WorldWideScience

Sample records for cell-microelectronic sensing technique

  1. A cell-microelectronic sensing technique for profiling cytotoxicity of chemicals

    International Nuclear Information System (INIS)

    Boyd, Jessica M.; Huang, Li; Xie Li; Moe, Birget; Gabos, Stephan; Li Xingfang

    2008-01-01

    A cell-microelectronic sensing technique is developed for profiling chemical cytotoxicity and is used to study different cytotoxic effects of the same class chemicals using nitrosamines as examples. This technique uses three human cell lines (T24 bladder, HepG2 liver, and A549 lung carcinoma cells) and Chinese hamster ovary (CHO-K1) cells in parallel as the living components of the sensors of a real-time cell electronic sensing (RT-CES) method for dynamic monitoring of chemical toxicity. The RT-CES technique measures changes in the impedance of individual microelectronic wells that is correlated linearly with changes in cell numbers during t log phase of cell growth, thus allowing determination of cytotoxicity. Four nitrosamines, N-nitrosodimethylamine (NDMA), N-nitrosodiphenylamine (NDPhA), N-nitrosopiperidine (NPip), and N-nitrosopyrrolidine (NPyr), were examined and unique cytotoxicity profiles were detected for each nitrosamine. In vitro cytotoxicity values (IC 50 ) for NDPhA (ranging from 0.6 to 1.9 mM) were significantly lower than the IC 50 values for the well-known carcinogen NDMA (15-95 mM) in all four cell lines. T24 cells were the most sensitive to nitrosamine exposure among the four cell lines tested (T24 > CHO > A549 > HepG2), suggesting that T24 may serve as a new sensitive model for cytotoxicity screening. Cell staining results confirmed that administration of the IC 50 concentration from the RT-CES experiments inhibited cell growth by 50% compared to the controls, indicating that the RT-CES method provides reliable measures of IC 50 . Staining and cell-cycle analysis confirmed that NDPhA caused cell-cycle arrest at the G0/G1 phase, whereas NDMA did not disrupt the cell cycle but induced cell death, thus explaining the different cytotoxicity profiles detected by the RT-CES method. The parallel cytotoxicity profiling of nitrosamines on the four cell lines by the RT-CES method led to the discovery of the unique cytotoxicity of NDPhA causing cell

  2. A cell-microelectronic sensing technique for profiling cytotoxicity of chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Jessica M [Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, 10-102 Clinical Sciences Building, Edmonton, Alberta, T6G 2G3 (Canada); Huang, Li [Environmental Health Sciences, Department of Public Health Sciences, School of Public Health, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alberta, T6G 2G3 (Canada); Li, Xie; Moe, Birget [Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, 10-102 Clinical Sciences Building, Edmonton, Alberta, T6G 2G3 (Canada); Gabos, Stephan [Public Health Surveillance and Environmental Health, Alberta Health and Wellness, 10025 Jasper Avenue, Box 1360, Edmonton, Alberta, T5J 2N3 (Canada); Xingfang, Li [Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, 10-102 Clinical Sciences Building, Edmonton, Alberta, T6G 2G3 (Canada); Environmental Health Sciences, Department of Public Health Sciences, School of Public Health, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alberta, T6G 2G3 (Canada)], E-mail: xingfang.li@ualberta.ca

    2008-05-12

    A cell-microelectronic sensing technique is developed for profiling chemical cytotoxicity and is used to study different cytotoxic effects of the same class chemicals using nitrosamines as examples. This technique uses three human cell lines (T24 bladder, HepG2 liver, and A549 lung carcinoma cells) and Chinese hamster ovary (CHO-K1) cells in parallel as the living components of the sensors of a real-time cell electronic sensing (RT-CES) method for dynamic monitoring of chemical toxicity. The RT-CES technique measures changes in the impedance of individual microelectronic wells that is correlated linearly with changes in cell numbers during t log phase of cell growth, thus allowing determination of cytotoxicity. Four nitrosamines, N-nitrosodimethylamine (NDMA), N-nitrosodiphenylamine (NDPhA), N-nitrosopiperidine (NPip), and N-nitrosopyrrolidine (NPyr), were examined and unique cytotoxicity profiles were detected for each nitrosamine. In vitro cytotoxicity values (IC{sub 50}) for NDPhA (ranging from 0.6 to 1.9 mM) were significantly lower than the IC{sub 50} values for the well-known carcinogen NDMA (15-95 mM) in all four cell lines. T24 cells were the most sensitive to nitrosamine exposure among the four cell lines tested (T24 > CHO > A549 > HepG2), suggesting that T24 may serve as a new sensitive model for cytotoxicity screening. Cell staining results confirmed that administration of the IC{sub 50} concentration from the RT-CES experiments inhibited cell growth by 50% compared to the controls, indicating that the RT-CES method provides reliable measures of IC{sub 50}. Staining and cell-cycle analysis confirmed that NDPhA caused cell-cycle arrest at the G0/G1 phase, whereas NDMA did not disrupt the cell cycle but induced cell death, thus explaining the different cytotoxicity profiles detected by the RT-CES method. The parallel cytotoxicity profiling of nitrosamines on the four cell lines by the RT-CES method led to the discovery of the unique cytotoxicity of NDPh

  3. Advanced sensing techniques for cognitive radio

    CERN Document Server

    Zhao, Guodong; Li, Shaoqian

    2017-01-01

    This SpringerBrief investigates advanced sensing techniques to detect and estimate the primary receiver for cognitive radio systems. Along with a comprehensive overview of existing spectrum sensing techniques, this brief focuses on the design of new signal processing techniques, including the region-based sensing, jamming-based probing, and relay-based probing. The proposed sensing techniques aim to detect the nearby primary receiver and estimate the cross-channel gain between the cognitive transmitter and primary receiver. The performance of the proposed algorithms is evaluated by simulations in terms of several performance parameters, including detection probability, interference probability, and estimation error. The results show that the proposed sensing techniques can effectively sense the primary receiver and improve the cognitive transmission throughput. Researchers and postgraduate students in electrical engineering will find this an exceptional resource.

  4. Vision sensing techniques in aeronautics and astronautics

    Science.gov (United States)

    Hall, E. L.

    1988-01-01

    The close relationship between sensing and other tasks in orbital space, and the integral role of vision sensing in practical aerospace applications, are illustrated. Typical space mission-vision tasks encompass the docking of space vehicles, the detection of unexpected objects, the diagnosis of spacecraft damage, and the inspection of critical spacecraft components. Attention is presently given to image functions, the 'windowing' of a view, the number of cameras required for inspection tasks, the choice of incoherent or coherent (laser) illumination, three-dimensional-to-two-dimensional model-matching, edge- and region-segmentation techniques, and motion analysis for tracking.

  5. Noninvasive Remote Sensing Techniques for Infrastructures Diagnostics

    Directory of Open Access Journals (Sweden)

    Angelo Palombo

    2011-01-01

    Full Text Available The present paper aims at analyzing the potentialities of noninvasive remote sensing techniques used for detecting the conservation status of infrastructures. The applied remote sensing techniques are ground-based microwave radar interferometer and InfraRed Thermography (IRT to study a particular structure planned and made in the framework of the ISTIMES project (funded by the European Commission in the frame of a joint Call “ICT and Security” of the Seventh Framework Programme. To exploit the effectiveness of the high-resolution remote sensing techniques applied we will use the high-frequency thermal camera to measure the structures oscillations by high-frequency analysis and ground-based microwave radar interferometer to measure the dynamic displacement of several points belonging to a large structure. The paper describes the preliminary research results and discusses on the future applicability and techniques developments for integrating high-frequency time series data of the thermal imagery and ground-based microwave radar interferometer data.

  6. Assessing the accuracy of remote sensing techniques in vegetation ...

    African Journals Online (AJOL)

    Assessing the accuracy of remote sensing techniques in vegetation fractions estimation. ... This study aimed at exploring different remote sensing (RS) techniques for quantitatively measuring vegetation and bare soil ... HOW TO USE AJOL.

  7. The Potential of AI Techniques for Remote Sensing

    Science.gov (United States)

    Estes, J. E.; Sailer, C. T. (Principal Investigator); Tinney, L. R.

    1984-01-01

    The current status of artificial intelligence AI technology is discussed along with imagery data management, database interrogation, and decision making. Techniques adapted from the field of artificial intelligence (AI) have significant, wide ranging impacts upon computer-assisted remote sensing analysis. AI based techniques offer a powerful and fundamentally different approach to many remote sensing tasks. In addition to computer assisted analysis, AI techniques can also aid onboard spacecraft data processing and analysis and database access and query.

  8. Neutron visual sensing techniques making good use of computer science

    International Nuclear Information System (INIS)

    Kureta, Masatoshi

    2009-01-01

    Neutron visual sensing technique is one of the nondestructive visualization and image-sensing techniques. In this article, some advanced neutron visual sensing techniques are introduced. The most up-to-date high-speed neutron radiography, neutron 3D CT, high-speed scanning neutron 3D/4D CT and multi-beam neutron 4D CT techniques are included with some fundamental application results. Oil flow in a car engine was visualized by high-speed neutron radiography technique to make clear the unknown phenomena. 4D visualization of pained sand in the sand glass was reported as the demonstration of the high-speed scanning neutron 4D CT technique. The purposes of the development of these techniques are to make clear the unknown phenomena and to measure the void fraction, velocity etc. with high-speed or 3D/4D for many industrial applications. (author)

  9. A comparison of force sensing techniques for planetary manipulation

    Science.gov (United States)

    Helmick, Daniel; Okon, Avi; DiCicco, Matt

    2006-01-01

    Five techniques for sensing forces with a manipulator are compared analytically and experimentally. The techniques compared are: a six-axis wrist force/torque sensor, joint torque sensors, link strain gauges, motor current sensors, and flexibility modeling. The accuracy and repeatability fo each technique is quantified and compared.

  10. Image processing techniques for remote sensing data

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.

    interpretation and for processing of scene data for autonomous machine perception. The technique of digital image processing are used for' automatic character/pattern recognition, industrial robots for product assembly and inspection, military recognizance... and spatial co-ordinates into discrete components. The mathematical concepts involved are the sampling and transform theory. Two dimensional transforms are used for image enhancement, restoration, encoding and description too. The main objective of the image...

  11. The Delphi Technique: Making Sense of Consensus

    Directory of Open Access Journals (Sweden)

    Chia-Chien Hsu

    2007-08-01

    Full Text Available The Delphi technique is a widely used and accepted method for gathering data from respondents within their domain of expertise. The technique is designed as a group communication process which aims to achieve a convergence of opinion on a specific real-world issue. The Delphi process has been used in various fields of study such as program planning, needs assessment, policy determination, and resource utilization to develop a full range of alternatives, explore or expose underlying assumptions, as well as correlate judgments on a topic spanning a wide range of disciplines. The Delphi technique is well suited as a method for consensus-building by using a series of questionnaires delivered using multiple iterations to collect data from a panel of selected subjects. Subject selection, time frames for conducting and completing a study, the possibility of low response rates, and unintentionally guiding feedback from the respondent group are areas which should be considered when designing and implementing a Delphi study.

  12. Development of sensing techniques for weaponry health monitoring

    Science.gov (United States)

    Edwards, Eugene; Ruffin, Paul B.; Walker, Ebonee A.; Brantley, Christina L.

    2013-04-01

    Due to the costliness of destructive evaluation methods for assessing the aging and shelf-life of missile and rocket components, the identification of nondestructive evaluation methods has become increasingly important to the Army. Verifying that there is a sufficient concentration of stabilizer is a dependable indicator that the missile's double-based solid propellant is viable. The research outlined in this paper summarizes the Army Aviation and Missile Research, Development, and Engineering Center's (AMRDEC's) comparative use of nanoporous membranes, carbon nanotubes, and optical spectroscopic configured sensing techniques for detecting degradation in rocket motor propellant. The first sensing technique utilizes a gas collecting chamber consisting of nanoporous structures that trap the smaller solid propellant particles for measurement by a gas analysis device. In collaboration with NASA-Ames, sensing methods are developed that utilize functionalized single-walled carbon nanotubes as the key sensing element. The optical spectroscopic sensing method is based on a unique light collecting optical fiber system designed to detect the concentration of the propellant stabilizer. Experimental setups, laboratory results, and overall effectiveness of each technique are presented in this paper. Expectations are for the three sensing mechanisms to provide nondestructive evaluation methods that will offer cost-savings and improved weaponry health monitoring.

  13. Watermarking techniques for electronic delivery of remote sensing images

    Science.gov (United States)

    Barni, Mauro; Bartolini, Franco; Magli, Enrico; Olmo, Gabriella

    2002-09-01

    Earth observation missions have recently attracted a growing interest, mainly due to the large number of possible applications capable of exploiting remotely sensed data and images. Along with the increase of market potential, the need arises for the protection of the image products. Such a need is a very crucial one, because the Internet and other public/private networks have become preferred means of data exchange. A critical issue arising when dealing with digital image distribution is copyright protection. Such a problem has been largely addressed by resorting to watermarking technology. A question that obviously arises is whether the requirements imposed by remote sensing imagery are compatible with existing watermarking techniques. On the basis of these motivations, the contribution of this work is twofold: assessment of the requirements imposed by remote sensing applications on watermark-based copyright protection, and modification of two well-established digital watermarking techniques to meet such constraints. More specifically, the concept of near-lossless watermarking is introduced and two possible algorithms matching such a requirement are presented. Experimental results are shown to measure the impact of watermark introduction on a typical remote sensing application, i.e., unsupervised image classification.

  14. Digital holography and wavefront sensing principles, techniques and applications

    CERN Document Server

    Schnars, Ulf; Watson, John; Jüptner, Werner

    2015-01-01

    This book presents a self-contained treatment of the principles and major applications of digital hologram recording and numerical reconstruction (Digital Holography). This second edition has been significantly revised and enlarged. The authors have extended the chapter on Digital Holographic Microscopy to incorporate new sections on particle sizing, particle image velocimetry and underwater holography. A new chapter now deals comprehensively and extensively with computational wave field sensing. These techniques represent a fascinating alternative to standard interferometry and Digital Holography. They enable wave field sensing without the requirement of a particular reference wave, thus allowing the use of low brilliance light sources and even liquid-crystal displays (LCD) for interferometric applications.              

  15. Remote sensing techniques in monitoring areas affected by forest fire

    Science.gov (United States)

    Karagianni, Aikaterini Ch.; Lazaridou, Maria A.

    2017-09-01

    Forest fire is a part of nature playing a key role in shaping ecosystems. However, fire's environmental impacts can be significant, affecting wildlife habitat and timber, human settlements, man-made technical constructions and various networks (road, power networks) and polluting the air with emissions harmful to human health. Furthermore, fire's effect on the landscape may be long-lasting. Monitoring the development of a fire occurs as an important aspect at the management of natural hazards in general. Among the used methods for monitoring, satellite data and remote sensing techniques can be proven of particular importance. Satellite remote sensing offers a useful tool for forest fire detection, monitoring, management and damage assessment. Especially for fire scars detection and monitoring, satellite data derived from Landsat 8 can be a useful research tool. This paper includes critical considerations of the above and concerns in particular an example of the Greek area (Thasos Island). This specific area was hit by fires several times in the past and recently as well (September 2016). Landsat 8 satellite data are being used (pre and post fire imagery) and digital image processing techniques are applied (enhancement techniques, calculation of various indices) for fire scars detection. Visual interpretation of the example area affected by the fires is also being done, contributing to the overall study.

  16. Compressed Sensing Techniques Applied to Ultrasonic Imaging of Cargo Containers

    Directory of Open Access Journals (Sweden)

    Yuri Álvarez López

    2017-01-01

    Full Text Available One of the key issues in the fight against the smuggling of goods has been the development of scanners for cargo inspection. X-ray-based radiographic system scanners are the most developed sensing modality. However, they are costly and use bulky sources that emit hazardous, ionizing radiation. Aiming to improve the probability of threat detection, an ultrasonic-based technique, capable of detecting the footprint of metallic containers or compartments concealed within the metallic structure of the inspected cargo, has been proposed. The system consists of an array of acoustic transceivers that is attached to the metallic structure-under-inspection, creating a guided acoustic Lamb wave. Reflections due to discontinuities are detected in the images, provided by an imaging algorithm. Taking into consideration that the majority of those images are sparse, this contribution analyzes the application of Compressed Sensing (CS techniques in order to reduce the amount of measurements needed, thus achieving faster scanning, without compromising the detection capabilities of the system. A parametric study of the image quality, as a function of the samples needed in spatial and frequency domains, is presented, as well as the dependence on the sampling pattern. For this purpose, realistic cargo inspection scenarios have been simulated.

  17. An integrated sensing technique for smart monitoring of water pipelines

    Science.gov (United States)

    Bernini, Romeo; Catapano, Ilaria; Soldovieri, Francesco; Crocco, Lorenzo

    2014-05-01

    Lowering the rate of water leakage from the network of underground pipes is one of the requirements that "smart" cities have to comply with. In fact, losses in the water supply infrastructure have a remarkable social, environmental and economic impact, which obviously conflicts with the expected efficiency and sustainability of a smart city. As a consequence, there is a huge interest in developing prevention policies based on state-of-art sensing techniques and possibly their integration, as well as in envisaging ad hoc technical solutions designed for the application at hand. As a contribution to this framework, in this communication we present an approach aimed to pursue a thorough non-invasive monitoring of water pipelines, with both high spatial and temporal resolution. This goal is necessary to guarantee that maintenance operations are performed timely, so to reduce the extent of the leakage and its possible side effects, and precisely, so to minimize the cost and the discomfort resulting from operating on the water supply network. The proposed approach integrates two sensing techniques that work at different spatial and temporal scales. The first one is meant to provide a continuous (in both space and time) monitoring of the pipeline and exploits a distributed optic fiber sensor based on the Brillouin scattering phenomenon. This technique provides the "low" spatial resolution information (at meter scale) needed to reveal the presence of a leak and call for interventions [1]. The second technique is based on the use of Ground Penetrating Radar (GPR) and is meant to provide detailed images of area where the damage has been detected. GPR systems equipped with suitable data processing strategies [2,3] are indeed capable of providing images of the shallow underground, where the pipes would be buried, characterized by a spatial resolution in the order of a few centimeters. This capability is crucial to address in the most proper way maintenance operations, by for

  18. Tunnel-Site Selection by Remote Sensing Techniques

    Science.gov (United States)

    A study of the role of remote sensing for geologic reconnaissance for tunnel-site selection was commenced. For this study, remote sensing was defined...conventional remote sensing . Future research directions are suggested, and the extension of remote sensing to include airborne passive microwave

  19. ESTIMATION OF INSULATOR CONTAMINATIONS BY MEANS OF REMOTE SENSING TECHNIQUE

    Directory of Open Access Journals (Sweden)

    G. Han

    2016-06-01

    Full Text Available The accurate estimation of deposits adhering on insulators is critical to prevent pollution flashovers which cause huge costs worldwide. The traditional evaluation method of insulator contaminations (IC is based sparse manual in-situ measurements, resulting in insufficient spatial representativeness and poor timeliness. Filling that gap, we proposed a novel evaluation framework of IC based on remote sensing and data mining. Varieties of products derived from satellite data, such as aerosol optical depth (AOD, digital elevation model (DEM, land use and land cover and normalized difference vegetation index were obtained to estimate the severity of IC along with the necessary field investigation inventory (pollution sources, ambient atmosphere and meteorological data. Rough set theory was utilized to minimize input sets under the prerequisite that the resultant set is equivalent to the full sets in terms of the decision ability to distinguish severity levels of IC. We found that AOD, the strength of pollution source and the precipitation are the top 3 decisive factors to estimate insulator contaminations. On that basis, different classification algorithm such as mahalanobis minimum distance, support vector machine (SVM and maximum likelihood method were utilized to estimate severity levels of IC. 10-fold cross-validation was carried out to evaluate the performances of different methods. SVM yielded the best overall accuracy among three algorithms. An overall accuracy of more than 70% was witnessed, suggesting a promising application of remote sensing in power maintenance. To our knowledge, this is the first trial to introduce remote sensing and relevant data analysis technique into the estimation of electrical insulator contaminations.

  20. Close-Range Sensing Techniques in Alpine Terrain

    Science.gov (United States)

    Rutzinger, M.; Höfle, B.; Lindenbergh, R.; Oude Elberink, S.; Pirotti, F.; Sailer, R.; Scaioni, M.; Stötter, J.; Wujanz, D.

    2016-06-01

    Early career researchers such as PhD students are a main driving force of scientific research and are for a large part responsible for research innovation. They work on specialized topics within focused research groups that have a limited number of members, but might also have limited capacity in terms of lab equipment. This poses a serious challenge for educating such students as it is difficult to group a sufficient number of them to enable efficient knowledge transfer. To overcome this problem, the Innsbruck Summer School of Alpine Research 2015 on close-range sensing techniques in Alpine terrain was organized in Obergurgl, Austria, by an international team from several universities and research centres. Of the applicants a group of 40 early career researchers were selected with interest in about ten types of specialized surveying tools, i.e. laser scanners, a remotely piloted aircraft system, a thermal camera, a backpack mobile mapping system and different grade photogrammetric equipment. During the one-week summer school, students were grouped according to their personal preference to work with one such type of equipment under guidance of an expert lecturer. All students were required to capture and process field data on a mountain-related theme like landslides or rock glaciers. The work on the assignments lasted the whole week but was interspersed with lectures on selected topics by invited experts. The final task of the summer school participants was to present and defend their results to their peers, lecturers and other colleagues in a symposium-like setting. Here we present the framework and content of this summer school which brought together scientists from close-range sensing and environmental and geosciences.

  1. Hyperspectral remote sensing techniques for early detection of plant diseases

    Science.gov (United States)

    Krezhova, Dora; Maneva, Svetla; Zdravev, Tomas

    Hyperspectral remote sensing is an emerging, multidisciplinary field with diverse applications in Earth observation. Nowadays spectral remote sensing techniques allow presymptomatic monitoring of changes in the physiological state of plants with high spectral resolution. Hyperspectral leaf reflectance and chlorophyll fluorescence proved to be highly suitable for identification of growth anomalies of cultural plants that result from the environmental changes and different stress factors. Hyperspectral technologies can find place in many scientific areas, as well as for monitoring of plants status and functioning to help in making timely management decisions. This research aimed to detect a presence of viral infection in young pepper plants (Capsicum annuum L.) caused by Cucumber Mosaic Virus (CMV) by using hyperspectral reflectance and fluorescence data and to assess the effect of some growth regulators on the development of the disease. In Bulgaria CMV is one of the widest spread pathogens, causing the biggest economical losses in crop vegetable production. Leaf spectral reflectance and fluorescence data were collected by a portable fibre-optics spectrometer in the spectral ranges 450÷850 nm and 600-900 nm. Greenhouse experiment with pepper plants of two cultivars, Sivria (sensitive to CMV) and Ostrion (resistant to CMV) were used. The plants were divided into six groups. The first group consisted of healthy (control) plants. At growth stage 4-6 expanded leaf, the second group was inoculated with CMV. The other four groups were treated with growth regulators: Spermine, MEIA (beta-monomethyl ester of itaconic acid), BTH (benzo(1,2,3)thiadiazole-7-carbothioic acid-S-methyl ester) and Phytoxin. On the next day, the pepper plants of these four groups were inoculated with CMV. The viral concentrations in the plants were determined by the serological method DAS-ELISA. Statistical, first derivative and cluster analysis were applied and several vegetation indices were

  2. Hollow-core fiber sensing technique for pipeline leak detection

    Science.gov (United States)

    Challener, W. A.; Kasten, Matthias A.; Karp, Jason; Choudhury, Niloy

    2018-02-01

    Recently there has been increased interest on the part of federal and state regulators to detect and quantify emissions of methane, an important greenhouse gas, from various parts of the oil and gas infrastructure including well pads and pipelines. Pressure and/or flow anomalies are typically used to detect leaks along natural gas pipelines, but are generally very insensitive and subject to false alarms. We have developed a system to detect and localize methane leaks along gas pipelines that is an order of magnitude more sensitive by combining tunable diode laser spectroscopy (TDLAS) with conventional sensor tube technology. This technique can potentially localize leaks along pipelines up to 100 km lengths with an accuracy of +/-50 m or less. A sensor tube buried along the pipeline with a gas-permeable membrane collects leaking gas during a soak period. The leak plume within the tube is then carried to the nearest sensor node along the tube in a purge cycle. The time-to-detection is used to determine leak location. Multiple sensor nodes are situated along the pipeline to minimize the time to detection, and each node is composed of a short segment of hollow core fiber (HCF) into which leaking gas is transported quickly through a small pressure differential. The HCF sensing node is spliced to standard telecom solid core fiber which transports the laser light for spectroscopy to a remote interrogator. The interrogator is multiplexed across the sensor nodes to minimize equipment cost and complexity.

  3. Water Vapor Remote Sensing Techniques: Radiometry and Solar Spectrometry

    Science.gov (United States)

    Somieski, A.; Buerki, B.; Cocard, M.; Geiger, A.; Kahle, H.-G.

    The high variability of atmospheric water vapor content plays an important role in space geodesy, climatology and meteorology. Water vapor has a strong influence on transatmospheric satellite signals, the Earth's climate and thus the weather forecasting. Several remote sensing techniques have been developed for the determination of inte- grated precipitable water vapor (IPWV). The Geodesy and Geodynamics Lab (GGL) utilizes the methods of Water Vapor Radiometry and Solar Spectrometry to quantify the amount of tropospheric water vapor and its temporal variations. The Water Vapor Radiometer (WVR) measures the radiation intensity of the atmosphere in a frequency band ranging from 20 to 32 GHz. The Solar Atmospheric MOnitoring Spectrome- ter (SAMOS) of GGL is designed for high-resolution measurements of water vapor absorption lines using solar radiation. In the framework of the ESCOMPTE (ExpÊrience sur Site pour COntraindre les Mod- Éles de Pollution atmosphÊrique et de Transport d'Emissions) field campaign these instruments have been operated near Marseille in 2001. They have aquired a long time series of integrated precipitable water vapor content (IPWV). The accuracy of IPWV measured by WVR and SAMOS is 1 kg/m2. Furthermore meteorological data from radiosondes were used to calculate the IPWV in order to provide comparisons with the results of WVR and SAMOS. The methods of Water Vapor Radiometry and So- lar Spectrometry will be discussed and first preliminary results retrieved from WVR, SAMOS and radiosondes during the ESCOMPTE field campaign will be presented.

  4. Adaptive Remote-Sensing Techniques Implementing Swarms of Mobile Agents

    Energy Technology Data Exchange (ETDEWEB)

    Asher, R.B.; Cameron, S.M.; Loubriel, G.M.; Robinett, R.D.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

    1998-11-25

    In many situations, stand-off remote-sensing and hazard-interdiction techniques over realistic operational areas are often impractical "and difficult to characterize. An alternative approach is to implement an adap- tively deployable array of sensitive agent-specific devices. Our group has been studying the collective be- havior of an autonomous, multi-agent system applied to chedbio detection and related emerging threat applications, The current physics-based models we are using coordinate a sensor array for mukivanate sig- nal optimization and coverage as re,alized by a swarm of robots or mobile vehicles. These intelligent control systems integrate'glob"ally operating decision-making systems and locally cooperative learning neural net- works to enhance re+-timp operational responses to dynarnical environments examples of which include obstacle avoidance, res~onding to prevailing wind patterns, and overcoming other natural obscurants or in- terferences. Collectively',tkensor nefirons with simple properties, interacting according to basic community rules, can accomplish complex interconnecting functions such as generalization, error correction, pattern recognition, sensor fusion, and localization. Neural nets provide a greater degree of robusmess and fault tolerance than conventional systems in that minor variations or imperfections do not impair performance. The robotic platforms would be equipped with sensor devices that perform opticaI detection of biologicais in combination with multivariate chemical analysis tools based on genetic and neural network algorithms, laser-diode LIDAR analysis, ultra-wideband short-pulsed transmitting and receiving antennas, thermal im- a:ing sensors, and optical Communication technology providing robust data throughput pathways. Mission scenarios under consideration include ground penetrating radar (GPR) for detection of underground struc- tures, airborne systems, and plume migration and mitigation. We will describe our

  5. Adaptive Remote-Sensing Techniques Implementing Swarms of Mobile Agents

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, S.M.; Loubriel, G.M.; Rbinett, R.D. III; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

    1999-04-01

    This paper focuses on our recent work at Sandia National Laboratories toward engineering a physics-based swarm of mobile vehicles for distributed sensing applications. Our goal is to coordinate a sensor array that optimizes sensor coverage and multivariate signal analysis by implementing artificial intelligence and evolutionary computational techniques. These intelligent control systems integrate both globally operating decision-making systems and locally cooperative information-sharing modes using genetically-trained neural networks. Once trained, neural networks have the ability to enhance real-time operational responses to dynamical environments, such as obstacle avoidance, responding to prevailing wind patterns, and overcoming other natural obscurants or interferences (jammers). The swarm realizes a collective set of sensor neurons with simple properties incorporating interactions based on basic community rules (potential fields) and complex interconnecting functions based on various neural network architectures, Therefore, the swarm is capable of redundant heterogeneous measurements which furnishes an additional degree of robustness and fault tolerance not afforded by conventional systems, while accomplishing such cognitive tasks as generalization, error correction, pattern recognition, and sensor fission. The robotic platforms could be equipped with specialized sensor devices including transmit/receive dipole antennas, chemical or biological sniffers in combination with recognition analysis tools, communication modulators, and laser diodes. Our group has been studying the collective behavior of an autonomous, multi-agent system applied to emerging threat applications. To accomplish such tasks, research in the fields of robotics, sensor technology, and swarms are being conducted within an integrated program. Mission scenarios under consideration include ground penetrating impulse radar (GPR) for detection of under-ground structures, airborne systems, and plume

  6. Application of remote sensing technique in biomass change detection

    African Journals Online (AJOL)

    Ethiopian Journal of Environmental Studies and Management ... technology provides an efficient avenue of assessment of biomass content of any area. ... use data, can be integrated into GIS together with results from remote sensing analysis ...

  7. A Touch Sensing Technique Using the Effects of Extremely Low Frequency Fields on the Human Body.

    Science.gov (United States)

    Elfekey, Hatem; Bastawrous, Hany Ayad; Okamoto, Shogo

    2016-12-02

    Touch sensing is a fundamental approach in human-to-machine interfaces, and is currently under widespread use. Many current applications use active touch sensing technologies. Passive touch sensing technologies are, however, more adequate to implement low power or energy harvesting touch sensing interfaces. This paper presents a passive touch sensing technique based on the fact that the human body is affected by the surrounding extremely low frequency (ELF) electromagnetic fields, such as those of AC power lines. These external ELF fields induce electric potentials on the human body-because human tissues exhibit some conductivity at these frequencies-resulting in what is called AC hum. We therefore propose a passive touch sensing system that detects this hum noise when a human touch occurs, thus distinguishing between touch and non-touch events. The effectiveness of the proposed technique is validated by designing and implementing a flexible touch sensing keyboard.

  8. Environmental assessment of coal waste mounds in Japan using remote sensing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, A J; Gotoh, K; Aoyama, K; Aoki, S [Louisiana State University, Baton Rouge, LA (United States). Department of Geography and Anthropology

    1993-01-01

    Focuses on the application of remote sensing techniques to the study of coal waste mounds. The situation at the coal waste mounds in Fukuoka, Japan is cited. Guidelines on film parameters, photographic keys and tasks required to inventory, monitor and manage coal waste mounds in Japan are addressed. Application of photogrammetry, remote sensing, aerial photography and satellite imagery techniques in monitoring spoil banks is reviewed. Applicability of the techniques is discussed. 24 refs.

  9. Optical techniques for sensing and measurement in hostile environments

    International Nuclear Information System (INIS)

    Gillespie, C.H.; Greenwell, R.A.

    1987-01-01

    These proceedings collect papers on optical sensing and measurement in hostile environments. Topic include: nuclear waste storage facility monitoring, monitoring of nuclear and chemical explosions, exhaust gas monitoring, fiber-optic monitoring, temperature and radiation effects on optical fibers, and interferometers

  10. A review of geothermal mapping techniques using remotely sensed ...

    African Journals Online (AJOL)

    Exploiting geothermal (GT) resources requires first and foremost locating suitable areas for its development. Remote sensing offers a synoptic capability of covering large areas in real time and can cost effectively explore prospective geothermal sites not easily detectable using conventional survey methods, thus can aid in ...

  11. Fiber Strain Measurement for Wide Region Quasidistributed Sensing by Optical Correlation Sensor with Region Separation Techniques

    Directory of Open Access Journals (Sweden)

    Xunjian Xu

    2010-01-01

    Full Text Available The useful application of optical pulse correlation sensor for wide region quasidistributed fiber strain measurement is investigated. Using region separation techniques of wavelength multiplexing with FBGs and time multiplexing with intensity partial reflectors, the sensor measures the correlations between reference pulses and monitoring pulses from several cascadable selected sensing regions. This novel sensing system can select the regions and obtain the distributed strain information in any desired sensing region.

  12. Statistical mechanics of sensing and communications: Insights and techniques

    International Nuclear Information System (INIS)

    Murayama, T; Davis, P

    2008-01-01

    In this article we review a basic model for analysis of large sensor networks from the point of view of collective estimation under bandwidth constraints. We compare different sensing aggregation levels as alternative 'strategies' for collective estimation: moderate aggregation from a moderate number of sensors for which communication bandwidth is enough that data encoding can be reversible, and large scale aggregation from very many sensors - in which case communication bandwidth constraints require the use of nonreversible encoding. We show the non-trivial trade-off between sensing quality, which can be increased by increasing the number of sensors, and communication quality under bandwidth constraints, which decreases if the number of sensors is too large. From a practical standpoint, we verify that such a trade-off exists in constructively defined communications schemes. We introduce a probabilistic encoding scheme and define rate distortion models that are suitable for analysis of the large network limit. Our description shows that the methods and ideas from statistical physics can play an important role in formulating effective models for such schemes

  13. SENSE-MAKING TECHNIQUES IN EDUCATIONAL PROCESS AND THEIR IMPACT ON THE PERSONAL CHARACTERISTICS OF STUDENTS

    Directory of Open Access Journals (Sweden)

    Irina V. Abakumova

    2017-12-01

    Full Text Available This study looks into psychotechnics used in education and contributing to initiating logic among students, their personal growth and characterizes psychological features of “sense-deducting”. Here you will find a review of the sense-making techniques considering as one of the categories of psychotechnics. The described techniques are based on the human psychology, they improve the quality of instruction, create a favorable and unique system of values, take into account the individual characteristics of all types of education, and influence the sense-making process development among children. Sense-making techniques are stated in the author’s classification and extended by practical methods. The study of psychological features of influence of sense-making techniques on the personality of a student lets us see new patterns in personal, subjective and “meta-subjective” results of acquiring of the school program via transformation and development of value/logic consciousness of a child. The work emphasizes that the use of sense-making techniques is effective in the educational and after-school activities of the educational organization. The achieved results make it possible to understand, to substantiate the naturalness and relevance of the sense-technical approach according to personal and academic indicators of students. In the process of competent and correct use of the semantic techniques, we see the possibility of conveying the best, productive and quality pedagogical experience, as well as the perspective of innovative developments in the psychological and pedagogical sciences. For children and adolescents, information, thanks to sense-techniques, starts to be personal in nature, knowledge is objectified, learning activity becomes an individual need.

  14. A compressed sensing based approach on Discrete Algebraic Reconstruction Technique.

    Science.gov (United States)

    Demircan-Tureyen, Ezgi; Kamasak, Mustafa E

    2015-01-01

    Discrete tomography (DT) techniques are capable of computing better results, even using less number of projections than the continuous tomography techniques. Discrete Algebraic Reconstruction Technique (DART) is an iterative reconstruction method proposed to achieve this goal by exploiting a prior knowledge on the gray levels and assuming that the scanned object is composed from a few different densities. In this paper, DART method is combined with an initial total variation minimization (TvMin) phase to ensure a better initial guess and extended with a segmentation procedure in which the threshold values are estimated from a finite set of candidates to minimize both the projection error and the total variation (TV) simultaneously. The accuracy and the robustness of the algorithm is compared with the original DART by the simulation experiments which are done under (1) limited number of projections, (2) limited view problem and (3) noisy projections conditions.

  15. Electromagnetism based atmospheric ice sensing technique - A conceptual review

    Directory of Open Access Journals (Sweden)

    U Mughal

    2016-09-01

    Full Text Available Electromagnetic and vibrational properties of ice can be used to measure certain parameters such as ice thickness, type and icing rate. In this paper we present a review of the dielectric based measurement techniques for matter and the dielectric/spectroscopic properties of ice. Atmospheric Ice is a complex material with a variable dielectric constant, but precise calculation of this constant may form the basis for measurement of its other properties such as thickness and strength using some electromagnetic methods. Using time domain or frequency domain spectroscopic techniques, by measuring both the reflection and transmission characteristics of atmospheric ice in a particular frequency range, the desired parameters can be determined.

  16. Geographic information systems and remote sensing techniques in environmental assessment

    International Nuclear Information System (INIS)

    Kenny, F.M.

    1996-01-01

    Digital map products and spatial inventories are becoming increasingly available from geological surveys, agricultural, natural resource, environmental, energy, transportation and forestry departments. As well there are now multitudes of specialized digital airborne and satellite image products available. This wide availability of geographically referenced data and the advances in spatial data analysis software are providing geoscientists with new tools and new ways of viewing traditionally used data. Through several examples, this paper will demonstrate how remote sensing and GIS technologies can contribute to environmental assessment of an urban fringe area. Nowhere is the need for spatial inventories and mapping greater than in such areas, where pre-existing information becomes rapidly outdated. A 260-km 2 site, north of Metropolitan Toronto was chosen as a study area. A spatial data base was constructed which included imagery from three different satellite sensors, a Digital Terrain Model (DTM), and digital drainage network, and a digital copy of the Ontario Geological Survey's Quaternary geological map. (author). 15 refs., 1 tab., 17 figs

  17. Robust satellite techniques for remote sensing of seismically active areas

    Energy Technology Data Exchange (ETDEWEB)

    Tramutoli, V; Di Bello, G [Potenza Univ., Potenza (Italy). Dipt. di Ingegneria e Fisica dell' Ambiente; Pergola, N; Piscitelli, S [Consiglio Nazionale delle Ricerche, Istituto di Metodologie Avanzate di Analisi Ambientale, Potenza (Italy)

    2001-04-01

    Several satellite techniques have been recently proposed to remotely map seismically active zones and to monitor geophysical phenomena possibly associated with earthquakes. Even if questionable in terms of their effective applicability, all these techniques highlight as the major problem, still to be overcome, the high number of natural factors (independent of any seismic activity) whose variable contributions to the investigated signal can be so high as to completely mask (or simulate) the space-time anomaly possibly associated to the seismic event under study. A robust approach (RAT) has recently been proposed (and successfully applied in the field of the monitoring of the major environmental risks) which, better than other methods, seems suitable for recognising space-time anomalies in the satellite observation field also in the presence of highly variable contributions from atmospheric (transmittance), surface (emissivity and morphology) and observational (time/season, but also solar and satellite zenithal angles) conditions. This work presents the first preliminary results, based on several years of NOA A/AVHRR observations, regarding its extension to satellite monitoring of thermal anomalies possibly associated to seismically active areas of Southern Italy. The main merits of this approach are its robustness against the possibility of false events detection (specially important for this kind of applications) as well as its intrinsic exportability not only to different geographic areas but also to different satellite instrumental packages.

  18. Robust satellite techniques for remote sensing of seismically active areas

    Directory of Open Access Journals (Sweden)

    S. Piscitelli

    2001-06-01

    Full Text Available Several satellite techniques have been recently proposed to remotely map seismically active zones and to monitor geophysical phenomena possibly associated with earthquakes. Even if questionable in terms of their effective applicability, all these techniques highlight as the major problem, still to be overcome, the high number of natural factors (independent of any seismic activity whose variable contributions to the investigated signal can be so high as to completely mask (or simulate the space-time anomaly possibly associated to the seismic event under study. A robust approach (RAT has recently been proposed (and successfully applied in the field of the monitoring of the major environmental risks which, better than other methods, seems suitable for recognising space-time anomalies in the satellite observational field also in the presence of highly variable contributions from atmospheric (transmittance, surface (emissivity and morphology and observational (time/season, but also solar and satellite zenithal angles conditions.This work presents the first preliminary results, based on several years of NOAA/AVHRR observations, regarding its extension to satellite monitoring of thermal anomalies possibly associated to seismically active areas of Southern Italy. The main merits of this approach are its robustness against the possibility of false events detection (specially important for this kind of applications as well as its intrinsic exportability not only to different geographic areas but also to different satellite instrumental packages.

  19. Applications of remote sensing techniques to the assessment of dam safety: A progress report

    International Nuclear Information System (INIS)

    Bowlby, J.R.; Grass, J.D.; Singhroy, V.H.

    1990-01-01

    Remote sensing detection and data collection techniques, combined with data from image analyses, have become effective tools that can be used for rapid identification, interpretation and evaluation of the geological and environmental information required in some areas of performance analysis of hydraulic dams. Potential geological hazards to dams such as faults, landslides and liquefaction, regional crustal warping or tilting, stability of foundation materials, flooding and volcanic hazards are applications in which remote sensing may aid analysis. Details are presented of remote sensing techiques, optimal time of data acquisition, interpreting techniques, and application. Techniques include LANDSAT thematic mapper (TM), SPOT images, thermal infrared scanning, colour infrared photography, normal colour photography, panchromatic black and white, normal colour video, infrared video, airborne multi-spectral electronic imagery, airborne synthetic aperture radar, side scan sonar, and LIDAR (optical radar). 3 tabs

  20. Towards automated statewide land cover mapping in Wisconsin using satellite remote sensing and GIS techniques

    International Nuclear Information System (INIS)

    Cosentino, B.L.; Lillesand, T.M.

    1991-01-01

    Attention is given to an initial research project being performed by the University of Wisconsin-Madison, Environmental Remote Sensing Center in conjunction with seven local, state, and federal agencies to implement automated statewide land cover mapping using satellite remote sensing and geographical information system (GIS) techniques. The basis, progress, and future research needs for this mapping program are presented. The research efforts are directed toward strategies that integrate satellite remote sensing and GIS techniques in the generation of land cover data for multiple users of land cover information. The project objectives are to investigate methodologies that integrate satellite data with other imagery and spatial data resident in emerging GISs in the state for particular program needs, and to develop techniques that can improve automated land cover mapping efficiency and accuracy. 10 refs

  1. Surveillance of arthropod vector-borne infectious diseases using remote sensing techniques: a review.

    Directory of Open Access Journals (Sweden)

    Satya Kalluri

    2007-10-01

    Full Text Available Epidemiologists are adopting new remote sensing techniques to study a variety of vector-borne diseases. Associations between satellite-derived environmental variables such as temperature, humidity, and land cover type and vector density are used to identify and characterize vector habitats. The convergence of factors such as the availability of multi-temporal satellite data and georeferenced epidemiological data, collaboration between remote sensing scientists and biologists, and the availability of sophisticated, statistical geographic information system and image processing algorithms in a desktop environment creates a fertile research environment. The use of remote sensing techniques to map vector-borne diseases has evolved significantly over the past 25 years. In this paper, we review the status of remote sensing studies of arthropod vector-borne diseases due to mosquitoes, ticks, blackflies, tsetse flies, and sandflies, which are responsible for the majority of vector-borne diseases in the world. Examples of simple image classification techniques that associate land use and land cover types with vector habitats, as well as complex statistical models that link satellite-derived multi-temporal meteorological observations with vector biology and abundance, are discussed here. Future improvements in remote sensing applications in epidemiology are also discussed.

  2. Recurrent potential pulse technique for improvement of glucose sensing ability of 3D polypyrrole

    Science.gov (United States)

    Cysewska, Karolina; Karczewski, Jakub; Jasiński, Piotr

    2017-07-01

    In this work, a new approach for using a 3D polypyrrole (PPy) conducting polymer as a sensing material for glucose detection is proposed. Polypyrrole is electrochemically polymerized on a platinum screen-printed electrode in an aqueous solution of lithium perchlorate and pyrrole. PPy exhibits a high electroactive surface area and high electrochemical stability, which results in it having excellent electrocatalytic properties. The studies show that using the recurrent potential pulse technique results in an increase in PPy sensing stability, compared to the amperometric approach. This is due to the fact that the technique, under certain parameters, allows the PPy redox properties to be fully utilized, whilst preventing its anodic degradation. Because of this, the 3D PPy presented here has become a very good candidate as a sensing material for glucose detection, and can work without any additional dopants, mediators or enzymes.

  3. Frequency-Shifted Interferometry — A Versatile Fiber-Optic Sensing Technique

    Directory of Open Access Journals (Sweden)

    Fei Ye

    2014-06-01

    Full Text Available Fiber-optic sensing is a field that is developing at a fast pace. Novel fiber-optic sensor designs and sensing principles constantly open doors for new opportunities. In this paper, we review a fiber-optic sensing technique developed in our research group called frequency-shifted interferometry (FSI. This technique uses a continuous-wave light source, an optical frequency shifter, and a slow detector. We discuss the operation principles of several FSI implementations and show their applications in fiber length and dispersion measurement, locating weak reflections along a fiber link, fiber-optic sensor multiplexing, and high-sensitivity cavity ring-down measurement. Detailed analysis of FSI system parameters is also presented.

  4. Compressed sensing techniques for receiver based post-compensation of transmitter's nonlinear distortions in OFDM systems

    KAUST Repository

    Owodunni, Damilola S.; Ali, Anum Z.; Quadeer, Ahmed Abdul; Al-Safadi, Ebrahim B.; Hammi, Oualid; Al-Naffouri, Tareq Y.

    2014-01-01

    -domain, and three compressed sensing based algorithms are presented to estimate and compensate for these distortions at the receiver using a few and, at times, even no frequency-domain free carriers (i.e. pilot carriers). The first technique is a conventional

  5. Compressed sensing techniques for receiver based post-compensation of transmitter's nonlinear distortions in OFDM systems

    KAUST Repository

    Owodunni, Damilola S.

    2014-04-01

    In this paper, compressed sensing techniques are proposed to linearize commercial power amplifiers driven by orthogonal frequency division multiplexing signals. The nonlinear distortion is considered as a sparse phenomenon in the time-domain, and three compressed sensing based algorithms are presented to estimate and compensate for these distortions at the receiver using a few and, at times, even no frequency-domain free carriers (i.e. pilot carriers). The first technique is a conventional compressed sensing approach, while the second incorporates a priori information about the distortions to enhance the estimation. Finally, the third technique involves an iterative data-aided algorithm that does not require any pilot carriers and hence allows the system to work at maximum bandwidth efficiency. The performances of all the proposed techniques are evaluated on a commercial power amplifier and compared. The error vector magnitude and symbol error rate results show the ability of compressed sensing to compensate for the amplifier\\'s nonlinear distortions. © 2013 Elsevier B.V.

  6. Classification of remotely sensed data using OCR-inspired neural network techniques. [Optical Character Recognition

    Science.gov (United States)

    Kiang, Richard K.

    1992-01-01

    Neural networks have been applied to classifications of remotely sensed data with some success. To improve the performance of this approach, an examination was made of how neural networks are applied to the optical character recognition (OCR) of handwritten digits and letters. A three-layer, feedforward network, along with techniques adopted from OCR, was used to classify Landsat-4 Thematic Mapper data. Good results were obtained. To overcome the difficulties that are characteristic of remote sensing applications and to attain significant improvements in classification accuracy, a special network architecture may be required.

  7. Considerations and techniques for incorporating remotely sensed imagery into the land resource management process.

    Science.gov (United States)

    Brooner, W. G.; Nichols, D. A.

    1972-01-01

    Development of a scheme for utilizing remote sensing technology in an operational program for regional land use planning and land resource management program applications. The scheme utilizes remote sensing imagery as one of several potential inputs to derive desired and necessary data, and considers several alternative approaches to the expansion and/or reduction and analysis of data, using automated data handling techniques. Within this scheme is a five-stage program development which includes: (1) preliminary coordination, (2) interpretation and encoding, (3) creation of data base files, (4) data analysis and generation of desired products, and (5) applications.

  8. Remote sensing of chlorophyll a fluorescence of vegetation canopies. 1. Near and far field measurement techniques

    International Nuclear Information System (INIS)

    Cecchi, G.; Mazzinghi, P.; Pantani, L.; Valentini, R.; Tirelli, D.; De Angelis, P.

    1994-01-01

    This article presents instruments and techniques, used in several vegetation monitoring experiments. Simultaneous monitoring was performed with different approaches, including fluorescence lidar and passive remote sensing, leaf level reflectance, and laser fluorimetry, and compared with physiological measurements. Most of the instrumentation described was designed and built for this application. Experiments were carried out in the laboratory and in the field, to investigate the relationship between chlorophyll fluorescence spectra and plant ecophysiology. Remote sensing, spectroscopy, and ecophysiology data were then collected by an intensive research team, joining different experiences and working in national and international projects

  9. Remote sensing techniques for the detection of soil erosion and the identification of soil conservation practices

    Science.gov (United States)

    Pelletier, R. E.; Griffin, R. H.

    1985-01-01

    The following paper is a summary of a number of techniques initiated under the AgRISTARS (Agriculture and Resources Inventory Surveys Through Aerospace Remote Sensing) project for the detection of soil degradation caused by water erosion and the identification of soil conservation practices for resource inventories. Discussed are methods to utilize a geographic information system to determine potential soil erosion through a USLE (Universal Soil Loss Equation) model; application of the Kauth-Thomas Transform to detect present erosional status; and the identification of conservation practices through visual interpretation and a variety of enhancement procedures applied to digital remotely sensed data.

  10. Remote sensing techniques and their urgency for snow and glacier mapping in Himalayas

    Energy Technology Data Exchange (ETDEWEB)

    Das, M C; Chattopadhyay, S N; Murty, A S

    1979-01-01

    The mighty Himalayas are great repositories of snow and ice. The river system of Indus, the Ganges and Brahmaputra owe their perennial flow to these large snow and ice masses. The demand for systematic exploitation of water resources of these great mountain ranges calls for a thorough inventory of these water-holding bodies. Rough and difficult terrain, inclement weather and very inaccessible altitudes stood in the way for better understanding of these vast sources of life giving water. In this paper, the urgency for snow and glacier mapping of this Himalayan region is highlighted in the light of the fast evolving techniques of remote sensing. Aerospace photography, use of radars and infrared sensing methods microwave sensing, and application of gamma radiation with the help of satellites, are examined for their present status and future potential for application in this ice and snow capped, top of the world.

  11. Monitoring Nuclear Facilities Using Satellite Imagery and Associated Remote Sensing Techniques

    International Nuclear Information System (INIS)

    Lafitte, Marc; Robin, Jean‑Philippe

    2015-01-01

    The mission of the European Union Satellite Centre (SatCen) is “to support the decision making and actions of the European Union in the field of the CFSP and in particular the CSDP, including European Union crisis management missions and operations, by providing, at the request of the Council or the European Union High Representative, products and services resulting from the exploitation of relevant space assets and collateral data, including satellite and aerial imagery, and related services”. The SatCen Non‑Proliferation Team, part of the SatCen Operations Division, is responsible for the analysis of installations that are involved, or could be involved, in the preparation or acquisition of capabilities intended to divert the production of nuclear material for military purposes and, in particular, regarding the spread of Weapons of Mass destruction and their means of delivery. For the last four decades, satellite imagery and associated remote sensing and geospatial techniques have increasingly expanded their capabilities. The unprecedented Very High Resolution (VHR) data currently available, the improved spectral capabilities, the increasing number of sensors and ever increasing computing capacity, has opened up a wide range of new perspectives for remote sensing applications. Concurrently, the availability of open source information (OSINF), has increased exponentially through the medium of the internet. This range of new capabilities for sensors and associated remote sensing techniques have strengthened the SatCen analysis capabilities for the monitoring of suspected proliferation installations for the detection of undeclared nuclear facilities, processes and activities. The combination of these remote sensing techniques, imagery analysis, open source investigation and their integration into Geographic Information Systems (GIS), undoubtedly improve the efficiency and comprehensive analysis capability provided by the SatCen to the EU stake‑holders. The

  12. Three-Dimensional Inverse Transport Solver Based on Compressive Sensing Technique

    Science.gov (United States)

    Cheng, Yuxiong; Wu, Hongchun; Cao, Liangzhi; Zheng, Youqi

    2013-09-01

    According to the direct exposure measurements from flash radiographic image, a compressive sensing-based method for three-dimensional inverse transport problem is presented. The linear absorption coefficients and interface locations of objects are reconstructed directly at the same time. It is always very expensive to obtain enough measurements. With limited measurements, compressive sensing sparse reconstruction technique orthogonal matching pursuit is applied to obtain the sparse coefficients by solving an optimization problem. A three-dimensional inverse transport solver is developed based on a compressive sensing-based technique. There are three features in this solver: (1) AutoCAD is employed as a geometry preprocessor due to its powerful capacity in graphic. (2) The forward projection matrix rather than Gauss matrix is constructed by the visualization tool generator. (3) Fourier transform and Daubechies wavelet transform are adopted to convert an underdetermined system to a well-posed system in the algorithm. Simulations are performed and numerical results in pseudo-sine absorption problem, two-cube problem and two-cylinder problem when using compressive sensing-based solver agree well with the reference value.

  13. A novel self-sensing technique for tapping-mode atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ruppert, Michael G.; Moheimani, S. O. Reza [The University of Newcastle, University Drive, Callaghan NSW 2308 (Australia)

    2013-12-15

    This work proposes a novel self-sensing tapping-mode atomic force microscopy operation utilizing charge measurement. A microcantilever coated with a single piezoelectric layer is simultaneously used for actuation and deflection sensing. The cantilever can be batch fabricated with existing micro electro mechanical system processes. The setup enables the omission of the optical beam deflection technique which is commonly used to measure the cantilever oscillation amplitude. Due to the high amount of capacitive feedthrough in the measured charge signal, a feedforward control technique is employed to increase the dynamic range from less than 1 dB to approximately 35 dB. Experiments show that the conditioned charge signal achieves excellent signal-to-noise ratio and can therefore be used as a feedback signal for atomic force microscopy imaging.

  14. Embedded 32-bit Differential Pulse Voltammetry (DPV) Technique for 3-electrode Cell Sensing

    Science.gov (United States)

    N, Aqmar N. Z.; Abdullah, W. F. H.; Zain, Z. M.; Rani, S.

    2018-03-01

    This paper addresses the development of differential pulse voltammetry (DPV) embedded algorithm using an ARM cortex processor with new developed potentiostat circuit design for in-situ 3-electrode cell sensing. This project is mainly to design a low cost potentiostat for the researchers in laboratories. It is required to develop an embedded algorithm for analytical technique to be used with the designed potentiostat. DPV is one of the most familiar pulse technique method used with 3-electrode cell sensing in chemical studies. Experiment was conducted on 10mM solution of Ferricyanide using the designed potentiostat and the developed DPV algorithm. As a result, the device can generate an excitation signal of DPV from 0.4V to 1.2V and produced a peaked voltammogram with relatively small error compared to the commercial potentiostat; which is only 6.25% difference in peak potential reading. The design of potentiostat device and its DPV algorithm is verified.

  15. Efficient Bayesian Compressed Sensing-based Channel Estimation Techniques for Massive MIMO-OFDM Systems

    OpenAIRE

    Al-Salihi, Hayder Qahtan Kshash; Nakhai, Mohammad Reza

    2017-01-01

    Efficient and highly accurate channel state information (CSI) at the base station (BS) is essential to achieve the potential benefits of massive multiple input multiple output (MIMO) systems. However, the achievable accuracy that is attainable is limited in practice due to the problem of pilot contamination. It has recently been shown that compressed sensing (CS) techniques can address the pilot contamination problem. However, CS-based channel estimation requires prior knowledge of channel sp...

  16. Application of a distributed optical fiber sensing technique in monitoring the stress of precast piles

    International Nuclear Information System (INIS)

    Lu, Y; Shi, B; Wei, G Q; Zhang, D; Chen, S E

    2012-01-01

    Due to its ability in providing long distance, distributed sensing, the optical fiber sensing technique based on a Brillouin optical time domain reflectometer (BOTDR) has a unique advantage in monitoring the stability and safety of linear structures. This paper describes the application of a BOTDR-based technique to measure the stress within precast piles. The principle behind the BOTDR and the embedding technique for the sensing optical fiber in precast piles is first introduced, and then the analysis method and deformation and stress calculation based on distributed strain data are given. Finally, a methodology for using a BOTDR-based monitoring workflow for in situ monitoring of precast piles, combined with a practical example, is introduced. The methodology requires implantation of optical fibers prior to pile placement. Field experimental results show that the optical fiber implantation method with slotting, embedding, pasting and jointing is feasible, and have accurately measured the axial force, side friction, end-bearing resistance and bearing feature of the precast pile according to the strain measuring data. (paper)

  17. Quantitative and qualitative sensing techniques for biogenic volatile organic compounds and their oxidation products.

    Science.gov (United States)

    Kim, Saewung; Guenther, Alex; Apel, Eric

    2013-07-01

    The physiological production mechanisms of some of the organics in plants, commonly known as biogenic volatile organic compounds (BVOCs), have been known for more than a century. Some BVOCs are emitted to the atmosphere and play a significant role in tropospheric photochemistry especially in ozone and secondary organic aerosol (SOA) productions as a result of interplays between BVOCs and atmospheric radicals such as hydroxyl radical (OH), ozone (O3) and NOX (NO + NO2). These findings have been drawn from comprehensive analysis of numerous field and laboratory studies that have characterized the ambient distribution of BVOCs and their oxidation products, and reaction kinetics between BVOCs and atmospheric oxidants. These investigations are limited by the capacity for identifying and quantifying these compounds. This review highlights the major analytical techniques that have been used to observe BVOCs and their oxidation products such as gas chromatography, mass spectrometry with hard and soft ionization methods, and optical techniques from laser induced fluorescence (LIF) to remote sensing. In addition, we discuss how new analytical techniques can advance our understanding of BVOC photochemical processes. The principles, advantages, and drawbacks of the analytical techniques are discussed along with specific examples of how the techniques were applied in field and laboratory measurements. Since a number of thorough review papers for each specific analytical technique are available, readers are referred to these publications rather than providing thorough descriptions of each technique. Therefore, the aim of this review is for readers to grasp the advantages and disadvantages of various sensing techniques for BVOCs and their oxidation products and to provide guidance for choosing the optimal technique for a specific research task.

  18. A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling

    Science.gov (United States)

    Dorigo, W. A.; Zurita-Milla, R.; de Wit, A. J. W.; Brazile, J.; Singh, R.; Schaepman, M. E.

    2007-05-01

    During the last 50 years, the management of agroecosystems has been undergoing major changes to meet the growing demand for food, timber, fibre and fuel. As a result of this intensified use, the ecological status of many agroecosystems has been severely deteriorated. Modeling the behavior of agroecosystems is, therefore, of great help since it allows the definition of management strategies that maximize (crop) production while minimizing the environmental impacts. Remote sensing can support such modeling by offering information on the spatial and temporal variation of important canopy state variables which would be very difficult to obtain otherwise. In this paper, we present an overview of different methods that can be used to derive biophysical and biochemical canopy state variables from optical remote sensing data in the VNIR-SWIR regions. The overview is based on an extensive literature review where both statistical-empirical and physically based methods are discussed. Subsequently, the prevailing techniques of assimilating remote sensing data into agroecosystem models are outlined. The increasing complexity of data assimilation methods and of models describing agroecosystem functioning has significantly increased computational demands. For this reason, we include a short section on the potential of parallel processing to deal with the complex and computationally intensive algorithms described in the preceding sections. The studied literature reveals that many valuable techniques have been developed both for the retrieval of canopy state variables from reflective remote sensing data as for assimilating the retrieved variables in agroecosystem models. However, for agroecosystem modeling and remote sensing data assimilation to be commonly employed on a global operational basis, emphasis will have to be put on bridging the mismatch between data availability and accuracy on one hand, and model and user requirements on the other. This could be achieved by

  19. Introduction. [usefulness of modern remote sensing techniques for studying components of California water resources

    Science.gov (United States)

    Colwell, R. N.

    1973-01-01

    Since May 1970, personnel on several campuses of the University of California have been conducting investigations which seek to determine the usefulness of modern remote sensing techniques for studying various components of California's earth resources complex. Emphasis has been given to California's water resources as exemplified by the Feather River project and other aspects of the California Water Plan. This study is designed to consider in detail the supply, demand, and impact relationships. The specific geographic areas studied are the Feather River drainage in northern California, the Chino-Riverside Basin and Imperial Valley areas in southern California, and selected portions of the west side of San Joaquin Valley in central California. An analysis is also given on how an effective benefit-cost study of remote sensing in relation to California's water resources might best be made.

  20. Leds used as spectral selective light detectors in remote sensing techniques

    International Nuclear Information System (INIS)

    Weber, C; Tocho, J O; Rodriguez, E J; Acciaresi, H A

    2011-01-01

    Remote sensing has been commonly considered as an effective technique in developing precision agriculture tools. Ground based and satellite spectral sensors have wide uses to retrieve remotely quantitative biophysical and biochemical characteristics of vegetation canopies as well as vegetation ground cover. Usually in-field remote sensing technologies use either a combination of interferential filters and photodiodes or different compact spectrometers to separate the spectral regions of interest. In this paper we present a new development of a sensor with LEDs used as spectrally selective photodetectors. Its performance was compared with a photodiode-filter sensor used in agronomic applications. Subsequent measurements of weed cover degree were performed and compared with other methodologies. Results show that the new LEDs based sensor has similar features that conventional ones to determining the weed soil cover degree; while LEDs based sensor has comparative advantages related its very low manufacturing cost and its robustness compatible with agricultural field applications.

  1. Distributed acoustic sensing technique and its field trial in SAGD well

    Science.gov (United States)

    Han, Li; He, Xiangge; Pan, Yong; Liu, Fei; Yi, Duo; Hu, Chengjun; Zhang, Min; Gu, Lijuan

    2017-10-01

    Steam assisted gravity drainage (SAGD) is a very promising way for the development of heavy oil, extra heavy oil and tight oil reservoirs. Proper monitoring of the SAGD operations is essential to avoid operational issues and improve efficiency. Among all the monitoring techniques, micro-seismic monitoring and related interpretation method can give useful information about the steam chamber development and has been extensively studied. Distributed acoustic sensor (DAS) based on Rayleigh backscattering is a newly developed technique that can measure acoustic signal at all points along the sensing fiber. In this paper, we demonstrate a DAS system based on dual-pulse heterodyne demodulation technique and did field trial in SAGD well located in Xinjiang Oilfield, China. The field trail results validated the performance of the DAS system and indicated its applicability in steam-chamber monitoring and hydraulic monitoring.

  2. Flood Hazard Assessment along the Western Regions of Saudi Arabia using GIS-based Morphometry and Remote Sensing Techniques

    KAUST Repository

    Shi, Qianwen

    2014-01-01

    , El-Qunfza, Baish and Jizan) were selected for this study because they have large surface areas and they encompass high capacity dams at their downstream areas. Geographic Information System (GIS) and remote sensing techniques were applied to conduct

  3. Integrating dynamic and distributed compressive sensing techniques to enhance image quality of the compressive line sensing system for unmanned aerial vehicles application

    Science.gov (United States)

    Ouyang, Bing; Hou, Weilin; Caimi, Frank M.; Dalgleish, Fraser R.; Vuorenkoski, Anni K.; Gong, Cuiling

    2017-07-01

    The compressive line sensing imaging system adopts distributed compressive sensing (CS) to acquire data and reconstruct images. Dynamic CS uses Bayesian inference to capture the correlated nature of the adjacent lines. An image reconstruction technique that incorporates dynamic CS in the distributed CS framework was developed to improve the quality of reconstructed images. The effectiveness of the technique was validated using experimental data acquired in an underwater imaging test facility. Results that demonstrate contrast and resolution improvements will be presented. The improved efficiency is desirable for unmanned aerial vehicles conducting long-duration missions.

  4. Integrating remote sensing techniques at Cuprite, Nevada: AVIRIS, Thematic Mapper, and field spectroscopy

    Science.gov (United States)

    Hill, Bradley; Nash, Greg; Ridd, Merrill; Hauff, Phoebe L.; Ebel, Phil

    1992-01-01

    The Cuprite mining district in southwestern Nevada has become a test site for remote sensing studies with numerous airborne scanners and ground sensor data sets collected over the past fifteen years. Structurally, the Cuprite region can be divided into two areas with slightly different alteration and mineralogy. These zones lie on either side of a postulated low-angle structural discontinuity that strikes nearly parallel to US Route 95. Hydrothermal alternation at Cuprite was classified into three major zones: silicified, opalized, and argillized. These alteration types form a bulls-eye pattern east of the highway and are more linear on the west side of the highway making a striking contrast from the air and the imagery. Cuprite is therefore an ideal location for remote sensing research as it exhibits easily identified hydrothermal zoning, is relatively devoid of vegetation, and contains a distinctive spectrally diagnostic mineral suite including the ammonium feldspar buddingtonite, several types of alunite, different jarosites, illite, kaolinite, smectite, dickite, and opal. This present study brings a new dimension to these previous remote sensing and ground data sets compiled for Cuprite. The development of a higher resolution field spectrometer now provides the capability to combine extensive in-situ mineralogical data with a new geologic field survey and detailed Airborne Visible/Infrared Imaging Spectrometers (AVIRIS) images. The various data collection methods and the refinement of the integrated techniques are discussed.

  5. Geographic techniques and recent applications of remote sensing to landscape-water quality studies

    Science.gov (United States)

    Griffith, J.A.

    2002-01-01

    This article overviews recent advances in studies of landscape-water quality relationships using remote sensing techniques. With the increasing feasibility of using remotely-sensed data, landscape-water quality studies can now be more easily performed on regional, multi-state scales. The traditional method of relating land use and land cover to water quality has been extended to include landscape pattern and other landscape information derived from satellite data. Three items are focused on in this article: 1) the increasing recognition of the importance of larger-scale studies of regional water quality that require a landscape perspective; 2) the increasing importance of remotely sensed data, such as the imagery-derived normalized difference vegetation index (NDVI) and vegetation phenological metrics derived from time-series NDVI data; and 3) landscape pattern. In some studies, using landscape pattern metrics explained some of the variation in water quality not explained by land use/cover. However, in some other studies, the NDVI metrics were even more highly correlated to certain water quality parameters than either landscape pattern metrics or land use/cover proportions. Although studies relating landscape pattern metrics to water quality have had mixed results, this recent body of work applying these landscape measures and satellite-derived metrics to water quality analysis has demonstrated their potential usefulness in monitoring watershed conditions across large regions.

  6. Mechanical properties of metallic ribbons investigated by depth sensing indentation technique

    International Nuclear Information System (INIS)

    Pesek, Ladislav; Dobrzanski, Leszek A.; Zubko, Pavol; Konieczny, Jaroslaw

    2006-01-01

    The paper presents mechanical properties of two kinds of Co-based and one Fe-based metallic ribbons by the depth sensing indentation (DSI) technique. Investigations were carried out on two kinds ternary alloy Co 77 Si 11,5 B 11,5 and Fe 78 Si 13 B 9 and multicomponent Co 68 Fe 4 Mo 1 Si 13,5 B 13,5 , which are so-called 'zero-magnetostriction' materials. Metallic ribbons were investigated in amorphous state and partially crystallized state after annealing in 400deg. C in argon atmosphere. Heating of ribbons obtained by melt spinning technique was performed to check its effect on changes of mechanical properties

  7. Land cover change detection of Hatiya Island, Bangladesh, using remote sensing techniques

    Science.gov (United States)

    Kumar, Lalit; Ghosh, Manoj Kumer

    2012-01-01

    Land cover change is a significant issue for environmental managers for sustainable management. Remote sensing techniques have been shown to have a high probability of recognizing land cover patterns and change detection due to periodic coverage, data integrity, and provision of data in a broad range of the electromagnetic spectrum. We evaluate the applicability of remote sensing techniques for land cover pattern recognition, as well as land cover change detection of the Hatiya Island, Bangladesh, and quantify land cover changes from 1977 to 1999. A supervised classification approach was used to classify Landsat Enhanced Thematic Mapper (ETM), Thematic Mapper (TM), and Multispectral Scanner (MSS) images into eight major land cover categories. We detected major land cover changes over the 22-year study period. During this period, marshy land, mud, mud with small grass, and bare soil had decreased by 85%, 46%, 44%, and 24%, respectively, while agricultural land, medium forest, forest, and settlement had positive changes of 26%, 45%, 363%, and 59%, respectively. The primary drivers of such landscape change were erosion and accretion processes, human pressure, and the reforestation and land reclamation programs of the Bangladesh Government.

  8. A Study on Integrated Community Based Flood Mitigation with Remote Sensing Technique in Kota Bharu, Kelantan

    International Nuclear Information System (INIS)

    Ainullotfi, A A; Ibrahim, A L; Masron, T

    2014-01-01

    This study is conducted to establish a community based flood management system that is integrated with remote sensing technique. To understand local knowledge, the demographic of the local society is obtained by using the survey approach. The local authorities are approached first to obtain information regarding the society in the study areas such as the population, the gender and the tabulation of settlement. The information about age, religion, ethnic, occupation, years of experience facing flood in the area, are recorded to understand more on how the local knowledge emerges. Then geographic data is obtained such as rainfall data, land use, land elevation, river discharge data. This information is used to establish a hydrological model of flood in the study area. Analysis were made from the survey approach to understand the pattern of society and how they react to floods while the analysis of geographic data is used to analyse the water extent and damage done by the flood. The final result of this research is to produce a flood mitigation method with a community based framework in the state of Kelantan. With the flood mitigation that involves the community's understanding towards flood also the techniques to forecast heavy rainfall and flood occurrence using remote sensing, it is hope that it could reduce the casualties and damage that might cause to the society and infrastructures in the study area

  9. Advances in estimation methods of vegetation water content based on optical remote sensing techniques

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Quantitative estimation of vegetation water content(VWC) using optical remote sensing techniques is helpful in forest fire as-sessment,agricultural drought monitoring and crop yield estimation.This paper reviews the research advances of VWC retrieval using spectral reflectance,spectral water index and radiative transfer model(RTM) methods.It also evaluates the reli-ability of VWC estimation using spectral water index from the observation data and the RTM.Focusing on two main definitions of VWC-the fuel moisture content(FMC) and the equivalent water thickness(EWT),the retrieval accuracies of FMC and EWT using vegetation water indices are analyzed.Moreover,the measured information and the dataset are used to estimate VWC,the results show there are significant correlations among three kinds of vegetation water indices(i.e.,WSI,NDⅡ,NDWI1640,WI/NDVI) and canopy FMC of winter wheat(n=45).Finally,the future development directions of VWC detection based on optical remote sensing techniques are also summarized.

  10. Application of remote sensing techniques for conserving scarce water resources: a case study from Pakistan

    International Nuclear Information System (INIS)

    Shakoor, A; Alam, N; Asghar, M.N.

    2005-01-01

    Pakistan, which was once a water surplus, is now a water deficit country according to Malin Falkenmark criteria. The conventional wisdom of managing canal water supplies, which usually results in over- or under-irrigation, is not sufficient to meet the challenge of water demand in future. This paper introduces the use of modem tools like Remote Sensing (RS), Geographic Information Systems (GIS) and CROPWAT to improve the management of the existing irrigation systems. This study was conducted for the Pehure High Level Canal (PHLC) and the Upper Swat Canal (USC) system in the North Western Frontier Province (NWFP) of Pakistan. Crop identification at distributary level was made from multi-temporal Remote Sensing satellite images, using various image processing techniques, such as supervised, unsupervised classification and spectral mixture analysis. Cropped areas were calculated for each individual crop from these classified images, and then crop water requirement at distributary level was estimated using CROPWAT. Assuming all other parameters of the CROPWAT model optimistic, the calculated crop area was of major concern. The supervised classification with support of unsupervised classification and ground truth information has proven to be the best option and cost-effective technique for calculating the actual cropped area. The results of this study can be used while devising guidelines for water managers to release the canal supplies based, on crop water requirement. This practice will help in avoiding wastage of canal water at farm level, which can be optimally used for increasing irrigated areas and crop productivity in the area. (author)

  11. Differential Radiometers Using Fabry-Perot Interferometric Technique for Remote Sensing of Greenhouse Gases

    Science.gov (United States)

    Georgieva, Elena M.; Heaps,William S.; Wilson, Emily L.

    2007-01-01

    A new type of remote sensing radiometer based upon the Fabry-Perot interferometric technique has been developed at NASA's Goddard Space Flight Center and tested from both ground and aircraft platform. The sensor uses direct or reflected sunlight and has channels for measuring column concentration of carbon dioxide at 1570 nm, oxygen lines sensitive to pressure and temperature at 762 and 768 nm, and water vapor (940 nm). A solid Fabry-Perot etalon is used as a tunable narrow bandpass filter to restrict the measurement to the gas of interest's absorption bands. By adjusting the temperature of the etalon, which changes the index of refraction of its material, the transmission fringes can be brought into nearly exact correspondence with absorption lines of the particular species. With this alignment between absorption lines and fringes, changes in the amount of a species in the atmosphere strongly affect the amount of light transmitted by the etalon and can be related to gas concentration. The technique is applicable to different chemical species. We have performed simulations and instrument design studies for CH4, "Cot isotope, and CO detection. Index Terms- Absorbing media, Atmospheric measurements, Fabry-Perot interferometers, Optical interferometry, Remote sensing.

  12. Remote sensing and spatial statistical techniques for modelling Ommatissus lybicus (Hemiptera: Tropiduchidae) habitat and population densities.

    Science.gov (United States)

    Al-Kindi, Khalifa M; Kwan, Paul; R Andrew, Nigel; Welch, Mitchell

    2017-01-01

    In order to understand the distribution and prevalence of Ommatissus lybicus (Hemiptera: Tropiduchidae) as well as analyse their current biographical patterns and predict their future spread, comprehensive and detailed information on the environmental, climatic, and agricultural practices are essential. The spatial analytical techniques such as Remote Sensing and Spatial Statistics Tools, can help detect and model spatial links and correlations between the presence, absence and density of O. lybicus in response to climatic, environmental, and human factors. The main objective of this paper is to review remote sensing and relevant analytical techniques that can be applied in mapping and modelling the habitat and population density of O. lybicus . An exhaustive search of related literature revealed that there are very limited studies linking location-based infestation levels of pests like the O. lybicus with climatic, environmental, and human practice related variables. This review also highlights the accumulated knowledge and addresses the gaps in this area of research. Furthermore, it makes recommendations for future studies, and gives suggestions on monitoring and surveillance methods in designing both local and regional level integrated pest management strategies of palm tree and other affected cultivated crops.

  13. Remote sensing and spatial statistical techniques for modelling Ommatissus lybicus (Hemiptera: Tropiduchidae habitat and population densities

    Directory of Open Access Journals (Sweden)

    Khalifa M. Al-Kindi

    2017-08-01

    Full Text Available In order to understand the distribution and prevalence of Ommatissus lybicus (Hemiptera: Tropiduchidae as well as analyse their current biographical patterns and predict their future spread, comprehensive and detailed information on the environmental, climatic, and agricultural practices are essential. The spatial analytical techniques such as Remote Sensing and Spatial Statistics Tools, can help detect and model spatial links and correlations between the presence, absence and density of O. lybicus in response to climatic, environmental, and human factors. The main objective of this paper is to review remote sensing and relevant analytical techniques that can be applied in mapping and modelling the habitat and population density of O. lybicus. An exhaustive search of related literature revealed that there are very limited studies linking location-based infestation levels of pests like the O. lybicus with climatic, environmental, and human practice related variables. This review also highlights the accumulated knowledge and addresses the gaps in this area of research. Furthermore, it makes recommendations for future studies, and gives suggestions on monitoring and surveillance methods in designing both local and regional level integrated pest management strategies of palm tree and other affected cultivated crops.

  14. Using optical remote sensing techniques to track the development of ozone-induced stress

    Energy Technology Data Exchange (ETDEWEB)

    Meroni, Michele, E-mail: michele.meroni@unimib.i [Remote Sensing of Environmental Dynamics Laboratory, DISAT, University of Milan-Bicocca, Piazza della Scienza, 1, 20126 Milan (Italy); Panigada, Cinzia; Rossini, Micol [Remote Sensing of Environmental Dynamics Laboratory, DISAT, University of Milan-Bicocca, Piazza della Scienza, 1, 20126 Milan (Italy); Picchi, Valentina [CNR, Plant Virology Institute, Milan Unit, Milan (Italy); Department of Tree Science, Entomology and Plant Pathology ' G. Scaramuzzi' , University of Pisa, Pisa (Italy); Cogliati, Sergio; Colombo, Roberto [Remote Sensing of Environmental Dynamics Laboratory, DISAT, University of Milan-Bicocca, Piazza della Scienza, 1, 20126 Milan (Italy)

    2009-05-15

    In this paper, a literature review about optical remote sensing (RS) of O{sub 3} stress is presented. Studies on O{sub 3}-induced effects on vegetation reflectance have been conducted since late '70s based on the analysis of optical RS data. Literature review reveals that traditional RS techniques were able to detect changes in leaf and canopy reflectance related to O{sub 3}-induced stress when visible symptoms already occurred. Only recently, advanced RS techniques using hyperspectral sensors, demonstrated the feasibility of detecting the stress in its early phase by monitoring excess energy dissipation pathways such as chlorophyll fluorescence and non-photochemical quenching (NPQ). Steady-state fluorescence (Fs), measured by exploiting the Fraunhofer line depth principle and NPQ related xanthophyll-cycle, estimated through the photochemical reflectance index (PRI) responded to O{sub 3} fumigation before visible symptoms occurred. This opens up new possibilities for the early detection of vegetation O{sub 3} stress by means of hyperspectral RS. - Possibilities for the early detection of vegetation O{sub 3} stress by means of optical remote sensing are discussed.

  15. Using optical remote sensing techniques to track the development of ozone-induced stress

    International Nuclear Information System (INIS)

    Meroni, Michele; Panigada, Cinzia; Rossini, Micol; Picchi, Valentina; Cogliati, Sergio; Colombo, Roberto

    2009-01-01

    In this paper, a literature review about optical remote sensing (RS) of O 3 stress is presented. Studies on O 3 -induced effects on vegetation reflectance have been conducted since late '70s based on the analysis of optical RS data. Literature review reveals that traditional RS techniques were able to detect changes in leaf and canopy reflectance related to O 3 -induced stress when visible symptoms already occurred. Only recently, advanced RS techniques using hyperspectral sensors, demonstrated the feasibility of detecting the stress in its early phase by monitoring excess energy dissipation pathways such as chlorophyll fluorescence and non-photochemical quenching (NPQ). Steady-state fluorescence (Fs), measured by exploiting the Fraunhofer line depth principle and NPQ related xanthophyll-cycle, estimated through the photochemical reflectance index (PRI) responded to O 3 fumigation before visible symptoms occurred. This opens up new possibilities for the early detection of vegetation O 3 stress by means of hyperspectral RS. - Possibilities for the early detection of vegetation O 3 stress by means of optical remote sensing are discussed.

  16. A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms.

    Science.gov (United States)

    Bansod, BabanKumar; Kumar, Tejinder; Thakur, Ritula; Rana, Shakshi; Singh, Inderbir

    2017-08-15

    Heavy metal ions are non-biodegradable and contaminate most of the natural resources occurring in the environment including water. Some of the heavy metals including Lead (Pb), Mercury (Hg), Arsenic (As), Chromium (Cr) and Cadmium (Cd) are considered to be highly toxic and hazardous to human health even at trace levels. This leads to the requirement of fast, accurate and reliable techniques for the detection of heavy metal ions. This review presents various electrochemical detection techniques for heavy metal ions those are user friendly, low cost, provides on-site and real time monitoring as compared to other spectroscopic and optical techniques. The categorization of different electrochemical techniques is done on the basis of different types of detection signals generated due to presence of heavy metal ions in the solution matrix like current, potential, conductivity, electrochemical impedance, and electrochemiluminescence. Also, the recent trends in electrochemical detection of heavy metal ions with various types of sensing platforms including metals, metal films, metal oxides, nanomaterials, carbon nano tubes, polymers, microspheres and biomaterials have been evoked. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Laboratory insights into the detection of surface biosignatures by remote-sensing techniques

    Science.gov (United States)

    Poch, O.; Pommerol, A.; Jost, B.; Roditi, I.; Frey, J.; Thomas, N.

    2014-03-01

    With the progress of direct imaging techniques, it will be possible in the short or long-term future to retrieve more efficiently the information on the physical properties of the light reflected by rocky exoplanets (Traub et al., 2010). The search for visible-infrared absorption bands of peculiar gases (O2, CH4 etc.) in this light could give clues for the presence of life (Kaltenegger and Selsis, 2007). Even more uplifting would be the direct detection of life itself, on the surface of an exoplanet. Considering this latter possibility, what is the potential of optical remote-sensing methods to detect surface biosignatures? Reflected light from the surface of the Earth exhibits a strong surface biosignature in the form of an abrupt change of reflectance between the visible and infrared range of the spectrum (Seager et al., 2005). This spectral feature called "vegetation red-edge" is possibly the consequence of biological evolution selecting the right chemical structures enabling the plants to absorb the visible energy, while preventing them from overheating by reflecting more efficiently the infrared. Such red-edge is also found in primitive photosynthetic bacteria, cyanobacteria, that colonized the surface of the Earth ocean and continents billions of years before multicellular plants (Knacke, 2003). If life ever arose on an Earth-like exoplanet, one could hypothesize that some form of its surface-life evolves into similar photo-active organisms, also exhibiting a red-edge. In this paper, we will present our plan and preliminary results of a laboratory study aiming at precising the potentiality of remote sensing techniques in detecting such surface biosignatures. Using equipment that has been developed in our team for surface photometry studies (Pommerol 2011, Jost 2013, Pommerol 2013), we will investigate the reflectance spectra and bidirectional reflectance function of soils containing bacteria such as cyanobacteria, in various environmental conditions. We will

  18. Application of radar polarimetry techniques for retrieval snow and rain characteristics in remote sensing

    Directory of Open Access Journals (Sweden)

    M. Darvishi

    2013-09-01

    Full Text Available The presence of snow cover has significant impacts on the both global and regional climate and water balance on earth. The accurate estimation of snow cover area can be used for forecasting runoff due to snow melt and output of hydroelectric power. With development of remote sensing techniques at different scopes in earth science, enormous algorithms for retrieval hydrometeor parameters have been developed. Some of these algorithms are used to provide snow cover map such as NLR with AVHRR/MODIS sensor for Norway, Finnish with AVHRR sensor for Finland and NASA with MODIS sensor for global maps. Monitoring snow cover at different parts of spectral electromagnetic is detectable (visible, near and thermal infrared, passive and active microwave. Recently, specific capabilities of active microwave remote sensing such as snow extent map, snow depth, snow water equivalent (SWE, snow state (wet/dry and discrimination between rain and snow region were given a strong impetus for using this technology in snow monitoring, hydrology, climatology, avalanche research and etc. This paper evaluates the potentials and feasibility of polarimetric ground microwave measurements of snow in active remote sensing field. We will consider the behavior co- and cross-polarized backscattering coefficients of snowpack response with polarimetric scatterometer in Ku and L band at the different incident angles. Then we will show how to retrieve snow cover depth, snow permittivity and density parameters at the local scale with ground-based SAR (GB-SAR. Finally, for the sake of remarkable significant the transition region between rain and snow; the variables role of horizontal reflectivity (ZHH and differential reflectivity (ZDR in delineation boundary between snow and rain and some others important variables at polarimetric weather radar are presented.

  19. Modelling desertification risk in the north-west of Jordan using geospatial and remote sensing techniques

    Directory of Open Access Journals (Sweden)

    Jawad T. Al-Bakri

    2016-03-01

    Full Text Available Remote sensing, climate, and ground data were used within a geographic information system (GIS to map desertification risk in the north-west of Jordan. The approach was based on modelling wind and water erosion and incorporating the results with a map representing the severity of drought. Water erosion was modelled by the universal soil loss equation, while wind erosion was modelled by a dust emission model. The extent of drought was mapped using the evapotranspiration water stress index (EWSI which incorporated actual and potential evapotranspiration. Output maps were assessed within GIS in terms of spatial patterns and the degree of correlation with soil surficial properties. Results showed that both topography and soil explained 75% of the variation in water erosion, while soil explained 25% of the variation in wind erosion, which was mainly controlled by natural factors of topography and wind. Analysis of the EWSI map showed that drought risk was dominating most of the rainfed areas. The combined effects of soil erosion and drought were reflected on the desertification risk map. The adoption of these geospatial and remote sensing techniques is, therefore, recommended to map desertification risk in Jordan and in similar arid environments.

  20. The application of remote sensing technique to metallogenetic prognosis in the covered area

    International Nuclear Information System (INIS)

    Huang Xianfang; Tian Hua; Luo Fusheng; Feng Jie; Huang Shutao; Guo Hongyan; Zhang Shuiming

    1994-08-01

    The idea, method and procedure of remote sensing research in the covered area are discussed. Using satellite image processing method (including faint information processing) in combination with multiple information comprehensive interpretation to decipher information of geological bodies covered with unconsolidated overburden and to predict favourable districts is also introduced. Taking the Yili basin for example, how to interpret ore-controlling factors is described. The concealed productive uranium formations which dominate uranium distribution have been delineated. The uplift and subsidence which are related to sedimentary environment and mineralization concentration have been discriminated. The faults (including the buried faults) which control the formation and development of the basin have been discerned. The stable and active areas, which are connected with uranium concentration, and preservation, and regional discharge zone have been interpreted. The result shows the feasibility of using remote sensing technique to predict the mineralization in the covered area, and six target areas have been optimized for further uranium reconnaissance and exploration in the study area

  1. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques

    Directory of Open Access Journals (Sweden)

    Mohammad Haji Gholizadeh

    2016-08-01

    Full Text Available Remotely sensed data can reinforce the abilities of water resources researchers and decision makers to monitor waterbodies more effectively. Remote sensing techniques have been widely used to measure the qualitative parameters of waterbodies (i.e., suspended sediments, colored dissolved organic matter (CDOM, chlorophyll-a, and pollutants. A large number of different sensors on board various satellites and other platforms, such as airplanes, are currently used to measure the amount of radiation at different wavelengths reflected from the water’s surface. In this review paper, various properties (spectral, spatial and temporal, etc. of the more commonly employed spaceborne and airborne sensors are tabulated to be used as a sensor selection guide. Furthermore, this paper investigates the commonly used approaches and sensors employed in evaluating and quantifying the eleven water quality parameters. The parameters include: chlorophyll-a (chl-a, colored dissolved organic matters (CDOM, Secchi disk depth (SDD, turbidity, total suspended sediments (TSS, water temperature (WT, total phosphorus (TP, sea surface salinity (SSS, dissolved oxygen (DO, biochemical oxygen demand (BOD and chemical oxygen demand (COD.

  2. Realization of daily evapotranspiration in arid ecosystems based on remote sensing techniques

    Science.gov (United States)

    Elhag, Mohamed; Bahrawi, Jarbou A.

    2017-03-01

    Daily evapotranspiration is a major component of water resources management plans. In arid ecosystems, the quest for an efficient water budget is always hard to achieve due to insufficient irrigational water and high evapotranspiration rates. Therefore, monitoring of daily evapotranspiration is a key practice for sustainable water resources management, especially in arid environments. Remote sensing techniques offered a great help to estimate the daily evapotranspiration on a regional scale. Existing open-source algorithms proved to estimate daily evapotranspiration comprehensively in arid environments. The only deficiency of these algorithms is the course scale of the used remote sensing data. Consequently, the adequate downscaling algorithm is a compulsory step to rationalize an effective water resources management plan. Daily evapotranspiration was estimated fairly well using an Advance Along-Track Scanner Radiometer (AATSR) in conjunction with (MEdium Resolution Imaging Spectrometer) MERIS data acquired in July 2013 with 1 km spatial resolution and 3 days of temporal resolution under a surface energy balance system (SEBS) model. Results were validated against reference evapotranspiration ground truth values using standardized Penman-Monteith method with R2 of 0.879. The findings of the current research successfully monitor turbulent heat fluxes values estimated from AATSR and MERIS data with a temporal resolution of 3 days only in conjunction with reliable meteorological data. Research verdicts are necessary inputs for a well-informed decision-making processes regarding sustainable water resource management.

  3. Mapping Cropland in Smallholder-Dominated Savannas: Integrating Remote Sensing Techniques and Probabilistic Modeling

    Directory of Open Access Journals (Sweden)

    Sean Sweeney

    2015-11-01

    Full Text Available Traditional smallholder farming systems dominate the savanna range countries of sub-Saharan Africa and provide the foundation for the region’s food security. Despite continued expansion of smallholder farming into the surrounding savanna landscapes, food insecurity in the region persists. Central to the monitoring of food security in these countries, and to understanding the processes behind it, are reliable, high-quality datasets of cultivated land. Remote sensing has been frequently used for this purpose but distinguishing crops under certain stages of growth from savanna woodlands has remained a major challenge. Yet, crop production in dryland ecosystems is most vulnerable to seasonal climate variability, amplifying the need for high quality products showing the distribution and extent of cropland. The key objective in this analysis is the development of a classification protocol for African savanna landscapes, emphasizing the delineation of cropland. We integrate remote sensing techniques with probabilistic modeling into an innovative workflow. We present summary results for this methodology applied to a land cover classification of Zambia’s Southern Province. Five primary land cover categories are classified for the study area, producing an overall map accuracy of 88.18%. Omission error within the cropland class is 12.11% and commission error 9.76%.

  4. Improving Gas Sensing Properties of Tin Oxide Nanowires Palladium-Coated Using a Low Cost Technique

    Directory of Open Access Journals (Sweden)

    M. Barzegar

    2012-12-01

    Full Text Available Thin films of SnO2 nanowires were successfully prepared by using chemical vapor deposition (CVD process on quartz substrates. Afterwards, a thin  layer of palladium (Pd as a catalyst was coated on top of nanowires. For the deposition of Pd, a simple and low cost technique of spray pyrolysis was employed, which caused an intensive enhancement on the sensing response of fabricated sensors. Prepared sensor devices were exposed to liquid petroleum gas (LPG and vapor of ethanol (C2H5OH. Results indicate that SnO2 nanowires sensors coated with Pd as a catalyst show decreasing in response time (~40s to 1000ppm of LPG at a relatively low operating temperature (200o C. SnO2 /Pd nanowire devices show gas sensing response time and recovery time as short as 50s and 10s respectively with a high sensitivity value of ~120 for C2H5OH, that is remarkable in comparison with other reports.

  5. Noninvasive glucose sensing in scattering media using OCT, PAS, and TOF techniques

    Science.gov (United States)

    Alarousu, Erkki; Hast, Jukka T.; Kinnunen, Matti T.; Kirillin, Mikhail Y.; Myllyla, Risto A.; Plucinski, Jerzy; Popov, Alexey P.; Priezzhev, Alexander V.; Prykari, Tuukka; Saarela, Juha; Zhao, Zuomin

    2004-08-01

    In this paper, optical measurement techniques, which enable non-invasive measurement, are superimposed to glucose sensing in scattering media. Used measurement techniques are Optical Coherence Tomography (OCT), Photoacoustic spectroscopy (PAS) and laser pulse Time-of-Flight (TOF) measurement using a streak camera. In parallel with measurements, a Monte-Carlo (MC) simulation models have been developed. Experimental in vitro measurements were performed using Intralipid fat emulsion as a tissue simulating phantom for OCT and TOF measurements. In PAS measurements, a pork meat was used as a subject but also preliminary in vivo measurements were done. OCT measurement results show that the slope of the OCT signal's envelope changes as a function of glucose content in the scattering media. TOF measurements show that the laser pulse full width of half maximum (FWHM) changes a little as function of glucose content. An agreement with MC-simulations and measurements with Intralipid was also found. Measurement results of PAS technique show that changes in glucose content in the pork meat tissue can be measured. In vivo measurements with a human volunteer show that other factors such as physiological change, blood circulation and body temperature drift may interfere the PA response of glucose.

  6. Real Time Speed Measure while Automobile Braking on Soft Sensing Technique

    International Nuclear Information System (INIS)

    Zhu, W B; Li, D S; Lu, Y

    2006-01-01

    Because the braking performance of automobile has close relationship to traffic safety, it is important to detect that. Focusing on the problem that the real time speed is difficult to obtain in detection process, soft sensing technique is introduced in this paper. According to analyzing the relationship of the dynamics equation of a moving automobile, a module of real time speed of braking is set up. By using imitation method with experiment data to get the pressure function of cylinder and analyzing the relationship between the trigging moment of a wheel and the pressure function of brake cylinder, the real time speed is confirmed in good precision. The maximal measurement error of real time speed is 8.7% and the precision can satisfy engineering request

  7. MAPPING GLAUCONITE UNITES WITH USING REMOTE SENSING TECHNIQUES IN NORTH EAST OF IRAN

    Directory of Open Access Journals (Sweden)

    R. Ahmadirouhani

    2014-10-01

    Full Text Available Glauconite is a greenish ferric-iron silicate mineral with micaceous structure, characteristically formed in shallow marine environments. Glauconite has been used as a pigmentation agent for oil paint, contaminants remover in environmental studies and a source of potassium in plant fertilizers, and other industries. Koppeh-dagh basin is extended in Iran, Afghanistan and Turkmenistan countries and Glauconite units exist in this basin. In this research for enhancing and mapping glauconitic units in Koppeh-dagh structural zone in north east of Iran, remote sensing techniques such as Spectral Angle Mapper classification (SAM, band ratio and band composition methods on SPOT, ASTER and Landsat data in 3 steps were applied.

  8. USING REMOTE SENSING AND GIS-TECHNIQUES IN SOUTH EAST CASPIAN COASTAL CHANGES DETECTION

    Directory of Open Access Journals (Sweden)

    S. R. Mousavi

    2008-01-01

    Full Text Available Remote sensing and GIS techniques have been used to detect the shoreline changes along Miankaleh peninsula promontory of the Gorgan Bay entrance over the last three decades (1975-2002. For this purpose satellite data including LANDSAT ETM+, TM, SPOT, ASTER L1A and RADARSAT have been analyzed. SPOT-Pan data were georeferenced with respect to 1 : 50 000 topographic maps using a Universal Transverse Mercator (UTM projection, then all the needed data sets were registered to the SPOT-Pan image. The hydrological data showed a rapid rise of the Caspian Sea level by 2.6 m between “1975-1996”.

  9. Real Time Speed Measure while Automobile Braking on Soft Sensing Technique

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, W B; Li, D S; Lu, Y [China Jiliang University, Hangzhou, Zhejiang province, 310018 (China)

    2006-10-15

    Because the braking performance of automobile has close relationship to traffic safety, it is important to detect that. Focusing on the problem that the real time speed is difficult to obtain in detection process, soft sensing technique is introduced in this paper. According to analyzing the relationship of the dynamics equation of a moving automobile, a module of real time speed of braking is set up. By using imitation method with experiment data to get the pressure function of cylinder and analyzing the relationship between the trigging moment of a wheel and the pressure function of brake cylinder, the real time speed is confirmed in good precision. The maximal measurement error of real time speed is 8.7% and the precision can satisfy engineering request.

  10. Assessment of agricultural drought vulnerability in the Philippines using remote sensing and GIS-based techniques

    International Nuclear Information System (INIS)

    Macapagal, Marco D.; Olivares, Resi O.; Perez, Gay Jane P.

    2015-01-01

    Drought is a recurrent extreme climate event that can cause crop damage and yield loss, thereby inflicting negative socioeconomic impacts all over the world. According to several climate studies, drought events may be more frequent and more severe as global warming progresses. As an agricultural country, the Philippines is highly susceptible to adverse impacts of drought using remotely sensed information and geographic processing techniques. An agricultural drought vulnerability map identifying croplands that are least vulnerable, moderately vulnerable, and most vulnerable to crop water-related stress, was developed. Vulnerability factors, including land use system, irrigation support. Available soil-water holding capacity, as well as satellite-derived evapotranspiration and rainfall, were taken into consideration in classifying and mapping agricultural drought vulnerability at a national level. (author)

  11. Application of Distributed Optical Fiber Sensing Technique in Monitoring the Ground Deformation

    Directory of Open Access Journals (Sweden)

    Jin Liu

    2017-01-01

    Full Text Available The monitoring of ground deformation is important for the prevention and control of geological disaster including land subsidence, ground fissure, surface collapse, and landslides. In this study, a distributed optical fiber sensing technique based on Brillouin Optical Time-Domain Analysis (BOTDA was used to monitor the ground deformation. The principle behind the BOTDA is first introduced, and then laboratory calibration test and physical model test were carried out. Finally, BOTDA-based monitoring of ground fissure was carried out in a test site. Experimental results show that the distributed optical fiber can measure the soil strain during ground deformation process, and the strain curve responded to the soil compression and tension region clearly. During field test in Wuxi City, China, the ground fissures deformation area was monitored accurately and the trend of deformation can also be achieved to forecast and warn against the ground fissure hazards.

  12. Mapping aboveground woody biomass using forest inventory, remote sensing and geostatistical techniques.

    Science.gov (United States)

    Yadav, Bechu K V; Nandy, S

    2015-05-01

    Mapping forest biomass is fundamental for estimating CO₂ emissions, and planning and monitoring of forests and ecosystem productivity. The present study attempted to map aboveground woody biomass (AGWB) integrating forest inventory, remote sensing and geostatistical techniques, viz., direct radiometric relationships (DRR), k-nearest neighbours (k-NN) and cokriging (CoK) and to evaluate their accuracy. A part of the Timli Forest Range of Kalsi Soil and Water Conservation Division, Uttarakhand, India was selected for the present study. Stratified random sampling was used to collect biophysical data from 36 sample plots of 0.1 ha (31.62 m × 31.62 m) size. Species-specific volumetric equations were used for calculating volume and multiplied by specific gravity to get biomass. Three forest-type density classes, viz. 10-40, 40-70 and >70% of Shorea robusta forest and four non-forest classes were delineated using on-screen visual interpretation of IRS P6 LISS-III data of December 2012. The volume in different strata of forest-type density ranged from 189.84 to 484.36 m(3) ha(-1). The total growing stock of the forest was found to be 2,024,652.88 m(3). The AGWB ranged from 143 to 421 Mgha(-1). Spectral bands and vegetation indices were used as independent variables and biomass as dependent variable for DRR, k-NN and CoK. After validation and comparison, k-NN method of Mahalanobis distance (root mean square error (RMSE) = 42.25 Mgha(-1)) was found to be the best method followed by fuzzy distance and Euclidean distance with RMSE of 44.23 and 45.13 Mgha(-1) respectively. DRR was found to be the least accurate method with RMSE of 67.17 Mgha(-1). The study highlighted the potential of integrating of forest inventory, remote sensing and geostatistical techniques for forest biomass mapping.

  13. A Study of Flood Evacuation Center Using GIS and Remote Sensing Technique

    Science.gov (United States)

    Mustaffa, A. A.; Rosli, M. F.; Abustan, M. S.; Adib, R.; Rosli, M. I.; Masiri, K.; Saifullizan, B.

    2016-07-01

    This research demonstrated the use of Remote Sensing technique and GIS to determine the suitability of an evacuation center. This study was conducted in Batu Pahat areas that always hit by a series of flood. The data of Digital Elevation Model (DEM) was obtained by ASTER database that has been used to delineate extract contour line and elevation. Landsat 8 image was used for classification purposes such as land use map. Remote Sensing incorporate with GIS techniques was used to determined the suitability location of the evacuation center from contour map of flood affected areas in Batu Pahat. GIS will calculate the elevation of the area and information about the country of the area, the road access and percentage of the affected area. The flood affected area map may provide the suitability of the flood evacuation center during the several levels of flood. The suitability of evacuation centers can be determined based on several criteria and the existing data of the evacuation center will be analysed. From the analysis among 16 evacuation center listed, there are only 8 evacuation center suitable for the usage during emergency situation. The suitability analysis was based on the location and the road access of the evacuation center toward the flood affected area. There are 10 new locations with suitable criteria of evacuation center proposed on the study area to facilitate the process of rescue and evacuating flood victims to much safer and suitable locations. The results of this study will help in decision making processes and indirectly will help organization such as fire-fighter and the Department of Social Welfare in their work. Thus, this study can contribute more towards the society.

  14. Techniques of uranium mineralization alteration remote sensing information identification and its application in Taoshan area, Jiangxi province

    International Nuclear Information System (INIS)

    Xuan Yanxiu; Zhang Jielin

    2010-01-01

    Based on the spectrum characteristics analysis of uranium mineralization alteration rocks and minerals, and using satellite multi-spectral remote sensing image data as the main information sources, multiple remote sensing data processing techniques and methods such as color compound, band ratio, principal component analysis and image color segmentation, are synthetically applied to extract uranium mineralization and alteration information from the remote sensing image. The results of this study provided basic data for analysis of uranium ore-formation conditions in the area. (authors)

  15. A scanning tunneling microscopy based potentiometry technique and its application to the local sensing of the spin Hall effect

    Directory of Open Access Journals (Sweden)

    Ting Xie

    2017-12-01

    Full Text Available A scanning tunneling microscopy based potentiometry technique for the measurements of the local surface electric potential is presented. A voltage compensation circuit based on this potentiometry technique is developed and employed to maintain a desired tunneling voltage independent of the bias current flow through the film. The application of this potentiometry technique to the local sensing of the spin Hall effect is outlined and some experimental results are reported.

  16. High performance optical encryption based on computational ghost imaging with QR code and compressive sensing technique

    Science.gov (United States)

    Zhao, Shengmei; Wang, Le; Liang, Wenqiang; Cheng, Weiwen; Gong, Longyan

    2015-10-01

    In this paper, we propose a high performance optical encryption (OE) scheme based on computational ghost imaging (GI) with QR code and compressive sensing (CS) technique, named QR-CGI-OE scheme. N random phase screens, generated by Alice, is a secret key and be shared with its authorized user, Bob. The information is first encoded by Alice with QR code, and the QR-coded image is then encrypted with the aid of computational ghost imaging optical system. Here, measurement results from the GI optical system's bucket detector are the encrypted information and be transmitted to Bob. With the key, Bob decrypts the encrypted information to obtain the QR-coded image with GI and CS techniques, and further recovers the information by QR decoding. The experimental and numerical simulated results show that the authorized users can recover completely the original image, whereas the eavesdroppers can not acquire any information about the image even the eavesdropping ratio (ER) is up to 60% at the given measurement times. For the proposed scheme, the number of bits sent from Alice to Bob are reduced considerably and the robustness is enhanced significantly. Meantime, the measurement times in GI system is reduced and the quality of the reconstructed QR-coded image is improved.

  17. The use of desk studies, remote sensing and surface geological and geophysical techniques in site investigations

    International Nuclear Information System (INIS)

    Mather, J.D.

    1984-02-01

    The geoscientific investigations required to characterise a site for the underground disposal of radioactive wastes involve a wide range of techniques and expertise. Individual national investigations need to be planned with the specific geological environment and waste form in mind. However, in any investigation there should be a planned sequence of operations leading through desk studies and surface investigations to the more expensive and sophisticated sub-surface investigations involving borehole drilling and the construction of in situ test facilities. Desk studies are an important and largely underestimated component of site investigations. Most developed countries have archives of topographical, geological and environmental data within government agencies, universities, research institutes and learned societies. Industry is another valuable source but here confidentiality can be a problem. However, in developing countries and in some regions of developed countries the amount of basic data, which needs to be collected over many decades, will not be as extensive. In such regions remote sensing offers a rapid method of examining large areas regardless of land access, vegetation or geological setting, rapidly and at relatively low cost. It can also be used to examine features, such as discontinuity patterns, over relatively small areas in support of intensive ground investigations. Examples will be given of how remote sensing has materially contributed to site characterisation in a number of countries, particularly those such as Sweden, Canada and the United Kingdom where the major effort has concentrated on crystalline rocks. The main role of desk studies and surface investigations is to provide basic data for the planning and execution of more detailed subsurface investigations. However, such studies act as a valuable screening mechanism and if they are carried out correctly can enable adverse characteristics of a site to be identified at an early stage before

  18. Transfer of microstructure pattern of CNTs onto flexible substrate using hot press technique for sensing applications

    International Nuclear Information System (INIS)

    Mishra, Prabhash; Tai, Nyan-Hwa; Harsh; Islam, S.S.

    2013-01-01

    Graphical abstract: - Highlights: • Successfully transfer of microstructure patterned CNTs on PET substrate. • Demonstrate as resistor-based NH 3 gas sensor in the sub-ppm range. • Excellent photodetector having instantaneous response and recovery characteristics. • An effective technique to grow and produce flexible electronic device. - Abstract: In this work, we report the successful and efficient transfer process of two- dimensional (2-D) vertically aligned carbon nanotubes (CNTs) onto polyethylene terephthalate (PET) substrate by hot pressing method with an aim to develop flexible sensor devices. Carbon nanotubes are synthesized by cold wall thermal chemical vapor deposition using patterned SiO 2 substrate under low pressure. The height of the pattern of CNTs is controlled by reaction time. The entire growth and transfer process is carried out within 30 min. Strong adhesion between the nanotube and polyethylene terephthalate substrate was observed in the post-transferred case. Raman spectroscopy and scanning electron microscope (SEM) studies are used to analyze the microstructure of carbon nanotube film before and after hot pressing. This technique shows great potential for the fabrication of flexible sensing devices. We report for the first time, the application of patterned microstructure developed by this technique in the development of gas sensor and optoelectronic device. Surface resistive mode is used for detection of ammonia (NH 3 ) gas in the sub-ppm range. An impressive photoconducting response is also observed in the visible wavelength. The reproducibility of the sample was checked and the results indicate the possibility of use of carbon nanotube as gas sensor, photodetector, CCDs etc

  19. Transfer of microstructure pattern of CNTs onto flexible substrate using hot press technique for sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Prabhash [Department of Material Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Nano-Sensor Research Laboratory, F/O Engineering and Technology, Jamia Millia Islamia, Jamia Nagar, New Delhi (India); Tai, Nyan-Hwa [Department of Material Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Harsh [Nano-Sensor Research Laboratory, F/O Engineering and Technology, Jamia Millia Islamia, Jamia Nagar, New Delhi (India); Islam, S.S., E-mail: safiul5996@gmail.com [Nano-Sensor Research Laboratory, F/O Engineering and Technology, Jamia Millia Islamia, Jamia Nagar, New Delhi (India)

    2013-08-01

    Graphical abstract: - Highlights: • Successfully transfer of microstructure patterned CNTs on PET substrate. • Demonstrate as resistor-based NH{sub 3} gas sensor in the sub-ppm range. • Excellent photodetector having instantaneous response and recovery characteristics. • An effective technique to grow and produce flexible electronic device. - Abstract: In this work, we report the successful and efficient transfer process of two- dimensional (2-D) vertically aligned carbon nanotubes (CNTs) onto polyethylene terephthalate (PET) substrate by hot pressing method with an aim to develop flexible sensor devices. Carbon nanotubes are synthesized by cold wall thermal chemical vapor deposition using patterned SiO{sub 2} substrate under low pressure. The height of the pattern of CNTs is controlled by reaction time. The entire growth and transfer process is carried out within 30 min. Strong adhesion between the nanotube and polyethylene terephthalate substrate was observed in the post-transferred case. Raman spectroscopy and scanning electron microscope (SEM) studies are used to analyze the microstructure of carbon nanotube film before and after hot pressing. This technique shows great potential for the fabrication of flexible sensing devices. We report for the first time, the application of patterned microstructure developed by this technique in the development of gas sensor and optoelectronic device. Surface resistive mode is used for detection of ammonia (NH{sub 3}) gas in the sub-ppm range. An impressive photoconducting response is also observed in the visible wavelength. The reproducibility of the sample was checked and the results indicate the possibility of use of carbon nanotube as gas sensor, photodetector, CCDs etc.

  20. Yangon River Geomorphology Identification and its Enviromental Imapacts Analsysi by Optical and Radar Sensing Techniques

    Science.gov (United States)

    Lwin, A.; Khaing, M. M.

    2012-07-01

    The Yangon river, also known as the Rangoon river, is about 40 km long (25miles), and flows from southern Myanmar as an outlet of the Irrawaddy (Ayeyarwady) river into the Ayeyarwady delta. The Yangon river drains the Pegu Mountains; both the Yangon and the Pathein rivers enter the Ayeyarwady at the delta. Fluvial geomorphology is based primarily on rivers of manageable dimensions. The emphasis is on geomorphology, sedimentology of Yangon river and techniques for their identification and management. Present techniques such as remote sensing have made it easier to investigate and interpret in details analysis of river geomorphology. In this paper, attempt has been made the complicated issues of geomorphology, sedimentation patterns and management of river system and evolution studied. The analysis was carried out for the impact of land use/ land cover (LULC) changes on stream flow patterns. The hydrologic response to intense, flood producing rainfall events bears the signatures of the geomorphic structure of the channel network and of the characteristic slope lengths defining the drainage density of the basin. The interpretation of the hydrologic response as the travel time distribution of a water particle randomly injected in a distributed manner across the landscape inspired many geomorphic insights. In 2008, Cyclone Nargis was seriously damaged to mangrove area and its biodiversity system in and around of Yangon river terraces. A combination of digital image processing techniques was employed for enhancement and classification process. It is observed from the study that middle infra red band (0.77mm - 0.86mm) is highly suitable for mapping mangroves. Two major classes of mangroves, dense and open mangroves were delineated from the digital data.

  1. Spatial and functional characterization, identification and assessment of isolated wetlands in Alachua County, Florida, USA - GIS and remote sensing techniques

    Science.gov (United States)

    In this study, Geographic Information Systems (GIS) and remote sensing mapping techniques were developed to identify the locations of isolated wetlands in Alachua County, FL, a 2510 sq km area in north-central Florida with diverse geology and numerous isolated wetlands. The resul...

  2. AHIMSA - Ad hoc histogram information measure sensing algorithm for feature selection in the context of histogram inspired clustering techniques

    Science.gov (United States)

    Dasarathy, B. V.

    1976-01-01

    An algorithm is proposed for dimensionality reduction in the context of clustering techniques based on histogram analysis. The approach is based on an evaluation of the hills and valleys in the unidimensional histograms along the different features and provides an economical means of assessing the significance of the features in a nonparametric unsupervised data environment. The method has relevance to remote sensing applications.

  3. Detecting Subsurface Agricultural Tile Drainage using GIS and Remote Sensing Technique

    Science.gov (United States)

    Budhathoki, M.; Gokkaya, K.; Tank, J. L.; Christopher, S. F.; Hanrahan, B.

    2015-12-01

    Subsurface tile drainage is a common practice in many of the row crop dominated agricultural lands in the Upper Midwest, which increases yield by making the soil more productive. It is reported that nearly half of all cropland in Indiana benefits from some sort of artificial drainage. However, subsurface tile has a significant negative impact on surface water quality by providing a fast means of transport for nutrients from fertilizers. Therefore, generating spatial data of tile drainage in the field is important and useful for agricultural landscape and hydrological studies. Subsurface tile drains in Indiana's croplands are not widely mapped. In this study, we will delineate subsurface tile drainage in agricultural land in Shatto Ditch watershed, located in Kosciusko County, Indiana. We will use geo-spatial methodology, which was purposed by earlier researchers to detect tile drainage. We will use aerial color-infrared and satellite imagery along with Light Detection and Ranging (LiDAR) data. In order to map tile lines with possible accuracy, we will use GIS-based analysis in combination with remotely sensed data. This research will be comprised of three stages: 1) masking out the potential drainage area using a decision tree rule based on land cover information, soil drainage category, surface slope, and satellite image differencing technique, 2) delineate tile lines using image processing techniques, and 3) check the accuracy of mapped tile lines with ground control points. To our knowledge, this study will be the first to check the accuracy of mapping with ground truth data. Based on the accuracy of results, we will extend the methodology to greater spatial scales. The results are expected to contribute to better characterizing and controlling water pollution sources in Indiana, which is a major environmental problem.

  4. Multisensor remote sensing data and GIS techniques for monitoring preservation areas - A case study

    International Nuclear Information System (INIS)

    Shimabukuro, Y.E.; Lee, D.C.L.; Dos Santos, J.R.

    1992-01-01

    The capability of remote sensing and Geographic Information System techniques for detecting and monitoring the anthropic alterations which sometimes occur in preservation areas is discussed. Attention is given to the Emas National Park in the southwest Goias State, Brazil. TM/Landsat data from July 29, 1988 (before a fire that occurred there) and August 14, 1988, (after the fire) and AVHRR/NOAA data obtained in this period covered by TM images were used to monitor the biomass burning. The TM images were registered to a topographic map in order to compile a data base including information such as drainage, roads, elevation, and vegetation type for this park. Pixels classified as burned areas using band 3 of AVHRR images were overlayed on the map derived from the data base. The integration of elevation, TM multitemporal data, and information derived from AVHRR images is found to be a valuable tool for managers in detecting and evaluating damage and in monitoring the regeneration process of land cover. 15 refs

  5. Determination of Potential Fishing Grounds of Rastrelliger kanagurta Using Satellite Remote Sensing and GIS Technique

    International Nuclear Information System (INIS)

    Suhartono Nurdin; Muzzneena Ahmad Mustapha; Tukimat Lihan; Mazlan Abdul Ghaffar; Muzzneena Ahmad Mustapha; Nurdin, S.

    2015-01-01

    Analysis of relationship between sea surface temperature (SST) and Chlorophyll-a (chl-a) improves our understanding on the variability and productivity of the marine environment, which is important for exploring fishery resources. Monthly level 3 and daily level 1 images of Moderate Resolution Imaging Spectroradiometer Satellite (MODIS) derived SST and chl-a from July 2002 to June 2011 around the archipelagic waters of Spermonde Indonesia were used to investigate the relationship between SST and chl-a and to forecast the potential fishing ground of Rastrelliger kanagurta. The results indicated that there was positive correlation between SST and chl-a (R=0.3, p<0.05). Positive correlation was also found between SST and chl-a with the catch of R. kanagurta (R=0.7, p<0.05). The potential fishing grounds of R. kanagurta were found located along the coast (at accuracy of 76.9 %). This study indicated that, with the integration of remote sensing technology, statistical modeling and geographic information systems (GIS) technique were able to determine the relationship between SST and chl-a and also able to forecast aggregation of R. kanagurta. This may contribute in decision making and reducing search hunting time and cost in fishing activities. (author)

  6. Identification of Sparse Audio Tampering Using Distributed Source Coding and Compressive Sensing Techniques

    Directory of Open Access Journals (Sweden)

    Valenzise G

    2009-01-01

    Full Text Available In the past few years, a large amount of techniques have been proposed to identify whether a multimedia content has been illegally tampered or not. Nevertheless, very few efforts have been devoted to identifying which kind of attack has been carried out, especially due to the large data required for this task. We propose a novel hashing scheme which exploits the paradigms of compressive sensing and distributed source coding to generate a compact hash signature, and we apply it to the case of audio content protection. The audio content provider produces a small hash signature by computing a limited number of random projections of a perceptual, time-frequency representation of the original audio stream; the audio hash is given by the syndrome bits of an LDPC code applied to the projections. At the content user side, the hash is decoded using distributed source coding tools. If the tampering is sparsifiable or compressible in some orthonormal basis or redundant dictionary, it is possible to identify the time-frequency position of the attack, with a hash size as small as 200 bits/second; the bit saving obtained by introducing distributed source coding ranges between 20% to 70%.

  7. Applications of geographic information systems and remote sensing techniques to conservation of amphibians in northwestern Ecuador

    Directory of Open Access Journals (Sweden)

    Mariela Palacios González

    2015-01-01

    Full Text Available The biodiversity of the Andean Chocó in western Ecuador and Colombia is threatened by anthropogenic changes in land cover. The main goal of this study was to contribute to conservation of 12 threatened species of amphibians at a cloud forest site in northwestern Ecuador, by identifying and proposing protection of critical areas. We used Geographic Information Systems (GIS and remote sensing techniques to quantify land cover changes over 35 years and outline important areas for amphibian conservation. We performed a supervised classification of an IKONOS satellite image from 2011 and two aerial photographs from 1977 and 2000. The 2011 IKONOS satellite image classification was used to delineate areas important for conservation of threatened amphibians within a 200 m buffer around rivers and streams. The overall classification accuracy of the three images was ≥80%. Forest cover was reduced by 17% during the last 34 years. However, only 50% of the study area retained the initial (1977 forest cover, as land was cleared for farming and eventually reforested. Finally, using the 2011 IKONOS satellite image, we delineated areas of potential conservation interest that would benefit the long term survival of threatened amphibian species at the Ecuadorian cloud forest site studied.

  8. Mechanical properties of porous silicon by depth-sensing nanoindentation techniques

    International Nuclear Information System (INIS)

    Fang Zhenqian; Hu Ming; Zhang Wei; Zhang Xurui; Yang Haibo

    2009-01-01

    Porous silicon (PS) was prepared using the electrochemical corrosion method. Thermal oxidation of the as-prepared PS samples was performed at different temperatures for tuning their mechanical properties. The mechanical properties of as-prepared and oxidized PS were thoroughly investigated by depth-sensing nanoindentation techniques with the continuous stiffness measurements option. The morphology of as-prepared and oxidized PS was characterized by field emission scanning electron microscope and the effect of observed microstructure changes on the mechanical properties was discussed. It is shown that the hardness and Young's elastic modulus of as-prepared PS exhibit a strong dependence on the preparing conditions and decrease with increasing current density. In particular, the mechanical properties of oxidized PS are improved greatly compared with that of as-prepared ones and increase with increasing thermal oxidation temperature. The mechanism responsible for the mechanical property enhancement is possibly the formation of SiO 2 cladding layers encapsulating on the inner surface of the incompact sponge PS to decrease the porosity and strengthen the interconnected microstructure

  9. Soil Erosion Estimation Using Remote Sensing Techniques in Wadi Yalamlam Basin, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Jarbou A. Bahrawi

    2016-01-01

    Full Text Available Soil erosion is one of the major environmental problems in terms of soil degradation in Saudi Arabia. Soil erosion leads to significant on- and off-site impacts such as significant decrease in the productive capacity of the land and sedimentation. The key aspects influencing the quantity of soil erosion mainly rely on the vegetation cover, topography, soil type, and climate. This research studies the quantification of soil erosion under different levels of data availability in Wadi Yalamlam. Remote Sensing (RS and Geographic Information Systems (GIS techniques have been implemented for the assessment of the data, applying the Revised Universal Soil Loss Equation (RUSLE for the calculation of the risk of erosion. Thirty-four soil samples were randomly selected for the calculation of the erodibility factor, based on calculating the K-factor values derived from soil property surfaces after interpolating soil sampling points. Soil erosion risk map was reclassified into five erosion risk classes and 19.3% of the Wadi Yalamlam is under very severe risk (37,740 ha. GIS and RS proved to be powerful instruments for mapping soil erosion risk, providing sufficient tools for the analytical part of this research. The mapping results certified the role of RUSLE as a decision support tool.

  10. The Study of Mining Activities and their Influences in the Almaden Region Applying Remote Sensing Techniques

    International Nuclear Information System (INIS)

    Rico, C.; Schmid, T.; Millan, R.; Gumuzzio, J.

    2010-01-01

    This scientific-technical report is a part of an ongoing research work carried out by Celia Rico Fraile in order to obtain the Diploma of Advanced Studies as part of her PhD studies. This work has been developed in collaboration with the Faculty of Science at The Universidad Autonoma de Madrid and the Department of Environment at CIEMAT. The main objective of this work was the characterization and classification of land use in Almaden (Ciudad Real) during cinnabar mineral exploitation and after mining activities ceased in 2002, developing a methodology focused on the integration of remote sensing techniques applying multispectral and hyper spectral satellite data. By means of preprocessing and processing of data from the satellite images as well as data obtained from field campaigns, a spectral library was compiled in order to obtain representative land surfaces within the study area. Monitoring results show that the distribution of areas affected by mining activities is rapidly diminishing in recent years. (Author) 130 refs

  11. Development of mathematical techniques for the assimilation of remote sensing data into atmospheric models

    International Nuclear Information System (INIS)

    Seinfeld, J.H.

    1982-01-01

    The problem of the assimilation of remote sensing data into mathematical models of atmospheric pollutant species was investigated. The data assimilation problem is posed in terms of the matching of spatially integrated species burden measurements to the predicted three-dimensional concentration fields from atmospheric diffusion models. General conditions were derived for the reconstructability of atmospheric concentration distributions from data typical of remote sensing applications, and a computational algorithm (filter) for the processing of remote sensing data was developed

  12. Development of mathematical techniques for the assimilation of remote sensing data into atmospheric models

    International Nuclear Information System (INIS)

    Seinfeld, J.H.

    1982-01-01

    The problem of the assimilation of remote sensing data into mathematical models of atmospheric pollutant species was investigated. The problem is posed in terms of the matching of spatially integrated species burden measurements to the predicted three dimensional concentration fields from atmospheric diffusion models. General conditions are derived for the reconstructability of atmospheric concentration distributions from data typical of remote sensing applications, and a computational algorithm (filter) for the processing of remote sensing data is developed

  13. WORD SENSE DISAMBIGUATION FOR TAMIL LANGUAGE USING PART-OF-SPEECH AND CLUSTERING TECHNIQUE

    Directory of Open Access Journals (Sweden)

    P. ISWARYA

    2017-09-01

    Full Text Available Word sense disambiguation is an important task in Natural Language Processing (NLP, and this paper concentrates on the problem of target word selection in machine translation. The proposed method called enhanced Word Sense Disambiguation with Part-of-Speech and Clustering based Sensecollocation (WSDPCS consists of two steps namely (i Part-of-Speech (POS tagger in disambiguating word senses and (ii Enhanced with Clustering and Sense-collocation dictionary based disambiguation. In the first step an ambiguous Tamil words are disambiguated using Tamil and English POS Tagger. If it has same type of POS category labels, then it passes the word to the next step. In the second step ambiguity is resolved using sense-collocation dictionary. The experimental analysis shows that the accuracy of proposed WSDPCS method achieves 1.86% improvement over an existing method.

  14. Monitoring the coastline change of Hatiya Island in Bangladesh using remote sensing techniques

    Science.gov (United States)

    Ghosh, Manoj Kumer; Kumar, Lalit; Roy, Chandan

    2015-03-01

    A large percentage of the world's population is concentrated along the coastal zones. These environmentally sensitive areas are under intense pressure from natural processes such as erosion, accretion and natural disasters as well as anthropogenic processes such as urban growth, resource development and pollution. These threats have made the coastal zone a priority for coastline monitoring programs and sustainable coastal management. This research utilizes integrated techniques of remote sensing and geographic information system (GIS) to monitor coastline changes from 1989 to 2010 at Hatiya Island, Bangladesh. In this study, satellite images from Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM) were used to quantify the spatio-temporal changes that took place in the coastal zone of Hatiya Island during the specified period. The modified normalized difference water index (MNDWI) algorithm was applied to TM (1989 and 2010) and ETM (2000) images to discriminate the land-water interface and the on-screen digitizing approach was used over the MNDWI images of 1989, 2000 and 2010 for coastline extraction. Afterwards, the extent of changes in the coastline was estimated through overlaying the digitized maps of Hatiya Island of all three years. Coastline positions were highlighted to infer the erosion/accretion sectors along the coast, and the coastline changes were calculated. The results showed that erosion was severe in the northern and western parts of the island, whereas the southern and eastern parts of the island gained land through sedimentation. Over the study period (1989-2010), this offshore island witnessed the erosion of 6476 hectares. In contrast it experienced an accretion of 9916 hectares. These erosion and accretion processes played an active role in the changes of coastline during the study period.

  15. Monitoring deforestation and urbanization growth in rawal watershed area using remote sensing and gis techniques

    International Nuclear Information System (INIS)

    Saeed, M.A.; Ashraf, A.

    2011-01-01

    The Rawal watershed in Pothwar region of Pakistan has undergone significant changes in its environmental conditions and landuse activities due to numerous socio-economic and natural factors. These ultimately influence the livelihood of the inhabitants of the area. The connected environmental changes are resulting in accelerated land degradation, deforestation, and landslides. In the present study, spatio-temporal behaviour of landuse/landcover in the Rawal watershed area was investigated using Remote Sensing (RS) and Geographical Information System (GIS) techniques. Satellite image data of LANDSAT ETM+ of 1992, 2000 and 2010 periods were processed and analyzed for detecting land use change and identifying risk prone locations in the watershed area. The study results revealed significant changes in the coverage of conifer forest (34 % decrease), scrub forest (29 % decrease) and settlement (231 % increase) during the decade 1992-2010. The rate of decline in conifer class is about 19 ha/annum while that of scrub class is 223 ha/annum. In both the cases, the rates of decrease were higher during the period 1992-2000 than the period 2000-2010. The Agriculture land has shown an increase of about 1.8% while built-up land had increased almost four folds, i.e. from 2.6 % in 1992 to 8.7 % in 2010. The growth in urbanization may result in further loss of forest cover in the watershed area. The findings of the study could help in developing effective strategies for future resource management and conservation, as well as for controlling land degradation in the watershed area. (author)

  16. Estimation the Amount of Oil Palm Trees Production Using Remote Sensing Technique

    Science.gov (United States)

    Fitrianto, A. C.; Tokimatsu, K.; Sufwandika, M.

    2017-12-01

    Currently, fossil fuels were used as the main source of power supply to generate energy including electricity. Depletion in the amount of fossil fuels has been causing the increasing price of crude petroleum and the demand for alternative energy which is renewable and environment-friendly and it is defined from vegetable oils such palm oil, rapeseed and soybean. Indonesia known as the big palm oil producer which is the largest agricultural industry with total harvested oil palm area which is estimated grew until 8.9 million ha in 2015. On the other hand, lack of information about the age of oil palm trees and changes also their spatial distribution is mainly problem for energy planning. This research conducted to estimate fresh fruit bunch (FFB) of oil palm and their distribution using remote sensing technique. Cimulang oil palm plantation was choose as study area. First step, estimated the age of oil palm trees based on their canopy density as the result from Landsat 8 OLI analysis and classified into five class. From this result, we correlated oil palm age with their average FFB production per six months and classified into seed (0-3 years, 0kg), young (4-8 years, 68.77kg), teen (9-14 years, 109.08kg), and mature (14-25 years, 73.91kg). The result from satellite image analysis shows if Cimulang plantation area consist of teen old oil palm trees that it is covers around 81.5% of that area, followed by mature oil palm trees with 18.5% or corresponding to 100 hectares and have total production of FFB every six months around 7,974,787.24 kg.

  17. Morphotectonics of the Jamini River basin, Bundelkhand Craton, Central India; using remote sensing and GIS technique

    Science.gov (United States)

    Prakash, K.; Mohanty, T.; Pati, J. K.; Singh, S.; Chaubey, K.

    2017-11-01

    Morphological and morphotectonic analyses have been used to obtain information that influence hydrographic basins, predominantly these are modifications of tectonic elements and the quantitative description of landforms. Discrimination of morphotectonic indices of active tectonics of the Jamini river basin consists the analyses of asymmetry factor, ruggedness number, basin relief, gradient, basin elongation ratio, drainage density analysis, and drainage pattern analysis, which have been completed for each drainage basin using remote sensing and GIS techniques. The Jamini river is one of the major tributaries of the Betwa river in central India. The Jamini river basin is divided into five subwatersheds viz. Jamrar, Onri, Sainam, Shahzad and Baragl subwatershed. The quantitative approach of watershed development of the Jamini river basin, and its four sixth (SW1-SW4) and one fifth (SW5) order subwatersheds, was carried out using Survey of India toposheets (parts of 54I, 54K, 54L, 54O, and 54P), Landsat 7 ETM+, ASTER (GDEM) data, and field data. The Jamini river has low bifurcation index which is a positive marker of tectonic imprint on the hydrographic network. The analyses show that the geomorphological progression of the study area was robustly influenced by tectonics. The analysis demonstrates to extensional tectonics system with the following alignments: NE-SW, NW-SE, NNE-SSW, ENE-WSW, E-W, and N-S. Three major trends are followed by lower order streams viz. NE-SW, NW-SE, and E-W directions which advocate that these tectonic trends were active at least up to the Late Pleistocene. The assessment of morphotectonic indices may be used to evaluate the control of active faults on the hydrographic system. The analysis points out westward tilting of the drainage basins with strong asymmetry in some reaches, marked elongation ratio of subwatersheds, and lower order streams having close alignment with lineaments (active faults). The study facilitated to considerate the

  18. Real-time network traffic classification technique for wireless local area networks based on compressed sensing

    Science.gov (United States)

    Balouchestani, Mohammadreza

    2017-05-01

    Network traffic or data traffic in a Wireless Local Area Network (WLAN) is the amount of network packets moving across a wireless network from each wireless node to another wireless node, which provide the load of sampling in a wireless network. WLAN's Network traffic is the main component for network traffic measurement, network traffic control and simulation. Traffic classification technique is an essential tool for improving the Quality of Service (QoS) in different wireless networks in the complex applications such as local area networks, wireless local area networks, wireless personal area networks, wireless metropolitan area networks, and wide area networks. Network traffic classification is also an essential component in the products for QoS control in different wireless network systems and applications. Classifying network traffic in a WLAN allows to see what kinds of traffic we have in each part of the network, organize the various kinds of network traffic in each path into different classes in each path, and generate network traffic matrix in order to Identify and organize network traffic which is an important key for improving the QoS feature. To achieve effective network traffic classification, Real-time Network Traffic Classification (RNTC) algorithm for WLANs based on Compressed Sensing (CS) is presented in this paper. The fundamental goal of this algorithm is to solve difficult wireless network management problems. The proposed architecture allows reducing False Detection Rate (FDR) to 25% and Packet Delay (PD) to 15 %. The proposed architecture is also increased 10 % accuracy of wireless transmission, which provides a good background for establishing high quality wireless local area networks.

  19. Evaluation of Airborne Remote Sensing Techniques for Predicting the Distribution of Energetic Compounds on Impact Areas

    National Research Council Canada - National Science Library

    Graves, Mark R; Dove, Linda P; Jenkins, Thomas F; Bigl, Susan; Walsh, Marianne E; Hewitt, Alan D; Lambert, Dennis; Perron, Nancy; Ramsey, Charles; Gamey, Jeff; Beard, Les; Doll, William E; Magoun, Dale

    2007-01-01

    .... Remote sensing and geographic information system (GIS) technologies were utilized to assist in the development of enhanced sampling strategies to better predict the landscape-scale distribution of energetic compounds...

  20. Monitoring soil moisture patterns in alpine meadows using ground sensor networks and remote sensing techniques

    Science.gov (United States)

    Bertoldi, Giacomo; Brenner, Johannes; Notarnicola, Claudia; Greifeneder, Felix; Nicolini, Irene; Della Chiesa, Stefano; Niedrist, Georg; Tappeiner, Ulrike

    2015-04-01

    Soil moisture content (SMC) is a key factor for numerous processes, including runoff generation, groundwater recharge, evapotranspiration, soil respiration, and biological productivity. Understanding the controls on the spatial and temporal variability of SMC in mountain catchments is an essential step towards improving quantitative predictions of catchment hydrological processes and related ecosystem services. The interacting influences of precipitation, soil properties, vegetation, and topography on SMC and the influence of SMC patterns on runoff generation processes have been extensively investigated (Vereecken et al., 2014). However, in mountain areas, obtaining reliable SMC estimations is still challenging, because of the high variability in topography, soil and vegetation properties. In the last few years, there has been an increasing interest in the estimation of surface SMC at local scales. On the one hand, low cost wireless sensor networks provide high-resolution SMC time series. On the other hand, active remote sensing microwave techniques, such as Synthetic Aperture Radars (SARs), show promising results (Bertoldi et al. 2014). As these data provide continuous coverage of large spatial extents with high spatial resolution (10-20 m), they are particularly in demand for mountain areas. However, there are still limitations related to the fact that the SAR signal can penetrate only a few centimeters in the soil. Moreover, the signal is strongly influenced by vegetation, surface roughness and topography. In this contribution, we analyse the spatial and temporal dynamics of surface and root-zone SMC (2.5 - 5 - 25 cm depth) of alpine meadows and pastures in the Long Term Ecological Research (LTER) Area Mazia Valley (South Tyrol - Italy) with different techniques: (I) a network of 18 stations; (II) field campaigns with mobile ground sensors; (III) 20-m resolution RADARSAT2 SAR images; (IV) numerical simulations using the GEOtop hydrological model (Rigon et al

  1. Remote Sensing Analysis Techniques and Sensor Requirements to Support the Mapping of Illegal Domestic Waste Disposal Sites in Queensland, Australia

    Directory of Open Access Journals (Sweden)

    Katharine Glanville

    2015-10-01

    Full Text Available Illegal disposal of waste is a significant management issue for contemporary governments with waste posing an economic, social, and environmental risk. An improved understanding of the distribution of illegal waste disposal sites is critical to enhance the cost-effectiveness and efficiency of waste management efforts. Remotely sensed data has the potential to address this knowledge gap. However, the literature regarding the use of remote sensing to map illegal waste disposal sites is incomplete. This paper aims to analyze existing remote sensing methods and sensors used to monitor and map illegal waste disposal sites. The purpose of this paper is to support the evaluation of existing remote sensing methods for mapping illegal domestic waste sites in Queensland, Australia. Recent advances in technology and the acquisition of very high-resolution remote sensing imagery provide an important opportunity to (1 revisit established analysis techniques for identifying illegal waste disposal sites, (2 examine the applicability of different remote sensors for illegal waste disposal detection, and (3 identify opportunities for future research to increase the accuracy of any illegal waste disposal mapping products.

  2. Simulation Techniques and Prosthetic Approach Towards Biologically Efficient Artificial Sense Organs- An Overview

    OpenAIRE

    Neogi, Biswarup; Ghosal, Soumya; Mukherjee, Soumyajit; Das, Achintya; Tibarewala, D. N.

    2011-01-01

    An overview of the applications of control theory to prosthetic sense organs including the senses of vision, taste and odor is being presented in this paper. Simulation aspect nowadays has been the centre of research in the field of prosthesis. There have been various successful applications of prosthetic organs, in case of natural biological organs dis-functioning patients. Simulation aspects and control modeling are indispensible for knowing system performance, and to generate an original a...

  3. Application of remote sensing techniques to study aerosol water vapour uptake in a real atmosphere

    Science.gov (United States)

    Fernández, A. J.; Molero, F.; Becerril-Valle, M.; Coz, E.; Salvador, P.; Artíñano, B.; Pujadas, M.

    2018-04-01

    In this work, a study of several observations of aerosol water uptake in a real (non-controlled) atmosphere, registered by remote sensing techniques, are presented. In particular, three events were identified within the Atmospheric Boundary Layer (ABL) and other two events were detected in the free troposphere (beyond the top of the ABL). Then, aerosol optical properties were measured at different relative humidity (RH) conditions by means of a multi-wavelength (MW) Raman lidar located at CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Research Centre for Energy, Environment and Technology) facilities in Madrid (Spain). Additionally, aerosol optical and microphysical properties provided by automatic sun and sky scanning spectral radiometers (CIMEL CE-318) and a meteorological analysis complement the study. However, a detailed analysis only could be carried out for the cases observed within the ABL since well-mixed atmospheric layers are required to properly characterize these processes. This characterization of aerosol water uptake is based on the curve described by the backscatter coefficient at 532 nm as a function of RH which allows deriving the enhancement factor. Thus, the Hänel parameterization is utilized, and the results obtained are in the range of values reported in previous studies, which shows the suitability of this approach to study such hygroscopic processes. Furthermore, the anti-correlated pattern observed on backscatter-related Ångström exponent (532/355 nm) and RH indicates plausible signs of aerosol hygroscopic growth. According to the meteorological analysis performed, we attribute such hygroscopic behaviour to marine aerosols which are advected from the Atlantic Ocean to the low troposphere in Madrid. We have also observed an interesting response of aerosols to RH at certain levels which it is suggested to be due to a hysteresis process. The events registered in the free troposphere, which deal with volcano

  4. Fast magnetic resonance imaging of the knee using a parallel acquisition technique (mSENSE): a prospective performance evaluation

    International Nuclear Information System (INIS)

    Kreitner, K.F.; Romaneehsen, Bernd; Oberholzer, Katja; Dueber, Christoph; Krummenauer, Frank; Mueller, L.P.

    2006-01-01

    The performance of a magnetic resonance (MR) imaging strategy that uses multiple receiver coil elements and integrated parallel imaging techniques (iPAT) in traumatic and degenerative disorders of the knee and to compare this technique with a standard MR imaging protocol was evaluated. Ninety patients with suspected internal derangements of the knee joint prospectively underwent MR imaging at 1.5 T. For signal detection, a 6-channel array coil was used. All patients were investigated with a standard imaging protocol consisting of different turbo spin-echo sequences proton density (PD), T 2 -weighted turbo spin echo (TSE) with and without fat suppression in three imaging planes. All sequences were repeated with an integrated parallel acquisition technique (iPAT) using the modified sensitivity encoding (mSENSE) algorithm with an acceleration factor of 2. Two radiologists independently evaluated and scored all images with regard to overall image quality, artefacts and pathologic findings. Agreement of the parallel ratings between readers and imaging techniques, respectively, was evaluated by means of pairwise kappa coefficients that were stratified for the area of evaluation. Agreement between the parallel readers for both the iPAT imaging and the conventional technique, respectively, as well as between imaging techniques was found encouraging with inter-observer kappa values ranging between 0.78 and 0.98 for both imaging techniques, and the inter-method kappa values ranging between 0.88 and 1.00 for both clinical readers. All pathological findings (e.g. occult fractures, meniscal and cruciate ligament tears, torn and interpositioned Hoffa's cleft, cartilage damage) were detected by both techniques with comparable performance. The use of iPAT lead to a 48% reduction of acquisition time compared with standard technique. Parallel imaging using mSENSE proved to be an efficient and economic tool for fast musculoskeletal MR imaging of the knee joint with comparable

  5. Development of satellite remote sensing techniques as an economic tool for forestry industry

    Science.gov (United States)

    Sader, Steven A.; Jadkowski, Mark A.

    1989-01-01

    A cooperative commercial development project designed to focus on cost-effective and practical applications of satellite remote sensing in forest management is discussed. The project, initiated in September, 1988 is being executed in three phases: (1) development of a forest resource inventory and geographic information system (GIS) updating systems; (2) testing and evaluation of remote-sensing products against forest industry specifications; and (3) integration of remote-sensing services and products in an operational setting. An advisory group represented by eleven major forest-product companies will provide direct involvement of the target market. The advisory group will focus on the following questions: Does the technology work for them? How can it be packaged to provide the needed forest-management information? Can the products and information be provided in a cost-effective manner?

  6. Use of remote sensing techniques for inventorying and planning utilization of land resources in South Dakota

    Science.gov (United States)

    Myers, V. I.; Frazee, C. J.; Rusche, A. E.; Moore, D. G.; Nelson, G. D.; Westin, F. C.

    1974-01-01

    The basic procedures for interpreting remote sensing imagery to rapidly develop general soils and land use inventories were developed and utilized in Pennington County, South Dakota. These procedures and remote sensing data products were illustrated and explained to many user groups, some of whom are interested in obtaining similar data. The general soils data were integrated with land soils data supplied by the county director of equalization to prepare a land value map. A computer print-out of this map indicating a land value for each quarter section is being used in tax reappraisal of Pennington County. The land use data provided the land use planners with the present use of land in Pennington County. Additional uses of remote sensing applications are also discussed including tornado damage assessment, hail damage evaluation, and presentation of soil and land value information on base maps assembled from ERTS-1 imagery.

  7. A fast combinatorial enhancement technique for earthquake damage identification based on remote sensing image

    Science.gov (United States)

    Dou, Aixia; Wang, Xiaoqing; Ding, Xiang; Du, Zecheng

    2010-11-01

    On the basis of the study on the enhancement methods of remote sensing images obtained after several earthquakes, the paper designed a new and optimized image enhancement model which was implemented by combining different single methods. The patterns of elementary model units and combined types of model were defined. Based on the enhancement model database, the algorithm of combinatorial model was brought out via C++ programming. The combined model was tested by processing the aerial remote sensing images obtained after 1976 Tangshan earthquake. It was proved that the definition and implementation of combined enhancement model can efficiently improve the ability and flexibility of image enhancement algorithm.

  8. Geological and economic factors governing the use of remote sensing techniques in uranium exploration

    International Nuclear Information System (INIS)

    Waeber, L.; Kaiser, D.

    1984-01-01

    Remote sensing is an important method to be used in the first stage of an exploration program, depending on the type of uranium deposits. The benefit of the method is: coverage of large areas; quick selection of prospective areas; shortening of exploration time in the first stage; reduction of exploration risk and relatively low price. It is obvious that remote sensing is an inexpensive and time saving method for target definition. It will never substitute the other methods, but in combination with them it will have an essential place within the exploration scheme. (orig./PW)

  9. Structural, magnetic and gas sensing properties of nanosized copper ferrite powder synthesized by sol gel combustion technique

    Energy Technology Data Exchange (ETDEWEB)

    Sumangala, T.P.; Mahender, C. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Barnabe, A. [Université de Toulouse, Institut Carnot CIRIMAT – UMR CNRS-UPS-INP 5085, Université Paul Sabatier, Toulouse 31062 (France); Venkataramani, N. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Prasad, Shiva, E-mail: shiva.pd@gmail.com [Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India)

    2016-11-15

    Stoichiometric nano sized copper ferrite particles were synthesized by sol gel combustion technique. They were then calcined at various temperatures ranging from 300–800 °C and were either furnace cooled or quenched in liquid nitrogen. A high magnetisation value of 48.2 emu/g signifying the cubic phase of copper ferrite, was obtained for sample quenched to liquid nitrogen temperature from 800 °C. The ethanol sensing response of the samples was studied and a maximum of 86% response was obtained for 500 ppm ethanol in the case of a furnace cooled sample calcined at 800 °C. The chemical sensing is seen to be correlated with the c/a ratio and is best in the case of tetragonal copper ferrite. - Highlights: • One of the first study on ethanol sensing of cubic copper ferrite. • In-situ High temperature XRD done shows phase transition from cubic to tetragonal. • A non-monotonic increase in magnetization was seen with calcination temperature. • A response of 86% was obtained towards 500 ppm ethanol. • Tried to correlate sensing response and ion content in spinel structure.

  10. Stomatal conductance, canopy temperature, and leaf area index estimation using remote sensing and OBIA techniques

    Science.gov (United States)

    S. Panda; D.M. Amatya; G. Hoogenboom

    2014-01-01

    Remotely sensed images including LANDSAT, SPOT, NAIP orthoimagery, and LiDAR and relevant processing tools can be used to predict plant stomatal conductance (gs), leaf area index (LAI), and canopy temperature, vegetation density, albedo, and soil moisture using vegetation indices like normalized difference vegetation index (NDVI) or soil adjusted...

  11. Remote sensing techniques to assess active fire characteristics and post-fire effects

    Science.gov (United States)

    Leigh B. Lentile; Zachary A. Holden; Alistair M. S. Smith; Michael J. Falkowski; Andrew T. Hudak; Penelope Morgan; Sarah A. Lewis; Paul E. Gessler; Nate C. Benson

    2006-01-01

    Space and airborne sensors have been used to map area burned, assess characteristics of active fires, and characterize post-fire ecological effects. Confusion about fire intensity, fire severity, burn severity, and related terms can result in the potential misuse of the inferred information by land managers and remote sensing practitioners who require unambiguous...

  12. Geospatial Image Stream Processing: Models, techniques, and applications in remote sensing change detection

    Science.gov (United States)

    Rueda-Velasquez, Carlos Alberto

    Detection of changes in environmental phenomena using remotely sensed data is a major requirement in the Earth sciences, especially in natural disaster related scenarios where real-time detection plays a crucial role in the saving of human lives and the preservation of natural resources. Although various approaches formulated to model multidimensional data can in principle be applied to the inherent complexity of remotely sensed geospatial data, there are still challenging peculiarities that demand a precise characterization in the context of change detection, particularly in scenarios of fast changes. In the same vein, geospatial image streams do not fit appropriately in the standard Data Stream Management System (DSMS) approach because these systems mainly deal with tuple-based streams. Recognizing the necessity for a systematic effort to address the above issues, the work presented in this thesis is a concrete step toward the foundation and construction of an integrated Geospatial Image Stream Processing framework, GISP. First, we present a data and metadata model for remotely sensed image streams. We introduce a precise characterization of images and image streams in the context of remotely sensed geospatial data. On this foundation, we define spatially-aware temporal operators with a consistent semantics for change analysis tasks. We address the change detection problem in settings where multiple image stream sources are available, and thus we introduce an architectural design for the processing of geospatial image streams from multiple sources. With the aim of targeting collaborative scientific environments, we construct a realization of our architecture based on Kepler, a robust and widely used scientific workflow management system, as the underlying computational support; and open data and Web interface standards, as a means to facilitate the interoperability of GISP instances with other processing infrastructures and client applications. We demonstrate our

  13. Supervised Classification of Agricultural Land Cover Using a Modified k-NN Technique (MNN and Landsat Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    Karsten Schulz

    2009-11-01

    Full Text Available Nearest neighbor techniques are commonly used in remote sensing, pattern recognition and statistics to classify objects into a predefined number of categories based on a given set of predictors. These techniques are especially useful for highly nonlinear relationship between the variables. In most studies the distance measure is adopted a priori. In contrast we propose a general procedure to find an adaptive metric that combines a local variance reducing technique and a linear embedding of the observation space into an appropriate Euclidean space. To illustrate the application of this technique, two agricultural land cover classifications using mono-temporal and multi-temporal Landsat scenes are presented. The results of the study, compared with standard approaches used in remote sensing such as maximum likelihood (ML or k-Nearest Neighbor (k-NN indicate substantial improvement with regard to the overall accuracy and the cardinality of the calibration data set. Also, using MNN in a soft/fuzzy classification framework demonstrated to be a very useful tool in order to derive critical areas that need some further attention and investment concerning additional calibration data.

  14. Research on corrosion detection for steel reinforced concrete structures using the fiber optical white light interferometer sensing technique

    International Nuclear Information System (INIS)

    Zhao, Xuefeng; Cui, Yanjun; Kong, Xianglong; Wei, Heming; Zhang, Pinglei; Sun, Changsen

    2013-01-01

    In this paper, a novel kind of steel rebar corrosion monitoring technique for steel reinforced concrete structures is proposed, designed, and tested. The technique is based on the fiber optical white light interferometer (WLI) sensing technique. Firstly, a feasibility test was carried out using an equal-strength beam for comparison of strain sensing ability between the WLI and a fiber Bragg grating (FBG). The comparison results showed that the sensitivity of the WLI is sufficient for corrosion expansion strain monitoring. Then, two WLI corrosion sensors (WLI-CSs) were designed, fabricated, and embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion. Their performance was studied in an accelerated electrochemical corrosion test. Experimental results show that expansion strain along the fiber optical coil winding area can be detected and measured accurately by the proposed sensor. The advantages of the proposed monitoring technique allow for quantitative corrosion expansion monitoring to be executed in real time for reinforced concrete structures and with low cost. (paper)

  15. Remote Sensing

    CERN Document Server

    Khorram, Siamak; Koch, Frank H; van der Wiele, Cynthia F

    2012-01-01

    Remote Sensing provides information on how remote sensing relates to the natural resources inventory, management, and monitoring, as well as environmental concerns. It explains the role of this new technology in current global challenges. "Remote Sensing" will discuss remotely sensed data application payloads and platforms, along with the methodologies involving image processing techniques as applied to remotely sensed data. This title provides information on image classification techniques and image registration, data integration, and data fusion techniques. How this technology applies to natural resources and environmental concerns will also be discussed.

  16. Synchronization of Well Log Data and Geophysical Data with Remote Sensing Technique to Develop the Hydrocarbon System of Bengal Basin

    Science.gov (United States)

    Kesh, S.; Samadder, P. K.

    2012-12-01

    Remote sensing along with more conventional exploration techniques such as geophysics and reconnaissance field mapping can help to establish regional geologic relationships, to extract major structural features and to pinpoint anomalous patterns. Many well have been drilled in Bengal basin still no commercially viable reserves have been discovered. Geophysical well logging is used in virtually every oil well. It is the primary means by which we characterize the subsurface in search of hydrocarbons. Oil and gas exploration activities for large areas require ground gravity surveys to facilitate detailed geological interpretations for subsurface features integrating geological cross-sections with the sub-surface structural trends leads to the identification of prospect areas. Remote sensing, geological and geophysical data integration provide accurate geometric shapes of the basins. Bengal basin has a sedimentary fill of 10-15 km, is the northernmost of the east coast basins of India In the first phase Remote sensing satellite sensors help in identifying surface anomaly which indicates the presence of hydrocarbon reservoirs providing regional geological settings of petroleferous basins. It provides accurate and visual data for directly determining geometric shapes of basin. It assists in the selection of exploration regions by defining the existence of sedimentary basin. Remote sensing methods can generate a wealth of information useful in determining the value of exploratory prospecting. In the second phase Well Log data provide relative subsurface information for oil and gas exploration. Remote sensing data are merged with other available information such as Aeromagnetic, gravity, geochemical surveys and 2D seismic surveys. The result of this phase is to estimate the outcome of oil discovery probabilities for locating oil prospects

  17. Utilization of combined remote sensing techniques to detect environmental variables influencing malaria vector densities in rural West Africa

    Directory of Open Access Journals (Sweden)

    Dambach Peter

    2012-03-01

    Full Text Available Abstract Introduction The use of remote sensing has found its way into the field of epidemiology within the last decades. With the increased sensor resolution of recent and future satellites new possibilities emerge for high resolution risk modeling and risk mapping. Methods A SPOT 5 satellite image, taken during the rainy season 2009 was used for calculating indices by combining the image's spectral bands. Besides the widely used Normalized Difference Vegetation Index (NDVI other indices were tested for significant correlation against field observations. Multiple steps, including the detection of surface water, its breeding appropriateness for Anopheles and modeling of vector imagines abundance, were performed. Data collection on larvae, adult vectors and geographic parameters in the field, was amended by using remote sensing techniques to gather data on altitude (Digital Elevation Model = DEM, precipitation (Tropical Rainfall Measurement Mission = TRMM, land surface temperatures (LST. Results The DEM derived altitude as well as indices calculations combining the satellite's spectral bands (NDTI = Normalized Difference Turbidity Index, NDWI Mac Feeters = Normalized Difference Water Index turned out to be reliable indicators for surface water in the local geographic setting. While Anopheles larvae abundance in habitats is driven by multiple, interconnected factors - amongst which the NDVI - and precipitation events, the presence of vector imagines was found to be correlated negatively to remotely sensed LST and positively to the cumulated amount of rainfall in the preceding 15 days and to the Normalized Difference Pond Index (NDPI within the 500 m buffer zone around capture points. Conclusions Remotely sensed geographical and meteorological factors, including precipitations, temperature, as well as vegetation, humidity and land cover indicators could be used as explanatory variables for surface water presence, larval development and imagines

  18. Integrating remote sensing, geographic information systems and global positioning system techniques with hydrological modeling

    Science.gov (United States)

    Thakur, Jay Krishna; Singh, Sudhir Kumar; Ekanthalu, Vicky Shettigondahalli

    2017-07-01

    Integration of remote sensing (RS), geographic information systems (GIS) and global positioning system (GPS) are emerging research areas in the field of groundwater hydrology, resource management, environmental monitoring and during emergency response. Recent advancements in the fields of RS, GIS, GPS and higher level of computation will help in providing and handling a range of data simultaneously in a time- and cost-efficient manner. This review paper deals with hydrological modeling, uses of remote sensing and GIS in hydrological modeling, models of integrations and their need and in last the conclusion. After dealing with these issues conceptually and technically, we can develop better methods and novel approaches to handle large data sets and in a better way to communicate information related with rapidly decreasing societal resources, i.e. groundwater.

  19. A technique of the structural-tectonic elevations prediction using Earth remote sensing data

    Science.gov (United States)

    Tishaev, I. V.; Zatserkovnyi, V. I.; Yagorlytska, K. P.

    2016-12-01

    We consider an approach of using methods of Earth remote sensing data (RSD) classification for solving tasks of exploration geology and geophysics. Information obtained from the remote sensing data gives a possibility to clarify the structure of investigated areas and to determine neotectonic elevations, which act as certain indicators of promising areas with hydra-carbons contents. Reasonability of using such methods of RSD classification is based on connection between deep structure of surface resources (structural-tectonic setting) with current landscape, character of hydrologic network, geo-morphological, geo-botanical and other features. The advantage of Bayes classificator is not only in determination of object belonging to certain class, but also in calculation of probability of such belonging. For the formulated task this lets to forecast a presence of structural-tectonic elevations, which are potentially promising areas for hydra-carbons contents, using a formali! zed quantitative criterion. contents.

  20. Long-term monitoring on environmental disasters using multi-source remote sensing technique

    Science.gov (United States)

    Kuo, Y. C.; Chen, C. F.

    2017-12-01

    Environmental disasters are extreme events within the earth's system that cause deaths and injuries to humans, as well as causing damages and losses of valuable assets, such as buildings, communication systems, farmlands, forest and etc. In disaster management, a large amount of multi-temporal spatial data is required. Multi-source remote sensing data with different spatial, spectral and temporal resolutions is widely applied on environmental disaster monitoring. With multi-source and multi-temporal high resolution images, we conduct rapid, systematic and seriate observations regarding to economic damages and environmental disasters on earth. It is based on three monitoring platforms: remote sensing, UAS (Unmanned Aircraft Systems) and ground investigation. The advantages of using UAS technology include great mobility and availability in real-time rapid and more flexible weather conditions. The system can produce long-term spatial distribution information from environmental disasters, obtaining high-resolution remote sensing data and field verification data in key monitoring areas. It also supports the prevention and control on ocean pollutions, illegally disposed wastes and pine pests in different scales. Meanwhile, digital photogrammetry can be applied on the camera inside and outside the position parameters to produce Digital Surface Model (DSM) data. The latest terrain environment information is simulated by using DSM data, and can be used as references in disaster recovery in the future.

  1. The Integration of Remote-Sensing Detection Techniques into the Operational Decision-Making of Marine Oil Spills

    Science.gov (United States)

    Garron, J.; Trainor, S.

    2017-12-01

    Remotely-sensed data collected from satellites, airplanes and unmanned aerial systems can be used in marine oil spills to identify the overall footprint, estimate fate and transport, and to identify resources at risk. Mandates for the use of best available technology exists for addressing marine oil spills under the jurisdiction of the USCG (33 CFR 155.1050), though clear pathways to familiarization of these technologies during a marine oil spill, or more importantly, between marine oil spills, does not. Similarly, remote-sensing scientists continue to experiment with highly tuned oil detection, fate and transport techniques that can benefit decision-making during a marine oil spill response, but the process of translating these prototypical tools to operational information remains undefined, leading most researchers to describe the "potential" of these new tools in an operational setting rather than their actual use, and decision-makers relying on traditional field observational methods. Arctic marine oil spills are no different in their mandates and the remote-sensing research undertaken, but are unique via the dark, cold, remote, infrastructure-free environment in which they can occur. These conditions increase the reliance of decision-makers in an Arctic oil spill on remotely-sensed data and tools for their manipulation. In the absence of another large-scale oil spill in the US, and limited literature on the subject, this study was undertaken to understand how remotely-sensed data and tools are being used in the Incident Command System of a marine oil spill now, with an emphasis on Arctic implementation. Interviews, oil spill scenario/drill observations and marine oil spill after action reports were collected and analyzed to determine the current state of remote-sensing data use for decision-making during a marine oil spill, and to define a set of recommendations for the process of integrating new remote-sensing tools and information in future oil spill

  2. Realizing parameterless automatic classification of remote sensing imagery using ontology engineering and cyberinfrastructure techniques

    Science.gov (United States)

    Sun, Ziheng; Fang, Hui; Di, Liping; Yue, Peng

    2016-09-01

    It was an untouchable dream for remote sensing experts to realize total automatic image classification without inputting any parameter values. Experts usually spend hours and hours on tuning the input parameters of classification algorithms in order to obtain the best results. With the rapid development of knowledge engineering and cyberinfrastructure, a lot of data processing and knowledge reasoning capabilities become online accessible, shareable and interoperable. Based on these recent improvements, this paper presents an idea of parameterless automatic classification which only requires an image and automatically outputs a labeled vector. No parameters and operations are needed from endpoint consumers. An approach is proposed to realize the idea. It adopts an ontology database to store the experiences of tuning values for classifiers. A sample database is used to record training samples of image segments. Geoprocessing Web services are used as functionality blocks to finish basic classification steps. Workflow technology is involved to turn the overall image classification into a total automatic process. A Web-based prototypical system named PACS (Parameterless Automatic Classification System) is implemented. A number of images are fed into the system for evaluation purposes. The results show that the approach could automatically classify remote sensing images and have a fairly good average accuracy. It is indicated that the classified results will be more accurate if the two databases have higher quality. Once the experiences and samples in the databases are accumulated as many as an expert has, the approach should be able to get the results with similar quality to that a human expert can get. Since the approach is total automatic and parameterless, it can not only relieve remote sensing workers from the heavy and time-consuming parameter tuning work, but also significantly shorten the waiting time for consumers and facilitate them to engage in image

  3. Validation of satellite data through the remote sensing techniques and the inclusion of them into agricultural education pilot programs

    Science.gov (United States)

    Papadavid, Georgios; Kountios, Georgios; Bournaris, T.; Michailidis, Anastasios; Hadjimitsis, Diofantos G.

    2016-08-01

    Nowadays, the remote sensing techniques have a significant role in all the fields of agricultural extensions as well as agricultural economics and education but they are used more specifically in hydrology. The aim of this paper is to demonstrate the use of field spectroscopy for validation of the satellite data and how combination of remote sensing techniques and field spectroscopy can have more accurate results for irrigation purposes. For this reason vegetation indices are used which are mostly empirical equations describing vegetation parameters during the lifecycle of the crops. These numbers are generated by some combination of remote sensing bands and may have some relationship to the amount of vegetation in a given image pixel. Due to the fact that most of the commonly used vegetation indices are only concerned with red-near-infrared spectrum and can be divided to perpendicular and ratio based indices the specific goal of the research is to illustrate the effect of the atmosphere to those indices, in both categories. In this frame field spectroscopy is employed in order to derive the spectral signatures of different crops in red and infrared spectrum after a campaign of ground measurements. The main indices have been calculated using satellite images taken at interval dates during the whole lifecycle of the crops by using a GER 1500 spectro-radiomete. These indices was compared to those extracted from satellite images after applying an atmospheric correction algorithm -darkest pixel- to the satellite images at a pre-processing level so as the indices would be in comparable form to those of the ground measurements. Furthermore, there has been a research made concerning the perspectives of the inclusion of the above mentioned remote satellite techniques to agricultural education pilot programs.

  4. Study on Gas Sensing Performance of In2O3 Thick Film Resistors Prepared by Screen Printing Technique

    Directory of Open Access Journals (Sweden)

    S. C. KULKARNI

    2011-02-01

    Full Text Available Indium Oxide (In2O3 thick films were prepared on alumina substrate by using standard screen printing technique. These films were dried and fired at temperatures between 750 0C to 950 0C for two hours in air atmosphere. The compositional, morphological and structural properties of In2O3 films were performed by Energy Dispersive Spectroscopy (EDX, XRD, and Scanning electron Microscopy respectively. We explore the various gases to study sensing performance of In2O3 thick films. The maximum response was reported to film fired at 750 0C for H2S gas at 150 0C operating temperature.

  5. Preparation of nanostructured ZrO2 thin films by using spray pyrolysis technique for gas sensing application

    International Nuclear Information System (INIS)

    Deshmukh, S.B.; Bari, R.H.; Jain, G.H.

    2013-01-01

    In present work the nano-structured pure ZrO 2 thin films were prepared using spray pyrolysis techniques. The aqueous solution of ZrCl 4 , was used as a precursor with flow rate controlled 5 mI/min. The films were synthesized on glass substrate between temperature 250-400℃ and subjected to different analytical characterization like SEM, XRD, TEM, FTIR, UV, TGA-DTA/DSC. The gas sensing performances of various gases were tested in different operating temperature range. The sensitivity, selectivity, response and recovery time for H 2 S gas was discussed. Also nano structured grain size discussed. (author)

  6. A brief review of remote sensing data and techniques for wetlands identification

    CSIR Research Space (South Africa)

    Ritchie, M

    2015-09-01

    Full Text Available of geoprocessing and simulation modeling to estimate impacts of sea level rise on the northeast coast of Florida, Photogrammetric Engineering and Remote Sensing, 58, 1579-1586. McEwan, R., Kosco, W. and Carter, V., 1976, Coastal Wetland Mapping..., it is estimated that about 33 230 acres of wetland were lost between 1998-2004 [Klemas 2011], with a majority of this loss being due to coastal salt marsh being converted to open saltwater [Klemas 2011], suggesting that rising sea levels could be problematic...

  7. A technique for position sensing and improved momentum evaluation of microparticle impacts in space.

    Science.gov (United States)

    Mcdonnell, J. A. M.; Abellanas, C.

    1972-01-01

    The design of a three element piezoelectric microparticle impact sensing diaphragm is described which is sensitive to the detection of momentum propagated by the bending wave. The design achieves a sensitivity of .03 microdyn/sec and optimizes the detection of the direct-path pulse from impact relative to secondary reflections and interference from discontinuities. Measurement of the relative arrival times and the maximum amplitudes of the outputs from the three piezoelectric sensors leads to the determination of the impact position and the normally resolved impact momentum exchange. Coincidence of the signals and a partial redundancy of data leads to a very high noise discrimination.

  8. Materials and Techniques for Implantable Nutrient Sensing Using Flexible Sensors Integrated with Metal-Organic Frameworks.

    Science.gov (United States)

    Ling, Wei; Liew, Guoguang; Li, Ya; Hao, Yafeng; Pan, Huizhuo; Wang, Hanjie; Ning, Baoan; Xu, Hang; Huang, Xian

    2018-06-01

    The combination of novel materials with flexible electronic technology may yield new concepts of flexible electronic devices that effectively detect various biological chemicals to facilitate understanding of biological processes and conduct health monitoring. This paper demonstrates single- or multichannel implantable flexible sensors that are surface modified with conductive metal-organic frameworks (MOFs) such as copper-MOF and cobalt-MOF with large surface area, high porosity, and tunable catalysis capability. The sensors can monitor important nutriments such as ascorbicacid, glycine, l-tryptophan (l-Trp), and glucose with detection resolutions of 14.97, 0.71, 4.14, and 54.60 × 10 -6 m, respectively. In addition, they offer sensing capability even under extreme deformation and complex surrounding environment with continuous monitoring capability for 20 d due to minimized use of biological active chemicals. Experiments using live cells and animals indicate that the MOF-modified sensors are biologically safe to cells, and can detect l-Trp in blood and interstitial fluid. This work represents the first effort in integrating MOFs with flexible sensors to achieve highly specific and sensitive implantable electrochemical detection and may inspire appearance of more flexible electronic devices with enhanced capability in sensing, energy storage, and catalysis using various properties of MOFs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Advanced Sensing and Control Techniques to Facilitate Semi-Autonomous Decommissioning of Hazardous Sites - Final Report

    International Nuclear Information System (INIS)

    Schalkoff, R.J.

    2000-01-01

    This report summarizes work after 4 years of a 3-year project (no-cost extension of the above-referenced project for a period of 12 months granted). The fourth generation of a vision sensing head for geometric and photometric scene sensing has been built and tested. Estimation algorithms for automatic sensor calibration updating under robot motion have been developed and tested. We have modified the geometry extraction component of the rendering pipeline. Laser scanning now produces highly accurate points on segmented curves. These point-curves are input to a NURBS (non-uniform rational B-spline) skinning procedure to produce interpolating surface segments. The NURBS formulation includes quadrics as a sub-class, thus this formulation allows much greater flexibility without the attendant instability of generating an entire quadric surface. We have also implemented correction for diffuse lighting and specular effects. The QRobot joint level control was extended to a complete semi-autonomous robot control system for D and D operations. The imaging and VR subsystems have been integrated and tested

  10. Remote sensing of key grassland nutrients using hyperspectral techniques in KwaZulu-Natal, South Africa

    Science.gov (United States)

    Singh, Leeth; Mutanga, Onisimo; Mafongoya, Paramu; Peerbhay, Kabir

    2017-07-01

    The concentration of forage fiber content is critical in explaining the palatability of forage quality for livestock grazers in tropical grasslands. Traditional methods of determining forage fiber content are usually time consuming, costly, and require specialized laboratory analysis. With the potential of remote sensing technologies, determination of key fiber attributes can be made more accurately. This study aims to determine the effectiveness of known absorption wavelengths for detecting forage fiber biochemicals, neutral detergent fiber, acid detergent fiber, and lignin using hyperspectral data. Hyperspectral reflectance spectral measurements (350 to 2500 nm) of grass were collected and implemented within the random forest (RF) ensemble. Results show successful correlations between the known absorption features and the biochemicals with coefficients of determination (R2) ranging from 0.57 to 0.81 and root mean square errors ranging from 6.97 to 3.03 g/kg. In comparison, using the entire dataset, the study identified additional wavelengths for detecting fiber biochemicals, which contributes to the accurate determination of forage quality in a grassland environment. Overall, the results showed that hyperspectral remote sensing in conjunction with the competent RF ensemble could discriminate each key biochemical evaluated. This study shows the potential to upscale the methodology to a space-borne multispectral platform with similar spectral configurations for an accurate and cost effective mapping analysis of forage quality.

  11. Advanced Sensing and Control Techniques to Facilitate Semi-Autonomous Decommissioning of Hazardous Sites - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Schalkoff, R.J.

    2000-12-01

    This report summarizes work after 4 years of a 3-year project (no-cost extension of the above-referenced project for a period of 12 months granted). The fourth generation of a vision sensing head for geometric and photometric scene sensing has been built and tested. Estimation algorithms for automatic sensor calibration updating under robot motion have been developed and tested. We have modified the geometry extraction component of the rendering pipeline. Laser scanning now produces highly accurate points on segmented curves. These point-curves are input to a NURBS (non-uniform rational B-spline) skinning procedure to produce interpolating surface segments. The NURBS formulation includes quadrics as a sub-class, thus this formulation allows much greater flexibility without the attendant instability of generating an entire quadric surface. We have also implemented correction for diffuse lighting and specular effects. The QRobot joint level control was extended to a complete semi-autonomous robot control system for D and D operations. The imaging and VR subsystems have been integrated and tested.

  12. A Novel Technique for Time-Centric Analysis of Massive Remotely-Sensed Datasets

    Directory of Open Access Journals (Sweden)

    Glenn E. Grant

    2015-04-01

    Full Text Available Analyzing massive remotely-sensed datasets presents formidable challenges. The volume of satellite imagery collected often outpaces analytical capabilities, however thorough analyses of complete datasets may provide new insights into processes that would otherwise be unseen. In this study we present a novel, object-oriented approach to storing, retrieving, and analyzing large remotely-sensed datasets. The objective is to provide a new structure for scalable storage and rapid, Internet-based analysis of climatology data. The concept of a “data rod” is introduced, a conceptual data object that organizes time-series information into a temporally-oriented vertical column at any given location. To demonstrate one possible use, we ingest 25 years of Greenland imagery into a series of pure-object databases, then retrieve and analyze the data. The results provide a basis for evaluating the database performance and scientific analysis capabilities. The project succeeds in demonstrating the effectiveness of the prototype database architecture and analysis approach, not because new scientific information is discovered, but because quality control issues are revealed in the source data that had gone undetected for years.

  13. Photoacoustic Techniques for Trace Gas Sensing Based on Semiconductor Laser Sources

    Directory of Open Access Journals (Sweden)

    Vincenzo Spagnolo

    2009-12-01

    Full Text Available The paper provides an overview on the use of photoacoustic sensors based on semiconductor laser sources for the detection of trace gases. We review the results obtained using standard, differential and quartz enhanced photoacoustic techniques.

  14. Use of Geophysical and Remote Sensing Techniques During the Comprehensive Test Ban Treaty Organization's Integrated Field Exercise 2014

    Science.gov (United States)

    Labak, Peter; Sussman, Aviva; Rowlands, Aled; Chiappini, Massimo; Malich, Gregor; MacLeod, Gordon; Sankey, Peter; Sweeney, Jerry; Tuckwell, George

    2016-04-01

    The Integrated Field Exercise of 2014 (IFE14) was a field event held in the Hashemite Kingdom of Jordan (with concurrent activities in Austria) that tested the operational and technical capabilities of a Comprehensive Test Ban Treaty's (CTBT) on-site inspection (OSI). During an OSI, up to 40 inspectors search a 1000km2 inspection area for evidence of a nuclear explosion. Over 250 experts from ~50 countries were involved in IFE14 (the largest simulation of an OSI to date) and worked from a number of different directions, such as the Exercise Management and Control Teams to execute the scenario in which the exercise was played, to those participants performing as members of the Inspection Team (IT). One of the main objectives of IFE14 was to test Treaty allowed inspection techniques, including a number of geophysical and remote sensing methods. In order to develop a scenario in which the simulated exercise could be carried out, a number of physical features in the IFE14 inspection area were designed and engineered by the Scenario Task Force Group (STF) that the IT could detect by applying the geophysical and remote sensing inspection technologies, as well as other techniques allowed by the CTBT. For example, in preparation for IFE14, the STF modeled a seismic triggering event that was provided to the IT to prompt them to detect and localize aftershocks in the vicinity of a possible explosion. Similarly, the STF planted shallow targets such as borehole casings and pipes for detection by other geophysical methods. In addition, airborne technologies, which included multi-spectral imaging, were deployed such that the IT could identify freshly exposed surfaces, imported materials and other areas that had been subject to modification. This presentation will introduce the CTBT and OSI, explain the IFE14 in terms of goals specific to geophysical and remote sensing methods, and show how both the preparation for and execution of IFE14 meet those goals.

  15. A study of radionuclide dispersion by river systems, using GIS and remote sensing techniques

    International Nuclear Information System (INIS)

    Borghuis, Sander; Brown, Justin; Steenhuisen, Frits; Skorve, Johnny

    2000-01-01

    The Krasnoyarsk Mining and Chemical Combine in Zheleznogorsk, Russia, is situated on the banks of the Yenisey river. The combine consists of three RBMK-type graphite moderate reactors, a reprocessing plant for the production of weapons-grade plutonium and storage facilities for nuclear waste. Discharges of radionuclides into the Yenisey river were either part of normal operation procedures or caused by accidental releases (Strand et al., 1997). So far, little is known about the transport and fate of the radioactive contaminants in the areas downstream of the Krasnoyarsk CC that are influenced by the Yenisey river system. Aim is to comprehend the dispersion of radionuclides through the river system. Remotely sensed and field study information are combined in a geographical information system (GIS) to study the processes leading to the dispersion of sediment-bound radionuclides carried by the river system. Since the extent of the study area is several thousands or kilometres of river and adjacent flood plains, use is made of a record of remotely sensed (satellite) images that are handled by the GIS. Panchromatic, high resolution satellite images as well as multispectral Landsat MSS and TM images were compiled for the area of interest. The panchromatic images were taken in a period during which the facility was in operation (1960-1972) and obtained for intervals of circa 6 months. A time series of satellite images enables the identification of erosion and sedimentation zones. The behaviour and fate of particle-reactive radionuclides, e.g. 239,240 Pu and to large extent 137 Cs, will be closely related to the movement of sediment. With respect to the behaviour and fate of more conservative radionuclides as 90 Sr, information is required accounting for fractionation between the particulate and aqueous phases. Stereo images are used to comprehend the geomorphology of the Yenisey river systems, focused on classification of sedimentary deposits. Landsat MSS and TM with five

  16. Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques

    Directory of Open Access Journals (Sweden)

    N.S. Magesh

    2012-03-01

    Full Text Available Integration of remote sensing data and the geographical information system (GIS for the exploration of groundwater resources has become a breakthrough in the field of groundwater research, which assists in assessing, monitoring, and conserving groundwater resources. In the present paper, various groundwater potential zones for the assessment of groundwater availability in Theni district have been delineated using remote sensing and GIS techniques. Survey of India toposheets and IRS-1C satellite imageries are used to prepare various thematic layers viz. lithology, slope, land-use, lineament, drainage, soil, and rainfall were transformed to raster data using feature to raster converter tool in ArcGIS. The raster maps of these factors are allocated a fixed score and weight computed from multi influencing factor (MIF technique. Moreover, each weighted thematic layer is statistically computed to get the groundwater potential zones. The groundwater potential zones thus obtained were divided into four categories, viz., very poor, poor, good, and very good zones. The result depicts the groundwater potential zones in the study area and found to be helpful in better planning and management of groundwater resources.

  17. Curcumin based optical sensing of fluoride in organo-aqueous media using irradiation technique

    Science.gov (United States)

    Venkataraj, Roopa; Radhakrishnan, P.; Kailasnath, M.

    2017-06-01

    The present work describes the degradation of natural dye Curcumin in organic-aqueous media upon irradiation by a multi-wavelength source of light like mercury lamp. The presence of anions in the solution leads to degradation of Curcumin and this degradation is especially enhanced in the case of fluoride ion. The degradation of Curcumin is investigated by studying the change in its absorption and fluorescence characteristics in organoaqueous solution upon irradiation. A broad detection range of fluoride ranging from 2.3×10-6-2.22×10-3 M points to the potential of the method of visible light irradiation enabling aqueous based sensing of fluoride using Curcumin.

  18. Identification of glacial flood hazards in karakorum range using remote sensing technique and risk analysis

    International Nuclear Information System (INIS)

    Ashraf, A.; Roohi, R.; Naz, R.

    2011-01-01

    Glacial Lake Outburst Floods (GLOFs) are great hazard for the downstream communities in context of changing climatic conditions in the glaciated region of Pakistan. The remote sensing data of Landsat ETM+ was utilized for the identification of glacial lakes susceptible to posing GLOF hazard in Karakoram Range. Overall, 887 glacial lakes are identified in different river-basins of Karakoram Range, out of which 16 lakes are characterized as potentially dangerous in terms of GLOF. The analysis of community's response to GLOF events of 2008 in the central Karakoram Range indicated gaps in coordination and capacity of the local communities to cope with such natural hazards. A regular monitoring of hot spots and potential GLOF lakes along with capacity- of local communities and institutions in coping future disaster situation is necessary, especially in the context of changing climatic conditions in Himalayan region. (author)

  19. ENVIRONMENTAL IMPACT ASSESSMENT OF LAND USE PLANING AROUND THE LEASED LIMESTONE MINE USING REMOTE SENSING TECHNIQUES

    Directory of Open Access Journals (Sweden)

    P. Ranade

    2007-01-01

    Full Text Available Mining activities and the waste products produced can have significant impact on the surrounding environment - ranging from localized surface and ground water contamination to the damaging effects of airborne pollutants on the regional ecosystem. The long term monitoring of environmental impacts requires a cost effective method to characterize land cover and land cover changes over time. As per the guidelines of Ministry of Environment and Forest, Govt. of India, it is mandatory to study and analyze the impacts of mining on its surroundings. The use of remote sensing technology to generate reliable land cover maps is a valuable asset to completing environmental assessments over mining affected areas. In this paper, a case study has been discussed to study the land use – land cover status around 10 Km radius of open cast limestone mine area and the subsequent impacts on environmental as well as social surroundings.

  20. Study on the techniques of valuation of ecosystem services based on remote sensing in Anxin County

    Science.gov (United States)

    Wang, Hongyan; Li, Zengyuan; Gao, Zhihai; Wang, Bengyu; Bai, Lina; Wu, Junjun; Sun, Bin; Wang, Zhibo

    2014-05-01

    The farmland ecosystem is an important component of terrestrial ecosystems and has a fundamental role in the human life. The wetland is an unique and versatile ecological system. It is important for rational development and sustainable utilization of farmland and wetland resources to study on the measurement of valuation of farmland and wetland ecosystem services. It also has important significance for improving productivity. With the rapid development of remote sensing technology, it has become a powerful tool for evaluation of the value of ecosystem services. The land cover types in Anxin County mainly was farmland and wetland, the indicator system for ecosystem services valuation was brought up based on the remote sensing data of high spatial resolution ratio(Landsat-5 TM data and SPOT-5 data), the technology system for measurement of ecosystem services value was established. The study results show that the total ecosystem services value in 2009 in Anxin was 4.216 billion yuan, and the unit area value was between 8489 yuan/hm2 and 329535 yuan/hm2. The value of natural resources, water conservation value in farmland ecosystem and eco-tourism value in wetland ecosystem were higher than the other, total of the three values reached 2.858 billion yuan, and the percentage of the total ecosystem services values in Anxin was 67.79%. Through the statistics in the nine towns and three villages of Anxin County, the juantou town has the highest services value, reached 0.736 billion yuan. Scientific and comprehensive evaluation of the ecosystem services can conducive to promoting the understanding of the importance of the ecosystem. The research results had significance to ensure the sustainable use of wetland resources and the guidance of ecological construction in Anxin County.

  1. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique.

    Science.gov (United States)

    Battista, L; Sciuto, S A; Scorza, A

    2013-03-01

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10(-4) m(3)∕s (18.0 l∕min) for the mono-directional sensor and a measurement range of ±3.00 × 10(-4) m(3)∕s (±18.0 l∕min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono

  2. A Fourier-based compressed sensing technique for accelerated CT image reconstruction using first-order methods

    International Nuclear Information System (INIS)

    Choi, Kihwan; Li, Ruijiang; Nam, Haewon; Xing, Lei

    2014-01-01

    As a solution to iterative CT image reconstruction, first-order methods are prominent for the large-scale capability and the fast convergence rate O(1/k 2 ). In practice, the CT system matrix with a large condition number may lead to slow convergence speed despite the theoretically promising upper bound. The aim of this study is to develop a Fourier-based scaling technique to enhance the convergence speed of first-order methods applied to CT image reconstruction. Instead of working in the projection domain, we transform the projection data and construct a data fidelity model in Fourier space. Inspired by the filtered backprojection formalism, the data are appropriately weighted in Fourier space. We formulate an optimization problem based on weighted least-squares in the Fourier space and total-variation (TV) regularization in image space for parallel-beam, fan-beam and cone-beam CT geometry. To achieve the maximum computational speed, the optimization problem is solved using a fast iterative shrinkage-thresholding algorithm with backtracking line search and GPU implementation of projection/backprojection. The performance of the proposed algorithm is demonstrated through a series of digital simulation and experimental phantom studies. The results are compared with the existing TV regularized techniques based on statistics-based weighted least-squares as well as basic algebraic reconstruction technique. The proposed Fourier-based compressed sensing (CS) method significantly improves both the image quality and the convergence rate compared to the existing CS techniques. (paper)

  3. A Fourier-based compressed sensing technique for accelerated CT image reconstruction using first-order methods.

    Science.gov (United States)

    Choi, Kihwan; Li, Ruijiang; Nam, Haewon; Xing, Lei

    2014-06-21

    As a solution to iterative CT image reconstruction, first-order methods are prominent for the large-scale capability and the fast convergence rate [Formula: see text]. In practice, the CT system matrix with a large condition number may lead to slow convergence speed despite the theoretically promising upper bound. The aim of this study is to develop a Fourier-based scaling technique to enhance the convergence speed of first-order methods applied to CT image reconstruction. Instead of working in the projection domain, we transform the projection data and construct a data fidelity model in Fourier space. Inspired by the filtered backprojection formalism, the data are appropriately weighted in Fourier space. We formulate an optimization problem based on weighted least-squares in the Fourier space and total-variation (TV) regularization in image space for parallel-beam, fan-beam and cone-beam CT geometry. To achieve the maximum computational speed, the optimization problem is solved using a fast iterative shrinkage-thresholding algorithm with backtracking line search and GPU implementation of projection/backprojection. The performance of the proposed algorithm is demonstrated through a series of digital simulation and experimental phantom studies. The results are compared with the existing TV regularized techniques based on statistics-based weighted least-squares as well as basic algebraic reconstruction technique. The proposed Fourier-based compressed sensing (CS) method significantly improves both the image quality and the convergence rate compared to the existing CS techniques.

  4. Making Quality Sense: A Guide to Quality, Tools and Techniques, Awards and the Thinking Behind Them.

    Science.gov (United States)

    Owen, Jane

    This document is intended to guide further education colleges and work-based learning providers through some of the commonly used tools, techniques, and theories of quality management. The following are among the topics discussed: (1) various ways of defining quality; methods used by organizations to achieve quality (quality control, quality…

  5. Prioritization of Watersheds across Mali Using Remote Sensing Data and GIS Techniques for Agricultural Development Planning

    Directory of Open Access Journals (Sweden)

    Murali Krishna Gumma

    2016-06-01

    Full Text Available Implementing agricultural water management programs over appropriate spatial extents can have positive effects on water access and erosion management. Lack of access to water for domestic and agricultural uses represents a major constraint on agricultural productivity and perpetuates poverty and hunger in sub-Saharan Africa (SSA. This lack of access is the result of erratic precipitation, poor water management, limited knowledge of hydrological systems, and inadequate investment in water infrastructure. Water management programs should be made by multi-disciplinary teams that consider the interrelationship between hydraulic and anthropogenic factors. This paper proposes a method to prioritize watersheds for water management and agricultural development across Mali (Western Africa using remote sensing data and GIS tools. The method involves deriving a set of relevant thematic layers from satellite imagery. Satellite images from Landsat ETM+ were used to generate thematic layers such as land use/land cover. Slope and drainage density maps were derived from Shuttle RADAR Topography Mission (SRTM Digital Elevation Model (DEM at 90 m spatial resolution. Population grids were available from the Global rural-urban mapping project (GRUMP database for the year 2000 and mean rainfall maps were extracted from Tropical rainfall measuring mission (TRMM grids for each year between 1988 and 2014. Each thematic layer was divided into classes that were assigned a rank for agriculture and livelihoods development provided by experts in the relevant field (e.g., Soil scientist ranking the soil classes and published literature on those themes. Zones of priority were delineated based on the combination of high scoring ranks from each thematic layer. Five categories of priority zones ranging from “very high” to “very low” were determined based on total score percentages. Field verification was then undertaken in selected categories to check the priority

  6. Health Monitoring of Bolted Spherical Joint Connection Based on Active Sensing Technique Using Piezoceramic Transducers

    Directory of Open Access Journals (Sweden)

    Jing Xu

    2018-05-01

    Full Text Available Bolted spherical joints are widely used to form space steel structures. The stiffness and load capacity of the structures are affected by the looseness of bolted spherical joint connections in the structures. The looseness of the connections, which can be caused by fabrication error, low modeling accuracy, and “false twist” in the installation process, may negatively impact the load capacity of the structure and even lead to severe accidents. Furthermore, it is difficult to detect bolted spherical joint connection looseness from the outside since the bolts connect spheres with rods together from the inside. Active sensing methods are proposed in this paper to monitor the tightness status of the bolted spherical connection using piezoceramic transducers. A triangle-on-triangle offset grid composed of bolted spherical joints and steel tube bars was fabricated as the specimen and was used to validate the active sensing methods. Lead Zirconate Titanate (PZT patches were used as sensors and actuators to monitor the bolted spherical joint tightness status. One PZT patch mounted on the central bolted sphere at the upper chord was used as an actuator to generate a stress wave. Another PZT patch mounted on the bar was used as a sensor to detect the propagated waves through the bolted spherical connection. The looseness of the connection can impact the energy of the stress wave propagated through the connection. The wavelet packet analysis and time reversal (TR method were used to quantify the energy of the transmitted signal between the PZT patches by which the tightness status of the connection can be detected. In order to verify the effectiveness, repeatability, and consistency of the proposed methods, the experiments were repeated six times in different bolted spherical connection positions. The experimental results showed that the wavelet packet analysis and TR method are effective in detecting the tightness status of the connections. The

  7. Application of Hyperspectral Remote Sensing Techniques to Evaluate Water Quality in Turbid Coastal Waters of South Carolina.

    Science.gov (United States)

    Ali, K. A.; Ryan, K.

    2014-12-01

    Coastal and inland waters represent a diverse set of resources that support natural habitat and provide valuable ecosystem services to the human population. Conventional techniques to monitor water quality using in situ sensors and laboratory analysis of water samples can be very time- and cost-intensive. Alternatively, remote sensing techniques offer better spatial coverage and temporal resolution to accurately characterize the dynamic and unique water quality parameters. Existing remote sensing ocean color products, such as the water quality proxy chlorophyll-a, are based on ocean derived bio-optical models that are primarily calibrated in Case 1 type waters. These traditional models fail to work when applied in turbid (Case 2 type), coastal waters due to spectral interference from other associated color producing agents such as colored dissolved organic matter and suspended sediments. In this work, we introduce a novel technique for the predictive modeling of chlorophyll-a using a multivariate-based approach applied to in situ hyperspectral radiometric data collected from the coastal waters of Long Bay, South Carolina. This method uses a partial least-squares regression model to identify prominent wavelengths that are more sensitive to chlorophyll-a relative to other associated color-producing agents. The new model was able to explain 80% of the observed chlorophyll-a variability in Long Bay with RMSE = 2.03 μg/L. This approach capitalizes on the spectral advantage gained from current and future hyperspectral sensors, thus providing a more robust predicting model. This enhanced mode of water quality monitoring in marine environments will provide insight to point-sources and problem areas that may contribute to a decline in water quality. The utility of this tool is in its versatility to a diverse set of coastal waters and its use by coastal and fisheries managers with regard to recreation, regulation, economic and public health purposes.

  8. Fast and low-dose computed laminography using compressive sensing based technique

    Science.gov (United States)

    Abbas, Sajid; Park, Miran; Cho, Seungryong

    2015-03-01

    Computed laminography (CL) is well known for inspecting microstructures in the materials, weldments and soldering defects in high density packed components or multilayer printed circuit boards. The overload problem on x-ray tube and gross failure of the radio-sensitive electronics devices during a scan are among important issues in CL which needs to be addressed. The sparse-view CL can be one of the viable option to overcome such issues. In this work a numerical aluminum welding phantom was simulated to collect sparsely sampled projection data at only 40 views using a conventional CL scanning scheme i.e. oblique scan. A compressive-sensing inspired total-variation (TV) minimization algorithm was utilized to reconstruct the images. It is found that the images reconstructed using sparse view data are visually comparable with the images reconstructed using full scan data set i.e. at 360 views on regular interval. We have quantitatively confirmed that tiny structures such as copper and tungsten slags, and copper flakes in the reconstructed images from sparsely sampled data are comparable with the corresponding structure present in the fully sampled data case. A blurring effect can be seen near the edges of few pores at the bottom of the reconstructed images from sparsely sampled data, despite the overall image quality is reasonable for fast and low-dose NDT.

  9. Fast and low-dose computed laminography using compressive sensing based technique

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Sajid, E-mail: scho@kaist.ac.kr; Park, Miran, E-mail: scho@kaist.ac.kr; Cho, Seungryong, E-mail: scho@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of)

    2015-03-31

    Computed laminography (CL) is well known for inspecting microstructures in the materials, weldments and soldering defects in high density packed components or multilayer printed circuit boards. The overload problem on x-ray tube and gross failure of the radio-sensitive electronics devices during a scan are among important issues in CL which needs to be addressed. The sparse-view CL can be one of the viable option to overcome such issues. In this work a numerical aluminum welding phantom was simulated to collect sparsely sampled projection data at only 40 views using a conventional CL scanning scheme i.e. oblique scan. A compressive-sensing inspired total-variation (TV) minimization algorithm was utilized to reconstruct the images. It is found that the images reconstructed using sparse view data are visually comparable with the images reconstructed using full scan data set i.e. at 360 views on regular interval. We have quantitatively confirmed that tiny structures such as copper and tungsten slags, and copper flakes in the reconstructed images from sparsely sampled data are comparable with the corresponding structure present in the fully sampled data case. A blurring effect can be seen near the edges of few pores at the bottom of the reconstructed images from sparsely sampled data, despite the overall image quality is reasonable for fast and low-dose NDT.

  10. Fast and low-dose computed laminography using compressive sensing based technique

    International Nuclear Information System (INIS)

    Abbas, Sajid; Park, Miran; Cho, Seungryong

    2015-01-01

    Computed laminography (CL) is well known for inspecting microstructures in the materials, weldments and soldering defects in high density packed components or multilayer printed circuit boards. The overload problem on x-ray tube and gross failure of the radio-sensitive electronics devices during a scan are among important issues in CL which needs to be addressed. The sparse-view CL can be one of the viable option to overcome such issues. In this work a numerical aluminum welding phantom was simulated to collect sparsely sampled projection data at only 40 views using a conventional CL scanning scheme i.e. oblique scan. A compressive-sensing inspired total-variation (TV) minimization algorithm was utilized to reconstruct the images. It is found that the images reconstructed using sparse view data are visually comparable with the images reconstructed using full scan data set i.e. at 360 views on regular interval. We have quantitatively confirmed that tiny structures such as copper and tungsten slags, and copper flakes in the reconstructed images from sparsely sampled data are comparable with the corresponding structure present in the fully sampled data case. A blurring effect can be seen near the edges of few pores at the bottom of the reconstructed images from sparsely sampled data, despite the overall image quality is reasonable for fast and low-dose NDT

  11. A New Fusion Technique of Remote Sensing Images for Land Use/Cover

    Institute of Scientific and Technical Information of China (English)

    WU Lian-Xi; SUN Bo; ZHOU Sheng-Lu; HUANG Shu-E; ZHAO Qi-Guo

    2004-01-01

    In China,accelerating industrialization and urbanization following high-speed economic development and population increases have greatly impacted land use/cover changes,making it imperative to obtain accurate and up to date information on changes so as to evaluate their environmental effects. The major purpose of this study was to develop a new method to fuse lower spatial resolution multispectral satellite images with higher spatial resolution panchromatic ones to assist in land use/cover mapping. An algorithm of a new fusion method known as edge enhancement intensity modulation (EEIM) was proposed to merge two optical image data sets of different spectral ranges. The results showed that the EEIM image was quite similar in color to lower resolution multispectral images,and the fused product was better able to preserve spectral information. Thus,compared to conventional approaches,the spectral distortion of the fused images was markedly reduced. Therefore,the EEIM fusion method could be utilized to fuse remote sensing data from the same or different sensors,including TM images and SPOT5 panchromatic images,providing high quality land use/cover images.

  12. A regression technique for evaluation and quantification for water quality parameters from remote sensing data

    International Nuclear Information System (INIS)

    Whitlock, C.H.; Kuo, C.Y.

    1979-01-01

    The paper attempts to define optical physics and/or environmental conditions under which the linear multiple-regression should be applicable. It is reported that investigation of the signal response shows that the exact solution for a number of optical physics conditions is of the same form as a linearized multiple-regression equation, even if nonlinear contributions from surface reflections, atmospheric constituents, or other water pollutants are included. Limitations on achieving this type of solution are defined. Laboratory data are used to demonstrate that the technique is applicable to water mixtures which contain constituents with both linear and nonlinear radiance gradients. Finally, it is concluded that instrument noise, ground-truth placement, and time lapse between remote sensor overpass and water sample operations are serious barriers to successful use of the technique

  13. Microwave Interferometry Based On Open-ended Coaxial Technique for High Sensitivity Liquid Sensing

    Directory of Open Access Journals (Sweden)

    H. Bakli

    2017-10-01

    Full Text Available This paper describes a modified open-ended coaxial technique for microwave dielectric characterization in liquid media. A calibration model is developed to relate the measured transmission coefficient to the local properties of the sample under test. As a demonstration, the permittivity of different sodium chloride solutions is experimentally determined. Accuracies of 0.17% and 0.19% are obtained respectively for the real and imaginary parts of dielectric permittivity at 5.9 GHz.

  14. Stokes-Mueller matrix polarimetry technique for circular dichroism/birefringence sensing with scattering effects.

    Science.gov (United States)

    Phan, Quoc-Hung; Lo, Yu-Lung

    2017-04-01

    A surface plasmon resonance (SPR)-enhanced method is proposed for measuring the circular dichroism (CD), circular birefringence (CB), and degree of polarization (DOP) of turbid media using a Stokes–Mueller matrix polarimetry technique. The validity of the analytical model is confirmed by means of numerical simulations. The simulation results show that the proposed detection method enables the CD and CB properties to be measured with a resolution of 10 ? 4 refractive index unit (RIU) and 10 ? 5 ?? RIU , respectively, for refractive indices in the range of 1.3 to 1.4. The practical feasibility of the proposed method is demonstrated by detecting the CB/CD/DOP properties of glucose–chlorophyllin compound samples containing polystyrene microspheres. It is shown that the extracted CB value decreases linearly with the glucose concentration, while the extracted CD value increases linearly with the chlorophyllin concentration. However, the DOP is insensitive to both the glucose concentration and the chlorophyllin concentration. Consequently, the potential of the proposed SPR-enhanced Stokes–Mueller matrix polarimetry method for high-resolution CB/CD/DOP detection is confirmed. Notably, in contrast to conventional SPR techniques designed to detect relative refractive index changes, the SPR technique proposed in the present study allows absolute measurements of the optical properties (CB/CD/DOP) to be obtained.

  15. Exploring and Describing the Spatial & Temporal Dynamics of Medushead in the Channeled Scablands of Eastern Washington Using Remote Sensing Techniques

    Science.gov (United States)

    Bateman, Timothy M.

    Medusahead is a harmful weed that is invading public lands in the West. The invasion is a serious concern to the public because it can reduce forage for livestock and wildlife, increase fire frequency, alter important ecosystem cycles (like water), reduce recreational activities, and produce landscapes that are aesthetically unpleasing. Invasions can drive up costs that generally require taxpayer's dollars. Medusahead seedlings typically spread to new areas by attaching itself to passing objects (e.g. vehicles, animals, clothing) where it can quickly begin to affect plants communities. To be effective, management plans need to be sustainable, informed, and considerate to invasion levels across large landscapes. Ecological remote sensing analysis is a method that uses airborne imagery, taken from drones, aircrafts, or satellites, to gather information about ecological systems. This Thesis strived to use remote sensing techniques to identify medusahead in the landscape and its changes through time. This was done for an extensive area of rangelands in the Channel Scabland region of eastern ashington. This Thesis provided results that would benefit land managers that include: 1) a dispersal map of medusahead, 2) a time line of medusahead cover through time, 3) 'high risk' dispersal areas, 4) climatic factors showing an influence on the time line of medusahead, 5) a strategy map that can be utilized by land managers to direct management needs. This Thesis shows how remote sensing applications can be used to detect medusahead in the landscape and understand its invasiveness through time. This information can help create sustainable and effective management plans so land managers can continue to protect and improve western public lands threatened by the invasion of medusahead.

  16. The microbial habitability of weathered volcanic glass inferred from continuous sensing techniques.

    Science.gov (United States)

    Bagshaw, Elizabeth A; Cockell, Charles S; Magan, Naresh; Wadham, Jemma L; Venugopalan, T; Sun, Tong; Mowlem, Matt; Croxford, Anthony J

    2011-09-01

    Basaltic glasses (hyaloclastite) are a widespread habitat for life in volcanic environments, yet their interior physical conditions are poorly characterized. We investigated the characteristics of exposed weathered basaltic glass from a surface outcrop in Iceland, using microprobes capable of continuous sensing, to determine whether the physical conditions in the rock interior are hospitable to microbial life. The material provided thermal protection from freeze-thaw and rapid temperature fluctuations, similar to data reported for other rock types. Water activity experiments showed that at moisture contents less than 13% wet weight, the glass and its weathering product, palagonite, had a water activity below levels suitable for bacterial growth. In pore spaces, however, these higher moisture conditions might be maintained for many days after a precipitation event. Gas exchange between the rock interior and exterior was rapid (< 10 min) when the rocks were dry, but when saturated with water, equilibration took many hours. During this period, we demonstrated the potential for low oxygen conditions within the rock caused by respiratory stimulation of the heterotrophic community within. These conditions might exist within subglacial environments during the formation of the rocks or in micro-environments in the interior of exposed rocks. The experiments showed that microbial communities at the site studied here could potentially be active for 39% of the year, if the depth of the community within the outcrop maintains a balance between access to liquid water and adequate protection from freezing. In the absence of precipitation, the interior of weathered basaltic glass is an extreme and life-limiting environment for microorganisms on Earth and other planets.

  17. Remote sensing techniques to monitor nitrogen-driven carbon dynamics in field corn

    Science.gov (United States)

    Corp, Lawrence A.; Middleton, Elizabeth M.; Campbell, Petya K. E.; Huemmrich, K. Fred; Cheng, Yen-Ben; Daughtry, Craig S. T.

    2009-08-01

    Patterns of change in vegetation growth and condition are one of the primary indicators of the present and future ecological status of the globe. Nitrogen (N) is involved in photochemical processes and is one of the primary resources regulating plant growth. As a result, biological carbon (C) sequestration is driven by N availability. Large scale monitoring of photosynthetic processes are currently possible only with remote sensing systems that rely heavily on passive reflectance (R) information. Unlike R, fluorescence (F) emitted from chlorophyll is directly related to photochemical reactions and has been extensively used for the elucidation of the photosynthetic pathways. Recent advances in passive fluorescence instrumentation have made the remote acquisition of solar-induced fluorescence possible. The goal of this effort is to evaluate existing reflectance and emerging fluorescence methodologies for determining vegetation parameters related to photosynthetic function and carbon sequestration dynamics in plants. Field corn N treatment levels of 280, 140, 70, and 0 kg N / ha were sampled from an intensive test site for a multi-disciplinary project, Optimizing Production Inputs for Economic and Environmental Enhancement (OPE). Aircraft, near-ground, and leaf-level measurements were used to compare and contrast treatment effects within this experiment site assessed with both reflectance and fluorescence approaches. A number of spectral indices including the R derivative index D730/D705, the normalized difference of R750 vs. R705, and simple ratio R800/R750 differentiated three of the four N fertilization rates and yielded high correlations to three important carbon parameters: C:N, light use efficiency, and grain yield. These results advocate the application of hyperspectral sensors for remotely monitoring carbon cycle dynamics in terrestrial ecosystems.

  18. Proximal Sensing of Plant-Pathogen Interactions in Spring Barley with Three Fluorescence Techniques

    Directory of Open Access Journals (Sweden)

    Georg Leufen

    2014-06-01

    Full Text Available In the last years fluorescence spectroscopy has come to be viewed as an essential approach in key research fields of applied plant sciences. However, the quantity and particularly the quality of information produced by different equipment might vary considerably. In this study we investigate the potential of three optical devices for the proximal sensing of plant-pathogen interactions in four genotypes of spring barley. For this purpose, the fluorescence lifetime, the image-resolved multispectral fluorescence and selected indices of a portable multiparametric fluorescence device were recorded at 3, 6, and 9 days after inoculation (dai from healthy leaves as well as from leaves inoculated with powdery mildew (Blumeria graminis or leaf rust (Puccinia hordei. Genotype-specific responses to pathogen infections were revealed already at 3 dai by higher fluorescence mean lifetimes in the spectral range from 410 to 560 nm in the less susceptible varieties. Noticeable pathogen-induced modifications were also revealed by the ‘Blue-to-Far-Red Fluorescence Ratio’ and the ‘Simple Fluorescence Ratio’. Particularly in the susceptible varieties the differences became more evident in the time-course of the experiment i.e., following the pathogen development. The relevance of the blue and green fluorescence to exploit the plant-pathogen interaction was demonstrated by the multispectral fluorescence imaging system. As shown, mildewed leaves were characterized by exceptionally high blue fluorescence, contrasting the values observed in rust inoculated leaves. Further, we confirm that the intensity of green fluorescence depends on the pathogen infection and the stage of disease development; this information might allow a differentiation of both diseases. Moreover, our results demonstrate that the detection area might influence the quality of the information, although it had a minor impact only in the current study. Finally, we highlight the relevance of

  19. Estimating primary productivity of tropical oil palm in Malaysia using remote sensing technique and ancillary data

    Science.gov (United States)

    Kanniah, K. D.; Tan, K. P.; Cracknell, A. P.

    2014-10-01

    The amount of carbon sequestration by vegetation can be estimated using vegetation productivity. At present, there is a knowledge gap in oil palm net primary productivity (NPP) at a regional scale. Therefore, in this study NPP of oil palm trees in Peninsular Malaysia was estimated using remote sensing based light use efficiency (LUE) model with inputs from local meteorological data, upscaled leaf area index/fractional photosynthetically active radiation (LAI/fPAR) derived using UK-DMC 2 satellite data and a constant maximum LUE value from the literature. NPP values estimated from the model was then compared and validated with NPP estimated using allometric equations developed by Corley and Tinker (2003), Henson (2003) and Syahrinudin (2005) with diameter at breast height, age and the height of the oil palm trees collected from three estates in Peninsular Malaysia. Results of this study show that oil palm NPP derived using a light use efficiency model increases with respect to the age of oil palm trees, and it stabilises after ten years old. The mean value of oil palm NPP at 118 plots as derived using the LUE model is 968.72 g C m-2 year-1 and this is 188% - 273% higher than the NPP derived from the allometric equations. The estimated oil palm NPP of young oil palm trees is lower compared to mature oil palm trees (oil palm trees contribute to lower oil palm LAI and therefore fPAR, which is an important variable in the LUE model. In contrast, it is noted that oil palm NPP decreases with respect to the age of oil palm trees as estimated using the allomeric equations. It was found in this study that LUE models could not capture NPP variation of oil palm trees if LAI/fPAR is used. On the other hand, tree height and DBH are found to be important variables that can capture changes in oil palm NPP as a function of age.

  20. Monitoring cure of composite resins using frequency dependent electromagnetic sensing techniques

    Science.gov (United States)

    Kranbuehl, D. E.; Hoff, M. S.; Loos, A. C.; Freeman, W. T., Jr.; Eichinger, D. A.

    1988-01-01

    A nondestructive in situ measurement technique has been developed for monitoring and measuring the cure processing properties of composite resins. Frequency dependent electromagnetic sensors (FDEMS) were used to directly measure resin viscosity during cure. The effects of the cure cycle and resin aging on the viscosity during cure were investigated using the sensor. Viscosity measurements obtained using the sensor are compared with the viscosities calculated by the Loos-Springer cure process model. Good overall agreement was obtained except for the aged resin samples.

  1. Application of remote sensing, GIS and MCA techniques for delineating groundwater prospect zones in Kashipur block, Purulia district, West Bengal

    Science.gov (United States)

    Nag, S. K.; Kundu, Anindita

    2018-03-01

    Demand of groundwater resources has increased manifold with population expansion as well as with the advent of modern civilization. Assessment, planning and management of groundwater resource are becoming crucial and extremely urgent in recent time. The study area belongs to Kashipur block, Purulia district, West Bengal. The area is characterized with dry climate and hard rock terrain. The objective of this study is to delineate groundwater potential zone for the assessment of groundwater availability using remote sensing, GIS and MCA techniques. Different thematic layers such as hydrogeomorphology, slope and lineament density maps have been transformed to raster data in TNT mips pro2012. To assign weights and ranks to different input factor maps, multi-influencing factor (MIF) technique has been used. The weights assigned to each factor have been computed statistically. Weighted index overlay modeling technique was used to develop a groundwater potential zone map with three weighted and scored parameters. Finally, the study area has been categorized into four distinct groundwater potential zones—excellent 1.5% (6.45 sq. km), good 53% (227.9 sq. km), moderate 45% (193.5 sq. km.) and poor 0.5% (2.15 sq. km). The outcome of the present study will help local authorities, researchers, decision makers and planners in formulating proper planning and management of groundwater resources in different hydrogeological situations.

  2. Use of Remote Sensing Techniques For Geomorphological Study of Some Sites For Eroticism In Farafra Area, Western Desert, Egypt

    International Nuclear Information System (INIS)

    EI Gammal, E.A.; Salem, S.M.

    2008-01-01

    The present study deals with investigating some significant geomorphic features in the Farafra Oasis area such as natural caves and white desert which display remarkable landscapes of high esthetic value and very important sites for ecotourism. The study aims to produce a GIS ready database for registration of the natural caves with stalactites and stalagmites and a set of printed thematic maps for the above mentioned features with an explanatory notes for the features considered. To achieve these goals remote sensing and GIS techniques have been used, verified by field trip and GPS instrument for correct locations. The used thematic maps are: topographic maps for roads and tracks and main cities, and geologic maps. The study will be illustrated by numerous field photos. The description of the considered features and including significant photographs will be presented on a CD

  3. Integrated remote sensing techniques for the detection of buried archaeological adobe structures: preliminary results in Cahuachi (Peru)

    Science.gov (United States)

    Masini, N.; Rizzo, E.; Lasaponara, R.; Orefici, G.

    2008-11-01

    This paper is focused on the jointly use of satellite Quickbird (QB) images and Ground Probing Radar (GPR) for assessing their capability in the detection of archaeological adobe structures (sun-dried earth material). Such detection is particularly complex. due to the low contrast generally existing between the archaeological features and the background. Two significant test areas were investigated in the Ceremonial Centre of Cahuachi (in the Nasca territory, Southern Peru) dating back to 6th century BC to 4th century AD. Our results showed that both satellite and GPR data provided valuable indications for unearthing precious ancient remains. Our preliminary analyses pointed out that the integrated use of non destructive remote sensing techniques has high potentiality for its important scientific implications and for its significant contributions to cultural resource management.

  4. Deforestation Analysis of Riverine Forest of Sindh Using Remote Sensing Techniques

    Directory of Open Access Journals (Sweden)

    Habibullah Abbasi

    2011-07-01

    Full Text Available During recent decades the large scale deterioration of forests and natural resources is an eye opener. The degradation of forests and other natural resources has affected the ecology, environment, health and economy. The ecological problems with living organisms such as animals and plants and environmental problems such as increase in temperature and carbon dioxide, these factors have contributed to change in regional climate, health problems such as skin, eye diseases and sunstroke and economic problems such as loss of income to rural population and resources which depend on forests such as livestock. Therefore, it was necessary to carry out land cover/use research focusing on the monitoring and management of the present and past state of forests cover and other related objects using RS (Remote Sensing technologies. The RS is a way of mapping and monitoring the changes taking place in forests cover and other objects on a continuing basis. Sukkur and Shikarpur riverine forests are vanishing quickly due to the construction of barrages /dams on upper streams to produce hydroelectricity and irrigation installations which reduce the discharge of fresh water into the downstream Indus basin. Moreover, anthropogenic activities, livestock population, increased grazing, load and illegal tree cutting have contributed to this. The riverine forests are turning into barren land and most of the land is used for agriculture. These uncontrolled changes contribute to climate change and global warming. These changes are difficult to monitor and control without using RS technology. Assessment of deforestation of the Sukkur and Shikarpur to find temporal changes in the forests cover from April, 1979 to April, 2009 is presented in this paper. The integrated classes such as water body, grass/agriculture land, dry/barren land and forest cover maps show the temporal changes taking place in the forests cover for the last 30 years period. RS has been employed in the

  5. Remote Sensing Techniques as a Tool for Geothermal Exploration: the Case Study of Blawan Ijen, East Java

    Science.gov (United States)

    Pasqua, Claudio; Verdoya, Massimo

    2014-05-01

    The use of remote sensing techniques in the initial phase of geothermal surveys represents a very cost-effective tool, which can contribute to a successful exploration program. Remote sensing allows the analysis of large surfaces and can lead to a significant improvement of the identification of surface thermal anomalies, through the use of thermal infra red data (TIR), as well as of zones of widespread and recent faulting, which can reflect larger permeability of geological formations. Generally, the fractures analysis from remote sensing can be fundamental to clarify the structural setting of an area. In a regional volcanic framework, it can also help in defining the spatial and time evolution of the different volcanic apparatuses. This paper describes the main results of a remote sensing study, conducted in the Blawan-Ijen volcanic area (East Java), which is at present subject of geothermal exploration. This area is characterized by the presence of a 15 km wide caldera originated by a collapsed strato volcano. This event was followed by the emplacement of several peri-calderic and intra-calderic volcanoes, among which G. Raung, as testified by the frequent occurrence of shallow earthquakes and by H2S emission and sulfur deposition, and G. Kawah Ijen, occurring at the eastern rim of the caldera, are still active. The summit of G. Kawah Ijen volcano consists of two interlocking craters forming an E-W elongated depression filled up by a hyperacidic lake. Along the southern shore of the lake, a small rhyolitic dome occurs, which exhibits strong fumarolic activity with temperature of as much as 600 °C. We performed an analysis based on the combined interpretation of Landsat ETM+7, Aster and Synthetic Aperture Radar (SAR) images, focused on the identification of subsurface high permeability zones. The main trends of the linear features as derived from the fractures analysis, as well as their relation with the distribution of volcanic centres, were identified

  6. Remote sensing techniques for monitoring the Rio Grande Valley cotton stalk destruction program

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, A.J.; Gerbermann, A.H.; Summy, K.R.; Anderson, G.L. (Department of Agriculture, Weslaco, TX (United States))

    1993-09-01

    Post harvest cotton (Gossypium hirsutum L.) stalk destruction is a cultural practice used in the Rio Grande Valley to suppress over wintering populations of boll weevils (Anthonomus grandis Boheman) without using chemicals. Consistent application of this practice could substantially reduce insecticide usage, thereby minimizing environmental hazards and increasing cotton production profits. Satellite imagery registered within a geographic information system was used to monitor the cotton stalk destruction program in the Rio Grande Valley. We found that cotton stalk screening procedures based on standard multispectral classification techniques could not reliably distinguish cotton from sorghum. Greenness screening for cotton plant stalks after the stalk destruction deadline was possible only where ground observations locating cotton fields were available. These findings indicate that a successful cotton stalk destruction monitoring program will require satellite images and earth referenced data bases showing cotton field locations.

  7. Nano-deformation behavior of silicon (100) film studied by depth sensing indentation and nanoscratch technique

    Science.gov (United States)

    Geetha, D.; Pratyank, R.; Kiran, P.

    2018-04-01

    Silicon being the most important material applied in microelectronic and photovoltaic technology, repeated investigation of the mechanical properties becomes essential. The nanoscale elastic-plastic deformation characteristics of Si (100) film were analyzed using nanoindentation and nanoscratch techniques. The hardness and elastic modulus values of the film obtained from nanoindentation tests were found to be consistent with the reported values. The load-displacement curves showed discontinuities and kinks which confirms the plastic behaviour of Si. The indentation induced plastic deformations were the consequences of the phase transformations. The critical shear stress, tensile strength and plastic zone size, of the Si film when subjected to nanoindentation were determined. The nanoscratch tests were performed to understand the tribological properties of the film. The SPM images of both the nanoindentation and nanoscratch profiles were useful in revealing the plastic character in terms of the piling up of matter in the vicinity of the dents. Conclusions were drawn in quantifying the plastic deformations and phase transformations.

  8. Review of passive-blind detection in digital video forgery based on sensing and imaging techniques

    Science.gov (United States)

    Tao, Junjie; Jia, Lili; You, Ying

    2016-01-01

    Advances in digital video compression and IP communication technologies raised new issues and challenges concerning the integrity and authenticity of surveillance videos. It is so important that the system should ensure that once recorded, the video cannot be altered; ensuring the audit trail is intact for evidential purposes. This paper gives an overview of passive techniques of Digital Video Forensics which are based on intrinsic fingerprints inherent in digital surveillance videos. In this paper, we performed a thorough research of literatures relevant to video manipulation detection methods which accomplish blind authentications without referring to any auxiliary information. We presents review of various existing methods in literature, and much more work is needed to be done in this field of video forensics based on video data analysis and observation of the surveillance systems.

  9. Humidity sensing properties of WO3 thick film resistor prepared by screen printing technique

    International Nuclear Information System (INIS)

    Garde, Arun S

    2014-01-01

    Highlights: • Polycrystalline WO 3 Thick films are fabricated by screen printing technique. • Monoclinic phases were the majority in formation of films. • The peak at 1643 cm −1 shows stretching vibrations attributed to W-OH of adsorbed H 2 O. • Absorption peaks in the range 879–650 cm −1 are attributed to the stretching W-O-W bonds. • Increase in resistance with decrease in RH when exposed to 20–100% RH. - Abstract: Thick films of tungsten oxide based were prepared using standard screen printing technique. To study the effect of temperature on the thick films were fired at different temperature for 30 min in air atmosphere. The WO 3 thick films were characterized with X-ray diffraction, scanning electron microscopy and EDAX for elemental analysis. The formation of mixed phases of the film together with majority of monoclinic phase was observed. IR spectra confirm the peak at 1643 cm −1 clearly shows stretching vibrations attributed to the W-OH bending vibration mode of the adsorbed water molecules. The absorption peaks in the range 879–650 cm −1 are attributed to the stretching W-O-W bonds (i.e. ν [W-O inter -W]). The peak located at 983 cm −1 belong to W=O terminal of cluster boundaries. A change in the resistance was observed with respect to the relative humidity when the WO 3 thick films were exposed to a wide humidity range of 20–100%. An increasing firing temperature of WO 3 film increases with the sensitivity. The parameters such as sensitivity and hysteresis of the WO 3 film sensors have been evaluated

  10. STUDY OF INFLUENCE OF EFFLUENT ON GROUND WATER USING REMOTE SENSING, GIS AND MODELING TECHNIQUES

    Directory of Open Access Journals (Sweden)

    S. Pathak

    2012-07-01

    Full Text Available The area lies in arid zone of western Rajasthan having very scanty rains and very low ground water reserves. Some of the other problems that are faced by the area are disposal of industrial effluent posing threat to its sustainability of water resource. Textiles, dyeing and printing industries, various mechanical process and chemical/synthetic dyes are used and considerable wastewater discharged from these textile units contains about high amount of the dyes into the adjoining drainages. This has caused degradation of water quality in this water scarce semi-arid region of the country. Pali city is located South-West, 70 Kms from Jodhpur in western Rajasthan (India. There are four Common Effluent Treatment Plant (CETP treating wastewater to meet the pollutant level permissible to river discharge, a huge amount of effluent water of these factories directly meets the into the river Bandi – a tributary of river Luni. In order to monitor the impact of industrial effluents on the environment, identifying the extent of the degradation and evolving possible means of minimizing the impacts studies on quality of effluents, polluted river water and water of adjoining wells, the contamination migration of the pollutants from the river to ground water were studied. Remote sensing analysis has been carried out using Resourcesat −1 multispectral satellite data along with DEM derived from IRS P5 stereo pair. GIS database generated of various thematic layers viz. base layer – inventorying all waterbodies in the vicinity, transport network and village layer, drainage, geomorphology, structure, land use. Analysis of spatial distribution of the features and change detection in land use/cover carried out. GIS maps have been used to help factor in spatial location of source and hydro-geomorphological settings. DEM & elevation contour helped in delineation of watershed and identifying flow modelling boundaries. Litholog data analysis carried out for aquifer

  11. Study of Influence of Effluent on Ground Water Using Remote Sensing, GIS and Modeling Techniques

    Science.gov (United States)

    Pathak, S.; Bhadra, B. K.; Sharma, J. R.

    2012-07-01

    The area lies in arid zone of western Rajasthan having very scanty rains and very low ground water reserves. Some of the other problems that are faced by the area are disposal of industrial effluent posing threat to its sustainability of water resource. Textiles, dyeing and printing industries, various mechanical process and chemical/synthetic dyes are used and considerable wastewater discharged from these textile units contains about high amount of the dyes into the adjoining drainages. This has caused degradation of water quality in this water scarce semi-arid region of the country. Pali city is located South-West, 70 Kms from Jodhpur in western Rajasthan (India). There are four Common Effluent Treatment Plant (CETP) treating wastewater to meet the pollutant level permissible to river discharge, a huge amount of effluent water of these factories directly meets the into the river Bandi - a tributary of river Luni. In order to monitor the impact of industrial effluents on the environment, identifying the extent of the degradation and evolving possible means of minimizing the impacts studies on quality of effluents, polluted river water and water of adjoining wells, the contamination migration of the pollutants from the river to ground water were studied. Remote sensing analysis has been carried out using Resourcesat -1 multispectral satellite data along with DEM derived from IRS P5 stereo pair. GIS database generated of various thematic layers viz. base layer - inventorying all waterbodies in the vicinity, transport network and village layer, drainage, geomorphology, structure, land use. Analysis of spatial distribution of the features and change detection in land use/cover carried out. GIS maps have been used to help factor in spatial location of source and hydro-geomorphological settings. DEM & elevation contour helped in delineation of watershed and identifying flow modelling boundaries. Litholog data analysis carried out for aquifer boundaries using specialized

  12. Utilization of Remote Sensing Techniques for Monitoring and Evaluation of Solo Watershed Management

    Directory of Open Access Journals (Sweden)

    Totok Gunawan

    2004-01-01

    Full Text Available This research is an application of remote sensing technology for monitoring and evaluation of watershed management, which was conducted is Solo Watershed, Central and East Java. The research objectives were 1 to investigate the capability of photomorphic analysis of Landsat Thematic Mapper (TM and Enhanced Themmatic Mapper (ETM + imagery as the basic for analyzes of landforms, landuse, and morphometry of the land surface; 2 to calculate the overland flow – peak discharge and erosion – sediment yield as indicators of land degradation of the area; 3 to use the indicators as set of instrument for monitoring and evaluation of watershed management. In this study, visual interpretation by means of on-screen digilization of the digital imagery was carried out in order to identify and to delineate land parameters using photomorphic approach. Based on the photomorphic analysis, several image – based parameters such as relief topography, physical soil characteristic, litho – stratigraphy, and vegetation cover were integrated with other themati maps in a geographic information system (GIS environment. Estimation of overland flow (C based on Cook methods (1942 and calculation of peak disccharge (Qmax based on rational method (Qmax = C. I. A were applied. Meanwhile, estimation of surface erosion was carried out using Universal Soil Loss Equation (USLE, A = R. K. L. S. CP. The sediment yield (Sy was estimated using seddiment delivery ratio ( SDR based on the following formula: Sy = [A + (25% x A] x SDR. Both pairs of C – Qmax and A – Sy, were utilized as the basis for monitoring and evaluation of the watershed. The combination of C – Qmax and A – Sy were also used as the basis for selection of stream gauge setting / AWLR within particular sub – catchment. It was found that the photomorphic analysis is only color/tone, slope aspects, pattern, and texture, unit boundaries between volcanic – origin landscape (Wilis volcanic complex and folded

  13. Model–Based Techniques for Virtual Sensing of Longitudinal Flight Parameters

    Directory of Open Access Journals (Sweden)

    Seren Cédric

    2015-03-01

    Full Text Available Introduction of fly-by-wire and increasing levels of automation significantly improve the safety of civil aircraft, and result in advanced capabilities for detecting, protecting and optimizing A/C guidance and control. However, this higher complexity requires the availability of some key flight parameters to be extended. Hence, the monitoring and consolidation of those signals is a significant issue, usually achieved via many functionally redundant sensors to extend the way those parameters are measured. This solution penalizes the overall system performance in terms of weight, maintenance, and so on. Other alternatives rely on signal processing or model-based techniques that make a global use of all or part of the sensor data available, supplemented by a model-based simulation of the flight mechanics. That processing achieves real-time estimates of the critical parameters and yields dissimilar signals. Filtered and consolidated information is delivered in unfaulty conditions by estimating an extended state vector, including wind components, and can replace failed signals in degraded conditions. Accordingly, this paper describes two model-based approaches allowing the longitudinal flight parameters of a civil A/C to be estimated on-line. Results are displayed to evaluate the performances in different simulated and real flight conditions, including realistic external disturbances and modeling errors.

  14. Monitoring of Emissions From a Refinery Tank Farm Using a Combination of Optical Remote Sensing Techniques

    Science.gov (United States)

    Polidori, A.; Tisopulos, L.; Pikelnaya, O.; Mellqvist, J.; Samuelsson, J.; Marianne, E.; Robinson, R. A.; Innocenti, F.; Finlayson, A.; Hashmonay, R.

    2016-12-01

    Despite great advances in reducing air pollution, the South Coast Air Basin (SCAB) still faces challenges to attain federal health standards for air quality. Refineries are large sources of ozone precursors and, hence contribute to the air quality problems of the region. Additionally, petrochemical facilities are also sources of other hazardous air pollutants (HAP) that adversely affect human health, for example aromatic hydrocarbons. In order to assure safe operation, decrease air pollution and minimize population exposure to HAP the South Coast Air Quality Management District (SCAQMD) has a number of regulations for petrochemical facilities. However, significant uncertainties still exist in emission estimates and traditional monitoring techniques often do not allow for real-time emission monitoring. In the fall of 2015 the SCAQMD, Fluxsense Inc., the National Physical Laboratory (NPL), and Atmosfir Optics Ltd. conducted a measurement study to characterize and quantify gaseous emissions from the tank farm of one of the largest oil refineries in the SCAB. Fluxsense used a vehicle equipped with Solar Occultation Flux (SOF), Differential Optical Absorption Spectroscopy (DOAS), and Extractive Fourier Transform Infrared (FTIR) spectroscopy instruments. Concurrently, NPL operated their Differential Absorption Lidar (DIAL) system. Both research groups quantified emissions from the entire tank farm and identified fugitive emission sources within the farm. At the same time, Atmosfir operated an Open Path FTIR (OP-FTIR) spectrometer along the fenceline of the tank farm. During this presentation we will discuss the results of the emission measurements from the tank farm of the petrochemical facility. Emission rates resulting from measurements by different ORS methods will be compared and discussed in detail.

  15. Land Cover Mapping Analysis and Urban Growth Modelling Using Remote Sensing Techniques in Greater Cairo Region—Egypt

    Directory of Open Access Journals (Sweden)

    Yasmine Megahed

    2015-09-01

    Full Text Available This study modeled the urban growth in the Greater Cairo Region (GCR, one of the fastest growing mega cities in the world, using remote sensing data and ancillary data. Three land use land cover (LULC maps (1984, 2003 and 2014 were produced from satellite images by using Support Vector Machines (SVM. Then, land cover changes were detected by applying a high level mapping technique that combines binary maps (change/no-change and post classification comparison technique. The spatial and temporal urban growth patterns were analyzed using selected statistical metrics developed in the FRAGSTATS software. Major transitions to urban were modeled to predict the future scenarios for year 2025 using Land Change Modeler (LCM embedded in the IDRISI software. The model results, after validation, indicated that 14% of the vegetation and 4% of the desert in 2014 will be urbanized in 2025. The urban areas within a 5-km buffer around: the Great Pyramids, Islamic Cairo and Al-Baron Palace were calculated, highlighting an intense urbanization especially around the Pyramids; 28% in 2014 up to 40% in 2025. Knowing the current and estimated urbanization situation in GCR will help decision makers to adjust and develop new plans to achieve a sustainable development of urban areas and to protect the historical locations.

  16. A new strategy for snow-cover mapping using remote sensing data and ensemble based systems techniques

    Science.gov (United States)

    Roberge, S.; Chokmani, K.; De Sève, D.

    2012-04-01

    The snow cover plays an important role in the hydrological cycle of Quebec (Eastern Canada). Consequently, evaluating its spatial extent interests the authorities responsible for the management of water resources, especially hydropower companies. The main objective of this study is the development of a snow-cover mapping strategy using remote sensing data and ensemble based systems techniques. Planned to be tested in a near real-time operational mode, this snow-cover mapping strategy has the advantage to provide the probability of a pixel to be snow covered and its uncertainty. Ensemble systems are made of two key components. First, a method is needed to build an ensemble of classifiers that is diverse as much as possible. Second, an approach is required to combine the outputs of individual classifiers that make up the ensemble in such a way that correct decisions are amplified, and incorrect ones are cancelled out. In this study, we demonstrate the potential of ensemble systems to snow-cover mapping using remote sensing data. The chosen classifier is a sequential thresholds algorithm using NOAA-AVHRR data adapted to conditions over Eastern Canada. Its special feature is the use of a combination of six sequential thresholds varying according to the day in the winter season. Two versions of the snow-cover mapping algorithm have been developed: one is specific for autumn (from October 1st to December 31st) and the other for spring (from March 16th to May 31st). In order to build the ensemble based system, different versions of the algorithm are created by varying randomly its parameters. One hundred of the versions are included in the ensemble. The probability of a pixel to be snow, no-snow or cloud covered corresponds to the amount of votes the pixel has been classified as such by all classifiers. The overall performance of ensemble based mapping is compared to the overall performance of the chosen classifier, and also with ground observations at meteorological

  17. Remote sensing of auroral E region plasma structures by radio, radar, and UV techniques at solar minimum

    International Nuclear Information System (INIS)

    Basu, S.; Valladares, C.E.; Basu, S.; Eastes, R.; Huffman, R.E.; Daniell, R.E.; Chaturvedi, P.K.; Livingston, R.C.

    1993-01-01

    The unique capability of the Polar BEAR satellite to simultaneously image auroral luminosities at multiple ultraviolet (UV) wavelengths and to remote sense large-scale (hundreds to tens of kilometers) and small-scale (kilometers to hundreds of meters) plasma density structures with its multifrequency beacon package is utilized to probe the auroral E region in the vicinity of the incoherent scatter radar (ISR) facility near Sondrestrom. In particular, we present coordinated observations on two nights obtained during the sunspot minimum (sunspot number < 10) January-February 1987 period when good spatial and temporal conjunction was obtained between Polar BEAR overflights and Sondrestrom ISR measurements. With careful coordinated observations we were able to confirm that the energetic particle precipitation responsible for the UV emissions causes the electron density increases in the E region. The integrations up to the topside of these ISR electron density profiles were consistent with the total electron content (TEC) measured by the Polar BEAR satellite. An electron transport model was utilized to determine quantitatively the electron density profiles which could be produced by the particle precipitation, which also produced multiple UV emissions measured by the imager; these profiles were found to be in good agreement with the observed ISR profiles in the E region. This outer scale size is also consistent with the measured phase to amplitude scintillation ratio. An estimate of the linear growth rate of the gradient-drift instability in the E region shows that these plasma density irregularities could have been generated by this process. The mutual consistency of these different sets of measurements provides confidence in the ability of the different techniques to remote sense large- and small-scale plasma density structures in the E region at least during sunspot minimum when the convection-dominated high-latitude F region is fairly weak. 56 refs., 16 figs

  18. An Integrated Use of Experimental, Modeling and Remote Sensing Techniques to Investigate Carbon and Phosphorus Dynamics in the Humid Tropics

    Science.gov (United States)

    Townsend, Alan R.; Asner, Gregory P.; Bustamante, Mercedes M. C.

    2001-01-01

    Moist tropical forests comprise one of the world's largest and most diverse biomes, and exchange more carbon, water, and energy with the atmosphere than any other ecosystem. In recent decades, tropical forests have also become one of the globe's most threatened biomes, subjected to exceptionally high rates of deforestation and land degradation. Thus, the importance of and threats to tropical forests are undeniable, yet our understanding of basic ecosystem processes in both intact and disturbed portions of the moist tropics remains poorer than for almost any other major biome. Our approach in this project was to take a multi-scale, multi-tool approach to address two different problems. First, we wanted to test if land-use driven changes in the cycles of probable limiting nutrients in forest systems were a key driver in the frequently observed pattern of declining pasture productivity and carbon stocks. Given the enormous complexity of land use change in the tropics, in which one finds a myriad of different land use types and intensities overlain on varying climates and soil types, we also wanted to see if new remote sensing techniques would allow some novel links between parameters which could be sensed remotely, and key biogeochemical variables which cannot. Second, we addressed to general questions about the role of tropical forests in the global carbon cycle. First, we used a new approach for quantifying and minimizing non-biological artifacts in the NOAA/NASA AVHRR Pathfinder time series of surface reflectance data so that we could address potential links between Amazonian forest dynamics and ENSO cycles. Second, we showed that the disequilibrium in C-13 exchanged between land and atmosphere following tropical deforestation probably has a significant impact on the use of 13-CO2 data to predict regional fluxes in the global carbon cycle.

  19. Applying aerial digital photography as a spectral remote sensing technique for macrophytic cover assessment in small rural streams

    Science.gov (United States)

    Anker, Y.; Hershkovitz, Y.; Gasith, A.; Ben-Dor, E.

    2011-12-01

    Although remote sensing of fluvial ecosystems is well developed, the tradeoff between spectral and spatial resolutions prevents its application in small streams (habitat scales classifications, acquisition of aerial digital RGB datasets. B. For section scale classification, hyperspectral (HSR) dataset acquisition. C. For calibration, HSR reflectance measurements of specific ground targets, in close proximity to each dataset acquisition swath. D. For habitat scale classification, manual, in-stream flora grid transects classification. The digital RGB datasets were converted to reflectance units by spectral calibration against colored reference plates. These red, green, blue, white, and black EVA foam reference plates were measured by an ASD field spectrometer and each was given a spectral value. Each spectral value was later applied to the spectral calibration and radiometric correction of spectral RGB (SRGB) cube. Spectral calibration of the HSR dataset was done using the empirical line method, based on reference values of progressive grey scale targets. Differentiation between the vegetation species was done by supervised classification both for the HSR and for the SRGB datasets. This procedure was done using the Spectral Angle Mapper function with the spectral pattern of each vegetation species as a spectral end member. Comparison between the two remote sensing techniques and between the SRGB classification and the in-situ transects indicates that: A. Stream vegetation classification resolution is about 4 cm by the SRGB method compared to about 1 m by HSR. Moreover, this resolution is also higher than of the manual grid transect classification. B. The SRGB method is by far the most cost-efficient. The combination of spectral information (rather than the cognitive color) and high spatial resolution of aerial photography provides noise filtration and better sub-water detection capabilities than the HSR technique. C. Only the SRGB method applies for habitat and

  20. Mapping of groundwater potential zones in Salem Chalk Hills, Tamil Nadu, India, using remote sensing and GIS techniques.

    Science.gov (United States)

    Thilagavathi, N; Subramani, T; Suresh, M; Karunanidhi, D

    2015-04-01

    This study proposes to introduce the remote sensing and geographic information system (GIS) techniques in mapping the groundwater potential zones. Remote sensing and GIS techniques have been used to map the groundwater potential zones in Salem Chalk Hills, Tamil Nadu, India. Charnockites and fissile hornblende biotite gneiss are the major rock types in this region. Dunites and peridodites are the ultramafic rocks which cut across the foliation planes of the gneisses and are highly weathered. It comprises magnesite and chromite deposits which are excavated by five mining companies by adopting bench mining. The thickness of weathered and fracture zone varies from 2.2 to 50 m in gneissic formation and 5.8 to 55 m in charnockite. At the contacts of gneiss and charnockite, the thickness ranges from 9.0 to 90.8 m favoring good groundwater potential. The mine lease area is underlined by fractured and sheared hornblende biotite gneiss where groundwater potential is good. Water catchment tanks in this area of 5 km radius are small to moderate in size and are only seasonal. They remain dry during summer seasons. As perennial water resources are remote, the domestic and agricultural activities in this region depend mainly upon the groundwater resources. The mines are located in gently slope area, and accumulation of water is not observed except in mine pits even during the monsoon period. Therefore, it is essential to map the groundwater potential zones for proper management of the aquifer system. Satellite imageries were also used to extract lineaments, hydrogeomorphic landforms, drainage patterns, and land use, which are the major controlling factors for the occurrence of groundwater. Various thematic layers pertaining to groundwater existence such as geology, geomorphology, land use/land cover, lineament, lineament density, drainage, drainage density, slope, and soil were generated using GIS tools. By integrating all the above thematic layers based on the ranks and

  1. A Comparison of Two Above-Ground Biomass Estimation Techniques Integrating Satellite-Based Remotely Sensed Data and Ground Data for Tropical and Semiarid Forests in Puerto Rico

    Science.gov (United States)

    Two above-ground forest biomass estimation techniques were evaluated for the United States Territory of Puerto Rico using predictor variables acquired from satellite based remotely sensed data and ground data from the U.S. Department of Agriculture Forest Inventory Analysis (FIA)...

  2. The possibility of using photogrammetric and remote sensing techniques to model lavaka (gully erosion) development in Madagascar

    Science.gov (United States)

    Raveloson, Andrea; Székely, Balázs; Molnár, Gábor; Rasztovits, Sascha

    2013-04-01

    Gully erosion is a worldwide problem for it has a number of undesirable effects and their development is hard to follow. Madagascar is one of the most affected countries for its highlands are densely covered with gullies named lavakas. Lavaka formation and development seems to be triggered by many regional and local causes but the actual reasons are still poorly understood. Furthermore lavakas differ from normal gullies due to their enormous size and special shape. Field surveys are time consuming and data from two-dimensional measurements and pictures (even aerial) might lack major information for morphologic studies. Therefore close range surveying technologies should be used to get three-dimensional information about these unusual and complex features. This contribution discusses which remote sensing and photogrammetric techniques are adequate to survey the development of lavakas, their volume change and sediment budget. Depending on the types and properties (such as volume, depth, shape, vegetation) of the lavaka different methods will be proposed showing pros and cons of each one of them. Our goal is to review techniques to model, survey and analyze lavakas development to better understand the cause of their formation, special size and shape. Different methods are evaluated and compared from field survey through data processing, analyzing cost-effectiveness, potential errors and accuracy for each one of them. For this purpose we will also consider time- and cost-effectiveness of the softwares able to render the images into 3D model as well as the resolution and accuracy of the outputs. Further studies will concentrate on using the three dimensional models of lavakas which will be later on used for geomorphological studies in order to understand their special shape and size. This is ILARG-contribution #07.

  3. Mapping Of The Hydrothermal Alteration Zones At Haimur Gold Mine Area, South Eastern Desert, Egypt, Using Remote Sensing Techniques

    International Nuclear Information System (INIS)

    Madani, A.A.; Abdel Rahman, E.M.; FA WZY, Kh.M.; EMAM, A.

    2003-01-01

    The utilization of the Landsat-7 ETM+ imagery and scanned aerial photograph for mapping hydrothermal alteration zones at the Haimur gold mine area, south Eastern Desert, Egypt and the production of large scale geologic image map, scale 1 :20 000, using fusion technique are the main tasks of this article. The study area lies at the conjunction of two shear zones, namely the Allaqi shear zone (NW-SE) and the Haimur shear zone (NE-SW). The basement rocks covering Haimur gold mine area include ophiolitic blocks and sheets that were tectonically thrusted over and mixed within a matrix of island arc rocks. Principal Component Analysis, band ratios and data fusion are the main remote sensing techniques applied in the present work. The eigenvalue of the first principal component (PCl) includes 95.9% of the information content of the image whereas PC2 and PC5 mark 3.03% and 0.10%, respectively. The PC5 image was found to represent the highly altered rocks in the study area (serpentinites and carbonates), which display dark image signatures. The metagabbros and metapyroclastics can be easily discriminated on the PC1:R, PC2:G and PC5:B false color composite image in which they have dark red and blue image signatures, respectively. The talc carbonates and the serpentinites have bright image signatures on 5/7 band ratio image whereas metapyroxenites have dark image signatures. The talc carbonates are composed mainly of talc, magnesite and calcite with subordinate amounts of fibrous antigorite. These minerals have absorption features near 2.35 m which lead to increase 5/7 band ratio value. The false color composite ratio image 5/7:R, 4/5:G and 3/1:B was merged with scanned high spatial resolution aerial photograph using IHS transformation method. The resultant fused image was then used to delineate the hydrothermal alteration zones as well as listwaenite ridges exposed at the Haimur gold mine area

  4. Application of remote-sensing techniques to hydrologic studies in selected coal-mine areas of southeastern Kansas

    Science.gov (United States)

    Kenny, J.F.; McCauley, J.R.

    1983-01-01

    Disturbances resulting from intensive coal mining in the Cherry Creek basin of southeastern Kansas were investigated using color and color-infrared aerial photography in conjunction with water-quality data from simultaneously acquired samples. Imagery was used to identify the type and extent of vegetative cover on strip-mined lands and the extent and success of reclamation practices. Drainage patterns, point sources of acid mine drainage, and recharge areas for underground mines were located for onsite inspection. Comparison of these interpretations with water-quality data illustrated differences between the eastern and western parts of the Cherry Creek basin. Contamination in the eastern part is due largely to circulation of water from unreclaimed strip mines and collapse features through the network of underground mines and subsequent discharge of acidic drainage through seeps. Contamination in the western part is primarily caused by runoff and seepage from strip-mined lands in which surfaces have frequently been graded and limed but are generally devoid of mature stands of soil-anchoring vegetation. The successful use of aerial photography in the study of Cherry Creek basin indicates the potential of using remote-sensing techniques in studies of other coal-mined regions. (USGS)

  5. Monitoring land- and water-use dynamics in the Columbia Plateau using remote-sensing computer analysis and integration techniques

    International Nuclear Information System (INIS)

    Wukelic, G.E.; Foote, H.P.; Blair, S.C.; Begej, C.D.

    1981-09-01

    This study successfully utilized advanced, remote-sensing computer-analysis techniques to quantify and map land- and water-use trends potentially relevant to siting, developing, and operating a national high-level nuclear waste repository on the US Department of Energy's (DOE) Hanford Site in eastern Washington State. Specifically, using a variety of digital data bases (primarily multidate Landsat data) and digital analysis programs, the study produced unique numerical data and integrated data reference maps relevant to regional (Columbia Plateau) and localized (Pasco Basin) hydrologic considerations associated with developing such a facility. Accordingly, study results should directly contribute to the preparation of the Basalt Waste Isolation Project site-characterization report currently in progress. Moreover, since all study data developed are in digital form, they can be called upon to contribute to furute reference repository location monitoring and reporting efforts, as well as be utilized in other DOE programmatic areas having technical and/or environmental interest in the Columbia Plateau region. The results obtained indicate that multidate digital Landsat data provide an inexpensive, up-to-date, and accurate data base and reference map of natural and cultural features existing in any region. These data can be (1) computer enhanced to highlight selected surface features of interest; (2) processed/analyzed to provide regional land-cover/use information and trend data; and (3) combined with other line and point data files to accomodate interactive, correlative analyses and integrated color-graphic displays to aid interpretation and modeling efforts

  6. Flood Hazard Assessment along the Western Regions of Saudi Arabia using GIS-based Morphometry and Remote Sensing Techniques

    KAUST Repository

    Shi, Qianwen

    2014-12-01

    Flash flooding, as a result of excessive rainfall in a short period, is considered as one of the worst environmental hazards in arid regions. Areas located in the western provinces of Saudi Arabia have experienced catastrophic floods. Geomorphologic evaluation of hydrographic basins provides necessary information to define basins with flood hazard potential in arid regions, especially where long-term field observations are scarce and limited. Six large basins (from North to South: Yanbu, Rabigh, Khulais, El-Qunfza, Baish and Jizan) were selected for this study because they have large surface areas and they encompass high capacity dams at their downstream areas. Geographic Information System (GIS) and remote sensing techniques were applied to conduct detailed morphometric analysis of these basins. The six basins were further divided into 203 sub-basins based on their drainage density. The morphometric parameters of the six basins and their associated 203 sub-basins were calculated to estimate the degree of flood hazard by combining normalized values of these parameters. Thus, potential flood hazard maps were produced from the estimated hazard degree. Furthermore, peak runoff discharge of the six basins and sub-basins were estimated using the Snyder Unit Hydrograph and three empirical models (Nouh’s model, Farquharson’s model and Al-Subai’s model) developed for Saudi Arabia. Additionally, recommendations for flood mitigation plans and water management schemes along these basins were further discussed.

  7. Study the impact of rainfall on the United Arab Emirates dams using remote sensing and image processing techniques

    Science.gov (United States)

    Al Marzouqi, Fatima A.; Al Besher, Shaikha A.; Al Mansoori, Saeed H.

    2017-10-01

    The United Arab Emirates (UAE) has given great attention to the environment and sustainable development through applications of best practices of global standards that ensure optimal investment in natural resources. Since the UAE is located in an arid region which is known as dry, sandy and get a small amount of rainfall, thus the water resources are limited and accordingly, the government has initiated an integrated water resources management (IWRM) strategy to meet the increasing demands of water. Dams are considered as one of the important strategies that are suitable for this arid region. An event of rainfall if between heavy to severe in a short duration could cause flash floods and damages to population centers and areas of agriculture nearby. To prevent that from happening, several dams and barriers were built to protect human life and infrastructure. Besides contribution to enhance the water resources and use them optimally to irrigate the growing agricultural areas across the country. Geographically, most of the dams were located in the northern and eastern part of the UAE, around mountainous areas. This study aims to monitor the changes that occurred to five dams of the north-eastern region of the UAE during 2015 and 2016 through the use of remote sensing technology of optical images captured by "DubaiSat-2". The segmentation approach utilized in this study is based on a band ratio technique called Normalized Difference Water Index (NDWI). The experimental results revealed that the proposed approach is efficient in detecting dams from multispectral satellite images.

  8. Sensing of nucleosides, nucleotides and DNA using luminescent Eu complex by normal and time resolved fluorescence techniques

    Energy Technology Data Exchange (ETDEWEB)

    Azab, Hassan A.; Anwar, Zeinab M. [Chemistry Department, Faculty of Science, Suez Canal University, 41522 Ismailia (Egypt); Kamel, Rasha M., E-mail: rashamoka@yahoo.com [Chemistry Department, Faculty of Science, Suez University, 43518 Suez (Egypt); Rashwan, Mai S. [Chemistry Department, Faculty of Science, Suez Canal University, 41522 Ismailia (Egypt)

    2016-01-15

    The interaction of Eu-1,4,7,10-tetraazacyclododecane (Cyclen) complex by using 4,4,4 trifluoro-1-(2-naphthyl)1,3-butanedione (TNB) as antenna with some nucleosides (guanosine, adenosine, cytidine and inosine), nucleotides (AMP, GMP, CMP, ATP and IMP) and DNA is studied using fluorescence technique. Two detection modes are employed one is the time-resolved mode, and the other is the normal luminescence mode. The time-resolved mode is more sensing than the normal luminescence mode in the present study. By using Benesi–Hildebrand equation binding constants were determined at various temperatures. Thermodynamic parameters showed that the reaction is spontaneous through the obtained negative values of free energy change ΔG. The enthalpy ΔH and the entropy ΔS of reactions were all determined. - Highlights: • This is an application for the detection of biologically important ligands. • The detection limits, binding constants and thermodynamic parameters were evaluated. • Effect of some interferents on the detection of DNA has been investigated.

  9. Sensing of nucleosides, nucleotides and DNA using luminescent Eu complex by normal and time resolved fluorescence techniques

    International Nuclear Information System (INIS)

    Azab, Hassan A.; Anwar, Zeinab M.; Kamel, Rasha M.; Rashwan, Mai S.

    2016-01-01

    The interaction of Eu-1,4,7,10-tetraazacyclododecane (Cyclen) complex by using 4,4,4 trifluoro-1-(2-naphthyl)1,3-butanedione (TNB) as antenna with some nucleosides (guanosine, adenosine, cytidine and inosine), nucleotides (AMP, GMP, CMP, ATP and IMP) and DNA is studied using fluorescence technique. Two detection modes are employed one is the time-resolved mode, and the other is the normal luminescence mode. The time-resolved mode is more sensing than the normal luminescence mode in the present study. By using Benesi–Hildebrand equation binding constants were determined at various temperatures. Thermodynamic parameters showed that the reaction is spontaneous through the obtained negative values of free energy change ΔG. The enthalpy ΔH and the entropy ΔS of reactions were all determined. - Highlights: • This is an application for the detection of biologically important ligands. • The detection limits, binding constants and thermodynamic parameters were evaluated. • Effect of some interferents on the detection of DNA has been investigated.

  10. Monitoring of petroleum hydrocarbon pollution in surface waters by a direct comparison of fluorescence spectroscopy and remote sensing techniques

    Energy Technology Data Exchange (ETDEWEB)

    De Domenico, L.; Crisafi, E. (Consiglio Nazionale delle Ricerche, Messina (Italy). Thalassografic Inst.); Magazzu, G. (Lecce Univ. (Italy). Dept. of Biology); Puglisi, A. (Mediterranean Oceanological Centre (CEOM), Palermo (Italy)); La Rosa, A. (Air-Survey, Italy s.r.l., Catania (Italy))

    1994-10-01

    Oil pollution levels were estimated using simultaneous acquisition of data from remote sensing by helicopter and fluorescence spectroscopy on surface samples. Laboratory quantitative analysis of hydrocarbons was used to calibrate remotely sensed data. The data were treated using a computer to generate a colour-coded map not attainable with conventional methods representing seawater pollution. Results were in good agreement and indicated that remotely sensed data together with those achieved by fluorescence spectroscopy are applicable for monitoring hydrocarbon pollution. (author)

  11. Monitoring of petroleum hydrocarbon pollution in surface waters by a direct comparison of fluorescence spectroscopy and remote sensing techniques

    International Nuclear Information System (INIS)

    De Domenico, L.; Crisafi, E.; La Rosa, A.

    1994-01-01

    Oil pollution levels were estimated using simultaneous acquisition of data from remote sensing by helicopter and fluorescence spectroscopy on surface samples. Laboratory quantitative analysis of hydrocarbons was used to calibrate remotely sensed data. The data were treated using a computer to generate a colour-coded map not attainable with conventional methods representing seawater pollution. Results were in good agreement and indicated that remotely sensed data together with those achieved by fluorescence spectroscopy are applicable for monitoring hydrocarbon pollution. (author)

  12. X-ray and visible light transmission as two-dimensional, full-field moisture-sensing techniques: A preliminary comparison

    International Nuclear Information System (INIS)

    Tidwell, V.C.; Glass, R.J.

    1992-01-01

    Two independent high-resolution moisture-sensing techniques, x-ray absorption and light transmission, have been developed for use in two-dimensional, thin-slab experimental systems. The techniques yield full-field measurement capabilities with exceptional resolution of moisture content in time and space. These techniques represent powerful tools for the experimentalist to investigate processes governing unsaturated flow and transport through fractured and nonfractured porous media. Evaluation of these techniques has been accomplished by direct comparison of data obtained by means of the x-ray and light techniques as well as comparison with data collected by gravimetric and gamma-ray densitometry techniques. Results show excellent agreement between data collected by the four moisture-content measurement techniques. This program was established to support the Yucca Mountain Site Characterization Project

  13. Using in-field and remote sensing techniques for the monitoring of small-scale permafrost decline in Northern Quebec

    Science.gov (United States)

    May, Inga; Kim, Jun Su; Spannraft, Kati; Ludwig, Ralf; Hajnsek, Irena; Bernier, Monique; Allard, Michel

    2010-05-01

    Permafrost-affected soils represent about 45% of Canadian arctic and subarctic regions. Under the recently recorded changed climate conditions, the areas located in the discontinuous permafrost zones are likely to belong to the most impacted environments. Degradations of Palsas and lithalsas as being the most distinct permafrost landforms as well as an extension of wetlands have been observe during the past decades by several research teams all over the northern Arctic. These alterations, caused by longer an warmer thawing periods, are expected to become more and more frequent in the future. The effects on human beings and on the surrounding sensitive ecosystems are presumed to be momentous and of high relevance. Hence, there is a high demand for new techniques that are able to detect, and possibly even predict, the behavior of the permafrost within a changing environment. The presented study is part of an international research collaboration between LMU, INRS and UL within the framework of ArcticNet. The project intends to develop a monitoring system strongly based on remote sensing imagery and GIS-based data analysis, using a test site located in northern Quebec (Umiujaq, 56°33' N, 76°33' W). It shall be investigated to which extent the interpretation of satellite imagery is feasible to partially substitute costly and difficult geophysical point measurements, and to provide spatial knowledge about the major factors that control permafrost dynamics and ecosystem change. In a first step, these factors, mainly expected to be determined from changes in topography, vegetation cover and snow cover, are identified and validated by means of several consecutive ground truthing initiatives supporting the analysis of multi-sensoral time series of remotely sensed information. Both sources are used to generate and feed different concepts for modeling permafrost dynamics by ways of parameter retrieval and data assimilation. On this poster, the outcomes of the first project

  14. Monitoring land and water uses in the Columbia Plateau using remote-sensing computer analysis and integration techniques

    International Nuclear Information System (INIS)

    Leonhart, L.S.; Wukelic, G.E.; Foote, H.P.; Blair, S.C.

    1983-09-01

    This study successfully utilized advanced, remote-sensing computer-analysis techniques to quantify and map land- and water-use trends potentially relevant to siting, developing, and operating a high-level national, nuclear waste repository on the US Department of Energy's Hanford Site in eastern Washington State. Specifically, using a variety of digital data bases (primarily multidate LANDSAT data) and digital analysis programs, the study produced unique numerical data and integrated data reference maps relevant to regional (Columbia Plateau) and localized (Pasco Basin) hydrologic considerations associated with developing such a facility. Because all study data developed are in digital form, they can be called upon to contribute to future reference repository location monitoring and reporting efforts, as well as to be utilized in other US Department of Energy programmatic areas having technical and/or environmental interest in the Columbia Plateau region. The results obtained indicate that multidate digital LANDSAT data provide an inexpensive, up-to-date, and accurate data base and reference map of natural and cultural features existing in any region. These data can be (1) computer enhanced to highlight selected surface features of interest; (2) processed/analyzed to provide regional land cover/use information and trend data; and (3) combined with other line and point data files to accommodate interactive, correlative analyses and integrated colorgraphic displays to aid interpretation and modeling efforts. Once the digital base is established, selected site information can be assessed immediately, various forms of data can be accessed concurrently or separately, and data sets may be displayed or mapped at any scale. Available editing software provides the opportunity to generate credible scenarios for a site while preserving the actual data base. 6 references

  15. Spatio Temporal Change of Selected Glaciers Along Karakoram Highway from 1994-2017 Using Remote Sensing and GIS Techniques

    Science.gov (United States)

    Anwar, Yasmeen; Iqbal, Javed

    2018-04-01

    With the acceleration of global warming glaciers are receding rapidly. Monitoring of glaciers are important because they caused outburst of floods the past. This research delivers a systematic approach for the assessment of glaciers i.e. Batura, Passu, Ghulkin and Gulmit cover along the Karakoram Highway. Main reason to select these glaciers was their closeness to Karakoram Highway which plays an important role in China-Pakistan economic corridor (CPEC). This study incorporates the techniques of Geographical Information System and Remote Sensing (GIS & RS). For this study, Landsat 4,5,7,8 images were taken for the years of 1994, 2002, 2009, 2013 and 2017. Using the said images supervised classification was done in ArcMap 10.3 version to identify the changes in glaciers. The area was categorized into six major classes' i.e. Fresh snow, Glaciers, Debris, Vegetation, Water bodies and Open land. Classified results showed a decrease in the area of Glaciers, almost 3.5% from 1994 to 2017. GLIMS data about boundary of glaciers of 1999 and 2007 was compared with the classified results which show decrease in terminus of glaciers. Batura glacier has been receded almost 0.6 km from 1999 to 2017, whereas Passu glaciers receded 0.3 km, whereas Gulmit and Ghulkin glaciers are more stable than Passu and Batura with the difference of -0.05 and +0.57 km respectively. At the end results from classified maps were compared with the climatic data. Wherein temperature is rapidly increasing resulting in melting of glaciers and can cause shrinkage of fresh water as well as destruction to Karakoram highway in case of outburst floods.

  16. Integration of Remote Sensing Techniques for Intensity Zonation within a Landslide Area: A Case Study in the Northern Apennines, Italy

    Directory of Open Access Journals (Sweden)

    Veronica Tofani

    2014-01-01

    Full Text Available This paper describes the application of remote sensing techniques, based on SAR interferometry for the intensity zonation of the landslide affecting the Castagnola village (Northern Apennines of Liguria region, Italy. The study of the instability conditions of the landslide started in 2001 with the installation of conventional monitoring systems, such as inclinometers and crackmeters, ranging in time from April 2001 to April 2002, which allowed to define the deformation rates of the landslide and to locate the actual landslide sliding surface, as well as to record the intensity of the damages and cracks affecting the buildings located within the landslide perimeter. In order to investigate the past long-term evolution of the ground movements a PSI (Persistent Scatterers Interferometry analysis has been performed making use of a set of ERS1/ERS2 images acquired in 1992–2001 period. The outcome of the PSI analysis has allowed to confirm the landslide extension as mapped within the official landslide inventory map as well as to reconstruct the past line-of-sight average velocities of the landslide and the time-series deformations. Following the high velocities detected by the PSI, and the extensive damages surveyed in the buildings of the village, the Ground-Based Interferometric Synthetic Aperture Radar (GBInSAR system has been installed. The GBInSAR monitoring system has been equipped during October 2008 and three distinct campaigns have been carried out from October 2008 until March 2009. The interpretation of the data has allowed deriving a multi-temporal deformation map of the landslide, showing the up-to-date displacement field and the average landslide velocity. A new landslide boundary has been defined and two landslide sectors characterized by different displacement rates have been identified.

  17. Nondestructive sensing and stress transferring evaluation of carbon nanotube, nanofiber, and Ni nanowire strands/polymer composites using an electro-micromechanical technique

    Science.gov (United States)

    Park, Joung-Man; Kim, Sung-Ju; Jung, Jin-Gyu; Hansen, George; Yoon, Dong-Jin

    2006-03-01

    Nondestructive damage sensing and load transfer mechanisms of carbon nanotube (CNT), nanofiber (CNF), and Ni nanowire strands/epoxy composites were investigated using electro-micromechanical technique. Electrospun PVDF nanofiber was also prepared as a piezoelectric sensor. High volume% CNT/epoxy composites showed significantly higher tensile properties than neat and low volume% CNT/epoxy composites. CNF /epoxy composites with smaller aspect ratio showed higher apparent modulus due to high volume content in case of shorter aspect ratio. Using Ni nanowire strands/silicone composites with different content, load sensing response of electrical contact resistivity was investigated under tensile and compression condition. The mechanical properties of Ni nanowire strands with different type and content/epoxy composites were indirectly measured apparent modulus using uniformed cyclic loading and electro-pullout test. CNT or Ni nanowire strands/epoxy composites showed humidity and temperature sensing within limited ranges, 20 vol% reinforcement. Thermal treated electrospun PVDF nanofiber showed higher mechanical properties than the untreated case due to increased crystallization, whereas load sensing decreased in heat treated case. Electrospun PVDF nanofiber web also responded the sensing effect on humidity and temperature. Nanocomposites using CNT, CNF, Ni nanowire strands, and electrospun PVDF nanofiber web can be applicable practically for multifunctional applications nondestructively.

  18. The Changing Face of the of Former Soviet Cities: Elucidated by Remote Sensing and Machine Learning Techniques

    Science.gov (United States)

    Poghosyan, Armen

    2017-04-01

    Despite remote sensing of urbanization emerged as a powerful tool to acquire critical knowledge about urban growth and its effects on global environmental change, human-environment interface as well as environmentally sustainable urban development, there is lack of studies utilizing remote sensing techniques to investigate urbanization trends in the Post-Soviet states. The unique challenges accompanying the urbanization in the Post-Soviet republics combined with the expected robust urban growth in developing countries over the next several decades highlight the critical need for a quantitative assessment of the urban dynamics in the former Soviet states as they navigate towards a free market democracy. This study uses total of 32 Level-1 precision terrain corrected (L1T) Landsat scenes with 30-m resolution as well as further auxiliary population and economic data for ten cities distributed in nine former Soviet republics to quantify the urbanization patterns in the Post-Soviet region. Land cover in each urban center of this study was classified by using Support Vector Machine (SVM) learning algorithm with overall accuracies ranging from 87 % to 97 % for 29 classification maps over three time steps during the past twenty-five years in order to estimate quantities, trends and drivers of urban growth in the study area. The results demonstrated several spatial and temporal urbanization patterns observed across the Post-Soviet states and based on urban expansion rates the cities can be divided into two groups, fast growing and slow growing urban centers. The relatively fast-growing urban centers have an average urban expansion rate of about 2.8 % per year, whereas the slow growing cities have an average urban expansion rate of about 1.0 % per year. The total area of new land converted to urban environment ranged from as low as 26 km2 to as high as 780 km2 for the ten cities over the 1990 - 2015 period, while the overall urban land increase ranged from 11.3 % to 96

  19. Synthesis of ZnO thin film by sol-gel spin coating technique for H2S gas sensing application

    Science.gov (United States)

    Nimbalkar, Amol R.; Patil, Maruti G.

    2017-12-01

    In this present work, zinc oxide (ZnO) thin film synthesized by a simple sol-gel spin coating technique. The structural, morphology, compositional, microstructural, optical, electrical and gas sensing properties of the film were studied by using XRD, FESEM, EDS, XPS, HRTEM, Raman, FTIR and UV-vis techniques. The ZnO thin film shows hexagonal wurtzite structure with a porous structured morphology. Gas sensing performance of synthesized ZnO thin film was tested initially for H2S gas at different operating temperatures as well as concentrations. The maximum gas response is achieved towards H2S gas at 300 °C operating temperature, at 100 ppm gas concentration as compared to other gases like CH3OH, Cl2, NH3, LPG, CH3COCH3, and C2H5OH with a good stability.

  20. Assessment of Soil Degradation in The Northern Part of Nile Delta, Egypt, Using Remote Sensing and Gis Techniques

    International Nuclear Information System (INIS)

    El Nahry, A.H.; Ibraheim, M.M.; El Baroudy, A.A.

    2008-01-01

    The present work aims at monitoring soil degradation process within the last two decades in the northern part of Nile Delta .The investigated area lies between longitudes 31 00 and 31 15 E and latitudes 31 00 and 31 37 N, covering an area of about 344584.01 feddans. Detecting soil degradation and recognizing its various types is a necessity to take the practical measures for combating it as well as conserving and keeping the agricultural soil healthy. Land degradation was assessed by adopting new approach through the integration of GLASOD/ FAa approach and Remote Sensing / GIS techniques .The main types of human induced soil degradation that observed in the studied area are salinity, alkalinity (sodicity), compaction and water logging .On the other hand water erosion because of sea rise is assessed. The obtained data showed that, areas that were affected by compaction increment have been spatially enlarged by 40.9 % and those affected by compaction decrease have been spatially reduced by 22.6 % of the total area, meanwhile areas that have been unchanged were estimated by 36.5% of the total area. The areas that were affected by water logging increase have been spatially enlarged by 52.2 % and those affected by water logging decrease have been spatially reduced by 10.1 % of the total area, meanwhile the areas which have been unchanged were represented by 37.7 % of the total area. Areas that were affected by salinity increase have been spatially enlarged by 31.4 % of the total area and those affected by salinity decrease have been reduced by 43.3 % of the total area. An area represented by 25.2 % of the total area has been unchanged. Alkalinization (sodicity) was expressed by the exchangeable sodium percentage (ESP).Areas that were affected by sodicity increase have been spatially enlarged by 33.7 %, meanwhile those affected by sodicity decrease have been spatially reduced by 33.6 % of the total area. An area represented by 32.6 % of the total area has been unchanged

  1. Using Remote Sensing and Spatial Analyses Techniques For Optimum Land Use Planning, West of Suez Canal, Egypt

    International Nuclear Information System (INIS)

    Elnahry, A.H.; Mohamed, E.S.; Nasar, N.

    2008-01-01

    The current study aims at using remote sensing (RS) and Geographic Information System (GIS) techniques for optimum landuse planning of the area located north Ismaillia - south Port Said Governorates on the western side of Suez Canal. It is bounded by longitudes 32 degree 10 and 32 degree 20 E and latitudes 30 0 4 rand 31 0 00' N. Great part of this area is under reclamation and suffering from improper landuse. Ten geomorphologic units were recognized i.e. clay flats, decantation basins, overflow basins, sand sheets, gypsiferous flats, old river terraces, sand flats, turtle backs, lake beds, and recent river terraces. Using US Soil Taxonomy, two soil orders could be identified; Entisols and Aridisols which are represented by ten great groups: Typic Haplosalids, Typic Haplogypsids, Typic Toriorthents, Vertic Argigypsids, Vertic Torrijluvents, Vertic Natrargids ,Typic Torripsamments, Typic Torrifluvens, Aquic Torriorthents and Typic Psammaquents. Surface and ground water with respect to salinity and alkalinity hazards were investigated ,where surface water of the main canals was classified as C2-S 1, C3-S 1 ,C4-S2 and C4-S4, meanwhile the ground water was classified as C3-S 1, C3 -S 1 ,C4-S2 ,C4-SI and C4-S4 .Optimum landuse planning of the studied area includes three approaches i.e., physical planning, optimum cropping pattern and other uses. Physical planning includes designing of three geospatial models. I-treatment plant site selection model. 2-central village site selection model and 3- shortest path for new Canal model. Current cropping pattern was obtained by matching the crop requirements with soil characteristics, where soils of high sand flats and low gypsiferrous flats are currently highly suitable (S2) for sugar beat, alfalfa and cotton, soils of low sand flats are currently highly suitable (S2) for olive, citrus and melon, soils of low recent river terraces are currently highly suitable (S2) for sugar beat, cotton, corn and rice ,soils of moderately

  2. Remote Sensing Techniques in Monitoring Post-Fire Effects and Patterns of Forest Recovery in Boreal Forest Regions: A Review

    Directory of Open Access Journals (Sweden)

    Thuan Chu

    2013-12-01

    Full Text Available The frequency and severity of forest fires, coupled with changes in spatial and temporal precipitation and temperature patterns, are likely to severely affect the characteristics of forest and permafrost patterns in boreal eco-regions. Forest fires, however, are also an ecological factor in how forest ecosystems form and function, as they affect the rate and characteristics of tree recruitment. A better understanding of fire regimes and forest recovery patterns in different environmental and climatic conditions will improve the management of sustainable forests by facilitating the process of forest resilience. Remote sensing has been identified as an effective tool for preventing and monitoring forest fires, as well as being a potential tool for understanding how forest ecosystems respond to them. However, a number of challenges remain before remote sensing practitioners will be able to better understand the effects of forest fires and how vegetation responds afterward. This article attempts to provide a comprehensive review of current research with respect to remotely sensed data and methods used to model post-fire effects and forest recovery patterns in boreal forest regions. The review reveals that remote sensing-based monitoring of post-fire effects and forest recovery patterns in boreal forest regions is not only limited by the gaps in both field data and remotely sensed data, but also the complexity of far-northern fire regimes, climatic conditions and environmental conditions. We expect that the integration of different remotely sensed data coupled with field campaigns can provide an important data source to support the monitoring of post-fire effects and forest recovery patterns. Additionally, the variation and stratification of pre- and post-fire vegetation and environmental conditions should be considered to achieve a reasonable, operational model for monitoring post-fire effects and forest patterns in boreal regions.

  3. Evaluation of water-use efficiency in foxtail millet (Setaria italica) using visible-near infrared and thermal spectral sensing techniques.

    Science.gov (United States)

    Wang, Meng; Ellsworth, Patrick Z; Zhou, Jianfeng; Cousins, Asaph B; Sankaran, Sindhuja

    2016-05-15

    Water limitations decrease stomatal conductance (g(s)) and, in turn, photosynthetic rate (A(net)), resulting in decreased crop productivity. The current techniques for evaluating these physiological responses are limited to leaf-level measures acquired by measuring leaf-level gas exchange. In this regard, proximal sensing techniques can be a useful tool in studying plant biology as they can be used to acquire plant-level measures in a high-throughput manner. However, to confidently utilize the proximal sensing technique for high-throughput physiological monitoring, it is important to assess the relationship between plant physiological parameters and the sensor data. Therefore, in this study, the application of rapid sensing techniques based on thermal imaging and visual-near infrared spectroscopy for assessing water-use efficiency (WUE) in foxtail millet (Setaria italica (L.) P. Beauv) was evaluated. The visible-near infrared spectral reflectance (350-2500 nm) and thermal (7.5-14 µm) data were collected at regular intervals from well-watered and drought-stressed plants in combination with other leaf physiological parameters (transpiration rate-E, A(net), g(s), leaf carbon isotopic signature-δ(13)C(leaf), WUE). Partial least squares regression (PLSR) analysis was used to predict leaf physiological measures based on the spectral data. The PLSR modeling on the hyperspectral data yielded accurate and precise estimates of leaf E, gs, δ(13)C(leaf), and WUE with coefficient of determination in a range of 0.85-0.91. Additionally, significant differences in average leaf temperatures (~1°C) measured with a thermal camera were observed between well-watered plants and drought-stressed plants. In summary, the visible-near infrared reflectance data, and thermal images can be used as a potential rapid technique for evaluating plant physiological responses such as WUE. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Documentation of the ground for the planned MERO-IKL oil pipeline using the remote sensing technique

    International Nuclear Information System (INIS)

    Kult, L.; Vavra, J.; Sara, V.

    1994-02-01

    Complete photographic documentation of the planned route for the Ingolstadt-Kralupy-Litvinov pipeline was obtained by remote sensing; the vegetation cover sites and their avitalities were identified and described. The documentation identifies areas of avital plants, and defines potentially hazardous sources of soil or water pollution along the planned route. (J.B.). 1 tab., 17 figs

  5. A vision-based driver nighttime assistance and surveillance system based on intelligent image sensing techniques and a heterogamous dual-core embedded system architecture.

    Science.gov (United States)

    Chen, Yen-Lin; Chiang, Hsin-Han; Chiang, Chuan-Yen; Liu, Chuan-Ming; Yuan, Shyan-Ming; Wang, Jenq-Haur

    2012-01-01

    This study proposes a vision-based intelligent nighttime driver assistance and surveillance system (VIDASS system) implemented by a set of embedded software components and modules, and integrates these modules to accomplish a component-based system framework on an embedded heterogamous dual-core platform. Therefore, this study develops and implements computer vision and sensing techniques of nighttime vehicle detection, collision warning determination, and traffic event recording. The proposed system processes the road-scene frames in front of the host car captured from CCD sensors mounted on the host vehicle. These vision-based sensing and processing technologies are integrated and implemented on an ARM-DSP heterogamous dual-core embedded platform. Peripheral devices, including image grabbing devices, communication modules, and other in-vehicle control devices, are also integrated to form an in-vehicle-embedded vision-based nighttime driver assistance and surveillance system.

  6. Modeling and diagnostic techniques applicable to the analysis of pressure noise in pressurized water reactors and pressure-sensing systems

    International Nuclear Information System (INIS)

    Mullens, J.A.; Thie, J.A.

    1984-01-01

    Pressure noise data from a PWR are interpreted by means of a computer-implemented model. The model's parameters, namely hydraulic impedances and noise sources, are either calculated or deduced from fits to data. Its accuracy is encouraging and raises the possibility of diagnostic assistance for nuclear plant monitoring. A number of specific applications of pressure noise in the primary system of a PWR and in a pressure sensing system are suggested

  7. Examining fire-induced forest changes using novel remote sensing technique: a case study in a mixed pine-oak forest

    Science.gov (United States)

    Meng, R.; Wu, J.; Zhao, F. R.; Cook, B.; Hanavan, R. P.; Serbin, S.

    2017-12-01

    Fire-induced forest changes has long been a central focus for forest ecology and global carbon cycling studies, and is becoming a pressing issue for global change biologists particularly with the projected increases in the frequency and intensity of fire with a warmer and drier climate. Compared with time-consuming and labor intensive field-based approaches, remote sensing offers a promising way to efficiently assess fire effects and monitor post-fire forest responses across a range of spatial and temporal scales. However, traditional remote sensing studies relying on simple optical spectral indices or coarse resolution imagery still face a number of technical challenges, including confusion or contamination of the signal by understory dynamics and mixed pixels with moderate to coarse resolution data (>= 30 m). As such, traditional remote sensing may not meet the increasing demand for more ecologically-meaningful monitoring and quantitation of fire-induced forest changes. Here we examined the use of novel remote sensing technique (i.e. airborne imaging spectroscopy and LiDAR measurement, very high spatial resolution (VHR) space-borne multi-spectral measurement, and high temporal-spatial resolution UAS-based (Unmanned Aerial System) imagery), in combination with field and phenocam measurements to map forest burn severity across spatial scales, quantify crown-scale post-fire forest recovery rate, and track fire-induced phenology changes in the burned areas. We focused on a mixed pine-oak forest undergoing multiple fire disturbances for the past several years in Long Island, NY as a case study. We demonstrate that (1) forest burn severity mapping from VHR remote sensing measurement can capture crown-scale heterogeneous fire patterns over large-scale; (2) the combination of VHR optical and structural measurements provides an efficient means to remotely sense species-level post-fire forest responses; (3) the UAS-based remote sensing enables monitoring of fire

  8. SU-C-213-04: Application of Depth Sensing and 3D-Printing Technique for Total Body Irradiation (TBI) Patient Measurement and Treatment Planning

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M; Suh, T [Department of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of); Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of); Han, B; Xing, L [Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA (United States); Jenkins, C [Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA (United States); Department of Mechanical Engineering, Stanford University, Palo Alto, CA (United States)

    2015-06-15

    Purpose: To develop and validate an innovative method of using depth sensing cameras and 3D printing techniques for Total Body Irradiation (TBI) treatment planning and compensator fabrication. Methods: A tablet with motion tracking cameras and integrated depth sensing was used to scan a RANDOTM phantom arranged in a TBI treatment booth to detect and store the 3D surface in a point cloud (PC) format. The accuracy of the detected surface was evaluated by comparison to extracted measurements from CT scan images. The thickness, source to surface distance and off-axis distance of the phantom at different body section was measured for TBI treatment planning. A 2D map containing a detailed compensator design was calculated to achieve uniform dose distribution throughout the phantom. The compensator was fabricated using a 3D printer, silicone molding and tungsten powder. In vivo dosimetry measurements were performed using optically stimulated luminescent detectors (OSLDs). Results: The whole scan of the anthropomorphic phantom took approximately 30 seconds. The mean error for thickness measurements at each section of phantom compare to CT was 0.44 ± 0.268 cm. These errors resulted in approximately 2% dose error calculation and 0.4 mm tungsten thickness deviation for the compensator design. The accuracy of 3D compensator printing was within 0.2 mm. In vivo measurements for an end-to-end test showed the overall dose difference was within 3%. Conclusion: Motion cameras and depth sensing techniques proved to be an accurate and efficient tool for TBI patient measurement and treatment planning. 3D printing technique improved the efficiency and accuracy of the compensator production and ensured a more accurate treatment delivery.

  9. SU-C-213-04: Application of Depth Sensing and 3D-Printing Technique for Total Body Irradiation (TBI) Patient Measurement and Treatment Planning

    International Nuclear Information System (INIS)

    Lee, M; Suh, T; Han, B; Xing, L; Jenkins, C

    2015-01-01

    Purpose: To develop and validate an innovative method of using depth sensing cameras and 3D printing techniques for Total Body Irradiation (TBI) treatment planning and compensator fabrication. Methods: A tablet with motion tracking cameras and integrated depth sensing was used to scan a RANDOTM phantom arranged in a TBI treatment booth to detect and store the 3D surface in a point cloud (PC) format. The accuracy of the detected surface was evaluated by comparison to extracted measurements from CT scan images. The thickness, source to surface distance and off-axis distance of the phantom at different body section was measured for TBI treatment planning. A 2D map containing a detailed compensator design was calculated to achieve uniform dose distribution throughout the phantom. The compensator was fabricated using a 3D printer, silicone molding and tungsten powder. In vivo dosimetry measurements were performed using optically stimulated luminescent detectors (OSLDs). Results: The whole scan of the anthropomorphic phantom took approximately 30 seconds. The mean error for thickness measurements at each section of phantom compare to CT was 0.44 ± 0.268 cm. These errors resulted in approximately 2% dose error calculation and 0.4 mm tungsten thickness deviation for the compensator design. The accuracy of 3D compensator printing was within 0.2 mm. In vivo measurements for an end-to-end test showed the overall dose difference was within 3%. Conclusion: Motion cameras and depth sensing techniques proved to be an accurate and efficient tool for TBI patient measurement and treatment planning. 3D printing technique improved the efficiency and accuracy of the compensator production and ensured a more accurate treatment delivery

  10. Flood Prediction for the Tam Nong District in Mekong Delta Using Hydrological Modelling and Hydrologic Remote Sensing Technique

    Science.gov (United States)

    Kappas, Martin; Nguyen Hong, Quang; Thanh, Nga Pham Thi; Thu, Hang Le Thi; Nguyen Vu, Giang; Degener, Jan; Rafiei Emam, Ammar

    2017-04-01

    There has been an increasing attention to the large trans-boundary Mekong river basin due to various problems related to water management and flood control, for instance. Vietnam Mekong delta is located at the downstream of the river basin where is affected most by this human-induced reduction in flows from the upstream. On the other hand, the flood plain of nine anastomosing channels is increasingly effected by the seawater intrusion due to sea level rising of climate change. This results in negative impacts of salinization, drought, and floods, while formerly flooding had frequently brought positive natural gain of irrigation water and alluvial aggradation. In this research, our aim is to predict flooding for the better water management adaptation and control. We applied the model HEC-SSP 2.1 to analyze flood flow frequency, two-dimensional unsteady flow calculations in HEC-RAS 5.0 for simulating a floodplain inundation. Remote sensing-based water level (Jason-2) and inundation map were used for validation and comparison with the model simulations. The results revealed a reduction of water level at all the monitoring stations, particularly in the last decade. In addition, a trend of the inundation extension gradually declined, but in some periods it remained severe due to water release from upstream reservoirs during the rainy season (October-November). We found an acceptable agreement between the HEC-RAS and remote sensing flooding maps (around 70%). Based on the flood routine analysis, we could conclude that the water level will continue lower and lead to a trend of drought and salinization harsher in the near future. Keywords: Mekong delta, flood control, inundation, water management, hydrological modelling, remote sensing

  11. Nasa's Operation Icebridge and Remote Sensing Techniques in the K-12 Classroom as a STEM Integration Project

    Science.gov (United States)

    McCarthy, K.

    2017-12-01

    NASA's Operation IceBridge (OIB), the largest airborne survey of Earth's polar ice uses remote sensing methods to collect data on changing sea and land ice. PolarTREC teacher Kelly McCarthy joined the team during the 2016 Spring Arctic Campaign. This presentation explores ways in which k-12 students were engaged in the work being done by OIB through classroom learning experiences, digital communications, and independent research. Initially, digital communication including chats via NASA's Mission Tools Suite for Education (MTSE) platform was leveraged to engage students in the daily work of OIB. Two lessons were piloted with student groups during the 2016-2017 academic year both for students who actively engaged in communications with the team during the expedition and those who had no prior connections to the field. All of the data collected on OIB missions is stored for public use in a digital portal on the National Snow and Ice Data Center (NSIDC) website. In one lesson, 10th-12th grade students were guided through a tutorial to learn how to access data and begin to develop a story about Greenland's Jakobshavn Glacier using pre-selected data sets, Google's MyMaps app, and independent research methods. In the second lesson, 8th grade students were introduced to remote sensing, first through a discussion on vocabulary using productive talk moves and then via a demonstration using Vernier motion detectors and a graph matching simulation. Students worked in groups to develop procedures to map a hidden surface region (boxed assortment of miscellaneous objects) using a Vernier motion sensor to simulate sonar. Students translated data points collected from the motion sensor into a vertical profile of the simulated surface region. Both lessons allowed students a way to engage in two of the most important components of OIB. The ability to work with real data collected by the OIB team provided a unique context through which students gained skill and overcame challenges in

  12. Measuring urban sprawl on geospatial indices characterized by leap frog development using remote sensing and GIS techniques

    International Nuclear Information System (INIS)

    Noor, N M; Asmawi, M Z; Rusni, N A

    2014-01-01

    Characterizing urban sprawl using spatial measures requires a concise definition of what constitutes sprawling urban spatial patterns. This research attempts to study a measurement of defining sprawl by using leapfrog development index through remote sensing and GIS approach. The IKONOS pan-sharpened and SPOT-5 with 1 and 2.5 meter resolution were used and combined with Geographical information system (GIS) database to analyze the geospatial indicators using the leapfrog development index. Kuantan city has been selected as a study area to examine the leapfrog development based on land use pattern for year 2012. The findings show Kuantan has identified as non-sprawling cities with result from characterization in leapfrog development that has been tested. However, the gap between sprawl and non-sprawling was very low. It is anticipated this research will provide a new direction in sprawl nationally that address finding of sprawl at the atomic level and present a robust analytical approach for characterizing urban development in city scale at once promoting a city via GIS and Remote Sensing technology respectively towards Digital and Green cities

  13. Comparative analysis of property taxation policies within Greece and Cyprus evaluating the use of GIS, CAMA, and remote sensing techniques

    Science.gov (United States)

    Dimopoulos, Thomas; Labropoulos, Tassos; Hadjimitsis, Diofantos G.

    2014-08-01

    This paper aims to examine how CAMA, GIS and Remote Sensing are integrated to assist property taxation. Real property tax apart from its fiscal dimension is directly linked to geographic location. The value of the land and other immovable features such as buildings and structures is determined from specific parameters. All these immovable assets are visible and have specific geographic location & coordinates, materials, occupied area, land-use & utility, ownership & occupancy status and finally a specific value (ad valorem property taxation system) according to which the property tax is levied to taxpayers. Of high importance in the tax imposing procedure is that the use of CAMA, GIS and Remote Sensing tools is capable of providing effective and efficient collection of this property value determining data. Furthermore, these tools can track changes during a property's lifecycle such parcel subdivision into plots, demolition of a building and development of a new one or track a change in the planning zone. The integration of these systems also supports a full range of business processes on revenue mobilization ranging from billing to taxpayers objections management.

  14. A Technique For Remote Sensing Of Suspended Sediments And Shallow Coastal Waters Using MODIS Visible and Near-IR Channels

    Science.gov (United States)

    Li, R.; Kaufman, Y.

    2002-12-01

    ABSTRACT We have developed an algorithm to detect suspended sediments and shallow coastal waters using imaging data acquired with the Moderate Resolution Imaging SpectroRadiometer (MODIS). The MODIS instruments on board the NASA Terra and Aqua Spacecrafts are equipped with one set of narrow channels located in a wide 0.4 - 2.5 micron spectral range. These channels were designed primarily for remote sensing of the land surface and atmosphere. We have found that the set of land and cloud channels are also quite useful for remote sensing of the bright coastal waters. We have developed an empirical algorithm, which uses the narrow MODIS channels in this wide spectral range, for identifying areas with suspended sediments in turbid waters and shallow waters with bottom reflections. In our algorithm, we take advantage of the strong water absorption at wavelengths longer than 1 æm that does not allow illumination of sediments in the water or a shallow ocean floor. MODIS data acquired over the east coast of China, west coast of Africa, Arabian Sea, Mississippi Delta, and west coast of Florida are used in this study.

  15. Spatial assessment of Geo-environmental data by the integration of Remote Sensing and GIS techniques for Sitakund Region, Eastern foldbelt, Bangladesh.

    Science.gov (United States)

    Gazi, M. Y.; Rahman, M.; Islam, M. A.; Kabir, S. M. M.

    2016-12-01

    Techniques of remote sensing and geographic information systems (GIS) have been applied for the analysis and interpretation of the Geo-environmental assessment to Sitakund area, located within the administrative boundaries of the Chittagong district, Bangladesh. Landsat ETM+ image with a ground resolution of 30-meter and Digital Elevation Model (DEM) has been adopted in this study in order to produce a set of thematic maps. The diversity of the terrain characteristics had a major role in the diversity of recipes and types of soils that are based on the geological structure, also helped to diversity in land cover and use in the region. The geological situation has affected on the general landscape of the study area. The problem of research lies in the possibility of the estimating the techniques of remote sensing and geographic information systems in the evaluation of the natural data for the study area spatially as well as determine the appropriate in grades for the appearance of the ground and in line with the reality of the region. Software for remote sensing and geographic information systems were adopted in the analysis, classification and interpretation of the prepared thematic maps in order to get to the building of the Geo-environmental assessment map of the study area. Low risk geo-environmental land mostly covered area of Quaternary deposits especially with area of slope wash deposits carried by streams. Medium and high risk geo-environmental land distributed with area of other formation with the study area, mostly the high risk shows area of folds and faults. The study has assessed the suitability of lands for agricultural purpose and settlements in less vulnerable areas within this region.

  16. Assessing high altitude glacier thickness, volume and area changes using field, GIS and remote sensing techniques: the case of Nevado Coropuna (Peru

    Directory of Open Access Journals (Sweden)

    P. Peduzzi

    2010-08-01

    Full Text Available Higher temperatures and changes in precipitation patterns have induced an acute decrease in Andean glaciers, thus leading to additional stress on water supply. To adapt to climate changes, local governments need information on the rate of glacier area and volume losses and on current ice thickness. Remote sensing analyses of Coropuna glacier (Peru delineate an acute glaciated area decline between 1955 and 2008. We tested how volume changes can be estimated with remote sensing and GIS techniques using digital elevation models derived from both topographic maps and satellite images. Ice thickness was measured in 2004 using a Ground Penetrating Radar coupled with a Ground Positioning System during a field expedition. It provided profiles of ice thickness on different slopes, orientations and altitudes. These were used to model the current glacier volume using Geographical Information System and statistical multiple regression techniques. The results revealed a significant glacier volume loss; however the uncertainty is higher than the measured volume loss. We also provided an estimate of the remaining volume. The field study provided the scientific evidence needed by COPASA, a local Peruvian NGO, and GTZ, the German international cooperation agency, in order to alert local governments and communities and guide them in adopting new climate change adaptation policies.

  17. Characterization of Solang valley watershed in western Himalaya for bio-resource conservation using remote sensing techniques.

    Science.gov (United States)

    Kumar, Amit; Chawla, Amit; Rajkumar, S

    2011-08-01

    The development activities in mountainous region though provide comfort to the human being and enhance the socioeconomic status of the people but create pressure on the bio-resources. In this paper, the current status of land use/landcover and the vegetation communities of the Solang valley watershed in Himachal Pradesh of Indian western Himalaya has been mapped and presented using remote sensing. This watershed area was dominated by alpine and sub-alpine pastures (30.34%) followed by scree slopes (22.34%) and forests (21.06%). Many tree, shrub, and herb species identified in the study area are among the prioritized species for conservation in the Indian Himalayan Region. Thus, scientific interventions and preparation of action plans based on ecological survey are required for conservation of the Solang valley watershed.

  18. THE USE OF REMOTE SENSING TECHNIQUES IN ASSESSING THE DISTRIBUTION TRENDS OF COMMIPHORA MYRRHA IN WAJIR COUNTY, KENYA

    Directory of Open Access Journals (Sweden)

    A. Luvanda

    2014-01-01

    Full Text Available A study was conducted to establish the current trend in distribution of Commiphora myrrha in its natural stands in Wajir County. Data was collected through observation, interviews and questionnaires, photographs (remote sensing images using a Global Positioning System (GPS to to mark the plant’s hot spots and locate the tree stand coordinates. A supervised classification of Land Sat images acquired in 2003, 2009 and 2011 was undetaken. The results show that C. myrrha covers an average area of 61,620.23Ha. The area under C. myrrha had declined between 2009 and 2011 and this could be attributed to human and environmental factors. It is therefore recommended that sustainable management and conservation strategies be adopted to ensure imprived tree cover.

  19. Remote sensing estimation of the total phosphorus concentration in a large lake using band combinations and regional multivariate statistical modeling techniques.

    Science.gov (United States)

    Gao, Yongnian; Gao, Junfeng; Yin, Hongbin; Liu, Chuansheng; Xia, Ting; Wang, Jing; Huang, Qi

    2015-03-15

    Remote sensing has been widely used for ater quality monitoring, but most of these monitoring studies have only focused on a few water quality variables, such as chlorophyll-a, turbidity, and total suspended solids, which have typically been considered optically active variables. Remote sensing presents a challenge in estimating the phosphorus concentration in water. The total phosphorus (TP) in lakes has been estimated from remotely sensed observations, primarily using the simple individual band ratio or their natural logarithm and the statistical regression method based on the field TP data and the spectral reflectance. In this study, we investigated the possibility of establishing a spatial modeling scheme to estimate the TP concentration of a large lake from multi-spectral satellite imagery using band combinations and regional multivariate statistical modeling techniques, and we tested the applicability of the spatial modeling scheme. The results showed that HJ-1A CCD multi-spectral satellite imagery can be used to estimate the TP concentration in a lake. The correlation and regression analysis showed a highly significant positive relationship between the TP concentration and certain remotely sensed combination variables. The proposed modeling scheme had a higher accuracy for the TP concentration estimation in the large lake compared with the traditional individual band ratio method and the whole-lake scale regression-modeling scheme. The TP concentration values showed a clear spatial variability and were high in western Lake Chaohu and relatively low in eastern Lake Chaohu. The northernmost portion, the northeastern coastal zone and the southeastern portion of western Lake Chaohu had the highest TP concentrations, and the other regions had the lowest TP concentration values, except for the coastal zone of eastern Lake Chaohu. These results strongly suggested that the proposed modeling scheme, i.e., the band combinations and the regional multivariate

  20. Biological sensing with surface-enhanced Raman spectroscopy (SERS) using a facile and rapid silver colloid-based synthesis technique

    Science.gov (United States)

    Smyth, C.; Mehigan, S.; Rakovich, Y. P.; Bell, S. E. J.; McCabe, E. M.

    2011-03-01

    Optical techniques towards the realisation of sensitive and selective biosensing platforms have received a considerable amount of attention in recent times. Techniques based on interferometry, surface plasmon resonance, field-effect transistors and waveguides have all proved popular, and in particular, spectroscopy offers a large range of options. Raman spectroscopy has always been viewed as an information rich technique in which the vibrational frequencies reveal a lot about the structure of a compound. The issue with Raman spectroscopy has traditionally been that its rather low cross section leads to poor limits-of-detection. In response to this problem, Surface-enhanced Raman Scattering (SERS), which increases sensitivity by bringing the sample in contact with many types of enhanceing substrates, has been developed. Here we discuss a facile and rapid technique for the detection of pterins using colloidal silver suspensions. Pteridine compounds are a family of biochemicals, heterocyclic in structure, and employed in nature as components of colour pigmentation and also as facilitators for many metabolic pathways, particularly those relating to the amino acid hydroxylases. In this work, xanthopterin, isoxanthopterin and 7,8- dihydrobiopterin have been examined whilst absorbed to SERS-active silver colloids. SERS, while far more sensitive than regular Raman spectroscopy, has its own issues relating to the reproducibility of substrates. In order to obtain quantitative data for the pteridine compounds mentioned above, exploratory studies of methods for introducing an internal standard for normalisation of the signals have been carried out.e

  1. Estimation of leaf area index using ground-based remote sensed NDVI measurements: validation and comparison with two indirect techniques

    International Nuclear Information System (INIS)

    Pontailler, J.-Y.; Hymus, G.J.; Drake, B.G.

    2003-01-01

    This study took place in an evergreen scrub oak ecosystem in Florida. Vegetation reflectance was measured in situ with a laboratory-made sensor in the red (640-665 nm) and near-infrared (750-950 nm) bands to calculate the normalized difference vegetation index (NDVI) and derive the leaf area index (LAI). LAI estimates from this technique were compared with two other nondestructive techniques, intercepted photosynthetically active radiation (PAR) and hemispherical photographs, in four contrasting 4 m 2 plots in February 2000 and two 4m 2 plots in June 2000. We used Beer's law to derive LAI from PAR interception and gap fraction distribution to derive LAI from photographs. The plots were harvested manually after the measurements to determine a 'true' LAI value and to calculate a light extinction coefficient (k). The technique based on Beer's law was affected by a large variation of the extinction coefficient, owing to the larger impact of branches in winter when LAI was low. Hemispherical photographs provided satisfactory estimates, slightly overestimated in winter because of the impact of branches or underestimated in summer because of foliage clumping. NDVI provided the best fit, showing only saturation in the densest plot (LAI = 3.5). We conclude that in situ measurement of NDVI is an accurate and simple technique to nondestructively assess LAI in experimental plots or in crops if saturation remains acceptable. (author)

  2. Estimation of leaf area index using ground-based remote sensed NDVI measurements: validation and comparison with two indirect techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pontailler, J.-Y. [Univ. Paris-Sud XI, Dept. d' Ecophysiologie Vegetale, Orsay Cedex (France); Hymus, G.J.; Drake, B.G. [Smithsonian Environmental Research Center, Kennedy Space Center, Florida (United States)

    2003-06-01

    This study took place in an evergreen scrub oak ecosystem in Florida. Vegetation reflectance was measured in situ with a laboratory-made sensor in the red (640-665 nm) and near-infrared (750-950 nm) bands to calculate the normalized difference vegetation index (NDVI) and derive the leaf area index (LAI). LAI estimates from this technique were compared with two other nondestructive techniques, intercepted photosynthetically active radiation (PAR) and hemispherical photographs, in four contrasting 4 m{sup 2} plots in February 2000 and two 4m{sup 2} plots in June 2000. We used Beer's law to derive LAI from PAR interception and gap fraction distribution to derive LAI from photographs. The plots were harvested manually after the measurements to determine a 'true' LAI value and to calculate a light extinction coefficient (k). The technique based on Beer's law was affected by a large variation of the extinction coefficient, owing to the larger impact of branches in winter when LAI was low. Hemispherical photographs provided satisfactory estimates, slightly overestimated in winter because of the impact of branches or underestimated in summer because of foliage clumping. NDVI provided the best fit, showing only saturation in the densest plot (LAI = 3.5). We conclude that in situ measurement of NDVI is an accurate and simple technique to nondestructively assess LAI in experimental plots or in crops if saturation remains acceptable. (author)

  3. Comparison Study to the Use of Geophysical Methods at Archaeological Sites Observed by Various Remote Sensing Techniques in the Czech Republic

    Directory of Open Access Journals (Sweden)

    Roman Křivánek

    2017-09-01

    Full Text Available A combination of geophysical methods could be very a useful and a practical way of verifying the origin and precise localisation of archaeological situations identified by different remote sensing techniques. The results of different methods (and scales of monitoring these fully non-destructive methods provide distinct data and often complement each other. The presented examples of combinations of these methods/techniques in this study (aerial survey, LIDAR-ALS and surface magnetometer or resistivity survey could provide information on some specifics and may also be limitations in surveying different archaeological terrains, types of archaeological situations and activities. The archaeological site in this contribution is considered to be a material of this study. In case of Neolithic ditch enclosure near Kolín were compared aerial prospection data, magnetometer survey and aerial photo-documentation of excavated site. In the case of hillforts near Levousy we compared LIDAR data with aerial photography and large-scale magnetometer survey. In the case of the medieval castle Liběhrad we compared LIDAR data with geoelectric resistivity measurement. In case of a burial mound cemetery we combined LIDAR data with magnetometer survey. In the case of the production area near Rynartice we combined LIDAR data with magnetometer and resistivity measurements and result of archaeological excavation. Fortunately for successful combination of geophysical and remote sensing results, their conditions and factors for efficient use in archaeology are not the same. On the other hand, the quality and state of many prehistoric, early medieval, medieval and also modern archaeological sites is rapidly changing over time and both groups of techniques represent important support for their comprehensive and precise documentation and protection.

  4. LPG and NH3 Sensing Properties of SnO2 Thick Film Resistors Prepared by Screen Printing Technique

    Directory of Open Access Journals (Sweden)

    A. S. GARDE

    2010-11-01

    Full Text Available The gas sensing behavior of SnO2 thick film resistors deposited on alumina substrates has been investigated for LPG and NH3 gas. The standard screen printing technology was used to prepare the thick films. The films were fired at optimized temperature of 780 0C for 30 minutes. The material characterization was performed by XRD, SEM, FTIR, UV and EDAX for elemental analysis. IR spectroscopy analysis at 2949.26 cm-1 showed the peak assigned to the –Sn-H vibration due to the effect of hybridization i.e. sp3 and the sharp peak at 3734.31 cm-1 assigned to –Sn-OH stretching vibration due to hydrogen bonding. The variation of D.C electrical resistance of SnO2 film samples was measured in air as well as in LPG and NH3 gas atmosphere as a function of temperature. The SnO2 film samples show negative temperature coefficient of résistance. The SnO2 film samples showed the highest sensitivity to 600 ppm of LPG at 230 0C and NH3 at 370 0C. The effect of microstructure on sensitivity, response time and recovery time of the sensor in the presence of LPG and NH3 gases were studied and discussed.

  5. Biological pH sensing based on the environmentally friendly Raman technique through a polyaniline probe.

    Science.gov (United States)

    Li, Songyang; Liu, Zhiming; Su, Chengkang; Chen, Haolin; Fei, Xixi; Guo, Zhouyi

    2017-02-01

    The biological pH plays an important role in various cellular processes. In this work, a novel strategy is reported for biological pH sensing by using Raman spectroscopy and polyaniline nanoparticles (PANI NPs) as the pH-sensitive Raman probe. It is found that the Raman spectrum of PANI NPs is strongly dependent on the pH value. The intensities of Raman spectral bands at 1225 and 1454 cm -1 increase obviously with pH value varying from 5.5 to 8.0, which covers the range of regular biological pH variation. The pH-dependent Raman performance of PANI NPs, as well as their robust Raman signals and sensitivities to pH, was well retained after the nanoparticles incorporated into living 4T1 breast adenocarcinoma cells. The data indicate that such PANI NPs can be used as an effective biological pH sensor. Most interestingly, the PANI spherical nanostructures can be acquired by a low-cost, metal-free, and one-pot oxidative polymerization, which gives them excellent biocompatibility for further biological applications.

  6. Hydraulic Geometry, GIS and Remote Sensing, Techniques against Rainfall-Runoff Models for Estimating Flood Magnitude in Ephemeral Fluvial Systems

    Directory of Open Access Journals (Sweden)

    Rafael Garcia-Lorenzo

    2010-11-01

    Full Text Available This paper shows the combined use of remotely sensed data and hydraulic geometry methods as an alternative to rainfall-runoff models. Hydraulic geometric data and boolean images of water sheets obtained from satellite images after storm events were integrated in a Geographical Information System. Channel cross-sections were extracted from a high resolution Digital Terrain Model (DTM and superimposed on the image cover to estimate the peak flow using HEC-RAS. The proposed methodology has been tested in ephemeral channels (ramblas on the coastal zone in south-eastern Spain. These fluvial systems constitute an important natural hazard due to their high discharges and sediment loads. In particular, different areas affected by floods during the period 1997 to 2009 were delimited through HEC-GeoRAs from hydraulic geometry data and Landsat images of these floods (Landsat‑TM5 and Landsat-ETM+7. Such an approach has been validated against rainfall-surface runoff models (SCS Dimensionless Unit Hydrograph, SCSD, Témez gamma HU Tγ and the Modified Rational method, MRM comparing their results with flood hydrographs of the Automatic Hydrologic Information System (AHIS in several ephemeral channels in the Murcia Region. The results obtained from the method providing a better fit were used to calculate different hydraulic geometry parameters, especially in residual flood areas.

  7. Use of remote sensing techniques for mitigation and relief action of the main disaster concerns in Syria

    Science.gov (United States)

    Dalati, M.

    The main disaster concern in Syria is the Earthquakes since that Northwest of Syria is part of one of the very active deformation belt on the Earth today This area and the western part of Syria are located along the great rift Afro-Arabian rift System Those areas are tectonically active and cause time to time a lot of seismically events This faulting zone system represent a unique structural feature in the Mediterranean Region The system formed initially as a result of the break up of the Arabian plate from the African plate since the mid-Cenozoic The other disaster concern in Syria is Landslides whom caused significant damaging in Syria during the last decades especially in the Northwestern and Southwestern regions Landslide disasters killed some people and destroyed many mud and cement houses coastal mountains and cut off some roads few years ago It is known that many of the earthquakes and landslides that ever happened on our planet are located in active faults zones So it is of most important to obtain detailed information on regional tectonic structures The main approach of active faults survey at present is to use geological and geophysical methods such as in-situ measuring drilling and analysis of gravity and magnetic fields However because of the magnitude of the work there are still many uncertainties that we cannot figure out by traditional approaches Remote sensing has been brought forward for many years and has applications in many hazard

  8. A noble technique a using force-sensing resistor for immobilization-device quality assurance: A feasibility study

    Science.gov (United States)

    Cho, Min-Seok; Kim, Tae-Ho; Kang, Seong-Hee; Kim, Dong-Su; Kim, Kyeong-Hyeon; Shin, Dong-Seok; Noh, Yu-Yun; Koo, Hyun-Jae; Cheon, Geum Seong; Suh, Tae Suk; Kim, Siyong

    2016-03-01

    Many studies have reported that a patient can move even when an immobilization device is used. Researchers have developed an immobilization-device quality-assurance (QA) system that evaluates the validity of immobilization devices. The QA system consists of force-sensing-resistor (FSR) sensor units, an electric circuit, a signal conditioning device, and a control personal computer (PC) with in-house software. The QA system is designed to measure the force between an immobilization device and a patient's skin by using the FSR sensor unit. This preliminary study aimed to evaluate the feasibility of using the QA system in radiation-exposure situations. When the FSR sensor unit was irradiated with a computed tomography (CT) beam and a treatment beam from a linear accelerator (LINAC), the stability of the output signal, the image artifact on the CT image, and changing the variation on the patient's dose were tested. The results of this study demonstrate that this system is promising in that it performed within the error range (signal variation on CT beam < 0.30 kPa, root-mean-square error (RMSE) of the two CT images according to presence or absence of the FSR sensor unit < 15 HU, signal variation on the treatment beam < 0.15 kPa, and dose difference between the presence and the absence of the FSR sensor unit < 0.02%). Based on the obtained results, we will volunteer tests to investigate the clinical feasibility of the QA system.

  9. Characterization of sediments in the Clinch River, Tennessee, using remote sensing and multi-dimensional GIS techniques

    International Nuclear Information System (INIS)

    Levine, D.A.; Hargrove, W.W.; Hoffman, F.

    1995-01-01

    Remotely-sensed hydro-acoustic data were used as input to spatial extrapolation tools in a GIS to develop two- and three-dimensional models of sediment densities in the Clinch River arm of Watts Bar Reservoir, Tennessee. This work delineated sediment deposition zones to streamline sediment sampling and to provide a tool for estimating sediment volumes and extrapolating contaminant concentrations throughout the system. The Clinch River arm of Watts Bar Reservoir has been accumulating sediment-bound contaminants from three Department of Energy (DOE) facilities on the Oak Ridge Reservation, Tennessee. Public concern regarding human and ecological health resulted in Watts Bar Reservoir being placed on the National Priorities List for SUPERFUND. As a result, DOE initiated and is funding the Clinch River Environmental Restoration Program (CR-ERP) to perform a remedial investigation to determine the nature and extent of sediment contamination in the Watts Bar Reservoir and the Clinch River and to quantify any human or ecological health risks. The first step in characterizing Clinch River sediments was to determine the locations of deposition zones. It was also important to know the sediment type distribution within deposition zones because most sediment-bound contaminants are preferentially associated to fine particles. A dual-frequency hydro-acoustic survey was performed to determine: (1) depth to the sediment water interface, (2) depth of the sediment layer, and (3) sediment characteristics (density) with depth (approximately 0.5-foot intervals). An array of geophysical instruments was used to meet the objectives of this investigation

  10. Modelling runoff and glacier melt in the Hunza basin in northern Pakistan using satellite remote sensing techniques

    International Nuclear Information System (INIS)

    Shafiq, M.

    2011-01-01

    The glaciers in western Karakoram are important for freshwater supply in the rivers of Pakistan. Global warming influences the future water supply from glaciers. In order to study the hydrological conditions and possible impacts of climate change, runoff simulations are performed for the Hunza basin. The hydrological modelling system SRM (Snowmelt Runoff Model) is customized and applied to the Hunza basin. Various data obtained from satellite remote sensing imagery and meteorological stations in the study area are processed, prepared and used as input to SRM. For runoff simulations the basin is divided into five sub-basins. The (sub-) basins are defined by the hydrological response units (HRU) based on the elevation zones and land-cover types. The spatially distributed data are aggregated HRU-wise as input for the model simulations. The energy available for snow and glacier melt is parameterized in SRM by degree day factors which are defined separately for seasonal snow, ice and debris covered glaciers. The model is calibrated for the Hunza basin using the meteorological and remote sensing data from years 2002 and 2003. The daily runoff is simulated and compared with the measured discharge data obtained from the power company. The Nash-Sutcliffe correlation coefficient of simulated versus measured runoff data is 0.87 for year 2002 and 0.96 for year 2003 which indicates a good agreement. An estimation of mass balance of Baltoro glacier is made using the meteorological data from Shigar station applying the hydrological method to estimate accumulation and melt. Based on these data is found that Baltoro glacier has slightly negative mass balance. The ablation rates of debris covered parts of Baltoro glacier at 4150 m elevation are estimated to be between 3 and 4 cm per day. However, the uncertainty in mass balance modelling is high due to poor knowledge of accumulation inferred by spatial extrapolation from station data.Keeping the glacier area unchanged, for the 2002

  11. Natural and environmental vulnerability analysis through remote sensing and GIS techniques: a case study of Indigirka River basin, Eastern Siberia, Russia

    Science.gov (United States)

    Boori, Mukesh S.; Choudhary, Komal; Kupriyanov, Alexander; Sugimoto, Atsuko; Evers, Mariele

    2016-10-01

    The aim of this research work is to understand natural and environmental vulnerability situation and its cause such as intensity, distribution and socio-economic effect in the Indigirka River basin, Eastern Siberia, Russia. This paper identifies, assess and classify natural and environmental vulnerability using landscape pattern from multidisciplinary approach, based on remote sensing and Geographical Information System (GIS) techniques. A model was developed by following thematic layers: land use/cover, vegetation, wetland, geology, geomorphology and soil in ArcGIS 10.2 software. According to numerical results vulnerability classified into five levels: low, sensible, moderate, high and extreme vulnerability by mean of cluster principal. Results are shows that in natural vulnerability maximum area covered by moderate (29.84%) and sensible (38.61%) vulnerability and environmental vulnerability concentrated by moderate (49.30%) vulnerability. So study area has at medial level vulnerability. The results found that the methodology applied was effective enough in the understanding of the current conservation circumstances of the river basin in relation to their environment with the help of remote sensing and GIS. This study is helpful for decision making for eco-environmental recovering and rebuilding as well as predicting the future development.

  12. A wireless batteryless in vivo EKG and core body temperature sensing microsystem with 60 Hz suppression technique for untethered genetically engineered mice real-time monitoring.

    Science.gov (United States)

    Chaimanonart, Nattapon; Young, Darrin J

    2009-01-01

    A wireless, batteryless, and implantable EKG and core body temperature sensing microsystem with adaptive RF powering for untethered genetically engineered mice real-time monitoring is designed, implemented, and in vivo characterized. A packaged microsystem, exhibiting a total size of 9 mm x 7 mm x 3 mm with a weight of 400 mg including a pair of stainless-steel EKG electrodes, is implanted in a mouse abdomen for real-time monitoring. A low power 2 mm x 2 mm ASIC, consisting of an EKG amplifier, a proportional-to-absolute-temperature (PTAT)-based temperature sensor, an RF power sensing circuit, an RF-DC power converter, an 8-bit ADC, digital control circuitry, and a 433 MHz FSK transmitter, is powered by an adaptively controlled external RF energy source at 4 MHz to ensure a stable 2V supply with 156microA current driving capability for the overall microsystem. An electrical model for analyzing 60 Hz interference based on 2-electrode and 3-electrode configurations is proposed and compared with in vivo evaluation results. Due to the small laboratory animal chest area, a 60 Hz suppression technique by employing input termination resistors is chosen for two-EKG-electrode implant configuration.

  13. Tools and Techniques to Collaborate and Connect with At-Risk Climate Communities UsingSensors, Remote Sensing Data, and Media

    Science.gov (United States)

    Drapkin, J. K.; Ramamurthy, P.; Vant-Hull, B.; Yuen, K.; Glenn, A.; Jusino, C.; Corbin, C.; Schuerman, M.; Keefe, J.; Brooke, H.

    2016-12-01

    Those most at risk during heat waves and floods are often the socio-economically vulnerable. Yet very few studies exist of indoor temperatures during heat waves or of standing water events at the neighborhood level during extreme events. ISeeChange, a community weather and climate journal, is developing tools and testing techniques in a series of community pilots in Harlem and New Orleans to assess if a combination of citizen science, remote sensing, and journalism can bridge the gap. Our consortium of media (WNYC,Adapt NYC, ISeeChange), scientists (CUNY, CoCoRaHS, NASAJPL), and community partners (WE ACT for Environmental Justice, tenant, and neighborhood associations) are collaborating to engage with residents, report radio stories, as well as develop scientifically valuableinformation for decision-making. Community volunteers place temperature and humidity sensors inside residences (Harlem) or photograph standing water using specific methodologies (New Orleans). Sensordata, photographs, and text documenting the impacts of extreme weather on residents are posted on the ISeeChange platform via mobile app or community ambassadors and compared to other remote sensing data products (surface temperature, precipitation, subsidence) Preliminary results of the Harlem pilot show that indoor temperatures are far more stable than outdoor temperatures, so can be both cooler during the day but warmer at night; preliminary work on the New Orleans pilot is set to begin in fall 2016. A full analysis of the Harlem pilot will be presented along with preliminary results of the New Orleans pilot.

  14. Self-Sensing of Single Carbon Fiber/Carbon Nanotube-Epoxy Composites Using Electro-Micromechanical Techniques and Acoustic Emission

    International Nuclear Information System (INIS)

    Park, Joung Man; Jang, Jung Hoon; Wang, Zuo Jia; Kwon, Dong Jun; Park, Jong Kyu; Lee, Woo Il

    2010-01-01

    Self-sensing on micro-failure, dispersion degree and relating properties, of carbon nanotube(CNT)/epoxy composites, were investigated using wettability, electro-micromechanical technique with acoustic emission(AE). Specimens were prepared from neat epoxy as well as composites with untreated and acid-treated CNT. Degree of dispersion was evaluated comparatively by measuring volumetric electrical resistivity and its standard deviation. Apparent modulus containing the stress transfer was higher for acid-treated CNT composite than for the untreated case. Applied cyclic loading responded well for a single carbon fiber/CNT-epoxy composite by the change in contact resistivity. The interfacial shear strength between a single carbon fiber and CNT-epoxy, determined in a fiber pullout test, was lower than that between a single carbon fiber and neat epoxy. Regarding on micro-damage sensing using electrical resistivity measurement with AE, the stepwise increment in electrical resistivity was observed for a single carbon fiber/CNT-epoxy composite. On the other hand, electrical resistivity increased infinitely right after the first carbon fiber breaks for a single carbon fiber/neat epoxy composite. The occurrence of AE events of added CNT composites was much higher than the neat epoxy case, due to microfailure at the interfaces by added CNTs

  15. The application of remote sensing techniques to create a Black Sea coastal response strategy for oil spill response

    International Nuclear Information System (INIS)

    Urban, R.; Hanlon, W.

    1998-01-01

    The application of remote satellite imaging, coupled with Geographic Information System (GIS) technology has been used to create coastal maps enhanced with environmental information. The use of such techniques for oil spill response requires the development of practical applications to assist responders with real-time decision making. In a joint effort with regional navies for Black Sea spill contingency planning, the US Navy has developed methods by which a quick, accurate, and economical application of existing technology can be used to produce data rich maps for a large area of interest. This combines various existing techniques to create practical applications and usable documents for oil spill planners and responders. Existing environmental data on a selected area of the Black Sea coastal zone was collected and this information was sorted, harmonized and transposed onto a rectified multispectral satellite image of the area in a GIS format. Multispectral analysis was performed on the image to locate environmentally distinct zones. The resulting multi-layered GIS map provides a useful representation of coastal environmental sensitivities, and in many ways surpasses conventional GIS systems. The satellite image provides an accurate and realtime map of the area while the multispectral data precisely locates common ecosystems, such as wetlands and forests. This allows for the rapid prioritization of coastal areas and the ability to pinpoint specific areas for protection. The resulting process provides emergency responders the ability to quickly and economically create a data rich GIS. This system will provide reliable, timely information for protection strategies, identifying environmental and public risks, and offer a basis by which to measure spill impacts and recovery techniques, especially in areas where environmental reference data is limited. (author)

  16. A novel sensor for two-degree-of-freedom motion measurement of linear nanopositioning stage using knife edge displacement sensing technique

    Science.gov (United States)

    Zolfaghari, Abolfazl; Jeon, Seongkyul; Stepanick, Christopher K.; Lee, ChaBum

    2017-06-01

    This paper presents a novel method for measuring two-degree-of-freedom (DOF) motion of flexure-based nanopositioning systems based on optical knife-edge sensing (OKES) technology, which utilizes the interference of two superimposed waves: a geometrical wave from the primary source of light and a boundary diffraction wave from the secondary source. This technique allows for two-DOF motion measurement of the linear and pitch motions of nanopositioning systems. Two capacitive sensors (CSs) are used for a baseline comparison with the proposed sensor by simultaneously measuring the motions of the nanopositioning system. The experimental results show that the proposed sensor closely agrees with the fundamental linear motion of the CS. However, the two-DOF OKES technology was shown to be approximately three times more sensitive to the pitch motion than the CS. The discrepancy in the two sensor outputs is discussed in terms of measuring principle, linearity, bandwidth, control effectiveness, and resolution.

  17. Using Remote Sensing and Gis Techniques For Assessment The Environmental Changes in The Area Surrounding Suez Canal, Egypt

    International Nuclear Information System (INIS)

    Youssef, A.M.; EL Baroudy, A.A.

    2008-01-01

    Multi-temporal Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) data were utilized in a Geographic Information System (GIS) to evaluate changes in landuse II and cover in the area surrounds the Suez Canal, Egypt. The area is bounded by the Great Bitter Lake from the south, El Qantara city from the north, Nile Delta from the west, and Sinai Peninsula from the east. The area witnessed a rapid development in the past three decades, and the environmental changes were very remarkable. The data collected by Landsat sensors, TM (1984) and ETM+ (2000) were used to conduct a change detection and landuse analysis over the area of study. Both images were spatially registered and band four (Near Infra-Red) was radiometrically normalized to eliminate the atmospheric and sun luminance variation. Band algebra techniques were implemented to generate a reflectance difference image. On the other hand, the images were classified with supervised (maximum likelihood) technique with the help of ground truth data to provide the landuse maps for 1984 and 2000 periods. These maps were converted to GIS environment and final landuse changes have been provided

  18. High-throughput phenotyping of large wheat breeding nurseries using unmanned aerial system, remote sensing and GIS techniques

    Science.gov (United States)

    Haghighattalab, Atena

    Wheat breeders are in a race for genetic gain to secure the future nutritional needs of a growing population. Multiple barriers exist in the acceleration of crop improvement. Emerging technologies are reducing these obstacles. Advances in genotyping technologies have significantly decreased the cost of characterizing the genetic make-up of candidate breeding lines. However, this is just part of the equation. Field-based phenotyping informs a breeder's decision as to which lines move forward in the breeding cycle. This has long been the most expensive and time-consuming, though most critical, aspect of breeding. The grand challenge remains in connecting genetic variants to observed phenotypes followed by predicting phenotypes based on the genetic composition of lines or cultivars. In this context, the current study was undertaken to investigate the utility of UAS in assessment field trials in wheat breeding programs. The major objective was to integrate remotely sensed data with geospatial analysis for high throughput phenotyping of large wheat breeding nurseries. The initial step was to develop and validate a semi-automated high-throughput phenotyping pipeline using a low-cost UAS and NIR camera, image processing, and radiometric calibration to build orthomosaic imagery and 3D models. The relationship between plot-level data (vegetation indices and height) extracted from UAS imagery and manual measurements were examined and found to have a high correlation. Data derived from UAS imagery performed as well as manual measurements while exponentially increasing the amount of data available. The high-resolution, high-temporal HTP data extracted from this pipeline offered the opportunity to develop a within season grain yield prediction model. Due to the variety in genotypes and environmental conditions, breeding trials are inherently spatial in nature and vary non-randomly across the field. This makes geographically weighted regression models a good choice as a

  19. Robust IR Remote Sensing Technique of the Total Column of Trace Gases Including Carbon Dioxide and Methane

    Science.gov (United States)

    Georgieva, E. M.; Heaps, W. S.

    2011-01-01

    Progress on the development of a differential radiometer based upon the Fabry-Perot interferometer (FPI) for methane (CH4) and carbon dioxide (C02) detection in the atmosphere is presented. Methane measurements are becoming increasingly important as a component of NASA's programs to understand the global carbon cycle and quantifY the threat of global warming. Methane is the third most important greenhouse gas in the Earth's radiation budget (after water vapor and carbon dioxide) and the second most important anthropogenic contributor to global warming. The importance of global warming and air quality to society caused the National Research Council to recommend that NASA develop the following missions [1]: ASCENDS (Active Sensing of C02 Emissions over Nights, Days, and Seasons), GEOCAPE (Geostationary Coastal and Air Pollution Events), and GACM (Global Atmosphere Composition Mission). Though methane measurements are not specifically called out in these missions, ongoing environmental changes have raised the importance of understanding the methane budget. In the decadal survey is stated that "to close the carbon budget, we would also address methane, but the required technology is not obvious at this time. If appropriate and cost-effective methane technology becomes available, we strongly recommend adding a methane capability". In its 2007 report the International Panel on Climate Change identified methane as a key uncertainty in our understanding saying that the causes of recent changes in the growth rate of atmospheric CH4 are not well understood. What we do know is that methane arises from a number of natural sources including wet lands and the oceans plus man made sources from agriculture, as well as coal and petroleum production and distribution. It has recently been pointed out that large amount of methane are frozen in the permafrost of Canada and Siberia. There is a fear that melting of this permafrost driven by global warming may release large amounts of

  20. Spatio-temporal analysis of floating islands and their behavioral changes in Loktak Lake with respect to biodiversity using remote sensing and GIS techniques.

    Science.gov (United States)

    Kangabam, Rajiv Das; Selvaraj, Muthu; Govindaraju, Munisamy

    2018-02-06

    The presence of floating islands is a unique characteristic of Loktak Lake. Floating islands play a significant role in ecosystem services and ecological processes and functioning. Rapid urbanization, industrialization, and a demand for more resources have led to changes in the landscape patterns at Loktak Lake in past three decades, thereby degrading and threatening the fragile ecosystem. The aim of the present study is to assess the changes in land use practices of the Phumdis by analyzing data from the past 38 years with remote sensing techniques. Landsat images from 1977, 1988, 1999 and an Indian remote sensing image from 2015 were used to assess the land use/land cover changes. The methodology adopted is a supervised classification using the maximum likelihood technique in ERDAS software. Five land used classes were employed: open water bodies, agricultural areas, Phumdis with thick vegetation, and Phumdis with thin vegetation and settlements. The results indicate that the highest loss of land used class was in Phumdis with thin vegetation (49.38 km 2 ) followed by Phumdis with thick vegetation (8.59 km 2 ), while there was an overall increase in open water bodies (27.00 km 2 ), agricultural areas (25.33 km 2 ), and settlement (5.75 km 2 ). Our study highlights the loss of floating islands from the Loktak as a major concern that will lead to the destruction of the only "floating national park in the world." There is a high probability of extinction of the Sangai, an important keystone species found in the Indo-Burma biodiversity hotspot, if floating islands are not protected through sustainable development.

  1. A Geostatistical Data Fusion Technique for Merging Remote Sensing and Ground-Based Observations of Aerosol Optical Thickness

    Science.gov (United States)

    Chatterjee, Abhishek; Michalak, Anna M.; Kahn, Ralph A.; Paradise, Susan R.; Braverman, Amy J.; Miller, Charles E.

    2010-01-01

    Particles in the atmosphere reflect incoming sunlight, tending to cool the Earth below. Some particles, such as soot, also absorb sunlight, which tens to warm the ambient atmosphere. Aerosol optical depth (AOD) is a measure of the amount of particulate matter in the atmosphere, and is a key input to computer models that simulate and predict Earth's changing climate. The global AOD products from the Multi-angle Imaging SpectroRadiometer (MISR) and the MODerate resolution Imaging Spectroradiometer (MODIS), both of which fly on the NASA Earth Observing System's Terra satellite, provide complementary views of the particles in the atmosphere. Whereas MODIS offers global coverage about four times as frequent as MISR, the multi-angle data makes it possible to separate the surface and atmospheric contributions to the observed top-of-atmosphere radiances, and also to more effectively discriminate particle type. Surface-based AERONET sun photometers retrieve AOD with smaller uncertainties than the satellite instruments, but only at a few fixed locations. So there are clear reasons to combine these data sets in a way that takes advantage of their respective strengths. This paper represents an effort at combining MISR, MODIS and AERONET AOD products over the continental US, using a common spatial statistical technique called kriging. The technique uses the correlation between the satellite data and the "ground-truth" sun photometer observations to assign uncertainty to the satellite data on a region-by-region basis. The larger fraction of the sun photometer variance that is duplicated by the satellite data, the higher the confidence assigned to the satellite data in that region. In the Western and Central US, MISR AOD correlation with AERONET are significantly higher than those with MODIS, likely due to bright surfaces in these regions, which pose greater challenges for the single-view MODIS retrievals. In the east, MODIS correlations are higher, due to more frequent sampling

  2. Detecting Slope and Urban Potential Unstable Areas by Means of Multi-Platform Remote Sensing Techniques: The Volterra (Italy Case Study

    Directory of Open Access Journals (Sweden)

    Teresa Nolesini

    2016-09-01

    Full Text Available Volterra (Central Italy is a town of great historical interest, due to its vast and well-preserved cultural heritage, including a 2.6 km long Etruscan-medieval wall enclosure representing one of the most important elements. Volterra is located on a clayey hilltop prone to landsliding, soil erosion, therefore the town is subject to structural deterioration. During 2014, two impressive collapses occurred on the wall enclosure in the southwestern urban sector. Following these events, a monitoring campaign was carried out by means of remote sensing techniques, such as space-borne (PS-InSAR and ground-based (GB-InSAR radar interferometry, in order to analyze the displacements occurring both in the urban area and the surrounding slopes, and therefore to detect possible critical sectors with respect to instability phenomena. Infrared thermography (IRT was also applied with the aim of detecting possible criticalities on the wall-enclosure, with special regards to moisture and seepage areas. PS-InSAR data allowed a stability back-monitoring on the area, revealing 19 active clusters displaying ground velocity higher than 10 mm/year in the period 2011–2015. The GB-InSAR system detected an acceleration up to 1.7 mm/h in near-real time as the March 2014 failure precursor. The IRT technique, employed on a double survey campaign, in both dry and rainy conditions, permitted to acquire 65 thermograms covering 23 sectors of the town wall, highlighting four thermal anomalies. The outcomes of this work demonstrate the usefulness of different remote sensing technologies for deriving information in risk prevention and management, and the importance of choosing the appropriate technology depending on the target, time sampling and investigation scale. In this paper, the use of a multi-platform remote sensing system permitted technical support of the local authorities and conservators, providing a comprehensive overview of the Volterra site, its cultural heritage and

  3. The use of remote sensing and GIS techniques with special emphasis on the use of Arc hydro data model in characterizing Atbara River watershed

    International Nuclear Information System (INIS)

    Adam, M. H. M.

    2010-11-01

    Remote sensing and GIS techniques were used successfully to establish hydrological information platform for Atbara sub-basin which drains from Ethiopia and Eretria to Sudan with entire area of about 224299 Km 2 . The study area have strategic importance, for many reasons; rich in minerals wealth, agricultural resources, and endowed with a substantial amount of water resources but the spatial and temporal distribution of water resources is imbalance. Remote Sensing and Digital elevation models (DEMs) are known to be very useful data sources for the automated delineation of flow paths, sub watersheds and flow networks for hydrologic modeling and watershed characterization, Landsat ETM + 30 m and Digital Elevation Models SRTM 90 m data used in this project, many digital image processing techniques used to enhanced images, interpretation and extracted information from satellite images by using ERDAS imagine, wile Arc GIS and arc hydro tools were used to processing and extract information from DEMs, stream network and catchment delineation and creation of geo database. It is the main output of this project, ready made GIS layers used to complete watershed characterizations view. The results of this research present in creation Arc hydro data model, and many thematic maps for Atbara sub-basin characteristics. The use of remote sensing in the study give efficient qualitative and quantitative detailed information about geomorphologic features drainage patterns, addition to general overview for land cover and land use. Moreover, the use of Digital Elevation Models in addition to the delineation of stream network and catchment give valuable information on the pale-geography and pale-climate of the study area. River network and watersheds delineations proved that El Gash River was once joining the Atbara River and it was a part of Nile Basin System. This might indicate that pale climatic conditions in the area were wet than the present. Geo database and Arc hydro data model

  4. Enhancement of ZnO based flexible nano generators via sol gel technique for sensing and energy harvesting applications.

    Science.gov (United States)

    Rajagopalan, Pandey; Singh, Vipul; I A, Palani

    2018-01-10

    Zinc oxide (ZnO) is a remarkable inorganic semiconductor with exceptional piezoelectric properties compared to other semiconductors. However, in comparison to lead-based hazardous piezoelectric materials, its features have undesired limitations. Here we report the 5~6 folds enhancement in the piezoelectric properties via chemical doping of copper matched to intrinsic ZnO. The flexible piezoelectric nanogenerator (F-PENG) device was fabricated using an unpretentious solution process of spin coating with other advantages like robust, low weight, improved adhesion, and low cost. The devices were used to demonstrate energy harvesting from a Standard weight as low as 4 gm and can work as a self-powered mass sensor in a broad range of 4 to 100 gm. The device exhibited a novel energy harvesting technique from a wind source due to its inherent flexibility. At three different velocities (10~30 m/s) and five different angles of attack (0~180 degrees), the device validated the ability to discern different velocities and directions of flow. The device will be useful for mapping the flow of air apart from harvesting the energy. The simulation was done to verify the underlining mechanism of aerodynamics involved in it. © 2018 IOP Publishing Ltd.

  5. New optical sensing technique of tissue viability and blood flow based on nanophotonic iterative multi-plane reflectance measurements

    Directory of Open Access Journals (Sweden)

    Yariv I

    2016-10-01

    Full Text Available Inbar Yariv,1 Menashe Haddad,2,3 Hamootal Duadi,1 Menachem Motiei,1 Dror Fixler1 1Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel; 2Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel; 3Mayanei Hayeshua Medical Center, Benei Brak, Israel Abstract: Physiological substances pose a challenge for researchers since their optical properties change constantly according to their physiological state. Examination of those substances noninvasively can be achieved by different optical methods with high sensitivity. Our research suggests the application of a novel noninvasive nanophotonics technique, ie, iterative multi-plane optical property extraction (IMOPE based on reflectance measurements, for tissue viability examination and gold nanorods (GNRs and blood flow detection. The IMOPE model combines an experimental setup designed for recording light intensity images with the multi-plane iterative Gerchberg-Saxton algorithm for reconstructing the reemitted light phase and calculating its standard deviation (STD. Changes in tissue composition affect its optical properties which results in changes in the light phase that can be measured by its STD. We have demonstrated this new concept of correlating the light phase STD and the optical properties of a substance, using transmission measurements only. This paper presents, for the first time, reflectance based IMOPE tissue viability examination, producing a decrease in the computed STD for older tissues, as well as investigating their organic material absorption capability. Finally, differentiation of the femoral vein from adjacent tissues using GNRs and the detection of their presence within blood circulation and tissues are also presented with high sensitivity (better than computed tomography to low quantities of GNRs (<3 mg. Keywords: Gerchberg-Saxton, optical properties, gold nanorods, blood vessel, tissue viability

  6. Developing a western Siberia reference site for tropospheric water vapour isotopologue observations obtained by different techniques (in situ and remote sensing

    Directory of Open Access Journals (Sweden)

    K. Gribanov

    2014-06-01

    water cycle, affected by changes in air mass origin, non-convective and convective processes and continental recycling. Novel remote sensing and in situ measuring techniques have recently offered opportunities for monitoring atmospheric water vapour isotopic composition. Recently developed infrared laser spectrometers allow for continuous in situ measurements of surface water vapour δDv and δ18Ov. So far, very few intercomparisons of measurements conducted using different techniques have been achieved at a given location, due to difficulties intrinsic to the comparison of integrated with local measurements. Nudged simulations conducted with high-resolution isotopically enabled general circulation models (GCMs provide a consistent framework for comparison with the different types of observations. Here, we compare simulations conducted with the ECHAM5-wiso model with two types of water vapour isotopic data obtained during summer 2012 at the forest site of Kourovka, western Siberia: hourly ground-based FTIR total atmospheric columnar δDv amounts, and in situ hourly Picarro δDv measurements. There is an excellent correlation between observed and predicted δDv at surface while the comparison between water column values derived from the model compares well with FTIR estimates.

  7. Analysis of Grassland Ecosystem Physiology at Multiple Scales Using Eddy Covariance, Stable Isotope and Remote Sensing Techniques

    Science.gov (United States)

    Flanagan, L. B.; Geske, N.; Emrick, C.; Johnson, B. G.

    2006-12-01

    Grassland ecosystems typically exhibit very large annual fluctuations in above-ground biomass production and net ecosystem productivity (NEP). Eddy covariance flux measurements, plant stable isotope analyses, and canopy spectral reflectance techniques have been applied to study environmental constraints on grassland ecosystem productivity and the acclimation responses of the ecosystem at a site near Lethbridge, Alberta, Canada. We have observed substantial interannual variation in grassland productivity during 1999-2005. In addition, there was a strong correlation between peak above-ground biomass production and NEP calculated from eddy covariance measurements. Interannual variation in NEP was strongly controlled by the total amount of precipitation received during the growing season (April-August). We also observed significant positive correlations between a multivariate ENSO index and total growing season precipitation, and between the ENSO index and annual NEP values. This suggested that a significant fraction of the annual variability in grassland productivity was associated with ENSO during 1999-2005. Grassland productivity varies asymmetrically in response to changes in precipitation with increases in productivity during wet years being much more pronounced than reductions during dry years. Strong increases in plant water-use efficiency, based on carbon and oxygen stable isotope analyses, contribute to the resilience of productivity during times of drought. Within a growing season increased stomatal limitation of photosynthesis, associated with improved water-use efficiency, resulted in apparent shifts in leaf xanthophyll cycle pigments and changes to the Photochemical Reflectance Index (PRI) calculated from hyper-spectral reflectance measurements conducted at the canopy-scale. These shifts in PRI were apparent before seasonal drought caused significant reductions in leaf area index (LAI) and changes to canopy-scale "greenness" based on NDVI values. With

  8. Accuracy assessment of water vapour measurements from in situ and remote sensing techniques during the DEMEVAP 2011 campaign at OHP

    Directory of Open Access Journals (Sweden)

    O. Bock

    2013-10-01

    Full Text Available The Development of Methodologies for Water Vapour Measurement (DEMEVAP project aims at assessing and improving humidity sounding techniques and establishing a reference system based on the combination of Raman lidars, ground-based sensors and GPS. Such a system may be used for climate monitoring, radiosonde bias detection and correction, satellite measurement calibration/validation, and mm-level geodetic positioning with Global Navigation Satellite Systems. A field experiment was conducted in September–October 2011 at Observatoire de Haute-Provence (OHP. Two Raman lidars (IGN mobile lidar and OHP NDACC lidar, a stellar spectrometer (SOPHIE, a differential absorption spectrometer (SAOZ, a sun photometer (AERONET, 5 GPS receivers and 4 types of radiosondes (Vaisala RS92, MODEM M2K2-DC and M10, and Meteolabor Snow White participated in the campaign. A total of 26 balloons with multiple radiosondes were flown during 16 clear nights. This paper presents preliminary findings from the analysis of all these data sets. Several classical Raman lidar calibration methods are evaluated which use either Vaisala RS92 measurements, point capacitive humidity measurements, or GPS integrated water vapour (IWV measurements. A novel method proposed by Bosser et al. (2010 is also tested. It consists in calibrating the lidar measurements during the GPS data processing. The methods achieve a repeatability of 4–5%. Changes in the calibration factor of IGN Raman lidar are evidenced which are attributed to frequent optical re-alignments. When modelling and correcting the changes as a linear function of time, the precision of the calibration factors improves to 2–3%. However, the variations in the calibration factor, and hence the absolute accuracy, between methods and types of reference data remain at the level of 7%. The intercomparison of radiosonde measurements shows good agreement between RS92 and Snow White measurements up to 12 km. An overall dry bias is found

  9. On a possibility to use the remote sensing techniques for glaciological analysis in mountain regions of Uzbekistan

    Directory of Open Access Journals (Sweden)

    E. R. Semakova

    2017-01-01

    Full Text Available The ALOS/AVNIR-2 satellite data (2007–2010 allowed estimating areas of glaciers, change in the areas for 50 years, and the number and areas of new naturally-dammed lakes in the mountain regions of Uzbekistan. Boundaries of these gla‑ ciers together with the ALOS/PALSAR data (2010 were used as the basis to determine position of the firn line. It was revealed that since 1980s elevation range of the line gradually decreased. The relationship between average elevation of the firn line and the upper limit of the juniper tree occurrence as well as changing of this relation since 1980s are consid‑ ered. The revealed lakes served as the basis for verification of probabilistic model of the moraine-dammed lake forma‑ tions due to the glacier recessions in the basins under consideration. It was shown that the GIS-techniques based on the use of this model together with data on glaciation and the relief digital model may significantly simplify searching of new lakes. Application of a system of the mudflow movement modeling makes possible to estimate a risk level in a case of a lake bursting. Current information about changing elevations of the glacier surfaces was obtained duet to the radar inter‑ ferometry and the altimeter data. The digital model of the river Pskem upper course (the DEM had been built using the satellite TerraSAR‑X/TanDEM‑X data (2011–2012. All datasets of the elevations were checked for horizontal shifts of the relief digital models relative to the ICESat profiles (2003–2008. Evaluation of accuracy and morphological analysis of all the relief models for the investigated region were also made. DEMs differencing, the difference between ICESat measure‑ ments and DEM, nearby ICESat footprints within one track and between the tracks were carried out to assess the change in elevations of the glacier surfaces. Average rate of the surface lowering of an individual glacier with the maximal number of footprints (7 in the track

  10. Assessment of the vegetation cover in a burned area 22-years ago using remote sensing techniques and GIS analysis (Sierra de las Nieves, South of Spain).

    Science.gov (United States)

    Martínez-Murillo, Juan F.; Remond, Ricardo; Ruiz-Sinoga, José D.

    2015-04-01

    The study aim was to characterize the vegetation cover in a burned area 22-years ago considering the previous situation to wildfire in 1991 and the current one in 2013. The objectives were to: (i) compare the current and previous vegetation cover to widlfire; (ii) evaluate whether the current vegetation has recovered the previous cover to wildfire; and (iii) determine the spatial variability of vegetation recovery after 22-years since the wildfire. The study area is located in Sierra de las Nieves, South of Spain. It corresponds to an area affected by a wildfire in August 8th, 1991. The burned area was equal to 8156 ha. The burn severity was spatially very high. The main geographic features of the burned area are: mountainous topography (altitudes ranging from 250 m to 1500 m; slope gradient >25%; exposure mainly southfacing); igneous (peridotites), metamorphic (gneiss) and calcareous rocks (limestones); and predominant forest land use (Pinus pinaster sp. woodlands, 10%; pinus opened forest + shrubland, 40%; shrubland, 35%; and bare soil + grassland, 15%). Remote sensing techniques and GIS analysis has been applied to achieve the objectives. Landsat 5 and Landsat 8 images were used: July 13th, 1991 and July 1st, 2013, for the previous wildfire situation and 22-years after, respectively. The 1990 CORINE land cover was also considered to map 1991 land uses prior the wildfire. Likewise, the Andalucía Regional Government wildfire historic records were used to select the burned area and its geographical limit. 1991 and 2013 land cover map were obtained by means of object-oriented classifications. Also, NDVI and PVI1 vegetation indexes were calculated and mapped for both years. Finally, some images transformations and kernel density images were applied to determine the most recovered areas and to map the spatial concentration of bare soil and pine cover areas in 1991 and 2013, respectively. According to the results, the combination of remote sensing and GIS analysis let

  11. Smart Sensing Using Wavelets Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Further refinements to the FOSS technologies are focusing on “smart” sensing techniques that adjust sensing parameters as needed in real time so that...

  12. USING REMOTE SENSING AND GIS TECHNIQUES TO DETECT CHANGES TO THE PRINCE ALFRED HAMLET CONSERVATION AREA IN THE WESTERN CAPE, SOUTH AFRICA

    Directory of Open Access Journals (Sweden)

    P. Duncan

    2016-06-01

    Full Text Available Understanding and identifying the spatial-temporal changes in the natural environment is crucial for monitoring and evaluating conservation efforts, as well as understanding the impact of human activities on natural resources, informing responsible land management, and promoting better decision-making. Conservation areas are often under pressure from expanding farming and related industry, invasive alien vegetation, and an ever-increasing human settlement footprint. This study focuses on detecting changes to the Prince Alfred Hamlet commonage, near Ceres in the Cape Floral Kingdom. It was chosen for its high conservation value and significance as a critical water source area. The study area includes a fast-growing human settlement footprint in a highly productive farming landscape. There are conflicting development needs as well as risks to agricultural production, and both of these threaten the integrity of the ecosystems which supply underlying services to both demands on the land. Using a multi-disciplinary approach and high-resolution satellite imagery, land use and land cover changes can be detected and classified, and the results used to support the conservation of biodiversity and wildlife, and protect our natural resources. The aim of this research is to study the efficacy of using remote sensing and GIS techniques to detect changes to critical conservation areas where disturbances can be understood, and therefore better managed and mitigated before these areas are degraded beyond repair.

  13. Using Remote Sensing and GIS Techniques to Detect Changes to the Prince Alfred Hamlet Conservation Area in the Western Cape, South Africa

    Science.gov (United States)

    Duncan, P.; Lewarne, M.

    2016-06-01

    Understanding and identifying the spatial-temporal changes in the natural environment is crucial for monitoring and evaluating conservation efforts, as well as understanding the impact of human activities on natural resources, informing responsible land management, and promoting better decision-making. Conservation areas are often under pressure from expanding farming and related industry, invasive alien vegetation, and an ever-increasing human settlement footprint. This study focuses on detecting changes to the Prince Alfred Hamlet commonage, near Ceres in the Cape Floral Kingdom. It was chosen for its high conservation value and significance as a critical water source area. The study area includes a fast-growing human settlement footprint in a highly productive farming landscape. There are conflicting development needs as well as risks to agricultural production, and both of these threaten the integrity of the ecosystems which supply underlying services to both demands on the land. Using a multi-disciplinary approach and high-resolution satellite imagery, land use and land cover changes can be detected and classified, and the results used to support the conservation of biodiversity and wildlife, and protect our natural resources. The aim of this research is to study the efficacy of using remote sensing and GIS techniques to detect changes to critical conservation areas where disturbances can be understood, and therefore better managed and mitigated before these areas are degraded beyond repair.

  14. Assessment of the accuracy of the conventional ray-tracing technique: Implications in remote sensing and radiative transfer involving ice clouds

    International Nuclear Information System (INIS)

    Bi, Lei; Yang, Ping; Liu, Chao; Yi, Bingqi; Baum, Bryan A.; Diedenhoven, Bastiaan van; Iwabuchi, Hironobu

    2014-01-01

    A fundamental problem in remote sensing and radiative transfer simulations involving ice clouds is the ability to compute accurate optical properties for individual ice particles. While relatively simple and intuitively appealing, the conventional geometric-optics method (CGOM) is used frequently for the solution of light scattering by ice crystals. Due to the approximations in the ray-tracing technique, the CGOM accuracy is not well quantified. The result is that the uncertainties are introduced that can impact many applications. Improvements in the Invariant Imbedding T-matrix method (II-TM) and the Improved Geometric-Optics Method (IGOM) provide a mechanism to assess the aforementioned uncertainties. The results computed by the II-TM+IGOM are considered as a benchmark because the II-TM solves Maxwell's equations from first principles and is applicable to particle size parameters ranging into the domain at which the IGOM has reasonable accuracy. To assess the uncertainties with the CGOM in remote sensing and radiative transfer simulations, two independent optical property datasets of hexagonal columns are developed for sensitivity studies by using the CGOM and the II-TM+IGOM, respectively. Ice cloud bulk optical properties obtained from the two datasets are compared and subsequently applied to retrieve the optical thickness and effective diameter from Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. Additionally, the bulk optical properties are tested in broadband radiative transfer (RT) simulations using the general circulation model (GCM) version of the Rapid Radiative Transfer Model (RRTMG) that is adopted in the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM, version 5.1). For MODIS retrievals, the mean bias of uncertainties of applying the CGOM in shortwave bands (0.86 and 2.13 μm) can be up to 5% in the optical thickness and as high as 20% in the effective diameter, depending on cloud optical

  15. Assessment of the soil water balance by the combination of cosmic ray neutron sensing and eddy covariance technique in an irrigated citrus orchard (Marrakesh, Morocco)

    Science.gov (United States)

    Mroos, Katja; Baroni, Gabriele; Er-Raki, Salah; Francke, Till; Khabba, Said; Jarlan, Lionel; Hanich, Lahoucine; Oswald, Sascha E.

    2014-05-01

    Irrigation water requirement plays a crucial role in many agricultural areas and especially in arid and semi-arid landscapes. Improvements in the water management and the performance of the irrigation systems require a correct evaluation of the hydrological processes involved. However, some difficulties can arise due to the heterogeneity of the soil-plant system and of the irrigation scheme. To overcome these limitations, in this study, the soil water balance is analyzed by the combination of the Eddy Covariance technique (EC) and Cosmic Ray neutron Sensing (CRS). EC provides the measurement of the actual evapotranspiration over the area as it was presented in many field conditions. Moreover CRS showed to be a valuable approach to measure the root zone soil moisture integrated in a footprint of ~30 ha. In this way, the combination of the two methodologies should provide a better analysis of the soil water balance at field scale, as opposed to point observations, e.g. by TDR, evaporimeter and fluxmeter. Then, this could increase the capability to assess the irrigation efficiency and the agricultural water management. The study is conducted in a citrus orchard situated in a semi-arid region, 30 km southwest of Marrakesh (Morocco). The site is flat and planted with trees of same age growing in parallel rows with drip irrigation lines and application of fertilizer and pesticides. The original soil seems modified on the surface by the agricultural use, creating differences between trees, rows and lines. In addition, the drip irrigation creates also a spatial variability of the water flux distribution in the field, making this site an interesting area to test the methodology. Particular attention is given to the adaptation of the standard soil sampling campaign used for the calibration of the CRS and the introduction of a weighing function. Data were collected from June to December 2013, which corresponds to the high plant transpiration. Despite the intention of the

  16. Intelligent environmental sensing

    CERN Document Server

    Mukhopadhyay, Subhas

    2015-01-01

    Developing environmental sensing and monitoring technologies become essential especially for industries that may cause severe contamination. Intelligent environmental sensing uses novel sensor techniques, intelligent signal and data processing algorithms, and wireless sensor networks to enhance environmental sensing and monitoring. It finds applications in many environmental problems such as oil and gas, water quality, and agriculture. This book addresses issues related to three main approaches to intelligent environmental sensing and discusses their latest technological developments. Key contents of the book include:   Agricultural monitoring Classification, detection, and estimation Data fusion Geological monitoring Motor monitoring Multi-sensor systems Oil reservoirs monitoring Sensor motes Water quality monitoring Wireless sensor network protocol  

  17. Advanced Remote Sensing Research

    Science.gov (United States)

    Slonecker, Terrence; Jones, John W.; Price, Susan D.; Hogan, Dianna

    2008-01-01

    'Remote sensing' is a generic term for monitoring techniques that collect information without being in physical contact with the object of study. Overhead imagery from aircraft and satellite sensors provides the most common form of remotely sensed data and records the interaction of electromagnetic energy (usually visible light) with matter, such as the Earth's surface. Remotely sensed data are fundamental to geographic science. The Eastern Geographic Science Center (EGSC) of the U.S. Geological Survey (USGS) is currently conducting and promoting the research and development of three different aspects of remote sensing science: spectral analysis, automated orthorectification of historical imagery, and long wave infrared (LWIR) polarimetric imagery (PI).

  18. Assessment of urban heat islands and impact of climate change on socioeconomic over Suez Governorate using remote sensing and GIS techniques

    Directory of Open Access Journals (Sweden)

    S. Ahmed

    2018-04-01

    Full Text Available Climate change and its effect on human life and comfort have taken increase attraction. In this paper effect of UHI is analyzed using quantitative thermal, temporal remote sensing and GIS techniques. Series of Landsat TM/ETM, 8 and ASTER images of Suez Governorate acquired in winter season were used to investigate the variation in land surface temperature (LST from 1988 to 2014 as well as land-use/cover change. NDVI NDBI and LST have been used for classification of the study area. Vulnerable areas for UHI have been assessed over Suez district. The effect of UHI was quantitatively described using urban thermal field variance index (UTFVI. Results indicate that there are increases in the overall temperature between years 1988 and 2014. Suez and Al-Arbin districts which are the most populated, highly density built-up and rarely vegetation zones in Suez governorate experiences a huge problem of UHI. UHI phenomenon represents total weight of 40.84% and 46.3% of their areas respectively. It is found that the mean temperature of UHI areas of Al-Arbin and Al-Suez districts was 7.5 above mean of District temperature. While the value of UHI of suburban zone e.g. Ataqa and AL-Ganayin was 2.5 degree above district mean. The results indicate that changes in UTFVI distribution can be predominantly related to the expansion of urban area during the study time period. The hot spot of UTFVI were found mainly in the built-up areas especially densely populated district and in heavily industrial district. It is the vulnerable areas to UHI. Keywords: Climate change, UHI, Suez Canal, Suez Governorate, Land surface temperature, Land/use land/cover change, Urban sprawl

  19. Influences of prolonged apnea and oxygen inhalation on pulmonary hemodynamics during breath holding: Quantitative assessment by velocity-encoded MR imaging with SENSE technique

    International Nuclear Information System (INIS)

    Nogami, Munenobu; Ohno, Yoshiharu; Higashino, Takanori; Takenaka, Daisuke; Yoshikawa, Takeshi; Koyama, Hisanobu; Kawamitsu, Hideaki; Fujii, Masahiko; Sugimura, Kazuro

    2007-01-01

    Purpose: The purpose of our study was to assess the influence of prolonged apnea and administration of oxygen on pulmonary hemodynamics during breath holding (BH) by using velocity-encoded MR imaging combined with the SENSE technique (velocity MRI). Materials and methods: Ten healthy male volunteers underwent velocity MRI during BH with and without O 2 inhalation. All velocity MRI data sets were obtained continuously with the 2D cine phase-contrast method during a single BH period. The data were then divided into three BH time phases as follows: first, second and third. To evaluate the influence of prolonged apnea on hemodynamics, stroke volume (SV) and maximal change in flow rate during ejection (MCFR) of second and third phases were statistically compared with those of first phase by using the ANOVA followed by Turkey's HSD multiple comparison test. To assess the influence of O 2 on hemodynamics, SV and MCFR with or without O 2 were compared by the paired t-test. To assess the measuring agreement of hemodynamic indices during prolonged breath holding, Bland-Altman's analysis was performed. Results: Prolonged apnea had no significant influence on SV and MCFR regardless of administration of O 2 (p > 0.05). Mean MCFR for all phases was significantly lower with administration of O 2 than without (p 2 were smaller than without. Conclusion: O 2 inhalation modulated maximal change in flow rate during ejection, and did not influence stroke volume during breath holding. Influence of O 2 inhalation should be considered for MR measurements of pulmonary hemodynamics during breath holding

  20. Mapping of coastal landforms and volumetric change analysis in the south west coast of Kanyakumari, South India using remote sensing and GIS techniques

    Directory of Open Access Journals (Sweden)

    S. Kaliraj

    2017-12-01

    Full Text Available The coastal landforms along the south west coast of Kanyakumari have undergone remarkable change in terms of shape and disposition due to both natural and anthropogenic interference. An attempt is made here to map the coastal landforms along the coast using remote sensing and GIS techniques. Spatial data sources, such as, topographical map published by Survey of India, Landsat ETM+ (30 m image, IKONOS image (0.82 m, SRTM and ASTER DEM datasets have been comprehensively analyzed for extracting coastal landforms. Change detection methods, such as, (i topographical change detection, (ii cross-shore profile analysis, (iii Geomorphic Change Detection (GCD using DEM of Difference (DoD were adopted for assessment of volumetric changes of coastal landforms for the period between 2000 and 2011. The GCD analysis uses ASTER and SRTM DEM datasets by resampling them into common scale (pixel size using pixel-by-pixel based Wavelet Transform and Pan-Sharpening techniques in ERDAS Imagine software. Volumetric changes of coastal landforms were validated with data derived from GPS-based field survey. Coastal landform units were mapped based on process of their evolution such as beach landforms including sandy beach, cusp, berm, scarp, beach terrace, upland, rockyshore, cliffs, wave-cut notches and wave-cut platforms; and the fluvial landforms. Comprising of alluvial plain, flood plains, and other shallow marshes in estuaries. The topographical change analysis reveals that the beach landforms have reduced their elevation ranging from 1 to 3 m probably due to sediment removal or flattening. Analysis of cross-shore profiles for twelve locations indicate varying degrees of loss or gain of coastal landforms. For example, the K3-K3′ profile across the Kovalam coast has shown significant erosion (−0.26 to −0.76 m of the sandy beaches resulting in the formation of beach cusps and beach scarps within a distance of 300 m from the shoreline. The volumetric change

  1. Documentation of the ground for the planned MERO-IKL oil pipeline using the remote sensing technique. Annex P-5: Aerial photographs of the Nelahozeves - national border segment

    International Nuclear Information System (INIS)

    1994-02-01

    The remote sensing method was employed to obtain complete photographic documentation of the planned route for the Ingolstadt-Kralupy-Litvinov pipeline; sites of potentially hazardous sources of soil or water pollution were identified. (J.B.). 83 figs

  2. Dynamics Change of Honghu Lake's Water Surface Area and Its Driving Force Analysis Based on Remote Sensing Technique and TOPMODEL model

    International Nuclear Information System (INIS)

    Wen, X; Cao, B; Shen, S; Hu, D; Tang, X

    2014-01-01

    Honghu Lake is the largest freshwater lake in the Hubei Province of China. This paper introduces a remote sensing approach to monitor the lake's water surface area dynamics over the last 40 years by using multi-temporal remote sensing imagery including Landsat and HJ-1. Meanwhile, the daily precipitation and evaporation data provided by Honghu meteorological station since 1970s were also collected and used to analyze the influence of climate change factors. The typical situation for precipitation was selected as an input into the TOPMODEL model to simulate the hydrological process in Honghu Lake. The simulation result with the water surface area extracted from remote sensing imagery was analyzed. This experiment shows the precipitation and timing of precipitation effects changes in the lake with remote sensing data and it showed the potential of using TOPMODEL model to analyze the combined hydrological process in Honghu Lake

  3. Determination of Temporal Change Land Use / Land Cover Using Remote Sensing and Geographic Information System Techniques the Central District of Samsun (1984-2011

    Directory of Open Access Journals (Sweden)

    Orhan DENGİZ

    2014-03-01

    Full Text Available In our day natural resources fall short against endless human needs and increasing population. It is required for lands which are the leading natural resources to be used and planned according to natural environment potential. This study was conducted in Central district of Samsun province covered about 341 km2 and located between the latitudes 41° 25‟ 52”- 41° 12‟ 22” to 41° 42‟ 34” to north and longitudes 36° 09‟ 52”-36° 24‟ 31” east. Determination of land use efficiency of district selected for this study using satellite image and GIS was aimed. For this purpose the data of General Directorate of Rural Services which belongs to 1984 year, ASTER satellite images which belongs to 2005 and 2011 years and topographic maps were used. For performing calculations in ENVI 5.0v software unclassified classification applied and four main classes were formed. For determining the unclassified classes as classified the field work applied. The result of the classification forest, pasture, farm lands and non agricultural areas were determined as land use-land covers. For determining land use efficiency analog data were digitized and transferred to GIS database. Land use types and land use capability classes of 1984 year converted raster data by using GIS. Land use types of 1993, land use types of 2005 and 2011 and land use capability classes were compared. As the result of the comparison urbanization and unintended use increased in I., II. and III. class lands. In 1984 agricultural land has 24313.76 ha while, this amount decreased to 10120.96 ha in 2005 and 6960.69 ha in 2011. On the other hand, while non-agricultural area was 1893.36 in 1984, this area increased to 6301.66 ha in 2005 and 7917.73 ha in 2011. In addition, this study showed that to determine and to monitory for large areas‟ land cover and land use trend, remote sensing and geographic information system techniques have important role to generate accoriance and fast

  4. A Novel Technique for Maximum Power Point Tracking of a Photovoltaic Based on Sensing of Array Current Using Adaptive Neuro-Fuzzy Inference System (ANFIS)

    Science.gov (United States)

    El-Zoghby, Helmy M.; Bendary, Ahmed F.

    2016-10-01

    Maximum Power Point Tracking (MPPT) is now widely used method in increasing the photovoltaic (PV) efficiency. The conventional MPPT methods have many problems concerning the accuracy, flexibility and efficiency. The MPP depends on the PV temperature and solar irradiation that randomly varied. In this paper an artificial intelligence based controller is presented through implementing of an Adaptive Neuro-Fuzzy Inference System (ANFIS) to obtain maximum power from PV. The ANFIS inputs are the temperature and cell current, and the output is optimal voltage at maximum power. During operation the trained ANFIS senses the PV current using suitable sensor and also senses the temperature to determine the optimal operating voltage that corresponds to the current at MPP. This voltage is used to control the boost converter duty cycle. The MATLAB simulation results shows the effectiveness of the ANFIS with sensing the PV current in obtaining the MPPT from the PV.

  5. Analyzing suitability for urban expansion under rapid coastal urbanization with remote sensing and GIS techniques: a case study of Linanyungang, China

    DEFF Research Database (Denmark)

    Zhao, Wenjun; Zhu, Xiaodong; Reenberg, Anette

    2010-01-01

    Beginning in 2000, Lianyungang's urbanization entered a period of rapid growth, spatially as well as economically. Rapid and intensive expansion of "construction land" imposed increasing pressures on regional environment. With the support of remote sensing data and GIS tools, this paper reports a...

  6. Techniques of remote sensing and GIS as tools for visualizing impact of climate change-induced flood in the southern African region.

    Science.gov (United States)

    This study employs remote sensing and Geographical Information Systems (GIS) data to visualize the impact of climate change caused by flooding in the Southern African region in order to assist decision makers’ plans for future occurrences. In pursuit of this objective, this study uses Digital Elevat...

  7. Comparison study to the use of geophysical methods at archaeological sites observed by various remote sensing techniques in the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Křivánek, Roman

    2017-01-01

    Roč. 7, č. 3 (2017), č. článku 81. ISSN 2076-3263 Grant - others:AV ČR(CZ) R300021421 Institutional support: RVO:67985912 Keywords : archaeological prospection * remote sensing * non-destructive archaeology * geophysical survey Subject RIV: AC - Archeology, Anthropology, Ethnology OBOR OECD: Archaeology http://www.mdpi.com/2076-3263/7/3/81/pdf

  8. Glucose Sensing

    CERN Document Server

    Geddes, Chris D

    2006-01-01

    Topics in Fluorescence Spectroscopy, Glucose Sensing is the eleventh volume in the popular series Topics in Fluorescence Spectroscopy, edited by Drs. Chris D. Geddes and Joseph R. Lakowicz. This volume incorporates authoritative analytical fluorescence-based glucose sensing reviews specialized enough to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of fluorescence. Glucose Sensing is an essential reference for any lab working in the analytical fluorescence glucose sensing field. All academics, bench scientists, and industry professionals wishing to take advantage of the latest and greatest in the continuously emerging field of glucose sensing, and diabetes care & management, will find this volume an invaluable resource. Topics in Fluorescence Spectroscopy Volume 11, Glucose Sensing Chapters include: Implantable Sensors for Interstitial Fluid Smart Tattoo Glucose Sensors Optical Enzyme-based Glucose Biosensors Plasmonic Glucose Sens...

  9. Make Sense?

    DEFF Research Database (Denmark)

    Gyrd-Jones, Richard; Törmälä, Minna

    Purpose: An important part of how we sense a brand is how we make sense of a brand. Sense-making is naturally strongly connected to how we cognize about the brand. But sense-making is concerned with multiple forms of knowledge that arise from our interpretation of the brand-related stimuli......: Declarative, episodic, procedural and sensory. Knowledge is given meaning through mental association (Keller, 1993) and / or symbolic interaction (Blumer, 1969). These meanings are centrally related to individuals’ sense of identity or “identity needs” (Wallpach & Woodside, 2009). The way individuals make...... sense of brands is related to who people think they are in their context and this shapes what they enact and how they interpret the brand (Currie & Brown, 2003; Weick, Sutcliffe, & Obstfeld, 2005; Weick, 1993). Our subject of interest in this paper is how stakeholders interpret and ascribe meaning...

  10. Evaluation of Over-The-Row Harvester Damage in a Super-High-Density Olive Orchard Using On-Board Sensing Techniques

    Directory of Open Access Journals (Sweden)

    Manuel Pérez-Ruiz

    2018-04-01

    Full Text Available New super-high-density (SHD olive orchards designed for mechanical harvesting using over-the-row harvesters are becoming increasingly common around the world. Some studies regarding olive SHD harvesting have focused on the effective removal of the olive fruits; however, the energy applied to the canopy by the harvesting machine that can result in fruit damage, structural damage or extra stress on the trees has been little studied. Using conventional analyses, this study investigates the effects of different nominal speeds and beating frequencies on the removal efficiency and the potential for fruit damage, and it uses remote sensing to determine changes in the plant structures of two varieties of olive trees (‘Manzanilla Cacereña’ and ‘Manzanilla de Sevilla’ planted in SHD orchards harvested by an over-the-row harvester. ‘Manzanilla de Sevilla’ fruit was the least tolerant to damage, and for this variety, harvesting at the highest nominal speed led to the greatest percentage of fruits with cuts. Different vibration patterns were applied to the olive trees and were evaluated using triaxial accelerometers. The use of two light detection and ranging (LiDAR sensing devices allowed us to evaluate structural changes in the studied olive trees. Before- and after-harvest measurements revealed significant differences in the LiDAR data analysis, particularly at the highest nominal speed. The results of this work show that the operating conditions of the harvester are key to minimising fruit damage and that a rapid estimate of the damage produced by an over-the-row harvester with contactless sensing could provide useful information for automatically adjusting the machine parameters in individual olive groves in the future.

  11. Challenges for Social Sensing using WiFi Signals

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun; Nurmi, Petteri

    2012-01-01

    Smartphones are an attractive option for social sensing due to their widespread market penetration rate and advanced sensing capabilities. Enabling social sensing on smartphones would require techniques that can accurately detect and characterize physical proximity, an important prerequisite...

  12. A force measurement system based on an electrostatic sensing and actuating technique for calibrating force in a micronewton range with a resolution of nanonewton scale

    International Nuclear Information System (INIS)

    Chen, Sheng-Jui; Pan, Sheau-Shi

    2011-01-01

    This paper introduces a force measurement system recently established at the Center for Measurement Standards, Industrial Technology Research Institute for calibrating forces in a micronewton range with a resolution of a few nanonewtons. The force balance consists of a monolithic flexure stage and a specially made capacitor for electrostatic sensing and actuating. The capacitor is formed by three electrodes which can be utilized as a capacitive position sensor and an electrostatic force actuator at the same time. Force balance control is implemented with a digital controller by which the signal of the stage deflection is acquired, filtered and fed back to the electrostatic force driver to bring the flexure stage to the null position. The detailed description of the apparatus including the design of a monolithic flexure stage, principle of capacitive position sensing/electrostatic actuation and the force balance control is given in the paper. Finally, we present the results of electrostatic force calibration and the weighing of a 1 mg wire weight

  13. EDITORIAL: Integrated non-invasive sensing techniques and geophysical methods for the study and conservation of architectural, archaeological and artistic heritage Integrated non-invasive sensing techniques and geophysical methods for the study and conservation of architectural, archaeological and artistic heritage

    Science.gov (United States)

    Masini, N.; Soldovieri, F.

    2011-09-01

    In the last two decades, the use of non-invasive methods for the study and conservation of cultural heritage, from artefacts and historical sites to recent architectural structures, has gained increasing interest. This is due to several reasons: (i) the improvement of performance and information resolution of sensors and devices; (ii) the increasing availability of user-friendly data/image analysis, and processing software and routines; (iii) the ever greater awareness of archaeologists and conservators of the benefits of these technologies, in terms of reduction of costs, time and the risk associated with direct and destructive investigations of archaeological sites (excavation) and monuments (i.e. masonry coring). The choice of diagnostic strategy depends on the spatial and physical characteristics of the cultural objects or sites, the aim of the investigation (knowledge, conservation, restoration) and the issues to be addressed (monitoring, decay assessment, etc). This makes the set up and validation of ad hoc procedures based on data processing and post-processing methods necessary, generally developed to address issues in other fields of application. This methodological perspective based on an integrated and multi-scale approach characterizes the papers of this special issue, which is focused on integrated non-invasive sensing techniques and geophysical methods for the study and conservation of architectural, archaeological and artistic heritage. In particular, attention is given to the advanced application of the synthetic aperture radar (SAR) from the satellite-based platform for deformation monitoring thanks to the innovative differential SAR interferometry (DInSAR) technique; Zeni et al show the significant possibilities of the proposed methodology in achieving a global vision not only of cultural heritage but also of the embedding territory. This collection also deals with the application of non-invasive diagnostics to archaeological prospecting, and

  14. The Combined Use of Airborne Remote Sensing Techniques within a GIS Environment for the Seismic Vulnerability Assessment of Urban Areas: An Operational Application

    Directory of Open Access Journals (Sweden)

    Antonio Costanzo

    2016-02-01

    Full Text Available The knowledge of the topographic features, the building properties, and the road infrastructure settings are relevant operational tasks for managing post-crisis events, restoration activities, and for supporting search and rescue operations. Within such a framework, airborne remote sensing tools have demonstrated to be powerful instruments, whose joint use can provide meaningful analyses to support the risk assessment of urban environments. Based on this rationale, in this study, the operational benefits obtained by combining airborne LiDAR and hyperspectral measurements are shown. Terrain and surface digital models are gathered by using LiDAR data. Information about roads and roof materials are provided through the supervised classification of hyperspectral images. The objective is to combine such products within a geographic information system (GIS providing value-added maps to be used for the seismic vulnerability assessment of urban environments. Experimental results are gathered for the city of Cosenza, Italy.

  15. Study of the oxidation of uranium by external and diffuse reflectance FTIR spectroscopy using remote-sensing and evacuable cell techniques

    Science.gov (United States)

    Powell, G. L.; Dobbins, A.; Cristy, S. S.; Cliff, T. L.; Meyer, H. M., III; Lucania, J.; Milosevic, Milan

    1994-01-01

    This report describes the application of reflectance FTIR spectroscopy to the measurement of the oxidation rate of uranium by environmental gases near room temperature. It also describes very efficient evacuable cells designed for 75 degree(s) external reflectance with polarized light and for diffuse reflectance using mid-infrared FTIR spectroscopy. These cells, along with functionally similar remote sensing accessories, have been applied to the study of the oxidation of uranium metal in air, oxygen, and water vapor by precisely measuring the 575 cm-1 band of UO2 and other properties of the corrosion film such as absorbed water and reflective losses caused by film degradation related to pitting or nucleation phenomena.

  16. Remote Sensing and the Earth.

    Science.gov (United States)

    Brosius, Craig A.; And Others

    This document is designed to help senior high school students study remote sensing technology and techniques in relation to the environmental sciences. It discusses the acquisition, analysis, and use of ecological remote data. Material is divided into three sections and an appendix. Section One is an overview of the basics of remote sensing.…

  17. Hyperspectral remote sensing techniques applied to the noninvasive investigation of mural paintings: a feasibility study carried out on a wall painting by Beato Angelico in Florence

    Science.gov (United States)

    Cucci, Costanza; Picollo, Marcello; Chiarantini, Leandro; Sereni, Barbara

    2015-06-01

    Nowadays hyperspectral imaging is a well-established methodology for the non-invasive diagnostics of polychrome surfaces, and is increasingly utilized in museums and conservation laboratories for documentation purposes and in support of restoration procedures. However, so far the applications of hyperspectral imaging have been mainly limited to easel paintings or paper-based artifacts. Indeed, specifically designed hyperspectral imagers, are usually used for applications in museum context. These devices work at short-distances from the targets and cover limited size surfaces. Instead, almost still unexplored remain the applications of hyperspectral imaging to the investigations of frescoes and large size mural paintings. For this type of artworks a remote sensing approach, based on sensors capable of acquiring hyperspectral data from distances of the order of tens of meters, is needed. This paper illustrates an application of hyperspectral remote sensing to an important wall-painting by Beato Angelico, located in the San Marco Museum in Florence. Measurements were carried out using a re-adapted version of the Galileo Avionica Multisensor Hyperspectral System (SIM-GA), an avionic hyperspectral imager originally designed for applications from mobile platforms. This system operates in the 400-2500 nm range with over 700 channels, thus guaranteeing acquisition of high resolution hyperspectral data exploitable for materials identification and mapping. In the present application, the SIM-GA device was mounted on a static scanning platform for ground-based applications. The preliminary results obtained on the Angelico's wall-painting are discussed, with highlights on the main technical issues addressed to optimize the SIM-GA system for new applications on cultural assets.

  18. A 10-Year Assessment of Hemlock Decline in the Catskill Mountain Region of New York State Using Hyperspectral Remote Sensing Techniques.

    Science.gov (United States)

    Hanavan, Ryan P; Pontius, Jennifer; Hallett, Richard

    2015-02-01

    The hemlock woolly adelgid is a serious pest of Eastern and Carolina hemlock in the eastern United States. Successfully managing the hemlock resource in the region depends on careful monitoring of the spread of this invasive pest and the targeted application of management options such as biological control, chemical, or silvicultural treatments. To inform these management activities and test the applicability of a landscape-scale remote sensing effort to monitor hemlock condition, hyperspectral collections, and concurrent ground-truthing in 2001 and 2012 of hemlock condition were compared with field metrics spanning a 10-yr survey in the Catskills region of New York. Fine twig dieback significantly increased from 9 to 15% and live crown ratio significantly decreased from 67 to 56% in 2001 and 2012, respectively. We found a significant shift from 59% "healthy" hemlock in 2001 to only 16% in 2012. However, this shift from healthy to declining classifications was mostly a shift to decline class 2 "early decline". These results indicate that while there has been significant increase in decline symptoms as measured in both field and remote sensing assessments, a majority of the declining areas identified in the resulting spatial coverages remain in the "early decline" category and widespread mortality has not yet occurred. While this slow decline across the region stands in contrast to many reports of mortality within 10 yr, the results from this work are in line with other long-term monitoring studies and indicate that armed with the spatial information provided here, continued management strategies can be focused on particular areas to help control the further decline of hemlock in the region. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.

  19. Environmental sensing and combustion diagnostics

    International Nuclear Information System (INIS)

    Santoleri, J.J.

    1991-01-01

    This book contains proceedings of Environmental Sensing and Combustion Diagnostics. Topics covered include: Incineration Systems Applications, Permitting, And Monitoring Overview; Infrared Techniques Applied to Incineration Systems; Continuous Emission Monitors; Analyzers and Sensors for Process Control And Environmental Monitoring

  20. Using of Remote Sensing Techniques for Monitoring the Earthquakes Activities Along the Northern Part of the Syrian Rift System (LEFT-LATERAL),SYRIA

    Science.gov (United States)

    Dalati, Moutaz

    Earthquake mitigation can be achieved with a better knowledge of a region's infra-and substructures. High resolution Remote Sensing data can play a significant role to implement Geological mapping and it is essential to learn about the tectonic setting of a region. It is an effective method to identify active faults from different sources of Remote Sensing and compare the capability of some satellite sensors in active faults survey. In this paper, it was discussed a few digital image processing approaches to be used for enhancement and feature extraction related to faults. Those methods include band ratio, filtering and texture statistics . The experimental results show that multi-spectral images have great potentials in large scale active faults investigation. It has also got satisfied results when deal with invisible faults. Active Faults have distinct features in satellite images. Usually, there are obvious straight lines, circular structures and other distinct patterns along the faults locations. Remotely Sensed imagery Landsat ETM and SPOT XS /PAN are often used in active faults mapping. Moderate and high resolution satellite images are the best choice, because in low resolution images, the faults features may not be visible in most cases. The area under study is located Northwest of Syria that is part of one of the very active deformation belt on the Earth today. This area and the western part of Syria are located along the great rift system (Left-Lateral or African- Syrian Rift System). Those areas are tectonically active and caused a lot of seismically events. The AL-Ghab graben complex is situated within this wide area of Cenozoic deformation. The system formed, initially, as a result of the break up of the Arabian plate from the African plate. This action indicates that these sites are active and in a continual movement. In addition to that, the statistic analysis of Thematic Mapper data and the features from a digital elevation model ( DEM )produced from

  1. Local bleaching thresholds established by remote sensing techniques vary among reefs with deviating bleaching patterns during the 2012 event in the Arabian/Persian Gulf.

    Science.gov (United States)

    Shuail, Dawood; Wiedenmann, Jörg; D'Angelo, Cecilia; Baird, Andrew H; Pratchett, Morgan S; Riegl, Bernhard; Burt, John A; Petrov, Peter; Amos, Carl

    2016-04-30

    A severe bleaching event affected coral communities off the coast of Abu Dhabi, UAE in August/September, 2012. In Saadiyat and Ras Ghanada reefs ~40% of the corals showed signs of bleaching. In contrast, only 15% of the corals were affected on Delma reef. Bleaching threshold temperatures for these sites were established using remotely sensed sea surface temperature (SST) data recorded by MODIS-Aqua. The calculated threshold temperatures varied between locations (34.48 °C, 34.55 °C, 35.05 °C), resulting in site-specific deviations in the numbers of days during which these thresholds were exceeded. Hence, the less severe bleaching of Delma reef might be explained by the lower relative heat stress experienced by this coral community. However, the dominance of Porites spp. that is associated with the long-term exposure of Delma reef to elevated temperatures, as well as the more pristine setting may have additionally contributed to the higher coral bleaching threshold for this site. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  2. Analyzing suitability for urban expansion under rapid coastal urbanization with remote sensing and GIS techniques: a case study of Lianyungang, China

    Science.gov (United States)

    Zhao, Wenjun; Zhu, Xiaodong; Reenberg, Anette; Sun, Xiang

    2010-10-01

    Beginning in 2000, Lianyungang's urbanization entered a period of rapid growth, spatially as well as economically. Rapid and intensive expansion of "construction land" imposed increasing pressures on regional environment. With the support of remote sensing data and GIS tools, this paper reports a "present-capacity-potential" integrated suitability analysis framework, in order to characterize and evaluate the suitability of urban expansion in Lianyungang. We found that during the rapid coastal urbanization process from 2000 to 2008, the characteristics of physical expansion in the study area were characterized by a combination of high-density expansion and sprawling development. The land use conversion driven by urbanization and industrialization has not occurred only in city districts, but also the surrounding areas that were spatially absorbed by urban growth, while closely associated and greatly influenced by the explosive growth of industrial establishment. The over-consumption of land resources in the areas with low environmental carrying capacity, particularly in the eastern coastal area, should be strictly controlled. Compared to conventional land suitability analysis methods, the proposed integrated approach could better review the potential environmental impacts of urban expansion and provide guidance for decision makers.

  3. Land resources assessment of El-Galaba basin, South Egypt for the potentiality of agriculture expansion using remote sensing and GIS techniques

    Directory of Open Access Journals (Sweden)

    A.M. Saleh

    2015-10-01

    Full Text Available The socio-economic development in Egypt is based on land resources. Recently, the Egyptian government is interested in developing low desert zone areas which are located between the recent Nile flood plain and the limestone plateau, from the east and west sides, and represent an important source of aggregate materials. Therefore, this study was carried out to investigate the potentiality of El-Galaba basin soils which are located in the western part of the Aswan Governorate and are characterized by Wadi El-Kubbaniya for the horizontal agricultural expansion and their optimum agricultural use. The investigated area was remotely sensed to identify the landscape and its land resources. Terrain units were identified using draped Landsat 8 satellite image over Digital Terrain Model (DTM to express the landscape and the associated soil mapping units. Fifteen mapping units were identified and grouped. Land capability evaluation was performed using Cervatana capability model. The results of capability modeling revealed about 3.33% of land with good use capability, 76.06% land with moderate use capability, and 0.08% marginal or non-productive land. The main capability limitations were soil and erosion risks. The Almagra model was used to produce the optimum cropping pattern and limitations of soil units. Matching the crop requirements with soil characteristics, optimum cropping pattern was obtained for wheat, corn, melon, potatoes, sunflower, sugar beet, Alfalfa, peach, citrus, and olive. The results of the study revealed the potentiality of El-Galaba basin for agricultural uses.

  4. Estimation of Soil loss by USLE Model using GIS and Remote Sensing techniques: A case study of Muhuri River Basin, Tripura, India

    Directory of Open Access Journals (Sweden)

    Amit Bera

    2017-07-01

    Full Text Available Soil erosion is a most severe environmental problem in humid sub-tropical hilly state Tripura. The present study is carried out on Muhuri river basin of Tripura state, North east India having an area of 614.54 Sq.km. In this paper, Universal Soil Loss Equation (USLE model, with Geographic Information System (GIS and Remote Sensing (RS have been used to quantify the soil loss in the Muhuri river basin. Five essential parameters such as Runoff-rainfall erosivity factor (R, soil erodibility Factor (K, slope length and steepness (LS, cropping management factor (C, and support practice factor (P have been used to estimate soil loss amount in the study area. All of these layers have been prepared in GIS and RS platform (Mainly Arc GIS 10.1 using various data sources and data preparation methods. In these study DEM and LISS satellite data have been used. The daily rainfall data (2001-2010 of 6 rain gauge stations have been used to predict the R factor. Soil erodibility (K factor in Basin area ranged from 0.15 to 0.36. The spatial distribution map of soil loss of Muhuri river basin has been generated and classified into six categories according to intensity level of soil loss. The average annual predicted soil loss ranges between 0 to and 650 t/ha/y. Low soil loss areas (70 t/ha/y of soil erosion was found along the main course of Muhuri River.

  5. Radar Remote Sensing

    Science.gov (United States)

    Rosen, Paul A.

    2012-01-01

    This lecture was just a taste of radar remote sensing techniques and applications. Other important areas include Stereo radar grammetry. PolInSAR for volumetric structure mapping. Agricultural monitoring, soil moisture, ice-mapping, etc. The broad range of sensor types, frequencies of observation and availability of sensors have enabled radar sensors to make significant contributions in a wide area of earth and planetary remote sensing sciences. The range of applications, both qualitative and quantitative, continue to expand with each new generation of sensors.

  6. Textbooks and technical references for remote sensing

    Science.gov (United States)

    Rudd, R. D.; Bowden, L. W.; Colwell, R. N.; Estes, J. E.

    1980-01-01

    A selective bibliography is presented which cites 89 textbooks, monographs, and articles covering introductory and advanced remote sensing techniques, photointerpretation, photogrammetry, and image processing.

  7. Remote sensing for agriculture, ecosystems, and hydrology

    International Nuclear Information System (INIS)

    Engman, E.T.

    1998-01-01

    This volume contains the proceedings of SPIE's remote sensing symposium which was held September 22--24, 1998, in Barcelona, Spain. Topics of discussion include the following: calibration techniques for soil moisture measurements; remote sensing of grasslands and biomass estimation of meadows; evaluation of agricultural disasters; monitoring of industrial and natural radioactive elements; and remote sensing of vegetation and of forest fires

  8. In-Situ and Remote-Sensing Data Fusion Using Machine Learning Techniques to Infer Urban and Fire Related Pollution Plumes

    Science.gov (United States)

    Russell, P. B.; Segal-Rozenhaimer, M.; Schmid, B.; Redemann, J.; Livingston, J. M.; Flynn, C.J.; Johnson, R. R.; Dunagan, S. E.; Shinozuka, Y.; Kacenelenbogen, M.; hide

    2014-01-01

    Airmass type characterization is key in understanding the relative contribution of various emission sources to atmospheric composition and air quality and can be useful in bottom-up model validation and emission inventories. However, classification of pollution plumes from space is often not trivial. Sub-orbital campaigns, such as SEAC4RS (Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) give us a unique opportunity to study atmospheric composition in detail, by using a vast suite of in-situ instruments for the detection of trace gases and aerosols. These measurements allow identification of spatial and temporal atmospheric composition changes due to various pollution plumes resulting from urban, biogenic and smoke emissions. Nevertheless, to transfer the knowledge gathered from such campaigns into a global spatial and temporal context, there is a need to develop workflow that can be applicable to measurements from space. In this work we rely on sub-orbital in-situ and total column remote sensing measurements of various pollution plumes taken aboard the NASA DC-8 during 2013 SEAC4RS campaign, linking them through a neural-network (NN) algorithm to allow inference of pollution plume types by input of columnar aerosol and trace-gas measurements. In particular, we use the 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) airborne measurements of wavelength dependent aerosol optical depth (AOD), particle size proxies, O3, NO2 and water vapor to classify different pollution plumes. Our method relies on assigning a-priori ground-truth labeling to the various plumes, which include urban pollution, different fire types (i.e. forest and agriculture) and fire stage (i.e. fresh and aged) using cluster analysis of aerosol and trace-gases in-situ and auxiliary (e.g. trajectory) data and the training of a NN scheme to fit the best prediction parameters using 4STAR measurements as input. We explore our

  9. Effects of Oil Spillage on Vegetation, Land and Water Odu-Gboro Sagamu, Ogun State, South-Western Nigeria) Using Remote Sensing and GIS Techniques.

    Science.gov (United States)

    Oseni, O.

    2016-12-01

    This paper explores the impacts of oil spill on the physical environment with particular attention paid to the NNPC/PPMC pipeline system. It focuses on the environmental impacts of oil pollution in Nigeria, and discusses the increasing environmental contradictions of the area, and its influence on global warming. Nigeria's economy is highly dependent on earnings from the oil sector, which provides 20% of GDP, 95% of foreign exchange earnings, and about 65% of budgetary revenues. Since the discovery of oil in Nigeria in 1956, the country has been suffering the negative environmental consequences of oil exploration and exploitation. Between 1976 and 1996 a total of 4647 incidents resulted in the spill of approximately 2,369,470 barrels of oil into the environment. The study traces the effects of the oil spillage on the environment to determine whether oil spill is a major factor responsible for environmental pollution. By the use of remotely sensed data and other ancillary data, the major causes of oil spill in the region were identified; the presence of total petroleum hydrocarbon (TPH) in the environment, and it also determined the environmental impacts on land and water. Field observation and laboratory analysis of soil and water were used. Gas chromatography was used to determine the TPH concentration in soil extract and water extracts. Liquid-liquid extraction method was used for water and spectro-radiometer which is a very efficient process commonly used to determine spectral signature of various soil, water and plant samples obtained from the study area. Based largely on the GIS analysis, the findings showed that the main cause of oil spill is vandalism along the pipeline right of way; Vandalism which is an act of sabotage had the highest percentage compared to equipment failure, accident from oil tankers and accidental discharge during pipeline repairs. TPH were present at the site with soil samples having the high values, and the environmental impact on soil

  10. Effects Of Oil Spillage On Vegetation, Land And Water(Odu-Gboro, Sagamu,Ogun State, South-Western, Nigeria) Using Remote Sensing And Gis Techniques

    Science.gov (United States)

    Oseni, O.

    2017-12-01

    This paper explores the impacts of oil spill on the physical environment (soil, water and plants) with particular attention paid to the NNPC/PPMC pipeline system. It focuses on the environmental impacts of oil pollution in Nigeria, and discusses the increasing environmental contradictions of the area, and its influence on global warming. The discovery of oil in Nigeria in 1956, the country has been suffering the negative environmental consequences of oil exploration and exploitation. Between 1976 and 1996 a total of 4647 incidents resulted in the spill of approximately 2,369,470 barrels of oil into the environment. In addition, between 1997 and 2001, Nigeria also recorded a total number of 2,097 oil spill incidents. The study traces the effects of the oil spillage on the environment in order to determine whether oil spill is a major factor responsible for environmental pollution. By the use of remotely sensed data and other ancillary data, it identified the major causes of oil spill in the region; the presence of total petroleum hydrocarbon (TPH) in the environment, and it also determined the environmental impacts on land and water. Personal interview, field observation and laboratory analysis of soil and water were used. Gas chromatography was used to determine the TPH concentration in soil extract and water extracts. Liquid-liquid extraction method was used for water and spectro-radiometer which is a very efficient process commonly used to determine spectral signature of various soil, water and plant samples obtained from the study area.Values of analyzed soil and water samples in the oil impacted area were compared to the control area (region with no spill). Based largely onthe GISanalysis, the findings showed that the main cause of oil spill is vandalism along the pipeline right of way; Vandalism which is an act of sabotage had the highest percentage compared to equipment failure, accident from oil tankers and accidental discharge during pipeline repairs

  11. Techniques for assessing water resource potentials in the developing countries: with emphasis on streamflow, erosion and sediment transport, water movement in unsaturated soils, ground water, and remote sensing in hydrologic applications

    Science.gov (United States)

    Taylor, George C.

    1971-01-01

    . Nuclear methodology in hydrologic applications is generally more complex than the conventional and hence requires a high level of technical expertise for effective use. Application of nuclear techniques to hydrologic problems in the developing countries is likely to be marginal for some years to come, owing to the higher costs involved and expertise required. Nuclear techniques, however, would seem to have particular promise in studies of water movement in unsaturated soils and of erosion and sedimentation where conventional techniques are inadequate, inefficient and in some cases costly. Remote sensing offers great promise for synoptic evaluations of water resources and hydrologic processes, including the transient phenomena of the hydrologic cycle. Remote sensing is not, however, a panacea for deficiencies in hydrologic data programs in the developing countries. Rather it is a means for extending and augmenting on-the-ground observations ans surveys (ground truth) to evaluated water resources and hydrologic processes on a regionall or even continental scale. With respect to economic growth goals in developing countries, there are few identifiable gaps in existing hydrologic instrumentation and methodology insofar as appraisal, development and management of available water resources are concerned. What is needed is acceleration of institutional development and professional motivation toward more effective use of existing and proven methodology. Moreover, much sophisticated methodology can be applied effectively in the developing countries only when adequate levels of indigenous scientific skills have been reached and supportive institutional frameworks are evolved to viability.

  12. The GNSS polarimetric radio-occultation technique to sense precipitation events: a new concept to be tested aboard PAZ Low Earth Satellite

    Science.gov (United States)

    Tomás, Sergio; Oliveras, Santi; Cardellach, Estel; Rius, Antonio

    2013-04-01

    The Radio Occultation and Heavy Precipitation (ROHP) experiment, to be conducted aboard the Spanish PAZ satellite, consists of a radio occultation (RO) mission provided with dual-polarization capabilities. The research with polarimetric RO data has the goal of assessing the capabilities and limitations of this technique to infer profiles of heavy precipitation. The technique aims to provide vertical profiles of precipitation simultaneously to the vertical profiles of thermodynamic parameters (standard RO products) perfectly collocated both in space and time. If successful, the polarimetric RO will represent the first technique able to provide these complementary information on precipitation. This is a relevant input for studies on heavy and violent rainfall events, which being poorly represented by the current-generation of Numerical Weather Prediction and General Circulation Models appear to be difficult to forecast on all time-scales. The Low Earth Orbiter hosting this experiment, to be launched in 2013, will orbit at 500 km altitude in a near-Polar orbit. The Radio Occulation payload includes a RO GNSS receiver and a dual polarization (H/V) limb oriented antenna to capture the signals of setting GNSS transmitters. NOAA and UCAR participate in the ground-segment of the radiometric experiment to enable near-real time dissemination of the level-1 standard RO products. The space-based GNSS RO technique scans the atmosphere vertically at fine resolution (close to 300 meter in the troposphere) by precisely measure the delay between a GNSS transmitter and a GNSS receiver aboard a Low Earth Orbiter, when the former is setting below or rising above the Earth limb. The standard, thermodynamical, products are extracted from the excess delay induced by the atmosphere at different layers. This presentation will not focus on this well-established application, but a novel concept using polarimetry to also retrieve rain information. The precipitation-measurement principle is

  13. Remote sensing: best practice

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Gareth [Sgurr Energy (Canada)

    2011-07-01

    This paper presents remote sensing best practice in the wind industry. Remote sensing is a technique whereby measurements are obtained from the interaction of laser or acoustic pulses with the atmosphere. There is a vast diversity of tools and techniques available and they offer wide scope for reducing project uncertainty and risk but best practice must take into account versatility and flexibility. It should focus on the outcome in terms of results and data. However, traceability of accuracy requires comparison with conventional instruments. The framework for the Boulder protocol is given. Overviews of the guidelines for IEA SODAR and IEA LIDAR are also mentioned. The important elements of IEC 61400-12-1, an international standard for wind turbines, are given. Bankability is defined based on the Boulder protocol and a pie chart is presented that illustrates the uncertainty area covered by remote sensing. In conclusion it can be said that remote sensing is changing perceptions about how wind energy assessments can be made.

  14. Remote Sensing Best Paper Award 2013

    OpenAIRE

    Prasad Thenkabail

    2013-01-01

    Remote Sensing has started to institute a “Best Paper” award to recognize the most outstanding papers in the area of remote sensing techniques, design and applications published in Remote Sensing. We are pleased to announce the first “Remote Sensing Best Paper Award” for 2013. Nominations were selected by the Editor-in-Chief and selected editorial board members from among all the papers published in 2009. Reviews and research papers were evaluated separately.

  15. Enhancement of ZnO-based flexible nano generators via a sol-gel technique for sensing and energy harvesting applications.

    Science.gov (United States)

    Rajagopalan, P; Singh, Vipul; Palani, I A

    2018-02-01

    Zinc oxide (ZnO) is a remarkable inorganic semiconductor with exceptional piezoelectric properties compared to other semiconductors. However, in comparison to lead-based hazardous piezoelectric materials, its properties have undesired limitations. Here we report a 5∼6 fold enhancement in piezoelectric features via chemical doping of copper matched to intrinsic ZnO. A flexible piezoelectric nanogenerator (F-PENG) device was fabricated using an unpretentious solution process of spin coating, with other advantages such as robustness, low-weight, improved adhesion, and low cost. The device was used to demonstrate energy harvesting from a standard weight as low as 4 gm and can work as a self-powered mass sensor in a broad range of 4 to 100 gm. The device exhibited a novel energy harvesting technique from a wind source due to its inherent flexibility. At three different velocities (10∼30 m s -1 ) and five different angles of attack (0∼180 degrees), the device validated the ability to discern different velocities and directions of flow. The device will be useful for mapping the flow of air apart from harvesting the energy. The simulation was done to verify the underlining mechanism of aerodynamics involved.

  16. Enhancement of ZnO-based flexible nano generators via a sol-gel technique for sensing and energy harvesting applications

    Science.gov (United States)

    Rajagopalan, P.; Singh, Vipul; Palani, I. A.

    2018-03-01

    Zinc oxide (ZnO) is a remarkable inorganic semiconductor with exceptional piezoelectric properties compared to other semiconductors. However, in comparison to lead-based hazardous piezoelectric materials, its properties have undesired limitations. Here we report a 5˜6 fold enhancement in piezoelectric features via chemical doping of copper matched to intrinsic ZnO. A flexible piezoelectric nanogenerator (F-PENG) device was fabricated using an unpretentious solution process of spin coating, with other advantages such as robustness, low-weight, improved adhesion, and low cost. The device was used to demonstrate energy harvesting from a standard weight as low as 4 gm and can work as a self-powered mass sensor in a broad range of 4 to 100 gm. The device exhibited a novel energy harvesting technique from a wind source due to its inherent flexibility. At three different velocities (10˜30 m s-1) and five different angles of attack (0˜180 degrees), the device validated the ability to discern different velocities and directions of flow. The device will be useful for mapping the flow of air apart from harvesting the energy. The simulation was done to verify the underlining mechanism of aerodynamics involved.

  17. Development and Sensing Properties Study of Underwater Assembled Water Depth-Inclination Sensors for a Multi-Component Mooring System, Using a Self-Contained Technique

    Directory of Open Access Journals (Sweden)

    Wenhua Wu

    2016-11-01

    Full Text Available Prototype monitoring techniques play an important role in the safety guarantee of mooring systems in marine engineering. In general, the complexities of harsh ocean environmental conditions bring difficulties to the traditional monitoring methods of application, implementation and maintenance. Large amounts of existing mooring systems still lack valid monitoring strategies. In this paper, an underwater monitoring method which may be used to achieve the mechanical responses of a multi-point catenary mooring system, is present. A novel self-contained assembled water depth-inclination (D-I sensor is designed and manufactured. Several advanced technologies, such as standalone, low power consumption and synchronism, are considered to satisfy the long-term implementation requirements with low cost during the design process. The design scheme of the water resistance barrel and installation clamp, which satisfies the diver installation, are also provided in the paper. An on-site test has previously been carried out on a production semisubmersible platform in the South China Sea. The prototype data analyses, including the D-I value in the time domain (including the data recorded during the mooring retraction and release process and spectral characteristics, are presented to reveal the accuracy, feasibility and stability of the sensor in terms of fitting for the prototype monitoring of catenary mooring systems, especially for in-service aging platforms.

  18. Pervasive sensing

    Science.gov (United States)

    Nagel, David J.

    2000-11-01

    The coordinated exploitation of modern communication, micro- sensor and computer technologies makes it possible to give global reach to our senses. Web-cameras for vision, web- microphones for hearing and web-'noses' for smelling, plus the abilities to sense many factors we cannot ordinarily perceive, are either available or will be soon. Applications include (1) determination of weather and environmental conditions on dense grids or over large areas, (2) monitoring of energy usage in buildings, (3) sensing the condition of hardware in electrical power distribution and information systems, (4) improving process control and other manufacturing, (5) development of intelligent terrestrial, marine, aeronautical and space transportation systems, (6) managing the continuum of routine security monitoring, diverse crises and military actions, and (7) medicine, notably the monitoring of the physiology and living conditions of individuals. Some of the emerging capabilities, such as the ability to measure remotely the conditions inside of people in real time, raise interesting social concerns centered on privacy issues. Methods for sensor data fusion and designs for human-computer interfaces are both crucial for the full realization of the potential of pervasive sensing. Computer-generated virtual reality, augmented with real-time sensor data, should be an effective means for presenting information from distributed sensors.

  19. Basic Remote Sensing Investigations for Beach Reconnaissance.

    Science.gov (United States)

    Progress is reported on three tasks designed to develop remote sensing beach reconnaissance techniques applicable to the benthic, beach intertidal...and beach upland zones. Task 1 is designed to develop remote sensing indicators of important beach composition and physical parameters which will...ultimately prove useful in models to predict beach conditions. Task 2 is designed to develop remote sensing techniques for survey of bottom features in

  20. Integration of X-SAR observations with data of other remote sensing techniques: preliminary results achieved with Cosmo/SkyMed announcement of opportunity projects

    Science.gov (United States)

    Vespe, Francesco; Baldini, Luca; Notarnicola, Claudia; Prati, Claudio; Zerbini, Susanna; Celidonio, G.

    2011-11-01

    The Italian Space Agency is funding 27 scientific projects in the framework of Cosmo/Skymed program (hereafter CSK) . A subset of them are focusing on the improvements of the quality and quantity of information which can be extracted from X-SAR data if integrated with other independent techniques like GPS or SAR imagery in L and C bands. The GPS observations, namely zenith total delays estimated by means of GPS ground stations, could be helpful to estimate the troposphere bias to remove from IN-SAR imagery. Another contribution of GPS could be the improvements of the orbits of Cosmo/SkyMed satellites. In particular the GPS navigation data of the CSK satellites could serve to improve the atmospheric drag models acting on them. The integration of SAR data in L and C bands on the other hand are helpful to investigate land hydrogeology parameters as well as to improve global precipitation observations. The combined use of L, C and X SAR data with different penetration depth could give profiles of land surface properties, especially in forest and snow/ice-packs. For what concern the use of X-SAR imagery for rain precipitation monitoring, particular attention will be paid to its polarimetric properties that we plan to determine aligning the CSK observations with those obtained with ground L and C radars. Anyway the study goals, the approaches proposed, the test sites identified and the external data selected for the development and validation will be described for each project. Particular attention will be paid to single the advantages that the research activities can benefit from the added potentials of CSK system: the more frequent revisiting time and the higher resolution capabilities.

  1. Application of Spectral Analysis Techniques in the Intercomparison of Aerosol Data: 1. an EOF Approach to the Spatial-Temporal Variability of Aerosol Optical Depth Using Multiple Remote Sensing Data Sets

    Science.gov (United States)

    Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.

    2013-01-01

    Many remote sensing techniques and passive sensors have been developed to measure global aerosol properties. While instantaneous comparisons between pixel-level data often reveal quantitative differences, here we use Empirical Orthogonal Function (EOF) analysis, also known as Principal Component Analysis, to demonstrate that satellite-derived aerosol optical depth (AOD) data sets exhibit essentially the same spatial and temporal variability and are thus suitable for large-scale studies. Analysis results show that the first four EOF modes of AOD account for the bulk of the variance and agree well across the four data sets used in this study (i.e., Aqua MODIS, Terra MODIS, MISR, and SeaWiFS). Only SeaWiFS data over land have slightly different EOF patterns. Globally, the first two EOF modes show annual cycles and are mainly related to Sahara dust in the northern hemisphere and biomass burning in the southern hemisphere, respectively. After removing the mean seasonal cycle from the data, major aerosol sources, including biomass burning in South America and dust in West Africa, are revealed in the dominant modes due to the different interannual variability of aerosol emissions. The enhancement of biomass burning associated with El Niño over Indonesia and central South America is also captured with the EOF technique.

  2. Feasibility and Diagnostic Accuracy of Whole Heart Coronary MR Angiography Using Free-Breathing 3D Balanced Turbo-Field-Echo with SENSE and the Half-Fourier Acquisition Technique

    International Nuclear Information System (INIS)

    Kim, Young Jin; Seo, Jae Seung; Choi, Byoung Wook; Choe, Kyu Ok; Jang, Yang Soo; Ko, Young Guk

    2006-01-01

    We wanted to assess the feasibility and diagnostic accuracy of whole heart coronary magnetic resonance angiography (MRA) with using 3D balanced turbo-field-echo (b-TFE) with SENSE and the half-Fourier acquisition technique for identifying stenoses of the coronary artery. Twenty-one patients who underwent both whole heart coronary MRA examinations and conventional catheter coronary angiography examinations were enrolled in the study. The whole heart coronary MRA images were acquired using a navigator gated 3D b-TFE sequence with SENSE and the half-Fourier acquisition technique to reduce the acquisition time. The imaging slab covered the whole heart (80 contiguous slices with a reconstructed slice thickness of 1.5 mm) along the transverse axis. The quality of the images was evaluated by using a 5-point scale (0 - uninterpretable, 1 - poor, 2 - fair, 3 - good, 4 - excellent). Ten coronary segments of the heart were evaluated in each case; the left main coronary artery (LM), and the proximal, middle and distal segments of the left anterior descending (LAD), the left circumflex (LCX) and the right coronary artery (RCA). The diagnostic accuracy of whole heart coronary MRA for detecting significant coronary artery stenosis was determined on the segment-bysegment basis, and it was compared with the results obtained by conventional catheter angiography, which is the gold standard. The mean image quality was 3.7 in the LM, 3.2 in the LAD, 2.5 in the LCX, and 3.3 in the RCA, respectively (the overall image quality was 3.0 ± 0.1). 168 (84%) of the 201 segments had an acceptable image quality (≥ grade 2). The sensitivity, specificity, accuracy, negative predictive value and positive predictive value of the whole heart coronary MRA images for detecting significant stenosis were 81.3%, 92.1%, 91.1%, 97.9%, and 52.0%, respectively. The mean coronary MRA acquisition time was 9 min 22 sec (± 125 sec). Whole heart coronary MRA is a feasible technique, and it has good potential to

  3. Using remote sensing techniques and field-based structural analysis to explore new gold and associated mineral sites around Al-Hajar mine, Asir terrane, Arabian Shield

    Science.gov (United States)

    Sonbul, Abdullah R.; El-Shafei, Mohamed K.; Bishta, Adel Z.

    2016-05-01

    Modern earth resource satellites provide huge amounts of digital imagery at different resolutions. These satellite imageries are considered one of the most significant sources of data for mineral exploration. Image processing techniques were applied to the exposed rocks around the Al-Aqiq area of the Asir terrane in the southern part of the Arabian Shield. The area under study has two sub-parallel N-S trending metamorphic belts of green-schist facies. The first belt is located southeast of Al-Aqiq, where the Al-Hajar Gold Mine is situated. It is essentially composed of metavolcanics and metasedimentary rocks, and it is intruded by different plutonic rocks of primarily diorite, syenite and porphyritic granite. The second belt is located northwest of Al-Aqiq, and it is composed of metavolcanics and metasedimentary rocks and is intruded by granite bodies. The current study aimed to distinguish the lithological units, detect and map the alteration zones, and extract the major fault lineaments around the Al-Hajar gold prospect. Digital satellite imageries, including Landsat 7 ETM + multispectral and panchromatic and SPOT-5 were used in addition to field verification. Areas with similar spectral signatures to the prospect were identified in the nearby metamorphic belt; it was considered as a target area and was inspected in the field. The relationships between the alteration zones, the mineral deposits and the structural elements were used to locate the ore-bearing zones in the subsurface. The metasedimentary units of the target area showed a dextral-ductile shearing top-to-the-north and the presence of dominant mineralized quartz vein-system. The area to the north of the Al-Hajar prospect showed also sub-parallel shear zones along which different types of alterations were detected. Field-based criteria such as hydrothermal breccia, jasper, iron gossans and porphyritic granite strongly indicate the presence of porphyry-type ore deposits in Al-Hajar metamorphic belt that

  4. High-Temperature Piezoelectric Sensing

    Directory of Open Access Journals (Sweden)

    Xiaoning Jiang

    2013-12-01

    Full Text Available Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented.

  5. Scale issues in remote sensing

    CERN Document Server

    Weng, Qihao

    2014-01-01

    This book provides up-to-date developments, methods, and techniques in the field of GIS and remote sensing and features articles from internationally renowned authorities on three interrelated perspectives of scaling issues: scale in land surface properties, land surface patterns, and land surface processes. The book is ideal as a professional reference for practicing geographic information scientists and remote sensing engineers as well as a supplemental reading for graduate level students.

  6. Remote sensing and resource exploration

    International Nuclear Information System (INIS)

    El-Baz, F.; Hassan, M.H.A.; Cappellini, V.

    1989-01-01

    The purpose of the Workshop was to study in depth the application of remote sensing technology to the fields of archaeology, astronomy, geography, geology, and physics. Some emphasis was placed on utilizing remote sensing methods and techniques in the search for water, mineral and land resources. The Workshop was attended by 90 people from 35 countries. The proceedings of this meeting includes 15 papers, 12 of them have a separate abstract in the INIS Database. Refs, figs and tabs

  7. Conversational sensing

    Science.gov (United States)

    Preece, Alun; Gwilliams, Chris; Parizas, Christos; Pizzocaro, Diego; Bakdash, Jonathan Z.; Braines, Dave

    2014-05-01

    Recent developments in sensing technologies, mobile devices and context-aware user interfaces have made it pos- sible to represent information fusion and situational awareness for Intelligence, Surveillance and Reconnaissance (ISR) activities as a conversational process among actors at or near the tactical edges of a network. Motivated by use cases in the domain of Company Intelligence Support Team (CoIST) tasks, this paper presents an approach to information collection, fusion and sense-making based on the use of natural language (NL) and controlled nat- ural language (CNL) to support richer forms of human-machine interaction. The approach uses a conversational protocol to facilitate a ow of collaborative messages from NL to CNL and back again in support of interactions such as: turning eyewitness reports from human observers into actionable information (from both soldier and civilian sources); fusing information from humans and physical sensors (with associated quality metadata); and assisting human analysts to make the best use of available sensing assets in an area of interest (governed by man- agement and security policies). CNL is used as a common formal knowledge representation for both machine and human agents to support reasoning, semantic information fusion and generation of rationale for inferences, in ways that remain transparent to human users. Examples are provided of various alternative styles for user feedback, including NL, CNL and graphical feedback. A pilot experiment with human subjects shows that a prototype conversational agent is able to gather usable CNL information from untrained human subjects.

  8. Remote Sensing Best Paper Award for the Year 2014

    OpenAIRE

    Prasad Thenkabail

    2014-01-01

    Remote Sensing has started to institute a “Best Paper” award to recognize the most outstanding papers in the area of remote sensing techniques, design and applications published in Remote Sensing. We are pleased to announce the first “Remote Sensing Best Paper Award” for the year 2014.

  9. Remote RemoteRemoteRemote sensing potential for sensing ...

    African Journals Online (AJOL)

    Remote RemoteRemoteRemote sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing p. A Ngie, F Ahmed, K Abutaleb ...

  10. HORIZON SENSING

    Energy Technology Data Exchange (ETDEWEB)

    Larry G. Stolarczyk

    2003-03-18

    With the aid of a DOE grant (No. DE-FC26-01NT41050), Stolar Research Corporation (Stolar) developed the Horizon Sensor (HS) to distinguish between the different layers of a coal seam. Mounted on mining machine cutter drums, HS units can detect or sense the horizon between the coal seam and the roof and floor rock, providing the opportunity to accurately mine the section of the seam most desired. HS also enables accurate cutting of minimum height if that is the operator's objective. Often when cutting is done out-of-seam, the head-positioning function facilitates a fixed mining height to minimize dilution. With this technology, miners can still be at a remote location, yet cut only the clean coal, resulting in a much more efficient overall process. The objectives of this project were to demonstrate the feasibility of horizon sensing on mining machines and demonstrate that Horizon Sensing can allow coal to be cut cleaner and more efficiently. Stolar's primary goal was to develop the Horizon Sensor (HS) into an enabling technology for full or partial automation or ''agile mining''. This technical innovation (R&D 100 Award Winner) is quickly demonstrating improvements in productivity and miner safety at several prominent coal mines in the United States. In addition, the HS system can enable the cutting of cleaner coal. Stolar has driven the HS program on the philosophy that cutting cleaner coal means burning cleaner coal. The sensor, located inches from the cutting bits, is based upon the physics principles of a Resonant Microstrip Patch Antenna (RMPA). When it is in proximity of the rock-coal interface, the RMPA impedance varies depending on the thickness of uncut coal. The impedance is measured by the computer-controlled electronics and then sent by radio waves to the mining machine. The worker at the machine can read the data via a Graphical User Interface, displaying a color-coded image of the coal being cut, and direct the machine

  11. The Study of Mining Activities and their Influences in the Almaden Region Applying Remote Sensing Techniques; Estudio de la Influencia de las Actividades Mineras de Mercurio en la Comarca de Almaden Aplicando Tecnicas de Teledeteccion

    Energy Technology Data Exchange (ETDEWEB)

    Rico, C; Schmid, T; Millan, R; Gumuzzio, J

    2010-11-17

    This scientific-technical report is a part of an ongoing research work carried out by Celia Rico Fraile in order to obtain the Diploma of Advanced Studies as part of her PhD studies. This work has been developed in collaboration with the Faculty of Science at The Universidad Autonoma de Madrid and the Department of Environment at CIEMAT. The main objective of this work was the characterization and classification of land use in Almaden (Ciudad Real) during cinnabar mineral exploitation and after mining activities ceased in 2002, developing a methodology focused on the integration of remote sensing techniques applying multispectral and hyper spectral satellite data. By means of preprocessing and processing of data from the satellite images as well as data obtained from field campaigns, a spectral library was compiled in order to obtain representative land surfaces within the study area. Monitoring results show that the distribution of areas affected by mining activities is rapidly diminishing in recent years. (Author) 130 refs.

  12. Taste sensing FET (TSFET)

    Energy Technology Data Exchange (ETDEWEB)

    Toko, K.; Yasuda, R.; Ezaki, S. [Kyushu University, Fukuoka (Japan); Fujiyoshi, T. [Kumamoto University, Kumamoto (Japan). Faculty of Engineering

    1997-12-20

    Taste can be quantified using a multichannel taste sensor with lipid/polymer membranes. Its sensitivity and stability are superior to those of humans. A present study is concerned with the first step of miniaturization and integration of the taste sensor with lipid/polymer membranes using FET. As a result, it was found that gate-source voltage of the taste sensing FET showed the same behaviors as the conventional taste sensor utilizing the membrane-potential change due to five kinds of taste substances. Discrimination of foodstuffs was very easy. A thin lipid membrane formed using LB technique was also tried. These results will open doors to fabrication of a miniaturized, integrated taste sensing system. 12 refs., 6 figs.

  13. Tiny Open-Loop Atmospheric Sensing Technique

    Data.gov (United States)

    National Aeronautics and Space Administration — We will design and fabricate a circuit card capable of retrieving real-time ionospheric and atmospheric refractivity from a low Earth orbit platform. The design must...

  14. Remote sensing techniques for mangrove mapping

    NARCIS (Netherlands)

    Vaiphasa, C.

    2006-01-01

    Mangroves, important components of the world's coastal ecosystems, are threatened by the expansion of human settlements, the boom in commercial aquaculture, the impact of tidal waves and storm surges, etc. Such threats are leading to the increasing demand for detailed mangrove maps for the purpose

  15. Innovative Remote Sensing techniques for vegetation monitoring

    International Nuclear Information System (INIS)

    Borfecchia, F.; De Cecco, L.; Della Rocca, A.B.; Farneti, A.; La Porta, L.; Martini, S.; Giordano, L.; Trotta, C.; Marcoccia, S.

    2008-01-01

    This paper describes methods developed for using ASPIS (Advanced Spectroscopic Imaging System) to monitor biophysical parameters in studying the effects of climatic change, desertification and land degradation on semi-natural and agricultural vegetation in the Mediterranean region [it

  16. Infrared sensing techniques for adaptive robotic welding

    International Nuclear Information System (INIS)

    Lin, T.T.; Groom, K.; Madsen, N.H.; Chin, B.A.

    1986-01-01

    The objective of this research is to investigate the feasibility of using infrared sensors to monitor the welding process. Data were gathered using an infrared camera which was trained on the molten metal pool during the welding operation. Several types of process perturbations which result in weld defects were then intentionally induced and the resulting thermal images monitored. Gas tungsten arc using ac and dc currents and gas metal arc welding processes were investigated using steel, aluminum and stainless steel plate materials. The thermal images obtained in the three materials and different welding processes revealed nearly identical patterns for the same induced process perturbation. Based upon these results, infrared thermography is a method which may be very applicable to automation of the welding process

  17. Compressed sensing for distributed systems

    CERN Document Server

    Coluccia, Giulio; Magli, Enrico

    2015-01-01

    This book presents a survey of the state-of-the art in the exciting and timely topic of compressed sensing for distributed systems. It has to be noted that, while compressed sensing has been studied for some time now, its distributed applications are relatively new. Remarkably, such applications are ideally suited to exploit all the benefits that compressed sensing can provide. The objective of this book is to provide the reader with a comprehensive survey of this topic, from the basic concepts to different classes of centralized and distributed reconstruction algorithms, as well as a comparison of these techniques. This book collects different contributions on these aspects. It presents the underlying theory in a complete and unified way for the first time, presenting various signal models and their use cases. It contains a theoretical part collecting latest results in rate-distortion analysis of distributed compressed sensing, as well as practical implementations of algorithms obtaining performance close to...

  18. Groundwater potential zonation by Remote Sensing and GIS techniques and its relation to the Groundwater level in the Coastal part of the Arani and Koratalai River Basin, Southern India

    Directory of Open Access Journals (Sweden)

    S Suganthi

    2013-07-01

    Full Text Available Groundwater is being pumped extensively from the coastal part of the Arani and Koratalai River Basin, Tamil Nadu, India for irrigation and water supply to the city of Chennai. The objective of this study is to delineate the groundwater potential zones of this area using Remote Sensing (RS and Geographic Information System (GIS techniques. Weighted overlay analysis was used to demarcate the ground- water potential zones. Various thematic layers such as geology, geomorphology, soil, lineament density, drainage density, rainfall and landuse maps were prepared. The geological map was prepared using a Geological Survey of India (GSI district resource map. Indian Remote Sensing System Linear Imaging Self-scanning Sensor III (IRS-1D LISS III satellite imagery was used to prepare the geomorphology, soil, lineament density, drainage density, and landuse maps. The final groundwater potential map was prepared by assigning appropriate weightage to different thematic maps and adding them to the final groundwater potential map. The derived groundwater potential map was overlaid with the groundwater level and location of well fields for validation. The map prepared will help in systematic and proper development of groundwater resources in this area to meet the growing water requirements of the city of Chennai.  Resumen Aguas subterráneas se bombean en gran cantidad desde la parte costera en las cuencas de los ríos Arani, en Tamil Nadu, India, para el riego y el aprovisionamiento de agua a la ciudad de Chennai. El objetivo de este estudio es delinear las zonas potenciales de aguas subterráneas en esta área a través de sistemas de Teledeteción (RS y de Información Geográfica (GIS. Se hizo un análisis sobrepuesto compensado para demarcar las zonas con posibilidad de tener aguas subterráneas. Se prepararon mapas de uso de la tierra con varios elementos temáticos como geología, geomorfología, terreno, densidad de lineamiento, densi- dad de drenaje y

  19. Plasmonic sensing

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo

    2015-01-01

    Plasmonic sensors typically rely on detection of changes in the refractive index of the surrounding medium. Here, an alternative approach is reported based on electrical surface screening and controlled dissolution of ultrasmall silver nanoparticles (NPs; R ... in the plasmon band. This is demonstrated by using the strong nucleophiles, cyanide and cysteamine, as ligands. The “dissolution paths” in terms of peak wavelength and amplitude shifts differ significantly between different types of analytes, which are suggested as a means to obtain selectivity of the detection...... that cannot be obtained by traditional refractive index sensing, without the use of bioprobes. A simple modified Drude model is used to account for shifts in the plasmon band position due to electrical charging. Here, a screening parameter is introduced in the expression for the free electron density...

  20. Sensing our Environment: Remote sensing in a physics classroom

    Science.gov (United States)

    Isaacson, Sivan; Schüttler, Tobias; Cohen-Zada, Aviv L.; Blumberg, Dan G.; Girwidz, Raimund; Maman, Shimrit

    2017-04-01

    Remote sensing is defined as data acquisition of an object, deprived physical contact. Fundamentally, most remote sensing applications are referred to as the use of satellite- or aircraft-based sensor technologies to detect and classify objects mainly on Earth or other planets. In the last years there have been efforts to bring the important subject of remote sensing into schools, however, most of these attempts focused on geography disciplines - restricting to the applications of remote sensing and to a less extent the technique itself and the physics behind it. Optical remote sensing is based on physical principles and technical devices, which are very meaningful from a theoretical point of view as well as for "hands-on" teaching. Some main subjects are radiation, atom and molecular physics, spectroscopy, as well as optics and the semiconductor technology used in modern digital cameras. Thus two objectives were outlined for this project: 1) to investigate the possibilities of using remote sensing techniques in physics teaching, and 2) to identify its impact on pupil's interest in the field of natural sciences. This joint project of the DLR_School_Lab, Oberpfaffenhofen of the German Aerospace Center (DLR) and the Earth and Planetary Image Facility (EPIF) at BGU, was conducted in 2016. Thirty teenagers (ages 16-18) participated in the project and were exposed to the cutting edge methods of earth observation. The pupils on both sides participated in the project voluntarily, knowing that at least some of the project's work had to be done in their leisure time. The pupil's project started with a day at EPIF and DLR respectively, where the project task was explained to the participants and an introduction to remote sensing of vegetation was given. This was realized in lectures and in experimental workshops. During the following two months both groups took several measurements with modern optical remote sensing systems in their home region with a special focus on flora

  1. Mississippi Sound Remote Sensing Study

    Science.gov (United States)

    Atwell, B. H.

    1973-01-01

    The Mississippi Sound Remote Sensing Study was initiated as part of the research program of the NASA Earth Resources Laboratory. The objective of this study is development of remote sensing techniques to study near-shore marine waters. Included within this general objective are the following: (1) evaluate existing techniques and instruments used for remote measurement of parameters of interest within these waters; (2) develop methods for interpretation of state-of-the-art remote sensing data which are most meaningful to an understanding of processes taking place within near-shore waters; (3) define hardware development requirements and/or system specifications; (4) develop a system combining data from remote and surface measurements which will most efficiently assess conditions in near-shore waters; (5) conduct projects in coordination with appropriate operating agencies to demonstrate applicability of this research to environmental and economic problems.

  2. Vertical variability of aerosol single-scattering albedo and equivalent black carbon concentration based on in-situ and remote sensing techniques during the iAREA campaigns in Ny-Ålesund

    Science.gov (United States)

    Markowicz, K. M.; Ritter, C.; Lisok, J.; Makuch, P.; Stachlewska, I. S.; Cappelletti, D.; Mazzola, M.; Chilinski, M. T.

    2017-09-01

    This work presents a methodology for obtaining vertical profiles of aerosol single scattering properties based on a combination of different measurement techniques. The presented data were obtained under the iAREA (Impact of absorbing aerosols on radiative forcing in the European Arctic) campaigns conducted in Ny-Ålesund (Spitsbergen) during the spring seasons of 2015-2017. The retrieval uses in-situ observations of black carbon concentration and absorption coefficient measured by a micro-aethalometer AE-51 mounted onboard a tethered balloon, as well as remote sensing data obtained from sun photometer and lidar measurements. From a combination of the balloon-borne in-situ and the lidar data, we derived profiles of single scattering albedo (SSA) as well as absorption, extinction, and aerosol number concentration. Results have been obtained in an altitude range from about 400 m up to 1600 m a.s.l. and for cases with increased aerosol load during the Arctic haze seasons of 2015 and 2016. The main results consist of the observation of increasing values of equivalent black carbon (EBC) and absorption coefficient with altitude, and the opposite trend for aerosol concentration for particles larger than 0.3 μm. SSA was retrieved with the use of lidar Raman and Klett algorithms for both 532 and 880 nm wavelengths. In most profiles, SSA shows relatively high temporal and altitude variability. Vertical variability of SSA computed from both methods is consistent; however, some discrepancy is related to Raman retrieval uncertainty and absorption coefficient estimation from AE-51. Typically, very low EBC concentration in Ny-Ålesund leads to large error in the absorbing coefficient. However, SSA uncertainty for both Raman and Klett algorithms seems to be reasonable, e.g. SSA of 0.98 and 0.95 relate to an error of ±0.01 and ± 0.025, respectively.

  3. Toward practical SERS sensing

    Science.gov (United States)

    Zhao, Yiping

    2012-06-01

    Since its discovery more than 30 years ago, surface-enhanced Raman scattering (SERS) has been recognized as a highly sensitive detection technique for chemical and biological sensing and medical diagnostics. However, the practical application of this remarkably sensitive technique has not been widely accepted as a viable diagnostic method due to the difficulty in preparing robust and reproducible substrates that provide maximum SERS enhancement. Here, we demonstrate that the aligned silver nanorod (AgNR) array substrates engineered by the oblique angle deposition method are capable of providing extremely high SERS enhancement factors (>108). The substrates are large area, uniform, reproducible, and compatible with general microfabrication process. The enhancement factor depends strongly on the length and shape of the Ag nanorods and the underlying substrate coating. By optimizing AgNR SERS substrates, we show that SERS is able to detect trace amount of toxins, virus, bacteria, or other chemical and biological molecules, and distinguish different viruses/bacteria and virus/bacteria strains. The substrate can be tailored into a multi-well chip for high throughput screening, integrated into fiber tip for portable sensing, incorporated into fluid/microfluidic devices for in situ real-time monitoring, fabricated onto a flexible substrate for tracking and identification, or used as on-chip separation device for ultra-thin layer chromatography and diagnostics. By combining the unique SERS substrates with a handheld Raman system, it can become a practical and portable sensor system for field applications. All these developments have demonstrated that AgNR SERS substrates could play an important role in the future for practical clinical, industrial, defense, and security sensing applications.

  4. Energy-efficient sensing in wireless sensor networks using compressed sensing.

    Science.gov (United States)

    Razzaque, Mohammad Abdur; Dobson, Simon

    2014-02-12

    Sensing of the application environment is the main purpose of a wireless sensor network. Most existing energy management strategies and compression techniques assume that the sensing operation consumes significantly less energy than radio transmission and reception. This assumption does not hold in a number of practical applications. Sensing energy consumption in these applications may be comparable to, or even greater than, that of the radio. In this work, we support this claim by a quantitative analysis of the main operational energy costs of popular sensors, radios and sensor motes. In light of the importance of sensing level energy costs, especially for power hungry sensors, we consider compressed sensing and distributed compressed sensing as potential approaches to provide energy efficient sensing in wireless sensor networks. Numerical experiments investigating the effectiveness of compressed sensing and distributed compressed sensing using real datasets show their potential for efficient utilization of sensing and overall energy costs in wireless sensor networks. It is shown that, for some applications, compressed sensing and distributed compressed sensing can provide greater energy efficiency than transform coding and model-based adaptive sensing in wireless sensor networks.

  5. Remote sensing observation used in offshore wind energy

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Pena Diaz, Alfredo; Christiansen, Merete Bruun

    2008-01-01

    Remote sensing observations used in offshore wind energy are described in three parts: ground-based techniques and applications, airborne techniques and applications, and satellite-based techniques and applications. Ground-based remote sensing of winds is relevant, in particular, for new large wind...

  6. Quantum Sensing for High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Zeeshan; et al.

    2018-03-29

    Report of the first workshop to identify approaches and techniques in the domain of quantum sensing that can be utilized by future High Energy Physics applications to further the scientific goals of High Energy Physics.

  7. Study on cooperative active sensing system

    International Nuclear Information System (INIS)

    Tsukune, Hideo; Kita, Nobuyuki; Kuniyoshi, Yasuo; Hara, Isao; Matsui, Toshihiro; Matsushita, Toshio; Nagata, Kazuyuki; Nagakubo, Akihiko

    1998-01-01

    This study aims to develop a dispersed cooperative intellectualized system technique and a sensing system required for construction of a robot group inspectable in patrol and maintainable in selfish in a plant with large scale and complex variety. In particular, in order to establish a system with flexibility response to environment and soundness durable to abnormal accident, a cooperative active sensing technique and real-time active vision sensing technique were started. On the base of last two years results, in 1996 fiscal year, important and expansion of each element technique was conducted to start a study on movement of focussing point which was an important function of the active vision sensing. (G.K.)

  8. Dynamic Liver Magnetic Resonance Imaging in Free-Breathing: Feasibility of a Cartesian T1-Weighted Acquisition Technique With Compressed Sensing and Additional Self-Navigation Signal for Hard-Gated and Motion-Resolved Reconstruction.

    Science.gov (United States)

    Kaltenbach, Benjamin; Bucher, Andreas M; Wichmann, Julian L; Nickel, Dominik; Polkowski, Christoph; Hammerstingl, Renate; Vogl, Thomas J; Bodelle, Boris

    2017-11-01

    The aim of this study was to assess the feasibility of a free-breathing dynamic liver imaging technique using a prototype Cartesian T1-weighted volumetric interpolated breathhold examination (VIBE) sequence with compressed sensing and simultaneous acquisition of a navigation signal for hard-gated and motion state-resolved reconstruction. A total of 43 consecutive oncologic patients (mean age, 66 ± 11 years; 44% female) underwent free-breathing dynamic liver imaging for the evaluation of liver metastases from colorectal cancer using a prototype Cartesian VIBE sequence (field of view, 380 × 345 mm; image matrix, 320 × 218; echo time/repetition time, 1.8/3.76 milliseconds; flip angle, 10 degrees; slice thickness, 3.0 mm; acquisition time, 188 seconds) with continuous data sampling and additionally acquired self-navigation signal. Data were iteratively reconstructed using 2 different approaches: first, a hard-gated reconstruction only using data associated to the dominating motion state (CS VIBE, Compressed Sensing VIBE), and second, a motion-resolved reconstruction with 6 different motion states as additional image dimension (XD VIBE, eXtended dimension VIBE). Continuous acquired data were grouped in 16 subsequent time increments with 11.57 seconds each to resolve arterial and venous contrast phases. For image quality assessment, both CS VIBE and XD VIBE were compared with the patient's last staging dynamic liver magnetic resonance imaging including a breathhold (BH) VIBE as reference standard 4.5 ± 1.2 months before. Representative quality parameters including respiratory artifacts were evaluated for arterial and venous phase images independently, retrospectively and blindly by 3 experienced radiologists, with higher scores indicating better examination quality. To assess diagnostic accuracy, same readers evaluated the presence of metastatic lesions for XD VIBE and CS VIBE compared with reference BH examination in a second session. Compared with CS VIBE, XD VIBE

  9. Sensing the gas metal arc welding process

    Science.gov (United States)

    Carlson, N. M.; Johnson, J. A.; Smartt, H. B.; Watkins, A. D.; Larsen, E. D.; Taylor, P. L.; Waddoups, M. A.

    1994-01-01

    Control of gas metal arc welding (GMAW) requires real-time sensing of the process. Three sensing techniques for GMAW are being developed at the Idaho National Engineering Laboratory (INEL). These are (1) noncontacting ultrasonic sensing using a laser/EMAT (electromagnetic acoustic transducer) to detect defects in the solidified weld on a pass-by-pass basis, (2) integrated optical sensing using a CCD camera and a laser stripe to obtain cooling rate and weld bead geometry information, and (3) monitoring fluctuations in digitized welding voltage data to detect the mode of metal droplet transfer and assure that the desired mass input is achieved.

  10. Remote Sensing: Physics And Environmental Applications

    International Nuclear Information System (INIS)

    EI Raey, M.

    2007-01-01

    Full text: Basic principles of remote sensing of environment are outlined emphasizing inherent physical and target properties leading to proper identification and classification. Basic processing techniques are discussed. Applications of remote sensing techniques in various aspects of environmental monitoring and assessment is surveyed with emphasis on aspects of main concern to developing communities such as planning, sea level impacts, mine detection and earthquake prediction are all outlined and discussed

  11. Remote sensing of wetlands applications and advances

    CERN Document Server

    Tiner, Ralph W; Klemas, Victor V

    2015-01-01

    Effectively Manage Wetland Resources Using the Best Available Remote Sensing Techniques Utilizing top scientists in the wetland classification and mapping field, Remote Sensing of Wetlands: Applications and Advances covers the rapidly changing landscape of wetlands and describes the latest advances in remote sensing that have taken place over the past 30 years for use in mapping wetlands. Factoring in the impact of climate change, as well as a growing demand on wetlands for agriculture, aquaculture, forestry, and development, this text considers the challenges that wetlands pose for remote sensing and provides a thorough introduction on the use of remotely sensed data for wetland detection. Taking advantage of the experiences of more than 50 contributing authors, the book describes a variety of techniques for mapping and classifying wetlands in a multitude of environments ranging from tropical to arctic wetlands including coral reefs and submerged aquatic vegetation. The authors discuss the advantages and di...

  12. Preface: Remote Sensing in Coastal Environments

    Directory of Open Access Journals (Sweden)

    Deepak R. Mishra

    2016-08-01

    Full Text Available The Special Issue (SI on “Remote Sensing in Coastal Environments” presents a wide range of articles focusing on a variety of remote sensing models and techniques to address coastal issues and processes ranging for wetlands and water quality to coral reefs and kelp habitats. The SI is comprised of twenty-one papers, covering a broad range of research topics that employ remote sensing imagery, models, and techniques to monitor water quality, vegetation, habitat suitability, and geomorphology in the coastal zone. This preface provides a brief summary of each article published in the SI.

  13. First observations of tropospheric δD data observed by ground- and space-based remote sensing and surface in-situ measurement techniques at MUSICA's principle reference station (Izaña Observatory, Spain)

    Science.gov (United States)

    González, Yenny; Schneider, Matthias; Christner, Emanuel; Rodríguez, Omaira E.; Sepúlveda, Eliezer; Dyroff, Christoph; Wiegele, Andreas

    2013-04-01

    The main goal of the project MUSICA (Multiplatform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) is the generation of a quasi global tropospheric water vapor isototopologue dataset of a good and well-documented quality. Therefore, new ground- and space-based remote sensing observations (NDACC-FTIR and IASI/METOP) are combined with in-situ measurements. This work presents the first comparison between in-situ and remote sensing observations made at the Izaña Atmospheric Research Centre (Tenerife, Canary Islands, Spain). The in-situ measurements are made by a Picarro L2120-i water vapor isotopologue analyzer. At Izaña the in-situ data are affected by local small-scale mixing processes: during daylight, the thermally buoyant upslope flow prompts the mixing between the Marine Boundary Layer (MBL) and the low Free Troposphere (FT). However, the remote sensors detect δD values averaged over altitudes that are more representative for the free troposphere. This difference has to be considered for the comparison. In general, a good agreement between the MUSICA remote sensing and the in situ H2O-versus-δD plots is found, which demonstrates that the MUSICA δD remote sensing products add scientifically valuable information to the H2O data.

  14. Annotated bibliography of remote sensing methods for monitoring desertification

    Science.gov (United States)

    Walker, A.S.; Robinove, Charles J.

    1981-01-01

    Remote sensing techniques are valuable for locating, assessing, and monitoring desertification. Remotely sensed data provide a permanent record of the condition of the land in a format that allows changes in land features and condition to be measured. The annotated bibliography of 118 items discusses remote sensing methods that may be applied to desertification studies.

  15. Remote Sensing of Environmental Pollution

    Science.gov (United States)

    North, G. W.

    1971-01-01

    Environmental pollution is a problem of international scope and concern. It can be subdivided into problems relating to water, air, or land pollution. Many of the problems in these three categories lend themselves to study and possible solution by remote sensing. Through the use of remote sensing systems and techniques, it is possible to detect and monitor, and in some cases, identify, measure, and study the effects of various environmental pollutants. As a guide for making decisions regarding the use of remote sensors for pollution studies, a special five-dimensional sensor/applications matrix has been designed. The matrix defines an environmental goal, ranks the various remote sensing objectives in terms of their ability to assist in solving environmental problems, lists the environmental problems, ranks the sensors that can be used for collecting data on each problem, and finally ranks the sensor platform options that are currently available.

  16. Current perspective on remote sensing

    International Nuclear Information System (INIS)

    Goodman, R.H.

    1992-01-01

    Surveillance and tracking of oil spills has been a feature of most spill response situations for many years. The simplest and most direct method uses visual observations from an aircraft and hand-plotting of the data on a map. This technique has proven adequate for most small spills and for responses in fair weather. As the size of the spill increases or the weather deteriorates, there is a need to augment visual aerial observations with remote sensing methods. Remote sensing and its associated systems are one of the most technically complex and sophisticated elements of an oil spill response. During the past few years, a number of initiatives have been undertaken to use contemporary electronic and computing systems to develop new and improved remote sensing systems

  17. Differentially Private Distributed Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Fink, Glenn A.

    2016-12-11

    The growth of the Internet of Things (IoT) creates the possibility of decentralized systems of sensing and actuation, potentially on a global scale. IoT devices connected to cloud networks can offer Sensing and Actuation as a Service (SAaaS) enabling networks of sensors to grow to a global scale. But extremely large sensor networks can violate privacy, especially in the case where IoT devices are mobile and connected directly to the behaviors of people. The thesis of this paper is that by adapting differential privacy (adding statistically appropriate noise to query results) to groups of geographically distributed sensors privacy could be maintained without ever sending all values up to a central curator and without compromising the overall accuracy of the data collected. This paper outlines such a scheme and performs an analysis of differential privacy techniques adapted to edge computing in a simulated sensor network where ground truth is known. The positive and negative outcomes of employing differential privacy in distributed networks of devices are discussed and a brief research agenda is presented.

  18. Sensing at the nanoscale

    Science.gov (United States)

    Demming, Anna; Hierold, Christofer

    2013-11-01

    properties are an important indicator for sensing. In search of a better understanding of these systems Zhang et al from Southern Illinois University inspect the role of Joule heating, exothermal reactions and heat dissipation in gas sensing using nanowires [7]. The mechanisms behind electrical chemical sensors are also further scrutinized in a kinetics study by Joan Ramon Morante from the University of Barcelona in Spain. 'In spite of the growing commercial success many basic issues remain still open and under discussion limiting the broad use of this technology,' he explains. He discusses surface chemical reaction kinetics and the experimental results for different representative gas molecules to gain an insight into the chemical to electrical transduction mechanisms taking place [8]. Perhaps one of the most persistent targets in sensing research is increasing the sensitivity. Gauging environmental health issues around the commercial use of nanomaterials places high demands on low-level detection and spurred a collaboration of researchers in the UK, Croatia and Canada to look into the use of particle-impact voltammetry for detecting nanoparticles in environmental media [9]. At the University of Illinois Urbana-Champaign in the US, researchers have applied wave transform analysis techniques to the oscillations of an atomic force microscopy cantilever and tailored a time-frequency-domain filter to identify the region of highest vibrational energy [10]. The approach allows them to improve the signal to noise ratio by a factor 32 on current high-performance devices. In addition, researchers in Korea report how doping NiO nanofibres can improve the sensitivity to a number of gases, including ethanol, where the response was enhanced by as much as a factor of 217.86 [11]. Biomedicine is one of the largest industries for the application of nanotechnology in sensing. Demonstrating the state of the art, researchers in China use silicon wafers decorated with gold nanoparticles for

  19. Remote sensing in uranium exploration. Basic guidance

    International Nuclear Information System (INIS)

    1981-01-01

    The purpose of this publication is to provide the reader with a basis for making an intelligent approach to the use of remote sensing in uranium exploration. It includes: A description of the various techniques; specific applications in view of exploration strategy and selection of appropriate techniques, and some examples of applications; availability and costs; a bibliography

  20. Microwave bale moisture sensing: Field trial

    Science.gov (United States)

    A microwave moisture measurement technique was developed for moisture sensing of cotton bales after the bale press. The technique measures the propagation delay of a microwave signal that is transmitted through the cotton bale. This research conducted a field trial to test the sensor in a commercial...

  1. Microwave bale moisture sensing: Field trial continued

    Science.gov (United States)

    A microwave moisture measurement technique was developed at the USDA, ARS Cotton Production and Processing Research Unit for moisture sensing of cotton bales after the bale press. The technique measures the propagation delay of a microwave signal that is transmitted through the cotton bale. This res...

  2. Remote sensing in uranium exploration. Basic guidance

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    The purpose of this publication is to provide the reader with a basis for making an intelligent approach to the use of remote sensing in uranium exploration. It includes: A description of the various techniques; specific applications in view of exploration strategy and selection of appropriate techniques, and some examples of applications; availability and costs; a bibliography.

  3. Mobile Sensing Systems

    Science.gov (United States)

    Macias, Elsa; Suarez, Alvaro; Lloret, Jaime

    2013-01-01

    Rich-sensor smart phones have made possible the recent birth of the mobile sensing research area as part of ubiquitous sensing which integrates other areas such as wireless sensor networks and web sensing. There are several types of mobile sensing: individual, participatory, opportunistic, crowd, social, etc. The object of sensing can be people-centered or environment-centered. The sensing domain can be home, urban, vehicular… Currently there are barriers that limit the social acceptance of mobile sensing systems. Examples of social barriers are privacy concerns, restrictive laws in some countries and the absence of economic incentives that might encourage people to participate in a sensing campaign. Several technical barriers are phone energy savings and the variety of sensors and software for their management. Some existing surveys partially tackle the topic of mobile sensing systems. Published papers theoretically or partially solve the above barriers. We complete the above surveys with new works, review the barriers of mobile sensing systems and propose some ideas for efficiently implementing sensing, fusion, learning, security, privacy and energy saving for any type of mobile sensing system, and propose several realistic research challenges. The main objective is to reduce the learning curve in mobile sensing systems where the complexity is very high. PMID:24351637

  4. Mobile sensing systems.

    Science.gov (United States)

    Macias, Elsa; Suarez, Alvaro; Lloret, Jaime

    2013-12-16

    Rich-sensor smart phones have made possible the recent birth of the mobile sensing research area as part of ubiquitous sensing which integrates other areas such as wireless sensor networks and web sensing. There are several types of mobile sensing: individual, participatory, opportunistic, crowd, social, etc. The object of sensing can be people-centered or environment-centered. The sensing domain can be home, urban, vehicular… Currently there are barriers that limit the social acceptance of mobile sensing systems. Examples of social barriers are privacy concerns, restrictive laws in some countries and the absence of economic incentives that might encourage people to participate in a sensing campaign. Several technical barriers are phone energy savings and the variety of sensors and software for their management. Some existing surveys partially tackle the topic of mobile sensing systems. Published papers theoretically or partially solve the above barriers. We complete the above surveys with new works, review the barriers of mobile sensing systems and propose some ideas for efficiently implementing sensing, fusion, learning, security, privacy and energy saving for any type of mobile sensing system, and propose several realistic research challenges. The main objective is to reduce the learning curve in mobile sensing systems where the complexity is very high.

  5. Mobile Sensing Systems

    Directory of Open Access Journals (Sweden)

    Elsa Macias

    2013-12-01

    Full Text Available Rich-sensor smart phones have made possible the recent birth of the mobile sensing research area as part of ubiquitous sensing which integrates other areas such as wireless sensor networks and web sensing. There are several types of mobile sensing: individual, participatory, opportunistic, crowd, social, etc. The object of sensing can be people-centered or environment-centered. The sensing domain can be home, urban, vehicular… Currently there are barriers that limit the social acceptance of mobile sensing systems. Examples of social barriers are privacy concerns, restrictive laws in some countries and the absence of economic incentives that might encourage people to participate in a sensing campaign. Several technical barriers are phone energy savings and the variety of sensors and software for their management. Some existing surveys partially tackle the topic of mobile sensing systems. Published papers theoretically or partially solve the above barriers. We complete the above surveys with new works, review the barriers of mobile sensing systems and propose some ideas for efficiently implementing sensing, fusion, learning, security, privacy and energy saving for any type of mobile sensing system, and propose several realistic research challenges. The main objective is to reduce the learning curve in mobile sensing systems where the complexity is very high.

  6. Remote Sensing of Ecology, Biodiversity and Conservation: A Review from the Perspective of Remote Sensing Specialists

    Directory of Open Access Journals (Sweden)

    Marc Cattet

    2010-11-01

    Full Text Available Remote sensing, the science of obtaining information via noncontact recording, has swept the fields of ecology, biodiversity and conservation (EBC. Several quality review papers have contributed to this field. However, these papers often discuss the issues from the standpoint of an ecologist or a biodiversity specialist. This review focuses on the spaceborne remote sensing of EBC from the perspective of remote sensing specialists, i.e., it is organized in the context of state-of-the-art remote sensing technology, including instruments and techniques. Herein, the instruments to be discussed consist of high spatial resolution, hyperspectral, thermal infrared, small-satellite constellation, and LIDAR sensors; and the techniques refer to image classification, vegetation index (VI, inversion algorithm, data fusion, and the integration of remote sensing (RS and geographic information system (GIS.

  7. Remote sensing of ecology, biodiversity and conservation: a review from the perspective of remote sensing specialists.

    Science.gov (United States)

    Wang, Kai; Franklin, Steven E; Guo, Xulin; Cattet, Marc

    2010-01-01

    Remote sensing, the science of obtaining information via noncontact recording, has swept the fields of ecology, biodiversity and conservation (EBC). Several quality review papers have contributed to this field. However, these papers often discuss the issues from the standpoint of an ecologist or a biodiversity specialist. This review focuses on the spaceborne remote sensing of EBC from the perspective of remote sensing specialists, i.e., it is organized in the context of state-of-the-art remote sensing technology, including instruments and techniques. Herein, the instruments to be discussed consist of high spatial resolution, hyperspectral, thermal infrared, small-satellite constellation, and LIDAR sensors; and the techniques refer to image classification, vegetation index (VI), inversion algorithm, data fusion, and the integration of remote sensing (RS) and geographic information system (GIS).

  8. Nano-bio-sensing

    CERN Document Server

    Carrara, Sandro

    2011-01-01

    This book examines state-of-the-art applications of nano-bio-sensing. It brings together researchers from nano-electronics and bio-technology, providing multidisciplinary content from nano-structures fabrication to bio-sensing applications.

  9. Metal oxide nanostructures as gas sensing devices

    CERN Document Server

    Eranna, G

    2016-01-01

    Metal Oxide Nanostructures as Gas Sensing Devices explores the development of an integrated micro gas sensor that is based on advanced metal oxide nanostructures and is compatible with modern semiconductor fabrication technology. This sensor can then be used to create a compact, low-power, handheld device for analyzing air ambience. The book first covers current gas sensing tools and discusses the necessity for miniaturized sensors. It then focuses on the materials, devices, and techniques used for gas sensing applications, such as resistance and capacitance variations. The author addresses the issues of sensitivity, concentration, and temperature dependency as well as the response and recovery times crucial for sensors. He also presents techniques for synthesizing different metal oxides, particularly those with nanodimensional structures. The text goes on to highlight the gas sensing properties of many nanostructured metal oxides, from aluminum and cerium to iron and titanium to zinc and zirconium. The final...

  10. Digital methods and remote sensing in archaeology archaeology in the age of sensing

    CERN Document Server

    Campana, Stefano

    2016-01-01

    This volume debuts the new scope of Remote Sensing, which was first defined as the analysis of data collected by sensors that were not in physical contact with the objects under investigation (using cameras, scanners, and radar systems operating from spaceborne or airborne platforms). A wider characterization is now possible: Remote Sensing can be any non-destructive approach to viewing the buried and nominally invisible evidence of past activity. Spaceborne and airborne sensors, now supplemented by laser scanning, are united using ground-based geophysical instruments and undersea remote sensing, as well as other non-invasive techniques such as surface collection or field-walking survey. Now, any method that enables observation of evidence on or beneath the surface of the earth, without impact on the surviving stratigraphy, is legitimately within the realm of Remote Sensing. The new interfaces and senses engaged in Remote Sensing appear throughout the book. On a philosophical level, this is about the landscap...

  11. Introduction to remote sensing

    CERN Document Server

    Cracknell, Arthur P

    2007-01-01

    Addressing the need for updated information in remote sensing, Introduction to Remote Sensing, Second Edition provides a full and authoritative introduction for scientists who need to know the scope, potential, and limitations in the field. The authors discuss the physical principles of common remote sensing systems and examine the processing, interpretation, and applications of data. This new edition features updated and expanded material, including greater coverage of applications from across earth, environmental, atmospheric, and oceanographic sciences. Illustrated with remotely sensed colo

  12. Sense of moving

    DEFF Research Database (Denmark)

    Christensen, Mark Schram; Grünbaum, Thor

    2017-01-01

    In this chapter, we assume the existence of a sense of “movement activity” that arises when a person actively moves a body part. This sense is usually supposed to be part of sense of agency (SoA). The purpose of the chapter is to determine whether the already existing experimental paradigms can...

  13. Mapping organizational members' sense of fit

    OpenAIRE

    Billsberry, Jon; Marsh, Philip; Moss-Jones, John

    2004-01-01

    Despite its importance in the organizational behavior literature, person–organization (P–O) fit remains an elusive construct. One reason for this is the lack of research about organizational members’ own sense of their P–O fit. In this paper we report an empirical study that explored organizational members’ own sense of fit using storytelling and causal mapping techniques. The results suggest that organizational members categorize their perceptions of their fit into five discrete domains (job...

  14. Remote sensing by satellite - Technical and operational implications for international cooperation

    Science.gov (United States)

    Doyle, S. E.

    1976-01-01

    International cooperation in the U.S. Space Program is discussed and related to the NASA program for remote sensing of the earth. Satellite remote sensing techniques are considered along with the selection of the best sensors and wavelength bands. The technology of remote sensing satellites is considered with emphasis on the Landsat system configuration. Future aspects of remote sensing satellites are considered.

  15. Remote sensing and water resources

    CERN Document Server

    Champollion, N; Benveniste, J; Chen, J

    2016-01-01

    This book is a collection of overview articles showing how space-based observations, combined with hydrological modeling, have considerably improved our knowledge of the continental water cycle and its sensitivity to climate change. Two main issues are highlighted: (1) the use in combination of space observations for monitoring water storage changes in river basins worldwide, and (2) the use of space data in hydrological modeling either through data assimilation or as external constraints. The water resources aspect is also addressed, as well as the impacts of direct anthropogenic forcing on land hydrology (e.g. ground water depletion, dam building on rivers, crop irrigation, changes in land use and agricultural practices, etc.). Remote sensing observations offer important new information on this important topic as well, which is highly useful for achieving water management objectives. Over the past 15 years, remote sensing techniques have increasingly demonstrated their capability to monitor components of th...

  16. Remote sensing from UAVs for hydrological monitoring

    DEFF Research Database (Denmark)

    Bandini, Filippo; Garcia, Monica; Bauer-Gottwein, Peter

    compared to other technologies: compared to field based techniques, remote sensing with UAVs is a non-destructive technique, less time consuming, ensures a reduced time between acquisition and interpretation of data and gives the possibility to access remote and unsafe areas. Compared to full...... will be able to record the spectral signatures of water and land surfaces with a pixel resolution of around 15 cm, whereas the thermal camera will sense water and land surface temperature with a resolution of 40 cm. Post-processing of data from the thermal camera will allow retrieving vegetation and soil...

  17. Hybrid Arrays for Chemical Sensing

    Science.gov (United States)

    Kramer, Kirsten E.; Rose-Pehrsson, Susan L.; Johnson, Kevin J.; Minor, Christian P.

    In recent years, multisensory approaches to environment monitoring for chemical detection as well as other forms of situational awareness have become increasingly popular. A hybrid sensor is a multimodal system that incorporates several sensing elements and thus produces data that are multivariate in nature and may be significantly increased in complexity compared to data provided by single-sensor systems. Though a hybrid sensor is itself an array, hybrid sensors are often organized into more complex sensing systems through an assortment of network topologies. Part of the reason for the shift to hybrid sensors is due to advancements in sensor technology and computational power available for processing larger amounts of data. There is also ample evidence to support the claim that a multivariate analytical approach is generally superior to univariate measurements because it provides additional redundant and complementary information (Hall, D. L.; Linas, J., Eds., Handbook of Multisensor Data Fusion, CRC, Boca Raton, FL, 2001). However, the benefits of a multisensory approach are not automatically achieved. Interpretation of data from hybrid arrays of sensors requires the analyst to develop an application-specific methodology to optimally fuse the disparate sources of data generated by the hybrid array into useful information characterizing the sample or environment being observed. Consequently, multivariate data analysis techniques such as those employed in the field of chemometrics have become more important in analyzing sensor array data. Depending on the nature of the acquired data, a number of chemometric algorithms may prove useful in the analysis and interpretation of data from hybrid sensor arrays. It is important to note, however, that the challenges posed by the analysis of hybrid sensor array data are not unique to the field of chemical sensing. Applications in electrical and process engineering, remote sensing, medicine, and of course, artificial

  18. Optical remote sensing

    CERN Document Server

    Prasad, Saurabh; Chanussot, Jocelyn

    2011-01-01

    Optical remote sensing relies on exploiting multispectral and hyper spectral imagery possessing high spatial and spectral resolutions respectively. These modalities, although useful for most remote sensing tasks, often present challenges that must be addressed for their effective exploitation. This book presents current state-of-the-art algorithms that address the following key challenges encountered in representation and analysis of such optical remotely sensed data: challenges in pre-processing images, storing and representing high dimensional data, fusing different sensor modalities, patter

  19. REMOTE SENSING IN OCEANOGRAPHY.

    Science.gov (United States)

    remote sensing from satellites. Sensing of oceanographic variables from aircraft began with the photographing of waves and ice. Since then remote measurement of sea surface temperatures and wave heights have become routine. Sensors tested for oceanographic applications include multi-band color cameras, radar scatterometers, infrared spectrometers and scanners, passive microwave radiometers, and radar imagers. Remote sensing has found its greatest application in providing rapid coverage of large oceanographic areas for synoptic and analysis and

  20. Soft cooperative spectrum sensing performance under imperfect and non identical reporting channels

    KAUST Repository

    Ben Ghorbel, Mahdi; Nam, Haewoon; Alouini, Mohamed-Slim

    2015-01-01

    in cooperative spectrum sensing techniques assume perfect channels between the cooperating users, this paper studies the effect of imperfect channels when local users report their sensed information to the fusion center. Cooperative detection and false

  1. Hyperspectral sensing of forests

    Science.gov (United States)

    Goodenough, David G.; Dyk, Andrew; Chen, Hao; Hobart, Geordie; Niemann, K. Olaf; Richardson, Ash

    2007-11-01

    Canada contains 10% of the world's forests covering an area of 418 million hectares. The sustainable management of these forest resources has become increasingly complex. Hyperspectral remote sensing can provide a wealth of new and improved information products to resource managers to make more informed decisions. Research in this area has demonstrated that hyperspectral remote sensing can be used to create more accurate products for forest inventory, forest health, foliar biochemistry, biomass, and aboveground carbon than are currently available. This paper surveys recent methods and results in hyperspectral sensing of forests and describes space initiatives for hyperspectral sensing.

  2. LIGO sensing system performance

    CERN Document Server

    Landry, M

    2002-01-01

    The optical sensing subsystem of a LIGO interferometer is described. The system includes two complex interferometric sensing schemes to control test masses in length and alignment. The length sensing system is currently employed on all LIGO interferometers to lock coupled cavities on resonance. Auto-alignment is to be accomplished by a wavefront-sensing scheme which automatically corrects for angular fluctuations of the test masses. Improvements in lock stability and duration are noted when the wavefront auto-alignment system is employed. Preliminary results from the commissioning of the 2 km detector in Washington are shown.

  3. Optical Remote Sensing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Optical Remote Sensing Laboratory deploys rugged, cutting-edge electro-optical instrumentation for the collection of various event signatures, with expertise in...

  4. Artificial senses for characterization of food quality

    Institute of Scientific and Technical Information of China (English)

    HUANG Yan-bo; LAN Yu-bin; R.E. Lacey

    2004-01-01

    Food quality is of primary concern in the food industry and to the consumer. Systems that mimic human senses have been developed and applied to the characterization of food quality. The five primary senses are: vision, hearing, smell, taste and touch.In the characterization of food quality, people assess the samples sensorially and differentiate "good" from "bad" on a continuum.However, the human sensory system is subjective, with mental and physical inconsistencies, and needs time to work. Artificial senses such as machine vision, the electronic ear, electronic nose, electronic tongue, artificial mouth and even artificial the head have been developed that mimic the human senses. These artificial senses are coordinated individually or collectively by a pattern recognition technique, typically artificial neural networks, which have been developed based on studies of the mechanism of the human brain. Such a structure has been used to formulate methods for rapid characterization of food quality. This research presents and discusses individual artificial sensing systems. With the concept of multi-sensor data fusion these sensor systems can work collectively in some way. Two such fused systems, artificial mouth and artificial head, are described and discussed. It indicates that each of the individual systems has their own artificially sensing ability to differentiate food samples. It further indicates that with a more complete mimic of human intelligence the fused systems are more powerful than the individual systems in differentiation of food samples.

  5. Hyperspectral remote sensing for light pollution monitoring

    Directory of Open Access Journals (Sweden)

    P. Marcoionni

    2006-06-01

    Full Text Available industries. In this paper we introduce the results from a remote sensing campaign performed in September 2001 at night time. For the first time nocturnal light pollution was measured at high spatial and spectral resolution using two airborne hyperspectral sensors, namely the Multispectral Infrared and Visible Imaging Spectrometer (MIVIS and the Visible InfraRed Scanner (VIRS-200. These imagers, generally employed for day-time Earth remote sensing, were flown over the Tuscany coast (Italy on board of a Casa 212/200 airplane from an altitude of 1.5-2.0 km. We describe the experimental activities which preceded the remote sensing campaign, the optimization of sensor configuration, and the images as far acquired. The obtained results point out the novelty of the performed measurements and highlight the need to employ advanced remote sensing techniques as a spectroscopic tool for light pollution monitoring.

  6. Remote sensing research in geographic education: An alternative view

    Science.gov (United States)

    Wilson, H.; Cary, T. K.; Goward, S. N.

    1981-01-01

    It is noted that within many geography departments remote sensing is viewed as a mere technique a student should learn in order to carry out true geographic research. This view inhibits both students and faculty from investigation of remotely sensed data as a new source of geographic knowledge that may alter our understanding of the Earth. The tendency is for geographers to accept these new data and analysis techniques from engineers and mathematicians without questioning the accompanying premises. This black-box approach hinders geographic applications of the new remotely sensed data and limits the geographer's contribution to further development of remote sensing observation systems. It is suggested that geographers contribute to the development of remote sensing through pursuit of basic research. This research can be encouraged, particularly among students, by demonstrating the links between geographic theory and remotely sensed observations, encouraging a healthy skepticism concerning the current understanding of these data.

  7. Study on cooperative active sensing system

    International Nuclear Information System (INIS)

    Tsukune, Hideo; Kita, Nobuyuki; Hirai, Shigeoki; Kuniyoshi, Yasuo; Hara, Isao; Matsui, Toshihiro

    1999-01-01

    In order to realize autonomous type nuclear plant, three-dimensional geometrical modelling method, and a basic technology on information collection and processing system preparation in some nuclear basic technology developments such as 'study on system evaluation of nuclear facility furnished with artificial intelligence for nuclear power' and 'study on adaptability evaluation of information collection and processing system into autonomous type plant' had already been developed. In this study, a study on sensing system required for constructing robot groups capable of conducting autonomously traveling inspection and maintenance in large scale, complicated and diverse plant has been processed by aiming at establishment of dispersed cooperative intelligent system technology. In 1997 fiscal year, integration of cooperative visual sensing technique was attempted. And, at the same time, upgrading of individual element technology and transportation method essential to the integrated system were investigated. As a result, an operative active sensing prototype system due to transportation robot groups furnished with real time processing capacity on diverse informations by integration of cooperative active sensing technique and real time active sensing technique developed independently plural transportation robot. (G.K.)

  8. Suppression of Instability on Sensing Signal of Optical Pulse Correlation Measurement in Remote Fiber Sensing

    Directory of Open Access Journals (Sweden)

    Hirokazu Kobayashi

    2012-01-01

    response and improve the accuracy of signals at the focused sensing regions. We also experimentally demonstrate remote temperature monitoring over a 30 km-long distance using a remote reference technique, and we estimate the resolution and the measurable span of the temperature variation as (1.1/L∘C and (5.9×10/L°C, respectively, where L is the length of the fiber in the sensing region.

  9. Remote Sensing of shallow sea floor for digital earth environment

    International Nuclear Information System (INIS)

    Yahya, N N; Hashim, M; Ahmad, S

    2014-01-01

    Understanding the sea floor biodiversity requires spatial information that can be acquired from remote sensing satellite data. Species volume, spatial patterns and species coverage are some of the information that can be derived. Current approaches for mapping sea bottom type have evolved from field observation, visual interpretation from aerial photography, mapping from remote sensing satellite data along with field survey and hydrograhic chart. Remote sensing offers most versatile technique to map sea bottom type up to a certain scale. This paper reviews the technical characteristics of signal and light interference within marine features, space and remote sensing satellite. In addition, related image processing techniques that are applicable to remote sensing satellite data for sea bottom type digital mapping is also presented. The sea bottom type can be differentiated by classification method using appropriate spectral bands of satellite data. In order to verify the existence of particular sea bottom type, field observations need to be carried out with proper technique and equipment

  10. Remote Sensing of Landslides—A Review

    Directory of Open Access Journals (Sweden)

    Chaoying Zhao

    2018-02-01

    Full Text Available Triggered by earthquakes, rainfall, or anthropogenic activities, landslides represent widespread and problematic geohazards worldwide. In recent years, multiple remote sensing techniques, including synthetic aperture radar, optical, and light detection and ranging measurements from spaceborne, airborne, and ground-based platforms, have been widely applied for the analysis of landslide processes. Current techniques include landslide detection, inventory mapping, surface deformation monitoring, trigger factor analysis and mechanism inversion. In addition, landslide susceptibility modelling, hazard assessment, and risk evaluation can be further analyzed using a synergic fusion of multiple remote sensing data and other factors affecting landslides. We summarize the 19 articles collected in this special issue of Remote Sensing of Landslide, in the terms of data, methods and applications used in the papers.

  11. Cavity-enhanced spectroscopy and sensing

    Energy Technology Data Exchange (ETDEWEB)

    Gagliardi, Gianluca [CNR-Istituto Nazionale di Ottica (INO), Pozzuoli (Italy); Loock, Hans-Peter (ed.) [Queen' s Univ., Kingston, ON (Canada). Dept. of Chemistry

    2014-07-01

    The book reviews the dramatic recent advances in the use of optical resonators for high sensitivity and high resolution molecular spectroscopy as well as for chemical, mechanical and physical sensing. It encompasses a variety of cavities including those made of two or more mirrors, optical fiber loops, fiber gratings and spherical cavities. The book focuses on novel techniques and their applications. Each chapter is written by an expert and/or pioneer in the field. These experts also provide the theoretical background in optics and molecular physics where needed. Examples of recent breakthroughs include the use of frequency combs (Nobel prize 2005) for cavity enhanced sensing and spectroscopy, the use of novel cavity materials and geometries, the development of optical heterodyne detection techniques combined to active frequency-locking schemes. These methods allow the use and interrogation of optical resonators with a variety of coherent light sources for trace gas detection and sensing of strain, temperature and pressure.

  12. Cavity-enhanced spectroscopy and sensing

    CERN Document Server

    Loock, Hans-Peter

    2014-01-01

    The book reviews the dramatic recent advances in the use of optical resonators for high sensitivity and high resolution molecular spectroscopy as well as for chemical, mechanical and physical sensing.  It encompasses a variety of cavities including those made of two or more mirrors, optical fiber loops, fiber gratings and spherical cavities. The book focuses on novel techniques and their applications. Each chapter is written by an expert and/or pioneer in the field. These experts also provide the theoretical background in optics and molecular physics where needed. Examples of recent breakthroughs include the use of frequency combs (Nobel prize 2005) for cavity enhanced sensing and spectroscopy, the use of novel cavity materials and geometries, the development of optical heterodyne detection techniques combined to active frequency-locking schemes. These methods allow the use and interrogation of optical resonators with a variety of coherent light sources for trace gas detection and sensing of strain, temperat...

  13. Calcium sensing in exocytosis

    DEFF Research Database (Denmark)

    Gustavsson, Natalia; Wu, Bingbing; Han, Weiping

    2012-01-01

    an increase in intracellular calcium levels. Besides the triggering role, calcium signaling modulates the precise amount and kinetics of vesicle release. Thus, it is a central question to understand the molecular machineries responsible for calcium sensing in exocytosis. Here we provide an overview of our...... current understanding of calcium sensing in neurotransmitter release and hormone secretion....

  14. Sense and Sensibility

    NARCIS (Netherlands)

    Austen, Jane

    2005-01-01

    Two sisters of opposing temperament but who share the pangs of tragic love provide the subjects for Sense and Sensibility. Elinor, practical and conventional, the epitome of sense, desires a man who is promised to another woman. Marianne, emotional and sentimental, the epitome of sensibility, loses

  15. Mobile teleoperator remote sensing

    International Nuclear Information System (INIS)

    Hall, E.L.

    1986-01-01

    Sensing systems are an important element of mobile teleoperators and robots. This paper discusses certain problems and limitations of vision and other sensing systems with respect to operations in a radiological accident environment. Methods which appear promising for near-term improvements to sensor technology are described. 3 refs

  16. Deterministic Compressed Sensing

    Science.gov (United States)

    2011-11-01

    39 4.3 Digital Communications . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.4 Group Testing ...deterministic de - sign matrices. All bounds ignore the O() constants. . . . . . . . . . . 131 xvi List of Algorithms 1 Iterative Hard Thresholding Algorithm...sensing is information theoretically possible using any (2k, )-RIP sensing matrix . The following celebrated results of Candès, Romberg and Tao [54

  17. Hyperspectral remote sensing

    CERN Document Server

    Eismann, Michael

    2012-01-01

    Hyperspectral remote sensing is an emerging, multidisciplinary field with diverse applications that builds on the principles of material spectroscopy, radiative transfer, imaging spectrometry, and hyperspectral data processing. This book provides a holistic treatment that captures its multidisciplinary nature, emphasizing the physical principles of hyperspectral remote sensing.

  18. Mapping sense(s) of place

    DEFF Research Database (Denmark)

    Skovse, Astrid Ravn; Hovy, Dirk; Johannsen, Anders Trærup

    2016-01-01

    , the question of how to tap into this constitutes a methodological challenge to researchers (Latham 2003, Hall 2009). This paper presents an experimental method aimed at eliciting data on sense of place and everyday mobility in a feasible and low-tech manner through the use of mental maps and mobility maps...... for answering questions about the relationship between places, speakers and linguistic practice....

  19. Hydroball string sensing system

    International Nuclear Information System (INIS)

    Hurwitz, M.J.; Ekeroth, D.E.; Squarer, D.

    1991-01-01

    This patent describes a hydroball string sensing system for a nuclear reactor having a core containing a fluid at a fluid pressure. It comprises a tube connectable to the nuclear reactor so that the fluid can flow within the tube at a fluid pressure that is substantially the same as the fluid pressure of the nuclear reactor core; a hydroball string including - a string member having objects positioned therealong with a specified spacing, the object including a plurality of hydroballs, and bullet members positioned at opposing ends of the string member; first sensor means, positioned outside a first segment of the tube, for sensing one of the objects being positioned within the first segment, and for providing a sensing signal responsive to the sensing of the first sensing means

  20. ACCURACY DIMENSIONS IN REMOTE SENSING

    Directory of Open Access Journals (Sweden)

    Á. Barsi

    2018-04-01

    Full Text Available The technological developments in remote sensing (RS during the past decade has contributed to a significant increase in the size of data user community. For this reason data quality issues in remote sensing face a significant increase in importance, particularly in the era of Big Earth data. Dozens of available sensors, hundreds of sophisticated data processing techniques, countless software tools assist the processing of RS data and contributes to a major increase in applications and users. In the past decades, scientific and technological community of spatial data environment were focusing on the evaluation of data quality elements computed for point, line, area geometry of vector and raster data. Stakeholders of data production commonly use standardised parameters to characterise the quality of their datasets. Yet their efforts to estimate the quality did not reach the general end-user community running heterogeneous applications who assume that their spatial data is error-free and best fitted to the specification standards. The non-specialist, general user group has very limited knowledge how spatial data meets their needs. These parameters forming the external quality dimensions implies that the same data system can be of different quality to different users. The large collection of the observed information is uncertain in a level that can decry the reliability of the applications. Based on prior paper of the authors (in cooperation within the Remote Sensing Data Quality working group of ISPRS, which established a taxonomy on the dimensions of data quality in GIS and remote sensing domains, this paper is aiming at focusing on measures of uncertainty in remote sensing data lifecycle, focusing on land cover mapping issues. In the paper we try to introduce how quality of the various combination of data and procedures can be summarized and how services fit the users’ needs. The present paper gives the theoretic overview of the issue, besides

  1. Accuracy Dimensions in Remote Sensing

    Science.gov (United States)

    Barsi, Á.; Kugler, Zs.; László, I.; Szabó, Gy.; Abdulmutalib, H. M.

    2018-04-01

    The technological developments in remote sensing (RS) during the past decade has contributed to a significant increase in the size of data user community. For this reason data quality issues in remote sensing face a significant increase in importance, particularly in the era of Big Earth data. Dozens of available sensors, hundreds of sophisticated data processing techniques, countless software tools assist the processing of RS data and contributes to a major increase in applications and users. In the past decades, scientific and technological community of spatial data environment were focusing on the evaluation of data quality elements computed for point, line, area geometry of vector and raster data. Stakeholders of data production commonly use standardised parameters to characterise the quality of their datasets. Yet their efforts to estimate the quality did not reach the general end-user community running heterogeneous applications who assume that their spatial data is error-free and best fitted to the specification standards. The non-specialist, general user group has very limited knowledge how spatial data meets their needs. These parameters forming the external quality dimensions implies that the same data system can be of different quality to different users. The large collection of the observed information is uncertain in a level that can decry the reliability of the applications. Based on prior paper of the authors (in cooperation within the Remote Sensing Data Quality working group of ISPRS), which established a taxonomy on the dimensions of data quality in GIS and remote sensing domains, this paper is aiming at focusing on measures of uncertainty in remote sensing data lifecycle, focusing on land cover mapping issues. In the paper we try to introduce how quality of the various combination of data and procedures can be summarized and how services fit the users' needs. The present paper gives the theoretic overview of the issue, besides selected, practice

  2. Laser Spectroscopy for Atmospheric and Environmental Sensing

    Directory of Open Access Journals (Sweden)

    Solomon Bililign

    2009-12-01

    Full Text Available Lasers and laser spectroscopic techniques have been extensively used in several applications since their advent, and the subject has been reviewed extensively in the last several decades. This review is focused on three areas of laser spectroscopic applications in atmospheric and environmental sensing; namely laser-induced fluorescence (LIF, cavity ring-down spectroscopy (CRDS, and photoluminescence (PL techniques used in the detection of solids, liquids, aerosols, trace gases, and volatile organic compounds (VOCs.

  3. Compressive sensing with a microwave photonic filter

    DEFF Research Database (Denmark)

    Chen, Ying; Yu, Xianbin; Chi, Hao

    2015-01-01

    In this letter, we present a novel approach to realizing photonics-assisted compressive sensing (CS) with the technique of microwave photonic fi ltering. In the proposed system, an input spectrally sparse signal to be captured and a random sequence are modulated on an optical carrier via two Mach...

  4. Remote sensing applications for monitoring rangeland vegetation ...

    African Journals Online (AJOL)

    Remote sensing techniques hold considerable promise for the inventory and monitoring of natural resources on rangelands. A significant lack of information concerning basic spectral characteristics of range vegetation and soils has resulted in a lack of rangeland applications. The parameters of interest for range condition ...

  5. Coding Strategies and Implementations of Compressive Sensing

    Science.gov (United States)

    Tsai, Tsung-Han

    This dissertation studies the coding strategies of computational imaging to overcome the limitation of conventional sensing techniques. The information capacity of conventional sensing is limited by the physical properties of optics, such as aperture size, detector pixels, quantum efficiency, and sampling rate. These parameters determine the spatial, depth, spectral, temporal, and polarization sensitivity of each imager. To increase sensitivity in any dimension can significantly compromise the others. This research implements various coding strategies subject to optical multidimensional imaging and acoustic sensing in order to extend their sensing abilities. The proposed coding strategies combine hardware modification and signal processing to exploiting bandwidth and sensitivity from conventional sensors. We discuss the hardware architecture, compression strategies, sensing process modeling, and reconstruction algorithm of each sensing system. Optical multidimensional imaging measures three or more dimensional information of the optical signal. Traditional multidimensional imagers acquire extra dimensional information at the cost of degrading temporal or spatial resolution. Compressive multidimensional imaging multiplexes the transverse spatial, spectral, temporal, and polarization information on a two-dimensional (2D) detector. The corresponding spectral, temporal and polarization coding strategies adapt optics, electronic devices, and designed modulation techniques for multiplex measurement. This computational imaging technique provides multispectral, temporal super-resolution, and polarization imaging abilities with minimal loss in spatial resolution and noise level while maintaining or gaining higher temporal resolution. The experimental results prove that the appropriate coding strategies may improve hundreds times more sensing capacity. Human auditory system has the astonishing ability in localizing, tracking, and filtering the selected sound sources or

  6. Mapping of Landscape Cover Using Remote Sensing and GIS in ...

    African Journals Online (AJOL)

    Tadesse

    present study, Remote Sensing (RS) and Geographical Information System (GIS) techniques were used. Remotely sensed .... growing stock in Tahno range of Dehradun Forest Division. Okhandiara (2008) .... areas on an image by identifying 'training' sites of known targets and then extrapolating those spectral signatures to ...

  7. Monolayer-functionalized microfluidics devices for optical sensing of acidity

    NARCIS (Netherlands)

    Mela, P.; Onclin, S.; Goedbloed, M.H.; Levi, S.; Garcia Parajo, M.F.; van Hulst, N.F.; Ravoo, B.J.; Reinhoudt, David; van den Berg, Albert

    This paper describes the integration of opto-chemosensors in microfluidics networks. Our technique exploits the internal surface of the network as a platform to build a sensing system by coating the surface with a self-assembled monolayer and subsequently binding a fluorescent sensing molecule to

  8. Application of remote sensing to agricultural field trials

    NARCIS (Netherlands)

    Clevers, J.G.P.W.

    1986-01-01

    Remote sensing techniques enable quantitative information about a field trial to be obtained instantaneously and non-destructively. The aim of this study was to identify a method that can reduce inaccuracies in field trial analysis, and to identify how remote sensing can support and/or

  9. Experimental techniques; Techniques experimentales

    Energy Technology Data Exchange (ETDEWEB)

    Roussel-Chomaz, P. [GANIL CNRS/IN2P3, CEA/DSM, 14 - Caen (France)

    2007-07-01

    This lecture presents the experimental techniques, developed in the last 10 or 15 years, in order to perform a new class of experiments with exotic nuclei, where the reactions induced by these nuclei allow to get information on their structure. A brief review of the secondary beams production methods will be given, with some examples of facilities in operation or under project. The important developments performed recently on cryogenic targets will be presented. The different detection systems will be reviewed, both the beam detectors before the targets, and the many kind of detectors necessary to detect all outgoing particles after the reaction: magnetic spectrometer for the heavy fragment, detection systems for the target recoil nucleus, {gamma} detectors. Finally, several typical examples of experiments will be detailed, in order to illustrate the use of each detector either alone, or in coincidence with others. (author)

  10. Remote sensing of the biosphere

    Science.gov (United States)

    1986-01-01

    The current state of understanding of the biosphere is reviewed, the major scientific issues to be addressed are discussed, and techniques, existing and in need of development, for the science are evaluated. It is primarily concerned with developing the scientific capabilities of remote sensing for advancing the subject. The global nature of the scientific objectives requires the use of space-based techniques. The capability to look at the Earth as a whole was developed only recently. The space program has provided the technology to study the entire Earth from artificial satellites, and thus is a primary force in approaches to planetary biology. Space technology has also permitted comparative studies of planetary atmospheres and surfaces. These studies coupled with the growing awareness of the effects that life has on the entire Earth, are opening new lines of inquiry in science.

  11. Stamping SERS for creatinine sensing

    Science.gov (United States)

    Li, Ming; Du, Yong; Zhao, Fusheng; Zeng, Jianbo; Santos, Greggy M.; Mohan, Chandra; Shih, Wei-Chuan

    2015-03-01

    Urine can be obtained easily, readily and non-invasively. The analysis of urine can provide metabolic information of the body and the condition of renal function. Creatinine is one of the major components of human urine associated with muscle metabolism. Since the content of creatinine excreted into urine is relatively constant, it is used as an internal standard to normalize water variations. Moreover, the detection of creatinine concentration in urine is important for the renal clearance test, which can monitor the filtration function of kidney and health status. In more details, kidney failure can be imminent when the creatinine concentration in urine is high. A simple device and protocol for creatinine sensing in urine samples can be valuable for point-of-care applications. We reported quantitative analysis of creatinine in urine samples by using stamping surface enhanced Raman scattering (S-SERS) technique with nanoporous gold disk (NPGD) based SERS substrate. S-SERS technique enables label-free and multiplexed molecular sensing under dry condition, while NPGD provides a robust, controllable, and high-sensitivity SERS substrate. The performance of S-SERS with NGPDs is evaluated by the detection and quantification of pure creatinine and creatinine in artificial urine within physiologically relevant concentration ranges.

  12. Sensing the wind profile

    Energy Technology Data Exchange (ETDEWEB)

    Pena, A.

    2009-03-15

    This thesis consists of two parts. The first is a synopsis of the theoretical progress of the study that is based on a number of journal papers. The papers, which constitute the second part of the report, aim to analyze, measure, and model the wind prole in and beyond the surface layer by combining observations from cup anemometers with lidars. The lidar is necessary to extend the measurements on masts at the Horns Rev offshore wind farm and over at land at Hoevsoere, Denmark. Both sensing techniques show a high degree of agreement for wind speed measurements performed at either sites. The wind speed measurements are averaged for several stability conditions and compare well with the surface-layer wind profile. At Hoevsoere, it is sufficient to scale the wind speed with the surface friction velocity, whereas at Horns Rev a new scaling is added, due to the variant roughness length. This new scaling is coupled to wind prole models derived for flow over the sea and tested against the wind proles up to 160 m at Horns Rev. The models, which account for the boundary-layer height in stable conditions, show better agreement with the measurements than compared to the traditional theory. Mixing-length parameterizations for the neutral wind prole compare well with length-scale measurements up to 300 m at Hoevsoere and 950 m at Leipzig. The mixing-length-derived wind proles strongly deviate from the logarithmic wind prole, but agree better with the wind speed measurements. The length-scale measurements are compared to the length scale derived from a spectral analysis performed up to 160 m at Hoevsoere showing high agreement. Mixing-length parameterizations are corrected to account for stability and used to derive wind prole models. These compared better to wind speed measurements up to 300 m at Hoevsoere than the surface-layer wind prole. The boundary-layer height is derived in nearneutral and stable conditions based on turbulent momentum uxes only and in unstable conditions

  13. Piezoelectric self sensing actuators for high voltage excitation

    International Nuclear Information System (INIS)

    Grasso, E; Totaro, N; Janocha, H; Naso, D

    2013-01-01

    Self sensing techniques allow the use of a piezoelectric transducer simultaneously as an actuator and as a sensor. Such techniques are based on knowledge of the transducer behaviour and on measurements of electrical quantities, in particular voltage and charge. Past research work has mainly considered the linear behaviour of piezoelectric transducers, consequently restricting the operating driving voltages to low values. In this work a new self sensing technique is proposed which is able to perform self sensing reconstruction both at low and at high driving voltages. This technique, in fact, makes use of a hysteretic model to describe the nonlinear piezoelectric capacitance necessary for self sensing reconstruction. The capacitance can be measured and identified at the antiresonances of a vibrating structure with a good approximation. After providing a mathematical background to deal with the main aspects of self sensing, this technique is compared theoretically and experimentally to a typical linear one by using an aluminum plate with one bonded self sensing transducer and a positive position feedback (PPF) controller to verify the performance in self sensing based vibration control. (paper)

  14. and remote sensing for multi-temporal analysis of sand ...

    African Journals Online (AJOL)

    dalel

    remote sensing techniques particularly those referring to change detection. This kind of ... Technol. depending on many factors in relation to climate conditions, nature .... geomorphologic position make it a perfect wind corridor. (Chahbani ...

  15. Decision tree approach for classification of remotely sensed satellite ...

    Indian Academy of Sciences (India)

    sensed satellite data using open source support. Richa Sharma .... Decision tree classification techniques have been .... the USGS Earth Resource Observation Systems. (EROS) ... for shallow water, 11% were for sparse and dense built-up ...

  16. Fiber-Optic Sensing for In-Space Inspection

    Science.gov (United States)

    Pena, Francisco; Richards, W. Lance; Piazza, Anthony; Parker, Allen R.; Hudson, Larry D.

    2014-01-01

    This presentation provides examples of fiber optic sensing technology development activities performed at NASA Armstrong. Examples of current and previous work that support in-space inspection techniques and methodologies are highlighted.

  17. Remote sensing application for delineating coastal vegetation - A case study

    Digital Repository Service at National Institute of Oceanography (India)

    Kunte, P.D.; Wagle, B.G.

    Remote sensing data has been used for mapping coastal vegetation along the Goa Coast, India. The study envisages the use of digital image processing techniques for delineating geomorphic features and associated vegetation, including mangrove, along...

  18. 348 A GIS AND REMOTE SENSING APPROACH TO ASSESSMENT ...

    African Journals Online (AJOL)

    Osondu

    A GIS AND REMOTE SENSING APPROACH TO ASSESSMENT OF DEFORESTATION IN ... This study measured and analyzed deforestation in Uyo and examined the possible effects of the ..... the Burkill technique, (1985, 1994, 1995, 1997.

  19. Sensing Methods for Detecting Analog Television Signals

    Science.gov (United States)

    Rahman, Mohammad Azizur; Song, Chunyi; Harada, Hiroshi

    This paper introduces a unified method of spectrum sensing for all existing analog television (TV) signals including NTSC, PAL and SECAM. We propose a correlation based method (CBM) with a single reference signal for sensing any analog TV signals. In addition we also propose an improved energy detection method. The CBM approach has been implemented in a hardware prototype specially designed for participating in Singapore TV white space (WS) test trial conducted by Infocomm Development Authority (IDA) of the Singapore government. Analytical and simulation results of the CBM method will be presented in the paper, as well as hardware testing results for sensing various analog TV signals. Both AWGN and fading channels will be considered. It is shown that the theoretical results closely match with those from simulations. Sensing performance of the hardware prototype will also be presented in fading environment by using a fading simulator. We present performance of the proposed techniques in terms of probability of false alarm, probability of detection, sensing time etc. We also present a comparative study of the various techniques.

  20. Remote Sensing Digital Image Analysis An Introduction

    CERN Document Server

    Richards, John A

    2013-01-01

    Remote Sensing Digital Image Analysis provides the non-specialist with a treatment of the quantitative analysis of satellite and aircraft derived remotely sensed data. Since the first edition of the book there have been significant developments in the algorithms used for the processing and analysis of remote sensing imagery; nevertheless many of the fundamentals have substantially remained the same.  This new edition presents material that has retained value since those early days, along with new techniques that can be incorporated into an operational framework for the analysis of remote sensing data. The book is designed as a teaching text for the senior undergraduate and postgraduate student, and as a fundamental treatment for those engaged in research using digital image processing in remote sensing.  The presentation level is for the mathematical non-specialist.  Since the very great number of operational users of remote sensing come from the earth sciences communities, the text is pitched at a leve...

  1. Compressed sensing & sparse filtering

    CERN Document Server

    Carmi, Avishy Y; Godsill, Simon J

    2013-01-01

    This book is aimed at presenting concepts, methods and algorithms ableto cope with undersampled and limited data. One such trend that recently gained popularity and to some extent revolutionised signal processing is compressed sensing. Compressed sensing builds upon the observation that many signals in nature are nearly sparse (or compressible, as they are normally referred to) in some domain, and consequently they can be reconstructed to within high accuracy from far fewer observations than traditionally held to be necessary. Apart from compressed sensing this book contains other related app

  2. Solid-state electrical conductivity and alcohol sensing properties of radio frequency sputtered thin films of Ti4+ doped eskolaite Cr2O3 derived from citrate combustion technique

    International Nuclear Information System (INIS)

    Pokhrel, Suman; Huo Lihua; Zhao Hui; Gao Shan

    2008-01-01

    Fine powder of Cr 1.8 Ti 0.2 O 3 (CTO) was prepared by citrate combustion technique followed by compacting into discs of 40 mm diameter. Discs were used as radio frequency sputtering targets and coated on a hollow ceramic tube of 4 mm length comprising two Au-electrodes with 4-probe contact and on Al 2 O 3 slices with interdigitated gold electrodes. The films were characterized by X-ray diffraction, X-ray photoelectron spectroscopy and atomic force microscopy techniques. The resistance of the film derived from alternate current impedance measurement in ambient air was found to decrease with increasing temperature. The activation energy was found to be 0.39 eV. These films were exposed to various concentrations of alcohols followed by determination of sensor response, reversibility, potential stability and reproducibility. The sensor response was attributed to the surface catalytic reaction of R-OH with O - (ads) to form adsorbed R-CHO

  3. Physics teaching by infrared remote sensing of vegetation

    Science.gov (United States)

    Schüttler, Tobias; Maman, Shimrit; Girwidz, Raimund

    2018-05-01

    Context- and project-based teaching has proven to foster different affective and cognitive aspects of learning. As a versatile and multidisciplinary scientific research area with diverse applications for everyday life, satellite remote sensing is an interesting context for physics education. In this paper we give a brief overview of satellite remote sensing of vegetation and how to obtain your own, individual infrared remote sensing data with affordable converted digital cameras. This novel technique provides the opportunity to conduct individual remote sensing measurement projects with students in their respective environment. The data can be compared to real satellite data and is of sufficient accuracy for educational purposes.

  4. Remote Sensing Information Gateway

    Science.gov (United States)

    Remote Sensing Information Gateway, a tool that allows scientists, researchers and decision makers to access a variety of multi-terabyte, environmental datasets and to subset the data and obtain only needed variables, greatly improving the download time.

  5. Hyperspectral remote sensing

    National Research Council Canada - National Science Library

    Eismann, Michael Theodore

    2012-01-01

    ..., and hyperspectral data processing. While there are many resources that suitably cover these areas individually and focus on specific aspects of the hyperspectral remote sensing field, this book provides a holistic treatment...

  6. Modern Surveying Techniques In National Infrastructural ...

    African Journals Online (AJOL)

    Journal of Research in National Development ... Modern Surveying Techniques In National Infrastructural Development: Case Study Of Roads ... Ways that Remote Sensing help to make highway construction easier were discussed.

  7. Remote sensing in operational range management programs in Western Canada

    Science.gov (United States)

    Thompson, M. D.

    1977-01-01

    A pilot program carried out in Western Canada to test remote sensing under semi-operational conditions and display its applicability to operational range management programs was described. Four agencies were involved in the program, two in Alberta and two in Manitoba. Each had different objectives and needs for remote sensing within its range management programs, and each was generally unfamiliar with remote sensing techniques and their applications. Personnel with experience and expertise in the remote sensing and range management fields worked with the agency personnel through every phase of the pilot program. Results indicate that these agencies have found remote sensing to be a cost effective tool and will begin to utilize remote sensing in their operational work during ensuing seasons.

  8. Compressive sensing using optimized sensing matrix for face verification

    Science.gov (United States)

    Oey, Endra; Jeffry; Wongso, Kelvin; Tommy

    2017-12-01

    Biometric appears as one of the solutions which is capable in solving problems that occurred in the usage of password in terms of data access, for example there is possibility in forgetting password and hard to recall various different passwords. With biometrics, physical characteristics of a person can be captured and used in the identification process. In this research, facial biometric is used in the verification process to determine whether the user has the authority to access the data or not. Facial biometric is chosen as its low cost implementation and generate quite accurate result for user identification. Face verification system which is adopted in this research is Compressive Sensing (CS) technique, in which aims to reduce dimension size as well as encrypt data in form of facial test image where the image is represented in sparse signals. Encrypted data can be reconstructed using Sparse Coding algorithm. Two types of Sparse Coding namely Orthogonal Matching Pursuit (OMP) and Iteratively Reweighted Least Squares -ℓp (IRLS-ℓp) will be used for comparison face verification system research. Reconstruction results of sparse signals are then used to find Euclidean norm with the sparse signal of user that has been previously saved in system to determine the validity of the facial test image. Results of system accuracy obtained in this research are 99% in IRLS with time response of face verification for 4.917 seconds and 96.33% in OMP with time response of face verification for 0.4046 seconds with non-optimized sensing matrix, while 99% in IRLS with time response of face verification for 13.4791 seconds and 98.33% for OMP with time response of face verification for 3.1571 seconds with optimized sensing matrix.

  9. Examining land-use/land-cover change in the Lake Dianchi watershed of the Yunnan-Guizhou Plateau of Southwest China with remote sensing and GIS techniques: 1974–2008.

    Science.gov (United States)

    Zhao, Yaolong; Zhang, Ke; Fu, Yingchun; Zhang, Hong

    2012-10-24

    Monitoring land-use/land-cover change (LULCC) and exploring its mechanisms are important processes in the environmental management of a lake watershed. The purpose of this study was to examine the spatiotemporal pattern of LULCC by using multi landscape metrics in the Lake Dianchi watershed, which is located in the Yunnan-Guizhou Plateau of Southwest China. Landsat images from the years 1974, 1988, 1998, and 2008 were analyzed using geographical information system (GIS) techniques. The results reveal that land-use/land-cover has changed greatly in the watershed since 1974. This change in land use structure was embodied in the rapid increase of developed areas with a relative change rate of up to 324.4%. The increase in developed areas mainly occurred in agricultural land, especially near the shores of Lake Dianchi. The spatial pattern and structure of the change was influenced by the urban sprawl of the city of Kunming. The urban sprawl took on the typical expansion mode of cyclic structures and a jigsaw pattern and expanded to the shore of Lake Dianchi. Agricultural land changed little with respect to the structure but changed greatly in the spatial pattern. The landscape in the watershed showed a trend of fragmentation with a complex boundary. The dynamics of land-use/land-cover in the watershed correlate with land-use policies and economic development in China.

  10. he Morpho-topographic and Cartographic Analysis of the Archaeological Site Corneşti “Iarcuri”, Timiş County, Romania, Using Computer Sciences Methods (GIS and Remote Sensing Techniques

    Directory of Open Access Journals (Sweden)

    Dorel Micle

    2009-01-01

    Full Text Available The archaeological site Cornesti “Iarcuri” is the largest earth fortification in Romania, made out of four concentric compounds, spreading over 1780 hectares. It is known since 1700, but it had only a few small attempts of systematic research, the fortress gained interest only after the publishing of some satellite images by Google Earth. It is located in an area of high fields and it occupies three interfluves and contains two streams. Our paper contains a geomorphologic, topographic and cartographic analysis of the site in order to determine the limits, the structure, the morphology, the construction technique and the functionality of such a fortification. Our research is based on satellite image analysis, on archaeological topography, on soil, climate and vegetation analysis as a way to offer a complex image, through this interdisciplinary study of landscape archaeology. Through our work we try not to date the site as this objective will be achieved only after completing the systematic excavations which started in 2007, but only to analyze the co-relationship with the environment.

  11. Integration of remote sensing (RS) and geographic information system (GIS) techniques for change detection of the land use and land cover (LULC) for soil management in the southern Port Said region, Egypt

    Science.gov (United States)

    Hassan, Mohamed Abd El Rehim Abd El Aziz

    2014-11-01

    The monitoring of land use/land cover (LULC) changes in southern Port Said region area is very important for the planner of managements, governmental and non-governmental organizations, decision makers and the scientific community. This information is essential for planning and implementing policies to optimize the use of natural resources and accommodate development whilst minimizing the impact on the environment. To monitor these changes in the study area, two sets of satellite images (Landsat TM-5 and ETM+7) data were used with Path/Row (175/38) in date 1986 and 2006, respectively. The Landsat TM and ETM data are useful for this type of study due to its high spatial resolution, spectral resolution and low repetitive acquisition (16 days). A postclassification technique is used in this study based on hybrid classification (Unsupervised and Supervised). Each method used was assessed, and checked in field. Eight to Twelve LULC classes are recognized and mapping produced. The soils in southern Port Said area were classification in two orders for soil taxonomic units, which are Entisols and Aridisols and four sub-orders classes. The study land was evaluated into five classes from non suitable (N) to very highly suitable (S1) for some crops in the southern region of Port Said studied soils, with assess the nature of future change following construction of the international coastal road which crosses near to the study area.

  12. Sensing H+ with conventional neural probes

    International Nuclear Information System (INIS)

    Trantidou, T.; Tsiligkiridis, V.; Chang, Y.-C.; Toumazou, C.; Prodromakis, T.

    2013-01-01

    In this paper, we demonstrate a technique for transforming commercially available neural probes used for electrical recordings, into chemical sensing devices for detection of ionic concentrations in electrolytes, with particular emphasis to pH. This transformation requires a single post-processing step to incorporate a thin indium tin oxide membrane for sensing H + . Measured results indicate a chemical sensitivity of 28 mV/pH, and relatively low leakage currents (2–10 nA) and drifts (1–10 mV/h). The proposed sensing device demonstrates the possibility of a low-cost implementation that can be reusable and thus versatile, with potential applications in real-time extracellular but mainly intracellular chemical monitoring.

  13. Health Participatory Sensing Networks

    Directory of Open Access Journals (Sweden)

    Andrew Clarke

    2014-01-01

    Full Text Available The use of participatory sensing in relation to the capture of health-related data is rapidly becoming a possibility due to the widespread consumer adoption of emerging mobile computing technologies and sensing platforms. This has the potential to revolutionize data collection for population health, aspects of epidemiology, and health-related e-Science applications and as we will describe, provide new public health intervention capabilities, with the classifications and capabilities of such participatory sensing platforms only just beginning to be explored. Such a development will have important benefits for access to near real-time, large-scale, up to population-scale data collection. However, there are also numerous issues to be addressed first: provision of stringent anonymity and privacy within these methodologies, user interface issues, and the related issue of how to incentivize participants and address barriers/concerns over participation. To provide a step towards describing these aspects, in this paper we present a first classification of health participatory sensing models, a novel contribution to the literature, and provide a conceptual reference architecture for health participatory sensing networks (HPSNs and user interaction example case study.

  14. Sensing in tissue bioreactors

    Science.gov (United States)

    Rolfe, P.

    2006-03-01

    Specialized sensing and measurement instruments are under development to aid the controlled culture of cells in bioreactors for the fabrication of biological tissues. Precisely defined physical and chemical conditions are needed for the correct culture of the many cell-tissue types now being studied, including chondrocytes (cartilage), vascular endothelial cells and smooth muscle cells (blood vessels), fibroblasts, hepatocytes (liver) and receptor neurones. Cell and tissue culture processes are dynamic and therefore, optimal control requires monitoring of the key process variables. Chemical and physical sensing is approached in this paper with the aim of enabling automatic optimal control, based on classical cell growth models, to be achieved. Non-invasive sensing is performed via the bioreactor wall, invasive sensing with probes placed inside the cell culture chamber and indirect monitoring using analysis within a shunt or a sampling chamber. Electroanalytical and photonics-based systems are described. Chemical sensing for gases, ions, metabolites, certain hormones and proteins, is under development. Spectroscopic analysis of the culture medium is used for measurement of glucose and for proteins that are markers of cell biosynthetic behaviour. Optical interrogation of cells and tissues is also investigated for structural analysis based on scatter.

  15. Oil spill remote sensing sensors and aircraft

    International Nuclear Information System (INIS)

    Fingas, M.; Fruhwirth, M.; Gamble, L.

    1992-01-01

    The most common form of remote sensing as applied to oil spills is aerial remote sensing. The technology of aerial remote sensing, mainly from aircraft, is reviewed along with aircraft-mounted remote sensors and aircraft modifications. The characteristics, advantages, and limitations of optical techniques, infrared and ultraviolet sensors, fluorosensors, microwave and radar sensors, and slick thickness sensors are discussed. Special attention is paid to remote sensing of oil under difficult circumstances, such as oil in water or oil on ice. An infrared camera is the first sensor recommended for oil spill work, as it is the cheapest and most applicable device, and is the only type of equipment that can be bought off-the-shelf. The second sensor recommended is an ultraviolet and visible-spectrum device. The laser fluorosensor offers the only potential for discriminating between oiled and un-oiled weeds or shoreline, and for positively identifying oil pollution on ice and in a variety of other situations. However, such an instrument is large and expensive. Radar, although low in priority for purchase, offers the only potential for large-area searches and foul-weather remote sensing. Most other sensors are experimental or do not offer good potential for oil detection or mapping. 48 refs., 8 tabs

  16. Remote sensing in the marine environment. A description of facilities, applications, needs and opportunities in South Africa

    CSIR Research Space (South Africa)

    Shannon, LV

    1988-01-01

    Full Text Available Against a background of the techniques and instrumentation available for remote sensing in the marine environment, this report considers the rationale for their use by the South African marine community. Local applications of remote sensing...

  17. Electroactive polymers for sensing

    Science.gov (United States)

    2016-01-01

    Electromechanical coupling in electroactive polymers (EAPs) has been widely applied for actuation and is also being increasingly investigated for sensing chemical and mechanical stimuli. EAPs are a unique class of materials, with low-moduli high-strain capabilities and the ability to conform to surfaces of different shapes. These features make them attractive for applications such as wearable sensors and interfacing with soft tissues. Here, we review the major types of EAPs and their sensing mechanisms. These are divided into two classes depending on the main type of charge carrier: ionic EAPs (such as conducting polymers and ionic polymer–metal composites) and electronic EAPs (such as dielectric elastomers, liquid-crystal polymers and piezoelectric polymers). This review is intended to serve as an introduction to the mechanisms of these materials and as a first step in material selection for both researchers and designers of flexible/bendable devices, biocompatible sensors or even robotic tactile sensing units. PMID:27499846

  18. Remote sensing using MIMO systems

    Science.gov (United States)

    Bikhazi, Nicolas; Young, William F; Nguyen, Hung D

    2015-04-28

    A technique for sensing a moving object within a physical environment using a MIMO communication link includes generating a channel matrix based upon channel state information of the MIMO communication link. The physical environment operates as a communication medium through which communication signals of the MIMO communication link propagate between a transmitter and a receiver. A spatial information variable is generated for the MIMO communication link based on the channel matrix. The spatial information variable includes spatial information about the moving object within the physical environment. A signature for the moving object is generated based on values of the spatial information variable accumulated over time. The moving object is identified based upon the signature.

  19. High temperature humidity sensing materials

    International Nuclear Information System (INIS)

    Tsai, P.P.; Tanase, S.; Greenblatt, M.

    1989-01-01

    This paper reports on new proton conducting materials prepared and characterized for potential applications in humidity sensing at temperatures higher than 100 degrees C by complex impedance or galvanic cell type techniques. Calcium metaphosphate, β-Ca(PO 3 ) 2 as a galvanic cell type sensor material yields reproducible signals in the range from 5 to 200 mm Hg water vapor pressure at 578 degrees C, with short response time (∼ 30 sec). Polycrystalline samples of α-Zr(HPO 4 ) 2 and KMo 3 P 5.8 Si 2 O 25 , and the gel converted ceramic, 0.10Li 2 O-0.25P 2 O 5 -0.65SiO 2 as impedance sensor materials show decreases in impedance with increasing humidity in the range from 9 mm Hg to 1 atm water vapor pressure at 179 degrees C

  20. Sensing of RNA viruses

    DEFF Research Database (Denmark)

    Jensen, Søren; Thomsen, Allan Randrup

    2012-01-01

    pathogen-associated molecular patterns have emerged in great detail. This review presents an overview of our current knowledge regarding the receptors used to detect RNA virus invasion, the molecular structures these receptors sense, and the involved downstream signaling pathways.......Our knowledge regarding the contribution of the innate immune system in recognizing and subsequently initiating a host response to an invasion of RNA virus has been rapidly growing over the last decade. Descriptions of the receptors involved and the molecular mechanisms they employ to sense viral...

  1. Remote sensing image fusion

    CERN Document Server

    Alparone, Luciano; Baronti, Stefano; Garzelli, Andrea

    2015-01-01

    A synthesis of more than ten years of experience, Remote Sensing Image Fusion covers methods specifically designed for remote sensing imagery. The authors supply a comprehensive classification system and rigorous mathematical description of advanced and state-of-the-art methods for pansharpening of multispectral images, fusion of hyperspectral and panchromatic images, and fusion of data from heterogeneous sensors such as optical and synthetic aperture radar (SAR) images and integration of thermal and visible/near-infrared images. They also explore new trends of signal/image processing, such as

  2. Introduction to remote sensing

    CERN Document Server

    Campbell, James B

    2012-01-01

    A leading text for undergraduate- and graduate-level courses, this book introduces widely used forms of remote sensing imagery and their applications in plant sciences, hydrology, earth sciences, and land use analysis. The text provides comprehensive coverage of principal topics and serves as a framework for organizing the vast amount of remote sensing information available on the Web. Including case studies and review questions, the book's four sections and 21 chapters are carefully designed as independent units that instructors can select from as needed for their courses. Illustrations in

  3. Biosensing Using Magnetic Particle Detection Techniques

    Directory of Open Access Journals (Sweden)

    Yi-Ting Chen

    2017-10-01

    Full Text Available Magnetic particles are widely used as signal labels in a variety of biological sensing applications, such as molecular detection and related strategies that rely on ligand-receptor binding. In this review, we explore the fundamental concepts involved in designing magnetic particles for biosensing applications and the techniques used to detect them. First, we briefly describe the magnetic properties that are important for bio-sensing applications and highlight the associated key parameters (such as the starting materials, size, functionalization methods, and bio-conjugation strategies. Subsequently, we focus on magnetic sensing applications that utilize several types of magnetic detection techniques: spintronic sensors, nuclear magnetic resonance (NMR sensors, superconducting quantum interference devices (SQUIDs, sensors based on the atomic magnetometer (AM, and others. From the studies reported, we note that the size of the MPs is one of the most important factors in choosing a sensing technique.

  4. Dismantling techniques

    International Nuclear Information System (INIS)

    Wiese, E.

    1998-01-01

    Most of the dismantling techniques used in a Decontamination and Dismantlement (D and D) project are taken from conventional demolition practices. Some modifications to the techniques are made to limit exposure to the workers or to lessen the spread of contamination to the work area. When working on a D and D project, it is best to keep the dismantling techniques and tools as simple as possible. The workers will be more efficient and safer using techniques that are familiar to them. Prior experience with the technique or use of mock-ups is the best way to keep workers safe and to keep the project on schedule

  5. Dismantling techniques

    Energy Technology Data Exchange (ETDEWEB)

    Wiese, E.

    1998-03-13

    Most of the dismantling techniques used in a Decontamination and Dismantlement (D and D) project are taken from conventional demolition practices. Some modifications to the techniques are made to limit exposure to the workers or to lessen the spread of contamination to the work area. When working on a D and D project, it is best to keep the dismantling techniques and tools as simple as possible. The workers will be more efficient and safer using techniques that are familiar to them. Prior experience with the technique or use of mock-ups is the best way to keep workers safe and to keep the project on schedule.

  6. A Sense of Place

    Directory of Open Access Journals (Sweden)

    Rachel Black

    2012-09-01

    Full Text Available People increasingly want to know where their food and wine comes from and who produces it. This is part of developing a taste of place, or what the French call terroir. The academic and industry debates surrounding the concept of terroir are explored, and the efforts of Massachusetts wine producers to define their sense of place are discussed.

  7. The sense of agency

    DEFF Research Database (Denmark)

    Ritterband-Rosenbaum, Anina

    Imagine that you are reaching for a cup of coffee. You experience that you are moving and that you have control of the movement you are executing. This feeling of control of your own body and the movements it is performing is called the sense of agency. This thesis consists of four studies which ...

  8. Temporal compressive sensing systems

    Science.gov (United States)

    Reed, Bryan W.

    2017-12-12

    Methods and systems for temporal compressive sensing are disclosed, where within each of one or more sensor array data acquisition periods, one or more sensor array measurement datasets comprising distinct linear combinations of time slice data are acquired, and where mathematical reconstruction allows for calculation of accurate representations of the individual time slice datasets.

  9. Engaging All the Senses

    DEFF Research Database (Denmark)

    Schleicher, Marianne

    2017-01-01

    Based on an analysis of the process of making and inaugurating a Torah scroll, this article describes what is likely to trigger sensory responses in the participants in each phase of the process and the function of activating the five senses of touch, hearing, vision, smell, and taste. By disting...

  10. Section summary: Remote sensing

    Science.gov (United States)

    Belinda Arunarwati Margono

    2013-01-01

    Remote sensing is an important data source for monitoring the change of forest cover, in terms of both total removal of forest cover (deforestation), and change of canopy cover, structure and forest ecosystem services that result in forest degradation. In the context of Intergovernmental Panel on Climate Change (IPCC), forest degradation monitoring requires information...

  11. Sense and Sanitation

    NARCIS (Netherlands)

    Vliet, van B.J.M.; Spaargaren, G.

    2010-01-01

    Historically, sanitation infrastructures have been designed to do away with sensory experiences. As in the present phase of modernity the senses are assigned a crucial role in the perception of risks, a paradigm shift has emerged in the infrastructural provision of energy, water and waste services.

  12. Carbon for sensing devices

    CERN Document Server

    Tagliaferro, Alberto

    2015-01-01

    This book reveals why carbon is playing such an increasingly prominent role as a sensing material. The various steps that transform a raw material in a sensing device are thoroughly presented and critically discussed.  The authors deal with all aspects of carbon-based sensors, starting from the various hybridization and allotropes of carbon, with specific focus on micro and nanosized carbons (e.g., carbon nanotubes, graphene) and their growth processes. The discussion then moves to the role of functionalization and the different routes to achieve it. Finally, a number of sensing applications in various fields are presented, highlighting the connection with the basic properties of the various carbon allotropes.  Readers will benefit from this book’s bottom-up approach, which starts from the local bonding in carbon solids and ends with sensing applications, linking the local hybridization of carbon atoms and its modification by functionalization to specific device performance. This book is a must-have in th...

  13. Remote sensing for nuclear power plant siting

    International Nuclear Information System (INIS)

    Siegal, B.S.; Welby, C.W.

    1981-01-01

    Remote sensing techniques enhance the selection and evaluation process for nuclear power plant siting. The principal advantage is the synoptic view which improves recognition of linear features, possibly indicative of faults. The interpretation of such images, in conjunction with seismological studies, also permits delineation of seismo-tectonic provinces. In volcanic terrains, geomorphic-age boundaries can be delineated and volcanic centers identified, providing necessary guidance for field sampling and regional model derivation. The use of such techniques is considered for studies in the Philippines, Mexico, and Greece. 5 refs

  14. Translation Techniques

    OpenAIRE

    Marcia Pinheiro

    2015-01-01

    In this paper, we discuss three translation techniques: literal, cultural, and artistic. Literal translation is a well-known technique, which means that it is quite easy to find sources on the topic. Cultural and artistic translation may be new terms. Whilst cultural translation focuses on matching contexts, artistic translation focuses on matching reactions. Because literal translation matches only words, it is not hard to find situations in which we should not use this technique.  Because a...

  15. A flexible capacitive tactile sensing array with floating electrodes

    International Nuclear Information System (INIS)

    Cheng, M-Y; Huang, X-H; Ma, C-W; Yang, Y-J

    2009-01-01

    In this work, we present the development of a capacitive tactile sensing array realized by using MEMS fabrication techniques and flexible printed circuit board (FPCB) technologies. The sensing array, which consists of two micromachined polydimethlysiloxane (PDMS) structures and a FPCB, will be used as the artificial skin for robot applications. Each capacitive sensing element comprises two sensing electrodes and a common floating electrode. The sensing electrodes and the metal interconnect for signal scanning are implemented on the FPCB, while the floating electrode is patterned on one of the PDMS structures. This special design can effectively reduce the complexity of the device structure and thus makes the device highly manufacturable. The characteristics of the devices with different dimensions are measured and discussed. The corresponding scanning circuits are also designed and implemented. The tactile images induced by the PMMA stamps of different shapes are also successfully captured by a fabricated 8 × 8 array

  16. Remote Sensing of Mangrove Ecosystems: A Review

    Directory of Open Access Journals (Sweden)

    Stefan Dech

    2011-04-01

    Full Text Available Mangrove ecosystems dominate the coastal wetlands of tropical and subtropical regions throughout the world. They provide various ecological and economical ecosystem services contributing to coastal erosion protection, water filtration, provision of areas for fish and shrimp breeding, provision of building material and medicinal ingredients, and the attraction of tourists, amongst many other factors. At the same time, mangroves belong to the most threatened and vulnerable ecosystems worldwide and experienced a dramatic decline during the last half century. International programs, such as the Ramsar Convention on Wetlands or the Kyoto Protocol, underscore the importance of immediate protection measures and conservation activities to prevent the further loss of mangroves. In this context, remote sensing is the tool of choice to provide spatio-temporal information on mangrove ecosystem distribution, species differentiation, health status, and ongoing changes of mangrove populations. Such studies can be based on various sensors, ranging from aerial photography to high- and medium-resolution optical imagery and from hyperspectral data to active microwave (SAR data. Remote-sensing techniques have demonstrated a high potential to detect, identify, map, and monitor mangrove conditions and changes during the last two decades, which is reflected by the large number of scientific papers published on this topic. To our knowledge, a recent review paper on the remote sensing of mangroves does not exist, although mangrove ecosystems have become the focus of attention in the context of current climate change and discussions of the services provided by these ecosystems. Also, climate change-related remote-sensing studies in coastal zones have increased drastically in recent years. The aim of this review paper is to provide a comprehensive overview and sound summary of all of the work undertaken, addressing the variety of remotely sensed data applied for mangrove

  17. Tiltmeter Indicates Sense of Slope

    Science.gov (United States)

    Lonborg, J. O.

    1985-01-01

    Tiltmeter indicates sense and magnitude of slope used in locations where incline not visible to operator. Use of direct rather than alternating current greatly simplifies design of instrument capable of indicating sense of slope.

  18. Remote sensing for water quality

    International Nuclear Information System (INIS)

    Giardino, Claudia

    2006-01-01

    The application of remote sensing to the study of lakes is begun in years 80 with the lunch of the satellites of second generation. Many experiences have indicated the contribution of remote sensing for the limnology [it

  19. Time-sensitive remote sensing

    CERN Document Server

    Lippitt, Christopher; Coulter, Lloyd

    2015-01-01

    This book documents the state of the art in the use of remote sensing to address time-sensitive information requirements. Specifically, it brings together a group of authors who are both researchers and practitioners, who work toward or are currently using remote sensing to address time-sensitive information requirements with the goal of advancing the effective use of remote sensing to supply time-sensitive information. The book addresses the theoretical implications of time-sensitivity on the remote sensing process, assessments or descriptions of methods for expediting the delivery and improving the quality of information derived from remote sensing, and describes and analyzes time-sensitive remote sensing applications, with an emphasis on lessons learned. This book is intended for remote sensing scientists, practitioners (e.g., emergency responders or administrators of emergency response agencies), and students, but will also be of use to those seeking to understand the potential of remote sensing to addres...

  20. Microelectromechanical acceleration-sensing apparatus

    Science.gov (United States)

    Lee, Robb M [Albuquerque, NM; Shul, Randy J [Albuquerque, NM; Polosky, Marc A [Albuquerque, NM; Hoke, Darren A [Albuquerque, NM; Vernon, George E [Rio Rancho, NM

    2006-12-12

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  1. "Peak-tracking chip" (PTC) for bulk refractive index sensing and bioarray sensing

    KAUST Repository

    Bougot-Robin, Kristelle; Austin, H. Robert; Benisty, Henri; Hsing, I-Ming; Kodzius, Rimantas; Li, Shunbo; Wen, Weijia; Zhang, Yinghua

    2013-01-01

    Resonant techniques are of wide interest to detect variation of effective refractive index at a chip surface. Both Surface Plasmon Resonance (SPR) and dielectric resonant waveguide (RWGs) can be exploited. Through their design, RWGs allow more flexibility (size of the biomolecule to detect, detection angle…). Using specially designed RWG “Peak-tracking chip”, we propose to use spatial information from a simple monochromatic picture as a new label-free bioarray technique. We discuss robustness, sensitivity, multiplex detection, fluidic integration of the technique and illustrate it through bulk refractive index sensing as well as specific recognition of DNA fragment from gyrase A.

  2. "Peak-tracking chip" (PTC) for bulk refractive index sensing and bioarray sensing

    KAUST Repository

    Bougot-Robin, Kristelle

    2013-10-20

    Resonant techniques are of wide interest to detect variation of effective refractive index at a chip surface. Both Surface Plasmon Resonance (SPR) and dielectric resonant waveguide (RWGs) can be exploited. Through their design, RWGs allow more flexibility (size of the biomolecule to detect, detection angle…). Using specially designed RWG “Peak-tracking chip”, we propose to use spatial information from a simple monochromatic picture as a new label-free bioarray technique. We discuss robustness, sensitivity, multiplex detection, fluidic integration of the technique and illustrate it through bulk refractive index sensing as well as specific recognition of DNA fragment from gyrase A.

  3. 1999 IEEE international geoscience and remote sensing symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The theme of IGARSS'99, ``Remote Sensing of the System Earth--A Challenge for the 21st Century,'' shows how earth observation based on satellite remote sensing can significantly contribute to the future study of the environment and the changes it is undergoing, whether from natural causes or human activities. The wide range of topics offers an interdisciplinary approach and suggests integrated techniques and theory in remote sensing are essential for modeling and understanding the environment. Topics covered include: new instrumentation and future systems; high resolution SAR/InSAR; earth system science educational initiative; data fusion; radar sensing of ice sheets; image processing techniques; clouds and ice particles; internal waves; natural hazards and disaster monitoring; advanced passive and active sensors and sensor calibration; radar assessment of rain, oil spills and natural slicks; data standards and distribution; and vegetation monitoring using BRDF approaches.

  4. a review of geothermal mapping techniques using remotely sensed

    African Journals Online (AJOL)

    Aliyu et al.

    estimate land surface temperature and heat fluxes are also applied to aid thermal .... minimize the effect of temperature variations resulting from diurnal heating effects of the ... Models such as Kriging with External Drift (KED) together with geo-statistical ..... overcoming the limitations of cloud and thick vegetation in revealing ...

  5. Novel temperature compensation technique for force-sensing piezoresistive devices

    International Nuclear Information System (INIS)

    Scott, Joshua; Enikov, Eniko T

    2011-01-01

    A novel stress-insensitive piezoresistor in the shape of an annulus has been developed to be used in conjunction with a piezoresistive bridge for temperature-compensated force measurements. Under uniform stress conditions, the annular resistor shows near-zero stress sensitivity and a linear response to temperature excitation within test conditions of 24–34 °C. Annular resistors were placed in close proximity to stress-sensitive elements in order to detect local temperature fluctuations. Experiments evaluating the performance of the temperature compensator while testing force sensitivity showed a thermal rejection ratio of 37.2 dB and near elimination of low-frequency noise (drift) below 0.07 Hz. Potential applications of this annular resistor include use in multi-axis force sensors for force feedback microassembly, improvements in the simplicity and robustness of high precision microgram sensitive balances, higher accuracy for silicon diaphragm-based pressure sensors and simple temperature compensation for AFM cantilevers.

  6. Close-range sensing techniques in alpine terrain

    NARCIS (Netherlands)

    Rutzinger, Martin; Hoefle, Bernhard; Lindenbergh, R.C.; Oude Elberink, Sander; Pirotti, Francesco; Sailer, Rudolf; Scaioni, Marco; Stoetter, J.; Wujanz, Daniel

    2016-01-01

    Early career researchers such as PhD students are a main driving force of scientific research and are for a large part responsible for research innovation. They work on specialized topics within focused research groups that have a limited number of members, but might also have limited capacity in

  7. Advanced materials and techniques for fiber-optic sensing

    International Nuclear Information System (INIS)

    Henderson, P. J.

    2013-01-01

    Fibre-optic monitoring systems came of age in about 1999 upon the emergence of the world's first significant commercialising company - a spin-out from the UK's collaborative MAST project. By using embedded fibre-optic technology, the MAST project successfully measured transient strain within high-performance composite yacht masts. Since then, applications have extended from smart composites into civil engineering, energy, military, aerospace, medicine and other sectors. Fibre-optic sensors come in various forms, and may be subject to embedment, retrofitting, and remote interrogation. The unique challenges presented by each implementation require careful scrutiny before widespread adoption can take place. Accordingly, various aspects of design and reliability are discussed spanning a range of representative technologies that include resonant microsilicon structures, MEMS, Bragg gratings, advanced forms of spectroscopy, and modern trends in nanotechnology. (author)

  8. Advanced materials and techniques for fibre-optic sensing

    International Nuclear Information System (INIS)

    Henderson, Philip J

    2014-01-01

    Fibre-optic monitoring systems came of age in about 1999 upon the emergence of the world's first significant commercialising company – a spin-out from the UK's collaborative MAST project. By using embedded fibre-optic technology, the MAST project successfully measured transient strain within high-performance composite yacht masts. Since then, applications have extended from smart composites into civil engineering, energy, military, aerospace, medicine and other sectors. Fibre-optic sensors come in various forms, and may be subject to embedment, retrofitting, and remote interrogation. The unique challenges presented by each implementation require careful scrutiny before widespread adoption can take place. Accordingly, various aspects of design and reliability are discussed spanning a range of representative technologies that include resonant microsilicon structures, MEMS, Bragg gratings, advanced forms of spectroscopy, and modern trends in nanotechnology. Keywords: Fibre-optic sensors, fibre Bragg gratings, MEMS, MOEMS, nanotechnology, plasmon

  9. Counting rooftops: Innovative remote-sensing techniques chart ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2012-12-17

    Dec 17, 2012 ... An influx of poor people settled in the urban districts they could afford ... (DW Angola), a non-governmental organization (NGO) based in Luanda. ... Among these results were basic demographic models of the three cities, ...

  10. A selection of sensing techniques for mapping soil hydraulic properties

    NARCIS (Netherlands)

    Knotters, M.; Egmond, van F.M.; Bakker, G.; Walvoort, D.J.J.; Brouwer, F.

    2017-01-01

    Data on soil hydraulic properties are needed as input for many models, such as models to predict unsaturated water movement and crop growth, and models to predict leaching of nutrients and pesticides to groundwater. The soil physics database of the Netherlands shows several lacunae, and a

  11. Remote sensing of sea state by the Brewster's angle technique

    Digital Repository Service at National Institute of Oceanography (India)

    Sathe, P.V.; AjoyKumar

    stream_size 13 stream_content_type text/plain stream_name Def_Sci_J_40_119.pdf.txt stream_source_info Def_Sci_J_40_119.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  12. Remote sensing and geochemistry techniques for the assessment of ...

    African Journals Online (AJOL)

    Chiedza

    Coal mining for electricity generation has been the main activity in the ... Underground mining operations are old and subsidence of mining structure is a common ..... which results from prevailing wind direction changes, fossil fuel combustion, ...

  13. Current Application of Remote Sensing Techniques in Land Use ...

    African Journals Online (AJOL)

    Land use mapping is important for evaluation, management and conservation of natural resources of an area and the knowledge on the existing land use is one of the prime pre-requisites for suggesting better use of land. In this study, we examined four mapping approaches (unsupervised, supervised, fuzzy supervised and ...

  14. Title: Gully Erosion Mapping Using Remote Sensing Techniques in ...

    African Journals Online (AJOL)

    NdifelaniM

    results indicated a user's accuracy of 98.67% and 54% for non-gully and gully class .... for gully class and 150 for non-gully class) were generated using ERDAS ... soil (un-vegetated gully) is dependent on the moisture content, organic matter.

  15. Advanced materials and techniques for fibre-optic sensing

    Science.gov (United States)

    Henderson, Philip J.

    2014-06-01

    Fibre-optic monitoring systems came of age in about 1999 upon the emergence of the world's first significant commercialising company - a spin-out from the UK's collaborative MAST project. By using embedded fibre-optic technology, the MAST project successfully measured transient strain within high-performance composite yacht masts. Since then, applications have extended from smart composites into civil engineering, energy, military, aerospace, medicine and other sectors. Fibre-optic sensors come in various forms, and may be subject to embedment, retrofitting, and remote interrogation. The unique challenges presented by each implementation require careful scrutiny before widespread adoption can take place. Accordingly, various aspects of design and reliability are discussed spanning a range of representative technologies that include resonant microsilicon structures, MEMS, Bragg gratings, advanced forms of spectroscopy, and modern trends in nanotechnology. Keywords: Fibre-optic sensors, fibre Bragg gratings, MEMS, MOEMS, nanotechnology, plasmon.

  16. Remote sensing and geochemistry techniques for the assessment of ...

    African Journals Online (AJOL)

    Environmental degradation associated with coal mining is one of the serious environmental issues in South Africa that is expected to continue with increasing energy demands. Mapping and monitoring contamination in mining areas are necessary to guide rehabilitation activities. Rapid monitoring systems are needed to ...

  17. Title: Gully Erosion Mapping Using Remote Sensing Techniques in ...

    African Journals Online (AJOL)

    NdifelaniM

    ... water is channelled into grooves and deepen over time forming a distinct head with ..... Research Council – Institute for Soil Climate and Water (ARC-ISCW) for ... S 2009, 'Gully erosion processes: monitoring and modelling', Earth Surface.

  18. Making Sense of Natural Selection

    Science.gov (United States)

    Passmore, Cynthia; Coleman, Elizabeth; Horton, Jennifer; Parker, Heather

    2013-01-01

    At its core, science is about making sense of the world around us. Therefore, science education should engage students in that sense-making process. Helping students make sense of disciplinary core ideas and crosscutting concepts by engaging in scientific practices is the key innovation of the "Next Generation Science Standards"…

  19. Applications of airborne remote sensing in atmospheric sciences research

    Science.gov (United States)

    Serafin, R. J.; Szejwach, G.; Phillips, B. B.

    1984-01-01

    This paper explores the potential for airborne remote sensing for atmospheric sciences research. Passive and active techniques from the microwave to visible bands are discussed. It is concluded that technology has progressed sufficiently in several areas that the time is right to develop and operate new remote sensing instruments for use by the community of atmospheric scientists as general purpose tools. Promising candidates include Doppler radar and lidar, infrared short range radiometry, and microwave radiometry.

  20. Using remotely-sensed data for optimal field sampling

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2008-09-01

    Full Text Available M B E R 2 0 0 8 15 USING REMOTELY- SENSED DATA FOR OPTIMAL FIELD SAMPLING BY DR PRAVESH DEBBA STATISTICS IS THE SCIENCE pertaining to the collection, summary, analysis, interpretation and presentation of data. It is often impractical... studies are: where to sample, what to sample and how many samples to obtain. Conventional sampling techniques are not always suitable in environmental studies and scientists have explored the use of remotely-sensed data as ancillary information to aid...

  1. Application of Compressive Sensing to Gravitational Microlensing Experiments

    Science.gov (United States)

    Korde-Patel, Asmita; Barry, Richard K.; Mohsenin, Tinoosh

    2016-01-01

    Compressive Sensing is an emerging technology for data compression and simultaneous data acquisition. This is an enabling technique for significant reduction in data bandwidth, and transmission power and hence, can greatly benefit spaceflight instruments. We apply this process to detect exoplanets via gravitational microlensing. We experiment with various impact parameters that describe microlensing curves to determine the effectiveness and uncertainty caused by Compressive Sensing. Finally, we describe implications for spaceflight missions.

  2. CSIR-NLC mobile LIDAR for atmosphere remote sensing

    CSIR Research Space (South Africa)

    Sivakumar, V

    2009-07-01

    Full Text Available Africa. 2Department of Geography, Geoinformatics and Meteorology, University of Pretoria, Lynwood Road, Pretoria 0002, South Africa. 3Tshwane University of Technology, Pretoria 0001, South Africa. ABSTRACT A mobile LIDAR (LIght Detection... obtained using the CSIR-NLC mobile LIDAR in a 23 hour field campaign at the University of Pretoria. Index Terms— Atmospheric measurements, Remote sensing, Aerosols, Air pollution, Meteorology 1. INTRODUCTION Remote sensing is a technique...

  3. Sensing with Ion Channels

    CERN Document Server

    Martinac, Boris

    2008-01-01

    All living cells are able to detect and translate environmental stimuli into biologically meaningful signals. Sensations of touch, hearing, sight, taste, smell or pain are essential to the survival of all living organisms. The importance of sensory input for the existence of life thus justifies the effort made to understand its molecular origins. Sensing with Ion Channels focuses on ion channels as key molecules enabling biological systems to sense and process the physical and chemical stimuli that act upon cells in their living environment. Its aim is to serve as a reference to ion channel specialists and as a source of new information to non specialists who want to learn about the structural and functional diversity of ion channels and their role in sensory physiology.

  4. Nanomaterials in glucose sensing

    CERN Document Server

    Burugapalli, Krishna

    2013-01-01

    The smartness of nano-materials is attributed to their nanoscale and subsequently unique physicochemical properties and their use in glucose sensing has been aimed at improving performance, reducing cost and miniaturizing the sensor and its associated instrumentation. So far, portable (handheld) glucose analysers were introduced for hospital wards, emergency rooms and physicians' offices; single-use strip systems achieved nanolitre sampling for painless and accurate home glucose monitoring; advanced continuous monitoring devices having 2 to 7 days operating life are in clinical and home use; and continued research efforts are being made to develop and introduce increasingly advanced glucose monitoring systems for health as well as food, biotechnology, cell and tissue culture industries. Nanomaterials have touched every aspect of biosensor design and this chapter reviews their role in the development of advanced technologies for glucose sensing, and especially for diabetes. Research shows that overall, nanomat...

  5. Proceedings of the National Conference on Energy Resource Management. Volume 1: Techniques, Procedures and Data Bases

    Science.gov (United States)

    Brumfield, J. O. (Editor); Schiffman, Y. M. (Editor)

    1982-01-01

    Topics dealing with the integration of remotely sensed data with geographic information system for application in energy resources management are discussed. Associated remote sensing and image analysis techniques are also addressed.

  6. Microfiber-Based Bragg Gratings for Sensing Applications: A Review

    Directory of Open Access Journals (Sweden)

    Jun-Long Kou

    2012-06-01

    Full Text Available Microfiber-based Bragg gratings (MFBGs are an emerging concept in ultra-small optical fiber sensors. They have attracted great attention among researchers in the fiber sensing area because of their large evanescent field and compactness. In this review, the basic techniques for the fabrication of MFBGs are introduced first. Then, the sensing properties and applications of MFBGs are discussed, including measurement of refractive index (RI, temperature, and strain/force. Finally a summary of selected MFBG sensing elements from previous literature are tabulated.

  7. Searches over graphs representing geospatial-temporal remote sensing data

    Science.gov (United States)

    Brost, Randolph; Perkins, David Nikolaus

    2018-03-06

    Various technologies pertaining to identifying objects of interest in remote sensing images by searching over geospatial-temporal graph representations are described herein. Graphs are constructed by representing objects in remote sensing images as nodes, and connecting nodes with undirected edges representing either distance or adjacency relationships between objects and directed edges representing changes in time. Geospatial-temporal graph searches are made computationally efficient by taking advantage of characteristics of geospatial-temporal data in remote sensing images through the application of various graph search techniques.

  8. Intelligent sensing and control of gas metal arc welding

    International Nuclear Information System (INIS)

    Smartt, H.B.; Johnson, J.A.

    1993-01-01

    Intelligent sensing and control is a multidisciplinary approach that attempts to build adequate sensing capability, knowledge of process physics, control capability, and welding engineering into the welding system such that the welding machine is aware of the state of the weld and knows how to make a good weld. The sensing and control technology should reduce the burden on the welder and welding engineer while providing the great adaptability needed to accommodate the variability found in the production world. This approach, accomplished with application of AI techniques, breaks the tradition of separate development of procedure and control technology

  9. The sense of beauty.

    Science.gov (United States)

    Hagman, George

    2002-06-01

    This paper proposes an integrative psychoanalytic model of the sense of beauty. The following definition is used: beauty is an aspect of the experience of idealisation in which an object(s), sound(s) or concept(s) is believed to possess qualities of formal perfection. The psychoanalytic literature regarding beauty is explored in depth and fundamental similarities are stressed. The author goes on to discuss the following topics: (1) beauty as sublimation: beauty reconciles the polarisation of self and world; (2) idealisation and beauty: the love of beauty is an indication of the importance of idealisation during development; (3) beauty as an interactive process: the sense of beauty is interactive and intersubjective; (4) the aesthetic and non-aesthetic emotions: specific aesthetic emotions are experienced in response to the formal design of the beautiful object; (5) surrendering to beauty: beauty provides us with an occasion for transcendence and self-renewal; (6) beauty's restorative function: the preservation or restoration of the relationship to the good object is of utmost importance; (7) the self-integrative function of beauty: the sense of beauty can also reconcile and integrate self-states of fragmentation and depletion; (8) beauty as a defence: in psychopathology, beauty can function defensively for the expression of unconscious impulses and fantasies, or as protection against self-crisis; (9) beauty and mortality: the sense of beauty can alleviate anxiety regarding death and feelings of vulnerability. In closing the paper, the author offers a new understanding of Freud'semphasis on love of beauty as a defining trait of civilisation. For a people not to value beauty would mean that they cannot hope and cannot assert life over the inevitable and ubiquitous forces of entropy and death.

  10. Liquid Level Sensing System

    Science.gov (United States)

    Korman, Valentin (Inventor); Wiley, John T. (Inventor); Duffell, Amanda G. (Inventor)

    2014-01-01

    A liquid level sensing system includes waveguides disposed in a liquid and distributed along a path with a gap between adjacent waveguides. A source introduces electromagnetic energy into the waveguides at a first end of the path. A portion of the electromagnetic energy exits the waveguides at a second end of the path. A detector measures the portion of the electromagnetic energy exiting the second end of the path.

  11. Making Sense of Austerity

    DEFF Research Database (Denmark)

    Seabrooke, Leonard; Riisbjerg Thomsen, Rune

    2016-01-01

    such as ‘scroungers’ and ‘corporate criminals’ are identified, as are scenes such as the decline of the welfare state and the rise of technocracy. We link the storysets, story-lines, and plots together to understand how Brits and Danes are making sense of austerity. Their explanations and frustrations improve our...... understanding of who acts in everyday politics, and how everyday narratives are formed and maintained....

  12. Sensing interrail mobility

    DEFF Research Database (Denmark)

    Jensen, Martin Trandberg

    methodologies, this doctoral thesis explores the analytical prospects of non-representational theories in tourism research. The dissertation points toward a richer understanding of the ‘social’ which encompasses under-researched topics such as the implications of affective atmospheres, the sensuous and vibrant...... of Culture and Global Studies, Aalborg University, Campus Copenhagen. ’Sensing interrail mobility: Towards multimodal methodologies’ is his Ph.d. dissertation....

  13. Remote earth sensing experiments

    Energy Technology Data Exchange (ETDEWEB)

    Trifonov, Yu V

    1981-01-01

    Description of data devices for deriving multi-spectral measuring television measurement data of middle and high resolution through use of second generation Meteor-type satellites. Options for developing a permanent and active remote sensing system in USSR are discussed. It is noted that the present experiment is an important step in that direction. Design and structural data for this particular device and its application in the experiment are covered.

  14. Terahertz wave reflective sensing and imaging

    Science.gov (United States)

    Zhong, Hua

    Sensing and imaging technologies using terahertz (THz) radiation have found diverse applications as they approach maturity. Since the burgeoning of this technique in the 1990's, many THz sensing and imaging investigations have been designed and conducted in transmission geometry, which provides sufficient phase and amplitude contrast for the study of the spectral properties of targets in the THz domain. Driven by rising expectations that THz technology will be a potential candidate in the next generation of security screening, remote sensing, biomedical imaging and non-destructive testing (NDT), most THz sensing and imaging modalities are being extended to reflection geometry, which offers unique and adaptive solutions, and multi-dimensional information in many real scenarios. This thesis takes an application-focused approach to the advancement of THz wave reflective sensing and imaging systems: The absorption signature of the explosive material hexahydro-1,3,5-trinitro-1,3,5triazine (RDX) is measured at 30 m---the longest standoff distance so far attained by THz time-domain spectroscopy (THz-TDS). The standoff distance sensing ability of THz-TDS is investigated along with discussions specifying the influences of a variety of factors such as propagation distance, water vapor absorption and collection efficiency. Highly directional THz radiation from four-wave mixing in laser-induced air plasmas is first observed and measured, which provides a potential solution for the atmospheric absorption effect in standoff THz sensing. The simulations of the beam profiles also illuminate the underlying physics behind the interaction of the optical beam with the plasma. THz wave reflective spectroscopic focal-plane imaging is realized the first time. Absorption features of some explosives and related compounds (ERCs) and biochemical materials are identified by using adaptive feature extraction method. Good classification results using multiple pattern recognition methods are

  15. Cryotherapy impairs knee joint position sense.

    Science.gov (United States)

    Oliveira, R; Ribeiro, F; Oliveira, J

    2010-03-01

    The effects of cryotherapy on joint position sense are not clearly established; however it is paramount to understand its impact on peripheral feedback to ascertain the safety of using ice therapy before resuming exercise on sports or rehabilitation settings. Thus, the aim of the present study was to determine the effects of cryotherapy, when applied over the quadriceps and over the knee joint, on knee position sense. This within-subjects repeated-measures study encompassed fifteen subjects. Knee position sense was measured by open kinetic chain technique and active positioning at baseline and after cryotherapy application. Knee angles were determined by computer analysis of the videotape images. Twenty-minute ice bag application was applied randomly, in two sessions 48 h apart, over the quadriceps and the knee joint. The main effect for cryotherapy application was significant (F (1.14)=7.7, p=0.015) indicating an increase in both absolute and relative angular errors after the application. There was no significant main effect for the location of cryotherapy application, indicating no differences between the application over the quadriceps and the knee joint. In conclusion, cryotherapy impairs knee joint position sense in normal knees. This deleterious effect is similar when cryotherapy is applied over the quadriceps or the knee joint. Georg Thieme Verlag KG Stuttgart.New York.

  16. A Review on Spectrum Sensing for Cognitive Radio: Challenges and Solutions

    Directory of Open Access Journals (Sweden)

    Yonghong Zeng

    2010-01-01

    Full Text Available Cognitive radio is widely expected to be the next Big Bang in wireless communications. Spectrum sensing, that is, detecting the presence of the primary users in a licensed spectrum, is a fundamental problem for cognitive radio. As a result, spectrum sensing has reborn as a very active research area in recent years despite its long history. In this paper, spectrum sensing techniques from the optimal likelihood ratio test to energy detection, matched filtering detection, cyclostationary detection, eigenvalue-based sensing, joint space-time sensing, and robust sensing methods are reviewed. Cooperative spectrum sensing with multiple receivers is also discussed. Special attention is paid to sensing methods that need little prior information on the source signal and the propagation channel. Practical challenges such as noise power uncertainty are discussed and possible solutions are provided. Theoretical analysis on the test statistic distribution and threshold setting is also investigated.

  17. Study on a cooperative active sensing

    International Nuclear Information System (INIS)

    Tsukune, Hideo; Kita, Nobuyuki; Kuniyoshi, Yasuo; Hara, Isao; Matsui, Toshihiro; Matsushita, Toshio; Nagata, Kazuyuki; Nagakubo, Akihiko

    1997-01-01

    This study was made as a part of the research project ''Study on the evaluation of applicability of information collection·processing system to autonomous plant''. Previously, the basic techniques for 3-dimensional geometric modeling of working environments and for systemizing of information collection and processing have been developed. Thus, this study aimed to establish the techniques for a decentralized and cooperatively intellectualized system which allows to automatically perform patrol for inspection and maintenance in complicated plants. First, developments of cooperative active sensing for functioning in a multi-robot system and real-time active visual sensing were attempted and then the both were integrated to produce a prototype system for cooperative active sensing. The outcomes of the project in this year were as follows; a mobile platform with expanded functions, acoustic information processing, parallel EusLisp, a simulator for moving robot's behaviors, a visual monitoring system for moving objects, etc. All of these were usable for general purpose. (M.N.)

  18. Remote sensing to monitor uranium tailing sites

    International Nuclear Information System (INIS)

    1992-02-01

    This report concerns the feasibility of using remotely-sensed data for long-term monitoring of uranium tailings. Decommissioning of uranium mine tailings sites may require long-term monitoring to confirm that no unanticipated release of contaminants occurs. Traditional ground-based monitoring of specific criteria of concern would be a significant expense depending on the nature and frequency of the monitoring. The objective of this study was to evaluate whether available remote-sensing data and techniques were applicable to the long-term monitoring of tailings sites. This objective was met by evaluating to what extent the data and techniques could be used to identify and discriminate information useful for monitoring tailings sites. The cost associated with obtaining and interpreting this information was also evaluated. Satellite and aircraft remote-sensing-based activities were evaluated. A monitoring programme based on annual coverage of Landsat Thematic Mapper data is recommended. Immediately prior to and for several years after decommissioning of the tailings sites, airborne multispectral and thermal infrared surveys combined with field verification data are required in order to establish a baseline for the long-term satellite-based monitoring programme. More frequent airborne surveys may be required if rapidly changing phenomena require monitoring. The use of a geographic information system is recommended for the effective storage and manipulation of data accumulated over a number of years

  19. Magnetoseismology ground-based remote sensing of Earth's magnetosphere

    CERN Document Server

    Menk, Frederick W

    2013-01-01

    Written by a researcher at the forefront of the field, this first comprehensive account of magnetoseismology conveys the physics behind these movements and waves, and explains how to detect and investigate them. Along the way, it describes the principles as applied to remote sensing of near-Earth space and related remote sensing techniques, while also comparing and intercalibrating magnetoseismology with other techniques. The example applications include advanced data analysis techniques that may find wider used in areas ranging from geophysics to medical imaging, and remote sensing using radar systems that are of relevance to defense surveillance systems. As a result, the book not only reviews the status quo, but also anticipates new developments. With many figures and illustrations, some in full color, plus additional computational codes for analysis and evaluation. Aimed at graduate readers, the text assumes knowledge of electromagnetism and physical processes at degree level, but introductory chapters wil...

  20. Diagnostic techniques

    International Nuclear Information System (INIS)

    Berquist, T.H.; Bender, C.E.; James, E.M.; Brown, M.L.; McLeod, R.A.; Broderick, D.F.; Welch, T.J.

    1989-01-01

    Proper application of imaging procedures is essential to obtain needed information for diagnosis and therapy planning in patients with suspected foot and/or ankle pathology. This paper provides basic background data for the numerous imaging techniques