this study, the effects of initial cell seeding (0.25-11 x 10(6) cells/construct) on tissue quality were investigated. Results showed that tissue engineered articular cartilage was formed, when using at least 2 million cells/construct, possessing dimensional, compositional, and compressive properties approaching those of native tissue. It was noted that higher seeding contributed to thicker constructs with larger diameters and had a significant effect on resulting biochemical and biomechanical properties. It was further observed that aggregate modulus increased with increased seeding. By combining gross morphological, histological, biochemical, and biomechanical results, an optimal initial seeding for the self-assembling process of 3.75 x 10(6) cells/construct was identified. This finding enhances the translatability of this tissue engineering process by reducing the number of cells needed for tissue engineering of articular cartilage by 32% while maintaining essential tissue properties.

  15. Semiotic scaffolding

    DEFF Research Database (Denmark)

    Hoffmeyer, Jesper

    2015-01-01

    implies that genes do not control the life of organisms, they merely scaffold it. The nature-nurture dynamics is thus far more complex and open than is often claimed. Contrary to physically based interactions, semiotic interactions do not depend on any direct causal connection between the sign vehicle......Life processes at all levels (from the genetic to the behavioral) are coordinated by semiotic interactions between cells, tissues, membranes, organs, or individuals and tuned through evolution to stabilize important functions. A stabilizing dynamics based on a system of semiotic scaffoldings...... (the representamen) and the effect. Semiotic interaction patterns therefore provide fast and versatile mechanisms for adaptations, mechanisms that depend on communication and “learning” rather than on genetic preformation. Seen as a stabilizing agency supporting the emergence of higher-order structure...

  16. Cryopreservation of Cell/Scaffold Tissue-Engineered Constructs

    Science.gov (United States)

    Costa, Pedro F.; Dias, Ana F.; Reis, Rui L.

    2012-01-01

    The aim of this work was to study the effect of cryopreservation over the functionality of tissue-engineered constructs, analyzing the survival and viability of cells seeded, cultured, and cryopreserved onto 3D scaffolds. Further, it also evaluated the effect of cryopreservation over the properties of the scaffold material itself since these are critical for the engineering of most tissues and in particular, tissues such as bone. For this purpose, porous scaffolds, namely fiber meshes based on a starch and poly(caprolactone) blend were seeded with goat bone marrow stem cells (GBMSCs) and cryopreserved for 7 days. Discs of the same material seeded with GBMSCs were also used as controls. After this period, these samples were analyzed and compared to samples collected before the cryopreservation process. The obtained results demonstrate that it is possible to maintain cell viability and scaffolds properties upon cryopreservation of tissue-engineered constructs based on starch scaffolds and goat bone marrow mesenchymal cells using standard cryopreservation methods. In addition, the outcomes of this study suggest that the greater porosity and interconnectivity of scaffolds favor the retention of cellular content and cellular viability during cryopreservation processes, when compared with nonporous discs. These findings indicate that it might be possible to prepare off-the-shelf engineered tissue substitutes and preserve them to be immediately available upon request for patients' needs. PMID:22676448

  17. Mesoporous silica particle-PLA-PANI hybrid scaffolds for cell-directed intracellular drug delivery and tissue vascularization

    Science.gov (United States)

    Shokry, Hussein; Vanamo, Ulriika; Wiltschka, Oliver; Niinimäki, Jenni; Lerche, Martina; Levon, Kalle; Linden, Mika; Sahlgren, Cecilia

    2015-08-01

    Instructive materials are expected to revolutionize stem cell based tissue engineering. As many stem cell cues have adverse effects on normal tissue homeostasis, there is a need to develop bioactive scaffolds which offer locally retained and cell-targeted drug delivery for intracellular release in targeted cell populations. Further, the scaffolds need to support vascularization to promote tissue growth and function. We have developed an electrospun PLA-PANI fiber scaffold, and incorporated mesoporous silica nanoparticles within the scaffold matrix to obtain cell-targeted and localized drug delivery. The isotropy of the scaffold can be tuned to find the optimal morphology for a given application and the scaffold is electroactive to support differentiation of contractile tissues. We demonstrate that there is no premature drug release from particles under physiological conditions over a period of one week and that the drug is released upon internalization of particles by cells within the scaffold. The scaffold is biocompatible, supports muscle stem cell differentiation and cell-seeded scaffolds are vascularized in vivo upon transplantation on the chorioallantoic membrane of chicken embryos. The scaffold is a step towards instructive biomaterials for local control of stem cell differentiation, and tissue formation supported by vascularization and without adverse effects on the homeostasis of adjacent tissues due to diffusion of biological cues.Instructive materials are expected to revolutionize stem cell based tissue engineering. As many stem cell cues have adverse effects on normal tissue homeostasis, there is a need to develop bioactive scaffolds which offer locally retained and cell-targeted drug delivery for intracellular release in targeted cell populations. Further, the scaffolds need to support vascularization to promote tissue growth and function. We have developed an electrospun PLA-PANI fiber scaffold, and incorporated mesoporous silica nanoparticles within

  18. Osteoinduction and survival of osteoblasts and bone-marrow stromal cells in 3D biphasic calcium phosphate scaffolds under static and dynamic culture conditions.

    Science.gov (United States)

    Rath, Subha N; Strobel, Leonie A; Arkudas, Andreas; Beier, Justus P; Maier, Anne-Kathrin; Greil, Peter; Horch, Raymund E; Kneser, Ulrich

    2012-10-01

    In many tissue engineering approaches, the basic difference between in vitro and in vivo conditions for cells within three-dimensional (3D) constructs is the nutrition flow dynamics. To achieve comparable results in vitro, bioreactors are advised for improved cell survival, as they are able to provide a controlled flow through the scaffold. We hypothesize that a bioreactor would enhance long-term differentiation conditions of osteogenic cells in 3D scaffolds. To achieve this either primary rat osteoblasts or bone marrow stromal cells (BMSC) were implanted on uniform-sized biphasic calcium phosphate (BCP) scaffolds produced by a 3D printing method. Three types of culture conditions were applied: static culture without osteoinduction (Group A); static culture with osteoinduction (Group B); dynamic culture with osteoinduction (Group C). After 3 and 6 weeks, the scaffolds were analysed by alkaline phosphatase (ALP), dsDNA amount, SEM, fluorescent labelled live-dead assay, and real-time RT-PCR in addition to weekly alamarBlue assays. With osteoinduction, increased ALP values and calcium deposition are observed; however, under static conditions, a significant decrease in the cell number on the biomaterial is observed. Interestingly, the bioreactor system not only reversed the decreased cell numbers but also increased their differentiation potential. We conclude from this study that a continuous flow bioreactor not only preserves the number of osteogenic cells but also keeps their differentiation ability in balance providing a suitable cell-seeded scaffold product for applications in regenerative medicine. © 2012 The Authors Journal of Cellular and Molecular Medicine © 2012 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  19. Bone Tissue Engineering with Adipose-Derived Stem Cells in Bioactive Composites of Laser-Sintered Porous Polycaprolactone Scaffolds and Platelet-Rich Plasma

    Directory of Open Access Journals (Sweden)

    Han-Tsung Liao

    2013-10-01

    Full Text Available Three-dimensional porous polycaprolactone (PCL scaffolds with consistent inter-pore channels, 83% porosity and 300–400 μm pore size were fabricated via selective laser sintering. The PCL scaffold was combined with platelet-rich plasma (PRP to form a bioactive composite and studied for potential application in bone tissue engineering using porcine adipose-derived stem cells (PASCs. The PCL/PRP/PASCs construct showed enhanced cell seeding efficiency and synergistically increased the differentiation capability of PASCs in osteogenic medium toward the osteoblast lineage, judging from elevated alkaline phosphatase activity and up-regulated osteogenic genes expression. For in vivo study, a 3 cm × 3 cm mandible defect was created in pigs and reconstructed by implanting acellular PCL scaffolds or PCL/PRP/PASCs constructs. Both groups showed new bone formation, however, the new bone volume was 5.1 times higher for PCL/PRP/PASCs 6 months post-operation. The bone density was less and loose in the acellular PCL group and the Young’s modulus was only 29% of normal bone. In contrast, continued and compact bone formation was found in PCL/PRP/PASCs and the Young’s modulus was 81% that of normal bone. Masson’s trichrome stain, immunohistochemical analysis of osteocalcin and collagen type I also confirmed new bone formation.

  20. Fabrication and characterization of scaffold from cadaver goat-lung tissue for skin tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Sweta K. [Department of Polymer and Process Engineering, Indian Institute of Technology, Roorkee (India); Dinda, Amit K. [Department of Pathology, All India Institute of Medical Sciences, New Delhi (India); Potdar, Pravin D. [Department of Molecular Medicine, Jaslok Hospital and Research Centre, Mumbai (India); Mishra, Narayan C., E-mail: mishrawise@gmail.com [Department of Polymer and Process Engineering, Indian Institute of Technology, Roorkee (India)

    2013-10-15

    The present study aims to fabricate scaffold from cadaver goat-lung tissue and evaluate it for skin tissue engineering applications. Decellularized goat-lung scaffold was fabricated by removing cells from cadaver goat-lung tissue enzymatically, to have cell-free 3D-architecture of natural extracellular matrix. DNA quantification assay and Hematoxylin and eosin staining confirmed the absence of cellular material in the decellularized lung-tissue. SEM analysis of decellularized scaffold shows the intrinsic porous structure of lung tissue with well-preserved pore-to-pore interconnectivity. FTIR analysis confirmed non-denaturation and well maintainance of collagenous protein structure of decellularized scaffold. MTT assay, SEM analysis and H and E staining of human skin-derived Mesenchymal Stem cell, seeded over the decellularized scaffold, confirms stem cell attachment, viability, biocompatibility and proliferation over the decellularized scaffold. Expression of Keratin18 gene, along with CD105, CD73 and CD44, by human skin-derived Mesenchymal Stem cells over decellularized scaffold signifies that the cells are viable, proliferating and migrating, and have maintained their critical cellular functions in the presence of scaffold. Thus, overall study proves the applicability of the goat-lung tissue derived decellularized scaffold for skin tissue engineering applications. - Highlights: • We successfully fabricated decellularized scaffold from cadaver goat-lung tissue. • Decellularized goat-lung scaffolds were found to be highly porous. • Skin derived MSC shows high cell viability and proliferation over the scaffold. • Phenotype of MSCs was well maintained over the scaffold. • The scaffold shows potential for applications in skin tissue engineering.

  1. Long-term results of cell-free biodegradable scaffolds for in situ tissue-engineering vasculature: in a canine inferior vena cava model.

    Directory of Open Access Journals (Sweden)

    Goki Matsumura

    Full Text Available We have developed a new biodegradable scaffold that does not require any cell seeding to create an in-situ tissue-engineering vasculature (iTEV. Animal experiments were conducted to test its characteristics and long-term efficacy. An 8-mm tubular biodegradable scaffold, consisting of polyglycolide knitted fibers and an L-lactide and ε-caprolactone copolymer sponge with outer glycolide and ε-caprolactone copolymer monofilament reinforcement, was implanted into the inferior vena cava (IVC of 13 canines. All the animals remained alive without any major complications until euthanasia. The utility of the iTEV was evaluated from 1 to 24 months postoperatively. The elastic modulus of the iTEV determined by an intravascular ultrasound imaging system was about 90% of the native IVC after 1 month. Angiography of the iTEV after 2 years showed a well-formed vasculature without marked stenosis or thrombosis with a mean pressure gradient of 0.51 ± 0.19 mmHg. The length of the iTEV at 2 years had increased by 0.48 ± 0.15 cm compared with the length of the original scaffold (2-3 cm. Histological examinations revealed a well-formed vessel-like vasculature without calcification. Biochemical analyses showed no significant differences in the hydroxyproline, elastin, and calcium contents compared with the native IVC. We concluded that the findings shown above provide direct evidence that the new scaffold can be useful for cell-free tissue-engineering of vasculature. The long-term results revealed that the iTEV was of good quality and had adapted its shape to the needs of the living body. Therefore, this scaffold would be applicable for pediatric cardiovascular surgery involving biocompatible materials.

  2. Additive Manufacturing of Patient-Customizable Scaffolds for Tubular Tissues Using the Melt-Drawing Method

    Directory of Open Access Journals (Sweden)

    Yu Jun Tan

    2016-11-01

    Full Text Available Polymeric fibrous scaffolds for guiding cell growth are designed to be potentially used for the tissue engineering (TE of tubular organs including esophagi, blood vessels, tracheas, etc. Tubular scaffolds were fabricated via melt-drawing of highly elastic poly(l-lactide-co-ε-caprolactone (PLC fibers layer-by-layer on a cylindrical mandrel. The diameter and length of the scaffolds are customizable via 3D printing of the mandrel. Thickness of the scaffolds was varied by changing the number of layers of the melt-drawing process. The morphology and tensile properties of the PLC fibers were investigated. The fibers were highly aligned with a uniform diameter. Their diameters and tensile properties were tunable by varying the melt-drawing speeds. These tailorable topographies and tensile properties show that the additive-based scaffold fabrication technique is customizable at the micro- and macro-scale for different tubular tissues. The merits of these scaffolds in TE were further shown by the finding that myoblast and fibroblast cells seeded onto the scaffolds in vitro showed appropriate cell proliferation and distribution. Human mesenchymal stem cells (hMSCs differentiated to smooth muscle lineage on the microfibrous scaffolds in the absence of soluble induction factors, showing cellular shape modulation and scaffold elasticity may encourage the myogenic differentiation of stem cells.

  3. Physicochemical and Microstructural Characterization of Injectable Load-Bearing Calcium Phosphate Scaffold

    Directory of Open Access Journals (Sweden)

    Mazen Alshaaer

    2013-01-01

    Full Text Available Injectable load-bearing calcium phosphate scaffolds are synthesized using rod-like mannitol grains as porogen. These degradable injectable strong porous scaffolds, prepared by calcium phosphate cement, could represent a valid solution to achieve adequate porosity requirements while providing adequate support in load-bearing applications. The proposed process for preparing porous injectable scaffolds is as quick and versatile as conventional technologies. Using this method, porous CDHA-based calcium phosphate scaffolds with macropores sizes ranging from 70 to 300 μm, micropores ranging from 5 to 30 μm, and 30% open macroporosity were prepared. The setting time of the prepared scaffolds was 15 minutes. Also their compressive strength and e-modulus, 4.9 MPa and 400 MPa, respectively, were comparable with those of the cancellous bone. Finally, the bioactivity of the scaffolds was confirmed by cell growth with cytoplasmic extensions in the scaffolds in culture, demonstrating that the scaffold has a potential for MSC seeding and growth architecture. This combination of an interconnected macroporous structure with pore size suitable for the promotion of cell seeding and proliferation, plus adequate mechanical features, represents a porous scaffold which is a promising candidate for bone tissue engineering.

  4. PLDLA/PCL-T Scaffold for Meniscus Tissue Engineering.

    Science.gov (United States)

    Esposito, Andrea Rodrigues; Moda, Marlon; Cattani, Silvia Mara de Melo; de Santana, Gracy Mara; Barbieri, Juliana Abreu; Munhoz, Monique Moron; Cardoso, Túlio Pereira; Barbo, Maria Lourdes Peris; Russo, Teresa; D'Amora, Ugo; Gloria, Antonio; Ambrosio, Luigi; Duek, Eliana Aparecida de Rezende

    2013-04-01

    The inability of the avascular region of the meniscus to regenerate has led to the use of tissue engineering to treat meniscal injuries. The aim of this study was to evaluate the ability of fibrochondrocytes preseeded on PLDLA/PCL-T [poly(L-co-D,L-lactic acid)/poly(caprolactone-triol)] scaffolds to stimulate regeneration of the whole meniscus. Porous PLDLA/PCL-T (90/10) scaffolds were obtained by solvent casting and particulate leaching. Compressive modulus of 9.5±1.0 MPa and maximum stress of 4.7±0.9 MPa were evaluated. Fibrochondrocytes from rabbit menisci were isolated, seeded directly on the scaffolds, and cultured for 21 days. New Zealand rabbits underwent total meniscectomy, after which implants consisting of cell-free scaffolds or cell-seeded scaffolds were introduced into the medial knee meniscus; the negative control group consisted of rabbits that received no implant. Macroscopic and histological evaluations of the neomeniscus were performed 12 and 24 weeks after implantation. The polymer scaffold implants adapted well to surrounding tissues, without apparent rejection, infection, or chronic inflammatory response. Fibrocartilaginous tissue with mature collagen fibers was observed predominantly in implants with seeded scaffolds compared to cell-free implants after 24 weeks. Similar results were not observed in the control group. Articular cartilage was preserved in the polymeric implants and showed higher chondrocyte cell number than the control group. These findings show that the PLDLA/PCL-T 90/10 scaffold has potential for orthopedic applications since this material allowed the formation of fibrocartilaginous tissue, a structure of crucial importance for repairing injuries to joints, including replacement of the meniscus and the protection of articular cartilage from degeneration.

  5. PLDLA/PCL-T Scaffold for Meniscus Tissue Engineering

    Science.gov (United States)

    Moda, Marlon; Cattani, Silvia Mara de Melo; de Santana, Gracy Mara; Barbieri, Juliana Abreu; Munhoz, Monique Moron; Cardoso, Túlio Pereira; Barbo, Maria Lourdes Peris; Russo, Teresa; D'Amora, Ugo; Gloria, Antonio; Ambrosio, Luigi; Duek, Eliana Aparecida de Rezende

    2013-01-01

    Abstract The inability of the avascular region of the meniscus to regenerate has led to the use of tissue engineering to treat meniscal injuries. The aim of this study was to evaluate the ability of fibrochondrocytes preseeded on PLDLA/PCL-T [poly(L-co-D,L-lactic acid)/poly(caprolactone-triol)] scaffolds to stimulate regeneration of the whole meniscus. Porous PLDLA/PCL-T (90/10) scaffolds were obtained by solvent casting and particulate leaching. Compressive modulus of 9.5±1.0 MPa and maximum stress of 4.7±0.9 MPa were evaluated. Fibrochondrocytes from rabbit menisci were isolated, seeded directly on the scaffolds, and cultured for 21 days. New Zealand rabbits underwent total meniscectomy, after which implants consisting of cell-free scaffolds or cell-seeded scaffolds were introduced into the medial knee meniscus; the negative control group consisted of rabbits that received no implant. Macroscopic and histological evaluations of the neomeniscus were performed 12 and 24 weeks after implantation. The polymer scaffold implants adapted well to surrounding tissues, without apparent rejection, infection, or chronic inflammatory response. Fibrocartilaginous tissue with mature collagen fibers was observed predominantly in implants with seeded scaffolds compared to cell-free implants after 24 weeks. Similar results were not observed in the control group. Articular cartilage was preserved in the polymeric implants and showed higher chondrocyte cell number than the control group. These findings show that the PLDLA/PCL-T 90/10 scaffold has potential for orthopedic applications since this material allowed the formation of fibrocartilaginous tissue, a structure of crucial importance for repairing injuries to joints, including replacement of the meniscus and the protection of articular cartilage from degeneration. PMID:23593566

  6. Comparative study of bioactivity of collagen scaffolds coated with graphene oxide and reduced graphene oxide.

    Science.gov (United States)

    Kanayama, Izumi; Miyaji, Hirofumi; Takita, Hiroko; Nishida, Erika; Tsuji, Maiko; Fugetsu, Bunshi; Sun, Ling; Inoue, Kana; Ibara, Asako; Akasaka, Tsukasa; Sugaya, Tsutomu; Kawanami, Masamitsu

    2014-01-01

    Graphene oxide (GO) is a single layer carbon sheet with a thickness of less than 1 nm. GO has good dispersibility due to surface modifications with numerous functional groups. Reduced graphene oxide (RGO) is produced via the reduction of GO, and has lower dispersibility. We examined the bioactivity of GO and RGO films, and collagen scaffolds coated with GO and RGO. GO and RGO films were fabricated on a culture dish. Some GO films were chemically reduced using either ascorbic acid or sodium hydrosulfite solution, resulting in preparation of RGO films. The biological properties of each film were evaluated by scanning electron microscopy (SEM), atomic force microscopy, calcium adsorption tests, and MC3T3-E1 cell seeding. Subsequently, GO- and RGO-coated collagen scaffolds were prepared and characterized by SEM and compression tests. Each scaffold was implanted into subcutaneous tissue on the backs of rats. Measurements of DNA content and cell ingrowth areas of implanted scaffolds were performed 10 days post-surgery. The results show that GO and RGO possess different biological properties. Calcium adsorption and alkaline phosphatase activity were strongly enhanced by RGO, suggesting that RGO is effective for osteogenic differentiation. SEM showed that RGO-modified collagen scaffolds have rough, irregular surfaces. The compressive strengths of GO- and RGO-coated scaffolds were approximately 1.7-fold and 2.7-fold greater, respectively, when compared with the non-coated scaffold. Tissue ingrowth rate was 39% in RGO-coated scaffolds, as compared to 20% in the GO-coated scaffold and 16% in the non-coated scaffold. In summary, these results suggest that GO and RGO coatings provide different biological properties to collagen scaffolds, and that RGO-coated scaffolds are more bioactive than GO-coated scaffolds.

  7. Multilayered Magnetic Gelatin Membrane Scaffolds

    Science.gov (United States)

    Samal, Sangram K.; Goranov, Vitaly; Dash, Mamoni; Russo, Alessandro; Shelyakova, Tatiana; Graziosi, Patrizio; Lungaro, Lisa; Riminucci, Alberto; Uhlarz, Marc; Bañobre-López, Manuel; Rivas, Jose; Herrmannsdörfer, Thomas; Rajadas, Jayakumar; De Smedt, Stefaan; Braeckmans, Kevin; Kaplan, David L.; Dediu, V. Alek

    2016-01-01

    A versatile approach for the design and fabrication of multilayer magnetic scaffolds with tunable magnetic gradients is described. Multilayer magnetic gelatin membrane scaffolds with intrinsic magnetic gradients were designed to encapsulate magnetized bioagents under an externally applied magnetic field for use in magnetic-field-assisted tissue engineering. The temperature of the individual membranes increased up to 43.7 °C under an applied oscillating magnetic field for 70 s by magnetic hyperthermia, enabling the possibility of inducing a thermal gradient inside the final 3D multilayer magnetic scaffolds. On the basis of finite element method simulations, magnetic gelatin membranes with different concentrations of magnetic nanoparticles were assembled into 3D multilayered scaffolds. A magnetic-gradient-controlled distribution of magnetically labeled stem cells was demonstrated in vitro. This magnetic biomaterial–magnetic cell strategy can be expanded to a number of different magnetic biomaterials for various tissue engineering applications. PMID:26451743

  8. A comparison of scaffold-free and scaffold-based reconstructed human skin models as alternatives to animal use.

    Science.gov (United States)

    Kinikoglu, Beste

    2017-12-01

    Tissue engineered full-thickness human skin substitutes have various applications in the clinic and in the laboratory, such as in the treatment of burns or deep skin defects, and as reconstructed human skin models in the safety testing of drugs and cosmetics and in the fundamental study of skin biology and pathology. So far, different approaches have been proposed for the generation of reconstructed skin, each with its own advantages and disadvantages. Here, the classic tissue engineering approach, based on cell-seeded polymeric scaffolds, is compared with the less-studied cell self-assembly approach, where the cells are coaxed to synthesise their own extracellular matrix (ECM). The resulting full-thickness human skin substitutes were analysed by means of histological and immunohistochemical analyses. It was found that both the scaffold-free and the scaffold-based skin equivalents successfully mimicked the functionality and morphology of native skin, with complete epidermal differentiation (as determined by the expression of filaggrin), the presence of a continuous basement membrane expressing collagen VII, and new ECM deposition by dermal fibroblasts. On the other hand, the scaffold-free model had a thicker epidermis and a significantly higher number of Ki67-positive proliferative cells, indicating a higher capacity for self-renewal, as compared to the scaffold-based model. 2017 FRAME.

  9. Collagen Scaffolds with Controlled Insulin Release and Controlled Pore Structure for Cartilage Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Himansu Sekhar Nanda

    2014-01-01

    Full Text Available Controlled and local release of growth factors and nutrients from porous scaffolds is important for maintenance of cell survival, proliferation, and promotion of tissue regeneration. The purpose of the present research was to design a controlled release porous collagen-microbead hybrid scaffold with controlled pore structure capable of releasing insulin for application to cartilage tissue regeneration. Collagen-microbead hybrid scaffold was prepared by hybridization of insulin loaded PLGA microbeads with collagen using a freeze-drying technique. The pore structure of the hybrid scaffold was controlled by using preprepared ice particulates having a diameter range of 150–250 μm. Hybrid scaffold had a controlled pore structure with pore size equivalent to ice particulates and good interconnection. The microbeads showed an even spatial distribution throughout the pore walls. In vitro insulin release profile from the hybrid scaffold exhibited a zero order release kinetics up to a period of 4 weeks without initial burst release. Culture of bovine articular chondrocytes in the hybrid scaffold demonstrated high bioactivity of the released insulin. The hybrid scaffold facilitated cell seeding and spatial cell distribution and promoted cell proliferation.

  10. Electrospun thermosensitive hydrogel scaffold for enhanced chondrogenesis of human mesenchymal stem cells.

    Science.gov (United States)

    Brunelle, Alexander R; Horner, Christopher B; Low, Karen; Ico, Gerardo; Nam, Jin

    2017-11-08

    Hydrogels have shown great potential for cartilage tissue engineering applications due to their capability to encapsulate cells within biomimetic, 3-dimensional (3D) microenvironments. However, the multi-step fabrication process that is necessary to produce cell/scaffold constructs with defined dimensions, limits their off-the-shelf translational usage. In this study, we have developed a hybrid scaffolding system which combines a thermosensitive hydrogel, poly(ethylene glycol)-poly(N-isopropylacrylamide) (PEG-PNIPAAm), with a biodegradable polymer, poly(ε-caprolactone) (PCL), into a composite, electrospun microfibrous structure. A judicious optimization of material composition and electrospinning process produced a structurally self-supporting hybrid scaffold. The reverse thermosensitivity of PEG-PNIPAAm allowed its dissolution/hydration upon cell seeding within a network of PCL microfibers while maintaining the overall scaffold shape at room temperature. A subsequent temperature elevation to 37 °C induced the hydrogel's phase transition to a gel state, effectively encapsulating cells in a 3D hydrogel without the use of a mold. We demonstrated that the hybrid scaffold enhanced chondrogenic differentiation of human mesenchymal stem cells (hMSCs) based on chondrocytic gene and protein expression, which resulted in superior viscoelastic properties of the cell/scaffold constructs. The hybrid scaffold enables a facile, single-step cell seeding process to inoculate cells within a 3D hydrogel with the potential for cartilage tissue engineering. Hydrogels have demonstrated the excellent ability to enhance chondrogenesis of stem cells due to their hydrated fibrous nanostructure providing a cellular environment similar to native cartilage. However, the necessity for multi-step processes, including mixing of hydrogel precursor with cells and subsequent gelation in a mold to form a defined shape, limits their off-the-shelf usage. In this study, we developed a hybrid

  11. Scaffolder - software for manual genome scaffolding

    Directory of Open Access Journals (Sweden)

    Barton Michael D

    2012-05-01

    Full Text Available Abstract Background The assembly of next-generation short-read sequencing data can result in a fragmented non-contiguous set of genomic sequences. Therefore a common step in a genome project is to join neighbouring sequence regions together and fill gaps. This scaffolding step is non-trivial and requires manually editing large blocks of nucleotide sequence. Joining these sequences together also hides the source of each region in the final genome sequence. Taken together these considerations may make reproducing or editing an existing genome scaffold difficult. Methods The software outlined here, “Scaffolder,” is implemented in the Ruby programming language and can be installed via the RubyGems software management system. Genome scaffolds are defined using YAML - a data format which is both human and machine-readable. Command line binaries and extensive documentation are available. Results This software allows a genome build to be defined in terms of the constituent sequences using a relatively simple syntax. This syntax further allows unknown regions to be specified and additional sequence to be used to fill known gaps in the scaffold. Defining the genome construction in a file makes the scaffolding process reproducible and easier to edit compared with large FASTA nucleotide sequences. Conclusions Scaffolder is easy-to-use genome scaffolding software which promotes reproducibility and continuous development in a genome project. Scaffolder can be found at http://next.gs.

  12. Periodontal regeneration with nano-hyroxyapatite-coated silk scaffolds in dogs.

    Science.gov (United States)

    Yang, Cheryl; Lee, Jung-Seok; Jung, Ui-Won; Seo, Young-Kwon; Park, Jung-Keug; Choi, Seong-Ho

    2013-12-01

    In this study, we investigated the effect of silk scaffolds on one-wall periodontal intrabony defects. We conjugated nano-hydroxyapatite (nHA) onto a silk scaffold and then seeded periodontal ligament cells (PDLCs) or dental pulp cells (DPCs) onto the scaffold. Five dogs were used in this study. Bilateral 4 mm×2 mm (depth×mesiodistal width), one-wall intrabony periodontal defects were surgically created on the distal side of the mandibular second premolar and the mesial side of the mandibular fourth premolar. In each dog, four of the defects were separately and randomly assigned to the following groups: the PDLC-cultured scaffold transplantation group (PDLC group), the DPC-cultured scaffold transplantation group (DPC group), the normal saline-soaked scaffold transplantation group, and the control group. The animals were euthanized following an 8-week healing interval for clinical, scanning electron microscopy (SEM), and histologic evaluations. There was no sign of inflammation or other clinical signs of postoperative complications. The examination of cell-seeded constructs by SEM provided visual confirmation of the favorable characteristics of nHA-coated silk scaffolds for tissue engineering. The scaffolds exhibited a firm connective porous structure in cross section, and after PDLCs and DPCs were seeded onto the scaffolds and cultured for 3 weeks, the attachment of well-spread cells and the formation of extracellular matrix (ECM) were observed. The histologic analysis revealed that a well-maintained grafted volume was present at all experimental sites for 8 weeks. Small amounts of inflammatory cells were seen within the scaffolds. The PDLC and DPC groups did not have remarkably different histologic appearances. These observations indicate that nHA-coated silk scaffolds can be considered to be potentially useful biomaterials for periodontal regeneration.

  13. Modulating gradients in regulatory signals within mesenchymal stem cell seeded hydrogels: a novel strategy to engineer zonal articular cartilage.

    Science.gov (United States)

    Thorpe, Stephen D; Nagel, Thomas; Carroll, Simon F; Kelly, Daniel J

    2013-01-01

    Engineering organs and tissues with the spatial composition and organisation of their native equivalents remains a major challenge. One approach to engineer such spatial complexity is to recapitulate the gradients in regulatory signals that during development and maturation are believed to drive spatial changes in stem cell differentiation. Mesenchymal stem cell (MSC) differentiation is known to be influenced by both soluble factors and mechanical cues present in the local microenvironment. The objective of this study was to engineer a cartilaginous tissue with a native zonal composition by modulating both the oxygen tension and mechanical environment thorough the depth of MSC seeded hydrogels. To this end, constructs were radially confined to half their thickness and subjected to dynamic compression (DC). Confinement reduced oxygen levels in the bottom of the construct and with the application of DC, increased strains across the top of the construct. These spatial changes correlated with increased glycosaminoglycan accumulation in the bottom of constructs, increased collagen accumulation in the top of constructs, and a suppression of hypertrophy and calcification throughout the construct. Matrix accumulation increased for higher hydrogel cell seeding densities; with DC further enhancing both glycosaminoglycan accumulation and construct stiffness. The combination of spatial confinement and DC was also found to increase proteoglycan-4 (lubricin) deposition toward the top surface of these tissues. In conclusion, by modulating the environment through the depth of developing constructs, it is possible to suppress MSC endochondral progression and to engineer tissues with zonal gradients mimicking certain aspects of articular cartilage.

  14. Modulating gradients in regulatory signals within mesenchymal stem cell seeded hydrogels: a novel strategy to engineer zonal articular cartilage.

    Directory of Open Access Journals (Sweden)

    Stephen D Thorpe

    Full Text Available Engineering organs and tissues with the spatial composition and organisation of their native equivalents remains a major challenge. One approach to engineer such spatial complexity is to recapitulate the gradients in regulatory signals that during development and maturation are believed to drive spatial changes in stem cell differentiation. Mesenchymal stem cell (MSC differentiation is known to be influenced by both soluble factors and mechanical cues present in the local microenvironment. The objective of this study was to engineer a cartilaginous tissue with a native zonal composition by modulating both the oxygen tension and mechanical environment thorough the depth of MSC seeded hydrogels. To this end, constructs were radially confined to half their thickness and subjected to dynamic compression (DC. Confinement reduced oxygen levels in the bottom of the construct and with the application of DC, increased strains across the top of the construct. These spatial changes correlated with increased glycosaminoglycan accumulation in the bottom of constructs, increased collagen accumulation in the top of constructs, and a suppression of hypertrophy and calcification throughout the construct. Matrix accumulation increased for higher hydrogel cell seeding densities; with DC further enhancing both glycosaminoglycan accumulation and construct stiffness. The combination of spatial confinement and DC was also found to increase proteoglycan-4 (lubricin deposition toward the top surface of these tissues. In conclusion, by modulating the environment through the depth of developing constructs, it is possible to suppress MSC endochondral progression and to engineer tissues with zonal gradients mimicking certain aspects of articular cartilage.

  15. Initial cell seeding density influences pancreatic endocrine development during in vitro differentiation of human embryonic stem cells.

    Science.gov (United States)

    Gage, Blair K; Webber, Travis D; Kieffer, Timothy J

    2013-01-01

    Human embryonic stem cells (hESCs) have the ability to form cells derived from all three germ layers, and as such have received significant attention as a possible source for insulin-secreting pancreatic beta-cells for diabetes treatment. While considerable advances have been made in generating hESC-derived insulin-producing cells, to date in vitro-derived glucose-responsive beta-cells have remained an elusive goal. With the objective of increasing the in vitro formation of pancreatic endocrine cells, we examined the effect of varying initial cell seeding density from 1.3 x 10(4) cells/cm(2) to 5.3 x 10(4) cells/cm(2) followed by a 21-day pancreatic endocrine differentiation protocol. Low density-seeded cells were found to be biased toward the G2/M phases of the cell cycle and failed to efficiently differentiate into SOX17-CXCR4 co-positive definitive endoderm cells leaving increased numbers of OCT4 positive cells in day 4 cultures. Moderate density cultures effectively formed definitive endoderm and progressed to express PDX1 in approximately 20% of the culture. High density cultures contained approximately double the numbers of PDX1 positive pancreatic progenitor cells and also showed increased expression of MNX1, PTF1a, NGN3, ARX, and PAX4 compared to cultures seeded at moderate density. The cultures seeded at high density displayed increased formation of polyhormonal pancreatic endocrine cell populations co-expressing insulin, glucagon and somatostatin. The maturation process giving rise to these endocrine cell populations followed the expected cascade of pancreatic progenitor marker (PDX1 and MNX1) expression, followed by pancreatic endocrine specification marker expression (BRN4, PAX4, ARX, NEUROD1, NKX6.1 and NKX2.2) and then pancreatic hormone expression (insulin, glucagon and somatostatin). Taken together these data suggest that initial cell seeding density plays an important role in both germ layer specification and pancreatic progenitor commitment, which

  16. Comparison of three-dimensional printing and vacuum freeze-dried techniques for fabricating composite scaffolds.

    Science.gov (United States)

    Sun, Kai; Li, Ruixin; Jiang, Wenxue; Sun, Yufu; Li, Hui

    2016-09-02

    In this study, the performances of different preparation methods of the scaffolds were analyzed for chondrocyte tissue engineering. Silk fibroin/collagen (SF/C) was fabricated using a vacuum freeze-dried technique and by 3D printing. The porosity, water absorption expansion rates, mechanical properties, and pore sizes of the resulting materials were evaluated. The proliferation and metabolism of the cells was detected at different time points using an MTT assay. Cell morphologies and distributions were observed by histological analysis and scanning electron microscopy (SEM). The porosity, water absorption expansion rate, and Young's modulus of the material obtained via 3D printing were significantly higher than those obtained by the freeze-dried method, while the pore size did not differ significantly between the two methods. MTT assay results showed that the metabolism of cells seeded on the 3D printed scaffolds was more viable than the metabolism on the freeze-dried material. H&E staining of the scaffolds revealed that the number of cells in the 3D printed scaffold was higher in comparison to a similar measurement on the freeze-dried material. Consequently, stem cells grew well inside the 3D printed scaffolds, as measured by SEM, while the internal structure of the freeze-dried scaffold was disordered. Compared with the freeze-dried technique, the 3D printed scaffold exhibited better overall performance and was more suitable for cartilage tissue engineering. Copyright © 2016. Published by Elsevier Inc.

  17. Development of porous Ti6Al4V/chitosan sponge composite scaffold for orthopedic applications.

    Science.gov (United States)

    Guo, Miao; Li, Xiang

    2016-01-01

    A novel composite scaffold consisting of porous Ti6Al4V part filled with chitosan sponge was fabricated using a combination of electron beam melting and freeze-drying. The mechanical properties of porous Ti6Al4V part were examined via compressive test. The ultimate compressive strength was 85.35 ± 8.68 MPa and the compressive modulus was 2.26 ± 0.42 GPa. The microstructure of composite scaffold was characterized using scanning electron microscopy. The chitosan sponge filled in Ti6Al4V part exhibited highly porous and well-interconnected micro-pore architecture. The osteoblastic cells were seeded on scaffolds to test their seeding efficiency and biocompatibility. Significantly higher cell seeding efficiency was found on composite scaffold. The biological response of osteoblasts on composite scaffolds was superior in terms of improved cell attachment, higher proliferation, and well-spread morphology in relation to porous Ti6Al4V part. These results suggest that the Ti6Al4V/chitosan composite scaffold is potentially useful as a biomedical scaffold for orthopedic applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Angiogenic potential of endothelial and tumor cells seeded on gelatin-based hydrogels in response to electrical stimulations.

    Science.gov (United States)

    Tzoneva, Rumiana; Uzunova, Veselina; Apostolova, Sonia; Krüger-Genge, Anne; Neffe, Axel T; Jung, Friedrich; Lendlein, Andreas

    2016-01-01

    Angiogenesis is one of the key processes during development, wound healing and tumor formation. Prerequisite for its existence is the presence of endogenous electrical fields (EFs) generated by active ion transport across polarized epithelia and endothelia, and appearance of the transcellular potentials. During angiogenesis cellular factor as endothelial growth factor (VEGF), synthesis of adhesive proteins and membrane metalloproteinases (MMPs) govern the angiogenic response to different external stimuli as biomaterials interactions and/or exogenous EF. Gelatin-based hydrogels with elasticities comparable to human tissues have shown to influence cell behavior as well as cell attachment, protein synthesis, VEGF and MMP's production after the application of EF. Gelatin-based matrices with 3 (G10_LNCO3), 5 (G10_LNCO5), and 8 (G10_LNCO8) fold excess of isocyanate groups per mol of amine groups present in gelatin were used. Human umbilical endothelial cells (HUVEC) (Lonza Basel, Switzerland) and highly invasive breast cancer MDA-MB-231 cells (ATCC®HTB-26TM) were used. For an estimation of the amount of VEGF released from cells a commercially available VEGF ELISA (Thermo Fisher Scientific, Germany) kit was used. Fibronectin (FN) enzyme immunoassay (EIA) was used to analyze the secreted amount of FN by cells seeded on the materials. Secreted MMPs were analyzed by zymography. Gelatin-based hydrogels attracted HUVEC adhesion and diminished the adhesion of MDA-MB-231 cells. The applied direct current (DC) EF induced an almost 5-fold increase in VEGF production by HUVEC seeded on gelatin-based hydrogels, while in contrast, the applied EF decreased the production of VEGF by cancer cells. FN synthesis was elevated in HUVEC cells seeded on gelatin-based materials in comparison to FN synthesis by cancer cells. HUVEC seeded on gelatin hydrogels showed an expression mainly of MMP-2. The application of EF increased the production of MMP-2 in HUVEC seeded on gelatin materials. In

  19. Mechanical modulation of nascent stem cell lineage commitment in tissue engineering scaffolds.

    Science.gov (United States)

    Song, Min Jae; Dean, David; Knothe Tate, Melissa L

    2013-07-01

    Taking inspiration from tissue morphogenesis in utero, this study tests the concept of using tissue engineering scaffolds as delivery devices to modulate emergent structure-function relationships at early stages of tissue genesis. We report on the use of a combined computational fluid dynamics (CFD) modeling, advanced manufacturing methods, and experimental fluid mechanics (micro-piv and strain mapping) for the prospective design of tissue engineering scaffold geometries that deliver spatially resolved mechanical cues to stem cells seeded within. When subjected to a constant magnitude global flow regime, the local scaffold geometry dictates the magnitudes of mechanical stresses and strains experienced by a given cell, and in a spatially resolved fashion, similar to patterning during morphogenesis. In addition, early markers of mesenchymal stem cell lineage commitment relate significantly to the local mechanical environment of the cell. Finally, by plotting the range of stress-strain states for all data corresponding to nascent cell lineage commitment (95% CI), we begin to "map the mechanome", defining stress-strain states most conducive to targeted cell fates. In sum, we provide a library of reference mechanical cues that can be delivered to cells seeded on tissue engineering scaffolds to guide target tissue phenotypes in a temporally and spatially resolved manner. Knowledge of these effects allows for prospective scaffold design optimization using virtual models prior to prototyping and clinical implementation. Finally, this approach enables the development of next generation scaffolds cum delivery devices for genesis of complex tissues with heterogenous properties, e.g., organs, joints or interface tissues such as growth plates. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. A comparison of tracheal scaffold strategies for pediatric transplantation in a rabbit model.

    Science.gov (United States)

    Maughan, Elizabeth F; Butler, Colin R; Crowley, Claire; Teoh, Gui Zhen; Hondt, Margot Den; Hamilton, Nicholas J; Hynds, Robert E; Lange, Peggy; Ansari, Tahera; Urbani, Luca; Janes, Samuel M; Coppi, Paolo De; Birchall, Martin A; Elliott, Martin J

    2017-12-01

    Despite surgical advances, childhood tracheal stenosis is associated with high morbidity and mortality. Various tracheal scaffold strategies have been developed as the basis for bioengineered substitutes, but there is no consensus on which may be superior in vivo. We hypothesized that there would be no difference in morbidity and mortality between three competing scaffold strategies in rabbits. Pilot preclinical study. Tracheal scaffolds were prepared by three methods that have been applied clinically and reported: preserved cadaveric ("Herberhold") allografts, detergent-enzymatically decellularized allografts, and synthetic scaffolds (nanocomposite polymer [polyhedral oligomeric silsesquioxane poly(carbonate-urea) urethane (POSS-PCU)]). Scaffolds were implanted into cervical trachea of New Zealand White rabbits (n = 4 per group) without cell seeding. Control animals (n = 4) received autotransplanted tracheal segments using the same technique. Animals underwent bronchoscopic monitoring of the grafts for 30 days. Macroscopic evaluation of tissue integration, graft stenosis, and collapsibility and histological examinations were performed on explants at termination. All surgical controls survived to termination without airway compromise. Mild to moderate anastomotic stenosis from granulation tissue was detected, but there was evidence suggestive of vascular reconnection with minimal fibrous encapsulation. In contrast, three of the four animals in the Herberhold and POSS-PCU groups, and all animals receiving decellularized allografts, required early termination due to respiratory distress. Herberhold grafts showed intense inflammatory reactions, anastomotic stenoses, and mucus plugging. Synthetic graft integration and vascularization were poor, whereas decellularized grafts demonstrated malacia and collapse but had features suggestive of vascular connection or revascularization. There are mirror-image benefits and drawbacks to nonrecellularized, decellularized, and

  1. Fabrication and surface modification of macroporous poly(L-lactic acid) and poly(L-lactic-co-glycolic acid) (70/30) cell scaffolds for human skin fibroblast cell culture.

    Science.gov (United States)

    Yang, Jian; Shi, Guixin; Bei, Jianzhong; Wang, Shenguo; Cao, Yilin; Shang, Qingxin; Yang, Guanghui; Wang, Wenjing

    2002-12-05

    The fabrication and surface modification of a porous cell scaffold are very important in tissue engineering. Of most concern are high-density cell seeding, nutrient and oxygen supply, and cell affinity. In the present study, poly(L-lactic acid) and poly(L-lactic-co-glycolic acid) (70/30) cell scaffolds with different pore structures were fabricated. An improved method based on Archimedes' Principle for measuring the porosity of scaffolds, using a density bottle, was developed. Anhydrous ammonia plasma treatment was used to modify surface properties to improve the cell affinity of the scaffolds. The results show that hydrophilicity and surface energy were improved. The polar N-containing groups and positive charged groups also were incorporated into the sample surface. A low-temperature treatment was used to maintain the plasma-modified surface properties effectively. It would do help to the further application of plasma treatment technique. Cell culture results showed that pores smaller than 160 microm are suitable for human skin fibroblast cell growth. Cell seeding efficiency was maintained at above 99%, which is better than the efficiency achieved with the common method of prewetting by ethanol. The plasma-treatment method also helped to resolve the problem of cell loss during cell seeding, and the negative effects of the ethanol trace on cell culture were avoided. The results suggest that anhydrous ammonia plasma treatment enhances the cell affinity of porous scaffolds. Mass transport issues also have been considered. Copyright 2002 Wiley Periodicals, Inc.

  2. Umbilical-cord-blood-derived mesenchymal stem cells seeded onto fibronectin-immobilized polycaprolactone nanofiber improve cardiac function.

    Science.gov (United States)

    Kang, Byung-Jae; Kim, Hwan; Lee, Seul Ki; Kim, Joohyun; Shen, Yiming; Jung, Sunyoung; Kang, Kyung-Sun; Im, Sung Gap; Lee, So Yeong; Choi, Mincheol; Hwang, Nathaniel S; Cho, Je-Yoel

    2014-07-01

    Stem cells seeded onto biofunctional materials have greater potency for therapeutic applications. We investigated whether umbilical-cord-blood-derived mesenchymal stem cell (UCB-MSC)-seeded fibronectin (FN)-immobilized polycaprolactone (PCL) nanofibers could improve cardiac function and inhibit left ventricle (LV) remodeling in a rat model of myocardial infarction (MI). Aligned nanofibers were uniformly coated with poly(glycidyl methacrylate) by initiated chemical vapor deposition followed by covalent immobilization of FN proteins. The degree of cell elongation and adhesion efficacy were improved by FN immobilization. Furthermore, genes related to angiogenesis and mesenchymal differentiations were up-regulated in the FN-immobilized PCL nanofibers in comparison to control PCL nanofibers in vitro. 4 weeks after the transplantation in the rat MI model, the echocardiogram showed that the UCB-MSC-seeded FN-immobilized PCL nanofiber group increased LV ejection fraction and fraction shortening as compared to the non-treated control and acellular FN-immobilized PCL nanofiber groups. Histological analysis indicated that the implantation of UCB-MSCs with FN-immobilized PCL nanofibers induced a decrease in MI size and fibrosis, and an increase in scar thickness. This study indicates that FN-immobilized biofunctional PCL nanofibers could be an effective carrier for UCB-MSC transplantation for the treatment of MI. Copyright © 2014. Published by Elsevier Ltd.

  3. Osteoconductivity and Biodegradability of Collagen Scaffold Coated with Nano-β-TCP and Fibroblast Growth Factor 2

    Directory of Open Access Journals (Sweden)

    Asako Ibara

    2013-01-01

    Full Text Available Nanoparticle bioceramics have become anticipated for biomedical applications. Highly bioactive and biodegradable scaffolds would be developed using nanoparticles of β-tricalcium phosphate (β-TCP. We prepared collagen scaffolds coated by nano-β-TCP and fibroblast growth factor 2 (FGF2 and evaluated the effects on new bone augmentation and biodegradation. The collagen sponge was coated with the nano-TCP dispersion and freeze-dried. Scaffold was characterized by SEM, TEM, XRD, compressive testing and cell seeding. Subsequently, the nano-β-TCP/collagen scaffold, collagen sponge, and each material loaded with FGF2 were implanted on rat cranial bone. As a control, no implantation was performed. Nano-TCP particles were found to be attached to the fibers of the collagen sponge by SEM and TEM observations. Scaffold coated with nano-TCP showed higher compressive strength and cytocompatibility. In histological evaluations at 10 days, inflammatory cells were rarely seen around the residual scaffold, suggesting that the nano-TCP material possesses good tissue compatibility. At 35 days, bone augmentation and scaffold degradation in histological samples receiving nano-β-TCP scaffold were significantly greater than those in the control. By loading of FGF2, advanced bone formation is facilitated, indicating that a combination with FGF2 would be effective for bone tissue engineering.

  4. Structural and Electrical Properties of Polysilicon Films Prepared by AIC Process for a Polycrystalline Silicon Solar Cell Seed Layer

    Directory of Open Access Journals (Sweden)

    Hyejeong Jeong

    2012-01-01

    Full Text Available Polycrystalline silicon (pc-Si films are produced by aluminum-induced crystallization (AIC process for a polycrystalline silicon solar cell seed layer, and the structural and electrical properties of the films are analyzed. The used structure is glass/Al/ Al2O3/a-Si, and the thickness of Al2O3 layer was varied from 2 nm to 20 nm to investigate the influence of the Al2O3 layer thickness on the formation of the polycrystalline silicon. The annealing temperature and annealing time were fixed to 400∘C and 5 hours, respectively, for the AIC process conditions. As a result, it is observed that the average grain size of the pc-Si films is rapidly smaller with increasing the thickness of Al2O3 layer, whereas the film quality, as defects and Hall mobility, was gradually degraded with only small difference. We obtained the maximum average grain size of 15 μm for the pc-Si film with the thickness of Al2O3 layer of 4 nm. The best resistivity and the Hall mobility was 6.1×10−2 Ω⋅cm and 90.91 cm2/Vs, respectively, in the case of 8 nm thick Al oxide layer.

  5. Immobilization of Alkaline Phosphatase on Microporous Nanofibrous Fibrin Scaffolds for Bone Tissue Engineering

    Science.gov (United States)

    Osathanon, Thanaphum; Giachelli, Cecilia M; Somerman, Martha J

    2009-01-01

    Alkaline phosphatase (ALP) promotes bone formation by degrading inorganic pyrophosphate (PPi), an inhibitor of hydroxyapatite formation, and generating inorganic phosphate (Pi), an inducer of hydroxyapatite formation. Pi is a crucial molecule in differentiation and mineralization of osteoblasts. In this study, a method to immobilize ALP on fibrin scaffolds with tightly controllable pore size and pore interconnection was developed, and the biological properties of these scaffolds were characterized both in vitro and in vivo. Microporous, nanofibrous fibrin scaffolds (FS) were fabricated using a sphere-templating method. ALP was covalently immobilized on the fibrin scaffolds using 1-ethyl-3-(dimethylaminopropyl)carbodiimide hydrochloride (EDC). Scanning electron microscopic observation (SEM) showed that mineral was deposited on immobilized alkaline phosphatase fibrin scaffolds (immobilized ALP/FS) when incubated in medium supplemented with β-glycerophosphate, suggesting that the immobilized ALP was active. Primary calvarial cells attached, spread and formed multiple layers on the surface of the scaffolds. Mineral deposition was also observed when calvarial cells were seeded on immobilized ALP/FS. Furthermore, cells seeded on immobilized ALP/FS exhibited higher osteoblast marker gene expression compared to control FS. Upon implantation in mouse calvarial defects, both the immobilized ALP/FS and FS alone treated group had higher bone volume in the defect compared to the empty defect control. Furthermore, bone formation in the immobilized ALP/FS treated group was statistically significant compared to FS alone group. However, the response was not robust. PMID:19501906

  6. Mechanical properties of cross-linked collagen meshes after human adipose derived stromal cells seeding

    OpenAIRE

    Ochoa, I. (Ignacio); Peña, E. (Estefanía); Andreu, E.J. (Enrique José); Perez-Ilzarbe, M. (Maitane); Robles, J.E. (José Enrique); Alcaine, C. (C.); Lopez, T. (Tania); Prosper, F. (Felipe); Doblare, M. (M.)

    2010-01-01

    The main goal of this study was to evaluate the potential of collagen meshes derived from porcine dermis as scaffolds for repairing pelvic organ prolapses. Mechanical properties of collagen meshes with different cross-linking percentages before and after Adipose Derived Stromal Cells (ADSC) seeding were studied as well as the cell-scaffold interaction. Uniaxial tensile tests of the collagen meshes with three different cross-linking percentages (full-, partial-, and non...

  7. Hydrophilic PCU scaffolds prepared by grafting PEGMA and immobilizing gelatin to enhance cell adhesion and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Changcan; Yuan, Wenjie; Khan, Musammir; Li, Qian [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Feng, Yakai, E-mail: yakaifeng@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072 (China); Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) Tianjin 300072 (China); Yao, Fanglian [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072 (China); Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Tianjin 300072 (China); Zhang, Wencheng, E-mail: wenchengzhang@yahoo.com [Department of Physiology and Pathophysiology, Logistics University of Chinese People' s Armed Police Force, Tianjin 300162 (China)

    2015-05-01

    Gelatin contains many functional motifs which can modulate cell specific adhesion, so we modified polycarbonate urethane (PCU) scaffold surface by immobilization of gelatin. PCU-g-gelatin scaffolds were prepared by direct immobilizing gelatins onto the surface of aminated PCU scaffolds. To increase the immobilization amount of gelatin, poly(ethylene glycol) methacrylate (PEGMA) was grafted onto PCU scaffolds by surface initiated atom transfer radical polymerization. Then, following amination and immobilization, PCU-g-PEGMA-g-gelatin scaffolds were obtained. Both modified scaffolds were characterized by chemical and biological methods. After immobilization of gelatin, the microfiber surface became rough, but the original morphology of scaffolds was maintained successfully. PCU-g-PEGMA-g-gelatin scaffolds were more hydrophilic than PCU-g-gelatin scaffolds. Because hydrophilic PEGMA and gelatin were grafted and immobilized onto the surface, the PCU-g-PEGMA-g-gelatin scaffolds showed low platelet adhesion, perfect anti-hemolytic activity and excellent cell growth and proliferation capacity. It could be envisioned that PCU-g-PEGMA-g-gelatin scaffolds might have potential applications in tissue engineering artificial scaffolds. - Graphical abstract: PCU-g-gelatin scaffolds were prepared by direct immobilizing gelatin onto the surface of aminated PCU scaffolds (method a). To increase the immobilization amount of gelatin, PEGMAs were grafted onto the scaffold surface by SI-ATRP. PCU-g-PEGMA-g-gelatin scaffolds were prepared by method b. The gelatin modified scaffolds exhibited high hydrophilicity, low platelet adhesion, perfect anti-hemolytic activity, and excellent cell adhesion and proliferation capacity. They might have potential applications as tissue engineering scaffolds for artificial blood vessels. - Highlights: • Hydrophilic scaffolds were prepared by grafting PEGMA and immobilization of gelatins. • Grafting PEGMA enhanced the immobilization amount of gelatin

  8. Titanate nanotube coatings on biodegradable photopolymer scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Beke, S., E-mail: szabolcs.beke@iit.it [Department of Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova (Italy); Kőrösi, L. [Department of Biotechnology, Nanophage Therapy Center, Enviroinvest Corporation, Kertváros u. 2, H-7632, Pécs (Hungary); Scarpellini, A. [Department of Nanochemistry, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova (Italy); Anjum, F.; Brandi, F. [Department of Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova (Italy)

    2013-05-01

    Rigid, biodegradable photopolymer scaffolds were coated with titanate nanotubes (TNTs) by using a spin-coating method. TNTs were synthesized by a hydrothermal process at 150 °C under 4.7 bar ambient pressure. The biodegradable photopolymer scaffolds were produced by mask-assisted excimer laser photocuring at 308 nm. For scaffold coating, a stable ethanolic TNT sol was prepared by a simple colloid chemical route without the use of any binding compounds or additives. Scanning electron microscopy along with elemental analysis revealed that the scaffolds were homogenously coated by TNTs. The developed TNT coating can further improve the surface geometry of fabricated scaffolds, and therefore it can further increase the cell adhesion. Highlights: ► Biodegradable scaffolds were produced by mask-assisted UV laser photocuring. ► Titanate nanotube deposition was carried out without binding compounds or additives. ► The titanate nanotube coating can further improve the surface geometry of scaffolds. ► These reproducible platforms will be of high importance for biological applications.

  9. Genetically engineered plants with increased vegetative oil content

    Science.gov (United States)

    Benning, Christoph

    2017-05-23

    The invention relates to genetically modified agricultural plants with increased oil content in vegetative tissues, as well as to expression systems, plant cells, seeds and vegetative tissues related thereto.

  10. The dynamics of scaffolding

    NARCIS (Netherlands)

    Van Geert, P. L. C.; Steenbeek, H.W.

    2005-01-01

    In this article we have reinterpreted a relatively standard definition of scaffolding in the context of dynamic systems theory. Our main point is that scaffolding cannot be understood outside the context of a dynamic approach of learning and (formal or informal) teaching. We provide a dynamic

  11. Scaffolding students’ assignments

    DEFF Research Database (Denmark)

    Slot, Marie Falkesgaard

    2013-01-01

    This article discusses scaffolding in typical student assignments in mother tongue learning materials in upper secondary education in Denmark and the United Kingdom. It has been determined that assignments do not have sufficient scaffolding end features to help pupils understand concepts and build...

  12. 3D- Printed Poly(ε-caprolactone) Scaffold Integrated with Cell-laden Chitosan Hydrogels for Bone Tissue Engineering.

    Science.gov (United States)

    Dong, Liang; Wang, Shao-Jie; Zhao, Xin-Rong; Zhu, Yu-Fang; Yu, Jia-Kuo

    2017-10-17

    Synthetic polymeric scaffolds are commonly used in bone tissue engineering (BTE) due to their biocompatibility and adequate mechanical properties. However, their hydrophobicity and the lack of specific cell recognition sites confined their practical application. In this study, to improve the cell seeding efficiency and osteoinductivity, an injectable thermo-sensitive chitosan hydrogel (CSG) was incorporated into a 3D-printed poly(ε-caprolactone) (PCL) scaffold to form a hybrid scaffold. To demonstrate the feasibility of this hybrid system for BTE application, rabbit bone marrow mesenchymal stem cells (BMMSCs) and bone morphogenetic protein-2 (BMP-2) were encapsulated in CSG. Pure PCL scaffolds were used as controls. Cell proliferation and viability were investigated. Osteogenic gene expressions of BMMSCs in various scaffolds were determined with reverse transcription polymerase chain reaction (RT-PCR). Growth factor releasing profile and mechanical tests were performed. CCK-8 assay confirmed greater cell retention and proliferation in chitosan and hybrid groups. Confocal microscopy showed even distribution of cells in the hybrid system. After 2-week osteogenic culture in vitro, BMMSCs in hybrid and chitosan scaffolds showed stronger osteogenesis and bone-matrix formation. To conclude, chitosan/PCL hybrid scaffolds are a favorable platform for BTE due to its capacity to carry cells and drugs, and excellent mechanical strength.

  13. Higher Ratios of Hyaluronic Acid Enhance Chondrogenic Differentiation of Human MSCs in a Hyaluronic Acid–Gelatin Composite Scaffold

    Directory of Open Access Journals (Sweden)

    Christian G. Pfeifer

    2016-05-01

    Full Text Available Mesenchymal stem cells (MSCs seeded on specific carrier materials are a promising source for the repair of traumatic cartilage injuries. The best supportive carrier material has not yet been determined. As natural components of cartilage’s extracellular matrix, hyaluronic acid and collagen are the focus of biomaterial research. In order to optimize chondrogenic support, we investigated three different scaffold compositions of a hyaluronic acid (HA-gelatin based biomaterial. Methods: Human MSCs (hMSCs were seeded under vacuum on composite scaffolds of three different HA-gelatin ratios and cultured in chondrogenic medium for 21 days. Cell-scaffold constructs were assessed at different time points for cell viability, gene expression patterns, production of cartilage-specific extracellular matrix (ECM and for (immuno-histological appearance. The intrinsic transforming growth factor beta (TGF-beta uptake of empty scaffolds was evaluated by determination of the TGF-beta concentrations in the medium over time. Results: No significant differences were found for cell seeding densities and cell viability. hMSCs seeded on scaffolds with higher ratios of HA showed better cartilage-like differentiation in all evaluated parameters. TGF-beta uptake did not differ between empty scaffolds. Conclusion: Higher ratios of HA support the chondrogenic differentiation of hMSCs seeded on a HA-gelatin composite scaffold.

  14. Regenerative potential of decellularized porcine nucleus pulposus hydrogel scaffolds: stem cell differentiation, matrix remodeling, and biocompatibility studies.

    Science.gov (United States)

    Mercuri, Jeremy J; Patnaik, Sourav; Dion, Grace; Gill, Sanjitpal S; Liao, Jun; Simionescu, Dan T

    2013-04-01

    Nucleus pulposus (NP) tissue regeneration has been proposed as an early stage interventional therapy to combat intervertebral disc degeneration. We have previously reported on the development and characterization of a novel biomimetic acellular porcine NP (APNP) hydrogel. Herein, we aimed to evaluate this material for use as a suitable scaffold for NP tissue regeneration. Human-adipose-derived stem cells (hADSCs) were cultured for 14 days on APNP hydrogels in chemically defined differentiation media and were analyzed for an NP-cell-like mRNA expression profile, evidence of hydrogel remodeling including hydrogel contraction measurements, extracellular matrix production, and compressive dynamic mechanical properties. The innate capacity of the hydrogel itself to induce stem cell differentiation was also examined via culture in media lacking soluble differentiation factors. Additionally, the in vivo biocompatibility of non-crosslinked and ethyldimethylaminopropyl carbodiimide/N-hydroxysuccinimide and pentagalloyl glucose crosslinked hydrogels was evaluated in a rat subdermal model. Results indicated that hADSCs expressed putative NP-cell-positive gene transcript markers when cultured on APNP hydrogels. Additionally, glycosaminoglycan and collagen content of hADSC-seeded hydrogels was significantly greater than nonseeded controls and cell-seeded hydrogels exhibited evidence of contraction and tissue inhibitors of metalloproteinase-1 production. The dynamic mechanical properties of the hADSC-seeded hydrogels increased with time in culture in comparison to noncell-seeded controls and approached values reported for native NP tissue. Immunohistochemical analysis of explants illustrated the presence of mononuclear cells, including macrophages and fibroblasts, as well as blood vessel infiltration and collagen deposition within the implant interstices after 4 weeks of implantation. Taken together, these results suggest that APNP hydrogels, in concert with autologous ADSCs

  15. Comparison of three-dimensional printing and vacuum freeze-dried techniques for fabricating composite scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Kai [Tianjin First Center Hospital, No. 24 Fukang Road, Tianjin, TJ 300192 (China); Li, Ruixin [Institute of Medical Equipment, Academy of Military and Medical Sciences, No. 106, Wandong Street, Hedong District, Tianjin 300000 (China); Jiang, Wenxue, E-mail: jiangortholivea@sina.cn [Tianjin First Center Hospital, No. 24 Fukang Road, Tianjin, TJ 300192 (China); Sun, Yufu [Tianjin First Center Hospital, No. 24 Fukang Road, Tianjin, TJ 300192 (China); Li, Hui [Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, TJ 300052 (China)

    2016-09-02

    In this study, the performances of different preparation methods of the scaffolds were analyzed for chondrocyte tissue engineering. Silk fibroin/collagen (SF/C) was fabricated using a vacuum freeze-dried technique and by 3D printing. The porosity, water absorption expansion rates, mechanical properties, and pore sizes of the resulting materials were evaluated. The proliferation and metabolism of the cells was detected at different time points using an MTT assay. Cell morphologies and distributions were observed by histological analysis and scanning electron microscopy (SEM). The porosity, water absorption expansion rate, and Young’s modulus of the material obtained via 3D printing were significantly higher than those obtained by the freeze-dried method, while the pore size did not differ significantly between the two methods. MTT assay results showed that the metabolism of cells seeded on the 3D printed scaffolds was more viable than the metabolism on the freeze-dried material. H&E staining of the scaffolds revealed that the number of cells in the 3D printed scaffold was higher in comparison to a similar measurement on the freeze-dried material. Consequently, stem cells grew well inside the 3D printed scaffolds, as measured by SEM, while the internal structure of the freeze-dried scaffold was disordered. Compared with the freeze-dried technique, the 3D printed scaffold exhibited better overall performance and was more suitable for cartilage tissue engineering. - Highlights: • Silk fibroin/collagen was fabricated using 3D printing. • Physical characterization and Cell compatibility were compared. • 3D printed scaffold exhibited better overall performance.

  16. Textile-templated electrospun anisotropic scaffolds for regenerative cardiac tissue engineering.

    Science.gov (United States)

    Şenel Ayaz, H Gözde; Perets, Anat; Ayaz, Hasan; Gilroy, Kyle D; Govindaraj, Muthu; Brookstein, David; Lelkes, Peter I

    2014-10-01

    For patients with end-stage heart disease, the access to heart transplantation is limited due to the shortage of donor organs and to the potential for rejection of the donated organ. Therefore, current studies focus on bioengineering approaches for creating biomimetic cardiac patches that will assist in restoring cardiac function, by repairing and/or regenerating the intrinsically anisotropic myocardium. In this paper we present a simplified, straightforward approach for creating bioactive anisotropic cardiac patches, based on a combination of bioengineering and textile-manufacturing techniques in concert with nano-biotechnology based tissue-engineering stratagems. Using knitted conventional textiles, made of cotton or polyester yarns as template targets, we successfully electrospun anisotropic three-dimensional scaffolds from poly(lactic-co-glycolic) acid (PLGA), and thermoplastic polycarbonate-urethane (PCU, Bionate(®)). The surface topography and mechanical properties of textile-templated anisotropic scaffolds significantly differed from those of scaffolds electrospun from the same materials onto conventional 2-D flat-target electrospun scaffolds. Anisotropic textile-templated scaffolds electrospun from both PLGA and PCU, supported the adhesion and proliferation of H9C2 cardiac myoblasts cell line, and guided the cardiac tissue-like anisotropic organization of these cells in vitro. All cell-seeded PCU scaffolds exhibited mechanical properties comparable to those of a human heart, but only the cells on the polyester-templated scaffolds exhibited prolonged spontaneous synchronous contractility on the entire engineered construct for 10 days in vitro at a near physiologic frequency of ∼120 bpm. Taken together, the methods described here take advantage of straightforward established textile manufacturing strategies as an efficient and cost-effective approach to engineering 3D anisotropic, elastomeric PCU scaffolds that can serve as a cardiac patch. Copyright

  17. Nanoclays mediate stem cell differentiation and mineralized ECM formation on biopolymer scaffolds.

    Science.gov (United States)

    Ambre, Avinash H; Katti, Dinesh R; Katti, Kalpana S

    2013-09-01

    In this work, novel modified nanoclays were used to mineralize hydroxyapatite (HAP) mimicking biomineralization in bone. This in situ HAPclay was further incorporated into chitosan/polygalacturonic acid (Chi/PgA) scaffolds and films for bone tissue engineering. Differences in microstructure of the scaffolds were observed depending on the changes in processing of in situ HAPclay with ChiPgA biopolymer system. Response of human mesenchymal stem cells (hMSCs) on these scaffolds and films was studied using imaging and assays. SEM micrographs indicate that hMSCs were able to adhere to ChiPgA/in situ HAPclay scaffolds and phase contrast images indicated formation of mineralized nodules on ChiPgA/in situ HAPclay films in absence of osteogenic supplements used for differentiation of hMSCs. The formation of mineralized nodules by hMSCs was confirmed by positive staining of the nodules by Alizarin Red S dye. Viability and differentiation assays showed that ChiPgA/in situ HAPclay scaffolds were favorable for viability and differentiation of hMSCs. Unique two-stage cell seeding experiments were performed as a strategy to enhance tissue formation by hMSCs on ChiPgA/in situ HAPclay composite films. This work showed that biomaterials based on ChiPgA/in situ HAPclay composites can be used for bone tissue engineering applications and in situ nanoclay-HAP system mediates osteoinductive and osteoconductive response from hMSCs. Copyright © 2013 Wiley Periodicals, Inc.

  18. Functionalized scaffolds to control dental pulp stem cell fate.

    Science.gov (United States)

    Piva, Evandro; Silva, Adriana F; Nör, Jacques E

    2014-04-01

    Emerging understanding about interactions between stem cells, scaffolds, and morphogenic factors has accelerated translational research in the field of dental pulp tissue engineering. Dental pulp stem cells constitute a subpopulation of cells endowed with self-renewal and multipotency. Dental pulp stem cells seeded in biodegradable scaffolds and exposed to dentin-derived morphogenic factors give rise to a pulplike tissue capable of generating new dentin. Notably, dentin-derived proteins are sufficient to induce dental pulp stem cell differentiation into odontoblasts. Ongoing work is focused on developing ways of mobilizing dentin-derived proteins and disinfecting the root canal of necrotic teeth without compromising the morphogenic potential of these signaling molecules. On the other hand, dentin by itself does not appear to be capable of inducing endothelial differentiation of dental pulp stem cells despite the well-known presence of angiogenic factors in dentin. This is particularly relevant in the context of dental pulp tissue engineering in full root canals in which access to blood supply is limited to the apical foramina. To address this challenge, scientists are looking at ways to use the scaffold as a controlled-release device for angiogenic factors. The aim of this article was to present and discuss current strategies to functionalize injectable scaffolds and customize them for dental pulp tissue engineering. The long-term goal of this work is to develop stem cell-based therapies that enable the engineering of functional dental pulps capable of generating new tubular dentin in humans. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Preparation and characterization of bionic bone structure chitosan/hydroxyapatite scaffold for bone tissue engineering.

    Science.gov (United States)

    Zhang, Jiazhen; Nie, Jingyi; Zhang, Qirong; Li, Youliang; Wang, Zhengke; Hu, Qiaoling

    2014-01-01

    Three-dimensional oriented chitosan (CS)/hydroxyapatite (HA) scaffolds were prepared via in situ precipitation method in this research. Scanning electron microscopy (SEM) images indicated that the scaffolds with acicular nano-HA had the spoke-like, multilayer and porous structure. The SEM of osteoblasts which were polygonal or spindle-shaped on the composite scaffolds after seven-day cell culture showed that the cells grew, adhered, and spread well. The results of X-ray powder diffractometer and Fourier transform infrared spectrometer showed that the mineral particles deposited in the scaffold had phase structure similar to natural bone and confirmed that particles were exactly HA. In vitro biocompatibility evaluation indicated the composite scaffolds showed a higher degree of proliferation of MC3T3-E1 cell compared with the pure CS scaffolds and the CS/HA10 scaffold was the highest one. The CS/HA scaffold also had a higher ratio of adhesion and alkaline phosphate activity value of osteoblasts compared with the pure CS scaffold, and the ratio increased with the increase of HA content. The ALP activity value of composite scaffolds was at least six times of the pure CS scaffolds. The results suggested that the composite scaffolds possessed good biocompatibility. The compressive strength of CS/HA15 increased by 33.07% compared with the pure CS scaffold. This novel porous scaffold with three-dimensional oriented structure might have a potential application in bone tissue engineering.

  20. Biomimetic nanoclay scaffolds for bone tissue engineering

    Science.gov (United States)

    Ambre, Avinash Harishchandra

    Tissue engineering offers a significant potential alternative to conventional methods for rectifying tissue defects by evoking natural regeneration process via interactions between cells and 3D porous scaffolds. Imparting adequate mechanical properties to biodegradable scaffolds for bone tissue engineering is an important challenge and extends from molecular to macroscale. This work focuses on the use of sodium montmorillonite (Na-MMT) to design polymer composite scaffolds having enhanced mechanical properties along with multiple interdependent properties. Materials design beginning at the molecular level was used in which Na-MMT clay was modified with three different unnatural amino acids and further characterized using Fourier Transform Infrared (FTIR) spectroscopy, X-ray diffraction (XRD). Based on improved bicompatibility with human osteoblasts (bone cells) and intermediate increase in d-spacing of MMT clay (shown by XRD), 5-aminovaleric acid modified clay was further used to prepare biopolymer (chitosan-polygalacturonic acid complex) scaffolds. Osteoblast proliferation in biopolymer scaffolds containing 5-aminovaleric acid modified clay was similar to biopolymer scaffolds containing hydroxyapatite (HAP). A novel process based on biomineralization in bone was designed to prepare 5-aminovaleric acid modified clay capable of imparting multiple properties to the scaffolds. Bone-like apatite was mineralized in modified clay and a novel nanoclay-HAP hybrid (in situ HAPclay) was obtained. FTIR spectroscopy indicated a molecular level organic-inorganic association between the intercalated 5-aminovaleric acid and mineralized HAP. Osteoblasts formed clusters on biopolymer composite films prepared with different weight percent compositions of in situ HAPclay. Human MSCs formed mineralized nodules on composite films and mineralized extracellular matrix (ECM) in composite scaffolds without the use of osteogenic supplements. Polycaprolactone (PCL), a synthetic polymer, was

  1. In Vitro Degradation of PHBV Scaffolds and nHA/PHBV Composite Scaffolds Containing Hydroxyapatite Nanoparticles for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Naznin Sultana

    2012-01-01

    Full Text Available This paper investigated the long-term in vitro degradation properties of scaffolds based on biodegradable polymers and osteoconductive bioceramic/polymer composite materials for the application of bone tissue engineering. The three-dimensional porous scaffolds were fabricated using emulsion-freezing/freeze-drying technique using poly(hydroxybutyrate-co-hydroxyvalerate (PHBV which is a natural biodegradable and biocompatible polymer. Nanosized hydroxyapatite (nHA particles were successfully incorporated into the PHBV scaffolds to render the scaffolds osteoconductive. The PHBV and nHA/PHBV scaffolds were systematically evaluated using various techniques in terms of mechanical strength, porosity, porous morphology, and in vitro degradation. PHBV and nHA/PHBV scaffolds degraded over time in phosphate-buffered saline at 37°C. PHBV polymer scaffolds exhibited slow molecular weight loss and weight loss in the in vitro physiological environment. Accelerated weight loss was observed in nHA incorporated PHBV composite scaffolds. An increasing trend of crystallinity was observed during the initial period of degradation time. The compressive properties decreased more than 40% after 5-month in vitro degradation. Together with interconnected pores, high porosity, suitable mechanical properties, and slow degradation profile obtained from long-term degradation studies, the PHBV scaffolds and osteoconductive nHA/PHBV composite scaffolds showed promises for bone tissue engineering application.

  2. Microfibrous silver-coated polymeric scaffolds with tunable mechanical properties

    KAUST Repository

    Kalakonda, Parvathalu.

    2017-07-07

    Electrospun scaffolds of poly(glycerol sebacate)/poly(ε-caprolactone) (PGS/PCL) have been used for engineered tissues due to their desirable thermal and mechanical properties as well as their tunable degradability. In this paper, we fabricated micro-fibrous scaffolds from a composite of PGS/PCL using a standard electrospinning method and coated them with silver (Ag). The low temperature coating method prevented substrate melting and the Ag coating decreases the pore size and increases the diameter of fibers which resulted in enhanced thermal and mechanical properties. We further compared the mechanical properties of the composite fibrous scaffolds with different thicknesses of Ag coated scaffolds. The composite fibrous scaffold with a 275 nm Ag coating showed higher tensile modulus (E) and ultimate tensile strength (UTS) without any post-processing treatment. Lastly, potential controlled release of the Ag coating from the composite fibrous scaffolds could present interesting biomedical applications.

  3. Biomimetic spiral-cylindrical scaffold based on hybrid chitosan/cellulose/nano-hydroxyapatite membrane for bone regeneration.

    Science.gov (United States)

    Jiang, Hong; Zuo, Yi; Zou, Qin; Wang, Huanan; Du, Jingjing; Li, Yubao; Yang, Xiaochao

    2013-11-27

    Natural bone is a complex material with well-designed architecture. To achieve successful bone integration and regeneration, the constituent and structure of bone-repairing scaffolds need to be functionalized synergistically based on biomimetics. In this study, a hybrid membrane composed of chitosan (CS), sodium carboxymethyl cellulose (CMC), and nano-hydroxyapatite (n-HA) was curled in a concentric manner to generate an anisotropic spiral-cylindrical scaffold, with compositional and structural properties mimicking natural bone. After optimization in terms of morphology, hydrophilicity, swelling and degradation pattern, the osteoblast cells seeded on the membrane of 60 wt% n-HA exhibited the highest cell viability and osteocalcin expression. In vivo osteogenesis assessment revealed that the spiral-cylindrical architecture played a dominant role in bone regeneration and osseointegration. Newly formed bone tissue grew through the longitudinal direction of the cylinder-shaped scaffold bridging both ends of the defect, bone marrow penetrated the entire scaffold and formed a medullary cavity in the center of the spiral cylinder. This study for the first time demonstrates that the spiral-cylindrical scaffold can promote complete infiltration of bone tissues in vivo, leading to successful osteointegration and functional reconstruction of bone defects. It suggests that the biomimetic spiral-cylindrical scaffold could be a promising candidate for bone regeneration applications.

  4. Transplantation of an LGR6+ Epithelial Stem Cell-Enriched Scaffold for Repair of Full-Thickness Soft-Tissue Defects: The In Vitro Development of Polarized Hair-Bearing Skin.

    Science.gov (United States)

    Lough, Denver M; Wetter, Nathan; Madsen, Christopher; Reichensperger, Joel; Cosenza, Nicole; Cox, Lisa; Harrison, Carrie; Neumeister, Michael W

    2016-02-01

    Recent literature has shown that full-thickness wounds, devoid of the stem cell niche, can subsequently be reconstructed with functional skin elements following migration of the LGR6 epithelial stem cell into the wound bed. In this study, the authors use a variety of LGR6 epithelial stem cell-seeded scaffolds to determine therapeutic utility and regenerative potential in the immediate reconstruction of full-thickness wounds. Isolated LGR6 epithelial stem cells were seeded onto a spectrum of acellular matrices and monitored in both in vitro and in vivo settings to determine their relative capacity to regenerate tissues and heal wounds. Wound beds containing LGR6 stem cell-seeded scaffolds showed significantly augmented rates of healing, epithelialization, and hair growth compared with controls. Gene and proteomic expression studies indicate that LGR6 stem cell-seeded constructs up-regulate WNT, epidermal growth factor, and angiogenesis pathways. Finally, the addition of stromal vascular fraction to LGR6 stem cell-seeded constructs induces polarized tissue formation, nascent hair growth, and angiogenesis within wounds. LGR6 stem cells are able to undergo proliferation, differentiation, and migration following seeding onto a variety of collagen-based scaffolding. In addition, deployment of these constructs induces epithelialization, hair growth, and angiogenesis within wound beds. The addition of stromal vascular fraction to LGR6 stem cell-containing scaffolds initiated an early form of tissue polarization, providing for the first time a clinically applicable stem cell-based construct that is capable of the repair of full-thickness wounds and hair regeneration. Therapeutic, V.

  5. Improved seeding of chondrocytes into polyglycolic acid scaffolds using semi-static and alginate loading methods.

    Science.gov (United States)

    Shahin, Kifah; Doran, Pauline M

    2011-01-01

    Cell seeding and attachment in three-dimensional scaffolds is a key step in tissue engineering with implications for cell differentiation and tissue development. In this work, two new seeding methods were investigated using human chondrocytes and polyglycolic acid (PGA) fibrous mesh scaffolds. A simple semi-static seeding method using culture plates and tissue flasks was developed as an easy-to-perform modification of static seeding. An alginate-loading method was also studied, using alginate hydrogel as an adjuvant for entrapping cells within PGA scaffolds. Both the semi-static and PGA-alginate methods produced more homogeneous cell distributions than conventional static and dynamic seeding. Using 20 × 10(6) cells, whereas the seeding efficiency for static seeding was only 52%, all other techniques produced seeding efficiencies of ≥ 90%. With 40 × 10(6) cells, the efficiency of semi-static seeding declined to 74% while the dynamic and PGA-alginate methods retained their ability to accommodate high cell numbers. The seeded scaffolds were cultured in recirculation bioreactors to determine the effect of seeding method on cartilage production. Statically seeded scaffolds did not survive the 5-week cultivation period. Deposition of extracellular matrix in scaffolds seeded using the semi-static and PGA-alginate methods was more uniform compared with scaffolds seeded using the dynamic method. The new semi-static and PGA-alginate seeding methods developed in this work are recommended for tissue engineering because they provide substantial benefits compared with static seeding in terms of seeding efficiency, cell distribution, and cartilage deposition while remaining simple and easy to execute. Copyright © 2010 American Institute of Chemical Engineers (AIChE).

  6. A mechanism for effective cell-seeding in rigid, microporous substrates.

    Science.gov (United States)

    Polak, S J; Rustom, L E; Genin, G M; Talcott, M; Wagoner Johnson, A J

    2013-08-01

    Seeding cells into porous ceramic substrates has been shown to improve outcomes in surgical repair of large bone defects, but the physics underlying cellular ingress into such scaffolds remains elusive. This paper demonstrates capillary forces as a novel, yet simple, self-loading or self-seeding mechanism for rigid, microporous substrates. Capillary forces were found to draw cells through a microporous network with interconnections smaller than the diameter of the cells in suspension. Work here emphasizes CaP-based bone scaffolds containing both macroporosity (>100μm) and microporosity (5-50μm); these have been shown to improve bone formation in vivo as compared to their macroporous counterparts and also performed better than microporous scaffolds containing BMP-2 by some measures of bone regeneration. We hypothesize that capillary force driven self-seeding in both macro- and micropores may underlie this improvement, and present a mathematical model and experiments that support this hypothesis. The cell localization and penetration depth within these two-dimensional substrates in vitro depends upon both the cell type (size and stiffness) and the capillary forces generated by the microstructure. Additional experiments showing that cell penetration depth in vitro depends on cell size and stiffness suggest that microporosity could be tailored to optimize cell infiltration in a cell-specific way. Endogenous cells are also drawn into the microporous network in vivo. Results have important implications for design of scaffolds for the healing of large bone defects, and for controlled release of drugs in vivo. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Concave Pit-Containing Scaffold Surfaces Improve Stem Cell-Derived Osteoblast Performance and Lead to Significant Bone Tissue Formation

    Science.gov (United States)

    Cusella-De Angelis, Maria Gabriella; Laino, Gregorio; Piattelli, Adriano; Pacifici, Maurizio; De Rosa, Alfredo; Papaccio, Gianpaolo

    2007-01-01

    Background Scaffold surface features are thought to be important regulators of stem cell performance and endurance in tissue engineering applications, but details about these fundamental aspects of stem cell biology remain largely unclear. Methodology and Findings In the present study, smooth clinical-grade lactide-coglyolic acid 85:15 (PLGA) scaffolds were carved as membranes and treated with NMP (N-metil-pyrrolidone) to create controlled subtractive pits or microcavities. Scanning electron and confocal microscopy revealed that the NMP-treated membranes contained: (i) large microcavities of 80–120 µm in diameter and 40–100 µm in depth, which we termed primary; and (ii) smaller microcavities of 10–20 µm in diameter and 3–10 µm in depth located within the primary cavities, which we termed secondary. We asked whether a microcavity-rich scaffold had distinct bone-forming capabilities compared to a smooth one. To do so, mesenchymal stem cells derived from human dental pulp were seeded onto the two types of scaffold and monitored over time for cytoarchitectural characteristics, differentiation status and production of important factors, including bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF). We found that the microcavity-rich scaffold enhanced cell adhesion: the cells created intimate contact with secondary microcavities and were polarized. These cytological responses were not seen with the smooth-surface scaffold. Moreover, cells on the microcavity-rich scaffold released larger amounts of BMP-2 and VEGF into the culture medium and expressed higher alkaline phosphatase activity. When this type of scaffold was transplanted into rats, superior bone formation was elicited compared to cells seeded on the smooth scaffold. Conclusion In conclusion, surface microcavities appear to support a more vigorous osteogenic response of stem cells and should be used in the design of therapeutic substrates to improve bone repair and

  8. Influence of the mechanical environment on the engineering of mineralised tissues using human dental pulp stem cells and silk fibroin scaffolds.

    Directory of Open Access Journals (Sweden)

    Anna Woloszyk

    Full Text Available Teeth constitute a promising source of stem cells that can be used for tissue engineering and regenerative medicine purposes. Bone loss in the craniofacial complex due to pathological conditions and severe injuries could be treated with new materials combined with human dental pulp stem cells (hDPSCs that have the same embryonic origin as craniofacial bones. Optimising combinations of scaffolds, cells, growth factors and culture conditions still remains a great challenge. In the present study, we evaluate the mineralisation potential of hDPSCs seeded on porous silk fibroin scaffolds in a mechanically dynamic environment provided by spinner flask bioreactors. Cell-seeded scaffolds were cultured in either standard or osteogenic media in both static and dynamic conditions for 47 days. Histological analysis and micro-computed tomography of the samples showed low levels of mineralisation when samples were cultured in static conditions (0.16±0.1 BV/TV%, while their culture in a dynamic environment with osteogenic medium and weekly µCT scans (4.9±1.6 BV/TV% significantly increased the formation of homogeneously mineralised structures, which was also confirmed by the elevated calcium levels (4.5±1.0 vs. 8.8±1.7 mg/mL. Molecular analysis of the samples showed that the expression of tooth correlated genes such as Dentin Sialophosphoprotein and Nestin were downregulated by a factor of 6.7 and 7.4, respectively, in hDPSCs when cultured in presence of osteogenic medium. This finding indicates that hDPSCs are able to adopt a non-dental identity by changing the culture conditions only. Also an increased expression of Osteocalcin (1.4x and Collagen type I (1.7x was found after culture under mechanically dynamic conditions in control medium. In conclusion, the combination of hDPSCs and silk scaffolds cultured under mechanical loading in spinner flask bioreactors could offer a novel and promising approach for bone tissue engineering where appropriate and

  9. Influence of the mechanical environment on the engineering of mineralised tissues using human dental pulp stem cells and silk fibroin scaffolds.

    Science.gov (United States)

    Woloszyk, Anna; Holsten Dircksen, Sabrina; Bostanci, Nagihan; Müller, Ralph; Hofmann, Sandra; Mitsiadis, Thimios A

    2014-01-01

    Teeth constitute a promising source of stem cells that can be used for tissue engineering and regenerative medicine purposes. Bone loss in the craniofacial complex due to pathological conditions and severe injuries could be treated with new materials combined with human dental pulp stem cells (hDPSCs) that have the same embryonic origin as craniofacial bones. Optimising combinations of scaffolds, cells, growth factors and culture conditions still remains a great challenge. In the present study, we evaluate the mineralisation potential of hDPSCs seeded on porous silk fibroin scaffolds in a mechanically dynamic environment provided by spinner flask bioreactors. Cell-seeded scaffolds were cultured in either standard or osteogenic media in both static and dynamic conditions for 47 days. Histological analysis and micro-computed tomography of the samples showed low levels of mineralisation when samples were cultured in static conditions (0.16±0.1 BV/TV%), while their culture in a dynamic environment with osteogenic medium and weekly µCT scans (4.9±1.6 BV/TV%) significantly increased the formation of homogeneously mineralised structures, which was also confirmed by the elevated calcium levels (4.5±1.0 vs. 8.8±1.7 mg/mL). Molecular analysis of the samples showed that the expression of tooth correlated genes such as Dentin Sialophosphoprotein and Nestin were downregulated by a factor of 6.7 and 7.4, respectively, in hDPSCs when cultured in presence of osteogenic medium. This finding indicates that hDPSCs are able to adopt a non-dental identity by changing the culture conditions only. Also an increased expression of Osteocalcin (1.4x) and Collagen type I (1.7x) was found after culture under mechanically dynamic conditions in control medium. In conclusion, the combination of hDPSCs and silk scaffolds cultured under mechanical loading in spinner flask bioreactors could offer a novel and promising approach for bone tissue engineering where appropriate and rapid bone

  10. Clinical outcomes after cell-seeded autologous chondrocyte implantation of the knee: when can success or failure be predicted?

    Science.gov (United States)

    Pestka, Jan M; Bode, Gerrit; Salzmann, Gian; Steinwachs, Mathias; Schmal, Hagen; Südkamp, Norbert P; Niemeyer, Philipp

    2014-01-01

    Autologous chondrocyte implantation (ACI) has been associated with satisfying results. Still, it remains unclear when success or failure after ACI can be estimated. To evaluate the clinical outcomes of cell-seeded collagen matrix-supported ACI (ACI-Cs) for the treatment of cartilage defects of the knee at 36 months and to determine a time point after ACI-Cs at which success or failure can be estimated. Cohort study; Level of evidence, 3. A total of 80 patients with isolated full-thickness cartilage defects of the knee joint treated with ACI-Cs were prospectively assessed before surgery as well as postoperatively by use of the International Knee Documentation Committee (IKDC) score and Lysholm knee score. Preoperative IKDC and Lysholm scores increased from 49.6 and 59.5, respectively, to 79.1 and 83.5, respectively, at 36 months. Only half the patients (46.6%) with poor IKDC scores (ie, <70) at 6 months postoperatively showed continued poor or fair scores at 36 months' follow-up. The probability of poor scores at 36 months after surgery further increased to 0.61 and 0.81, respectively, when scores were persistent at 12 and 24 months. All 3 patients (100%) with good IKDC scores (ie, 81-90) at 6 months after surgery showed constant or even improved scores at 36 months' follow-up. Ninety-one percent of patients with good and excellent scores at 12 months and 83% of patients with good and excellent scores at 24 months (a total of 23 and 37 patients, respectively) were able to maintain these scores at 36 months' follow-up. Similar results were obtained for the Lysholm score. With regard to the improvements in functional outcomes after ACI-Cs at 36 months after surgery, the technique described here appears to lead to satisfying and stable clinical results. This study helps the treating physician to predict the likeliness of further clinical improvements or constant unsatisfactory results after ACI. In patients with good/excellent scores shortly after surgery

  11. Bioactivation of titanium dioxide scaffolds by ALP-functionalization

    Directory of Open Access Journals (Sweden)

    A. Sengottuvelan

    2017-06-01

    Full Text Available Three dimensional TiO2 scaffolds are receiving renewed attention for bone tissue engineering (TE due to their biocompatibility and attractive mechanical properties. However the bioactivity of these scaffolds is comparatively lower than that of bioactive glass or hydroxyapatite (HA scaffolds. One strategy to improve bioactivity is to functionalize the surface of the scaffolds using biomolecules. Alkaline phosphatase (ALP was chosen in this study due to its important role in the bone mineralization process. The current study investigated the ALP functionalization of 3D titanium dioxide scaffolds using self-polymerization of dopamine. Robust titanium scaffolds (compressive strength∼2.7 ± 0.3 MPa were produced via foam replica method. Enzyme grafting was performed by dip-coating in polydopamine/ALP solution. The presence of ALP was indirectly confirmed by contact angle measurements and enzymatic activity study. The influence of the enzyme on the bioactivity, e.g. hydroxyapatite formation on the scaffold surface, was measured in simulated body fluid (SBF. After 28 days in SBF, 5 mg ALP coated titania scaffolds exhibited increased hydroxyapatite formation. It was thus confirmed that ALP enhances the bioactivity of titania scaffolds, converting an inert bioceramic in an attractive bioactive system for bone TE.

  12. Engineering multi-layered skeletal muscle tissue by using 3D microgrooved collagen scaffolds.

    Science.gov (United States)

    Chen, Shangwu; Nakamoto, Tomoko; Kawazoe, Naoki; Chen, Guoping

    2015-12-01

    Preparation of three-dimensional (3D) micropatterned porous scaffolds remains a great challenge for engineering of highly organized tissues such as skeletal muscle tissue and cardiac tissue. Two-dimensional (2D) micropatterned surfaces with periodic features (several nanometers to less than 100 μm) are commonly used to guide the alignment of muscle myoblasts and myotubes and lead to formation of pre-patterned cell sheets. However, cell sheets from 2D patterned surfaces have limited thickness, and harvesting the cell sheets for implantation is inconvenient and can lead to less alignment of myotubes. 3D micropatterned scaffolds can promote cell alignment and muscle tissue formation. In this study, we developed a novel type of 3D porous collagen scaffolds with concave microgrooves that mimic muscle basement membrane to engineer skeletal muscle tissue. Highly aligned and multi-layered muscle bundle tissues were engineered by controlling the size of microgrooves and cell seeding concentration. Myoblasts in the engineered muscle tissue were well-aligned and had high expression of myosin heavy chain and synthesis of muscle extracellular matrix. The microgrooved collagen scaffolds could be used to engineer organized multi-layered muscle tissue for implantation to repair/restore the function of diseased tissues or be used to investigate the cell-cell interaction in 3D microscale topography. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Microfibrous {beta}-TCP/collagen scaffolds mimic woven bone in structure and composition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Shen; Zhang Xin; Cai Qing; Yang Xiaoping [Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Wang Bo; Deng Xuliang, E-mail: yangxp@mail.buct.edu.c [Department of VIP Dental Service, School and Hospital of Stomatology, Peking University, Beijing 100081 (China)

    2010-12-15

    Woven bone, as the initial form of bone tissue, is always found in developing and repairing bone. It is thought of as a temporary scaffold for the deposition of osteogenic cells and the laying down of lamellar bone. Thus, we hypothesize that a matrix which resembles the architecture and components of woven bone can provide an osteoblastic microenvironment for bone cell growth and new bone formation. In this study, woven-bone-like beta-tricalcium phosphate ({beta}-TCP)/collagen scaffolds were fabricated by sol-gel electrospinning and impregnating methods. Optimization studies on sol-gel synthesis and electrospinning process were conducted respectively to prepare pure {beta}-TCP fibers with dimensions close to mineralized collagen fibrils in woven bone. The collagen-coating layer prepared by impregnation had an adhesive role that held the {beta}-TCP fibers together, and resulted in rapid degradation and matrix mineralization in in vitro tests. MG63 osteoblast-like cells seeded on the resultant scaffolds showed three-dimensional (3D) morphologies, and merged into multicellular layers after 7 days culture. Cytotoxicity test further revealed that extracts from the resultant scaffolds could promote the proliferation of MG63 cells. Therefore, the woven-bone-like matrix that we constructed favored the attachment and proliferation of MG63 cells in three dimensions. It has great potential ability to shorten the time of formation of new bone.

  14. Mechanics of oriented electrospun nanofibrous scaffolds for annulus fibrosus tissue engineering.

    Science.gov (United States)

    Nerurkar, Nandan L; Elliott, Dawn M; Mauck, Robert L

    2007-08-01

    Engineering a functional replacement for the annulus fibrosus (AF) of the intervertebral disc is contingent upon recapitulation of AF structure, composition, and mechanical properties. In this study, we propose a new paradigm for AF tissue engineering that focuses on the reconstitution of anatomic fiber architecture and uses constitutive modeling to evaluate construct function. A modified electrospinning technique was utilized to generate aligned nanofibrous polymer scaffolds for engineering the basic functional unit of the AF, a single lamella. Scaffolds were tested in uniaxial tension at multiple fiber orientations, demonstrating a nonlinear dependence of modulus on fiber angle that mimicked the nonlinearity and anisotropy of native AF. A homogenization model previously applied to native AF successfully described scaffold mechanical response, and parametric studies demonstrated that nonfibrillar matrix, along with fiber connectivity, are key contributors to tensile mechanics for engineered AF. We demonstrated that AF cells orient themselves along the aligned scaffolds and deposit matrix that contributes to construct mechanics under loading conditions relevant to the in vivo environment. The homogenization model was applied to cell-seeded constructs and provided quantitative measures for the evolution of matrix and interfibrillar interactions. Finally, the model demonstrated that at fiber angles of the AF (28 degrees -44 degrees ), engineered material behaved much like native tissue, suggesting that engineered constructs replicate the physiologic behavior of the single AF lamella. Constitutive modeling provides a powerful tool for analysis of engineered AF neo-tissue and native AF tissue alike, highlighting key mechanical design criteria for functional AF tissue engineering.

  15. In vivo bioluminescence imaging of cell differentiation in biomaterials: a platform for scaffold development.

    Science.gov (United States)

    Bagó, Juli R; Aguilar, Elisabeth; Alieva, Maria; Soler-Botija, Carolina; Vila, Olaia F; Claros, Silvia; Andrades, José A; Becerra, José; Rubio, Nuria; Blanco, Jerónimo

    2013-03-01

    In vivo testing is a mandatory last step in scaffold development. Agile longitudinal noninvasive real-time monitoring of stem cell behavior in biomaterials implanted in live animals should facilitate the development of scaffolds for tissue engineering. We report on a noninvasive bioluminescence imaging (BLI) procedure for simultaneous monitoring of changes in the expression of multiple genes to evaluate scaffold performance in vivo. Adipose tissue-derived stromal mensenchymal cells were dually labeled with Renilla red fluorescent protein and firefly green fluorescent protein chimeric reporters regulated by cytomegalovirus and tissue-specific promoters, respectively. Labeled cells were induced to differentiate in vitro and in vivo, by seeding in demineralized bone matrices (DBMs) and monitored by BLI. Imaging results were validated by RT-polymerase chain reaction and histological procedures. The proposed approach improves molecular imaging and measurement of changes in gene expression of cells implanted in live animals. This procedure, applicable to the simultaneous analysis of multiple genes from cells seeded in DBMs, should facilitate engineering of scaffolds for tissue repair.

  16. Macromolecular multi-chromophoric scaffolding

    NARCIS (Netherlands)

    Schwartz, E.; Schwartz, Erik; Le Gac, Stephane; le Gac, Severine; Cornelissen, Jeroen Johannes Lambertus Maria; Nolte, Roeland J.M.; Rowan, Alan E.

    2010-01-01

    This critical review describes recent efforts in the field of chromophoric scaffolding. The advances in this research area, with an emphasis on rigid scaffolds, for example, synthetic polymers, carbon nanotubes (CNTs), nucleic acids, and viruses, are presented (166 references).

  17. Biomimetic Scaffolds for Osteogenesis

    Science.gov (United States)

    Yuan, Nance; Rezzadeh, Kameron S.; Lee, Justine C.

    2015-01-01

    Skeletal regenerative medicine emerged as a field of investigation to address large osseous deficiencies secondary to congenital, traumatic, and post-oncologic conditions. Although autologous bone grafts have been the gold standard for reconstruction of skeletal defects, donor site morbidity remains a significant limitation. To address these limitations, contemporary bone tissue engineering research aims to target delivery of osteogenic cells and growth factors in a defined three dimensional space using scaffolding material. Using bone as a template, biomimetic strategies in scaffold engineering unite organic and inorganic components in an optimal configuration to both support osteoinduction as well as osteoconduction. This article reviews the various structural and functional considerations behind the development of effective biomimetic scaffolds for osteogenesis and highlights strategies for enhancing osteogenesis. PMID:26413557

  18. Semiotic Scaffolding in Mathematics

    DEFF Research Database (Denmark)

    Johansen, Mikkel Willum; Misfeldt, Morten

    2015-01-01

    This paper investigates the notion of semiotic scaffolding in relation to mathematics by considering its influence on mathematical activities, and on the evolution of mathematics as a research field. We will do this by analyzing the role different representational forms play in mathematical...... cognition, and more broadly on mathematical activities. In the main part of the paper, we will present and analyze three different cases. For the first case, we investigate the semiotic scaffolding involved in pencil and paper multiplication. For the second case, we investigate how the development of new...... in both mathematical cognition and in the development of mathematics itself, but mathematical cognition cannot itself be reduced to the use of semiotic scaffolding....

  19. Bioactive electrospun scaffolds delivering growth factors and genes for tissue engineering applications

    NARCIS (Netherlands)

    Ji, W.; Sun, Y.; Yang, F.; Beucken, J.J.J.P van den; Fan, M.; Chen, Z.; Jansen, J.A.

    2011-01-01

    A biomaterial scaffold is one of the key factors for successful tissue engineering. In recent years, an increasing tendency has been observed toward the combination of scaffolds and biomolecules, e.g. growth factors and therapeutic genes, to achieve bioactive scaffolds, which not only provide

  20. Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds

    DEFF Research Database (Denmark)

    Mygind, Tina; Stiehler, Maik; Baatrup, Anette

    2007-01-01

    Culture of osteogenic cells on a porous scaffold could offer a new solution to bone grafting using autologous human mesenchymal stem cells (hMSC) from the patient. We compared coralline hydroxyapatite scaffolds with pore sizes of 200 and 500 microm for expansion and differentiation of hMSCs. We...... polymerase chain reaction for 10 osteogenic markers. The 500-microm scaffolds had increased proliferation rates and accommodated a higher number of cells (shown by DNA content, scanning electron microscopy and fluorescence microscopy). Thus the porosity of a 3D microporous biomaterial may be used to steer h......MSC in a particular direction. We found that dynamic spinner flask cultivation of hMSC/scaffold constructs resulted in increased proliferation, differentiation and distribution of cells in scaffolds. Therefore, spinner flask cultivation is an easy-to-use inexpensive system for cultivating hMSCs on small...

  1. Bone tissue engineering scaffolding: computer-aided scaffolding techniques.

    Science.gov (United States)

    Thavornyutikarn, Boonlom; Chantarapanich, Nattapon; Sitthiseripratip, Kriskrai; Thouas, George A; Chen, Qizhi

    Tissue engineering is essentially a technique for imitating nature. Natural tissues consist of three components: cells, signalling systems (e.g. growth factors) and extracellular matrix (ECM). The ECM forms a scaffold for its cells. Hence, the engineered tissue construct is an artificial scaffold populated with living cells and signalling molecules. A huge effort has been invested in bone tissue engineering, in which a highly porous scaffold plays a critical role in guiding bone and vascular tissue growth and regeneration in three dimensions. In the last two decades, numerous scaffolding techniques have been developed to fabricate highly interconnective, porous scaffolds for bone tissue engineering applications. This review provides an update on the progress of foaming technology of biomaterials, with a special attention being focused on computer-aided manufacturing (Andrade et al. 2002) techniques. This article starts with a brief introduction of tissue engineering (Bone tissue engineering and scaffolds) and scaffolding materials (Biomaterials used in bone tissue engineering). After a brief reviews on conventional scaffolding techniques (Conventional scaffolding techniques), a number of CAM techniques are reviewed in great detail. For each technique, the structure and mechanical integrity of fabricated scaffolds are discussed in detail. Finally, the advantaged and disadvantage of these techniques are compared (Comparison of scaffolding techniques) and summarised (Summary).

  2. Tissue engineering of ureteral grafts by seeding urothelial differentiated hADSCs onto biodegradable ureteral scaffolds.

    Science.gov (United States)

    Shi, Jian-Guo; Fu, Wei-Jun; Wang, Xiao-Xiong; Xu, Yong-De; Li, Gang; Hong, Bao-Fa; Wang, Yan; Du, Zhi-Yan; Zhang, Xu

    2012-10-01

    The study is aimed to evaluate the differentiation potential of human adipose-derived stem cells (hADSCs) into urothelial lineage, and to assess possibility of constructing ureteral grafts using the differentiated hADSCs and a novel polylactic acid (PLA)/collagen scaffolds. HADSCs were indirectly cocultured with urothelial cells in a transwell coculture system for urothelial differentiation. After 14 days coculturing, differentiation was evaluated by detecting urothelial lineage markers (cytokeratin-18 and uroplakin 2) in mRNA and protein level. Then the differentiated hADSCs were seeded onto PLA/collagen ureteral scaffolds and cultured in vitro for 1 week. The biocompatibility of the scaffolds was tested by scanning electron microscopy (SEM) and MTT analysis. At last, the cell/scafflod grafts were subcutaneously implanted into 4-week-old female athymic mice for 14 days. The results demonstrated that the hADSCs could be efficiently induced into urothelial lineage by indirect coculture. The differentiated cells seeded onto the PLA/collagen ureteral scaffolds survived up to 7 days and maintained proliferation in vitro, which indicated that the scaffolds displayed good biocompatibility. In vivo study showed that the differentiated cells in the grafts survived, formed multiple layers on the scaffolds and expressed urothelial lineage markers. In conclusion, hADSCs may serve as an alternative cell resource in cell-based tissue engineering for ureteral reconstruction. These cells could be employed to construct a model of ureteral engineering grafts and be effectively applied in vivo, which could be a new strategy on ureteral replacement with applicable potential in clinical research. Copyright © 2012 Wiley Periodicals, Inc.

  3. Alendronate-Eluting Biphasic Calcium Phosphate (BCP) Scaffolds Stimulate Osteogenic Differentiation

    Science.gov (United States)

    Kim, Sung Eun; Lee, Deok-Won; Kang, Eun Young; Jeong, Won Jae; Lee, Boram; Jeong, Myeong Seon; Kim, Hak Jun; Park, Kyeongsoon; Song, Hae-Ryong

    2015-01-01

    Biphasic calcium phosphate (BCP) scaffolds have been widely used in orthopedic and dental fields as osteoconductive bone substitutes. However, BCP scaffolds are not satisfactory for the stimulation of osteogenic differentiation and maturation. To enhance osteogenic differentiation, we prepared alendronate- (ALN-) eluting BCP scaffolds. The coating of ALN on BCP scaffolds was confirmed by scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). An in vitro release study showed that release of ALN from ALN-eluting BCP scaffolds was sustained for up to 28 days. In vitro results revealed that MG-63 cells grown on ALN-eluting BCP scaffolds exhibited increased ALP activity and calcium deposition and upregulated gene expression of Runx2, ALP, OCN, and OPN compared with the BCP scaffold alone. Therefore, this study suggests that ALN-eluting BCP scaffolds have the potential to effectively stimulate osteogenic differentiation. PMID:26221587

  4. Alendronate-Eluting Biphasic Calcium Phosphate (BCP Scaffolds Stimulate Osteogenic Differentiation

    Directory of Open Access Journals (Sweden)

    Sung Eun Kim

    2015-01-01

    Full Text Available Biphasic calcium phosphate (BCP scaffolds have been widely used in orthopedic and dental fields as osteoconductive bone substitutes. However, BCP scaffolds are not satisfactory for the stimulation of osteogenic differentiation and maturation. To enhance osteogenic differentiation, we prepared alendronate- (ALN- eluting BCP scaffolds. The coating of ALN on BCP scaffolds was confirmed by scanning electron microscopy (FE-SEM, energy-dispersive X-ray spectroscopy (EDS, and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR. An in vitro release study showed that release of ALN from ALN-eluting BCP scaffolds was sustained for up to 28 days. In vitro results revealed that MG-63 cells grown on ALN-eluting BCP scaffolds exhibited increased ALP activity and calcium deposition and upregulated gene expression of Runx2, ALP, OCN, and OPN compared with the BCP scaffold alone. Therefore, this study suggests that ALN-eluting BCP scaffolds have the potential to effectively stimulate osteogenic differentiation.

  5. The fabrication and characterization of biodegradable HA/PHBV nanoparticle-polymer composite scaffolds.

    Science.gov (United States)

    Jack, Kevin S; Velayudhan, Shiny; Luckman, Paul; Trau, Matt; Grøndahl, Lisbeth; Cooper-White, Justin

    2009-09-01

    This study reports the fabrication and characterization of nano-sized hydroxyapatite (HA)/poly(hydroxyabutyrate-co-hydroxyvalerate) (PHBV) polymer composite scaffolds with high porosity and controlled pore architectures. These scaffolds were prepared using a modified thermally induced phase-separation technique. This investigation focuses on the effect of fabrication conditions on the overall pore architecture of the scaffolds and the dispersion of HA nanocrystals within the composite scaffolds. The morphologies, mechanical properties and in vitro bioactivity of the composite scaffolds were investigated. It was noted that the pore architectures could be manipulated by varying phase-separation parameters. The HA particles were dispersed in the pore walls of the scaffolds and were well bonded to the polymer. The introduction of HA greatly increased the stiffness and strength, and improved the in vitro bioactivity of the scaffolds. The results suggest these newly developed nano-HA/PHBV composite scaffolds may serve as an effective three-dimensional substrate in bone tissue engineering.

  6. Scaffolding Reading Comprehension Skills

    Science.gov (United States)

    Salem, Ashraf Atta Mohamed Safein

    2017-01-01

    The current study investigates whether English language teachers use scaffolding strategies for developing their students' reading comprehension skills or just for assessing their comprehension. It also tries to demonstrate whether teachers are aware of these strategies or they use them as a matter of habit. A questionnaire as well as structured…

  7. Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds.

    Science.gov (United States)

    Sachlos, E; Czernuszka, J T

    2003-06-30

    Tissue engineering is a new and exciting technique which has the potential to create tissues and organs de novo. It involves the in vitro seeding and attachment of human cells onto a scaffold. These cells then proliferate, migrate and differentiate into the specific tissue while secreting the extracellular matrix components required to create the tissue. It is evident, therefore, that the choice of scaffold is crucial to enable the cells to behave in the required manner to produce tissues and organs of the desired shape and size. Current scaffolds, made by conventional scaffold fabrication techniques, are generally foams of synthetic polymers. The cells do not necessarily recognise such surfaces, and most importantly cells cannot migrate more than 500 microm from the surface. The lack of oxygen and nutrient supply governs this depth. Solid freeform fabrication (SFF) uses layer-manufacturing strategies to create physical objects directly from computer-generated models. It can improve current scaffold design by controlling scaffold parameters such as pore size, porosity and pore distribution, as well as incorporating an artificial vascular system, thereby increasing the mass transport of oxygen and nutrients into the interior of the scaffold and supporting cellular growth in that region. Several SFF systems have produced tissue engineering scaffolds with this concept in mind which will be the main focus of this review. We are developing scaffolds from collagen and with an internal vascular architecture using SFF. Collagen has major advantages as it provides a favourable surface for cellular attachment. The vascular system allows for the supply of nutrients and oxygen throughout the scaffold. The future of tissue engineering scaffolds is intertwined with SFF technologies.

  8. SCAFFOLDING IN CONNECTIVIST MOBILE LEARNING ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Ozlem OZAN

    2013-04-01

    Full Text Available Social networks and mobile technologies are transforming learning ecology. In this changing learning environment, we find a variety of new learner needs. The aim of this study is to investigate how to provide scaffolding to the learners in connectivist mobile learning environment: Ø to learn in a networked environment, Ø to manage their networked learning process, Ø to interact in a networked society, and Ø to use the tools belonging to the network society. The researcher described how Vygotsky's “scaffolding” concept, Berge’s “learner support” strategies, and Siemens’ “connectivism” approach can be used together to satisfy mobile learners’ needs. A connectivist mobile learning environment was designed for the research, and the research was executed as a mixed-method study. Data collection tools were Facebook wall entries, personal messages, chat records; Twitter, Diigo, blog entries; emails, mobile learning management system statistics, perceived learning survey and demographic information survey. Results showed that there were four major aspects of scaffolding in connectivist mobile learning environment as type of it, provider of it, and timing of it and strategies of it. Participants preferred mostly social scaffolding, and then preferred respectively, managerial, instructional and technical scaffolding. Social scaffolding was mostly provided by peers, and managerial scaffolding was mostly provided by instructor. Use of mobile devices increased the learner motivation and interest. Some participants stated that learning was more permanent by using mobile technologies. Social networks and mobile technologies made it easier to manage the learning process and expressed a positive impact on perceived learning.

  9. Optimization of Liver Decellularization Maintains Extracellular Matrix Micro-Architecture and Composition Predisposing to Effective Cell Seeding

    Science.gov (United States)

    Maghsoudlou, Panagiotis; Georgiades, Fanourios; Smith, Holly; Milan, Anna; Shangaris, Panicos; Urbani, Luca; Loukogeorgakis, Stavros P.; Lombardi, Benedetta; Mazza, Giuseppe; Hagen, Charlotte; Sebire, Neil J.; Turmaine, Mark; Eaton, Simon; Olivo, Alessandro; Godovac-Zimmermann, Jasminka; Pinzani, Massimo; Gissen, Paul; De Coppi, Paolo

    2016-01-01

    Hepatic tissue engineering using decellularized scaffolds is a potential therapeutic alternative to conventional transplantation. However, scaffolds are usually obtained using decellularization protocols that destroy the extracellular matrix (ECM) and hamper clinical translation. We aim to develop a decellularization technique that reliably maintains hepatic microarchitecture and ECM components. Isolated rat livers were decellularized by detergent-enzymatic technique with (EDTA-DET) or without EDTA (DET). Histology, DNA quantification and proteomics confirmed decellularization with further DNA reduction with the addition of EDTA. Quantification, histology, immunostaining, and proteomics demonstrated preservation of extracellular matrix components in both scaffolds with a higher amount of collagen and glycosaminoglycans in the EDTA-DET scaffold. Scanning electron microscopy and X-ray phase contrast imaging showed microarchitecture preservation, with EDTA-DET scaffolds more tightly packed. DET scaffold seeding with a hepatocellular cell line demonstrated complete repopulation in 14 days, with cells proliferating at that time. Decellularization using DET preserves microarchitecture and extracellular matrix components whilst allowing for cell growth for up to 14 days. Addition of EDTA creates a denser, more compact matrix. Transplantation of the scaffolds and scaling up of the methodology are the next steps for successful hepatic tissue engineering. PMID:27159223

  10. Nano/macro porous bioactive glass scaffold

    Science.gov (United States)

    Wang, Shaojie

    exchange process. Although both techniques lower the surface area of BG scaffolds, the temperature-dependent sintering process closes nanopores through densification, while the concentration-dependent solvent exchange process enlarges nanopores through Ostwald-ripening type coarsening. Therefore, nanopore size and surface area of BG scaffold are independently controlled using these methods. In vitro cell and in vivo animal tissue responses have been investigated to evaluate the performance of the nano-macro porous BG scaffold. The cells are found to migrate and penetrate deep into the 3D nano-macro porous structure, while exhibiting excellent adhesion to the bioscaffold surface. Importantly, the new tissue with both blood vessels and collagen fibers is formed deep inside the implanted scaffolds without obvious inflammatory reaction. Furthermore, our observations show biological benefits of the nanopores in the BG scaffold. In comparison to BG scaffold without nanopores, cells migrate and penetrate into nano-macro dual-porous BG scaffold faster and deeper mainly because of the increase of surface area. To study the effect of nanopore topography, we fabricated BG scaffolds with the same surface area but different nanopore sizes. It is found that the initial cell attachment is significantly enhanced on the BG scaffold with the same surface area but smaller nanopores size, indicating that the nanopore topography strongly influences the performance of BG scaffold. In conclusion, the present results demonstrate most clearly the usefulness of our nano-macro dual-porous BG as a novel and superior 3D bioscaffold for regenerative medicine and hard tissue engineering.

  11. Hydrophilic PCU scaffolds prepared by grafting PEGMA and immobilizing gelatin to enhance cell adhesion and proliferation.

    Science.gov (United States)

    Shi, Changcan; Yuan, Wenjie; Khan, Musammir; Li, Qian; Feng, Yakai; Yao, Fanglian; Zhang, Wencheng

    2015-05-01

    Gelatin contains many functional motifs which can modulate cell specific adhesion, so we modified polycarbonate urethane (PCU) scaffold surface by immobilization of gelatin. PCU-g-gelatin scaffolds were prepared by direct immobilizing gelatins onto the surface of aminated PCU scaffolds. To increase the immobilization amount of gelatin, poly(ethylene glycol) methacrylate (PEGMA) was grafted onto PCU scaffolds by surface initiated atom transfer radical polymerization. Then, following amination and immobilization, PCU-g-PEGMA-g-gelatin scaffolds were obtained. Both modified scaffolds were characterized by chemical and biological methods. After immobilization of gelatin, the microfiber surface became rough, but the original morphology of scaffolds was maintained successfully. PCU-g-PEGMA-g-gelatin scaffolds were more hydrophilic than PCU-g-gelatin scaffolds. Because hydrophilic PEGMA and gelatin were grafted and immobilized onto the surface, the PCU-g-PEGMA-g-gelatin scaffolds showed low platelet adhesion, perfect anti-hemolytic activity and excellent cell growth and proliferation capacity. It could be envisioned that PCU-g-PEGMA-g-gelatin scaffolds might have potential applications in tissue engineering artificial scaffolds. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Design of 3D scaffolds for tissue engineering testing a tough polylactide-based graft copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Dorati, R., E-mail: rossella.dorati@unipv.it [Department of Drug Sciences, University of Pavia, V.le Taramelli 12, 27100 Pavia (Italy); Center for Tissue Engineering (CIT), University of Pavia, Via Ferrata 1, 27100 Pavia (Italy); Colonna, C. [Department of Drug Sciences, University of Pavia, V.le Taramelli 12, 27100 Pavia (Italy); Center for Tissue Engineering (CIT), University of Pavia, Via Ferrata 1, 27100 Pavia (Italy); Tomasi, C. [C.S.G.I., Department of Chemistry, Division of Physical Chemistry, University of Pavia, V.le Taramelli 16 I, 27100 Pavia (Italy); Genta, I. [Department of Drug Sciences, University of Pavia, V.le Taramelli 12, 27100 Pavia (Italy); Center for Tissue Engineering (CIT), University of Pavia, Via Ferrata 1, 27100 Pavia (Italy); Bruni, G. [C.S.G.I., Department of Chemistry, Division of Physical Chemistry, University of Pavia, V.le Taramelli 16 I, 27100 Pavia (Italy); Conti, B. [Department of Drug Sciences, University of Pavia, V.le Taramelli 12, 27100 Pavia (Italy); Center for Tissue Engineering (CIT), University of Pavia, Via Ferrata 1, 27100 Pavia (Italy)

    2014-01-01

    as biodegradable biomaterial for TE. • The tough PLA graft copolymer resulted to being suitable for the preparation of 2D film and 3D scaffold. • The tough LMP-3055 polymer resulted to being a suitable substrate for cell seeding and proliferation.

  13. Scaffolding Student Participation in Mathematical Practices

    Science.gov (United States)

    Moschkovich, Judit N.

    2015-01-01

    The concept of scaffolding can be used to describe various types of adult guidance, in multiple settings, across different time scales. This article clarifies what we mean by scaffolding, considering several questions specifically for scaffolding in mathematics: What theoretical assumptions are framing scaffolding? What is being scaffolded? At…

  14. Preparation and Functional Assessment of Composite Chitosan-Nano-Hydroxyapatite Scaffolds for Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Warren O. Haggard

    2012-02-01

    Full Text Available Composite chitosan-nano-hydroxyapatite microspheres and scaffolds prepared using a co-precipitation method have shown potential for use in bone regeneration. The goal of this research was to improve the functional properties of the composite scaffolds by modifying the fabrication parameters. The effects of degree of deacetylation (DDA, drying method, hydroxyapatite content and an acid wash on scaffold properties were investigated. Freeze-dried 61% DDA scaffolds degraded faster (3.5 ± 0.5% mass loss than air-dried 61% DDA scaffolds and 80% DDA scaffolds, but had a lower compressive modulus of 0.12 ± 0.01 MPa. Air-dried 80% DDA scaffolds displayed the highest compressive modulus (3.79 ± 0.51 MPa and these scaffolds were chosen as the best candidate for use in bone regeneration. Increasing the amount of hydroxyapatite in the air-dried 80% DDA scaffolds did not further increase the compressive modulus of the scaffolds. An acid wash procedure at pH 6.1 was found to increase the degradation of air-dried 80% DDA scaffolds from 1.3 ± 0.1% to 4.4 ± 0.4%. All of the formulations tested supported the proliferation of SAOS-2 cells.

  15. Modeling Tissue Growth Within Nonwoven Scaffolds Pores

    Science.gov (United States)

    Church, Jeffrey S.; Alexander, David L.J.; Russell, Stephen J.; Ingham, Eileen; Ramshaw, John A.M.; Werkmeister, Jerome A.

    2011-01-01

    In this study we present a novel approach for predicting tissue growth within the pores of fibrous tissue engineering scaffolds. Thin nonwoven polyethylene terephthalate scaffolds were prepared to characterize tissue growth within scaffold pores, by mouse NR6 fibroblast cells. On the basis of measurements of tissue lengths at fiber crossovers and along fiber segments, mathematical models were determined during the proliferative phase of cell growth. Tissue growth at fiber crossovers decreased with increasing interfiber angle, with exponential relationships determined on day 6 and 10 of culture. Analysis of tissue growth along fiber segments determined two growth profiles, one with enhanced growth as a result of increased tissue lengths near the fiber crossover, achieved in the latter stage of culture. Derived mathematical models were used in the development of a software program to visualize predicted tissue growth within a pore. This study identifies key pore parameters that contribute toward tissue growth, and suggests models for predicting this growth, based on fibroblast cells. Such models may be used in aiding scaffold design, for optimum pore infiltration during the tissue engineering process. PMID:20687775

  16. Colonization of collagen scaffolds by adipocytes derived from mesenchymal stem cells of the common marmoset monkey

    Energy Technology Data Exchange (ETDEWEB)

    Bernemann, Inga, E-mail: bernemann@imp.uni-hannover.de [Institute for Multiphase Processes, Leibniz Universitaet Hannover, Hannover (Germany); Mueller, Thomas; Blasczyk, Rainer [Institute for Transfusion Medicine, Hannover Medical School, Hannover (Germany); Glasmacher, Birgit; Hofmann, Nicola [Institute for Multiphase Processes, Leibniz Universitaet Hannover, Hannover (Germany)

    2011-07-29

    Highlights: {yields} Marmoset bone marrow-derived MSCs differentiate in suspension into adipogenic, osteogenic and chondrogenic lineages. {yields} Marmoset MSCs integrate in collagen type I scaffolds and differentiate excellently into adipogenic cells. {yields} Common marmoset monkey is a suitable model for soft tissue engineering in human regenerative medicine. -- Abstract: In regenerative medicine, human cell replacement therapy offers great potential, especially by cell types differentiated from immunologically and ethically unproblematic mesenchymal stem cells (MSCs). In terms of an appropriate carrier material, collagen scaffolds with homogeneous pore size of 65 {mu}m were optimal for cell seeding and cultivating. However, before clinical application and transplantation of MSC-derived cells in scaffolds, the safety and efficiency, but also possible interference in differentiation due to the material must be preclinically tested. The common marmoset monkey (Callithrix jacchus) is a preferable non-human primate animal model for this aim due to its genetic and physiological similarities to the human. Marmoset bone marrow-derived MSCs were successfully isolated, cultured and differentiated in suspension into adipogenic, osteogenic and chondrogenic lineages by defined factors. The differentiation capability could be determined by FACS. Specific marker genes for all three cell types could be detected by RT-PCR. Furthermore, MSCs seeded on collagen I scaffolds differentiated in adipogenic lineage showed after 28 days of differentiation high cell viability and homogenous distribution on the material which was validated by calcein AM and EthD staining. As proof of adipogenic cells, the intracellular lipid vesicles in the cells were stained with Oil Red O. The generation of fat vacuoles was visibly extensive distinguishable and furthermore determined on the molecular level by expression of specific marker genes. The results of the study proved both the differential

  17. Improved preparation of acellular nerve scaffold and application of PKH26 fluorescent labeling combined with in vivo fluorescent imaging system in nerve tissue engineering.

    Science.gov (United States)

    Zhao, Bin; Sun, Xiaolei; Li, Xiulan; Yang, Qiang; Li, Yanjun; Zhang, Yang; Li, Bing; Ma, Xinlong

    2013-11-27

    Acellular nerve scaffold has been widely used for peripheral nerve defect treatment. However, the structure of traditional acellular nerve scaffold is dense; the interval porosity and void diameter are too small to meet the requirement of cell seeding, which limits the application. This study was designed to prepare a novel acellular nerve scaffold by the technique of hypotonic buffer combined with freeze-drying, and use PKH26 fluorescent labeling combined with in vivo fluorescent imaging system to evaluate the biological behavior of tissue-engineered nerve in vitro and in vivo. According to light and electron microscopy, the scaffold, which microarchitecture was similar to the fibrous framework of rabbit sciatic nerves, was cell-free and rich in laminin, collagen I and collagen III. In vitro experiment showed that the novel acellular nerve scaffold could provide a 3-D environment to support the attachment, proliferation and migration of adipose-derived stem cells (ADSCs). ADSCs labeled with fluorescent dye PKH26 were then seeded on scaffolds and implanted subcutaneously into nude mice. After 4 weeks, nerve-like tissue rounded by vessels formed. Cells in the tissue seemed to confirm that they originated from the labeled ADSCs, as confirmed by in vivo fluorescent imaging. In conclusion, the prepared novel acellular nerve scaffold can be used as a new kind of nerve scaffold material, which is more conducible for seeding cells; And PKH26 fluorescent labeling and in vivo fluorescent imaging can be useful for cell tracking and analyzing cell-scaffold constructs in vivo. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Optical projection tomography can be used to investigate spatial distribution of chondrocytes in three-dimensional biomaterial scaffolds for cartilage tissue engineering.

    Science.gov (United States)

    Järvinen, Elina; Muhonen, Virpi; Haaparanta, Anne-Marie; Kellomäki, Minna; Kiviranta, Ilkka

    2014-01-01

    Biomaterial scaffolds have been used in autologous chondrocyte implantation to facilitate the repair of large lesions and to advance the formation of articular cartilage [Exp. Biol. Med. (Maywood) 237(1) (2012), 10-17]. Biomaterial scaffolds are usually three-dimensional (3-D) porous structures consisting of biodegradable materials to support articular cartilage formation. Adequate porosity of the scaffold is necessary for uniform cell distribution and cell attachment, and the density of the cells in the scaffold should be appropriate for cartilage formation [Cartilage 3(2) (2012), 108-117]. There have been only a restricted number of studies on the spatial distribution of cells in scaffolds, and on the role of this to cartilage formation [J. Biotechnol. 129 (2007), 516-531; Biotechnol. Progr. 14 (1998), 193-202; Biotechnol. Bioeng. 84 (2003), 205-214]. This may be due to the limited availability of appropriate visualization methods. Acquiring 3-D images throughout the scaffold by histology or confocal methods are not applicable to all types of scaffolds, and moreover, they are time consuming, laborious and thus not very feasible for a large scale analysis. To make the visualization of the spatial distribution of the cells easier in biomaterial scaffolds we have applied optical projection tomography (OPT). OPT microscope produces high-resolution 3-D images of both fluorescent and non-fluorescent specimens [Science 296(5567) (2002), 541-545]. Here we demonstrate that the OPT method can be used for the evaluation and visualization of the cell seeding method, spatial distribution and density of cells in biomaterial scaffolds and thus establish the OPT as a valid tool for analysis of cell distribution in cartilage tissue engineering samples.

  19. Fabrication of a novel hybrid scaffold for tissue engineered heart valve.

    Science.gov (United States)

    Hong, Hao; Dong, Nianguo; Shi, Jiawei; Chen, Si; Guo, Chao; Hu, Ping; Qi, Hongxu

    2009-10-01

    The aim of this study was to fabricate biomatrix/polymer hybrid scaffolds using an electrospinning technique. Then tissue engineered heart valves were engineered by seeding mesenchymal stromal cells (MSCs) onto the scaffolds. The effects of the hybrid scaffolds on the proliferation of seed cells, formation of extracellular matrix and mechanical properties of tissue engineered heart valves were investigated. MSCs were obtained from rats. Porcine aortic heart valves were decellularized, coated with poly(3-hydroxybutyrate-co-4-hydroxybutyrate) using an electrospinning technique, and reseeded and cultured over a time period of 14 days. In control group, the decellularized valve scaffolds were reseeded and cultured over an equivalent time period. Specimens of each group were examined histologically (hematoxylin-eosin [HE] staining, immunohistostaining, and scanning electron microscopy), biochemically (DNA and 4-hydroxyproline) and mechanically. The results showed that recellularization was comparable to the specimens of hybrid scaffolds and controls. The specimens of hybrid scaffolds and controls revealed comparable amounts of cell mass and 4-hydroxyproline (P>0.05). However, the specimens of hybrid scaffolds showed a significant increase in mechanical strength, compared to the controls (Phybrid scaffolds to increase the mechanical strength of tissue engineered heart valves. And compared to the decellularized valve scaffolds, the hybrid scaffolds showed similar effects on the proliferation of MSCs and formation of extracellular matrix. It was believed that the hybrid scaffolds could be used for the construction of tissue engineered heart valves.

  20. Development of Chitosan Scaffolds with Enhanced Mechanical Properties for Intestinal Tissue Engineering Applications.

    Science.gov (United States)

    Zakhem, Elie; Bitar, Khalil N

    2015-10-13

    Massive resections of segments of the gastrointestinal (GI) tract lead to intestinal discontinuity. Functional tubular replacements are needed. Different scaffolds were designed for intestinal tissue engineering application. However, none of the studies have evaluated the mechanical properties of the scaffolds. We have previously shown the biocompatibility of chitosan as a natural material in intestinal tissue engineering. Our scaffolds demonstrated weak mechanical properties. In this study, we enhanced the mechanical strength of the scaffolds with the use of chitosan fibers. Chitosan fibers were circumferentially-aligned around the tubular chitosan scaffolds either from the luminal side or from the outer side or both. Tensile strength, tensile strain, and Young's modulus were significantly increased in the scaffolds with fibers when compared with scaffolds without fibers. Burst pressure was also increased. The biocompatibility of the scaffolds was maintained as demonstrated by the adhesion of smooth muscle cells around the different kinds of scaffolds. The chitosan scaffolds with fibers provided a better candidate for intestinal tissue engineering. The novelty of this study was in the design of the fibers in a specific alignment and their incorporation within the scaffolds.

  1. Mathematical model of growth factor driven haptotaxis and proliferation in a tissue engineering scaffold.

    Science.gov (United States)

    Pohlmeyer, J V; Waters, S L; Cummings, L J

    2013-03-01

    Motivated by experimental work (Miller et al. in Biomaterials 27(10):2213-2221, 2006, 32(11):2775-2785, 2011) we investigate the effect of growth factor driven haptotaxis and proliferation in a perfusion tissue engineering bioreactor, in which nutrient-rich culture medium is perfused through a 2D porous scaffold impregnated with growth factor and seeded with cells. We model these processes on the timescale of cell proliferation, which typically is of the order of days. While a quantitative representation of these phenomena requires more experimental data than is yet available, qualitative agreement with preliminary experimental studies (Miller et al. in Biomaterials 27(10):2213-2221, 2006) is obtained, and appears promising. The ultimate goal of such modeling is to ascertain initial conditions (growth factor distribution, initial cell seeding, etc.) that will lead to a final desired outcome.

  2. Mathematical Model of Growth Factor Driven Haptotaxis and Proliferation in a Tissue Engineering Scaffold

    KAUST Repository

    Pohlmeyer, J. V.

    2013-01-29

    Motivated by experimental work (Miller et al. in Biomaterials 27(10):2213-2221, 2006, 32(11):2775-2785, 2011) we investigate the effect of growth factor driven haptotaxis and proliferation in a perfusion tissue engineering bioreactor, in which nutrient-rich culture medium is perfused through a 2D porous scaffold impregnated with growth factor and seeded with cells. We model these processes on the timescale of cell proliferation, which typically is of the order of days. While a quantitative representation of these phenomena requires more experimental data than is yet available, qualitative agreement with preliminary experimental studies (Miller et al. in Biomaterials 27(10):2213-2221, 2006) is obtained, and appears promising. The ultimate goal of such modeling is to ascertain initial conditions (growth factor distribution, initial cell seeding, etc.) that will lead to a final desired outcome. © 2013 Society for Mathematical Biology.

  3. Enhancement of skin wound healing with decellularized scaffolds loaded with hyaluronic acid and epidermal growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Su, Zhongchun; Ma, Huan; Wu, Zhengzheng [Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Lab for Genetic Medicine of Guangdong Province, Jinan University, Guangzhou 510632 (China); Zeng, Huilan [Department of Hematology, The First Affiliated Hospital, Jinan University, Guangzhou 510632 (China); Li, Zhizhong [Department of Bone, The First Affiliated Hospital, Jinan University, Guangzhou 510632 (China); Wang, Yuechun; Liu, Gexiu [Department of Physiology, School of Medicine, Jinan University, Guangzhou 510632 (China); Xu, Bin; Lin, Yongliang; Zhang, Peng [Grandhope Biotech Co., Ltd., Building D, #408, Guangzhou International Business Incubator, Guangzhou Science Park, Guangzhou 510663, Guangdong (China); Wei, Xing, E-mail: wei70@hotmail.com [Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Lab for Genetic Medicine of Guangdong Province, Jinan University, Guangzhou 510632 (China)

    2014-11-01

    Current therapy for skin wound healing still relies on skin transplantation. Many studies were done to try to find out ways to replace skin transplantation, but there is still no effective alternative therapy. In this study, decellularized scaffolds were prepared from pig peritoneum by a series of physical and chemical treatments, and scaffolds loaded with hyaluronic acid (HA) and epidermal growth factor (EGF) were tested for their effect on wound healing. MTT assay showed that EGF increased NIH3T3 cell viability and confirmed that EGF used in this study was biologically active in vitro. Scanning electron microscope (SEM) showed that HA stably attached to scaffolds even after soaking in PBS for 48 h. ELISA assay showed that HA increased the adsorption of EGF to scaffolds and sustained the release of EGF from scaffolds. Animal study showed that the wounds covered with scaffolds containing HA and EGF recovered best among all 4 groups and had wound healing rates of 49.86%, 70.94% and 87.41% respectively for days 10, 15 and 20 post-surgery compared to scaffolds alone with wound healing rates of 29.26%, 42.80% and 70.14%. In addition, the wounds covered with scaffolds containing EGF alone were smaller than no EGF scaffolds on days 10, 15 and 20 post-surgery. Hematoxylin–Eosin (HE) staining confirmed these results by showing that on days 10, 15 and 20 post-surgery, the thicker epidermis and dermis layers were observed in the wounds covered with scaffolds containing HA and EGF than scaffolds alone. In addition, the thicker epidermis and dermis layers were also observed in the wounds covered with scaffolds containing EGF than scaffolds alone. Skin appendages were observed on day 20 only in the wound covered with scaffolds containing HA and EGF. These results demonstrate that the scaffolds containing HA and EGF can enhance wound healing. - Highlights: • HA can increase the adsorption of EGF to decellularized scaffolds. • HA can sustain the release of EGF from

  4. Glyoxal crosslinking of cell-seeded chitosan/collagen hydrogels for bone regeneration.

    Science.gov (United States)

    Wang, Limin; Stegemann, Jan P

    2011-06-01

    Chitosan and collagen are natural biomaterials that have been used extensively in tissue engineering, both separately and as composite materials. Most methods to fabricate chitosan/collagen composites use freeze drying and chemical crosslinking to create stable porous scaffolds, which subsequently can be seeded with cells. In this study, we directly embedded human bone marrow stem cells (hBMSC) in chitosan/collagen materials by initiating gelation using β-glycerophosphate at physiological temperature and pH. We further examined the use of glyoxal, a dialdehyde with relatively low toxicity, to crosslink these materials and characterized the resulting changes in matrix and cell properties. The cytocompatibility of glyoxal and the crosslinked gels were investigated in terms of hBMSC metabolic activity, viability, proliferation and osteogenic differentiation. These studies revealed that glyoxal was cytocompatible at concentrations below about 1mM for periods of exposure up to 15 h, though the degree of cell spreading and proliferation were dependent on matrix composition. Glyoxal-crosslinked matrices were stiffer and compacted less than uncrosslinked controls. It was further demonstrated that hBMSC can attach and proliferate in three-dimensional matrices composed of 50/50 chitosan/collagen, and that these materials supported osteogenic differentiation in response to stimulation. Such glyoxal-crosslinked chitosan/collagen composite materials may find utility as cell delivery vehicles for enhancing the repair of bone defects. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. PENGARUH METODE SCAFFOLDING BERBASIS KONSTRUKTIVISME TERHADAP HASIL BELAJAR MATEMATIKA

    Directory of Open Access Journals (Sweden)

    Indrawati Indrawati

    2017-01-01

    ABSTRACT This study is motivated by the fact that many students have difficulties in learning mathematics especially for junior highschool students. This study aims to know the implementation of scaffolding method based on constructivism to students’ mathematics achievement. This is an experimental study with one group pretest and posttest design. The sample were 32 students grade VIII. Data is analyzed by t-test and n-gain test. T-test result shows that sig=0,000<0,05, The average score increases 15,63 and based on N-gain test shows that students competence increases too. It means that scaffolding method based on constructivism influence students’ mathematics achievement significantly. Thus scaffolding method based on constructivism can be implemented in any instruction, because it can increase students’ achievement and students will get learning variation that can reduce boredom and motivate them to learn actively. Keywords: mathematics achievement; constructivism; scaffolding.

  6. Rapid prototyped porous nickel–titanium scaffolds as bone substitutes

    Directory of Open Access Journals (Sweden)

    Waldemar Hoffmann

    2014-06-01

    Full Text Available While calcium phosphate–based ceramics are currently the most widely used materials in bone repair, they generally lack tensile strength for initial load bearing. Bulk titanium is the gold standard of metallic implant materials, but does not match the mechanical properties of the surrounding bone, potentially leading to problems of fixation and bone resorption. As an alternative, nickel–titanium alloys possess a unique combination of mechanical properties including a relatively low elastic modulus, pseudoelasticity, and high damping capacity, matching the properties of bone better than any other metallic material. With the ultimate goal of fabricating porous implants for spinal, orthopedic and dental applications, nickel–titanium substrates were fabricated by means of selective laser melting. The response of human mesenchymal stromal cells to the nickel–titanium substrates was compared to mesenchymal stromal cells cultured on clinically used titanium. Selective laser melted titanium as well as surface-treated nickel–titanium and titanium served as controls. Mesenchymal stromal cells had similar proliferation rates when cultured on selective laser melted nickel–titanium, clinically used titanium, or controls. Osteogenic differentiation was similar for mesenchymal stromal cells cultured on the selected materials, as indicated by similar gene expression levels of bone sialoprotein and osteocalcin. Mesenchymal stromal cells seeded and cultured on porous three-dimensional selective laser melted nickel–titanium scaffolds homogeneously colonized the scaffold, and following osteogenic induction, filled the scaffold’s pore volume with extracellular matrix. The combination of bone-related mechanical properties of selective laser melted nickel–titanium with its cytocompatibility and support of osteogenic differentiation of mesenchymal stromal cells highlights its potential as a superior bone substitute as compared to clinically used

  7. Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications.

    Science.gov (United States)

    Yan, Le-Ping; Wang, Ying-Jun; Ren, Li; Wu, Gang; Caridade, Sofia G; Fan, Jia-Bing; Wang, Ling-Yun; Ji, Pei-Hong; Oliveira, Joaquim M; Oliveira, João T; Mano, João F; Reis, Rui L

    2010-11-01

    In this study, genipin-cross-linked collagen/chitosan biodegradable porous scaffolds were prepared for articular cartilage regeneration. The influence of chitosan amount and genipin concentration on the scaffolds physicochemical properties was evaluated. The morphologies of the scaffolds were characterized by scanning electron microscope (SEM) and cross-linking degree was investigated by ninhydrin assay. Additionally, the mechanical properties of the scaffolds were assessed under dynamic compression. To study the swelling ratio and the biostability of the collagen/chitosan scaffold, in vitro tests were also carried out by immersion of the scaffolds in PBS solution or digestion in collagenase, respectively. The results showed that the morphologies of the scaffolds underwent a fiber-like to a sheet-like structural transition by increasing chitosan amount. Genipin cross-linking remarkably changed the morphologies and pore sizes of the scaffolds when chitosan amount was less than 25%. Either by increasing the chitosan ratio or performing cross-linking treatment, the swelling ratio of the scaffolds can be tailored. The ninhydrin assay demonstrated that the addition of chitosan could obviously increase the cross-linking efficiency. The degradation studies indicated that genipin cross-linking can effectively enhance the biostability of the scaffolds. The biocompatibility of the scaffolds was evaluated by culturing rabbit chondrocytes in vitro. This study demonstrated that a good viability of the chondrocytes seeded on the scaffold was achieved. The SEM analysis has revealed that the chondrocytes adhered well to the surface of the scaffolds and contacted each other. These results suggest that the genipin-cross-linked collagen/chitosan matrix may be a promising formulation for articular cartilage scaffolding.

  8. Collagen-based porous scaffolds containing PLGA microspheres for controlled kartogenin release in cartilage tissue engineering.

    Science.gov (United States)

    Sun, Xiaomin; Wang, Jianhua; Wang, Yingying; Zhang, Qiqing

    2017-11-06

    A scaffold composed of different collagen (COL)/chitosan (CS)/hyaluronic acid sodium (HAS) salt ratios was evaluated by determining porosity, swelling, loss rate in hot water, mechanical property, and cell proliferation to obtain optimum conditions for manufacturing porous scaffolds. Results showed that the optimal ratio of COL/CS/HAS salt porous scaffold was 1:1:0.1. High swelling and loss rate of scaffolds/microspheres (MPs) could lead to high diffusion rate of MPs from the scaffolds, causing an increase in the kartogenin (KGN) release. The porous scaffolds at optimum conditions had a maximum amount of KGN release. Results of in vitro fluorescence staining and cell proliferation suggested that scaffolds/MPs had good biocompatibility and the capability to promote bone marrow stromal cell proliferation, cartilage tissue regeneration, and integration between the repaired and surrounding cartilages. Therefore, this composite could be a promising material for cartilage repair and regeneration, which could be effective in the knee osteoarthritis treatment.

  9. Mechanical and biological effects of infiltration with biopolymers on 3D printed tricalciumphosphate scaffolds.

    Science.gov (United States)

    Cornelsen, Matthias; Probst, Florian Andreas; Schwarz, Christina; Burian, Egon; Tröltzsch, Matthias; Otto, Sven; Saller, Maximilian Michael; Schieker, Matthias; Seitz, Hermann

    2017-09-26

    The aim of this study was to evaluate the influence of infiltrating 3D printed (TCP) scaffolds with different biodegradable polymers on their mechanical and biological properties. 3D printed TCP scaffolds with interconnecting channels measuring 450±50 µm were infiltrated with four different biodegradable copolymers. To determine the average compressive strength, a uniaxial testing system was used. Additionally, scaffolds were seeded with MC3T3 cells and cell viability was assessed by live/dead-assay. Uninfiltrated TCP had an average compression strength of 1.92±0.38 MPa. Mechanical stability was considerably increased in all infiltrated scaffolds up to a maximum of 7.36±0.57 MPa. All scaffolds demonstrated high cell survival rates with a maximum of 94±10 % living cells. In conclusion, infiltration of 3D printed tricalcium phosphate scaffolds with biodegradable polymers significantly improved mechanical properties and biological properties were comparable to those of uninfiltrated TCP scaffolds.

  10. Novel Antibacterial Nanofibrous PLLA Scaffolds

    Science.gov (United States)

    Feng, Kai; Sun, Hongli; Bradley, Mark A.; Dupler, Ellen J.; Giannobile, William V.; Ma, Peter X.

    2010-01-01

    In order to achieve high local bioactivity and low systemic side effects of antibiotics in the treatment of dental, periodontal and bone infections, a localized and temporally controlled delivery system is crucial. In this study, a three-dimensional (3D) porous tissue engineering scaffold was developed with the ability to release antibiotics in a controlled fashion for long-term inhibition of bacterial growth. The highly soluble antibiotic drug, Doxycycline (DOXY), was successfully incorporated into PLGA nanospheres using a modified water-in-oil-in-oil (w/o/o) emulsion method. The PLGA nanospheres (NS) were then incorporated into prefabricated nanofibrous PLLA scaffolds with a well interconnected macroporous structure. The release kinetics of DOXY from four different PLGA NS formulations on a PLLA scaffold was investigated. DOXY could be released from the NS-scaffolds in a locally and temporally controlled manner. The DOXY release is controlled by DOXY diffusion out of the NS and is strongly dependent upon the physical and chemical properties of the PLGA. While PLGA50-6.5K, PLGA50-64K, and PLGA75-113K NS-scaffolds discharge DOXY rapidly with a high initial burst release, PLGA85-142K NS-scaffold can extend the release of DOXY to longer than 6 weeks with a low initial burst release. Compared to NS alone, the NS incorporated on a 3-D scaffold had significantly reduced the initial burst release. In vitro antibacterial tests of PLGA85 NS-scaffold demonstrated its ability to inhibit common bacterial growth (S.aureus and E.coli) for a prolonged duration. The successful incorporation of DOXY onto 3-D scaffolds and its controlled release from scaffolds extends the usage of nano-fibrous scaffolds from the delivery of large molecules such as growth factors to the delivery of small hydrophilic drugs, allowing for a broader application and a more complex tissue engineering strategy. PMID:20570700

  11. Semiotic scaffolding of multicellularity

    DEFF Research Database (Denmark)

    Hoffmeyer, Jesper

    2015-01-01

    and animals this individuation process poses very different challenges in the three kingdoms of plants, fungi and animals, and the solutions found to these differences are discussed. In the same time as multicellularity ushered life into the epoch of mortality it logically also led to the appearance...... semiotic scaffoldings had to be invented in order to prevent this. While a unicellular self may go on to live practically forever, the multicellular self most often must run through an individuation process ending in the death of the individual. Due to basic differences in cells of plants, fungi...

  12. In vitro evaluation of alginate/halloysite nanotube composite scaffolds for tissue engineering.

    Science.gov (United States)

    Liu, Mingxian; Dai, Libing; Shi, Huizhe; Xiong, Sheng; Zhou, Changren

    2015-04-01

    In this study, a series of alginate/halloysite nanotube (HNTs) composite scaffolds were prepared by solution-mixing and freeze-drying method. HNTs are incorporated into alginate to improve both the mechanical and cell-attachment properties of the scaffolds. The interfacial interactions between alginate and HNTs were confirmed by the atomic force microscope (AFM), transmission electron microscope (TEM) and FTIR spectroscopy. The mechanical, morphological, and physico-chemical properties of the composite scaffolds were investigated. The composite scaffolds exhibit significant enhancement in compressive strength and compressive modulus compared with pure alginate scaffold both in dry and wet states. A well-interconnected porous structure with size in the range of 100-200μm and over 96% porosity is found in the composite scaffolds. X-ray diffraction (XRD) result shows that HNTs are uniformly dispersed and partly oriented in the composite scaffolds. The incorporation of HNTs leads to increase in the scaffold density and decrease in the water swelling ratio of alginate. HNTs improve the stability of alginate scaffolds against enzymatic degradation in PBS solution. Thermogravimetrica analysis (TGA) shows that HNTs can improve the thermal stability of the alginate. The mouse fibroblast cells display better attachment to the alginate/HNT composite than those to the pure alginate, suggesting the good cytocompatibility of the composite scaffolds. Alginate/HNT composite scaffolds exhibit great potential for applications in tissue engineering. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Application of polyethyleneimine-modified scaffolds to the regeneration of cartilaginous tissue.

    Science.gov (United States)

    Kuo, Yung-Chih; Ku, I-Nan

    2009-01-01

    In this study, we analyzed the physicochemical and biophysical properties of three-dimensional scaffolds modified using polyethyleneimine (PEI) and applied these scaffolds to the cultivation of bovine knee chondrocytes (BKCs). PEI was crosslinked in the bulk or on the surface of the ternary scaffolds comprising polyethylene oxide, chitin and chitosan. The results revealed that when the concentration of PEI was less than 300 microg/mL, the cytotoxicity of a scaffold was on the same order in the two method of modification. An increase in the concentration of PEI favored the adhesion of BKCs. When the amount of PEI in scaffolds is fixed, the surface-modified scaffolds exhibited a higher adhesion efficiency of BKCs than the bulk-modified scaffolds. For the regeneration of cartilaginous components, a higher amount of PEI in a scaffold yielded larger amounts of proliferated BKCs, secreted glycosaminoglycans, and produced collagen. In addition, the formation of neocartilage in the surface-modified scaffolds was more effective than that in the bulk-modified scaffolds. These tissue-engineered scaffolds, modified by an appropriate concentration of PEI, can be potentially applied to cartilage repair in clinical trials. 2009 American Institute of Chemical Engineers Biotechnol.

  14. Chitosan-Based Bilayer Hydroxyapatite Nanorod Composite Scaffolds for Osteochondral Regeneration

    Science.gov (United States)

    Swanson, Shawn

    Osteochondral defects involve injury to bone and cartilage. As articular cartilage is worn down, bone in the joint begins to rub together, causing bone spurs. This is known as osteoarthritis, and is a common issue among the aging population. This problem presents an interesting opportunity for tissue engineering. Tissue engineering is an approach to treatment of tissue defects where synthetic, three dimensional (3-D) scaffolds are implanted in a defect to facilitate healing. The osteochondral scaffold consists of two regions in the form of a bilayer scaffold- one to mimic bone with osteoconductive properties, and one to mimic cartilage with biomimetic properties. One approach to improving the osteoconductivity of tissue engineering scaffolds is the addition of hydroxyapatite (HAp), the main mineral phase in bone. HAp with nanorod morphology is desirable because it is biomimetic for the calcium phosphate found in bone. Incorporating HAp nanorods in bone tissue engineering scaffolds to form a composite material may increase scaffold osteoconductivity. The cartilage scaffold is fabricated from chitosan and hyaluronic acid (HA). HA is a known component of cartilage and thus is biomimetic. The bilayer scaffolds were seeded with osteoblast-like MG-63 cells to investigate cell migration and were evaluated with Alamar Blue proliferation assay. The cells successfully migrated to the bone region of the scaffold, indicating that the bilayer scaffold provides a promising osteochondral scaffold.

  15. Engineered polycaprolactone–magnesium hybrid biodegradable porous scaffold for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Hoi Man Wong

    2014-10-01

    Full Text Available In this paper, we describe the fabrication of a new biodegradable porous scaffold composed of polycaprolactone (PCL and magnesium (Mg micro-particles. The compressive modulus of PCL porous scaffold was increased to at least 150% by incorporating 29% Mg particles with the porosity of 74% using Micro-CT analysis. Surprisingly, the compressive modulus of this scaffold was further increased to at least 236% when the silane-coupled Mg particles were added. In terms of cell viability, the scaffold modified with Mg particles significantly convinced the attachment and growth of osteoblasts as compared with the pure PCL scaffold. In addition, the hybrid scaffold was able to attract the formation of apatite layer over its surface after 7 days of immersion in normal culture medium, whereas it was not observed on the pure PCL scaffold. This in vitro result indicated the enhanced bioactivity of the modified scaffold. Moreover, enhanced bone forming ability was also observed in the rat model after 3 months of implantation. Though bony in-growth was found in all the implanted scaffolds. High volume of new bone formation could be found in the Mg/PCL hybrid scaffolds when compared to the pure PCL scaffold. Both pure PCL and Mg/PCL hybrid scaffolds were degraded after 3 months. However, no tissue inflammation was observed. In conclusion, these promising results suggested that the incorporation of Mg micro-particles into PCL porous scaffold could significantly enhance its mechanical and biological properties. This modified porous bio-scaffold may potentially apply in the surgical management of large bone defect fixation.

  16. Nonwoven scaffolds for bone regeneration

    OpenAIRE

    Durham, Elaine R.; Tronci, Giuseppe; Yang,Xuebin; Wood, David J.; Russell, Stephen J.

    2016-01-01

    Developing successful scaffolds requires clinicians to adopt a multidisciplinary approach in order to understand and stimulate the natural bone regeneration process. A variety of natural and synthetic biomaterials, including naturally extracted, chemically functionalised collagen and synthetic Poly(epsilon-caprolactone) (PCL), can be manufactured into fibres, enabling the formation of nonwoven scaffolds. Many different nonwoven architectures and structural features can then be introduced, dep...

  17. Cold Plasma Reticulation of Shape Memory Embolic Tissue Scaffolds.

    Science.gov (United States)

    Nash, Landon D; Docherty, Nicole C; Monroe, Mary Beth B; Ezell, Kendal P; Carrow, James K; Hasan, Sayyeda M; Gaharwar, Akhilesh K; Maitland, Duncan J

    2016-12-01

    Polyurethane shape memory polymer (SMP) foams are proposed for use as thrombogenic scaffolds to improve the treatment of vascular defects, such as cerebral aneurysms. However, gas blown SMP foams inherently have membranes between pores, which can limit their performance as embolic tissue scaffolds. Reticulation, or the removal of membranes between adjacent foam pores, is advantageous for improving device performance by increasing blood permeability and cellular infiltration. This work characterizes the effects of cold gas plasma reticulation processes on bulk polyurethane SMP films and foams. Plasma-induced changes on material properties are characterized using scanning electron microscopy, uniaxial tensile testing, goniometry, and free strain recovery experiments. Device specific performance is characterized in terms of permeability, platelet attachment, and cell-material interactions. Overall, plasma reticulated SMP scaffolds show promise as embolic tissue scaffolds due to increased bulk permeability, retained thrombogenicity, and favorable cell-material interactions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Toward reconstruction of the subcutaneous fat layer with the use of adipose-derived stromal cell-seeded collagen matrices.

    Science.gov (United States)

    Werner, Katharina; Jakubietz, Michael G; Jakubietz, Rafael G; Schmidt, Karsten; Muhr, Christian; Bauer-Kreisel, Petra; Blunk, Torsten

    2014-12-01

    Complex injuries of the upper and lower extremities often result in scarring and subsequent adhesion formation, which may cause severe pain and distinctly reduce range of motion. In revision surgery, replacement of the missing subcutaneous tissue is desirable to prevent new adhesions, to cushion scarred tendons and nerves and to regain tissue elasticity. Therefore, the objective of this study was the in vitro evaluation of cell-seeded collagen matrices to serve as the basis for the reconstruction of the subcutaneous adipose tissue layer. Five commercially available acellular dermal collagen matrices were seeded with human adipose-derived stromal cells (hASC). Size and shape stability of cell-matrix constructs were assessed and cell adhesion onto the matrix surface was evaluated histologically. Adipogenic differentiation of hASC on matrices was evaluated by means of histological staining, triglyceride quantification, and quantitative real-time polymerase chain reaction gene expression analysis. The collagen matrix Permacol was the only cell-seeded material that exhibited excellent size and shape stability. For Permacol and Strattice, successful seeding with continuous cell layers on top of the matrices was observed. For both matrices, histological staining, triglyceride quantification and messenger RNA expression of adipogenic transcription factors indicated substantial adipogenic differentiation of hASC after long-term induction as well as after short-term induction of only 4 days. Of all matrices investigated, only Permacol exhibited adequate handling stability and the development of a thin adipose tissue layer on top of the matrix. Thus, this matrix appears promising to be used in the development of a subcutaneous cushioning layer after complex injuries involving large scar formation. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  19. In vitro evaluation of alginate/halloysite nanotube composite scaffolds for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Mingxian [Department of Materials Science and Engineering, Jinan University, Guangzhou 510632 (China); Dai, Libing [Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital Medical College, Jinan University, Guangzhou 510220 (China); Shi, Huizhe; Xiong, Sheng [Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632 (China); Zhou, Changren, E-mail: tcrz9@jnu.edu.cn [Department of Materials Science and Engineering, Jinan University, Guangzhou 510632 (China)

    2015-04-01

    In this study, a series of alginate/halloysite nanotube (HNTs) composite scaffolds were prepared by solution-mixing and freeze-drying method. HNTs are incorporated into alginate to improve both the mechanical and cell-attachment properties of the scaffolds. The interfacial interactions between alginate and HNTs were confirmed by the atomic force microscope (AFM), transmission electron microscope (TEM) and FTIR spectroscopy. The mechanical, morphological, and physico-chemical properties of the composite scaffolds were investigated. The composite scaffolds exhibit significant enhancement in compressive strength and compressive modulus compared with pure alginate scaffold both in dry and wet states. A well-interconnected porous structure with size in the range of 100–200 μm and over 96% porosity is found in the composite scaffolds. X-ray diffraction (XRD) result shows that HNTs are uniformly dispersed and partly oriented in the composite scaffolds. The incorporation of HNTs leads to increase in the scaffold density and decrease in the water swelling ratio of alginate. HNTs improve the stability of alginate scaffolds against enzymatic degradation in PBS solution. Thermogravimetrica analysis (TGA) shows that HNTs can improve the thermal stability of the alginate. The mouse fibroblast cells display better attachment to the alginate/HNT composite than those to the pure alginate, suggesting the good cytocompatibility of the composite scaffolds. Alginate/HNT composite scaffolds exhibit great potential for applications in tissue engineering. - Highlights: • We fabricated HNTs reinforced alginate composite scaffolds for biomedical applications. • The hydrogen bond interactions between HNTs and alginate are confirmed. • HNTs can significantly enhance the mechanical properties of alginate scaffold. • The scaffolds exhibit a highly porous structure with interconnected pores. • HNTs can improve the cell attachment and proliferation on alginate.

  20. Online measurement of oxygen consumption by goat bone marrow stromal cells in a combined cell-seeding and proliferation perfusion bioreactor.

    NARCIS (Netherlands)

    Janssen, F.W.; Hofland, I.; van Oorschot, A.; Oostra, J.; Peters, H.; van Blitterswijk, Clemens

    2006-01-01

    In an effort to produce clinically useful volumes of tissue engineered bone products, a direct perfusion bioreactor system was developed. Perfusion flow rate, flow direction, and the position of the bioreactor are factors that influenced the amounts and homogeneity of the cells seeded on the

  1. Graphene Oxide Hybridized nHAC/PLGA Scaffolds Facilitate the Proliferation of MC3T3-E1 Cells

    Science.gov (United States)

    Liang, Chunyong; Luo, Yongchao; Yang, Guodong; Xia, Dan; Liu, Lei; Zhang, Xiaomin; Wang, Hongshui

    2018-01-01

    Biodegradable porous biomaterial scaffolds play a critical role in bone regeneration. In this study, the porous nano-hydroxyapatite/collagen/poly(lactic-co-glycolic acid)/graphene oxide (nHAC/PLGA/GO) composite scaffolds containing different amount of GO were fabricated by freeze-drying method. The results show that the synthesized scaffolds possess a three-dimensional porous structure. GO slightly improves the hydrophilicity of the scaffolds and reinforces their mechanical strength. Young's modulus of the 1.5 wt% GO incorporated scaffold is greatly increased compared to the control sample. The in vitro experiments show that the nHAC/PLGA/GO (1.5 wt%) scaffolds significantly cell adhesion and proliferation of osteoblast cells (MC3T3-E1). This present study indicates that the nHAC/PLGA/GO scaffolds have excellent cytocompatibility and bone regeneration ability, thus it has high potential to be used as scaffolds in the field of bone tissue engineering.

  2. An acellular, allograft-derived meniscus scaffold in an ovine model.

    Science.gov (United States)

    Stabile, Kathryne J; Odom, Devin; Smith, Thomas L; Northam, Casey; Whitlock, Patrick W; Smith, Beth P; Van Dyke, Mark E; Ferguson, Cristin M

    2010-07-01

    The purpose of this study was to develop a meniscus scaffold that has increased porosity and maintains the native meniscus extracellular matrix in an ovine model. The medial menisci of skeletally mature ovine (n = 16) were harvested; half were made into meniscus scaffolds (n = 8), and half remained intact (n = 8). Intact and scaffold meniscus tissues were compared by use of histology, DNA content analysis, in vitro cellular biocompatibility assays, and ultrastructural analysis. An additional 16 knees were used to investigate the biomechanics of the intact meniscus compared with the meniscus scaffold. DNA content and histology showed a significant decrease in cellular and nuclear content in the meniscus scaffold (P meniscus scaffold compared with the intact meniscus (P meniscus scaffolds. In this study a meniscus scaffold was evaluated for potential clinical application as a meniscus transplant construct in an ovine model. The data showed that a decellularized meniscus scaffold with increased porosity was comparable to the intact meniscus, with an absence of in vitro cellular toxicity. Although some compositional alterations of the extracellular matrix are to be expected during processing, it is evident that many of the essential structural components remained functional with maintenance of biomechanical properties. This meniscus scaffold has potential for future clinical application as a meniscus transplant construct. Copyright (c) 2010 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  3. The generation of biomolecular patterns in highly porous collagen-GAG scaffolds using direct photolithography.

    Science.gov (United States)

    Martin, Teresa A; Caliari, Steven R; Williford, Paul D; Harley, Brendan A; Bailey, Ryan C

    2011-06-01

    The extracellular matrix (ECM) is a complex organization of structural proteins found within tissues and organs. Heterogeneous tissues with spatially and temporally modulated properties play an important role in organism physiology. Here we present a benzophenone (BP) based direct, photolithographic approach to spatially pattern solution phase biomolecules within collagen-GAG (CG) scaffolds and demonstrate creation of a wide range of patterns composed of multiple biomolecular species in a manner independent from scaffold fabrication steps. We demonstrate the ability to immobilize biomolecules at surface densities of up to 1000 ligands per square micron on the scaffold strut surface and to depths limited by the penetration depth of the excitation source into the scaffold structure. Importantly, while BP photopatterning does further crosslink the CG scaffold, evidenced by increased mechanical properties and collagen crystallinity, it does not affect scaffold microstructural or compositional properties or negatively influence cell adhesion, viability, or proliferation. We show that covalently photoimmobilized fibronectin within a CG scaffold significantly increases the speed of MC3T3-E1 cell attachment relative to the bare CG scaffold or non-specifically adsorbed fibronectin, suggesting that this approach can be used to improve scaffold bioactivity. Our findings, on the whole, establish the use of direct, BP photolithography as a methodology for covalently incorporating activity-improving biochemical cues within 3D collagen biomaterial scaffolds with spatial control over biomolecular deposition. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Biomimetic formation of apatite on the surface of porous gelatin/bioactive glass nanocomposite scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Mozafari, Masoud, E-mail: mmozafari@aut.ac.ir [Biomaterials Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, PO Box 15875-4413, Tehran (Iran, Islamic Republic of); Rabiee, Mohammad; Azami, Mahmoud; Maleknia, Saied [Biomaterials Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, PO Box 15875-4413, Tehran (Iran, Islamic Republic of)

    2010-12-15

    There have been several attempts to combine bioactive glasses (BaGs) with biodegradable polymers to create a scaffold material with excellent biocompatibility, bioactivity, biodegradability and toughness. In the present study, the nanocomposite scaffolds with compositions based on gelatin (Gel) and BaG nanoparticles in the ternary SiO{sub 2}-CaO-P{sub 2}O{sub 5} system were prepared. In vitro evaluations of the nanocomposite scaffolds were performed, and for investigating their bioactive capacity these scaffolds were soaked in a simulated body fluid (SBF) at different time intervals. The scaffolds showed significant enhancement in bioactivity within few days of immersion in SBF solution. The apatite formation at the surface of the nanocomposite samples confirmed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray powder diffraction (XRD) analyses. In vitro experiments with osteoblast cells indicated an appropriate penetration of the cells into the scaffold's pores, and also the continuous increase in cell aggregation on the bioactive scaffolds with increase in the incubation time demonstrated the ability of the scaffolds to support cell growth. The SEM observations revealed that the prepared scaffolds were porous with three dimensional (3D) and interconnected microstructure, pore size was 200-500 {mu}m and the porosity was 72-86%. The nanocomposite scaffold made from Gel and BaG nanoparticles could be considered as a highly bioactive and potential bone tissue engineering implant.

  5. The effects of crosslinkers on physical, mechanical, and cytotoxic properties of gelatin sponge prepared via in-situ gas foaming method as a tissue engineering scaffold.

    Science.gov (United States)

    Poursamar, S Ali; Lehner, Alexander N; Azami, Mahmoud; Ebrahimi-Barough, Somayeh; Samadikuchaksaraei, Ali; Antunes, A P M

    2016-06-01

    In this study porous gelatin scaffolds were prepared using in-situ gas foaming, and four crosslinking agents were used to determine a biocompatible and effective crosslinker that is suitable for such a method. Crosslinkers used in this study included: hexamethylene diisocyanate (HMDI), poly(ethylene glycol) diglycidyl ether (epoxy), glutaraldehyde (GTA), and genipin. The prepared porous structures were analyzed using Fourier Transform Infrared Spectroscopy (FT-IR), thermal and mechanical analysis as well as water absorption analysis. The microstructures of the prepared samples were analyzed using Scanning Electron Microscopy (SEM). The effects of the crosslinking agents were studied on the cytotoxicity of the porous structure indirectly using MTT analysis. The affinity of L929 mouse fibroblast cells for attachment on the scaffold surfaces was investigated by direct cell seeding and DAPI-staining technique. It was shown that while all of the studied crosslinking agents were capable of stabilizing prepared gelatin scaffolds, there are noticeable differences among physical and mechanical properties of samples based on the crosslinker type. Epoxy-crosslinked scaffolds showed a higher capacity for water absorption and more uniform microstructures than the rest of crosslinked samples, whereas genipin and GTA-crosslinked scaffolds demonstrated higher mechanical strength. Cytotoxicity analysis showed the superior biocompatibility of the naturally occurring genipin in comparison with other synthetic crosslinking agents, in particular relative to GTA-crosslinked samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Tubular Scaffold with Shape Recovery Effect for Cell Guide Applications

    Directory of Open Access Journals (Sweden)

    Kazi M. Zakir Hossain

    2015-07-01

    Full Text Available Tubular scaffolds with aligned polylactic acid (PLA fibres were fabricated for cell guide applications by immersing rolled PLA fibre mats into a polyvinyl acetate (PVAc solution to bind the mats. The PVAc solution was also mixed with up to 30 wt % β-tricalcium phosphate (β-TCP content. Cross-sectional images of the scaffold materials obtained via scanning electron microscopy (SEM revealed the aligned fibre morphology along with a significant number of voids in between the bundles of fibres. The addition of β-TCP into the scaffolds played an important role in increasing the void content from 17.1% to 25.3% for the 30 wt % β-TCP loading, which was measured via micro-CT (µCT analysis. Furthermore, µCT analyses revealed the distribution of aggregated β-TCP particles in between the various PLA fibre layers of the scaffold. The compressive modulus properties of the scaffolds increased from 66 MPa to 83 MPa and the compressive strength properties decreased from 67 MPa to 41 MPa for the 30 wt % β-TCP content scaffold. The scaffolds produced were observed to change into a soft and flexible form which demonstrated shape recovery properties after immersion in phosphate buffered saline (PBS media at 37 °C for 24 h. The cytocompatibility studies (using MG-63 human osteosarcoma cell line revealed preferential cell proliferation along the longitudinal direction of the fibres as compared to the control tissue culture plastic. The manufacturing process highlighted above reveals a simple process for inducing controlled cell alignment and varying porosity features within tubular scaffolds for potential tissue engineering applications.

  7. Synthesis, characterization and in vitro behavior of nanostructured diopside/biphasic calcium phosphate scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Ramezani, Samira; Emadi, Rahmatollah; Kharaziha, Mahshid [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Tavangarian, Fariborz, E-mail: f_tavangarian@yahoo.com [Mechanical Engineering Program, School of Science, Engineering and Technology, Penn State Harrisburg, Middletown, PA 17057 (United States)

    2017-01-15

    A significant challenge in bone tissue engineering is the development of 3D constructs serving as scaffolds to fill bone defects, support osteoblasts, and promote bone regeneration. In this paper, highly porous (∼79%) nanostructured diopside/biphasic calcium phosphate (BCP) scaffolds with interconnected porosity were developed using various diopside contents via space holder method. X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) techniques were utilized to evaluate different samples. Furthermore, the effects of scaffold composition on mechanical properties, bioactivity, biodegradability, and cytotoxicity were studied as well. The results showed that the produced scaffolds had an average pore size and density of 200–340 μm and 2.5 ± 0.3–1.8 ± 0.3 gr/cm{sup 3}, respectively, depending on the diopside content. Besides, increasing the diopside content of scaffolds from 0 to 15 wt% enhanced the bioactivity, biodegradability, and compressive strength from 1.2 ± 0.2 to 3.2 ± 0.3 MPa, respectively. In addition, MTT assay also confirmed that the BCP15 scaffold (containing 15 wt% diopside) significantly promoted cell viability and cell adhesion compared to BCP0 scaffold. Overall, our study suggests that nanostructured diopside/BCP scaffolds with improved biological and mechanical properties could potentially be used for bone tissue engineering application. - Highlights: • Highly porous (∼79%) scaffolds were synthesized by space holder method. • Adding diopside nanopowder reduced the average pore size of the scaffolds. • Diopside increased the compressive strength of the scaffolds by three-times. • Nanostructured diopside/BCP scaffolds significantly promoted cell viability. • The nanostructured composite scaffold of BCP15 is cell-friendly.

  8. Processing and characterization of chitosan/PVA and methylcellulose porous scaffolds for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Kanimozhi, K. [Department of Chemistry, Auxilium College, Vellore 632 006 (India); Khaleel Basha, S. [Department of Biochemistry, C. Abdul Hakeem College, Melvisharam 632 509 (India); Sugantha Kumari, V., E-mail: sheenasahana04@gmail.com [Department of Chemistry, Auxilium College, Vellore 632 006 (India)

    2016-04-01

    Biomimetic porous scaffold chitosan/poly(vinyl alcohol) CS/PVA containing various amounts of methylcellulose (MC) (25%, 50% and 75%) incorporated in CS/PVA blend was successfully produced by a freeze drying method in the present study. The composite porous scaffold membranes were characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), swelling degree, porosity, degradation of films in Hank's solution and the mechanical properties. Besides these characterizations, the antibacterial activity of the prepared scaffolds was tested, toward the bacterial species Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). FTIR, XRD and DSC demonstrated that there was strong intermolecular hydrogen bonding between the molecules of CS/PVA and MC. The crystalline microstructure of the scaffold membranes was not well developed. SEM images showed that the morphology and diameter of the scaffolds were mainly affected by the weight ratio of MC. By increasing the MC content in the hybrid scaffolds, their swelling capacity and porosity increased. The mechanical properties of these scaffolds in dry and swollen state were greatly improved with high swelling ratio. The elasticity of films was also significantly improved by the incorporation of MC, and the scaffolds could also bear a relative high tensile strength. These findings suggested that the developed scaffold possess the prerequisites and can be used as a scaffold for tissue engineering. - Highlights: • The porous scaffolds of CS/PVA containing different MC contents were fabricated. • Addition of MC improved the compatibility between CS and PVA. • The mechanical properties of these scaffolds were greatly improved with high swelling ratio. • Biocompatibility test showed that the different MC content scaffolds had no cytotoxicity.

  9. Boron containing poly-(lactide-co-glycolide) (PLGA) scaffolds for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Doğan, Ayşegül; Demirci, Selami [Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University 34755 Istanbul (Turkey); Bayir, Yasin [Department of Biochemistry, Faculty of Pharmacy, Ataturk University, 25240, Erzurum (Turkey); Halici, Zekai [Department of Pharmacology, Faculty of Medicine, Ataturk University, 25240, Erzurum (Turkey); Karakus, Emre [Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ataturk University, 25240, Erzurum (Turkey); Aydin, Ali [Department of Orthopedics and Traumatology, Faculty of Medicine, Ataturk University, 25240, Erzurum (Turkey); Cadirci, Elif [Department of Pharmacology, Faculty of Pharmacy, Ataturk University, 25240, Erzurum (Turkey); Albayrak, Abdulmecit [Department of Pharmacology, Faculty of Medicine, Ataturk University, 25240, Erzurum (Turkey); Demirci, Elif [Department of Pathology, Faculty of Medicine, Ataturk University, 25240, Erzurum (Turkey); Karaman, Adem [Department of Radiology, Faculty of Medicine, Ataturk University, 25240, Erzurum (Turkey); Ayan, Arif Kursat [Department of Nuclear Medicine, Faculty of Medicine, Ataturk University, 25240, Erzurum (Turkey); Gundogdu, Cemal [Department of Pathology, Faculty of Medicine, Ataturk University, 25240, Erzurum (Turkey); Şahin, Fikrettin, E-mail: fsahin@yeditepe.edu.tr [Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University 34755 Istanbul (Turkey)

    2014-11-01

    Scaffold-based bone defect reconstructions still face many challenges due to their inadequate osteoinductive and osteoconductive properties. Various biocompatible and biodegradable scaffolds, combined with proper cell type and biochemical signal molecules, have attracted significant interest in hard tissue engineering approaches. In the present study, we have evaluated the effects of boron incorporation into poly-(lactide-co-glycolide-acid) (PLGA) scaffolds, with or without rat adipose-derived stem cells (rADSCs), on bone healing in vitro and in vivo. The results revealed that boron containing scaffolds increased in vitro proliferation, attachment and calcium mineralization of rADSCs. In addition, boron containing scaffold application resulted in increased bone regeneration by enhancing osteocalcin, VEGF and collagen type I protein levels in a femur defect model. Bone mineralization density (BMD) and computed tomography (CT) analysis proved that boron incorporated scaffold administration increased the healing rate of bone defects. Transplanting stem cells into boron containing scaffolds was found to further improve bone-related outcomes compared to control groups. Additional studies are highly warranted for the investigation of the mechanical properties of these scaffolds in order to address their potential use in clinics. The study proposes that boron serves as a promising innovative approach in manufacturing scaffold systems for functional bone tissue engineering. - Highlights: • Boron containing PLGA scaffolds were developed for bone tissue engineering. • Boron incorporation increased cell viability and mineralization of stem cells. • Boron containing scaffolds increased bone-related protein expression in vivo. • Implantation of stem cells on boron containing scaffolds improved bone healing.

  10. Tissue engineering scaffolds electrospun from cotton cellulose.

    Science.gov (United States)

    He, Xu; Cheng, Long; Zhang, Ximu; Xiao, Qiang; Zhang, Wei; Lu, Canhui

    2015-01-22

    Nonwovens of cellulose nanofibers were fabricated by electrospinning of cotton cellulose in its LiCl/DMAc solution. The key factors associated with the electrospinning process, including the intrinsic properties of cellulose solutions, the rotating speed of collector and the applied voltage, were systematically investigated. XRD data indicated the electrospun nanofibers were almost amorphous. When increasing the rotating speed of the collector, preferential alignment of fibers along the drawing direction and improved molecular orientation were revealed by scanning electron microscope and polarized FTIR, respectively. Tensile tests indicated the strength of the nonwovens along the orientation direction could be largely improved when collected at a higher speed. In light of the excellent biocompatibility and biodegradability as well as their unique porous structure, the nonwovens were further assessed as potential tissue engineering scaffolds. Cell culture experiments demonstrated human dental follicle cells could proliferate rapidly not only on the surface but also in the entire scaffold. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. PHBV/PAM Scaffolds with Local Oriented Structure through UV Polymerization for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Yu Ke

    2014-01-01

    Full Text Available Locally oriented tissue engineering scaffolds can provoke cellular orientation and direct cell spread and migration, offering an exciting potential way for the regeneration of the complex tissue. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV scaffolds with locally oriented hydrophilic polyacrylamide (PAM inside the macropores of the scaffolds were achieved through UV graft polymerization. The interpenetrating PAM chains enabled good interconnectivity of PHBV/PAM scaffolds that presented a lower porosity and minor diameter of pores than PHBV scaffolds. The pores with diameter below 100 μm increased to 82.15% of PHBV/PAM scaffolds compared with 31.5% of PHBV scaffolds. PHBV/PAM scaffold showed a much higher compressive elastic modulus than PHBV scaffold due to PAM stuffing. At 5 days of culturing, sheep chondrocytes spread along the similar direction in the macropores of PHBV/PAM scaffolds. The locally oriented PAM chains might guide the attachment and spreading of chondrocytes and direct the formation of microfilaments via contact guidance.

  12. Accelerated craniofacial bone regeneration through dense collagen gel scaffolds seeded with dental pulp stem cells

    OpenAIRE

    Frédéric Chamieh; Anne-Margaux Collignon; Coyac, Benjamin R.; Julie Lesieur; Sandy Ribes; Jérémy Sadoine; Annie Llorens; Antonino Nicoletti; Didier Letourneur; Marie-Laure Colombier; Nazhat, Showan N.; Philippe Bouchard; Catherine Chaussain; Rochefort, Gael Y.

    2016-01-01

    Therapies using mesenchymal stem cell (MSC) seeded scaffolds may be applicable to various fields of regenerative medicine, including craniomaxillofacial surgery. Plastic compression of collagen scaffolds seeded with MSC has been shown to enhance the osteogenic differentiation of MSC as it increases the collagen fibrillary density. The aim of the present study was to evaluate the osteogenic effects of dense collagen gel scaffolds seeded with mesenchymal dental pulp stem cells (DPSC) on bone re...

  13. Frontiers in biomaterials the design, synthetic strategies and biocompatibility of polymer scaffolds for biomedical application

    CERN Document Server

    Cao, Shunsheng

    2014-01-01

    Frontiers in Biomaterials: The Design, Synthetic Strategies and Biocompatibility of Polymer Scaffolds for Biomedical Application, Volume 1" highlights the importance of biomaterials and their interaction with biological system. The need for the development of biomaterials as scaffold for tissue regeneration is driven by the increasing demands for materials that mimic functions of extracellular matrices of body tissues.This ebook covers the latest challenges on the biocompatibility of scaffold overtime after implantation and discusses the requirement of innovative technologies and strategies f

  14. Bioinspired scaffolds for osteochondral regeneration.

    Science.gov (United States)

    Lopa, Silvia; Madry, Henning

    2014-08-01

    Osteochondral defects are difficult to treat because the articular cartilage and the subchondral bone have dissimilar characteristics and abilities to regenerate. Bioinspired scaffolds are designed to mimic structural and biological cues of the native osteochondral unit, supporting both cartilaginous and subchondral bone repair and the integration of the newly formed osteochondral matrix with the surrounding tissues. The aim of this review is to outline fundamental requirements and strategies for the development of biomimetic scaffolds reproducing the unique and multifaceted anatomical structure of the osteochondral unit. Recent progress in preclinical animal studies using bilayer and multilayer scaffolds, together with continuous gradient scaffolds will be discussed and placed in a translational perspective with data emerging from their clinical application to treat osteochondral defects in patients.

  15. Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications.

    Science.gov (United States)

    Xia, Yan; Zhou, Panyu; Cheng, Xiaosong; Xie, Yang; Liang, Chong; Li, Chao; Xu, Shuogui

    2013-01-01

    The regeneration of functional tissue in osseous defects is a formidable challenge in orthopedic surgery. In the present study, a novel biomimetic composite scaffold, here called nano-hydroxyapatite (HA)/poly-ε-caprolactone (PCL) was fabricated using a selective laser sintering technique. The macrostructure, morphology, and mechanical strength of the scaffolds were characterized. Scanning electronic microscopy (SEM) showed that the nano-HA/PCL scaffolds exhibited predesigned, well-ordered macropores and interconnected micropores. The scaffolds have a range of porosity from 78.54% to 70.31%, and a corresponding compressive strength of 1.38 MPa to 3.17 MPa. Human bone marrow stromal cells were seeded onto the nano-HA/PCL or PCL scaffolds and cultured for 28 days in vitro. As indicated by the level of cell attachment and proliferation, the nano-HA/PCL showed excellent biocompatibility, comparable to that of PCL scaffolds. The hydrophilicity, mineralization, alkaline phosphatase activity, and Alizarin Red S staining indicated that the nano-HA/PCL scaffolds are more bioactive than the PCL scaffolds in vitro. Measurements of recombinant human bone morphogenetic protein-2 (rhBMP-2) release kinetics showed that after nano-HA was added, the material increased the rate of rhBMP-2 release. To investigate the in vivo biocompatibility and osteogenesis of the composite scaffolds, both nano-HA/PCL scaffolds and PCL scaffolds were implanted in rabbit femur defects for 3, 6, and 9 weeks. The wounds were studied radiographically and histologically. The in vivo results showed that both nano-HA/PCL composite scaffolds and PCL scaffolds exhibited good biocompatibility. However, the nano-HA/PCL scaffolds enhanced the efficiency of new bone formation more than PCL scaffolds and fulfilled all the basic requirements of bone tissue engineering scaffolds. Thus, they show large potential for use in orthopedic and reconstructive surgery.

  16. Nanoclay-Enriched Poly(ɛ-caprolactone) Electrospun Scaffolds for Osteogenic Differentiation of Human Mesenchymal Stem Cells

    Science.gov (United States)

    Gaharwar, Akhilesh K.; Mukundan, Shilpaa; Karaca, Elif; Dolatshahi-Pirouz, Alireza; Patel, Alpesh; Rangarajan, Kaushik; Mihaila, Silvia M.; Iviglia, Giorgio; Zhang, Hongbin

    2014-01-01

    Musculoskeletal tissue engineering aims at repairing and regenerating damaged tissues using biological tissue substitutes. One approach to achieve this aim is to develop osteoconductive scaffolds that facilitate the formation of functional bone tissue. We have fabricated nanoclay-enriched electrospun poly(ɛ-caprolactone) (PCL) scaffolds for osteogenic differentiation of human mesenchymal stem cells (hMSCs). A range of electrospun scaffolds is fabricated by varying the nanoclay concentrations within the PCL scaffolds. The addition of nanoclay decreases fiber diameter and increases surface roughness of electrospun fibers. The enrichment of PCL scaffold with nanoclay promotes in vitro biomineralization when subjected to simulated body fluid (SBF), indicating bioactive characteristics of the hybrid scaffolds. The degradation rate of PCL increases due to the addition of nanoclay. In addition, a significant increase in crystallization temperature of PCL is also observed due to enhanced surface interactions between PCL and nanoclay. The effect of nanoclay on the mechanical properties of electrospun fibers is also evaluated. The feasibility of using nanoclay-enriched PCL scaffolds for tissue engineering applications is investigated in vitro using hMSCs. The nanoclay-enriched electrospun PCL scaffolds support hMSCs adhesion and proliferation. The addition of nanoclay significantly enhances osteogenic differentiation of hMSCs on the electrospun scaffolds as evident by an increase in alkaline phosphates activity of hMSCs and higher deposition of mineralized extracellular matrix compared to PCL scaffolds. Given its unique bioactive characteristics, nanoclay-enriched PCL fibrous scaffold may be used for musculoskeletal tissue engineering. PMID:24842693

  17. [Synthesis and characteristics of integrated bionic mandibular condylar scaffold].

    Science.gov (United States)

    Weihong, Xi; Zhen, Wang; Hong-shui, Zhu; Xiaofeng, Li; Yuanfei, Xiong

    2016-02-01

    OBJECTIVE This study aims to construct a chitosan (CS)-polycaprolactone (PCL)-hydroxyapatite (HA) composite biomimetic scaffold to replace condyle and to explore the tissue engineering applications of condylar. A resin mold of the mandibular condyle was prepared by using rapid prototyping techniques. A mandibular condylar integrated biomimetic scaffold model was prepared by solution casting-ice Lek. PCL and CS were mixed at a ratio of 4:1. HA at quality ratios of 40%, 50%, 60%, and 70% was added to groups a, b, c, and d, respectively. The microscopic morphology, porosity, infrared spectra, X-ray diffraction pattern, and mechanical properties of the scaffold were observed. The scaffold that includes both upper and lower parts displayed the same features (i.e., shape, yellow-white appearance, and hard texture) as the mandibular condyle. Scanning electron microscopy showed that the composite scaffold had a 3D network spatial structure, 70%-85% porosity, and 10-200 µm pore size. Infrared spectra showed that the peak intensity reduced with decreasing HA content. X-ray diffraction showed that the diffraction peak decreased with increasing HA content. Suitable tensile and compressive and flexural strength were discovered in the presence of 50% HA. The scaffold prepared by solution casting-ice Lek shows favorable comprehensive features and is expected to replace human condylar.

  18. Electron injection and scaffold effects in perovskite solar cells.

    Science.gov (United States)

    Anaya, Miguel; Zhang, Wei; Hames, Bruno Clasen; Li, Yuelong; Fabregat-Santiago, Francisco; Calvo, Mauricio E; Snaith, Henry J; Míguez, Hernán; Mora-Seró, Iván

    2017-01-21

    In spite of the impressive efficiencies reported for perovskite solar cells (PSCs), key aspects of their working principles, such as electron injection at the contacts or the suitability of the utilization of a specific scaffold layer, are not yet fully understood. Increasingly complex scaffolds attained by the sequential deposition of TiO2 and SiO2 mesoporous layers onto transparent conducting substrates are used to perform a systematic characterization of both the injection process at the electron selective contact and the scaffold effect in PSCs. By forcing multiple electron injection processes at a controlled sequence of perovskite-TiO2 interfaces before extraction, interfacial injection effects are magnified and hence characterized in detail. An anomalous injection behavior is observed, the fingerprint of which is the presence of significant inductive loops in the impedance spectra with a magnitude that correlates with the number of interfaces in the scaffold. Analysis of the resistive and capacitive behavior of the impedance spectra indicates that the scaffolds could hinder ion migration, with positive consequences such as lowering the recombination rate and implications for the current-potential curve hysteresis. Our results suggest that an appropriate balance between these advantageous effects and the unavoidable charge transport resistive losses introduced by the scaffolds will help in the optimization of PSC performance.

  19. In vitro biocompatibility of sheath-core cellulose-acetate-based electrospun scaffolds towards endothelial cells and platelets.

    Science.gov (United States)

    Rubenstein, David A; Venkitachalam, Subramaniam M; Zamfir, Dan; Wang, Fang; Lu, Hongbing; Frame, Mary D; Yin, Wei

    2010-01-01

    Typically, tissue-engineered scaffolds mimic the topographical properties of the native extracellular matrix. However, other physical properties, such as the scaffold mechanical stiffness, are not imitated. The purpose of this study was to fabricate scaffolds with improved mechanical properties and investigate their biocompatibility towards endothelial cells and platelets. To enhance mechanical properties, an electrospinning apparatus was developed that fabricates fibers with sheath-core morphologies. Different combinations of cellulose acetate and chitosan were chosen to modulate the mechanical properties of the formed fibers. We hypothesized that mechanically stiffer scaffolds would improve endothelial cell growth and that all scaffolds would be compatible towards endothelial cells and platelets. Endothelial cell-culture conditions were quantified up to 5 days. Migration onto scaffolds was monitored for 10 days. Platelet aggregation, antagonized by thrombin receptor agonist peptide 6, was measured after scaffold incubation. A platelet activation time-course was assessed with the modified prothrombinase assay. As scaffold mechanical stiffness increased, endothelial cell growth within and adhesion to and migration throughout the scaffolds was promoted. Also, scaffolds did not induce platelet aggregation or activation. These results indicate that the mechanical stiffness of engineered scaffolds regulates endothelial cell-culture parameters and that these sheath-core electrospun scaffolds are compatible towards endothelial cells and platelets.

  20. Biological designer self-assembling peptide nanofiber scaffolds significantly enhance osteoblast proliferation, differentiation and 3-D migration.

    Directory of Open Access Journals (Sweden)

    Akihiro Horii

    Full Text Available A class of self-assembling peptide nanofiber scaffolds has been shown to be an excellent biological material for 3-dimension cell culture and stimulating cell migration into the scaffold, as well as for repairing tissue defects in animals. We report here the development of several peptide nanofiber scaffolds designed specifically for osteoblasts. We designed one of the pure self-assembling peptide scaffolds RADA16-I through direct coupling to short biologically active motifs. The motifs included osteogenic growth peptide ALK (ALKRQGRTLYGF bone-cell secreted-signal peptide, osteopontin cell adhesion motif DGR (DGRGDSVAYG and 2-unit RGD binding sequence PGR (PRGDSGYRGDS. We made the new peptide scaffolds by mixing the pure RAD16 and designer-peptide solutions, and we examined the molecular integration of the mixed nanofiber scaffolds using AFM. Compared to pure RAD16 scaffold, we found that these designer peptide scaffolds significantly promoted mouse pre-osteoblast MC3T3-E1 cell proliferation. Moreover, alkaline phosphatase (ALP activity and osteocalcin secretion, which are early and late markers for osteoblastic differentiation, were also significantly increased. We demonstrated that the designer, self-assembling peptide scaffolds promoted the proliferation and osteogenic differentiation of MC3T3-E1. Under the identical culture medium condition, confocal images unequivocally demonstrated that the designer PRG peptide scaffold stimulated cell migration into the 3-D scaffold. Our results suggest that these designer peptide scaffolds may be very useful for promoting bone tissue regeneration.

  1. Synthesizing Results From Empirical Research on Computer-Based Scaffolding in STEM Education: A Meta-Analysis.

    Science.gov (United States)

    Belland, Brian R; Walker, Andrew E; Kim, Nam Ju; Lefler, Mason

    2017-04-01

    Computer-based scaffolding assists students as they generate solutions to complex problems, goals, or tasks, helping increase and integrate their higher order skills in the process. However, despite decades of research on scaffolding in STEM (science, technology, engineering, and mathematics) education, no existing comprehensive meta-analysis has synthesized the results of these studies. This review addresses that need by synthesizing the results of 144 experimental studies (333 outcomes) on the effects of computer-based scaffolding designed to assist the full range of STEM learners (primary through adult education) as they navigated ill-structured, problem-centered curricula. Results of our random effect meta-analysis (a) indicate that computer-based scaffolding showed a consistently positive (ḡ = 0.46) effect on cognitive outcomes across various contexts of use, scaffolding characteristics, and levels of assessment and (b) shed light on many scaffolding debates, including the roles of customization (i.e., fading and adding) and context-specific support. Specifically, scaffolding's influence on cognitive outcomes did not vary on the basis of context-specificity, presence or absence of scaffolding change, and logic by which scaffolding change is implemented. Scaffolding's influence was greatest when measured at the principles level and among adult learners. Still scaffolding's effect was substantial and significantly greater than zero across all age groups and assessment levels. These results suggest that scaffolding is a highly effective intervention across levels of different characteristics and can largely be designed in many different ways while still being highly effective.

  2. Boron containing poly-(lactide-co-glycolide) (PLGA) scaffolds for bone tissue engineering.

    Science.gov (United States)

    Doğan, Ayşegül; Demirci, Selami; Bayir, Yasin; Halici, Zekai; Karakus, Emre; Aydin, Ali; Cadirci, Elif; Albayrak, Abdulmecit; Demirci, Elif; Karaman, Adem; Ayan, Arif Kursat; Gundogdu, Cemal; Sahin, Fikrettin

    2014-11-01

    Scaffold-based bone defect reconstructions still face many challenges due to their inadequate osteoinductive and osteoconductive properties. Various biocompatible and biodegradable scaffolds, combined with proper cell type and biochemical signal molecules, have attracted significant interest in hard tissue engineering approaches. In the present study, we have evaluated the effects of boron incorporation into poly-(lactide-co-glycolide-acid) (PLGA) scaffolds, with or without rat adipose-derived stem cells (rADSCs), on bone healing in vitro and in vivo. The results revealed that boron containing scaffolds increased in vitro proliferation, attachment and calcium mineralization of rADSCs. In addition, boron containing scaffold application resulted in increased bone regeneration by enhancing osteocalcin, VEGF and collagen type I protein levels in a femur defect model. Bone mineralization density (BMD) and computed tomography (CT) analysis proved that boron incorporated scaffold administration increased the healing rate of bone defects. Transplanting stem cells into boron containing scaffolds was found to further improve bone-related outcomes compared to control groups. Additional studies are highly warranted for the investigation of the mechanical properties of these scaffolds in order to address their potential use in clinics. The study proposes that boron serves as a promising innovative approach in manufacturing scaffold systems for functional bone tissue engineering. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Characterization and Bioactivity Evaluation of (Polyetheretherketone/Polyglycolicacid-Hydroyapatite Scaffolds for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Cijun Shuai

    2016-11-01

    Full Text Available Bioactivity and biocompatibility are crucial for tissue engineering scaffolds. In this study, hydroxyapatite (HAP was incorporated into polyetheretherketone/polyglycolicacid (PEEK/PGA hybrid to improve its biological properties, and the composite scaffolds were developed via selective laser sintering (SLS. The effects of HAP on physical and chemical properties of the composite scaffolds were investigated. The results demonstrated that HAP particles were distributed evenly in PEEK/PGA matrix when its content was no more than 10 wt %. Furthermore, the apatite-forming ability became better with increasing HAP content after immersing in simulated body fluid (SBF. Meanwhile, the composite scaffolds presented a greater degree of cell attachment and proliferation than PEEK/PGA scaffolds. These results highlighted the potential of (PEEK/PGA-HAP scaffolds for tissue regeneration.

  4. Electroactive Tissue Scaffolds with Aligned Pores as Instructive Platforms for Biomimetic Tissue Engineering

    Directory of Open Access Journals (Sweden)

    John G. Hardy

    2015-01-01

    Full Text Available Tissues in the body are hierarchically structured composite materials with tissue-specific chemical and topographical properties. Here we report the preparation of tissue scaffolds with macroscopic pores generated via the dissolution of a sacrificial supramolecular polymer-based crystal template (urea from a biodegradable polymer-based scaffold (polycaprolactone, PCL. Furthermore, we report a method of aligning the supramolecular polymer-based crystals within the PCL, and that the dissolution of the sacrificial urea yields scaffolds with macroscopic pores that are aligned over long, clinically-relevant distances (i.e., centimeter scale. The pores act as topographical cues to which rat Schwann cells respond by aligning with the long axis of the pores. Generation of an interpenetrating network of polypyrrole (PPy and poly(styrene sulfonate (PSS in the scaffolds yields electroactive tissue scaffolds that allow the electrical stimulation of Schwann cells cultured on the scaffolds which increases the production of nerve growth factor (NGF.

  5. The effects of different crossing-linking conditions of genipin on type I collagen scaffolds: an in vitro evaluation.

    Science.gov (United States)

    Zhang, Xiujie; Chen, Xueying; Yang, Ting; Zhang, Naili; Dong, Li; Ma, Shaoying; Liu, Xiaoming; Zhou, Mo; Li, Baoxing

    2014-12-01

    The purpose of this paper is to analyze the properties of fabricating rat tail type I collagen scaffolds cross-linked with genipin under different conditions. The porous genipin cross-linked scaffolds are obtained through a two step freeze-drying process. To find out the optimal cross-link condition, we used different genipin concentrations and various cross-linked temperatures to prepare the scaffolds in this study. The morphologies of the scaffolds were characterized by scanning electron microscope, and the mechanical properties of the scaffolds were evaluated under dynamic compression. Additionally, the cross-linking degree was assessed by ninhydrin assay. To investigate the swelling ratio and the in vitro degradation of the collagen scaffold, the tests were also carried out by immersion of the scaffolds in a PBS solution or digestion in a type I collagenase respectively. The morphologies of the non-cross-linked scaffolds presented a lattice-like structure while the cross-linked ones displayed a sheet-like framework. The morphology of the genipin cross-linked scaffolds could be significantly changed by either increasing genipin concentration or the temperature. The swelling ratio of each cross-linked scaffold was much lower than that of the control (non-cross-linked).The ninhydrin assay demonstrated that the higher temperature and genipin concentration could obviously increase the cross-linking efficiency. The in vitro degradation studies indicated that genipin cross-linking can effectively elevate the biostability of the scaffolds. The biocompatibility and cytotoxicity of the scaffolds was evaluated by culturing rat chondrocytes on the scaffold in vitro and by MTT. The results of MTT and the fact that the chondrocytes adhered well to the scaffolds demonstrated that genipin cross-linked scaffolds possessed an excellent biocompatibility and low cytotoxicity. Based on these results, 0.3 % genipin concentrations and 37 °C cross-linked temperatures are

  6. Surface modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Gautam, Sneh [Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee (India); Chou, Chia-Fu [Institute of Physics, Academia Sinica, Taipei, Taiwan (China); Dinda, Amit K. [Department of Pathology, All India Institute of Medical Science, New Delhi (India); Potdar, Pravin D. [Department of Molecular Medicine and Biology, Jaslok Hospital and Research Centre, Mumbai (India); Mishra, Narayan C., E-mail: mishrawise@gmail.com [Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee (India)

    2014-01-01

    In the present study, a tri-polymer polycaprolactone (PCL)/gelatin/collagen type I composite nanofibrous scaffold has been fabricated by electrospinning for skin tissue engineering and wound healing applications. Firstly, PCL/gelatin nanofibrous scaffold was fabricated by electrospinning using a low cost solvent mixture [chloroform/methanol for PCL and acetic acid (80% v/v) for gelatin], and then the nanofibrous PCL/gelatin scaffold was modified by collagen type I (0.2–1.5 wt.%) grafting. Morphology of the collagen type I-modified PCL/gelatin composite scaffold that was analyzed by field emission scanning electron microscopy (FE-SEM), showed that the fiber diameter was increased and pore size was decreased by increasing the concentration of collagen type I. Fourier transform infrared (FT-IR) spectroscopy and thermogravimetric (TG) analysis indicated the surface modification of PCL/gelatin scaffold by collagen type I immobilization on the surface of the scaffold. MTT assay demonstrated the viability and high proliferation rate of L929 mouse fibroblast cells on the collagen type I-modified composite scaffold. FE-SEM analysis of cell-scaffold construct illustrated the cell adhesion of L929 mouse fibroblasts on the surface of scaffold. Characteristic cell morphology of L929 was also observed on the nanofiber mesh of the collagen type I-modified scaffold. Above results suggest that the collagen type I-modified PCL/gelatin scaffold was successful in maintaining characteristic shape of fibroblasts, besides good cell proliferation. Therefore, the fibroblast seeded PCL/gelatin/collagen type I composite nanofibrous scaffold might be a potential candidate for wound healing and skin tissue engineering applications. - Highlights: • PCL/gelatin/collagen type I scaffold was fabricated for skin tissue engineering. • PCL/gelatin/collagen type I scaffold showed higher fibroblast growth than PCL/gelatin one. • PCL/gelatin/collagen type I might be one of the ideal scaffold for

  7. Bioresorable polymers: their potential as scaffolds for Bioglass {sup trademark} composites

    Energy Technology Data Exchange (ETDEWEB)

    Stamboulis, A.; Hench, L.L. [Imperial Coll. of Science, Technology and Medicine, London (United Kingdom). Dept. of Materials

    2001-07-01

    Developing living tissue substitutes based on synthetic biodegradable polymers holds great promise in the field of tissue engineering. Poly-L-lactide acid, polyglycolic acid and their copolymers are the most well studied biocompatible, biodegradable polymers, which have been proved suitable substrates for many cell types. Novel synthesis and manufacturing techniques have been developed to give porous scaffolds with large void volumes for cell seeding and cell attachment. The combination of such polymers with bioactive Bioglass {sup trademark} particles has the potential of serving as bioactive tissue engineering scaffolds. There are three reasons for combining Bioglass {sup trademark} with resorbable polymers: 1.To achieve the desired 3-D shape of the tissue engineering construct, 2.To improve structural flexibility over otherwise brittle Bioglass {sup trademark} for eventual load bearing applications, 3.To control the rate of release of cations from Bioglass {sup trademark} to enhance osteogenesis. Composites of polyglycolic-polylactic acid with incorporated Bioglass {sup trademark} particles have shown better mechanical properties as compared with the neat copolymer. A new bioactive composite, which combines the advantages of Bioglass {sup trademark} and a resorbable polymer for tissue engineering applications, is described. (orig.)

  8. Xenogeneic acellular conjunctiva matrix as a scaffold of tissue-engineered corneal epithelium.

    Directory of Open Access Journals (Sweden)

    Haifeng Zhao

    Full Text Available Amniotic membrane-based tissue-engineered corneal epithelium has been widely used in the reconstruction of the ocular surface. However, it often degrades too early to ensure the success of the transplanted corneal epithelium when treating patients with severe ocular surface disorders. In the present study, we investigated the preparation of xenogeneic acellular conjunctiva matrix (aCM and evaluated its efficacy and safety as a scaffold of tissue-engineered corneal epithelium. Native porcine conjunctiva was decellularized with 0.1% sodium dodecyl sulfate (SDS for 12 h at 37°C and sterilized via γ-irradiation. Compared with native conjunctiva, more than 92% of the DNA was removed, and more than 90% of the extracellular matrix components (glycosaminoglycan and collagen remained after the decellularization treatment. Compared with denuded amniotic membrane (dAM, the aCM possessed favorable optical transmittance, tensile strength, stability and biocompatibility as well as stronger resistance to degradation both in vitro and in vivo. The corneal epithelial cells seeded on aCM formed a multilayered epithelial structure and endured longer than did those on dAM. The aCM-based tissue-engineered corneal epithelium was more effective in the reconstruction of the ocular surface in rabbits with limbal stem cell deficiency. These findings support the application of xenogeneic acellular conjunctiva matrix as a scaffold for reconstructing the ocular surface.

  9. Decellularized scaffolds containing hyaluronic acid and EGF for promoting the recovery of skin wounds.

    Science.gov (United States)

    Wu, Zhengzheng; Tang, Yan; Fang, Hongdou; Su, Zhongchun; Xu, Bin; Lin, Yongliang; Zhang, Peng; Wei, Xing

    2015-01-01

    There is no effective therapy for the treatment of deep and large area skin wounds. Decellularized scaffolds can be prepared from animal tissues and represent a promising biomaterial for investigation in tissue regeneration studies. In this study, MTT assay showed that epidermal growth factor (EGF) increased NIH3T3 cell proliferation in a bell-shaped dose response, and the maximum cell proliferation was achieved at a concentration of 25 ng/ml. Decellularized scaffolds were prepared from pig peritoneum by a series of physical and chemical treatments. Hyaluronic acid (HA) increased EGF adsorption to the scaffolds. Decellularized scaffolds containing HA sustained the release of EGF compared to no HA. Rabbits contain relatively large skin surface and are less expensive and easy to be taken care, so that a rabbit wound healing model was use in this study. Four full-thickness skin wounds were created in each rabbit for evaluation of the effects of the scaffolds on the skin regeneration. Wounds covered with scaffolds containing either 1 or 3 μg/ml EGF were significantly smaller than with vaseline oil gauzes or with scaffolds alone, and the wounds covered with scaffolds containing 1 μg/ml EGF recovered best among all four wounds. Hematoxylin-Eosin staining confirmed these results by demonstrating that significantly thicker dermis layers were also observed in the wounds covered by the decellularized scaffolds containing HA and either 1 or 3 μg/ml EGF than with vaseline oil gauzes or with scaffolds alone. In addition, the scaffolds containing HA and 1 μg/ml EGF gave thicker dermis layers than HA and 3 μg/ml EGF and showed the regeneration of skin appendages on day 28 post-transplantation. These results demonstrated that decellularized scaffolds containing HA and EGF could provide a promising way for the treatment of human skin injuries.

  10. PEDOT:PSS-Containing Nanohydroxyapatite/Chitosan Conductive Bionanocomposite Scaffold: Fabrication and Evaluation

    Directory of Open Access Journals (Sweden)

    Alireza Lari

    2016-01-01

    Full Text Available Conductive poly(3,4-ethylenedioxythiophene-poly(4-styrene sulfonate (PEDOT:PSS was incorporated into nanohydroxyapatite/chitosan (nHA/CS composite scaffolds through a freezing and lyophilization technique. The bionanocomposite conductive scaffold was then characterized using several techniques. A scanning electron microscope image showed that the nHA and PEDOT:PSS were dispersed homogeneously in the chitosan matrix, which was also confirmed by energy-dispersive X-ray (EDX analysis. The conductive properties were measured using a digital multimeter. The weight loss and water-uptake properties of the bionanocomposite scaffolds were studied in vitro. An in vitro cell cytotoxicity test was carried out using mouse fibroblast (L929 cells cultured onto the scaffolds. Using a freezing and lyophilization technique, it was possible to fabricate three-dimensional, highly porous, and interconnected PEDOT:PSS/nHA/CS scaffolds with good handling properties. The porosity was 74% and the scaffold’s conductivity was 9.72±0.78 μS. The surface roughness was increased with the incorporation of nHA and PEDOT:PSS into the CS scaffold. The compressive mechanical properties increased significantly with the incorporation of nHA but did not change significantly with the incorporation of PEDOT:PSS. The PEDOT:PSS-containing nHA/CS scaffold exhibited significantly higher cell attachment. The PEDOT:PSS/nHA/CS scaffold could be a potential bionanocomposite conductive scaffold for tissue engineering.

  11. Biomimetic apatite-coated porous PVA scaffolds promote the growth of breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Mao; Mohanty, Pravansu; Ghosh, Gargi, E-mail: gargi@umich.edu

    2014-11-01

    Recapitulating the native environment of bone tissue is essential to develop in vitro models of breast cancer bone metastasis. The bone is a composite material consisting of organic matrix and inorganic mineral phase, primarily hydroxyapatite. In this study, we report the mineralization of porous poly vinyl alcohol (PVA) scaffolds upon incubation in modified Hanks' Balanced Salt Solution (HBSS) for 14 days. Scanning electron microscopy, energy dispersive X-ray analysis, and X-ray diffraction analysis revealed that the deposited minerals have composition similar to hydroxyapatite. The study demonstrated that the rate of nucleation and growth of minerals was faster on surfaces of less porous scaffolds. However, upon prolonged incubation, formation of mineral layer was observed on the surface of all the scaffolds. In addition, the study also demonstrated that 3D mineralization only occurred for scaffolds with highly interconnected porous networks. The mineralization of the scaffolds promoted the adsorption of serum proteins and consequently, the adhesion and proliferation of breast cancer cells. - Highlights: • Porous PVA scaffolds fabricated via mechanical agitation followed by freeze-drying. • Mineralization of the scaffold was carried out by utilizing biomimetic approach. • Mineralization resulted in increased protein adsorption on the scaffold. • Increased breast cancer cell growth was observed on mineralized scaffolds.

  12. A PEGylated platelet free plasma hydrogel based composite scaffold enables stable vascularization and targeted cell delivery for volumetric muscle loss.

    Science.gov (United States)

    Aurora, Amit; Wrice, Nicole; Walters, Thomas J; Christy, Robert J; Natesan, Shanmugasundaram

    2018-01-01

    Extracellular matrix (ECM) scaffolds are being used for the clinical repair of soft tissue injuries. Although improved functional outcomes have been reported, ECM scaffolds show limited tissue specific remodeling response with concomitant deposition of fibrotic tissue. One plausible explanation is the regression of blood vessels which may be limiting the diffusion of oxygen and nutrients across the scaffold. Herein we develop a composite scaffold as a vasculo-inductive platform by integrating PEGylated platelet free plasma (PFP) hydrogel with a muscle derived ECM scaffold (m-ECM). In vitro, adipose derived stem cells (ASCs) seeded onto the composite scaffold differentiated into two distinct morphologies, a tubular network in the hydrogel, and elongated structures along the m-ECM scaffold. The composite scaffold showed a high expression of ITGA5, ITGB1, and FN and a synergistic up-regulation of ang1 and tie-2 transcripts. The in vitro ability of the composite scaffold to provide extracellular milieu for cell adhesion and molecular cues to support vessel formation was investigated in a rodent volumetric muscle loss (VML) model. The composite scaffold delivered with ASCs supported robust and stable vascularization. Additionally, the composite scaffold supported increased localization of ASCs in the defect demonstrating its ability for localized cell delivery. Interestingly, ASCs were observed homing in the injured muscle and around the perivascular space possibly to stabilize the host vasculature. In conclusion, the composite scaffold delivered with ASCs presents a promising approach for scaffold vascularization. The versatile nature of the composite scaffold also makes it easily adaptable for the repair of soft tissue injuries. Decellularized extracellular matrix (ECM) scaffolds when used for soft tissue repair is often accompanied by deposition of fibrotic tissue possibly due to limited scaffold vascularization, which limits the diffusion of oxygen and nutrients

  13. Development of nanofibrous scaffolds containing gum tragacanth/poly (ε-caprolactone) for application as skin scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Ranjbar-Mohammadi, Marziyeh [Textile Engineering Department, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Bahrami, S. Hajir, E-mail: hajirb@aut.ac.ir [Textile Engineering Department, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Center for excellence Modern Textile Characterization, Tehran (Iran, Islamic Republic of)

    2015-03-01

    Outstanding wound healing activity of gum tragacanth (GT) and higher mechanical strength of poly (ε-caprolactone) (PCL) may produce an excellent nanofibrous patch for either skin tissue engineering or wound dressing application. PCL/GT scaffold containing different concentrations of PCL with different blend ratios of GT/PCL was produced using 90% acetic acid as solvent. The results demonstrated that the PCL/GT (3:1.5) with PCL concentration of 20% (w/v) produced nanofibers with proper morphology. Scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) were utilized to characterize the nanofibers. Surface wettability, functional groups analysis, porosity and tensile properties of nanofibers were evaluated. Morphological characterization showed that the addition of GT to PCL solution results in decreasing the average diameter of the PCL/GT nanofibers. However, the hydrophilicity increased in the PCL/GT nanofibers. Slight increase in melting peaks was observed due to the blending of PCL with GT nanofibers. PCL/GT nanofibers were used for in vitro cell culture of human fibroblast cell lines AGO and NIH 3T3 fibroblast cells. MTT assay and SEM results showed that the biocomposite PCL/GT mats enhanced the fibroblast adhesion and proliferation compared to PCL scaffolds. The antibacterial activity of PCL/GT and GT nanofibers against Staphylococcus aureus and Pseudomonas aeruginosa was also examined. - Highlights: • A new skin tissue engineering scaffold from poly (ε-caprolactone) (PCL) and gum tragacanth (GT) has been developed. • These scaffolds might be an effectual simulator of the structure and composition of native skin. • Very slight increase in melting peaks was observed due to the blending of PCL with GT nanofibers. • Biodegradation, water uptake and hydrophilicity properties of these scaffolds showed that produced scaffolds were adherent. • The electrospun PCL/GT scaffold can promote the skin regeneration of full

  14. Fabrication, characterization and in vitro drug release behavior of electrospun PLGA/chitosan nanofibrous scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Z.X.; Zheng, W.; Li, L. [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); Zheng, Y.F., E-mail: yfzheng@pku.edu.cn [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); Department of Advanced Materials and Nanotechnology, College of Engineering, Peking University, Beijing 100871 (China)

    2011-02-15

    Graphical abstract: The fenbufen loaded PLGA/chitosan nanofibrous scaffolds were fabricated by electrospinning. The hydrophilicity of nanofibrous scaffold was enhanced with the increase of chitosan content. The drug release also is accelerated with chitosan increasing because the higher hydrophilicity makes drug diffusing from scaffold more easily. Research highlights: {yields} The average diameter increased with the increase of chitosan content and then decreased. {yields} The release rate of fenbufen increased with the increase of chitosan. {yields} The aligned nanofibrous scaffold exhibits lower drug release rate. {yields} The drug release could be controlled by crosslinking in glutaraldehyde vapor. - Abstract: In this study both aligned and randomly oriented poly(D,L-lactide-co-glycolide) (PLGA)/chitosan nanofibrous scaffold have been prepared by electrospinning. The ratio of PLGA to chitosan was adjusted to get smooth nanofiber surface. Morphological characterization using scanning electron microscopy showed that the aligned nanofiber diameter distribution obtained by electrospinning of polymer blend increased with the increase of chitosan content which was similar to that of randomly oriented nanofibers. The release characteristic of model drug fenbufen (FBF) from the FBF-loaded aligned and randomly oriented PLGA and PLGA/chitosan nanofibrous scaffolds was investigated. The drug release rate increased with the increase of chitosan content because the addition of chitosan enhanced the hydrophilicity of the PLGA/chitosan composite scaffold. Moreover, for the aligned PLGA/chitosan nanofibrous scaffold the release rate was lower than that of randomly oriented PLGA/chitosan nanofibrous scaffold, which indicated that the nanofiber arrangement would influence the release behavior. In addition, crosslinking in glutaraldehyde vapor would decrease the burst release of FBF from FBF-loaded PLGA/chitosan nanofibrous scaffold with a PLGA/chitosan ratio less than 9/1, which

  15. Biodegradable lysine-derived polyurethane scaffolds promote healing in a porcine full-thickness excisional wound model.

    Science.gov (United States)

    Adolph, Elizabeth J; Pollins, Alonda C; Cardwell, Nancy L; Davidson, Jeffrey M; Guelcher, Scott A; Nanney, Lillian B

    2014-01-01

    Lysine-derived polyurethane scaffolds (LTI-PUR) support cutaneous wound healing in loose-skinned small animal models. Due to the physiological and anatomical similarities of human and pig skin, we investigated the capacity of LTI-PUR scaffolds to support wound healing in a porcine excisional wound model. Modifications to scaffold design included the addition of carboxymethylcellulose (CMC) as a porogen to increase interconnectivity and an additional plasma treatment (Plasma) to decrease surface hydrophobicity. All LTI-PUR scaffold and formulations supported cellular infiltration and were biodegradable. At 15 days, CMC and plasma scaffolds simulated increased macrophages more so than LTI PUR or no treatment. This response was consistent with macrophage-mediated oxidative degradation of the lysine component of the scaffolds. Cell proliferation was similar in control and scaffold-treated wounds at 8 and 15 days. Neither apoptosis nor blood vessel area density showed significant differences in the presence of any of the scaffold variations compared with untreated wounds, providing further evidence that these synthetic biomaterials had no adverse effects on those pivotal wound healing processes. During the critical phase of granulation tissue formation in full thickness porcine excisional wounds, LTI-PUR scaffolds supported tissue infiltration, while undergoing biodegradation. Modifications to scaffold fabrication modify the reparative process. This study emphasizes the biocompatibility and favorable cellular responses of PUR scaffolding formulations in a clinically relevant animal model.

  16. Silver doped resorbable tricalcium phosphate scaffolds for bone graft applications.

    Science.gov (United States)

    Hoover, Sean; Tarafder, Solaiman; Bandyopadhyay, Amit; Bose, Susmita

    2017-10-01

    Bone graft procedures, in particular maxillofacial repair, account for half of the orthopedic procedures done in the US each year. Infection is a major issue in surgery, and should be of primary concern when engineering biomaterials. Silver is of renewed importance today, as it has the ability to potentiate antibiotics against resistant bacterial strains. In order to reduce long term infection risks, it is necessary for the scaffold to maintain a silver ion release for the length of the healing process. In this study, silver doped porous β-tricalcium phosphate (β-TCP) scaffolds were engineered using liquid porogen based method with the goal of meeting these requirements. Silver was added to the β-TCP at three different dopant levels: 0.5wt% Ag2O, 1wt% Ag2O and 2wt% Ag2O. Immersion in pH5 acetate buffer over a 60day period resulted in a total cumulative ion release between 32 and 54μM for dense control scaffolds, and between 80 and 90μM for porous scaffolds. Porosity increased the dissolution rate of the scaffolds by a factor of 2. Human osteoblast cell lines were grown on the scaffolds to measure cytotoxicity and cell proliferation. Porosity increased osteoconduction by doubling the cell growth, and there was no significant cytotoxic effect even for the 2wt% Ag2O, as cells were observed on all the samples. Our results showed that silver can be released over a long period without compromising the biocompatibility of the scaffolds. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Polycaprolactone foam functionalized with chitosan microparticles - a suitable scaffold for cartilage regeneration.

    Science.gov (United States)

    Filová, E; Jakubcová, B; Danilová, I; KuŽelová Košťáková, E; Jarošíková, T; Chernyavskiy, O; Hejda, J; Handl, M; Beznoska, J; Nečas, A; Rosina, J; Amler, E

    2016-01-01

    For biodegradable porous scaffolds to have a potential application in cartilage regeneration, they should enable cell growth and differentiation and should have adequate mechanical properties. In this study, our aim was to prepare biocompatible scaffolds with improved biomechanical properties. To this end, we have developed foam scaffolds from poly-epsilon-caprolactone (PCL) with incorporated chitosan microparticles. The scaffolds were prepared by a salt leaching technique from either 10 or 15 wt% PCL solutions containing 0, 10 and 20 wt% chitosan microparticles, where the same amount and size of NaCl was used as a porogen in all the cases. PCL scaffolds without and with low amounts of chitosan (0 and 10 wt% chitosan) showed higher DNA content than scaffolds with high amounts of chitosan during a 22-day experiment. 10 wt% PCL with 10 and 20 wt% chitosan showed significantly increased viscoelastic properties compared to 15 wt% PCL scaffolds with 0 and 10 wt% chitosan. Thus, 10 wt% PCL scaffolds with 0 wt% and 10 wt% chitosan are potential scaffolds for cartilage regeneration.

  18. Approaching rational epitope vaccine design for hepatitis C virus with meta-server and multivalent scaffolding

    Science.gov (United States)

    He, Linling; Cheng, Yushao; Kong, Leopold; Azadnia, Parisa; Giang, Erick; Kim, Justin; Wood, Malcolm R.; Wilson, Ian A.; Law, Mansun; Zhu, Jiang

    2015-08-01

    Development of a prophylactic vaccine against hepatitis C virus (HCV) has been hampered by the extraordinary viral diversity and the poor host immune response. Scaffolding, by grafting an epitope onto a heterologous protein scaffold, offers a possible solution to epitope vaccine design. In this study, we designed and characterized epitope vaccine antigens for the antigenic sites of HCV envelope glycoproteins E1 (residues 314-324) and E2 (residues 412-423), for which neutralizing antibody-bound structures are available. We first combined six structural alignment algorithms in a “scaffolding meta-server” to search for diverse scaffolds that can structurally accommodate the HCV epitopes. For each antigenic site, ten scaffolds were selected for computational design, and the resulting epitope scaffolds were analyzed using structure-scoring functions and molecular dynamics simulation. We experimentally confirmed that three E1 and five E2 epitope scaffolds bound to their respective neutralizing antibodies, but with different kinetics. We then investigated a “multivalent scaffolding” approach by displaying 24 copies of an epitope scaffold on a self-assembling nanoparticle, which markedly increased the avidity of antibody binding. Our study thus demonstrates the utility of a multi-scale scaffolding strategy in epitope vaccine design and provides promising HCV immunogens for further assessment in vivo.

  19. Augmented Reality in the Science Museum: Lessons Learned in Scaffolding for Conceptual and Cognitive Learning

    Science.gov (United States)

    Yoon, Susan A.; Elinich, Karen; Wang, Joyce; Van Schooneveld, Jacqueline G.

    2012-01-01

    This research follows on previous studies that investigated how digitally augmented devices and knowledge scaffolds enhance learning in a science museum. We investigated what combination of scaffolds could be used in conjunction with the unique characteristics of informal participation to increase conceptual and cognitive outcomes. 307 students…

  20. Hybrid nanofibrous scaffolds from electrospinning of a synthetic biodegradable elastomer and urinary bladder matrix

    Science.gov (United States)

    Stankus, John J.; Freytes, Donald O.; Badylak, Stephen F.; Wagner, William R.

    2010-01-01

    Synthetic materials can be electrospun into submicron or nanofibrous scaffolds to mimic extracellular matrix (ECM) scale and architecture with reproducible composition and adaptable mechanical properties. However, these materials lack the bioactivity present in natural ECM. ECM-derived scaffolds contain bioactive molecules that exert in vivo mimicking effects as applied for soft tissue engineering, yet do not possess the same flexibility in mechanical property control as some synthetics. The objective of the present study was to combine the controllable properties of a synthetic, biodegradable elastomer with the inherent bioactivity of an ECM derived scaffold. A hybrid electrospun scaffold composed of a biodegradable poly(ester-urethane)urea (PEUU) and a porcine ECM scaffold (urinary bladder matrix, UBM) was fabricated and characterized for its bioactive and physical properties both in vitro and in vivo. Increasing amounts of PEUU led to linear increases in both tensile strength and breaking strain while UBM incorporation led to increased in vitro smooth muscle cell adhesion and proliferation and in vitro mass loss. Subcutaneous implantation of the hybrid scaffolds resulted in increased scaffold degradation and a large cellular infiltrate when compared with electrospun PEUU alone. Electrospun UBM/PEUU combined the attractive bioactivity and mechanical features of its individual components to result in scaffolds with considerable potential for soft tissue engineering applications. PMID:18419942

  1. Scaffolding of long read assemblies using long range contact information.

    Science.gov (United States)

    Ghurye, Jay; Pop, Mihai; Koren, Sergey; Bickhart, Derek; Chin, Chen-Shan

    2017-07-12

    Long read technologies have revolutionized de novo genome assembly by generating contigs orders of magnitude longer than that of short read assemblies. Although assembly contiguity has increased, it usually does not reconstruct a full chromosome or an arm of the chromosome, resulting in an unfinished chromosome level assembly. To increase the contiguity of the assembly to the chromosome level, different strategies are used which exploit long range contact information between chromosomes in the genome. We develop a scalable and computationally efficient scaffolding method that can boost the assembly contiguity to a large extent using genome-wide chromatin interaction data such as Hi-C. we demonstrate an algorithm that uses Hi-C data for longer-range scaffolding of de novo long read genome assemblies. We tested our methods on the human and goat genome assemblies. We compare our scaffolds with the scaffolds generated by LACHESIS based on various metrics. Our new algorithm SALSA produces more accurate scaffolds compared to the existing state of the art method LACHESIS.

  2. Remotely Triggered Scaffolds for Controlled Release of Pharmaceuticals

    Directory of Open Access Journals (Sweden)

    Clare Hoskins

    2013-04-01

    Full Text Available Fe3O4-Au hybrid nanoparticles (HNPs have shown increasing potential for biomedical applications such as image guided stimuli responsive drug delivery. Incorporation of the unique properties of HNPs into thermally responsive scaffolds holds great potential for future biomedical applications. Here we successfully fabricated smart scaffolds based on thermo-responsive poly(N-isopropylacrylamide (pNiPAM. Nanoparticles providing localized trigger of heating when irradiated with a short laser burst were found to give rise to remote control of bulk polymer shrinkage. Gold-coated iron oxide nanoparticles were synthesized using wet chemical precipitation methods followed by electrochemical coating. After subsequent functionalization of particles with allyl methyl sulfide, mercaptodecane, cysteamine and poly(ethylene glycol thiol to enhance stability, detailed biological safety was determined using live/dead staining and cell membrane integrity studies through lactate dehydrogenase (LDH quantification. The PEG coated HNPs did not show significant cytotoxic effect or adverse cellular response on exposure to 7F2 cells (p < 0.05 and were carried forward for scaffold incorporation. The pNiPAM-HNP composite scaffolds were investigated for their potential as thermally triggered systems using a Q-switched Nd:YAG laser. These studies show that incorporation of HNPs resulted in scaffold deformation after very short irradiation times (seconds due to internal structural heating. Our data highlights the potential of these hybrid-scaffold constructs for exploitation in drug delivery, using methylene blue as a model drug being released during remote structural change of the scaffold.

  3. Transcription factor c-Myb inhibits breast cancer lung metastasis by suppression of tumor cell seeding.

    Science.gov (United States)

    Knopfová, L; Biglieri, E; Volodko, N; Masařík, M; Hermanová, M; Glaus Garzón, J F; Dúcka, M; Kučírková, T; Souček, K; Šmarda, J; Beneš, P; Borsig, L

    2017-10-30

    Metastasis accounts for most of cancer-related deaths. Paracrine signaling between tumor cells and the stroma induces changes in the tumor microenvironment required for metastasis. Transcription factor c-Myb was associated with breast cancer (BC) progression but its role in metastasis remains unclear. Here we show that increased c-Myb expression in BC cells inhibits spontaneous lung metastasis through impaired tumor cell extravasation. On contrary, BC cells with increased lung metastatic capacity exhibited low c-Myb levels. We identified a specific inflammatory signature, including Ccl2 chemokine, that was expressed in lung metastatic cells but was suppressed in tumor cells with higher c-Myb levels. Tumor cell-derived Ccl2 expression facilitated lung metastasis and rescued trans-endothelial migration of c-Myb overexpressing cells. Clinical data show that the identified inflammatory signature, together with a MYB expression, predicts lung metastasis relapse in BC patients. These results demonstrate that the c-Myb-regulated transcriptional program in BCs results in a blunted inflammatory response and consequently suppresses lung metastasis.Oncogene advance online publication, 30 October 2017; doi:10.1038/onc.2017.392.

  4. Co-electrospun blends of PU and PEG as potential biocompatible scaffolds for small-diameter vascular tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Heyun [School of Chemistry and Chemical Engineering, Shihezi University, Beisi Road, Shihezi 830002 (China); Feng, Yakai, E-mail: fengyakai@yahoo.cn [School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072 (China); Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Weijin Road 92, Tianjin 300072 (China); Tianjin University-GKSS Research Centre, Joint Laboratory for Biomaterials and Regenerative Medicine, Weijin Road 92, 300072 Tianjin (China); Fang, Zichen; Yuan, Wenjie; Khan, Musammir [School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072 (China); Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Weijin Road 92, Tianjin 300072 (China)

    2012-12-01

    A small-diameter vascular graft (inner diameter 4 mm) was fabricated from polyurethane (PU) and poly(ethylene glycol) (PEG) solutions by blend electrospinning technology. The fiber diameter decreased from 1023 {+-} 185 nm to 394 {+-} 106 nm with the increasing content of PEG in electrospinning solutions. The hybrid PU/PEG scaffolds showed randomly nanofibrous morphology, high porosity and well-interconnected porous structure. The hydrophilicity of these scaffolds had been improved significantly with the increasing contents of PEG. The mechanical properties of electrospun hybrid PU/PEG scaffolds were obviously different from that of PU scaffold, which was caused by plasticizing or hardening effect imparted by PEG composition. Under hydrated state, the hybrid PU/PEG scaffolds demonstrated low mechanical performance due to the hydrophilic property of materials. Compared with dry PU/PEG scaffolds with the same content of PEG, the tensile strength and elastic modulus of hydrated PU/PEG scaffolds decreased significantly, while the elongation at break increased. The hybrid PU/PEG scaffolds demonstrated a lower possibility of thrombi formation than blank PU scaffold in platelet adhesion test. The hemolysis assay illustrated that all scaffolds could act as blood contacting materials. To investigate further in vitro cytocompatibility, HUVECs were seeded on the scaffolds and cultured over 14 days. The cells could attach and proliferate well on the hybrid scaffolds than blank PU scaffold, and form a cell monolayer fully covering on the PU/PEG (80/20) hybrid scaffold surface. The results demonstrated that the electrospun hybrid PU/PEG tubular scaffolds possessed the special capacity with excellent hemocompatibility while simultaneously supporting extensive endothelialization with the 20 and 30% content of PEG in hybrid scaffolds. - Highlights: Black-Right-Pointing-Pointer We develop small-diameter vascular grafts made of PU and PEG by electrospinning. Black

  5. Mechanical anisotropy of titanium scaffolds

    Directory of Open Access Journals (Sweden)

    Rüegg Jasmine

    2017-09-01

    Full Text Available The clinical performance of an implant, e.g. for the treatment of large bone defects, depends on the implant material, anchorage, surface topography and chemistry, but also on the mechanical properties, like the stiffness. The latter can be adapted by the porosity. Whereas foams show isotropic mechanical properties, digitally modelled scaffolds can be designed with anisotropic behaviour. In this study, we designed and produced 3D scaffolds based on an orthogonal architecture and studied its angle-dependent stiffness. The aim was to produce scaffolds with different orientations of the microarchitecture by selective laser melting and compare the angle-specific mechanical behaviour with an in-silico simulation. The anisotropic characteristics of open-porous implants and technical limitations of the production process were studied.

  6. Molecular Recognition within Synaptic Scaffolds

    DEFF Research Database (Denmark)

    Erlendsson, Simon

    function. At the molecular level PICK1 contains both a BAR and a PDZ domain making it quite unique. Especially the specificity and promiscuity of the PICK1 PDZ domain seems to be more complicated than normally seen for PDZ domains. Also, the ability of PICK1 to form dimeric structures via its central BAR...... by the spatial architecture of the synapse itself. In this thesis, the molecular scaffolding mechanisms of PICK1 have been investigated in both isolated and near native conditions. Our findings have significantly benefitted the general understanding of how PICK1 and PDZ domain scaffolding works. In the first......-inhibitory mechanism of PICK1 and allows the N-BAR domains or the PDZ domains themselves to cluster and shape membranes. Finally, we utilized our in-solution structural knowledge to investigate the scaffolding events in context of a native cell membrane. We initially showed that we were able to qualitatively assess...

  7. Composite Scaffolds for Bone Tissue Engineering

    OpenAIRE

    Min Wang

    2006-01-01

    Biomaterial and scaffold development underpins the advancement of tissue engineering. Traditional scaffolds based on biodegradable polymers such as poly(lactic acid) and poly(lactic acid-co-glycolic acid) are weak and non-osteoconductive. For bone tissue engineering, polymer-based composite scaffolds containing bioceramics such as hydroxyapatite can be produced and used. The bioceramics can be either incorporated in the scaffolds as a dispersed secondary phase or form a thin coating on the po...

  8. Systematic Prediction of Scaffold Proteins Reveals New Design Principles in Scaffold-Mediated Signal Transduction

    Science.gov (United States)

    Hu, Jianfei; Neiswinger, Johnathan; Zhang, Jin; Zhu, Heng; Qian, Jiang

    2015-01-01

    Scaffold proteins play a crucial role in facilitating signal transduction in eukaryotes by bringing together multiple signaling components. In this study, we performed a systematic analysis of scaffold proteins in signal transduction by integrating protein-protein interaction and kinase-substrate relationship networks. We predicted 212 scaffold proteins that are involved in 605 distinct signaling pathways. The computational prediction was validated using a protein microarray-based approach. The predicted scaffold proteins showed several interesting characteristics, as we expected from the functionality of scaffold proteins. We found that the scaffold proteins are likely to interact with each other, which is consistent with previous finding that scaffold proteins tend to form homodimers and heterodimers. Interestingly, a single scaffold protein can be involved in multiple signaling pathways by interacting with other scaffold protein partners. Furthermore, we propose two possible regulatory mechanisms by which the activity of scaffold proteins is coordinated with their associated pathways through phosphorylation process. PMID:26393507

  9. Accelerated craniofacial bone regeneration through dense collagen gel scaffolds seeded with dental pulp stem cells

    Science.gov (United States)

    Chamieh, Frédéric; Collignon, Anne-Margaux; Coyac, Benjamin R.; Lesieur, Julie; Ribes, Sandy; Sadoine, Jérémy; Llorens, Annie; Nicoletti, Antonino; Letourneur, Didier; Colombier, Marie-Laure; Nazhat, Showan N.; Bouchard, Philippe; Chaussain, Catherine; Rochefort, Gael Y.

    2016-12-01

    Therapies using mesenchymal stem cell (MSC) seeded scaffolds may be applicable to various fields of regenerative medicine, including craniomaxillofacial surgery. Plastic compression of collagen scaffolds seeded with MSC has been shown to enhance the osteogenic differentiation of MSC as it increases the collagen fibrillary density. The aim of the present study was to evaluate the osteogenic effects of dense collagen gel scaffolds seeded with mesenchymal dental pulp stem cells (DPSC) on bone regeneration in a rat critical-size calvarial defect model. Two symmetrical full-thickness defects were created (5 mm diameter) and filled with either a rat DPSC-containing dense collagen gel scaffold (n = 15), or an acellular scaffold (n = 15). Animals were imaged in vivo by microcomputer tomography (Micro-CT) once a week during 5 weeks, whereas some animals were sacrificed each week for histology and histomorphometry analysis. Bone mineral density and bone micro-architectural parameters were significantly increased when DPSC-seeded scaffolds were used. Histological and histomorphometrical data also revealed significant increases in fibrous connective and mineralized tissue volume when DPSC-seeded scaffolds were used, associated with expression of type I collagen, osteoblast-associated alkaline phosphatase and osteoclastic-related tartrate-resistant acid phosphatase. Results demonstrate the potential of DPSC-loaded-dense collagen gel scaffolds to benefit of bone healing process.

  10. Bioactive Copper-Doped Glass Scaffolds Can Stimulate Endothelial Cells in Co-Culture in Combination with Mesenchymal Stem Cells

    Science.gov (United States)

    Rath, Subha N.; Brandl, Andreas; Hiller, Daniel; Hoppe, Alexander; Gbureck, Uwe; Horch, Raymund E.; Boccaccini, Aldo R.; Kneser, Ulrich

    2014-01-01

    Bioactive glass (BG) scaffolds are being investigated for bone tissue engineering applications because of their osteoconductive and angiogenic nature. However, to increase the in vivo performance of the scaffold, including enhancing the angiogenetic growth into the scaffolds, some researchers use different modifications of the scaffold including addition of inorganic ionic components to the basic BG composition. In this study, we investigated the in vitro biocompatibility and bioactivity of Cu2+-doped BG derived scaffolds in either BMSC (bone-marrow derived mesenchymal stem cells)-only culture or co-culture of BMSC and human dermal microvascular endothelial cells (HDMEC). In BMSC-only culture, cells were seeded either directly on the scaffolds (3D or direct culture) or were exposed to ionic dissolution products of the BG scaffolds, kept in permeable cell culture inserts (2D or indirect culture). Though we did not observe any direct osteoinduction of BMSCs by alkaline phosphatase (ALP) assay or by PCR, there was increased vascular endothelial growth factor (VEGF) expression, observed by PCR and ELISA assays. Additionally, the scaffolds showed no toxicity to BMSCs and there were healthy live cells found throughout the scaffold. To analyze further the reasons behind the increased VEGF expression and to exploit the benefits of the finding, we used the indirect method with HDMECs in culture plastic and Cu2+-doped BG scaffolds with or without BMSCs in cell culture inserts. There was clear observation of increased endothelial markers by both FACS analysis and acetylated LDL (acLDL) uptake assay. Only in presence of Cu2+-doped BG scaffolds with BMSCs, a high VEGF secretion was demonstrated by ELISA; and typical tubular structures were observed in culture plastics. We conclude that Cu2+-doped BG scaffolds release Cu2+, which in turn act on BMSCs to secrete VEGF. This result is of significance for the application of BG scaffolds in bone tissue engineering approaches. PMID

  11. Bioactive copper-doped glass scaffolds can stimulate endothelial cells in co-culture in combination with mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Subha N Rath

    Full Text Available Bioactive glass (BG scaffolds are being investigated for bone tissue engineering applications because of their osteoconductive and angiogenic nature. However, to increase the in vivo performance of the scaffold, including enhancing the angiogenetic growth into the scaffolds, some researchers use different modifications of the scaffold including addition of inorganic ionic components to the basic BG composition. In this study, we investigated the in vitro biocompatibility and bioactivity of Cu2+-doped BG derived scaffolds in either BMSC (bone-marrow derived mesenchymal stem cells-only culture or co-culture of BMSC and human dermal microvascular endothelial cells (HDMEC. In BMSC-only culture, cells were seeded either directly on the scaffolds (3D or direct culture or were exposed to ionic dissolution products of the BG scaffolds, kept in permeable cell culture inserts (2D or indirect culture. Though we did not observe any direct osteoinduction of BMSCs by alkaline phosphatase (ALP assay or by PCR, there was increased vascular endothelial growth factor (VEGF expression, observed by PCR and ELISA assays. Additionally, the scaffolds showed no toxicity to BMSCs and there were healthy live cells found throughout the scaffold. To analyze further the reasons behind the increased VEGF expression and to exploit the benefits of the finding, we used the indirect method with HDMECs in culture plastic and Cu2+-doped BG scaffolds with or without BMSCs in cell culture inserts. There was clear observation of increased endothelial markers by both FACS analysis and acetylated LDL (acLDL uptake assay. Only in presence of Cu2+-doped BG scaffolds with BMSCs, a high VEGF secretion was demonstrated by ELISA; and typical tubular structures were observed in culture plastics. We conclude that Cu2+-doped BG scaffolds release Cu2+, which in turn act on BMSCs to secrete VEGF. This result is of significance for the application of BG scaffolds in bone tissue engineering

  12. Manufacturing of calcium phosphate scaffolds by pseudomorphic transformation of gypsum

    Energy Technology Data Exchange (ETDEWEB)

    Araujo Batista, H. de.; Batista Cardoso, M.; Sales Vasconcelos, A.; Vinicius Lia Fook, M.; Rodriguez Barbero, M. A.; Garcia Carrodeguas, R.

    2016-08-01

    Carbonated hydroxyapatite (CHAp) and β-tricalcium phosphate (β-TCP) have been employed for decades as constituents of scaffolds for bone regeneration because they chemically resemble bone mineral. In this study, the feasibility to manufacture CHAp/β-TCP scaffolds by pseudomorphic transformation of casted blocks of gypsum was investigated. The transformation was carried out by immersing the precursor gypsum block in 1 M (NH{sub 4}){sub 2}HPO{sub 4}/1.33 M NH{sub 4}OH solution with liquid/solid ratio of 10 mL/g and autoclaving at 120 degree centigrade and 203 kPa (2 atm) for 3 h at least. Neither shape nor dimensions significantly changed during transformation. The composition of scaffolds treated for 3 h was 70 wt.% CHAp and 30 wt.% β-TCP, and their compressive and diametral compressive strengths were 6.5 ± 0.7 and 5.3 ±0.7 MPa, respectively. By increasing the time of treatment to 6 h, the composition of the scaffold enriched in β-TCP (60 wt.% CHAp and 40 wt.% β-TCP) but its compressive and diametral compressive strengths were not significantly affected (6.7 ± 0.9 and 5.4 ± 0.6 MPa, respectively). On the basis of the results obtained, it was concluded that this route is a good approach to the manufacturing of biphasic (CHAp/β-TCP) scaffolds from previously shaped pieces of gypsum. (Author)

  13. Polycaprolactone Scaffolds Fabricated via Bioextrusion for Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Marco Domingos

    2009-01-01

    Full Text Available The most promising approach in Tissue Engineering involves the seeding of porous, biocompatible/biodegradable scaffolds, with donor cells to promote tissue regeneration. Additive biomanufacturing processes are increasingly recognized as ideal techniques to produce 3D structures with optimal pore size and spatial distribution, providing an adequate mechanical support for tissue regeneration while shaping in-growing tissues. This paper presents a novel extrusion-based system to produce 3D scaffolds with controlled internal/external geometry for TE applications.The BioExtruder is a low-cost system that uses a proper fabrication code based on the ISO programming language enabling the fabrication of multimaterial scaffolds. Poly(ε-caprolactone was the material chosen to produce porous scaffolds, made by layers of directionally aligned microfilaments. Chemical, morphological, and in vitro biological evaluation performed on the polymeric constructs revealed a high potential of the BioExtruder to produce 3D scaffolds with regular and reproducible macropore architecture, without inducing relevant chemical and biocompatibility alterations of the material.

  14. Scaffolds for partial meniscal replacement: an updated systematic review.

    Science.gov (United States)

    Papalia, Rocco; Franceschi, Francesco; Diaz Balzani, Lorenzo; D'Adamio, Stefano; Maffulli, Nicola; Denaro, Vincenzo

    2013-01-01

    Meniscectomy, a most common orthopaedic procedure, results in increased contact area of the articular surfaces of tibia and femur leading to early osteoarthritis. We systematically review the literature on clinical outcomes following partial meniscal replacement using different scaffolds. We performed a comprehensive search of Medline, CINAHL, Embase and the Cochrane Central Registry of Controlled Trials. The reference lists of the selected articles were then examined by hand. Only studies focusing on investigation of clinical outcomes on patients undergoing a partial meniscal replacement using a scaffold were selected. We then evaluated the methodological quality of each article using the Coleman methodology score (CMS), a 10 criteria scoring list assessing the methodological quality of the selected studies (CMS). Fifteen studies were included, all prospective studies, but only 2 were randomized controlled trials. Biological scaffolds were involved in 12 studies, 2 studies investigated synthetic scaffolds, whereas 1 remaining article presented data from the use of both classes of device. The mean modified CMS was 64.6. Several demographic and biomechanical factors could influence the outcomes of this treatment modality. Partial replacement using both classes of scaffolds achieves significant and encouraging improved clinical results when compared with baseline values or with controls when present, without no adverse reaction related to the device. There is a need for more and better designed randomized trials, to confirm with a stronger level of evidence the promising preliminary results achieved by the current research.

  15. Poly(hydroxybutyrate)/cellulose acetate blend nanofiber scaffolds: Preparation, characterization and cytocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Zhijiang, Cai, E-mail: caizhijiang@hotmail.com [School of Textiles, Tianjin Polytechnic University, Tianjin 300387 (China); State Key Laboratory of Hollow Fiber Membrane Material and Processes, No 399 BingShuiXi Street, XiQing District, Tianjin, China, 300387 (China); Yi, Xu; Haizheng, Yang; Jia, Jianru; Liu, Yuanpei [School of Textiles, Tianjin Polytechnic University, Tianjin 300387 (China)

    2016-01-01

    Poly(hydroxybutyrate) (PHB)/cellulose acetate (CA) blend nanofiber scaffolds were fabricated by electrospinning using the blends of chloroform and DMF as solvent. The blend nanofiber scaffolds were characterized by SEM, FTIR, XRD, DSC, contact angle and tensile test. The blend nanofibers exhibited cylindrical, uniform, bead-free and random orientation with the diameter ranged from 80–680 nm. The scaffolds had very well interconnected porous fibrous network structure and large aspect surface areas. It was found that the presence of CA affected the crystallization of PHB due to formation of intermolecular hydrogen bonds, which restricted the preferential orientation of PHB molecules. The DSC result showed that the PHB and CA were miscible in the blend nanofiber. An increase in the glass transition temperature was observed with increasing CA content. Additionally, the mechanical properties of blend nanofiber scaffolds were largely influenced by the weight ratio of PHB/CA. The tensile strength, yield strength and elongation at break of the blend nanofiber scaffolds increased from 3.3 ± 0.35 MPa, 2.8 ± 0.26 MPa, and 8 ± 0.77% to 5.05 ± 0.52 MPa, 4.6 ± 0.82 MPa, and 17.6 ± 1.24% by increasing PHB content from 60% to 90%, respectively. The water contact angle of blend nanofiber scaffolds decreased about 50% from 112 ± 2.1° to 60 ± 0.75°. The biodegradability was evaluated by in vitro degradation test and the results revealed that the blend nanofiber scaffolds showed much higher degradation rates than the neat PHB. The cytocompatibility of the blend nanofiber scaffolds was preliminarily evaluated by cell adhesion studies. The cells incubated with PHB/CA blend nanofiber scaffold for 48 h were capable of forming cell adhesion and proliferation. It showed much better biocompatibility than pure PHB film. Thus, the prepared PHB/CA blend nanofiber scaffolds are bioactive and may be more suitable for cell proliferation suggesting that these scaffolds can be used for

  16. The effects of crosslinkers on physical, mechanical, and cytotoxic properties of gelatin sponge prepared via in-situ gas foaming method as a tissue engineering scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Poursamar, S. Ali [Institute for Creative Leather Technologies, Park Campus, The University of Northampton, Boughton Green Road, Northampton NN2 7AL (United Kingdom); Lehner, Alexander N. [Centre for Physical Activity and Chronic Disease and the Aging Research Centre, Institute for Health and Wellbeing, School of Health, Park Campus, The University of Northampton, Boughton Green Road, Northampton NN2 7AL (United Kingdom); Azami, Mahmoud; Ebrahimi-Barough, Somayeh [Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Samadikuchaksaraei, Ali [Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Medical Biotechnology, Faculty of Applied Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Antunes, A.P.M., E-mail: Paula.Antunes@northampton.ac.uk [Institute for Creative Leather Technologies, Park Campus, The University of Northampton, Boughton Green Road, Northampton NN2 7AL (United Kingdom)

    2016-06-01

    In this study porous gelatin scaffolds were prepared using in-situ gas foaming, and four crosslinking agents were used to determine a biocompatible and effective crosslinker that is suitable for such a method. Crosslinkers used in this study included: hexamethylene diisocyanate (HMDI), poly(ethylene glycol) diglycidyl ether (epoxy), glutaraldehyde (GTA), and genipin. The prepared porous structures were analyzed using Fourier Transform Infrared Spectroscopy (FT-IR), thermal and mechanical analysis as well as water absorption analysis. The microstructures of the prepared samples were analyzed using Scanning Electron Microscopy (SEM). The effects of the crosslinking agents were studied on the cytotoxicity of the porous structure indirectly using MTT analysis. The affinity of L929 mouse fibroblast cells for attachment on the scaffold surfaces was investigated by direct cell seeding and DAPI-staining technique. It was shown that while all of the studied crosslinking agents were capable of stabilizing prepared gelatin scaffolds, there are noticeable differences among physical and mechanical properties of samples based on the crosslinker type. Epoxy-crosslinked scaffolds showed a higher capacity for water absorption and more uniform microstructures than the rest of crosslinked samples, whereas genipin and GTA-crosslinked scaffolds demonstrated higher mechanical strength. Cytotoxicity analysis showed the superior biocompatibility of the naturally occurring genipin in comparison with other synthetic crosslinking agents, in particular relative to GTA-crosslinked samples. - Highlights: • In-situ gas foaming application in the production of sponge-like gelatin structures • The crosslinkers molecular length impacts on the physical and mechanical properties of the structure. • The effect of crosslinkers on the biocompatibility of gelatin scaffolds.

  17. Problem Solving, Scaffolding and Learning

    Science.gov (United States)

    Lin, Shih-Yin

    2012-01-01

    Helping students to construct robust understanding of physics concepts and develop good solving skills is a central goal in many physics classrooms. This thesis examine students' problem solving abilities from different perspectives and explores strategies to scaffold students' learning. In studies involving analogical problem solving…

  18. scaffolds for tissue engineering application

    Indian Academy of Sciences (India)

    2017-07-27

    Jul 27, 2017 ... in chitosan (CH) and poly(vinyl alcohol) (PVA) scaffold for effective delivery of drug in a sustained manner to the wound site. Moreover, the peculiar ... as milieu biocompatible carrier to get rid of wound infection and to achieve ... (measuring 12 cm×10 cm) and dried at room temperature to get CH–CMP and ...

  19. Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration.

    Science.gov (United States)

    Pati, Falguni; Song, Tae-Ha; Rijal, Girdhari; Jang, Jinah; Kim, Sung Won; Cho, Dong-Woo

    2015-01-01

    3D printing technique is the most sophisticated technique to produce scaffolds with tailorable physical properties. But, these scaffolds often suffer from limited biological functionality as they are typically made from synthetic materials. Cell-laid mineralized ECM was shown to be potential for improving the cellular responses and drive osteogenesis of stem cells. Here, we intend to improve the biological functionality of 3D-printed synthetic scaffolds by ornamenting them with cell-laid mineralized extracellular matrix (ECM) that mimics a bony microenvironment. We developed bone graft substitutes by using 3D printed scaffolds made from a composite of polycaprolactone (PCL), poly(lactic-co-glycolic acid) (PLGA), and β-tricalcium phosphate (β-TCP) and mineralized ECM laid by human nasal inferior turbinate tissue-derived mesenchymal stromal cells (hTMSCs). A rotary flask bioreactor was used to culture hTMSCs on the scaffolds to foster formation of mineralized ECM. A freeze/thaw cycle in hypotonic buffer was used to efficiently decellularize (97% DNA reduction) the ECM-ornamented scaffolds while preserving its main organic and inorganic components. The ECM-ornamented 3D printed scaffolds supported osteoblastic differentiation of newly-seeded hTMSCs by upregulating four typical osteoblastic genes (4-fold higher RUNX2; 3-fold higher ALP; 4-fold higher osteocalcin; and 4-fold higher osteopontin) and increasing calcium deposition compared to bare 3D printed scaffolds. In vivo, in ectopic and orthotopic models in rats, ECM-ornamented scaffolds induced greater bone formation than that of bare scaffolds. These results suggest a valuable method to produce ECM-ornamented 3D printed scaffolds as off-the-shelf bone graft substitutes that combine tunable physical properties with physiological presentation of biological signals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. SIS: a program to generate draft genome sequence scaffolds for prokaryotes

    Directory of Open Access Journals (Sweden)

    Dias Zanoni

    2012-05-01

    Full Text Available Abstract Background Decreasing costs of DNA sequencing have made prokaryotic draft genome sequences increasingly common. A contig scaffold is an ordering of contigs in the correct orientation. A scaffold can help genome comparisons and guide gap closure efforts. One popular technique for obtaining contig scaffolds is to map contigs onto a reference genome. However, rearrangements that may exist between the query and reference genomes may result in incorrect scaffolds, if these rearrangements are not taken into account. Large-scale inversions are common rearrangement events in prokaryotic genomes. Even in draft genomes it is possible to detect the presence of inversions given sufficient sequencing coverage and a sufficiently close reference genome. Results We present a linear-time algorithm that can generate a set of contig scaffolds for a draft genome sequence represented in contigs given a reference genome. The algorithm is aimed at prokaryotic genomes and relies on the presence of matching sequence patterns between the query and reference genomes that can be interpreted as the result of large-scale inversions; we call these patterns inversion signatures. Our algorithm is capable of correctly generating a scaffold if at least one member of every inversion signature pair is present in contigs and no inversion signatures have been overwritten in evolution. The algorithm is also capable of generating scaffolds in the presence of any kind of inversion, even though in this general case there is no guarantee that all scaffolds in the scaffold set will be correct. We compare the performance of sis, the program that implements the algorithm, to seven other scaffold-generating programs. The results of our tests show that sis has overall better performance. Conclusions sis is a new easy-to-use tool to generate contig scaffolds, available both as stand-alone and as a web server. The good performance of sis in our tests adds evidence that large

  1. Fabrication of individual alginate-TCP scaffolds for bone tissue engineering by means of powder printing.

    Science.gov (United States)

    Castilho, Miguel; Rodrigues, Jorge; Pires, Inês; Gouveia, Barbara; Pereira, Manuel; Moseke, Claus; Groll, Jürgen; Ewald, Andrea; Vorndran, Elke

    2015-01-06

    The development of polymer-calcium phosphate composite scaffolds with tailored architectures and properties has great potential for bone regeneration. Herein, we aimed to improve the functional performance of brittle ceramic scaffolds by developing a promising biopolymer-ceramic network. For this purpose, two strategies, namely, direct printing of a powder composition consisting of a 60:40 mixture of α/β-tricalcium phosphate (TCP) powder and alginate powder or vacuum infiltration of printed TCP scaffolds with an alginate solution, were tracked. Results of structural characterization revealed that the scaffolds printed with 2.5 wt% alginate-modified TCP powders presented a uniformly distributed and interfusing alginate TCP network. Mechanical results indicated a significant increase in strength, energy to failure and reliability of powder-modified scaffolds with an alginate content in the educts of 2.5 wt% when compared to pure TCP, as well as to TCP scaffolds containing 5 wt% or 7.5 wt% in the educts, in both dry and wet states. Culture of human osteoblast cells on these scaffolds also demonstrated a great improvement of cell proliferation and cell viability. While in the case of powder-mixed alginate TCP scaffolds, isolated alginate gels were formed between the calcium phosphate crystals, the vacuum-infiltration strategy resulted in the covering of the surface and internal pores of the TCP scaffold with a thin alginate film. Furthermore, the prediction of the scaffolds' critical fracture conditions under more complex stress states by the applied Mohr fracture criterion confirmed the potential of the powder-modified scaffolds with 2.5 wt% alginate in the educts as structural biomaterial for bone tissue engineering.

  2. Double-chamber rotating bioreactor for dynamic perfusion cell seeding of large-segment tracheal allografts: comparison to conventional static methods.

    Science.gov (United States)

    Haykal, Siba; Salna, Michael; Zhou, Yingzhe; Marcus, Paula; Fatehi, Mostafa; Frost, Geoff; Machuca, Tiago; Hofer, Stefan O P; Waddell, Thomas K

    2014-08-01

    Tracheal transplantation with a long-segment recellularized tracheal allograft has previously been performed without the need for immunosuppressive therapy. Recipients' mesenchymal stromal cells (MSC) and tracheal epithelial cells (TEC) were harvested, cultured, expanded, and seeded on a donor trachea within a bioreactor. Prior techniques used for cellular seeding have involved only static-seeding methods. Here, we describe a novel bioreactor for recellularization of long-segment tracheae. Tracheae were recellularized with epithelial cells on the luminal surface and bone marrow-derived MSC on the external surface. We used dynamic perfusion seeding for both cell types and demonstrate an increase in both cellular counts and homogeneity scores compared with traditional methods. Despite these improvements, orthotopic transplantation of these scaffolds revealed no labeled cells at postoperative day 3 and lack of re-epithelialization within the first 2 weeks. The animals in this study had postoperative respiratory distress and tracheal collapse that was incompatible with life.

  3. Scaffolds for bone regeneration made of hydroxyapatite microspheres in a collagen matrix

    Energy Technology Data Exchange (ETDEWEB)

    Cholas, Rahmatullah, E-mail: rahmat.cholas@gmail.com; Kunjalukkal Padmanabhan, Sanosh, E-mail: sanosh2001@gmail.com; Gervaso, Francesca; Udayan, Gayatri; Monaco, Graziana; Sannino, Alessandro; Licciulli, Antonio

    2016-06-01

    Biomimetic scaffolds with a structural and chemical composition similar to native bone tissue may be promising for bone tissue regeneration. In the present work hydroxyapatite mesoporous microspheres (mHA) were incorporated into collagen scaffolds containing an ordered interconnected macroporosity. The mHA were obtained by spray drying of a nano hydroxyapatite slurry prepared by the precipitation technique. X-ray diffraction (XRD) analysis revealed that the microspheres were composed only of hydroxyapatite (HA) phase, and energy-dispersive x-ray spectroscopy (EDS) analysis revealed the Ca/P ratio to be 1.69 which is near the value for pure HA. The obtained microspheres had an average diameter of 6 μm, a specific surface area of 40 m{sup 2}/g as measured by Brunauer-Emmett-Teller (BET) analysis, and Barrett-Joyner-Halenda (BJH) analysis showed a mesoporous structure with an average pore diameter of 16 nm. Collagen/HA-microsphere (Col/mHA) composite scaffolds were prepared by freeze-drying followed by dehydrothermal crosslinking. SEM observations of Col/mHA scaffolds revealed HA microspheres embedded within a porous collagen matrix with a pore size ranging from a few microns up to 200 μm, which was also confirmed by histological staining of sections of paraffin embedded scaffolds. The compressive modulus of the composite scaffold at low and high strain values was 1.7 and 2.8 times, respectively, that of pure collagen scaffolds. Cell proliferation measured by the MTT assay showed more than a 3-fold increase in cell number within the scaffolds after 15 days of culture for both pure collagen scaffolds and Col/mHA composite scaffolds. Attractive properties of this composite scaffold include the potential to load the microspheres for drug delivery and the controllability of the pore structure at various length scales. - Highlights: • Mesoporous hydroxyapatite microsphere(mHA) synthesized by spray drying method • Porous collagen/mHA composite scaffold made by freeze

  4. Scaffolds of polycaprolactone with hydroxyapatite fibers;Scaffolds de poli(epsilon-caprolactona) com fibras de hidroxiapatita

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Guinea B.C.; Zavaglia, Cecilia A.C., E-mail: guicardoso@fem.unicamp.b [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Dept. de Materiais; Ramos, Sergio L.F. [Universidade Federal Santa Catarina (UFSC), Florianopolis, SC (Brazil); Arruda, Antonio Celso F. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Dept. do Petroleo

    2009-07-01

    Scaffolds of poly (epsilon-caprolactone) has been studied in many researches in tissue engineering. The used of hydroxyapatite fibers, allowed increase its resistance mechanical, beside the character bioactive and osteoconductive. Improving, its role in tissue engineering. The aim in this study was developed polycaprolactone matrix with dispersed hydroxyapatite fibers. The characterizations were by scanning electron microscopy (SEM), X- Ray Diffractometer (XRD), X-Ray Fluorescence (XRF) and Energy dispersive X-Ray Detector (EDX). Was able reviewed its composition, morphology and possible contaminations. The results were scaffolds with porosity and distribution of the fibers in all its area. (author)

  5. Ultrasonic elasticity determination of 45S5 Bioglass(®)-based scaffolds: influence of polymer coating and crosslinking treatment.

    Science.gov (United States)

    Li, Wei; Pastrama, Maria-Ioana; Ding, Yaping; Zheng, Kai; Hellmich, Christian; Boccaccini, Aldo R

    2014-12-01

    Highly porous 45S5 Bioglass(®)-based scaffolds with interconnected pore structure are promising candidates for bone tissue engineering due to their bioactivity, biocompatibility, osteogenic and angiogenic effects. In the present study, to ensure the mechanical competence of the 45S5 Bioglass(®)-based scaffolds, their stiffness was adjusted by applying polymer coatings and further crosslinking treatment. A non-destructive ultrasonic technique was used to determine the stiffness of the scaffolds. The stiffness of uncoated scaffolds was shown to increase by applying polymer coatings, and a further increase was achieved by crosslinking the used polymer coatings. All uncoated and polymer-coated scaffolds were confirmed to exhibit stiffness values in the range of reported values in the literature for cancellous bone. A statistical evaluation of combined multiscale ultrasound-nanoindentation measurements indicated that the stiffness of the coated scaffold is directly dependent on the stiffness of the polymer coating. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Developing Discussion Leaders through Scaffolded Lesson-Study

    Science.gov (United States)

    Kohlmeier, Jada; Saye, John

    2017-01-01

    In this study we report the findings of a two-year professional development study using scaffolded lesson-study to encourage and support four teachers' desire to use discussion with increased frequency and quality. We joined a collaborative community of practice made up of one university researcher, two classroom teachers, and a political science…

  7. Scaffolding Students' Knowledge Integration: Prompts for Reflection in KIE.

    Science.gov (United States)

    Davis, Elizabeth A.; Linn, Marcia C.

    2000-01-01

    Encouraging students to be autonomous is an important goal of the Scaffolded Knowledge Integration (SKI) framework. Investigates learning and design questions. Indicates that prompting students to reflect significantly increases knowledge integration in science projects. Shows that self-monitoring prompts, which encourage planning for and…

  8. Tailoring properties of porous Poly (vinylidene fluoride) scaffold through nano-sized 58s bioactive glass.

    Science.gov (United States)

    Shuai, Cijun; Huang, Wei; Feng, Pei; Gao, Chengde; Shuai, Xiong; Xiao, Tao; Deng, Youwen; Peng, Shuping; Wu, Ping

    2016-01-01

    The biological properties of porous poly (vinylidene fluoride) (PVDF) scaffolds fabricated by selective laser sintering were tailored through nano-sized 58s bioactive glass. The results showed that 58s bioactive glass distributed evenly in the PVDF matrix. There were some exposed particles on the surface which provided attachment sites for biological response. It was confirmed that the scaffolds had highly bioactivity by the formation of bone-like apatite in simulated body fluid. And the bone-like apatite became dense with the increase in 58s bioactive glass and culture time. Moreover, the scaffolds were suitable for cell adhesion and proliferation compared with the PVDF scaffolds without 58s bioactive glass. The research showed that the PVDF/58s bioactive glass scaffolds had latent application in bone tissue engineering.

  9. Current trends in the design of scaffolds for computer-aided tissue engineering.

    Science.gov (United States)

    Giannitelli, S M; Accoto, D; Trombetta, M; Rainer, A

    2014-02-01

    Advances introduced by additive manufacturing have significantly improved the ability to tailor scaffold architecture, enhancing the control over microstructural features. This has led to a growing interest in the development of innovative scaffold designs, as testified by the increasing amount of research activities devoted to the understanding of the correlation between topological features of scaffolds and their resulting properties, in order to find architectures capable of optimal trade-off between often conflicting requirements (such as biological and mechanical ones). The main aim of this paper is to provide a review and propose a classification of existing methodologies for scaffold design and optimization in order to address key issues and help in deciphering the complex link between design criteria and resulting scaffold properties. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Nanotechnology-based Cryopreservation of Cell-Scaffold Constructs: A New Breakthrough to Clinical Application.

    Science.gov (United States)

    Chen, G; Lv, Y

    The developments of "off-the-shelf" cell-scaffold constructs received an increasing interest in tissue engineering and regenerative medicine. Although the direct cryopreservation of a single-cell suspension in the tube is a relative mature technology, the cryopreservation of cell-scaffold constructs remains a challenge. Nanotechnology shows tremendous potential for cryopreservation in regulating of freezing and thawing processes. For example, nanoparticles have been reported to modify the cryoprotective agent (CPA), adjust the process of cooling and warming cycles. In this review, we provide an overview of cryopreservation of cell-scaffold constructs firstly. The review further focuses on the effects of nanotechnology on cryopreservation of cell-scaffold constructs, including the nanostructure of scaffold, nanoparticles in cooling and warming process in cryopreservation. The perspectives on future challenges in this filed are also pointed out.

  11. Freeform extrusion fabrication of titanium fiber reinforced 13-93 bioactive glass scaffolds.

    Science.gov (United States)

    Thomas, Albin; Kolan, Krishna C R; Leu, Ming C; Hilmas, Gregory E

    2017-06-01

    Although implants made with bioactive glass have shown promising results for bone repair, their application in repairing load-bearing long bone is limited due to their poor mechanical properties in comparison to human bone. This work investigates the freeform extrusion fabrication of bioactive silicate 13-93 glass scaffolds reinforced with titanium (Ti) fibers. A composite paste prepared with 13-93 glass and Ti fibers (~16µm in diameter and lengths varying from ~200µm to ~2 mm) was extruded through a nozzle to fabricate scaffolds (0-90° filament orientation pattern) on a heated plate. The sintered scaffolds measured pore sizes ranging from 400 to 800µm and a porosity of ~50%. Scaffolds with 0.4vol% Ti fibers measured fracture toughness of ~0.8MPam 1/2 and a flexural strength of ~15MPa. 13-93 glass scaffolds without Ti fibers had a toughness of ~0.5MPam 1/2 and a strength of ~10MPa. The addition of Ti fibers increased the fracture toughness of the scaffolds by ~70% and flexural strength by ~40%. The scaffolds' biocompatibility and their degradation in mechanical properties in vitro were assessed by immersing the scaffolds in a simulated body fluid over a period of one to four weeks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Three-dimensional fibrous PLGA/HAp composite scaffold for BMP-2 delivery.

    Science.gov (United States)

    Nie, Hemin; Soh, Beng Wee; Fu, Yin-Chih; Wang, Chi-Hwa

    2008-01-01

    A protein loaded three-dimensional scaffold can be used for protein delivery and bone tissue regeneration. The main objective of this project was to develop recombinant human bone morphogenetic protein-2 (rhBMP-2) loaded poly(D,L-lactide-co-glycolide)/hydroxylapatite (PLGA/HAp) composite fibrous scaffolds through a promising fabrication technique, electrospinning. In vitro release of BMP-2 from these scaffolds, and the attachment ability and viability of marrow derived messenchymal stem cells (MSCs) in the presence of the scaffolds were investigated. The PLGA/HAp composite scaffolds developed in this study exhibit good morphology and it was observed that HAp nanoparticles were homogeneously dispersed inside PLGA matrix within the scaffold. The composite scaffolds allowed sustained (2-8 weeks) release of BMP-2 whose release rate was accelerated with increasing HAp content. It was also shown that BMP-2 protein successfully maintained its integrity and natural conformations after undergoing the process of electrospinning. Cell culture experiments showed that the encapsulation of HAp could enhance cell attachment to scaffolds and lower cytotoxicity. (c) 2007 Wiley Periodicals, Inc.

  13. Development of Composite Scaffolds for Load-Bearing Segmental Bone Defects

    Directory of Open Access Journals (Sweden)

    Marcello Pilia

    2013-01-01

    Full Text Available The need for a suitable tissue-engineered scaffold that can be used to heal load-bearing segmental bone defects (SBDs is both immediate and increasing. During the past 30 years, various ceramic and polymer scaffolds have been investigated for this application. More recently, while composite scaffolds built using a combination of ceramics and polymeric materials are being investigated in a greater number, very few products have progressed from laboratory benchtop studies to preclinical testing in animals. This review is based on an exhaustive literature search of various composite scaffolds designed to serve as bone regenerative therapies. We analyzed the benefits and drawbacks of different composite scaffold manufacturing techniques, the properties of commonly used ceramics and polymers, and the properties of currently investigated synthetic composite grafts. To follow, a comprehensive review of in vivo models used to test composite scaffolds in SBDs is detailed to serve as a guide to design appropriate translational studies and to identify the challenges that need to be overcome in scaffold design for successful translation. This includes selecting the animal type, determining the anatomical location within the animals, choosing the correct study duration, and finally, an overview of scaffold performance assessment.

  14. Cross-linking methods of electrospun fibrinogen scaffolds for tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Sell, Scott A; Garg, Koyal; McClure, Michael J; Bowlin, Gary L [Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284-3067 (United States); Francis, Michael P [Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298-0709 (United States); Simpson, David G [Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298-0709 (United States)], E-mail: glbowlin@vcu.edu

    2008-12-15

    The purpose of this study was to enhance the mechanical properties and slow the degradation of an electrospun fibrinogen scaffold, while maintaining the scaffold's high level of bioactivity. Three different cross-linkers were used to achieve this goal: glutaraldehyde vapour, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) in ethanol and genipin in ethanol. Scaffolds with a fibrinogen concentration of 120 mg ml{sup -1} were electrospun and cross-linked with one of the aforementioned cross-linkers. Mechanical properties were determined through uniaxial tensile testing performed on scaffolds incubated under standard culture conditions for 1 day, 7 days and 14 days. Cross-linked scaffolds were seeded with human foreskin fibroblasts (BJ-GFP-hTERT) and cultured for 7, 14 and 21 days, with histology and scanning electron microscopy performed upon completion of the time course. Mechanical testing revealed significantly increased peak stress and modulus values for the EDC and genipin cross-linked scaffolds, with significantly slowed degradation. However, cross-linking with EDC and genipin was shown to have some negative effect on the bioactivity of the scaffolds as cell migration throughout the thickness of the scaffold was slowed.

  15. Biosilicate®-gelatine bone scaffolds by the foam replica technique: development and characterization.

    Science.gov (United States)

    Desimone, Deborah; Li, Wei; Roether, Judith A; Schubert, Dirk W; Crovace, Murilo C; Rodrigues, Ana Candida M; Zanotto, Edgar D; Boccaccini, Aldo R

    2013-08-01

    The development of bioactive glass-ceramic materials has been a topic of great interest aiming at enhancing the mechanical strength of traditional bioactive scaffolds. In the present study, we test and demonstrate the use of Biosilicate® glass-ceramic powder to fabricate bone scaffolds by the foam replica method. Scaffolds possessing the main requirements for use in bone tissue engineering (95% porosity, 200-500 μm pore size) were successfully produced. Gelatine coating was investigated as a simple approach to increase the mechanical competence of the scaffolds. The gelatine coating did not affect the interconnectivity of the pores and did not significantly affect the bioactivity of the Biosilicate® scaffold. The gelatine coating significantly improved the compressive strength (i.e. 0.80 ± 0.05 MPa of coated versus 0.06 ± 0.01 MPa of uncoated scaffolds) of the Biosilicate® scaffold. The combination of Biosilicate® glass-ceramic and gelatine is attractive for producing novel scaffolds for bone tissue engineering.

  16. Biosilicate®–gelatine bone scaffolds by the foam replica technique: development and characterization

    Directory of Open Access Journals (Sweden)

    Deborah Desimone, Wei Li, Judith A Roether, Dirk W Schubert, Murilo C Crovace, Ana Candida M Rodrigues, Edgar D Zanotto and Aldo R Boccaccini

    2013-01-01

    Full Text Available The development of bioactive glass-ceramic materials has been a topic of great interest aiming at enhancing the mechanical strength of traditional bioactive scaffolds. In the present study, we test and demonstrate the use of Biosilicate® glass-ceramic powder to fabricate bone scaffolds by the foam replica method. Scaffolds possessing the main requirements for use in bone tissue engineering (95% porosity, 200–500 μm pore size were successfully produced. Gelatine coating was investigated as a simple approach to increase the mechanical competence of the scaffolds. The gelatine coating did not affect the interconnectivity of the pores and did not significantly affect the bioactivity of the Biosilicate® scaffold. The gelatine coating significantly improved the compressive strength (i.e. 0.80 ± 0.05 MPa of coated versus 0.06 ± 0.01 MPa of uncoated scaffolds of the Biosilicate® scaffold. The combination of Biosilicate® glass-ceramic and gelatine is attractive for producing novel scaffolds for bone tissue engineering.

  17. Biosilicate®–gelatine bone scaffolds by the foam replica technique: development and characterization

    Science.gov (United States)

    Desimone, Deborah; Li, Wei; Roether, Judith A; Schubert, Dirk W; Crovace, Murilo C; Rodrigues, Ana Candida M; Zanotto, Edgar D; Boccaccini, Aldo R

    2013-01-01

    The development of bioactive glass-ceramic materials has been a topic of great interest aiming at enhancing the mechanical strength of traditional bioactive scaffolds. In the present study, we test and demonstrate the use of Biosilicate® glass-ceramic powder to fabricate bone scaffolds by the foam replica method. Scaffolds possessing the main requirements for use in bone tissue engineering (95% porosity, 200–500 μm pore size) were successfully produced. Gelatine coating was investigated as a simple approach to increase the mechanical competence of the scaffolds. The gelatine coating did not affect the interconnectivity of the pores and did not significantly affect the bioactivity of the Biosilicate® scaffold. The gelatine coating significantly improved the compressive strength (i.e. 0.80 ± 0.05 MPa of coated versus 0.06 ± 0.01 MPa of uncoated scaffolds) of the Biosilicate® scaffold. The combination of Biosilicate® glass-ceramic and gelatine is attractive for producing novel scaffolds for bone tissue engineering. PMID:27877601

  18. Cardiomyocyte behavior on biodegradable polyurethane/gold nanocomposite scaffolds under electrical stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Ganji, Yasaman [Faculty of Biomedical Engineering, Amirkabir University of Technology, 424 Hafez Ave, Tehran (Iran, Islamic Republic of); Institute for Materials Science, Dept. Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, D-24143 Kiel (Germany); Li, Qian [Institute for Materials Science, Dept. Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, D-24143 Kiel (Germany); Quabius, Elgar Susanne [Dept. of Otorhinolaryngology, Head and Neck Surgery, University of Kiel, Arnold-Heller-Str. 3, Building 27, D-24105 Kiel (Germany); Institute of Immunology, University of Kiel, Arnold-Heller-Str. 3, Building 17, D-24105 Kiel (Germany); Böttner, Martina [Department of Anatomy, University of Kiel, Otto-Hahn-Platz 8, 24118 Kiel (Germany); Selhuber-Unkel, Christine, E-mail: cse@tf.uni-kiel.de [Institute for Materials Science, Dept. Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, D-24143 Kiel (Germany); Kasra, Mehran [Faculty of Biomedical Engineering, Amirkabir University of Technology, 424 Hafez Ave, Tehran (Iran, Islamic Republic of)

    2016-02-01

    Following a myocardial infarction (MI), cardiomyocytes are replaced by scar tissue, which decreases ventricular contractile function. Tissue engineering is a promising approach to regenerate such damaged cardiomyocyte tissue. Engineered cardiac patches can be fabricated by seeding a high density of cardiac cells onto a synthetic or natural porous polymer. In this study, nanocomposite scaffolds made of gold nanotubes/nanowires incorporated into biodegradable castor oil-based polyurethane were employed to make micro-porous scaffolds. H9C2 cardiomyocyte cells were cultured on the scaffolds for one day, and electrical stimulation was applied to improve cell communication and interaction in neighboring pores. Cells on scaffolds were examined by fluorescence microscopy and scanning electron microscopy, revealing that the combination of scaffold design and electrical stimulation significantly increased cell confluency of H9C2 cells on the scaffolds. Furthermore, we showed that the gene expression levels of Nkx2.5, atrial natriuretic peptide (ANF) and natriuretic peptide precursor B (NPPB), which are functional genes of the myocardium, were up-regulated by the incorporation of gold nanotubes/nanowires into the polyurethane scaffolds, in particular after electrical stimulation. - Highlights: • Biodegradable polyurethane/gold nanocomposites for cardiomyocyte adhesion are proposed. • The nanocomposite scaffolds are porous and electrical stimulation enhances cell adhesion. • Expression levels of functional myocardium genes were upregulated after electrical stimulation.

  19. Mesoporous bioactive glass surface modified poly(lactic-co-glycolic acid) electrospun fibrous scaffold for bone regeneration

    Science.gov (United States)

    Chen, Shijie; Jian, Zhiyuan; Huang, Linsheng; Xu, Wei; Liu, Shaohua; Song, Dajiang; Wan, Zongmiao; Vaughn, Amanda; Zhan, Ruisen; Zhang, Chaoyue; Wu, Song; Hu, Minghua; Li, Jinsong

    2015-01-01

    A mesoporous bioactive glass (MBG) surface modified with poly(lactic-co-glycolic acid) (PLGA) electrospun fibrous scaffold for bone regeneration was prepared by dip-coating a PLGA electrospun fibrous scaffold into MBG precursor solution. Different surface structures and properties were acquired by different coating times. Surface morphology, chemical composition, microstructure, pore size distribution, and hydrophilicity of the PLGA-MBG scaffold were characterized. Results of scanning electron microscopy indicated that MBG surface coating made the scaffold rougher with the increase of MBG content. Scaffolds after MBG modification possessed mesoporous architecture on the surface. The measurements of the water contact angles suggested that the incorporation of MBG into the PLGA scaffold improved the surface hydrophilicity. An energy dispersive spectrometer evidenced that calcium-deficient carbonated hydroxyapatite formed on the PLGA-MBG scaffolds after a 7-day immersion in simulated body fluid. In vitro studies showed that the incorporation of MBG favored cell proliferation and osteogenic differentiation of human mesenchymal stem cells on the PLGA scaffolds. Moreover, the MBG surface-modified PLGA (PLGA-MBG) scaffolds were shown to be capable of providing the improved adsorption/release behaviors of bone morphogenetic protein-2 (BMP-2). It is very significant that PLGA-MBG scaffolds could be effective for BMP-2 delivery and bone regeneration. PMID:26082632

  20. Anterior cruciate ligament reconstruction in a rabbit model using silk-collagen scaffold and comparison with autograft.

    Directory of Open Access Journals (Sweden)

    Fanggang Bi

    Full Text Available The objective of the present study was to perform an in vivo assessment of a novel silk-collagen scaffold for anterior cruciate ligament (ACL reconstruction. First, a silk-collagen scaffold was fabricated by combining sericin-extracted knitted silk fibroin mesh and type I collagen to mimic the components of the ligament. Scaffolds were electron-beam sterilized and rolled up to replace the ACL in 20 rabbits in the scaffold group, and autologous semitendinosus tendons were used to reconstruct the ACL in the autograft control group. At 4 and 16 weeks after surgery, grafts were retrieved and analyzed for neoligament regeneration and tendon-bone healing. To evaluate neoligament regeneration, H&E and immunohistochemical staining was performed, and to assess tendon-bone healing, micro-CT, biomechanical test, H&E and Russell-Movat pentachrome staining were performed. Cell infiltration increased over time in the scaffold group, and abundant fibroblast-like cells were found in the core of the scaffold graft at 16 weeks postoperatively. Tenascin-C was strongly positive in newly regenerated tissue at 4 and 16 weeks postoperatively in the scaffold group, similar to observations in the autograft group. Compared with the autograft group, tendon-bone healing was better in the scaffold group with trabecular bone growth into the scaffold. The results indicate that the silk-collagen scaffold has considerable potential for clinical application.

  1. Mesoporous bioactive glass surface modified poly(lactic-co-glycolic acid) electrospun fibrous scaffold for bone regeneration.

    Science.gov (United States)

    Chen, Shijie; Jian, Zhiyuan; Huang, Linsheng; Xu, Wei; Liu, Shaohua; Song, Dajiang; Wan, Zongmiao; Vaughn, Amanda; Zhan, Ruisen; Zhang, Chaoyue; Wu, Song; Hu, Minghua; Li, Jinsong

    2015-01-01

    A mesoporous bioactive glass (MBG) surface modified with poly(lactic-co-glycolic acid) (PLGA) electrospun fibrous scaffold for bone regeneration was prepared by dip-coating a PLGA electrospun fibrous scaffold into MBG precursor solution. Different surface structures and properties were acquired by different coating times. Surface morphology, chemical composition, microstructure, pore size distribution, and hydrophilicity of the PLGA-MBG scaffold were characterized. Results of scanning electron microscopy indicated that MBG surface coating made the scaffold rougher with the increase of MBG content. Scaffolds after MBG modification possessed mesoporous architecture on the surface. The measurements of the water contact angles suggested that the incorporation of MBG into the PLGA scaffold improved the surface hydrophilicity. An energy dispersive spectrometer evidenced that calcium-deficient carbonated hydroxyapatite formed on the PLGA-MBG scaffolds after a 7-day immersion in simulated body fluid. In vitro studies showed that the incorporation of MBG favored cell proliferation and osteogenic differentiation of human mesenchymal stem cells on the PLGA scaffolds. Moreover, the MBG surface-modified PLGA (PLGA-MBG) scaffolds were shown to be capable of providing the improved adsorption/release behaviors of bone morphogenetic protein-2 (BMP-2). It is very significant that PLGA-MBG scaffolds could be effective for BMP-2 delivery and bone regeneration.

  2. The influence of stereolithographic scaffold architecture and composition on osteogenic signal expression with rat bone marrow stromal cells.

    Science.gov (United States)

    Kim, Kyobum; Dean, David; Wallace, Jonathan; Breithaupt, Rob; Mikos, Antonios G; Fisher, John P

    2011-05-01

    Scaffold design parameters, especially physical construction factors such as mechanical stiffness of substrate materials, pore size of 3D porous scaffolds, and channel geometry, are known to influence the osteogenic signal expression and subsequent differentiation of a transplanted cell population. In this study of photocrosslinked poly(propylene fumarate) (PPF) and diethyl fumarate (DEF) scaffolds, the effect of DEF incorporation ratio and pore size on the osteogenic signal expression of rat bone marrow stromal cells (BMSCs) was investigated. Results demonstrated that DEF concentrations and pore sizes that led to increased scaffold mechanical stiffness also upregulated osteogenic signal expression, including bone morphogenic protein-2 (BMP-2), fibroblast growth factors-2 (FGF-2), transforming growth factor-β1 (TGF-β1), vascular endothelial growth factor (VEGF), and Runx2 transcriptional factor. Similar scaffold fabrication parameters supported rapid BMSC osteoblastic differentiation, as demonstrated by increased alkaline phosphatase (ALP) and osteocalcin expression. When scaffolds with random architecture, fabricated by porogen leaching, were compared to those with controlled architecture, fabricated by stereolithography (SLA), results showed that SLA scaffolds with the highly permeable and porous channels also have significantly higher expression of FGF-2, TGF-β1, and VEGF. Subsequent ALP expression and osteopontin secretion were also significantly increased in SLA scaffolds. Based upon these results, we conclude that scaffold properties provided by additive manufacturing techniques such as SLA fabrication, particularly increased mechanical stiffness and high permeability, may stimulate dramatic BMSC responses that promote rapid bone tissue regeneration. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Effect of autologous bone marrow stromal cell seeding and bone morphogenetic protein-2 delivery on ectopic bone formation in a microsphere/poly(propylene fumarate) composite.

    Science.gov (United States)

    Kempen, Diederik H R; Kruyt, Moyo C; Lu, Lichun; Wilson, Clayton E; Florschutz, Anthony V; Creemers, Laura B; Yaszemski, Michael J; Dhert, Wouter J A

    2009-03-01

    A biodegradable microsphere/scaffold composite based on the synthetic polymer poly(propylene fumarate) (PPF) holds promise as a scaffold for cell growth and sustained delivery vehicle for growth factors for bone regeneration. The objective of the current work was to investigate the in vitro release and in vivo bone forming capacity of this microsphere/scaffold composite containing bone morphogenetic protein-2 (BMP-2) in combination with autologous bone marrow stromal cells (BMSCs) in a goat ectopic implantation model. Three composites consisting of 0, 0.08, or 8 microg BMP-2 per mg of poly(lactic-co-glycolic acid) microspheres, embedded in a porous PPF scaffold, were combined with either plasma (no cells) or culture-expanded BMSCs. PPF scaffolds impregnated with a BMP-2 solution and combined with BMSCs as well as empty PPF scaffolds were also tested. The eight different composites were implanted subcutaneously in the dorsal thoracolumbar area of goats. Incorporation of BMP-2-loaded microspheres in the PPF scaffold resulted in a more sustained in vitro release with a lower burst phase, as compared to BMP-2-impregnated scaffolds. Histological analysis after 9 weeks of implantation showed bone formation in the pores of 11/16 composites containing 8 microg/mg BMP-2-loaded microspheres with no significant difference between composites with or without BMSCs (6/8 and 5/8, respectively). Bone formation was also observed in 1/8 of the BMP-2-impregnated scaffolds. No bone formation was observed in the other conditions. Overall, this study shows the feasibility of bone induction by BMP-2 release from microspheres/scaffold composites.

  4. Porous 45S5 Bioglass®-based scaffolds using stereolithography: Effect of partial pre-sintering on structural and mechanical properties of scaffolds.

    Science.gov (United States)

    Thavornyutikarn, Boonlom; Tesavibul, Passakorn; Sitthiseripratip, Kriskrai; Chatarapanich, Nattapon; Feltis, Bryce; Wright, Paul F A; Turney, Terence W

    2017-06-01

    Scaffolds made from 45S5 Bioglass® ceramic (BG) show clinical potential in bone regeneration due to their excellent bioactivity and ability to bond to natural bone tissue. However, porous BG scaffolds are limited by their mechanical integrity and by the substantial volume contractions occurring upon sintering. This study examines stereolithographic (SLA) methods to fabricate mechanically robust and porous Bioglass®-based ceramic scaffolds, with regular and interconnected pore networks and using various computer-aided design architectures. It was found that a diamond-like (DM) architecture gave scaffolds the most controllable results without any observable closed porosity in the fired scaffolds. When the pore dimensions of the DM scaffolds of the same porosity (~60vol%) were decreased from 700 to 400μm, the compressive strength values increased from 3.5 to 6.7MPa. In addition, smaller dimensional shrinkage could be obtained by employing partially pre-sintered bioglass, compared to standard 45S5 Bioglass®. Scaffolds derived from pre-sintered bioglass also showed marginally improved compressive strength. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Laser Sintered Magnesium-Calcium Silicate/Poly-ε-Caprolactone Scaffold for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Kuo-Yang Tsai

    2017-01-01

    Full Text Available In this study, we manufacture and analyze bioactive magnesium–calcium silicate/poly-ε-caprolactone (Mg–CS/PCL 3D scaffolds for bone tissue engineering. Mg–CS powder was incorporated into PCL, and we fabricated the 3D scaffolds using laser sintering technology. These scaffolds had high porosity and interconnected-design macropores and structures. As compared to pure PCL scaffolds without an Mg–CS powder, the hydrophilic properties and degradation rate are also improved. For scaffolds with more than 20% Mg–CS content, the specimens become completely covered by a dense bone-like apatite layer after soaking in simulated body fluid for 1 day. In vitro analyses were directed using human mesenchymal stem cells (hMSCs on all scaffolds that were shown to be biocompatible and supported cell adhesion and proliferation. Increased focal adhesion kinase and promoted cell adhesion behavior were observed after an increase in Mg–CS content. In addition, the results indicate that the Mg–CS quantity in the composite is higher than 10%, and the quantity of cells and osteogenesis-related protein of hMSCs is stimulated by the Si ions released from the Mg–CS/PCL scaffolds when compared to PCL scaffolds. Our results proved that 3D Mg–CS/PCL scaffolds with such a specific ionic release and good degradability possessed the ability to promote osteogenetic differentiation of hMSCs, indicating that they might be promising biomaterials with potential for next-generation bone tissue engineering scaffolds.

  6. Fabrication of porous polyvinyl alcohol scaffold for bone tissue engineering via selective laser sintering.

    Science.gov (United States)

    Shuai, Cijun; Mao, Zhongzheng; Lu, Haibo; Nie, Yi; Hu, Huanlong; Peng, Shuping

    2013-03-01

    A tetragonal polyvinyl alcohol (PVA) scaffold with 3D orthogonal periodic porous architecture was fabricated via selective laser sintering (SLS) technology. The scaffold was fabricated under the laser power of 8 W, scan speed of 600 mm min(-1), laser spot diameter of 0.8 mm and layer thickness of 0.15 mm. The microstructure analysis showed that the degree of crystallization decreased while the PVA powder melts gradually and fuses together completely with laser power increasing. Thermal decomposition would occur if the laser power was further higher (16 W or higher in the case). The porous architecture was controllable and totally interconnected. The porosity of the fabricated scaffolds was measured to be 67.9 ± 2.7% which satisfies the requirement of micro-pores of the bone scaffolds. Its bioactivity and biocompatibility were also evaluated in vitro as tissue engineering (TE) scaffolds. In vitro adhesion assay showed that the amount of pores increased while the scaffold remains stable and intact after immersion in simulated body fluid for seven days. Moreover, the number of MG-63 cells and the bridge between cells increased with increasing time in cell culture. The present work demonstrates that PVA scaffolds with well-defined porous architectures via SLS technology were designed and fabricated for bone TE.

  7. Bioactive polymeric scaffolds for tissue engineering

    Science.gov (United States)

    Stratton, Scott; Shelke, Namdev B.; Hoshino, Kazunori; Rudraiah, Swetha; Kumbar, Sangamesh G.

    2016-01-01

    A variety of engineered scaffolds have been created for tissue engineering using polymers, ceramics and their composites. Biomimicry has been adopted for majority of the three-dimensional (3D) scaffold design both in terms of physicochemical properties, as well as bioactivity for superior tissue regeneration. Scaffolds fabricated via salt leaching, particle sintering, hydrogels and lithography have been successful in promoting cell growth in vitro and tissue regeneration in vivo. Scaffold systems derived from decellularization of whole organs or tissues has been popular due to their assured biocompatibility and bioactivity. Traditional scaffold fabrication techniques often failed to create intricate structures with greater resolution, not reproducible and involved multiple steps. The 3D printing technology overcome several limitations of the traditional techniques and made it easier to adopt several thermoplastics and hydrogels to create micro-nanostructured scaffolds and devices for tissue engineering and drug delivery. This review highlights scaffold fabrication methodologies with a focus on optimizing scaffold performance through the matrix pores, bioactivity and degradation rate to enable tissue regeneration. Review highlights few examples of bioactive scaffold mediated nerve, muscle, tendon/ligament and bone regeneration. Regardless of the efforts required for optimization, a shift in 3D scaffold uses from the laboratory into everyday life is expected in the near future as some of the methods discussed in this review become more streamlined. PMID:28653043

  8. Bioactive polymeric scaffolds for tissue engineering

    Directory of Open Access Journals (Sweden)

    Scott Stratton

    2016-12-01

    Full Text Available A variety of engineered scaffolds have been created for tissue engineering using polymers, ceramics and their composites. Biomimicry has been adopted for majority of the three-dimensional (3D scaffold design both in terms of physicochemical properties, as well as bioactivity for superior tissue regeneration. Scaffolds fabricated via salt leaching, particle sintering, hydrogels and lithography have been successful in promoting cell growth in vitro and tissue regeneration in vivo. Scaffold systems derived from decellularization of whole organs or tissues has been popular due to their assured biocompatibility and bioactivity. Traditional scaffold fabrication techniques often failed to create intricate structures with greater resolution, not reproducible and involved multiple steps. The 3D printing technology overcome several limitations of the traditional techniques and made it easier to adopt several thermoplastics and hydrogels to create micro-nanostructured scaffolds and devices for tissue engineering and drug delivery. This review highlights scaffold fabrication methodologies with a focus on optimizing scaffold performance through the matrix pores, bioactivity and degradation rate to enable tissue regeneration. Review highlights few examples of bioactive scaffold mediated nerve, muscle, tendon/ligament and bone regeneration. Regardless of the efforts required for optimization, a shift in 3D scaffold uses from the laboratory into everyday life is expected in the near future as some of the methods discussed in this review become more streamlined.

  9. Alginate based scaffolds for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Valente, J.F.A.; Valente, T.A.M. [CICS-UBI - Centro de Investigacao em Ciencias da Saude, Faculdade de Ciencias da Saude, Universidade da Beira Interior, Covilha (Portugal); Alves, P.; Ferreira, P. [CIEPQPF, Departamento de Engenharia Quimica, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-290 Coimbra (Portugal); Silva, A. [Centro de Ciencia e Tecnologia Aeroespaciais, Universidade da Beira Interior, Covilha (Portugal); Correia, I.J., E-mail: icorreia@ubi.pt [CICS-UBI - Centro de Investigacao em Ciencias da Saude, Faculdade de Ciencias da Saude, Universidade da Beira Interior, Covilha (Portugal)

    2012-12-01

    The design and production of scaffolds for bone tissue regeneration is yet unable to completely reproduce the native bone properties. In the present study new alginate microparticle and microfiber aggregated scaffolds were produced to be applied in this area of regenerative medicine. The scaffolds' mechanical properties were characterized by thermo mechanical assays. Their morphological characteristics were evaluated by isothermal nitrogen adsorption and scanning electron microscopy. The density of both types of scaffolds was determined by helium pycnometry and mercury intrusion porosimetry. Furthermore, scaffolds' cytotoxic profiles were evaluated in vitro by seeding human osteoblast cells in their presence. The results obtained showed that scaffolds have good mechanical and morphological properties compatible with their application as bone substitutes. Moreover, scaffold's biocompatibility was confirmed by the observation of cell adhesion and proliferation after 5 days of being seeded in their presence and by non-radioactive assays. - Highlights: Black-Right-Pointing-Pointer Design and production of scaffolds for bone tissue regeneration. Black-Right-Pointing-Pointer Microparticle and microfiber alginate scaffolds were produced through a particle aggregation technique; Black-Right-Pointing-Pointer Scaffolds' mechanically and biologically properties were characterized through in vitro studies;.

  10. A new approach to fabrication of Cs/BG/CNT nanocomposite scaffold towards bone tissue engineering and evaluation of its properties

    Energy Technology Data Exchange (ETDEWEB)

    Shokri, S. [Department of Nanotechnology Engineering, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Movahedi, B., E-mail: b.movahedi@ast.ui.ac.ir [Department of Nanotechnology Engineering, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Rafieinia, M. [Biosensor Research Center, Department of Advanced Medical Technology, Isfahan University of Medical Sciences, Isfahan, 64716 (Iran, Islamic Republic of); Salehi, H. [Department of Anatomical Sciences, Isfahan University of Medical Sciences, Isfahan, 64716 (Iran, Islamic Republic of)

    2015-12-01

    Graphical abstract: - Highlights: • Nanocomposite scaffold was produced using a novel technique. • Bioactive glass, carbon nanotube and chitosan were used for fabrication of nanocomposite scaffold. • The compressive strength of the scaffold was near to the cancellous bone. • Biodegradability of the scaffolds in PBS shows the slow destruction. - Abstract: In the present study, bioactive glass (BG), carbon nanotube (CNT), and chitosan (Cs) were used with different ratios for the fabrication of nanocomposite scaffold for bone tissue engineering. BG was synthesized by sol–gel process and CNT was functionalized by immersing in sulfuric acid as well as nitric acid. Nanocomposite scaffold was produced using a novel technique, hot press, and salt leaching process and cross-linked by Hexamethylene diisocyanate (HDI). The optimum porosity of the scaffold with respect to the ratio of salt and precursor was kept around 70%. Mechanical properties of the scaffolds were increased by the addition of CNT and hence, the compressive strength of them with 4 wt% CNT was increased up to 5.95 ± 0.5 MPa. The nanocomposite scaffolds were characterized by FT-IR, SEM, XRD, and electrochemical analysis. Furthermore, scaffolds were immersed in PBS for evaluating the biodegradability, water absorption, and CNT release. The results indicated that water absorption of the scaffolds was increased by adding CNT to the scaffold. The amount of released CNT after 30 days was measured within 6 × 10{sup −4} and 1 × 10{sup −3} mg/ml. Attachment and proliferation of MG63 osteoblast cell line on Cs/BG/CNT scaffolds were investigated by MTT assay indicating no toxicity for this nanocomposite scaffolds. According to the results of the experiments, the nanocomposite scaffold with modified composition (Cs/BG/CNT, 80:20:2 wt%) was the best one in matters of mechanical, chemical, and cellular properties and also the most appropriate for trabecular bone tissue.

  11. Tailored laminin-332 alpha3 sequence is tethered through an enzymatic linker to a collagen scaffold to promote cellular adhesion.

    Science.gov (United States)

    Damodaran, Gopinath; Collighan, Russell; Griffin, Martin; Navsaria, Harshad; Pandit, Abhay

    2009-09-01

    Surface modification techniques have been used to develop biomimetic scaffolds by incorporating cell adhesion peptides, which facilitates cell adhesion, migration and proliferation. In this study, we evaluated the cell adhesion properties of a tailored laminin-332 alpha3 chain tethered to a type I collagen scaffold using microbial transglutaminase (mTGase) by incorporating transglutaminase substrate peptide sequences containing either glutamine (peptide A: PPFLMLLKGSTREAQQIVM) or lysine (peptide B: PPFLMLLKGSTRKKKKG). The degree of cross-linking was studied by amino acid analysis following proteolytic digestion and the structural changes in the modified scaffold further investigated using Fourier transform infrared spectroscopy and atomic force microscopy. Fibroblasts were used to evaluate the cellular behaviour of the functionalized collagen scaffold. mTGase supports cell growth but tethering of peptide A and peptide B to the mTGase cross-linked collagen scaffold caused a significant increase in cell proliferation when compared with native and mTGase cross-linked collagen scaffolds. Both peptides enabled cell-spreading, attachment and normal actin cytoskeleton organization with slight increase in the cell proliferation was observed in peptide A when compared with the peptide B and mTGase cross-linked scaffold. An increase in the amount of epsilon(gamma-glutamyl) lysine isopeptide was observed in peptide A conjugated scaffolds when compared with peptide B conjugated scaffolds, mTGase cross-linked scaffold without peptide. Changes in D-spacing were observed in the cross-linked scaffolds with tethered peptides. These results demonstrate that mTGase can play a bifunctional role in both conjugation of the glutamine and lysine containing peptide sequences and also in the cross-linking of the collagen scaffold, thus providing a suitable substrate for cell growth.

  12. Control of crosslinking for tailoring collagen-based scaffolds stability and mechanics.

    Science.gov (United States)

    Davidenko, N; Schuster, C F; Bax, D V; Raynal, N; Farndale, R W; Best, S M; Cameron, R E

    2015-10-01

    We provide evidence to show that the standard reactant concentrations used in tissue engineering to cross-link collagen-based scaffolds are up to 100 times higher than required for mechanical integrity in service, and stability against degradation in an aqueous environment. We demonstrate this with a detailed and systematic study by comparing scaffolds made from (a) collagen from two different suppliers, (b) gelatin (a partially denatured collagen) and (c) 50% collagen-50% gelatin mixtures. The materials were processed, using lyophilisation, to produce homogeneous, highly porous scaffolds with isotropic architectures and pore diameters ranging from 130 to 260 μm. Scaffolds were cross-linked using a carbodiimide treatment, to establish the effect of the variations in crosslinking conditions (down to very low concentrations) on the morphology, swelling, degradation and mechanical properties of the scaffolds. Carbodiimide concentration of 11.5mg/ml was defined as the standard (100%) and was progressively diluted down to 0.1%. It was found that 10-fold reduction in the carbodiimide content led to the significant increase (almost 4-fold) in the amount of free amine groups (primarily on collagen lysine residues) without compromising mechanics and stability in water of all resultant scaffolds. The importance of this finding is that, by reducing cross-linking, the corresponding cell-reactive carboxylate anions (collagen glutamate or aspartate residues) that are essential for integrin-mediated binding remain intact. Indeed, a 10-fold reduction in carbodiimide crosslinking resulted in near native-like cell attachment to collagen scaffolds. We have demonstrated that controlling the degree of cross-linking, and hence retaining native scaffold chemistry, offers a major step forward in the biological performance of collagen- and gelatin-based tissue engineering scaffolds. This work developed collagen and gelatine-based scaffolds with structural, material and biological

  13. In vitro study on the degradation of lithium-doped hydroxyapatite for bone tissue engineering scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yaping; Yang, Xu; Gu, Zhipeng; Qin, Huanhuan [College of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China); Li, Li [Department of Oncology, The 452 Hospital of Chinese PLA, Chengdu, Sichuan Province 610021 (China); Liu, Jingwang [College of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China); Yu, Xixun, E-mail: yuxixun@163.com [College of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China)

    2016-09-01

    Li-doped hydroxyapatite (LiHA) which is prepared through introducing low dose of Li into hydroxyapatite (HA) has been increasingly studied as a bone tissue-engineered scaffold. The degradation properties play a crucial role in the success of long-term implantation of a bone tissue-engineered construct. Herein, the in vitro degradation behaviors of LiHA scaffolds via two approaches were investigated in this study: solution-mediated degradation and osteoblast-mediated degradation. In solution-mediated degradation, after being immersed in simulated body fluid (SBF) for some time, some characteristics of these scaffolds (such as release of ionized lithium and phosphate, pH change, mechanical properties, cytocompatibility and SEM surface characterization) were systematically tested. A similar procedure was also employed to research the degradation behaviors of LiHA scaffolds in osteoblast-mediated degradation. The results suggested that the degradation in SBF and degradation in culture medium with cell existed distinguishing mechanisms. LiHA scaffolds were degraded via a hydrolytic mechanism when they were soaked in SBF. Upon degradation, an apatite precipitation (layer) was formed on the surfaces of scaffolds. While a biological mechanism was presented for the degradation of scaffolds in cell-mediated degradation. Compared with pure HA, LiHA scaffolds had a better effect on the growth of osteoblast cells, meanwhile, the release amount of PO{sub 4}{sup 3−} in a degradation medium indicated that osteoblasts could accelerate the degradation of LiHA due to the more physiological activities of osteoblast. According to the results from compressive strength test, doping Li into HA could enhance the strength of HA. Moreover, the results from MTT assay and SEM observation showed that the degradation products of LiHA scaffolds were beneficial to the proliferation of osteoblasts. The results of this research can provide the theoretical basis for the clinical application of Li

  14. Scaffolding With and Through Videos

    DEFF Research Database (Denmark)

    Otrel-Cass, Kathrin; Khoo, Elaine; Cowie, Bronwen

    2012-01-01

    to consider must be expanded. This article explicates theoretical and practical ideas related to teachers’ application of their ICT technology, pedagogy, and content knowledge (TPACK) in science. The article unpacks the social and technological dimensions of teachers’ use of TPACK when they use digital videos...... to scaffold learning. It showcases the intricate interplay between teachers’ knowledge about content, digital video technology, and students’ learning needs based on a qualitative study of two science teachers and their students in a New Zealand primary school....

  15. Incorporation of hyaluronic acid into collagen scaffolds for the control of chondrocyte-mediated contraction and chondrogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Tang Shunqing [Department of Biomedical Engineering, Jinan University, Guangzhou 510632 (China); Spector, Myron [Tissue Engineering, VA Boston Healthcare System, Boston, MA 02130 (United States)

    2007-09-15

    Hyaluronic acid (HA), a principal matrix molecule in many tissues, is present in high amounts in articular cartilage. HA contributes in unique ways to the physical behavior of the tissue, and has been shown to have beneficial effects on chondrocyte activity. The goal of this study was to incorporate graduated amounts of HA into type I collagen scaffolds for the control of chondrocyte-mediated contraction and chondrogenesis in vitro. The results demonstrated that the amount of contraction of HA/collagen scaffolds by adult canine articular chondrocytes increased with the HA content of the scaffolds. The greatest amount of chondrogenesis after two weeks was found in the scaffolds which had undergone the most contraction. HA can play a useful role in adjusting the mechanical behavior of tissue engineering scaffolds and chondrogenesis in chondrocyte-seeded scaffolds.

  16. Comparison of glutaraldehyde and procyanidin cross-linked scaffolds for soft tissue engineering.

    Science.gov (United States)

    Yang, Yang; Ritchie, Alastair Campbell; Everitt, Nicola M

    2017-11-01

    Soft tissue injuries are among the most difficult orthopaedic conditions to treat, and regenerative medicine holds the promise of better treatments of these injuries. There is therefore a requirement for substrates and porous scaffolds which provide an appropriate chemical and mechanical environment for cell attachment, growth, proliferation and differentiation. In this study, cross-linked porous gelatin-chitosan (Gel/Chi) scaffolds with high porosity (>90%) were fabricated and their internal morphology, pore sizes and porosities were characterized using scanning electron microscopy (SEM), micro computed tomography (micro-CT) and mercury intrusion porosimetry. The cross-linking agents chosen for this study were Procyanidin (PA), chosen for its biocompatibility, and glutaraldehyde (GA), chosen for comparison as a highly effective cross-linker. Concentrations of these cross-linkers varied from 0.1% to 1% (w/v) and controls had the same gelatin-chitosan blend but were untreated. It was found that the water absorption of cross-linked scaffolds decreased as the cross-linker concentration increased and in vitro collagenase degradation test showed both cross-linkers increased the biostability of the scaffolds. Scaffolds were also tested under compressive load to investigate their resistance to deformation. The results indicated that both cross-linkers increase the stiffness of the scaffolds both initially and at higher strains, but GA cross-linked scaffolds had a higher compressive stiffness than scaffolds cross-linked with PA for a given concentration. Results from cyclic compression and stress relaxation tests showed that PA cross-linked scaffolds recover more rapidly after deformation. 3T3 fibroblasts were cultured on the scaffolds to assess cytotoxicity and biocompatibility. The results indicated that PA was non-cytotoxic and promoted the attachment and proliferation of the seeded cells, while fewer cells were seen on GA cross-linked scaffolds, indicating that the GA

  17. Electrospun biomimetic scaffold of hydroxyapatite/chitosan supports enhanced osteogenic differentiation of mMSCs

    Science.gov (United States)

    Peng, Hongju; Yin, Zi; Liu, Huanhuan; Chen, Xiao; Feng, Bei; Yuan, Huihua; Su, Bo; Ouyang, Hongwei; Zhang, Yanzhong

    2012-12-01

    Engaging functional biomaterial scaffolds to regulate stem cell differentiation has drawn a great deal of attention in the tissue engineering and regenerative medicine community. In this study, biomimetic composite nanofibrous scaffolds of hydroxyapatite/chitosan (HAp/CTS) were prepared to investigate their capacity for inducing murine mesenchymal stem cells (mMSCs) to differentiate into the osteogenic lineage, in the absence and presence of an osteogenic supplementation (i.e., ascorbic acid, β-glycerol phosphate, and dexamethasone), respectively. Using electrospun chitosan (CTS) nanofibrous scaffolds as the control, cell morphology, growth, specific osteogenic genes expression, and quantified proteins secretion on the HAp/CTS scaffolds were sequentially examined and assessed. It appeared that the HAp/CTS scaffolds supported better attachment and proliferation of the mMSCs. Most noteworthy was that in the absence of the osteogenic supplementation, expression of osteogenic genes including collagen I (Col I), runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), and osteocalcin (OCN) were significantly upregulated in mMSCs cultured on the HAp/CTS nanofibrous scaffolds. Also increased secretion of the osteogenesis protein markers of alkaline phosphatase and collagen confirmed that the HAp/CTS nanofibrous scaffold markedly promoted the osteogenic commitment in the mMSCs. Moreover, the presence of osteogenic supplementation proved an enhanced efficacy of mMSC osteogenesis on the HAp/CTS nanofibrous scaffolds. Collectively, this study demonstrated that the biomimetic nanofibrous HAp/CTS scaffolds could support and enhance the adhesion, proliferation, and particularly osteogenic differentiation of the mMSCs. It also substantiated the potential of using biomimetic nanofibrous scaffolds of HAp/CTS for functional bone repair and regeneration applications.

  18. Hybrid scaffold bearing polymer-siloxane Schiff base linkage for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Nair, Bindu P., E-mail: bindumelekkuttu@gmail.com; Gangadharan, Dhanya; Mohan, Neethu; Sumathi, Babitha; Nair, Prabha D., E-mail: pdnair49@gmail.com

    2015-07-01

    Scaffolds that can provide the requisite biological cues for the fast regeneration of bone are highly relevant to the advances in tissue engineering and regenerative medicine. In the present article, we report the fabrication of a chitosan–gelatin–siloxane scaffold bearing interpolymer-siloxane Schiff base linkage, through a single-step dialdehyde cross-linking and freeze-drying method using 3-aminopropyltriethoxysilane as the siloxane precursor. Swelling of the scaffolds in phosphate buffered saline indicates enhancement with increase in siloxane concentration, whereas compressive moduli of the wet scaffolds reveal inverse dependence, owing to the presence of siloxane, rich in silanol groups. It is suggested that through the strategy of dialdehyde cross-linking, a limiting siloxane loading of 20 wt.% into a chitosan-gelatin matrix should be considered ideal for bone tissue engineering, because the scaffold made with 30 wt.% siloxane loading degrades by 48 wt.%, in 21 days. The hybrid scaffolds bearing Schiff base linkage between the polymer and siloxane, unlike the stable linkages in earlier reports, are expected to give a faster release of siloxanes and enhancement in osteogenesis. This is verified by the in vitro evaluation of the hybrid scaffolds using rabbit adipose mesenchymal stem cells, which revealed osteogenic cell-clusters on a polymer-siloxane scaffold, enhanced alkaline phosphatase activity and the expression of bone-specific genes, whereas the control scaffold without siloxane supported more of cell-proliferation than differentiation. A siloxane concentration dependent enhancement in osteogenic differentiation is also observed. - Highlights: • A hybrid scaffold bearing interpolymer-siloxane Schiff base linkage • A limiting siloxane loading of 20 wt.% into chitosan–gelatin matrix • A siloxane concentration dependent enhancement in osteogenic differentiation.

  19. [Digital modeling for the individual mandibular 3D mesh scaffold based on 3D printing technology].

    Science.gov (United States)

    Yan, Rongzeng; Luo, Danmei; Qin, Xiaoyu; Li, Runxin; Rong, Qiguo; Hu, Min

    2016-05-01

    To investigate an ideal modeling method of designing 3D mesh scaffold substitutes based on tissue engineering to restore mandibular bone defects. By analyzing the theoretical model from titanium scaffolds fabricated by 3D printing, the feasibility and effectiveness of the proposed methodology were verified. Based on the CT scanned data of a subject, the Mimics 15.0 and Geomagic studio 12.0 reverse engineering software were adopted to generate surface model of mandibular bone and the defect area was separated from the 3D model of bone. Then prosthesis was designed via mirror algorithm, in which outer shape was used as the external shape of scaffold. Unigraphics software NX 8.5 was applied on Boolean calculation of subtraction between prosthesis and regular microstructure structure and ANSYS 14.0 software was used to design the inner construction of 3D mesh scaffolds. The topological structure and the geometrical parameters of 3D mesh titanium scaffolds were adjusted according to the aim of optimized structure and maximal strength with minimal weight. The 3D mesh scaffolds solid model through two kinds of computer-aided methods was input into 3D printing equipment to fabricate titanium scaffolds. Individual scaffolds were designed successfully by two modeling methods. The finite element optimization made 10% decrease of the stress peak and volume decrease of 43%, and the porosity increased to 76.32%. This modeling method was validated by 3D printing titanium scaffold to be feasible and effective. 3D printing technology combined with finite element topology optimization to obtain the ideal mandibular 3D mesh scaffold is feasible and effective.

  20. Nanofibrous nonmulberry silk/PVA scaffold for osteoinduction and osseointegration.

    Science.gov (United States)

    Bhattacharjee, Promita; Kundu, Banani; Naskar, Deboki; Maiti, Tapas K; Bhattacharya, Debasis; Kundu, Subhas C

    2015-05-01

    Poly-vinyl alcohol and nonmulberry tasar silk fibroin of Antheraea mylitta are blended to fabricate nanofibrous scaffolds for bone regeneration. Nanofibrous matrices are prepared by electrospinning the equal volume ratio blends of silk fibroin (2 and 4 wt%) with poly-vinyl alcohol solution (10 wt%) and designated as 2SF/PVA and 4SF/PVA, respectively with average nanofiber diameters of 177 ± 13 nm (2SF/PVA) and 193 ± 17 nm (4SF/PVA). Fourier transform infrared spectroscopy confirms retention of the secondary structure of fibroin in blends indicating the structural stability of neo-matrix. Both thermal stability and contact angle of the blends decrease with increasing fibroin percentage. Conversely, fibroin imparts mechanical stability to the blends; greater tensile strength is observed with increasing fibroin concentration. Blended scaffolds are biodegradable and support well the neo-bone matrix synthesis by human osteoblast like cells. The findings indicate the potentiality of nanofibrous scaffolds of nonmulberry fibroin as bone scaffolding material. © 2014 Wiley Periodicals, Inc.

  1. Fabrication and characterization of electrospun poly-L-lactide/gelatin graded tubular scaffolds: Toward a new design for performance enhancement in vascular tissue engineering

    Directory of Open Access Journals (Sweden)

    A. Yazdanpanah

    2015-10-01

    Full Text Available In this study, a new design of graded tubular scaffolds have been developed for the performance enhancement in vascular tissue engineering. The graded poly-L-lactide (PLLA and gelatin fibrous scaffolds produced by electrospining were then characterized. The morphology, degradability, porosity, pore size and mechanical properties of four tubular scaffolds (graded PLLA/gelatin, layered PLLA/gelatin, PLLA and gelatin scaffolds have been investigated. The tensile tests demonstrated that the mechanical strength and also the estimated burst pressure of the graded scaffolds were significantly increased in comparison with the layered and gelatin scaffolds. This new design, resulting in an increase in the mechanical properties, suggested the widespread use of these scaffolds in vascular tissue engineering in order to prepare more strengthened vessels.

  2. 3D printed tricalcium phosphate scaffolds: Effect of SrO and MgO doping on in vivo osteogenesis in a rat distal femoral defect model.

    Science.gov (United States)

    Tarafder, Solaiman; Davies, Neal M; Bandyopadhyay, Amit; Bose, Susmita

    2013-12-01

    The presence of interconnected macro pores is important in tissue engineering scaffolds for guided tissue regeneration. This study reports in vivo biological performance of interconnected macro porous tricalcium phosphate (TCP) scaffolds due to the addition of SrO and MgO as dopants in TCP. We have used direct three dimensional printing (3DP) technology for scaffold fabrication followed by microwave sintering. Mechanical strength was evaluated by scaffolds with 500 µm, 750 µm, and 1000 µm interconnected designed pore sizes. Maximum compressive strength of 12.01 ± 1.56 MPa was achieved for 500 µm interconnected designed pore size Sr-Mg doped scaffold. In vivo biological performance of the microwave sintered pure TCP and Sr-Mg doped TCP scaffolds was assessed by implanting 350 µm designed interconnected macro porous scaffolds in rat distal femoral defect. Sintered pore size of these 3D printed scaffolds were 311 ± 5.9 µm and 245 ± 7.5 µm for pure and SrO-MgO doped TCP scaffolds, respectively. These 3D printed scaffolds possessed multiscale porosity, i.e., 3D interconnected designed macro pores along with intrinsic micro pores. Histomorphology and histomorphometric analysis revealed a significant increase in osteoid like new bone formation, and accelerated mineralization inside SrO and MgO doped 3D printed TCP scaffolds as compared to pure TCP scaffolds. An increase in osteocalcin and type I collagen level was also observed in rat blood serum with SrO and MgO doped TCP scaffolds compared to pure TCP scaffolds. Our results show that these 3D printed SrO and MgO doped TCP scaffolds with multiscale porosity contributed to early healing through accelerated osteogenesis.

  3. In Vitro Studies on the Degradability, Bioactivity, and Cell Differentiation of PRP/AZ31B Mg Alloys Composite Scaffold

    Directory of Open Access Journals (Sweden)

    Jian Zou

    2017-01-01

    Full Text Available In recent years, more and more methods have been developed to improve the bioactivity of the biodegradable materials in bone tissue regeneration. In present study, we used rat mesenchymal stem cells (rMSCs to evaluate the outcomes of Mg alloys (AZ31B, Magnesium, and Aluminum and Platelet-rich plasma (PRP/Mg alloys on rMSCs biocompatibility and osteogenic differentiation. Water absorption experiments indicated that both bare AZ31B and PRP/AZ31B were capable of absorbing large amounts of water. But the water absorption ratio for PRP/AZ31B was significantly higher than that for bare AZ31B. The degradability experiments implied that both samples degraded at same speed. rMSCs on the surface of AZ31B distributed more and better than those on the AZ31B scaffold. In ALP activity experiment, the activity of rMSCs on the PRP/AZ31B was markedly higher than that on the AZ31B scaffolds on the 7th day and 14th day. qRT-PCR also showed that OPN and OCN were expressed in both samples. OPN and OCN expression in PRP/AZ31B sample were higher than those in bare AZ31B samples. In summary, the in vitro study implied that AZ31B combined with PRP could remarkably improve cell seeding, attachment, proliferation, and differentiation.

  4. Degradable PLGA Scaffolds with Basic Fibroblast Growth Factor: Experimental Studies in Myocardial Revascularization

    OpenAIRE

    Wang, Ying; Liu, Xiao-Cheng; Zhao, Jian; Kong, Xiang-Rong; Shi, Rong-Fang; Zhao, Xiao-Bin; Song, Cun-Xian; Liu, Tian-Jun; Lu, Feng

    2009-01-01

    Our goal was to investigate the efficacy of degradable poly(D,L-lactic-coglycolic acid) (PLGA) scaffolds loaded with basic fibroblast growth factor (bFGF) in inducing cardiac neovascularization, increasing perfusion, and improving cardiac function.

  5. Surface modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering.

    Science.gov (United States)

    Gautam, Sneh; Chou, Chia-Fu; Dinda, Amit K; Potdar, Pravin D; Mishra, Narayan C

    2014-01-01

    In the present study, a tri-polymer polycaprolactone (PCL)/gelatin/collagen type I composite nanofibrous scaffold has been fabricated by electrospinning for skin tissue engineering and wound healing applications. Firstly, PCL/gelatin nanofibrous scaffold was fabricated by electrospinning using a low cost solvent mixture [chloroform/methanol for PCL and acetic acid (80% v/v) for gelatin], and then the nanofibrous PCL/gelatin scaffold was modified by collagen type I (0.2-1.5wt.%) grafting. Morphology of the collagen type I-modified PCL/gelatin composite scaffold that was analyzed by field emission scanning electron microscopy (FE-SEM), showed that the fiber diameter was increased and pore size was decreased by increasing the concentration of collagen type I. Fourier transform infrared (FT-IR) spectroscopy and thermogravimetric (TG) analysis indicated the surface modification of PCL/gelatin scaffold by collagen type I immobilization on the surface of the scaffold. MTT assay demonstrated the viability and high proliferation rate of L929 mouse fibroblast cells on the collagen type I-modified composite scaffold. FE-SEM analysis of cell-scaffold construct illustrated the cell adhesion of L929 mouse fibroblasts on the surface of scaffold. Characteristic cell morphology of L929 was also observed on the nanofiber mesh of the collagen type I-modified scaffold. Above results suggest that the collagen type I-modified PCL/gelatin scaffold was successful in maintaining characteristic shape of fibroblasts, besides good cell proliferation. Therefore, the fibroblast seeded PCL/gelatin/collagen type I composite nanofibrous scaffold might be a potential candidate for wound healing and skin tissue engineering applications. © 2013.

  6. GDNF Schwann cells in hydrogel scaffolds promote regional axon regeneration, remyelination and functional improvement after spinal cord transection in rats.

    Science.gov (United States)

    Chen, Bingkun K; Madigan, Nicolas N; Hakim, Jeffrey S; Dadsetan, Mahrokh; McMahon, Siobhan S; Yaszemski, Michael J; Windebank, Anthony J

    2017-03-10

    Positively-charged oligo[poly(ethylene glycol)fumarate] (OPF+ ) is a biodegradable hydrogel used for spinal cord injury repair. We compared scaffolds containing primary Schwann cells (SCs) to scaffolds delivering SCs genetically modified to secrete high concentrations of glial cell-derived neurotrophic factor (GDNF). Multichannel OPF+ scaffolds loaded with SCs or GDNF-SCs were implanted into transected rat spinal cords for 4 weeks. GDNF-SCs promoted regeneration of more axons into OPF+ scaffolds (2773.0 ± 396.0) than primary SC OPF+ scaffolds (1666.0 ± 352.2) (p = 0.0491). This increase was most significant in central and ventral-midline channels of the scaffold. Axonal remyelination was quantitated by stereologic analysis. Increased myelination of regenerating axons was observed in the GDNF-SC group. Myelinating cell and axon complexes were formed by host SCs and not by implanted cells or host oligodendrocytes. Fast Blue retrograde tracing studies determined the rostral-caudal directionality of axonal growth. The number of neurons that projected axons rostrally through the GDNF-SC scaffolds was higher (7929 ± 1670) than in animals with SC OPF+ scaffolds (1069 ± 241.5) (p OPF+ scaffolds partially recovered locomotor function at weeks 3 and 4 following surgery. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Climbing the scaffolds of Parkinson's disease pathogenesis.

    Science.gov (United States)

    Spencer, Brian; Crews, Leslie; Masliah, Eliezer

    2007-02-15

    Several neurodegenerative disorders, including Parkinson's and Alzheimer's diseases, are characterized neuropathologically by accumulation of misfolded proteins such as alpha-synuclein that disrupts scaffold molecules in the caveolae. A new study by Ihara et al. in this issue of Neuron shows that a novel scaffold protein, Sept4, may be an important player in modulating the pathological alterations of alpha-synuclein in models of Parkinson's disease, suggesting that gene therapies targeting scaffold proteins might be effective in the treatment of neurodegenerative disorders.

  8. Oriented Collagen Scaffolds for Tissue Engineering

    OpenAIRE

    Shohta Kodama; Taro Saku; Hiroshi Mikami; Go Kuwahara; Toru Kosaka; Yoshihiro Isobe

    2012-01-01

    Oriented collagen scaffolds were developed in the form of sheet, mesh and tube by arraying flow-oriented collagen string gels and dehydrating the arrayed gels. The developed collagen scaffolds can be any practical size with any direction of orientation for tissue engineering applications. The birefringence of the collagen scaffolds was quantitatively analyzed by parallel Nicols method. Since native collagen in the human body has orientations such as bone, cartilage, tendon and cornea, and the...

  9. Visualizing feasible operating ranges within tissue engineering systems using a "windows of operation" approach: a perfusion-scaffold bioreactor case study.

    Science.gov (United States)

    McCoy, Ryan J; O'Brien, Fergal J

    2012-12-01

    Tissue engineering approaches to developing functional substitutes are often highly complex, multivariate systems where many aspects of the biomaterials, bio-regulatory factors or cell sources may be controlled in an effort to enhance tissue formation. Furthermore, success is based on multiple performance criteria reflecting both the quantity and quality of the tissue produced. Managing the trade-offs between different performance criteria is a challenge. A "windows of operation" tool that graphically represents feasible operating spaces to achieve user-defined levels of performance has previously been described by researchers in the bio-processing industry. This paper demonstrates the value of "windows of operation" to the tissue engineering field using a perfusion-scaffold bioreactor system as a case study. In our laboratory, perfusion bioreactor systems are utilized in the context of bone tissue engineering to enhance the osteogenic differentiation of cell-seeded scaffolds. A key challenge of such perfusion bioreactor systems is to maximize the induction of osteogenesis but minimize cell detachment from the scaffold. Two key operating variables that influence these performance criteria are the mean scaffold pore size and flow-rate. Using cyclooxygenase-2 and osteopontin gene expression levels as surrogate indicators of osteogenesis, we employed the "windows of operation" methodology to rapidly identify feasible operating ranges for the mean scaffold pore size and flow-rate that achieved user-defined levels of performance for cell detachment and differentiation. Incorporation of such tools into the tissue engineer's armory will hopefully yield a greater understanding of the highly complex systems used and help aid decision making in future translation of products from the bench top to the market place. Copyright © 2012 Wiley Periodicals, Inc.

  10. Silk scaffolds in bone tissue engineering: An overview.

    Science.gov (United States)

    Bhattacharjee, Promita; Kundu, Banani; Naskar, Deboki; Kim, Hae-Won; Maiti, Tapas K; Bhattacharya, Debasis; Kundu, Subhas C

    2017-11-01

    Bone tissue plays multiple roles in our day-to-day functionality. The frequency of accidental bone damage and disorder is increasing worldwide. Moreover, as the world population continues to grow, the percentage of the elderly population continues to grow, which results in an increased number of bone degenerative diseases. This increased elderly population pushes the need for artificial bone implants that specifically employ biocompatible materials. A vast body of literature is available on the use of silk in bone tissue engineering. The current work presents an overview of this literature from materials and fabrication perspective. As silk is an easy-to-process biopolymer; this allows silk-based biomaterials to be molded into diverse forms and architectures, which further affects the degradability. This makes silk-based scaffolds suitable for treating a variety of bone reconstruction and regeneration objectives. Silk surfaces offer active sites that aid the mineralization and/or bonding of bioactive molecules that facilitate bone regeneration. Silk has also been blended with a variety of polymers and minerals to enhance its advantageous properties or introduce new ones. Several successful works, both in vitro and in vivo, have been reported using silk-based scaffolds to regenerate bone tissues or other parts of the skeletal system such as cartilage and ligament. A growing trend is observed toward the use of mineralized and nanofibrous scaffolds along with the development of technology that allows to control scaffold architecture, its biodegradability and the sustained releasing property of scaffolds. Further development of silk-based scaffolds for bone tissue engineering, taking them up to and beyond the stage of human trials, is hoped to be achieved in the near future through a cross-disciplinary coalition of tissue engineers, material scientists and manufacturing engineers. The state-of-art of silk biomaterials in bone tissue engineering, covering their wide

  11. Open-Porous Hydroxyapatite Scaffolds for Three-Dimensional Culture of Human Adult Liver Cells

    Science.gov (United States)

    Schmelzer, Eva; Over, Patrick; Nettleship, Ian; Gerlach, Joerg C.

    2016-01-01

    Liver cell culture within three-dimensional structures provides an improved culture system for various applications in basic research, pharmacological screening, and implantable or extracorporeal liver support. Biodegradable calcium-based scaffolds in such systems could enhance liver cell functionality by providing endothelial and hepatic cell support through locally elevated calcium levels, increased surface area for cell attachment, and allowing three-dimensional tissue restructuring. Open-porous hydroxyapatite scaffolds were fabricated and seeded with primary adult human liver cells, which were embedded within or without gels of extracellular matrix protein collagen-1 or hyaluronan. Metabolic functions were assessed after 5, 15, and 28 days. Longer-term cultures exhibited highest cell numbers and liver specific gene expression when cultured on hydroxyapatite scaffolds in collagen-1. Endothelial gene expression was induced in cells cultured on scaffolds without extracellular matrix proteins. Hydroxyapatite induced gene expression for cytokeratin-19 when cells were cultured in collagen-1 gel while culture in hyaluronan increased cytokeratin-19 gene expression independent of the use of scaffold in long-term culture. The implementation of hydroxyapatite composites with extracellular matrices affected liver cell cultures and cell differentiation depending on the type of matrix protein and the presence of a scaffold. The hydroxyapatite scaffolds enable scale-up of hepatic three-dimensional culture models for regenerative medicine applications. PMID:27403430

  12. Polybiguanide (PHMB) loaded in PLA scaffolds displaying high hydrophobic, biocompatibility and antibacterial properties

    Energy Technology Data Exchange (ETDEWEB)

    Llorens, Elena; Calderón, Silvia [Departament d' Enginyeria Química, Universitat Politècnica de Catalunya, Av. Diagonal 647, Barcelona E-08028 (Spain); Valle, Luis J. del, E-mail: luis.javier.del.valle@upc.edu [Departament d' Enginyeria Química, Universitat Politècnica de Catalunya, Av. Diagonal 647, Barcelona E-08028 (Spain); Puiggalí, Jordi [Departament d' Enginyeria Química, Universitat Politècnica de Catalunya, Av. Diagonal 647, Barcelona E-08028 (Spain); Center for Research in Nano-Engineering (CrNE), Universitat Politècnica de Catalunya, Edifici C, C/Pasqual i Vila s/n, Barcelona E-08028 (Spain)

    2015-05-01

    Polyhexamethylenebiguanide hydrochloride (PHMB), a low molecular weight polymer related to chlorohexidine (CHX), is a well-known antibacterial agent. In this study, polylactide (PLA) nanofibers loaded with PHMB were produced by electrospinning to obtain 3D biodegradable scaffolds with antibacterial properties. PLA fibers loaded with CHX were used as control. The electrospun fibers were studied and analyzed by SEM, FTIR, DSC and contact angle measurements. PHMB and CHX release from loaded scaffolds was evaluated, as well as their antibacterial activity and biocompatibility. The results showed that the nanofibers became smoother and their diameter smaller with increasing the amount of loaded PHMB. This feature led to an increase of both surface roughness and hydrophobicity of the scaffold. PHMB release was highly dependent on the hydrophilicity of the medium and differed from that determined for CHX. Lastly, PHMB-loaded PLA scaffolds showed antibacterial properties since they inhibited adhesion and bacterial growth, and exhibited biocompatible characteristics for the adhesion and proliferation of both fibroblast and epithelial cell lines. - Highlights: • Nanofibers of PLA-PHMB (antibacterial polymer) were prepared by electrospinning. • PHMB has hydrophilic character but the PLA-PHMB scaffolds were highly hydrophobic. • The high-hydrophobicity of the new scaffolds conditioned the release of PHMB. • The controlled release of PHMB inhibited the growth and bacterial adhesion. • PLA-PHMB scaffolds have biocompatibility with fibroblast and epithelial cells.

  13. Fabrication of gelatin-strontium substituted calcium phosphate scaffolds with unidirectional pores for bone tissue engineering.

    Science.gov (United States)

    Wu, Yu-Chun; Lin, Wei-Yu; Yang, Chyun-Yu; Lee, Tzer-Min

    2015-03-01

    This study fabricated homogeneous gelatin-strontium substituted calcium phosphate composites via coprecipitation in a gelatin solution. Unidirectional porous scaffolds with an oriented microtubular structure were then manufactured using freeze-drying technology. The resulting structure and pore alignment were determined using scanning electron microscopy. The pore size were in the range of 200-400 μm, which is considered ideal for the engineering of bone tissue. The scaffolds were further characterized using energy dispersive spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. Hydroxyapatite was the main calcium phosphate compound in the scaffolds, with strontium incorporated into the crystal structure. The porosity of the scaffolds decreased with increasing concentration of calcium-phosphate. The compressive strength in the longitudinal direction was two to threefold higher than that observed in the transverse direction. Our results demonstrate that the composite scaffolds degraded by approximately 20 % after 5 weeks. Additionally, in vitro results reveal that the addition of strontium significantly increased human osteoblastic cells proliferation. Scaffolds containing strontium with a Sr-CaP/(gelatin + Sr-CaP) ratio of 50 % provided the most suitable environment for cell proliferation, particularly under dynamic culture conditions. This study demonstrates the considerable potential of composite scaffolds composed of gelatin-strontium-substituted calcium phosphate for applications in bone tissue engineering.

  14. Periodontal Regeneration Using Strontium-Loaded Mesoporous Bioactive Glass Scaffolds in Osteoporotic Rats

    Science.gov (United States)

    Zhang, Yufeng; Wei, Lingfei; Wu, Chengtie; Miron, Richard J.

    2014-01-01

    Recent studies demonstrate that the rate of periodontal breakdown significantly increased in patients compromised from both periodontal disease and osteoporosis. One pharmacological agent used for their treatment is strontium renalate due to its simultaneous ability to increase bone formation and halt bone resorption. The aim of the present study was to achieve periodontal regeneration of strontium-incorporated mesoporous bioactive glass (Sr-MBG) scaffolds in an osteoporotic animal model carried out by bilateral ovariectomy (OVX). 15 female Wistar rats were randomly assigned to three groups: control unfilled periodontal defects, 2) MBG alone and 3) Sr-MBG scaffolds. 10 weeks after OVX, bilateral fenestration defects were created at the buccal aspect of the first mandibular molar and assessed by micro-CT and histomorphometric analysis after 28 days. Periodontal fenestration defects treated with Sr-MBG scaffolds showed greater new bone formation (46.67%) when compared to MBG scaffolds (39.33%) and control unfilled samples (17.50%). The number of TRAP-positive osteoclasts was also significantly reduced in defects receiving Sr-MBG scaffolds. The results from the present study suggest that Sr-MBG scaffolds may provide greater periondontal regeneration. Clinical studies are required to fully characterize the possible beneficial effect of Sr-releasing scaffolds for patients suffering from a combination of both periodontal disease and osteoporosis. PMID:25116811

  15. Electrospun Chitosan/Polyethylene Oxide Nanofibrous Scaffolds with Potential Antibacterial Wound Dressing Applications

    Directory of Open Access Journals (Sweden)

    Tony T. Yuan

    2016-01-01

    Full Text Available Electrospinning is a simple and versatile technique for the fabrication of nonwoven fibrous materials for biomedical applications. In the present study, chitosan (CS and polyethylene oxide (PEO nanofibrous scaffolds were successfully prepared using three different CS/PEO mass ratios and then evaluated for their physical, chemical, and biological characteristics. Scaffold morphologies were observed by scanning electron microscopy, which showed decreasing fiber diameters with increasing CS content. Higher CS concentrations also correlated with increased tensile strength and decreased elasticity of the scaffold. Degradation studies demonstrated that PEO was solubilized from the scaffold within the first six hours, followed by CS. This profile was unaffected by changes in the CS/PEO ratio or the pH of the media. Only the 2 : 1 CS/PEO scaffold demonstrated superior inhibition of both growth and attachment of Staphylococcus aureus. Finally, all scaffolds exhibited little impact on the proliferation of murine fibroblast monolayers. These data demonstrate that the 2 : 1 CS/PEO scaffold is a promising candidate for wound dressing applications due to its excellent antibacterial characteristics and biocompatibility.

  16. Electrospun Polyhydroxybutyrate and Poly(L-lactide-co-ε-caprolactone Composites as Nanofibrous Scaffolds

    Directory of Open Access Journals (Sweden)

    Donraporn Daranarong

    2014-01-01

    Full Text Available Electrospinning can produce nanofibrous scaffolds that mimic the architecture of the extracellular matrix and support cell attachment for tissue engineering applications. In this study, fibrous membranes of polyhydroxybutyrate (PHB with various loadings of poly(L-lactide-co-ε-caprolactone (PLCL were successfully prepared by electrospinning. In comparison to PLCL scaffolds, PLCL blends with PHB exhibited more irregular fibre diameter distributions and higher average fibre diameters but there were no significant differences in pore size. PLCL/PHB scaffolds were more hydrophilic (<120° with significantly reduced tensile strength (ca. 1 MPa compared to PLCL scaffolds (150.9±2.8∘ and 5.8±0.5 MPa. Increasing PLCL loading in PHB/PLCL scaffolds significantly increased the extension at break, (4–6-fold. PLCL/PHB scaffolds supported greater adhesion and proliferation of olfactory ensheathing cells (OECs than those exhibiting asynchronous growth on culture plates. Mitochondrial activity of cells cultivated on the electrospun blended membranes was enhanced compared to those grown on PLCL and PHB scaffolds (212, 179, and 153%, resp.. Analysis showed that PLCL/PHB nanofibrous membranes promoted cell cycle progression and reduced the onset of necrosis. Thus, electrospun PLCL/PHB composites promoted adhesion and proliferation of OECs when compared to their individual PLCL and PHB components suggesting potential in the repair and engineering of nerve tissue.

  17. Breast Cancer Stem Cell Culture and Enrichment Using Poly(ε-Caprolactone Scaffolds

    Directory of Open Access Journals (Sweden)

    Sònia Palomeras

    2016-04-01

    Full Text Available The cancer stem cell (CSC population displays self-renewal capabilities, resistance to conventional therapies, and a tendency to post-treatment recurrence. Increasing knowledge about CSCs’ phenotype and functions is needed to investigate new therapeutic strategies against the CSC population. Here, poly(ε-caprolactone (PCL, a biocompatible polymer free of toxic dye, has been used to fabricate scaffolds, solid structures suitable for 3D cancer cell culture. It has been reported that scaffold cell culture enhances the CSCs population. A RepRap BCN3D+ printer and 3 mm PCL wire were used to fabricate circular scaffolds. PCL design and fabrication parameters were first determined and then optimized considering several measurable variables of the resulting scaffolds. MCF7 breast carcinoma cell line was used to assess scaffolds adequacy for 3D cell culture. To evaluate CSC enrichment, the Mammosphere Forming Index (MFI was performed in 2D and 3D MCF7 cultures. Results showed that the 60° scaffolds were more suitable for 3D culture than the 45° and 90° ones. Moreover, 3D culture experiments, in adherent and non-adherent conditions, showed a significant increase in MFI compared to 2D cultures (control. Thus, 3D cell culture with PCL scaffolds could be useful to improve cancer cell culture and enrich the CSCs population.

  18. [Effects of bioactive modification of poly-D,L-lactide acid scaffolds on the biological behaviors of the seed cells].

    Science.gov (United States)

    Xu, Zi-xing; Chen, Jian-ting; Li, Tao; Zha, Ding-sheng; Zhang, Xin-xin; Jiang, Xiao-rui; Xiao, Wen-de; Zhu, Qing-an

    2011-02-01

    To study the changes in the biological behavior of bone marrow mesenchymal stem cells (BMSCs) transfected with red fluorescent protein by lentivirus (RFP-BMSCs) seeded on in poly-D, L-lactide acid (PDLLA) scaffolds with bioactive modification by ammonia plasma and Gly-Arg-Gly-Asp-Ser (GRGDS) in vitro. Circular sheets of PDLLA scaffolds (8 mm in diameter and 1 mm in thickness) were prepared and aminated with PDLLA (group A) or modified with the peptide conjugate A/PDLLA (group PA), with untreated PDLLA as the control (group P). The RFP-BMSCs were seeded on the scaffold materials and their proliferation and metabolic activity were detected using CyQuant NF and Alamar blue staining. The mineralization on the scaffolds was observed using calcein fluorescent dye under a fluorescent microscope. The adhesion and proliferation of RFP-BMSCs were observed by fluorescent microscope, and scanning electron microscope (SEM) was used to confirm the observed adhesion of the seed cells. The RFP-BMSCs seeded on the 3 scaffolds all showed proliferative activity at different time points after cell seeding, and the cell numbers decreased significantly in the order of PA>A>P (Pcell number was significantly greater in group PA than in group A at all the time points except for days 10 (P=0.077) and 12 (P=0.491), and gradually became similar with the passage of time. The metabolic changes of the cells follow a similar pattern of cell proliferation. RFP-BMSCs showed more active proliferation in group A and group PA than in group P. On days 14 and 21, the intensity of green fluorescence decreased in the order of group PA, A and P. The RFP-BMSCs showed better adhesion in group PA than in group A, and the cells in group P appeared more scattered under scanning electron microscope. Bioactive modification of PDLLA by ammonia treatment and conjugation with GRGDS peptides may promotes the adhesion, proliferation, metabolism and mineralization of RFP-BMSCs seeded on PDLLA scaffolds.

  19. Oriented Collagen Scaffolds for Tissue Engineering

    Science.gov (United States)

    Isobe, Yoshihiro; Kosaka, Toru; Kuwahara, Go; Mikami, Hiroshi; Saku, Taro; Kodama, Shohta

    2012-01-01

    Oriented collagen scaffolds were developed in the form of sheet, mesh and tube by arraying flow-oriented collagen string gels and dehydrating the arrayed gels. The developed collagen scaffolds can be any practical size with any direction of orientation for tissue engineering applications. The birefringence of the collagen scaffolds was quantitatively analyzed by parallel Nicols method. Since native collagen in the human body has orientations such as bone, cartilage, tendon and cornea, and the orientation has a special role for the function of human organs, the developed various types of three-dimensional oriented collagen scaffolds are expected to be useful biomaterials for tissue engineering and regenerative medicines. PMID:28817059

  20. Platelet lysate embedded scaffolds for skin regeneration.

    Science.gov (United States)

    Sandri, Giuseppina; Bonferoni, Maria Cristina; Rossi, Silvia; Ferrari, Franca; Mori, Michela; Cervio, Marila; Riva, Federica; Liakos, Ioannis; Athanassiou, Athanassia; Saporito, Francesca; Marini, Lara; Caramella, Carla

    2015-04-01

    The work presents the development of acellular scaffolds extemporaneously embedded with platelet lysate (PL), as an innovative approach in the field of tissue regeneration/reparation. PL embedded scaffolds should have a tridimensional architecture to support cell migration and growth, in order to restore skin integrity. For this reason, chondroitin sulfate (CS) was associated with sodium alginate (SA) to prepare highly porous systems. The developed scaffolds were characterized for chemical stability to γ-radiation, morphology, hydration and mechanical properties. Moreover, the capability of fibroblasts and endothelial cells to populate the scaffold was evaluated by means of proliferation test 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and confocal laser scanning microscopy study. The scaffolds, not altered by sterilization, were characterized by limited swelling and high flexibility, by foam-like structure with bubbles that formed a high surface area and irregular texture suitable for cell adhesion. Cell growth and scaffold population were evident on the bubble surface, where the cells appeared anchored to the scaffold structure. Scaffold network based on CS and SA demonstrated to be an effective support to enhance and to allow fibroblasts and endothelial cells (human umbilical vein endothelial cells, HUVEC) adhesion and proliferation. In particular, it could be hypothesized that cell adhesion was facilitated by the synergic effect of PL and CS. Although further in vivo evaluation is needed, on the basis of in vitro results, PL embedded scaffolds seem promising systems for skin wound healing.

  1. Oriented Collagen Scaffolds for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Shohta Kodama

    2012-03-01

    Full Text Available Oriented collagen scaffolds were developed in the form of sheet, mesh and tube by arraying flow-oriented collagen string gels and dehydrating the arrayed gels. The developed collagen scaffolds can be any practical size with any direction of orientation for tissue engineering applications. The birefringence of the collagen scaffolds was quantitatively analyzed by parallel Nicols method. Since native collagen in the human body has orientations such as bone, cartilage, tendon and cornea, and the orientation has a special role for the function of human organs, the developed various types of three-dimensional oriented collagen scaffolds are expected to be useful biomaterials for tissue engineering and regenerative medicines.

  2. Oriented Collagen Scaffolds for Tissue Engineering.

    Science.gov (United States)

    Isobe, Yoshihiro; Kosaka, Toru; Kuwahara, Go; Mikami, Hiroshi; Saku, Taro; Kodama, Shohta

    2012-03-16

    Oriented collagen scaffolds were developed in the form of sheet, mesh and tube by arraying flow-oriented collagen string gels and dehydrating the arrayed gels. The developed collagen scaffolds can be any practical size with any direction of orientation for tissue engineering applications. The birefringence of the collagen scaffolds was quantitatively analyzed by parallel Nicols method. Since native collagen in the human body has orientations such as bone, cartilage, tendon and cornea, and the orientation has a special role for the function of human organs, the developed various types of three-dimensional oriented collagen scaffolds are expected to be useful biomaterials for tissue engineering and regenerative medicines.

  3. Precision Extruding Deposition for Freeform Fabrication of PCL and PCL-HA Tissue Scaffolds

    Science.gov (United States)

    Shor, L.; Yildirim, E. D.; Güçeri, S.; Sun, W.

    Computer-aided tissue engineering approach was used to develop a novel Precision Extrusion Deposition (PED) process to directly fabricate Polycaprolactone (PCL) and composite PCL/Hydroxyapatite (PCL-HA) tissue scaffolds. The process optimization was carried out to fabricate both PCL and PCL-HA (25% concentration by weight of HA) with a controlled pore size and internal pore structure of the 0°/90° pattern. Two groups of scaffolds having 60 and 70% porosity and with pore sizes of 450 and 750 microns, respectively, were evaluated for their morphology and compressive properties using Scanning Electron Microscopy (SEM) and mechanical testing. The surface modification with plasma was conducted on PCL scaffold to increase the cellular attachment and proliferation. Our results suggested that inclusion of HA significantly increased the compressive modulus from 59 to 84 MPa for 60% porous scaffolds and from 30 to 76 MPa for 70% porous scaffolds. In vitro cell-scaffolds interaction study was carried out using primary fetal bovine osteoblasts to assess the feasibility of scaffolds for bone tissue engineering application. In addition, the results in surface hydrophilicity and roughness show that plasma surface modification can increase the hydrophilicity while introducing the nano-scale surface roughness on PCL surface. The cell proliferation and differentiation were calculated by Alamar Blue assay and by determining alkaline phosphatase activity. The osteoblasts were able to migrate and proliferate over the cultured time for both PCL as well as PCL-HA scaffolds. Our study demonstrated the viability of the PED process to the fabricate PCL and PCL-HA composite scaffolds having necessary mechanical property, structural integrity, controlled pore size and pore interconnectivity desired for bone tissue engineering.

  4. Scaffolding in teacher-student interaction: a decade of research

    NARCIS (Netherlands)

    van de Pol, J.; Volman, M.; Beishuizen, J.

    2010-01-01

    Although scaffolding is an important and frequently studied concept, much discussion exists with regard to its conceptualizations, appearances, and effectiveness. Departing from the last decade’s scaffolding literature, this review scrutinizes these three areas of scaffolding. First, contingency,

  5. 3D printing of novel osteochondral scaffolds with graded microstructure

    Science.gov (United States)

    Nowicki, Margaret A.; Castro, Nathan J.; Plesniak, Michael W.; Zhang, Lijie Grace

    2016-10-01

    Osteochondral tissue has a complex graded structure where biological, physiological, and mechanical properties vary significantly over the full thickness spanning from the subchondral bone region beneath the joint surface to the hyaline cartilage region at the joint surface. This presents a significant challenge for tissue-engineered structures addressing osteochondral defects. Fused deposition modeling (FDM) 3D bioprinters present a unique solution to this problem. The objective of this study is to use FDM-based 3D bioprinting and nanocrystalline hydroxyapatite for improved bone marrow human mesenchymal stem cell (hMSC) adhesion, growth, and osteochondral differentiation. FDM printing parameters can be tuned through computer aided design and computer numerical control software to manipulate scaffold geometries in ways that are beneficial to mechanical performance without hindering cellular behavior. Additionally, the ability to fine-tune 3D printed scaffolds increases further through our investment casting procedure which facilitates the inclusion of nanoparticles with biochemical factors to further elicit desired hMSC differentiation. For this study, FDM was used to print investment-casting molds innovatively designed with varied pore distribution over the full thickness of the scaffold. The mechanical and biological impacts of the varied pore distributions were compared and evaluated to determine the benefits of this physical manipulation. The results indicate that both mechanical properties and cell performance improve in the graded pore structures when compared to homogeneously distributed porous and non-porous structures. Differentiation results indicated successful osteogenic and chondrogenic manipulation in engineered scaffolds.

  6. Clickable Microgel Scaffolds as Platforms for 3D Cell Encapsulation.

    Science.gov (United States)

    Caldwell, Alexander S; Campbell, Gavin T; Shekiro, Kelly M T; Anseth, Kristi S

    2017-08-01

    While microporous scaffolds are increasingly used for regenerative medicine and tissue repair applications, the most common techniques to fabricate these scaffolds use templating or top-down fabrication approaches. Cytocompatible bottom-up assembly methods afford the opportunity to assemble microporous systems in the presence of cells and create complex polymer-cell composite systems in situ. Here, microgel building blocks with clickable surface groups are synthesized for the bottom-up fabrication of porous cell-laden scaffolds. The facile nature of assembly allows for human mesenchymal stem cells to be incorporated throughout the porous scaffold. Particles are designed with mean diameters of ≈10 and 100 µm, and assembled to create varied microenvironments. The resulting pore sizes and their distribution significantly alter cell morphology and cytoskeletal formation. This microgel-based system provides numerous tunable properties that can be used to control multiple aspects of cellular growth and development, as well as providing the ability to recapitulate various biological interfaces. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Biocompatible xanthan/polypyrrole scaffolds for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Blasques Bueno, Vania; Harumi Takahashi, Suelen; Catalani, Luiz Henrique; Cordoba de Torresi, Susana Ines; Siqueira Petri, Denise Freitas, E-mail: dfsp@iq.usp.br

    2015-07-01

    Polypyrrole (PPy) was electropolymerized in xanthan hydrogels (XCA), resulting in electroactive XCAPPy scaffolds with (15 ± 3) wt.% PPy and (40 ± 10) μm thick. The physicochemical characterization of hybrid XCAPPy scaffolds was performed by means of cyclic voltammetry, swelling tests, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analyses (TGA), scanning electron microscopy (SEM), atomic force microscopy (AFM) and tensile tests. XCAPPy swelled ~ 80% less than XCA. FTIR spectra and thermal analyses did not evidence strong interaction between PPy and XCA matrix. XCAPPy presented a porous stratified structure resulting from the arrangement of PPy chains parallel to XCA surface. Under stress XCAPPy presented larger strain than neat XCA probably due to the sliding of planar PPy chains. The adhesion and proliferation of fibroblasts onto XCA and XCAPPy were evaluated in the absence and in the presence of external magnetic field (EMF) of 0.4 T, after one day, 7 days, 14 days and 21 days. Fibroblast proliferation was more pronounced onto XCAPPy than onto XCA, due to its higher hydrophobicity and surface roughness. EMF stimulated cell proliferation onto both scaffolds. - Highlights: • Hybrid networks of xanthan and polypyrrole were used as scaffolds for fibroblasts. • Hybrid networks were more hydrophobic and more elastic than neat xanthan. • Cell proliferation onto hybrid networks and neat xanthan increased with the time. • Cell proliferation was more pronounced onto hybrid networks than on neat xanthan. • External magnetic field stimulated cell growth onto hybrid networks and neat xanthan.

  8. Bone Morphogenic Protein-2 (rhBMP2)-Loaded Silk Fibroin Scaffolds to Enhance the Osteoinductivity in Bone Tissue Engineering

    Science.gov (United States)

    Du, Guang-Yu; He, Sheng-Wei; Sun, Chuan-Xiu; Mi, Li-Dong

    2017-10-01

    There is an increasing demand for formulations of silk fibroin (SF) scaffolds in biomedical applications. SF was crosslinked via glutaraldehyde with osteoinductive recombinant human bone morphogenic protein-2 (rhBMP2) of different ratios viz. (i) 3% SF with no rhBMP2 (SF), (ii) 3% SF with equal amount of rhBMP2 (SF+BMP2), and (iii) 12% SF with 3% of rhBMP2 (4SF+BMP2), and these solutions were used in electrospinning-based fabrication of nanoscaffolds for evaluating increased osteoinductive potential of SF scaffolds with rhBMP2. Stress-strain relationship suggested there is no loss in mechanical strength of fibers with addition of rhBMP2, and mechanical strength of scaffold was improved with increase in concentration of SF. rhBMP2 association increased the water retention capacity of scaffold as evident from swelling studies. Viability of hMSCs was found to be higher in conjugated scaffolds, and scaffolds do not exhibit any cytotoxicity towards guest cells. Cells were found to have higher alkaline phosphatase activity in conjugated scaffolds under in vitro and in vivo conditions which establishes the increased osteoinductivity of the novel construct. The scaffolds were found to be effective for in vivo bone formation as well.

  9. In vivo drug release behavior and osseointegration of a doxorubicin-loaded tissue-engineered scaffold

    DEFF Research Database (Denmark)

    Sun, Ming; Chen, Muwan; Wang, Miao

    2016-01-01

    the plasma DOX concentrations. The evaluation of osseointegration showed increased mineralized bone formation, unmineralized collagen fibers and significantly higher alpha Smooth Muscle Actin (α-SMA) positive areas relative to total investigated area (TA) in defects treated solely with the DESCLAYMR scaffold...... than in the DESCLAYMR_DOX; and Alkaline phosphatase activity, α-SMA/TA and bone formation were higher in the DESCLAYMR loaded with 100 μg/scaffold DOX (DOX_low) than with 400 μg/scaffold DOX (DOX_high). Our results suggest that the DESCLAYMR_DOX can be a viable candidate as a multifunctional medical...

  10. Poly(hydroxybutyrate)/cellulose acetate blend nanofiber scaffolds: Preparation, characterization and cytocompatibility.

    Science.gov (United States)

    Zhijiang, Cai; Yi, Xu; Haizheng, Yang; Jia, Jianru; Liu, Yuanpei

    2016-01-01

    Poly(hydroxybutyrate) (PHB)/cellulose acetate (CA) blend nanofiber scaffolds were fabricated by electrospinning using the blends of chloroform and DMF as solvent. The blend nanofiber scaffolds were characterized by SEM, FTIR, XRD, DSC, contact angle and tensile test. The blend nanofibers exhibited cylindrical, uniform, bead-free and random orientation with the diameter ranged from 80-680 nm. The scaffolds had very well interconnected porous fibrous network structure and large aspect surface areas. It was found that the presence of CA affected the crystallization of PHB due to formation of intermolecular hydrogen bonds, which restricted the preferential orientation of PHB molecules. The DSC result showed that the PHB and CA were miscible in the blend nanofiber. An increase in the glass transition temperature was observed with increasing CA content. Additionally, the mechanical properties of blend nanofiber scaffolds were largely influenced by the weight ratio of PHB/CA. The tensile strength, yield strength and elongation at break of the blend nanofiber scaffolds increased from 3.3 ± 0.35 MPa, 2.8 ± 0.26 MPa, and 8 ± 0.77% to 5.05 ± 0.52 MPa, 4.6 ± 0.82 MPa, and 17.6 ± 1.24% by increasing PHB content from 60% to 90%, respectively. The water contact angle of blend nanofiber scaffolds decreased about 50% from 112 ± 2.1° to 60 ± 0.75°. The biodegradability was evaluated by in vitro degradation test and the results revealed that the blend nanofiber scaffolds showed much higher degradation rates than the neat PHB. The cytocompatibility of the blend nanofiber scaffolds was preliminarily evaluated by cell adhesion studies. The cells incubated with PHB/CA blend nanofiber scaffold for 48 h were capable of forming cell adhesion and proliferation. It showed much better biocompatibility than pure PHB film. Thus, the prepared PHB/CA blend nanofiber scaffolds are bioactive and may be more suitable for cell proliferation suggesting that these scaffolds can be used for

  11. Biologically improved nanofibrous scaffolds for cardiac tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Bhaarathy, V. [Centre for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Department of Nanoscience and Technology, School of Physical Sciences, Bharathiar University, Coimbatore 641046 (India); Lee Kong Chian School of Medicine, Nanyang Technological University, 138673 (Singapore); Venugopal, J., E-mail: nnijrv@nus.edu.sg [Centre for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Gandhimathi, C. [Centre for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Ponpandian, N.; Mangalaraj, D. [Department of Nanoscience and Technology, School of Physical Sciences, Bharathiar University, Coimbatore 641046 (India); Ramakrishna, S. [Centre for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576 (Singapore)

    2014-11-01

    Nanofibrous structure developed by electrospinning technology provides attractive extracellular matrix conditions for the anchorage, migration and differentiation of stem cells, including those responsible for regenerative medicine. Recently, biocomposite nanofibers consisting of two or more polymeric blends are electrospun more tidily in order to obtain scaffolds with desired functional and mechanical properties depending on their applications. The study focuses on one such an attempt of using copolymer Poly(L-lactic acid)-co-poly (ε-caprolactone) (PLACL), silk fibroin (SF) and Aloe Vera (AV) for fabricating biocomposite nanofibrous scaffolds for cardiac tissue engineering. SEM micrographs of fabricated electrospun PLACL, PLACL/SF and PLACL/SF/AV nanofibrous scaffolds are porous, beadless, uniform nanofibers with interconnected pores and obtained fibre diameter in the range of 459 ± 22 nm, 202 ± 12 nm and 188 ± 16 nm respectively. PLACL, PLACL/SF and PLACL/SF/AV electrospun mats obtained at room temperature with an elastic modulus of 14.1 ± 0.7, 9.96 ± 2.5 and 7.0 ± 0.9 MPa respectively. PLACL/SF/AV nanofibers have more desirable properties to act as flexible cell supporting scaffolds compared to PLACL for the repair of myocardial infarction (MI). The PLACL/SF and PLACL/SF/AV nanofibers had a contact angle of 51 ± 12° compared to that of 133 ± 15° of PLACL alone. Cardiac cell proliferation was increased by 21% in PLACL/SF/AV nanofibers compared to PLACL by day 6 and further increased to 42% by day 9. Confocal analysis for cardiac expression proteins myosin and connexin 43 was observed better by day 9 compared to all other nanofibrous scaffolds. The results proved that the fabricated PLACL/SF/AV nanofibrous scaffolds have good potentiality for the regeneration of infarcted myocardium in cardiac tissue engineering. - Highlights: • Fabricated nanofibrous scaffolds are porous, beadless and uniform structures. • PLACL/SF/AV nanofibers improve the

  12. Porous composite scaffold incorporating osteogenic phytomolecule icariin for promoting skeletal regeneration in challenging osteonecrotic bone in rabbits.

    Science.gov (United States)

    Lai, Yuxiao; Cao, Huijuan; Wang, Xinluan; Chen, Shukui; Zhang, Ming; Wang, Nan; Yao, Zhihong; Dai, Yi; Xie, Xinhui; Zhang, Peng; Yao, Xinsheng; Qin, Ling

    2018-01-01

    Steroid-associated osteonecrosis (SAON) often requires surgical core decompression (CD) in the early stage for removal of necrotic bone to facilitate repair where bone grafts are needed for filling bone defect and avoiding subsequent joint collapse. In this study, we developed a bioactive composite scaffold incorporated with icariin, a unique phytomolecule that can provide structural and mechanical support and facilitate bone regeneration to fill into bone defects after surgical CD in established SAON rabbit model. An innovative low-temperature 3D printing technology was used to fabricate the poly (lactic-co-glycolic acid)/β-calcium phosphate/icariin (PLGA/TCP/Icariin, PTI) scaffold. The cytocompatibility of the PTI scaffold was tested in vitro, and the osteogenesis properties of PTI scaffolds were assessed in vivo in the SAON rabbit models. Our results showed that the fabricated PTI scaffold had a well-designed biomimic structure that was precisely printed to provide increased mechanical support and stable icariin release from the scaffold for bone regeneration. Furthermore, our in vivo study indicated that the PTI scaffold could enhanced the mechanical properties of new bone tissues and improved angiogenesis within the implanted region in SAON rabbit model than those of PLGA/TCP (PT) scaffold. The underlying osteoblastic mechanism was investigated using MC3T3-E1 cells in vitro and revealed that icariin could facilitate MC3T3-E1 cells ingrowth into the PTI scaffold and regulate osteoblastic differentiation. The PTI scaffold exhibited superior biodegradability, biocompatibility, and osteogenic capability compared with those of PT scaffold. In summary, the PTI composite scaffold which incorporated bioactive phyto-compounds is a promising potential strategy for bone tissue engineering and regeneration in patients with challenging SAON. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Evaluation of mechanical property and bioactivity of nano-bioglass 45S5 scaffold coated with poly-3-hydroxybutyrate.

    Science.gov (United States)

    Montazeri, Mahbobeh; Karbasi, Saeed; Foroughi, Mohammad Reza; Monshi, Ahmad; Ebrahimi-Kahrizsangi, Reza

    2015-02-01

    One of the major challenges facing researchers of tissue engineering is scaffold design with desirable physical and mechanical properties for growth and proliferation of cells and tissue formation. In this research, firstly, nano-bioglass powder with grain sizes of 55-56 nm was prepared by melting method of industrial raw materials at 1,400 °C. Then the porous ceramic scaffold of bioglass with 30, 40 and 50 wt% was prepared by using the polyurethane sponge replication method. The scaffolds were coated with poly-3-hydroxybutyrate (P3HB) for 30 s and 1 min in order to increase the scaffold's mechanical properties. XRD, XRF, SEM, FE-SEM and FT-IR were used for phase and component studies, morphology, particle size and determination of functional groups, respectively. XRD and XRF results showed that the type of the produced bioglass was 45S5. The results of XRD and FT-IR showed that the best temperature to produce bioglass scaffold was 600 °C, in which Na2Ca2Si3O9 crystal is obtained. By coating the scaffolds with P3HB, a composite scaffold with optimal porosity of 80-87% in 200-600 μm and compression strength of 0.1-0.53 MPa was obtained. According to the results of compressive strength and porosity tests, the best kind of scaffold was produced with 30 wt% of bioglass immersed for 1 min in P3HB. To evaluate the bioactivity of the scaffold, the SBF solution was used. The selected scaffold (30 wt% bioglass/6 wt% P3HB) was maintained for up to 4 weeks in this solution at an incubation temperature of 37 °C. The XRD, SEM EDXA and AAS tests were indicative of hydroxyapatite formation on the surface of bioactive scaffold. This scaffold has some potential to use in bone tissue engineering.

  14. Ceramic Identity Contributes to Mechanical Properties and Osteoblast Behavior on Macroporous Composite Scaffolds

    Directory of Open Access Journals (Sweden)

    J. Kent Leach

    2012-05-01

    Full Text Available Implants formed of metals, bioceramics, or polymers may provide an alternative to autografts for treating large bone defects. However, limitations to each material motivate the examination of composites to capitalize on the beneficial aspects of individual components and to address the need for conferring bioactive behavior to the polymer matrix. We hypothesized that the inclusion of different bioceramics in a ceramic-polymer composite would alter the physical properties of the implant and the cellular osteogenic response. To test this, composite scaffolds formed from poly(lactide-co-glycolide (PLG and either hydroxyapatite (HA, β-tricalcium phosphate (TCP, or bioactive glass (Bioglass 45S®, BG were fabricated, and the physical properties of each scaffold were examined. We quantified cell proliferation by DNA content, osteogenic response of human osteoblasts (NHOsts to composite scaffolds by alkaline phosphatase (ALP activity, and changes in gene expression by qPCR. Compared to BG-PLG scaffolds, HA-PLG and TCP-PLG composite scaffolds possessed greater compressive moduli. NHOsts on BG-PLG substrates exhibited higher ALP activity than those on control, HA-, or TCP-PLG scaffolds after 21 days, and cells on composites exhibited a 3-fold increase in ALP activity between 7 and 21 days versus a minimal increase on control scaffolds. Compared to cells on PLG controls, RUNX2 expression in NHOsts on composite scaffolds was lower at both 7 and 21 days, while expression of genes encoding for bone matrix proteins (COL1A1 and SPARC was higher on BG-PLG scaffolds at both time points. These data demonstrate the importance of selecting a ceramic when fabricating composites applied for bone healing.

  15. Using Polymeric Scaffolds for Vascular Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Alida Abruzzo

    2014-01-01

    Full Text Available With the high occurrence of cardiovascular disease and increasing numbers of patients requiring vascular access, there is a significant need for small-diameter (<6 mm inner diameter vascular graft that can provide long-term patency. Despite the technological improvements, restenosis and graft thrombosis continue to hamper the success of the implants. Vascular tissue engineering is a new field that has undergone enormous growth over the last decade and has proposed valid solutions for blood vessels repair. The goal of vascular tissue engineering is to produce neovessels and neoorgan tissue from autologous cells using a biodegradable polymer as a scaffold. The most important advantage of tissue-engineered implants is that these tissues can grow, remodel, rebuild, and respond to injury. This review describes the development of polymeric materials over the years and current tissue engineering strategies for the improvement of vascular conduits.

  16. Human amniotic epithelial cells combined with silk fibroin scaffold in the repair of spinal cord injury

    Directory of Open Access Journals (Sweden)

    Ting-gang Wang

    2016-01-01

    Full Text Available Treatment and functional reconstruction after central nervous system injury is a major medical and social challenge. An increasing number of researchers are attempting to use neural stem cells combined with artificial scaffold materials, such as fibroin, for nerve repair. However, such approaches are challenged by ethical and practical issues. Amniotic tissue, a clinical waste product, is abundant, and amniotic epithelial cells are pluripotent, have low immunogenicity, and are not the subject of ethical debate. We hypothesized that amniotic epithelial cells combined with silk fibroin scaffolds would be conducive to the repair of spinal cord injury. To test this, we isolated and cultured amniotic epithelial cells, and constructed complexes of these cells and silk fibroin scaffolds. Implantation of the cell-scaffold complex into a rat model of spinal cord injury resulted in a smaller glial scar in the damaged cord tissue than in model rats that received a blank scaffold, or amniotic epithelial cells alone. In addition to a milder local immunological reaction, the rats showed less inflammatory cell infiltration at the transplant site, milder host-versus-graft reaction, and a marked improvement in motor function. These findings confirm that the transplantation of amniotic epithelial cells combined with silk fibroin scaffold can promote the repair of spinal cord injury. Silk fibroin scaffold can provide a good nerve regeneration microenvironment for amniotic epithelial cells.

  17. Extrusion-based 3D printing of poly(propylene fumarate) scaffolds with hydroxyapatite gradients.

    Science.gov (United States)

    Trachtenberg, Jordan E; Placone, Jesse K; Smith, Brandon T; Fisher, John P; Mikos, Antonios G

    2017-04-01

    The primary focus of this work is to present the current challenges of printing scaffolds with concentration gradients of nanoparticles with an aim to improve the processing of these scaffolds. Furthermore, we address how print fidelity is related to material composition and emphasize the importance of considering this relationship when developing complex scaffolds for bone implants. The ability to create complex tissues is becoming increasingly relevant in the tissue engineering community. For bone tissue engineering applications, this work demonstrates the ability to use extrusion-based printing techniques to control the spatial deposition of hydroxyapatite (HA) nanoparticles in a 3D composite scaffold. In doing so, we combined the benefits of synthetic, degradable polymers, such as poly(propylene fumarate) (PPF), with osteoconductive HA nanoparticles that provide robust compressive mechanical properties. Furthermore, the final 3D printed scaffolds consisted of well-defined layers with interconnected pores, two critical features for a successful bone implant. To demonstrate a controlled gradient of HA, thermogravimetric analysis was carried out to quantify HA on a per-layer basis. Moreover, we non-destructively evaluated the tendency of HA particles to aggregate within PPF using micro-computed tomography (μCT). This work provides insight for proper fabrication and characterization of composite scaffolds containing particle gradients and has broad applicability for future efforts in fabricating complex scaffolds for tissue engineering applications.

  18. Characterization of the degradation mechanisms of lysine-derived aliphatic poly(ester urethane) scaffolds.

    Science.gov (United States)

    Hafeman, Andrea E; Zienkiewicz, Katarzyna J; Zachman, Angela L; Sung, Hak-Joon; Nanney, Lillian B; Davidson, Jeffrey M; Guelcher, Scott A

    2011-01-01

    Characterization of the degradation mechanism of polymeric scaffolds and delivery systems for regenerative medicine is essential to assess their clinical applicability. Key performance criteria include induction of a minimal, transient inflammatory response and controlled degradation to soluble non-cytotoxic breakdown products that are cleared from the body by physiological processes. Scaffolds fabricated from biodegradable poly(ester urethane)s (PEURs) undergo controlled degradation to non-cytotoxic breakdown products and support the ingrowth of new tissue in preclinical models of tissue regeneration. While previous studies have shown that PEUR scaffolds prepared from lysine-derived polyisocyanates degrade faster under in vivo compared to in vitro conditions, the degradation mechanism is not well understood. In this study, we have shown that PEUR scaffolds prepared from lysine triisocyanate (LTI) or a trimer of hexamethylene diisocyanate (HDIt) undergo hydrolytic, esterolytic, and oxidative degradation. Hydrolysis of ester bonds to yield α-hydroxy acids is the dominant mechanism in buffer, and esterolytic media modestly increase the degradation rate. While HDIt scaffolds show a modest (PEUR scaffolds and delivery systems for tissue regeneration, this promising class of biomaterials has a limited regulatory history. Elucidation of the macrophage-mediated oxidative mechanism by which LTI scaffolds degrade in vivo provides key insights into the ultimate fate of these materials when injected into the body. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Fabrication and characterization of curcumin-loaded silk fibroin/P(LLA-CL) nanofibrous scaffold

    Science.gov (United States)

    Lian, Yuan; Zhan, Jian-Chao; Zhang, Kui-Hua; Mo, Xiu-Mei

    2014-12-01

    Curcumin exhibited excellent properties including antioxidant, antiinflammatory, antiviral, antibacterial, antifungal, anticancer, and anticoagulant activities. In this study, curcumin was incorporated into silk fibroin (SF)/poly(L-lactic acid- co-e-caprolactone) (P(LLA-CL)) nanofibrous scaffolds via electrospinning, and changes brought about by raising the curcumin content were observed: SEM images showed that the average nanofibrous diameter decreased at the beginning and then increased, and the nanofibers became uniform; FTIR showed that the conformation of SF transforming from random coil form to β-sheet structure had not been induced, while SF conformation converted to β-sheet after being treated with 75% ethanol vapor; XRD results confirmed that the crystal structure of (P(LLA-CL)) had been destroyed; The mechanical test illustrated that nanofibrous scaffolds still maintained good mechanical properties. Further, curcumin-loaded nanofibrous scaffolds were evaluated for drug release, antioxidant and antimicrobial activities in vitro. The results showed that curcumin presented a sustained release behavior from nanofibrous scaffolds and maintained its free radical scavenging ability, and such scaffolds could effectively inhibit S. aureus growth (> 95%). Thus, curcumin-loaded SF/P(LLA-CL) nanofibrous scaffolds might be potential candidates for wound dressing and tissue engineering scaffolds.

  20. Biodegradable poly (lactic acid-co-glycolic acid scaffolds as carriers for genetically-modified fibroblasts.

    Directory of Open Access Journals (Sweden)

    Tatjana Perisic

    Full Text Available Recent advances in gene delivery into cells allow improved therapeutic effects in gene therapy trials. To increase the bioavailability of applied cells, it is of great interest that transfected cells remain at the application site and systemic spread is minimized. In this study, we tested clinically used biodegradable poly(lactic acid-co-glycolic acid (PLGA scaffolds (Vicryl & Ethisorb as transient carriers for genetically modified cells. To this aim, we used human fibroblasts and examined attachment and proliferation of untransfected cells on the scaffolds in vitro, as well as the mechanical properties of the scaffolds at four time points (1, 3, 6 and 9 days of cultivation. Furthermore, the adherence of cells transfected with green fluorescent protein (GFP and vascular endothelial growth factor (VEGF165 and also VEGF165 protein secretion were investigated. Our results show that human fibroblasts adhere on both types of PLGA scaffolds. However, proliferation and transgene expression capacity were higher on Ethisorb scaffolds most probably due to a different architecture of the scaffold. Additionally, cultivation of the cells on the scaffolds did not alter their biomechanical properties. The results of this investigation could be potentially exploited in therapeutic regiments with areal delivery of transiently transfected cells and may open the way for a variety of applications of cell-based gene therapy, tissue engineering and regenerative medicine.

  1. Self-Assembling RADA16-I Peptide Hydrogel Scaffold Loaded with Tamoxifen for Breast Reconstruction

    Directory of Open Access Journals (Sweden)

    Huimin Wu

    2017-01-01

    Full Text Available More and more breast cancer patients prefer autologous fat tissue transfer following lumpectomy to maintain perfect female characteristics. However, the outcome was not satisfactory due to the transplanted fat absorption. In this study, we prepared two RADA16-I peptide scaffolds with and without tamoxifen. Both scaffolds were transparent, porous, and hemisphere-shaped. The hADSCs isolated from liposuction were attached to the scaffold. The growth inhibition of the hADSCs induced by TAM in 2-demensional (2D culture was higher than that in TAM-loaded hydrogel scaffold 3D culture (P<0.05; however, the same outcomes were not observed in MCF-7 cells. Correspondingly, the apoptosis of the hADSCs induced by TAM was significantly increased in 2D culture compared to that in scaffold 3D culture (P<0.05. Yet the outcomes of the aoptosis in MCF-7 were contrary. Apoptosis-related protein Bcl-2 was involved in the process. In vivo experiments showed that both scaffolds formed a round mass after subcutaneous implantation and it retained its shape after being pressed slightly. The implantation had no effect on the weight and activity of the animals. The results suggested that TAM-loaded RADA16-I hydrogel scaffolds both provide support for hADSCs cells attachment/proliferation and retain cytotoxic effect on MCF-7 cells, which might be a promising therapeutic breast tissue following lumpectomy.

  2. Cartilage Tissue Engineering with Silk Fibroin Scaffolds Fabricated by Indirect Additive Manufacturing Technology.

    Science.gov (United States)

    Chen, Chih-Hao; Liu, Jolene Mei-Jun; Chua, Chee-Kai; Chou, Siaw-Meng; Shyu, Victor Bong-Hang; Chen, Jyh-Ping

    2014-03-13

    Advanced tissue engineering (TE) technology based on additive manufacturing (AM) can fabricate scaffolds with a three-dimensional (3D) environment suitable for cartilage regeneration. Specifically, AM technology may allow the incorporation of complex architectural features. The present study involves the fabrication of 3D TE scaffolds by an indirect AM approach using silk fibroin (SF). From scanning electron microscopic observations, the presence of micro-pores and interconnected channels within the scaffold could be verified, resulting in a TE scaffold with both micro- and macro-structural features. The intrinsic properties, such as the chemical structure and thermal characteristics of SF, were preserved after the indirect AM manufacturing process. In vitro cell culture within the SF scaffold using porcine articular chondrocytes showed a steady increase in cell numbers up to Day 14. The specific production (per cell basis) of the cartilage-specific extracellular matrix component (collagen Type II) was enhanced with culture time up to 12 weeks, indicating the re-differentiation of chondrocytes within the scaffold. Subcutaneous implantation of the scaffold-chondrocyte constructs in nude mice also confirmed the formation of ectopic cartilage by histological examination and immunostaining.

  3. Design optimization of scaffold microstructures using wall shear stress criterion towards regulated flow-induced erosion.

    Science.gov (United States)

    Chen, Yuhang; Schellekens, Michiel; Zhou, Shiwei; Cadman, Joseph; Li, Wei; Appleyard, Richard; Li, Qing

    2011-08-01

    Tissue scaffolds aim to provide a cell-friendly biomechanical environment for facilitating cell growth. Existing studies have shown significant demands for generating a certain level of wall shear stress (WSS) on scaffold microstructural surfaces for promoting cellular response and attachment efficacy. Recently, its role in shear-induced erosion of polymer scaffold has also drawn increasing attention. This paper proposes a bi-directional evolutionary structural optimization (BESO) approach for design of scaffold microstructure in terms of the WSS uniformity criterion, by downgrading highly-stressed solid elements into fluidic elements and/or upgrading lowly-stressed fluidic elements into solid elements. In addition to this, a computational model is presented to simulate shear-induced erosion process. The effective stiffness and permeability of initial and optimized scaffold microstructures are characterized by the finite element based homogenization technique to quantify the variations of mechanical properties of scaffold during erosion. The illustrative examples show that a uniform WSS is achieved within the optimized scaffold microstructures, and their architectural and biomechanical features are maintained for a longer lifetime during shear-induced erosion process. This study provides a mathematical means to the design optimization of cellular biomaterials in terms of the WSS criterion towards controllable shear-induced erosion.

  4. Enhancement of neurite outgrowth in neuron cancer stem cells by growth on 3-D collagen scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chih-Hao [Department of Electrical Engineering, I-Shou University, Taiwan, ROC (China); Neurosurgery, Department of Surgery, Kaohsiung Veterans General Hospital, Taiwan, ROC (China); Department of Biomedical Engineering, I-Shou University, Taiwan, ROC (China); Kuo, Shyh Ming [Department of Biomedical Engineering, I-Shou University, Taiwan, ROC (China); Liu, Guei-Sheung [Centre for Eye Research Australia, University of Melbourne (Australia); Chen, Wan-Nan U. [Department of Biological Science and Technology, I-Shou University, Taiwan, ROC (China); Chuang, Chin-Wen [Department of Electrical Engineering, I-Shou University, Taiwan, ROC (China); Liu, Li-Feng, E-mail: liulf@isu.edu.tw [Department of Biological Science and Technology, I-Shou University, Taiwan, ROC (China)

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer Neuron cancer stem cells (NCSCs) behave high multiply of growth on collagen scaffold. Black-Right-Pointing-Pointer Enhancement of NCSCs neurite outgrowth on porous collagen scaffold. Black-Right-Pointing-Pointer 3-D collagen culture of NCSCs shows an advance differentiation than 2-D culture. -- Abstract: Collagen is one component of the extracellular matrix that has been widely used for constructive remodeling to facilitate cell growth and differentiation. The 3-D distribution and growth of cells within the porous scaffold suggest a clinical significance for nerve tissue engineering. In the current study, we investigated proliferation and differentiation of neuron cancer stem cells (NCSCs) on a 3-D porous collagen scaffold that mimics the natural extracellular matrix. We first generated green fluorescence protein (GFP) expressing NCSCs using a lentiviral system to instantly monitor the transitions of morphological changes during growth on the 3-D scaffold. We found that proliferation of GFP-NCSCs increased, and a single cell mass rapidly grew with unrestricted expansion between days 3 and 9 in culture. Moreover, immunostaining with neuronal nuclei (NeuN) revealed that NCSCs grown on the 3-D collagen scaffold significantly enhanced neurite outgrowth. Our findings confirmed that the 80 {mu}m porous collagen scaffold could enhance attachment, viability and differentiation of the cancer neural stem cells. This result could provide a new application for nerve tissue engineering and nerve regeneration.

  5. Facile fabrication of the porous three-dimensional regenerated silk fibroin scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Zhengbing; Wen, Jianchuan [State Key Laboratory of Molecular Engineering of Polymers, Advanced Materials Laboratory, Department of Macromolecular Science, Fudan University, Shanghai 200433 (China); Yao, Jinrong, E-mail: yaoyaojr@fudan.edu.cn [State Key Laboratory of Molecular Engineering of Polymers, Advanced Materials Laboratory, Department of Macromolecular Science, Fudan University, Shanghai 200433 (China); Chen, Xin [State Key Laboratory of Molecular Engineering of Polymers, Advanced Materials Laboratory, Department of Macromolecular Science, Fudan University, Shanghai 200433 (China); Ni, Yusu [Otology and Skull Base Surgery Department, Eye and ENT Hospital of Fudan University, Shanghai 200031 (China); Shao, Zhengzhong [State Key Laboratory of Molecular Engineering of Polymers, Advanced Materials Laboratory, Department of Macromolecular Science, Fudan University, Shanghai 200433 (China)

    2013-08-01

    In the present work, we report a new facile method to fabricate porous three-dimensional regenerated silk fibroin (RSF) scaffolds through n-butanol- and freezing-induced conformation transition and phase separation. The effects of RSF concentration, freezing temperature and n-butanol addition on the microstructure, the secondary structures of silk fibroin and apparent mechanical properties of the RSF scaffolds were investigated by SEM, {sup 13}C CP-MAS NMR spectra and mechanical testing, respectively. By adjusting the RSF concentration and n-butanol addition, the pore size of the scaffold could be controlled in the range from of 10 μm to 350 μm with 84%–98% of porosity. The tensile strength of the wet scaffold reached the maximum of 755.2 ± 33.6 kPa when the concentration of RSF solution was increased to 15% w/w. Moreover, post-treatment with ethanol further induced conformation transition of RSF from random coil or helix to β-sheet. The porous scaffolds prepared by this facile and energy-saving method with good biocompatibility will have great potential for application in tissue engineering. Highlights: • A new facile and energy-saving method to fabricate porous silk fibroin scaffolds; • Freeze-drying step (a typical high energy consuming process) is unnecessary; • Morphology and mechanical properties of scaffolds were easily controlled; • Ethanol post-treatment can be used to tune the degradation behavior.

  6. Improving effects of chitosan nanofiber scaffolds on osteoblast proliferation and maturation.

    Science.gov (United States)

    Ho, Ming-Hua; Liao, Mei-Hsiu; Lin, Yi-Ling; Lai, Chien-Hao; Lin, Pei-I; Chen, Ruei-Ming

    2014-01-01

    Osteoblast maturation plays a key role in regulating osteogenesis. Electrospun nanofibrous products were reported to possess a high surface area and porosity. In this study, we developed chitosan nanofibers and examined the effects of nanofibrous scaffolds on osteoblast maturation and the possible mechanisms. Macro- and micro observations of the chitosan nanofibers revealed that these nanoproducts had a flat surface and well-distributed fibers with nanoscale diameters. Mouse osteoblasts were able to attach onto the chitosan nanofiber scaffolds, and the scaffolds degraded in a time-dependent manner. Analysis by scanning electron microscopy further showed mouse osteoblasts adhered onto the scaffolds along the nanofibers, and cell-cell communication was also detected. Mouse osteoblasts grew much better on chitosan nanofiber scaffolds than on chitosan films. In addition, human osteoblasts were able to adhere and grow on the chitosan nanofiber scaffolds. Interestingly, culturing human osteoblasts on chitosan nanofiber scaffolds time-dependently increased DNA replication and cell proliferation. In parallel, administration of human osteoblasts onto chitosan nanofibers significantly induced osteopontin, osteocalcin, and alkaline phosphatase (ALP) messenger (m)RNA expression. As to the mechanism, chitosan nanofibers triggered runt-related transcription factor 2 mRNA and protein syntheses. Consequently, results of ALP-, alizarin red-, and von Kossa-staining analyses showed that chitosan nanofibers improved osteoblast mineralization. Taken together, results of this study demonstrate that chitosan nanofibers can stimulate osteoblast proliferation and maturation via runt-related transcription factor 2-mediated regulation of osteoblast-associated osteopontin, osteocalcin, and ALP gene expression.

  7. Sterilization of collagen scaffolds designed for peripheral nerve regeneration: Effect on microstructure, degradation and cellular colonization.

    Science.gov (United States)

    Monaco, Graziana; Cholas, Rahmatullah; Salvatore, Luca; Madaghiele, Marta; Sannino, Alessandro

    2017-02-01

    In this study we investigated the impact of three different sterilization methods, dry heat (DHS), ethylene oxide (EtO) and electron beam radiation (β), on the properties of cylindrical collagen scaffolds with longitudinally oriented pore channels, specifically designed for peripheral nerve regeneration. Scanning electron microscopy, mechanical testing, quantification of primary amines, differential scanning calorimetry and enzymatic degradation were performed to analyze possible structural and chemical changes induced by the sterilization. Moreover, in vitro proliferation and infiltration of the rat Schwann cell line RSC96 within the scaffolds was evaluated, up to 10days of culture. No major differences in morphology and compressive stiffness were observed among scaffolds sterilized by the different methods, as all samples showed approximately the same structure and stiffness as the unsterilized control. Proliferation, infiltration, distribution and morphology of RSC96 cells within the scaffolds were also comparable throughout the duration of the cell culture study, regardless of the sterilization treatment. However, we found a slight increase of chemical crosslinking upon sterilization (EtOsterilized scaffolds. The results demonstrated that β irradiation impaired the scaffold properties to a greater extent, whereas EtO exposure appeared as the most suitable method for the sterilization of the proposed scaffolds. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Fabrication of Porous α-TCP/Gellan Gum Scaffold for Bone Tissue Engineering.

    Science.gov (United States)

    Wen, Jian; Kim, Ill Yong; Kikuta, Koichi; Ohtsuki, Chikara

    2016-03-01

    α-tricalcium phosphate (α-TCP, α-Ca3(PO4)2) receives great attention for bone repairing due to its biodegradability and capability of transformation to human bone's main inorganic components, hydroxyapatite (HAp). α-TCP porous scaffold is easily procurable by sintering of the low-temperature polymorph of TCP, β-TCR Still, porous body of α-TCP is too brittle to being handled and shaped, limiting its clinical application as implant materials. To improve mechanical properties of α-TCP porous scaffold, the present study focused on coating of a type of polysaccharides on α-TCP scaffolds. Gellan gum was chosen as the polysaccharide for coating because of its biodegradability as well as the potential acting as substrate for HAp deposition during hydration of α-TCP after exposure to body fluid. After coating of gellan gum on α-TCP scaffolds with porosity of 75 vol%, the compressive strength increased from 0.45 MPa to around 2.00 MPa. Among the coated scaffold, the maximum compressive strength, 3.97 MPa, was obtained on the scaffold with porosity of 63 vol%. Improvement of mechanical properties of α-TCP/gellan gum composites was achieved to show easy handling performance for a bone substitute for tissue repairing. The dissolving rate of the coated scaffolds was also controlled by adjusting the concentration of GG solutions.

  9. Doxorubicin-loaded PLA/pearl electrospun nanofibrous scaffold for drug delivery and tumor cell treatment

    Science.gov (United States)

    Dai, Jiamu; Jin, Junhong; Yang, Shenglin; Li, Guang

    2017-07-01

    A drug-loaded implantable scaffold is a promising substitute for the treatment of tissue defects after a tumor resection operation. In this work, natural pearl powder with good biocompatibility and osteoconductivity was incorporated into polylactic (PLA) nanofibers via electrospinning, and doxorubicin hydrochloride (DOX) was also loaded in the PLA/pearl scaffold, resulting in a drug-loaded composite nanofibrous scaffold (DOX@PLA/pearl). In vitro drug delivery of DOX from a PLA/pearl composite scaffold was measured and in vitro anti-tumor efficacy was also examined, in particular the effect of the pearl content on both key properties were studied. The results showed that DOX was successfully loaded into PLA/pearl composite nanofibrous scaffolds with different pearl content. More importantly, the delivery rate of DOX kept rising as the pearl content increased, and the anti-tumor efficacy of the drug-loaded scaffold on HeLa cells was improved at an appropriate pearl powder concentration. Thus, we expect that the prepared DOX@PLA/pearl powder nanofibrous mat is a highly promising implantable scaffold that has great potential in postoperative cancer treatment.

  10. Cartilage Tissue Engineering with Silk Fibroin Scaffolds Fabricated by Indirect Additive Manufacturing Technology

    Directory of Open Access Journals (Sweden)

    Chih-Hao Chen

    2014-03-01

    Full Text Available Advanced tissue engineering (TE technology based on additive manufacturing (AM can fabricate scaffolds with a three-dimensional (3D environment suitable for cartilage regeneration. Specifically, AM technology may allow the incorporation of complex architectural features. The present study involves the fabrication of 3D TE scaffolds by an indirect AM approach using silk fibroin (SF. From scanning electron microscopic observations, the presence of micro-pores and interconnected channels within the scaffold could be verified, resulting in a TE scaffold with both micro- and macro-structural features. The intrinsic properties, such as the chemical structure and thermal characteristics of SF, were preserved after the indirect AM manufacturing process. In vitro cell culture within the SF scaffold using porcine articular chondrocytes showed a steady increase in cell numbers up to Day 14. The specific production (per cell basis of the cartilage-specific extracellular matrix component (collagen Type II was enhanced with culture time up to 12 weeks, indicating the re-differentiation of chondrocytes within the scaffold. Subcutaneous implantation of the scaffold-chondrocyte constructs in nude mice also confirmed the formation of ectopic cartilage by histological examination and immunostaining.

  11. Synthesizing Results from Empirical Research on Computer-Based Scaffolding in STEM Education: A Meta-Analysis

    Science.gov (United States)

    Belland, Brian R.; Walker, Andrew E.; Kim, Nam Ju; Lefler, Mason

    2017-01-01

    Computer-based scaffolding assists students as they generate solutions to complex problems, goals, or tasks, helping increase and integrate their higher order skills in the process. However, despite decades of research on scaffolding in STEM (science, technology, engineering, and mathematics) education, no existing comprehensive meta-analysis has…

  12. Electrospun PLLA nanofiber scaffolds and their use in combination with BMP-2 for reconstruction of bone defects.

    Directory of Open Access Journals (Sweden)

    Markus D Schofer

    Full Text Available Adequate migration and differentiation of mesenchymal stem cells is essential for regeneration of large bone defects. To achieve this, modern graft materials are becoming increasingly important. Among them, electrospun nanofiber scaffolds are a promising approach, because of their high physical porosity and potential to mimic the extracellular matrix (ECM.The objective of the present study was to examine the impact of electrospun PLLA nanofiber scaffolds on bone formation in vivo, using a critical size rat calvarial defect model. In addition we analyzed whether direct incorporation of bone morphogenetic protein 2 (BMP-2 into nanofibers could enhance the osteoinductivity of the scaffolds. Two critical size calvarial defects (5 mm were created in the parietal bones of adult male Sprague-Dawley rats. Defects were either (1 left unfilled, or treated with (2 bovine spongiosa, (3 PLLA scaffolds alone or (4 PLLA/BMP-2 scaffolds. Cranial CT-scans were taken at fixed intervals in vivo. Specimens obtained after euthanasia were processed for histology, histomorphometry and immunostaining (Osteocalcin, BMP-2 and Smad5.PLLA scaffolds were well colonized with cells after implantation, but only showed marginal ossification. PLLA/BMP-2 scaffolds showed much better bone regeneration and several ossification foci were observed throughout the defect. PLLA/BMP-2 scaffolds also stimulated significantly faster bone regeneration during the first eight weeks compared to bovine spongiosa. However, no significant differences between these two scaffolds could be observed after twelve weeks. Expression of osteogenic marker proteins in PLLA/BMP-2 scaffolds continuously increased throughout the observation period. After twelve weeks osteocalcin, BMP-2 and Smad5 were all significantly higher in the PLLA/BMP-2 group than in all other groups.Electrospun PLLA nanofibers facilitate colonization of bone defects, while their use in combination with BMP-2 also increases bone

  13. Semiotic Scaffolding in Living Systems

    DEFF Research Database (Denmark)

    Hoffmeyer, Jesper

    2008-01-01

    a diversity of levels. Such semiotic controls may be distinguished from ordinary deterministic control mechanisms through an inbuilt anticipatory capacity based on a distinct kind of causation that I call here "semiotic causation" to denote the bringing about of changes under the guidance of interpretation...... in a local .context. Anticipation through the skilled interpretation of indicators of temporal relations in the context of a particular survival project (or life strategy) guides organismic behavior towards local ends. This network of semiotic controls establishes an enormously complex semiotic scaffolding...

  14. A practice scaffolding interactive platform

    DEFF Research Database (Denmark)

    Bundsgaard, Jeppe

    2009-01-01

    A Practice Scaffolding Interactive Platform (PracSIP) is a social learning platform which supports students in collaborative project based learning by simulating a professional practice. A PracSIP puts the core tools of the simulated practice at the students' disposal, it organizes collaboration......, structures the students' activity, and interactively supports subject learning. A PracSIP facilitates students' development of complex competencies, and at the same time it supports the students' development of skills defined in the curriculum. The paper introduces the concept, presents the theoretical...... foundations, and gives an example of a PracSIP....

  15. Molecular Recognition within Synaptic Scaffolds

    DEFF Research Database (Denmark)

    Erlendsson, Simon

    domains, responsible for tethering their respective synaptic protein ligands. Therefore, understanding the specificity and binding mechanisms of PDZ domain proteins is essential to understand regulation of synaptic plasticity. PICK1 is a PDZ domain-containing scaffolding protein predominantly expressed...... and characterized in the postsynaptic neurons, where it is involved in regulating processes underlying LTP and LTD. However, PICK1 has also been found to interact with a wide range of other regulatory proteins, receptors and transporters, which implicates PICK1 in several processes important for proper synaptic...

  16. Bone Regeneration by Nanohydroxyapatite/Chitosan/Poly(lactide-co-glycolide Scaffolds Seeded with Human Umbilical Cord Mesenchymal Stem Cells in the Calvarial Defects of the Nude Mice

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2015-01-01

    Full Text Available In the preliminary study, we have found an excellent osteogenic property of nanohydroxyapatite/chitosan/poly(lactide-co-glycolide (nHA/CS/PLGA scaffolds seeded with human umbilical cord mesenchymal stem cells (hUCMSCs in vitro and subcutaneously in the nude mice. The aim of this study was to further evaluate the osteogenic capacity of nHA/CS/PLGA scaffolds seeded with hUCMSCs in the calvarial defects of the nude mice. Totally 108 nude mice were included and divided into 6 groups: PLGA scaffolds + hUCMSCs; nHA/PLGA scaffolds + hUCMSCs; CS/PLGA scaffolds + hUCMSCs; nHA/CS/PLGA scaffolds + hUCMSCs; nHA/CS/PLGA scaffolds without seeding; the control group (no scaffolds (n=18. The scaffolds were implanted into the calvarial defects of nude mice. The amount of new bones was evaluated by fluorescence labeling, H&E staining, and Van Gieson staining at 4 and 8 weeks, respectively. The results demonstrated that the amount of new bones was significantly increased in the group of nHA/CS/PLGA scaffolds seeded with hUCMSCs (p<0.01. On the basis of previous studies in vitro and in subcutaneous implantation of the nude mice, the results revealed that the nHA and CS also enhanced the bone regeneration by nHA/CS/PLGA scaffolds seeded with hUCMSCs in the calvarial defects of the nude mice at early stage.

  17. Effect of low-temperature ethylene oxide and electron beam sterilization on the in vitro and in vivo function of reconstituted extracellular matrix-derived scaffolds.

    Science.gov (United States)

    Proffen, Benedikt L; Perrone, Gabriel S; Fleming, Braden C; Sieker, Jakob T; Kramer, Joshua; Hawes, Michael L; Murray, Martha M

    2015-10-01

    Reconstituted extracellular matrix (ECM)-derived scaffolds are commonly utilized in preclinical tissue engineering studies as delivery vehicles for cells and growth factors. Translation into clinical use requires identifying a sterilization method that effectively removes bacteria but does not harm scaffold function. To determine effectiveness of sterilization and impact on ECM scaffold integrity and function, low-temperature ethylene oxide and 15 kGy electron beam irradiation techniques were evaluated. Scaffold sterility was assessed in accordance to United States Pharmacopeia Chapter 71. Scaffold matrix degradation was determined in vitro using enzymatic resistance tests and gel electrophoresis. Scaffold mechanics including elastic modulus, yield stress and collapse modulus were tested. Lastly, 14 Yorkshire pigs underwent ACL transection and bio-enhanced ACL repair using sterilized scaffolds. Histologic response of ligament, synovium, and lymph nodes was compared at 4, 6, and 8 weeks. Ethylene oxide as well as electron beam irradiation yielded sterile scaffolds. Scaffold resistance to enzymatic digestion and protein integrity slightly decreased after electron beam irradiation while ethylene oxide altered scaffold matrix. Scaffold elastic modulus and yield stress were increased after electron beam treatment, while collapse modulus was increased after ethylene oxide treatment. No significant changes in ACL dimensions, in vivo scaffold resorption rate, or histologic response of synovium, ligament, and lymph nodes with either terminal sterilization technique were detectable. In conclusion, this study identifies two methods to terminally sterilize an ECM scaffold. In vitro scaffold properties were slightly changed without significantly influencing the biologic responses of the surrounding tissues in vivo. This is a critical step toward translating new tissue engineering strategies to clinical trials. © The Author(s) 2015.

  18. Effect of Low Temperature Ethylene Oxide and Electron Beam Sterilization on the In Vitro and In Vivo Function of Reconstituted Extracellular Matrix-Derived Scaffolds

    Science.gov (United States)

    Proffen, Benedikt L.; Perrone, Gabriel S.; Fleming, Braden C.; Sieker, Jakob T.; Kramer, Joshua; Hawes, Michael L.; Murray, Martha M.

    2015-01-01

    Reconstituted extracellular matrix (ECM) -derived scaffolds are commonly utilized in preclinical tissue engineering studies as delivery vehicles for cells and growth factors. Translation into clinical use requires identifying a sterilization method that effectively removes bacteria but doesn’t harm scaffold function. To determine effectiveness of sterilization and impact on ECM scaffold integrity and function low temperature ethylene oxide and 15kGy electron beam irradiation techniques were evaluated. Scaffold sterility was assessed in accordance to United States Pharmacopeia Chapter 71. Scaffold matrix degradation was determined in vitro using enzymatic resistance tests and gel electrophoresis. Scaffold mechanics including elastic modulus, yield stress and collapse modulus were tested. Lastly, 14 Yorkshire pigs underwent ACL transection and bio-enhanced ACL repair using sterilized scaffolds. Histologic response of ligament, synovium and lymph nodes was compared at 4, 6, and 8 weeks. Ethylene oxide as well as electron beam irradiation yielded sterile scaffolds. Scaffold resistance to enzymatic digestion and protein integrity slightly decreased after electron beam irradiation while ethylene oxide altered scaffold matrix. Scaffold elastic modulus and yield stress were increased after electron beam treatment, while collapse modulus was increased after ethylene oxide treatment. No significant changes in ACL dimensions, in vivo scaffold resorption rate, or histologic response of synovium, ligament and lymph nodes with either terminal sterilization technique were detectable. In conclusion, this study identifies two methods to terminally sterilize an ECM scaffold. In vitro scaffold properties were slightly changed without significantly influencing the biologic responses of the surrounding tissues in vivo. This is a critical step toward translating new tissue engineering strategies to clinical trials. PMID:26088294

  19. Scaffolding Mathematical Modelling with a Solution Plan

    Science.gov (United States)

    Schukajlow, Stanislaw; Kolter, Jana; Blum, Werner

    2015-01-01

    In the study presented in this paper, we examined the possibility to scaffold mathematical modelling with strategies. The strategies were prompted using an instrument called "solution plan" as a scaffold. The effects of this step by step instrument on mathematical modelling competency and on self-reported strategies were tested using…

  20. Scaffold Filling under the Breakpoint Distance

    Science.gov (United States)

    Jiang, Haitao; Zheng, Chunfang; Sankoff, David; Zhu, Binhai

    Motivated by the trend of genome sequencing without completing the sequence of the whole genomes, Muñoz et al. recently studied the problem of filling an incomplete multichromosomal genome (or scaffold) I with respect to a complete target genome G such that the resulting genomic distance between I' and G is minimized, where I' is the corresponding filled scaffold. We call this problem the one-sided scaffold filling problem. In this paper, we follow Muñoz et al. to investigate the scaffold filling problem under the breakpoint distance for the simplest unichromosomal genomes. When the input genome contains no gene repetition (i.e., is a fragment of a permutation), we show that the two-sided scaffold filling problem is polynomially solvable. However, when the input genome contains some genes which appear twice, even the one-sided scaffold filling problem becomes NP-complete. Finally, using the ideas for solving the two-sided scaffold filling problem under the breakpoint distance we show that the two-sided scaffold filling problem under the genomic/rearrangement distance is also polynomially solvable.

  1. Reasons for applying innovations for scaffolding work

    NARCIS (Netherlands)

    Jong, A.M. de; Molen, H. van der; Vink, P.; Eikhout, S.; Koningsveld, E.

    2003-01-01

    In this paper reasons for applying and for not applying technical and organisational innovations in scaffolding work are studied. In a participatory ergonomic approach these innovations were developed to reduce problems concerning physical load of scaffolders. In this study reasons for the adoption

  2. Teaching language teachers scaffolding professional learning

    CERN Document Server

    Maggioli, Gabriel Diaz

    2012-01-01

    Teaching Language Teachers: Scaffolding Professional Learning provides an updated view of as well as a reader-friendly introduction to the field of Teaching Teachers, with special reference to language teaching. By taking a decidedly Sociocultural perspective, the book addresses the main role of the Teacher of Teachers (ToT) as that of scaffolding the professional learning of aspiring teachers.

  3. Recombinant protein scaffolds for tissue engineering.

    Science.gov (United States)

    Werkmeister, Jerome A; Ramshaw, John A M

    2012-02-01

    New biological materials for tissue engineering are now being developed using common genetic engineering capabilities to clone and express a variety of genetic elements that allow cost-effective purification and scaffold fabrication from these recombinant proteins, peptides or from chimeric combinations of these. The field is limitless as long as the gene sequences are known. The utility is dependent on the ease, product yield and adaptability of these protein products to the biomedical field. The development of recombinant proteins as scaffolds, while still an emerging technology with respect to commercial products, is scientifically superior to current use of natural materials or synthetic polymer scaffolds, in terms of designing specific structures with desired degrees of biological complexities and motifs. In the field of tissue engineering, next generation scaffolds will be the key to directing appropriate tissue regeneration. The initial period of biodegradable synthetic scaffolds that provided shape and mechanical integrity, but no biological information, is phasing out. The era of protein scaffolds offers distinct advantages, particularly with the combination of powerful tools of molecular biology. These include, for example, the production of human proteins of uniform quality that are free of infectious agents and the ability to make suitable quantities of proteins that are found in low quantity or are hard to isolate from tissue. For the particular needs of tissue engineering scaffolds, fibrous proteins like collagens, elastin, silks and combinations of these offer further advantages of natural well-defined structural scaffolds as well as endless possibilities of controlling functionality by genetic manipulation.

  4. Hydroxyapatite Whisker Reinforced 63s Glass Scaffolds for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Cijun Shuai

    2015-01-01

    Full Text Available Bioactive glass (BG is widely used for bone tissue engineering. However, poor mechanical properties are the major shortcomings. In the study, hydroxyapatite nanowhisker (HANw was used as a reinforcement to improve the mechanical properties. 63s glass/HANw scaffolds were successfully fabricated by selective laser sintering (SLS. It was found that the optimal compressive strength and fracture toughness were achieved when 10 wt.% HANw was added. This led to 36% increase in compressive strength and 83% increase in fracture toughness, respectively, compared with pure 63s glass scaffolds. Different reinforcement mechanisms were analyzed based on the microstructure investigation. Whisker bridging and whisker pulling-out were efficient in absorbing crack propagating energy, resulting in the improvement of the mechanical properties. Moreover, bioactivity and biocompatibility of the scaffolds were evaluated in vitro. The results showed that composite scaffolds with 10 wt.% HANw exhibited good apatite-forming ability and cellular affinity.

  5. Modified silk fibroin scaffolds with collagen/decellularized pulp for bone tissue engineering in cleft palate: Morphological structures and biofunctionalities

    Energy Technology Data Exchange (ETDEWEB)

    Sangkert, Supaporn [Biological Materials for Medicine Research Unit, Faculty of Medicine, Institute of Biomedical Engineering, Prince of Songkla University, Hat Yai, Songkhla90110 (Thailand); Meesane, Jirut, E-mail: jirutmeesane999@yahoo.co.uk [Biological Materials for Medicine Research Unit, Faculty of Medicine, Institute of Biomedical Engineering, Prince of Songkla University, Hat Yai, Songkhla90110 (Thailand); Kamonmattayakul, Suttatip [Faculty of Dentistry, Department of Preventive Dentistry, Prince of Songkla University, Hat Yai, Songkhla90110 (Thailand); Chai, Wen Lin [Faculty of Dentistry, Department of General Dental Practice and Oral and Maxillofacial Imaging, University of Malaya, Kuala Lumpur (Malaysia)

    2016-01-01

    Cleft palate is a congenital malformation that generates a maxillofacial bone defect around the mouth area. The creation of performance scaffolds for bone tissue engineering in cleft palate is an issue that was proposed in this research. Because of its good biocompatibility, high stability, and non-toxicity, silk fibroin was selected as the scaffold of choice in this research. Silk fibroin scaffolds were prepared by freeze-drying before immerging in a solution of collagen, decellularized pulp, and collagen/decellularized pulp. Then, the immersed scaffolds were freeze-dried. Structural organization in solution was observed by Atomic Force Microscope (AFM). The molecular organization of the solutions and crystal structure of the scaffolds were characterized by Fourier transform infrared (FT-IR) and X-ray diffraction (XRD), respectively. The weight increase of the modified scaffolds and the pore size were determined. The morphology was observed by a scanning electron microscope (SEM). Mechanical properties were tested. Biofunctionalities were considered by seeding osteoblasts in silk fibroin scaffolds before analysis of the cell proliferation, viability, total protein assay, and histological analysis. The results demonstrated that dendrite structure of the fibrils occurred in those solutions. Molecular organization of the components in solution arranged themselves into an irregular structure. The fibrils were deposited in the pores of the modified silk fibroin scaffolds. The modified scaffolds showed a beta-sheet structure. The morphological structure affected the mechanical properties of the silk fibroin scaffolds with and without modification. Following assessment of the biofunctionalities, the modified silk fibroin scaffolds could induce cell proliferation, viability, and total protein particularly in modified silk fibroin with collagen/decellularized pulp. Furthermore, the histological analysis indicated that the cells could adhere in modified silk fibroin

  6. Three-dimensional nonwoven scaffolds from a novel biodegradable poly(ester amide) for tissue engineering applications.

    Science.gov (United States)

    Hemmrich, Karsten; Salber, Jochen; Meersch, Melanie; Wiesemann, Ute; Gries, Thomas; Pallua, Norbert; Klee, Doris

    2008-01-01

    Biodegradable polyesters are established biomaterials in medicine due to their chemical characteristics and options for material processing. A main problem, however, is the release of acid degradation products during biodegradation with severe local pH-drops and inflammatory reactions. Polyesteramides, in contrast, show a less prominent pH-drop during degradation. In this study, we developed a simple, reproducible synthesis of the poly(ester amide) (PEA) type C starting from epsilon-caprolactame, 1,4-butanediol, and adipic acid in a one-batch two-step reaction and conducted the manufacturing of PEA-derived 3D textile scaffolds applicable for tissue engineering purposes. The thermal and mechanical properties of PEA-type C were analysed and the structural conformity of different batches was confirmed by NMR spectroscopy and size exclusion chromatography. The polymer was formed into nonwovens by textile manufacturing. Cytotoxicity tests and X-ray photoelectron spectroscopy (XPS) were used to analyze the effect of scaffold extraction before cell seeding. The manufactured carriers were seeded with human preadipocytes and examined for cellular proliferation and differentiation. The production of PEA type C successfully occurred via simultaneous ring-opening polymerization of epsilon-caprolactame and polycondensation with 1,4-butanediol and adipic acid at 250 degrees C under high-vacuum. Soxhlet extraction allowed optimal cleaning of nonwoven scaffolds. Extracted PEA-derived matrices were capable of allowing good adherence, proliferation, and differentiation of preadipocytes. These results are encouraging and guidance towards an optimally prepared nonwoven carrier applicable for clinical use.

  7. A novel therapeutic design of microporous-structured biopolymer scaffolds for drug loading and delivery.

    Science.gov (United States)

    Dorj, Biligzaya; Won, Jong-Eun; Purevdorj, Odnoo; Patel, Kapil D; Kim, Joong-Hyun; Lee, Eun-Jung; Kim, Hae-Won

    2014-03-01

    Three-dimensional (3-D) open-channeled scaffolds of biopolymers are a promising candidate matrix for tissue engineering. When scaffolds have the capacity to deliver bioactive molecules the potential for tissue regeneration should be greatly enhanced. In order to improve drug-delivery capacity, we exploit 3-D poly(lactic acid) (PLA) scaffolds by creating microporosity within the scaffold network. Macroporous channeled PLA with a controlled pore configuration was obtained by a robotic dispensing technique. In particular, a room temperature ionic liquid (RTIL) bearing hydrophilic counter-anions, such as OTf and Cl, was introduced to the biopolymer solution at varying ratios. The RTIL-biopolymer slurry was homogenized by ultrasonication, and then solidified through the robotic dispensing process, during which the biopolymer and RTIL formed a bicontinuous interpenetrating network. After ethanol wash-out treatment the RTIL was completely removed to leave highly microporous open channels throughout the PLA network. The resultant pore size was observed to be a few micrometers (average 2.43 μm) and microporosity was determined to be ∼ 70%. The microporous surface was also shown to favor initial cell adhesion, stimulating cell anchorage on the microporous structure. Furthermore, in vivo tissue responses assessed in rat subcutaneous tissue revealed good tissue compatibility, with minimal inflammatory reactions, while gathering a larger population of fibroblastic cells than the non-microporous scaffolds, and even facilitating invasion of the cells within the microporous structure. The efficacy of the micropore networks generated within the 3-D scaffolds in loading and releasing therapeutic molecules was addressed using antibiotic sodium ampicillin and protein cytochrome C as model drugs. The microporous scaffolds exhibited significantly enhanced drug loading capacity: 4-5 times increase in ampicillin and 9-10 times increase in cytochrome C compared to the non

  8. Influence of Controlled Cooling in Bimodal Scaffold Fabrication Using Polymers with Different Melting Temperatures

    Directory of Open Access Journals (Sweden)

    Hernan Lara-Padilla

    2017-06-01

    Full Text Available The combination of different materials and capabilities to manufacture at several scales open new possibilities in scaffold design for bone regeneration. This work is focused on bimodal scaffolds that combine polylactic acid (PLA melt extruded strands with polycaprolactone (PCL electrospun fibers. This type of bimodal scaffold offers better mechanical properties, compared to the use of PCL for the extruded strands, and provides potential a means for controlled drug and/or growth factor delivery through the electrospun fibers. The technologies of fused deposition modeling (FDM and electrospinning were combined to create 3D bimodal constructs. The system uses a controlled cooling system allowing the combination of polymers with different melting temperatures to generate integrated scaffold architecture. The thermoplastic polymers used in the FDM process enhance the mechanical properties of the bimodal scaffold and control the pore structure. Integrated layers of electrospun microfibers induce an increase of the surface area for cell culture purposes, as well as potential in situ controlled drug and/or growth factor delivery. The proposed bimodal scaffolds (PLA extruded strands and PCL electrospun fibers show appropriate morphology and better mechanical properties when compared to the use of PCL extruded strands. On average, bimodal scaffolds with overall dimensions of 30 × 30 × 2.4 mm3 (strand diameter of 0.5 mm, strand stepover of 2.5 mm, pore size of 2 mm, and layer height of 0.3 mm showed scaffold stiffness of 23.73 MPa and compression strength of 3.85 MPa. A cytotoxicity assay based human fibroblasts showed viability of the scaffold materials.

  9. Geometry Design Optimization of Functionally Graded Scaffolds for Bone Tissue Engineering: A Mechanobiological Approach.

    Directory of Open Access Journals (Sweden)

    Antonio Boccaccio

    Full Text Available Functionally Graded Scaffolds (FGSs are porous biomaterials where porosity changes in space with a specific gradient. In spite of their wide use in bone tissue engineering, possible models that relate the scaffold gradient to the mechanical and biological requirements for the regeneration of the bony tissue are currently missing. In this study we attempt to bridge the gap by developing a mechanobiology-based optimization algorithm aimed to determine the optimal graded porosity distribution in FGSs. The algorithm combines the parametric finite element model of a FGS, a computational mechano-regulation model and a numerical optimization routine. For assigned boundary and loading conditions, the algorithm builds iteratively different scaffold geometry configurations with different porosity distributions until the best microstructure geometry is reached, i.e. the geometry that allows the amount of bone formation to be maximized. We tested different porosity distribution laws, loading conditions and scaffold Young's modulus values. For each combination of these variables, the explicit equation of the porosity distribution law-i.e the law that describes the pore dimensions in function of the spatial coordinates-was determined that allows the highest amounts of bone to be generated. The results show that the loading conditions affect significantly the optimal porosity distribution. For a pure compression loading, it was found that the pore dimensions are almost constant throughout the entire scaffold and using a FGS allows the formation of amounts of bone slightly larger than those obtainable with a homogeneous porosity scaffold. For a pure shear loading, instead, FGSs allow to significantly increase the bone formation compared to a homogeneous porosity scaffolds. Although experimental data is still necessary to properly relate the mechanical/biological environment to the scaffold microstructure, this model represents an important step towards

  10. In vitro performance of 13-93 bioactive glass fiber and trabecular scaffolds with MLO-A5 osteogenic cells.

    Science.gov (United States)

    Modglin, Vernon C; Brown, Roger F; Fu, Qiang; Rahaman, Mohamed N; Jung, Steven B; Day, Delbert E

    2012-10-01

    This in vitro study was performed to evaluate the ability of two types of porous bioactive glass scaffolds to support the growth and differentiation of an established osteogenic cell line. The two scaffold types tested included 13-93 glass fiber and trabecular-like scaffolds seeded with murine MLO-A5 cells and cultured for intervals of 2 to 12 days. Culture in MTT-containing medium showed metabolically active cells both on the surface and within the interior of the scaffolds. Scanning electron microscopy revealed well-attached cells on both types of scaffolds with a continual increase in cell density over a 6-day period. Protein measurements also showed a linear increase in cell density during the incubation. Activity of alkaline phosphatase, a key indicator of osteoblast differentiation, increased about 10-fold during the 6-day incubation with both scaffold types. The addition of mineralization media to MLO-A5 seeded scaffolds triggered extensive formation of alizarin red-positive mineralized extracellular material, additional evidence of cell differentiation and completion of the final step of bone formation on the constructs. Collectively, the results indicate that the 13-93 glass fiber and trabecular scaffolds promote the attachment, growth, and differentiation of MLO-A5 osteogenic cells and could potentially be used for bone tissue engineering applications. Copyright © 2012 Wiley Periodicals, Inc.

  11. A comparison study between electrospun polycaprolactone and piezoelectric poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds for bone tissue engineering.

    Science.gov (United States)

    Gorodzha, Svetlana N; Muslimov, Albert R; Syromotina, Dina S; Timin, Alexander S; Tcvetkov, Nikolai Y; Lepik, Kirill V; Petrova, Aleksandra V; Surmeneva, Maria A; Gorin, Dmitry A; Sukhorukov, Gleb B; Surmenev, Roman A

    2017-12-01

    In this study, bone scaffolds composed of polycaprolactone (PCL), piezoelectric poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and a combination of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and silicate containing hydroxyapatite (PHBV-SiHA) were successfully fabricated by a conventional electrospinning process. The morphological, chemical, wetting and biological properties of the scaffolds were examined. All fabricated scaffolds are composed of randomly oriented fibres with diameters from 800nm to 12μm. Fibre size increased with the addition of SiHA to PHBV scaffolds. Moreover, fibre surface roughness in the case of hybrid scaffolds was also increased. XRD, FTIR and Raman spectroscopy were used to analyse the chemical composition of the scaffolds, and contact angle measurements were performed to reveal the wetting behaviour of the synthesized materials. To determine the influence of the piezoelectric nature of PHBV in combination with SiHA nanoparticles on cell attachment and proliferation, PCL (non-piezoelectric), pure PHBV, and PHBV-SiHA scaffolds were seeded with human mesenchymal stem cells (hMSCs). In vitro study on hMSC adhesion, viability, spreading and osteogenic differentiation showed that the PHBV-SiHA scaffolds had the largest adhesion and differentiation abilities compared with other scaffolds. Moreover, the piezoelectric PHBV scaffolds have demonstrated better calcium deposition potential compared with non-piezoelectric PCL. The results of the study revealed pronounced advantages of hybrid PHBV-SiHA scaffolds to be used in bone tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Meniscal repair in vivo using human chondrocyte-seeded PLGA mesh scaffold pretreated with platelet-rich plasma.

    Science.gov (United States)

    Kwak, Hong Suk; Nam, Jinwoo; Lee, Ji-Hye; Kim, Hee Joong; Yoo, Jeong Joon

    2017-02-01

    The objective of this study was to test the hypothesis that platelet-rich plasma (PRP) pretreatment on a poly-lactic-co-glycolic acid (PLGA) mesh scaffold enhances the healing capacity of the meniscus with human chondrocyte-seeded scaffolds in vivo, even when the seeded number of cells was reduced from 10 million to one million. A flexible PLGA mesh scaffold was pretreated with PRP using a centrifugal technique. One million human articular chondrocytes were seeded onto the scaffold by dynamic oscillation. After 7 days, scaffolds were placed between human meniscal discs and were implanted subcutaneously in nude mice for 6 weeks (n = 16/group). Fluorescence microscopy demonstrated uniform attachment of the chondrocytes throughout the scaffolds 24 h following seeding. Cell attachment analysis revealed a significantly increased number of chondrocytes on PRP-pretreated than non-treated scaffolds (p < 0.05). Field emission scanning electron microscopy revealed chondrocytes attached to the PRP-pretreated scaffolds interconnecting their cellular processes with the fibrin network at 24 h and day 7 of culture. Of the 16 constructs containing PRP-pretreated scaffolds implanted in mice, six menisci healed completely, nine healed incompletely and one did not heal. Histological results from the 16 control constructs containing non-treated scaffolds revealed that none had healed completely, four healed incompletely and 12 did not heal. The histological outcome between the groups was significantly different (p < 0.05). These findings suggest that human articular chondrocytes on PRP-pretreated PLGA mesh scaffolds demonstrate increased cell attachment and enhance the healing capacity of meniscus with a reduced number of seeding cells in a meniscal repair mouse model. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  13. Structural Insights for Engineering Binding Proteins Based on Non-Antibody Scaffolds

    OpenAIRE

    Gilbreth, Ryan N.; Koide, Shohei

    2012-01-01

    Engineered binding proteins derived from non-antibody scaffolds constitute an increasingly prominent class of reagents in both research and therapeutic applications. The growing number of crystal structures of these “alternative” scaffold-based binding proteins in complex with their targets illustrate the mechanisms of molecular recognition that are common among these systems and those unique to each. This information is useful for critically assessing and improving/expanding engineering stra...

  14. In Vitro Osteogenic and Odontogenic Differentiation of Human Dental Pulp Stem Cells Seeded on Carboxymethyl Cellulose-Hydroxyapatite Hybrid Hydrogel.

    Directory of Open Access Journals (Sweden)

    Gabriella eTeti

    2015-10-01

    Full Text Available Stem cells from human dental pulp have been considered as an alternative source of adult stem cells in tissue engineering because of their potential to differentiate into multiple cell lineages.Recently, polysaccharide based hydrogels have become especially attractive as matrices for the repair and regeneration of a wide variety of tissues and organs. The incorporation of inorganic minerals as hydroxyapatite nanoparticles can modulate the performance of the scaffolds with potential applications in tissue engineering. The aim of this study was to verify the osteogenic and odontogenic differentiation of dental pulp stem cells (DPSCs cultured on a carboxymethyl cellulose—hydroxyapatite hybrid hydrogel. Human DPSCs were seeded on carboxymethyl cellulose—hydroxyapatite hybrid hydrogel and on carboxymethyl cellulose hydrogel for 1, 3, 5, 7, 14 and 21 days. Cell viability assay and ultramorphological analysis were carried out to evaluate biocompatibility and cell adhesion. Real Time PCR was carried out to demonstrate the expression of osteogenic and odontogenic markers. Results showed a good adhesion and viability in cells cultured on carboxymethyl cellulose—hydroxyapatite hybrid hydrogel, while a low adhesion and viability was observed in cells cultured on carboxymethyl cellulose hydrogel. Real Time PCR data demonstrated a temporal up-regulation of osteogenic and odontogenic markers in dental pulp stem cells cultured on carboxymethyl cellulose—hydroxyapatite hybrid hydrogel. In conclusion, our in vitro data confirms the ability of DPSCs to differentiate toward osteogenic and odontogenic lineages in presence of a carboxymethyl cellulose—hydroxyapatite hybrid hydrogel. Taken together, our results provide evidence that DPSCs and carboxymethyl cellulose—hydroxyapatite hybrid hydrogel could be considered promising candidates for dental pulp complex and periodontal tissue engineering.

  15. Differentiation of human endometrial stem cells into endothelial-like cells on gelatin/chitosan/bioglass nanofibrous scaffolds.

    Science.gov (United States)

    Shamosi, Atefeh; Mehrabani, Davood; Azami, Mahmoud; Ebrahimi-Barough, Somayeh; Siavashi, Vahid; Ghanbari, Hossein; Sharifi, Esmaeel; Roozafzoon, Reza; Ai, Jafar

    2017-02-01

    The capacity of gelatin/chitosan/bioactive glass nanopowders (GEL/CS/BGNPs) scaffolds was investigated for increasing human endometrial stem cells (hEnSCs) differentiation into the endothelial cells in the presence of angiogenic factors. GEL/CS nanofibrous scaffold with different contents of BGNPs were fabricated and assessed. Expression of endothelial markers (CD31, vascular endothelial cadherin (VE-cadherin), and KDR) in differentiated cells was evaluated. Results showed the diameter of nanofiber increases with decreasing the BG content in GEL/CS scaffolds. Moreover, in vitro study indicated that the GEL/CS/BGNPs scaffold with 1.5% BGNPs content provided a suitable three-dimensional structure for endothelial cells differentiation. Thus, the GEL/CS/BGNPs scaffold can be recommended for blood vessels repair.

  16. Microstructure, Mechanical, and Biological Properties of Porous Poly(vinylidene fluoride Scaffolds Fabricated by Selective Laser Sintering

    Directory of Open Access Journals (Sweden)

    Wei Huang

    2015-01-01

    Full Text Available Porous poly(vinylidene fluoride (PVDF scaffolds were prepared by selective laser sintering. The effects of laser energy density, ranging from 0.66 to 2.16 J/mm2, on microstructure and mechanical properties were investigated. At low energy density levels, PVDF particles could fuse well and the structure becomes dense with the increase of the energy density. Smoke and defects (such as holes were observed when the energy density increased above 1.56 J/mm2 which indicated decomposition of the PVDF powder. The scaffolds appeared to be light yellow and there was a reduction in tensile strength. The fabricated scaffolds were immersed into simulated body fluid for different time to evaluate biostability. In addition, MG63 cells were seeded and cultured for different days on the scaffolds. The testing results showed that the cells grew and spread well, indicating that PVDF scaffolds had good biocompatibility.

  17. Mechanical Reinforcement of Diopside Bone Scaffolds with Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Cijun Shuai

    2014-10-01

    Full Text Available Carbon nanotubes are ideal candidates for the mechanical reinforcement of ceramic due to their excellent mechanical properties, high aspect ratio and nanometer scale diameter. In this study, the effects of multi-walled carbon nanotubes (MWCNTs on the mechanical properties of diopside (Di scaffolds fabricated by selective laser sintering were investigated. Results showed that compressive strength and fracture toughness improved significantly with increasing MWCNTs from 0.5 to 2 wt %, and then declined with increasing MWCNTs to 5 wt %. Compressive strength and fracture toughness were enhanced by 106% and 21%, respectively. The reinforcing mechanisms were identified as crack deflection, MWCNTs crack bridging and pull-out. Further, the scaffolds exhibited good apatite-formation ability and supported adhesion and proliferation of cells in vitro.

  18. Polycaprolactone scaffold engineered for sustained release of resveratrol: therapeutic enhancement in bone tissue engineering

    Science.gov (United States)

    Kamath, Manjunath Srinivas; Ahmed, Shiek SSJ; Dhanasekaran, M; Santosh, S Winkins

    2014-01-01

    Biomaterials-based three-dimensional scaffolds are being extensively investigated in bone tissue engineering. A potential scaffold should be osteoconductive, osteoinductive, and osteogenic for enhanced bone formation. In this study, a three-dimensional porous polycapro-lactone (PCL) scaffold was engineered for prolonged release of resveratrol. Resveratrol-loaded albumin nanoparticles (RNP) were synthesized and entrapped into a PCL scaffold to form PCL-RNP by a solvent casting and leaching method. An X-ray diffraction study of RNP and PCL-RNP showed that resveratrol underwent amorphization, which is highly desired in drug delivery. Furthermore, Fourier transform infrared spectroscopy indicates that resveratrol was not chemically modified during the entrapment process. Release of resveratrol from PCL-RNP was sustained, with a cumulative release of 64% at the end of day 12. The scaffold was evaluated for its bone-forming potential in vitro using human bone marrow-derived mesenchymal stem cells for 16 days. Alkaline phosphatase activity assayed on days 8 and 12 showed a significant increase in activity (1.6-fold and 1.4-fold, respectively) induced by PCL-RNP compared with the PCL scaffold (the positive control). Moreover, von Kossa staining for calcium deposits on day 16 showed increased mineralization in PCL-RNP. These results suggest PCL-RNP significantly improves mineralization due to its controlled and prolonged release of resveratrol, thereby increasing the therapeutic potential in bone tissue engineering. PMID:24399875

  19. In Vitro Degradation of Borosilicate Bioactive Glass and Poly(l-lactide-co-ε-caprolactone Composite Scaffolds

    Directory of Open Access Journals (Sweden)

    Jenna Tainio

    2017-11-01

    Full Text Available Composite scaffolds were obtained by mixing various amounts (10, 30 and 50 weight % [wt %] of borosilicate bioactive glass and poly(l-lactide-co-ε-caprolactone (PLCL copolymer. The composites were foamed using supercritical CO2. An increase in the glass content led to a decrease in the pore size and density. In vitro dissolution/reaction test was performed in simulated body fluid. As a function of immersion time, the solution pH increased due to the glass dissolution. This was further supported by the increasing amount of Ca in the immersing solution with increasing immersion time and glass content. Furthermore, the change in scaffold mass was significantly greater with increasing the glass content in the scaffold. However, only the scaffolds containing 30 and 50 wt % of glasses exhibited significant hydroxyapatite (HA formation at 72 h of immersion. The compression strength of the samples was also measured. The Young’s modulus was similar for the 10 and 30 wt % glass-containing scaffolds whereas it increased to 90 MPa for the 50 wt % glass containing scaffold. Upon immersion up to 72 h, the Young’s modulus increased and then remained constant for longer immersion times. The scaffold prepared could have great potential for bone and cartilage regeneration.

  20. Mechanical, Permeability, and Degradation Properties of 3D Designed Poly(1,8 Octanediol-co-Citrate)(POC) Scaffolds for Soft Tissue Engineering

    Science.gov (United States)

    Jeong, Claire G.; Hollister, Scott J.

    2015-01-01

    Poly(1,8-octanediol-co-citric acid) (POC) is a synthetic biodegradable elastomer that can be processed into 3D scaffolds for tissue engineering. We investigated the effect of designed porosity on the mechanical properties, permeability and degradation profiles of the POC scaffolds. For mechanical properties, scaffold compressive data was fit to a 1D nonlinear elastic model and solid tensile data was fit to a Neohookean incompressible nonlinear elastic model. Chondrocytes were seeded on scaffolds to assess the biocompatibility of POC. Increased porosity was associated with increased degradation rate, increased permeability, and decreased mechanical stiffness which also became less nonlinear. Scaffold characterization in this paper will provide design guidance for POC scaffolds to meet the mechanical and biological parameters needed for engineering soft tissues such as cartilage. PMID:20091910

  1. Calcium Silicate Improved Bioactivity and Mechanical Properties of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate Scaffolds

    Directory of Open Access Journals (Sweden)

    Cijun Shuai

    2017-05-01

    Full Text Available The poor bioactivity and mechanical properties have restricted its biomedical application, although poly(3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV had good biocompatibility and biodegradability. In this study, calcium silicate (CS was incorporated into PHBV for improving its bioactivity and mechanical properties, and the porous PHBV/CS composite scaffolds were fabricated via selective laser sintering (SLS. Simulated body fluid (SBF immersion tests indicated the composite scaffolds had good apatite-forming ability, which could be mainly attributed to the electrostatic attraction of negatively charged silanol groups derived from CS degradation to positively charged calcium ions in SBF. Moreover, the compressive properties of the composite scaffolds increased at first, and then decreased with increasing the CS content, which was ascribed to the fact that CS of a proper content could homogeneously disperse in PHBV matrix, while excessive CS would form continuous phase. The compressive strength and modulus of composite scaffolds with optimal CS content of 10 wt % were 3.55 MPa and 36.54 MPa, respectively, which were increased by 41.43% and 28.61%, respectively, as compared with PHBV scaffolds. Additionally, 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay indicated MG63 cells had a higher proliferation rate on PHBV/CS composite scaffolds than that on PHBV. Alkaline phosphatase (ALP staining assay demonstrated the incorporation of CS significantly promoted osteogenic differentiation of MG63 cells on the scaffolds. These results suggest that the PHBV/CS composite scaffolds have the potential in serving as a substitute in bone tissue engineering.

  2. Incorporation of mesoporous silica nanoparticles into random electrospun PLGA and PLGA/gelatin nanofibrous scaffolds enhances mechanical and cell proliferation properties

    Energy Technology Data Exchange (ETDEWEB)

    Mehrasa, Mohammad [Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran (Iran, Islamic Republic of); Asadollahi, Mohammad Ali, E-mail: ma.asadollahi@ast.ui.ac.ir [Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Nasri-Nasrabadi, Bijan [Department of Chemical Engineering, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of); Ghaedi, Kamran [Department of Biology, Faculty of Science, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Salehi, Hossein [Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Dolatshahi-Pirouz, Alireza [DTU Nanotech, Center for Nanomedicine and Theranostics, Technical University of Denmark (DTU), DK-2800 Kgs. Lyngby (Denmark); Arpanaei, Ayyoob, E-mail: arpanaei@yahoo.com [Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran (Iran, Islamic Republic of)

    2016-09-01

    Poly(lactic-co-glycolic acid) (PLGA) and PLGA/gelatin random nanofibrous scaffolds embedded with different amounts of mesoporous silica nanoparticles (MSNPs) were fabricated using electrospinning method. To evaluate the effects of nanoparticles on the scaffolds, physical, chemical, and mechanical properties as well as in vitro degradation behavior of scaffolds were investigated. The mean diameters of nanofibers were 974 ± 68 nm for the pure PLGA scaffolds vs 832 ± 70, 764 ± 80, and 486 ± 64 for the PLGA/gelatin, PLGA/10 wt% MSNPs, and the PLGA/gelatin/10 wt% MSNPs scaffolds, respectively. The results suggested that the incorporation of gelatin and MSNPs into PLGA-based scaffolds enhances the hydrophilicity of scaffolds due to an increase of hydrophilic functional groups on the surface of nanofibers. With porosity examination, it was concluded that the incorporation of MSNPs and gelatin decrease the porosity of scaffolds. Nanoparticles also improved the tensile mechanical properties of scaffolds. Using in vitro degradation analysis, it was shown that the addition of nanoparticles to the nanofibers matrix increases the weight loss percentage of PLGA-based samples, whereas it decreases the weight loss percentage in the PLGA/gelatin composites. Cultivation of rat pheochromocytoma cell line (PC12), as precursor cells of dopaminergic neural cells, on the scaffolds demonstrated that the introduction of MSNPs into PLGA and PLGA/gelatin matrix leads to improved cell attachment and proliferation and enhances cellular processes. - Highlights: • PLGA-based random nanofibers embedded with mesoporous silica nanoparticles were fabricated using electrospinning method • Incorporation of gelatin and MSNPs into PLGA-based scaffolds increased the hydrophilicity of scaffold • Addition of nanoparticles also improved the tensile mechanical properties of scaffolds • Introduction of MSNPs led to improved cell attachment and proliferation.

  3. 2-N, 6-O-sulfated chitosan-assisted BMP-2 immobilization of PCL scaffolds for enhanced osteoinduction.

    Science.gov (United States)

    Cao, Lingyan; Yu, Yuanman; Wang, Jing; Werkmeister, Jerome A; McLean, Keith M; Liu, Changsheng

    2017-05-01

    The aim of this study was to develop a 2-N, 6-O-sulfated chitosan (26SCS) modified electrospun fibrous PCL scaffold for bone morphogenetic protein-2 (BMP-2) delivery to improve osteoinduction. The PCL scaffold was modified by an aminolysis reaction using ethylenediamine (ED) and 26SCS was immobilized via electrostatic interactions (PCL-N-S). Scaffolds were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contact angle measurements. In vitro BMP-2 adsorption and release kinetics indicated that modified PCL-N-S scaffolds showed higher levels of binding of BMP-2 (about 30-100 times), moderative burst release (about one third), and prolonged releasing time compared to the unmodified PCL scaffold. The bioactivity of released BMP-2 determined by alkaline phosphatase (ALP) activity assay was maintained and improved 8-12 times with increasing concentration of immobilized 26SCS on the scaffolds. In vitro studies demonstrated that bone marrow mesenchymal stem cells (BMSCs) attached more readily to the PCL-N-S scaffolds with increased spreading. In conclusion, 26SCS modified PCL scaffolds can be a potent system for the sustained and bioactive delivery of BMP-2. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Collagen-GAG scaffold biophysical properties bias MSC lineage choice in the presence of mixed soluble signals.

    Science.gov (United States)

    Caliari, Steven R; Harley, Brendan A C

    2014-09-01

    Biomaterial strategies for regenerating multitissue structures require unique approaches. One strategy is to design scaffolds so that their local biophysical properties can enhance site-specific effects of an otherwise heterogeneous biomolecular environment. This investigation examined the role of biomaterial physical properties (relative density, mineral content) on the human mesenchymal stem cell phenotype in the presence of mixed soluble signals to drive osteogenesis or chondrogenesis. We tested a series of three-dimensional collagen-glycosaminoglycan scaffolds with properties inspired by extracellular matrix characteristics across the osteotendinous interface (tendon, cartilage, and bone). We found that selective scaffold mineralization induced a depressed chondrogenic response compared with nonmineralized groups as demonstrated by gene expression and histological analyses. Interestingly, the greatest chondrogenic response was found in a higher density, nonmineralized scaffold variant despite increased contraction and cellular condensation in lower density nonmineralized scaffolds. In fact, the lower density scaffolds demonstrated a significantly higher expression of osteogenic transcripts as well as ample mineralization after 21 days of culture. This effect may be due to local stiffening of the scaffold microenvironment as the scaffold contracts, leading to increased cell density, accelerated differentiation, and possible endochondral ossification as evidenced by a transition from a glycosaminoglycan (GAG)-rich milieu to higher mineralization at later culture times. These findings will help shape the design rules for graded biomaterials to regenerate distinct fibrillar, fibrocartilagenous, and mineralized regions of orthopedic interfaces.

  5. The Significance of Pore Microarchitecture in a Multi-Layered Elastomeric Scaffold for Contractile Cardiac Muscle Constructs

    Science.gov (United States)

    Park, H.; Larson, B.L.; Guillemette, M.D.; Jain, S.R.; Hua, C.; Engelmayr, G.C.; Freed, L.E.

    2010-01-01

    Multi-layered poly(glycerol sebacate) (PGS) scaffolds with controlled pore microarchitectures were fabricated, combined with heart cells, and cultured with perfusion to engineer contractile cardiac muscle constructs. First, one-layered (1L) scaffolds with accordion-like honeycomb shaped pores and elastomeric mechanical properties were fabricated by laser microablation of PGS membranes. Second, two-layered (2L) scaffolds with fully interconnected three dimensional pore networks were fabricated by oxygen plasma treatment of 1L scaffolds followed by stacking with off-set laminae to produce a tightly bonded composite. Third, heart cells were cultured on scaffolds with or without interstitial perfusion for 7 days. The laser-microablated PGS scaffolds exhibited ultimate tensile strength and strain-to-failure higher than normal adult rat left ventricular myocardium, and effective stiffnesses ranging from 220 to 290 kPa. The 7 day constructs contracted in response to electrical field stimulation. Excitation thresholds were unaffected by scaffold scale up from 1L to 2L. The 2L constructs exhibited reduced apoptosis, increased expression of connexin-43 (Cx-43) and matrix metalloprotease-2 (MMP-2) genes, and increased Cx-43 and cardiac troponin-I proteins when cultured with perfusion as compared to static controls. Together, these findings suggest that multi-layered, microfabricated PGS scaffolds may be applicable to myocardial repair applications requiring mechanical support, cell delivery and active implant contractility. PMID:21144580

  6. Scaffolding in Mobile Science Enquiry-based Learning Using Ontologies

    OpenAIRE

    Sohaib Ahmed; David Parsons; Mandia Mentis

    2012-01-01

    The use of ontologies has become increasingly widespread in many areas, particularly in technology enhanced learning. They appear promising in supporting knowledge representation and learning content creation for domains of interest. In this paper, we show how ontology-based scaffolding has helped mobile learners to perform scientific enquiry investigations. Enquiry-based learning aims to provide educational activities and tools to assists students to learn science by doing science. In this s...

  7. A novel nano-hydroxyapatite - PMMA hybrid scaffolds adopted by conjugated thermal induced phase separation (TIPS) and wet-chemical approach: Analysis of its mechanical and biological properties.

    Science.gov (United States)

    G, Radha; S, Balakumar; Venkatesan, Balaji; Vellaichamy, Elangovan

    2017-06-01

    In this study, we report the preparation of nano-hydroxyapatite (nHAp) incorporated poly(methyl methacrylate) (PMMA) scaffolds by conjugated thermal induced phase separation (TIPS) and wet-chemical approach, which essentially facilitates the enhancement of both mechanical as well as biological properties of the scaffolds. The dissolution of PMMA was accomplished by acetone (Ace scaffold), ethanol-water (E-W scaffold) and isopropanol-water (I-W scaffold) mixtures as solvents. The existence of nHAp in PMMA matrix was investigated systematically. The higher degree of porous architecture was achieved from Ace scaffolds compared to both I-W and E-W scaffolds. On the other hand, the dense porous architecture of the I-W scaffold exhibited superior hardness and compressive strength than that of the Ace and E-W scaffolds. All the fabricated samples demonstrated enhanced in vitro bioactivity with respect to increasing immersion period as a result of flower-like in vitro apatite layer formation. The MTT assay was carried out for 1day and 3day culture using Saos-2 osteoblast-like cells, which showed better cell proliferation with increasing culture period owing to the interconnected pore architecture of scaffolds and the rational hemocompatibility as per the ASTM standard F756-00. Copyright © 2017. Published by Elsevier B.V.

  8. CAD based design sensitivity analysis and shape optimization of scaffolds for bio-root regeneration in swine.

    Science.gov (United States)

    Luo, Xiangyou; Yang, Bo; Sheng, Lei; Chen, Jinlong; Li, Hui; Xie, Li; Chen, Gang; Yu, Mei; Guo, Weihua; Tian, Weidong

    2015-07-01

    Tooth root supports dental crown and bears occlusal force. While proper root shape and size render the force being evenly delivered and dispersed into jawbone. Yet it remains unclear what shape and size of a biological tooth root (bio-root), which is mostly determined by the scaffold geometric design, is suitable for stress distributing and mastication performing. Therefore, this study hypothesized scaffold fabricated in proper shape and size is better for regeneration of tooth root with approving biomechanical functional features. In this study, we optimized shape and size of scaffolds for bio-root regeneration using computer aided design (CAD) modeling and finite element analysis (FEA). Statical structural analysis showed the total deformation (TD) and equivalent von-mises stress (EQV) of the restored tooth model mainly concentrated on the scaffold and the post, in accordance with the condition in a natural post restored tooth. Design sensitivity analysis showed increasing the height and upper diameter of the scaffold can tremendously reduce the TD and EQV of the model, while increasing the bottom diameter of scaffold can, to some extent, reduce the EQV in post. However, increase on post height had little influence on the whole model, only slightly increased the native EQV stress in post. Through response surface based optimization, we successfully screened out the optimal shape of the scaffold used in tissue engineering of tooth root. The optimal scaffold adopted a slightly tapered shape with the upper diameter of 4.9 mm, bottom diameter of 3.4 mm; the length of the optimized scaffold shape was 9.4 mm. While the analysis also suggested a height of about 9 mm for a metal post with a diameter of 1.4 mm suitable for crown restoration in bio-root regeneration. In order to validate the physiological function of the shape optimized scaffold in vivo, we transplanted the shape optimized treated dentin matrix (TDM) scaffold, seeding with dental stem cells, into alveolar

  9. Diametral compression behavior of biomedical titanium scaffolds with open, interconnected pores prepared with the space holder method.

    Science.gov (United States)

    Arifvianto, B; Leeflang, M A; Zhou, J

    2017-04-01

    Scaffolds with open, interconnected pores and appropriate mechanical properties are required to provide mechanical support and to guide the formation and development of new tissue in bone tissue engineering. Since the mechanical properties of the scaffold tend to decrease with increasing porosity, a balance must be sought in order to meet these two conflicting requirements. In this research, open, interconnected pores and mechanical properties of biomedical titanium scaffolds prepared by using the space holder method were characterized. Micro-computed tomography (micro-CT) and permeability analysis were carried out to quantify the porous structures and ascertain the presence of open, interconnected pores in the scaffolds fabricated. Diametral compression (DC) tests were performed to generate stress-strain diagrams that could be used to determine the elastic moduli and yield strengths of the scaffolds. Deformation and failure mechanisms involved in the DC tests of the titanium scaffolds were examined. The results of micro-CT and permeability analyses confirmed the presence of open, interconnected pores in the titanium scaffolds with porosity over a range of 31-61%. Among these scaffolds, a maximum specific surface area could be achieved in the scaffold with a total porosity of 5-55%. DC tests showed that the titanium scaffolds with elastic moduli and yield strengths of 0.64-3.47GPa and 28.67-80MPa, respectively, could be achieved. By comprehensive consideration of specific surface area, permeability and mechanical properties, the titanium scaffolds with porosities in a range of 50-55% were recommended to be used in cancellous bone tissue engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The potential of chitosan combined with chicken shank collagen as scaffold on bone defect regeneration process in Rattus norvegicus

    Directory of Open Access Journals (Sweden)

    Fitria Rahmitasari

    2016-12-01

    Full Text Available Background: In the field of dentistry, alveolar bone damage can be caused by periodontal disease, traumatic injury due to tooth extraction, cyst enucleation, and tumor surgery. One of the ways to regenerate the bone defect is using graft scaffold. Thus, combination of chitosan and collagen can stimulate osteogenesis. Purpose: The aim of this study was to examine the potential of chitosan combined with chicken shank collagen on bone defect regeneration process. Method: Twelve Rattus norvegicus were prepared as animal models in this research. A bone defect was intentionally created at both of the right and left femoral bones of the models. Next, 24 samples were divided into four groups, namely Group 1 using chitosan – collagen scaffold (50:50, Group 2 using chitosan collagen-scaffold (80:20, Group 3 using chitosan scaffold only, and Control Group using 3% CMC-Na. On 14th day, those animals were sacrificed, and histopathological anatomy examination was conducted to observe osteoclast cells. In addition, immunohistochemistry examination was also performed to observe RANKL expressions. Result: There was a significant difference in RANKL expressions among the groups, except between Group 3 using chitosan scaffold only and control group (p value > 0.05. The highest expression of RANKL was found in Group 1 with chitosan – collagen scaffold (50:50, followed by Group 2 with chitosan-collagen scaffold (80:20. Moreover, there was also a significant difference in osteoclast generation, except between Group 1 using chitosan – collagen scaffold (50:50 and Group 2 using chitosan-collagen scaffold (80:20, p value 0.05. Less osteoclast was found in the groups using chitosan – collagen scaffold (Group 1 and Group 2. Conclusion: Combination of chitosan and chicken shank collagen scaffold can improve regeneration process of bone defect in Rattus novergicus animals through increasing of RANKL expressions, and decreasing of osteoclast.

  11. Effect of Nanoparticle Incorporation and Surface Coating on Mechanical Properties of Bone Scaffolds: A Brief Review

    Directory of Open Access Journals (Sweden)

    Jesus Corona-Gomez

    2016-07-01

    Full Text Available Mechanical properties of a scaffold play an important role in its in vivo performance in bone tissue engineering, due to the fact that implanted scaffolds are typically subjected to stress including compression, tension, torsion, and shearing. Unfortunately, not all the materials used to fabricate scaffolds are strong enough to mimic native bones. Extensive research has been conducted in order to increase scaffold strength and mechanical performance by incorporating nanoparticles and/or coatings. An incredible improvement has been achieved; and some outstanding examples are the usage of nanodiamond, hydroxyapatite, bioactive glass particles, SiO2, MgO, and silver nanoparticles. This review paper aims to present the results, to summarize significant findings, and to give perspective for future work, which could be beneficial to future bone tissue engineering.

  12. Assessment of protein entrapment in hydroxyapatite scaffolds by size exclusion chromatography.

    Science.gov (United States)

    Espanol, Montserrat; Casals, Isidre; Lamtahri, Sarah; Valderas, Maria-Teresa; Ginebra, Maria-Pau

    2012-12-01

    Although it is well known that the textural properties of scaffolds play an important role in the process of tissue regeneration, the investigation of such effects remain difficult especially at the micro/nano level. Texture confers the material the additional ability to entrap/concentrate molecules circulating in the body fluid regardless of their binding affinity to the material. The goal of the present work is to isolate protein entrapment from protein adsorption phenomena in two macroporous hydroxyapatite scaffolds with identical chemical structure, similar macroporosity but different micro/nanoporosity using proteins of different sizes. This was achieved implementing size exclusion chromatography and using the scaffolds as chromatographic columns. The results showed that the larger the crystal size and the lower the packing density of the crystals composing the scaffold increased protein retention but decreased the protein dwelling time in the column. Differences in the amount of protein retained depended on the protein type.

  13. Scaffolds of PDLLA/bioglass 58S produced via selective laser sintering

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Rafaela do Vale; Salmoria, Gean Vitor; Moura, Marcela Oliveira Caldeira de; Aragones, Aguedo; Fredel, Marcio Celso, E-mail: rafaelavpereira@gmail.com [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2014-08-15

    Scaffolds of PDLLA were produced to be implemented in maxillofacial surgeries inducing bone repair and regeneration. To prepare these scaffolds, bioglass (BG58S) was synthesized by sol-gel method, in order to be applied as osteoconductive dispersed particles in PDLLA matrix. Once presenting greater facility on parts fabrication, this polymeric matrix enables complex geometries production besides presenting compatible degradation rate for scaffold absorption and bone regeneration. Scaffolds production was performed by selective laser sintering in order to obtain tailored-made parts. FTIR and XRD analyses were carried out to observe the composition and evaluate the presence of crystallized phases in bioglass, obtaining Wollastonite. SEM was used to observe the BG particle distribution in PDLLA matrix and flexural test was performed to evaluate the composite mechanical properties. Results showed that was possible to obtain pieces using SLS method and with addition of 10%wt BG to polymeric matrix, flexural modulus and strength increased regarding to pure polymer. (author)

  14. Modified TMV particles as beneficial scaffolds to present sensor enzymes

    Directory of Open Access Journals (Sweden)

    Claudia eKoch

    2015-12-01

    Full Text Available Tobacco mosaic virus (TMV is a robust nanotubular nucleoprotein scaffold increasingly employed for the high density presentation of functional molecules such as peptides, fluorescent dyes and antibodies. We report on its use as advantageous carrier for sensor enzymes. A TMV mutant with a cysteine residue exposed on every coat protein (CP subunit (TMVCys enabled the coupling of bifunctional maleimide-polyethylene glycol (PEG-biotin linkers (TMVCys/Bio. Its surface was equipped with two streptavidin [SA]-conjugated enzymes: glucose oxidase ([SA]-GOx and horseradish peroxidase ([SA]-HRP. At least 50 % of the CPs were decorated with a linker molecule, and all thereof with active enzymes. Upon use as adapter scaffolds in conventional 'high-binding' microtiter plates, TMV sticks allowed the immobilization of up to 45-fold higher catalytic activities than control samples with the same input of enzymes. Moreover, they increased storage stability and reusability in relation to enzymes applied directly to microtiter plate wells. The functionalized TMV adsorbed to solid supports showed a homogeneous distribution of the conjugated enzymes and structural integrity of the nanorods upon transmission electron and atomic force microscopy. The high surface-increase and steric accessibility of the viral scaffolds in combination with the biochemical environment provided by the plant viral coat may explain the beneficial effects. TMV can, thus, serve as a favorable multivalent nanoscale platform for the ordered presentation of bioactive proteins.

  15. Scaffolding for Argumentation in Hypothetical and Theoretical Biology Concepts

    Science.gov (United States)

    Weng, Wan-Yun; Lin, Yu-Ren; She, Hsiao-Ching

    2017-01-01

    The present study investigated the effects of online argumentation scaffolding on students' argumentation involving hypothetical and theoretical biological concepts. Two types of scaffolding were developed in order to improve student argumentation: continuous scaffolding and withdraw scaffolding. A quasi-experimental design was used with four…

  16. Teenaged Internet Tutors' Use of Scaffolding with Older Learners

    Science.gov (United States)

    Tambaum, Tiina

    2017-01-01

    This study analyses how teenaged instructors paired with older learners make use of scaffolding. Video data were categorised according to 15 types of direct scaffolding tactics, indirect scaffolding, and unused scaffolding opportunities. The results show that a teenager who is unprepared for the role of an instructor of Internet skills for older…

  17. The development of collagen-GAG scaffold-membrane composites for tendon tissue engineering.

    Science.gov (United States)

    Caliari, Steven R; Ramirez, Manuel A; Harley, Brendan A C

    2011-12-01

    Current tissue engineering approaches for tendon defects require improved biomaterials to balance microstructural and mechanical design criteria. Collagen-glycosaminoglycan (CG) scaffolds have shown considerable success as in vivo regenerative templates and in vitro constructs to study cell behavior. While these scaffolds possess many advantageous qualities, their mechanical properties are typically orders of magnitude lower than orthopedic tissues such as tendon. Taking inspiration from mechanically efficient core-shell composites in nature such as plant stems and porcupine quills, we have created core-shell CG composites that display high bioactivity and improved mechanical integrity. These composites feature integration of a low density, anisotropic CG scaffold core with a high density, CG membrane shell. CG membranes were fabricated via an evaporative process that allowed separate tuning of membrane thickness and elastic moduli and were found to be isotropic in-plane. The membranes were then integrated with an anisotropic CG scaffold core via freeze-drying and subsequent crosslinking. Increasing the relative thickness of the CG membrane shell was shown to increase composite tensile elastic modulus by as much as a factor of 36 in a manner consistent with predictions from layered composites theory. CG scaffold-membrane composites were found to support tendon cell viability, proliferation, and metabolic activity in vitro, suggesting they maintain sufficient permeability while demonstrating improved mechanical strength. This work suggests an effective, biomimetic approach for balancing strength and bioactivity requirements of porous scaffolds for tissue engineering. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Thermoforming techniques for manufacturing porous scaffolds for application in 3D cell cultivation.

    Science.gov (United States)

    Borowiec, Justyna; Hampl, Jörg; Gebinoga, Michael; Elsarnagawy, Tarek; Elnakady, Yasser A; Fouad, Hassan; Almajhadi, Fahd; Fernekorn, Uta; Weise, Frank; Singh, Sukhdeep; Elsarnagawy, Dief; Schober, Andreas

    2015-04-01

    Within the scientific community, there is an increasing demand to apply advanced cell cultivation substrates with increased physiological functionalities for studying spatially defined cellular interactions. Porous polymeric scaffolds are utilized for mimicking an organ-like structure or engineering complex tissues and have become a key element for three-dimensional (3D) cell cultivation in the meantime. As a consequence, efficient 3D scaffold fabrication methods play an important role in modern biotechnology. Here, we present a novel thermoforming procedure for manufacturing porous 3D scaffolds from permeable materials. We address the issue of precise thermoforming of porous polymer foils by using multilayer polymer thermoforming technology. This technology offers a new method for structuring porous polymer foils that are otherwise available for non-porous polymers only. We successfully manufactured 3D scaffolds from solvent casted and phase separated polylactic acid (PLA) foils and investigated their biocompatibility and basic cellular performance. The HepG2 cell culture in PLA scaffold has shown enhanced albumin secretion rate in comparison to a previously reported polycarbonate based scaffold with similar geometry. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. The effects of scaffold architecture and fibrin gel addition on tendon cell phenotype.

    Science.gov (United States)

    Pawelec, K M; Wardale, R J; Best, S M; Cameron, R E

    2015-01-01

    Development of tissue engineering scaffolds relies on careful selection of pore architecture and chemistry of the cellular environment. Repair of skeletal soft tissue, such as tendon, is particularly challenging, since these tissues have a relatively poor healing response. When removed from their native environment, tendon cells (tenocytes) lose their characteristic morphology and the expression of phenotypic markers. To stimulate tendon cells to recreate a healthy extracellular matrix, both architectural cues and fibrin gels have been used in the past, however, their relative effects have not been studied systematically. Within this study, a combination of collagen scaffold architecture, axial and isotropic, and fibrin gel addition was assessed, using ovine tendon-derived cells to determine the optimal strategy for controlling the proliferation and protein expression. Scaffold architecture and fibrin gel addition influenced tendon cell behavior independently in vitro. Addition of fibrin gel within a scaffold doubled cell number and increased matrix production for all architectures studied. However, scaffold architecture dictated the type of matrix produced by cells, regardless of fibrin addition. Axial scaffolds, mimicking native tendon, promoted a mature matrix, with increased tenomodulin, a marker for mature tendon cells, and decreased scleraxis, an early transcription factor for connective tissue. This study demonstrated that both architectural cues and fibrin gel addition alter cell behavior and that the combination of these signals could improve clinical performance of current tissue engineering constructs.

  20. Designing of Collagen Based Poly(3-hydroxybutyrate-co-4-hydroxybutyrate Scaffolds for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    S. Vigneswari

    2015-01-01

    Full Text Available P(3HB-co-4HB copolymer was modified using collagen by adapting dual solvent system. The surface properties of samples were characterized by Fourier transform infrared spectroscopy (FTIR, scanning electron microscopy (SEM, organic elemental analysis (CHN analysis, and water contact angle measurements. The effects of collagen concentration, scaffold thickness, and 4HB molar fraction on the hydrophilicity were optimized by the Taguchi method. The orthogonal array experiment was conducted to obtain the response for a hydrophilic scaffold. Analysis of variance (ANOVA was used to determine the significant parameters and determine the optimal level for each parameter. The results also showed that the hydrophilicity of P(3HB-co-4HB/collagen blend scaffolds increased as the collagen concentration increased up to 15 wt% with a molar fraction of 50 mol% at 0.1 mm scaffold thickness. The biocompatibility of the P(3HB-co-4HB/collagen blend surface was evaluated by fibroblast cell (L929 culture. The collagen blend scaffold surfaces showed significant cell adhesion and growth as compared to P(3HB-co-4HB copolymer scaffolds.

  1. Porous magnesium/PLGA composite scaffolds for enhanced bone regeneration following tooth extraction.

    Science.gov (United States)

    Brown, Andrew; Zaky, Samer; Ray, Herbert; Sfeir, Charles

    2015-01-01

    Sixty percent of implant-supported dental prostheses require bone grafting to enhance bone quantity and quality prior to implant placement. We have developed a metallic magnesium particle/PLGA composite scaffold to overcome the limitations of currently used dental bone grafting materials. This is the first report of porous metallic magnesium/PLGA scaffolds synthesized using a solvent casting, salt leaching method. We found that incorporation of varying amounts of magnesium into the PLGA scaffolds increased the compressive strength and modulus, as well as provided a porous structure suitable for cell infiltration, as measured by mercury intrusion porosimetry. Additionally, combining basic-degrading magnesium with acidic-degrading PLGA led to an overall pH buffering effect and long-term release of magnesium over the course of a 10-week degradation assay, as measured with inductively coupled plasma-atomic emission spectroscopy. Using an indirect proliferation assay adapted from ISO 10993:5, it was found that extracts of medium from degrading magnesium/PLGA scaffolds increased bone marrow stromal cell proliferation in vitro, a phenomenon observed by other groups investigating magnesium's impact on cells. Finally, magnesium/PLGA scaffold biocompatibility was assessed in a canine socket preservation model. Micro-computed tomography and histological analysis showed the magnesium/PLGA scaffolds to be safer and more effective at preserving bone height than empty controls. Three-dimensional magnesium/PLGA composite scaffolds show promise for dental socket preservation and also, potentially, orthopedic bone regeneration. These scaffolds could decrease inflammation observed with clinically used PLGA devices, as well as enhance osteogenesis, as observed with previously studied magnesium devices. Copyright © 2014. Published by Elsevier Ltd.

  2. Prediction of extracellular matrix stiffness in engineered heart valve tissues based on nonwoven scaffolds.

    Science.gov (United States)

    Engelmayr, George C; Sacks, Michael S

    2008-08-01

    The in vitro development of tissue engineered heart valves (TEHV) exhibiting appropriate structural and mechanical characteristics remains a significant challenge. An important step yet to be addressed is establishing the relationship between scaffold and extracellular matrix (ECM) mechanical properties. In the present study, a composite beam model accounting for nonwoven scaffold-ECM coupling and the transmural collagen concentration distribution was developed, and utilized to retrospectively estimate the ECM effective stiffness in TEHV specimens incubated under static and cyclic flexure conditions (Engelmayr Jr et~al. in Biomaterials 26(2):175-187 2005). The ECM effective stiffness was expressed as the product of the local collagen concentration and the collagen specific stiffness (i.e., stiffness/concentration), and was related to the overall TEHV effective stiffness via an empirically determined scaffold-ECM coupling parameter and measured transmural collagen concentration distributions. The scaffold-ECM coupling parameter was determined by flexural mechanical testing of polyacrylamide gels (i.e., ECM analogs) of variable stiffness and associated scaffold-polyacrylamide gel composites (i.e., engineered tissue analogs). The transmural collagen concentration distributions were quantified from fluorescence micrographs of picro-sirius red stained TEHV sections. As suggested by a previous structural model of the nonwoven scaffold (Engelmayr Jr and Sacks in J Biomech Eng 128(4):610-622, 2006), nonwoven scaffold-ECM composites did not follow a traditional rule of mixtures. The present study provided further evidence that the primary mode of reinforcement in nonwoven scaffold-ECM composites is an increase in the number fiber-fiber bonds with a concomitant increase in the effective stiffness of the spring-like fiber segments. Simulations of potential ECM deposition scenarios using the current model indicated that the present approach is sensitive to the specific time

  3. SHOP: scaffold hopping by GRID-based similarity searches

    DEFF Research Database (Denmark)

    Bergmann, Rikke; Linusson, Anna; Zamora, Ismael

    2007-01-01

    scaffolds were in the 31 top-ranked scaffolds. SHOP also identified new scaffolds with substantially different chemotypes from the queries. Docking analysis indicated that the new scaffolds would have similar binding modes to those of the respective query scaffolds observed in X-ray structures...... ligands of three different protein targets relevant for drug discovery using a rational approach based on statistical experimental design. Five out of eight and seven out of eight thrombin scaffolds and all seven HIV protease scaffolds were recovered within the top 10 and 31 out of 31 neuraminidase...

  4. Novel high-viscosity polyacrylamidated chitosan for neural tissue engineering: fabrication of anisotropic neurodurable scaffold via molecular disposition of persulfate-mediated polymer slicing and complexation.

    Science.gov (United States)

    Kumar, Pradeep; Choonara, Yahya E; du Toit, Lisa C; Modi, Girish; Naidoo, Dinesh; Pillay, Viness

    2012-10-29

    Macroporous polyacrylamide-grafted-chitosan scaffolds for neural tissue engineering were fabricated with varied synthetic and viscosity profiles. A novel approach and mechanism was utilized for polyacrylamide grafting onto chitosan using potassium persulfate (KPS) mediated degradation of both polymers under a thermally controlled environment. Commercially available high molecular mass polyacrylamide was used instead of the acrylamide monomer for graft copolymerization. This grafting strategy yielded an enhanced grafting efficiency (GE = 92%), grafting ratio (GR = 263%), intrinsic viscosity (IV = 5.231 dL/g) and viscometric average molecular mass (MW = 1.63 × 106 Da) compared with known acrylamide that has a GE = 83%, GR = 178%, IV = 3.901 dL/g and MW = 1.22 × 106 Da. Image processing analysis of SEM images of the newly grafted neurodurable scaffold was undertaken based on the polymer-pore threshold. Attenuated Total Reflectance-FTIR spectral analyses in conjugation with DSC were used for the characterization and comparison of the newly grafted copolymers. Static Lattice Atomistic Simulations were employed to investigate and elucidate the copolymeric assembly and reaction mechanism by exploring the spatial disposition of chitosan and polyacrylamide with respect to the reactional profile of potassium persulfate. Interestingly, potassium persulfate, a peroxide, was found to play a dual role initially degrading the polymers-"polymer slicing"-thereby initiating the formation of free radicals and subsequently leading to synthesis of the high molecular mass polyacrylamide-grafted-chitosan (PAAm-g-CHT)-"polymer complexation". Furthermore, the applicability of the uniquely grafted scaffold for neural tissue engineering was evaluated via PC12 neuronal cell seeding. The novel PAAm-g-CHT exhibited superior neurocompatibility in terms of cell infiltration owing to the anisotropic porous architecture, high molecular mass mediated robustness, superior hydrophilicity as well as

  5. Novel High-Viscosity Polyacrylamidated Chitosan for Neural Tissue Engineering: Fabrication of Anisotropic Neurodurable Scaffold via Molecular Disposition of Persulfate-Mediated Polymer Slicing and Complexation

    Directory of Open Access Journals (Sweden)

    Viness Pillay

    2012-10-01

    Full Text Available Macroporous polyacrylamide-grafted-chitosan scaffolds for neural tissue engineering were fabricated with varied synthetic and viscosity profiles. A novel approach and mechanism was utilized for polyacrylamide grafting onto chitosan using potassium persulfate (KPS mediated degradation of both polymers under a thermally controlled environment. Commercially available high molecular mass polyacrylamide was used instead of the acrylamide monomer for graft copolymerization. This grafting strategy yielded an enhanced grafting efficiency (GE = 92%, grafting ratio (GR = 263%, intrinsic viscosity (IV = 5.231 dL/g and viscometric average molecular mass (MW = 1.63 × 106 Da compared with known acrylamide that has a GE = 83%, GR = 178%, IV = 3.901 dL/g and MW = 1.22 × 106 Da. Image processing analysis of SEM images of the newly grafted neurodurable scaffold was undertaken based on the polymer-pore threshold. Attenuated Total Reflectance-FTIR spectral analyses in conjugation with DSC were used for the characterization and comparison of the newly grafted copolymers. Static Lattice Atomistic Simulations were employed to investigate and elucidate the copolymeric assembly and reaction mechanism by exploring the spatial disposition of chitosan and polyacrylamide with respect to the reactional profile of potassium persulfate. Interestingly, potassium persulfate, a peroxide, was found to play a dual role initially degrading the polymers—“polymer slicing”—thereby initiating the formation of free radicals and subsequently leading to synthesis of the high molecular mass polyacrylamide-grafted-chitosan (PAAm-g-CHT—“polymer complexation”. Furthermore, the applicability of the uniquely grafted scaffold for neural tissue engineering was evaluated via PC12 neuronal cell seeding. The novel PAAm-g-CHT exhibited superior neurocompatibility in terms of cell infiltration owing to the anisotropic porous architecture, high molecular mass mediated robustness

  6. Effect of manufacturing and experimental conditions on the mechanical and surface properties of silicone elastomer scaffolds used in endothelial mechanobiological studies.

    Science.gov (United States)

    Campeau, Marc-Antoine; Lortie, Audrey; Tremblay, Pierrick; Béliveau, Marc-Olivier; Dubé, Dominic; Langelier, Ève; Rouleau, Léonie

    2017-07-14

    Mechanobiological studies allow the characterization of cell response to mechanical stresses. Cells need to be supported by a material with properties similar to the physiological environment. Silicone elastomers have been used to produce various in vitro scaffolds of different geometries for endothelial cell studies given its relevant mechanical, optical and surface properties. However, obtaining defined and repeatable properties is a challenge as depending on the different manufacturing and processing steps, mechanical and surface properties may vary significantly between research groups. The impact of different manufacturing and processing methods on the mechanical and surface properties was assessed by measuring the Young's modulus and the contact angle. Silicone samples were produced using different curing temperatures and processed with different sterilization techniques and hydrophilization conditions. Different curing temperatures were used to obtain materials of different stiffness with a chosen silicone elastomer, i.e. Sylgard 184®. Sterilization by boiling had a tendency to stiffen samples cured at lower temperatures whereas UV and ethanol did not alter the material properties. Hydrophilization using sulphuric acid allowed to decrease surface hydrophobicity, however this effect was lost over time as hydrophobic recovery occurred. Extended contact with water maintained decreased hydrophobicity up to 7 days. Mechanobiological studies require complete cell coverage of the scaffolds used prior to mechanical stresses exposure. Different concentrations of fibronectin and collagen were used to coat the scaffolds and cell seeding density was varied to optimize cell coverage. This study highlights the potential bias introduced by manufacturing and processing conditions needed in the preparation of scaffolds used in mechanobiological studies involving endothelial cells. As manufacturing, processing and cell culture conditions are known to influence cell

  7. The influence of collagen-glycosaminoglycan scaffold relative density and microstructural anisotropy on tenocyte bioactivity and transcriptomic stability.

    Science.gov (United States)

    Caliari, Steven R; Weisgerber, Daniel W; Ramirez, Manuel A; Kelkhoff, Douglas O; Harley, Brendan A C

    2012-07-01

    Biomaterials for orthopedic tissue engineering must balance mechanical and bioactivity concerns. This work describes the fabrication of a homologous series of anisotropic collagen-GAG (CG) scaffolds with aligned tracks of ellipsoidal pores but increasing relative densities (ρ(∗)/ρ(s)), and we report the role scaffold relative density plays in directing tenocyte bioactivity. Scaffold permeability and mechanical properties, both in tension and compression, were significantly influenced by relative density in a manner predicted by cellular solids models. Equine tenocytes showed greater levels of attachment, metabolic activity, soluble collagen synthesis, and alignment as well as less cell-mediated scaffold contraction in anisotropic CG scaffolds of increasing relative density. Notably, the lowest density scaffolds experienced significant cell-mediated contraction with associated decreases in tenocyte number as well as loss of microstructural integrity, aligned contact guidance cues, and preferential tenocyte orientation over a 14 day culture period. Gene expression analyses suggested tenocyte de-differentiation in the lowest density scaffold while indicating that the highest density scaffold supported significant increases in COMP (4-fold), tenascin-C (3-fold), and scleraxis (15-fold) expression as well as significant decreases in MMP-1 (9-fold) and MMP-13 (13-fold) expression on day 14. These results suggest that anisotropic scaffold relative density can help to modulate the maintenance of a more tendon-like microenvironment and aid long-term tenocyte transcriptomic stability. Overall, this work demonstrates that relative density is a critical scaffold parameter, not only for insuring mechanical competence, but also for directing cell transcriptomic stability and behavior. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. The influence of collagen–glycosaminoglycan scaffold relative density and microstructural anisotropy on tenocyte bioactivity and transcriptomic stability

    Science.gov (United States)

    Caliari, Steven R.; Weisgerber, Daniel W.; Ramirez, Manuel A.; Kelkhoff, Douglas O.; Harley, Brendan A.C.

    2014-01-01

    Biomaterials for orthopedic tissue engineering must balance mechanical and bioactivity concerns. This work describes the fabrication of a homologous series of anisotropic collagen–GAG (CG) scaffolds with aligned tracks of ellipsoidal pores but increasing relative densities (ρ*/ρs), and we report the role scaffold relative density plays in directing tenocyte bioactivity. Scaffold permeability and mechanical properties, both in tension and compression, were significantly influenced by relative density in a manner predicted by cellular solids models. Equine tenocytes showed greater levels of attachment, metabolic activity, soluble collagen synthesis, and alignment as well as less cell-mediated scaffold contraction in anisotropic CG scaffolds of increasing relative density. Notably, the lowest density scaffolds experienced significant cell-mediated contraction with associated decreases in tenocyte number as well as loss of microstructural integrity, aligned contact guidance cues, and preferential tenocyte orientation over a 14 day culture period. Gene expression analyses suggested tenocyte de-differentiation in the lowest density scaffold while indicating that the highest density scaffold supported significant increases in COMP (4-fold), tenascin-C (3-fold), and scleraxis (15-fold) expression as well as significant decreases in MMP-1 (9-fold) and MMP-13 (13-fold) expression on day 14. These results suggest that anisotropic scaffold relative density can help to modulate the maintenance of a more tendon-like microenvironment and aid long-term tenocyte transcriptomic stability. Overall, this work demonstrates that relative density is a critical scaffold parameter, not only for insuring mechanical competence, but also for directing cell transcriptomic stability and behavior. PMID:22658152

  9. Novel fluoridated silk fibroin/ TiO2 nanocomposite scaffolds for bone tissue engineering.

    Science.gov (United States)

    Johari, Narges; Madaah Hosseini, Hamid Reza; Samadikuchaksaraei, Ali

    2018-01-01

    It is known that Fluoride ions strongly affect bone mineralization and formation. In the present study, the engineered bone tissue scaffolds are fabricated using silk fibroin (SF) and flouridated TiO2 nanoparticles. TiO2 nanoparticles are modified by fluoride ions, and different levels (0, 5, 10, 15 and 20wt%) of the fluoridated TiO2 nanoparticles (TiO2-F) were subsequently added to the SF matrix through phase separation method to prepare silk fibroin/flouridated TiO2 nanocomposite scaffolds (SF/TiO2-F). Phase structure, functional groups, morphology and mechanical properties of the obtained scaffolds were evaluated by X-ray diffraction method (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and compressive testing, respectively. In vitro degradation studies of scaffolds were performed by incubating the samples in phosphate buffered saline (PBS) at 37°C and pH7.4 for 30days. Additionally, the bioactivity of scaffolds was estimated in a simulated body fluid (SBF) buffered at 37°C and pH7.4 for 28days. Moreover, MTT assay was used to confirm the biocompatibility of the scaffolds using human like SaOS-2 osteoblast cell line for 1, 3 and 5days. The obtained results indicated that the mechanical properties of scaffolds have been improved by increasing the TiO2-F amount up to 15wt%. However, a detrimental effect was observed by a further increase in the TiO2-F content. The bioactivity of SF/TiO2-F nanocomposite scaffolds was promoted by flouridation of TiO2. Furthermore, cell cytotoxicity results demonstrated that the SF/TiO2-F nanocomposite scaffolds are nontoxic to osteoblasts. The cell fixation results after 3days of incubation revealed that the cell attachment and spreading on SF/TiO2-F nanocomposite scaffolds are improved with respect to SF/TiO2 nanocomposite scaffolds control sample. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Bioactive Glass Scaffolds for Dental Pulp and Dentin Tissue Engineering

    Science.gov (United States)

    Shawli, Hassan Talat

    Current and historical endodontic "root canal" treatments employ inert obturating materials inserted into the teeth's pulp chambers and root canals, often saving teeth but without adequate function. Furthermore, the occurrence of pulpal necrosis in the immature permanent tooth is considered to be a challenging situation, clinically, in treatment because the thin and often short roots increase the risk of fracture. The ideal treatment would be to promote continued root development. This work demonstrated that endodontically-shaped and durable scaffolds of slowly resorbable fibrous (HT) glass and faster-resorbing small-particle Bioglass can be sintered at 900 degrees C for such placement, and that cell growth of osteoblasts in these scaffolds shows good early results. Retained bioactivity in the sintered specimen was revealed by Multiple Attenuated Internal Reflection Infrared Spectroscopy.

  11. Scaffolding in Mobile Science Enquiry-based Learning Using Ontologies

    Directory of Open Access Journals (Sweden)

    Sohaib Ahmed

    2012-08-01

    Full Text Available The use of ontologies has become increasingly widespread in many areas, particularly in technology enhanced learning. They appear promising in supporting knowledge representation and learning content creation for domains of interest. In this paper, we show how ontology-based scaffolding has helped mobile learners to perform scientific enquiry investigations. Enquiry-based learning aims to provide educational activities and tools to assists students to learn science by doing science. In this study, a design science research approach was taken to creating an ontology-driven application for a science content domain, which has been evaluated with high school science students. The results showed the significant value of ontologies in scaffolding learning content in such enquiry-based learning environments. With this application, students were found to learn science in more meaningful and engaged ways as well as developing positive attitudes towards mobile learning.

  12. SUPPORTING LEARNING THROUGH EPISTEMIC SCAFFOLDS EMBEDDED IN A HIGHLIGHTER TOOL

    Directory of Open Access Journals (Sweden)

    Jan Erik Dahl

    2016-11-01

    Full Text Available This article explores the use of epistemic scaffolds embedded in a digital highlighter tool that was used to support students’ readings and discussions of research articles. The use of annotation technologies in education is increasing, and annotations can play a wide variety of epistemic roles; e.g., they can facilitate a deeper level of engagement, support critical thinking, develop cognitive and metacognitive skills and introduce practices that can support knowledge building and independent learning. However, research has shown that the actual tool use often deviates from the underlying knowledge model in the tools. Hence, the situated and mediated nature of these tools is still poorly understood. Research also tends to study the tools as a passed on resource rather than being co-constructed between students and teachers. The researcher argues that approaching these resources as co-constructed can be more productive and can create new spaces for teacher–student dialogues, students’ agency and self-scaffolding.

  13. Neural stem cell proliferation and differentiation in the conductive PEDOT-HA/Cs/Gel scaffold for neural tissue engineering.

    Science.gov (United States)

    Wang, Shuping; Guan, Shui; Xu, Jianqiang; Li, Wenfang; Ge, Dan; Sun, Changkai; Liu, Tianqing; Ma, Xuehu

    2017-09-26

    Engineering scaffolds with excellent electro-activity is increasingly important in tissue engineering and regenerative medicine. Herein, conductive poly(3,4-ethylenedioxythiophene) doped with hyaluronic acid (PEDOT-HA) nanoparticles were firstly synthesized via chemical oxidant polymerization. A three-dimensional (3D) PEDOT-HA/Cs/Gel scaffold was then developed by introducing PEDOT-HA nanoparticles into a chitosan/gelatin (Cs/Gel) matrix. HA, as a bridge, not only was used as a dopant, but also combined PEDOT into the Cs/Gel via chemical crosslinking. The PEDOT-HA/Cs/Gel scaffold was used as a conductive substrate for neural stem cell (NSC) culture in vitro. The results demonstrated that the PEDOT-HA/Cs/Gel scaffold had excellent biocompatibility for NSC proliferation and differentiation. 3D confocal fluorescence images showed cells attached on the channel surface of Cs/Gel and PEDOT-HA/Cs/Gel scaffolds with a normal neuronal morphology. Compared to the Cs/Gel scaffold, the PEDOT-HA/Cs/Gel scaffold not only promoted NSC proliferation with up-regulated expression of Ki67, but also enhanced NSC differentiation into neurons and astrocytes with up-regulated expression of β tubulin-III and GFAP, respectively. It is expected that this electro-active and bio-active PEDOT-HA/Cs/Gel scaffold will be used as a conductive platform to regulate NSC behavior for neural tissue engineering.

  14. Mineralization and drug release of hydroxyapatite/poly(l-lactic acid) nanocomposite scaffolds prepared by Pickering emulsion templating.

    Science.gov (United States)

    Hu, Yang; Zou, Shengwen; Chen, Weike; Tong, Zhen; Wang, Chaoyang

    2014-10-01

    Biodegradable and bioactive nanocomposite (NC) biomaterials with controlled microstructures and able to deliver special drugs have gained increasing attention in bone tissue engineering. In this study, the hydroxyapatite (HAp)/poly(l-lactic acid) (PLLA) NC scaffolds were facilely prepared using solvent evaporation from templating Pickering emulsions stabilized with PLLA-modified HAp (g-HAp) nanoparticles. Then, in vitro mineralization experiments were performed in a simulated body fluid (SBF) to evaluate the bioactivity of the NC scaffolds. Moreover, in vitro drug release of the NC scaffolds using anti-inflammatory drug (ibuprofen, IBU) as the model drug was also investigated. The results showed that the NC scaffolds possessed interconnected pore structures, which could be modulated by varying the g-HAp nanoparticle concentration. The NC scaffolds exhibited excellent bioactivity, since they induced the formation of calcium-sufficient, carbonated apatite nanoparticles on the scaffolds after mineralization in SBF for 3 days. The IBU loaded in the NC scaffolds showed a sustained release profile, and the release kinetic followed the Higuchi model with diffusion process. Thus, solvent evaporation based on Pickering emulsion droplets is a simple and effective method to prepare biodegradable and bioactive porous NC scaffolds for bone repair and replacement applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Doped tricalcium phosphate scaffolds by thermal decomposition of naphthalene: Mechanical properties and in vivo osteogenesis in a rabbit femur model.

    Science.gov (United States)

    Ke, Dongxu; Dernell, William; Bandyopadhyay, Amit; Bose, Susmita

    2015-11-01

    Tricalcium phosphate (TCP) is a bioceramic that is widely used in orthopedic and dental applications. TCP structures show excellent biocompatibility as well as biodegradability. In this study, porous β-TCP scaffolds were prepared by thermal decomposition of naphthalene. Scaffolds with 57.64% ± 3.54% density and a maximum pore size around 100 μm were fabricated via removing 30% naphthalene at 1150°C. The compressive strength for these scaffolds was 32.85 ± 1.41 MPa. Furthermore, by mixing 1 wt % SrO and 0.5 wt % SiO2 , pore interconnectivity improved, but the compressive strength decreased to 22.40 ± 2.70 MPa. However, after addition of polycaprolactone coating layers, the compressive strength of doped scaffolds increased to 29.57 ± 3.77 MPa. Porous scaffolds were implanted in rabbit femur defects to evaluate their biological property. The addition of dopants triggered osteoinduction by enhancing osteoid formation, osteocalcin expression, and bone regeneration, especially at the interface of the scaffold and host bone. This study showed processing flexibility to make interconnected porous scaffolds with different pore size and volume fraction porosity, while maintaining high compressive mechanical strength and excellent bioactivity. Results show that SrO/SiO2 -doped porous TCP scaffolds have excellent potential to be used in bone tissue engineering applications. © 2014 Wiley Periodicals, Inc.

  16. Understanding the role of dip-coating process parameters in the mechanical performance of polymer-coated bioglass robocast scaffolds.

    Science.gov (United States)

    Motealleh, Azadeh; Eqtesadi, Siamak; Perera, Fidel Hugo; Pajares, Antonia; Guiberteau, Fernando; Miranda, Pedro

    2016-12-01

    The effect of different dip-coating variables-solvent, deposition temperature and polymer concentration-on the mechanical performance of polycaprolactone-coated 45S5 bioglass robocast scaffolds is systematically analyzed in this work. The reproducible geometry of the scaffolds produced by this additive manufacturing technique makes them an optimal model system and facilitates the analysis. The results suggest that the mechanical performance of the hybrid scaffolds is improved monotonically with polymer concentration, but this concentration cannot be increased indefinitely if the macroporosity interconnectivity, and thus the scaffold׳s capacity to promote tissue ingrowth, are to be preserved. An optimal concentration, and therefore viscosity (~1-4Pas in the present case), exists for any given set of process variables (scaffold geometry and material, polymer, solvent and process temperature) that yields coatings with optimal reinforcement and minimal reduction of scaffold functionality. Solvent and process temperature do not directly affect the strengthening provided by the polymeric coating. However they can determine the maximum concentration at the critical viscosity, and thereby the maximum achievable mechanical performance of the resulting hybrid scaffold. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Material properties and electrical stimulation regimens of polycaprolactone fumarate-polypyrrole scaffolds as potential conductive nerve conduits.

    Science.gov (United States)

    Moroder, Philipp; Runge, M Brett; Wang, Huan; Ruesink, Terry; Lu, Lichun; Spinner, Robert J; Windebank, Anthony J; Yaszemski, Michael J

    2011-03-01

    The mechanical and electrical properties of polycaprolactone fumarate-polypyrrole (PCLF-PPy) scaffolds were studied under physiological conditions to evaluate their ability to maintain the material properties necessary for application as conductive nerve conduits. PC12 cells cultured on PCLF-PPy scaffolds were stimulated with regimens of 10 μA of either a constant or a 20 Hz frequency current passed through the scaffolds for 1h per day. PC12 cellular morphologies were analyzed by fluorescence microscopy after 48 h. PCLF-PPy scaffolds exhibited excellent mechanical properties at 37 °C which would allow suturing and flexibility. The surface resistivity of the scaffolds was 2 kΩ and the scaffolds were electrically stable during the application of electrical stimulation (ES). In vitro studies showed significant increases in the percentage of neurite bearing cells, number of neurites per cell and neurite length in the presence of ES compared with no ES. Additionally, extending neurites were observed to align in the direction of the applied current. This study shows that electrically conductive PCLF-PPy scaffolds possess the material properties necessary for application as nerve conduits. Additionally, the capability to significantly enhance and direct neurite extension by passing an electrical current through PCLF-PPy scaffolds renders them even more promising as future therapeutic treatments for severe nerve injuries. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Fabrication of a Highly Aligned Neural Scaffold via a Table Top Stereolithography 3D Printing and Electrospinning().

    Science.gov (United States)

    Lee, Se-Jun; Nowicki, Margaret; Harris, Brent; Zhang, Lijie Grace

    2017-06-01

    Three-dimensional (3D) bioprinting is a rapidly emerging technique in the field of tissue engineering to fabricate extremely intricate and complex biomimetic scaffolds in the range of micrometers. Such customized 3D printed constructs can be used for the regeneration of complex tissues such as cartilage, vessels, and nerves. However, the 3D printing techniques often offer limited control over the resolution and compromised mechanical properties due to short selection of printable inks. To address these limitations, we combined stereolithography and electrospinning techniques to fabricate a novel 3D biomimetic neural scaffold with a tunable porous structure and embedded aligned fibers. By employing two different types of biofabrication methods, we successfully utilized both synthetic and natural materials with varying chemical composition as bioink to enhance biocompatibilities and mechanical properties of the scaffold. The resulting microfibers composed of polycaprolactone (PCL) polymer and PCL mixed with gelatin were embedded in 3D printed hydrogel scaffold. Our results showed that 3D printed scaffolds with electrospun fibers significantly improve neural stem cell adhesion when compared to those without the fibers. Furthermore, 3D scaffolds embedded with aligned fibers showed an enhancement in cell proliferation relative to bare control scaffolds. More importantly, confocal microscopy images illustrated that the scaffold with PCL/gelatin fibers greatly increased the average neurite length and directed neurite extension of primary cortical neurons along the fiber. The results of this study demonstrate the potential to create unique 3D neural tissue constructs by combining 3D bioprinting and electrospinning techniques.

  19. Scaffolds with a standardized macro-architecture fabricated from several calcium phosphate ceramics using an indirect rapid prototyping technique

    Science.gov (United States)

    Wilson, C. E.; van Blitterswijk, C. A.; Verbout, A. J.; de Bruijn, J. D.

    2010-01-01

    Calcium phosphate ceramics, commonly applied as bone graft substitutes, are a natural choice of scaffolding material for bone tissue engineering. Evidence shows that the chemical composition, macroporosity and microporosity of these ceramics influences their behavior as bone graft substitutes and bone tissue engineering scaffolds but little has been done to optimize these parameters. One method of optimization is to place focus on a particular parameter by normalizing the influence, as much as possible, of confounding parameters. This is difficult to accomplish with traditional fabrication techniques. In this study we describe a design based rapid prototyping method of manufacturing scaffolds with virtually identical macroporous architectures from different calcium phosphate ceramic compositions. Beta-tricalcium phosphate, hydroxyapatite (at two sintering temperatures) and biphasic calcium phosphate scaffolds were manufactured. The macro- and micro-architectures of the scaffolds were characterized as well as the influence of the manufacturing method on the chemistries of the calcium phosphate compositions. The structural characteristics of the resulting scaffolds were remarkably similar. The manufacturing process had little influence on the composition of the materials except for the consistent but small addition of, or increase in, a beta-tricalcium phosphate phase. Among other applications, scaffolds produced by the method described provide a means of examining the influence of different calcium phosphate compositions while confidently excluding the influence of the macroporous structure of the scaffolds. PMID:21069558

  20. Material properties and electrical stimulation regimens through polycaprolactone fumarate-polypyrrole scaffolds as potential conductive nerve conduits

    Science.gov (United States)

    Moroder, Philipp; Wang, Huan; Ruesink, Terry; Lu, Lichun; Windebank, Anthony J.; Yaszemski, Michael J.; Runge, M. Brett

    2010-01-01

    Mechanical and electrical properties of polycaprolactone fumarate-polypyrrole (PCLF-PPy) scaffolds were studied under physiological conditions to evaluate their ability to maintain material properties necessary for application as conductive nerve conduits. PC12 cells cultured on PCLF-PPy scaffolds were stimulated with regimens of 10 μA of constant or 20 Hz frequency current passed through the scaffolds for 1 h/day. PC12 cellular morphologies were analyzed by fluorescence microscopy after 48 h. PCLF-PPy scaffolds exhibited excellent mechanical properties at 37°C which would allow suturing and flexibility. The surface resistivity of the scaffolds was 2kΩ and the scaffolds were electrically stable during application of electrical stimulation (ES). In vitro studies showed significant increases in percentage of neurite bearing cells, number of neurites per cell and neurite length in the presence of ES compared to no ES. Additionally, extending neurites were observed to align in the direction of the applied current. This study shows that electrically conductive PCLF-PPy scaffolds possess material properties necessary for application as nerve conduits. Additionally, the capability to significantly enhance and direct neurite extension by passing electrical current through PCLF-PPy scaffolds renders them even more promising as future therapeutic treatments for severe nerve injuries. PMID:20965280

  1. Tissue-engineered matrices as functional delivery systems: adsorption and release of bioactive proteins from degradable composite scaffolds.

    Science.gov (United States)

    Cushnie, Emily K; Khan, Yusuf M; Laurencin, Cato T

    2010-08-01

    A tissue-engineered bone graft should imitate the ideal autograft in both form and function. However, biomaterials that have appropriate chemical and mechanical properties for grafting applications often lack biological components that may enhance regeneration. The concept of adding proteins such as growth factors to scaffolds has therefore emerged as a possible solution to improve overall graft design. In this study, we investigated this concept by loading porous hydroxyapatite-poly(lactide-co-glycolide) (HA-PLAGA) scaffolds with a model protein, cytochrome c, and then studying its release in a phosphate-buffered saline solution. The HA-PLAGA scaffold has previously been shown to be bioactive, osteoconductive, and to have appropriate physical properties for tissue engineering applications. The loading experiments demonstrated that the HA-PLAGA scaffold could also function effectively as a substrate for protein adsorption and release. Scaffold protein adsorptive loading (as opposed to physical entrapment within the matrix) was directly related to levels of scaffold HA-content. The HA phase of the scaffold facilitated protein retention in the matrix following incubation in aqueous buffer for periods up to 8 weeks. Greater levels of protein retention time may improve the protein's effective activity by increasing the probability for protein-cell interactions. The ability to control protein loading and delivery simply via composition of the HA-PLAGA scaffold offers the potential of forming robust functionalized bone grafts. (c) 2010 Wiley Periodicals, Inc.

  2. Mechanical properties and cell-culture characteristics of a polycaprolactone kagome-structure scaffold fabricated by a precision extruding deposition system.

    Science.gov (United States)

    Lee, Se-Hwan; Cho, Yong Sang; Hong, Myoung Wha; Lee, Bu-Kyu; Park, Yongdoo; Park, Sang-Hyug; Kim, Young Yul; Cho, Young-Sam

    2017-09-13

    To enhance the mechanical properties of three-dimensional (3D) scaffolds used for bone regeneration in tissue engineering, many researchers have studied their structure and chemistry. In the structural engineering field, the kagome structure has been known to have an excellent relative strength. In this study, to enhance the mechanical properties of a synthetic polymer scaffold used for tissue engineering, we applied the 3D kagome structure to a porous scaffold for bone regeneration. Prior to fabricating the biocompatible-polymer scaffold, the ideal kagome structure, which was manufactured by a 3D printer of the digital light processing type, was compared with a grid-structure, which was used as the control group, using a compressive experiment. A polycaprolactone (PCL) kagome-structure scaffold was successfully fabricated by additive manufacturing using a 3D printer with a precision extruding deposition head. To assess the physical characteristics of the fabricated PCL-kagome-structure scaffold, we analyzed its porosity, pore size, morphological structure, surface roughness, compressive stiffness, and mechanical bending properties. The results showed that, the mechanical properties of proposed kagome-structure scaffold were superior to those of a grid-structure scaffold. Moreover, Sarcoma osteogenic (Saos-2) cells were used to evaluate the characteristics of in vitro cell proliferation. We carried out cell counting kit-8 (CCK-8) and DNA contents assays. Consequently, the cell proliferation of the kagome-structure scaffold was increased; this could be because the surface roughness of the kagome-structure scaffold enhances initial cell attachment.

  3. In vivo degradation profile of porcine cartilage-derived extracellular matrix powder scaffolds using a non-invasive fluorescence imaging method.

    Science.gov (United States)

    Kim, Hyeon Joo; Lee, Soyeon; Yun, Hee-Woong; Yin, Xiang Yun; Kim, Soon Hee; Choi, Byung Hyune; Kim, Young Jick; Kim, Moon Suk; Min, Byoung-Hyun

    2016-01-01

    We present a non-invasive fluorescence method for imaging of scaffold degradation in vivo by quantifying the degradation of porcine cartilage-derived extracellular matrix powder (PCP).Three-dimensional porous scaffolds should be biocompatible and bioresorbable, with a controllable degradation and resorption rate to match tissue growth. However, in vivo scaffold degradation and tissue ingrowth processes are not yet fully understood. Unfortunately, current analysis methods require animal sacrifice and scaffold destruction for the quantification of scaffold degradation and cannot monitor the situation in real time. In this study, Cy3, a fluorescent dye, was used for visualizing PCP and a real-time degradation profile was obtained quantitatively by a non-invasive method using an imaging system in which the reduction in fluorescence intensity depended on PCP scaffold degradation. Real-time PCP scaffold degradation was confirmed through changes in the volume and morphology of the scaffold using micro-computed tomography and microscopy. Our results suggest that extracellular matrix degradation was induced by collagen degradation because of the binding between Cy3 and collagen. This non-invasive real-time monitoring system for scaffold degradation will increase our understanding of in vivo matrix and/or scaffold degradation.

  4. [PROGRESS IN BIOLOGICAL TISSUE ENGINEERING SCAFFOLD MATERIALS].

    Science.gov (United States)

    Wei, Xiaojuan; Xi, Tingfei; Zheng, Yufeng

    2014-06-01

    To analyze the progress in biological tissue engineering scaffold materials and the clinical application, as well as product development status. Based on extensive investigation in the status of research and application of biological tissue engineering scaffold materials, a comprehensive analysis was made. Meanwhile, a detailed analysis of research and product development was presented. Considerable progress has been achieved in research, products transformation, clinical application, and supervision of biological scaffold for tissue engineering. New directions, new technology, and new products are constantly emerging. With the continuous progress of science and technology and continuous improvement of life sciences theory, the new direction and new focus still need to be continuously adjusted in order to meet the clinical needs. From the aspect of industrial transformation feasibility, acellular scaffolds and extracellular matrix are the most promising new growth of both research and product development in this field.

  5. Agrochemical lead optimization by scaffold hopping.

    Science.gov (United States)

    Lamberth, Clemens

    2018-02-01

    Scaffold hopping, the exchange of a specific portion of a potential active ingredient with another substructure with the aim of finding isofunctional molecular structures with significantly different molecular backbones, often offers the chance in lead discovery or optimization to mitigate problems related to toxicity, intellectual property, and insufficient potency or stability. Scaffold hopping tools such as isosteric ring replacement including 1,3 nitrogen shift and cyclic imine-amide isosterism, but also ring opening and ring closure approaches, functional group isosterism, reversion of functional groups, chain shortening, chain lengthening, and scaffolds delivered by natural products, have become a permanent fixture of the innovation and optimization process in crop protection research. Their appropriate use will be explained through examples of success stories in the field of agrochemistry. Analogies to, but also differences from, the main categories of scaffold hopping in medicinal drug discovery are discussed. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Fabrication of three-dimensional bioplotted hydrogel scaffolds for islets of Langerhans transplantation.

    Science.gov (United States)

    Marchioli, G; van Gurp, L; van Krieken, P P; Stamatialis, D; Engelse, M; van Blitterswijk, C A; Karperien, M B J; de Koning, E; Alblas, J; Moroni, L; van Apeldoorn, A A

    2015-05-28

    In clinical islet transplantation, allogeneic islets of Langerhans are transplanted into the portal vein of patients with type 1 diabetes, enabling the restoration of normoglycemia. After intra-hepatic transplantation several factors are involved in the decay in islet mass and function mainly caused by an immediate blood mediated inflammatory response, lack of vascularization, and allo- and autoimmunity. Bioengineered scaffolds can potentially provide an alternative extra-hepatic transplantation site for islets by improving nutrient diffusion and blood supply to the scaffold. This would ultimately result in enhanced islet viability and functionality compared to conventional intra portal transplantation. In this regard, the biomaterial choice, the three-dimensional (3D) shape and scaffold porosity are key parameters for an optimal construct design and, ultimately, transplantation outcome. We used 3D bioplotting for the fabrication of a 3D alginate-based porous scaffold as an extra-hepatic islet delivery system. In 3D-plotted alginate scaffolds the surface to volume ratio, and thus oxygen and nutrient transport, is increased compared to conventional bulk hydrogels. Several alginate mixtures have been tested for INS1E β-cell viability. Alginate/gelatin mixtures resulted in high plotting performances, and satisfactory handling properties. INS1E β-cells, human and mouse islets were successfully embedded in 3D-plotted constructs without affecting their morphology and viability, while preventing their aggregation. 3D plotted