WorldWideScience

Sample records for cell-like kg-1a cells

  1. Salinomycin overcomes ABC transporter-mediated multidrug and apoptosis resistance in human leukemia stem cell-like KG-1a cells

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Dominik [Research Group Molecular Neuro-Oncology, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg (Germany); Institute of Immunology, University of Heidelberg, Im Neuenheimer Feld 305, D-69120 Heidelberg (Germany); Daniel, Volker; Sadeghi, Mahmoud; Opelz, Gerhard [Institute of Immunology, University of Heidelberg, Im Neuenheimer Feld 305, D-69120 Heidelberg (Germany); Naujokat, Cord, E-mail: cord.naujokat@med.uni-heidelberg.de [Institute of Immunology, University of Heidelberg, Im Neuenheimer Feld 305, D-69120 Heidelberg (Germany)

    2010-04-16

    Leukemia stem cells are known to exhibit multidrug resistance by expression of ATP-binding cassette (ABC) transporters which constitute transmembrane proteins capable of exporting a wide variety of chemotherapeutic drugs from the cytosol. We show here that human promyeloblastic leukemia KG-1a cells exposed to the histone deacetylase inhibitor phenylbutyrate resemble many characteristics of leukemia stem cells, including expression of functional ABC transporters such as P-glycoprotein, BCRP and MRP8. Consequently, KG-1a cells display resistance to the induction of apoptosis by various chemotherapeutic drugs. Resistance to apoptosis induction by chemotherapeutic drugs can be reversed by cyclosporine A, which effectively inhibits the activity of P-glycoprotein and BCRP, thus demonstrating ABC transporter-mediated drug resistance in KG-1a cells. However, KG-1a are highly sensitive to apoptosis induction by salinomycin, a polyether ionophore antibiotic that has recently been shown to kill human breast cancer stem cell-like cells and to induce apoptosis in human cancer cells displaying multiple mechanisms of drug and apoptosis resistance. Whereas KG-1a cells can be adapted to proliferate in the presence of apoptosis-inducing concentrations of bortezomib and doxorubicin, salinomycin does not permit long-term adaptation of the cells to apoptosis-inducing concentrations. Thus, salinomycin should be regarded as a novel and effective agent for the elimination of leukemia stem cells and other tumor cells exhibiting ABC transporter-mediated multidrug resistance.

  2. Effects of the combination of decitabine and homoharringtonine in SKM-1 and Kg-1a cells.

    Science.gov (United States)

    Geng, Suxia; Yao, Han; Weng, Jianyu; Tong, Jiaqi; Huang, Xin; Wu, Ping; Deng, Chengxin; Li, Minming; Lu, Zesheng; Du, Xin

    2016-05-01

    The methylation inhibitor decitabine (DAC) has great therapeutic value for myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). However, DAC monotherapy is associated with relatively low rates of overall response and complete remission. Previous studies have shown promising results for combination treatment regimens including DAC. Homoharringtonine (HHT), an alkaloid from Chinese natural plants and Cephalotaxus, has demonstrated potential for leukemia treatment. Our studies have suggested that the combination of DAC and HHT has synergistic effects for inhibiting the viability of SKM-1 and Kg-1a cells. This combination leads to enhanced inhibition of colony formation and apoptosis induction compared with DAC alone in SKM-1 but not Kg-1a cells. Only high-dose DAC and HHT significantly up-regulate caspase-3 and caspase-9 and inhibit BCL-XL in the SKM-1 cell line. The combined effects of DAC plus HHT on apoptosis may not only depend on regulation of the apoptosis-related genes we examined but others as well. HHT had no demethylation effects, and HHT in combination with DAC had no enhanced effects on hypomethylation and DNMT1, DNMT3A and DNMT3B mRNA expression in SKM-1 cells. Overall, these results suggest that DAC used in combination with HHT may have clinical potential for MDS treatment.

  3. P2X7 Receptor Mediated Growth-Inhibitory Effect in KG1 a Cell Line

    Institute of Scientific and Technical Information of China (English)

    Xiujun Zhang; Lijun Meng

    2008-01-01

    This study was conducted to investigate ATP-induced growth inhibition in human leukemic cells KGla.METHoDS ATP inhibited cell growth was analyzed by MTSassay.Extemalization of phosphatidylserine could be detected byAnnexin-V-FITC apoptosis staining after activation of the P2X7 re-ceptor.P2X7 mediated pore formation was detected in KGla cellsby Yo-Pro-1 uptake assay.RESUlTS ATP inhibited cell growth in a dose-dependent man-ner.The cytotoxic effect could be blocked by P2X7 antagonists,oxidized ATP(OATP)and KN62.Externalization of phosphatidyl-serine could be detected in a time-dependent manner.P2X7 medi-ated pore forigation could be detected in KGla cells.These effectscould not be observed in P2X7 null Ramos cells.CONCLUSIoN The results and our previously reports thatmRNA,protein expression and calcium response of the P2X7receptor in KGla cells,suggested that extracellular ATP effectivelyinduces growth inhibition through apoptosis in KGla cells byactivation of P2X7 receptor,and that may be mediated by extracel-lular Ca2+ineux and pore formation.

  4. Ganglion cell like cells, diagnostic dilemma

    Directory of Open Access Journals (Sweden)

    Anand Shankar Ammanagi

    2013-01-01

    Full Text Available We report a case of cutaneous swelling found on the left anterior axillary fold of a 41-year-old man. Gross examination of specimen excised from the dermis showed a well-circumscribed nodule histologically composed of spindle cells with interspersed ganglion cell like cells. On hematoxylin and eosine (H and E staining it was diagnosed as ganglioneuroma. Ganglioneuromas are rare, benign, fully differentiated tumors that contain mature schwann cells, ganglion cells, fibrous tissue, and nerve fibers. They are commonly found along the paravertebral sympathetic ganglia and sometimes in the adrenal medulla. However primary cutaneous ganglioneuroma is an extremely rare tumor. Immunohistochemical workup revealed a fibroblastic origin and hence the case was diagnosed as fibromatosis with ganglion cell like fibroblasts. This case report suggests that the features considered diagnostic of ganglioneuromas can occur in other cutaneous lesions and, therefore, this diagnosis cannot be offered only on the basis of H and E.

  5. 白藜芦醇增强TRAIL对人髓系白血病KG-1a细胞的细胞毒作用%Resveratrol enhances cytotoxicity of TRAIL to human promyloblastic leukemia KG-1a cells

    Institute of Scientific and Technical Information of China (English)

    胡亮杉; 孙茂本; 曾雅丽; 李玉华; 邓兰; 郭坤元

    2011-01-01

    目的:观察白藜芦醇作用前后TRAIL对人髓系白血病KG-1a细胞的细胞毒作用的变化.方法:流式细胞仪检测KG-1a细胞表面CD34 和CD38的表达,二甲氧唑黄(XTT)细胞增殖及细胞毒性检测试剂盒检测白藜芦醇作用前后TRAIL对KG-1a细胞增殖的影响,AnnexinV-FITC/PI染色流式细胞仪检测细胞凋亡变化.流式细胞仪检测白藜芦醇作用前后KG-1a细胞表面TRAIL死亡受体表达变化.结果:人髓系白血病KG-1a细胞 CD34+CD38-占(58.67±2.87)%,10~1 000 ng/ml 的TRAIL对KG-1a细胞增殖无明显影响,但对白藜芦醇作用后的KG-1a细胞的增殖有明显抑制作用,白藜芦醇能促进TRAIL诱导KG-1a细胞凋亡,并能上调KG-1a细胞表面TRAIL死亡受体DR5的表达.结论:白藜芦醇能增强TRAIL对人髓系白血病KG-1a细胞的细胞毒作用,其机制可能与白藜芦醇上调KG-1a细胞表面TRAIL死亡受体DR5的表达有关.%Objective :To explore the cytotoxicity of TRAIL to human acute promyeloblastic leukemia KG-1a cells treated with resvera trol .Methods :The expression of CD34 and CD38 on the Surface of KG-1 cells was detected by flow cytometry ;The effects of various concentration TRAIL on proliferation of KG-1a cells treated with or without resveratrol were analyzed by XTT cell proliferation and cytotoxicity assay kit ;The changes of apoptosis in KG-1a cells treated with or without resveratrol induced by TRAIL were detected by flow cytometry through the staining of AnnexinV-FITC /PI ;The effects of resveratrol on the expression of DR4/5 on the surface of KG-1a cells were detected by flow cytometry .Results :The CD34+ CD38- percent age of KG-1a cells was (58 .67±2 .87 )% ;10-1 000 ng/ml of TRAIL had no effects on the proliferation of KG-1a cells ,while could inhibit the proliferation of KG-1a cells treated with resveratrol ;Moreover ,resveratrol could enhance the apoptosis of KG-1a cells induced by TRAIL and up-regulate the expression of TIRAIL death receptors DR5

  6. Induction of Functional Hair-Cell-Like Cells from Mouse Cochlear Multipotent Cells

    Directory of Open Access Journals (Sweden)

    Quanwen Liu

    2016-01-01

    Full Text Available In this paper, we developed a two-step-induction method of generating functional hair cells from inner ear multipotent cells. Multipotent cells from the inner ear were established and induced initially into progenitor cells committed to the inner ear cell lineage on the poly-L-lysine substratum. Subsequently, the committed progenitor cells were cultured on the mitotically inactivated chicken utricle stromal cells and induced into hair-cell-like cells containing characteristic stereocilia bundles. The hair-cell-like cells exhibited rapid permeation of FM1-43FX. The whole-cell patch-clamp technique was used to measure the membrane currents of cells differentiated for 7 days on chicken utricle stromal cells and analyze the biophysical properties of the hair-cell-like cells by recording membrane properties of cells. The results suggested that the hair-cell-like cells derived from inner ear multipotent cells were functional following differentiation in an enabling environment.

  7. Involvement of plant stem cells or stem cell-like cells in dedifferentiation

    Directory of Open Access Journals (Sweden)

    Fangwei eJiang

    2015-11-01

    Full Text Available Dedifferentiation is the transformation of cells from a given differentiated state to a less differentiated or stem cell-like state. Stem cell-related genes play important roles in dedifferentiation, which exhibits similar histone modification and DNA methylation features to stem cell maintenance. Hence, stem cell-related factors possibly synergistically function to provide a specific niche beneficial to dedifferentiation. During callus formation in Arabidopsis petioles, cells adjacent to procambium cells (stem cell-like cells are dedifferentiated and survive more easily than other cell types. This finding indicates that stem cells or stem cell-like cells may influence the dedifferentiating niche. In this paper, we provide a brief overview of stem cell maintenance and dedifferentiation regulation. We also summarize current knowledge of genetic and epigenetic mechanisms underlying the balance between differentiation and dedifferentiation. Furthermore, we discuss the correlation of stem cells or stem cell-like cells with dedifferentiation.

  8. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Varga, Nora [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Vereb, Zoltan; Rajnavoelgyi, Eva [Department of Immunology, Medical and Health Science Centre, University of Debrecen, Debrecen (Hungary); Nemet, Katalin; Uher, Ferenc; Sarkadi, Balazs [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Apati, Agota, E-mail: apati@kkk.org.hu [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary)

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  9. Long Noncoding RNA MALAT-1 Enhances Stem Cell-Like Phenotypes in Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Feng Jiao

    2015-03-01

    Full Text Available Cancer stem cells (CSCs play a vital role in tumor initiation, progression, metastasis, chemoresistance, and recurrence. The mechanisms that maintain the stemness of these cells remain largely unknown. Our previous study indicated that MALAT-1 may serve as an oncogenic long noncoding RNA in pancreatic cancer by promoting epithelial-mesenchymal transition (EMT and regulating CSCs markers expression. More significantly, there is emerging evidence that the EMT process may give rise to CSCs, or at least cells with stem cell-like properties. Therefore, we hypothesized that MALAT-1 might enhance stem cell-like phenotypes in pancreatic cancer cells. In this study, our data showed that MALAT-1 could increase the proportion of pancreatic CSCs, maintain self-renewing capacity, decrease the chemosensitivity to anticancer drugs, and accelerate tumor angiogenesis in vitro. In addition, subcutaneous nude mouse xenografts revealed that MALAT-1 could promote tumorigenicity of pancreatic cancer cells in vivo. The underlying mechanisms may involve in increased expression of self-renewal related factors Sox2. Collectively, we for the first time found the potential effects of MALAT-1 on the stem cell-like phenotypes in pancreatic cancer cells, suggesting a novel role of MALAT-1 in tumor stemness, which remains to be fully elucidated.

  10. HepG2 cells acquire stem cell-like characteristics after immune cell stimulation.

    Science.gov (United States)

    Wang, Hang; Yang, Miqing; Lin, Ling; Ren, Hongzhen; Lin, Chaotong; Lin, Suling; Shen, Guoying; Ji, Binfeng; Meng, Chun

    2016-02-01

    The presence of cancer stem cells (CSCs) is currently regarded as one of the main culprits of tumor formation and therapy failure. It is known that chronic inflammation is associated with CSCs, but it is not clear yet how inflammation affects the development of CSCs. In the present study we aimed to examine the relationship between cancer cell stimulation mediated by immune cells and the acquisition of a CSC-like phenotype. Cancer cells derived from single hepatocarcinoma HepG2 cells were treated with mouse splenic B cells (MSBCs) and mouse peritoneal macrophage cells (MPMCs), respectively. The stem cell-like characteristics of the resulting HepG2 cells (MSBC-HepG2 and MPMC-HepG2) were evaluated using different assays, including biomarker assays, in vitro tumoroid and colony forming assays, in vivo tumor forming assays and signal transduction pathway activation assays. Various stemness characteristics of HepG2 cells, including self-renewal, proliferation, chemoresistance and tumorigenicity were evaluated. The expression levels of stemness-related genes and its encoded proteins in the MSBC-HepG2 and MPMC-HepG2 cells were assessed using RT-PCR and FACS analyses. We found that MSBC-HepG2 and MPMC-HepG2 cells possess hepatic CSC properties, including persistent self-renewal, extensive proliferation, drug resistance, high tumorigenic capacity and over-expression of CSC-related genes and proteins (i.e., EpCAM, ALDH, CD133 and CD44), compared to the parental cells. We also found that 1x10(3) MSBC-HepG2 and MPMC-HepG2 cells were able to form tumors in NOD/SCID mice and that the Notch and SHH signaling pathways were highly activated in MSBC-HepG2 cells. We conclude that the immune system may have a double-edge effect on cancer development. On one hand, immune cells such as B lymphocytes and macrophages may recognize, attack and eliminate cancer cells, whereas on the other hand, they may promote a subset of cancer cells to acquire stem cell-like characteristics.

  11. HAIR CELL-LIKE CELL GENERATION INDUCED BY NATURE CULTURE OF ADULT RAT AUDITORY EPITHELIUM

    Institute of Scientific and Technical Information of China (English)

    Liu Hui; Zhu Hongliang; Li Shengli; Yao Xiaobao; Wang Xiaoxia

    2006-01-01

    Objective To establish adult rat auditory epithelial cell culture and try to find precursor cells of auditory hair cells in vitro. Methods With refinement of culture media and techniques, cochlear sensory epithelial cells of adult rat were cultured. Immunocytochemistry and Bromodeoxyuridine (BrdU)labeling were used to detect properties and mitotic status of cultured cells. Results The cultured auditory epithelial cells showed a large, flat epithelial morphotype and expressed F-actin and cytokeratin, a subset of cells generated from auditory epithelium were labeled by calretinin, a specific marker of early hair cell. Conclusion Adult rat auditory epithelium can be induced to generate hair cell-like cells by nature culture, this phenomenon suggests that progenitor cells may exist in rat cochlea and they may give birth to new hair cells. Whether these progenitor cells are tissue specific stem cells is still need more study.

  12. Cancer stem cell-like cells derived from malignant peripheral nerve sheath tumors.

    Directory of Open Access Journals (Sweden)

    Melanie Spyra

    Full Text Available This study aims to examine whether or not cancer stem cells exist in malignant peripheral nerve sheath tumors (MPNST. Cells of established lines, primary cultures and freshly dissected tumors were cultured in serum free conditions supplemented with epidermal and fibroblast growth factors. From one established human MPNST cell line, S462, cells meeting the criteria for cancer stem cells were isolated. Clonal spheres were obtained, which could be passaged multiple times. Enrichment of stem cell-like cells in these spheres was also supported by increased expression of stem cell markers such as CD133, Oct4, Nestin and NGFR, and decreased expression of mature cell markers such as CD90 and NCAM. Furthermore, cells of these clonal S462 spheres differentiated into Schwann cells, smooth muscle/fibroblast and neurons-like cells under specific differentiation-inducing cultural conditions. Finally, subcutaneous injection of the spheres into immunodeficient nude mice led to tumor formation at a higher rate compared to the parental adherent cells (66% versus 10% at 2.5 × 10(5. These results provide evidence for the existence of cancer stem cell-like cells in malignant peripheral nerve sheath tumors.

  13. 免疫磁珠分选白血病KG1a细胞中CD34+CD38-干细胞及其特性研究%Isolation and characteristic of CD34 + CD38-stem cells in leukemia cell line KG1a using magnetic activated cell sorting

    Institute of Scientific and Technical Information of China (English)

    王国征; 李慧; 吴远彬; 李达; 贺艳杰; 周雪云

    2013-01-01

    目的 从白血病KGla细胞中分选CD34+ CD38-干细胞并研究其生物学特性.方法 免疫磁珠法分选CD34+ CD38-细胞,流式细胞术分析细胞表面膜抗原、细胞周期,甲基纤维素培养体系观察其克隆性;以HL60、K562、CD34+ CD38+细胞为对照,甲基偶氮唑蓝法检测柔红霉素对CD34+ CD38-细胞的抑制作用;BALB/c裸鼠皮下接种,观察体内成瘤能力.结果 分选的CD34+ CD38-细胞纯度达95%以上,(69.03 +3.25)%处于Go期,克隆形成率为(38.64±2.68)%,明显抵抗柔红霉素;不同浓度柔红霉素作用后,CD34+ CD38-、CD34+ CD38+、HL60、K562细胞的活性差异有统计学意义(F =961.136,P=0.000);CD34+ CD38-在裸鼠皮下成瘤率显著高于CD34+ CD38+细胞(P<0.05).结论 免疫磁珠法分选白血病干细胞简单易行,分选的细胞符合白血病干细胞生物学特性.%Objective To isolate the CD34+ CD38- stem cells from human acute leukemia cell line KGla and to research its biological characteristics. Methods CD34+ CD38- cells were isolated by magnetic activated cell sorting( MACS) ; the cell surface membrane antigens and cell cycle were analyzed by flow cytometry; its clonality was observed with methyl cellulose system. HL60,K562 and D34+ CD38+ cells were selected as control,and the methyl thiazolyl tetrazolium(MTT) assay was taken to observe the depressant effect of rubidomycin to CD34+ CD38- cells. BALB/c nude mice were inoculated subcutaneous-ly to observe the tumorigenicity. Results The purity of CD34+ CD38- cells were above 95% and(69.03 ± 3. 25) % cells in the G0 phase. The cloning efficiency of CD34+ CD38- cells were( 38. 64 ± 2. 68) % , and the CD34+ CD38- cells were obviously resistant to rubidomycin. There were statistic difference of cytoactive among CD34+ CD38-, CD34+ CD38 + , HL60, and K562 cells under giving the same concentrations of rubidomycin circumstances (F = 961. 136,P= 0.000). The tumorigenesis ability of CD34+ CD38- cells in nude mice was

  14. Pancreatic stellate cells enhance stem cell-like phenotypes in pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Shin [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Masamune, Atsushi, E-mail: amasamune@med.tohoku.ac.jp [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Takikawa, Tetsuya; Suzuki, Noriaki; Kikuta, Kazuhiro; Hirota, Morihisa [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Hamada, Hirofumi [Laboratory of Oncology, Department of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji (Japan); Kobune, Masayoshi [Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo (Japan); Satoh, Kennichi [Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori (Japan); Shimosegawa, Tooru [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan)

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. Black-Right-Pointing-Pointer Pancreatic cancer cells co-cultured with PSCs showed enhanced spheroid formation. Black-Right-Pointing-Pointer Expression of stem cell-related genes ABCG2, Nestin and LIN28 was increased. Black-Right-Pointing-Pointer Co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. Black-Right-Pointing-Pointer This study suggested a novel role of PSCs as a part of the cancer stem cell niche. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Recent studies have identified that a portion of cancer cells, called 'cancer stem cells', within the entire cancer tissue harbor highly tumorigenic and chemo-resistant phenotypes, which lead to the recurrence after surgery or re-growth of the tumor. The mechanisms that maintain the 'stemness' of these cells remain largely unknown. We hypothesized that PSCs might enhance the cancer stem cell-like phenotypes in pancreatic cancer cells. Indirect co-culture of pancreatic cancer cells with PSCs enhanced the spheroid-forming ability of cancer cells and induced the expression of cancer stem cell-related genes ABCG2, Nestin and LIN28. In addition, co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. These results suggested a novel role of PSCs as a part of the cancer stem cell niche.

  15. An evidence for adhesion-mediated acquisition of acute myeloid leukemic stem cell-like immaturities

    Energy Technology Data Exchange (ETDEWEB)

    Funayama, Keiji; Shimane, Miyuki; Nomura, Hitoshi [Department of Integrative Bioscience and Biomedical Engineering, Waseda University, 4-3-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Asano, Shigetaka, E-mail: asgtkmd@waseda.jp [Department of Integrative Bioscience and Biomedical Engineering, Waseda University, 4-3-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555 (Japan)

    2010-02-12

    For long-term survival in vitro and in vivo of acute myeloid leukemia cells, their adhesion to bone marrow stromal cells is indispensable. However, it is still unknown if these events are uniquely induced by the leukemic stem cells. Here we show that TF-1 human leukemia cells, once they have formed a cobblestone area by adhering to mouse bone marrow-derived MS-5 cells, can acquire some leukemic stem cell like properties in association with a change in the CD44 isoform-expression pattern and with an increase in a set of related microRNAs. These findings strongly suggest that at least some leukemia cells can acquire leukemic stem cell like properties in an adhesion-mediated stochastic fashion.

  16. Th17 cells are long lived and retain a stem cell-like molecular signature.

    Science.gov (United States)

    Muranski, Pawel; Borman, Zachary A; Kerkar, Sid P; Klebanoff, Christopher A; Ji, Yun; Sanchez-Perez, Luis; Sukumar, Madhusudhanan; Reger, Robert N; Yu, Zhiya; Kern, Steven J; Roychoudhuri, Rahul; Ferreyra, Gabriela A; Shen, Wei; Durum, Scott K; Feigenbaum, Lionel; Palmer, Douglas C; Antony, Paul A; Chan, Chi-Chao; Laurence, Arian; Danner, Robert L; Gattinoni, Luca; Restifo, Nicholas P

    2011-12-23

    Th17 cells have been described as short lived, but this view is at odds with their capacity to trigger protracted damage to normal and transformed tissues. We report that Th17 cells, despite displaying low expression of CD27 and other phenotypic markers of terminal differentiation, efficiently eradicated tumors and caused autoimmunity, were long lived, and maintained a core molecular signature resembling early memory CD8(+) cells with stem cell-like properties. In addition, we found that Th17 cells had high expression of Tcf7, a direct target of the Wnt and β-catenin signaling axis, and accumulated β-catenin, a feature observed in stem cells. In vivo, Th17 cells gave rise to Th1-like effector cell progeny and also self-renewed and persisted as IL-17A-secreting cells. Multipotency was required for Th17 cell-mediated tumor eradication because effector cells deficient in IFN-γ or IL-17A had impaired activity. Thus, Th17 cells are not always short lived and are a less-differentiated subset capable of superior persistence and functionality.

  17. NK cell-like behavior of Valpha14i NK T cells during MCMV infection.

    Directory of Open Access Journals (Sweden)

    Johnna D Wesley

    2008-07-01

    Full Text Available Immunity to the murine cytomegalovirus (MCMV is critically dependent on the innate response for initial containment of viral replication, resolution of active infection, and proper induction of the adaptive phase of the anti-viral response. In contrast to NK cells, the Valpha14 invariant natural killer T cell response to MCMV has not been examined. We found that Valpha14i NK T cells become activated and produce significant levels of IFN-gamma, but do not proliferate or produce IL-4 following MCMV infection. In vivo treatment with an anti-CD1d mAb and adoptive transfer of Valpha14i NK T cells into MCMV-infected CD1d(-/- mice demonstrate that CD1d is dispensable for Valpha14i NK T cell activation. In contrast, both IFN-alpha/beta and IL-12 are required for optimal activation. Valpha14i NK T cell-derived IFN-gamma is partially dependent on IFN-alpha/beta but highly dependent on IL-12. Valpha14i NK T cells contribute to the immune response to MCMV and amplify NK cell-derived IFN-gamma. Importantly, mortality is increased in CD1d(-/- mice in response to high dose MCMV infection when compared to heterozygote littermate controls. Collectively, these findings illustrate the plasticity of Valpha14i NK T cells that act as effector T cells during bacterial infection, but have NK cell-like behavior during the innate immune response to MCMV infection.

  18. Low immunogenicity of endothelial derivatives from rat embryonic stem cell-like cells

    Institute of Scientific and Technical Information of China (English)

    Juliane Ladhoff; Michael Bader; Sabine Br(o)sel; Elke Effenberger; Dirk Westermann; Hans-Dieter Volk; Martina Seifert

    2009-01-01

    Embryonic stem cells (ESC) are suggested to be immune-privileged, but they carry the risk of uncontrolled expansion and malignancy. Upon differentiation they lose their tumor-forming capacity, but they become immunogenic by the expression of a normal set of MHC molecules. This immunogenicity might trigger rejection after application in regenerative therapies. In this study MHC expression of and immune responses to endothelial derivatives of rat embryonic stem cell-like cells (RESC) under inflammatory conditions were determined in comparison to primary rat aortic endothelial cells (ECs). Cellular as well as humoral allo-recognition was analyzed in vitro. In addition, immune reactions in vivo were assessed by allo-antibody production and determination of interferon-γ (IFNγ)-secreting allo-reactive T cells. RESC derivatives expressed low but significant levels of MHC class I, and no MHC class II. In response to IFNγ MHC class I expression was enhanced, while class II transactivator induction failed completely in these cells; MHC class II expression remained consistently absent. Functionally, the RESC derivatives showed a reduced allo-stimulatory capacity, protection against humoral allo-recognition in vitro and a slightly diminished susceptibility to cytotoxic T cell lysis. Furthermore, in vivo experiments demonstrated that these cells do not trigger host immune reactions, characterized by no allo-antibody production and no induction of allo-reactive memory T cells. Our results show that endothelial derivatives of RESC have a distinctive reduced immunogenic potency even under inflammatory conditions.

  19. Resistance of Leukemia KG1 a Cells with Positive N-cadherin in Phase G0Against Killing Activity of VP16%N-cadherin阳性白血病KG1a细胞系在G0期抵抗VP16杀伤的作用

    Institute of Scientific and Technical Information of China (English)

    何侃; 于沛; 邢海燕; 李艳; 田征; 王敏; 唐克晶; 饶青

    2011-01-01

    抗药性是白血病干细胞的重要特征,为探索N-cadherin阳性的白血病细胞耐受化疗药物VP16杀伤作用的机制,本研究以白血病细胞系KGla为研究模型,利用流式细胞术测定N-cadherin阳性和N-cadherin阴性细胞在G0期比例的差异,利用G-CSF诱导KG1a细胞进入细胞周期,观察G0期细胞比例的变化,并测定诱导后KG1a细胞对VP16的敏感性;再利用EGTA抑制N-cadherin介导的细胞间黏附后,观察KG1a细胞耐药性的变化.结果 显示,N-cadherin阳性的KG1a细胞G0期比例高于N-cadherin阴性的细胞;诱导KG1a细胞进入细胞周期后G0期细胞比例明显下降,KG1a细胞对VP16的敏感性显著升高;利用EGTA处理KG1a细胞24小时抑制N-cadherin的作用后,KG1a细胞在G0期比例降低,KG1a细胞对VP16的药物敏感性显著升高.结论:N-cadherin通过介导白血病细胞之间的黏附作用,使白血病细胞处于G0期的静息状态,从而耐受VP16的杀伤作用.%This study was aimed to investigate the methylation status of WTI gene in leukemia cell lines and its relation with expression of WTI gene. The WTI gene was silenced by DNA methylation or histone deacetylation, and the expression of WTI gene was induced by using HDAC inhibitor and/or demethylation agent of DNA. Some leukemia cell lines (U937, HL-60, K562, KG1) were detected by RT-PCR, MS-PCR, restriction analysis, and DNA sequencing. U937 leukemic cells without WTI mRNA expression were incubated with HDAC inhibitor Trichostatin A (TSA) and/or demethylation agent decitabine. The results showed that the U937 cells did not express WTI gene, but HL-60, K562 and KG1 cells hyghly expressed WTI gene; WTI gene was unmethylated in HL-60 cells, but methylated in K562 and U937 cells. WTI expression could be reactivated by co-incubation with TSA and decitabine, but not was observed by using single drug. It is concluded that WTI promoter is methylated in some leukemia cells, however, the methylation can not affect

  20. Wnt signaling controls the stem cell-like asymmetric division of the epithelial seam cells during C. elegans larval development.

    Science.gov (United States)

    Gleason, Julie E; Eisenmann, David M

    2010-12-01

    Metazoan stem cells repopulate tissues during adult life by dividing asymmetrically to generate another stem cell and a cell that terminally differentiates. Wnt signaling regulates the division pattern of stem cells in flies and vertebrates. While the short-lived nematode C. elegans has no adult somatic stem cells, the lateral epithelial seam cells divide in a stem cell-like manner in each larval stage, usually generating a posterior daughter that retains the seam cell fate and an anterior daughter that terminally differentiates. We show that while wild-type adult animals have 16 seam cells per side, animals with reduced function of the TCF homolog POP-1 have as many as 67 seam cells, and animals with reduced function of the β-catenins SYS-1 and WRM-1 have as few as three. Analysis of seam cell division patterns showed alterations in their stem cell-like divisions in the L2-L4 stages: reduced Wnt signaling caused both daughters to adopt non-seam fates, while activated Wnt signaling caused both daughters to adopt the seam fate. Therefore, our results indicate that Wnt signaling globally regulates the asymmetric, stem cell-like division of most or all somatic seam cells during C. elegans larval development, and that Wnt pathway regulation of stem cell-like behavior is conserved in nematodes. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Cancer stem cell-like cells from a single cell of oral squamous carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Felthaus, O. [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany); Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Ettl, T.; Gosau, M.; Driemel, O. [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Brockhoff, G. [Department of Gynecology and Obstetrics, University of Regensburg (Germany); Reck, A. [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Zeitler, K. [Institute of Pathology, University of Regensburg (Germany); Hautmann, M. [Department of Radiotherapy, University of Regensburg (Germany); Reichert, T.E. [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Schmalz, G. [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany); Morsczeck, C., E-mail: christian.morsczeck@klinik.uni-regensburg.de [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany)

    2011-04-01

    Research highlights: {yields} Four oral squamous cancer cell lines (OSCCL) were analyzed for cancer stem cells (CSCs). {yields} Single cell derived colonies of OSCCL express CSC-marker CD133 differentially. {yields} Monoclonal cell lines showed reduced sensitivity for Paclitaxel. {yields} In situ CD133{sup +} cells are slow cycling (Ki67-) indicating a reduced drug sensitivity. {yields} CD133{sup +} and CSC-like cells can be obtained from single colony forming cells of OSCCL. -- Abstract: Resistance of oral squamous cell carcinomas (OSCC) to conventional chemotherapy or radiation therapy might be due to cancer stem cells (CSCs). The development of novel anticancer drugs requires a simple method for the enrichment of CSCs. CSCs can be enriched from OSCC cell lines, for example, after cultivation in serum-free cell culture medium (SFM). In our study, we analyzed four OSCC cell lines for the presence of CSCs. CSC-like cells could not be enriched with SFM. However, cell lines obtained from holoclone colonies showed CSC-like properties such as a reduced rate of cell proliferation and a reduced sensitivity to Paclitaxel in comparison to cells from the parental lineage. Moreover, these cell lines differentially expressed the CSC-marker CD133, which is also upregulated in OSCC tissues. Interestingly, CD133{sup +} cells in OSCC tissues expressed little to no Ki67, the cell proliferation marker that also indicates reduced drug sensitivity. Our study shows a method for the isolation of CSC-like cell lines from OSCC cell lines. These CSC-like cell lines could be new targets for the development of anticancer drugs under in vitro conditions.

  2. Oncogenic KRAS activates an embryonic stem cell-like program in human colon cancer initiation.

    Science.gov (United States)

    Le Rolle, Anne-France; Chiu, Thang K; Zeng, Zhaoshi; Shia, Jinru; Weiser, Martin R; Paty, Philip B; Chiu, Vi K

    2016-01-19

    Colorectal cancer is the third most frequently diagnosed cancer worldwide. Prevention of colorectal cancer initiation represents the most effective overall strategy to reduce its associated morbidity and mortality. Activating KRAS mutation (KRASmut) is the most prevalent oncogenic driver in colorectal cancer development, and KRASmut inhibition represents an unmet clinical need. We apply a systems-level approach to study the impact of KRASmut on stem cell signaling during human colon cancer initiation by performing gene set enrichment analysis on gene expression from human colon tissues. We find that KRASmut imposes the embryonic stem cell-like program during human colon cancer initiation from colon adenoma to stage I carcinoma. Expression of miR145, an embryonic SC program inhibitor, promotes cell lineage differentiation marker expression in KRASmut colon cancer cells and significantly suppresses their tumorigenicity. Our data support an in vivo plasticity model of human colon cancer initiation that merges the intrinsic stem cell properties of aberrant colon stem cells with the embryonic stem cell-like program induced by KRASmut to optimize malignant transformation. Inhibition of the embryonic SC-like program in KRASmut colon cancer cells reveals a novel therapeutic strategy to programmatically inhibit KRASmut tumors and prevent colon cancer.

  3. Combination of acellular nerve graft and schwann cells-like cells for rat sciatic nerve regeneration.

    Science.gov (United States)

    Gao, Songtao; Zheng, Yan; Cai, Qiqing; Deng, Zhansheng; Yao, Weitao; Wang, Jiaqiang; Wang, Xin; Zhang, Peng

    2014-01-01

    To investigate the effect of tissue engineering nerve on repair of rat sciatic nerve defect. Forty-five rats with defective sciatic nerve were randomly divided into three groups. Rats in group A were repaired by acellular nerve grafts only. Rats in group B were repaired by tissue engineering nerve. In group C, rats were repaired by autogenous nerve grafts. After six and twelve weeks, sciatic nerve functional index (SFI), neural electrophysiology (NEP), histological and transmission electron microscope observation, recovery ratio of wet weight of gastrocnemius muscle, regenerated myelinated nerve fibers number, nerve fiber diameter, and thickness of the myelin sheath were measured to assess the effect. After six and twelve weeks, the recovery ratio of SFI and wet weight of gastrocnemius muscle, NEP, and the result of regenerated myelinated nerve fibers in groups B and C were superior to that of group A (P 0.05). The tissue engineering nerve composed of acellular allogenic nerve scaffold and Schwann cells-like cells can effectively repair the nerve defect in rats and its effect was similar to that of the autogenous nerve grafts.

  4. Stem cell-like gene expression in ovarian cancer predicts type II subtype and prognosis.

    Directory of Open Access Journals (Sweden)

    Matthew Schwede

    Full Text Available Although ovarian cancer is often initially chemotherapy-sensitive, the vast majority of tumors eventually relapse and patients die of increasingly aggressive disease. Cancer stem cells are believed to have properties that allow them to survive therapy and may drive recurrent tumor growth. Cancer stem cells or cancer-initiating cells are a rare cell population and difficult to isolate experimentally. Genes that are expressed by stem cells may characterize a subset of less differentiated tumors and aid in prognostic classification of ovarian cancer. The purpose of this study was the genomic identification and characterization of a subtype of ovarian cancer that has stem cell-like gene expression. Using human and mouse gene signatures of embryonic, adult, or cancer stem cells, we performed an unsupervised bipartition class discovery on expression profiles from 145 serous ovarian tumors to identify a stem-like and more differentiated subgroup. Subtypes were reproducible and were further characterized in four independent, heterogeneous ovarian cancer datasets. We identified a stem-like subtype characterized by a 51-gene signature, which is significantly enriched in tumors with properties of Type II ovarian cancer; high grade, serous tumors, and poor survival. Conversely, the differentiated tumors share properties with Type I, including lower grade and mixed histological subtypes. The stem cell-like signature was prognostic within high-stage serous ovarian cancer, classifying a small subset of high-stage tumors with better prognosis, in the differentiated subtype. In multivariate models that adjusted for common clinical factors (including grade, stage, age, the subtype classification was still a significant predictor of relapse. The prognostic stem-like gene signature yields new insights into prognostic differences in ovarian cancer, provides a genomic context for defining Type I/II subtypes, and potential gene targets which following further

  5. Periodic Pattern of Genetic and Fitness Diversity during Evolution of an Artificial Cell-Like System.

    Science.gov (United States)

    Ichihashi, Norikazu; Aita, Takuyo; Motooka, Daisuke; Nakamura, Shota; Yomo, Tetsuya

    2015-12-01

    Genetic and phenotypic diversity are the basis of evolution. Despite their importance, however, little is known about how they change over the course of evolution. In this study, we analyzed the dynamics of the adaptive evolution of a simple evolvable artificial cell-like system using single-molecule real-time sequencing technology that reads an entire single artificial genome. We found that the genomic RNA population increases in fitness intermittently, correlating with a periodic pattern of genetic and fitness diversity produced by repeated diversification and domination. In the diversification phase, a genomic RNA population spreads within a genetic space by accumulating mutations until mutants with higher fitness are generated, resulting in an increase in fitness diversity. In the domination phase, the mutants with higher fitness dominate, decreasing both the fitness and genetic diversity. This study reveals the dynamic nature of genetic and fitness diversity during adaptive evolution and demonstrates the utility of a simplified artificial cell-like system to study evolution at an unprecedented resolution.

  6. Protein expression profile in the differentiation of rat bone marrow stromal cells into Schwann cell-like cells

    Institute of Scientific and Technical Information of China (English)

    LI WenTing; SUN HuaLin; XU ZengLu; DING Fei; GU XiaoSong

    2009-01-01

    During the last decade, increasing evidence suggested that bone marrow stromal cells (MSCs) have the potential to differentiate into neural lineages. Many studies have reported that MSCs showed morpho-logical changes and expressed a limited number of neural proteins under experimental conditions. However, no proteomic studies on MSCs differentiated into Schwann cell-like cells have been reported. In this study, we isolated MSCs from adult Sprague-Dawley rat femur and tibia bone marrows and in-duced the cells in vitro under specific conditions. By using two-dimensional gel electrophoresis (2-DE), we compared the protein profiles of MSCs before and after induced differentiation. We obtained 792 protein spots in the protein profile by 2-DE, and found that 74 spots changed significantly before and after the differentiation using PDQuest software, with 43 up-regulated and 31 down-regulated. We ana-lyzed these 74 spots by a matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) and by database searching, and found that they could be grouped into various classes, including cytoskeleton and structure proteins, growth factors, metabolic proteins, chaperone proteins, receptor proteins, cell cycle proteins, calcium binding proteins, and other proteins. These proteins also include neural and glial proteins, such as BDNF, CNTF and GFAP. The results may provide valuable proteomic information about the differentiation of MSCs into Schwann cell-like cells.

  7. Protein expression profile in the differentiation of rat bone marrow stromal cells into Schwann cell-like cells

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    During the last decade,increasing evidence suggested that bone marrow stromal cells(MSCs) have the potential to differentiate into neural lineages.Many studies have reported that MSCs showed morphological changes and expressed a limited number of neural proteins under experimental conditions.However,no proteomic studies on MSCs differentiated into Schwann cell-like cells have been reported.In this study,we isolated MSCs from adult Sprague-Dawley rat femur and tibia bone marrows and induced the cells in vitro under specific conditions.By using two-dimensional gel electrophoresis(2-DE),we compared the protein profiles of MSCs before and after induced differentiation.We obtained 792 protein spots in the protein profile by 2-DE,and found that 74 spots changed significantly before and after the differentiation using PDQuest software,with 43 up-regulated and 31 down-regulated.We analyzed these 74 spots by a matrix assisted laser desorption ionization-time of flight mass spectrometry(MALDI-TOF-MS) and by database searching,and found that they could be grouped into various classes,including cytoskeleton and structure proteins,growth factors,metabolic proteins,chaperone proteins,receptor proteins,cell cycle proteins,calcium binding proteins,and other proteins.These proteins also include neural and glial proteins,such as BDNF,CNTF and GFAP.The results may provide valuable proteomic information about the differentiation of MSCs into Schwann cell-like cells.

  8. Enrichment and Function Research of Large Cell Lung Cancer Stem Cell-like Cells

    Directory of Open Access Journals (Sweden)

    Wenke YUE

    2011-06-01

    Full Text Available Background and objective There are no universal method to recognize and screen for lung cancer stem cell markers and indicators. Commonly used methods are flow Cytometry and learning from other cancer stem cell sorting tags to sort lung cancer stem cells. But this method has low specificity screening, the workload is huge. In this study, Serum-free suspension culture was used to enrich lung cancer stem cells, and explore method for lung cancer stem cell screening. Methods Human large lung cancer cell line-L9981 was cultured in serum-free and growth factors added medium, and spheres were obtained. Then the morphological differences of sphere cells and adherent L9981 cells cultured in serum-containing mediums are observed. Cell proliferation was analyzed by Vi-cell viability analyzer; invasion ability was tested by transwell assay; and in vivo tumorigenicity of the two groups of cells was studied in nude mouse. Results Compared with adherent L9981 cells cultured in serum-containing mediums, cells cultured in serum-free medium display sphere appearance. Doubling time of adherent cells and sphere cells are (56.05±1.95 h and (33.00±1.44 h respectively; Spheroid cells had higher invasion and tumorigenicity ability, 5 times and 20 times respectively, than adherent cells. Conclusion Suspension cultured L9981 in Serum-free medium could form spheroid populations. Cells in spheres had higher ability of invasion and Tumorigenicity than adherent L9981 cells. These results indicated spheroid L9981 cells contained enriched lung cancer stem cells, and Serum-free suspension culture can be a candidate method for enriching lung cancer stem cell.

  9. Comparative Gene Expression Profiling of Primary and Metastatic Renal Cell Carcinoma Stem Cell-Like Cancer Cells.

    Science.gov (United States)

    Khan, Mohammed I; Czarnecka, Anna M; Lewicki, Sławomir; Helbrecht, Igor; Brodaczewska, Klaudia; Koch, Irena; Zdanowski, Robert; Król, Magdalena; Szczylik, Cezary

    2016-01-01

    Recent advancement in cancer research has shown that tumors are highly heterogeneous, and multiple phenotypically different cell populations are found in a single tumor. Cancer development and tumor growth are driven by specific types of cells-stem cell-like cancer cells (SCLCCs)-which are also responsible for metastatic spread and drug resistance. This research was designed to verify the presence of SCLCCs in renal cell cancer cell lines. Subsequently, we aimed to characterize phenotype and cell biology of CD105+ cells, defined previously as renal cell carcinoma tumor-initiating cells. The main goal of the project was to describe the gene-expression profile of stem cell-like cancer cells of primary tumor and metastatic origin. Real-time PCR analysis of stemness genes (Oct-4, Nanog and Ncam) and soft agar colony formation assay were conducted to check the stemness properties of renal cell carcinoma (RCC) cell lines. FACS analysis of CD105+ and CD133+ cells was performed on RCC cells. Isolated CD105+ cells were verified for expression of mesenchymal markers-CD24, CD146, CD90, CD73, CD44, CD11b, CD19, CD34, CD45, HLA-DR and alkaline phosphatase. Hanging drop assay was used to investigate CD105+ cell-cell cohesion. Analysis of free-floating 3D spheres formed by isolated CD105+ was verified, as spheres have been hypothesized to contain undifferentiated multipotent progenitor cells. Finally, CD105+ cells were sorted from primary (Caki-2) and metastatic (ACHN) renal cell cancer cell lines. Gene-expression profiling of sorted CD105+ cells was performed with Agilent's human GE 4x44K v2 microarrays. Differentially expressed genes were further categorized into canonical pathways. Network analysis and downstream analysis were performed with Ingenuity Pathway Analysis. Metastatic RCC cell lines (ACHN and Caki-1) demonstrated higher colony-forming ability in comparison to primary RCC cell lines. Metastatic RCC cell lines harbor numerous CD105+ cell subpopulations and have

  10. Spatial Distribution of Stem Cell-Like Keratinocytes in Dissected Compound Hair Follicles of the Dog.

    Directory of Open Access Journals (Sweden)

    Dominique J Wiener

    Full Text Available Hair cycle disturbances are common in dogs and comparable to some alopecic disorders in humans. A normal hair cycle is maintained by follicular stem cells which are predominately found in an area known as the bulge. Due to similar morphological characteristics of the bulge area in humans and dogs, the shared particularity of compound hair follicles as well as similarities in follicular biomarker expression, the dog is a promising model to study human hair cycle and stem cell disorders. To gain insight into the spatial distribution of follicular keratinocytes with stem cell potential in canine compound follicles, we microdissected hair follicles in anagen and telogen from skin samples of freshly euthanized dogs. The keratinocytes isolated from different locations were investigated for their colony forming efficiency, growth and differentiation potential as well as clonal growth. Our results indicate that i compound and single hair follicles exhibit a comparable spatial distribution pattern with respect to cells with high growth potential and stem cell-like characteristics, ii the lower isthmus (comprising the bulge harbors most cells with high growth potential in both, the anagen and the telogen hair cycle stage, iii unlike in other species, colonies with highest growth potential are rather small with an irregular perimeter and iv the keratinocytes derived from the bulbar region exhibit characteristics of actively dividing transit amplifying cells. Our results now provide the basis to conduct comparative studies of normal dogs and those with hair cycle disorders with the possibility to extend relevant findings to human patients.

  11. Ovarian cancer stem cell like side populations are enriched following chemotherapy and overexpress EZH2

    Science.gov (United States)

    Rizzo, Siân; Hersey, Jenny M.; Mellor, Paul; Dai, Wei; Santos-Silva, Alessandra; Liber, Daniel; Luk, Louisa; Titley, Ian; Carden, Craig P; Box, Garry; Hudson, David L.; Kaye, Stanley B.; Brown, Robert

    2010-01-01

    Platinum-based chemotherapy, with cytoreductive surgery, is the cornerstone of treatment of advanced ovarian cancer, however acquired drug resistance is a major clinical obstacle. It has been proposed that subpopulations of tumour cells with stem-cell like properties, such as so-called side populations (SP) which over-express ABC drug-transporters, can sustain the growth of drug resistant tumour cells, leading to tumour recurrence following chemotherapy. The histone methyltransferase EZH2 is a key component of the Polycomb Repressive Complex 2 (PRC2) required for maintenance of a stem cell state and overexpression has been implicated in drug resistance and shorter survival of ovarian cancer patients. We observe higher percentage SP in ascites from patients that have relapsed following chemotherapy compared to chemonaive patients, consistent with selection for this subpopulation during platinum-based chemotherapy. Furthermore, ABCB1 (P-glycoprotein) and EZH2 are consistently over-expressed in SP compared to non-SP from patients’ tumour cells. SiRNA knockdown of EZH2 leads to loss of SP in ovarian tumour models, reduced anchorage-independent growth and reduced tumour growth in vivo. Together these data support a key role for EZH2 in the maintenance of a drug-resistant tumour-sustaining subpopulation of cells in ovarian cancers undergoing chemotherapy. As such, EZH2 is an important target for anticancer drug development. PMID:21216927

  12. BIS-mediated STAT3 stabilization regulates glioblastoma stem cell-like phenotypes

    Science.gov (United States)

    Im, Chang-Nim; Yun, Hye Hyeon; Song, Byunghoo; Youn, Dong-Ye; Cui, Mei Nu; Kim, Hong Sug; Park, Gyeong Sin; Lee, Jeong-Hwa

    2016-01-01

    Glioblastoma stem cells (GSCs) are a subpopulation of highly tumorigenic and stem-like cells that are responsible for resistance to conventional therapy. Bcl-2-intreacting cell death suppressor (BIS; also known as BAG3) is an anti-apoptotic protein that is highly expressed in human cancers with various origins, including glioblastoma. In the present study, to investigate the role of BIS in GSC subpopulation, we examined the expression profile of BIS in A172 and U87-MG glioblastoma cell lines under specific in vitro culture conditions that enrich GSC-like cells in spheres. Both BIS mRNA and protein levels significantly increased under the sphere-forming condition as compared with standard culture conditions. BIS depletion resulted in notable decreases in sphere-forming activity and was accompanied with decreases in SOX-2 expression. The expression of STAT3, a master regulator of stemness, also decreased following BIS depletion concomitant with decreases in the nuclear levels of active phosphorylated STAT3, while ectopic STAT3 overexpression resulted in recovery of sphere-forming activity in BIS-knockdown glioblastoma cells. Additionally, immunoprecipitation and confocal microscopy revealed that BIS physically interacts with STAT3. Furthermore, BIS depletion increased STAT3 ubiquitination, suggesting that BIS is necessary for STAT3 stabilization in GSC-like cells. BIS depletion also affected epithelial-to-mesenchymal transition-related genes as evidenced by decrease in SNAIL and MMP-2 expression and increase in E-cadherin expression in GSC-like cells. Our findings suggest that high levels of BIS expression might confer stem-cell-like properties on cancer cells through STAT3 stabilization, indicating that BIS is a potential target in cancer therapy. PMID:27145367

  13. Mesenchymal Stem Cell-Like Cells Derived from Mouse Induced Pluripotent Stem Cells Ameliorate Diabetic Polyneuropathy in Mice

    Directory of Open Access Journals (Sweden)

    Tatsuhito Himeno

    2013-01-01

    Full Text Available Background. Although pathological involvements of diabetic polyneuropathy (DPN have been reported, no dependable treatment of DPN has been achieved. Recent studies have shown that mesenchymal stem cells (MSCs ameliorate DPN. Here we demonstrate a differentiation of induced pluripotent stem cells (iPSCs into MSC-like cells and investigate the therapeutic potential of the MSC-like cell transplantation on DPN. Research Design and Methods. For induction into MSC-like cells, GFP-expressing iPSCs were cultured with retinoic acid, followed by adherent culture for 4 months. The MSC-like cells, characterized with flow cytometry and RT-PCR analyses, were transplanted into muscles of streptozotocin-diabetic mice. Three weeks after the transplantation, neurophysiological functions were evaluated. Results. The MSC-like cells expressed MSC markers and angiogenic/neurotrophic factors. The transplanted cells resided in hindlimb muscles and peripheral nerves, and some transplanted cells expressed S100β in the nerves. Impairments of current perception thresholds, nerve conduction velocities, and plantar skin blood flow in the diabetic mice were ameliorated in limbs with the transplanted cells. The capillary number-to-muscle fiber ratios were increased in transplanted hindlimbs of diabetic mice. Conclusions. These results suggest that MSC-like cell transplantation might have therapeutic effects on DPN through secreting angiogenic/neurotrophic factors and differentiation to Schwann cell-like cells.

  14. Derivation of corneal endothelial cell-like cells from rat neural crest cells in vitro.

    Directory of Open Access Journals (Sweden)

    Chengqun Ju

    Full Text Available The aim of this study was to investigate the feasibility of inducing rat neural crest cells (NCC to differentiate to functional corneal endothelial cell (CEC-like cells in vitro. Rat NCC were induced with adult CEC-derived conditioned medium. Immunofluorescence, flow cytometry and real time RT-PCR assay were used to detect expression of the corneal endothelium differentiation marker N-cadherin and transcription factors FoxC1 and Pitx2. CFDA SE-labeled CEC-like cells were transplanted to the corneal endothelium of a rat corneal endothelium deficiency model, and an eye-down position was maintained for 24 hours to allow cell attachment. The animals were observed for as long as 2 months after surgery and underwent clinical and histological examination. Spindle-like NCC turned to polygonal CEC-like after induction and expressed N-cadherin, FoxC1, Pitx2, zonula occludens-1 and sodium-potassium pump Na(+/K(+ ATPase. The corneas of the experimental group were much clearer than those of the control group and the mean corneal thickness in the experimental group was significantly less than in the control group7, 14, 21 and 28 days after surgery. Confocal microscopy through focusing and histological analysis confirmed that green fluorescence-positive CEC-like cells formed a monolayer covering the Descemet's membrane in the experimental group. In conclusion, CEC-like cells derived from NCCs displayed characters of native CEC, and the induction protocol provides guidance for future human CEC induction from NCC.

  15. Efficient Induction and Isolation of Human Primordial Germ Cell-Like Cells from Competent Human Pluripotent Stem Cells.

    Science.gov (United States)

    Irie, Naoko; Surani, M Azim

    2017-01-01

    We recently reported a robust and defined culture system for the specification of human primordial germ cell-like cells (hPGCLCs) from human pluripotent stem cells (hPSCs), both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) in vitro (Irie et al. Cell 160: 253-268, 2015). Similar attempts previously produced hPGCLCs from hPSCs at a very low efficiency, and the resulting cells were not fully characterized. A key step, which facilitated efficient hPGCLC specification from hPSCs, was the induction of a "competent" state for PGC fate via the medium containing a cocktail of four inhibitors. The competency of hPSCs can be maintained indefinitely and interchangeably with the conventional/low-competent hPSCs. Specification of hPGCLC occurs following sequential expression of key germ cell fate regulators, notably SOX17 and BLIMP1, as well as initiation of epigenetic resetting over 5 days. The hPGCLCs can be isolated using specific cell surface markers without the need for generating germ cell-specific reporter hPSC lines. This powerful method for the induction and isolation of hPGCLCs can be applied to both hESCs and iPSCs, which can be used for advances in human germ line biology.

  16. Cigarette smoke promotes drug resistance and expansion of cancer stem cell-like side population.

    Directory of Open Access Journals (Sweden)

    Yi An

    Full Text Available It is well known that many patients continue to smoke cigarettes after being diagnosed with cancer. Although smoking cessation has typically been presumed to possess little therapeutic value for cancer, a growing body of evidence suggests that continued smoking is associated with reduced efficacy of treatment and a higher incidence of recurrence. We therefore investigated the effect of cigarette smoke condensate (CSC on drug resistance in the lung cancer and head and neck cancer cell lines A549 and UMSCC-10B, respectively. Our results showed that CSC significantly increased the cellular efflux of doxorubicin and mitoxantrone. This was accompanied by membrane localization and increased expression of the multi-drug transporter ABCG2. The induced efflux of doxorubicin was reversed upon addition of the specific ABCG2 inhibitor Fumitremorgin C, confirming the role of ABCG2. Treatment with CSC increased the concentration of phosphorylated Akt, while addition of the PI3K inhibitor LY294002 blocked doxorubicin extrusion, suggesting that Akt activation is required for CSC-induced drug efflux. In addition, CSC was found to promote resistance to doxorubicin as determined by MTS assays. This CSC-induced doxurbicin-resistance was mitigated by mecamylamine, a nicotinic acetylcholine receptor inhibitor, suggesting that nicotine is at least partially responsible for the effect of CSC. Lastly, CSC increased the size of the side population (SP, which has been linked to a cancer stem cell-like phenotype. In summary, CSC promotes chemoresistance via Akt-mediated regulation of ABCG2 activity, and may also increase the proportion of cancer stem-like cells, contributing to tumor resilience. These findings underscore the importance of smoking cessation following a diagnosis of cancer, and elucidate the mechanisms of continued smoking that may be detrimental to treatment.

  17. Cigarette smoke promotes drug resistance and expansion of cancer stem cell-like side population.

    Science.gov (United States)

    An, Yi; Kiang, Alan; Lopez, Jay Patrick; Kuo, Selena Z; Yu, Michael Andrew; Abhold, Eric L; Chen, Jocelyn S; Wang-Rodriguez, Jessica; Ongkeko, Weg M

    2012-01-01

    It is well known that many patients continue to smoke cigarettes after being diagnosed with cancer. Although smoking cessation has typically been presumed to possess little therapeutic value for cancer, a growing body of evidence suggests that continued smoking is associated with reduced efficacy of treatment and a higher incidence of recurrence. We therefore investigated the effect of cigarette smoke condensate (CSC) on drug resistance in the lung cancer and head and neck cancer cell lines A549 and UMSCC-10B, respectively. Our results showed that CSC significantly increased the cellular efflux of doxorubicin and mitoxantrone. This was accompanied by membrane localization and increased expression of the multi-drug transporter ABCG2. The induced efflux of doxorubicin was reversed upon addition of the specific ABCG2 inhibitor Fumitremorgin C, confirming the role of ABCG2. Treatment with CSC increased the concentration of phosphorylated Akt, while addition of the PI3K inhibitor LY294002 blocked doxorubicin extrusion, suggesting that Akt activation is required for CSC-induced drug efflux. In addition, CSC was found to promote resistance to doxorubicin as determined by MTS assays. This CSC-induced doxurbicin-resistance was mitigated by mecamylamine, a nicotinic acetylcholine receptor inhibitor, suggesting that nicotine is at least partially responsible for the effect of CSC. Lastly, CSC increased the size of the side population (SP), which has been linked to a cancer stem cell-like phenotype. In summary, CSC promotes chemoresistance via Akt-mediated regulation of ABCG2 activity, and may also increase the proportion of cancer stem-like cells, contributing to tumor resilience. These findings underscore the importance of smoking cessation following a diagnosis of cancer, and elucidate the mechanisms of continued smoking that may be detrimental to treatment.

  18. Ex vivo differentiation of human bone marrow-derived stem cells into neuronal cell-like lineages

    Directory of Open Access Journals (Sweden)

    Al-Zoubi A

    2016-06-01

    Full Text Available Adeeb Al-Zoubi,1,2 Feras Altwal,3 Farah Khalifeh,2 Jamil Hermas,4 Ziad Al-Zoubi,5 Emad Jafar,5 Mohammed El-Khateeb,6,7 1Department of Surgery, University of Illinois College of Medicine at Peoria, Peoria, IL, USA; 2Stem Cells of Arabia, Amman, Jordan; 3Department of Neuroscience, School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA; 4Stem Cell Division, Al-Yamama Company, 5Jordan Orthopedic and Spinal Center, 6National Center for Diabetes, Endocrinology and Genetics, 7Department of Pathology, Faculty of Medicine, University of Jordan, Amman, Jordan Background: Methods to obtain safe and practical populations of stem cells (SCs at a clinical grade that are able to differentiate into neuronal cell lineages are yet to be developed. In a previous study, we showed that mouse bone marrow-derived SCs (BM-SCs differentiated into neuronal cell-like lineages when put in a neuronal-like environment, which is a special media supplemented with the necessary growth factors needed for the differentiation of SCs into neuronal cell-like lineages. Aim: In this study, we aim to assess the potentials of adult human CD34+ and CD133+ SCs to differentiate into neuronal cell-like lineages ex vivo when placed in a neuronal-like microenvironment. Methods: The neuronal-like microenvironment was created by culturing cells in nonhematopoietic expansion media (NHEM supplemented with growth factors that favor differentiation into neuronal cell lineages (low-affinity nerve growth factor [LNGF], mouse spinal cord extract [mSpE], or both. Cultured cells were assessed for neuronal differentiation by cell morphologies and by expression of GFAP. Results: Our results show that culturing unpurified human BM-derived mononuclear cells (hBM-MNCs in NHEM+LNGF+mSpE did not lead to neuronal differentiation. In contrast, culturing of purified CD34+ hBM-SCs in NHEM+LNGF+mSpE favored their differentiation into astrocyte

  19. Slugging their way to immortality: driving mammary epithelial cells into a stem cell-like state.

    Science.gov (United States)

    Soady, Kelly; Smalley, Matthew J

    2012-09-10

    Delineating the molecular factors that define and maintain the mammary stem cell state is vital for understanding normal development and tumourigenesis. A recent study by Guo and colleagues identifies two master transcriptional regulators of mammary stem cells, Slug and Sox9, ectopic expression of which confers stem cell attributes on differentiated mammary epithelial cells. Slug and Sox9 expression was also shown to determine in vivo metastatic potential of human breast cancer cell lines. Understanding these factors in the context of normal lineage differentiation is an important step toward elucidating the mammary epithelial cell hierarchy and the origins of cancer stem cells.

  20. Control of Oxidative Stress and Generation of Induced Pluripotent Stem Cell-like Cells by Jun Dimerization Protein 2

    Energy Technology Data Exchange (ETDEWEB)

    Chiou, Shyh-Shin, E-mail: chiouss@kmu.edu.tw [Division of Hematology-Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (China); Department of Pediatrics, Faculty of Medicine, School of Medicine, Kaohsiung Medical University, 807 Kaohsiung 807, Taiwan (China); Wang, Sophie Sheng-Wen; Wu, Deng-Chyang [Department of Gastroenterology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (China); Lin, Ying-Chu [School of Dentistry, College of Dentistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Kao, Li-Pin [Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 807 Kaohsiung 807, Taiwan (China)

    2013-07-26

    We report here that the Jun dimerization protein 2 (JDP2) plays a critical role as a cofactor for the transcription factors nuclear factor-erythroid 2-related factor 2 (Nrf2) and MafK in the regulation of the antioxidants and production of reactive oxygen species (ROS). JDP2 associates with Nrf2 and MafK (Nrf2-MafK) to increase the transcription of antioxidant response element-dependent genes. Oxidative-stress-inducing reagent led to an increase in the intracellular accumulation of ROS and cell proliferation in Jdp2 knock-out mouse embryonic fibroblasts. In Jdp2-Cre mice mated with reporter mice, the expression of JDP2 was restricted to granule cells in the brain cerebellum. The induced pluripotent stem cells (iPSC)-like cells were generated from DAOY medulloblastoma cell by introduction of JDP2, and the defined factor OCT4. iPSC-like cells expressed stem cell-like characteristics including alkaline phosphatase activity and some stem cell markers. However, such iPSC-like cells also proliferated rapidly, became neoplastic, and potentiated cell malignancy at a later stage in SCID mice. This study suggests that medulloblastoma cells can be reprogrammed successfully by JDP2 and OCT4 to become iPSC-like cells. These cells will be helpful for studying the generation of cancer stem cells and ROS homeostasis.

  1. Control of Oxidative Stress and Generation of Induced Pluripotent Stem Cell-like Cells by Jun Dimerization Protein 2

    Directory of Open Access Journals (Sweden)

    Naoto Yamaguchi

    2013-07-01

    Full Text Available We report here that the Jun dimerization protein 2 (JDP2 plays a critical role as a cofactor for the transcription factors nuclear factor-erythroid 2-related factor 2 (Nrf2 and MafK in the regulation of the antioxidants and production of reactive oxygen species (ROS. JDP2 associates with Nrf2 and MafK (Nrf2-MafK to increase the transcription of antioxidant response element-dependent genes. Oxidative-stress-inducing reagent led to an increase in the intracellular accumulation of ROS and cell proliferation in Jdp2 knock-out mouse embryonic fibroblasts. In Jdp2-Cre mice mated with reporter mice, the expression of JDP2 was restricted to granule cells in the brain cerebellum. The induced pluripotent stem cells (iPSC-like cells were generated from DAOY medulloblastoma cell by introduction of JDP2, and the defined factor OCT4. iPSC-like cells expressed stem cell-like characteristics including alkaline phosphatase activity and some stem cell markers. However, such iPSC-like cells also proliferated rapidly, became neoplastic, and potentiated cell malignancy at a later stage in SCID mice. This study suggests that medulloblastoma cells can be reprogrammed successfully by JDP2 and OCT4 to become iPSC-like cells. These cells will be helpful for studying the generation of cancer stem cells and ROS homeostasis.

  2. HAIR CELL-LIKE CELL GENERATION INDUCED BY NATURE CULTURE OF ADULT RAT AUDITORY EPITHELIUM

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Hair cells are the mechanosensory cells thatconvert sound and motion signals into electrical i m-pulses in cochlear and vestibular end organs of innerear.Although mature mammals nor mally do notgenerate new hair cells,recentin vivoandin vitrostudies have demonstrated mitotic activity and i m-mature-looking hair cells in mammalian vestibularepithelia after exposure to ototoxic drugs[1-3],sug-gesting that vestibular hair cell regeneration inmammals may be inducible.However,the possibil-ity of auditory hair ce...

  3. Acquisition of cancer stem cell-like properties in non-small cell lung cancer with acquired resistance to afatinib.

    Science.gov (United States)

    Hashida, Shinsuke; Yamamoto, Hiromasa; Shien, Kazuhiko; Miyoshi, Yuichiro; Ohtsuka, Tomoaki; Suzawa, Ken; Watanabe, Mototsugu; Maki, Yuho; Soh, Junichi; Asano, Hiroaki; Tsukuda, Kazunori; Miyoshi, Shinichiro; Toyooka, Shinichi

    2015-10-01

    Afatinib is an irreversible epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) that is known to be effective against the EGFR T790M variant, which accounts for half of the mechanisms of acquired resistance to reversible EGFR-TKIs. However, acquired resistance to afatinib was also observed in clinical use. Thus, elucidating and overcoming the mechanisms of resistance are important issues in the treatment of non-small cell lung cancer. In this study, we established various afatinib-resistant cell lines and investigated the resistance mechanisms. EGFR T790M mutations were not detected using direct sequencing in established resistant cells. Several afatinib-resistant cell lines displayed MET amplification, and these cells were sensitive to the combination of afatinib plus crizotinib. As a further investigation, a cell line that acquired resistance to afatinib plus crizotinib, HCC827-ACR, was established from one of the MET amplified-cell lines. Several afatinib-resistant cell lines including HCC827-ACR displayed epithelial-to-mesenchymal transition (EMT) features and epigenetic silencing of miR-200c, which is a suppresser of EMT. In addition, these cell lines also exhibited overexpression of ALDH1A1 and ABCB1, which are putative stem cell markers, and resistance to docetaxel. In conclusion, we established afatinib-resistant cells and found that MET amplification, EMT, and stem cell-like features are observed in cells with acquired resistance to EGFR-TKIs. This finding may provide clues to overcoming resistance to EGFR-TKIs.

  4. Human dental pulp cells exhibit bone cell-like responsiveness to fluid shear stress

    NARCIS (Netherlands)

    Kraft, D.C.E.; Bindslev, D.A.; Melsen, B.; Klein-Nulend, J.

    2011-01-01

    Background aims. For engineering bone tissue to restore, for example, maxillofacial defects, mechanosensitive cells are needed that are able to conduct bone cell-specific functions, such as bone remodelling. Mechanical loading affects local bone mass and architecture in vivo by initiating a cellular

  5. Metastable primordial germ cell-like state induced from mouse embryonic stem cells by Akt activation

    Energy Technology Data Exchange (ETDEWEB)

    Yamano, Noriko [Graduate School of Frontier Biosciences, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871 (Japan); Kimura, Tohru, E-mail: tkimura@patho.med.osaka-u.ac.jp [Department of Pathology, Medical School, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871 (Japan); Watanabe-Kushima, Shoko [Graduate School of Frontier Biosciences, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871 (Japan); Shinohara, Takashi [Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501 (Japan); Nakano, Toru, E-mail: tnakano@patho.med.osaka-u.ac.jp [Graduate School of Frontier Biosciences, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871 (Japan); Department of Pathology, Medical School, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871 (Japan)

    2010-02-12

    Specification to primordial germ cells (PGCs) is mediated by mesoderm-induction signals during gastrulation. We found that Akt activation during in vitro mesodermal differentiation of embryonic stem cells (ESCs) generated self-renewing spheres with differentiation states between those of ESCs and PGCs. Essential regulators for PGC specification and their downstream germ cell-specific genes were expressed in the spheres, indicating that the sphere cells had commenced differentiation to the germ lineage. However, the spheres did not proceed to spermatogenesis after transplantation into testes. Sphere cell transfer to the original feeder-free ESC cultures resulted in chaotic differentiation. In contrast, when the spheres were cultured on mouse embryonic fibroblasts or in the presence of ERK-cascade and GSK3 inhibitors, reversion to the ESC-like state was observed. These results indicate that Akt signaling promotes a novel metastable and pluripotent state that is intermediate to those of ESCs and PGCs.

  6. Cellular prion protein controls stem cell-like properties of human glioblastoma tumor-initiating cells

    Science.gov (United States)

    Corsaro, Alessandro; Bajetto, Adriana; Thellung, Stefano; Begani, Giulia; Villa, Valentina; Nizzari, Mario; Pattarozzi, Alessandra; Solari, Agnese; Gatti, Monica; Pagano, Aldo; Würth, Roberto; Daga, Antonio; Barbieri, Federica; Florio, Tullio

    2016-01-01

    Prion protein (PrPC) is a cell surface glycoprotein whose misfolding is responsible for prion diseases. Although its physiological role is not completely defined, several lines of evidence propose that PrPC is involved in self-renewal, pluripotency gene expression, proliferation and differentiation of neural stem cells. Moreover, PrPC regulates different biological functions in human tumors, including glioblastoma (GBM). We analyzed the role of PrPC in GBM cell pathogenicity focusing on tumor-initiating cells (TICs, or cancer stem cells, CSCs), the subpopulation responsible for development, progression and recurrence of most malignancies. Analyzing four GBM CSC-enriched cultures, we show that PrPC expression is directly correlated with the proliferation rate of the cells. To better define its role in CSC biology, we knocked-down PrPC expression in two of these GBM-derived CSC cultures by specific lentiviral-delivered shRNAs. We provide evidence that CSC proliferation rate, spherogenesis and in vivo tumorigenicity are significantly inhibited in PrPC down-regulated cells. Moreover, PrPC down-regulation caused loss of expression of the stemness and self-renewal markers (NANOG, Sox2) and the activation of differentiation pathways (i.e. increased GFAP expression). Our results suggest that PrPC controls the stemness properties of human GBM CSCs and that its down-regulation induces the acquisition of a more differentiated and less oncogenic phenotype. PMID:27229535

  7. Long noncoding RNA MALAT-1 enhances stem cell-like phenotypes in pancreatic cancer cells

    National Research Council Canada - National Science Library

    Jiao, Feng; Hu, Hai; Han, Ting; Yuan, Cuncun; Wang, Lei; Jin, Ziliang; Guo, Zhen; Wang, Liwei

    2015-01-01

    .... The mechanisms that maintain the stemness of these cells remain largely unknown. Our previous study indicated that MALAT-1 may serve as an oncogenic long noncoding RNA in pancreatic cancer by promoting epithelial-mesenchymal transition (EMT...

  8. Conditionally reprogrammed normal and transformed mouse mammary epithelial cells display a progenitor-cell-like phenotype.

    Directory of Open Access Journals (Sweden)

    Francisco R Saenz

    Full Text Available Mammary epithelial (ME cells cultured under conventional conditions senesce after several passages. Here, we demonstrate that mouse ME cells isolated from normal mammary glands or from mouse mammary tumor virus (MMTV-Neu-induced mammary tumors, can be cultured indefinitely as conditionally reprogrammed cells (CRCs on irradiated fibroblasts in the presence of the Rho kinase inhibitor Y-27632. Cell surface progenitor-associated markers are rapidly induced in normal mouse ME-CRCs relative to ME cells. However, the expression of certain mammary progenitor subpopulations, such as CD49f+ ESA+ CD44+, drops significantly in later passages. Nevertheless, mouse ME-CRCs grown in a three-dimensional extracellular matrix gave rise to mammary acinar structures. ME-CRCs isolated from MMTV-Neu transgenic mouse mammary tumors express high levels of HER2/neu, as well as tumor-initiating cell markers, such as CD44+, CD49f+, and ESA+ (EpCam. These patterns of expression are sustained in later CRC passages. Early and late passage ME-CRCs from MMTV-Neu tumors that were implanted in the mammary fat pads of syngeneic or nude mice developed vascular tumors that metastasized within 6 weeks of transplantation. Importantly, the histopathology of these tumors was indistinguishable from that of the parental tumors that develop in the MMTV-Neu mice. Application of the CRC system to mouse mammary epithelial cells provides an attractive model system to study the genetics and phenotype of normal and transformed mouse epithelium in a defined culture environment and in vivo transplant studies.

  9. Isolation of dendritic-cell-like S100β-positive cells in rat anterior pituitary gland.

    Science.gov (United States)

    Horiguchi, Kotaro; Fujiwara, Ken; Yoshida, Saishu; Higuchi, Masashi; Tsukada, Takehiro; Kanno, Naoko; Yashiro, Takashi; Tateno, Kozue; Osako, Shunji; Kato, Takako; Kato, Yukio

    2014-07-01

    S100β-protein-positive cells in the anterior pituitary gland appear to possess multifunctional properties. Because of their pleiotropic features, S100β-positive cells are assumed to be of a heterogeneous or even a non-pituitary origin. The observation of various markers has allowed these cells to be classified into populations such as stem/progenitor cells, epithelial cells, astrocytes and dendritic cells. The isolation and characterization of each heterogeneous population is a prerequisite for clarifying the functional character and origin of the cells. We attempt to isolate two of the subpopulations of S100β-positive cells from the anterior lobe. First, from transgenic rats that express green fluorescent protein (GFP) driven by the S100β protein promoter, we fractionate GFP-positive cells with a cell sorter and culture them so that they can interact with laminin, a component of the extracellular matrix. We observe that one morphological type of GFP-positive cells possesses extended cytoplasmic processes and shows high adhesiveness to laminin (process type), whereas the other is round in shape and exhibits low adherence to laminin (round type). We successfully isolate cells of the round type from the cultured GFP-positive cells by taking advantage of their low affinity to laminin and then measure mRNA levels of the two cell types by real-time polymerase chain reaction. The resultant data show that the process type expresses vimentin (mesenchymal cell marker) and glial fibrillary acidic protein (astrocyte marker). The round type expresses dendritic cell markers, CD11b and interleukin-6. Thus, we found a method for isolating dendritic-cell-like S100β-positive cells by means of their property of adhering to laminin.

  10. Enrichment of cancer stem cell-like cells by culture in alginate gel beads.

    Science.gov (United States)

    Xu, Xiao-xi; Liu, Chang; Liu, Yang; Yang, Li; Li, Nan; Guo, Xin; Sun, Guang-wei; Ma, Xiao-jun

    2014-05-10

    Cancer stem cells (CSCs) are most likely the reason of cancer reoccurrence and metastasis. For further elucidation of the mechanism underlying the characteristics of CSCs, it is necessary to develop efficient culture systems to culture and expand CSCs. In this study, a three-dimensional (3D) culture system based on alginate gel (ALG) beads was reported to enrich CSCs. Two cell lines derived from different histologic origins were encapsulated in ALG beads respectively and the expansion of CSCs was investigated. Compared with two-dimensional (2D) culture, the proportion of cells with CSC-like phenotypes was significantly increased in ALG beads. Expression levels of CSC-related genes were greater in ALG beads than in 2D culture. The increase of CSC proportion after being cultured within ALG beads was further confirmed by enhanced tumorigenicity in vivo. Moreover, increased metastasis ability and higher anti-cancer drug resistance were also observed in 3D-cultured cells. Furthermore, we found that it was hypoxia, through the upregulation of hypoxia-inducible factors (HIFs) that occurred in ALG beads to induce the increasing of CSC proportion. Therefore, ALG bead was an efficient culture system for CSC enrichment, which might provide a useful platform for CSC research and promote the development of new anti-cancer therapies targeting CSCs.

  11. Evidence that high-migration drug-surviving MOLT4 leukemia cells exhibit cancer stem cell-like properties.

    Science.gov (United States)

    Huang, Xiaoxing; Xiong, Meng; Jin, Yujie; Deng, Chaohua; Xu, Hui; An, Changqing; Hao, Ling; Yang, Xiangyong; Deng, Xinzhou; Tu, Zhenbo; Li, Xinran; Xiao, Ruijing; Zhang, Qiuping

    2016-07-01

    Leukemia represents a spectrum of hematological malignancies threatening human health. Resistance to treatments and metastasis of leukemia are the main causes of death in patients. Leukemia stem cells (LSCs) are the initiating cells of leukemia as well as the main source of drug resistance, invasion and metastasis. Consequently, eliminating LSCs is a prerequisite to eradicate leukemia. Preliminary studies in our laboratory have shown that chemokines and their related receptors play an important role in the drug resistance and metastasis of leukemic cells. In this study, we obtained high migration drug-surviving (short term) MOLT4 cells (hMDSCs-MOLT4) with treatment of doxorubicin (DOX) after Transwell assay. Then we detected stem cell-associated molecular markers on hMDSCs-MOLT4 cells and the parental MOLT4 cells by FCM, QPCR, western blotting, H&E staining and immunohisto-chemistry experimental techniques in vitro and in vivo. Moreover, we explored its impact on drug resistance and tumor formation. Then we found that compared with the parental MOLT4 cells, the mRNA expression levels of stem cell-related factors Sox2, Oct4, C-myc, Klf4, Nanog, Bmi-1, CXCR4 are increased in hMDSCs-MOLT4 cells, together with the protein expression levels of Sox2, Oct4, Klf4, Nanog, CXCR4 and CD34. Our results indicated that hMDSCs-MOLT4 cells exhibited strong drug resistance and certain cancer stem cell-like characteristics. It is the first indication that the targeting stemness factors such as Sox2, Oct4, Klf4, Nanog and CXCR4 may represent plausible options for eliminating T-ALL stem-like cells. The present findings shed light on the relationship between drug-tolerant leukemic cells and cancer stem cells.

  12. Preliminary screening and identification of stem cell-like sphere clones in a gallbladder cancer cell line GBC-SD*

    Institute of Scientific and Technical Information of China (English)

    Bao-bing YIN; Shuang-jie WU; Hua-jie ZONG; Bao-jin MA; Duan CAI

    2011-01-01

    This paper aims to screen and identify sphere clone cells with characteristics similar to cancer stem cellsin human gallbladder cancer cell line GBC-SD. GBC-SD cells were cultured in a serum-free culture medium with different concentrations of the chemotherapeutic drug cisplatin for generating sphere clones. The mRNA expressions of stem cell-related genes CD133, OCT-4, Nanog, and drug resistance genes ABCG2 and MDR-1 in sphere clones were detected by quantitative real-time polymerase chain reaction (PCR). Stem cell markers were also analyzed by flow cytometry and immunofluorescent staining. Different amounts of sphere clones were injected into nude mice to test their abilities to form tumors. Sphere clones were formed in serum-free culture medium containing cisplatin (30 pmol/L).Flow cytometry results demonstrated that the sphere clones expressed high levels of stem cell markers CD133+ (97.6%) and CD44+ (77.9%) and low levels of CD24+ (2.3%). These clones also overexpressed the drug resistance genes ABCG2 and MDR-1. Quantitative real-time PCR showed that sphere clones expressed stem cell genes Nanog and OCT-4 284 and 266 times, respectively, more than those in the original GBC-SD cells. Immunofluorescent staining showed that sphere clones overexpressed OCT-4, Nanog, and SOX-2, and Iow expressed MUG1 and vimentin. Tumor formation experiments showed that 1 x 103 sphere clone cells could induce much larger tumors in nude mice than 1 x 105 GBC-SD cells. In conclusion, sphere clones of gallbladder cancer with stem cell-like characteristics can be obtained using suspension cultures of GBC-SD cells in serum-free culture medium containing cisplatin.

  13. Stem cell-like ALDHbright cellular states in EGFR-mutant non-small cell lung cancer

    Science.gov (United States)

    Corominas-Faja, Bruna; Oliveras-Ferraros, Cristina; Cuyàs, Elisabet; Segura-Carretero, Antonio; Joven, Jorge; Martin-Castillo, Begoña; Barrajón-Catalán, Enrique; Micol, Vicente; Bosch-Barrera, Joaquim; Menendez, Javier A

    2013-01-01

    . This report is the first to show that: (1) loss of responsiveness to erlotinib in EGFR-mutant NSCLC can be explained in terms of erlotinib-refractory ALDHbright cells, which have been shown to exhibit stem cell-like properties; and (2) erlotinib-refractory ALDHbright cells are sensitive to the natural agent silibinin. Our findings highlight the benefit of administration of silibinin in combination with EGFR TKIs to target CSCs and minimize the ability of tumor cells to escape cell death in EGFR-mutant NSCLC patients. PMID:24047698

  14. Accurate Classification of Germinal Center B-Cell-Like/Activated B-Cell-Like Diffuse Large B-Cell Lymphoma Using a Simple and Rapid Reverse Transcriptase-Multiplex Ligation-Dependent Probe Amplification Assay: A CALYM Study.

    Science.gov (United States)

    Mareschal, Sylvain; Ruminy, Philippe; Bagacean, Cristina; Marchand, Vinciane; Cornic, Marie; Jais, Jean-Philippe; Figeac, Martin; Picquenot, Jean-Michel; Molina, Thierry Jo; Fest, Thierry; Salles, Gilles; Haioun, Corinne; Leroy, Karen; Tilly, Hervé; Jardin, Fabrice

    2015-04-09

    Diffuse large B-cell lymphoma, the most common non-Hodgkin lymphoma, is subdivided into germinal center B-cell-like and activated B-cell-like subtypes. Unfortunately, these lymphomas are difficult to differentiate in routine diagnosis, impeding the development of treatments. Patients with these lymphomas can benefit from specific therapies. We therefore developed a simple and rapid classifier based on a reverse transcriptase multiplex ligation-dependent probe amplification assay and 14 gene signatures. Compared with the Affymetrix U133+2 gold standard, all 46 samples (95% CI, 92%-100%) of a validation cohort classified by both techniques were attributed to the expected subtype. Similarly, 93% of the 55 samples (95% CI, 82%-98%) of a second independent series characterized with a mid-throughput gene expression profiling method were classified correctly. Unclassifiable sample proportions reached 13.2% and 13.8% in these cohorts, comparable with the frequency originally reported. The developed assay was also sensitive enough to obtain reliable results from formalin-fixed, paraffin-embedded samples and flexible enough to include prognostic factors such as MYC/BCL2 co-expression. Finally, in a series of 135 patients, both overall (P = 0.01) and progression-free (P = 0.004) survival differences between the two subtypes were confirmed. Because the multiplex ligation-dependent probe amplification method is already in use and requires only common instruments and reagents, it could easily be applied to clinical trial patient stratification to help in treatment decisions. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  15. Caulobacter chromosome in vivo configuration matches model predictions for a supercoiled polymer in a cell-like confinement

    DEFF Research Database (Denmark)

    Hong, Sun-Hae; Toro, Esteban; Mortensen, Kim;

    2013-01-01

    is the contour length, and cell-to-cell distribution of the interloci distance r is a universal function of r/n0.22 with broad cell-to-cell variability. For DNA segments greater than about 300 kb, the mean interloci distances scale as n, in agreement with previous observations. The 0.22 value of the scaling......We measured the distance between fluorescent-labeled DNA loci of various interloci contour lengths in Caulobacter crescentus swarmer cells to determine the in vivo configuration of the chromosome. For DNA segments less than about 300 kb, the mean interloci distances, 〈r〉, scale as n0.22, where n...... exponent for short DNA segments is consistent with theoretical predictions for a branched DNA polymer structure. Predictions from Brownian dynamics simulations of the packing of supercoiled DNA polymers in an elongated cell-like confinement are also consistent with a branched DNA structure, and simulated...

  16. LIN28B Activation by PRL-3 Promotes Leukemogenesis and a Stem Cell-like Transcriptional Program in AML.

    Science.gov (United States)

    Zhou, Jianbiao; Chan, Zit-Liang; Bi, Chonglei; Lu, Xiao; Chong, Phyllis S Y; Chooi, Jing-Yuan; Cheong, Lip-Lee; Liu, Shaw-Cheng; Ching, Ying Qing; Zhou, Yafeng; Osato, Motomi; Tan, Tuan Zea; Ng, Chin Hin; Ng, Siok-Bian; Wang, Shi; Zeng, Qi; Chng, Wee-Joo

    2017-03-01

    PRL-3 (PTP4A3), a metastasis-associated phosphatase, is also upregulated in patients with acute myeloid leukemia (AML) and is associated with poor prognosis, but the underlying molecular mechanism is unknown. Here, constitutive expression of PRL-3 in human AML cells sustains leukemogenesis in vitro and in vivo Furthermore, PRL-3 phosphatase activity dependently upregulates LIN28B, a stem cell reprogramming factor, which in turn represses the let-7 mRNA family, inducing a stem cell-like transcriptional program. Notably, elevated levels of LIN28B protein independently associate with worse survival in AML patients. Thus, these results establish a novel signaling axis involving PRL-3/LIN28B/let-7, which confers stem cell-like properties to leukemia cells that is important for leukemogenesis.Implications: The current study offers a rationale for targeting PRL-3 as a therapeutic approach for a subset of AML patients with poor prognosis. Mol Cancer Res; 15(3); 294-303. ©2016 AACR.

  17. Loss of PRDM1/BLIMP-1 function contributes to poor prognosis for activated B-cell-like diffuse large B-cell lymphoma

    DEFF Research Database (Denmark)

    Xia, Y; Xu-Monette, Z Y; Tzankov, A

    2017-01-01

    PRDM1/BLIMP-1, a master regulator of plasma-cell differentiation, is frequently inactivated in activated B-cell-like (ABC) diffuse large B-cell lymphoma (DLBCL) patients. Little is known about its genetic aberrations and relevant clinical implications. A large series of patients with de novo DLBC...

  18. JARID1B Expression Plays a Critical Role in Chemoresistance and Stem Cell-Like Phenotype of Neuroblastoma Cells.

    Directory of Open Access Journals (Sweden)

    Yung-Ting Kuo

    Full Text Available Neuroblastoma (NB is a common neural crest-derived extracranial solid cancer in children. Among all childhood cancers, NB causes devastating loss of young lives as it accounts for 15% of childhood cancer mortality. Neuroblastoma, especially high-risk stage 4 NB with MYCN amplification has limited treatment options and associated with poor prognosis. This necessitates the need for novel effective therapeutic strategy. JARID1B, also known as KDM5B, is a histone lysine demethylase, identified as an oncogene in many cancer types. Clinical data obtained from freely-accessible databases show a negative correlation between JARID1B expression and survival rates. Here, we demonstrated for the first time the role of JARID1B in the enhancement of stem cell-like activities and drug resistance in NB cells. We showed that JARID1B may be overexpressed in either MYCN amplification (SK-N-BE(2 or MYCN-non-amplified (SK-N-SH and SK-N-FI cell lines. JARID1B expression was found enriched in tumor spheres of SK-N-BE(2 and SK-N-DZ. Moreover, SK-N-BE(2 spheroids were more resistant to chemotherapeutics as compared to parental cells. In addition, we demonstrated that JARID1B-silenced cells acquired a decreased propensity for tumor invasion and tumorsphere formation, but increased sensitivity to cisplatin treatment. Mechanistically, reduced JARID1B expression led to the downregulation of Notch/Jagged signaling. Collectively, we provided evidence that JARID1B via modulation of stemness-related signaling is a putative novel therapeutic target for treating malignant NB.

  19. Lin28B is an oncofetal circulating cancer stem cell-like marker associated with recurrence of hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Shu-Wen Cheng

    Full Text Available By using an expressed sequence tag bioinformatic algorithm, we identified that Lin28 homolog B (Lin28B may have an oncofetal expression pattern which may facilitate detecting cancer cells in adults. It is also reported to be a potential marker for cancer stem cells. Therefore, we sought to verify oncofetal-stemness characters of Lin28B and test its potential as a circulating cancer stem cell-like marker in adult HCC patients. Lin28B mRNA was examined in a panel of fetal tissue, adult tissue and tumors. Lin28B was over-expressed or knocked down in HepG2 cells to evaluate its potential as a stem cell-like marker. RT-qPCR for Lin28B was performed in the peripheral blood mononuclear cells from patients with HCC receiving surgery (n=96 and non-HCC controls (n=60 and analyzed its clinical significance. Lin28B showed an oncofetal expression pattern. Its overexpression could upregulate stemness markers (OCT4, Nanog and SOX2 and enhance tumorsphere formation in vitro. Lin28B knockdown had opposite effects. Circulating Lin28B was detected in peripheral blood mononuclear cells in 3 cases (5% of non-HCC controls and 32 cases (33.3% of HCC patients. In HCC patients, circulating Lin28B was associated with high tumor grade (P=0.046, large size (P=0.005, high AJCC stage (P=0.044 and BCLC stage (P=0.017. Circulating Lin28B was significantly associated with decreased recurrence-free survival (P<0.001. Circulating Lin28B separated early stage HCC into 2 recurrence-free survival curves (P=0.003. In multivariate analysis, circulating Lin28B was an independent variable associated with early recurrence (P=0.045 and recurrence in early stage HCC (P=0.006. In conclusion, the oncofetal gene Lin28B is a potential oncofetal cancer-stem-cell-like circulating tumor cell marker that correlates with HCC recurrence after hepatectomy. Circulating Lin28B could refine early AJCC stages. Our finding supports the possible use of a TNMC (C for circulating tumor cells staging system

  20. Energy metabolism characterization of a novel cancer stem cell-like line 3AB-OS.

    Science.gov (United States)

    Palorini, Roberta; Votta, Giuseppina; Balestrieri, Chiara; Monestiroli, Andrea; Olivieri, Sandro; Vento, Renza; Chiaradonna, Ferdinando

    2014-02-01

    Cancer stem cells (CSC) have a central role in driving tumor growth. Since metabolism is becoming an important diagnostic and therapeutic target, characterization of CSC line energetic properties is an emerging need. Embryonic and adult stem cells, compared to differentiated cells, exhibit a reduced mitochondrial activity and a stronger dependence on aerobic glycolysis. Here, we aimed to comparatively analyze bioenergetics features of the human osteosarcoma 3AB-OS CSC-like line, and the parental osteosarcoma MG63 cells, from which 3AB-OS cells have been previously selected. Our results suggest that 3AB-OS cells depend on glycolytic metabolism more strongly than MG63 cells. Indeed, growth in glucose shortage or in presence of galactose or pyruvate (mitochondrial specific substrates) leads to a significant reduction of their proliferation compared to MG63 cells. Accordingly, 3AB-OS cells show an increased expression of lactate dehydrogenase A (LDHA) and a larger accumulation of lactate in the culture medium. In line with these findings 3AB-OS cells as compared to MG63 cells present a reduced mitochondrial respiration, a stronger sensitivity to glucose depletion or glycolysis inhibition and a lessened sensitivity to oxidative phosphorylation inhibitors. Additionally, in contrast to MG63 cells, 3AB-OS display fragmented mitochondria, which become networked as they grow in glucose-rich medium, while almost entirely loose these structures growing in low glucose. Overall, our findings suggest that 3AB-OS CSC energy metabolism is more similar to normal stem cells and to cancer cells characterized by a glycolytic anaerobic metabolism.

  1. Zinc Up-Regulates Insulin Secretion from β Cell-Like Cells Derived from Stem Cells from Human Exfoliated Deciduous Tooth (SHED)

    Science.gov (United States)

    Kim, Gyuyoup; Shin, Ki-Hyuk; Pae, Eung-Kwon

    2016-01-01

    Stem cells from human exfoliated deciduous tooth (SHED) offer several advantages over other stem cell sources. Using SHED, we examined the roles of zinc and the zinc uptake transporter ZIP8 (Zrt- and irt-like protein 8) while inducing SHED into insulin secreting β cell-like stem cells (i.e., SHED-β cells). We observed that ZIP8 expression increased as SHED differentiated into SHED-β cells, and that zinc supplementation at day 10 increased the levels of most pancreatic β cell markers—particularly Insulin and glucose transporter 2 (GLUT2). We confirmed that SHED-β cells produce insulin successfully. In addition, we note that zinc supplementation significantly increases insulin secretion with a significant elevation of ZIP8 transporters in SHED-β cells. We conclude that SHED can be converted into insulin-secreting β cell-like cells as zinc concentration in the cytosol is elevated. Insulin production by SHED-β cells can be regulated via modulation of zinc concentration in the media as ZIP8 expression in the SHED-β cells increases. PMID:27983594

  2. Zinc Up-Regulates Insulin Secretion from β Cell-Like Cells Derived from Stem Cells from Human Exfoliated Deciduous Tooth (SHED

    Directory of Open Access Journals (Sweden)

    Gyuyoup Kim

    2016-12-01

    Full Text Available Stem cells from human exfoliated deciduous tooth (SHED offer several advantages over other stem cell sources. Using SHED, we examined the roles of zinc and the zinc uptake transporter ZIP8 (Zrt- and irt-like protein 8 while inducing SHED into insulin secreting β cell-like stem cells (i.e., SHED-β cells. We observed that ZIP8 expression increased as SHED differentiated into SHED-β cells, and that zinc supplementation at day 10 increased the levels of most pancreatic β cell markers—particularly Insulin and glucose transporter 2 (GLUT2. We confirmed that SHED-β cells produce insulin successfully. In addition, we note that zinc supplementation significantly increases insulin secretion with a significant elevation of ZIP8 transporters in SHED-β cells. We conclude that SHED can be converted into insulin-secreting β cell-like cells as zinc concentration in the cytosol is elevated. Insulin production by SHED-β cells can be regulated via modulation of zinc concentration in the media as ZIP8 expression in the SHED-β cells increases.

  3. Differentiation of rat iPS cells and ES cells into granulosa cell-like cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Juan Zhang; Hui Li; Zhao Wu; XiaoJun Tan; Fengying Liu; Xianghong Huang; Xiaoling Fang

    2013-01-01

    Premature ovarian failure (POF) is an ovarian defect characterized by the premature depletion of ovarian follicles before 40 years of age,representing one major cause of female infertility.Stem cells provide the possibility of a potential treatment for POF.In this study,rat embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) were co-cultured with granulosa cells (GCs) to differentiate to GC-like cells.The level of estradiol (E2) analyzed by radioimmunoassay showed that the E2 concentration of the culture supernatant of co-cultured rat iPSCs and ESCs increased in a time-dependent manner,compared with the GCs group that has an opposite trend.The expression of follicle-stimulating hormone receptor (FSHR) was confirmed by immunostaining.These results indicated that rat iPSCs and ESCs were effectively induced to GC-like cells through indirect cell-to-cell contact.Real-time polymerase chain reaction was performed to analyze the expression level of marker genes in POF,including BMP15,FMR1,FSHR,INHA,AMH,NOBOX,FOXO3,EIF2B,FIGLA,and GDF9.The BMP15,FSHR,INHA,AMH,NOBOX,and GDF9 genes were significantly up-regulated in iPSCs and ESCs cocultured with GCs in comparison with ceils that were not co-cultured.Thus,here we demonstrated an available method to differentiate rat iPSCs and ESCs into GC-like cells in vitro for the possible cell therapy of POF.

  4. Mel-18 negatively regulates stem cell-like properties through downregulation of miR-21 in gastric cancer.

    Science.gov (United States)

    Wang, Xiao-Feng; Zhang, Xiao-Wei; Hua, Rui-Xi; Du, Yi-Qun; Huang, Ming-Zhu; Liu, Yong; Cheng, Yu Fang; Guo, Wei-Jian

    2016-09-27

    Mel-18, a polycomb group protein, has been reported to act as a tumor suppressor and be down-regulated in several human cancers including gastric cancer. It was also found that Mel-18 negatively regulates self-renewal of hematopoietic stem cells and breast cancer stem cells (CSCs). This study aimed to clarify its role in gastric CSCs and explore the mechanisms. We found that low-expression of Mel-18 was correlated with poor prognosis and negatively correlated with overexpression of stem cell markers Oct4, Sox2, and Gli1 in 101 gastric cancer tissues. Mel-18 was down-regulated in cultured spheroid cells, which possess CSCs, and overexpression of Mel-18 inhibits cells sphere-forming ability and tumor growth in vivo. Besides, Mel-18 was lower-expressed in ovary metastatic lesions compared with that in primary lesions of gastric cancer, and Mel-18 overexpression inhibited the migration ability of gastric cancer cells. Interestingly, overexpression of Mel-18 resulted in down-regulation of miR-21 in gastric cancer cells and the expression of Mel-18 was negatively correlated with the expression of miR-21 in gastric cancer tissues. Furthermore, miR-21 overexpression partially restored sphere-forming ability, migration potential and chemo-resistance in Mel-18 overexpressing gastric cancer cells. These results suggests Mel-18 negatively regulates stem cell-like properties through downregulation of miR-21 in gastric cancer cells.

  5. Identification of subpopulations in mesenchymal stem cell-like cultures from human umbilical cord

    Directory of Open Access Journals (Sweden)

    Majore Ingrida

    2009-03-01

    Full Text Available Abstract Background A variety of cell types can be identified in the adherent fraction of bone marrow mononuclear cells including more primitive and embryonic-like stem cells, mesenchymal stem cells (MSC, lineage-committed progenitors as well as mature cells such as osteoblasts and fibroblasts. Different methods are described for the isolation of single bone marrow stem cell subpopulations – beginning from ordinary size sieving, long term cultivation under specific conditions to FACS-based approaches. Besides bone marrow-derived subpopulations, also other tissues including human umbilical cord (UC have been recently suggested to provide a potential source for MSC. Although of clinical importance, these UC-derived MSC populations remain to be characterized. It was thus the aim of the present study to identify possible subpopulations in cultures of MSC-like cells obtained from UC. We used counterflow centrifugal elutriation (CCE as a novel strategy to successfully address this question. Results UC-derived primary cells were separated by CCE and revealed differentially-sized populations in the fractions. Thus, a subpopulation with an average diameter of about 11 μm and a small flat cell body was compared to a large sized subpopulation of about 19 μm average diameter. Flow cytometric analysis revealed the expression of certain MSC stem cell markers including CD44, CD73, CD90 and CD105, respectively, although these markers were expressed at higher levels in the small-sized population. Moreover, this small-sized subpopulation exhibited a higher proliferative capacity as compared to the total UC-derived primary cultures and the large-sized cells and demonstrated a reduced amount of aging cells. Conclusion Using the CCE technique, we were the first to demonstrate a subpopulation of small-sized UC-derived primary cells carrying MSC-like characteristics according to the presence of various mesenchymal stem cell markers. This is also supported by the

  6. Research on Isolation and Clone of Embryonic Stem Cell-Like in Bovine

    Institute of Scientific and Technical Information of China (English)

    AN Li-long; YANG Qi; XIAO Mei; FENG Xiu-Liang; YANG Chun-rong; LEI An-min; GAO Zhi-min; DOU Zhong-ying; QIU Huai

    2002-01-01

    Bovine embryonic stem cell would be invaluable for researching the aspect of animal cloning, production transgenic animal and discussion of gene function in vitro. With the object of establishing an effective culture system for isolation and clone of bovine pluripotent stem cell, we cultured bovine embryos and mouse embryos including morula blastula and hatached blastula and obtained animal ICM on Primary marine embryonic fibroblast (Primary murine embryonic fibroblast, PMEF) feeder layer with tissue medium(DMEM supplemented with 15ml/100ml NBS ,0.1μmol/L Na2SeO3, 0. 1mmol/L β-mercaptoethanol, 1 000ng/ml LIF,10 ng/ml IGF, 1mmol/L necessary amino acid and 1mmol/L L-glutamine), then, we obtained mouse ICM and bovine ICM. Moreover, we isolated and cloned the 6 passage bovine ES like cells(12 cell lines) and 9 passage marine ES like cells (52 cell lines) deriving from bovine ICM and murine ICM respectively on the feeder layer of PMEF by disaggregating ICM and ES cell clones of bovine and murine into smaller clumps through digesting with 0. 125g/100ml trypsin and 0.02g/100ml EDTA and scattering with a glass needle. The pluripotency of both murine and bovine ES like cells was identified with morphological character, histochemistry identification, karyotype analysis and differentiation of ES cells in vitro or in vivo. This result showed that bovine embryonic stem cell and murine embryonic stem cell had developmental pluripotency.

  7. Established thymic epithelial progenitor/stem cell-like cell lines differentiate into mature thymic epithelial cells and support T cell development.

    Directory of Open Access Journals (Sweden)

    Pengfei Chen

    Full Text Available Common thymic epithelial progenitor/stem cells (TEPCs differentiate into cortical and medullary thymic epithelial cells (TECs, which are required for the development and selection of thymocytes. Mature TEC lines have been widely established. However, the establishment of TEPC lines is rarely reported. Here we describe the establishment of thymic epithelial stomal cell lines, named TSCs, from fetal thymus. TSCs express some of the markers present on tissue progenitor/stem cells such as Sca-1. Gene expression profiling verifies the thymic identity of TSCs. RANK stimulation of these cells induces expression of autoimmune regulator (Aire and Aire-dependent tissue-restricted antigens (TRAs in TSCs in vitro. TSCs could be differentiated into medullary thymic epithelial cell-like cells with exogenously expressed NF-κB subunits RelB and p52. Importantly, upon transplantation under the kidney capsules of nude mice, TSCs are able to differentiate into mature TEC-like cells that can support some limited development of T cells in vivo. These findings suggest that the TSC lines we established bear some characteristics of TEPC cells and are able to differentiate into functional TEC-like cells in vitro and in vivo. The cloned TEPC-like cell lines may provide useful tools to study the differentiation of mature TEC cells from precursors.

  8. Lin28a is a putative factor in regulating cancer stem cell-like properties in side population cells of oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, S.; Tanaka, J.; Okada, S.; Isobe, T.; Yamamoto, G.; Yasuhara, R.; Irie, T.; Akiyama, C.; Kohno, Y.; Tachikawa, T.; Mishima, K., E-mail: mishima-k@dent.showa-u.ac.jp

    2013-05-01

    Cancer stem cells (CSCs) are among the target cells of cancer therapy because they are uniquely involved in both cancer progression and sensitivity to chemotherapeutic agents. We identified side population (SP) cells, which are known to be an enriched population of CSC, in five oral squamous cell carcinoma (OSCC) cells (SCC9, SCC25, TOSCC7, TOSCC17, and TOSCC23). The percentages of SP cells ranged from 0% to 3.3%, with TOSCC23 cells showing the highest percentages of SP cells (3.3% of the total cell population). The SP cells isolated from TOSCC23 cells also showed greater cell proliferation and invasion compared to non-SP (MP) cells. Therefore, our initial findings suggested that SP cells were enriched for CSC-like cells. Furthermore, DNA microarray analysis revealed that the expression of cell proliferation-related and anti-apoptotic genes was greater in SP cells compared to MP cells. We focused on Lin28a, which showed the highest expression (approximately 22-fold) among the upregulated genes. The overexpression of Lin28a in TOSCC23 cells increased their proliferation, colony formation, and invasion. These findings suggest that Lin28a is an appropriate CSC target molecule for OSCC treatment - Highlights: ► Lin28a is a SP cell-specific factor in oral squamous cell carcinoma (OSCC) cells. ► SP cells in OSCC cells show cancer stem cell-like properties. ► Lin28a regulates OSCC proliferative and invasive activities.

  9. Rad6 upregulation promotes stem cell-like characteristics and platinum resistance in ovarian cancer

    Science.gov (United States)

    Somasagara, Ranganatha R.; Tripathi, Kaushlendra; Spencer, Sebastian M.; Clark, David W.; Barnett, Reagan; Bachaboina, Lavanya; Scalici, Jennifer; Rocconi, Rodney P.; Piazza, Gary A.; Palle, Komaraiah

    2015-01-01

    Ovarian cancer is the fifth most deadly cancer in women in the United States and despite advances in surgical and chemotherapeutic treatments survival rates have not significantly improved in decades. The poor prognosis for ovarian cancer patients is largely due to the extremely high (80%) recurrence rate of ovarian cancer and because the recurrent tumors are often resistant to the widely utilized platinum-based chemotherapeutic drugs. In this study, expression of Rad6, an E2 ubiquitin-conjugating enzyme, was found to strongly correlate with ovarian cancer progression. Furthermore, in ovarian cancer cells Rad6 was found to stabilize β-catenin promoting stem cell-related characteristics, including expression of stem cell markers and anchorage-independent growth. Cancer stem cells can promote chemoresistance, tumor recurrence and metastasis, all of which are limiting factors in treating ovarian cancer. Thus it is significant that Rad6 overexpression led to increased resistance to the chemotherapeutic drug carboplatin and correlated with tumor cell invasion. These findings show the importance of Rad6 in ovarian cancer and emphasize the need for further studies of Rad6 as a potential target for the treatment of ovarian cancer. PMID:26679603

  10. API5 confers cancer stem cell-like properties through the FGF2-NANOG axis

    Science.gov (United States)

    Song, K-H; Cho, H; Kim, S; Lee, H-J; Oh, S J; Woo, S R; Hong, S-O; Jang, H S; Noh, K H; Choi, C H; Chung, J-Y; Hewitt, S M; Kim, J-H; Son, M; Kim, S-H; Lee, B I; Park, H-C; Bae, Y-K; Kim, T W

    2017-01-01

    Immune selection drives the evolution of tumor cells toward an immune-resistant and cancer stem cell (CSC)-like phenotype. We reported that apoptosis inhibitor-5 (API5) acts as an immune escape factor, which has a significant role in controlling immune resistance to antigen-specific T cells, but its functional association with CSC-like properties remains largely unknown. In this study, we demonstrated for the first time that API5 confers CSC-like properties, including NANOG expression, the frequency of CD44-positive cells and sphere-forming capacity. Critically, these CSC-like properties mediated by API5 are dependent on FGFR1 signaling, which is triggered by E2F1-dependent FGF2 expression. Furthermore, we uncovered the FGF2-NANOG molecular axis as a downstream component of API5 signaling that is conserved in cervical cancer patients. Finally, we found that the blockade of FGFR signaling is an effective strategy to control API5high human cancer. Thus, our findings reveal a crucial role of API5 in linking immune resistance and CSC-like properties, and provide the rationale for its therapeutic application for the treatment of API5+ refractory tumors. PMID:28092370

  11. Chemopreventive effect of PSP through targeting of prostate cancer stem cell-like population.

    Science.gov (United States)

    Luk, Sze-Ue; Lee, Terence Kin-Wah; Liu, Ji; Lee, Davy Tak-Wing; Chiu, Yung-Tuen; Ma, Stephanie; Ng, Irene Oi-Lin; Wong, Yong-Chuan; Chan, Franky Leung; Ling, Ming-Tat

    2011-01-01

    Recent evidence suggested that prostate cancer stem/progenitor cells (CSC) are responsible for cancer initiation as well as disease progression. Unfortunately, conventional therapies are only effective in targeting the more differentiated cancer cells and spare the CSCs. Here, we report that PSP, an active component extracted from the mushroom Turkey tail (also known as Coriolus versicolor), is effective in targeting prostate CSCs. We found that treatment of the prostate cancer cell line PC-3 with PSP led to the down-regulation of CSC markers (CD133 and CD44) in a time and dose-dependent manner. Meanwhile, PSP treatment not only suppressed the ability of PC-3 cells to form prostaspheres under non-adherent culture conditions, but also inhibited their tumorigenicity in vivo, further proving that PSP can suppress prostate CSC properties. To investigate if the anti-CSC effect of PSP may lead to prostate cancer chemoprevention, transgenic mice (TgMAP) that spontaneously develop prostate tumors were orally fed with PSP for 20 weeks. Whereas 100% of the mice that fed with water only developed prostate tumors at the end of experiment, no tumors could be found in any of the mice fed with PSP, suggesting that PSP treatment can completely inhibit prostate tumor formation. Our results not only demonstrated the intriguing anti-CSC effect of PSP, but also revealed, for the first time, the surprising chemopreventive property of oral PSP consumption against prostate cancer.

  12. The key components of Schwann cell-like differentiation medium and their effects on gene expression pattern of adipose-derived stem cells.

    Science.gov (United States)

    Orbay, Hakan; Little, Christopher J; Lankford, Lee; Olson, Christine A; Sahar, David E

    2015-05-01

    Schwann cell-like cells differentiated from adipose-derived stem cells may have an important role in peripheral nerve regeneration. Herein, we document the individual effects of growth factors in Schwann cell-like differentiation medium. There were 6 groups in the study. In the control group, we supplemented the rat adipose-derived stem cells with normal cell culture medium. In group 1, we fed the cells with Schwann cell-like differentiation medium (normal cell culture medium supplemented with platelet-derived growth factor, basic fibroblast growth factor, forskolin, and glial growth factor). In the other groups, we removed the components of the medium one at a time from the differentiation medium so that group 2 lacked glial growth factor, group 3 lacked forskolin, group 4 lacked basic fibroblast growth factor, and group 5 lacked platelet-derived growth factor. We examined the expression of the Schwann cell-specific genes with quantitative reverse transcription polymerase chain reaction and immunofluorescence staining in each group. Groups 3 and 4, lacking forskolin and basic fibroblast growth factor, respectively, had the highest expression levels of integrin-β4, and p75. Group 1 showed a 3.2-fold increase in the expression of S100, but the expressions of integrin-β4 and p75 were significantly lower compared to groups 3 and 4. Group 2 [glial growth factor (-)] did not express significant levels of Schwann cell-specific genes. The gene expression profile in group 4 most closely resembled Schwann cells. Immunofluorescence staining results were parallel with the quantitative real-time polymerase chain reaction results. Glial growth factor is a key component of Schwann cell-like differentiation medium.

  13. Oncogenic KRAS activates an embryonic stem cell-like program in human colon cancer initiation

    OpenAIRE

    Le Rolle, Anne-France; Chiu, Thang K; ZENG, ZHAOSHI; Shia, Jinru; Weiser, Martin R; Paty, Philip B.; Chiu, Vi K

    2016-01-01

    Colorectal cancer is the third most frequently diagnosed cancer worldwide. Prevention of colorectal cancer initiation represents the most effective overall strategy to reduce its associated morbidity and mortality. Activating KRAS mutation (KRASmut ) is the most prevalent oncogenic driver in colorectal cancer development, and KRASmut inhibition represents an unmet clinical need. We apply a systems-level approach to study the impact of KRASmut on stem cell signaling during human colon cancer i...

  14. Characterizing cancer cells with cancer stem cell-like features in 293T human embryonic kidney cells

    OpenAIRE

    Buchholz Thomas A; Lacerda Lara; Xu Wei; Robertson Fredika; Ueno Naoto T; Lucci Anthony; Landis Melissa D; Rodriguez Angel A; Li Li; Cohen Evan; Gao Hui; Krishnamurthy Savitri; Zhang Xiaomei; Debeb Bisrat G; Cristofanilli Massimo

    2010-01-01

    Abstract Background Since the first suggestion of prospectively identifiable cancer stem cells in solid tumors, efforts have been made to characterize reported cancer stem cell surrogates in existing cancer cell lines, and cell lines rich with these surrogates have been used to screen for cancer stem cell targeted agents. Although 293T cells were derived from human embryonic kidney, transplantation of these cells into the mammary fat pad yields aggressive tumors that self-renew as evidenced b...

  15. Efficient induction of inner ear hair cell-like cells from mouse ES cells using combination of Math1 transfection and conditioned medium from ST2 stromal cells.

    Science.gov (United States)

    Ouji, Yukiteru; Sakagami, Masaharu; Omori, Hiroko; Higashiyama, Shinji; Kawai, Norikazu; Kitahara, Tadashi; Wanaka, Akio; Yoshikawa, Masahide

    2017-08-01

    We sought to establish a more efficient technique for induction of inner ear hair cell-like cells (HC-like cells) from embryonic stem cells (ES cells) by using a combination of two previously reported methods; ST2 stromal cell-conditioned medium, known to be favorable for HC-like cell induction (HIST2 method), and ES cells with transfer of the Math1 gene (Math1-ES cells). Math1-ES cells carrying Tet-inducible Math1 were cultured for 14days with doxycycline in conditioned medium from cultures of ST2 stromal cells following formation of 4-day embryoid bodies (EBs). Although each of the previously introduced methods have been reported to induce approximately 20% HC-like cells and 10% HC-like cells in their respective populations in EB outgrowths at the end of the culture periods, the present combined method was able to generate approximately 30% HC-like cells expressing HC-related markers (myosin6, myosin7a, calretinin, α9AchR, Brn3c), which showed remarkable formation of stereocilia-like structures. Analysis of expressions of marker genes specific for cochlear (Lmod3, Emcn) and vestibular (Dnah5, Ptgds) cells indicated that our HIST2 method may lead to induction of cochlear- and vestibular-type cells. In addition, continuous Math1 induction by doxycycline without use of the HIST2 method preferentially induced cochlear markers with negligible effects on vestibular marker induction. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Inhibition of MALT1 protease activity is selectively toxic for activated B cell-like diffuse large B cell lymphoma cells.

    Science.gov (United States)

    Ferch, Uta; Kloo, Bernhard; Gewies, Andreas; Pfänder, Vera; Düwel, Michael; Peschel, Christian; Krappmann, Daniel; Ruland, Jürgen

    2009-10-26

    Diffuse large B cell lymphoma (DLBCL) is the most common type of lymphoma in humans. The aggressive activated B cell-like (ABC) subtype of DLBCL is characterized by constitutive NF-kappaB activity and requires signals from CARD11, BCL10, and the paracaspase MALT1 for survival. CARD11, BCL10, and MALT1 are scaffold proteins that normally associate upon antigen receptor ligation. Signal-induced CARD11-BCL10-MALT1 (CBM) complexes couple upstream events to IkappaB kinase (IKK)/NF-kappaB activation. MALT1 also possesses a recently recognized proteolytic activity that cleaves and inactivates the negative NF-kappaB regulator A20 and BCL10 upon antigen receptor ligation. Yet, the relevance of MALT1 proteolytic activity for malignant cell growth is unknown. Here, we demonstrate preassembled CBM complexes and constitutive proteolysis of the two known MALT1 substrates in ABC-DLBCL, but not in germinal center B cell-like (GCB) DLBCL. ABC-DLBCL cell treatment with a MALT1 protease inhibitor blocks A20 and BCL10 cleavage, reduces NF-kappaB activity, and decreases the expression of NF-kappaB targets genes. Finally, MALT1 paracaspase inhibition results in death and growth retardation selectively in ABC-DLBCL cells. Thus, our results indicate a growth-promoting role for MALT1 paracaspase activity in ABC-DLBCL and suggest that a pharmacological MALT1 protease inhibition could be a promising approach for lymphoma treatment.

  17. 6-Shogaol Inhibits Breast Cancer Cells and Stem Cell-Like Spheroids by Modulation of Notch Signaling Pathway and Induction of Autophagic Cell Death.

    Science.gov (United States)

    Ray, Anasuya; Vasudevan, Smreti; Sengupta, Suparna

    2015-01-01

    Cancer stem cells (CSCs) pose a serious obstacle to cancer therapy as they can be responsible for poor prognosis and tumour relapse. In this study, we have investigated inhibitory activity of the ginger-derived compound 6-shogaol against breast cancer cells both in monolayer and in cancer-stem cell-like spheroid culture. The spheroids were generated from adherent breast cancer cells. 6-shogaol was effective in killing both breast cancer monolayer cells and spheroids at doses that were not toxic to noncancerous cells. The percentages of CD44+CD24-/low cells and the secondary sphere content were reduced drastically upon treatment with 6-shogaol confirming its action on CSCs. Treatment with 6-shogaol caused cytoplasmic vacuole formation and cleavage of microtubule associated protein Light Chain3 (LC3) in both monolayer and spheroid culture indicating that it induced autophagy. Kinetic analysis of the LC3 expression and a combination treatment with chloroquine revealed that the autophagic flux instigated cell death in 6-shogaol treated breast cancer cells in contrast to the autophagy inhibitor chloroquine. Furthermore, 6-shogaol-induced cell death got suppressed in the presence of chloroquine and a very low level of apoptosis was exhibited even after prolonged treatment of the compound, suggesting that autophagy is the major mode of cell death induced by 6-shogaol in breast cancer cells. 6-shogaol reduced the expression levels of Cleaved Notch1 and its target proteins Hes1 and Cyclin D1 in spheroids, and the reduction was further pronounced in the presence of a γ-secretase inhibitor. Secondary sphere formation in the presence of the inhibitor was also further reduced by 6-shogaol. Together, these results indicate that the inhibitory action of 6-shogaol on spheroid growth and sustainability is conferred through γ-secretase mediated down-regulation of Notch signaling. The efficacy of 6-shogaol in monolayer and cancer stem cell-like spheroids raise hope for its

  18. Neurospheres from rat adipose-derived stem cells could be induced into functional Schwann cell-like cells in vitro

    Directory of Open Access Journals (Sweden)

    Shan Yanchang

    2008-02-01

    Full Text Available Abstract Background Schwann cells (SC which are myelin-forming cells in peripheral nervous system are very useful for the treatment of diseases of peripheral nervous system and central nervous system. However, it is difficult to obtain sufficient large number of SC for clinical use, so alternative cell systems are desired. Results Using a procedure similar to the one used for propagation of neural stem cells, we could induce rat adipose-derived stem cells (ADSC into floating neurospheres. In addition to being able to differentiate into neuronal- and glial-like cells, neurospheres could be induced to differentiate into SC-like cells. SC-like cells were bi- or tri-polar in shape and immunopositive for nestin and SC markers p75, GFAP and S-100, identical to genuine SC. We also found that SC-like cells could induce the differentiation of SH-SY5Y neuroblastoma cells efficiently, perhaps through secretion of soluble substances. We showed further that SC-like cells could form myelin structures with PC12 cell neurites in vitro. Conclusion These findings indicated that ADSC could differentiate into SC-like cells in terms of morphology, phenotype and functional capacities. SC-like cells induced from ADSC may be useful for the treatment of neurological diseases.

  19. Isolation and transplantation of corneal endothelial cell-like cells derived from in-vitro-differentiated human embryonic stem cells.

    Science.gov (United States)

    Zhang, Kai; Pang, Kunpeng; Wu, Xinyi

    2014-06-15

    The maintenance of corneal dehydration and transparency depends on barrier and pump functions of corneal endothelial cells (CECs). The human CECs have no proliferation capacity in vivo and the ability to divide in vitro under culture conditions is dramatically limited. Thus, the acquisition of massive cells analogous to normal human CECs is extremely necessary whether from the perspective of cellular basic research or from clinical applications. Here we report the derivation of CEC-like cells from human embryonic stem cells (hESCs) through the periocular mesenchymal precursor (POMP) phase. Using the transwell coculture system of hESCs with differentiated human corneal stromal cells, we induced hESCs to differentiate into POMPs. Then, CEC-like cells were derived from POMPs with lens epithelial cell-conditioned medium. Within 1 week, CEC-like cells that expressed the corneal endothelium (CE) differentiation marker N-cadherin and transcription factors FoxC1 and Pitx2 were detectable. Fluorescence-activated cell sorting (FACS)-based isolation of the N-cadherin/vimentin dual-positive population enriches for CEC-like cells. The isolated CEC-like cells were labeled with carboxyfluorescein diacetate, succinimidyl ester (CFDA SE) and seeded onto posterior acellular porcine corneal matrix lamellae to construct the CEC-like cell sheets. Pump function parameters of the CEC-like cell sheets approximated those of human donor corneas. Importantly, when the CEC-like cell sheets were transplanted into the eyes of rabbit CE dysfunction models, the corneal transparency was restored gradually. In conclusion, CEC-like cells derived from hESCs displayed characteristics of native human CECs. This renewable source of human CECs offers massive cells for further studies of human CEC biological characteristics and potential applications of replacement therapies as substitution for donor CECs in the future.

  20. Stem cell-like differentiation potentials of endometrial side population cells as revealed by a newly developed in vivo endometrial stem cell assay.

    Directory of Open Access Journals (Sweden)

    Kaoru Miyazaki

    Full Text Available BACKGROUND: Endometrial stem/progenitor cells contribute to the cyclical regeneration of human endometrium throughout a woman's reproductive life. Although the candidate cell populations have been extensively studied, no consensus exists regarding which endometrial population represents the stem/progenitor cell fraction in terms of in vivo stem cell activity. We have previously reported that human endometrial side population cells (ESP, but not endometrial main population cells (EMP, exhibit stem cell-like properties, including in vivo reconstitution of endometrium-like tissues when xenotransplanted into immunodeficient mice. The reconstitution efficiency, however, was low presumably because ESP cells alone could not provide a sufficient microenvironment (niche to support their stem cell activity. The objective of this study was to establish a novel in vivo endometrial stem cell assay employing cell tracking and tissue reconstitution systems and to examine the stem cell properties of ESP through use of this assay. METHODOLOGY/PRINCIPAL FINDINGS: ESP and EMP cells isolated from whole endometrial cells were infected with lentivirus to express tandem Tomato (TdTom, a red fluorescent protein. They were mixed with unlabeled whole endometrial cells and then transplanted under the kidney capsule of ovariectomized immunodeficient mice. These mice were treated with estradiol and progesterone for eight weeks and nephrectomized. All of the grafts reconstituted endometrium-like tissues under the kidney capsules. Immunofluorescence revealed that TdTom-positive cells were significantly more abundant in the glandular, stromal, and endothelial cells of the reconstituted endometrium in mice transplanted with TdTom-labeled ESP cells than those with TdTom-labeled EMP cells. CONCLUSIONS/SIGNIFICANCE: We have established a novel in vivo endometrial stem cell assay in which multi-potential differentiation can be identified through cell tracking during in vivo

  1. TNFα enhances cancer stem cell-like phenotype via Notch-Hes1 activation in oral squamous cell carcinoma cells.

    Science.gov (United States)

    Lee, Sung Hee; Hong, Hannah S; Liu, Zi Xiao; Kim, Reuben H; Kang, Mo K; Park, No-Hee; Shin, Ki-Hyuk

    2012-07-20

    Cancer stem-like cell (CSC; also known as tumor initiating cell) is defined as a small subpopulation of cancer cells within a tumor and isolated from various primary tumors and cancer cell lines. CSCs are highly tumorigenic and resistant to anticancer treatments. In this study, we found that prolonged exposure to tumor necrosis factor alpha (TNFα), a major proinflammatory cytokine, enhances CSC phenotype of oral squamous cell carcinoma (OSCC) cells, such as an increase in tumor sphere-forming ability, stem cell-associated genes expression, chemo-radioresistance, and tumorigenicity. Moreover, activation of Notch1 signaling was detected in the TNFα-exposed cells, and suppression of Notch1 signaling inhibited CSC phenotype. Furthermore, we demonstrated that inhibition of a Notch downstream target, Hes1, led to suppression of CSC phenotype in the TNFα-exposed cells. We also found that Hes1 expression is commonly upregulated in OSCC lesions compared to precancerous dysplastic lesions, suggesting the possible involvement of Hes1 in OSCC progression and CSC in vivo. In conclusion, inflammatory cytokine exposure may enhance CSC phenotype of OSCC, in part by activating the Notch-Hes1 pathway.

  2. ALDH1A1 maintains ovarian cancer stem cell-like properties by altered regulation of cell cycle checkpoint and DNA repair network signaling.

    Directory of Open Access Journals (Sweden)

    Erhong Meng

    Full Text Available OBJECTIVE: Aldehyde dehydrogenase (ALDH expressing cells have been characterized as possessing stem cell-like properties. We evaluated ALDH+ ovarian cancer stem cell-like properties and their role in platinum resistance. METHODS: Isogenic ovarian cancer cell lines for platinum sensitivity (A2780 and platinum resistant (A2780/CP70 as well as ascites from ovarian cancer patients were analyzed for ALDH+ by flow cytometry to determine its association to platinum resistance, recurrence and survival. A stable shRNA knockdown model for ALDH1A1 was utilized to determine its effect on cancer stem cell-like properties, cell cycle checkpoints, and DNA repair mediators. RESULTS: ALDH status directly correlated to platinum resistance in primary ovarian cancer samples obtained from ascites. Patients with ALDHHIGH displayed significantly lower progression free survival than the patients with ALDHLOW cells (9 vs. 3 months, respectively p<0.01. ALDH1A1-knockdown significantly attenuated clonogenic potential, PARP-1 protein levels, and reversed inherent platinum resistance. ALDH1A1-knockdown resulted in dramatic decrease of KLF4 and p21 protein levels thereby leading to S and G2 phase accumulation of cells. Increases in S and G2 cells demonstrated increased expression of replication stress associated Fanconi Anemia DNA repair proteins (FANCD2, FANCJ and replication checkpoint (pS317 Chk1 were affected. ALDH1A1-knockdown induced DNA damage, evidenced by robust induction of γ-H2AX and BAX mediated apoptosis, with significant increases in BRCA1 expression, suggesting ALDH1A1-dependent regulation of cell cycle checkpoints and DNA repair networks in ovarian cancer stem-like cells. CONCLUSION: This data suggests that ovarian cancer cells expressing ALDH1A1 may maintain platinum resistance by altered regulation of cell cycle checkpoint and DNA repair network signaling.

  3. Multipotent Neural Crest Stem Cell-Like Cells from Rat Vibrissa Dermal Papilla Induce Neuronal Differentiation of PC12 Cells

    Directory of Open Access Journals (Sweden)

    Meiying Li

    2014-01-01

    Full Text Available Bone marrow mesenchymal stem cells (BMSCs transplants have been approved for treating central nervous system (CNS injuries and diseases; however, their clinical applications are limited. Here, we model the therapeutic potential of dermal papilla cells (DPCs in vitro. DPCs were isolated from rat vibrissae and characterized by immunocytofluorescence, RT-PCR, and multidifferentiation assays. We examined whether these cells could secrete neurotrophic factors (NTFs by using cocultures of rat pheochromocytoma cells (PC12 with conditioned medium and ELISA assay. DPCs expressed Sox10, P75, Nestin, Sox9, and differentiated into adipocytes, osteoblasts, smooth muscle cells, and neurons under specific inducing conditions. The DPC-conditioned medium (DPC-CM induced neuronal differentiation of PC12 cells and promoted neurite outgrowth. Results of ELISA assay showed that compared to BMSCs, DPCs secreted more brain-derived neurotrophic factor (BDNF and glial cell line-derived neurotrophic factor (GDNF. Moreover, we observed that, compared with the total DPC population, sphere-forming DPCs expressed higher levels of Nestin and P75 and secreted greater amounts of GDNF. The DPCs from craniofacial hair follicle papilla may be a new and promising source for treating CNS injuries and diseases.

  4. Environment-responsive fluorescent nucleoside analogue probe for studying oligonucleotide dynamics in a model cell-like compartment.

    Science.gov (United States)

    Pawar, Maroti G; Srivatsan, Seergazhi G

    2013-11-21

    The majority of fluorescent nucleoside analogue probes that have been used in the in vitro study of nucleic acids are not suitable for cell-based biophysical assays because they exhibit excitation maxima in the UV region and low quantum yields within oligonucleotides. Therefore, we propose that the photophysical characterization of oligonucleotides labeled with a fluorescent nucleoside analogue in reverse micelles (RM), which are good biological membrane models and UV-transparent, could provide an alternative approach to studying the properties of nucleic acids in a cell-like confined environment. In this context, we describe the photophysical properties of an environment-sensitive fluorescent uridine analogue (1), based on the 5-(benzo[b]thiophen-2-yl)pyrimidine core, in micelles and RM. The emissive nucleoside, which is polarity- and viscosity-sensitive, reports the environment of the surfactant assemblies via changes in its fluorescence properties. The nucleoside analogue, incorporated into an RNA oligonucleotide and hybridized to its complementary DNA and RNA oligonucleotides, exhibits a significantly higher fluorescence intensity, lifetime, and anisotropy in RM than in aqueous buffer, which is consistent with the environment of RM. Collectively, our results demonstrate that nucleoside 1 could be utilized as a fluorescent label to study the function of nucleic acids in a model cellular milieu.

  5. Human Dental Pulp-Derived Cells Produce Bone-Like Tissue and Exhibit Bone Cell-Like Responsiveness to Mechanical Loading

    DEFF Research Database (Denmark)

    Kraft, David Christian Evar; Melsen, Birte; Bindslev, Dorthe Arenholt

    2010-01-01

    Recent studies have shown that dental pulp cells possess stem cell like potential and thus may be potential candidates for tissue engineering purposes particularly in the oro-facial region. Successful tissue engineering ideally requires that newly formed bone adapts its mass, shape, and trabecular...... and characterize cell lines from human 3rd molar dental pulp tissue to determine whether human dental pulp-derived cells (DPCs) are osteogenic and responsive to mechanical loading by pulsating fluid flow (PFF) in vitro. Methods: Human DPCs used for this study were characterized by measuring proliferation...

  6. Epithelial-to-mesenchymal transition (EMT) induced by inflammatory priming elicits mesenchymal stromal cell-like immune-modulatory properties in cancer cells.

    Science.gov (United States)

    Ricciardi, M; Zanotto, M; Malpeli, G; Bassi, G; Perbellini, O; Chilosi, M; Bifari, F; Krampera, M

    2015-03-17

    Epithelial-to-mesenchymal transition (EMT) has a central role in cancer progression and metastatic dissemination and may be induced by local inflammation. We asked whether the inflammation-induced acquisition of mesenchymal phenotype by neoplastic epithelial cells is associated with the onset of mesenchymal stromal cell-like immune-regulatory properties that may enhance tumour immune escape. Cell lines of lung adenocarcinoma (A549), breast cancer (MCF7) and hepatocellular carcinoma (HepG2) were co-cultured with T, B and NK cells before and after EMT induction by either the supernatant of mixed-lymphocyte reactions or inflammatory cytokines. EMT occurrence following inflammatory priming elicited multiple immune-regulatory effects in cancer cells resulting in NK and T-cell apoptosis, inhibition of lymphocyte proliferation and stimulation of regulatory T and B cells. Indoleamine 2,3-dioxygenase, but not Fas ligand pathway, was involved at least in part in these effects, as shown by the use of specific inhibitors. EMT induced by inflammatory stimuli confers to cancer cells some mesenchymal stromal cell-like immune-modulatory properties, which could be a cue for cancer progression and metastatic dissemination by favouring immune escape.

  7. Molecular and cellular features of murine craniofacial and trunk neural crest cells as stem cell-like cells.

    Science.gov (United States)

    Hagiwara, Kunie; Obayashi, Takeshi; Sakayori, Nobuyuki; Yamanishi, Emiko; Hayashi, Ryuhei; Osumi, Noriko; Nakazawa, Toru; Nishida, Kohji

    2014-01-01

    The outstanding differentiation capacities and easier access from adult tissues, cells derived from neural crest cells (NCCs) have fascinated scientists in developmental biology and regenerative medicine. Differentiation potentials of NCCs are known to depend on their originating regions. Here, we report differential molecular features between craniofacial (cNCCs) and trunk (tNCCs) NCCs by analyzing transcription profiles and sphere forming assays of NCCs from P0-Cre/floxed-EGFP mouse embryos. We identified up-regulation of genes linked to carcinogenesis in cNCCs that were not previously reported to be related to NCCs, which was considered to be, an interesting feature in regard with carcinogenic potentials of NCCs such as melanoma and neuroblastoma. Wnt signal related genes were statistically up-regulated in cNCCs, also suggesting potential involvement of cNCCs in carcinogenesis. We also noticed intense expression of mesenchymal and neuronal markers in cNCCs and tNCCs, respectively. Consistent results were obtained from in vitro sphere-forming and differentiation assays. These results were in accordance with previous notion about differential potentials of cNCCs and tNCCs. We thus propose that sorting NCCs from P0-Cre/floxed-EGFP mice might be useful for the basic and translational research of NCCs. Furthermore, these newly-identified genes up-regulated in cNCC would provide helpful information on NC-originating tumors, developmental disorders in NCC derivatives, and potential applications of NCCs in regenerative medicine.

  8. 6-Shogaol Inhibits Breast Cancer Cells and Stem Cell-Like Spheroids by Modulation of Notch Signaling Pathway and Induction of Autophagic Cell Death.

    Directory of Open Access Journals (Sweden)

    Anasuya Ray

    Full Text Available Cancer stem cells (CSCs pose a serious obstacle to cancer therapy as they can be responsible for poor prognosis and tumour relapse. In this study, we have investigated inhibitory activity of the ginger-derived compound 6-shogaol against breast cancer cells both in monolayer and in cancer-stem cell-like spheroid culture. The spheroids were generated from adherent breast cancer cells. 6-shogaol was effective in killing both breast cancer monolayer cells and spheroids at doses that were not toxic to noncancerous cells. The percentages of CD44+CD24-/low cells and the secondary sphere content were reduced drastically upon treatment with 6-shogaol confirming its action on CSCs. Treatment with 6-shogaol caused cytoplasmic vacuole formation and cleavage of microtubule associated protein Light Chain3 (LC3 in both monolayer and spheroid culture indicating that it induced autophagy. Kinetic analysis of the LC3 expression and a combination treatment with chloroquine revealed that the autophagic flux instigated cell death in 6-shogaol treated breast cancer cells in contrast to the autophagy inhibitor chloroquine. Furthermore, 6-shogaol-induced cell death got suppressed in the presence of chloroquine and a very low level of apoptosis was exhibited even after prolonged treatment of the compound, suggesting that autophagy is the major mode of cell death induced by 6-shogaol in breast cancer cells. 6-shogaol reduced the expression levels of Cleaved Notch1 and its target proteins Hes1 and Cyclin D1 in spheroids, and the reduction was further pronounced in the presence of a γ-secretase inhibitor. Secondary sphere formation in the presence of the inhibitor was also further reduced by 6-shogaol. Together, these results indicate that the inhibitory action of 6-shogaol on spheroid growth and sustainability is conferred through γ-secretase mediated down-regulation of Notch signaling. The efficacy of 6-shogaol in monolayer and cancer stem cell-like spheroids raise

  9. Adenoviral overexpression of Lhx2 attenuates cell viability but does not preserve the stem cell like phenotype of hepatic stellate cells

    Energy Technology Data Exchange (ETDEWEB)

    Genz, Berit [Institute for Experimental Surgery, Rostock University Medical Center, Rostock (Germany); Thomas, Maria [Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart (Germany); Pützer, Brigitte M. [Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock (Germany); Siatkowski, Marcin; Fuellen, Georg [Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock (Germany); Vollmar, Brigitte [Institute for Experimental Surgery, Rostock University Medical Center, Rostock (Germany); Abshagen, Kerstin, E-mail: kerstin.abshagen@uni-rostock.de [Institute for Experimental Surgery, Rostock University Medical Center, Rostock (Germany)

    2014-11-01

    Hepatic stellate cells (HSC) are well known initiators of hepatic fibrosis. After liver cell damage, HSC transdifferentiate into proliferative myofibroblasts, representing the major source of extracellular matrix in the fibrotic organ. Recent studies also demonstrate a role of HSC as progenitor or stem cell like cells in liver regeneration. Lhx2 is described as stem cell maintaining factor in different organs and as an inhibitory transcription factor in HSC activation. Here we examined whether a continuous expression of Lhx2 in HSC could attenuate their activation and whether Lhx2 could serve as a potential target for antifibrotic gene therapy. Therefore, we evaluated an adenoviral mediated overexpression of Lhx2 in primary HSC and investigated mRNA expression patterns by qRT-PCR as well as the activation status by different in vitro assays. HSC revealed a marked increase in activation markers like smooth muscle actin alpha (αSMA) and collagen 1α independent from adenoviral transduction. Lhx2 overexpression resulted in attenuated cell viability as shown by a slightly hampered migratory and contractile phenotype of HSC. Expression of stem cell factors or signaling components was also unaffected by Lhx2. Summarizing these results, we found no antifibrotic or stem cell maintaining effect of Lhx2 overexpression in primary HSC. - Highlights: • We performed adenoviral overexpression of Lhx2 in primary hepatic stellate cells. • Hepatic stellate cells expressed stem cell markers during cultivation. • Cell migration and contractility was slightly hampered upon Lhx2 overexpression. • Lhx2 overexpression did not affect stem cell character of hepatic stellate cells.

  10. Human Dental Pulp-Derived Cells Produce Bone-Like Tissue and Exhibit Bone Cell-Like Responsiveness to Mechanical Loading

    DEFF Research Database (Denmark)

    Kraft, David Christian Evar; Melsen, Birte; Bindslev, Dorthe Arenholt

    2010-01-01

    Recent studies have shown that dental pulp cells possess stem cell like potential and thus may be potential candidates for tissue engineering purposes particularly in the oro-facial region. Successful tissue engineering ideally requires that newly formed bone adapts its mass, shape, and trabecular...... and characterize cell lines from human 3rd molar dental pulp tissue to determine whether human dental pulp-derived cells (DPCs) are osteogenic and responsive to mechanical loading by pulsating fluid flow (PFF) in vitro. Methods: Human DPCs used for this study were characterized by measuring proliferation....... We also assessed bone formation by DPCs on hydroxyapatite-tricalcium phosphate granules after subcutaneous implantation in mice. Results: We found that DPCs are intrinsically mechanosensitive and, like osteogenic cells, respond to PFF-induced fluid shear stress. Implantation of DPCs resulted...

  11. Snail-induced EMT promotes cancer stem cell-like properties in head and neck cancer cells

    National Research Council Canada - National Science Library

    OTA, ICHIRO; MASUI, TAKASHI; KURIHARA, MIYAKO; YOOK, JONG-IN; MIKAMI, SHINJI; KIMURA, TAKAHIRO; SHIMADA, KEIJI; KONISHI, NOBORU; YANE, KATSUNARI; YAMANAKA, TOSHIAKI; KITAHARA, TADASHI

    .... We demonstrated that Snail is one of the master regulators that promotes EMT and mediates cancer cell migration and invasion in many types of malignancies including head and neck squamous cell carcinoma (HNSCC...

  12. Doublecortin-like kinase 1 exhibits cancer stem cell-like characteristics in a human colon cancer cell line

    Institute of Scientific and Technical Information of China (English)

    Lianna Li; Charles F.Bellows

    2013-01-01

    Objective:Colon cancer stem cells (CSCs) are implicated in colorectal cancer carcinogenesis,metastasis,and therapeutic resistance.The identification of these cells could help to develop novel therapeutic strategies.Doublecortin-like kinase 1 (DCLK1) has been viewed as a marker for gastrointestinal stem cells that fuel the self-renewal process,however others view them as a marker of Tuft cells or as an enteroendocrine subtype.The purpose of this study was to use a colon cancer cell line to identify and characterize the stem-like characteristics of the DCLK1+ cell population.Methods:To enrich stem-like cells,HCT116 cells (derived from colon adenocarcinomas) were cultured using serum-free media to form spheres under both normal oxygen and hypoxia condition.DCLK1 transcript expression in the adherent parental cells and spheroids was quantified using quantitative real time reverse transcription-polymerase chain reaction [(q)RT-PCR].DCLK1 protein expression was determined using flow cytometry.Self-renewal capability from adherent parental cells and spheroids was determined using extreme limiting dilution analysis (ELDA).Results:Under both normal oxygen and hypoxia condition,the adherent parental cells were composed of cells that express low levels of DCLK1.However,spheroids exhibited an increased frequency of cells expressing DCLK1 on both mRNA and protein levels.Cells derived from spheroids also possess stronger self-renewal capability.Conclusions:The higher fraction of DCLK1+ cells exhibited by spheroids and hypoxia reflects the stemlike characteristics of these cells.DCLK1 may represent an ideal marker to study and develop effective strategies to overcome chemo-resistance and relapse of colon cancer.

  13. Role of the planar cell polarity pathway in regulating ectopic hair cell-like cells induced by Math1 and testosterone treatment.

    Science.gov (United States)

    Yang, Xiao-Yu; Jin, Kai; Ma, Rui; Yang, Juan-Mei; Luo, Wen-Wei; Han, Zhao; Cong, Ning; Ren, Dong-Dong; Chi, Fang-Lu

    2015-07-30

    Planar cell polarity (PCP) signaling regulates cochlear extension and coordinates orientation of sensory hair cells in the inner ear. Retroviral-mediated introduction of the Math1 transcription factor leads to the transdifferentiation of some mature supporting cells into hair cells. Testosterone, a gonadal sex steroid hormone, is associated with neuroprotection and regeneration in Central Nervous System (CNS) development. Experiments were performed in vitro using Ad5-EGFP-Math1/Ad5-Math1 in neonatal mouse cochleas. Establishment of ectopic hair-cell like cell(HCLC) polarity in the lesser epithelial ridge (LER) with or without testosterone-3-(O-carboxymethyl) oxime bovine serum albumin (testosterone-BSA) treatment was investigated to determine the role of the PCP pathway in regulating ectopic regenerated (HCLCs) through induction by Math1 and testosterone treatment. After Math1 infection, new ectopic regenerated HCLCs were detected in the LER. After the HCLCs developed actin-rich stereocilia, the basal bodies moved from the center to the distal side. Moreover, the narrower, non-sensory LER region meant that the convergent extension (CE) was also established after transfection with Math1. After 9 days of in vitro testosterone-BSA treatment, more Edu(+), Sox2(+), and HCLC cells were observed in the LER with an accompanying downregulation of E-cadherin. Interestingly, the CE of the Ad5-EGFP-math1 treated LER is altered, but the intrinsic cellular polarity of the HCLCs is not obviously changed. In summary, our results indicate that PCP signaling is involved in the development of ectopic HCLCs and the CE of the ectopic sensory region is altered by testosterone-BSA through downregulation of cell-cell adhesion. Testosterone-BSA and Math1 treatment could promote an increase in HCLCs in the LER through proliferation and transdifferentiation.

  14. Resveratrol Ameliorates the Maturation Process of β-Cell-Like Cells Obtained from an Optimized Differentiation Protocol of Human Embryonic Stem Cells

    Science.gov (United States)

    Pezzolla, Daniela; López-Beas, Javier; Lachaud, Christian C.; Domínguez-Rodríguez, Alejandro; Smani, Tarik; Hmadcha, Abdelkrim; Soria, Bernat

    2015-01-01

    Human embryonic stem cells (hESCs) retain the extraordinary capacity to differentiate into different cell types of an adult organism, including pancreatic β-cells. For this particular lineage, although a lot of effort has been made in the last ten years to achieve an efficient and reproducible differentiation protocol, it was not until recently that this aim was roughly accomplished. Besides, several studies evidenced the impact of resveratrol (RSV) on insulin secretion, even though the mechanism by which this polyphenol potentiates glucose-stimulated insulin secretion (GSIS) is still not clear. The aim of this study was to optimize an efficient differentiation protocol that mimics in vivo pancreatic organogenesis and to investigate whether RSV may improve the final maturation step to obtain functional insulin-secreting cells. Our results indicate that treatment of hESCs (HS-181) with activin-A induced definitive endoderm differentiation as detected by the expression of SOX17 and FOXA2. Addition of retinoic acid (RA), Noggin and Cyclopamine promoted pancreatic differentiation as indicated by the expression of the early pancreatic progenitor markers ISL1, NGN3 and PDX1. Moreover, during maturation in suspension culture, differentiating cells assembled in islet-like clusters, which expressed specific endocrine markers such as PDX1, SST, GCG and INS. Similar results were confirmed with the human induced Pluripotent Stem Cell (hiPSC) line MSUH-001. Finally, differentiation protocols incorporating RSV treatment yielded numerous insulin-positive cells, induced significantly higher PDX1 expression and were able to transiently normalize glycaemia when transplanted in streptozotocin (STZ) induced diabetic mice thus promoting its survival. In conclusion, our strategy allows the efficient differentiation of hESCs into pancreatic endoderm capable of generating β-cell-like cells and demonstrates that RSV improves the maturation process. PMID:25774684

  15. The C. elegans engrailed homolog ceh-16 regulates the self-renewal expansion division of stem cell-like seam cells.

    Science.gov (United States)

    Huang, Xinxin; Tian, E; Xu, Yanhua; Zhang, Hong

    2009-09-15

    Stem cells undergo symmetric and asymmetric division to maintain the dynamic equilibrium of the stem cell pool and also to generate a variety of differentiated cells. The homeostatic mechanism controlling the choice between self-renewal and differentiation of stem cells is poorly understood. We show here that ceh-16, encoding the C. elegans ortholog of the transcription factor Engrailed, controls symmetric and asymmetric division of stem cell-like seam cells. Loss of function of ceh-16 causes certain seam cells, which normally undergo symmetric self-renewal expansion division with both daughters adopting the seam cell fate, to divide asymmetrically with only one daughter retaining the seam cell fate. The human engrailed homolog En2 functionally substitutes the role of ceh-16 in promoting self-renewal expansion division of seam cells. Loss of function of apr-1, encoding the C. elegans homolog of the Wnt signaling component APC, results in transformation of self-renewal maintenance seam cell division to self-renewal expansion division, leading to seam cell hyperplasia. The apr-1 mutation suppresses the seam cell division defect in ceh-16 mutants. Our study reveals that ceh-16 interacts with the Wnt signaling pathway to control the choice between self-renewal expansion and maintenance division and also demonstrates an evolutionarily conserved function of engrailed in promoting cell proliferation.

  16. Menstrual blood cells display stem cell-like phenotypic markers and exert neuroprotection following transplantation in experimental stroke.

    Science.gov (United States)

    Borlongan, Cesar V; Kaneko, Yuji; Maki, Mina; Yu, Seong-Jin; Ali, Mohammed; Allickson, Julie G; Sanberg, Cyndy D; Kuzmin-Nichols, Nicole; Sanberg, Paul R

    2010-04-01

    Cell therapy remains an experimental treatment for neurological disorders. A major obstacle in pursuing the clinical application of this therapy is finding the optimal cell type that will allow benefit to a large patient population with minimal complications. A cell type that is a complete match of the transplant recipient appears as an optimal scenario. Here, we report that menstrual blood may be an important source of autologous stem cells. Immunocytochemical assays of cultured menstrual blood reveal that they express embryonic-like stem cell phenotypic markers (Oct4, SSEA, Nanog), and when grown in appropriate conditioned media, express neuronal phenotypic markers (Nestin, MAP2). In order to test the therapeutic potential of these cells, we used the in vitro stroke model of oxygen glucose deprivation (OGD) and found that OGD-exposed primary rat neurons that were co-cultured with menstrual blood-derived stem cells or exposed to the media collected from cultured menstrual blood exhibited significantly reduced cell death. Trophic factors, such as VEGF, BDNF, and NT-3, were up-regulated in the media of OGD-exposed cultured menstrual blood-derived stem cells. Transplantation of menstrual blood-derived stem cells, either intracerebrally or intravenously and without immunosuppression, after experimentally induced ischemic stroke in adult rats also significantly reduced behavioral and histological impairments compared to vehicle-infused rats. Menstrual blood-derived cells exemplify a source of "individually tailored" donor cells that completely match the transplant recipient, at least in women. The present neurostructural and behavioral benefits afforded by transplanted menstrual blood-derived cells support their use as a stem cell source for cell therapy in stroke.

  17. Characterization of fetal keratinocytes, showing enhanced stem cell-like properties: a potential source of cells for skin reconstruction.

    Science.gov (United States)

    Tan, Kenneth K B; Salgado, Giorgiana; Connolly, John E; Chan, Jerry K Y; Lane, E Birgitte

    2014-08-12

    Epidermal stem cells have been in clinical application as a source of culture-generated grafts. Although applications for such cells are increasing due to aging populations and the greater incidence of diabetes, current keratinocyte grafting technology is limited by immunological barriers and the time needed for culture amplification. We studied the feasibility of using human fetal skin cells for allogeneic transplantation and showed that fetal keratinocytes have faster expansion times, longer telomeres, lower immunogenicity indicators, and greater clonogenicity with more stem cell indicators than adult keratinocytes. The fetal cells did not induce proliferation of T cells in coculture and were able to suppress the proliferation of stimulated T cells. Nevertheless, fetal keratinocytes could stratify normally in vitro. Experimental transplantation of fetal keratinocytes in vivo seeded on an engineered plasma scaffold yielded a well-stratified epidermal architecture and showed stable skin regeneration. These results support the possibility of using fetal skin cells for cell-based therapeutic grafting.

  18. Characterization of Fetal Keratinocytes, Showing Enhanced Stem Cell-Like Properties: A Potential Source of Cells for Skin Reconstruction

    Science.gov (United States)

    Tan, Kenneth K.B.; Salgado, Giorgiana; Connolly, John E.; Chan, Jerry K.Y.; Lane, E. Birgitte

    2014-01-01

    Summary Epidermal stem cells have been in clinical application as a source of culture-generated grafts. Although applications for such cells are increasing due to aging populations and the greater incidence of diabetes, current keratinocyte grafting technology is limited by immunological barriers and the time needed for culture amplification. We studied the feasibility of using human fetal skin cells for allogeneic transplantation and showed that fetal keratinocytes have faster expansion times, longer telomeres, lower immunogenicity indicators, and greater clonogenicity with more stem cell indicators than adult keratinocytes. The fetal cells did not induce proliferation of T cells in coculture and were able to suppress the proliferation of stimulated T cells. Nevertheless, fetal keratinocytes could stratify normally in vitro. Experimental transplantation of fetal keratinocytes in vivo seeded on an engineered plasma scaffold yielded a well-stratified epidermal architecture and showed stable skin regeneration. These results support the possibility of using fetal skin cells for cell-based therapeutic grafting. PMID:25254345

  19. Characterization of Fetal Keratinocytes, Showing Enhanced Stem Cell-Like Properties: A Potential Source of Cells for Skin Reconstruction

    Directory of Open Access Journals (Sweden)

    Kenneth K.B. Tan

    2014-08-01

    Full Text Available Epidermal stem cells have been in clinical application as a source of culture-generated grafts. Although applications for such cells are increasing due to aging populations and the greater incidence of diabetes, current keratinocyte grafting technology is limited by immunological barriers and the time needed for culture amplification. We studied the feasibility of using human fetal skin cells for allogeneic transplantation and showed that fetal keratinocytes have faster expansion times, longer telomeres, lower immunogenicity indicators, and greater clonogenicity with more stem cell indicators than adult keratinocytes. The fetal cells did not induce proliferation of T cells in coculture and were able to suppress the proliferation of stimulated T cells. Nevertheless, fetal keratinocytes could stratify normally in vitro. Experimental transplantation of fetal keratinocytes in vivo seeded on an engineered plasma scaffold yielded a well-stratified epidermal architecture and showed stable skin regeneration. These results support the possibility of using fetal skin cells for cell-based therapeutic grafting.

  20. Potential role of vascular smooth muscle cell-like progenitor cell therapy in the suppression of experimental abdominal aortic aneurysms.

    Science.gov (United States)

    Park, Hyung Sub; Choi, Geum Hee; Hahn, Soli; Yoo, Young Sun; Lee, Ji Youl; Lee, Taeseung

    2013-02-08

    Abdominal aortic aneurysms (AAA) are a growing problem worldwide, yet there is no known medical therapy. The pathogenesis involves degradation of the elastic lamina by two combined mechanisms: increased degradation of elastin by matrix metalloproteinases (MMP) and decreased formation of elastin due to apoptosis of vascular smooth muscle cells (VSMC). In this study, we set out to examine the potential role of stem cells in the attenuation of AAA formation by inhibition of these pathogenetic mechanisms. Muscle-derived stem cells from murine skeletal muscles were isolated and stimulated with PDGF-BB in vitro for differentiation to VSMC-like progenitor cells (VSMC-PC). These cells were implanted in to elastase-induced AAAs in rats. The cell therapy group had decreased rate of aneurysm formation compared to control, and MMP expression at the genetic, protein and enzymatic level were also significantly decreased. Furthermore, direct implantation of VSMC-PCs in the intima of harvested aortas was visualized under immunofluorescent staining, suggesting that these cells were responsible for the inhibition of MMPs and consequent attenuation of AAA formation. These results show a promising role of stem cell therapy for the treatment of AAAs, and with further studies, may be able to reach clinical significance.

  1. Human testis-derived embryonic stem cell-like cells are not pluripotent, but possess potential of mesenchymal progenitors

    NARCIS (Netherlands)

    Chikhovskaya, J.V.; Jonker, M.J.; Meissner, A.; Breit, T.M.; Repping, S.; van Pelt, A.M.M.

    2012-01-01

    BACKGROUND Spontaneous in vitro transition of undifferentiated spermatogonia into the pluripotent cell state has been achieved using neonatal and adult mouse testis tissue. In an effort to establish an analogous source of human patient-specific pluripotent stem cells, several research groups have de

  2. Stem cell-like dog placenta cells afford neuroprotection against ischemic stroke model via heat shock protein upregulation.

    Science.gov (United States)

    Yu, Seongjin; Tajiri, Naoki; Franzese, Nick; Franzblau, Max; Bae, Eunkyung; Platt, Simon; Kaneko, Yuji; Borlongan, Cesar V

    2013-01-01

    In this study, we investigated the dog placenta as a viable source of stem cells for stroke therapy. Immunocytochemical evaluation of phenotypic markers of dog placenta cells (DPCs) cultured in proliferation and differentiation medium revealed that DPCs expressed both stem cell and neural cell markers, respectively. Co-culture with DPCs afforded neuroprotection of rat primary neural cells in a dose-dependent manner against oxygen-glucose deprivation. Subsequent in vivo experiments showed that transplantation of DPCs, in particular intravenous and intracerebral cell delivery, produced significant behavioral recovery and reduced histological deficits in ischemic stroke animals compared to those that received intra-arterial delivery of DPCs or control stroke animals. Furthermore, both in vitro and in vivo studies implicated elevated expression of heat shock protein 27 (Hsp27) as a potential mechanism of action underlying the observed therapeutic benefits of DPCs in stroke. This study supports the use of stem cells for stroke therapy and implicates a key role of Hsp27 signaling pathway in neuroprotection.

  3. Snail-induced EMT promotes cancer stem cell-like properties in head and neck cancer cells.

    Science.gov (United States)

    Ota, Ichiro; Masui, Takashi; Kurihara, Miyako; Yook, Jong-In; Mikami, Shinji; Kimura, Takahiro; Shimada, Keiji; Konishi, Noboru; Yane, Katsunari; Yamanaka, Toshiaki; Kitahara, Tadashi

    2016-01-01

    Epithelial-mesenchymal transition (EMT) is a key process involved in the invasion and metastasis of cancer cells. Furthermore, EMT can induce a cancer stem cell (CSC)-like phenotype in a number of tumor types. We demonstrated that Snail is one of the master regulators that promotes EMT and mediates cancer cell migration and invasion in many types of malignancies including head and neck squamous cell carcinoma (HNSCC). In the present study, we investigated the role of Snail in inducing and maintaining CSC-like properties through EMT in HNSCC. We established HNSCC cell lines transfected with Snail. Stem cell markers were evaluated with real-time RT-PCR and western blot analysis. CSC properties were assessed using sphere formation and WST-8 assays as well as chemosensitivity and chick chorioallantoic membrane in vivo invasion assays. Introduction of Snail induced EMT properties in HNSCC cells. Moreover, Snail-induced EMT maintained the CSC-like phenotype, and enhanced sphere formation capability, chemoresistance and invasive ability. These data suggest that Snail could be one of the critical molecular targets for the development of therapeutic strategies for HNSCC.

  4. Essential role of MALT1 protease activity in activated B cell-like diffuse large B-cell lymphoma

    OpenAIRE

    Hailfinger, Stephan; Lenz, Georg; Ngo, Vu; Posvitz-Fejfar, Anita; Rebeaud, Fabien; Guzzardi, Montserrat; Penas, Eva-Maria Murga; Dierlamm, Judith; Chan, Wing C.; Staudt, Louis M.; Thome, Margot

    2009-01-01

    A key element for the development of suitable anti-cancer drugs is the identification of cancer-specific enzymatic activities that can be therapeutically targeted. Mucosa-associated lymphoid tissue transformation protein 1 (MALT1) is a proto-oncogene that contributes to tumorigenesis in diffuse large B-cell lymphoma (DLBCL) of the activated B-cell (ABC) subtype, the least curable subtype of DLBCL. Recent data suggest that MALT1 has proteolytic activity, but it is unknown whether this activity...

  5. Ex vivo generation of interstitial and Langerhans cell-like dendritic cell subset-based vaccines for hematological malignancies.

    Science.gov (United States)

    Hutten, Tim; Thordardottir, Soley; Hobo, Willemijn; Hübel, Jessica; van der Waart, Anniek B; Cany, Jeannette; Dolstra, Harry; Hangalapura, Basav N

    2014-06-01

    Autologous, patient-specific, monocyte-derived dendritic cell (MoDC) vaccines have been successfully applied in the clinical studies so far. However, the routine application of this strategy has been hampered by the difficulties in generating sufficient numbers of DC and the poor DC vaccine quality because of pathology or prior treatment received by the patients. The immunotherapeutic potential of other subsets of DC has not been thoroughly investigated because of their rarity in tissues and difficulties associated with their ex vivo generation. The high expansion and differentiation potential of CD34 hematopoietic progenitor cells (HPC), isolated from umbilical cord blood (UCB), into different DC subsets make them an attractive alternative DC source for cancer immunotherapy. Therefore, the aim of this study was to generate a large number of different DC subsets from CD34 HPC and evaluate their functionality in comparison with MoDC. Our culture protocol generated a clinically relevant number of mature CD1a myeloid DC and CD207 Langerhans cells (LC)-like DC subsets from CD34 HPC with >95% purity. Both DC subsets exhibited a cytokine profile that favors cytotoxic T-cell responses. Furthermore, UCB-DC and UCB-LC demonstrated superior induction of proliferation of both allogeneic as well as viral antigen-specific CD8 T cells, both in vitro and in vivo. Additional studies revealed that UCC-DC and UCB-LC can efficiently expand minor histocompatibility antigen (MiHA) HA-1-specific cytotoxic T cells in the peripheral blood of leukemia patients and prime MiHA HA-1-specific and HA-2-specific cytotoxic T cells in vitro. These preclinical findings support the pharmaceutical development of the described culture protocol for clinical evaluation.

  6. Development of Liposomal Formulation for Delivering Anticancer Drug to Breast Cancer Stem-Cell-Like Cells and its Pharmacokinetics in an Animal Model.

    Science.gov (United States)

    Ahmad, Ajaz; Mondal, Sujan Kumar; Mukhopadhyay, Debabrata; Banerjee, Rajkumar; Alkharfy, Khalid M

    2016-03-07

    The objective of the present study is to develop a liposomal formulation for delivering anticancer drug to breast cancer stem-cell-like cells, ANV-1, and evaluate its pharmacokinetics in an animal model. The anticancer drug ESC8 was used in dexamethasone (Dex)-associated liposome (DX) to form ESC8-entrapped liposome named DXE. ANV-1 cells showed high-level expression of NRP-1. To enhance tumor regression, we additionally adapted to codeliver the NRP-1 shRNA-encoded plasmid using the established DXE liposome. In vivo efficacy of DXE-NRP-1 was carried out in mice bearing ANV-1 cells as xenograft tumors and the extent of tumor growth inhibition was evaluated by tumor-size measurement. A significant difference in tumor volume started to reveal between DXE-NRP-1 group and DXE-Control group. DXE-NRP-1 group showed ∼4 folds and ∼2.5 folds smaller tumor volume than exhibited by untreated and DXE-Control-treated groups, respectively. DXE disposition was evaluated in Sprague-Dawley rats following an intraperitoneal dose (3.67 mg/kg of ESC8 in DXE). The plasma concentrations of ESC8 in the DXE formulation were measured by liquid chromatography mass spectrometry and pharmacokinetic parameters were determined using a noncompartmental analysis. ESC8 had a half-life of 11.01 ± 0.29 h, clearance of 2.10 ± 3.63 L/kg/h, and volume of distribution of 33.42 ± 0.83 L/kg. This suggests that the DXE liposome formulation could be administered once or twice daily for therapeutic efficacy. In overall, we developed a potent liposomal formulation with favorable pharmacokinetic and tumor regressing profile that could sensitize and kill highly aggressive and drug-resistive cancer stem-cell-like cells.

  7. Opposing roles of TGF-β in prostaglandin production by human follicular dendritic cell-like cells.

    Science.gov (United States)

    Choe, Jongseon; Park, Jihoon; Lee, Seungkoo; Kim, Young-Myeong; Jeoung, Dooil

    2016-08-01

    Prostaglandins (PGs) are recognized as important immune regulators. Using human follicular dendritic cell (FDC)-like HK cells, we have investigated the immunoregulatory role of PGs and their production mechanisms. The present study was aimed at determining the role of TGF-β in IL-1β-induced cyclooxygenase-2 (COX-2) expression by immunoblotting. COX-2 is the key enzyme responsible for PG production in HK cells. TGF-β, when added simultaneously with IL-1β, gave rise to an additive effect on COX-2 expression in a dose-dependent manner. However, TGF-β inhibited IL-1β-stimulated COX-2 expression when it was added at least 12h before IL-1β addition. The inhibitory effect of TGF-β was specific to IL-1β-induced COX-2 expression in HK cells. The stimulating and inhibitory effects of TGF-β were reproduced in IL-1β-stimulated PG production. Based on our previous results of the essential requirement of ERK and p38 MAPKs in TGF-β-induced COX-2 expression, we examined whether the differential activation of these MAPKs would underlie the opposing activities of TGF-β. The phosphorylation of ERK and p38 MAPKs was indeed enhanced or suppressed by the simultaneous treatment or pre-treatment, respectively. These results suggest that TGF-β exerts opposing effects on IL-1β-induced COX-2 expression in HK cells by differentially regulating activation of ERK and p38 MAPKs.

  8. The C. elegans CBFbeta homolog, BRO-1, regulates the proliferation, differentiation and specification of the stem cell-like seam cell lineages.

    Science.gov (United States)

    Xia, Dan; Zhang, Yuxia; Huang, Xinxin; Sun, Yinyan; Zhang, Hong

    2007-09-15

    The RUNX/CBFbeta heterodimeric transcription factor plays an important role in regulating cell proliferation and differentiation in a variety of developmental contexts. Aberrant function of Runx and CBFbeta has been causally related to the development of various diseases, including acute myeloid leukemia, gastric cancer and cleidocranial dysplasia. The underlying mechanism of the RUNX/CBFbeta complex in regulation of cell proliferation is still poorly defined. In this study, we demonstrate that the Caenorhabditis elegans CBFbeta homolog, bro-1, is essential for the proliferation, differentiation and specification of a row of stem cell-like lineages, called seam cells. BRO-1 forms complex with the C. elegans RUNX homolog, RNT-1, and augments the DNA-binding activity of RNT-1. The RNT-1/BRO-1 complex directly interacts with the C. elegans Groucho homolog, UNC-37, whose loss of function mutations display similar defects in the proliferation of seam cells as those of bro-1 and rnt-1 mutants. Additionally, the defects in seam cell division in bro-1 mutants are substantially rescued by the inactivation of the negative regulators of the G1 to S phase cell cycle progression, including the lin-35 Rb, fzr-1 Cdh1 and cki-1 CIP homologs. Our studies indicate that the transcriptional repression activity of the RNT-1/BRO-1 complex regulates the G1 to S cell cycle progression during seam cell division.

  9. ID3 contributes to the acquisition of molecular stem cell-like signature in microvascular endothelial cells: its implication for understanding microvascular diseases.

    Science.gov (United States)

    Das, Jayanta K; Voelkel, Norbert F; Felty, Quentin

    2015-03-01

    While significant progress has been made to advance our knowledge of microvascular lesion formation, yet the investigation of how stem-like cells may contribute to the pathogenesis of microvascular diseases is still in its infancy. We assessed whether the inhibitor of DNA binding and differentiation 3 (ID3) contributes to the acquisition of a molecular stem cell-like signature in microvascular endothelial cells. The effects of stable ID3 overexpression and SU5416 treatment - a chemical inducer of microvascular lesions, had on the stemness signature were determined by flow cytometry, immunoblot, and immunohistochemistry. Continuous ID3 expression produced a molecular stemness signature consisting of CD133(+) VEGFR3(+) CD34(+) cells. Cells exposed to SU5416 showed positive protein expression of ID3, VEGFR3, CD34 and increased expression of pluripotent transcription factors Oct-4 and Sox-2. ID3 overexpressing cells supported the formation of a 3-D microvascular lesion co-cultured with smooth muscle cells. In addition, in vivo microvascular lesions from SuHx rodent model showed an increased expression of ID3, VEGFR3, and Pyk2 similar to SU5416 treated human endothelial cells. Further investigations into how normal and stem-like cells utilize ID3 may open up new avenues for a better understanding of the molecular mechanisms which are underlying the pathological development of microvascular diseases.

  10. Insights into the Molecular Pathogenesis of Activated B-Cell-like Diffuse Large B-Cell Lymphoma and Its Therapeutic Implications

    Energy Technology Data Exchange (ETDEWEB)

    Lenz, Georg [Translational Oncology, Department of Medicine A, Albert-Schweitzer Campus 1, University Hospital Münster, 48149 Münster (Germany); Cluster of Excellence EXC 1003, Cells in Motion, 48149 Münster (Germany)

    2015-05-22

    Within the last couple of years, the understanding of the molecular mechanisms that drive the pathogenesis of diffuse large B-cell lymphoma (DLBCL) has significantly improved. Large-scale gene expression profiling studies have led to the discovery of several molecularly defined subtypes that are characterized by specific oncogene addictions and significant differences in their outcome. Next generation sequencing efforts combined with RNA interference screens frequently identify crucial oncogenes that lead to constitutive activation of various signaling pathways that drive lymphomagenesis. This review summarizes our current understanding of the molecular pathogenesis of the activated B-cell-like (ABC) DLBCL subtype that is characterized by poor prognosis. A special emphasis is put on findings that might impact therapeutic strategies of affected patients.

  11. Insights into the Molecular Pathogenesis of Activated B-Cell-like Diffuse Large B-Cell Lymphoma and Its Therapeutic Implications

    Directory of Open Access Journals (Sweden)

    Georg Lenz

    2015-05-01

    Full Text Available Within the last couple of years, the understanding of the molecular mechanisms that drive the pathogenesis of diffuse large B-cell lymphoma (DLBCL has significantly improved. Large-scale gene expression profiling studies have led to the discovery of several molecularly defined subtypes that are characterized by specific oncogene addictions and significant differences in their outcome. Next generation sequencing efforts combined with RNA interference screens frequently identify crucial oncogenes that lead to constitutive activation of various signaling pathways that drive lymphomagenesis. This review summarizes our current understanding of the molecular pathogenesis of the activated B-cell-like (ABC DLBCL subtype that is characterized by poor prognosis. A special emphasis is put on findings that might impact therapeutic strategies of affected patients.

  12. Wogonin suppresses stem cell-like traits of CD133 positive osteosarcoma cell via inhibiting matrix metallopeptidase-9 expression.

    Science.gov (United States)

    Huynh, Do Luong; Kwon, Taeho; Zhang, Jiao Jiao; Sharma, Neelesh; Gera, Meeta; Ghosh, Mrinmoy; Kim, Nameun; Kim Cho, Somi; Lee, Dong Sun; Park, Yang Ho; Jeong, Dong Kee

    2017-06-12

    Several efforts have been deployed to cure osteosarcoma, a high-grade malignant bone tumour in children and adolescents. However, some challenges such as drug resistance, relapse, and tumour metastasis remain owing to the existence of cancer stem cells (CSC). There is an urgent need to develop cost-effective and safe therapies. Wogonin, an extract from the root of Scutellaria baicalensis, has long been considered as a promising natural and safe compound for anti-tumourigenesis, particularly to inhibit tumour invasion and metastasis. Hoechst 33,342 staining, wound healing assay, sphere formation assay, western blotting, and gelatin zymography assays were performed in CD133 positive osteosarcoma cell. In this study, we examined the effect of Wogonin on the mobility of human osteosarcoma CSC. Wogonin induces apoptosis of human osteosarcoma CSC, inhibits its mobility in vitro via downregulation of MMP-9 expression, and represses its renewal ability. We demonstrated that Wogonin decreases the renewal capacity of CSC. By inhibiting the formation of and reducing the size of spheres, Wogonin at a concentration of 40-80 μM effectively minimizes potential risk from CSC. Taken together, we have demonstrated a new approach for developing a potential therapy for osteosarcoma.

  13. Essential role of MALT1 protease activity in activated B cell-like diffuse large B-cell lymphoma.

    Science.gov (United States)

    Hailfinger, Stephan; Lenz, Georg; Ngo, Vu; Posvitz-Fejfar, Anita; Rebeaud, Fabien; Guzzardi, Montserrat; Penas, Eva-Maria Murga; Dierlamm, Judith; Chan, Wing C; Staudt, Louis M; Thome, Margot

    2009-11-24

    A key element for the development of suitable anti-cancer drugs is the identification of cancer-specific enzymatic activities that can be therapeutically targeted. Mucosa-associated lymphoid tissue transformation protein 1 (MALT1) is a proto-oncogene that contributes to tumorigenesis in diffuse large B-cell lymphoma (DLBCL) of the activated B-cell (ABC) subtype, the least curable subtype of DLBCL. Recent data suggest that MALT1 has proteolytic activity, but it is unknown whether this activity is relevant for tumor growth. Here we report that MALT1 is constitutively active in DLBCL lines of the ABC but not the GCB subtype. Inhibition of the MALT1 proteolytic activity led to reduced expression of growth factors and apoptosis inhibitors, and specifically affected the growth and survival of ABC DLBCL lines. These results demonstrate a key role for the proteolytic activity of MALT1 in DLBCL of the ABC subtype, and provide a rationale for the development of pharmacological inhibitors of MALT1 in DLBCL therapy.

  14. Neural stem cell-like cells derived from autologous bone mesenchymal stem cells for the treatment of patients with cerebral palsy.

    Science.gov (United States)

    Chen, Guojun; Wang, Yali; Xu, Zhenyu; Fang, Feng; Xu, Renmei; Wang, Yue; Hu, Xiaoli; Fan, Lixing; Liu, Houqi

    2013-01-26

    Stem cell therapy is a promising treatment for cerebral palsy, which refers to a category of brain diseases that are associated with chronic motor disability in children. Autologous MSCs may be a better cell source and have been studied for the treatment of cerebral palsy because of their functions in tissue repair and the regulation of immunological processes. To assess neural stem cell-like (NSC-like) cells derived from autologous marrow mesenchymal stem cells as a novel treatment for patients with moderate-to-severe cerebral palsy, a total of 60 cerebral palsy patients were enrolled in this open-label, non-randomised, observer-blinded controlled clinical study with a 6-months follow-up. For the transplantation group, a total of 30 cerebral palsy patients received an autologous NSC-like cells transplantation (1-2 × 107 cells into the subarachnoid cavity) and rehabilitation treatments whereas 30 patients in the control group only received rehabilitation treatment. We recorded the gross motor function measurement scores, language quotients, and adverse events up to 6 months post-treatment. The gross motor function measurement scores in the transplantation group were significantly higher at month 3 (the score increase was 42.6, 95% CI: 9.8-75.3, P=.011) and month 6 (the score increase was 58.6, 95% CI: 25.8-91.4, P=.001) post-treatment compared with the baseline scores. The increase in the Gross Motor Function Measurement scores in the control group was not significant. The increases in the language quotients at months 1, 3, and 6 post-treatment were not statistically significant when compared with the baseline quotients in both groups. All the 60 patients survived, and none of the patients experienced serious adverse events or complications. Our results indicated that NSC-like cells are safe and effective for the treatment of motor deficits related to cerebral palsy. Further randomised clinical trials are necessary to establish the efficacy of this procedure.

  15. The characteristics of Ishikawa endometrial cancer cells are modified by substrate topography with cell-like features and the polymer surface

    Directory of Open Access Journals (Sweden)

    Tan LH

    2015-08-01

    those on a flat pST surface. This method, which provided substrates in vitro with cell-like features, enabled the study of effects of topographies that are similar to those experienced by cells in vivo. The observations establish that such a physical environment has an effect on cancer cell behavior independent of the characteristics of the substrate. The results support the concept that the physical topography of a cell’s environment may modulate crucial oncological signaling pathways; this suggests the possibility of cancer therapies that target pathways associated with the response to mechanical stimuli. Keywords: surface characteristics, cell culture platforms, physical microenvironment, cell response, drug targets, mechanical forces

  16. Acquisition of epithelial-mesenchymal transition phenotype and cancer stem cell-like properties in cisplatin-resistant lung cancer cells through AKT/β-catenin/Snail signaling pathway.

    Science.gov (United States)

    Wang, Hao; Zhang, Ge; Zhang, Huan; Zhang, Fan; Zhou, Binhua; Ning, Fen; Wang, Hong-Sheng; Cai, Shao-Hui; Du, Jun

    2014-01-15

    Cisplatin is a first-line chemotherapeutic agent in the treatment of non-small cell lung cancer (NSCLC), but the therapeutic effect is disappointing, partly due to drug resistance. Emerging evidence showed that chemoresistance associates with acquisition of epithelial-mesenchymal transition (EMT) phenotype and cancer stem cell-like properties. However, the underlying mechanism is not entirely clear. In this study, we showed that cisplatin-resistant A549 cells (A549/CDDP) acquire EMT phenotype associated with migratory and invasive capability. A549/CDDP cells also displayed enhanced cancer stem cell-like properties. Increased expression of transcription factor Snail, but not ZEB1, Slug and Twist, was observed in A549/CDDP cells. Knockdown of Snail reversed EMT and significantly attenuated migration, invasion and cancer stem cell-like properties of A549/CDDP cells. Conversely, overexpressed Snail in A549 cells induced EMT and cancer stem cell-like properties. Finally, we demonstrated that activated AKT signal leads to increased β-catenin expression and subsequently up-regulates Snail in A549/CDDP cells. Taken together, these results revealed that AKT/β-catenin/Snail signaling pathway is mechanistically associated with cancer stem cell-like properties and EMT features of A549/CDDP cells, and thus, this pathway could be a novel target for the treatment of NSCLC. © 2013 Published by Elsevier B.V.

  17. Interim positron emission tomography scan associated with international prognostic index and germinal center B cell-like signature as prognostic index in diffuse large B-cell lymphoma.

    Science.gov (United States)

    Lanic, Hélène; Mareschal, Sylvain; Mechken, Férial; Picquenot, Jean-Michel; Cornic, Marie; Maingonnat, Catherine; Bertrand, Philippe; Clatot, Florian; Bohers, Elodie; Stamatoullas, Aspasia; Leprêtre, Stéphane; Rainville, Vinciane; Ruminy, Philippe; Bastard, Christian; Tilly, Hervé; Becker, Stéphanie; Vera, Pierre; Jardin, Fabrice

    2012-01-01

    [(18)F]-fluorodeoxyglucose positron emission tomography (FDG-PET) imaging is essential to optimize the initial staging and to predict the prognosis of diffuse large B-cell lymphoma (DLBCL). To assess the relationship between the germinal center B cell-like/activated B cell-like (GCB/ABC) classification and PET scan features in DLBCL, 57 cases treated with rituximab and a cyclophosphamide, doxorubicin, vincristine and prednisone (CHOP)/CHOP-like regimen were analyzed. The expression profile of 18 GCB/ABC related genes and five genes coding for glucose transporters (GLUTs) was determined from frozen tissues using DASL (cDNA-mediated Annealing, Selection, Ligation and extension) technology. According to the gene expression profile (GEP), 30 cases of DLBCL were classified as GCB subtype (2-year progression-free survival [PFS] 76%) and 27 cases as ABC subtype (2-year PFS 51%, p = 0.03). Using a semiquantitative assessment of the decrease in standard uptake value (SUV) at interim PET performed after 3-4 cycles of chemotherapy, we defined fast (n = 36) and slow (n = 9) metabolic responders. In multivariate analysis, GCB/ABC subtype, age-adjusted international prognostic index (aaIPI) and slow/fast metabolic response were independent variables that predicted outcome. A score incorporating aaIPI, fast/slow metabolic response and GCB/ABC classification was used to define two groups with highly significantly distinct outcomes. Our study suggests that the combination of GEP, aaIPI and interim PET more accurately predicts DLBCL prognosis and is therefore suitable for tailoring therapeutic strategies.

  18. MiR-1207 overexpression promotes cancer stem cell-like traits in ovarian cancer by activating the Wnt/β-catenin signaling pathway.

    Science.gov (United States)

    Wu, Geyan; Liu, Aibin; Zhu, Jinrong; Lei, Fangyong; Wu, Shu; Zhang, Xin; Ye, Liping; Cao, Lixue; He, Shanyang

    2015-10-06

    Wnt/β-catenin signaling pathway is strictly controlled by multiple negative regulators. However, how tumor cells override the negative regulatory effects to maintain constitutive activation of Wnt/β-catenin signaling, which is commonly observed in various cancers, remains puzzling. In current study, we reported that overexpression of miR-1207 in ovarian cancer activated Wnt/β-catenin signaling by directly targeting and suppressing secreted Frizzled-related protein 1 (SFRP1), AXIN2 and inhibitor of β-catenin and TCF-4 (ICAT), which are vital negative regulators of the Wnt/β-catenin pathway. We found that the expression of miR-1207 was ubiquitously upregulated in both ovarian cancer tissues and cells, which inversely correlated with patient overall survival. Furthermore, overexpression of miR-1207 enhanced, while silencing miR-1207 reduced, stem cell-like traits of ovarian cancer cells in vitro and in vivo, including tumor sphere formation capability and proportion of SP+ and CD133+ cells. Importantly, upregulating miR-1207 promoted, while silencing miR-1207 inhibited, the tumorigenicity of ovarian cancer cells. Hence, our results suggest that miR-1207 plays a vital role in promoting the cancer stem cell-like phenotype in ovarian cancer and might represent a potential target for anti-ovarian cancer therapy.

  19. Simultaneous Expression of Cancer Stem Cell-Like Properties and Cancer-Associated Fibroblast-Like Properties in a Primary Culture of Breast Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Mami; Inoue, Takahiro; Shirai, Takuma; Takamatsu, Kazuhiko; Kunihiro, Shiori; Ishii, Hirokazu [Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047 (Japan); Nishikata, Takahito, E-mail: nisikata@konan-u.ac.jp [Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047 (Japan); Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, Kobe 650-0047 (Japan)

    2014-07-31

    The importance of cancer-associated fibroblasts (CAFs) in cancer biology has been recently highlighted owing to their critical roles in cancer growth, progression, metastasis, and therapeutic resistance. We have previously established a primary culture of breast cancer cells, which showed epithelial-mesenchymal transition and cancer stem cell-like properties. In this study, we found that the primary culture also showed CAF-like properties. For example, hypoxia inducible factor 1α (HIF1A) and its downstream genes, nuclear factor-kappa B2 (NF-κB2) and BCL2/adenovirus E1B 19 kd-interacting protein 3 (BNIP3), and many enzymes involved in glycolysis, such as GAPDH, LDH, PGAM1, and PKM2, were highly overexpressed in the primary culture. Moreover, media conditioned with the primary culture cells enhanced the growth of breast cancer cells. Similar to previous CAF studies, this enhancement suggested to be occurred through fibroblast growth factor signaling. This MCKH primary culture cell, which showed simultaneous expression of tumorigenic and CAF properties, offers a unique experimental system for studying the biology of CAFs.

  20. Long-lasting stem cell-like memory CD8+ T cells with a naïve-like profile upon yellow fever vaccination.

    Science.gov (United States)

    Fuertes Marraco, Silvia A; Soneson, Charlotte; Cagnon, Laurène; Gannon, Philippe O; Allard, Mathilde; Abed Maillard, Samia; Montandon, Nicole; Rufer, Nathalie; Waldvogel, Sophie; Delorenzi, Mauro; Speiser, Daniel E

    2015-04-08

    Efficient and persisting immune memory is essential for long-term protection from infectious and malignant diseases. The yellow fever (YF) vaccine is a live attenuated virus that mediates lifelong protection, with recent studies showing that the CD8(+) T cell response is particularly robust. Yet, limited data exist regarding the long-term CD8(+) T cell response, with no studies beyond 5 years after vaccination. We investigated 41 vaccinees, spanning 0.27 to 35 years after vaccination. YF-specific CD8(+) T cells were readily detected in almost all donors (38 of 41), with frequencies decreasing with time. As previously described, effector cells dominated the response early after vaccination. We detected a population of naïve-like YF-specific CD8(+) T cells that was stably maintained for more than 25 years and was capable of self-renewal ex vivo. In-depth analyses of markers and genome-wide mRNA profiling showed that naïve-like YF-specific CD8(+) T cells in vaccinees (i) were distinct from genuine naïve cells in unvaccinated donors, (ii) resembled the recently described stem cell-like memory subset (Tscm), and (iii) among all differentiated subsets, had profiles closest to naïve cells. Our findings reveal that CD8(+) Tscm are efficiently induced by a vaccine in humans, persist for decades, and preserve a naïveness-like profile. These data support YF vaccination as an optimal mechanistic model for the study of long-lasting memory CD8(+) T cells in humans.

  1. Valproic acid inhibits irradiation-induced epithelial-mesenchymal transition and stem cell-like characteristics in esophageal squamous cell carcinoma

    Science.gov (United States)

    Kanamoto, Ayako; Ninomiya, Itasu; Harada, Shinichi; Tsukada, Tomoya; Okamoto, Koichi; Nakanuma, Shinichi; Sakai, Seisho; Makino, Isamu; Kinoshita, Jun; Hayashi, Hironori; Oyama, Katsunobu; Miyashita, Tomoharu; Tajima, Hidehiro; Takamura, Hiroyuki; Fushida, Sachio; Ohta, Tetsuo

    2016-01-01

    Esophageal carcinoma is one of the most aggressive malignancies, and is characterized by poor response to current therapy and a dismal survival rate. In this study we investigated whether irradiation induces epithelial-mesenchymal transition (EMT) in esophageal squamous cell carcinoma (ESCC) TE9 cells and whether the classic histone deacetylase (HDAC) inhibitor valproic acid (VPA) suppresses these changes. First, we showed that 2 Gy irradiation induced spindle cell-like morphologic changes, decreased expression of membranous E-cadherin, upregulated vimentin expression, and altered the localization of β-catenin from its usual membrane-bound location to cytoplasm in TE9 cells. Irradiation induced upregulation of transcription factors including Slug, Snail, and Twist, which regulate EMT. Stimulation by irradiation resulted in increased TGF-β1 and HIF-1α expression and induced Smad2 and Smad3 phosphorylation. Furthermore, irradiation enhanced CD44 expression, indicating acquisition of cancer stem-like cell properties. In addition, irradiation enhanced invasion and migration ability with upregulation of matrix metalloproteinases. These findings indicate that single-dose irradiation can induce EMT in ESCC cells. Second, we found that treatment with 1 mM VPA induced reversal of EMT caused by irradiation in TE9 cells, resulting in attenuated cell invasion and migration abilities. These results suggest that VPA might have clinical value to suppress irradiation-induced EMT. The reversal of EMT by HDAC inhibitors may be a new therapeutic strategy to improve the effectiveness of radiotherapy in ESCC by inhibiting the enhancement of invasion and metastasis.

  2. Anti-protozoal and anti-bacterial antibiotics that inhibit protein synthesis kill cancer subtypes enriched for stem cell-like properties

    Science.gov (United States)

    Cuyàs, Elisabet; Martin-Castillo, Begoña; Corominas-Faja, Bruna; Massaguer, Anna; Bosch-Barrera, Joaquim; Menendez, Javier A

    2015-01-01

    Key players in translational regulation such as ribosomes might represent powerful, but hitherto largely unexplored, targets to eliminate drug-refractory cancer stem cells (CSCs). A recent study by the Lisanti group has documented how puromycin, an old antibiotic derived from Streptomyces alboniger that inhibits ribosomal protein translation, can efficiently suppress CSC states in tumorspheres and monolayer cultures. We have used a closely related approach based on Biolog Phenotype Microarrays (PM), which contain tens of lyophilized antimicrobial drugs, to assess the chemosensitivity profiles of breast cancer cell lines enriched for stem cell-like properties. Antibiotics directly targeting active sites of the ribosome including emetine, puromycin and cycloheximide, inhibitors of ribosome biogenesis such as dactinomycin, ribotoxic stress agents such as daunorubicin, and indirect inhibitors of protein synthesis such as acriflavine, had the largest cytotoxic impact against claudin-low and basal-like breast cancer cells. Thus, biologically aggressive, treatment-resistant breast cancer subtypes enriched for stem cell-like properties exhibit exacerbated chemosensitivities to anti-protozoal and anti-bacterial antibiotics targeting protein synthesis. These results suggest that old/existing microbicides might be repurposed not only as new cancer therapeutics, but also might provide the tools and molecular understanding needed to develop second-generation inhibitors of ribosomal translation to eradicate CSC traits in tumor tissues. PMID:25970790

  3. Anti-protozoal and anti-bacterial antibiotics that inhibit protein synthesis kill cancer subtypes enriched for stem cell-like properties.

    Science.gov (United States)

    Cuyàs, Elisabet; Martin-Castillo, Begoña; Corominas-Faja, Bruna; Massaguer, Anna; Bosch-Barrera, Joaquim; Menendez, Javier A

    2015-01-01

    Key players in translational regulation such as ribosomes might represent powerful, but hitherto largely unexplored, targets to eliminate drug-refractory cancer stem cells (CSCs). A recent study by the Lisanti group has documented how puromycin, an old antibiotic derived from Streptomyces alboniger that inhibits ribosomal protein translation, can efficiently suppress CSC states in tumorspheres and monolayer cultures. We have used a closely related approach based on Biolog Phenotype Microarrays (PM), which contain tens of lyophilized antimicrobial drugs, to assess the chemosensitivity profiles of breast cancer cell lines enriched for stem cell-like properties. Antibiotics directly targeting active sites of the ribosome including emetine, puromycin and cycloheximide, inhibitors of ribosome biogenesis such as dactinomycin, ribotoxic stress agents such as daunorubicin, and indirect inhibitors of protein synthesis such as acriflavine, had the largest cytotoxic impact against claudin-low and basal-like breast cancer cells. Thus, biologically aggressive, treatment-resistant breast cancer subtypes enriched for stem cell-like properties exhibit exacerbated chemosensitivities to anti-protozoal and anti-bacterial antibiotics targeting protein synthesis. These results suggest that old/existing microbicides might be repurposed not only as new cancer therapeutics, but also might provide the tools and molecular understanding needed to develop second-generation inhibitors of ribosomal translation to eradicate CSC traits in tumor tissues.

  4. Activated Schwann Cell-Like Cells on Aligned Fibrin-Poly(Lactic-Co-Glycolic Acid) Structures: A Novel Construct for Application in Peripheral Nerve Regeneration.

    Science.gov (United States)

    Schuh, Christina M A P; Morton, Tatjana J; Banerjee, Asmita; Grasl, Christian; Schima, Heinrich; Schmidhammer, Robert; Redl, Heinz; Ruenzler, Dominik

    2015-01-01

    Tissue engineering approaches in nerve regeneration search for ways to support gold standard therapy (autologous nerve grafts) and to improve results by bridging nerve defects with different kinds of conduits. In this study, we describe electrospinning of aligned fibrin-poly(lactic-co-glycolic acid) (PLGA) fibers in an attempt to create a biomimicking tissue-like material seeded with Schwann cell-like cells (SCLs) in vitro for potential use as an in vivo scaffold. Rat adipose-derived stem cells (rASCs) were differentiated into SCLs and evaluated with flow cytometry concerning their differentiation and activation status [S100b, P75, myelin-associated glycoprotein (MAG), and protein 0 (P0)]. After receiving the proliferation stimulus forskolin, SCLs expressed S100b and P75; comparable to native, activated Schwann cells, while cultured without forskolin, cells switched to a promyelinating phenotype and expressed S100b, MAG, and P0. Human fibrinogen and thrombin, blended with PLGA, were electrospun and the alignment and homogeneity of the fibers were proven by scanning electron microscopy. Electrospun scaffolds were seeded with SCLs and the formation of Büngner-like structures in SCLs was evaluated with phalloidin/propidium iodide staining. Carrier fibrin gels containing rASCs acted as a self-shaping matrix to form a tubular structure. In this study, we could show that rASCs can be differentiated into activated, proliferating SCLs and that these cells react to minimal changes in stimulus, switching to a promyelinating phenotype. Aligned electrospun fibrin-PLGA fibers promoted the formation of Büngner-like structures in SCLs, which also rolled the fibrin-PLGA matrix into a tubular scaffold. These in vitro findings favor further in vivo testing.

  5. TAP-deficient human iPS cell-derived myeloid cell lines as unlimited cell source for dendritic cell-like antigen-presenting cells.

    Science.gov (United States)

    Haruta, M; Tomita, Y; Yuno, A; Matsumura, K; Ikeda, T; Takamatsu, K; Haga, E; Koba, C; Nishimura, Y; Senju, S

    2013-05-01

    We previously reported a method to generate dendritic cell (DC)-like antigen-presenting cells (APC) from human induced pluripotent stem (iPS) cells. However, the method is relatively complicated and laborious. In the current study, we attempted to establish a method through which we could obtain a large number of functional APC with a simple procedure. We transduced iPS cell-derived CD11b(+) myeloid cells with genes associated with proliferative or anti-senescence effects, enabling the cells to propagate for more than 4 months in a macrophage colony-stimulating factor (M-CSF)-dependent manner while retaining their capacity to differentiate into functional APC. We named these iPS cell-derived proliferating myeloid cells 'iPS-ML', and the iPS-ML-derived APC 'ML-DC'. In addition, we generated TAP2-deficient iPS cell clones by zinc finger nuclease-aided targeted gene disruption. TAP2-deficient iPS cells and iPS-ML avoided recognition by pre-activated allo-reactive CD8(+) T cells. TAP2-deficient ML-DC expressing exogenously introduced HLA-A2 genes stimulated HLA-A2-restricted MART-1-specific CD8(+) T cells obtained from HLA-A2-positive allogeneic donors, resulting in generation of MART-1-specific cytotoxic T lymphocyte (CTL) lines. TAP-deficient iPS-ML introduced with various HLA class I genes may serve as an unlimited source of APC for vaccination therapy. If administered into allogeneic patients, ML-DC with appropriate genetic modifications may survive long enough to stimulate antigen-specific CTL and, after that, be completely eliminated. Based on the present study, we propose an APC-producing system that is simple, safe and applicable to all patients irrespective of their HLA types.

  6. In vitro differentiation of germ cells from stem cells: a comparison between primordial germ cells and in vitro derived primordial germ cell-like cells.

    Science.gov (United States)

    Ge, W; Chen, C; De Felici, M; Shen, W

    2015-10-15

    Stem cells are unique cell types capable to proliferate, some of them indefinitely, while maintaining the ability to differentiate into a few or any cell lineages. In 2003, a group headed by Hans R. Schöler reported that oocyte-like cells could be produced from mouse embryonic stem (ES) cells in vitro. After more than 10 years, where have these researches reached? Which are the major successes achieved and the problems still remaining to be solved? Although during the last years, many reviews have been published about these topics, in the present work, we will focus on an aspect that has been little considered so far, namely a strict comparison between the in vitro and in vivo developmental capabilities of the primordial germ cells (PGCs) isolated from the embryo and the PGC-like cells (PGC-LCs) produced in vitro from different types of stem cells in the mouse, the species in which most investigation has been carried out. Actually, the formation and differentiation of PGCs are crucial for both male and female gametogenesis, and the faithful production of PGCs in vitro represents the basis for obtaining functional germ cells.

  7. FLT3 mutations in early T-cell precursor ALL characterize a stem cell like leukemia and imply the clinical use of tyrosine kinase inhibitors.

    Directory of Open Access Journals (Sweden)

    Martin Neumann

    Full Text Available Early T-cell precursor acute lymphoblastic leukemia (ETP-ALL has been identified as high-risk subgroup of acute T-lymphoblastic leukemia (T-ALL with a high rate of FLT3-mutations in adults. To unravel the underlying pathomechanisms and the clinical course we assessed molecular alterations and clinical characteristics in a large cohort of ETP-ALL (n = 68 in comparison to non-ETP T-ALL adult patients. Interestingly, we found a high rate of FLT3-mutations in ETP-ALL samples (n = 24, 35%. Furthermore, FLT3 mutated ETP-ALL was characterized by a specific immunophenotype (CD2+/CD5-/CD13+/CD33-, a distinct gene expression pattern (aberrant expression of IGFBP7, WT1, GATA3 and mutational status (absence of NOTCH1 mutations and a low frequency, 21%, of clonal TCR rearrangements. The observed low GATA3 expression and high WT1 expression in combination with lack of NOTCH1 mutations and a low rate of TCR rearrangements point to a leukemic transformation at the pluripotent prothymocyte stage in FLT3 mutated ETP-ALL. The clinical outcome in ETP-ALL patients was poor, but encouraging in those patients with allogeneic stem cell transplantation (3-year OS: 74%. To further explore the efficacy of targeted therapies, we demonstrate that T-ALL cell lines transfected with FLT3 expression constructs were particularly sensitive to tyrosine kinase inhibitors. In conclusion, FLT3 mutated ETP-ALL defines a molecular distinct stem cell like leukemic subtype. These data warrant clinical studies with the implementation of FLT3 inhibitors in addition to early allogeneic stem cell transplantation for this high risk subgroup.

  8. Is buffer a good proxy for a crowded cell-like environment? A comparative NMR study of calmodulin side-chain dynamics in buffer and E. coli lysate.

    Directory of Open Access Journals (Sweden)

    Michael P Latham

    Full Text Available Biophysical studies of protein structure and dynamics are typically performed in a highly controlled manner involving only the protein(s of interest. Comparatively fewer such studies have been carried out in the context of a cellular environment that typically involves many biomolecules, ions and metabolites. Recently, solution NMR spectroscopy, focusing primarily on backbone amide groups as reporters, has emerged as a powerful technique for investigating protein structure and dynamics in vivo and in crowded "cell-like" environments. Here we extend these studies through a comparative analysis of Ile, Leu, Val and Met methyl side-chain motions in apo, Ca(2+-bound and Ca(2+, peptide-bound calmodulin dissolved in aqueous buffer or in E. coli lysate. Deuterium spin relaxation experiments, sensitive to pico- to nano-second time-scale processes and Carr-Purcell-Meiboom-Gill relaxation dispersion experiments, reporting on millisecond dynamics, have been recorded. Both similarities and differences in motional properties are noted for calmodulin dissolved in buffer or in lysate. These results emphasize that while significant insights can be obtained through detailed "test-tube" studies, experiments performed under conditions that are "cell-like" are critical for obtaining a comprehensive understanding of protein motion in vivo and therefore for elucidating the relation between motion and function.

  9. Immune gene expression profiling of Proliferative Kidney Disease in rainbow trout Oncorhynchus mykiss reveals a dominance of anti-inflammatory, antibody and T helper cell-like activities.

    Science.gov (United States)

    Gorgoglione, Bartolomeo; Wang, Tiehui; Secombes, Christopher J; Holland, Jason W

    2013-07-16

    The myxozoan Tetracapsuloides bryosalmonae is the causative agent of Proliferative Kidney Disease (PKD) targeting primarily the kidney of infected fish where it causes a chronic lymphoid immunopathology. Although known to be associated with suppression of some cellular aspects of innate immunity and a prominent lymphocytic hyperplasia, there remains a considerable knowledge gap in our understanding of the underlying immune mechanisms driving PKD pathogenesis. To provide further insights, the expression profiles of a panel of innate/inflammatory and adaptive immune molecules were examined in rainbow trout Oncorhynchus mykiss following a natural exposure to the parasite. Relative to controls, fish with early to advanced stages of kidney pathology exhibited up-regulation of the inflammatory cytokines interleukin (IL)-6 and IL-11, although remaining refractory towards genes indicative of macrophage activity. Antimicrobial peptides (AMPs) and anti-inflammatory markers, including cathelicidin (CATH) and IL-10 were markedly up-regulated during clinical disease. Up-regulation of adaptive immune molecules, including cell markers and antibody genes reflect the lymphocytic dominance of this disease and the likely importance of lymphocyte subsets in PKD pathogenesis. Up-regulation of T helper (TH) cell-like response genes and transcription factors implies that T. bryosalmonae may elicit a complex interplay between TH cell subsets. This work, for the first time in the study of fish-myxozoan interactions, suggests that PKD pathogenesis is shaped by an anti-inflammatory phenotype, a profound B cell/antibody response and dysregulated TH cell-like activities. A better understanding of the functional roles of fish immune cells and molecules in PKD pathogenesis may facilitate future development of control measures against this disease.

  10. Level of Notch activation determines the effect on growth and stem cell-like features in glioblastoma multiforme neurosphere cultures

    DEFF Research Database (Denmark)

    Kristoffersen, Karina; Villingshøj, Mette; Poulsen, Hans Skovgaard;

    2013-01-01

    Brain cancer stem-like cells (bCSC) are cancer cells with neural stem cell (NSC)-like properties found in glioblastoma multiforme (GBM) and they are assigned a central role in tumor initiation, progression and relapse. The Notch pathway is important for maintenance and cell fate decisions...... in the normal NSC population. Notch signaling is often deregulated in GBM and recent results suggest that this pathway plays a significant role in bCSC as well. We therefore wished to further elucidate the role of Notch activation in GBM-derived bCSC....

  11. Derivation and long-term culture of an embryonic stem cell-like line from zebrafish blastomeres under feeder-free condition.

    Science.gov (United States)

    Ho, Sing Yee; Goh, Crystal Wei Pin; Gan, Jen Yang; Lee, Youn Sing; Lam, Millie Kuen Kuen; Hong, Ni; Hong, Yunhan; Chan, Woon Khiong; Shu-Chien, Alexander Chong

    2014-10-01

    Existing zebrafish embryonic stem (ES) cell lines are derived and maintained using feeder layers. We describe here the derivation and long-term culture of an ES cell-like line derived from zebrafish blastomeres without the use of feeder cells. This line, designated as ZES1, has been maintained for more than 800 days in defined Dulbecco's modified Eagle's medium supplemented with fetal bovine serum, zebrafish embryo extract, trout serum, and human basic fibroblast growth factor. ZES1 cells possessed a morphology typical of ES cells, being round or polygonal in shape with a large nucleus and sparse cytoplasm and were mostly diploid. The cells formed individual colonies consisting of tightly packed cells that stained positively for alkaline phosphatase. ZES1 cells also formed embryoid bodies when transferred onto uncoated wells. The pluripotent nature of ZES1 cells was confirmed when they could be induced to differentiate in vitro into several cell types, through low- or high-density culture conditions. Treatment with retinoic acid also induced the differentiation of ZES1 cells into primarily neuronal cells. Using immunostaining and real-time polymerase chain reaction, we showed that Sox2, a known pluripotent marker in mammalian ES cells, was also present in ZES1 cells. Chimera experiments revealed that fluorescent-labeled ZES1 cells microinjected into zebrafish blastulas participated in the formation of all three germ layers. Using GFP-labeled ZES1 cells, chimera germline transmission was also demonstrated at the F1 generation. In conclusion, ZES1 cells possess both in vitro and in vivo pluripotency characteristics, indicating that nonmammalian ES cells can be readily derived and maintained for a long term under feeder-free culture conditions.

  12. A Comparative Study on Self Adaptive Semantic Focused Crawler and Novel Focused Cell like Membrane Computing Crawler

    National Research Council Canada - National Science Library

    S Gunasekaran; M Anisha; P R Joe Dhanith

    2015-01-01

    .... Thus to avoid problem of downloading lot of web pages several crawlers are designed that improves the efficiency of crawling specific documents. Two crawlers namely Self adaptive Semantic Focussed and Cell Membrane Computing Focussed Crawler has been studied with comparison.

  13. Embryonic stem cell-like features of testicular carcinoma in situ revealed by genome-wide gene expression profiling

    DEFF Research Database (Denmark)

    Almstrup, Kristian; Hoei-Hansen, Christina E; Wirkner, Ute

    2004-01-01

    in their stoichiometry on progression into embryonic carcinoma. We compared the CIS expression profile with patterns reported in embryonic stem cells (ESCs), which revealed a substantial overlap that may be as high as 50%. We also demonstrated an over-representation of expressed genes in regions of 17q and 12, reported...

  14. N-cadherin/FGFR promotes metastasis through epithelial-to-mesenchymal transition and stem/progenitor cell-like properties.

    Science.gov (United States)

    Qian, X; Anzovino, A; Kim, S; Suyama, K; Yao, J; Hulit, J; Agiostratidou, G; Chandiramani, N; McDaid, H M; Nagi, C; Cohen, H W; Phillips, G R; Norton, L; Hazan, R B

    2014-06-26

    N-cadherin and HER2/neu were found to be co-expressed in invasive breast carcinomas. To test the contribution of N-cadherin and HER2 in mammary tumor metastasis, we targeted N-cadherin expression in the mammary epithelium of the MMTV-Neu mouse. In the context of ErbB2/Neu, N-cadherin stimulated carcinoma cell invasion, proliferation and metastasis. N-cadherin caused fibroblast growth factor receptor (FGFR) upmodulation, resulting in epithelial-to-mesenchymal transition (EMT) and stem/progenitor like properties, involving Snail and Slug upregulation, mammosphere formation and aldehyde dehydrogenase activity. N-cadherin potentiation of the FGFR stimulated extracellular signal regulated kinase (ERK) and protein kinase B (AKT) phosphorylation resulting in differential effects on metastasis. Although ERK inhibition suppressed cyclin D1 expression, cell proliferation and stem/progenitor cell properties, it did not affect invasion or EMT. Conversely, AKT inhibition suppressed invasion through Akt 2 attenuation, and EMT through Snail inhibition, but had no effect on cyclin D1 expression, cell proliferation or mammosphere formation. These findings suggest N-cadherin/FGFR has a pivotal role in promoting metastasis through differential regulation of ERK and AKT, and underscore the potential for targeting the FGFR in advanced ErbB2-amplified breast tumors.

  15. Inhibition of MEK and GSK3 supports ES cell-like domed colony formation from avian and reptile embryos.

    Science.gov (United States)

    Nakanoh, Shota; Okazaki, Kenji; Agata, Kiyokazu

    2013-07-01

    As amniotes diversified, mammals may have modified mechanisms of cellular pluripotency along with the acquisition of a placenta. What then defined pluripotent states in the ancestral amniotes? To study the evolutionary background of pluripotency in amniotes, we tested the effects of extracellular effectors on primary culture cells from avian and reptile embryos in serum-free medium. When treated with a combination of a MEK inhibitor and a GSK3 inhibitor (2i condition), chicken early embryos formed domed colonies (DCs), which were morphologically indistinguishable from the colonies formed by mouse and rat naïve embryonic stem cells. However, no DCs formed when cells from further-developed embryos were cultured in the 2i condition, indicating that there is a clear boundary of DC-forming ability at around the stage of primitive streak elongation. Quail embryos at the blastoderm and cleavage stages also formed DCs in the 2i condition, which is consistent with the notion that the appearance of DCs corresponds with the presence of pluripotent cells in embryos. Gecko blastoderms also formed DCs in the 2i condition, but gastrulas did not. ERK activation by bFGF caused an effect opposite to that of the 2i condition, namely, it dispersed colonies of cells even from early embryos in all species examined. These results suggest that the regulation of pluripotency by FGF/ERK signaling may date back at least to the common ancestor of mammals, birds, and reptiles. However, gene expression analysis indicated the possibility that mammalian pluripotency transcription factors function differently in non-mammalian amniotes.

  16. The role of additive neurogenesis and synaptic plasticity in a hippocampal memory model with grid-cell like input.

    Directory of Open Access Journals (Sweden)

    Peter A Appleby

    Full Text Available Recently, we presented a study of adult neurogenesis in a simplified hippocampal memory model. The network was required to encode and decode memory patterns despite changing input statistics. We showed that additive neurogenesis was a more effective adaptation strategy compared to neuronal turnover and conventional synaptic plasticity as it allowed the network to respond to changes in the input statistics while preserving representations of earlier environments. Here we extend our model to include realistic, spatially driven input firing patterns in the form of grid cells in the entorhinal cortex. We compare network performance across a sequence of spatial environments using three distinct adaptation strategies: conventional synaptic plasticity, where the network is of fixed size but the connectivity is plastic; neuronal turnover, where the network is of fixed size but units in the network may die and be replaced; and additive neurogenesis, where the network starts out with fewer initial units but grows over time. We confirm that additive neurogenesis is a superior adaptation strategy when using realistic, spatially structured input patterns. We then show that a more biologically plausible neurogenesis rule that incorporates cell death and enhanced plasticity of new granule cells has an overall performance significantly better than any one of the three individual strategies operating alone. This adaptation rule can be tailored to maximise performance of the network when operating as either a short- or long-term memory store. We also examine the time course of adult neurogenesis over the lifetime of an animal raised under different hypothetical rearing conditions. These growth profiles have several distinct features that form a theoretical prediction that could be tested experimentally. Finally, we show that place cells can emerge and refine in a realistic manner in our model as a direct result of the sparsification performed by the dentate gyrus

  17. In vitro differentiation of mouse embryonic stem cells into inner ear hair cell-like cells using stromal cell conditioned medium.

    Science.gov (United States)

    Ouji, Y; Ishizaka, S; Nakamura-Uchiyama, F; Yoshikawa, M

    2012-05-24

    Hearing loss is mainly caused by loss of sensory hair cells (HCs) in the organ of Corti or cochlea. Although embryonic stem (ES) cells are a promising source for cell therapy, little is known about the efficient generation of HC-like cells from ES cells. In the present study, we developed a single-medium culture method for growing embryoid bodies (EBs), in which conditioned medium (CM) from cultures of ST2 stromal cells (ST2-CM) was used for 14-day cultures of 4-day EBs. At the end of the 14-day cultures, up to 20% of the cells in EB outgrowths expressed HC-related markers, including Math1 (also known as Atoh1), myosin6, myosin7a, calretinin, α9AchR and Brn3c (also known as Pou4f3), and also showed formation of stereocilia-like structures. Further, we found that these cells were incorporated into the developing inner ear after transplantation into chick embryos. The present inner ear HC induction method using ST2-CM (HIST2 method) is quite simple and highly efficient to obtain ES-derived HC-like cells with a relatively short cultivation time.

  18. CD4-Transgenic Zebrafish Reveal Tissue-Resident Th2- and Regulatory T Cell-like Populations and Diverse Mononuclear Phagocytes.

    Science.gov (United States)

    Dee, Christopher T; Nagaraju, Raghavendar T; Athanasiadis, Emmanouil I; Gray, Caroline; Fernandez Del Ama, Laura; Johnston, Simon A; Secombes, Christopher J; Cvejic, Ana; Hurlstone, Adam F L

    2016-11-01

    CD4(+) T cells are at the nexus of the innate and adaptive arms of the immune system. However, little is known about the evolutionary history of CD4(+) T cells, and it is unclear whether their differentiation into specialized subsets is conserved in early vertebrates. In this study, we have created transgenic zebrafish with vibrantly labeled CD4(+) cells allowing us to scrutinize the development and specialization of teleost CD4(+) leukocytes in vivo. We provide further evidence that CD4(+) macrophages have an ancient origin and had already emerged in bony fish. We demonstrate the utility of this zebrafish resource for interrogating the complex behavior of immune cells at cellular resolution by the imaging of intimate contacts between teleost CD4(+) T cells and mononuclear phagocytes. Most importantly, we reveal the conserved subspecialization of teleost CD4(+) T cells in vivo. We demonstrate that the ancient and specialized tissues of the gills contain a resident population of il-4/13b-expressing Th2-like cells, which do not coexpress il-4/13a Additionally, we identify a contrasting population of regulatory T cell-like cells resident in the zebrafish gut mucosa, in marked similarity to that found in the intestine of mammals. Finally, we show that, as in mammals, zebrafish CD4(+) T cells will infiltrate melanoma tumors and obtain a phenotype consistent with a type 2 immune microenvironment. We anticipate that this unique resource will prove invaluable for future investigation of T cell function in biomedical research, the development of vaccination and health management in aquaculture, and for further research into the evolution of adaptive immunity.

  19. Treatment with retinoic acid and lens epithelial cell-conditioned medium in vitro directed the differentiation of pluripotent stem cells towards corneal endothelial cell-like cells.

    Science.gov (United States)

    Chen, Ping; Chen, Jun-Zhao; Shao, Chun-Yi; Li, Chuan-Yin; Zhang, Yi-Dan; Lu, Wen-Juan; Fu, Yao; Gu, Ping; Fan, Xianqun

    2015-02-01

    Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have extensive self-renewal capacity and the potential to differentiate into all tissue-specific cell lineages, including corneal endothelial cells (CECs). They are a promising prospect for the future of regenerative medicine. The method of derivation of CECs from ESCs and iPSCs, however, remains to be elucidated. In this study, mouse ESCs and iPSCs were induced to differentiate into CECs using CEC embryonic development events as a guide. All-trans retinoic acid (RA) treatment during the embryoid body (EB) differentiation step was used to promote neural crest (NC) cell differentiation as first step and was followed by a second induction in CEC- or lens epithelial cell (LEC)-conditioned medium (CM) to ultimately generate CEC-like cells. During the corresponding differentiation stages, NC developmental markers and CEC differentiation markers were detected at the protein level using immunocytochemistry (ICC) and at the mRNA level by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). During the first stage, the data indicated that 4 days of treatment with 1 μM RA starting on day 4 of EB formation favored NC cell differentiation and that plating on gelatin-coated plates led to cell migration out of the EBs. The second-stage differentiation results showed that the CM, particularly the LEC-CM, enhanced the yield of polygonal cells with CEC-specific marker expression shown by ICC and RT-qPCR. This study demonstrates that mouse ESCs and iPSCs were induced and expressed CEC differentiation markers when subjected to a two-step inducement process, suggesting that they are a promising resource for corneal endothelium failure replacement therapy in the future.

  20. Fast computation of radiation pressure force exerted by multiple laser beams on red blood cell-like particles

    Science.gov (United States)

    Gou, Ming-Jiang; Yang, Ming-Lin; Sheng, Xin-Qing

    2016-10-01

    Mature red blood cells (RBC) do not contain huge complex nuclei and organelles, makes them can be approximately regarded as homogeneous medium particles. To compute the radiation pressure force (RPF) exerted by multiple laser beams on this kind of arbitrary shaped homogenous nano-particles, a fast electromagnetic optics method is demonstrated. In general, based on the Maxwell's equations, the matrix equation formed by the method of moment (MOM) has many right hand sides (RHS's) corresponding to the different laser beams. In order to accelerate computing the matrix equation, the algorithm conducts low-rank decomposition on the excitation matrix consisting of all RHS's to figure out the so-called skeleton laser beams by interpolative decomposition (ID). After the solutions corresponding to the skeletons are obtained, the desired responses can be reconstructed efficiently. Some numerical results are performed to validate the developed method.

  1. Lin28a is a putative factor in regulating cancer stem cell-like properties in side population cells of oral squamous cell carcinoma.

    Science.gov (United States)

    Hayashi, S; Tanaka, J; Okada, S; Isobe, T; Yamamoto, G; Yasuhara, R; Irie, T; Akiyama, C; Kohno, Y; Tachikawa, T; Mishima, K

    2013-05-01

    Cancer stem cells (CSCs) are among the target cells of cancer therapy because they are uniquely involved in both cancer progression and sensitivity to chemotherapeutic agents. We identified side population (SP) cells, which are known to be an enriched population of CSC, in five oral squamous cell carcinoma (OSCC) cells (SCC9, SCC25, TOSCC7, TOSCC17, and TOSCC23). The percentages of SP cells ranged from 0% to 3.3%, with TOSCC23 cells showing the highest percentages of SP cells (3.3% of the total cell population). The SP cells isolated from TOSCC23 cells also showed greater cell proliferation and invasion compared to non-SP (MP) cells. Therefore, our initial findings suggested that SP cells were enriched for CSC-like cells. Furthermore, DNA microarray analysis revealed that the expression of cell proliferation-related and anti-apoptotic genes was greater in SP cells compared to MP cells. We focused on Lin28a, which showed the highest expression (approximately 22-fold) among the upregulated genes. The overexpression of Lin28a in TOSCC23 cells increased their proliferation, colony formation, and invasion. These findings suggest that Lin28a is an appropriate CSC target molecule for OSCC treatment. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Breast cancer stem cell-like cells are more sensitive to ionizing radiation than non-stem cells: role of ATM.

    Directory of Open Access Journals (Sweden)

    Seog-Young Kim

    Full Text Available There are contradictory observations about the different radiosensitivities of cancer stem cells and cancer non-stem cells. To resolve these contradictory observations, we studied radiosensitivities by employing breast cancer stem cell (CSC-like MDA-MB231 and MDA-MB453 cells as well as their corresponding non-stem cells. CSC-like cells proliferate without differentiating and have characteristics of tumor-initiating cells [1]. These cells were exposed to γ-rays (1.25-8.75 Gy and survival curves were determined by colony formation. A final slope, D(0, of the survival curve for each cell line was determined to measure radiosensitivity. The D(0 of CSC-like and non-stem MDA-MB-453 cells were 1.16 Gy and 1.55 Gy, respectively. Similar results were observed in MDA-MB-231 cells (0.94 Gy vs. 1.56 Gy. After determination of radiosensitivity, we investigated intrinsic cellular determinants which influence radiosensitivity including cell cycle distribution, free-radical scavengers and DNA repair. We observed that even though cell cycle status and antioxidant content may contribute to differential radiosensitivity, differential DNA repair capacity may be a greater determinant of radiosensitivity. Unlike non-stem cells, CSC-like cells have little/no sublethal damage repair, a low intracellular level of ataxia telangiectasia mutated (ATM and delay of γ-H2AX foci removal (DNA strand break repair. These results suggest that low DNA repair capacity is responsible for the high radiosensitivity of these CSC-like cells.

  3. Human cancer cells with stem cell-like phenotype exhibit enhanced sensitivity to the cytotoxicity of IL-2 and IL-15 activated natural killer cells.

    Science.gov (United States)

    Yin, Tao; Wang, Guoping; He, Sisi; Liu, Qin; Sun, Jianhong; Wang, Yongsheng

    2016-02-01

    Tumors harbor a population of cancer stem cells (CSCs) which can drive tumor progression and therapeutical resistance. Nature killer (NK) cells are best known for their ability to directly recognize and kill malignant cells. However, the susceptibility of cancer stem cells to NK cells is not fully understood. Here we demonstrated that human CD44+CD24- breast CSCs were shown enhanced sensitivity to IL-2 and IL-15 activated NK cells. CD44+CD24- CSCs expressed higher levels of NKG2D ligands ULBP1, ULBP2 and MICA. Blockade assay showed that the sensitivity of CSCs to NK cells-mediated lysis was mainly dependent on NKG2D. Furthermore, redox oxygen species (ROS)-low tumor cells were more sensitive to NK cells. The presence of antioxidant enzymes inhibitor L-S,R-buthionine sulfoximine or H2O2 retarded the cytotoxicity of NK cells to CD44+CD24- CSCs. In addition, NK cells could readily target CD133+ colonal CSCs. Our findings provide novel targets for NK cells-based immunotherapy and are of great importance for translational medicine.

  4. STAT3 signaling pathway is necessary for cell survival and tumorsphere forming capacity in ALDH{sup +}/CD133{sup +} stem cell-like human colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Li, E-mail: lin.796@osu.edu [Center for Childhood Cancer, The Research Institute at Nationwide Children' s Hospital, Department of Pediatrics, Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43205 (United States); Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 (China); Fuchs, James; Li, Chenglong [Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210 (United States); Olson, Veronica [Center for Childhood Cancer, The Research Institute at Nationwide Children' s Hospital, Department of Pediatrics, Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43205 (United States); Bekaii-Saab, Tanios [Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210 (United States); Lin, Jiayuh, E-mail: lin.674@osu.edu [Center for Childhood Cancer, The Research Institute at Nationwide Children' s Hospital, Department of Pediatrics, Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43205 (United States)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer The phosphorylated or activated form of STAT3 was expressed in colon cancer stem-like cells. Black-Right-Pointing-Pointer STAT3 inhibitor, FLLL32 inhibits P-STAT3 and STAT3 target genes in colon cancer stem-like cells. Black-Right-Pointing-Pointer Inhibition of STAT3 resulted in decreased cell viability and reduced numbers of tumorspheres. Black-Right-Pointing-Pointer STAT3 is required for survival and tumorsphere forming capacity in colon cancer stem-like cells. Black-Right-Pointing-Pointer Targeting STAT3 in cancer stem-like cells may offer a novel treatment approach for colon cancer. -- Abstract: Persistent activation of Signal Transducers and Activators of Transcription 3 (STAT3) is frequently detected in colon cancer. Increasing evidence suggests the existence of a small population of colon cancer stem or cancer-initiating cells may be responsible for tumor initiation, metastasis, and resistance to chemotherapy and radiation. Whether STAT3 plays a role in colon cancer-initiating cells and the effect of STAT3 inhibition is still unknown. Flow cytometry was used to isolate colon cancer stem-like cells from three independent human colon cancer cell lines characterized by both aldehyde dehydrogenase (ALDH)-positive and CD133-positive subpopulation (ALDH{sup +}/CD133{sup +}). The effects of STAT3 inhibition in colon cancer stem-like cells were examined. The phosphorylated or activated form of STAT3 was expressed in colon cancer stem-like cells and was reduced by a STAT3-selective small molecular inhibitor, FLLL32. FLLL32 also inhibited the expression of potential STAT3 downstream target genes in colon cancer stem-like cells including survivin, Bcl-XL, as well as Notch-1, -3, and -4, which may be involved in stem cell function. Furthermore, FLLL32 inhibited cell viability and tumorsphere formation as well as induced cleaved caspase-3 in colon cancer stem-like cells. FLLL32 is more potent than curcumin as evidenced with lower

  5. Retinoic acid promotes the proliferation of primordial germ cell-like cells differentiated from mouse skin-derived stem cells in vitro.

    Science.gov (United States)

    Tan, Hui; Wang, Jun-Jie; Cheng, Shun-Feng; Ge, Wei; Sun, Yuan-Chao; Sun, Xiao-Feng; Sun, Rui; Li, Lan; Li, Bo; Shen, Wei

    2016-02-01

    Skin-derived stem cells (SDSCs) have the potential to differentiate into gametes and are a potential resource for research and clinical applications. Sufficient amount of primordial germ cells (PGCs) is an important requirement for successful differentiation of SDSCs into gametes in vitro. Retinoic acid (RA), a vitamin A-derived small lipophilic molecule, promotes the growth of PGCs in vivo; however, the role of RA on the proliferation of PGC-like cells (PGCLCs) derived from SDSCs remains unknown. In this study, SDSCs were induced to differentiate into the embryoid body and cocultured with mouse fibroblasts to form PGCLCs. The proliferation of PGCLCs with the presence of various concentrations of RA was investigated in vitro. Immunofluorescence labeling showed that the 5-Bromo-2-deoxyUridine-positive ratio of PGCLCs was increased after the cells were treated with 5-μM RA, and flow cytometry results showed that the number of cells in the S phase was increased significantly. The messenger RNA expression levels of cell cycle-related genes, CCND1 and CDK2, were also increased. Furthermore, RA effectively promoted the external proliferation of endogenous PGCs when 11.5-days postcoitum fetal mouse genital ridges were cultured in vitro. In conclusion, 5-μM RA promoted the proliferation of SDSCs-derived PGCLCs and endogenous PGCs. Our study will provide a valuable model system for studying the differentiation of stem cells into gametes in vitro.

  6. Basic fibroblast growth factor is critical to reprogramming buffalo (Bubalus bubalis) primordial germ cells into embryonic germ stem cell-like cells.

    Science.gov (United States)

    Wang, Caizhu; Deng, Yanfei; Chen, Feng; Zhu, Peng; Wei, Jingwei; Luo, Chan; Lu, Fenghua; Yang, Sufang; Shi, Deshun

    2017-03-15

    Primordial germ cells (PGCs) are destined to form gametes in vivo, and they can be reprogrammed into pluripotent embryonic germ (EG) cells in vitro. Buffalo PGC have been reported to be reprogrammed into EG-like cells, but the identities of the major signaling pathways and culture media involved in this derivation remain unclear. Here, the effects of basic fibroblast growth factor (bFGF) and downstream signaling pathways on the reprogramming of buffalo PGCs into EG-like cells were investigated. Results showed bFGF to be critical to buffalo PGCs to dedifferentiate into EG-like cells (20 ng/mL is optimal) with many characteristics of pluripotent stem cells, including alkaline phosphatase (AP) activity, expression of pluripotency marker genes such as OCT4, NANOG, SOX2, SSEA-1, CDH1, and TRA-1-81, and the capacity to differentiate into all three embryonic germ layers. After chemically inhibiting pathways or components downstream of bFGF, data showed that inhibition of the PI3K/AKT pathway led to significantly lower EG cell derivation, while inhibition of P53 activity resulted in an efficiency of EG cell derivation comparable to that in the presence of bFGF. These results suggest that the role of bFGF in PGC-derived EG-like cell generation is mainly due to the activation of the PI3K/AKT/P53 pathway, in particular, the inhibition of P53 function. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. The crucial role of Activin A on the formation of primordial germ cell-like cells from skin-derived stem cells in vitro.

    Science.gov (United States)

    Sun, Rui; Sun, Yuan-Chao; Ge, Wei; Tan, Hui; Cheng, Shun-Feng; Yin, Shen; Sun, Xiao-Feng; Li, Lan; Dyce, Paul; Li, Julang; Yang, Xiao; Shi, Qing-Hua; Shen, Wei

    2015-01-01

    Primordial germ cells (PGCs) are founder cells of the germ cell lineage, and can be differentiated from stem cells in an induced system in vitro. However, the induction conditions need to be optimized in order to improve the differentiation efficiency. Activin A (ActA) is a member of the TGF-β super family and plays an important role in oogenesis and folliculogenesis. In the present study, we found that ActA promoted PGC-like cells (PGCLCs) formation from mouse skin-derived stem cells (SDSCs) in both embryoid body-like structure (EBLS) differentiation and the co-culture stage in a dose dependent manner. ActA treatment (100 ng/ml) during EBLS differentiation stage and further co-cultured for 6 days without ActA significantly increased PGCLCs from 53.2% to 82.8%, and as well as EBLS differentiation without ActA followed by co-cultured with 100 ng/ml ActA for 4 to 12 days with the percentage of PGCLCs increasing markedly in vitro. Moreover, mice treated with ActA at 100 ng/kg body weight from embryonic day (E) 5.5-12.5 led to more PGCs formation. However, the stimulating effects of ActA were interrupted by Smad3 RNAi, and in an in vitro cultured Smad3(-/-) mouse skin cells scenario. SMAD3 is thus likely a key effecter molecule in the ActA signaling pathway. In addition, we found that the expression of some epiblast cell markers, Fgf5, Dnmt3a, Dnmt3b and Wnt3, was increased in EBLSs cultured for 4 days or PGCLCs co-cultured for 12 days with ActA treatment. Interestingly, at 16 days of differentiation, the percentage of PGCLCs was decreased in the presence of ActA, but the expression of meiosis-relative genes, such as Stra8, Dmc1, Sycp3 and Sycp1, was increased. In conclusion, our data here demonstrated that ActA can promote PGCLC formation from SDSCs in vitro, at early stages of differentiation, and affect meiotic initiation of PGCLCs in later stages.

  8. Neural stem cell-like cells derived from autologous bone mesenchymal stem cells for the treatment of patients with cerebral palsy

    Directory of Open Access Journals (Sweden)

    Chen Guojun

    2013-01-01

    Full Text Available Abstract Background Stem cell therapy is a promising treatment for cerebral palsy, which refers to a category of brain diseases that are associated with chronic motor disability in children. Autologous MSCs may be a better cell source and have been studied for the treatment of cerebral palsy because of their functions in tissue repair and the regulation of immunological processes. Methods To assess neural stem cell–like (NSC-like cells derived from autologous marrow mesenchymal stem cells as a novel treatment for patients with moderate-to-severe cerebral palsy, a total of 60 cerebral palsy patients were enrolled in this open-label, non-randomised, observer-blinded controlled clinical study with a 6-months follow-up. For the transplantation group, a total of 30 cerebral palsy patients received an autologous NSC-like cells transplantation (1-2 × 107 cells into the subarachnoid cavity and rehabilitation treatments whereas 30 patients in the control group only received rehabilitation treatment. Results We recorded the gross motor function measurement scores, language quotients, and adverse events up to 6 months post-treatment. The gross motor function measurement scores in the transplantation group were significantly higher at month 3 (the score increase was 42.6, 95% CI: 9.8–75.3, P=.011 and month 6 (the score increase was 58.6, 95% CI: 25.8–91.4, P=.001 post-treatment compared with the baseline scores. The increase in the Gross Motor Function Measurement scores in the control group was not significant. The increases in the language quotients at months 1, 3, and 6 post-treatment were not statistically significant when compared with the baseline quotients in both groups. All the 60 patients survived, and none of the patients experienced serious adverse events or complications. Conclusion Our results indicated that NSC-like cells are safe and effective for the treatment of motor deficits related to cerebral palsy. Further randomised clinical

  9. Red-blood-cell-like BSA/Zn3(PO4)2 hybrid particles: Preparation and application to adsorption of heavy metal ions

    Science.gov (United States)

    Zhang, Baoliang; Li, Peitao; Zhang, Hepeng; Li, Xiangjie; Tian, Lei; Wang, Hai; Chen, Xin; Ali, Nisar; Ali, Zafar; Zhang, Qiuyu

    2016-03-01

    A novel kind of red-blood-cell-like bovine serum albumin (BSA)/Zn3(PO4)2 hybrid particle is prepared at room temperature by a facile and rapid one-step method based on coordination between BSA and zinc ion. The morphology of the monodisperse hybrid particle shows oblate spheroidal type with a one sided single hole on the surface. The hybrid particle is constructed with BSA/Zn3(PO4)2 nanoplates of 35 nm thick. The average particle size of hybrid particle is 2.3 μm, and its BET specific surface area is 146.64 cm2/g. To clarify the evolution of BSA/Zn3(PO4)2 hybrid particle, SEM and elemental analysis as a function of particle growth time are investigated. The formation mechanism of BSA/Zn3(PO4)2 hybrid particle, which can be described as crystallization, coordination and self-assembly process, is illustrated in detail. The as-prepared BSA/Zn3(PO4)2 hybrid particle is used for adsorption of Cu2+. The hybrid particle displayed excellent adsorption properties on Cu2+. The adsorption efficiency of BSA/Zn3(PO4)2 hybrid particles at 5 min and 30 min are 86.33% and 98.9%, respectively. The maximum adsorption capacity is 6.85 mg/g. Thus, this kind of novel adsorbent shows potential application value in ultra-fast and highly efficient removal of Cu2+.

  10. Synergistic effect of oridonin and a PI3K/mTOR inhibitor on the non-germinal center B cell-like subtype of diffuse large B cell lymphoma

    Directory of Open Access Journals (Sweden)

    Kai Qing

    2016-08-01

    Full Text Available Abstract We demonstrate the synergistic antitumor effect of oridonin and the PI3K/mTOR inhibitor NVP-BEZ235 on the non-germinal center B cell-like subtype of diffuse large B cell lymphoma (non-GCB DLBCL both in vitro and in vivo. The underlying mechanism may be multifunctional, involving apoptosis, AKT/mTOR and NF-kB inactivation, and ROS-mediated DNA damage response. Our findings pave the way for a new potential treatment option for non-GCB DLBCL with the combination of oridonin and NVP-BEZ235.

  11. Critical role of PI3K signaling for NF-kappaB-dependent survival in a subset of activated B-cell-like diffuse large B-cell lymphoma cells.

    Science.gov (United States)

    Kloo, Bernhard; Nagel, Daniel; Pfeifer, Matthias; Grau, Michael; Düwel, Michael; Vincendeau, Michelle; Dörken, Bernd; Lenz, Peter; Lenz, Georg; Krappmann, Daniel

    2011-01-04

    The activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL) represents a very aggressive human lymphoma entity. Constitutive NF-κB activation caused by chronic active B-cell receptor (BCR) signaling is common feature of many ABC DLBCL cells; however, the pathways linking BCR signaling to the NF-κB prosurvival network are largely unknown. Here we report that constitutive activity of PI3K and the downstream kinase PDK1 are essential for the viability of two ABC DLBCL cell lines that carry mutations in the BCR proximal signaling adaptor CD79B. In these cells, PI3K inhibition reduces NF-κB activity and decreases the expression of NF-κB target genes. Furthermore, PI3K and PDK1 are required for maintaining MALT1 protease activity, which promotes survival of the affected ABC DLBCL cells. These results demonstrate a critical function of PI3K-PDK1 signaling upstream of MALT1 protease and NF-κB in distinct ABC DLBCL cells and provide a rationale for the pharmacologic use of PI3K inhibitors in DLBCL therapy.

  12. Rapid and transient activation of gamma/delta T cells to interferon gamma production, NK cell-like killing and antigen processing during acute virus infection

    Science.gov (United States)

    Gamma/delta T cells are the majority peripheral blood T cells in young cattle. The role of gamma/delta T cells in innate responses against infection with foot-and-mouth disease virus (FMDV) was analyzed on 5 consecutive days following infection. Before infection, bovine gamma/delta T cells expressed...

  13. MicroRNA profiling of cisplatin-resistant oral squamous cell carcinoma cell lines enriched with cancer-stem-cell-like and epithelial-mesenchymal transition-type features

    Science.gov (United States)

    Ghosh, Ruma Dey; Ghuwalewala, Sangeeta; Das, Pijush; Mandloi, Sapan; Alam, Sk Kayum; Chakraborty, Jayanta; Sarkar, Sajal; Chakrabarti, Saikat; Panda, Chinmoy Kumar; Roychoudhury, Susanta

    2016-01-01

    Oral cancer is of major public health problem in India. Current investigation was aimed to identify the specific deregulated miRNAs which are responsible for development of resistance phenotype through regulating their resistance related target gene expression in oral squamous cell carcinoma (OSCC). Cisplatin-resistant OSCC cell lines were developed from their parental human OSCC cell lines and subsequently characterised. The resistant cells exhibited enhanced proliferative, clonogenic capacity with significant up-regulation of P-glycoprotein (ABCB1), c-Myc, survivin, β-catenin and a putative cancer-stem-like signature with increased expression of CD44, whereas the loss of E-cadherin signifies induced EMT phenotype. A comparative analysis of miRNA expression profiling in parental and cisplatin-resistant OSCC cell lines for a selected sets (deregulated miRNAs in head and neck cancer) revealed resistance specific signature. Moreover, we observed similar expression pattern for these resistance specific signature miRNAs in neoadjuvant chemotherapy treated and recurrent tumours compared to those with newly diagnosed primary tumours in patients with OSCC. All these results revealed that these miRNAs play an important role in the development of cisplatin-resistance mainly through modulating cancer stem-cell-like and EMT-type properties in OSCC. PMID:27045798

  14. Overexpression of snail induces epithelial-mesenchymal transition and a cancer stem cell-like phenotype in human colorectal cancer cells.

    Science.gov (United States)

    Fan, Fan; Samuel, Shaija; Evans, Kurt W; Lu, Jia; Xia, Ling; Zhou, Yunfei; Sceusi, Eric; Tozzi, Federico; Ye, Xiang-Cang; Mani, Sendurai A; Ellis, Lee M

    2012-08-01

    Epithelial-mesenchymal transition (EMT) is a critical process providing tumor cells with the ability to migrate and escape from the primary tumor and metastasize to distant sites. Recently, EMT was shown to be associated with the cancer stem cell (CSC) phenotype in breast cancer. Snail is a transcription factor that mediates EMT in a number of tumor types, including colorectal cancer (CRC). Our study was done to determine the role of Snail in mediating EMT and CSC function in CRC. Human CRC specimens were stained for Snail expression, and human CRC cell lines were transduced with a retroviral Snail construct or vector control. Cell proliferation and chemosensitivity to oxaliplatin of the infected cells were determined by the MTT (colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Migration and invasion were determined in vitro using modified Boyden chamber assays. EMT and putative CSC markers were analyzed using Western blotting. Intravenous injection of tumor cells was done to evaluate their metastatic potential in mice. Snail was overexpressed in human CRC surgical specimens. This overexpression induced EMT and a CSC-like phenotype in human CRC cells and enhanced cell migration and invasion (P Snail overexpression also led to an increase in metastasis formation in vivo (P Snail-overexpressing CRC cells were more chemoresistant to oxaliplatin than control cells. Increased Snail expression induces EMT and the CSC-like phenotype in CRC cells, which enhance cancer cell invasion and chemoresistance. Thus, Snail is a potential therapeutic target in metastatic CRC.

  15. Overexpression of SDF-1 activates the NF-κB pathway to induce epithelial to mesenchymal transition and cancer stem cell-like phenotypes of breast cancer cells.

    Science.gov (United States)

    Kong, Lingxin; Guo, Sufen; Liu, Chunfeng; Zhao, Yiling; Feng, Chong; Liu, Yunshuang; Wang, Tao; Li, Caijuan

    2016-03-01

    The formation of EMT and EMT-induced CSC-like phenotype is crucial for the metastasis of tumor cells. The stromal cell-derived factor-1 (SDF-1) is upregulated in various human carcinomas, which is closely associated with proliferation, migration, invasion and prognosis of malignancies. However, limited attention has been directed towards the effect of SDF-1 on epithelial to mesenchymal transition (EMT) or cancer stem cell (CSC)-like phenotype formation in breast cancer cells and the related mechanism. In the present study, we screened MCF-7 cells with low SDF-1 expression level for the purpose of evaluating whether SDF-1 is involved in EMT and CSC-like phenotype formation in MCF-7 cells. The pEGFP-N1-SDF-1 plasmid was transfected into MCF-7 cells, and the stably overexpressed SDF-1 in MCF-7 cells was confirmed by real-time PCR and western blot analysis. Colony formation assay, MTT, wound healing assay and Transwell invasion assay demonstrated that overexpression of SDF-1 significantly boosted the proliferation, migration and invasion of MCF-7 cells compared with parental (PSDF-1 overexpressing MCF-7 cells (PSDF-1 overexpressed MCF-7 cells in comparison with parental (PSDF-1 induced the activation of NF-κB pathway in MCF-7 cells. Conversely, suppressing or silencing p65 expression by antagonist or RNA interference could remarkably increase the expression of E-cadherin in SDF-1 overexpressed MCF-7 cells (PSDF-1 enhanced EMT by activating the NF-κB pathway of MCF-7 cells and further induced the formation of CSC-like phenotypes, ultimately promoting the proliferation and metastasis of MCF-7 cells. Therefore, SDF-1 may further be assessed as a potential target for gene therapy of breast cancer.

  16. Reduced TRMU expression increases the sensitivity of hair-cell-like HEI-OC-1 cells to neomycin damage in vitro

    Science.gov (United States)

    He, Zuhong; Sun, Shan; Waqas, Muhammad; Zhang, Xiaoli; Qian, Fuping; Cheng, Cheng; Zhang, Mingshu; Zhang, Shasha; Wang, Yongming; Tang, Mingliang; Li, Huawei; Chai, Renjie

    2016-01-01

    Aminoglycosides are ototoxic to the cochlear hair cells, and mitochondrial dysfunction is one of the major mechanisms behind ototoxic drug-induced hair cell death. TRMU (tRNA 5-methylaminomethyl-2-thiouridylate methyltransferase) is a mitochondrial protein that participates in mitochondrial tRNA modifications, but the role of TRMU in aminoglycoside-induced ototoxicity remains to be elucidated. In this study, we took advantage of the HEI-OC-1 cell line to investigate the role of TRMU in aminoglycoside-induced cell death. We found that TRMU is expressed in both hair cells and HEI-OC-1 cells, and its expression is significantly decreased after 24 h neomycin treatment. We then downregulated TRMU expression with siRNA and found that cell death and apoptosis were significantly increased after neomycin injury. Furthermore, when we down-regulated TRMU expression, we observed significantly increased mitochondrial dysfunction and increased levels of reactive oxygen species (ROS) after neomycin injury, suggesting that TRMU regulates mitochondrial function and ROS levels. Lastly, the antioxidant N-acetylcysteine rescued the mitochondrial dysfunction and cell apoptosis that was induced by TRMU downregulation, suggesting that ROS accumulation contributed to the increased aminoglycosides sensitivity of HEI-OC-1 cells after TRMU downregulation. This study provides evidence that TRMU might be a new therapeutic target for the prevention of aminoglycoside-induced hair cell death. PMID:27405449

  17. Optimization of culture conditions for the expansion of umbilical cord-derived mesenchymal stem or stromal cell-like cells using xeno-free culture conditions.

    Science.gov (United States)

    Hatlapatka, Tim; Moretti, Pierre; Lavrentieva, Antonina; Hass, Ralf; Marquardt, Nicole; Jacobs, Roland; Kasper, Cornelia

    2011-04-01

    First isolated from bone marrow, mesenchymal stem or stromal cells (MSC) were shown to be present in several postnatal and extraembryonic tissues as well as in a large variety of fetal tissues (e.g., fatty tissue, dental pulp, placenta, umbilical cord blood, and tissue). In this study, an optimized protocol for the expansion of MSC-like cells from whole umbilical cord tissue under xeno-free culture conditions is proposed. Different fetal calf sera and human serum (HS) were compared with regard to cell proliferation and MSC marker stability in long-term expansion experiments, and HS was shown to support optimal growth conditions. Additionally, the optimal concentration of HS during the cultivation was determined. With regard to cell proliferative potential, apoptosis, colony-forming unit fibroblast frequency, and cell senescence, our findings suggest that an efficient expansion of the cells is carried out best in media supplemented with 10% HS. Under our given xeno-free culture conditions, MSC-like cells were found to display in vitro immunoprivileged and immunomodulatory properties, which were assessed by co-culture and transwell culture experiments with carboxyfluorescein diacetate succinimidyl ester-labeled peripheral blood mononuclear cells. These findings may be of great value for the establishment of biotechnological protocols for the delivery of sufficient cell numbers of high quality for regenerative medicine purposes.

  18. c-Myb knockdown increases the neomycin-induced damage to hair-cell-like HEI-OC1 cells in vitro.

    Science.gov (United States)

    Yu, Xiaoyu; Liu, Wenwen; Fan, Zhaomin; Qian, Fuping; Zhang, Daogong; Han, Yuechen; Xu, Lei; Sun, Gaoying; Qi, Jieyu; Zhang, Shasha; Tang, Mingliang; Li, Jianfeng; Chai, Renjie; Wang, Haibo

    2017-01-23

    c-Myb is a transcription factor that plays a key role in cell proliferation, differentiation, and apoptosis. It has been reported that c-Myb is expressed within the chicken otic placode, but whether c-Myb exists in the mammalian cochlea, and how it exerts its effects, has not been explored yet. Here, we investigated the expression of c-Myb in the postnatal mouse cochlea and HEI-OC1 cells and found that c-Myb was expressed in the hair cells (HCs) of mouse cochlea as well as in cultured HEI-OC1 cells. Next, we demonstrated that c-Myb expression was decreased in response to neomycin treatment in both cochlear HCs and HEI-OC1 cells, suggesting an otoprotective role for c-Myb. We then knocked down c-Myb expression with shRNA transfection in HEI-OC1 cells and found that c-Myb knockdown decreased cell viability, increased expression of pro-apoptotic factors, and enhanced cell apoptosis after neomycin insult. Mechanistic studies revealed that c-Myb knockdown increased cellular levels of reactive oxygen species and decreased Bcl-2 expression, both of which are likely to be responsible for the increased sensitivity of c-Myb knockdown cells to neomycin. This study provides evidence that c-Myb might serve as a new target for the prevention of aminoglycoside-induced HC loss.

  19. TMPRSS4 induces cancer stem cell-like properties in lung cancer cells and correlates with ALDH expression in NSCLC patients.

    Science.gov (United States)

    de Aberasturi, Arrate L; Redrado, Miriam; Villalba, Maria; Larzabal, Leyre; Pajares, Maria J; Garcia, Javier; Evans, Stephanie R; Garcia-Ros, David; Bodegas, Maria Elena; Lopez, Lissett; Montuenga, Luis; Calvo, Alfonso

    2016-01-28

    Metastasis involves a series of changes in cancer cells that promote their escape from the primary tumor and colonization to a new organ. This process is related to the transition from an epithelial to a mesenchymal phenotype (EMT). Recently, some authors have shown that migratory cells with an EMT phenotype share properties of cancer stem cells (CSCs), which allow them to form a new tumor mass. The type II transmembrane serine protease TMPRSS4 is highly expressed in some solid tumors, promotes metastasis and confers EMT features to cancer cells. We hypothesized that TMPRSS4 could also provide CSC properties. Overexpression of TMPRSS4 reduces E-cadherin and induces N-cadherin and vimentin in A549 lung cancer cells, supporting an EMT phenotype. These changes are accompanied by enhanced migration, invasion and tumorigenicity in vivo. TMPRSS4 expression was highly increased in a panel of lung cancer cells cultured as tumorspheres (a typical assay to enrich for CSCs). H358 and H441 cells with knocked-down TMPRSS4 levels were significantly less able to form primary and secondary tumorspheres than control cells. Moreover, they showed a lower proportion of ALDH+ cells (examined by FACS analysis) and lower expression of some CSC markers than controls. A549 cells overexpressing TMPRSS4 conferred the opposite phenotype and were also more sensitive to the CSC-targeted drug salinomycin than control cells, but were more resistant to regular chemotherapeutic drugs (cisplatin, gemcitabine and 5-fluorouracil). Analysis of 70 NSCLC samples from patients revealed a very significant correlation between TMPRSS4 expression and CSC markers ALDH (p = 0.0018) and OCT4 (p = 0.0004), suggesting that TMPRSS4 is associated with a CSC phenotype in patients' tumors. These results show that TMPRSS4, in addition to inducing EMT, can also promote CSC features in lung cancer; therefore, CSC-targeting drugs could be an appropriate treatment for TMPRSS4+ tumors.

  20. FOXP1 suppresses immune response signatures and MHC class II expression in activated B-cell-like diffuse large B-cell lymphomas

    DEFF Research Database (Denmark)

    Brown, P J; Wong, K K; Felce, S L;

    2016-01-01

    The FOXP1 (forkhead box P1) transcription factor is a marker of poor prognosis in diffuse large B-cell lymphoma (DLBCL). Here microarray analysis of FOXP1-silenced DLBCL cell lines identified differential regulation of immune response signatures and major histocompatibility complex class II (MHC ...

  1. FOXP1 suppresses immune response signatures and MHC class II expression in activated B-cell-like diffuse large B-cell lymphomas

    DEFF Research Database (Denmark)

    Brown, P J; Wong, K K; Felce, S L

    2016-01-01

    The FOXP1 (forkhead box P1) transcription factor is a marker of poor prognosis in diffuse large B-cell lymphoma (DLBCL). Here microarray analysis of FOXP1-silenced DLBCL cell lines identified differential regulation of immune response signatures and major histocompatibility complex class II (MHC ...

  2. BORIS up-regulates OCT4 via histone methylation to promote cancer stem cell-like properties in human liver cancer cells.

    Science.gov (United States)

    Liu, Qiuying; Chen, Kefei; Liu, Zhongjian; Huang, Yuan; Zhao, Rongce; Wei, Ling; Yu, Xiaoqin; He, Jingyang; Liu, Jun; Qi, Jianguo; Qin, Yang; Li, Bo

    2017-09-10

    Accumulating evidence has revealed the importance of cancer stem cells (CSCs) in chemoresistance and recurrence. BORIS, a testes-specific CTCF paralog, has been shown to be associated with stemness traits of embryonic cancer cells and epithelial CSCs. We previously reported that BORIS is correlated with the expression of the CSC marker CD90 in hepatocellular carcinoma (HCC). These results encourage us to wonder whether BORIS exerts functions on CSC-like traits of human liver cancer cells. Here, we report that BORIS was enriched in HCC tissues. Exogenous overexpression of BORIS promoted CSC-like properties, including self-renewal, chemoresistance, migration and invasion in Huh7 and HCCLM3 cells. Conversely, BORIS knockdown suppressed CSC-like properties in SMMC-7721 and HepG2 cells and inhibited tumorigenicity in SMMC-7721 cells. Moreover, BORIS alteration did not affect the DNA methylation status of the minimal promoter and exon 1 region of OCT4. However, BORIS overexpression enhanced the amount of BORIS bound on the OCT4 promoter and increased H3K4me2, while reducing H3K27me3; BORIS depletion decreased BORIS and H3K4me2 on the OCT4 promoter, while increasing H3K27me3. These results revealed that BORIS is associated with the CSC-like traits of human liver cancer cells through the epigenetic regulation of OCT4. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Disulfiram modulated ROS–MAPK and NFκB pathways and targeted breast cancer cells with cancer stem cell-like properties

    Science.gov (United States)

    Yip, N C; Fombon, I S; Liu, P; Brown, S; Kannappan, V; Armesilla, A L; Xu, B; Cassidy, J; Darling, J L; Wang, W

    2011-01-01

    Background: Previous studies indicate that disulfiram (DS), an anti-alcoholism drug, is cytotoxic to cancer cell lines and reverses anticancer drug resistance. Cancer stem cells (CSCs) are the major cause of chemoresistance leading to the failure of cancer chemotherapy. This study intended to examine the effect of DS on breast cancer stem cells (BCSCs). Methods: The effect of DS on BC cell lines and BCSCs was determined by MTT, western blot, CSCs culture and CSCs marker analysis. Results: Disulfiram was highly toxic to BC cell lines in vitro in a copper (Cu)-dependent manner. In Cu-containing medium (1 μ), the IC50 concentrations of DS in BC cell lines were 200–500 n. Disulfiram/copper significantly enhanced (3.7–15.5-fold) cytotoxicity of paclitaxel (PAC). Combination index isobologram analysis demonstrated a synergistic effect between DS/Cu and PAC. The increased Bax and Bcl2 protein expression ratio indicated that intrinsic apoptotic pathway may be involved in DS/Cu-induced apoptosis. Clonogenic assay showed DS/Cu-inhibited clonogenicity of BC cells. Mammosphere formation and the ALDH1+VE and CD24Low/CD44High CSCs population in mammospheres were significantly inhibited by exposure to DS/Cu for 24 h. Disulfiram/copper induced reactive oxygen species (ROS) generation and activated its downstream apoptosis-related cJun N-terminal kinase and p38 MAPK pathways. Meanwhile, the constitutive NFκB activity in BC cell lines was inhibited by DS/Cu. Conclusion: Disulfiram/copper inhibited BCSCs and enhanced cytotoxicity of PAC in BC cell lines. This may be caused by simultaneous induction of ROS and inhibition of NFκB. PMID:21487404

  4. c-Myb knockdown increases the neomycin-induced damage to hair-cell-like HEI-OC1 cells in vitro

    OpenAIRE

    Xiaoyu Yu; Wenwen Liu; Zhaomin Fan; Fuping Qian; Daogong Zhang; Yuechen Han; Lei Xu; Gaoying Sun; Jieyu Qi; Shasha Zhang; Mingliang Tang; Jianfeng Li; Renjie Chai; Haibo Wang

    2017-01-01

    c-Myb is a transcription factor that plays a key role in cell proliferation, differentiation, and apoptosis. It has been reported that c-Myb is expressed within the chicken otic placode, but whether c-Myb exists in the mammalian cochlea, and how it exerts its effects, has not been explored yet. Here, we investigated the expression of c-Myb in the postnatal mouse cochlea and HEI-OC1 cells and found that c-Myb was expressed in the hair cells (HCs) of mouse cochlea as well as in cultured HEI-OC1...

  5. The JAK2/STAT3 signaling pathway is required for growth of CD44⁺CD24⁻ stem cell-like breast cancer cells in human tumors.

    Science.gov (United States)

    Marotta, Lauren L C; Almendro, Vanessa; Marusyk, Andriy; Shipitsin, Michail; Schemme, Janina; Walker, Sarah R; Bloushtain-Qimron, Noga; Kim, Jessica J; Choudhury, Sibgat A; Maruyama, Reo; Wu, Zhenhua; Gönen, Mithat; Mulvey, Laura A; Bessarabova, Marina O; Huh, Sung Jin; Silver, Serena J; Kim, So Young; Park, So Yeon; Lee, Hee Eun; Anderson, Karen S; Richardson, Andrea L; Nikolskaya, Tatiana; Nikolsky, Yuri; Liu, X Shirley; Root, David E; Hahn, William C; Frank, David A; Polyak, Kornelia

    2011-07-01

    Intratumor heterogeneity is a major clinical problem because tumor cell subtypes display variable sensitivity to therapeutics and may play different roles in progression. We previously characterized 2 cell populations in human breast tumors with distinct properties: CD44+CD24- cells that have stem cell-like characteristics, and CD44-CD24+ cells that resemble more differentiated breast cancer cells. Here we identified 15 genes required for cell growth or proliferation in CD44+CD24- human breast cancer cells in a large-scale loss-of-function screen and found that inhibition of several of these (IL6, PTGIS, HAS1, CXCL3, and PFKFB3) reduced Stat3 activation. We found that the IL-6/JAK2/Stat3 pathway was preferentially active in CD44+CD24- breast cancer cells compared with other tumor cell types, and inhibition of JAK2 decreased their number and blocked growth of xenografts. Our results highlight the differences between distinct breast cancer cell types and identify targets such as JAK2 and Stat3 that may lead to more specific and effective breast cancer therapies.

  6. Proteogenomic analysis of NCC-S1M, a gastric cancer stem cell-like cell line that responds to anti-PD-1.

    Science.gov (United States)

    Park, Jun Won; Um, Hyejin; Yang, Hanna; Ko, Woori; Kim, Dae-Yong; Kim, Hark Kyun

    2017-03-11

    To elucidate signaling pathways that regulate gastric cancer stem cell (CSC) phenotypes and immune checkpoint, we performed a proteogenomic analysis of NCC-S1M, which is a gastric cancer cell line with CSC-like characteristics and is the only syngeneic gastric tumor cell line transplant model created in the scientific community. We found that the NCC-S1M allograft was responsive to anti-PD-1 treatment, and overexpressed Cd274 encoding PD-L1. PD-L1 was transcriptionally activated by loss of the TGF-β signaling. Il1rl1 protein was overexpressed in NCC-S1M cells compared with NCC-S1 cells that are less tumorigenic and less chemoresistant. Il1rl1 knockdown in NCC-S1M cells reduced tumorigenic potential and in vivo chemoresistance. Our proteogenomic analysis demonstrates a role of Smad4 loss in the PD-L1 immune evasion, as well as Il1rl1's role in CSC-like properties of NCC-S1M. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Genistein Suppression of Matrix Metalloproteinase 2 (MMP-2) and Vascular Endothelial Growth Factor (VEGF) Expression in Mesenchymal Stem Cell Like Cells Isolated from High and Low Grade Gliomas

    Science.gov (United States)

    Yazdani, Yasaman; Sharifi Rad, Mohammad Reza; Taghipour, Mousa; Chenari, Nooshafarin; Ghaderi, Abbas; Razmkhah, Mahboobeh

    2016-12-01

    Objective: Brain tumors cause great mortality and morbidity worldwide, and success rates with surgical treatment remain very low. Several recent studies have focused on introduction of novel effective medical therapeutic approaches. Genistein is a member of the isoflavonoid family which has proved to exert anticancer effects. Here we assessed the effects of genistein on the expression of MMP-2 and VEGF in low and high grade gliomas in vitro. Materials and Methods: High and low grade glioma tumor tissue samples were obtained from a total of 16 patients, washed with PBS, cut into small pieces, digested with collagenase type I and cultured in DMEM containing 10% FBS. When cells reached passage 3, they were exposed to genistein and MMP-2 and VEGF gene transcripts were determined by quantitative real time PCR (qRT-PCR). Results: Expression of MMP-2 demonstrated 580-fold reduction in expression in low grade glioma cells post treatment with genistein compared to untreated cells (P value= 0.05). In cells derived from high grade lesions, expression of MMP-2 was 2-fold lower than in controls (P value> 0.05). Genistein caused a 4.7-fold reduction in VEGF transcript in high grade glioma cells (P value> 0.05) but no effects were evident in low grade glioma cells. Conclusion. Based on the data of the present study, low grade glioma cells appear much more sensitive to genistein and this isoflavone might offer an appropriate therapeutic intervention in these patients. Further investigation of this possibility is clearly warranted.

  8. A mix of S and ΔS variants of STAT3 enable survival of activated B-cell-like diffuse large B-cell lymphoma cells in culture

    Science.gov (United States)

    Zheng, M; Turton, K B; Zhu, F; Li, Y; Grindle, K M; Annis, D S; Lu, L; Drennan, A C; Tweardy, D J; Bharadwaj, U; Mosher, D F; Rui, L

    2016-01-01

    Activated B-cell-like diffuse large B-cell lymphoma (ABC DLBCL) is characterized by increased expression and activator of signal transducer and activator of transcription 3 (STAT3). ABC DLBCL cells require STAT3 for growth in culture. In ABC DLBCL cells, eosinophils and perhaps all cells, four variant STAT3 mRNAs (Sα, ΔSα, Sβ and ΔSβ) are present as a result of two alternative splicing events, one that results in the inclusion of a 55-residue C-terminal transactivation domain (α) or a truncated C-terminal domain with 7 unique residues (β) and a second that includes (S) or excludes (ΔS) the codon for Ser-701 in the linker between the SH2 and C-terminal domains. A substantial literature indicates that both α and β variants are required for optimal STAT3 function, but nothing is known about functions of ΔS variants. We used a knockdown/re-expression strategy to explore whether survival of ABC DLBCL cells requires that the four variants be in an appropriate ratio. No single variant rescued survival as well as STAT3Sα-C, Sα with activating mutations (A661C and N663C) in the SH2 domain. Better rescue was achieved when all four variants were re-expressed or Sα and ΔSα or Sβ and ΔSβ were re-expressed in pairs. Rescue correlated with expression of STAT3-sensitive genes NFKBIA and NFKBIZ. We consider a variety of explanations why a mix of S and ΔS variants of STAT3 should enable survival of ABC DLBCL cells. PMID:26727576

  9. Epigenetic remodeling in B-cell acute lymphoblastic leukemia occurs in two tracks and employs embryonic stem cell-like signatures.

    Science.gov (United States)

    Lee, Seung-Tae; Muench, Marcus O; Fomin, Marina E; Xiao, Jianqiao; Zhou, Mi; de Smith, Adam; Martín-Subero, José I; Heath, Simon; Houseman, E Andres; Roy, Ritu; Wrensch, Margaret; Wiencke, John; Metayer, Catherine; Wiemels, Joseph L

    2015-03-11

    We investigated DNA methylomes of pediatric B-cell acute lymphoblastic leukemias (B-ALLs) using whole-genome bisulfite sequencing and high-definition microarrays, along with RNA expression profiles. Epigenetic alteration of B-ALLs occurred in two tracks: de novo methylation of small functional compartments and demethylation of large inter-compartmental backbones. The deviations were exaggerated in lamina-associated domains, with differences corresponding to methylation clusters and/or cytogenetic groups. Our data also suggested a pivotal role of polycomb and CTBP2 in de novo methylation, which may be traced back to bivalency status of embryonic stem cells. Driven by these potent epigenetic modulations, suppression of polycomb target genes was observed along with disruption of developmental fate and cell cycle and mismatch repair pathways and altered activities of key upstream regulators.

  10. Inhibition of CD147 expression by RNA interference reduces proliferation, invasion and increases chemosensitivity in cancer stem cell-like HT-29 cells.

    Science.gov (United States)

    Chen, Jie; Pan, Yuqin; He, Bangshun; Ying, Houqun; Wang, Feng; Sun, Huiling; Deng, Qiwen; Liu, Xian; Lin, Kang; Peng, Hongxin; Cho, William C; Wang, Shukui

    2015-10-01

    The association between CD147 and cancer stem cells (CSCs) provides a new angle for cancer treatments. The aim of this study was to investigate the biological roles of CD147 in colorectal CSCs. The Oct4-green fluorescent protein (GFP) vector was used to isolate CSCs and pYr-mir30-shRNA was used to generate short hairpin RNA (shRNA) specifically for CD147. After RNA interference (RNAi), CD147 was evaluated by reverse transcription‑quantitative PCR and western blot analysis, and its biological functions were assessed by MTT and invasion assays. The results showed that the differentiation of isolated CSC-like HT-29 cells was blocked and these cells were highly positive for CD44 and CD147. RNAi-mediated CD147 silencing reduced the expression of CD147 at both mRNA and protein levels. Moreover, the activities of proliferation and invasion were decreased obviously in CSCs. Knockdown of CD147 increased the chemosensitivity of CSC-like cells to gemcitabine, cisplatin, docetaxel at 0.1, 1 and 10 µM respectively, however, there was no significant difference among the three groups to paclitaxel at 10 µM. In conclusion, these results suggest that CD147 plays an important role in colorectal CSCs and might be regarded as a novel CSC-specific targeted strategy against colorectal cancer.

  11. Upregulated miR-132 in Lgr5(+) gastric cancer stem cell-like cells contributes to cisplatin-resistance via SIRT1/CREB/ABCG2 signaling pathway.

    Science.gov (United States)

    Zhang, Lanfang; Guo, Xiaohe; Zhang, Dezhong; Fan, Yingying; Qin, Lei; Dong, Shuping; Zhang, Lanfang

    2017-09-01

    Cisplatin resistance has long been a major problem that restricts its use. A novel paradigm in tumor biology suggests that gastric tumor chemo-resistance is driven by gastric cancer stem cell-like (GCSCs). Growing evidence has indicated that microRNAs (miRNAs) contributes to chemo-resistance in gastric cancer (GC). Here, Lgr5(+) cells derived from gastric cancer cell lines displayed stem cell-like features. Flow cytometry demonstrated the presence of a variable fraction of Lgr5 in 19 out of 20 GC specimens. By comparing the miRNA expression profiles of Lgr5(+) GCSCs and Lrg5(-) cells, we established the upregulation of miR-132 in Lgr5(+) GCSCs. The enhanced miR-132 expression correlated chemo-resistance in GC patients. Kaplan-Meier survival curve showed that patients with low miR-132 expression survived obviously longer. Functional assays results indicated that miR-132 promoted cisplatin resistance in Lgr5(+) GCSCs in vitro and in vivo. Further dual-luciferase reporter gene assays revealed that SIRT1 was the direct target of miR-132. The expression of miR-132 was inversely correlated with SIRT1 in gastric cancer specimens. Furthermore, through PCR array we discovered ABCG2 was one of the downstream targets of SIRT1. Overexpression of SIRT1 down-regulated ABCG2 expression by promoting the de-acetylation of the transcription factor CREB. CREB was further activated ABCG2 via binding to the promoter of ABCG2 to induce transcription. Thus, we concluded that miR-132 regulated SIRT1/CREB/ABCG2 signaling pathway contributing to the cisplatin resistance and might serve as a novel therapeutic target against gastric cancer. © 2017 Wiley Periodicals, Inc.

  12. Heat Shock Factor 1 Depletion Sensitizes A172 Glioblastoma Cells to Temozolomide via Suppression of Cancer Stem Cell-Like Properties

    Directory of Open Access Journals (Sweden)

    Chang-Nim Im

    2017-02-01

    Full Text Available Heat shock factor 1 (HSF1, a transcription factor activated by various stressors, regulates proliferation and apoptosis by inducing expression of target genes, such as heat shock proteins and Bcl-2 (B-cell lymphoma 2 interacting cell death suppressor (BIS. HSF1 also directly interacts with BIS, although it is still unclear whether this interaction is critical in the regulation of glioblastoma stem cells (GSCs. In this study, we examined whether small interfering RNA-mediated BIS knockdown decreased protein levels of HSF1 and subsequent nuclear localization under GSC-like sphere (SP-forming conditions. Consistent with BIS depletion, HSF1 knockdown also reduced sex determining region Y (SRY-box 2 (SOX2 expression, a marker of stemness, accompanying the decrease in SP-forming ability and matrix metalloprotease 2 (MMP2 activity. When HSF1 or BIS knockdown was combined with temozolomide (TMZ treatment, a standard drug used in glioblastoma therapy, apoptosis increased, as measured by an increase in poly (ADP-ribose polymerase (PARP cleavage, whereas cancer stem-like properties, such as colony-forming activity and SOX2 protein expression, decreased. Taken together, our findings suggest that targeting BIS or HSF1 could be a viable therapeutic strategy for GSCs resistant to conventional TMZ treatment.

  13. Heat Shock Factor 1 Depletion Sensitizes A172 Glioblastoma Cells to Temozolomide via Suppression of Cancer Stem Cell-Like Properties

    Science.gov (United States)

    Im, Chang-Nim; Yun, Hye Hyeon; Lee, Jeong-Hwa

    2017-01-01

    Heat shock factor 1 (HSF1), a transcription factor activated by various stressors, regulates proliferation and apoptosis by inducing expression of target genes, such as heat shock proteins and Bcl-2 (B-cell lymphoma 2) interacting cell death suppressor (BIS). HSF1 also directly interacts with BIS, although it is still unclear whether this interaction is critical in the regulation of glioblastoma stem cells (GSCs). In this study, we examined whether small interfering RNA-mediated BIS knockdown decreased protein levels of HSF1 and subsequent nuclear localization under GSC-like sphere (SP)-forming conditions. Consistent with BIS depletion, HSF1 knockdown also reduced sex determining region Y (SRY)-box 2 (SOX2) expression, a marker of stemness, accompanying the decrease in SP-forming ability and matrix metalloprotease 2 (MMP2) activity. When HSF1 or BIS knockdown was combined with temozolomide (TMZ) treatment, a standard drug used in glioblastoma therapy, apoptosis increased, as measured by an increase in poly (ADP-ribose) polymerase (PARP) cleavage, whereas cancer stem-like properties, such as colony-forming activity and SOX2 protein expression, decreased. Taken together, our findings suggest that targeting BIS or HSF1 could be a viable therapeutic strategy for GSCs resistant to conventional TMZ treatment. PMID:28241425

  14. P01.14PRESENCE OF A STEM CELL-LIKE CELL SUBPOPULATION IS ASSOCIATED WITH ENHANCED SURVIVAL OF GLIOBLASTOMA PATIENTS

    Science.gov (United States)

    Loetsch, D.; Spiegl-Kreinecker, S.; Kiesel, B.; Widhalm, G.; Laaber, M.; Knosp, E.; Hainfellner, J.; Marosi, C.; Berger, W.

    2014-01-01

    Glioblastoma multiforme (GBM) is the most aggressive type of primary brain tumours characterised by a dismal prognosis and limited treatment response. The current standard of care for GBM patients includes after tumour resection, radiotherapy (RT) followed by concomitant and adjuvant chemotherapy with the alkylating agent temozolomide (TMZ). Even at this maximal therapy the prognosis of GBM patients remains poor with a median survival of 15 months. It is believed that a subpopulation of glioma stem cells (GSC) is responsible for maintaining a tumour after therapy thus causing recurrence after gross total resection. Accordingly aim of this study was to correlate the presence of GSCs with the predictive and prognostic glioblastoma biomarkers MGMT promoter methylation and TERT promoter mutation, respectively. In addition we investigated the prognostic quality of a GSC subpopulation on patient overall survival. For that purpose 33 primary and recurrent GBM patients operated at the Medical University of Vienna since September 2009 were included in this project. Every resected tumour sample was cultured in parallel as adherent monolayer under standard and as spheroids under GSC culture conditions. Fourteen out of 33 GBM tissue specimens (42%) developed into adherent and neurosphere cultures (termed GCSpos), while the remaining 19 (58%) could solely grow as adherent monolayer (termed GSCneg). The mean age of GSCpos patients was significantly lower as compared to the GSCneg subgroup (53 versus 63 years). The GSCpos cohort was characterized by significantly enhanced occurrence of MGMT promoter methylation and TERT promoter mutation. Surprisingly, GCSpos compared to GCSneg patients showed a significant prolonged overall survival (p = 0.0045). Summarizing our data suggest that GBM tumours harbouring GSC characteristics might be more likely to respond to standard therapy with TMZ due to the favourable MGMT promoter methylation status explaining, beside lower patient age

  15. Hair cell-like cells generation induced by nature culture of cochlear sensory epithelia in rat%小鼠耳蜗感觉上皮细胞的自然培养诱导毛细胞的产生

    Institute of Scientific and Technical Information of China (English)

    刘晖; 李胜利; 朱宏亮; 姚小宝; 王晓侠

    2003-01-01

    Object To establish rat auditory epithelial cell culture and try to find precursor cells of auditory hair cells in vitro and apply them to study mammalian hair cell regeneration.Methods With refinement of culture media and techniques,cochlear sensory epithelial cells of rat were cultured.Immunocytochemistry and Bromodeoxyuridine(BrdU)labeling were used to detect properties and mitotic status of cultured cells.Results The cultured auditory epithelial cells showed a large,flat epithelial morphotype and expressed F-actin and cytokerafin,a subset of cells generated from auditory epithelium were labeled by calretinin, a specific marker of early hair cell.The appearance of calretinin-positive cells were also confirmed in 3rd passage culture by immunostaining.Conclusions Postnatal rat auditory epithelium can be induced to generate hair cell-like cells by nature culture,this phenomenon suggested thatprogenitor cells may exist in rat cochlea and they may give birth to new hair cells. Whether these progenitor cells are tissue specific stem cells was still need more study.%目的培养小鼠耳蜗上皮细胞,寻找听觉毛细胞的前体细胞,从而研究听觉毛细胞的再生.方法改良细胞培养基和培养技术,建立小鼠耳蜗听觉上皮细胞的培养;用免疫细胞化学方法和BrdU标记法检测培养细胞的性质和分裂状态.结果培养的听觉上皮细胞表现为大而扁平的上皮细胞形态,并且表达上皮细胞的标志F-actin和cytokeratin,部分新生的细胞可被早期毛细胞的特异标志calretinin着染,表明有听毛细胞样的细胞产生.这种现象经3次传代培养后仍然存在.结论自然细胞培养方法可能诱导小鼠听觉毛细胞的产生,在小鼠的耳蜗内可能存在听觉毛细胞的前体细胞,而这些前体细胞是否是组织特异性干细胞还需要更进一步的研究.

  16. Functional heterogeneity within the CD44 high human breast cancer stem cell-like compartment reveals a gene signature predictive of distant metastasis

    DEFF Research Database (Denmark)

    Leth-Larsen, Rikke; Terp, Mikkel Green; Christensen, Anne G

    2012-01-01

    The CD44(hi) compartment in human breast cancer is enriched in tumor-initiating cells; however the functional heterogeneity within this subpopulation remains poorly defined. We used a triple-negative breast cancer cell line with a known bi-lineage phenotype to isolate and clone CD44(hi) single......-cells that exhibited mesenchymal/Basal B and luminal/Basal A features, respectively. Herein we demonstrate in this and other triple-negative breast cancer cell lines that rather than CD44(hi)/CD24(-) mesenchymal-like Basal B cells, the CD44(hi)/CD24(lo) epithelioid Basal A cells retained classical cancer stem cell...... of estrogen receptor-negative human breast cancers. These findings strongly favor functional heterogeneity in the breast cancer cell compartment and hold promise for further refinements of prognostic marker profiling. Our work confirms that, in addition to cancer stem cells with mesenchymal-like morphology...

  17. Coupling of small leucine-rich proteoglycans to hypoxic survival of a progenitor cell-like subpopulation in Rhesus Macaque intervertebral disc.

    Science.gov (United States)

    Huang, Shishu; Leung, Victor Y L; Long, Dan; Chan, Danny; Lu, William W; Cheung, Kenneth M C; Zhou, Guangqian

    2013-09-01

    Degeneration of the intervertebral disc (IVD) is a major spinal disorder that associates with neck and back pain. Recent studies of clinical samples and animal models for IVD degeneration have identified cells with multi-potency in the IVD. However, IVD tissue-specific progenitor cells and their niche components are not clear, although degenerated IVD-derived cells possess in vitro characteristics of mesenchymal stromal cell (MSCs). Here, we firstly identified the tissue-specific intervertebral disc progenitor cells (DPCs) from healthy Rhesus monkey and report the niche components modulated the survival of DPCs under hypoxia. DPCs possess clonogenicity, multipotency and retain differentiation potential after extended expansion in vitro and in vivo. In particular, the nucleus pulposus-derived DPCs are sensitive to low oxygen tension and undergo apoptosis under hypoxic conditions due to their inability to induce/stabilize hypoxia-inducible factors (HIF). The presence of small leucine-rich proteoglycans (SLRP), biglycan or decorin, can reduce the susceptibility of DPCs to hypoxia-induced apoptosis via promoting the activation/stabilization of HIF-1α and HIF-2α. As IVD is avascular, we propose SLRPs are niche components of DPCs in IVD homeostasis, providing new insights in progenitor cell biology and niche factors under a hypoxic microenvironment.

  18. Long Noncoding RNA lncCAMTA1 Promotes Proliferation and Cancer Stem Cell-Like Properties of Liver Cancer by Inhibiting CAMTA1.

    Science.gov (United States)

    Ding, Li-Juan; Li, Yan; Wang, Shu-Dong; Wang, Xin-Sen; Fang, Fang; Wang, Wei-Yao; Lv, Peng; Zhao, Dong-Hai; Wei, Feng; Qi, Ling

    2016-09-23

    Hepatocellular carcinoma (HCC) is the most common subtype of liver malignancy, and it is characterized by poor prognosis because of cancer stem cell (CSC)-mediated high postsurgical recurrence rates. Thus, targeting CSCs, or HCC cells with CSC-like properties, is an effective strategy for HCC therapy. Here, using long noncoding RNA (lncRNA) microarray analysis, we identified a novel lncRNA termed lncCAMTA1 that is increased in both liver CSCs and HCC. High lncCAMTA1 expression in HCC indicates poor clinical outcome. In vitro and in vivo functional experiments showed that overexpression of lncCAMTA1 promotes HCC cell proliferation, CSC-like properties, and tumorigenesis. Conversely, depletion of lncCAMTA1 inhibits HCC cell proliferation, CSC-like properties, and tumorigenesis. Mechanistically, we demonstrated that lncCAMTA1 physically associates with the calmodulin binding transcription activator 1 (CAMTA1) promoter, induces a repressive chromatin structure, and inhibits CAMTA1 transcription. Furthermore, CAMTA1 is required for the effects of lncCAMTA1 on HCC cell proliferation and CSC-like properties, and the expression of lncCAMTA1 and CAMTA1 is significantly negatively correlated in HCC tissues. Collectively, our study revealed the important roles and underlying molecular mechanisms of lncCAMTA1 on HCC, and suggested that lncCAMTA1 could be an effective prognostic factor and a potential therapeutic target for HCC.

  19. Long Noncoding RNA lncCAMTA1 Promotes Proliferation and Cancer Stem Cell-Like Properties of Liver Cancer by Inhibiting CAMTA1

    Directory of Open Access Journals (Sweden)

    Li-Juan Ding

    2016-09-01

    Full Text Available Hepatocellular carcinoma (HCC is the most common subtype of liver malignancy, and it is characterized by poor prognosis because of cancer stem cell (CSC-mediated high postsurgical recurrence rates. Thus, targeting CSCs, or HCC cells with CSC-like properties, is an effective strategy for HCC therapy. Here, using long noncoding RNA (lncRNA microarray analysis, we identified a novel lncRNA termed lncCAMTA1 that is increased in both liver CSCs and HCC. High lncCAMTA1 expression in HCC indicates poor clinical outcome. In vitro and in vivo functional experiments showed that overexpression of lncCAMTA1 promotes HCC cell proliferation, CSC-like properties, and tumorigenesis. Conversely, depletion of lncCAMTA1 inhibits HCC cell proliferation, CSC-like properties, and tumorigenesis. Mechanistically, we demonstrated that lncCAMTA1 physically associates with the calmodulin binding transcription activator 1 (CAMTA1 promoter, induces a repressive chromatin structure, and inhibits CAMTA1 transcription. Furthermore, CAMTA1 is required for the effects of lncCAMTA1 on HCC cell proliferation and CSC-like properties, and the expression of lncCAMTA1 and CAMTA1 is significantly negatively correlated in HCC tissues. Collectively, our study revealed the important roles and underlying molecular mechanisms of lncCAMTA1 on HCC, and suggested that lncCAMTA1 could be an effective prognostic factor and a potential therapeutic target for HCC.

  20. Helicobacter pylori upregulates Nanog and Oct4 via Wnt/β-catenin signaling pathway to promote cancer stem cell-like properties in human gastric cancer.

    Science.gov (United States)

    Yong, Xin; Tang, Bo; Xiao, Yu-Feng; Xie, Rui; Qin, Yong; Luo, Gang; Hu, Chang-Jiang; Dong, Hui; Yang, Shi-Ming

    2016-05-01

    Helicobacter pylori (H. pylori) infection is considered a major risk factor for gastric cancer. CagA behaves as a major bacterial oncoprotein playing a key role in H. pylori-induced tumorigenesis. Cancer stem cells (CSCs) are believed to possess the ability to initiate tumorigenesis and promote progression. Although studies have suggested that cancer cells can exhibit CSC-like properties in the tumor microenvironment, it remains unclear whether H. pylori infection could induce the emergence of CSC-like properties in gastric cancer cells and, the underlying mechanism. Here, gastric cancer cells were co-cultured with a CagA-positive H. pylori strain or a CagA isogenic mutant strain. We found that H. pylori-infected gastric cancer cells exhibited CSC-like properties, including an increased expression of CSC specific surface markers CD44 and Lgr5, as well as that of Nanog, Oct4 and c-myc, which are known pluripotency genes, and an increased capacity for self-renewal, whereas these properties were not observed in the CagA isogenic mutant strain-infected cells. Further studies revealed that H. pylori activated Wnt/β-catenin signaling pathway in a CagA-dependent manner and that the activation of this pathway was dependent upon CagA-positive H. pylori-mediated phosphorylation of β-catenin at the C-terminal Ser675 and Ser552 residues in a c-met- and/or Akt-dependent manner. We further demonstrated that this activation was responsible for H. pylori-induced CSC-like properties. Moreover, we found the promoter activity of Nanog and Oct4 were upregulated, and β-catenin was observed to bind to these promoters during H. pylori infection, while a Wnt/β-catenin inhibitor suppressed promoter activity and binding. Taken together, these results suggest that H. pylori upregulates Nanog and Oct4 via Wnt/β-catenin signaling pathway to promote CSC-like properties in gastric cancer cells.

  1. EpCAM-regulated intramembrane proteolysis induces a cancer stem cell-like gene signature in hepatitis B virus-infected hepatocytes

    Science.gov (United States)

    Mani, Saravana Kumar Kailasam; Zhang, Hao; Diab, Ahmed; Pascuzzi, Pete E.; Lefrançois, Lydie; Fares, Nadim; Bancel, Brigitte; Merle, Philippe; Andrisani, Ourania

    2017-01-01

    Background & Aims Hepatocytes in which the hepatitis B virus (HBV) is replicating exhibit loss of the chromatin modifying polycomb repressive complex 2 (PRC2), resulting in re-expression of specific, cellular PRC2-repressed genes. Epithelial cell adhesion molecule (EpCAM) is a PRC2-repressed gene, normally expressed in hepatic progenitors, but re-expressed in hepatic cancer stem cells (hCSCs). Herein, we investigated the functional significance of EpCAM re-expression in HBV-mediated hepatocarcinogenesis. Methods Employing molecular approaches (transfections, fluorescence-activated cell sorting, immunoblotting, qRT-PCR), we investigated the role of EpCAM-regulated intramembrane proteolysis (RIP) in HBV replicating cells in vitro, and in liver tumors from HBV X/c-myc mice and chronically HBV infected patients. Results EpCAM undergoes RIP in HBV replicating cells, activating canonical Wnt signaling. Transfection of Wnt-responsive plasmid expressing green fluorescent protein (GFP) identified a GFP + population of HBV replicating cells. These GFP+/Wnt+ cells exhibited cisplatin- and sorafenib-resistant growth resembling hCSCs, and increased expression of pluripotency genes NANOG, OCT4, SOX2, and hCSC markers BAMBI, CD44 and CD133. These genes are referred as EpCAM RIP and Wnt-induced hCSC-like gene signature. Interestingly, this gene signature is also overexpressed in liver tumors of X/c-myc bitransgenic mice. Clinically, a group of HBV-associated hepatocellular carcinomas was identified, exhibiting elevated expression of the hCSC-like gene signature and associated with reduced overall survival post-surgical resection. Conclusions The hCSC-like gene signature offers promise as prognostic tool for classifying subtypes of HBV-induced HCCs. Since EpCAM RIP and Wnt signaling drive expression of this hCSC-like signature, inhibition of these pathways can be explored as therapeutic strategy for this subtype of HBV-associated HCCs. Lay summary In this study, we provide evidence

  2. Anti-protozoal and anti-bacterial antibiotics that inhibit protein synthesis kill cancer subtypes enriched for stem cell-like properties

    OpenAIRE

    2015-01-01

    Key players in translational regulation such as ribosomes might represent powerful, but hitherto largely unexplored, targets to eliminate drug-refractory cancer stem cells (CSCs). A recent study by the Lisanti group has documented how puromycin, an old antibiotic derived from Streptomyces alboniger that inhibits ribosomal protein translation, can efficiently suppress CSC states in tumorspheres and monolayer cultures. We have used a closely related approach based on Biolog Phenotype Microarray...

  3. Activation of MAPK pathways due to DUSP4 loss promotes cancer stem cell-like phenotypes in basal-like breast cancer.

    Science.gov (United States)

    Balko, Justin M; Schwarz, Luis J; Bhola, Neil E; Kurupi, Richard; Owens, Phillip; Miller, Todd W; Gómez, Henry; Cook, Rebecca S; Arteaga, Carlos L

    2013-10-15

    Basal-like breast cancer (BLBC) is an aggressive disease that lacks a clinically approved targeted therapy. Traditional chemotherapy is effective in BLBC, but it spares the cancer stem cell (CSC)-like population, which is likely to contribute to cancer recurrence after the initial treatment. Dual specificity phosphatase-4 (DUSP4) is a negative regulator of the mitogen-activated protein kinase (MAPK) pathway that is deficient in highly aggressive BLBCs treated with chemotherapy, leading to aberrant MAPK activation and resistance to taxane-induced apoptosis. Herein, we investigated how DUSP4 regulates the MAP-ERK kinase (MEK) and c-jun-NH2-kinase (JNK) pathways in modifying CSC-like behavior. DUSP4 loss increased mammosphere formation and the expression of the CSC-promoting cytokines interleukin (IL)-6 and IL-8. These effects were caused in part by loss of control of the MEK and JNK pathways and involved downstream activation of the ETS-1 and c-JUN transcription factors. Enforced expression of DUSP4 reduced the CD44(+)/CD24(-) population in multiple BLBC cell lines in a MEK-dependent manner, limiting tumor formation of claudin-low SUM159PT cells in mice. Our findings support the evaluation of MEK and JNK pathway inhibitors as therapeutic agents in BLBC to eliminate the CSC population.

  4. Inhibition of N-acetylglucosaminyltransferase V enhances the cetuximab-induced radiosensitivity of nasopharyngeal carcinoma cells likely through EGFR N-glycan alterations.

    Science.gov (United States)

    Huang, Xiaomin; Liu, Ting; Wang, Qiongyao; Zhu, Weiliang; Meng, Hui; Guo, Linlang; Wei, Ting; Zhang, Jian

    2017-05-23

    N-acetylglucosaminyltransferase V (GnT-V), an enzyme that catalyses the formation of the N-linked β-1-6 branching of oligosaccharides, is related to the radiosensitivity of nasopharyngeal carcinoma (NPC). Cetuximab (C225) is an epidermal growth factor receptor (EGFR) inhibitor used as a radiosensitizer in the treatment of NPC. In this study, we used GnT-V as a molecular target to further sensitize cetuximab-treated NPC cells to radiation. The results from two NPC cell lines (CNE1 and CNE2) revealed that the silencing of GnT-V enhanced cetuximab-induced radiosensitivity by decreasing the β-1-6 branching of oligosaccharides on the EGFR. GnT-V down-regulation combined with cetuximab decreased the survival fraction, healing rate and cell viability and increased the apoptosis rate. Concomitantly, the combination of cetuximab and irradiation did not change the EGFR mRNA and protein levels and decreased the β-1-6 branching on the EGFR. Subsequently, we further explored the signalling downstream of EGF, particularly the PI3K/Akt signalling pathway, and discovered that treatment consisting of GnT-V down-regulation, irradiation and cetuximab was negatively correlated with phospho-Akt and phspho-PI3K. Finally, an in vivo experiment with radiotherapy revealed that the combination of GnT-V down-regulation and cetuximab decelerated tumour growth. In summary, our study demonstrated that the combination of decreased GnT-V activity and cetuximab enhanced NPC radiosensitivity, and the possible mechanism underlying this effect might involve the N-linked β1-6 branching of the EGFR. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Randomized Phase II Study of R-CHOP With or Without Bortezomib in Previously Untreated Patients With Non-Germinal Center B-Cell-Like Diffuse Large B-Cell Lymphoma.

    Science.gov (United States)

    Leonard, John P; Kolibaba, Kathryn S; Reeves, James A; Tulpule, Anil; Flinn, Ian W; Kolevska, Tatjana; Robles, Robert; Flowers, Christopher R; Collins, Robert; DiBella, Nicholas J; Papish, Steven W; Venugopal, Parameswaran; Horodner, Andrew; Tabatabai, Amir; Hajdenberg, Julio; Park, Jaehong; Neuwirth, Rachel; Mulligan, George; Suryanarayan, Kaveri; Esseltine, Dixie-Lee; de Vos, Sven

    2017-09-01

    Purpose To evaluate the impact of the addition of bortezomib to rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) on outcomes in previously untreated patients with non-germinal center B-cell-like (non-GCB) diffuse large B-cell lymphoma (DLBCL). Patients and Methods After real-time determination of non-GCB DLBCL using the Hans immunohistochemistry algorithm, 206 patients were randomly assigned (1:1; stratified by International Prognostic Index [IPI] score) to six 21-day cycles of standard R-CHOP alone or R-CHOP plus bortezomib 1.3 mg/m(2) intravenously on days 1 and 4 (VR-CHOP). The primary end point, progression-free survival (PFS), was evaluated in 183 patients with centrally confirmed non-GCB DLBCL who received one or more doses of study drug (91 R-CHOP, 92 VR-CHOP). Results After a median follow-up of 34 months, with 25% (R-CHOP) and 18% (VR-CHOP) of patients having had PFS events, the hazard ratio (HR) for PFS was 0.73 (90% CI, 0.43 to 1.24) with VR-CHOP ( P = .611). Two-year PFS rates were 77.6% with R-CHOP and 82.0% with VR-CHOP; they were 65.1% versus 72.4% in patients with high-intermediate/high IPI (HR, 0.67; 90% CI, 0.34 to 1.29), and 90.0% versus 88.9% (HR, 0.85; 90% CI, 0.35 to 2.10) in patients with low/low-intermediate IPI. Overall response rate with R-CHOP and VR-CHOP was 98% and 96%, respectively. The overall survival HR was 0.75 (90% CI, 0.38 to 1.45); 2-year survival rates were 88.4% and 93.0%, respectively. In the safety population (100 R-CHOP and 101 VR-CHOP patients), grade ≥ 3 adverse events included neutropenia (53% v 49%), thrombocytopenia (13% v 29%), anemia (7% v 15%), leukopenia (26% v 25%), and neuropathy (1% v 5%). Conclusion Outcomes for newly diagnosed, prospectively enrolled patients with non-GCB DLBCL were more favorable than expected with R-CHOP and were not significantly improved by adding bortezomib.

  6. A Truncated form of CD200 (CD200S Expressed on Glioma Cells Prolonged Survival in a Rat Glioma Model by Induction of a Dendritic Cell-Like Phenotype in Tumor-Associated Macrophages

    Directory of Open Access Journals (Sweden)

    Kana Kobayashi

    2016-04-01

    Full Text Available CD200 induces immunosuppression in myeloid cells expressing its receptor CD200R, which may have consequences for tumor immunity. We found that human carcinoma tissues express not only full-length CD200 (CD200L but also its truncated form, CD200S. Although CD200S is reported to antagonize the immunosuppressive actions of CD200L, the role of CD200S in tumor immunity has never been investigated. We established rat C6 glioma cell lines that expressed either CD200L or CD200S; the original C6 cell line did not express CD200 molecules. The cell lines showed no significant differences in growth. Upon transplantation into the neonatal Wistar rat forebrain parenchyma, rats transplanted with C6-CD200S cells survived for a significantly longer period than those transplanted with the original C6 and C6-CD200L cells. The C6-CD200S tumors were smaller than the C6-CD200L or C6-original tumors, and many apoptotic cells were found in the tumor cell aggregates. Tumor-associated macrophages (TAMs in C6-CD200S tumors displayed dendritic cell (DC-like morphology with multiple processes and CD86 expression. Furthermore, CD3+, CD4+ or CD8+ cells were more frequently found in C6-CD200S tumors, and the expression of DC markers, granzyme, and perforin was increased in C6-CD200S tumors. Isolated TAMs from original C6 tumors were co-cultured with C6-CD200S cells and showed increased expression of DC markers. These results suggest that CD200S activates TAMs to become DC-like antigen presenting cells, leading to the activation of CD8+ cytotoxic T lymphocytes, which induce apoptotic elimination of tumor cells. The findings on CD200S action may provide a novel therapeutic modality for the treatment of carcinomas.

  7. The repressive effect of miR-148a on TGF beta-SMADs signal pathway is involved in the glabridin-induced inhibition of the cancer stem cells-like properties in hepatocellular carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Fei Jiang

    Full Text Available Hepatocellular carcinoma (HCC is the third leading cause of cancer-related mortality worldwide. Current standard practices for treatment of HCC are less than satisfactory because of cancer stem cells (CSCs-mediated post-surgical recurrence. For this reason, targeting the CSCs or the cancer cells with CSCs-like properties has become a new approach for the treatment of HCC. GLA exhibits anti-tumor effects in that it attenuates the proliferation, migration, invasion, and angiogenesis of human cancer cells. However, the functions of GLA in the regulation of CSCs-like properties in HCC cells, and the molecular mechanisms underlying in remain obscure. Here we found that GLA attenuated the CSCs-like properties by the microRNA-148a (miR-148a-mediated inhibition of transforming growth factor beta (TGF-β/SMAD2 signal pathway in HCC cell lines (HepG2, Huh-7, and MHCC97H. Indeed, GLA inhibited the activations/expressions of both TGFβ-induced and the endogenous SMAD2. Further, GLA improved the expression of miR-148a in a dose/time-dependent manner. MiR-148a, which targeted the SMAD2-3'UTR, decreased the expression and function of SMAD2. Knockdown of miR-148a abolished the GLA-induced inhibition of TGF-β/SMAD2 signal pathway and the CSCs-like properties in HCC cells. Our study found a novel mechanism that GLA inhibits the CSCs-like properties of HCC cells by miR-148a-mediated inhibition of TGF-β/SMAD2 signal pathway, which may help to identify potential targets for the therapies of HCC.

  8. LY294002抑制小细胞肺癌干细胞样细胞自我更新%Inhibition of self-renewal of lung cancer stem cell like cells from small cell lung cancer cell line cultured in vitro by LY294002

    Institute of Scientific and Technical Information of China (English)

    易恒仲; 龙灵芝; 周源; 曹建国; 张坚松

    2013-01-01

      目的:研究Akt活性抑制剂LY294002抑制源自人小细胞肺癌NCI-H446细胞系肺癌球形成细胞即肺癌干细胞样细胞(LCSLCs)自我更新作用。方法:体外培养NCI-H446细胞系细胞。以干细胞条件培养基用超低粘附6孔细胞培养板悬浮培养富集和扩增LCSLCs。裸鼠皮下成瘤实验鉴别LCSLCs高致瘤特性。Western blot分析LCSLCs中Akt蛋白磷酸化水平。肿瘤球形成试验检测LY294002对LCSLCs自我更新的影响。结果:干细胞条件培养基悬浮培养6d,NCI-H446细胞系细胞呈三维非粘附性球体生长。 LCSLCs具有高致瘤特性。与NCI-H446细胞系细胞比较,LCSLCs信号分子Akt组成性活化。 LY294002有效降低LCSLCs中Akt磷酸化水平,并以剂量依赖方式抑制LCSLCs肺癌球形成(P<0.05)。结论:靶向干预小细胞肺癌LCSLCs信号分子Akt组成性活化可能成为抑制肺癌干细胞特性治疗小细胞肺癌的新策略。%Objective To investigate LY294002, a inhibitor specific to Akt activities, suppress the self-re-newal of lung cancer stem cell like cells (LCSLCs) from small cell lung cancer cell line NCI-H446 cell line cul-tured in vitro. Methods Human small cell lung cancer NCI-H446 cell line was cultured in vitro. Cells were plat-ed in stem cell conditioned culture system allowed for sphere forming, namely LCSLCs. In vivo tumorigenicity ex-periments were used to examine height tumorigenicity of LCSLCs. The phosphorylation level of signaling molecule Akt protein was determined using Wester bolt. Tumor sphere formation assay was used to the inhibitory effects of LY294002 on the self-renewal of LCSLCs. Results The small cell lung cancer cells were plated in stem cell con-ditioned culture medium in 6-well plates at a density of 5,000 cells/well which allowed for the formation of colonies separated from each other for 6d. LCSLCs had the height tumorigenicity in vivo in nude mouse model. The phosphorylation level of signaling molecule

  9. Substrate affinity of photosensitizers derived from chlorophyll-a: the ABCG2 transporter affects the phototoxic response of side population stem cell-like cancer cells to photodynamic therapy.

    Science.gov (United States)

    Morgan, Janet; Jackson, Jennifer D; Zheng, Xiang; Pandey, Suresh K; Pandey, Ravindra K

    2010-10-04

    Photosensitizers (PS) synthesized with the aim of optimizing photodynamic therapy (PDT) of tumors do not always fulfill their potential when tested in vitro and in vivo in different tumor models. The ATP-dependent transporter ABCG2, a multidrug resistant pump expressed at variable levels in cancerous cells, can bind and efflux a wide range of structurally different classes of compounds including several PS used preclinically and clinically such as porphyrins and chlorins. ABCG2 may lower intracellular levels of substrate PS below the threshold for cell death in tumors treated by PDT, leaving resistant cells to repopulate the tumor. To determine some of the structural factors that affect substrate affinity of PS for ABCG2, we used an ABCG2-expressing cell line (HEK 293 482R) and its nonexpressing counterpart, and tyrosine kinase ABCG2 inhibitors in a simple flow cytometric assay to identify PS effluxed by the ABCG2 pump. We tested a series of conjugates of substrate PS with different groups attached at different positions on the tetrapyrrole macrocycle to examine whether a change in affinity for the pump occurred and whether such changes depended on the position or the structure/type of the attached group. PS without substitutions including pyropheophorbides and purpurinimides were generally substrates for ABCG2, but carbohydrate groups conjugated at positions 8, 12, 13, and 17 but not at position 3 abrogated ABCG2 affinity regardless of structure or linking moiety. At position 3, affinity was retained with the addition of iodobenzene, alkyl chains and monosaccharides, but not with disaccharides. This suggests that structural characteristics at position 3 may offer important contributions to requirements for binding to ABCG2. We examined several tumor cell lines for ABCG2 activity, and found that although some cell lines had negligible ABCG2 activity in bulk, they contained a small ABCG2-expressing side population (SP) thought to contain cells which are responsible

  10. P38/NF-κB/snail pathway is involved in caffeic acid-induced inhibition of cancer stem cells-like properties and migratory capacity in malignant human keratinocyte.

    Directory of Open Access Journals (Sweden)

    Ye Yang

    Full Text Available BACKGROUND: Skin cancer is the most common cancer throughout the world. The epithelial-mesenchymal transition (EMT and the acquisition of cancer stem cells (CSCs-like properties emerge as critical steps in the metastasis of human skin cancers. Caffeic acid (CaA exerts anticarcinogenic effects. However, the effects of CaA on the migratory capability and on the CSCs-like properties of skin cancer cells, and the molecular mechanisms underlying it are not fully understood. METHODS: Malignant HaCaT cells were treated by CaA. Transwell assay was performed to determine that CaA attenuated the migratory capability; Spheroid formation assay was performed to confirm that CaA decreased the CSCs-like phenotype; Treated malignant HaCaT cells were molecularly characterized by RT-PCR, Western blots, Southwestern blot, and immunoprecipitation. RESULTS: In CaA-treated malignant human keratinocyte (malignant HaCaT cells, inhibition of the migratory capability and CSCs-like phenotype were observed. CaA up-regulated the phosphorylation of p38, and down-regulated the activation of nuclear factor κB (NF-κB/snail signal pathway. Indeed, p38 decreased the DNA-binding activity of NF-κB to the promoter of snail gene, which resulted in the transcriptional inactivation of snail. Blockage of p38 attenuated the CaA-induced inhibition of migratory capability and CSCs-like phenotype in malignant HaCaT cells. CONCLUSIONS: CaA attenuates the migratory capability and CSCs-like Properties of malignant human keratinocyte, in which, p38-mediated down-regulation of NF-κB/snail signal pathway is involved.

  11. The TrkAIII oncoprotein inhibits mitochondrial free radical ROS-induced death of SH-SY5Y neuroblastoma cells by augmenting SOD2 expression and activity at the mitochondria, within the context of a tumour stem cell-like phenotype.

    Directory of Open Access Journals (Sweden)

    Pierdomenico Ruggeri

    Full Text Available The developmental and stress-regulated alternative TrkAIII splice variant of the NGF receptor TrkA is expressed by advanced stage human neuroblastomas (NBs, correlates with worse outcome in high TrkA expressing unfavourable tumours and exhibits oncogenic activity in NB models. In the present study, we report that constitutive TrkAIII expression in human SH-SY5Y NB cells inhibits Rotenone, Paraquat and LY83583-induced mitochondrial free radical reactive oxygen species (ROS-mediated death by stimulating SOD2 expression, increasing mitochondrial SOD2 activity and attenuating mitochondrial free radical ROS production, in association with increased mitochondrial capacity to produce H2O2, within the context of a more tumour stem cell-like phenotype. This effect can be reversed by the specific TrkA tyrosine kinase inhibitor GW441756, by the multi-kinase TrkA inhibitors K252a, CEP-701 and Gö6976, which inhibit SOD2 expression, and by siRNA knockdown of SOD2 expression, which restores the sensitivity of TrkAIII expressing SH-SY5Y cells to Rotenone, Paraquat and LY83583-induced mitochondrial free radical ROS production and ROS-mediated death. The data implicate the novel TrkAIII/SOD2 axis in promoting NB resistance to mitochondrial free radical-mediated death and staminality, and suggest that the combined use of TrkAIII and/or SOD2 inhibitors together with agents that induce mitochondrial free radical ROS-mediated death could provide a therapeutic advantage that may also target the stem cell niche in high TrkA expressing unfavourable NB.

  12. 人胆管癌CD24+ CD44+ EpCAMhigh细胞亚群的分选及其肿瘤干细胞样特性的鉴定%Sorting of CD24+ CD44+ EpCAMhigh subset cells in human human cholangiocardnoma and the identificantion of their cancer stem cell-like properties

    Institute of Scientific and Technical Information of China (English)

    朱峰; 王敏; 秦仁义; 申铭; 王欣; 田锐; 江建新; 石程剑

    2010-01-01

    Objective To sort CD24+ CD44+ EpCAMhigh subset cells in human cholangiocarcinoma and identify their cancer stem cell-like properties. Methods The expression and rate of CD24, CD44 and EpCAM in 6 cases of human cholangiocacinomas were assayed by flow cytometry. The fresh specimens from two cases of cholangiocarcinoma were obtained and implanted subcutaneously into NOD/SCID mice for the establishment of xenografts model. CD24+ CD44+ EpCAMhigh subset cells were sorted from xenografts by flow cytometry and their tumorigenic potential, self-renewal ability and differentiation ability were assessed. Results The expression rate of CD24+ CD44+ EpCAMhigh cells ranged from 0. 58% to 2.43% (mean= 0. 94% ) in 6 cholangiocarcinoma specimens and 2 xenografts. CD24+ CD44+ EpCAMhigh subset cells sorted from 2 xenografts were found to be highly tumorigenic in NOD/SCID mice. CD24+ CD44+ EpCAMhigh cells consistently formed tumors with 1000 cells in 3/8 mice. In contrast, CD24+ CD44+ EpCAMhigh tumor cells were less tumorigenic and formed tumors with 50 000 cells in 1/8 mice. CD24+ CD44+ EpCAMhigh cells were passaged in NOD/SCID mice and formed tumors that recapitulated the histological features and heterogeneity of the original patient tumor. Conclusion CD24+ CD44+ EpCAMhigh subset cells were discriminated in human cholangiocarcinoma, and they had highly tumorigenic, self-renewal ability and differentiation ability. It was first confirmed that CD24+ CD44+ EpCAMhigh cells may be human cholangiocarcinoma cancer stem cells.%目的 检测及分选人胆管癌中的CD24+ CD44+ EpCAMhigh细胞亚群,探讨其是否具有肿瘤干细胞样生物学特性.方法 流式细胞术检测6例人胆管癌中CD24、CD44、EpCAM的表达率;取2例人胆管癌新鲜标本种植到NOD/SCID鼠皮下,建立荷人胆管癌小鼠模型.流式细胞术分选CD24+ CD44+ EpCAMhigh亚群细胞,NOD/SCID鼠移植瘤试验鉴定其成瘤和分化能力.结果 6例人胆管癌组织标本和2例移植瘤中,CD24

  13. Identification of Biological Characteristics of Mesenchymal Stem Cell-like Cells from Laryngeal Mucos in Beagle%比格犬会厌黏膜来源干细胞的分离培养与生物学特性鉴定

    Institute of Scientific and Technical Information of China (English)

    梁媛媛; 韩鹏; 杨润琴; 刘阳; 邓志宏

    2013-01-01

    isolated cells expressed the marker CD29 of mesenchymal stem cells,but not CD34.After being cultured in inducing medias,the isolated cells could differentiate into adipocytes and osteoblasts.Conclusions:Mesenchymal stem cell-like cells existed in laryngeal mucosa of beagle,and these cells may be useful for the research of laryngeal keloid and laryngeal tissueen gineering.

  14. 人脐血间充质干细胞体外诱导分化为类雪旺细胞的初步研究%Experimental Study on the Differentiation of Human Umbilical Cord Blood Mesenchymal Stem Cells into Schwann Cell-like in Vitro

    Institute of Scientific and Technical Information of China (English)

    仇大鹏; 肖玉周

    2011-01-01

    目的:体外定向诱导人脐血间充质干细胞(HUCBMSCs),分化为类雪旺细胞(SC-like).方法:(1)采用Ficoll密度梯度离心法分离健康产妇脐带血中单个核细胞进行体外培养,用流式细胞术检测细胞表达的表面抗原CD90,SH2,CD34和CD45.(2)第3次传代所得的HUCBMSCs,加入加有β-巯基乙醇(β-ME)、全反式黄酸(RA)、Forskolin、b-FGF、PDGF、HRG的含10%胎牛血清(FBS)的低糖DMEM培养基(L-DMEM)诱导,7 d后免疫组织化学染色法检测.结果:(1)HUCBMSCs在体外培养以梭形细胞为主;流式细胞仪检测显示,细胞高表达表面抗原CD90和SH2,低表达表面抗原CD34和CD45.(2)诱导7 d后,细胞免疫组化显示,GFAP阳性率为81.88%±2.43%.结论:在一定条件下,HUCBMSCs可以在体诱导分化为SC-like,组成人工神经,移植修复周围神经缺损.%Objective:To induce the human umbilical cord blood mesenchymal stem cells (HUCBMSCs) to differentiate into schwann cell-like (SC-like) in vitro. Methods: ( 1 ) Mononuclear cells were separated from umbilical cord blood of healthy parturients by Ficoll density gradient centrifugation and cultured in vitro.The expression of surface antigens CD90, SH2, CD34 and CI45 were detected by flow cytometry (FCM). (2)The third passage cells were cultured in low carbohydrates~Dulbecco's modified eagle's medium ( L-DMEM )containing 10% fetal bovine serum(FBS), β-mercaptoethanol (β-ME), retinoic acid(RA), forskolin, basic fibroblast growth factor (b-FGF), platelet-derived growth factor(PDGF) and beregulin(HRG). On 7th day,the cells were identified by immunocytocbemistry. Results: ( 1 )The majority of HUCBMSCs cultured in vitro displayed a spindle shaped appearance. FCM showed that the surface antigens CD90 and SH2 were highly expressed in these cells, while the CD34 and CD45 were very low. (2) On 7th day, the results of immunocytochemistry showed that the cells were positive for GFAP. The positive percentageswere 81.88% ± 2.43

  15. 蝎毒多肽对白血病细胞株KG1a干细胞活性的影响%Study on the effects of PESV on the viability of leukemia stem cells line KG1a

    Institute of Scientific and Technical Information of China (English)

    杨向东; 李红玉; 李德冠; 史哲新; 杨文华; 颜田赅; 闫理想; 王兴丽

    2015-01-01

    目的:探讨蝎毒多肽对白血病细胞株KG1a干细胞活性的影响.方法:免疫磁珠法分离出CD34+CD38-的KG1a细胞,按照不同给药方式分空白组、PESV组、DNR组、PESV+DNR组,培养后经WST-8、流式细胞仪分别检测KG1a干细胞增殖抑制率、细胞凋亡率和细胞周期,并经RT-PCR检测PTEN基因、Tie-2基因mRNA表达.结果:KG1a干细胞在PESV组、DNR组细胞增殖抑制率(%)与空白组相比差异有统计学意义(P<0.05).诱导细胞凋亡作用强弱:PESV+DNR组>DNR组>PESV组.细胞周期检测结果显示,G0/G1期PESV+DNR组与PESV组、DNR组相比差异有统计学意义(P<0.01).在G2/M期PESV+DNR组与PESV组、DNR组相比差异有统计学意义(P<0.05).PESV组、DNR组、PESV+DNR组KG1a干细胞的PTEN基因、tie-2基因表达均上调,PESV+DNR组为高表达.结论:PESV能够抑制KG1a干细胞增殖,但不能增强DNR的抑制作用;PESV对DNR损伤KG1a干细胞有诱导凋亡和分化的作用,其机制可能与上调KG1a干细胞的PTEN基因、tie-2基因表达有关.

  16. Study on the Functional Expression of P2X7 Receptor in Human Leukemic Cell Line KG1a%人白血病细胞系KG1a中P2X7受体的表达和功能研究

    Institute of Scientific and Technical Information of China (English)

    张秀军; 孟丽君

    2005-01-01

    用半定量RT-PCR和流式细胞术,研究了白血病细胞系KG1a中P2X7受体在基因和蛋白水平的表达.用荧光分光光度计,测定了用激动剂三磷酸腺苷(ATP)和苯甲酰苯甲酸ATP(BzATP)刺激前后细胞内钙离子浓度的变化,证明P2X7受体的功能.结果表明:KG1a细胞表达P2X7受体,且在激动剂的刺激下能引起KG1a细胞通过P2X7受体的胞外钙内流;去除胞外钙离子时,激动剂不能引起胞内钙浓度的升高;提示KG1a细胞表达P2X7受体的基因和功能蛋白,激活该受体引起胞外钙离子的内流.

  17. 人前列腺癌细胞系DU145中肿瘤干细胞样侧群细胞的分离%Identification of cancer stem cell -like side population cells in human prostate cancer cell line DU 145

    Institute of Scientific and Technical Information of China (English)

    殷波; 刘岗; 张辉; 李明; 隋文印; 宋永胜

    2012-01-01

    Objective;To identify the side population (SP) cells from human prostate cancer cell line DU 145 and characterize DU 145 SP cells preliminary. Methods: Fluorescence activated cell sorting (FACS) was applied to isolate SP cells from DU 145 cell line. The isolated SP cells were cultured in serum - free medium to observe the growth pattern. Reverse transcription - polymerase chain reaction (RT - PCR) was used to detect the expression of ABCG2 in DU 145 SP cells and parental DU 145 cells. Results: SP cells were isolated from DU 145 cells by flow cytometry, with a proportion of 1.1%. When cultured in serum -free medium, SP cells showed a clustered growth pattern compared to the parental DU 145 cells. Furthermore, a higher expression of ABCG2 in SP cells was detected by RT -PCR in contrast to parental DU 145 cells. Conclusion; DU 145 cell line contained SP cells with cancer stem cell properties.%目的:分离人前列腺癌细胞系DU 145中的侧群(side population, SP)细胞,并初步分析其生物学特性.方法:采用荧光激活细胞分类(fluorescence activated cell sorting,FACS)技术,从DU 145细胞中分离出侧群细胞,并检测其比例;继而培养于无血清培养基中,观察其生长特性.采用反转录聚合酶链反应( RT-PCR)技术检测侧群细胞中ABCG2的表达水平.结果:DU 145细胞中存在含量极少的侧群细胞,比例约1.1%;培养于无血清培养基中成簇生长.和对应的母系DU 145细胞相比,DU 145侧群细胞的ABCG2表达增高.结论:人前列腺癌细胞系DU 145中存在具有肿瘤干细胞特性的侧群细胞.

  18. 大鼠脂肪干细胞来源的施万细胞样细胞髓鞘形成能力的研究%Investigation of myelin formation ability in Schwann cell-like cells from rats adipose-derived stem cells

    Institute of Scientific and Technical Information of China (English)

    许勇峰; 刘岚

    2012-01-01

    目的 研究大鼠脂肪干细胞(ADSC)来源的施万细胞样细胞的髓鞘形成能力.方法 取大鼠脂肪组织分离、培养及鉴定ADSC,使用heregulin、成纤维细胞生长因子、血小板衍生生长因子和forskolin将ADSC诱导为施万细胞样细胞.将施万细胞样细胞和PC12细胞共培养.光镜(×100)下观察施万细胞样细胞的形态,免疫细胞化学染色检测其表面标志物表达,电镜观察其髓鞘形成能力.结果 大鼠ADSC均表达中胚层标志物fibronectin,极少数表达神经干细胞标志物nestin.ADSC诱导的施万细胞样细胞的形态为双极或三极细胞,施万细胞标志物胶质纤维酸性蛋白和S100表达阳性.电镜观察发现,施万细胞样细胞和PC12细胞形成髓鞘样结构.结论 大鼠ADSC来源的施万细胞样细胞具有髓鞘形成能力.%Objective To investigate the myelin formation ability of Schwann cell (SC)-like cells from rats adipose-derived stem cells (ADSC). Methods Rats ADSC were harvested, cultured and identified from rats fat tissue. Heregulin, basic fibroblast growth factor, platelet-derived growth factor and forskolin were used to induce rats ADSC into SC-like cells, which were then co-cultured with PC12 cells. The morphology of SC-like cells was observed under phase contrast (×100); immunocytochemistry was used to detect the surface markers of SC-like cells; transmission electron microscope was used to identify myelin formation ability of SC-like cells. Results Rats ADSC expressed mesodermal marker fibronectin, only few cells expressed neural stem cell marker nestin. SC-like cells from rats ADSC were bi- or tri- polar in shape, positively immunostained for SC markers glial fabrilary acidic protein and S100. Electron microscope results showed that SC-like cells could form myelin structures with PC12 cells in vitro. Conclusion SC-like cells from rats ADSC could form myelin in vitro.

  19. Sulforaphane Analogues with Heterocyclic Moieties: Syntheses and Inhibitory Activities against Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Ye-Hui Shi

    2016-04-01

    Full Text Available Recent studies have shown that sulforaphane (SFN selectively inhibits the growth of ALDH+ breast cancer stem-like cells.Herein, a series of SFN analogues were synthesized and evaluated against breast cancer cell lines MCF-7 and SUM-159, and the leukemia stem cell-like cell line KG-1a. These SFN analogues were characterized by the replacement of the methyl group with heterocyclic moieties, and the replacement of the sulfoxide group with sulfide or sulfone. A growth inhibitory assay indicated that the tetrazole analogs 3d, 8d and 9d were significantly more potent than SFN against the three cancer cell lines. Compound 14c, the water soluble derivative of tetrazole sulfide 3d, demonstrated higher potency against KG-1a cell line than 3d. SFN, 3d and 14c significantly induced the activation of caspase-3, and reduced the ALDH+ subpopulation in the SUM159 cell line, while the marketed drug doxrubicin(DOX increased the ALDH+ subpopulation.

  20. 子宫内膜癌细胞中干细胞样细胞对醋酸甲羟孕酮的抵抗作用及其机制%Study of mechanism of medroxyprogesterone 17-acetate on the cancer stem cell-like properties of human endometrial cancer

    Institute of Scientific and Technical Information of China (English)

    刘冰洁; 李小平; 赵丽君; 王建六; 魏丽惠

    2013-01-01

    者间比较,差异有统计学意义(P<0.05).结论 MPA对Ishikawa、Ishikawa-SP、Ishikawa-non-SP细胞的生长均有抑制作用,但Ishikawa-SP细胞的生长抑制率及凋亡率均明显低于Ishikawa和Ishikawa-non-SP细胞,显示Ishikawa-SP细胞具有孕激素抵抗的特性,其抵抗机制可能与肿瘤干细胞的耐药性和细胞凋亡有关.%Objective To explore the mechanism resistance of medroxyprogesterone 17-acetate (MPA) on the endometrial cancer side-population (SP) cells.Methods (1) Ishikawa-SP cells from endometrial cancer cell lines Ishikawa were be separated by Hoechst 33342 dyeing method and flow cytometry analysis.The clone formation efficiency between Ishikawa-SP cells and Ishikawa-non-SP cells were performed by clone formation assay.Breast cancer resistance protein (BCRP) was examined by immunocytochemistry method.(2)Ishikawa,Ishikawa-SP,Ishikawa-non-SP cells were treated with various concentrations of MPA at 5,10,15,20 μmoL/L.After cultured for 24,48,and 72 hours,cells growth were measured by methanethiosulfomate(MTS) assay.(3) The groups of Ishikawa,Ishikawa-SP,Ishikawa-non-SP cells incubated with MPA at the half maximal inhibitory concentration(IC50) were selected for cell apoptosis assay by using flow cytometry.After MPA treatment,the expression of caspase-3 was examined by immunocytochemistry method.Results (1)There were few proportion of Ishikawa-SP cells in Ishikawa endometrial carcinoma,which were 2.7%.There were stronger clone formation efficiency for Ishikawa-SP cells than that for Ishikawa-non-SP cells in Ishikawa [(6.02 ± 1.17)% vs.(0.53 ±0.20)%,P =0.001].And there were higher level expression of BCRP (P =0.001)and also more resistant Taxol and radiation between Ishikawa-SP cells and Ishikawa-non-SP cells.(2)The inhibitory effect of MPA was concentrationdependent and time-dependent.(3)After MPA treatment,the apoptosis rates of Ishikawa-SP,Ishikawa-nonSP,Ishikawa were (4.01 ± 0.43) %,(9.30 ± 0.67) %,and (4

  1. Oxalicumone A, a new dihydrothiophene-condensed sulfur chromone induces apoptosis in leukemia cells through endoplasmic reticulum stress pathway.

    Science.gov (United States)

    Wang, Jie; Wang, Qiao-Li; Nong, Xu-Hua; Zhang, Xiao-Yong; Xu, Xin-Ya; Qi, Shu-Hua; Wang, Yi-Fei

    2016-07-15

    Oxalicumone A (POA1), a novel dihydrothiophene-condensed sulfur chromone isolated from the marine fungus Penicillium oxalicum SCSGAF 0023, showed cytotoxicity against several cancer cells previously. In this study, its anti-cancer activity and underlying mechanism of this action were investigated in leukemia cells like KG-1a, HL60, U937, and K562. The results showed that POA1 inhibited dose-/time-dependently cell growth and induced apoptosis in leukemia cells. Also, POA1 caused cleavages of caspase-3, 8, 9 and PARP1, loss of mitochondrial membrane potential, up-regulations of phosphorylated p38 and JNK, and activation of endoplasmic reticulum stress (ER stress). Furthermore, 4-PBA (an ER stress inhibitor) but not SP600125 and SB203580 (JNK and p38 inhibitor, respectively) could largely inhibit POA1-induced growth suppression. Additionally, 4-PBA obstructed mitochondrial depolarization and cleavage of PARP1. These data suggested that ER stress pathway might be an important mediator in POA1-induced apoptosis. In conclusion, POA1 may have antitumor effects in leukemia cells through the induction of ER stress pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Cellular and spectroscopic characterization of cancer stem cell-like cells derived from A549 lung carcinoma

    Directory of Open Access Journals (Sweden)

    Murali M. S. Balla

    2016-01-01

    Conclusions and General Significance: Overall, these observations provide novel FT-IR and CD spectroscopy signatures in A549 clones enriched with CSCs, which may have implications in the quantifying magnitude of CSCs as prognostic markers in cancer therapy.

  3. Testing the Hypothesis of Biofilm as a Source for Soft Tissue and Cell-Like Structures Preserved in Dinosaur Bone.

    Directory of Open Access Journals (Sweden)

    Mary Higby Schweitzer

    Full Text Available Recovery of still-soft tissue structures, including blood vessels and osteocytes, from dinosaur bone after demineralization was reported in 2005 and in subsequent publications. Despite multiple lines of evidence supporting an endogenous source, it was proposed that these structures arose from contamination from biofilm-forming organisms. To test the hypothesis that soft tissue structures result from microbial invasion of the fossil bone, we used two different biofilm-forming microorganisms to inoculate modern bone fragments from which organic components had been removed. We show fundamental morphological, chemical and textural differences between the resultant biofilm structures and those derived from dinosaur bone. The data do not support the hypothesis that biofilm-forming microorganisms are the source of these structures.

  4. Testing the Hypothesis of Biofilm as a Source for Soft Tissue and Cell-Like Structures Preserved in Dinosaur Bone.

    Science.gov (United States)

    Schweitzer, Mary Higby; Moyer, Alison E; Zheng, Wenxia

    2016-01-01

    Recovery of still-soft tissue structures, including blood vessels and osteocytes, from dinosaur bone after demineralization was reported in 2005 and in subsequent publications. Despite multiple lines of evidence supporting an endogenous source, it was proposed that these structures arose from contamination from biofilm-forming organisms. To test the hypothesis that soft tissue structures result from microbial invasion of the fossil bone, we used two different biofilm-forming microorganisms to inoculate modern bone fragments from which organic components had been removed. We show fundamental morphological, chemical and textural differences between the resultant biofilm structures and those derived from dinosaur bone. The data do not support the hypothesis that biofilm-forming microorganisms are the source of these structures.

  5. Immunohistochemical classification and prognosis of diffuse large B-cell lymphoma in China

    Institute of Scientific and Technical Information of China (English)

    陈燕

    2014-01-01

    Objective To study the immunohistochemical classification and prognosis of diffuse large B-cell lymphoma(DLBCL).Methods A total of 148 cases of DLBCL were classified into germinal center B-cell-like(GCB)and non-GCB/activated B-cell-like(ABC)subtypes by Hans,Choi and Tally immunohistochemical stain algorithms.The clinical features and survival data of GCB

  6. P01.14PRESENCE OF A STEM CELL-LIKE CELL SUBPOPULATION IS ASSOCIATED WITH ENHANCED SURVIVAL OF GLIOBLASTOMA PATIENTS

    OpenAIRE

    Loetsch, D.; Spiegl-Kreinecker, S.; Kiesel, B; Widhalm, G; Laaber, M.; Knosp, E.; Hainfellner, J; Marosi, C; Berger, W

    2014-01-01

    Glioblastoma multiforme (GBM) is the most aggressive type of primary brain tumours characterised by a dismal prognosis and limited treatment response. The current standard of care for GBM patients includes after tumour resection, radiotherapy (RT) followed by concomitant and adjuvant chemotherapy with the alkylating agent temozolomide (TMZ). Even at this maximal therapy the prognosis of GBM patients remains poor with a median survival of 15 months. It is believed that a subpopulation of gliom...

  7. In vitro cytotoxic and apoptotic activity of four Persian medicine plants on human leukemia and lymphoma cells

    Directory of Open Access Journals (Sweden)

    Fatemeh Zare Shahneh

    2014-02-01

    Full Text Available Objective: To investigate the cytotoxic and apoptotic activity of Ferulago angulata, Echinophora platyloba, Salvia officinalis and Chelidonium majus on leukemia and lymphoma cell lines, nonHodgkin ’s B-cell lymphoma (Raji, human leukemic monocyte lymphoma (U937, human acute myelocytic leukemia (KG-1A cell lines and peripheral blood mononuclear cells. Methods: C ytotoxicity was determined by the 3 - (4, 5 -dimethylthiazol- 2-yl - 2, 5-diphenyltetrazolium bromide assay. Cell viability assay was done using trypan blue exclusion experiments and cell death was identified as apoptosis using death detection ELISA. Results: Our results demonstrated that the extracts dose and time dependently suppressed the proliferation of three leukemia and lymphoma tumor cell lines (KG-1A, U937 and Raji with ascending order of IC50 values, while peripheral blood mononuclear cells were not significantly affected. Nucleosome productions in apoptotic KG-1A, U937, and Raji cells were significantly augmented in a time-dependent manner and paralleled the anti-proliferative activity of the extracts. Conclusions: The extracts were found to time- and dose-dependently inhibit the proliferation of KG-1A, U937, and Raji cells possibly via an apoptosis-dependent pathway.

  8. Metabotropic glutamate receptor 1 recycles to the cell surface in protein phosphatase 2A‐dependent manner in non‐neuronal and neuronal cell lines

    National Research Council Canada - National Science Library

    Pandey, Saurabh; Mahato, Prabhat Kumar; Bhattacharyya, Samarjit

    2014-01-01

    ...‐neuronal cells like hepatocytes, skin cells, etc. Although it has been reported that mG luR1 gets endocytosed on ligand application, the events after the internalization of the receptor has not been studied...

  9. 类细胞仿生建筑设计方法研究%A Study on the Design Methodologies of Cell-Like Bionic Architecture

    Institute of Scientific and Technical Information of China (English)

    李世芬; 李超先; 丁晓博

    2016-01-01

    通过引入细胞学的概念与原理,试图从微观视角探索仿生建筑的新领域,以拓展建筑设计的思维与方法.此研究结合实际案例,运用归类、提取等手段,从细胞的组织形态、个体形态、机能三个层面加以理论和图解分析并尝试其转换应用,推演出类细胞仿生建筑的设计手法,包括细胞组织形态仿生、个体形态仿生和细胞机能仿生.

  10. The potency of human testicular stem cells

    NARCIS (Netherlands)

    Chikhovskaya, J.V.

    2013-01-01

    In this thesis, we evaluate the stem cell state of cells present in primary human testicular cell cultures as well as their origin and relation to germ or somatic lineages within testicular tissue. We conclude that human testis-derived embryonic stem cell-like (htES-like) colonies arising in primary

  11. Ibrutinib Before and After Stem Cell Transplant in Treating Patients With Relapsed or Refractory Diffuse Large B-cell Lymphoma

    Science.gov (United States)

    2016-10-20

    Activated B-Cell-Like Diffuse Large B-Cell Lymphoma; B-Cell Lymphoma, Unclassifiable, With Features Intermediate Between Diffuse Large B-Cell Lymphoma and Burkitt Lymphoma; Recurrent Diffuse Large B-Cell Lymphoma; Refractory Diffuse Large B-Cell Lymphoma

  12. Neural crest-derived cells with stem cell features can be traced back to multiple lineages in the adult skin

    NARCIS (Netherlands)

    C.E. Wong (Christine); S. Paratore (Sabrina); M.T. Dours-Zimmermann (María); T. Rochat (Thierry); T. Pietri (Thomas); U. Suter (Ueli); D. Zimmermann (Dieter); S. Dufour (Sylvie); J.P. Thiery (Joachim); D.N. Meijer (Dies); C. Beermann (Christopher); Y. Barrandon (Yann); L. Sommer (Lukas)

    2006-01-01

    textabstractGiven their accessibility, multipotent skin-derived cells might be useful for future cell replacement therapies. We describe the isolation of multipotent stem cell-like cells from the adult trunk skin of mice and humans that express the neural crest stem cell markers p75 and Sox10 and

  13. Neural crest-derived cells with stem cell features can be traced back to multiple lineages in the adult skin

    NARCIS (Netherlands)

    C.E. Wong (Christine); S. Paratore (Sabrina); M.T. Dours-Zimmermann (María); T. Rochat (Thierry); T. Pietri (Thomas); U. Suter (Ueli); D. Zimmermann (Dieter); S. Dufour (Sylvie); J.P. Thiery (Joachim); D.N. Meijer (Dies); C. Beermann (Christopher); Y. Barrandon (Yann); L. Sommer (Lukas)

    2006-01-01

    textabstractGiven their accessibility, multipotent skin-derived cells might be useful for future cell replacement therapies. We describe the isolation of multipotent stem cell-like cells from the adult trunk skin of mice and humans that express the neural crest stem cell markers p75 and Sox10 and di

  14. Differentiated human colorectal cancer cells protect tumor-initiating cells from irinotecan

    NARCIS (Netherlands)

    Emmink, B.L.; Houdt, W.J.; Vries, R.G.J.; Hoogwater, F.J.; Govaert, K.M.; Verheem, A.; Nijkamp, M.W.; Steller, E.J.; Jimenez, C.R.; Clevers, H.; Rinkes, I.H.; Kranenburg, O.

    2011-01-01

    BACKGROUND & AIMS: Stem cells of normal tissues have resistance mechanisms that allow them to survive genotoxic insults. The stem cell-like cells of tumors are defined by their tumor-initiating capacity and may have retained these resistance mechanisms, making them resistant to chemotherapy. We stud

  15. Dental pulp stem cells

    DEFF Research Database (Denmark)

    Ashri, N. Y.; Ajlan, S. A.; Aldahmash, Abdullah M.

    2015-01-01

    Inflammatory periodontal disease is a major cause of loss of tooth-supporting structures. Novel approaches for regeneration of periodontal apparatus is an area of intensive research. Periodontal tissue engineering implies the use of appropriate regenerative cells, delivered through a suitable...... scaffold, and guided through signaling molecules. Dental pulp stem cells have been used in an increasing number of studies in dental tissue engineering. Those cells show mesenchymal (stromal) stem cell-like properties including self-renewal and multilineage differentiation potentials, aside from...... an updated review on dental pulp stem cells and their applications in periodontal regeneration, in combination with different scaffolds and growth factors....

  16. Curcumin reduces expression of Bcl-2, leading to apoptosis in daunorubicin-insensitive CD34+ acute myeloid leukemia cell lines and primary sorted CD34+ acute myeloid leukemia cells

    Science.gov (United States)

    2011-01-01

    Background Acute myeloid leukemia (AML) is an immunophenotypically heterogenous malignant disease, in which CD34 positivity is associated with poor prognosis. CD34+ AML cells are 10-15-fold more resistant to daunorubicin (DNR) than CD34- AML cells. Curcumin is a major component of turmeric that has shown cytotoxic activity in multiple cancers; however, its anti-cancer activity has not been well studied in DNR-insensitive CD34+ AML cells. The aim of this study was to therefore to explore curcumin-induced cytotoxicity in DNR-insensitive CD34+ AML cell lines (KG1a, Kasumi-1), DNR-sensitive U937 AML cells, and primary CD34+ AML bone-marrow-derived cells. Methods Primary human CD34+ cells were isolated from peripheral blood mononuclear cells or bone marrow mononuclear cells using a CD34 MicroBead kit. The growth inhibitory effects of curcumin were evaluated by MTT and colony-formation assays. Cell cycle distribution was examined by propidium iodide (PI) assay. Apoptosis was analyzed by Wright-Giemsa, Hoechst 33342 and Annexin-V/PI staining assays. The change in mitochondrial membrane potential (MMP) was examined by JC-1 staining and flow cytometry. Expression of apoptosis-related proteins was determined by reverse transcription-polymerase chain reaction and Western blotting. Short interfering RNA (siRNA) against Bcl-2 was used in CD34+ KG1a and Kasumi-1 cells incubated with/without DNR. Results Curcumin inhibited proliferation and induced apoptosis and G1/S arrest in both DNR-insensitive KG1a, Kasumi-1 and DNR-sensitive U937 cells. Curcumin-induced apoptosis was associated with reduced expression of both Bcl-2 mRNA and protein, subsequent loss of MMP, and activation of caspase-3 followed by PARP degradation. Curcumin synergistically enhanced the cytotoxic effect of DNR in DNR-insensitive KG1a and Kasumi-1 cells, consistent with decreased Bcl-2 expression. Accordingly, siRNA against Bcl-2 increased the susceptibility of KG1a and Kasumi-1 cells to DNR-induced apoptosis

  17. Curcumin reduces expression of Bcl-2, leading to apoptosis in daunorubicin-insensitive CD34+ acute myeloid leukemia cell lines and primary sorted CD34+ acute myeloid leukemia cells

    Directory of Open Access Journals (Sweden)

    Huang Sheng-Shan

    2011-05-01

    Full Text Available Abstract Background Acute myeloid leukemia (AML is an immunophenotypically heterogenous malignant disease, in which CD34 positivity is associated with poor prognosis. CD34+ AML cells are 10-15-fold more resistant to daunorubicin (DNR than CD34- AML cells. Curcumin is a major component of turmeric that has shown cytotoxic activity in multiple cancers; however, its anti-cancer activity has not been well studied in DNR-insensitive CD34+ AML cells. The aim of this study was to therefore to explore curcumin-induced cytotoxicity in DNR-insensitive CD34+ AML cell lines (KG1a, Kasumi-1, DNR-sensitive U937 AML cells, and primary CD34+ AML bone-marrow-derived cells. Methods Primary human CD34+ cells were isolated from peripheral blood mononuclear cells or bone marrow mononuclear cells using a CD34 MicroBead kit. The growth inhibitory effects of curcumin were evaluated by MTT and colony-formation assays. Cell cycle distribution was examined by propidium iodide (PI assay. Apoptosis was analyzed by Wright-Giemsa, Hoechst 33342 and Annexin-V/PI staining assays. The change in mitochondrial membrane potential (MMP was examined by JC-1 staining and flow cytometry. Expression of apoptosis-related proteins was determined by reverse transcription-polymerase chain reaction and Western blotting. Short interfering RNA (siRNA against Bcl-2 was used in CD34+ KG1a and Kasumi-1 cells incubated with/without DNR. Results Curcumin inhibited proliferation and induced apoptosis and G1/S arrest in both DNR-insensitive KG1a, Kasumi-1 and DNR-sensitive U937 cells. Curcumin-induced apoptosis was associated with reduced expression of both Bcl-2 mRNA and protein, subsequent loss of MMP, and activation of caspase-3 followed by PARP degradation. Curcumin synergistically enhanced the cytotoxic effect of DNR in DNR-insensitive KG1a and Kasumi-1 cells, consistent with decreased Bcl-2 expression. Accordingly, siRNA against Bcl-2 increased the susceptibility of KG1a and Kasumi-1 cells to

  18. Adult Stem Cell Therapy for Stroke: Challenges and Progress

    OpenAIRE

    Bang, Oh Young; Kim, Eun Hee; Cha, Jae Min; Moon, Gyeong Joon

    2016-01-01

    Stroke is one of the leading causes of death and physical disability among adults. It has been 15 years since clinical trials of stem cell therapy in patients with stroke have been conducted using adult stem cells like mesenchymal stem cells and bone marrow mononuclear cells. Results of randomized controlled trials showed that adult stem cell therapy was safe but its efficacy was modest, underscoring the need for new stem cell therapy strategies. The primary limitations of current stem cell t...

  19. Adult Stem Cell Therapy for Stroke: Challenges and Progress

    OpenAIRE

    Bang, Oh Young; Kim, Eun Hee; Cha, Jae Min; Moon, Gyeong Joon

    2016-01-01

    Stroke is one of the leading causes of death and physical disability among adults. It has been 15 years since clinical trials of stem cell therapy in patients with stroke have been conducted using adult stem cells like mesenchymal stem cells and bone marrow mononuclear cells. Results of randomized controlled trials showed that adult stem cell therapy was safe but its efficacy was modest, underscoring the need for new stem cell therapy strategies. The primary limitations of current stem cell t...

  20. Inhibitory and Cytotoxic Activities of Salvia Officinalis L. Extract on Human Lymphoma and Leukemia Cells by Induction of Apoptosis

    Directory of Open Access Journals (Sweden)

    Abbas Azadmehr

    2013-02-01

    Full Text Available Purpose: Salvia officinalis L., also known as Maryam Goli, is one of the native plants used to Persian medicinal herbs. Hence, the objective of this study was to examine the in vitro cytotoxic activities of a standardized crude methanol extracts prepared from Salvia officinalis L., on a non-Hodgkin’s B-cell lymphoma (Raji and human leukemic monocyte lymphoma (U937, Human acute myelocytic leukemia (KG-1A and Human Umbilical Vein Endothelial (HUVEC cell lines. Methods: The effect of methanolic extract on the inhibition of cell proliferation and cytotoxic activity was evaluated by Dye exclusion and Micro culture tetrazolium test (MTT cytotoxicity assay. Cell death ELISA was employed to quantify the nucleosome production result from nuclear DNA fragmentation during apoptosis and determined whether the mechanism involves induction of apoptosis or necrosis. Results: The present results demonstrated that methanolic extract at 50 to 800 μg/ml dose and time-dependently suppressed the proliferation of KG-1A, U937 and Raji cells by more than 80% (p800 Ag/ml. Nucleosome productions in KG-1A, Raji and U937 cells were significantly increased respectively upon the treatment of Salvia officinalis L. extract. Conclusion: The Salvia officinalis L. extract was found dose and time-dependently inhibits the proliferation of lymphoma and leukemic cells possibly via an apoptosis-dependent pathway.

  1. Gene transfer and protein dynamics in stem cells using single cell electroporation in a microfluidic device

    NARCIS (Netherlands)

    Valero, Ana; Post, Janine Nicole; van Nieuwkasteele, Jan William; ter Braak, Paulus Martinus; Kruijer, W.; van den Berg, Albert

    There is great interest in genetic modification of bone marrow-derived mesenchymal stem cells (MSC), not only for research purposes but also for use in (autologous) patient-derived-patient-used transplantations. A major drawback of bulk methods for genetic modifications of (stem) cells, like

  2. Therapeutic implications of colon cancer stem cells

    Institute of Scientific and Technical Information of China (English)

    Eros; Fabrizi; Simona; di; Martino; Federica; Pelacchi; Lucia; Ricci-Vitiani

    2010-01-01

    Colorectal cancer is the second most common cause of cancer-related death in many industrialized countries and is characterized by a heterogenic pool of cells with distinct differentiation patterns. Recently, the concept that cancer might arise from a rare population of cells with stem cell-like properties has received support with regard to several solid tumors, including colorectal cancer. According to the cancer stem cell hypothesis, cancer can be considered a disease in which mutations either convert no...

  3. Senescing cells share common features with dedifferentiating cells.

    Science.gov (United States)

    Damri, Meytal; Granot, Gila; Ben-Meir, Hagit; Avivi, Yigal; Plaschkes, Inbar; Chalifa-Caspi, Vered; Wolfson, Marina; Fraifeld, Vadim; Grafi, Gideon

    2009-12-01

    Dedifferentiation signifies the capacity of somatic cells to acquire stem cell-like properties. This process can be induced during normal development and as a response to various stimuli, such as pathogen infection and wounding. Dedifferentiation also characterizes the transition of differentiated leaf cells into protoplasts (plant cells devoid of cell walls), a transition accompanied by widespread chromatin decondensation. Transcriptome profiling of dedifferentiating protoplast cells revealed striking similarities with senescing cells; both display a large increase in the expression of genes of specific transcription factor (TF) families, including ANAC, WRKY, bZIP, and C2H2. Further analysis showed that leaves induced to senesce by exposure to dark display characteristic features of dedifferentiating cells, including chromatin decondensation, disruption of the nucleolus, and condensation of rRNA genes. Considering that premature senescence can be induced by various stress conditions both in plant and animal cells, our results suggest that the response of plant and also animal cells to certain stresses converges on cellular dedifferentiation whereby cells first acquire stem cell-like state prior to acquisition of a new cell fate (e.g., reentry into the cell cycle or death).

  4. Doxycycline inhibits leukemic cell migration via inhibition of matrix metalloproteinases and phosphorylation of focal adhesion kinase.

    Science.gov (United States)

    Wang, Chunhuai; Xiang, Ru; Zhang, Xiangzhong; Chen, Yunxian

    2015-09-01

    Doxycycline, a tetracycline-based antibiotic, has been reported to attenuate melanoma cell migration through inhibiting the focal adhesion kinase (FAK) signaling pathway. However, it remains to be elucidated whether doxycycline exerts this effect on leukemia cell migration. The present study aimed to examine the role of doxycycline in leukemia cell migration. The invasion capacities of the human leukemia cell lines KG1a (acute myelogenous leukemia) and K562 (chronic myelogenous leukemia) were evaluated using Matrigel® matrix‑coated Transwell® chamber assays; leukemic cell lines treated with doxycycline (1 µg/ml) or anti‑β1‑integrin antibodies were added to the upper chamber, while untreated cells were included as controls. Reverse transcription quantitative polymerase chain reaction was performed in order to further understand the influence of doxycycline treatment on the expression of FAK and gelatinases in the KG1a and K562 leukemic cell lines. In addition, FAK protein expression and phosphorylation were determined using western blot analysis in order to investigate the mechanism by which doxycycline inhibited leukemic cell migration. The results revealed that doxycycline treatment significantly attenuated the migration of KG1a and K562 cells, which was demonstrated to be associated with inhibition of the expression and phosphorylation of FAK. In addition, doxycycline treatment inhibited matrix metalloproteinase (MMP)‑2 and MMP‑9 expression. Furthermore, incubation with blocking anti‑β1‑integrin antibodies had an analogous inhibitory effect on leukemic cell migration to that of doxycycline. In conclusion, the results of the present study suggested that doxycycline attenuated leukemic cell migration through inhibiting the FAK signaling pathway. Therefore, doxycycline may have potential for use as a novel strategy for the treatment of leukemia.

  5. The bovine T cell receptor alpha/delta locus contains over 400 V genes and encodes V genes without CDR2

    NARCIS (Netherlands)

    Reinink, Peter; van Rhijn, I.

    Alphabeta T cells and gammadelta T cells perform nonoverlapping immune functions. In mammalian species with a high percentage of very diverse gammadelta T cells, like ruminants and pigs, it is often assumed that alphabeta T cells are less diverse than gammadelta T cells. Based on the bovine genome,

  6. Mammary gland stem cells

    DEFF Research Database (Denmark)

    Fridriksdottir, Agla J R; Petersen, Ole W; Rønnov-Jessen, Lone

    2011-01-01

    Distinct subsets of cells, including cells with stem cell-like properties, have been proposed to exist in normal human breast epithelium and breast carcinomas. The cellular origins of epithelial cells contributing to gland development, tissue homeostasis and cancer are, however, still poorly...... understood. The mouse is a widely used model of mammary gland development, both directly by studying the mouse mammary epithelial cells themselves and indirectly, by studying development, morphogenesis, differentiation and carcinogenesis of xenotransplanted human breast epithelium in vivo. While in early...... studies, human or mouse epithelium was implanted as fragments into the mouse gland, more recent technical progress has allowed the self-renewal capacity and differentiation potential of distinct cell populations or even individual cells to be interrogated. Here, we review and discuss similarities...

  7. CD103+ Dendritic Cells Control Th17 Cell Function in the Lung

    Directory of Open Access Journals (Sweden)

    Teresa Zelante

    2015-09-01

    Full Text Available Th17 cells express diverse functional programs while retaining their Th17 identity, in some cases exhibiting a stem-cell-like phenotype. Whereas the importance of Th17 cell regulation in autoimmune and infectious diseases is firmly established, the signaling pathways controlling their plasticity are undefined. Using a mouse model of invasive pulmonary aspergillosis, we found that lung CD103+ dendritic cells (DCs would produce IL-2, dependent on NFAT signaling, leading to an optimally protective Th17 response. The absence of IL-2 in DCs caused unrestrained production of IL-23 and fatal hyperinflammation, which was characterized by strong Th17 polarization and the emergence of a Th17 stem-cell-like population. Although several cell types may be affected by deficient IL-2 production in DCs, our findings identify the balance between IL-2 and IL-23 productions by lung DCs as an important regulator of the local inflammatory response to infection.

  8. Cdx2 is essential for embryonic axial growth and identity of the adult intestinal stem cells

    NARCIS (Netherlands)

    Simmini, Salvatore

    2015-01-01

    During mouse development, progenitor cells, allocated along the primitive streak and in the tailbud, lay down descendants that contribute to the generation of all primordia of the trunk and tail tissues of the embryo. Evidence suggested that a pool of these progenitor cells, with stem cell-like

  9. Cdx2 is essential for embryonic axial growth and identity of the adult intestinal stem cells

    NARCIS (Netherlands)

    Simmini, Salvatore

    2015-01-01

    During mouse development, progenitor cells, allocated along the primitive streak and in the tailbud, lay down descendants that contribute to the generation of all primordia of the trunk and tail tissues of the embryo. Evidence suggested that a pool of these progenitor cells, with stem cell-like pote

  10. Serotonin of mast cell origin contributes to hippocampal function

    OpenAIRE

    Nautiyal, Katherine M.; Dailey, Christopher A.; Jahn, Jaquelyn L.; Rodriquez, Elizabeth; Son, Nguyen Hong; Jonathan V. Sweedler; Silver, Rae

    2012-01-01

    In the CNS, serotonin, an important neurotransmitter and trophic factor, is synthesized by both mast cells and neurons. Mast cells, like other immune cells, are born in the bone marrow and migrate to many tissues. We show that they are resident in the mouse brain throughout development and adulthood. Measurements based on capillary electrophoresis with native fluorescence detection indicate that a significant contribution of serotonin to the hippocampal milieu is associated with mast cell act...

  11. Notch signaling and EMT in non-small cell lung cancer: biological significance and therapeutic application

    OpenAIRE

    Yuan, Xun; Wu, Hua; Han, Na; Xu, Hanxiao; Chu, Qian; Yu, Shiying; Chen, Yuan; Wu, Kongming

    2014-01-01

    Through epithelial-mesenchymal transition (EMT), cancer cells acquire enhanced ability of migration and invasion, stem cell like characteristics and therapeutic resistance. Notch signaling regulates cell-cell connection, cell polarity and motility during organ development. Recent studies demonstrate that Notch signaling plays an important role in lung cancer initiation and cross-talks with several transcriptional factors to enhance EMT, contributing to the progression of non-small cell lung c...

  12. Cell of origin associated classification of B-cell malignancies by gene signatures of the normal B-cell hierarchy.

    Science.gov (United States)

    Johnsen, Hans Erik; Bergkvist, Kim Steve; Schmitz, Alexander; Kjeldsen, Malene Krag; Hansen, Steen Møller; Gaihede, Michael; Nørgaard, Martin Agge; Bæch, John; Grønholdt, Marie-Louise; Jensen, Frank Svendsen; Johansen, Preben; Bødker, Julie Støve; Bøgsted, Martin; Dybkær, Karen

    2014-06-01

    Recent findings have suggested biological classification of B-cell malignancies as exemplified by the "activated B-cell-like" (ABC), the "germinal-center B-cell-like" (GCB) and primary mediastinal B-cell lymphoma (PMBL) subtypes of diffuse large B-cell lymphoma and "recurrent translocation and cyclin D" (TC) classification of multiple myeloma. Biological classification of B-cell derived cancers may be refined by a direct and systematic strategy where identification and characterization of normal B-cell differentiation subsets are used to define the cancer cell of origin phenotype. Here we propose a strategy combining multiparametric flow cytometry, global gene expression profiling and biostatistical modeling to generate B-cell subset specific gene signatures from sorted normal human immature, naive, germinal centrocytes and centroblasts, post-germinal memory B-cells, plasmablasts and plasma cells from available lymphoid tissues including lymph nodes, tonsils, thymus, peripheral blood and bone marrow. This strategy will provide an accurate image of the stage of differentiation, which prospectively can be used to classify any B-cell malignancy and eventually purify tumor cells. This report briefly describes the current models of the normal B-cell subset differentiation in multiple tissues and the pathogenesis of malignancies originating from the normal germinal B-cell hierarchy.

  13. Prognostic impact of concurrent MYC and BCL6 rearrangements and expression in de novo diffuse large B-cell lymphoma

    DEFF Research Database (Denmark)

    Ye, Qing; Xu-Monette, Zijun Y; Tzankov, Alexandar;

    2016-01-01

    and BCL6 in 898 patients with de novo diffuse large B-cell lymphoma treated with standard chemotherapy (cyclophosphamide, doxorubicin, vincristine, and prednisone plus rituximab). Neither BCL6 translocation alone (more frequent in activated B-cell like diffuse large B-cell lymphoma) nor in combination...

  14. Cells

    Directory of Open Access Journals (Sweden)

    Zhao-Hui Jin

    2012-11-01

    Full Text Available As cancer stem cells (CSCs are postulated to play critical roles in cancer development, including metastasis and recurrence, CSC imaging would provide valuable information for cancer treatment and lead to CSC-targeted therapy. To assess the possibility of in vivo CSC targeting, we conducted basic studies on radioimmunotargeting of cancer cells positive for CD133, a CSC marker recognized in various cancers. Antibodies against CD133 were labeled with 125I, and their in vitro cell binding properties were tested. Using the same isotype IgG as a control, in vivo biodistribution of the labeled antibody retaining immunoreactivity was examined in mice bearing an HCT116 xenograft in which a population of the cancer cells expressed CD133. Intratumoral distribution of the labeled antibody was examined and compared to the CD133 expression pattern. The 125I-labeled anti-CD133 antibody showed a modest but significantly higher accumulation in the HCT116 xenograft compared to the control IgG. The intratumoral distribution of the labeled antibody mostly overlapped with the CD133 expression, whereas the control IgG was found in the area close to the necrotic tumor center. Our results indicate that noninvasive in vivo targeting of CSCs could be possible with radiolabeled antibodies against cell membrane markers.

  15. An adult tissue-specific stem cell molecular phenotype is activated in epithelial cancer stem cells and correlated to patient outcome.

    Science.gov (United States)

    Hussenet, Thomas; Dembélé, Doulaye; Martinet, Nadine; Vignaud, Jean-Michel; du Manoir, Stanislas

    2010-01-15

    Recent studies have shown that embryonic stem cell-like molecular phenotypes are commonly activated in human epithelial primary tumors and are linked to adverse patient prognosis.(1,2) However it remains unclear whether these correlations to outcome are linked to the differentiation status of the human primary tumors(1) or represent molecular reminiscences of epithelial cancer stem cells.(2) In addition, while it has been demonstrated that leukemic cancer stem cells re-acquire an embryonic stem cell-like phenotype,(3,4) the molecular basis of stem cell function in epithelial cancer stem cells has not been investigated. Here we show that a normal adult tissue-specific stem cell molecular phenotype is commonly activated in epithelial cancer stem cells and for the first time provide evidence that enrichment in cancer stem cells-specific molecular signatures are correlated to highly aggressive tumor phenotypes in human epithelial cancers.

  16. Inhibition of P-glycoprotein activity in human leukemic cells by mifepristone.

    Science.gov (United States)

    Fardel, O; Courtois, A; Drenou, B; Lamy, T; Lecureur, V; le Prisé, P Y; Fauchet, R

    1996-08-01

    The antiprogestatin drug mifepristone has previously been shown to potentiate anti-cancer drug activity in rodent multidrug-resistant cell lines through inhibition of P-glycoprotein (P-gp) function. In order to characterize P-gp-mifepristone interactions in human tumoral cells, we have studied the effect of the antiprogestatin agent on P-gp activity in human CD34+ leukemic cells known to display high levels of P-gp-related drug efflux. P-gp-mediated transport of the fluorescent dye rhodamine 123 occurring in the CD34+ KG1a myeloid leukemia cell line was found to be strongly inhibited by mifepristone in a dose-dependent manner. Similarly to verapamil, a well-known chemosensitizer agent, the antiprogestatin drug increased doxorubicin cytotoxicity in KG1a cells. Mifepristone, when used at a 10 microM concentration thought to be achievable in vivo without major toxicity, was also able to markedly decrease cellular rhodamine 123 efflux occurring in CD34+ blast cells isolated from six patients suffering from myeloid acute leukemias. These results thus indicate that mifepristone can strongly inhibit P-gp activity in human cells, including tumoral cells freshly isolated from patients, therefore suggesting that the clinical use of this compound may contribute to down-modulate P-gp-mediated drug resistance.

  17. Stem cells in urology.

    Science.gov (United States)

    Aboushwareb, Tamer; Atala, Anthony

    2008-11-01

    The shortage of donors for organ transplantation has stimulated research on stem cells as a potential resource for cell-based therapy in all human tissues. Stem cells have been used for regenerative medicine applications in many organ systems, including the genitourinary system. The potential applications for stem cell therapy have, however, been restricted by the ethical issues associated with embryonic stem cell research. Instead, scientists have explored other cell sources, including progenitor and stem cells derived from adult tissues and stem cells derived from the amniotic fluid and placenta. In addition, novel techniques for generating stem cells in the laboratory are being developed. These techniques include somatic cell nuclear transfer, in which the nucleus of an adult somatic cell is placed into an oocyte, and reprogramming of adult cells to induce stem-cell-like behavior. Such techniques are now being used in tissue engineering applications, and some of the most successful experiments have been in the field of urology. Techniques to regenerate bladder tissue have reached the clinic, and exciting progress is being made in other areas, such as regeneration of the kidney and urethra. Cell therapy as a treatment for incontinence and infertility might soon become a reality. Physicians should be optimistic that regenerative medicine and tissue engineering will one day provide mainstream treatment options for urologic disorders.

  18. Immunohistochemical expression of stem cell markers in pheochromocytomas/paragangliomas is associated with SDHx mutations

    NARCIS (Netherlands)

    Oudijk, L.; Neuhofer, C. M.; Lichtenauer, U. D.; Papathomas, T. G.; Korpershoek, E.; Stoop, H.; Oosterhuis, J. W.; Smid, M.; Restuccia, D. F.; Robledo, M.; De Cubas, A. A.; Mannelli, M.; Gimenez-Roqueplo, A. P.; Dinjens, W. N M; Beuschlein, F.; De Krijger, R. R.

    2015-01-01

    Objective: Pheochromocytomas (PCCs) are neuroendocrine tumors that occur in the adrenal medulla, whereas paragangliomas (PGLs) arise from paraganglia in the head, neck, thorax, or abdomen. In a variety of tumors, cancer cells with stem cell-like properties seem to form the basis of tumor initiation

  19. Culture of Neural Stem Cells in Calcium-alginate Microbeads

    Institute of Scientific and Technical Information of China (English)

    Li-Song YAO; Tian-Qing LIU; Dan GE; Xue-Hu MA; Zhan-Feng CUI

    2005-01-01

    @@ 1 Introduction Recent research shows that neural stem cells may play an important role in the nerve injury reparation and nerve disease treatment. The shortage of the source and the number of NSCs, however, is the main challenge for its clinic application. In this situation, expansion of NSCs in large scale and culture in three dimensional environment are very worth of exploration. Notablely, the shear stress existed in bioreactors can cause serious cell injury especially for the shear sensitive cells like NSCs.

  20. Evidence of a role for Th17 cells in the breach of immune tolerance in arthritis

    OpenAIRE

    Yu, Xinhua; Ibrahim, Saleh M.

    2011-01-01

    Th17 cells are thought to play a pathogenic role in various autoimmune diseases. Cytokines secreted by Th17 cells like IL-17, IL-17F and IL-22 have the capacity to mediate a massive inflammatory response. These proinflammatroy cytokines are likely to mediate the pathogenic potential of Th17 cells. Recent evidence suggests a role for Th17 cells in the breach of immune tolerance. This might shed some new light on the pathogenic role of Th17 cells in autoimmunity.

  1. Physiological and morphological studies of rat pheochromocytoma cells (PC12) chemically fused and grown in culture.

    OpenAIRE

    O'Lague, P. H.; Huttner, S L

    1980-01-01

    Cell fusion induced by polyethylene glycol has been used to produce in culture giant multinucleate PC12 cells (up to 300 micron in diameter compared to 10-20 micron for unfused cells). Fused cells, like their unfused counterparts, were found to express various neuronal properties. They contained catecholamines. In the presence of nerve growth factor they extended long processes and expressed Na+, Ca2+, and K+ conductances generally associated with excitable cells. In the absence of nerve grow...

  2. Nano Photoelectrochemical Cell-like Model for Visible-light-responded Overall Splitting of Water%可见光“全”分解水的类纳光电化学(PEC)电池模型

    Institute of Scientific and Technical Information of China (English)

    李秋叶; 金振声

    2015-01-01

    本文在对新型TiO2的光、电性质和形貌学研究基础上,首次提出“可见光‘全’分解水的类纳PEC电池模型”,将水的redox反应分别放在新型TiO2纳米管内、外表面上进行.模型还提出以合适电化学性质的可变价金属氧化物作为放氧催化剂,表面晶格氧参与放O2过程,克服“全”光解水中四电子转移放O2的困难.此模型期望更多同行进行探索、验证.

  3. Induced pluripotent stem cells: origins, applications, and future perspectives.

    Science.gov (United States)

    Zhao, Jing; Jiang, Wen-jie; Sun, Chen; Hou, Cong-zhe; Yang, Xiao-Mei; Gao, Jian-gang

    2013-12-01

    Embryonic stem (ES) cells are widely used for different purposes, including gene targeting, cell therapy, tissue repair, organ regeneration, and so on. However, studies and applications of ES cells are hindered by ethical issues regarding cell sources. To circumvent ethical disputes, great efforts have been taken to generate ES cell-like cells, which are not derived from the inner cell mass of blastocyst-stage embryos. In 2006, Yamanaka et al. first reprogrammed mouse embryonic fibroblasts into ES cell-like cells called induced pluripotent stem (iPS) cells. About one year later, Yamanaka et al. and Thomson et al. independently reprogrammed human somatic cells into iPS cells. Since the first generation of iPS cells, they have now been derived from quite a few different kinds of cell types. In particular, the use of peripheral blood facilitates research on iPS cells because of safety, easy availability, and plenty of cell sources. Now iPS cells have been used for cell therapy, disease modeling, and drug discovery. In this review, we describe the generations, applications, potential issues, and future perspectives of iPS cells.

  4. Comprehensive gene expression profiling and immunohistochemical studies support application of immunophenotypic algorithm for molecular subtype classification in diffuse large B-cell lymphoma

    DEFF Research Database (Denmark)

    Visco, C; Xu-Monette, Z Y; Miranda, R N

    2012-01-01

    Gene expression profiling (GEP) has stratified diffuse large B-cell lymphoma (DLBCL) into molecular subgroups that correspond to different stages of lymphocyte development-namely germinal center B-cell like and activated B-cell like. This classification has prognostic significance, but GEP...... on formalin-fixed, paraffin-embedded tissue samples. Sections were stained with antibodies reactive with CD10, GCET1, FOXP1, MUM1 and BCL6 and cases were classified following a rationale of sequential steps of differentiation of B cells. Cutoffs for each marker were obtained using receiver...

  5. Induction of various immune modulatory molecules in CD34(+) hematopoietic cells

    DEFF Research Database (Denmark)

    Umland, Oliver; Heine, Holger; Miehe, Michaela

    2004-01-01

    Lipopolysaccharide (LPS) has been shown to induce proliferation of human T-lymphocytes only in the presence of monocytes and CD34(+) hematopoietic cells (HCs) from peripheral blood. This finding provided evidence of an active role of CD34(+) HCs during inflammation and immunological events. To in...... cytokines including TNF-alpha, which may contribute to innate- and adaptive-immune processes........ To investigate mechanisms by which CD34(+) HCs become activated and exert their immune-modulatory function, we used the human CD34(+) acute myeloid leukemia cell line KG-1a and CD34(+) bone marrow cells (BMCs). We showed that culture supernatants of LPS-stimulated mononuclear cells (SUP(LPS)) as well as tumor...... revealed that T cell proliferation can be induced by TNF-alpha-stimulated KG-1a cells, which is preventable by blocking anti-ICAM-1 monoclonal antibodies. Our results demonstrate that CD34(+) HCs have the potential to express a variety of immune-regulatory mediators upon stimulation by inflammatory...

  6. Embryonic stem cell and induced pluripotent stem cell: an epigenetic perspective

    Institute of Scientific and Technical Information of China (English)

    Gaoyang Liang; Yi Zhang

    2013-01-01

    Pluripotent stem cells,like embryonic stem cells (ESCs),have specialized epigenetic landscapes,which are important for pluripotency maintenance.Transcription factor-mediated generation of induced pluripotent stem cells (iPSCs)requires global change of somatic cell epigenetic status into an ESC-like state.Accumulating evidence indicates that epigenetic mechanisms not only play important roles in the iPSC generation process,but also affect the properties of reprogrammed iPSCs.Understanding the roles of various epigenetic factors in iPSC generation contributes to our knowledge of the reprogramming mechanisms.

  7. Fucoidan Suppresses the Growth of Human Acute Promyelocytic Leukemia Cells In Vitro and In Vivo.

    Science.gov (United States)

    Atashrazm, Farzaneh; Lowenthal, Ray M; Woods, Gregory M; Holloway, Adele F; Karpiniec, Samuel S; Dickinson, Joanne L

    2016-03-01

    Fucoidan, a natural component of seaweeds, is reported to have immunomodulatory and anti-tumor effects. The mechanisms underpinning these activities remain poorly understood. In this study, the cytotoxicity and anti-tumor activities of fucoidan were investigated in acute myeloid leukemia (AML) cells. The human AML cell lines NB4, KG1a, HL60, and K562 were treated with fucoidan and cell cycle, cell proliferation, and expression of apoptotic pathways molecules were analyzed. Fucoidan suppressed the proliferation and induced apoptosis through the intrinsic and extrinsic pathways in the acute promyelocytic leukemia (APL) cell lines NB4 and HL60, but not in KG1a and K562 cells. In NB4 cells, apoptosis was caspase-dependent as it was significantly attenuated by pre-treatment with a pan-caspase inhibitor. P21/WAF1/CIP1 was significantly up-regulated leading to cell cycle arrest. Fucoidan decreased the activation of ERK1/2 and down-regulated the activation of AKT through hypo-phosphorylation of Thr(308) residue but not Ser(473). In vivo, a xenograft model using the NB4 cells was employed. Mice were fed with fucoidan and tumor growth was measured following inoculation with NB4 cells. Subsequently, splenic natural killer (NK) cell cytotoxic activity was also examined. Oral doses of fucoidan significantly delayed tumor growth in the xenograft model and increased cytolytic activity of NK cells. Taken together, these data suggest that the selective inhibitory effect of fucoidan on APL cells and its protective effect against APL development in mice warrant further investigation of fucoidan as a useful agent in treatment of certain types of leukemia.

  8. Migrating glioma cells express stem cell markers and give rise to new tumors upon xenografting

    DEFF Research Database (Denmark)

    Munthe, Sune; Sørensen, Mia D; Thomassen, Mads

    2016-01-01

    -related genes and the HOX-gene list in migrating cells compared to spheroids. Determination of GBM molecular subtypes revealed that subtypes of spheroids and migrating cells were identical. In conclusion, migrating tumor cells preserve expression of stem cell markers and functional CSC characteristics. Since......Glioblastoma (GBM) is the most frequent and malignant brain tumor with an overall survival of only 14.6 months. Although these tumors are treated with surgery, radiation and chemotherapy, recurrence is inevitable. A critical population of tumor cells in terms of therapy, the so-called cancer stem...... cells (CSCs), has been identified in gliomas and many other cancers. These tumor cells have a stem cell-like phenotype and are suggested to be responsible for tumor growth, chemo- and radio-resistance as well as recurrence. However, functional evidence for migrating glioma cells having a stem cell...

  9. Generation of human induced pluripotent stem cells from cord blood cells.

    Science.gov (United States)

    Nishishita, Naoki; Takenaka, Chiemi; Fusaki, Noemi; Kawamata, Shin

    2011-01-01

    We report that iPS cells can be safely and effectively generated from fresh human cord blood (CB) cells with Sendai virus (SeV) vector carrying reprogramming factors OCT3/4, SOX2, KLF4, and c-MYC. The SeV vector is a single strand RNA virus having no DNA phase, and selectively infects the freshly isolated CD34+ CD45low+ fraction of CB cells corresponding to hematopoietic progenitors. Approximately twenty ES cell-like colonies emerged from 1 x 104 freshly isolated CD34+ CB cells around 18 days after SeV infection and were selected for passage to reduce the frequency of the remaining SeV-infected cells. The complete elimination of viral constructs was confirmed after several passages by immunostaining with monoclonal antibody against hemagglutinin-neuraminidase (HN) and by RT-PCR analysis. Five ES cell-like clones were selected to examine their in vitro potential for three germ layer differentiation and their capacity for teratoma formation. Generation of non-integrating Sendai virus (SeV) iPS cells from CB cells may be an important step to provide allogeneic iPS cell-derived therapy in the future.

  10. Inhibition of oxidative stress-elicited AKT activation facilitates PPARγ agonist-mediated inhibition of stem cell character and tumor growth of liver cancer cells.

    Directory of Open Access Journals (Sweden)

    Lanlan Liu

    Full Text Available Emerging evidence suggests that tumor-initiating cells (TICs are the most malignant cell subpopulation in tumors because of their resistance to chemotherapy or radiation treatment. Targeting TICs may be a key innovation for cancer treatment. In this study, we found that PPARγ agonists inhibited the cancer stem cell-like phenotype and attenuated tumor growth of human hepatocellular carcinoma (HCC cells. Reactive oxygen species (ROS initiated by NOX2 upregulation were partially responsible for the inhibitory effects mediated by PPARγ agonists. However, PPARγ agonist-mediated ROS production significantly activated AKT, which in turn promoted TIC survival by limiting ROS generation. Inhibition of AKT, by either pharmacological inhibitors or AKT siRNA, significantly enhanced PPARγ agonist-mediated inhibition of cell proliferation and stem cell-like properties in HCC cells. Importantly, in nude mice inoculated with HCC Huh7 cells, we demonstrated a synergistic inhibitory effect of the PPARγ agonist rosiglitazone and the AKT inhibitor triciribine on tumor growth. In conclusion, we observed a negative feedback loop between oxidative stress and AKT hyperactivation in PPARγ agonist-mediated suppressive effects on HCCs. Combinatory application of an AKT inhibitor and a PPARγ agonist may provide a new strategy for inhibition of stem cell-like properties in HCCs and treatment of liver cancer.

  11. Interfacial geometry dictates cancer cell tumorigenicity

    Science.gov (United States)

    Lee, Junmin; Abdeen, Amr A.; Wycislo, Kathryn L.; Fan, Timothy M.; Kilian, Kristopher A.

    2016-08-01

    Within the heterogeneous architecture of tumour tissue there exists an elusive population of stem-like cells that are implicated in both recurrence and metastasis. Here, by using engineered extracellular matrices, we show that geometric features at the perimeter of tumour tissue will prime a population of cells with a stem-cell-like phenotype. These cells show characteristics of cancer stem cells in vitro, as well as enhanced tumorigenicity in murine models of primary tumour growth and pulmonary metastases. We also show that interfacial geometry modulates cell shape, adhesion through integrin α5β1, MAPK and STAT activity, and initiation of pluripotency signalling. Our results for several human cancer cell lines suggest that interfacial geometry triggers a general mechanism for the regulation of cancer-cell state. Similar to how a growing tumour can co-opt normal soluble signalling pathways, our findings demonstrate how cancer can also exploit geometry to orchestrate oncogenesis.

  12. Altered development of NKT cells, γδ T cells, CD8 T cells and NK cells in a PLZF deficient patient.

    Directory of Open Access Journals (Sweden)

    Maggie Eidson

    Full Text Available In mice, the transcription factor, PLZF, controls the development of effector functions in invariant NKT cells and a subset of NKT cell-like, γδ T cells. Here, we show that in human lymphocytes, in addition to invariant NKT cells, PLZF was also expressed in a large percentage of CD8+ and CD4+ T cells. Furthermore, PLZF was also found to be expressed in all γδ T cells and in all NK cells. Importantly, we show that in a donor lacking functional PLZF, all of these various lymphocyte populations were altered. Therefore, in contrast to mice, PLZF appears to control the development and/or function of a wide variety of human lymphocytes that represent more than 10% of the total PBMCs. Interestingly, the PLZF-expressing CD8+ T cell population was found to be expanded in the peripheral blood of patients with metastatic melanoma but was greatly diminished in patients with autoimmune disease.

  13. Nivolumab With or Without Varlilumab in Treating Patients With Relapsed or Refractory Aggressive B-cell Lymphomas

    Science.gov (United States)

    2017-03-13

    Activated B-Cell-Like Diffuse Large B-Cell Lymphoma; ALK-Positive Large B-Cell Lymphoma; Atypical Burkitt/Burkitt-Like Lymphoma; Diffuse Large B-Cell Lymphoma Associated With Chronic Inflammation; Diffuse Large B-Cell Lymphoma, Not Otherwise Specified; Epstein-Barr Virus Positive Diffuse Large B-Cell Lymphoma of the Elderly; Epstein-Barr Virus-Positive Mucocutaneous Ulcer; Germinal Center B-Cell-Like Diffuse Large B-Cell Lymphoma; High-Grade B-Cell Lymphoma With MYC and BCL2 and/or BCL6 Rearrangements; Human Herpesvirus-8-Positive Neoplastic Cells Present; Intravascular Large B-Cell Lymphoma; MYC-Negative B-Cell Lymphoma With 11q Aberration Resembling Burkitt Lymphoma; Plasmablastic Lymphoma; Primary Cutaneous Diffuse Large B-Cell Lymphoma; Primary Cutaneous Diffuse Large B-Cell Lymphoma, Leg Type; Primary Diffuse Large B-Cell Lymphoma of the Central Nervous System; Primary Effusion Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Diffuse Large B-Cell Lymphoma; Recurrent Lymphomatoid Granulomatosis; Recurrent Mediastinal (Thymic) Large B-Cell Cell Lymphoma; Refractory Burkitt Lymphoma; Refractory Diffuse Large B-Cell Lymphoma; Refractory Mediastinal (Thymic) Large B-Cell Cell Lymphoma; Skin Ulcer; Small Intestinal B-Cell Lymphoma, Unclassifiable, With Features Intermediate Between Diffuse Large B-Cell Lymphoma and Burkitt Lymphoma; T-Cell/Histiocyte-Rich Large B-Cell Lymphoma

  14. Targeting Cancer Stem Cells with Natural Killer Cell Immunotherapy.

    Science.gov (United States)

    Luna, Jesus I; Grossenbacher, Steven K; Murphy, William J; Canter, Robert J

    2017-03-01

    Standard cytoreductive cancer therapy, such as chemotherapy and radiotherapy, are frequently resisted by a small portion of cancer cells with 'stem-cell' like properties including quiescence and repopulation. Immunotherapy represents a breakthrough modality for improving oncologic outcomes in cancer patients. Since the success of immunotherapy is not contingent on target cell proliferation, it may also be uniquely suited to address the problem of resistance and repopulation exerted by cancer stem cells (CSCs). Areas covered: Natural killer (NK) cells have long been known for their ability to reject allogeneic hematopoietic stem cells, and there are increasing data demonstrating that NK cells can selectively identify and lyse CSCs. The authors review the current knowledge of CSCs and NK cells and highlight recent studies that support the concept that NK cells are capable of targeting CSC in solid tumors, especially in the context of combination therapy simultaneously targeting non-CSCs and CSCs. Expert opinion: Unlike cytotoxic cancer treatments, NK cells can target and eliminate quiescent/non-proliferating cells such as CSCs, and these enigmatic cells are an important source of relapse and metastasis. NK targeting of CSCs represents a novel and potentially high impact method to capitalize on the intrinsic therapeutic potential of NK cells.

  15. Cancer Microenvironment: What Can We Learn from the Stem Cell Niche

    OpenAIRE

    2015-01-01

    Epidermal stem cells (ESCs) are crucial for maintenance and self- renewal of skin epithelium and also for regular hair cycling. Their role in wound healing is also indispensable. ESCs reside in a defined outer root sheath portion of hair follicle—also known as the bulge region. ECS are also found between basal cells of the interfollicular epidermis or mucous membranes. The non-epithelial elements such as mesenchymal stem cell-like elements of dermis or surrounding adipose tissue can also cont...

  16. Retinoblastoma tumor suppressor functions shared by stem cell and cancer cell strategies

    Institute of Scientific and Technical Information of China (English)

    Susumu; Kohno; Shunsuke; Kitajima; Nobunari; Sasaki; Chiaki; Takahashi

    2016-01-01

    Carcinogenic transformation of somatic cells resembles nuclear reprogramming toward the generation of pluripotent stem cells.These events share eternal escape from cellular senescence,continuous self-renewal in limited but certain population of cells,and refractoriness to terminal differentiation while maintaining the potential to differentiate into cells of one or multiple lineages.As represented by several oncogenes those appeared to be first keys to pluripotency,carcinogenesis and nuclear reprogramming seem to share a number of core mechanisms.The retinoblastoma tumor suppressor product retinoblastoma(RB)seems to be critically involved in both events in highly complicated manners.However,disentangling such complicated interactions has enabled us to better understand how stem cell strategies are shared by cancer cells.This review covers recent findings on RB functions related to stem cells and stem cell-like behaviors of cancer cells.

  17. Adult Stem Cell Therapy for Stroke: Challenges and Progress.

    Science.gov (United States)

    Bang, Oh Young; Kim, Eun Hee; Cha, Jae Min; Moon, Gyeong Joon

    2016-09-01

    Stroke is one of the leading causes of death and physical disability among adults. It has been 15 years since clinical trials of stem cell therapy in patients with stroke have been conducted using adult stem cells like mesenchymal stem cells and bone marrow mononuclear cells. Results of randomized controlled trials showed that adult stem cell therapy was safe but its efficacy was modest, underscoring the need for new stem cell therapy strategies. The primary limitations of current stem cell therapies include (a) the limited source of engraftable stem cells, (b) the presence of optimal time window for stem cell therapies, (c) inherited limitation of stem cells in terms of growth, trophic support, and differentiation potential, and (d) possible transplanted cell-mediated adverse effects, such as tumor formation. Here, we discuss recent advances that overcome these hurdles in adult stem cell therapy for stroke.

  18. Novel method for isolation of murine clara cell secretory protein-expressing cells with traces of stemness.

    Directory of Open Access Journals (Sweden)

    Xiao-Yang Wang

    Full Text Available Clara cells are non-ciliated, secretory bronchiolar epithelial cells that serve to detoxify harmful inhaled substances. Clara cells also function as stem/progenitor cells for repair in the bronchioles. Clara cell secretory protein (CCSP is specifically expressed in pulmonary Clara cells and is widely used as a Clara cell marker. In addition CCSP promoter is commonly used to direct gene expression into the lung in transgenic models. The discovery of CCSP immunoreactivity in plasma membranes of airway lining cells prompted us to explore the possibility of enriching Clara cells by flow cytometry. We established a novel and simple method for the isolation of CCSP-expressing cell Clara cells using a combination of mechanical and enzymatic dissociation followed by flow cytometry sorting technology. We showed that ∼25% of dissociated cells from whole lung expressed CCSP. In the resulting preparation, up to 98% of cells expressed CCSP. Notably, we found that several common stem cell markers including CD44, CD133, Sca-1 and Sox2 were expressed in CCSP(+ cells. Moreover, CCSP(+ cells were able to form spheroid colonies in vitro with 0.97‰ efficiency. Parallel studies in vivo confirmed that a small population of CCSP(-expressing cells in mouse airways also demonstrates stem cell-like properties such as label retention and harboring rare bronchioalveolar stem cells (BASCs in terminal bronchioles (TBs. We conclude that CCSP(+ cells exhibit a number of stem cell-like features including stem cell marker expression, bronchosphere colony formation and self-renewal ability. Clara cell isolation by flow cytometry sorting is a useful method for investigating the function of primary Clara cells in stem cell research and mouse models.

  19. Evolution of two prototypic T cell lineages.

    Science.gov (United States)

    Das, Sabyasachi; Li, Jianxu; Hirano, Masayuki; Sutoh, Yoichi; Herrin, Brantley R; Cooper, Max D

    2015-07-01

    Jawless vertebrates, which occupy a unique position in chordate phylogeny, employ leucine-rich repeat (LRR)-based variable lymphocyte receptors (VLR) for antigen recognition. During the assembly of the VLR genes (VLRA, VLRB and VLRC), donor LRR-encoding sequences are copied in a step-wise manner into the incomplete germ-line genes. The assembled VLR genes are differentially expressed by discrete lymphocyte lineages: VLRA- and VLRC-producing cells are T-cell like, whereas VLRB-producing cells are B-cell like. VLRA(+) and VLRC(+) lymphocytes resemble the two principal T-cell lineages of jawed vertebrates that express the αβ or γδ T-cell receptors (TCR). Reminiscent of the interspersed nature of the TCRα/TCRδ locus in jawed vertebrates, the close proximity of the VLRA and VLRC loci facilitates sharing of donor LRR sequences during VLRA and VLRC assembly. Here we discuss the insight these findings provide into vertebrate T- and B-cell evolution, and the alternative types of anticipatory receptors they use for adaptive immunity.

  20. Glial cell derived neurotrophic factor induces spermatogonial stem cell marker genes in chicken mesenchymal stem cells.

    Science.gov (United States)

    Boozarpour, Sohrab; Matin, Maryam M; Momeni-Moghaddam, Madjid; Dehghani, Hesam; Mahdavi-Shahri, Naser; Sisakhtnezhad, Sajjad; Heirani-Tabasi, Asieh; Irfan-Maqsood, Muhammad; Bahrami, Ahmad Reza

    2016-06-01

    Mesenchymal stem cells (MSCs) are known with the potential of multi-lineage differentiation. Advances in differentiation technology have also resulted in the conversion of MSCs to other kinds of stem cells. MSCs are considered as a suitable source of cells for biotechnology purposes because they are abundant, easily accessible and well characterized cells. Nowadays small molecules are introduced as novel and efficient factors to differentiate stem cells. In this work, we examined the potential of glial cell derived neurotrophic factor (GDNF) for differentiating chicken MSCs toward spermatogonial stem cells. MSCs were isolated and characterized from chicken and cultured under treatment with all-trans retinoic acid (RA) or glial cell derived neurotrophic factor. Expression analysis of specific genes after 7days of RA treatment, as examined by RT-PCR, proved positive for some germ cell markers such as CVH, STRA8, PLZF and some genes involved in spermatogonial stem cell maintenance like BCL6b and c-KIT. On the other hand, GDNF could additionally induce expression of POU5F1, and NANOG as well as other genes which were induced after RA treatment. These data illustrated that GDNF is relatively more effective in diverting chicken MSCs towards Spermatogonial stem cell -like cells in chickens and suggests GDNF as a new agent to obtain transgenic poultry, nevertheless, exploitability of these cells should be verified by more experiments.

  1. Stem cells and repair of lung injuries

    Directory of Open Access Journals (Sweden)

    Randell Scott H

    2004-07-01

    Full Text Available Abstract Fueled by the promise of regenerative medicine, currently there is unprecedented interest in stem cells. Furthermore, there have been revolutionary, but somewhat controversial, advances in our understanding of stem cell biology. Stem cells likely play key roles in the repair of diverse lung injuries. However, due to very low rates of cellular proliferation in vivo in the normal steady state, cellular and architectural complexity of the respiratory tract, and the lack of an intensive research effort, lung stem cells remain poorly understood compared to those in other major organ systems. In the present review, we concisely explore the conceptual framework of stem cell biology and recent advances pertinent to the lungs. We illustrate lung diseases in which manipulation of stem cells may be physiologically significant and highlight the challenges facing stem cell-related therapy in the lung.

  2. In Vitro Derivation and Propagation of Spermatogonial Stem Cell Activity from Mouse Pluripotent Stem Cells.

    Science.gov (United States)

    Ishikura, Yukiko; Yabuta, Yukihiro; Ohta, Hiroshi; Hayashi, Katsuhiko; Nakamura, Tomonori; Okamoto, Ikuhiro; Yamamoto, Takuya; Kurimoto, Kazuki; Shirane, Kenjiro; Sasaki, Hiroyuki; Saitou, Mitinori

    2016-12-06

    The in vitro derivation and propagation of spermatogonial stem cells (SSCs) from pluripotent stem cells (PSCs) is a key goal in reproductive science. We show here that when aggregated with embryonic testicular somatic cells (reconstituted testes), primordial germ cell-like cells (PGCLCs) induced from mouse embryonic stem cells differentiate into spermatogonia-like cells in vitro and are expandable as cells that resemble germline stem cells (GSCs), a primary cell line with SSC activity. Remarkably, GSC-like cells (GSCLCs), but not PGCLCs, colonize adult testes and, albeit less effectively than GSCs, contribute to spermatogenesis and fertile offspring. Whole-genome analyses reveal that GSCLCs exhibit aberrant methylation at vulnerable regulatory elements, including those critical for spermatogenesis, which may restrain their spermatogenic potential. Our study establishes a strategy for the in vitro derivation of SSC activity from PSCs, which, we propose, relies on faithful epigenomic regulation.

  3. Platelet-rich plasma gel in combination with Schwann cells for repair of sciatic nerve injury

    Institute of Scientific and Technical Information of China (English)

    Fagang Ye; Haiyan Li; Guangxi Qiao; Feng Chen; Hao Tao; Aiyu Ji; Yanling Hu

    2012-01-01

    Bone marrow mesenchymal stem cells were isolated from New Zealand white rabbits,culture-expanded and differentiated into Schwann cell-like cells.Autologous platelet-rich plasma and Schwann cell-like cells were mixed in suspension at a density of 1 × 106 cells/mL,prior to introduction into a poly (lactic-co-glycolic acid) conduit.Fabricated tissue-engineered nerves were implanted into rabbits to bridge 10 mm sciatic nerve defects (platelet-rich plasma group).Controls were established using fibrin as the seeding matrix for Schwann cell-like cells at identical density to construct tissue-engineered nerves (fibrin group).Twelve weeks after implantation,toluidine blue staining and scanning electron microscopy were used to demonstrate an increase in the number of regenerating nerve fibers and thickness of the myelin sheath in the platelet-rich plasma group compared with the fibrin group.Fluoro-gold retrograde labeling revealed that the number of Fluoro-gold-positive neurons in the dorsal root ganglion and the spinal cord anterior horn was greater in the platelet-rich plasma group than in the fibrin group.Electrophysiological examination confirmed that compound muscle action potential and nerve conduction velocity were superior in the platelet-rich plasma group compared with the fibrin group.These results indicate that autologous platelet-rich plasma gel can effectively serve as a seeding matrix for Schwann cell-like cells to construct tissue-engineered nerves to promote peripheral nerve regeneration.

  4. Differentiation of germ cells and gametes from stem cells.

    Science.gov (United States)

    Marques-Mari, A I; Lacham-Kaplan, O; Medrano, J V; Pellicer, A; Simón, C

    2009-01-01

    Advances in stem cell research have opened new perspectives for regenerative and reproductive medicine. Stem cells (SC) can differentiate under appropriate in vitro and in vivo conditions into different cell types. Several groups have reported their ability to differentiate SCs into germline cells, and some of them have been successful in obtaining male and female gamete-like cells by using different methodologies. This review summarizes the current knowledge in this field and emphasizes significant embryological, genetic and epigenetic aspects of germ cells and gametes in vitro differentiation in humans and other species, highlighting major obstacles that need to be overcome for successful gametogenesis in culture: studies reporting development of germ cell-like cells from murine and human embryonic (ESC) and somatic SCs are critically reviewed. Published studies indicate that germ cells can be consistently differentiated from mouse and human ESC. However, further differentiation of germ cells through gametogenesis still has important genetic and epigenetic obstacles to be efficient. Differentiation of germ cells from SCs has the potential of becoming a future source of gametes for research use, although further investigation is needed to understand and develop the appropriate niches and culture conditions. Additionally, if genetic and epigenetic methodological limitations could be solved, therapeutic opportunities could be also considered.

  5. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray

    National Research Council Canada - National Science Library

    Hans, Christine P; Weisenburger, Dennis D; Greiner, Timothy C; Gascoyne, Randy D; Delabie, Jan; Ott, German; Müller-Hermelink, H Konrad; Campo, Elias; Braziel, Rita M; Jaffe, Elaine S; Pan, Zenggang; Farinha, Pedro; Smith, Lynette M; Falini, Brunangelo; Banham, Alison H; Rosenwald, Andreas; Staudt, Louis M; Connors, Joseph M; Armitage, James O; Chan, Wing C

    2004-01-01

    ...), activated B-cell-like (ABC), and type 3 gene expression profiles using a cDNA microarray. Tissue microarray (TMA) blocks were created from 152 cases of DLBCL, 142 of which had been successfully evaluated by cDNA microarray...

  6. Science and society: a stem cell technology model.

    Science.gov (United States)

    Kiatpongsan, Sorapop

    2008-02-01

    Stem cell technology has been recognized as an emerging technology that could transform current supportive approach toward curing many chronic disorders and degenerative conditions. Regenerative medicine is the promising area of medical practice in the coming decade. However, stem cell technology also brings up controversial issues from the bioethical perspective such as the destruction of human embryos to derive embryonic stem cells or putting the egg donors at risk when retrieving oocytes used in somatic cell nuclear transfer technique. Recently, scientists have discovered a novel method to derive human embryonic stem cell-like cells (iPS; induced pluripotent stem cells) from human skin cells. This innovative approach would not only be a breakthrough discovery to advance the knowledge of stem cell research and the landmark for future stem cell-based therapy but will also provide viable solutions for social concerns on bioethical issues.

  7. Immunoevasive pericytes from human pluripotent stem cells preferentially modulate induction of allogeneic regulatory T cells.

    Science.gov (United States)

    Domev, Hagit; Milkov, Irina; Itskovitz-Eldor, Joseph; Dar, Ayelet

    2014-10-01

    Isolated microvessel-residing pericytes and pericytes from human pluripotent stem cells (hPSCs) exhibit mesenchymal stem cell-like characteristics and therapeutic properties. Despite growing interest in pericyte-based stem cell therapy, their immunogenicity and immunomodulatory effects on nonactivated T cells are still poorly defined, in particular those of vasculogenic hPSC pericytes. We found that tissue-embedded and unstimulated cultured hPSC- or tissue-derived pericytes constitutively expressed major histocompatibility complex (MHC) class I and the inhibitory programmed cell death-ligand 1/2 (PD-L1/2) molecules but not MHC class II or CD80/CD86 costimulatory molecules. Pretreatment with inflammatory mediators failed to induce an antigen-presenting cell-like phenotype in stimulated pericytes. CD146+ pericytes from hPSCs did not induce activation and proliferation of allogeneic resting T cells independent of interferon (IFN)-γ prestimulation, similarly to pericytes from human brain or placenta. Instead, pericytes mediated a significant increase in the frequency of allogeneic CD25highFoxP3+ regulatory T cells when cocultured with nonactivated peripheral blood T cells. Furthermore, when peripheral blood CD25high regulatory T cells (Tregs) were depleted from isolated CD3+ T cells, pericytes preferentially induced de novo formation of CD4+CD25highFoxP3+CD127-, suppressive regulatory T cells. Constitutive expression of PD-L1/2 and secretion of transforming growth factor-β by hPSC pericytes directly regulated generation of pericyte-induced Tregs. Pericytes cotransplanted into immunodeficient mice with allogeneic CD25- T cells maintained a nonimmunogenic phenotype and mediated the development of functional regulatory T cells. Together, these findings reveal a novel feature of pericyte-mediated immunomodulation distinguished from immunosuppression, shared by native tissue pericytes and hPSC pericytes, and support the notion that pericytes can be applied for allogeneic

  8. Physiological and morphological studies of rat pheochromocytoma cells (PC12) chemically fused and grown in culture.

    Science.gov (United States)

    O'Lague, P H; Huttner, S L

    1980-03-01

    Cell fusion induced by polyethylene glycol has been used to produce in culture giant multinucleate PC12 cells (up to 300 micron in diameter compared to 10-20 micron for unfused cells). Fused cells, like their unfused counterparts, were found to express various neuronal properties. They contained catecholamines. In the presence of nerve growth factor they extended long processes and expressed Na+, Ca2+, and K+ conductances generally associated with excitable cells. In the absence of nerve growth factor these cells neither grew long processes nor generated Na+-spikes. Other neuronal properties were also observed.

  9. Identification of a population of epidermal squamous cell carcinoma cells with enhanced potential for tumor formation.

    Directory of Open Access Journals (Sweden)

    Gautam Adhikary

    Full Text Available Epidermal squamous cell carcinoma is among the most common cancers in humans. These tumors are comprised of phenotypically diverse populations of cells that display varying potential for proliferation and differentiation. An important goal is identifying cells from this population that drive tumor formation. To enrich for tumor-forming cells, cancer cells were grown as spheroids in non-attached conditions. We show that spheroid-selected cells form faster growing and larger tumors in immune-compromised mice as compared to non-selected cells. Moreover, spheroid-selected cells gave rise to tumors following injection of as few as one hundred cells, suggesting these cells have enhanced tumor-forming potential. Cells isolated from spheroid-selected tumors retain an enhanced ability to grow as spheroids when grown in non-attached culture conditions. Thus, these tumor-forming cells retain their phenotype following in vivo passage as tumors. Detailed analysis reveals that spheroid-selected cultures are highly enriched for expression of epidermal stem cell and embryonic stem cell markers, including aldehyde dehydrogenase 1, keratin 15, CD200, keratin 19, Oct4, Bmi-1, Ezh2 and trimethylated histone H3. These studies indicate that a subpopulation of cells that possess stem cell-like properties and express stem cell markers can be derived from human epidermal cancer cells and that these cells display enhanced ability to drive tumor formation.

  10. Decreased Regulatory T Cells in Vulnerable Atherosclerotic Lesions: Imbalance between Pro- and Anti-Inflammatory Cells in Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Ilonka Rohm

    2015-01-01

    Full Text Available Atherosclerosis is a chronic inflammatory disease of the arterial wall in which presentation of autoantigens by dendritic cells (DCs leads to the activation of T cells. Anti-inflammatory cells like Tregs counterbalance inflammation in atherogenesis. In our study, human carotid plaque specimens were classified as stable (14 and unstable (15 according to established morphological criteria. Vessel specimens (n=12 without any signs of atherosclerosis were used as controls. Immunohistochemical staining was performed to detect different types of DCs (S100, fascin, CD83, CD209, CD304, and CD123, proinflammatory T cells (CD3, CD4, CD8, and CD161, and anti-inflammatory Tregs (FoxP3. The following results were observed: in unstable lesions, significantly higher numbers of proinflammatory cells like DCs, T helper cells, cytotoxic T cells, and natural killer cells were detected compared to stable plaques. Additionally, there was a significantly higher expression of HLA-DR and more T cell activation (CD25, CD69 in unstable lesions. On the contrary, unstable lesions contained significantly lower numbers of Tregs. Furthermore, a significant inverse correlation between myeloid DCs and Tregs was shown. These data suggest an increased inflammatory state in vulnerable plaques resulting from an imbalance of the frequency of local pro- and anti-inflammatory immune cells.

  11. Simple mechanisms of early life - simulation model on the origin of semi-cells.

    Science.gov (United States)

    Klein, Adrian; Bock, Martin; Alt, Wolfgang

    2017-01-01

    The development of first cellular structures played an important role in the early evolution of life. Early evolution of life probably took place on a molecular level in a reactive environment. The iron-sulfur theory postulates the formation of cell-like structures on catalytic surfaces. Experiments show that H2S together with FeS and other metallic centers drive auto-catalytic surface reactions, in which organic molecules such as pyruvic and amino acids occur. It is questionable which mechanisms are needed to form cell-like structures under these conditions. To address this question, we implemented a model system featuring the fundamentals of molecular dynamics: heat, attraction, repulsion and formation of covalent bonds. Our basic model exhibits a series of essential processes: self-organization of lipid micelles and bilayers, formation of fluid filled cavities, flux of molecules along membranes, transport of energized groups towards sinks and whole colonies of cell-like structures on a larger scale. The results demonstrate that only a few features are sufficient for discovering hitherto non described phenomena of self-assembly and dynamics of cell-like structures as candidates for early evolving proto-cells. Significance statement The quest for a possible origin of life continues to be one of the most fascinating problems in biology. In one theoretical scenario, early life originated from a solution of reactive chemicals in the ancient deep sea, similar to conditions as to be found in thermal vents. Experiments have shown that a variety of organic molecules, the building blocks of life, form under these conditions. Based on such experiments, the iron-sulfur theory postulates the growth of cell-like structures at certain catalytic surfaces. For an explanation and proof of such a process we have developed a computer model simulating molecular assembly of lipid bilayers and formation of semi-cell cavities. The results demonstrate the possibility of cell-like self

  12. Mesenchymal stem cell exosomes.

    Science.gov (United States)

    Lai, Ruenn Chai; Yeo, Ronne Wee Yeh; Lim, Sai Kiang

    2015-04-01

    MSCs are an extensively used cell type in clinical trials today. The initial rationale for their clinical testing was based on their differentiation potential. However, the lack of correlation between functional improvement and cell engraftment or differentiation at the site of injury has led to the proposal that MSCs exert their effects not through their differentiation potential but through their secreted product, more specifically, exosomes, a type of extracellular vesicle. We propose here that MSC exosomes function as an extension of MSC's biological role as tissue stromal support cells. Like their cell source, MSC exosomes help maintain tissue homeostasis for optimal tissue function. They target housekeeping biological processes that operate ubiquitously in all tissues and are critical in maintaining tissue homeostasis, enabling cells to recover critical cellular functions and begin repair and regeneration. This hypothesis provides a rationale for the therapeutic efficacy of MSCs and their secreted exosomes in a wide spectrum of diseases. Here, we give a brief introduction of the biogenesis of MSC exosomes, review their physiological functions and highlight some of their biochemical potential to illustrate how MSC exosomes could restore tissue homeostasis leading to tissue recovery and repair.

  13. Metastatic breast cancer cells in the bone marrow microenvironment: novel insights into oncoprotection

    OpenAIRE

    Patel, Shyam A.; Helmy, Karim Y; Dave, Meneka A.; Murthy, Raghav G.; Pranela Rameshwar

    2011-01-01

    Among all cancers, malignancies of the breast are the second leading cause of cancer death in the United States after carcinoma of the lung. One of the major factors considered when assessing the prognosis of breast cancer patients is whether the tumor has metastasized to distant organs. Although the exact phenotype of the malignant cells responsible for metastasis and dormancy is still unknown, growing evidence has revealed that they may have stem cell-like properties that may account for re...

  14. Human Liver Stem Cells Suppress T-Cell Proliferation, NK Activity, and Dendritic Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Stefania Bruno

    2016-01-01

    Full Text Available Human liver stem cells (HLSCs are a mesenchymal stromal cell-like population resident in the adult liver. Preclinical studies indicate that HLSCs could be a good candidate for cell therapy. The aim of the present study was to evaluate the immunogenicity and the immunomodulatory properties of HLSCs on T-lymphocytes, natural killer cells (NKs, and dendritic cells (DCs in allogeneic experimental settings. We found that HLSCs inhibited T-cell proliferation by a mechanism independent of cell contact and dependent on the release of prostaglandin E2 (PGE2 and on indoleamine 2,3-dioxygenase activity. When compared with mesenchymal stromal cells (MSCs, HLSCs were more efficient in inhibiting T-cell proliferation. At variance with MSCs, HLSCs did not elicit NK degranulation. Moreover, HLSCs inhibited NK degranulation against K562, a NK-sensitive target, by a mechanism dependent on HLA-G release. When tested on DC generation from monocytes, HLSCs were found to impair DC differentiation and DCs ability to induce T-cell proliferation through PGE2. This study shows that HLSCs have immunomodulatory properties similar to MSCs, but, at variance with MSCs, they do not elicit a NK response.

  15. Human Liver Stem Cells Suppress T-Cell Proliferation, NK Activity, and Dendritic Cell Differentiation.

    Science.gov (United States)

    Bruno, Stefania; Grange, Cristina; Tapparo, Marta; Pasquino, Chiara; Romagnoli, Renato; Dametto, Ennia; Amoroso, Antonio; Tetta, Ciro; Camussi, Giovanni

    2016-01-01

    Human liver stem cells (HLSCs) are a mesenchymal stromal cell-like population resident in the adult liver. Preclinical studies indicate that HLSCs could be a good candidate for cell therapy. The aim of the present study was to evaluate the immunogenicity and the immunomodulatory properties of HLSCs on T-lymphocytes, natural killer cells (NKs), and dendritic cells (DCs) in allogeneic experimental settings. We found that HLSCs inhibited T-cell proliferation by a mechanism independent of cell contact and dependent on the release of prostaglandin E2 (PGE2) and on indoleamine 2,3-dioxygenase activity. When compared with mesenchymal stromal cells (MSCs), HLSCs were more efficient in inhibiting T-cell proliferation. At variance with MSCs, HLSCs did not elicit NK degranulation. Moreover, HLSCs inhibited NK degranulation against K562, a NK-sensitive target, by a mechanism dependent on HLA-G release. When tested on DC generation from monocytes, HLSCs were found to impair DC differentiation and DCs ability to induce T-cell proliferation through PGE2. This study shows that HLSCs have immunomodulatory properties similar to MSCs, but, at variance with MSCs, they do not elicit a NK response.

  16. EML4-ALK induces epithelial–mesenchymal transition consistent with cancer stem cell properties in H1299 non-small cell lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Fuchun; Liu, Xiaoke, E-mail: liuxk57@163.com; Qing, Qin, E-mail: qinqingscu@126.com; Sang, Yaxiong, E-mail: yaxiongsang@gmail.com; Feng, Chengjun, E-mail: leymj@163.com; Li, Xiaoyu, E-mail: lixiaoyu2012huaxi@163.com; Jiang, Li, E-mail: summer.jl06@foxmail.com; Su, Pei, E-mail: keyanxiaozhu@163.com; Wang, Yongsheng, E-mail: wangys@scu.edu.cn

    2015-04-10

    The echinoderm microtubule-associated protein-like 4(EML4) – anaplastic lymphoma kinase (ALK) fusion gene has been identified as a driver mutation in non-small-cell lung cancer (NSCLC). However, the role of EML4-ALK in malignant transformation is not entirely clear. Here, for the first time, we showed that H1299 NSCLC cells stably expressing EML4-ALK acquire EMT phenotype, associated with enhanced invasive migration and increased expression of EMT-inducing transcription factors. H1299-EML4-ALK cells also displayed cancer stem cell-like properties with a concomitant up-regulation of CD133 and enhanced ability of mammospheres formation. Moreover, we found that inhibition of ERK1/2 reversed EMT induced by EML4-ALK in H1299 cells. Taken together, these results suggested that EML4-ALK induced ERK activation is mechanistically associated with EMT phenotype. Thus, inhibition of ERK signaling pathway could be a potential strategy in treatment of NSCLC patients with EML4-ALK translocation. - Highlights: • EML4-ALK induced epithelial–mesenchymal transition in H1299 cells. • Expression of EML4-ALK promotes invasion and migration in vitro. • EML4-ALK enhanced sphere formation and stem cell-like properties in H1299 cells. • Blockage of ERK1/2 reverse Epithelial–Mesenchymal transition induced by EML4-ALK.

  17. Differential PAX3 functions in normal skin melanocytes and melanoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Medic, Sandra [School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Perth, WA (Australia); Rizos, Helen [Westmead Institute for Cancer Research and Melanoma Institute of Australia, University of Sydney at Westmead Millennium Institute, Westmead, NSW (Australia); Ziman, Mel, E-mail: m.ziman@ecu.edu.au [School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Perth, WA (Australia); School of Pathology and Laboratory Medicine, University of Western Australia, Perth, WA (Australia)

    2011-08-12

    Highlights: {yields} PAX3 retains embryonic roles in adult melanocytes and melanoma cells. {yields} Promotes 'stem' cell-like phenotype via NES and SOX9 in both cells types. {yields} Regulates melanoma and melanocyte migration through MCAM and CSPG4. {yields} PAX3 regulates melanoma but not melanocyte proliferation via TPD52. {yields} Regulates melanoma cell (but not melanocyte) survival via BCL2L1 and PTEN. -- Abstract: The PAX3 transcription factor is the key regulator of melanocyte development during embryogenesis and is also frequently found in melanoma cells. While PAX3 is known to regulate melanocyte differentiation, survival, proliferation and migration during development, it is not clear if its function is maintained in adult melanocytes and melanoma cells. To clarify this we have assessed which genes are targeted by PAX3 in these cells. We show here that similar to its roles in development, PAX3 regulates complex differentiation networks in both melanoma cells and melanocytes, in order to maintain cells as 'stem' cell-like (via NES and SOX9). We show also that mediators of migration (MCAM and CSPG4) are common to both cell types but more so in melanoma cells. By contrast, PAX3-mediated regulation of melanoma cell proliferation (through TPD52) and survival (via BCL2L1 and PTEN) differs from that in melanocytes. These results suggest that by controlling cell proliferation, survival and migration as well as maintaining a less differentiated 'stem' cell like phenotype, PAX3 may contribute to melanoma development and progression.

  18. Notch signaling in cancer stem cells.

    Science.gov (United States)

    Wang, Jialiang; Sullenger, Bruce A; Rich, Jeremy N

    2012-01-01

    Subpopulations of cancer cells with stem cell-like characteristics, termed cancer stem cells, have been identified in a wide range of human cancers. Cancer stem cells are defined by their ability to self-renew as well as recapitulate the original heterogeneity of cancer cells in culture and in serial xenotransplants. Not only are cancer stem cells highly tumorigenic, but these cells are implicated in tumor resistance to conventional chemotherapy and radiotherapy, thus highlighting their significance as therapeutic targets. Considerable similarities have been found between cancer stem cells and normal stem cells on their dependence on certain signaling pathways. More specifically, the core stem cell signaling pathways, such as the Wnt, Notch and Hedgehog pathways, also critically regulate the self-renewal and survival of cancer stem cells. While the oncogenic functions of Notch pathway have been well documented, its role in cancer stem cells is just emerging. In this chapter, we will discuss recent advances in cancer stem cell research and highlight the therapeutic potential of targeting Notch in cancer stem cells.

  19. Biopolymers and cells on the level of microbial architecture. 2. Parallel life, parallel but not life, nonparallel and not life, but what? What is life?

    Directory of Open Access Journals (Sweden)

    Moshynets E. V.

    2009-10-01

    Full Text Available A question concerning theoretical limits of what we call life has been raised since the discovery of cell-like bodies of 0.1–0.01 µm size. In connection with that, a conception of life and possibility of its applicability for different spatially localized objects in nature are analyzed.

  20. The Impact of the "Yogic Lifestyle" on Cancer Prognosis and Survival: Can we Target Cancer Stem Cells with Yoga?

    Science.gov (United States)

    Beri, Kavita

    2017-01-01

    Cancer has recently been known to originate from stem cell-like cells, called cancer stem cells (CSCs). Their unique properties of self-duplication, multiplication, as well as migration give the CSC resistance over conventional cancer therapies. Newer therapies are in developmental stage to target these stem cell-like populations and become the vanguard of future treatments. Several complementary and alternative treatments have been used in cancer management as an adjunct to conventional therapy to improve the overall quality of life and reduce recurrence. Yoga stands as the third most popular of all complementary and alternative medicine treatments currently used in cancer patients today. Preliminary results show that yoga modulates neural, hormonal, and immune functions at a cellular level. The scope of this commentary is to discuss the current evidence-based medicine on yoga and its effect on CSCs.

  1. Osteopontin-CD44 signaling in the glioma perivascular niche enhances cancer stem cell phenotypes and promotes aggressive tumor growth

    Science.gov (United States)

    Pietras, Alexander; Katz, Amanda M.; Ekström, Elin J.; Wee, Boyoung; Halliday, John J.; Pitter, Kenneth L.; Werbeck, Jillian L.; Amankulor, Nduka M.; Huse, Jason T.; Holland, Eric C.

    2014-01-01

    Summary Stem-like glioma cells reside within a perivascular niche and display hallmark radiation resistance. Understanding of the mechanisms underlying these properties will be vital for the development of effective therapies. Here we show that the stem cell marker CD44 promotes cancer stem cell phenotypes and radiation resistance. In a mouse model of glioma, Cd44−/− and Cd44+/− animals showed improved survival compared to controls. The CD44 ligand Osteopontin shared a perivascular expression pattern with CD44 and promoted glioma stem cell-like phenotypes. These effects were mediated via the γ-secretase regulated intracellular domain of CD44, which promoted aggressive glioma growth in vivo and stem cell-like phenotypes via CBP/p300-dependent enhancement of HIF-2α activity. In human glioblastoma multiforme, expression of CD44 correlated with hypoxia-induced gene signatures and poor survival. Together, these data suggest that in the glioma perivascular niche, Osteopontin promotes stem cell-like properties and radiation resistance in adjacent tumor cells via activation of CD44 signaling. PMID:24607407

  2. A novel spontaneous model of epithelial-mesenchymal transition (EMT) using a primary prostate cancer derived cell line demonstrating distinct stem-like characteristics.

    Science.gov (United States)

    Harner-Foreman, Naomi; Vadakekolathu, Jayakumar; Laversin, Stéphanie A; Mathieu, Morgan G; Reeder, Stephen; Pockley, A Graham; Rees, Robert C; Boocock, David J

    2017-01-17

    Cells acquire the invasive and migratory properties necessary for the invasion-metastasis cascade and the establishment of aggressive, metastatic disease by reactivating a latent embryonic programme: epithelial-to-mesenchymal transition (EMT). Herein, we report the development of a new, spontaneous model of EMT which involves four phenotypically distinct clones derived from a primary tumour-derived human prostate cancer cell line (OPCT-1), and its use to explore relationships between EMT and the generation of cancer stem cells (CSCs) in prostate cancer. Expression of epithelial (E-cadherin) and mesenchymal markers (vimentin, fibronectin) revealed that two of the four clones were incapable of spontaneously activating EMT, whereas the others contained large populations of EMT-derived, vimentin-positive cells having spindle-like morphology. One of the two EMT-positive clones exhibited aggressive and stem cell-like characteristics, whereas the other was non-aggressive and showed no stem cell phenotype. One of the two EMT-negative clones exhibited aggressive stem cell-like properties, whereas the other was the least aggressive of all clones. These findings demonstrate the existence of distinct, aggressive CSC-like populations in prostate cancer, but, importantly, that not all cells having a potential for EMT exhibit stem cell-like properties. This unique model can be used to further interrogate the biology of EMT in prostate cancer.

  3. A functional study of EGFR and Notch signaling in brain cancer stem-like cells from glioblastoma multiforme (Ph.d.)

    DEFF Research Database (Denmark)

    Kristoffersen, Karina

    2013-01-01

    on their resemblance to normal neural stem cells (NSC) and their tumorigenic potential. Like for NSC, the epidermal growth factor receptor (EGFR) and Notch receptor signaling pathways are believed to be important for the maintenance of bCSC. These pathways as such present promising targets in a future anti-bCSC GBM...... treatment. The overall aim of the present PhD project has been to study the functional role of EGFR and Notch activity in bCSCs stem cell-like features and tumorigenic potential with the purpose of deepen our knowledge about the significance of these pathways in the bCSC population in GBM. By establishing...... and culturing human derived GBM xenograft cells under NSC conditions we obtained neurosphere cultures that contained cells with stem cell-like and tumorigenic properties. We moreover characterized the different cultures based on their expression level of the EGFR and Notch receptor as well as the expression...

  4. Expression profiling of constitutive mast cells reveals a unique identity within the immune system

    Science.gov (United States)

    Dwyer, Daniel F.; Barrett, Nora A.; Austen, K. Frank

    2016-01-01

    Mast cells are evolutionarily ancient sentinel cells. Like basophils, mast cells express the high-affinity IgE receptor and are implicated in host defense and diverse immune-mediated diseases. To better characterize the function of these cells, we assessed the transcriptional profiles of mast cells isolated from peripheral connective tissues and basophils isolated from spleen and blood. We found that mast cells were transcriptionally distinct, clustering independently from all other profiled cells, and that mast cells demonstrated considerably greater heterogeneity across tissues than previously appreciated. We observed minimal homology between mast cells and basophils, which share more overlap with other circulating granulocytes than with mast cells. Derivation of mast cell and basophil transcriptional signatures underscores their differential capacity to detect environmental signals and influence the inflammatory milieu. PMID:27135604

  5. Recent Stem Cell Advances: Cord Blood and Induced Pluripotent Stem Cell for Cardiac Regeneration- a Review.

    Science.gov (United States)

    Medhekar, Sheetal Kashinath; Shende, Vikas Suresh; Chincholkar, Anjali Baburao

    2016-05-30

    Stem cells are primitive self renewing undifferentiated cell that can be differentiated into various types of specialized cells like nerve cell, skin cells, muscle cells, intestinal tissue, and blood cells. Stem cells live in bone marrow where they divide to make new blood cells and produces peripheral stem cells in circulation. Under proper environment and in presence of signaling molecules stem cells begin to develop into specialized tissues and organs. These unique characteristics make them very promising entities for regeneration of damaged tissue. Day by day increase in incidence of heart diseases including left ventricular dysfunction, ischemic heart disease (IHD), congestive heart failure (CHF) are the major cause of morbidity and mortality. However infracted tissue cannot regenerate into healthy tissue. Heart transplantation is only the treatment for such patient. Due to limitation of availability of donor for organ transplantation, a focus is made for alternative and effective therapy to treat such condition. In this review we have discussed the new advances in stem cells such as use of cord stem cells and iPSC technology in cardiac repair. Future approach of CB cells was found to be used in tissue repair which is specifically observed for improvement of left ventricular function and myocardial infarction. Here we have also focused on how iPSC technology is used for regeneration of cardiomyocytes and intiating neovascularization in myocardial infarction and also for study of pathophysiology of various degenerative diseases and genetic disease in research field.

  6. Glucose transporter 1-positive endothelial cells in infantile hemangioma exhibit features of facultative stem cells

    Science.gov (United States)

    Huang, Lan; Nakayama, Hironao; Klagsbrun, Michael; Mulliken, John B.; Bischoff, Joyce

    2014-01-01

    Endothelial glucose transporter 1 (GLUT1) is a definitive and diagnostic marker for infantile hemangioma (IH), a vascular tumor of infancy. To date, GLUT1-positive endothelial cells in IH have not been quantified nor directly isolated and studied. We isolated GLUT1-positive and GLUT1-negative endothelial cells from IH specimens and characterized their proliferation, differentiation and response to propranolol, a first-line therapy for IH, and to rapamycin, an mTOR pathway inhibitor used to treat an increasingly wide array of proliferative disorders. Although freshly isolated GLUT1-positive cells, selected using anti-GLUT1 magnetic beads, expressed endothelial markers CD31, VE-Cadherin and VEGFR2, they converted to a mesenchymal phenotype after three weeks in culture. In contrast, GLUT1-negative endothelial cells exhibited a stable endothelial phenotype in vitro. GLUT1-selected cells were clonogenic when plated as single cells and could be induced to re-differentiate into endothelial cells, or into pericyte/smooth muscle cells or into adipocytes, indicating a stem cell-like phenotype. These data demonstrate that, although they appear and function in the tumor as bona fide endothelial cells, the GLUT1-positive endothelial cells display properties of facultative stem cells. Pretreatment with rapamycin for 4 days significantly slowed proliferation of GLUT1-selected cells, whereas propranolol pretreatment had no effect. These results reveal for the first time the facultative nature of GLUT1-positive endothelial cells in infantile hemangioma. PMID:25187207

  7. Melanocytes in the skin--comparative whole transcriptome analysis of main skin cell types.

    Science.gov (United States)

    Reemann, Paula; Reimann, Ene; Ilmjärv, Sten; Porosaar, Orm; Silm, Helgi; Jaks, Viljar; Vasar, Eero; Kingo, Külli; Kõks, Sulev

    2014-01-01

    Melanocytes possess several functions besides a role in pigment synthesis, but detailed characteristics of the cells are still unclear. We used whole transcriptome sequencing (RNA-Seq) to assess differential gene expression of cultivated normal human melanocytes with respect to keratinocytes, fibroblasts and whole skin. The present results reveal cultivated melanocytes as highly proliferative cells with possible stem cell-like properties. The enhanced readiness to regenerate makes melanocytes the most vulnerable cells in the skin and explains their high risk of developing into malignant melanoma.

  8. Differential PAX3 functions in normal skin melanocytes and melanoma cells.

    Science.gov (United States)

    Medic, Sandra; Rizos, Helen; Ziman, Mel

    2011-08-12

    The PAX3 transcription factor is the key regulator of melanocyte development during embryogenesis and is also frequently found in melanoma cells. While PAX3 is known to regulate melanocyte differentiation, survival, proliferation and migration during development, it is not clear if its function is maintained in adult melanocytes and melanoma cells. To clarify this we have assessed which genes are targeted by PAX3 in these cells. We show here that similar to its roles in development, PAX3 regulates complex differentiation networks in both melanoma cells and melanocytes, in order to maintain cells as "stem" cell-like (via NES and SOX9). We show also that mediators of migration (MCAM and CSPG4) are common to both cell types but more so in melanoma cells. By contrast, PAX3-mediated regulation of melanoma cell proliferation (through TPD52) and survival (via BCL2L1 and PTEN) differs from that in melanocytes. These results suggest that by controlling cell proliferation, survival and migration as well as maintaining a less differentiated "stem" cell like phenotype, PAX3 may contribute to melanoma development and progression.

  9. Ultrastructural and histochemical study on the Paneth cells in the rat ascending colon.

    Science.gov (United States)

    Mantani, Youhei; Nishida, Miho; Yuasa, Hideto; Yamamoto, Kyouji; Takahara, Ei-Ichirou; Omotehara, Takuya; Udayanga, Kankanam Gamage Sanath; Kawano, Junichi; Yokoyama, Toshifumi; Hoshi, Nobuhiko; Kitagawa, Hiroshi

    2014-08-01

    Paneth cells (PCs) contribute to the host defense against indigenous bacteria in the small intestine. We found Paneth cell-like cells (PLCs) in the rat ascending colon, but the nature of PLCs is never clarified. Therefore, the present study aimed to clarify the cytological characteristics of PLCs and discuss their cellular differentiation. PLCs were localized in the bases of intestinal crypts, especially follicle-associated intestinal crypts in proximal colonic lymphoid tissue, but were very seldom found in the ordinary intestinal crypts of the ascending colon. PLCs possessed specific granules with highly electron-dense cores and haloes, as well as PCs in the small intestine. The secretory granules of PLCs were positive for PAS reaction, lysozyme and soluble phospholipase A2, but negative for Alcian blue staining, β-defensin-1 and -2, as well as the ones of PCs. Furthermore, intermediate cells possessing both the PLC-specific granules and the mucus granules similar to those of goblet cells (GCs) were occasionally found in the vicinity of PLCs. Intermediate cells ranged from goblet cell-like cells rich in mucus granules to PLC-like cells with few mucus granules. The cellular condensation and fragmentation were exclusively found in PLCs but never seen in intermediate cells or GCs. The PLCs, which were identified as PC, were suggested to be transformed from GCs through intermediate cells and finally to die by apoptosis in intestinal crypts of proximal colonic lymphoid tissue in the rat ascending colon. Copyright © 2014 Wiley Periodicals, Inc.

  10. The role of P2X7 receptor in ATP-mediated human leukemia cell death:calcium influx-independent

    Institute of Scientific and Technical Information of China (English)

    Xiujun Zhang; Lijun Meng; Baoling He; Jing Chen; Peng Liu; Jie Zhao; Yufen Zhang; Ming Li; Dong An

    2009-01-01

    Activation of the P2X7 receptor leads to a rapid,bidirectional flux of cations, causing broad range of hiological responses including cytotoxicity.However,the mechanism of P2X7-mediated cytotoxicity remains largely unexplored.In our previous study,the lack of P2X7-mediated calcium response under normal conditions was found in P2X7+ hematopoietic cell lines.In this study, the P2X7-mediated cytotoxicity in different type of cells(P2X7-,P2X7+ with calcium response,and P2X7+ without calcium response)was investigated.Our results showed that P2X7 agonists, adenosine 5'-triphosphate(ATP)or 2'+3'-O-(4 benzoylbenzoyl)ATP,dose-dependently reduced the cell viability in all P2X7+ cells tested,including J6-1,LCL,and Namalva cells which are negative for P2X7-mediated calcium response, although these effects were lower than those observed in KG1a cells which has normal P2X7 functions.The cytotoxic effect could be blocked by P2X7antagonists, oxidized ATP and 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazine.In addition,externalization of phosphatidylserine could be detected in a time-dependent manner and apoptotic morphological changes Could be observed after the activation of P2X7 receptor in J6-1 cells.Furthermore,P2X7-mediated pore formation could be detected in KG1a and J6-1 cells under low-ionic conditions,but not under low-divalent conditions.These effects could not be observed in P2X7-Ramos cells.These results suggested that P2X7 receptor-mediated cytotoxic effects may occur independent of calcium response.

  11. Retina tissue engineering by conjunctiva mesenchymal stem cells encapsulated in fibrin gel: Hypotheses on novel approach to retinal diseases treatment.

    Science.gov (United States)

    Soleimannejad, Mostafa; Ebrahimi-Barough, Somayeh; Nadri, Samad; Riazi-Esfahani, Mohammad; Soleimani, Masoud; Tavangar, Seyed Mohammad; Ai, Jafar

    2017-04-01

    Retinitis pigmentosa (RP) and age related macular degeneration (AMD) are two retinal diseases that progress by photoreceptor cells death. In retinal transplantation studies, stem and progenitor cells inject into the sub retinal space or vitreous and then these cells can be migrate to the site of retinal degeneration and locate in the host retina and restitute vision. Our hypothesis suggests that using human conjunctiva stem cells (as the source for increasing the number of human stem cells progenitor cells in retina dysfunction diseases) with fibrin gel and also assessing its relating in vitro (cellular and molecular processes) and in vivo (vision tests and pathology) could be a promising strategy for treatment of AMD and RP disorders. In this idea, we describe a novel approach for retina tissue engineering with differentiation of conjunctiva mesenchymal stem cells (CJMSCs) into photoreceptor-like cells in fibrin gel with induction medium contain taurine. For assessment of differentiation, immunocytochemistry and real time PCR are used for the expression of Rhodopsin, RPE65, Nestin as differentiated photoreceptor cell markers in 2D and 3D culture. The results show that fibrin gel will offer a proper 3D scaffold for CJMSCs derived photoreceptor cell-like cells. Application of immune-privileged, readily available sources of adult stem cells like human conjunctiva stem cells with fibrin gel would be a promising strategy to increase the number of photoreceptor progenitor cells and promote involuntary angiogenesis needed in retina layer repair and regeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Inactivation of the Progesterone Receptor in Mx1+ Cells Potentiates Osteogenesis in Calvaria but Not in Long Bone

    OpenAIRE

    2015-01-01

    The effect of progesterone on bone remains elusive. We previously reported that global progesterone receptor (PR) knockout mice displayed high bone mass phenotype, suggesting that PR influences bone growth and modeling. Recently, Mx1+ cells were characterized to be mesenchymal stem cell-like pluripotent Cells. The aim of this study was to evaluate whether the PR in Mx1+ cells regulates osteogenesis. Using the Mx1-Cre;mT/mG reporter mouse model, we found that the calvarial cells exhibited mini...

  13. Mobilization of human CD34+ CD133+ and CD34+ CD133(-) stem cells in vivo by consumption of an extract from Aphanizomenon flos-aquae--related to modulation of CXCR4 expression by an L-selectin ligand?

    Science.gov (United States)

    Jensen, Gitte S; Hart, Aaron N; Zaske, Lue A M; Drapeau, Christian; Gupta, Niraj; Schaeffer, David J; Cruickshank, J Alex

    2007-01-01

    The goal of this study was to evaluate effects on human stem cells in vitro and in vivo of an extract from the edible cyanobacterium Aphanizomenon flos-aquae (AFA) enriched for a novel ligand for human CD62L (L-selectin). Ligands for CD62L provide a mechanism for stem cell mobilization in conjunction with down-regulation of the CXCR4 chemokine receptor for stromal derived factor 1. Affinity immunoprecipitation was used to identify a novel ligand for CD62L from a water extract from AFA. The effects of AFA water extract on CD62L binding and CXCR4 expression was tested in vitro using human bone marrow CD34+ cells and the two progenitor cell lines, KG1a and K562. A double-blind randomized crossover study involving 12 healthy subjects evaluated the effects of consumption on stem cell mobilization in vivo. An AFA extract rich in the CD62L ligand reduced the fucoidan-mediated externalization of the CXCR4 chemokine receptor on bone marrow CD34+ cells by 30% and the CD62L+ CD34+ cell line KG1A by 50% but did not alter the CXCR4 expression levels on the CD34(-) cell line K562. A transient, 18% increase in numbers of circulating CD34+ stem cells maximized 1 hour after consumption (P<.0003). When 3 noncompliant volunteers were removed from analysis, the increase in CD34+ cells was 25% (P<.0001). AFA water extract contains a novel ligand for CD62L. It modulates CXCR4 expression on CD34+ bone marrow cells in vitro and triggers the mobilization of CD34+ CD133+ and CD34+ CD133(-) cells in vivo.

  14. Preclinical targeting of human T-cell malignancies using CD4-specific chimeric antigen receptor (CAR)-engineered T cells.

    Science.gov (United States)

    Pinz, K; Liu, H; Golightly, M; Jares, A; Lan, F; Zieve, G W; Hagag, N; Schuster, M; Firor, A E; Jiang, X; Ma, Y

    2016-03-01

    Peripheral T-cell lymphomas (PTCLs) are aggressive lymphomas with no effective upfront standard treatment and ineffective options in relapsed disease, resulting in poorer clinical outcomes as compared with B-cell lymphomas. The adoptive transfer of T cells engineered to express chimeric antigen receptors (CARs) is a promising new approach for treatment of hematological malignancies. However, preclinical reports of targeting T-cell lymphoma with CARs are almost non-existent. Here we have designed a CAR, CD4CAR, which redirects the antigen specificity of CD8+ cytotoxic T cells to CD4-expressing cells. CD4CAR T cells derived from human peripheral blood mononuclear cells and cord blood effectively redirected T-cell specificity against CD4+ cells in vitro. CD4CAR T cells efficiently eliminated a CD4+ leukemic cell line and primary CD4+ PTCL patient samples in co-culture assays. Notably, CD4CAR T cells maintained a central memory stem cell-like phenotype (CD8+CD45RO+CD62L+) under standard culture conditions. Furthermore, in aggressive orthotropic T-cell lymphoma models, CD4CAR T cells efficiently suppressed the growth of lymphoma cells while also significantly prolonging mouse survival. Combined, these studies demonstrate that CD4CAR-expressing CD8+ T cells are efficacious in ablating malignant CD4+ populations, with potential use as a bridge to transplant or stand-alone therapy for the treatment of PTCLs.

  15. Differentiation of Human Cord Blood and Stromal Derived Stem Cells into Neuron Cells

    Directory of Open Access Journals (Sweden)

    Özlem Pamukçu Baran

    2007-01-01

    Full Text Available The most basic properties of stem cells are the capacities to self-renew indefinitely and to differentiate into multiple cell or tissue types. Umbilical cord blood has been utilized for human hematopoietic stem cell transplantation as an alternative source to bone marrow.The experiments show that Wharton’s jelly cells are easily attainable and can be expanded in vitro, maintained in culture, and induced to differentiate into neural cells. Almost recent studies it has been discovered that the cord blood-derived cells can differantiate not only to blood cells but also to various somatic cells like neuron or muscle cell with the signals taken from the envoirenment.Interestingly, neural cells obtained from umbilical cord blood show a relatively high spontaneous differentiation into oligodendrocytes, Embryonic stem cells proliferate indefinitely and can differentiate spontaneously into all tissue types.It has been shown that embryonic stem cells can be induced to differentiate into neurons and glia by treatment with retinoic acid or basic fibroblast growth factor. It has been studied that the diseases as Motor Neuron Disease, Parkinson, Alzheimer and degeneration of medulla spinalis and also paralysises could be treated with transplantation of cord blood-dericed stem cells.

  16. SAMHD1 controls cell cycle status, apoptosis and HIV-1 infection in monocytic THP-1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Bonifati, Serena [Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH (United States); Daly, Michele B. [Center for Drug Discovery, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA (United States); St Gelais, Corine; Kim, Sun Hee [Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH (United States); Hollenbaugh, Joseph A.; Shepard, Caitlin [Center for Drug Discovery, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA (United States); Kennedy, Edward M. [Department of Molecular Genetics and Microbiology, Duke University, Durham, NC (United States); Kim, Dong-Hyun [Department of Pharmacy, School of Pharmacy, Kyung-Hee University, Seoul (Korea, Republic of); Schinazi, Raymond F. [Center for Drug Discovery, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA (United States); Kim, Baek, E-mail: baek.kim@emory.edu [Center for Drug Discovery, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA (United States); Department of Pharmacy, School of Pharmacy, Kyung-Hee University, Seoul (Korea, Republic of); Wu, Li, E-mail: wu.840@osu.edu [Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH (United States)

    2016-08-15

    SAMHD1 limits HIV-1 infection in non-dividing myeloid cells by decreasing intracellular dNTP pools. HIV-1 restriction by SAMHD1 in these cells likely prevents activation of antiviral immune responses and modulates viral pathogenesis, thus highlighting a critical role of SAMHD1 in HIV-1 physiopathology. Here, we explored the function of SAMHD1 in regulating cell proliferation, cell cycle progression and apoptosis in monocytic THP-1 cells. Using the CRISPR/Cas9 technology, we generated THP-1 cells with stable SAMHD1 knockout. We found that silencing of SAMHD1 in cycling cells stimulates cell proliferation, redistributes cell cycle population in the G{sub 1}/G{sub 0} phase and reduces apoptosis. These alterations correlated with increased dNTP levels and more efficient HIV-1 infection in dividing SAMHD1 knockout cells relative to control. Our results suggest that SAMHD1, through its dNTPase activity, affects cell proliferation, cell cycle distribution and apoptosis, and emphasize a key role of SAMHD1 in the interplay between cell cycle regulation and HIV-1 infection.

  17. Biomarker screening of oral cancer cell lines revealed sub-populations of CD133-, CD44-, CD24- and ALDH1- positive cancer stem cells

    Directory of Open Access Journals (Sweden)

    Kendall K

    2013-05-01

    Full Text Available Head and neck squamous cell carcinoma (HNSCC ranks sixth worldwide for cancer-related mortality. For the past several decades the mainstay of treatment for HNSCC has been surgery and external beam radiation, although more recent trials combining chemotherapy and radiation have demonstrated improvements. However, cancer recurrence and treatment failures continue to occur in a significant percentage of patients. Recent advances in tumor biology have led to the discovery that many cancers, including HNSCC, may contain subpopulations of cells with stem cell-like properties that may explain relapse and recurrence. The objective of this study was to screen existing oral cancer cell lines for biomarkers specific for cells with stem cell-like properties. RNA was isolated for RT-PCR screening using primers for specific mRNA of the biomarkers: CD44, CD24, CD133, NANOG, Nestin, ALDH1, and ABCG2 in CAL27, SCC25 and SCC15 cells. This analysis revealed that some oral cancer cell lines (CAL27 and SCC25 may contain small subpopulations of adhesion- and contact-independent cells (AiDC that also express tumor stem cell markers, including CD44, CD133, and CD24. In addition, CAL27 cells also expressed the intracellular tumor stem cell markers, ALDH1 and ABCG2. Isolation and culture of the adhesion- and contact-independent cells from CAL27 and SCC25 populations revealed differential proliferation rates and more robust inhibition by the MEK inhibitor PD98059, as well as the chemotherapeutic agents Cisplatin and Paclitaxel, within the AiDC CAL27 cells. At least one oral cancer cell line (CAL27 contained subpopulations of cells that express specific biomarkers associated with tumor stem cells which were morphologically and phenotypically distinct from other cells within this cell line.

  18. Lin- CD34hi CD117int/hi FcεRI+ cells in human blood constitute a rare population of mast cell progenitors.

    Science.gov (United States)

    Dahlin, Joakim S; Malinovschi, Andrei; Öhrvik, Helena; Sandelin, Martin; Janson, Christer; Alving, Kjell; Hallgren, Jenny

    2016-01-28

    Mast cells are rare tissue-resident immune cells that are involved in allergic reactions, and their numbers are increased in the lungs of asthmatics. Murine lung mast cells arise from committed bone marrow-derived progenitors that enter the blood circulation, migrate through the pulmonary endothelium, and mature in the tissue. In humans, mast cells can be cultured from multipotent CD34(+) progenitor cells. However, a population of distinct precursor cells that give rise to mast cells has remained undiscovered. To our knowledge, this is the first report of human lineage-negative (Lin(-)) CD34(hi) CD117(int/hi) FcεRI(+) progenitor cells, which represented only 0.0053% of the isolated blood cells in healthy individuals. These cells expressed integrin β7 and developed a mast cell-like phenotype, although with a slow cell division capacity in vitro. Isolated Lin(-) CD34(hi) CD117(int/hi) FcεRI(+) blood cells had an immature mast cell-like appearance and expressed high levels of many mast cell-related genes as compared with human blood basophils in whole-transcriptome microarray analyses. Furthermore, serglycin, tryptase, and carboxypeptidase A messenger RNA transcripts were detected by quantitative reverse transcription-polymerase chain reaction. Altogether, we propose that the Lin(-) CD34(hi) CD117(int/hi) FcεRI(+) blood cells are closely related to human tissue mast cells and likely constitute an immediate precursor population, which can give rise to predominantly mast cells. Furthermore, asthmatics with reduced lung function had a higher frequency of Lin(-) CD34(hi) CD117(int/hi) FcεRI(+) blood mast cell progenitors than asthmatics with normal lung function.

  19. Giant vesicles "colonies": a model for primitive cell communities.

    Science.gov (United States)

    Carrara, Paolo; Stano, Pasquale; Luisi, Pier Luigi

    2012-07-09

    Current research on the origin of life typically focuses on the self-organisation of molecular components in individual cell-like compartments, thereby bringing about the emergence of self-sustaining minimal cells. This is justified by the fact that single cells are the minimal forms of life. No attempts have been made to investigate the cooperative mechanisms that could derive from the assembly of individual compartments. Here we present a novel experimental approach based on vesicles "colonies" as a model of primitive cell communities. Experiments show that several advantages could have favoured primitive cell colonies when compared with isolated primitive cells. In fact there are two novel unexpected features typical of vesicle colonies, namely solute capture and vesicle fusion, which can be seen as the basic physicochemical mechanisms at the origin of life.

  20. The impact of the “Yogic Lifestyle” on cancer prognosis and survival: Can we target cancer stem cells with yoga?

    Directory of Open Access Journals (Sweden)

    Kavita Beri

    2017-01-01

    Full Text Available Cancer has recently been known to originate from stem cell-like cells, called cancer stem cells (CSCs. Their unique properties of self-duplication, multiplication, as well as migration give the CSC resistance over conventional cancer therapies. Newer therapies are in developmental stage to target these stem cell-like populations and become the vanguard of future treatments. Several complementary and alternative treatments have been used in cancer management as an adjunct to conventional therapy to improve the overall quality of life and reduce recurrence. Yoga stands as the third most popular of all complementary and alternative medicine treatments currently used in cancer patients today. Preliminary results show that yoga modulates neural, hormonal, and immune functions at a cellular level. The scope of this commentary is to discuss the current evidence-based medicine on yoga and its effect on CSCs.

  1. Induction of cancer cell stemness by chemotherapy.

    Science.gov (United States)

    Hu, Xingwang; Ghisolfi, Laura; Keates, Andrew C; Zhang, Jian; Xiang, Shuanglin; Lee, Dong-ki; Li, Chiang J

    2012-07-15

    Recent studies indicate that cancer stem cells (CSCs) exist in most hematological and solid tumors. CSCs are characterized by their ability to self-renew and their capacity to differentiate into the multitude of cells that comprise the tumor mass. Moreover, these cells have been shown to be intrinsically resistant to conventional anticancer therapies. Despite their fundamental role in cancer pathogenesis, the cellular origin of CSCs remains highly controversial. The aim of this study was to examine whether heterogeneous cancer cells can acquire stem cell-like properties in response to chemotherapy. We demonstrate that carboplatin can induce the self-renewal (spherogenesis) and pluripotency (Sox2 and Oct3/4 expression) of hepatocellular carcinoma (HCC) cells grown under stem cell culture conditions. Moreover, we show that non-CSC cells, obtained by side population flow cytometric sorting using Hoechst 33342, can acquire stem-like properties after exposure to carboplatin. Finally, we show that knockdown of Sox2 and Oct3/4 gene expression in HCC cells can reduce carboplatin-mediated increases in sphere formation and increase cellular sensitivity to chemotherapy. Taken together, our data indicate that bulk cancer cells may be an important source of CSCs during tumor development, and that targeting Sox2 and/or Oct3/4 may be a promising approach for targeting CSCs in clinical cancer treatment.

  2. TBL1XR1/TP63: a novel recurrent gene fusion in B-cell non-Hodgkin lymphoma | Office of Cancer Genomics

    Science.gov (United States)

    Recently, the landscape of single base mutations in diffuse large B-cell lymphoma (DLBCL) was described. Here we report the discovery of a gene fusion between TBL1XR1 and TP63, the only recurrent somatic novel gene fusion identified in our analysis of transcriptome data from 96 DLBCL cases. Based on this cohort and a further 157 DLBCL cases analyzed by FISH, the incidence in de novo germinal center B cell-like (GCB) DLBCL is 5% (6 of 115).

  3. Epigenetic regulation of pluripotent genes mediates stem cell features in human hepatocellular carcinoma and cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Xiao Qi Wang

    Full Text Available Activation of the stem cell transcriptional circuitry is an important event in cancer development. Although cancer cells demonstrate a stem cell-like gene expression signature, the epigenetic regulation of pluripotency-associated genes in cancers remains poorly understood. In this study, we characterized the epigenetic regulation of the pluripotency-associated genes NANOG, OCT4, c-MYC, KLF4, and SOX2 in a variety of cancer cell lines and in primary tumor samples, and investigated the re-activation of pluripotency regulatory circuits in cancer progression. Differential patterns of DNA methylation, histone modifications, and gene expression of pluripotent genes were demonstrated in different types of cancers, which may reflect their tissue origins. NANOG promoter hypomethylation and gene upregulation were found in metastatic human liver cancer cells and human hepatocellular carcinoma (HCC primary tumor tissues. The upregulation of NANOG, together with p53 depletion, was significantly associated with clinical late stage of HCC. A pro-metastatic role of NANOG in colon cancer cells was also demonstrated, using a NANOG-overexpressing orthotopic tumor implantation mouse model. Demethylation of NANOG promoter was observed in CD133+(high cancer cells. In accordance, overexpression of NANOG resulted in an increase in the population of CD133+(high cells. In addition, we demonstrated a cross-regulation between OCT4 and NANOG in cancer cells via reprogramming of promoter methylation. Taken together, epigenetic reprogramming of NANOG can lead to the acquisition of stem cell-like properties. These results underscore the restoration of pluripotency circuits in cancer cells as a potential mechanism for cancer progression.

  4. Cellular quiescence in mammary stem cells and breast tumor stem cells: got testable hypotheses?

    Science.gov (United States)

    Harmes, David C; DiRenzo, James

    2009-03-01

    Cellular quiescence is a state of reversible cell cycle arrest and has more recently been shown to be a blockade to differentiation and to correlate with resistance to cancer chemotherapeutics and other xenobiotics; features that are common to adult stem cells and possibly tumor stem cells. The biphasic kinetics of mammary regeneration, coupled to its cyclic endocrine control suggest that mammary stem cells most likely divide during a narrow window of the regenerative cycle and return to a state of quiescence. This would enable them to retain their proliferative capacity, resist differentiation signals and preserve their prolonged life span. There is accumulating evidence that mammary stem cells and other adult stem cells utilize quiescence for this purpose, however the degree to which tumor stem cells do so is largely unknown. The retained proliferative capacity of mammary stem cells likely enables them to accumulate and harbor mutations that lead to breast cancer initiation. However it is currently unclear if these causative lesions lead to defective or deranged quiescence in mammary stem cells. Evidence of such effects could potentially lead to the development of diagnostic systems that monitor mammary stem cell quiescence or activation. Such systems may be useful for the evaluation of patients who are at significant risk of breast cancer. Additionally quiescence has been postulated to contribute to therapeutic resistance and tumor recurrence. This review aims to evaluate what is known about the mechanisms governing cellular quiescence and the role of tumor stem cell quiescence in breast cancer recurrence.

  5. Cell of origin of transformed follicular lymphoma.

    Science.gov (United States)

    Kridel, Robert; Mottok, Anja; Farinha, Pedro; Ben-Neriah, Susana; Ennishi, Daisuke; Zheng, Yvonne; Chavez, Elizabeth A; Shulha, Hennady P; Tan, King; Chan, Fong Chun; Boyle, Merrill; Meissner, Barbara; Telenius, Adele; Sehn, Laurie H; Marra, Marco A; Shah, Sohrab P; Steidl, Christian; Connors, Joseph M; Scott, David W; Gascoyne, Randy D

    2015-10-29

    Follicular lymphoma (FL) is an indolent disease but transforms in 2% to 3% of patients per year into aggressive, large cell lymphoma, a critical event in the course of the disease associated with increased lymphoma-related mortality. Early transformation cannot be accurately predicted at the time of FL diagnosis and the biology of transformed FL (TFL) is poorly understood. Here, we assembled a cohort of 126 diagnostic FL specimens including 40 patients experiencing transformation (transformation for at least 5 years. In addition, we assembled an overlapping cohort of 155 TFL patients, including 114 cases for which paired samples were available, and assessed temporal changes of routinely available biomarkers, outcome after transformation, as well as molecular subtypes of TFL. We report that the expression of IRF4 is an independent predictor of early transformation (Hazard ratio, 13.3; P transformation predicts favorable prognosis. Moreover, applying the Lymph2Cx digital gene expression assay for diffuse large B-cell lymphoma (DLBCL) cell-of-origin determination to 110 patients with DLBCL-like TFL, we demonstrate that TFL is of the germinal-center B-cell-like subtype in the majority of cases (80%) but that a significant proportion of cases is of the activated B-cell-like (ABC) subtype (16%). These latter cases are commonly negative for BCL2 translocation and arise preferentially from BCL2 translocation-negative and/or IRF4-expressing FLs. Our study demonstrates the existence of molecular heterogeneity in TFL as well as its relationship to the antecedent FL.

  6. Spontaneous crowding of ribosomes and proteins inside vesicles: a possible mechanism for the origin of cell metabolism.

    Science.gov (United States)

    Pereira de Souza, Tereza; Steiniger, Frank; Stano, Pasquale; Fahr, Alfred; Luisi, Pier Luigi

    2011-10-17

    One of the open questions in the origin of life is the spontaneous formation of primitive cell-like compartments from free molecules in solution and membranes. "Metabolism-first" and "replicator-first" theories claim that early catalytic cycles first evolved in solution, and became encapsulated inside lipid vesicles later on. "Compartment-first" theories suggest that metabolism progressively occurred inside compartments. Both views have some weaknesses: the low probability of co-entrapment of several compounds inside the same compartment, and the need to control nutrient uptake and waste release, respectively. By using lipid vesicles as early-cell models, we show that ribosomes, proteins and lipids spontaneously self-organise into cell-like compartments to achieve high internal concentrations, even when starting from dilute solutions. These findings suggest that the assembly of cell-like compartments, despite its low probability of occurrence, is indeed a physically realistic process. The spontaneous achievement of high local concentration might provide a rational account for the origin of primitive cellular metabolism.

  7. Stem cell pluripotency factor NANOG is expressed in human fetal gonocytes, testicular carcinoma in situ and germ cell tumours

    DEFF Research Database (Denmark)

    Hoei-Hansen, C E; Almstrup, K; Nielsen, J E

    2005-01-01

    AIMS: NANOG is a key regulator of embryonic stem cell (ESC) self-renewal and pluripotency. Our recent genome-wide gene expression profiling study of the precursor of testicular germ cell tumours, carcinoma in situ testis (CIS), showed close similarity between ESC and CIS, including high NANOG...... earlier than for OCT-4. We detected no expression at the protein level in normal testis. CONCLUSIONS: NANOG is a new marker for testicular CIS and germ cell tumours and the high level of NANOG along with OCT-4 are determinants of the stem cell-like pluripotency of the preinvasive CIS cell. Timing of NANOG......; seminoma and embryonal carcinoma were strongly positive, differentiated somatic elements of teratoma were negative. We provide evidence for the fetal origin of testicular cancer as we detected strong expression of NANOG in fetal gonocytes up to gestational week 20, with subsequent down-regulation occurring...

  8. Reprogramming of adult human neural stem cells into induced pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    XIE Li-qian; SUN Hua-ping; WANG Tian; TANG Hai-liang; WANG Pu; ZHU Jian-hong; YAO Zheng-wei

    2013-01-01

    Background Since an effective method for generating induced pluripotent stem cells (iPSCs) from human neural stem cells (hNSCs) can offer us a promising tool for studying brain diseases,here we reported direct reprogramming of adult hNSCs into iPSCs by retroviral transduction of four defined factors.Methods NSCs were successfully isolated and cultured from the hippocampus tissue of epilepsy patients.When combined with four factors (OCT3/4,SOX2,KLF4,and c-MYC),iPSCs colonies were successfully obtained.Results Morphological characterization and specific genetic expression confirmed that these hNSCs-derived iPSCs showed embryonic stem cells-like properties,which include the ability to differentiate into all three germ layers both in vitro and in vivo.Conclusion Our method would be useful for generating human iPSCs from NSCs and provide an important tool for studying neurological diseases.

  9. Phenotypic and functional properties of feline dedifferentiated fat cells and adipose-derived stem cells.

    Science.gov (United States)

    Kono, Shota; Kazama, Tomohiko; Kano, Koichiro; Harada, Kayoko; Uechi, Masami; Matsumoto, Taro

    2014-01-01

    It has been reported that mature adipocyte-derived dedifferentiated fat (DFAT) cells show multilineage differentiation potential similar to that observed in mesenchymal stem cells. Since DFAT cells can be prepared from a small quantity of adipose tissue, they could facilitate cell-based therapies in small companion animals such as cats. The present study examined whether multipotent DFAT cells can be generated from feline adipose tissue, and the properties of DFAT cells were compared with those of adipose-derived stem cells (ASCs). DFAT cells and ASCs were prepared from the floating mature adipocyte fraction and the stromal vascular fraction, respectively, of collagenase-digested feline omental adipose tissue. Both cell types were evaluated for growth kinetics, colony-forming unit fibroblast (CFU-F) frequency, immunophenotypic properties, and multilineage differentiation potential. DFAT cells and ASCs could be generated from approximately 1g of adipose tissue and were grown and subcultured on laminin-coated dishes. The frequency of CFU-Fs in DFAT cells (35.8%) was significantly higher than that in ASCs (20.8%) at passage 1 (P1). DFAT cells and ASCs displayed similar immunophenotypes (CD44(+), CD90(+), CD105(+), CD14(-), CD34(-) and CD45(-)). Alpha-smooth muscle actin-positive cells were readily detected in ASCs (15.2±7.2%) but were rare in DFAT cells (2.2±3.2%) at P1. Both cell types exhibited adipogenic, osteogenic, chondrogenic, and smooth muscle cell differentiation potential in vitro. In conclusion, feline DFAT cells exhibited similar properties to ASCs but displayed higher CFU-F frequency and greater homogeneity. DFAT cells, like ASCs, may be an attractive source for cell-based therapies in cats.

  10. Acceleration of Functional Maturation and Differentiation of Neonatal Porcine Islet Cell Monolayers Shortly In Vitro Cocultured with Microencapsulated Sertoli Cells

    Directory of Open Access Journals (Sweden)

    Francesca Mancuso

    2010-01-01

    Full Text Available The limited availability of cadaveric human donor pancreata as well as the incomplete success of the Edmonton protocol for human islet allografts fasten search for new sources of insulin the producing cells for substitution cell therapy of insulin-dependent diabetes mellitus (T1DM. Starting from isolated neonatal porcine pancreatic islets (NPIs, we have obtained cell monolayers that were exposed to microencapsulated monolayered Sertoli cells (ESCs for different time periods (7, 14, 21 days. To assess the development of the cocultured cell monolayers, we have studied either endocrine cell phenotype differentiation markers or c-kit, a hematopoietic stem cell marker, has recently been involved with growth and differentiation of β-cell subpopulations in human as well as rodent animal models. ESC which were found to either accelerate maturation and differentiation of the NPIs β-cell phenotype or identify an islet cell subpopulation that was marked positively for c-kit. The insulin/c-kit positive cells might represent a new, still unknown functionally immature β-cell like element in the porcine pancreas. Acceleration of maturation and differentiation of our NPI cell monolayers might generate a potential new opportunity to develop insulin-producing cells that may suite experimental trials for cell therapy of T1DM.

  11. Adult stem cells: hopes and hypes of regenerative medicine.

    Science.gov (United States)

    Dulak, Józef; Szade, Krzysztof; Szade, Agata; Nowak, Witold; Józkowicz, Alicja

    2015-01-01

    Stem cells are self-renewing cells that can differentiate into specialized cell type(s). Pluripotent stem cells, i.e. embryonic stem cells (ESC) or induced pluripotent stem cells (iPSC) differentiate into cells of all three embryonic lineages. Multipotent stem cells, like hematopoietic stem cells (HSC), can develop into multiple specialized cells in a specific tissue. Unipotent cells differentiate only into one cell type, like e.g. satellite cells of skeletal muscle. There are many examples of successful clinical applications of stem cells. Over million patients worldwide have benefited from bone marrow transplantations performed for treatment of leukemias, anemias or immunodeficiencies. Skin stem cells are used to heal severe burns, while limbal stem cells can regenerate the damaged cornea. Pluripotent stem cells, especially the patient-specific iPSC, have a tremendous therapeutic potential, but their clinical application will require overcoming numerous drawbacks. Therefore, the use of adult stem cells, which are multipotent or unipotent, can be at present a more achievable strategy. Noteworthy, some studies ascribed particular adult stem cells as pluripotent. However, despite efforts, the postulated pluripotency of such events like "spore-like cells", "very small embryonic-like stem cells" or "multipotent adult progenitor cells" have not been confirmed in stringent independent studies. Also plasticity of the bone marrow-derived cells which were suggested to differentiate e.g. into cardiomyocytes, has not been positively verified, and their therapeutic effect, if observed, results rather from the paracrine activity. Here we discuss the examples of recent studies on adult stem cells in the light of current understanding of stem cell biology.

  12. Artificial gametes from stem cells.

    Science.gov (United States)

    Moreno, Inmaculada; Míguez-Forjan, Jose Manuel; Simón, Carlos

    2015-06-01

    The generation of artificial gametes is a real challenge for the scientific community today. In vitro development of human eggs and sperm will pave the way for the understanding of the complex process of human gametogenesis and will provide with human gametes for the study of infertility and the onset of some inherited disorders. However, the great promise of artificial gametes resides in their future application on reproductive treatments for all these people wishing to have genetically related children and for which gamete donation is now their unique option of parenthood. This is the case of infertile patients devoid of suitable gametes, same sex couples, singles and those fertile couples in a high risk of transmitting serious diseases to their progeny. In the search of the best method to obtain artificial gametes, many researchers have successfully obtained human germ cell-like cells from stem cells at different stages of differentiation. In the near future, this field will evolve to new methods providing not only viable but also functional and safe artificial germ cells. These artificial sperm and eggs should be able to recapitulate all the genetic and epigenetic processes needed for the correct gametogenesis, fertilization and embryogenesis leading to the birth of a healthy and fertile newborn.

  13. Molecular Mechanisms by Which a Fucus vesiculosus Extract Mediates Cell Cycle Inhibition and Cell Death in Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ulf Geisen

    2015-07-01

    Full Text Available Pancreatic cancer is one of the most aggressive cancer entities, with an extremely poor 5-year survival rate. Therefore, novel therapeutic agents with specific modes of action are urgently needed. Marine organisms represent a promising source to identify new pharmacologically active substances. Secondary metabolites derived from marine algae are of particular interest. The present work describes cellular and molecular mechanisms induced by an HPLC-fractionated, hydrophilic extract derived from the Baltic brown seaweed Fucus vesiculosus (Fv1. Treatment with Fv1 resulted in a strong inhibition of viability in various pancreatic cancer cell lines. This extract inhibited the cell cycle of proliferating cells due to the up-regulation of cell cycle inhibitors, shown on the mRNA (microarray data and protein level. As a result, cells were dying in a caspase-independent manner. Experiments with non-dividing cells showed that proliferation is a prerequisite for the effectiveness of Fv1. Importantly, Fv1 showed low cytotoxic activity against non-malignant resting T cells and terminally differentiated cells like erythrocytes. Interestingly, accelerated killing effects were observed in combination with inhibitors of autophagy. Our in vitro data suggest that Fv1 may represent a promising new agent that deserves further development towards clinical application.

  14. Molecular Mechanisms by Which a Fucus vesiculosus Extract Mediates Cell Cycle Inhibition and Cell Death in Pancreatic Cancer Cells.

    Science.gov (United States)

    Geisen, Ulf; Zenthoefer, Marion; Peipp, Matthias; Kerber, Jannik; Plenge, Johannes; Managò, Antonella; Fuhrmann, Markus; Geyer, Roland; Hennig, Steffen; Adam, Dieter; Piker, Levent; Rimbach, Gerald; Kalthoff, Holger

    2015-07-20

    Pancreatic cancer is one of the most aggressive cancer entities, with an extremely poor 5-year survival rate. Therefore, novel therapeutic agents with specific modes of action are urgently needed. Marine organisms represent a promising source to identify new pharmacologically active substances. Secondary metabolites derived from marine algae are of particular interest. The present work describes cellular and molecular mechanisms induced by an HPLC-fractionated, hydrophilic extract derived from the Baltic brown seaweed Fucus vesiculosus (Fv1). Treatment with Fv1 resulted in a strong inhibition of viability in various pancreatic cancer cell lines. This extract inhibited the cell cycle of proliferating cells due to the up-regulation of cell cycle inhibitors, shown on the mRNA (microarray data) and protein level. As a result, cells were dying in a caspase-independent manner. Experiments with non-dividing cells showed that proliferation is a prerequisite for the effectiveness of Fv1. Importantly, Fv1 showed low cytotoxic activity against non-malignant resting T cells and terminally differentiated cells like erythrocytes. Interestingly, accelerated killing effects were observed in combination with inhibitors of autophagy. Our in vitro data suggest that Fv1 may represent a promising new agent that deserves further development towards clinical application.

  15. IL-21 and CD40L synergistically promote plasma cell differentiation through upregulation of Blimp-1 in human B cells.

    Science.gov (United States)

    Ding, B Belinda; Bi, Enguang; Chen, Hongshan; Yu, J Jessica; Ye, B Hilda

    2013-02-15

    After undergoing Ig somatic hypermutation and Ag selection, germinal center (GC) B cells terminally differentiate into either memory or plasma cells (PCs). It is known that the CD40L and IL-21/STAT3 signaling pathways play critical roles in this process, yet it is unclear how the B cell transcription program interprets and integrates these two types of T cell-derived signals. In this study, we characterized the role of STAT3 in the GC-associated PC differentiation using purified human tonsillar GC B cells and a GC B cell-like cell line. When primary GC B cells were cultured under PC differentiation condition, STAT3 inhibition by AG490 prevented the transition from GC centrocytes to preplasmablast, suggesting that STAT3 is required for the initiation of PC development. In a GC B cell-like human B cell line, although IL-21 alone can induce low-level Blimp-1 expression, maximum Blimp-1 upregulation and optimal PC differentiation required both IL-21 and CD40L. CD40L, although having no effect on Blimp-1 as a single agent, greatly augmented the amplitude and duration of IL-21-triggered Jak-STAT3 signaling. In the human PRDM1 locus, CD40L treatment enhanced the ability of STAT3 to upregulate Blimp-1 by removing BCL6, a potent inhibitor of Blimp-1 expression, from a shared BCL6/STAT3 site in intron 3. Thus, IL-21 and CD40L collaborate through at least two distinct mechanisms to synergistically promote Blimp-1 activation and PC differentiation.

  16. Isolation and differentiation of neural stem/progenitor cells from fetal rat dorsal root ganglia

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    To find a promising alternative to neurons or schwann cells (SCs) for peripheral nerve repair applications,this study sought to isolate stem cells from fetal rat dorsal root ganglion (DRG) explants.Molecular expression analysis confirmed neural stem cell characteristics of DRG-derived neurospheres in terms of expressing neural stem cell-specific genes and a set of well-defined genes related to stem cell niches and glial fate decision.Under the influence of neurotrophic factors,bFGF and NGF,the neurospheres gave rise to neurofilament-expressing neurons and S100-expressing Schwann cell-like cells by different pathways.This study suggests that a subpopulation of stem cells that reside in DRGs is the progenitor of neurons and glia,which could directly induce the differentiation toward neurons,or SCs.

  17. USP21 prevents the generation of T-helper-1-like Treg cells.

    Science.gov (United States)

    Li, Yangyang; Lu, Yue; Wang, Shuaiwei; Han, Zhijun; Zhu, Fuxiang; Ni, Yingmeng; Liang, Rui; Zhang, Yan; Leng, Qibin; Wei, Gang; Shi, Guochao; Zhu, Ruihong; Li, Dan; Wang, Haikun; Zheng, Song Guo; Xu, Hongxi; Tsun, Andy; Li, Bin

    2016-11-18

    FOXP3(+) Regulatory T (Treg) cells play a key role in the maintenance of immune homeostasis and tolerance. Disruption of Foxp3 expression results in the generation of instable Treg cells and acquisition of effector T-cell-like function. Here we report that the E3 deubiquitinase USP21 prevents the depletion of FOXP3 at the protein level and restricts the generation of T-helper-1-like Treg cells. Mice depleted of Usp21 specifically in Treg cells display immune disorders characterized by spontaneous T-cell activation and excessive T-helper type 1 (Th1) skewing of Treg cells into Th1-like Treg cells. USP21 stabilizes FOXP3 protein by mediating its deubiquitination and maintains the expression of Treg signature genes. Our results demonstrate how USP21 prevents FOXP3 protein depletion and controls Treg lineage stability in vivo.

  18. Cancer Stem Cells and Side Population Cells in Breast Cancer and Metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Britton, Kelly M. [Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ (United Kingdom); Kirby, John A. [Institute of Cellular Medicine, Newcastle University, 3rd Floor William Leech Building, Framlington Place, Newcastle-upon-Tyne, NE2 4HH (United Kingdom); Lennard, Thomas W.J. [Faculty of Medical Sciences, Newcastle University, 3rd Floor William Leech Building, Framlington Place, Newcastle-upon-Tyne, NE2 4HH (United Kingdom); Meeson, Annette P., E-mail: annette.meeson@ncl.ac.uk [Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ (United Kingdom); North East England Stem Cell Institute, Bioscience Centre, International Centre for Life, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ (United Kingdom)

    2011-04-19

    In breast cancer it is never the primary tumour that is fatal; instead it is the development of metastatic disease which is the major cause of cancer related mortality. There is accumulating evidence that suggests that Cancer Stem Cells (CSC) may play a role in breast cancer development and progression. Breast cancer stem cell populations, including side population cells (SP), have been shown to be primitive stem cell-like populations, being long-lived, self-renewing and highly proliferative. SP cells are identified using dual wavelength flow cytometry combined with Hoechst 33342 dye efflux, this ability is due to expression of one or more members of the ABC transporter family. They have increased resistance to chemotherapeutic agents and apoptotic stimuli and have increased migratory potential above that of the bulk tumour cells making them strong candidates for the metastatic spread of breast cancer. Treatment of nearly all cancers usually involves one first-line agent known to be a substrate of an ABC transporter thereby increasing the risk of developing drug resistant tumours. At present there is no marker available to identify SP cells using immunohistochemistry on breast cancer patient samples. If SP cells do play a role in breast cancer progression/Metastatic Breast Cancer (MBC), combining chemotherapy with ABC inhibitors may be able to destroy both the cells making up the bulk tumour and the cancer stem cell population thus preventing the risk of drug resistant disease, recurrence or metastasis.

  19. Cell shape and Wnt signaling redundantly control the division axis of C. elegans epithelial stem cells.

    Science.gov (United States)

    Wildwater, Marjolein; Sander, Nicholas; de Vreede, Geert; van den Heuvel, Sander

    2011-10-01

    Tissue-specific stem cells combine proliferative and asymmetric divisions to balance self-renewal with differentiation. Tight regulation of the orientation and plane of cell division is crucial in this process. Here, we study the reproducible pattern of anterior-posterior-oriented stem cell-like divisions in the Caenorhabditis elegans seam epithelium. In a genetic screen, we identified an alg-1 Argonaute mutant with additional and abnormally oriented seam cell divisions. ALG-1 is the main subunit of the microRNA-induced silencing complex (miRISC) and was previously shown to regulate the timing of postembryonic development. Time-lapse fluorescence microscopy of developing larvae revealed that reduced alg-1 function successively interferes with Wnt signaling, cell adhesion, cell shape and the orientation and timing of seam cell division. We found that Wnt inactivation, through mig-14 Wntless mutation, disrupts tissue polarity but not anterior-posterior division. However, combined Wnt inhibition and cell shape alteration resulted in disordered orientation of seam cell division, similar to the alg-1 mutant. Our findings reveal additional alg-1-regulated processes, uncover a previously unknown function of Wnt ligands in seam tissue polarity, and show that Wnt signaling and geometric cues redundantly control the seam cell division axis.

  20. Amplification of neural stem cell proliferation by intermediate progenitor cells in Drosophila brain development

    Directory of Open Access Journals (Sweden)

    Bello Bruno C

    2008-02-01

    Full Text Available Abstract Background In the mammalian brain, neural stem cells divide asymmetrically and often amplify the number of progeny they generate via symmetrically dividing intermediate progenitors. Here we investigate whether specific neural stem cell-like neuroblasts in the brain of Drosophila might also amplify neuronal proliferation by generating symmetrically dividing intermediate progenitors. Results Cell lineage-tracing and genetic marker analysis show that remarkably large neuroblast lineages exist in the dorsomedial larval brain of Drosophila. These lineages are generated by brain neuroblasts that divide asymmetrically to self renew but, unlike other brain neuroblasts, do not segregate the differentiating cell fate determinant Prospero to their smaller daughter cells. These daughter cells continue to express neuroblast-specific molecular markers and divide repeatedly to produce neural progeny, demonstrating that they are proliferating intermediate progenitors. The proliferative divisions of these intermediate progenitors have novel cellular and molecular features; they are morphologically symmetrical, but molecularly asymmetrical in that key differentiating cell fate determinants are segregated into only one of the two daughter cells. Conclusion Our findings provide cellular and molecular evidence for a new mode of neurogenesis in the larval brain of Drosophila that involves the amplification of neuroblast proliferation through intermediate progenitors. This type of neurogenesis bears remarkable similarities to neurogenesis in the mammalian brain, where neural stem cells as primary progenitors amplify the number of progeny they generate through generation of secondary progenitors. This suggests that key aspects of neural stem cell biology might be conserved in brain development of insects and mammals.

  1. Stem-Cell Work Yielding New Approach to Disease: Induced Pluripotent Stem-Cell Research Soars, Spurring Dreams of Clinical Applications.

    Science.gov (United States)

    Mertz, Leslie

    2016-01-01

    Interest in stem cells escalated in 2006 when scientists figured out how to reprogram some specialized adult cells to assume a stem-cell-like state. Called induced pluripotent stem cells (iPSCs), these cells opened the door to a range of potential applications, including generating cells and tissues to replace those that are faulty or missing in patients with cancer, diabetes, cardiovascular disease, or other maladies (Figure 1). Visions of new treatments and even cures for debilitating and fatal illnesses proliferated, and some of that work is well under way (see "A Wealth of Research"). Now, ten years later, those visions are looking more like real possibilities as research moves from the lab to the clinic and expands toward a greater understanding of the basic science behind stem cells and its applications.

  2. Calcium signaling in pluripotent stem cells.

    Science.gov (United States)

    Apáti, Ágota; Pászty, Katalin; Erdei, Zsuzsa; Szebényi, Kornélia; Homolya, László; Sarkadi, Balázs

    2012-04-28

    Pluripotent stem cells represent a new source of biological material allowing the exploration of signaling phenomena during normal cell development and differentiation. Still, the calcium signaling pathways and intracellular calcium responses to various ligands or stress conditions have not been sufficiently explored as yet in embryonic or induced pluripotent stem cells and in their differentiated offspring. This is partly due to the special culturing conditions of these cell types, the rapid morphological and functional changes in heterogeneous cell populations during early differentiation, and methodological problems in cellular calcium measurements. In this paper, we review the currently available data in the literature on calcium signaling in pluripotent stem cells and discuss the potential shortcomings of these studies. Various assay methods are surveyed for obtaining reliable data both in undifferentiated embryonic stem cells and in specific, stem cell-derived human tissues. In this paper, we present the modulation of calcium signaling in human embryonic stem cells (hESC) and in their derivates; mesenchymal stem cell like (MSCl) cells and cardiac tissues using the fluorescent calcium indicator Fluo-4 and confocal microscopy. LPA, trypsin and angiotensin II were effective in inducing calcium signals both in HUES9 and MSCl cells. Histamine and thrombin induced calcium signal exclusively in the MSCl cells, while ATP was effective only in HUES9 cells. There was no calcium signal evoked by GABA, even at relatively high concentrations. In stem cell-derived cardiomyocytes a rapid increase in the beating rate and an increase of the calcium signal peaks could be observed after the addition of adrenaline, while verapamil led to a strong decrease in cellular calcium and stopped spontaneous contractions in a relaxed state.

  3. Optimizing Staining Protocols for Laser Microdissection of Specific Cell Types from the Testis Including Carcinoma In Situ

    DEFF Research Database (Denmark)

    Sonne, Si Brask; Dalgaard, Marlene D; Nielsen, John Erik;

    2009-01-01

    protocols, and present two staining protocols for frozen sections, one for fast and specific staining of fetal germ cells, testicular carcinoma in situ cells, and other cells with embryonic stem cell-like properties that express the alkaline phosphatase, and one for specific staining of lipid droplet......Microarray and RT-PCR based methods are important tools for analysis of gene expression; however, in tissues containing many different cells types, such as the testis, characterization of gene expression in specific cell types can be severely hampered by noise from other cells. The laser...... microdissection technology allows for enrichment of specific cell types. However, when the cells are not morphologically distinguishable, it is necessary to use a specific staining method for the target cells. In this study we have tested different fixatives, storage conditions for frozen sections and staining...

  4. Yap tunes airway epithelial size and architecture by regulating the identity, maintenance, and self-renewal of stem cells.

    Science.gov (United States)

    Zhao, Rui; Fallon, Timothy R; Saladi, Srinivas Vinod; Pardo-Saganta, Ana; Villoria, Jorge; Mou, Hongmei; Vinarsky, Vladimir; Gonzalez-Celeiro, Meryem; Nunna, Naveen; Hariri, Lida P; Camargo, Fernando; Ellisen, Leif W; Rajagopal, Jayaraj

    2014-07-28

    Our understanding of how stem cells are regulated to maintain appropriate tissue size and architecture is incomplete. We show that Yap (Yes-associated protein 1) is required for the actual maintenance of an adult mammalian stem cell. Without Yap, adult airway basal stem cells are lost through their unrestrained differentiation, resulting in the simplification of a pseudostratified epithelium into a columnar one. Conversely, Yap overexpression increases stem cell self-renewal and blocks terminal differentiation, resulting in epithelial hyperplasia and stratification. Yap overexpression in differentiated secretory cells causes them to partially reprogram and adopt a stem cell-like identity. In contrast, Yap knockdown prevents the dedifferentiation of secretory cells into stem cells. We then show that Yap functionally interacts with p63, the cardinal transcription factor associated with myriad epithelial basal stem cells. In aggregate, we show that Yap regulates all of the cardinal behaviors of airway epithelial stem cells and determines epithelial architecture.

  5. Characterization of a naturally occurring breast cancer subset enriched in EMT and stem cell characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Hennessy, Bryan T.; Gonzalez-Angulo, Ana-Maria; Stemke-Hale, Katherine; Gilcrease, Michael Z.; Krishnamurthy, Savitri; Lee, Ju-Seog; Fridlyand, Jane; Sahin, Aysegul; Agarwal, Roshan; Joy, Corwin; Liu, Wenbin; Stivers, David; Baggerly, Keith; Carey, Mark; Lluch, Ana; Monteagudo, Carlos; He, Xiaping; Weigman, Victor; Fan, Cheng; Palazzo, Juan; Hortobagyi, Gabriel N.; Nolden, Laura K.; Wang, Nicholas J.; Valero, Vicente; Gray, Joe W.; Perou, Charles M.; Mills, Gordon B.

    2009-05-19

    Metaplastic breast cancers (MBC) are aggressive, chemoresistant tumors characterized by lineage plasticity. To advance understanding of their pathogenesis and relatedness to other breast cancer subtypes, 28 MBCs were compared with common breast cancers using comparative genomic hybridization, transcriptional profiling, and reverse-phase protein arrays and by sequencing for common breast cancer mutations. MBCs showed unique DNA copy number aberrations compared with common breast cancers. PIK3CA mutations were detected in 9 of 19 MBCs (47.4%) versus 80 of 232 hormone receptor-positive cancers (34.5%; P = 0.32), 17 of 75 HER-2-positive samples (22.7%; P = 0.04), 20 of 240 basal-like cancers (8.3%; P < 0.0001), and 0 of 14 claudin-low tumors (P = 0.004). Of 7 phosphatidylinositol 3-kinase/AKT pathway phosphorylation sites, 6 were more highly phosphorylated in MBCs than in other breast tumor subtypes. The majority of MBCs displayed mRNA profiles different from those of the most common, including basal-like cancers. By transcriptional profiling, MBCs and the recently identified claudin-low breast cancer subset constitute related receptor-negative subgroups characterized by low expression of GATA3-regulated genes and of genes responsible for cell-cell adhesion with enrichment for markers linked to stem cell function and epithelial-to-mesenchymal transition (EMT). In contrast to other breast cancers, claudin-low tumors and most MBCs showed a significant similarity to a 'tumorigenic' signature defined using CD44{sup +}/CD24{sup -} breast tumor-initiating stem cell-like cells. MBCs and claudin-low tumors are thus enriched in EMT and stem cell-like features, and may arise from an earlier, more chemoresistant breast epithelial precursor than basal-like or luminal cancers. PIK3CA mutations, EMT, and stem cell-like characteristics likely contribute to the poor outcomes of MBC and suggest novel therapeutic targets.

  6. Mast Cells Produce a Unique Chondroitin Sulfate Epitope.

    Science.gov (United States)

    Farrugia, Brooke L; Whitelock, John M; O'Grady, Robert; Caterson, Bruce; Lord, Megan S

    2016-02-01

    The granules of mast cells contain a myriad of mediators that are stored and protected by the sulfated glycosaminoglycan (GAG) chains that decorate proteoglycans. Whereas heparin is the GAG predominantly associated with mast cells, mast cell proteoglycans are also decorated with heparan sulfate and chondroitin sulfate (CS). This study investigated a unique CS structure produced by mast cells that was detected with the antibody clone 2B6 in the absence of chondroitinase ABC digestion. Mast cells in rodent tissue sections were characterized using toluidine blue, Leder stain and the presence of mast cell tryptase. The novel CS epitope was identified in rodent tissue sections and localized to cells that were morphologically similar to cells chemically identified as mast cells. The rodent mast cell-like line RBL-2H3 was also shown to express the novel CS epitope. This epitope co-localized with multiple CS proteoglycans in both rodent tissue and RBL-2H3 cultured cells. These findings suggest that the novel CS epitope that decorates mast cell proteoglycans may play a role in the way these chains are structured in mast cells.

  7. The Application of Flow Cytometry to Examine Damage Clearance in Stem Cells From Whole-Body Irradiated Mice

    Energy Technology Data Exchange (ETDEWEB)

    Marples, Brian; Kovalchuk, Olga; McGonagle, Michele; Martinez, Alvaro; Wilson, George, D.

    2010-02-26

    The bone marrow contains many types of cells. Approximately 1-2% of these cells are critical for life, these are the so-called ‘bone marrow stem cells’ which divide indefinitely to produce platelets, red blood cells and white blood cells. Death of the bone marrow stem cells results in a diminished ability of the organism to make new blood cell components and can be fatal without medical intervention, such as a bone marrow transplant. Bone marrow stem cells are considered to be particularly sensitive to radiation injury. Therefore, it is important to understand how these cells response to total body radiation exposure and how these cells can be protected from radiation damage. The aim of this project was to determine if these critical cells in the bone marrow are susceptible to short-term and long-term injury after a whole-body exposure to a sub-lethal low dose of ionizing radiation. The overall aims were to determine if the extent of injury produced by the sub-lethal radiation exposure would be cleared from the stem cells and therefore present no long- term genetic risk to the organism, or if the radiation injury persisted and had an adverse long-term consequences for the cell genome. This research question is of interest in order to define the risks to exposed persons after occupational, accidental or terrorism-related sub-lethal low-dose radiation exposures. The novel aspect of this project was the methodology used to obtain the bone marrow stem cell-like cells and examining the outcomes of sub-lethal low-dose radiation in a mammalian animal model. Four radiation treatments were used: single treatments of 0.01Gy, 0.1 Gy, 1 Gy and ten treatments of 0.1 Gy given over 10 days. Bone marrow stem cell-like cells were then harvested 6 hours, 24 hours and 24 days later. The levels of radiation-induced cell death, damage to DNA and permanent changes to cellular DNA were measured in the isolated stem cell-like cells after each radiation treatment and time point and

  8. Potential and Limitation of HLA-Based Banking of Human Pluripotent Stem Cells for Cell Therapy

    Directory of Open Access Journals (Sweden)

    Casimir de Rham

    2014-01-01

    Full Text Available Great hopes have been placed on human pluripotent stem (hPS cells for therapy. Tissues or organs derived from hPS cells could be the best solution to cure many different human diseases, especially those who do not respond to standard medication or drugs, such as neurodegenerative diseases, heart failure, or diabetes. The origin of hPS is critical and the idea of creating a bank of well-characterized hPS cells has emerged, like the one that already exists for cord blood. However, the main obstacle in transplantation is the rejection of tissues or organ by the receiver, due to the three main immunological barriers: the human leukocyte antigen (HLA, the ABO blood group, and minor antigens. The problem could be circumvented by using autologous stem cells, like induced pluripotent stem (iPS cells, derived directly from the patient. But iPS cells have limitations, especially regarding the disease of the recipient and possible difficulties to handle or prepare autologous iPS cells. Finally, reaching standards of good clinical or manufacturing practices could be challenging. That is why well-characterized and universal hPS cells could be a better solution. In this review, we will discuss the interest and the feasibility to establish hPS cells bank, as well as some economics and ethical issues.

  9. An opposite effect of the CDK inhibitor, p18(INK4c on embryonic stem cells compared with tumor and adult stem cells.

    Directory of Open Access Journals (Sweden)

    Yanxin Li

    Full Text Available Self-renewal is a feature common to both adult and embryonic stem (ES cells, as well as tumor stem cells (TSCs. The cyclin-dependent kinase inhibitor, p18(INK4c, is a known tumor suppressor that can inhibit self-renewal of tumor cells or adult stem cells. Here, we demonstrate an opposite effect of p18 on ES cells in comparison with teratoma cells. Our results unexpectedly showed that overexpression of p18 accelerated the growth of mouse ES cells and embryonic bodies (EB; on the contrary, inhibited the growth of late stage teratoma. Up-regulation of ES cell markers (i.e., Oct4, Nanog, Sox2, and Rex1 were detected in both ES and EB cells, while concomitant down-regulation of various differentiation markers was observed in EB cells. These results demonstrate that p18 has an opposite effect on ES cells as compared with tumor cells and adult stem cells. Mechanistically, expression of CDK4 was significantly increased with overexpression of p18 in ES cells, likely leading to a release of CDK2 from the inhibition by p21 and p27. As a result, self-renewal of ES cells was enhanced. Our current study suggests that targeting p18 in different cell types may yield different outcomes, thereby having implications for therapeutic manipulations of cell cycle machinery in stem cells.

  10. Generating induced pluripotent stem cells from common marmoset (Callithrix jacchus) fetal liver cells using defined factors, including Lin28.

    Science.gov (United States)

    Tomioka, Ikuo; Maeda, Takuji; Shimada, Hiroko; Kawai, Kenji; Okada, Yohei; Igarashi, Hiroshi; Oiwa, Ryo; Iwasaki, Tsuyoshi; Aoki, Mikio; Kimura, Toru; Shiozawa, Seiji; Shinohara, Haruka; Suemizu, Hiroshi; Sasaki, Erika; Okano, Hideyuki

    2010-09-01

    Although embryonic stem (ES) cell-like induced pluripotent stem (iPS) cells have potential therapeutic applications in humans, they are also useful for creating genetically modified human disease models in nonhuman primates. In this study, we generated common marmoset iPS cells from fetal liver cells via the retrovirus-mediated introduction of six human transcription factors: Oct-3/4, Sox2, Klf4, c-Myc, Nanog, and Lin28. Four to five weeks after introduction, several colonies resembling marmoset ES cells were observed and picked for further expansion in ES cell medium. Eight cell lines were established, and validation analyses of the marmoset iPS cells followed. We detected the expression of ES cell-specific surface markers. Reverse transcription-PCR showed that these iPS cells expressed endogenous Oct-3/4, Sox2, Klf4, c-Myc, Nanog and Lin28 genes, whereas all of the transgenes were silenced. Karyotype analysis showed that two of three iPS cell lines retained a normal karyotype after a 2-month culture. Both embryoid body and teratoma formation showed that marmoset iPS cells had the developmental potential to give rise to differentiated derivatives of all three primary germ layers. In summary, we generated marmoset iPS cells via the transduction of six transcription factors; this provides a powerful preclinical model for studies in regenerative medicine.

  11. Ectopic PDX-1 Expression Directly Reprograms Human Keratinocytes along Pancreatic Insulin-Producing Cells Fate

    Science.gov (United States)

    Chernichovski, Ellad; Nakar, Odelia; Winkler, Eyal; Mazkereth, Ram; Orenstein, Arie; Bar-Meir, Eran; Ravassard, Philippe; Meivar-Levy, Irit; Ferber, Sarah

    2011-01-01

    Background Cellular differentiation and lineage commitment have previously been considered irreversible processes. However, recent studies have indicated that differentiated adult cells can be reprogrammed to pluripotency and, in some cases, directly into alternate committed lineages. However, although pluripotent cells can be induced in numerous somatic cell sources, it was thought that inducing alternate committed lineages is primarily only possible in cells of developmentally related tissues. Here, we challenge this view and analyze whether direct adult cell reprogramming to alternate committed lineages can cross the boundaries of distinct developmental germ layers. Methodology/Principal Findings We ectopically expressed non-integrating pancreatic differentiation factors in ectoderm-derived human keratinocytes to determine whether these factors could directly induce endoderm-derived pancreatic lineage and β-cell-like function. We found that PDX-1 and to a lesser extent other pancreatic transcription factors, could rapidly and specifically activate pancreatic lineage and β-cell-like functional characteristics in ectoderm-derived human keratinocytes. Human keratinocytes transdifferentiated along the β cell lineage produced processed and secreted insulin in response to elevated glucose concentrations. Using irreversible lineage tracing for KRT-5 promoter activity, we present supporting evidence that insulin-positive cells induced by ectopic PDX-1 expression are generated in ectoderm derived keratinocytes. Conclusions/Significance These findings constitute the first demonstration of human ectoderm cells to endoderm derived pancreatic cells transdifferentiation. The study represents a proof of concept which suggests that transcription factors induced reprogramming is wider and more general developmental process than initially considered. These results expanded the arsenal of adult cells that can be used as a cell source for generating functional endocrine

  12. Ionizing radiation induces stemness in cancer cells.

    Directory of Open Access Journals (Sweden)

    Laura Ghisolfi

    Full Text Available The cancer stem cell (CSC model posits the presence of a small number of CSCs in the heterogeneous cancer cell population that are ultimately responsible for tumor initiation, as well as cancer recurrence and metastasis. CSCs have been isolated from a variety of human cancers and are able to generate a hierarchical and heterogeneous cancer cell population. CSCs are also resistant to conventional chemo- and radio-therapies. Here we report that ionizing radiation can induce stem cell-like properties in heterogeneous cancer cells. Exposure of non-stem cancer cells to ionizing radiation enhanced spherogenesis, and this was accompanied by upregulation of the pluripotency genes Sox2 and Oct3/4. Knockdown of Sox2 or Oct3/4 inhibited radiation-induced spherogenesis and increased cellular sensitivity to radiation. These data demonstrate that ionizing radiation can activate stemness pathways in heterogeneous cancer cells, resulting in the enrichment of a CSC subpopulation with higher resistance to radiotherapy.

  13. Progresses and challenges in optimization of human pluripotent stem cell culture.

    Science.gov (United States)

    Lin, Ge; Xu, Ren-He

    2010-09-01

    The pressing demand to elucidate the biology of human embryonic stem (ES) cells and to realize their therapeutic potential has greatly promoted the progresses in the optimization of the culture systems used for this highly promising cell type. These progresses include the characterization of exogenous regulators of pluripotency and differentiation, the development of animal-free, defined, and scalable culture systems, and some pioneering efforts to establish good manufactory practice facilities to derive and expand clinical-grade human ES cells and their derivatives. All of these advancements appear to be also applicable to the derivation and culture of human induced pluripotent stem cells, an ES cell-like cell type derived from somatic cells via reprogramming. This review attempts to summarize these progresses and discuss some of the remaining challenges.

  14. Bio-batteries and bio-fuel cells: leveraging on electronic charge transfer proteins.

    Science.gov (United States)

    Kannan, A M; Renugopalakrishnan, V; Filipek, S; Li, P; Audette, G F; Munukutla, L

    2009-03-01

    Bio-fuel cells are alternative energy devises based on bio-electrocatalysis of natural substrates by enzymes or microorganisms. Here we review bio-fuel cells and bio-batteries based on the recent literature. In general, the bio-fuel cells are classified based on the type of electron transfer; mediated electron transfer and direct electron transfer or electronic charge transfer (ECT). The ECT of the bio-fuel cells is critically reviewed and a variety of possible applications are considered. The technical challenges of the bio-fuel cells, like bioelectrocatalysis, immobilization of bioelectrocatalysts, protein denaturation etc. are highlighted and future research directions are discussed leveraging on the use of electron charge transfer proteins. In addition, the packaging aspects of the bio-fuel cells are also analyzed and the found that relatively little work has been done in the engineering development of bio-fuel cells.

  15. Expansive effects of aorta-gonad-mesonephros-derived stromal cells on hematopoietic stem cells from embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    FU Jin-rong; LIU Wen-li; ZHOU Yu-feng; ZHOU Jian-feng; SUN Han-ying; LUO Li; ZHANG Heng; XU Hui-zhen

    2005-01-01

    Background Hematopoietic stem cells (HSCs) give rise to all blood and immune cells and are used in clinical transplantation protocols to treat a wide variety of refractory diseases, but the amplification of HSCs has been difficult to achieve in vitro. In the present study, the expansive effects of aorta-gonad-mesonephros (AGM) region derived stromal cells on HSCs were explored, attempting to improve the efficiency of HSC transplantation in clinical practice.Methods The murine stromal cells were isolated from the AGM region of 12 days postcoitum (dpc) murine embryos and bone marrow(BM)of 6 weeks old mice, respectively. After identification with flow cytometry and immunocytochemistry, the stromal cells were co-cultured with ESCs-derived, cytokines-induced HSCs. The maintenance and expansion of ESCs-derived HSCs were evaluated by detecting the population of CD34+ and CD34+Sca-1+cells with flow cytometry and the blast colony-forming cells (BL-CFCs), high proliferative potential colony-forming cells (HPP-CFCs) by using semi-solid medium colonial culture. Finally, the homing and hematopoietic reconstruction abilities of HSCs were evaluated using a murine model of HSC transplantation in vivo.Results AGM and BM-derived stromal cells were morphologically and phenotypically similar, and had the features of stromal cells. When co-cultured with AGM or BM stromal cells, more primitive progenitor cells (HPP-CFCs ) could be detected in ESCs derived hematopoietic precursor cells, but BL-CFC's expansion could be detected only when co-cultured with AGM-derived stromal cells. The population of CD34+ hematopoietic stem/progenitor cells were expanded 3 times,but no significant expansion in the population of CD34+Sca-1+ cells was noted when co-cultured with BM stromal cells. While both CD34+ hematopoietic stem/progenitor cells and CD34+Sca-1+ cells were expanded 4 to 5 times respectively when co-cultured with AGM stromal cells. AGM region-derived stromal cells, like BM-derived stromal

  16. Optimization of Human NK Cell Manufacturing: Fully Automated Separation, Improved Ex Vivo Expansion Using IL-21 with Autologous Feeder Cells, and Generation of Anti-CD123-CAR-Expressing Effector Cells.

    Science.gov (United States)

    Klöß, Stephan; Oberschmidt, Olaf; Morgan, Michael; Dahlke, Julia; Arseniev, Lubomir; Huppert, Volker; Granzin, Markus; Gardlowski, Tanja; Matthies, Nadine; Soltenborn, Stephanie; Schambach, Axel; Koehl, Ulrike

    2017-10-01

    The administration of ex vivo expanded natural killer (NK) cells as potential antitumor effector cells appears to be suitable for effector cell-based immunotherapies in high-risk cancer patients. However, good manufacturing practice (GMP)-compliant manufacturing of clinical-grade NK cells at sufficiently high numbers represents a great challenge. Therefore, previous expansion protocols for those effector cells were improved and optimized by using newly developed culture medium, interleukin (IL)-21, and autologous feeder cells (FCs). Separation of primary human NK cells (CD56(+)CD3(-)) was carried out with the CliniMACS Prodigy(®) in a single process, starting with approximately 1.2 × 10(9) leukocytes collected by small-scale lymphapheresis or from buffy coats. Enriched NK cells were adjusted to starting cell concentrations within approximately 1 × 10(6) effector cells/mL and cultured in comparative expansion experiments for 14 days with IL-2 (1,000 IU/mL) in different GMP-compliant media (X-VIVO(™)10, CellGro(®), TexMACS(™), and NK MACS(®)). After medium optimization, beneficial effects for functionality and phenotype were investigated at the beginning of cell expansion with irradiated (25 Gy) autologous FCs at a ratio of 20:1 (feeder: NK) in the presence or absence of IL-21 (100 ng/mL). Additionally, expanded NK cells were gene modified to express chimeric antigen receptors (CARs) against CD123, a common marker for acute myeloid leukemia (AML). Cytotoxicity, degranulation, and cytokine release of transduced NK cells were determined against KG1a cells in flow cytometric analysis and fluorescent imaging. The Prodigy manufacturing process revealed high target cell viabilities (median 95.4%), adequate NK cell recovery (median 60.4%), and purity of 95.4% in regard to CD56(+)CD3(-) target cells. The process in its early phase of development led to a median T-cell depletion of log 3.5 after CD3 depletion and log 3.6 after the whole process, including

  17. Analysis of glycoprotein E-selectin ligANDs on human and mouse marrow cells enriched for hematopoietic stem/progenitor cells

    KAUST Repository

    Merzaban, Jasmeen S.

    2011-06-09

    Although well recognized that expression of E-selectin on marrow microvessels mediates osteotropism of hematopoietic stem/progenitor cells (HSPCs), our knowledge regarding the cognate E-selectin ligand(s) on HSPCs is incomplete. Flow cytometry using E-selectin-Ig chimera (E-Ig) shows that human marrow cells enriched for HSPCs (CD34+ cells) display greater E-selectin binding than those obtained from mouse (lin-/Sca-1+/c-kit+ [LSK] cells). To define the relevant glycoprotein E-selectin ligands, lysates from human CD34+ and KG1a cells and from mouse LSK cells were immunoprecipitated using E-Ig and resolved byWestern blot using E-Ig. In both human and mouse cells, E-selectin ligand reactivity was observed at ∼ 120- to 130-kDa region, which contained two E-selectin ligands, the P-selectin glycoprotein ligand- 1 glycoform "CLA," and CD43. Human, but not mouse, cells displayed a prominent ∼ 100-kDa band, exclusively comprising the CD44 glycoform "HCELL."E-Ig reactivity was most prominent on CLA in mouse cells and on HCELL in human cells. To further assess HCELL\\'s contribution to E-selectin adherence, complementary studies were performed to silence (via CD44 siRNA) or enforce its expression (via exoglycosylation). Under physiologic shear conditions, CD44/HCELL-silenced human cells showed striking decreases (> 50%) in E-selectin binding. Conversely, enforced HCELL expression of LSK cells profoundly increased E-selectin adherence, yielding > 3-fold more marrow homing in vivo. These data define the key glycoprotein E-selectin ligands of human and mouse HSPCs, unveiling critical species-intrinsic differences in both the identity and activity of these structures. © 2011 by The American Society of Hematology.

  18. A comparison of azacitidine and decitabine activities in acute myeloid leukemia cell lines.

    Directory of Open Access Journals (Sweden)

    Paul W Hollenbach

    Full Text Available BACKGROUND: The cytidine nucleoside analogs azacitidine (AZA and decitabine (DAC are used for the treatment of patients with myelodysplastic syndromes and acute myeloid leukemia (AML. Few non-clinical studies have directly compared the mechanisms of action of these agents in a head-to-head fashion, and the agents are often viewed as mechanistically similar DNA hypomethylating agents. To better understand the similarities and differences in mechanisms of these drugs, we compared their in vitro effects on several end points in human AML cell lines. METHODOLOGY/PRINCIPAL FINDINGS: Both drugs effected DNA methyltransferase 1 depletion, DNA hypomethylation, and DNA damage induction, with DAC showing equivalent activity at concentrations 2- to 10-fold lower than AZA. At concentrations above 1 microM, AZA had a greater effect than DAC on reducing cell viability. Both drugs increased the sub-G1 fraction and apoptosis markers, with AZA decreasing all cell cycle phases and DAC causing an increase in G2-M. Total protein synthesis was reduced only by AZA, and drug-modulated gene expression profiles were largely non-overlapping. CONCLUSIONS/SIGNIFICANCE: These data demonstrate shared mechanisms of action of AZA and DAC on DNA-mediated markers of activity, but distinctly different effects in their actions on cell viability, protein synthesis, cell cycle, and gene expression. The differential effects of AZA may be mediated by RNA incorporation, as the distribution of AZA in nucleic acid of KG-1a cells was 65:35, RNA:DNA.

  19. Soft fibrin gels promote selection and growth of tumorigenic cells

    Science.gov (United States)

    Liu, Jing; Tan, Youhua; Zhang, Huafeng; Zhang, Yi; Xu, Pingwei; Chen, Junwei; Poh, Yeh-Chuin; Tang, Ke; Wang, Ning; Huang, Bo

    2012-08-01

    The identification of stem-cell-like cancer cells through conventional methods that depend on stem cell markers is often unreliable. We developed a mechanical method for selecting tumorigenic cells by culturing single cancer cells in fibrin matrices of ~100 Pa in stiffness. When cultured within these gels, primary human cancer cells or single cancer cells from mouse or human cancer cell lines grew within a few days into individual round colonies that resembled embryonic stem cell colonies. Subcutaneous or intravenous injection of 10 or 100 fibrin-cultured cells in syngeneic or severe combined immunodeficiency mice led to the formation of solid tumours at the site of injection or at the distant lung organ much more efficiently than control cancer cells selected using conventional surface marker methods or cultured on conventional rigid dishes or on soft gels. Remarkably, as few as ten such cells were able to survive and form tumours in the lungs of wild-type non-syngeneic mice.

  20. Induced pluripotent stem cells:origins, applications, and future perspectives

    Institute of Scientific and Technical Information of China (English)

    Jing ZHAO; Wen-jie JIANG; Chen SUN; Cong-zhe HOU; Xiao-mei YANG; Jian-gang GAO

    2013-01-01

    Embryonic stem (ES) cells are widely used for different purposes, including gene targeting, celltherapy, tissue repair, organ regeneration, and so on. However, studies and applications of ES cells are hindered by ethical issues regarding cellsources. To circumvent ethical disputes, great efforts have been taken to generate ES cel-like cells, which are not derived from the inner cellmass of blastocyst-stage embryos. In 2006, Yamanaka et al. first re-programmed mouse embryonic fibroblasts into ES cell-like cells cal ed induced pluripotent stem (iPS) cells. About one year later, Yamanaka et al. and Thomson et al. independently reprogrammed human somatic cells into iPS cells. Since the first generation of iPS cells, they have now been derived from quite a few different kinds of celltypes. In particular, the use of peripheral blood facilitates research on iPS cells because of safety, easy availability, and plenty of cellsources. Now iPS cells have been used for celltherapy, disease modeling, and drug discovery. In this review, we describe the generations, applications, potential issues, and future perspectives of iPS cells.

  1. Molecular control of cell specification and cell differentiation during procambial development.

    Science.gov (United States)

    Furuta, Kaori Miyashima; Hellmann, Eva; Helariutta, Ykä

    2014-01-01

    Land plants develop vascular tissues that enable the long-distance transport of water and nutrients in xylem and phloem, provide mechanical support for their vertical growth, and produce cells in radial growth. Vascular tissues are produced in many parts of the plant and during different developmental stages. Early vascular development is focused in procambial meristems, and in some species it continues during the secondary phase of plant development in cambial meristems. In this review, we highlight recent progress in understanding procambial development. This involves the analysis of stem cell-like properties of procambial tissues, specification of xylem and phloem, and differentiation of the conductive tissues. Several major plant hormones, small-RNA species, and transcriptional networks play a role in vascular development. We describe current approaches to integrating these networks as well as their potential role in explaining the diversity and evolution of plant vascular systems.

  2. Differentiating intratumoral melanocytes from Langerhans cells in nonmelanocytic pigmented skin tumors in vivo by label-free third-harmonic generation microscopy

    Science.gov (United States)

    Weng, Wei-Hung; Liao, Yi-Hua; Tsai, Ming-Rung; Wei, Ming-Liang; Huang, Hsin-Yi; Sun, Chi-Kuang

    2016-07-01

    Morphology and distribution of melanocytes are critical imaging information for the diagnosis of melanocytic lesions. However, how to image intratumoral melanocytes noninvasively in pigmented skin tumors is seldom investigated. Third-harmonic generation (THG) is shown to be enhanced by melanin, whereas high accuracy has been demonstrated using THG microscopy for in vivo differential diagnosis of nonmelanocytic pigmented skin tumors. It is thus desirable to investigate if label-free THG microscopy was capable to in vivo identify intratumoral melanocytes. In this study, histopathological correlations of label-free THG images with the immunohistochemical images stained with human melanoma black (HMB)-45 and cluster of differentiation 1a (CD1a) were made. The correlation results indicated that the intratumoral THG-bright dendritic-cell-like signals were endogenously derived from melanocytes rather than Langerhans cells (LCs). The consistency between THG-bright dendritic-cell-like signals and HMB-45 melanocyte staining showed a kappa coefficient of 0.807, 84.6% sensitivity, and 95% specificity. In contrast, a kappa coefficient of -0.37, 21.7% sensitivity, and 30% specificity were noted between the THG-bright dendritic-cell-like signals and CD1a staining for LCs. Our study indicates the capability of noninvasive label-free THG microscopy to differentiate intratumoral melanocytes from LCs, which is not feasible in previous in vivo label-free clinical-imaging modalities.

  3. Macro histone variants are critical for the differentiation of human pluripotent cells.

    Science.gov (United States)

    Barrero, María J; Sese, Borja; Martí, Mercè; Izpisua Belmonte, Juan Carlos

    2013-05-31

    We have previously shown that macro histone variants (macroH2A) are expressed at low levels in stem cells and are up-regulated during differentiation. Here we show that the knockdown of macro histone variants impaired the in vitro and in vivo differentiation of human pluripotent cells, likely through defects in the silencing of pluripotency-related genes. ChIP experiments showed that during differentiation macro histone variants are recruited to the regulatory regions of pluripotency and developmental genes marked with H3K27me3 contributing to the silencing of these genes.

  4. Human germ cell formation in xenotransplants of induced pluripotent stem cells carrying X chromosome aneuploidies.

    Science.gov (United States)

    Dominguez, Antonia A; Chiang, H Rosaria; Sukhwani, Meena; Orwig, Kyle E; Reijo Pera, Renee A

    2014-09-22

    Turner syndrome is caused by complete or partial loss of the second sex chromosome and is characterized by spontaneous fetal loss in >90% of conceptions. Survivors possess an array of somatic and germline clinical characteristics. Induced pluripotent stem cells (iPSCs) offer an opportunity for insight into genetic requirements of the X chromosome linked to Turner syndrome. We derived iPSCs from Turner syndrome and control individuals and examined germ cell development as a function of X chromosome composition. We demonstrate that two X chromosomes are not necessary for reprogramming or maintenance of pluripotency and that there are minimal differences in gene expression, at the single cell level, linked to X chromosome aneuploidies. Formation of germ cells, as assessed in vivo through a murine xenotransplantation model, indicated that undifferentiated iPSCs, independent of X chromosome composition, are capable of forming germ-cell-like cells (GCLCs) in vivo. In combination with clinical data regarding infertility in women with X chromosome aneuploidies, results suggest that two intact X chromosomes are not required for human germ cell formation, qualitatively or quantitatively, but rather are likely to be required for maintenance of human germ cells to adulthood.

  5. Generation of virus-free induced pluripotent stem cell clones on a synthetic matrix via a single cell subcloning in the naive state.

    Directory of Open Access Journals (Sweden)

    Naoki Nishishita

    Full Text Available CD34+ cord blood cells can be reprogrammed effectively on dishes coated with a synthetic RGD motif polymer (PronectinF® using a temperature sensitive Sendai virus vector (SeV TS7 carrying reprogramming factors OCT3/4, SOX2, KLF4 and c-MYC. Dish-shaped human ES cell-like colonies emerged in serum-free primate ES cell medium (supplemented with bFGF in 20% O2 culture conditions. The copy numbers of SeV TS7 vectors in the cytoplasm were drastically reduced by a temperature shift at 38°C for three days. Then, single cells from colonies were seeded on PronectinF®-coated 96-well plates and cultured under naïve culture conditions (N2B27-based medium supplemented with LIF, forskolin, a MAPK inhibitor, and a GSK inhibitor in 5% O2 for cloning purpose. Dome-shaped mouse ES cell-like colonies from single cells emerged on PronectinF®-coated dishes. These cells were collected and cultured again in primate ES cell medium supplemented with bFGF in 20% O2 and maintained on PronectinF®-coated dishes. Cells were assessed for reprogramming, including the absence of residual SeV and their potential for three germ layer differentiation. Generation of virus-free induced pluripotent stem cell (iPSC clones from single cells under feeder-free conditions will solve some of the safety concerns related to use of xeno- or allogeneic-material in culture, and contribute to the characterization and the standardization of iPS cells intended for use in a clinical setting.

  6. Induced Pluripotent Stem (iPS) Cells in Dentistry: A Review

    Science.gov (United States)

    Malhotra, Neeraj

    2016-01-01

    iPS cells are derived from somatic cells via transduction and expression of selective transcription factors. Both viral-integrating (like retroviral) and non-integrating (like, mRNA or protein-based) techniques are available for the production of iPS cells. In the field of dentistry, iPS cells have been derived from stem cells of apical papilla, dental pulp stem cells, and stem cells from exfoliated deciduous teeth, gingival and periodontal ligament fibroblasts, and buccal mucosa fibroblasts. iPS cells have the potential to differentiate into all derivatives of the 3 primary germ layers i.e. ectoderm, endoderm, and mesoderm. They are autogeneically accessible, and can produce patient-specific or disease-specific cell lines without the issue of ethical controversy. They have been successfully tested to produce mesenchymal stem cells-like cells, neural crest-like cells, ameloblasts-like cells, odontoblasts-like cells, and osteoprogenitor cells. These cells can aid in regeneration of periodontal ligament, alveolar bone, cementum, dentin-pulp complex, as well as possible Biotooth formation. However certain key issues like, epigenetic memory of iPS cells, viral-transduction, tumorgenesis and teratoma formation need to be overcome, before they can be successfully used in clinical practice. The article discusses the sources, pros and cons, and current applications of iPS cells in dentistry with an emphasis on encountered challenges and their solutions. PMID:27572712

  7. Redox Regulation in Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Shijie Ding

    2015-01-01

    Full Text Available Reactive oxygen species (ROS and ROS-dependent (redox regulation signaling pathways and transcriptional activities are thought to be critical in stem cell self-renewal and differentiation during growth and organogenesis. Aberrant ROS burst and dysregulation of those ROS-dependent cellular processes are strongly associated with human diseases including many cancers. ROS levels are elevated in cancer cells partially due to their higher metabolism rate. In the past 15 years, the concept of cancer stem cells (CSCs has been gaining ground as the subpopulation of cancer cells with stem cell-like properties and characteristics have been identified in various cancers. CSCs possess low levels of ROS and are responsible for cancer recurrence after chemotherapy or radiotherapy. Unfortunately, how CSCs control ROS production and scavenging and how ROS-dependent signaling pathways contribute to CSCs function remain poorly understood. This review focuses on the role of redox balance, especially in ROS-dependent cellular processes in cancer stem cells (CSCs. We updated recent advances in our understanding of ROS generation and elimination in CSCs and their effects on CSC self-renewal and differentiation through modulating signaling pathways and transcriptional activities. The review concludes that targeting CSCs by manipulating ROS metabolism/dependent pathways may be an effective approach for improving cancer treatment.

  8. MoSe2 / Polyaniline Solar Cells

    Directory of Open Access Journals (Sweden)

    H.S. Patel

    2011-01-01

    Full Text Available Solar cells have been investigated since long for harnessing the solar energy. During this decade, a new direction has come up where in the polymers have been used in the fabrication of solar cells. Polyaniline is one of the polymers which has shown potential for its applications in heterostructure solar cells. This material is being used along with the semiconductors like InSe, TiO2, Si etc. to form the photosensitive interface. In this direction, we report our investigations on the use of Molybdenum diselenide (MoSe2 as photosensitive semiconducting material in MoSe2 / polyaniline solar cells. In this paper, the preparation of MoSe2 / polyaniline solar cells has been reported. Also, the photovoltage → photocurrent characteristics of this structure have been discussed in detail in this paper. The variation of different parameters of MoSe2 / polyaniline solar cells (like open circuit voltage, short circuit current, photoconversion efficiency and fill factor with the intensity of incident illuminations has been reported in this paper. In present case, the photocurrent density was found to be around 250 µA/cm2 with the photovoltage around 8.5 mV (which is low the photoconversion efficiency was found to be around 0.7 % along with the fill factor around 0.33. The efforts have been made to explain the low values of the photoconversion efficiency.

  9. Antithetical NFATc1-Sox2 and p53-miR200 signaling networks govern pancreatic cancer cell plasticity.

    Science.gov (United States)

    Singh, Shiv K; Chen, Nai-Ming; Hessmann, Elisabeth; Siveke, Jens; Lahmann, Marlen; Singh, Garima; Voelker, Nadine; Vogt, Sophia; Esposito, Irene; Schmidt, Ansgar; Brendel, Cornelia; Stiewe, Thorsten; Gaedcke, Jochen; Mernberger, Marco; Crawford, Howard C; Bamlet, William R; Zhang, Jin-San; Li, Xiao-Kun; Smyrk, Thomas C; Billadeau, Daniel D; Hebrok, Matthias; Neesse, Albrecht; Koenig, Alexander; Ellenrieder, Volker

    2015-02-12

    In adaptation to oncogenic signals, pancreatic ductal adenocarcinoma (PDAC) cells undergo epithelial-mesenchymal transition (EMT), a process combining tumor cell dedifferentiation with acquisition of stemness features. However, the mechanisms linking oncogene-induced signaling pathways with EMT and stemness remain largely elusive. Here, we uncover the inflammation-induced transcription factor NFATc1 as a central regulator of pancreatic cancer cell plasticity. In particular, we show that NFATc1 drives EMT reprogramming and maintains pancreatic cancer cells in a stem cell-like state through Sox2-dependent transcription of EMT and stemness factors. Intriguingly, NFATc1-Sox2 complex-mediated PDAC dedifferentiation and progression is opposed by antithetical p53-miR200c signaling, and inactivation of the tumor suppressor pathway is essential for tumor dedifferentiation and dissemination both in genetically engineered mouse models (GEMM) and human PDAC. Based on these findings, we propose the existence of a hierarchical signaling network regulating PDAC cell plasticity and suggest that the molecular decision between epithelial cell preservation and conversion into a dedifferentiated cancer stem cell-like phenotype depends on opposing levels of p53 and NFATc1 signaling activities.

  10. NANOG priming before full reprogramming may generate germ cell tumours

    Directory of Open Access Journals (Sweden)

    I Grad

    2011-11-01

    Full Text Available Reprogramming somatic cells into a pluripotent state brings patient-tailored, ethical controversy-free cellular therapy closer to reality. However, stem cells and cancer cells share many common characteristics; therefore, it is crucial to be able to discriminate between them. We generated two induced pluripotent stem cell (iPSC lines, with NANOG pre-transduction followed by OCT3/4, SOX2, and LIN28 overexpression. One of the cell lines, CHiPS W, showed normal pluripotent stem cell characteristics, while the other, CHiPS A, though expressing pluripotency markers, failed to differentiate and gave rise to germ cell-like tumours in vivo. Comparative genomic hybridisation analysis of the generated iPS lines revealed that they were genetically more stable than human embryonic stem cell counterparts. This analysis proved to be predictive for the differentiation potential of analysed cells. Moreover, the CHiPS A line expressed a lower ratio of p53/p21 when compared to CHiPS W. NANOG pre-induction followed by OCT3/4, SOX2, MYC, and KLF4 induction resulted in the same tumour-inducing phenotype. These results underline the importance of a re-examination of the role of NANOG during reprogramming. Moreover, this reprogramming method may provide insights into primordial cell tumour formation and cancer stem cell transformation.

  11. Serotonin of mast cell origin contributes to hippocampal function.

    Science.gov (United States)

    Nautiyal, Katherine M; Dailey, Christopher A; Jahn, Jaquelyn L; Rodriquez, Elizabeth; Son, Nguyen Hong; Sweedler, Jonathan V; Silver, Rae

    2012-08-01

    In the central nervous system, serotonin, an important neurotransmitter and trophic factor, is synthesized by both mast cells and neurons. Mast cells, like other immune cells, are born in the bone marrow and migrate to many tissues. We show that they are resident in the mouse brain throughout development and adulthood. Measurements based on capillary electrophoresis with native fluorescence detection indicate that a significant contribution of serotonin to the hippocampal milieu is associated with mast cell activation. Compared with their littermates, mast cell-deficient C57BL/6 Kit(W-sh/W-sh) mice have profound deficits in hippocampus-dependent spatial learning and memory and in hippocampal neurogenesis. These deficits are associated with a reduction in cell proliferation and in immature neurons in the dentate gyrus, but not in the subventricular zone - a neurogenic niche lacking mast cells. Chronic treatment with fluoxetine, a selective serotonin reuptake inhibitor, reverses the deficit in hippocampal neurogenesis in mast cell-deficient mice. In summary, the present study demonstrates that mast cells are a source of serotonin, that mast cell-deficient C57BL/6 Kit(W-sh/W-sh) mice have disrupted hippocampus-dependent behavior and neurogenesis, and that elevating serotonin in these mice, by treatment with fluoxetine, reverses these deficits. We conclude that mast cells contribute to behavioral and physiological functions of the hippocampus and note that they play a physiological role in neuroimmune interactions, even in the absence of inflammatory responses.

  12. Simvastatin requires activation in accessory cells to modulate T-cell responses in asthma and COPD.

    Science.gov (United States)

    Knobloch, Jürgen; Yakin, Yakup; Körber, Sandra; Grensemann, Barbara; Bendella, Zeynep; Boyaci, Niyazi; Gallert, Willem-Jakob; Yanik, Sarah Derya; Jungck, David; Koch, Andrea

    2016-10-05

    T-cell-dependent airway and systemic inflammation triggers the progression of chronic obstructive pulmonary disease (COPD) and asthma. Retrospective studies suggest that simvastatin has anti-inflammatory effects in both diseases but it is unclear, which cell types are targeted. We hypothesized that simvastatin modulates T-cell activity. Circulating CD4+ and CD8+ T-cells, either pure, co-cultured with monocytes or alveolar macrophages (AM) or in peripheral blood mononuclear cells (PBMCs), were ex vivo activated towards Th1/Tc1 or Th2/Tc2 and incubated with simvastatin. Markers for Th1/Tc1 (IFNγ) and Th2/Tc2 (IL-5, IL-13) were measured by ELISA; with PBMCs this was done comparative between 11 healthy never-smokers, 11 current smokers without airflow limitation, 14 smokers with COPD and 11 never-smokers with atopic asthma. T-cell activation induced IFNγ, IL-5 and IL-13 in the presence and absence of accessory cells. Simvastatin did not modulate cytokine expression in pure T-cell fractions. β-hydroxy-simvastatin acid (activated simvastatin) suppressed IL-5 and IL-13 in pure Th2- and Tc2-cells. Simvastatin suppressed IL-5 and IL-13 in Th2-cells co-cultivated with monocytes or AM, which was partially reversed by the carboxylesterase inhibitor benzil. Simvastatin suppressed IL-5 production of Th2/Tc2-cells in PBMCs without differences between cohorts and IL-13 stronger in never-smokers and asthma compared to COPD. Simvastatin induced IFNγ in Th1/Tc1-cells in PBMCs of all cohorts except asthmatics. Simvastatin requires activation in accessory cells likely by carboxylesterase to suppress IL-5 and IL-13 in Th2/Tc2-cells. The effects on Il-13 are partially reduced in COPD. Asthma pathogenesis prevents simvastatin-induced IFNγ up-regulation. Simvastatin has anti-inflammatory effects that could be of interest for asthma therapy.

  13. Long-Term Cultured Human Term Placenta-Derived Mesenchymal Stem Cells of Maternal Origin Displays Plasticity

    Directory of Open Access Journals (Sweden)

    Vikram Sabapathy

    2012-01-01

    Flow analysis established bonafied MSCs phenotypic characteristics, staining positively for CD29, CD73, CD90, CD105 and negatively for CD14, CD34, CD45 markers. Pluripotency of the cultured MSCs was assessed by in vitro differentiation towards not only intralineage cells like adipocytes, osteocytes, chondrocytes, and myotubules cells but also translineage differentiated towards pancreatic progenitor cells, neural cells, and retinal cells displaying plasticity. These cells did not significantly alter cell cycle or apoptosis pattern while maintaining the normal karyotype; they also have limited expression of MHC-II antigens and are Naive for stimulatory factors CD80 and CD 86. Further soft agar assays revealed that placental MSCs do not have the ability to form invasive colonies. Taking together all these characteristics into consideration, it indicates that placental MSCs could serve as good candidates for development and progress of stem-cell based therapeutics.

  14. 人工全髋关节假体界膜组织细胞的间充质干细胞特性研究%Mesenchymal stem cell-like properties of the fibroblasts derived from the interface membrane related with total hip prosthesis

    Institute of Scientific and Technical Information of China (English)

    秦煜; Henry DeGroot Ⅲ

    2009-01-01

    目的 在人工全髋关节假体周围界膜来源的组织细胞培养中发现细胞具有间充质干细胞生长特性,因而进一步研究该细胞的部分干细胞学特性.方法 运用组织细胞培养、免疫组织化学和流式细胞术检测细胞表面相关抗原表达等方法鉴定界膜组织细胞的成纤维细胞特性和干细胞特性,并将培养的界膜成纤维细胞分别在成骨细胞培养基和成脂肪细胞培养基作用下进行分化诱导.结果 所有培养的界膜细胞都表达成纤维细胞特异性波形蛋白.其中少量细胞表达一些重要的间充质干细胞相关表面抗原,包括SSEA_4~+/CD45~-(0.1%)、Nanog~+(2.4%)、CD34~+(4.5%)和SH_2B~+(0.1%),这些细胞不表达CD133、Thy-1和SCF等造血干细胞相关表面抗原.在成骨化培养基作用下,细胞内部出现钙盐沉积,(24.5±5.5)%细胞表达碱性磷酸酶.细胞经成脂化培养基处理后,(16.0±6.5)%细胞内出现脂肪小滴聚集.结论 人工髋关节假体界膜组织细胞中有少部分细胞表达间充质干细胞相关表面抗原,能够在一定条件下向成骨细胞和脂肪细胞分化,表现出间充质干细胞的特性.

  15. Periaortic lymph node involvement by metastatic angiosarcoma and benign sinus mesothelial cells.

    Science.gov (United States)

    Isotalo, P A; Jabit, M; Wenckebach, G F

    2001-05-01

    Hyperplastic mesothelial cells involving lymph node sinuses have only been recently described. Most nodal mesothelial cells are thought to originate from mesothelial surfaces disrupted by serosal effusions. Dislodged mesothelial cells likely gain access to submesothelial lymphatics via mesothelial stomata and disseminate to draining lymph nodes. Unusual lymph node architectural patterns result when benign sinus mesothelial cells occur concurrently with a neoplastic nodal process. We describe a young man who developed diffuse metastases from a primary cardiac angiosarcoma. His periaortic lymph nodes contained metastatic angiosarcoma and hyperplastic mesothelial cells with a sinus distribution. The patient had a clinical history of progressive haemoperitoneum, exacerbated by thrombocytopaenia and disseminated intravascular coagulation. Massive haemoperitoneum of 5000 ml was confirmed at autopsy. This is the first report to suggest that multiple episodes of intraperitoneal haemorrhage and ascites may both act in the same manner to cause dislodgment and dissemination of mesothelial cells to draining lymph node sinuses.

  16. Notch signaling and EMT in non-small cell lung cancer: biological significance and therapeutic application.

    Science.gov (United States)

    Yuan, Xun; Wu, Hua; Han, Na; Xu, Hanxiao; Chu, Qian; Yu, Shiying; Chen, Yuan; Wu, Kongming

    2014-12-05

    Through epithelial-mesenchymal transition (EMT), cancer cells acquire enhanced ability of migration and invasion, stem cell like characteristics and therapeutic resistance. Notch signaling regulates cell-cell connection, cell polarity and motility during organ development. Recent studies demonstrate that Notch signaling plays an important role in lung cancer initiation and cross-talks with several transcriptional factors to enhance EMT, contributing to the progression of non-small cell lung cancer (NSCLC). Correspondingly, blocking of Notch signaling inhibits NSCLC migration and tumor growth by reversing EMT. Clinical trials have showed promising effect in some cancer patients received treatment with Notch1 inhibitor. This review attempts to provide an overview of the Notch signal in NSCLC: its biological significance and therapeutic application.

  17. GADD45β Determines Chemoresistance and Invasive Growth of Side Population Cells of Human Embryonic Carcinoma

    Directory of Open Access Journals (Sweden)

    Toshihiko Inowa

    2010-01-01

    Full Text Available Side population (SP cells are an enriched population of stem, and the existence of SP cells has been reported in human cancer cell lines. In this study, we performed an SP analysis using 11 human cancer cell lines and confirmed the presence of SP cells in an embryonic carcinoma cell line, NEC8. NEC8 SP cells showed characteristics of cancer stem cells, such as high growth rate, chemoresistance and high invasiveness. To further characterize the NEC8 SP cells, we used DNA microarrays. Among 38,500 genes, we identified 12 genes that were over-expressed in SP cells and 1 gene that was over-expressed in non-SP cells. Among these 13 genes, we focused on GADD45b. GADD45b was over-expressed in non-SP cells, but the inhibition of GADD45b had no effect on non-SP cells. Paradoxically, the inhibition of GADD45b significantly reduced the viability of NEC8 SP cells. The inhibition of ABCG2, which determines the SP phenotype, had no effect on the invasiveness of NEC8 SP cells, but the inhibition of GADD45b significantly reduced invasiveness. These results suggest that GADD45b, but not ABCG2, might determine the cancer stem cell-like phenotype, such as chemoresistance and the high invasiveness of NEC8 SP cells, and might be a good therapeutic target.

  18. Attributes of Oct4 in stem cell biology: perspectives on cancer stem cells of the ovary

    Directory of Open Access Journals (Sweden)

    Samardzija Chantel

    2012-11-01

    Full Text Available Abstract Epithelial ovarian cancer (EOC remains the most lethal of all the gynaecological malignancies with drug resistance and recurrence remaining the major therapeutic barrier in the management of the disease. Although several studies have been undertaken to understand the mechanisms responsible for chemoresistance and subsequent recurrence in EOC, the exact mechanisms associated with chemoresistance/recurrence continue to remain elusive. Recent studies have shown that the parallel characteristics commonly seen between embryonic stem cells (ESCs and induced pluripotent stem cells (iPSC are also shared by a relatively rare population of cells within tumors that display stem cell-like features. These cells, termed ‘cancer initiating cells’ or ‘cancer stem cells (CSCs’ have been shown not only to display increased self renewal and pluripotent abilities as seen in ESCs and iPSCs, but are also highly tumorigenic in in vivo mouse models. Additionally, these CSCs have been implicated in tumor recurrence and chemoresistance, and when isolated have consistently shown to express the master pluripotency and embryonic stem cell regulating gene Oct4. This article reviews the involvement of Oct4 in cancer progression and chemoresistance, with emphasis on ovarian cancer. Overall, we highlight why ovarian cancer patients, who initially respond to conventional chemotherapy subsequently relapse with recurrent chemoresistant disease that is essentially incurable.

  19. Neural stem cells differentiated from iPS cells spontaneously regain pluripotency.

    Science.gov (United States)

    Choi, Hyun Woo; Kim, Jong Soo; Choi, Sol; Hong, Yean Ju; Kim, Min Jung; Seo, Han Geuk; Do, Jeong Tae

    2014-10-01

    Differentiated somatic cells can be reprogrammed into pluripotent stem cells by transduction of exogenous reprogramming factors. After induced pluripotent stem (iPS) cells are established, exogenous genes are silenced. In the pluripotent state, retroviral genes integrated in the host genome are kept inactive through epigenetic transcriptional regulation. In this study, we tried to determine whether exogenous genes remain silenced or are reactivated upon loss of pluripotency or on differentiation using an in vitro system. We induced differentiation of iPS cells into neural stem cells (NSCs) in vitro; the NSCs appeared morphologically indistinguishable from brain-derived NSCs and stained positive for the NSC markers Nestin and Sox2. These iPS cell-derived NSCs (iPS-NSCs) were also capable of differentiating into all three neural subtypes. Interestingly, iPS-NSCs spontaneously formed aggregates on long-term culture and showed reactivation of the Oct4-GFP marker, which was followed by the formation of embryonic stem cell-like colonies. The spontaneously reverted green fluorescent protein (GFP)-positive (iPS-NSC-GFP(+) ) cells expressed high levels of pluripotency markers (Oct4 and Nanog) and formed germline chimeras, indicating that iPS-NSC-GFP(+) cells had the same pluripotency as the original iPS cells. The reactivation of silenced exogenous genes was tightly correlated with the downregulation of DNA methyltransferases (Dnmts) during differentiation of iPS cells. This phenomenon was not observed in doxycycline-inducible iPS cells, where the reactivation of exogenous genes could be induced only by doxycycline treatment. These results indicate that pluripotency can be regained through reactivation of exogenous genes, which is associated with dynamic change of Dnmt levels during differentiation of iPS cells.

  20. Identification of highly methylated genes across various types of B-cell non-hodgkin lymphoma.

    Directory of Open Access Journals (Sweden)

    Nicole Bethge

    Full Text Available Epigenetic alterations of gene expression are important in the development of cancer. In this study, we identified genes which are epigenetically altered in major lymphoma types. We used DNA microarray technology to assess changes in gene expression after treatment of 11 lymphoma cell lines with epigenetic drugs. We identified 233 genes with upregulated expression in treated cell lines and with downregulated expression in B-cell lymphoma patient samples (n = 480 when compared to normal B cells (n = 5. The top 30 genes were further analyzed by methylation specific PCR (MSP in 18 lymphoma cell lines. Seven of the genes were methylated in more than 70% of the cell lines and were further subjected to quantitative MSP in 37 B-cell lymphoma patient samples (diffuse large B-cell lymphoma (activated B-cell like and germinal center B-cell like subtypes, follicular lymphoma and Burkitt`s lymphoma and normal B lymphocytes from 10 healthy donors. The promoters of DSP, FZD8, KCNH2, and PPP1R14A were methylated in 28%, 67%, 22%, and 78% of the 36 tumor samples, respectively, but not in control samples. Validation using a second series of healthy donor controls (n = 42; normal B cells, peripheral blood mononuclear cells, bone marrow, tonsils and follicular hyperplasia and fresh-frozen lymphoma biopsies (n = 25, confirmed the results. The DNA methylation biomarker panel consisting of DSP, FZD8, KCNH2, and PPP1R14A was positive in 89% (54/61 of all lymphomas. Receiver operating characteristic analysis to determine the discriminative power between lymphoma and healthy control samples showed a c-statistic of 0.96, indicating a possible role for the biomarker panel in monitoring of lymphoma patients.

  1. Stem cell research: paths to cancer therapies and regenerative medicine.

    Science.gov (United States)

    Weissman, Irving

    2005-09-21

    Most tissues in complex metazoans contain a rare subset of cells that, at the single-cell level, can self-renew and also give rise to mature daughter cells. Such stem cells likely in development build tissues and are retained in adult life to regenerate them. Cancers and leukemias are apparently not an exception: rare leukemia stem cells and cancer stem cells have been isolated that contain all of the tumorigenicity of the whole tumor, and it is their properties that will guide future therapies. None of this was apparent just 20 years ago, yet this kind of stem cell thinking already provides new perspectives in medical science and could usher in new therapies. Today, political, religious, and ethical issues surround embryonic stem cell and patient-specific pluripotent stem cell research and are center stage in the attempts by governments to ban these fields for discovery and potential therapies. These interventions require physicians and physician-scientists to determine for themselves whether patient welfare or personal ethics will dominate in their practices, and whether all aspects of stem cell research can be pursued in a safe and regulated fashion.

  2. Persistent donor cell gene expression among human induced pluripotent stem cells contributes to differences with human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Zhumur Ghosh

    Full Text Available Human induced pluripotent stem cells (hiPSCs generated by de-differentiation of adult somatic cells offer potential solutions for the ethical issues surrounding human embryonic stem cells (hESCs, as well as their immunologic rejection after cellular transplantation. However, although hiPSCs have been described as "embryonic stem cell-like", these cells have a distinct gene expression pattern compared to hESCs, making incomplete reprogramming a potential pitfall. It is unclear to what degree the difference in tissue of origin may contribute to these gene expression differences. To answer these important questions, a careful transcriptional profiling analysis is necessary to investigate the exact reprogramming state of hiPSCs, as well as analysis of the impression, if any, of the tissue of origin on the resulting hiPSCs. In this study, we compare the gene profiles of hiPSCs derived from fetal fibroblasts, neonatal fibroblasts, adipose stem cells, and keratinocytes to their corresponding donor cells and hESCs. Our analysis elucidates the overall degree of reprogramming within each hiPSC line, as well as the "distance" between each hiPSC line and its donor cell. We further identify genes that have a similar mode of regulation in hiPSCs and their corresponding donor cells compared to hESCs, allowing us to specify core sets of donor genes that continue to be expressed in each hiPSC line. We report that residual gene expression of the donor cell type contributes significantly to the differences among hiPSCs and hESCs, and adds to the incompleteness in reprogramming. Specifically, our analysis reveals that fetal fibroblast-derived hiPSCs are closer to hESCs, followed by adipose, neonatal fibroblast, and keratinocyte-derived hiPSCs.

  3. Musashi2 modulates K562 leukemic cell proliferation and apoptosis involving the MAPK pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Huijuan; Tan, Shi; Wang, Juan; Chen, Shana; Quan, Jing; Xian, Jingrong; Zhang, Shuai shuai; He, Jingang; Zhang, Ling, E-mail: lingzhang@cqmu.edu.cn

    2014-01-01

    The RNA-binding protein Musashi2 (Msi2) has been identified as a master regulator within a variety of stem cell populations via the regulation of translational gene expression. A recent study has suggested that Msi2 is strongly expressed in leukemic cells of acute myeloid leukemia patients, and elevated Msi2 is associated with poor prognosis. However, the potential role of Msi2 in leukemogenesis is still not well understood. Here, we investigated the effect of Msi2 knockdown on the biological properties of leukemic cells. High expression of Msi2 was found in K562 and KG-1a leukemic cell lines, and low expression was observed in the U937 cell line. We transduced K562 cells with two independent adenoviral shRNA vectors targeting Msi2 and confirmed knockdown of Msi2 at the mRNA and protein levels. Msi2 silencing inhibited cell growth and caused cell cycle arrest by increasing the expression of p21 and decreasing the expression of cyclin D1 and cdk2. In addition, knockdown of Msi2 promoted cellular apoptosis via the upregulation of Bax and downregulation of Bcl-2 expression. Furthermore, Msi2 knockdown resulted in the inactivation of the ERK/MAPK and p38/MAPK pathways, but no remarkable change in p-AKT was observed. These data provide evidence that Msi2 plays an important role in leukemogenesis involving the MAPK signaling pathway, which indicates that Msi2 may be a novel target for leukemia treatment. - Highlights: • Knockdown of Msi2 inhibited K562 cell growth and arrested cell cycle progression. • Knockdown of Msi2 induced K562 cell apoptosis via the regulation of Bax and Bcl-2. • The MAPK pathway was involved in the process of Msi2-mediated leukemogenesis. • Our data indicate that Msi2 is a potential new target for leukemia treatment.

  4. Survival and death of epiblast cells during embryonic stem cell derivation revealed by long-term live-cell imaging with an Oct4 reporter system.

    Science.gov (United States)

    Yamagata, Kazuo; Ueda, Jun; Mizutani, Eiji; Saitou, Mitinori; Wakayama, Teruhiko

    2010-10-01

    Despite the broad literature on embryonic stem cells (ESCs), their derivation process remains enigmatic. This may be because of the lack of experimental systems that can monitor this prolonged cellular process. Here we applied a live-cell imaging technique to monitor the process of ESC derivation over 10 days from morula to outgrowth phase using an Oct4/eGFP reporter system. Our imaging reflects the 'natural' state of ESC derivation, as the ESCs established after the imaging were both competent in chimeric mice formation and germ-line transmission. Using this technique, ESC derivation in conventional conditions was imaged. After the blastocoel was formed, the intensity of Oct4 signals attenuated in the trophoblast cells but was maintained in the inner cell mass (ICM). Thereafter, the Oct4-positive cells scattered and their number decreased along with apoptosis of the other Oct4-nagative cells likely corresponds to trophoblast and hypoblast cells, and then only the surviving Oct4-positive cells proliferated and formed the colony. All embryos without exception passed through this cell death phase. Importantly, the addition of caspase inhibitor Z-VAD-FMK to the medium dramatically suppressed the loss of Oct4-positive cells and also other embryo-derived cells, suggesting that the cell deaths was induced by a caspase-dependent apoptotic pathway. Next we imaged the ESC derivation in 3i medium, which consists of chemical compounds that can suppress differentiation. The most significant difference between the conventional and 3i methods was that there was no obvious cell death in 3i, so that the colony formation was rapid and all of the Oct4-positive cells contributed to the formation of the outgrown colony. These data indicate that the prevention of cell death in epiblast cells is one of the important events for the successful establishment of ESCs. Thus, our imaging technique can advance the understanding of the time-dependent cellular changes during ESC derivation.

  5. Cancer cells become susceptible to natural killer cell killing after exposure to histone deacetylase inhibitors due to glycogen synthase kinase-3-dependent expression of MHC class I-related chain A and B

    DEFF Research Database (Denmark)

    Skov, Søren; Pedersen, Marianne Terndrup; Andresen, Lars

    2005-01-01

    We show that histone deacetylase (HDAC) inhibitors lead to functional expression of MHC class I-related chain A and B (MICA/B) on cancer cells, making them potent targets for natural killer (NK) cell-mediated killing through a NK group 2, member D (NKG2D) restricted mechanism. Blocking either...... apoptosis or oxidative stress caused by HDAC inhibitor treatment did not affect MICA/B expression, suggesting involvement of a separate signal pathway not directly coupled to induction of cell death. HDAC inhibitor treatment induced glycogen synthase kinase-3 (GSK-3) activity and down-regulation of GSK-3...... by small interfering RNA or by different inhibitors showed that GSK-3 activity is essential for the induced MICA/B expression. We thus present evidence that cancer cells which survive the direct induction of cell death by HDAC inhibitors become targets for NKG2D-expressing cells like NK cells, gammadelta T...

  6. Stem Cells

    Science.gov (United States)

    Stem cells are cells with the potential to develop into many different types of cells in the body. ... the body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...

  7. Artificial cell mimics as simplified models for the study of cell biology.

    Science.gov (United States)

    Salehi-Reyhani, Ali; Ces, Oscar; Elani, Yuval

    2017-07-01

    Living cells are hugely complex chemical systems composed of a milieu of distinct chemical species (including DNA, proteins, lipids, and metabolites) interconnected with one another through a vast web of interactions: this complexity renders the study of cell biology in a quantitative and systematic manner a difficult task. There has been an increasing drive towards the utilization of artificial cells as cell mimics to alleviate this, a development that has been aided by recent advances in artificial cell construction. Cell mimics are simplified cell-like structures, composed from the bottom-up with precisely defined and tunable compositions. They allow specific facets of cell biology to be studied in isolation, in a simplified environment where control of variables can be achieved without interference from a living and responsive cell. This mini-review outlines the core principles of this approach and surveys recent key investigations that use cell mimics to address a wide range of biological questions. It will also place the field in the context of emerging trends, discuss the associated limitations, and outline future directions of the field. Impact statement Recent years have seen an increasing drive to construct cell mimics and use them as simplified experimental models to replicate and understand biological phenomena in a well-defined and controlled system. By summarizing the advances in this burgeoning field, and using case studies as a basis for discussion on the limitations and future directions of this approach, it is hoped that this minireview will spur others in the experimental biology community to use artificial cells as simplified models with which to probe biological systems.

  8. Identification of a new gene regulatory circuit involving B cell receptor activated signaling using a combined analysis of experimental, clinical and global gene expression data.

    Science.gov (United States)

    Schrader, Alexandra; Meyer, Katharina; Walther, Neele; Stolz, Ailine; Feist, Maren; Hand, Elisabeth; von Bonin, Frederike; Evers, Maurits; Kohler, Christian; Shirneshan, Katayoon; Vockerodt, Martina; Klapper, Wolfram; Szczepanowski, Monika; Murray, Paul G; Bastians, Holger; Trümper, Lorenz; Spang, Rainer; Kube, Dieter

    2016-07-26

    To discover new regulatory pathways in B lymphoma cells, we performed a combined analysis of experimental, clinical and global gene expression data. We identified a specific cluster of genes that was coherently expressed in primary lymphoma samples and suppressed by activation of the B cell receptor (BCR) through αIgM treatment of lymphoma cells in vitro. This gene cluster, which we called BCR.1, includes numerous cell cycle regulators. A reduced expression of BCR.1 genes after BCR activation was observed in different cell lines and also in CD10+ germinal center B cells. We found that BCR activation led to a delayed entry to and progression of mitosis and defects in metaphase. Cytogenetic changes were detected upon long-term αIgM treatment. Furthermore, an inverse correlation of BCR.1 genes with c-Myc co-regulated genes in distinct groups of lymphoma patients was observed. Finally, we showed that the BCR.1 index discriminates activated B cell-like and germinal centre B cell-like diffuse large B cell lymphoma supporting the functional relevance of this new regulatory circuit and the power of guided clustering for biomarker discovery.

  9. Salinomycin induces cell death and differentiation in head and neck squamous cell carcinoma stem cells despite activation of epithelial-mesenchymal transition and Akt

    Directory of Open Access Journals (Sweden)

    Kuo Selena Z

    2012-11-01

    Full Text Available Abstract Background Cancer stem cells (CSC are believed to play a crucial role in cancer recurrence due to their resistance to conventional chemotherapy and capacity for self-renewal. Recent studies have reported that salinomycin, a livestock antibiotic, selectively targets breast cancer stem cells 100-fold more effectively than paclitaxel. In our study we sought to determine the effects of salinomycin on head and neck squamous cell carcinoma (HNSCC stem cells. Methods MTS and TUNEL assays were used to study cell proliferation and apoptosis as a function of salinomycin exposure in JLO-1, a putative HNSCC stem cell culture. MTS and trypan blue dye exclusion assays were performed to investigate potential drug interactions between salinomycin and cisplatin or paclitaxel. Stem cell-like phenotype was measured by mRNA expression of stem cell markers, sphere-forming capacity, and matrigel invasion assays. Immunoblotting was also used to determine expression of epithelial-mesenchymal transition (EMT markers and Akt phosphorylation. Arrays by Illumina, Inc. were used to profile microRNA expression as a function of salinomycin dose. Results In putative HNSCC stem cells, salinomycin was found to significantly inhibit cell viability, induce a 71.5% increase in levels of apoptosis, elevate the Bax/Bcl-2 ratio, and work synergistically with cisplatin and paclitaxel in inducing cell death. It was observed that salinomycin significantly inhibited sphere forming-capability and repressed the expression of CD44 and BMI-1 by 3.2-fold and 6.2-fold, respectively. Furthermore, salinomycin reduced invasion of HNSCC stem cells by 2.1 fold. Contrary to expectations, salinomycin induced the expression of EMT markers Snail, vimentin, and Zeb-1, decreased expression of E-cadherin, and also induced phosphorylation of Akt and its downstream targets GSK3-β and mTOR. Conclusions These results demonstrate that in HNSCC cancer stem cells, salinomycin can cause cell death and

  10. Multiple lineages of human breast cancer stem/progenitor cells identified by profiling with stem cell markers.

    Directory of Open Access Journals (Sweden)

    Wendy W Hwang-Verslues

    Full Text Available Heterogeneity of cancer stem/progenitor cells that give rise to different forms of cancer has been well demonstrated for leukemia. However, this fundamental concept has yet to be established for solid tumors including breast cancer. In this communication, we analyzed solid tumor cancer stem cell markers in human breast cancer cell lines and primary specimens using flow cytometry. The stem/progenitor cell properties of different marker expressing-cell populations were further assessed by in vitro soft agar colony formation assay and the ability to form tumors in NOD/SCID mice. We found that the expression of stem cell markers varied greatly among breast cancer cell lines. In MDA-MB-231 cells, PROCR and ESA, instead of the widely used breast cancer stem cell markers CD44(+/CD24(-/low and ALDH, could be used to highly enrich cancer stem/progenitor cell populations which exhibited the ability to self renew and divide asymmetrically. Furthermore, the PROCR(+/ESA(+ cells expressed epithelial-mesenchymal transition markers. PROCR could also be used to enrich cells with colony forming ability from MB-361 cells. Moreover, consistent with the marker profiling using cell lines, the expression of stem cell markers differed greatly among primary tumors. There was an association between metastasis status and a high prevalence of certain markers including CD44(+/CD24(-/low, ESA(+, CD133(+, CXCR4(+ and PROCR(+ in primary tumor cells. Taken together, these results suggest that similar to leukemia, several stem/progenitor cell-like subpopulations can exist in breast cancer.

  11. Establishment and Characterization of a Tumor Stem Cell-Based Glioblastoma Invasion Model

    DEFF Research Database (Denmark)

    Jensen, Stine Skov; Meyer, Morten; Petterson, Stine Asferg

    2016-01-01

    invasion and tumor stemness into account. METHODS: Glioblastoma stem cell-like containing spheroid (GSS) cultures derived from three different patients were established and characterized. The spheroids were implanted in vitro into rat brain slice cultures grown in stem cell medium and in vivo into brains......AIMS: Glioblastoma is the most frequent and malignant brain tumor. Recurrence is inevitable and most likely connected to tumor invasion and presence of therapy resistant stem-like tumor cells. The aim was therefore to establish and characterize a three-dimensional in vivo-like in vitro model taking...... of immuno-compromised mice. Invasion was followed in the slice cultures by confocal time-lapse microscopy. Using immunohistochemistry, we compared tumor cell invasion as well as expression of proliferation and stem cell markers between the models. RESULTS: We observed a pronounced invasion into brain slice...

  12. The role of stem cells in airway repair: implications for the origins of lung cancer

    Institute of Scientific and Technical Information of China (English)

    Michael S.Mulvihill; Johannes R.Kratz; Patrick Pham; David M.Jablons; Biao He

    2013-01-01

    Lung cancer is the leading cause of cancer-related deaths worldwide.Recently,advancements in our ability to identify and study stem cell populations in the lung have helped researchers to elucidate the central role that cells with stem cell-like properties may have in lung tumorigenesis.Much of this research has focused on the use of the airway repair model to study response to injury.In this review,we discuss the primary evidence of the role that cancer stem cells play in lung cancer development.The implications of a stem cell origin of lung cancer are reviewed,and the importance of ongoing research to identify novel therapeutic and prognostic targets is reiterated.

  13. Links between DNA Replication, Stem Cells and Cancer

    Directory of Open Access Journals (Sweden)

    Alex Vassilev

    2017-01-01

    Full Text Available Cancers can be categorized into two groups: those whose frequency increases with age, and those resulting from errors during mammalian development. The first group is linked to DNA replication through the accumulation of genetic mutations that occur during proliferation of developmentally acquired stem cells that give rise to and maintain tissues and organs. These mutations, which result from DNA replication errors as well as environmental insults, fall into two categories; cancer driver mutations that initiate carcinogenesis and genome destabilizing mutations that promote aneuploidy through excess genome duplication and chromatid missegregation. Increased genome instability results in accelerated clonal evolution leading to the appearance of more aggressive clones with increased drug resistance. The second group of cancers, termed germ cell neoplasia, results from the mislocation of pluripotent stem cells during early development. During normal development, pluripotent stem cells that originate in early embryos give rise to all of the cell lineages in the embryo and adult, but when they mislocate to ectopic sites, they produce tumors. Remarkably, pluripotent stem cells, like many cancer cells, depend on the Geminin protein to prevent excess DNA replication from triggering DNA damage-dependent apoptosis. This link between the control of DNA replication during early development and germ cell neoplasia reveals Geminin as a potential chemotherapeutic target in the eradication of cancer progenitor cells.

  14. Links between DNA Replication, Stem Cells and Cancer.

    Science.gov (United States)

    Vassilev, Alex; DePamphilis, Melvin L

    2017-01-25

    Cancers can be categorized into two groups: those whose frequency increases with age, and those resulting from errors during mammalian development. The first group is linked to DNA replication through the accumulation of genetic mutations that occur during proliferation of developmentally acquired stem cells that give rise to and maintain tissues and organs. These mutations, which result from DNA replication errors as well as environmental insults, fall into two categories; cancer driver mutations that initiate carcinogenesis and genome destabilizing mutations that promote aneuploidy through excess genome duplication and chromatid missegregation. Increased genome instability results in accelerated clonal evolution leading to the appearance of more aggressive clones with increased drug resistance. The second group of cancers, termed germ cell neoplasia, results from the mislocation of pluripotent stem cells during early development. During normal development, pluripotent stem cells that originate in early embryos give rise to all of the cell lineages in the embryo and adult, but when they mislocate to ectopic sites, they produce tumors. Remarkably, pluripotent stem cells, like many cancer cells, depend on the Geminin protein to prevent excess DNA replication from triggering DNA damage-dependent apoptosis. This link between the control of DNA replication during early development and germ cell neoplasia reveals Geminin as a potential chemotherapeutic target in the eradication of cancer progenitor cells.

  15. Stem cell markers in the heart of the human newborn

    Directory of Open Access Journals (Sweden)

    Armando Faa

    2016-07-01

    Full Text Available The identification of cardiac progenitor cells in mammals raises the possibility that the human heart contains a population of stem cells capable of generating cardiomyocytes and coronary vessels. Several recent studies now show that the different cell types that characterize the adult human heart arise from a common ancestor. Human cardiac stem cells differentiate into cardiomyocytes, and, in lesser extent, into smooth muscle and endothelial cells. The characterization of human cardiac stem cells (CSCs has important clinical implications. In recent years, CD117 (c-kit has been reported to mark a subtype of stem/progenitor cells in the human heart, with stem cell-like properties, including the ability to self-renewal and clonogenicity multipotentiality. Proceedings of the 2nd International Course on Perinatal Pathology (part of the 11th International Workshop on Neonatology · October 26th-31st, 2015 · Cagliari (Italy · October 31st, 2015 · Stem cells: present and future Guest Editors: Gavino Faa, Vassilios Fanos, Antonio Giordano

  16. Cells, cells, and more cells.

    Science.gov (United States)

    Bhatti, M Tariq; Gres, Katherine E; Petitto, Virginia B; Cross, Shelley Ann

    2007-01-01

    A 64-year-old woman presented with bilateral optic nerve swelling, vitreous cells, and cerebrospinal fluid monocytic pleocytosis. A chest radiograph and computed tomography demonstrated a lesion in the left lung, which histologically was confirmed to be a small-cell lung carcinoma. The serum was positive for the anti-CV2 (anti-CRMP-5) antibody. Following treatment with chemoradiation the optic nerve swelling and vitritis resolved. The differential diagnosis of uveal-meningeal diseases is discussed and the pathophysiology and clinical manifestations of paraneoplastic syndromes reviewed.

  17. Retinoic acid induction of CD38 antigen expression on normal and leukemic human myeloid cells: relationship with cell differentiation.

    Science.gov (United States)

    Prus, Eugenia; Fibach, Eitan

    2003-04-01

    Differentiation in the hematopoietic system involves, among other changes, altered expression of antigens, including the CD34 and CD38 surface antigens. In normal hematopoiesis, the most immature stem cells have the CD34 + CD34 - phenotype. In acute myeloid leukemia (AML), although blasts from most patients are CD38 +, some are CD38 - . AML blasts are blocked at early stages of differentiation; in some leukemic cells this block can be overcome by a variety of agents, including retinoids, that induce maturation into macrophages and granulocytes both in vitro and in vivo. Retinoids can also induce CD38 expression. In the present study, we investigated the relationship between induction of CD38 expression and induction of myeloid differentiation by retinoic acid (RA) in normal and leukemic human hematopoietic cells. In the promyelocytic (PML) CD34 - cell lines, HL60 and CB-1, as well as in normal CD34 + CD34 - hematopietic progenitor cells RA induced both CD38 expression as well as morphological and functional myeloid differentiation that resulted in loss of self-renewal. In contrast, in the myeloblastic CD34 + leukemic cell lines, ML-1 and KG-1a, as well as in primary cultures of cells derived from CD34 + -AML (M0 and M1) patients, RA caused an increase in CD38 + that was not associated with significant differentiation. Yet, long exposure of ML-1, but not KG-1, cells to RA resulted in loss of self-renewal. The results suggest that while in normal hematopoietic cells and in PML CD34 - cells induction of CD38 antigen expression by RA results in terminal differentiation along the myeloid lineage, in early myeloblastic leukemic CD34 + cells, induction of CD38 and differentiation are not functionally related. Since, several lines of evidence suggest that the CD38 - cells are the targets of leukemic transformation, transition of these cellsinto CD38 + phenotype by RA or other drugs may have therapeutic effect, either alone or in conjunction with cytotoxic drugs, regardless

  18. Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma.

    Science.gov (United States)

    Peacock, Craig D; Wang, Qiuju; Gesell, Gregory S; Corcoran-Schwartz, Ian M; Jones, Evan; Kim, Jynho; Devereux, Wendy L; Rhodes, Jonathan T; Huff, Carol A; Beachy, Philip A; Watkins, D Neil; Matsui, William

    2007-03-01

    The cancer stem cell hypothesis suggests that malignant growth depends on a subset of tumor cells with stem cell-like properties of self-renewal. Because hedgehog (Hh) signaling regulates progenitor cell fate in normal development and homeostasis, aberrant pathway activation might be involved in the maintenance of such a population in cancer. Indeed, mutational activation of the Hh pathway is associated with medulloblastoma and basal cell carcinoma; pathway activity is also critical for growth of other tumors lacking such mutations, although the mechanism of pathway activation is poorly understood. Here we study the role and mechanism of Hh pathway activation in multiple myeloma (MM), a malignancy with a well defined stem cell compartment. In this model, rare malignant progenitors capable of clonal expansion resemble B cells, whereas the much larger tumor cell population manifests a differentiated plasma cell phenotype that pathologically defines the disease. We show that the subset of MM cells that manifests Hh pathway activity is markedly concentrated within the tumor stem cell compartment. The Hh ligand promotes expansion of MM stem cells without differentiation, whereas the Hh pathway blockade, while having little or no effect on malignant plasma cell growth, markedly inhibits clonal expansion accompanied by terminal differentiation of purified MM stem cells. These data reveal that Hh pathway activation is heterogeneous across the spectrum of MM tumor stem cells and their more differentiated progeny. The potential existence of similar relationships in other adult cancers may have important biologic and clinical implications for the study of aberrant Hh signaling.

  19. Gene expression profiling in multipotent DFAT cells derived from mature adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Hiromasa [Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-8510 (Japan); Database Center for Life Science (DBCLS), Research Organization of Information and Systems (ROIS), Faculty of Engineering Bldg.12 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Oki, Yoshinao [Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-8510 (Japan); Bono, Hidemasa [Database Center for Life Science (DBCLS), Research Organization of Information and Systems (ROIS), Faculty of Engineering Bldg.12 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Kano, Koichiro, E-mail: kkano@brs.nihon-u.ac.jp [Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-8510 (Japan)

    2011-04-15

    Highlights: {yields} Adipocyte dedifferentiation is evident in a significant decrease in typical genes. {yields} Cell proliferation is strongly related to adipocyte dedifferentiation. {yields} Dedifferentiated adipocytes express several lineage-specific genes. {yields} Comparative analyses using publicly available datasets boost the interpretation. -- Abstract: Cellular dedifferentiation signifies the withdrawal of cells from a specific differentiated state to a stem cell-like undifferentiated state. However, the mechanism of dedifferentiation remains obscure. Here we performed comparative transcriptome analyses during dedifferentiation in mature adipocytes (MAs) to identify the transcriptional signatures of multipotent dedifferentiated fat (DFAT) cells derived from MAs. Using microarray systems, we explored similarly expressed as well as significantly differentially expressed genes in MAs during dedifferentiation. This analysis revealed significant changes in gene expression during this process, including a significant reduction in expression of genes for lipid metabolism concomitantly with a significant increase in expression of genes for cell movement, cell migration, tissue developmental processes, cell growth, cell proliferation, cell morphogenesis, altered cell shape, and cell differentiation. Our observations indicate that the transcriptional signatures of DFAT cells derived from MAs are summarized in terms of a significant decrease in functional phenotype-related genes and a parallel increase in cell proliferation, altered cell morphology, and regulation of the differentiation of related genes. A better understanding of the mechanisms involved in dedifferentiation may enable scientists to control and possibly alter the plasticity of the differentiated state, which may lead to benefits not only in stem cell research but also in regenerative medicine.

  20. Next generation sequencing and the management of diffuse large B-cell lymphoma: from whole exome analysis to targeted therapy.

    Science.gov (United States)

    Jardin, Fabrice

    2014-01-01

    Diffuse large B-cell lymphoma (DLBCL) is the most common form of lymphoma, accounting for 30-40% of newly diagnosed non-Hodgkin lymphomas. Historically, DLBCL has been thought to involve recurrent translocations of the IGH gene and the deregulation of rearranged oncogenes. Recent advances in next generation sequencing (NGS) have provided a vast and comprehensive catalogue of cancer genes involved in DLBCL pathogenesis. Whole exome sequencing (WES) of more than two hundred DLBCLs has completely redefined the genetic landscape of the disease by identifying recurrent single nucleotide variants and providing new therapeutic opportunities for the germinal center B-cell like (GCB), activated B-cell like (ABC), or primary mediastinal B-cell (PMBL) molecular subtypes. Some of these somatic mutations target genes that play a crucial role in B-cell function (BCR signaling, NF-κB pathway, NOTCH signaling, Toll-like receptor signaling, and the PI3K pathway), immunity, cell cycle/apoptosis, or chromatin modification. In this review, we present an overview of the mutations recently discovered by NGS in DLBCL and discuss their biological relevance and possible impacts on clinical management.

  1. Concise Review: Wharton’s Jelly-Derived Cells Are a Primitive Stromal Cell Population

    Science.gov (United States)

    Troyer, Deryl L.; Weiss, Mark L.

    2012-01-01

    Here, the literature was reviewed to evaluate whether a population of mesenchymal stromal cells derived from Wharton’s jelly cells (WJCs) is a primitive stromal population. A clear case can be made for WJCs as a stromal population since they display the characteristics of MSCs as defined by the International Society for Cellular Therapy; for example, they grow as adherent cells with mesenchymal morphology, they are self-renewing, they express cell surface markers displayed by MSCs, and they may be differentiated into bone, cartilage, adipose, muscle, and neural cells. Like other stromal cells, WJCs support the expansion of other stem cells, such as hematopoietic stem cells, are well-tolerated by the immune system, and they have the ability to home to tumors. In contrast to bone marrow MSCs, WJCs have greater expansion capability, faster growth in vitro, and may synthesize different cytokines. WJCs are therapeutic in several different pre-clinical animal models of human disease such as neurodegenerative disease, cancer, heart disease, etc. The preclinical work suggests that the WJCs are therapeutic via trophic rescue and immune modulation. In summary, WJCs meet the definition of MSCs. Since WJCs expand faster and to a greater extent than adult-derived MSCs, these findings suggest that WJCs are a primitive stromal cell population with therapeutic potential. Further work is needed to determine whether WJCs engraft long-term and display self-renewal and multipotency in vivo and, as such, demonstrate whether Wharton’s jelly cells are a true stem cell population. PMID:18065397

  2. Human embryonic stem cell microenvironment suppresses the tumorigenic phenotype of aggressive cancer cells.

    Science.gov (United States)

    Postovit, Lynne-Marie; Margaryan, Naira V; Seftor, Elisabeth A; Kirschmann, Dawn A; Lipavsky, Alina; Wheaton, William W; Abbott, Daniel E; Seftor, Richard E B; Hendrix, Mary J C

    2008-03-18

    Embryonic stem cells sustain a microenvironment that facilitates a balance of self-renewal and differentiation. Aggressive cancer cells, expressing a multipotent, embryonic cell-like phenotype, engage in a dynamic reciprocity with a microenvironment that promotes plasticity and tumorigenicity. However, the cancer-associated milieu lacks the appropriate regulatory mechanisms to maintain a normal cellular phenotype. Previous work from our laboratory reported that aggressive melanoma and breast carcinoma express the embryonic morphogen Nodal, which is essential for human embryonic stem cell (hESC) pluripotency. Based on the aberrant expression of this embryonic plasticity gene by tumor cells, this current study tested whether these cells could respond to regulatory cues controlling the Nodal signaling pathway, which might be sequestered within the microenvironment of hESCs, resulting in the suppression of the tumorigenic phenotype. Specifically, we discovered that metastatic tumor cells do not express the inhibitor to Nodal, Lefty, allowing them to overexpress this embryonic morphogen in an unregulated manner. However, exposure of the tumor cells to a hESC microenvironment (containing Lefty) leads to a dramatic down-regulation in their Nodal expression concomitant with a reduction in clonogenicity and tumorigenesis accompanied by an increase in apoptosis. Furthermore, this ability to suppress the tumorigenic phenotype is directly associated with the secretion of Lefty, exclusive to hESCs, because it is not detected in other stem cell types, normal cell types, or trophoblasts. The tumor-suppressive effects of the hESC microenvironment, by neutralizing the expression of Nodal in aggressive tumor cells, provide previously unexplored therapeutic modalities for cancer treatment.

  3. Development of hematopoietic stem and progenitor cells from mouse embryonic stem cells, in vitro, supported by ectopic human HOXB4 expression.

    Science.gov (United States)

    Pilat, Sandra; Carotta, Sebastian; Klump, Hannes

    2013-01-01

    Differentiation of pluripotent embryonic stem (ES) cells can recapitulate many aspects of hematopoiesis, in vitro, and can even generate cells capable of long-term multilineage repopulation after transplantation into recipient mice, when the homeodomain transcription factor HOXB4 is ectopically expressed. Thus, the ES-cell differentiation system is of great value for a detailed understanding of the process of blood formation. Furthermore, it is also promising for future application in hematopoietic cell and gene therapy. Since the arrival of techniques which allow the reprogramming of somatic cells back to an ES cell-like state, the generation of hematopoietic stem cells from patient-specific so-called induced pluripotent stem cells shows great promise for future therapeutic applications. In this chapter, we describe how to cultivate a certain feeder cell-independent mouse embryonic stem cell line, to manipulate these cells by retroviral gene transfer to ectopically express HOXB4, to differentiate these ES cells via embryoid body formation, and to selectively expand the arising, HOXB4-expressing hematopoietic stem and progenitor cells.

  4. Drosophila's contribution to stem cell research [v1; ref status: indexed, http://f1000r.es/5h7

    Directory of Open Access Journals (Sweden)

    Gyanesh Singh

    2015-06-01

    Full Text Available The discovery of Drosophila stem cells with striking similarities to mammalian stem cells has brought new hope for stem cell research. A recent development in Drosophila stem cell research is bringing wider opportunities for contemporary stem cell biologists. In this regard, Drosophila germ cells are becoming a popular model of stem cell research. In several cases, genes that controlled Drosophila stem cells were later discovered to have functional homologs in mammalian stem cells. Like mammals, Drosophila germline stem cells (GSCs are controlled by both intrinsic as well as external signals. Inside the Drosophila testes, germline and somatic stem cells form a cluster of cells (the hub. Hub cells depend on JAK-STAT signaling, and, in absence of this signal, they do not self-renew. In Drosophila, significant changes occur within the stem cell niche that contributes to a decline in stem cell number over time. In case of aging Drosophila, somatic niche cells show reduced DE-cadherin and unpaired (Upd proteins. Unpaired proteins are known to directly decrease stem cell number within the niches, and, overexpression of upd within niche cells restored GSCs in older males also . Stem cells in the midgut of Drosophila are also very promising. Reduced Notch signaling was found to increase the number of midgut progenitor cells. On the other hand, activation of the Notch pathway decreased proliferation of these cells. Further research in this area should lead to the discovery of additional factors that regulate stem and progenitor cells in Drosophila.

  5. Development of patient-specific hematopoietic stem and progenitor cell grafts from pluripotent stem cells, in vitro.

    Science.gov (United States)

    Klump, H; Teichweyde, N; Meyer, C; Horn, P A

    2013-06-01

    Pluripotent stem cells hold great promise for future applications in many areas of regenerative medicine. Their defining property of differentiation towards any of the three germ layers and all derivatives thereof, including somatic stem cells, explains the special interest of the biomedical community in this cell type. In this review, we focus on the current state of directed differentiation of pluripotent stem cells towards hematopoietic stem cells (HSCs). HSCs are especially interesting because they are the longest known and, thus, most intensively investigated somatic stem cells. They were the first stem cells successfully used for regenerative purposes in clinical human medicine, namely in bone marrow transplantation, and also the first stem cells to be genetically altered for the first successful gene therapy trial in humans. However, because of the technical difficulties associated with this rare type of cell, such as the current incapability of prospective isolation, in vitro expansion and gene repair by homologous recombination, there is great interest in using pluripotent stem cells, such as Embryonic Stem (ES-) cells, as a source for generating and genetically altering HSCs, ex vivo. This has been hampered by ethical concerns associated with the use of human ES-cells. However, since Shinya Yamanaka´s successful attempts to reprogram somatic cells of mice and men to an ES-cell like state, so-called induced pluripotent stem (iPS) cells, this field of research has experienced a huge boost. In this brief review, we will reflect on the status quo of directed hematopoietic differentiation of human and mouse pluripotent stem cells.

  6. Ionizing Radiation in Glioblastoma Initiating Cells

    Directory of Open Access Journals (Sweden)

    Maricruz eRivera

    2013-04-01

    Full Text Available Glioblastoma is the most common primary malignant brain tumor in adults with a median survival of 12-15 months with treatment consisting of surgical resection followed by ionizing radiation (IR and chemotherapy. Even aggressive treatment is often palliative due to near universal recurrence. Therapeutic resistance has been linked to a subpopulation of GBM cells with stem-cell like properties termed glioblastoma initiating cells (GICs. Recent efforts have focused on elucidating resistance mechanisms activated in GICs in response to IR. Among these, GICs preferentially activate the DNA damage response (DDR to result in a faster rate of double-strand break (DSB repair induced by IR as compared to the bulk tumor cells. IR also activates NOTCH and the hepatic growth factor (HGF receptor, c-MET, signaling cascades that play critical roles in promoting proliferation, invasion, and resistance to apoptosis. These pathways are preferentially activated in GICs and represent targets for pharmacologic intervention. While IR provides the benefit of improved survival, it paradoxically promotes selection of more malignant cellular phenotypes of glioblastoma. As reviewed here, finding effective combinations of radiation and molecular inhibitors to target GICs and non-GICs is essential for the development of more effective therapies.

  7. Mast cells are important modifiers of autoimmune disease: With so much evidence, why is there controversy?

    Directory of Open Access Journals (Sweden)

    Melissa Ann Brown

    2012-06-01

    Full Text Available There is abundant evidence that mast cells are active participants in events that mediate tissue damage in autoimmune disease. Disease-associated increases in mast cell numbers accompanied by mast cell degranulation and elaboration of numerous mast cell mediators at sites of inflammation are commonly observed in many human autoimmune diseases including multiple sclerosis, rheumatoid arthritis and bullous pemphigoid. In animal models, treatment with mast cell stabilizing drugs or mast cell ablation can result in diminished disease. A variety of receptors including those engaged by antibody, complement, pathogens and intrinsic danger signals are implicated in mast cell activation in disease. Similar to their role as first responders in infection settings, mast cells likely orchestrate early recruitment of immune cells, including neutrophils, to the sites of autoimmune destruction. This co-localization promotes cellular crosstalk and activation and results in the amplification of the local inflammatory response thereby promoting and sustaining tissue damage. Despite the evidence, there is still a debate regarding the relative role of mast cells in these processes. However, by definition, mast cells can only act as accessory cells to the self-reactive T and/or antibody driven autoimmune responses. Thus, when evaluating mast cell involvement using existing and somewhat imperfect animal models of disease, their importance is sometimes obscured. However, these potent immune cells are undoubtedly major contributors to autoimmunity and should be considered as important targets for therapeutic disease intervention.

  8. Gene expression profiling in multipotent DFAT cells derived from mature adipocytes.

    Science.gov (United States)

    Ono, Hiromasa; Oki, Yoshinao; Bono, Hidemasa; Kano, Koichiro

    2011-04-15

    Cellular dedifferentiation signifies the withdrawal of cells from a specific differentiated state to a stem cell-like undifferentiated state. However, the mechanism of dedifferentiation remains obscure. Here we performed comparative transcriptome analyses during dedifferentiation in mature adipocytes (MAs) to identify the transcriptional signatures of multipotent dedifferentiated fat (DFAT) cells derived from MAs. Using microarray systems, we explored similarly expressed as well as significantly differentially expressed genes in MAs during dedifferentiation. This analysis revealed significant changes in gene expression during this process, including a significant reduction in expression of genes for lipid metabolism concomitantly with a significant increase in expression of genes for cell movement, cell migration, tissue developmental processes, cell growth, cell proliferation, cell morphogenesis, altered cell shape, and cell differentiation. Our observations indicate that the transcriptional signatures of DFAT cells derived from MAs are summarized in terms of a significant decrease in functional phenotype-related genes and a parallel increase in cell proliferation, altered cell morphology, and regulation of the differentiation of related genes. A better understanding of the mechanisms involved in dedifferentiation may enable scientists to control and possibly alter the plasticity of the differentiated state, which may lead to benefits not only in stem cell research but also in regenerative medicine.

  9. Differential expression of functional Fc-receptors and additional immune complex receptors on mouse kidney cells.

    Science.gov (United States)

    Suwanichkul, Adisak; Wenderfer, Scott E

    2013-12-01

    The precise mechanisms by which circulating immune complexes accumulate in the kidney to form deposits in glomerulonephritis are not well understood. In particular, the role of resident cells within glomeruli of the kidney has been widely debated. Immune complexes have been shown to bind one glomerular cell type (mesangial cells) leading to functional responses such as pro-inflammatory cytokine production. To further assess the presence of functional immunoreceptors on resident glomerular cells, cultured mouse renal epithelial, endothelial, and mesangial cells were treated with heat-aggregated mouse IgG or preformed murine immune complexes. Mesangial and renal endothelial cells were found to bind IgG complexes, whereas glomerular epithelial cell binding was minimal. A blocking antibody for Fc-gamma receptors reduced binding to mesangial cells but not renal endothelial cells, suggesting differential immunoreceptor utilization. RT-PCR and immunostaining based screening of cultured renal endothelial cells showed limited low-level expression of known Fc-receptors and Ig binding proteins. The interaction between mesangial cells and renal endothelial cells and immune complexes resulted in distinct, cell-specific patterns of chemokine and cytokine production. This novel pathway involving renal endothelial cells likely contributes to the predilection of circulating immune complex accumulation within the kidney and to the inflammatory responses that drive kidney injury.

  10. Reactivity of alveolar epithelial cells in primary culture with type I cell monoclonal antibodies.

    Science.gov (United States)

    Danto, S I; Zabski, S M; Crandall, E D

    1992-03-01

    An understanding of the process of alveolar epithelial cell growth and differentiation requires the ability to trace and analyze the phenotypic transitions that the cells undergo. This analysis demands specific phenotypic probes to type II and, especially, type I pneumocytes. To this end, monoclonal antibodies have been generated to type I alveolar epithelial cells using an approach designed to enhance production of lung-specific clones from a crude lung membrane preparation. The monoclonal antibodies were screened by a combination of enzyme-linked immunosorbent assay and immunohistochemical techniques, with the determination of type I cell specificity resting primarily on immunoelectron microscopic localization. Two of these new markers of the type I pneumocyte phenotype (II F1 and VIII B2) were used to analyze primary cultures of type II cells growing on standard tissue culture plastic and on a variety of substrata reported to affect the morphology of these cells in culture. On tissue culture plastic, the antibodies fail to react with early (days 1 to 3) type II cell cultures. The cells become progressively more reactive with time in culture to a plateau of approximately 6 times background by day 8, with a maximum rate of increase between days 3 and 5. This finding is consistent with the hypothesis that type II cells in primary culture undergo at least partial differentiation into type I cells. Type II cells grown on laminin, which reportedly delays the loss of type II cell appearance, and on fibronectin, which has been reported to facilitate cell spreading and loss of type II cell features, develop the type I cell markers during cultivation in vitro with kinetics similar to those on uncoated tissue culture plastic. Cells on type I collagen and on tissue culture-treated Nuclepore filters, which have been reported to support monolayers with type I cell-like morphology, also increase their expression of the II F1 and VIII B2 epitopes around days 3 to 5. Taken

  11. EMPLOYMENT OF A «SIDE POPULATION» APPROACH TO STEM CELL ISOLATION IN NORMAL AND TUMOR TISSUES

    Directory of Open Access Journals (Sweden)

    O. R. Tsinkalovsky

    2008-01-01

    Full Text Available Abstract. A combination of fluorescent staining with Hoechst 33342 dye, and flow cytometry of murine bone marrow cells may be used for separation of a side population (SP, which is highly enriched for hematopoietic stem cells capable of long-term hematopoietic reconstitution in lethally irradiated recipients. Recently, this approach was also applied to analysis of SP cells in several types of non-hematopoietic tissues, and malignant tumours. In spite of yet poor definition of phenotype and functional potency of SP cells from various tissues, the method of SP isolation may be a useful tool for analysis and pre-enrichment of stem cell-like cells of different origin. Present review article presents a brief description of Hoechst 33342-staining approach, and of recent reports concerning SP studies in various normal and malignant tissues. (Med. Immunol., vol. 10, N 4-5, pp 319-326.

  12. Characterization of small, mononuclear blood cells from salmon having high phagocytic capacity and ability to differentiate into dendritic like cells.

    Directory of Open Access Journals (Sweden)

    Gyri T Haugland

    Full Text Available Phagocytes are the principal component of the innate immune system, playing a key role in the clearance of foreign particles that include potential pathogens. In vertebrates, both neutrophils and mononuclear cells like monocytes, macrophages and dendritic cells are all professional phagocytes. In teleosts, B-lymphocytes also have potent phagocytic ability. We have isolated a population of small (<5 µm, mononuclear blood cells from Atlantic salmon (Salmo salar L. not previously characterized. In order to identify them, we have performed morphological, gene expression, flow cytometry, cytochemical, ultrastructural and functional analyses. Interestingly, they highly express the gene encoding CD83, the most characteristic cell surface marker for dendritic cells in mammals, and MHC class II limited to professional antigen presenting cells. They did not express genes nor did they have cell markers for B-cells, T-cells, monocytes/macrophages or neutrophils as shown by qRT-PCR, flow cytometry and immunoblotting. A remarkable feature of these cells is their potent phagocytic capacity. Their oxygen-independent killing mechanism, as shown by intense acid phosphatase staining, is supported by lack of respiratory burst and myeloperoxidase activity and the acid phosphatase's sensitivity to tartrate. They show a high level of morphological plasticity, as, upon stimulation with mitogens, they change morphology and obtain branching protrusions similarly to dendritic cells. We suggest, based on our findings, that the small, round cells described here are progenitor cells with potential to differentiate into dendritic like cells, although we can not exclude the possibility that they represent a novel cell type.

  13. Cellular Adjuvant Properties, Direct Cytotoxicity of Re-differentiated Vα24 Invariant NKT-like Cells from Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Shuichi Kitayama

    2016-02-01

    Full Text Available Vα24 invariant natural killer T (iNKT cells are a subset of T lymphocytes implicated in the regulation of broad immune responses. They recognize lipid antigens presented by CD1d on antigen-presenting cells and induce both innate and adaptive immune responses, which enhance effective immunity against cancer. Conversely, reduced iNKT cell numbers and function have been observed in many patients with cancer. To recover these numbers, we reprogrammed human iNKT cells to pluripotency and then re-differentiated them into regenerated iNKT cells in vitro through an IL-7/IL-15-based optimized cytokine combination. The re-differentiated iNKT cells showed proliferation and IFN-γ production in response to α-galactosylceramide, induced dendritic cell maturation and downstream activation of both cytotoxic T lymphocytes and NK cells, and exhibited NKG2D- and DNAM-1-mediated NK cell-like cytotoxicity against cancer cell lines. The immunological features of re-differentiated iNKT cells and their unlimited availability from induced pluripotent stem cells offer a potentially effective immunotherapy against cancer.

  14. The Growing Complexity of Cancer Cell Response to DNA-Damaging Agents: Caspase 3 Mediates Cell Death or Survival?

    Science.gov (United States)

    Mirzayans, Razmik; Andrais, Bonnie; Kumar, Piyush; Murray, David

    2016-05-11

    It is widely stated that wild-type p53 either mediates the activation of cell cycle checkpoints to facilitate DNA repair and promote cell survival, or orchestrates apoptotic cell death following exposure to cancer therapeutic agents. This reigning paradigm has been challenged by numerous discoveries with different human cell types, including solid tumor-derived cell lines. Thus, activation of the p53 signaling pathway by ionizing radiation and other DNA-damaging agents hinders apoptosis and triggers growth arrest (e.g., through premature senescence) in some genetic backgrounds; such growth arrested cells remain viable, secrete growth-promoting factors, and give rise to progeny with stem cell-like properties. In addition, caspase 3, which is best known for its role in the execution phase of apoptosis, has been recently reported to facilitate (rather than suppress) DNA damage-induced genomic instability and carcinogenesis. This observation is consistent with an earlier report demonstrating that caspase 3 mediates secretion of the pro-survival factor prostaglandin E₂, which in turn promotes enrichment of tumor repopulating cells. In this article, we review these and related discoveries and point out novel cancer therapeutic strategies. One of our objectives is to demonstrate the growing complexity of the DNA damage response beyond the conventional "repair and survive, or die" hypothesis.

  15. Ophiobolin A induces paraptosis-like cell death in human glioblastoma cells by decreasing BKCa channel activity.

    Science.gov (United States)

    Bury, M; Girault, A; Mégalizzi, V; Spiegl-Kreinecker, S; Mathieu, V; Berger, W; Evidente, A; Kornienko, A; Gailly, P; Vandier, C; Kiss, R

    2013-03-28

    Glioblastoma multiforme (GBM) is the most lethal and common malignant human brain tumor. The intrinsic resistance of highly invasive GBM cells to radiation- and chemotherapy-induced apoptosis accounts for the generally dismal treatment outcomes. This study investigated ophiobolin A (OP-A), a fungal metabolite from Bipolaris species, for its promising anticancer activity against human GBM cells exhibiting varying degrees of resistance to proapoptotic stimuli. We found that OP-A induced marked changes in the dynamic organization of the F-actin cytoskeleton, and inhibited the proliferation and migration of GBM cells, likely by inhibiting big conductance Ca(2+)-activated K(+) channel (BKCa) channel activity. Moreover, our results indicated that OP-A induced paraptosis-like cell death in GBM cells, which correlated with the vacuolization, possibly brought about by the swelling and fusion of mitochondria and/or the endoplasmic reticulum (ER). In addition, the OP-A-induced cell death did not involve the activation of caspases. We also showed that the expression of BKCa channels colocalized with these two organelles (mitochondria and ER) was affected in this programmed cell death pathway. Thus, this study reveals a novel mechanism of action associated with the anticancer effects of OP-A, which involves the induction of paraptosis through the disruption of internal potassium ion homeostasis. Our findings offer a promising therapeutic strategy to overcome the intrinsic resistance of GBM cells to proapoptotic stimuli.

  16. Glioblastoma Stem Cells Respond to Differentiation Cues but Fail to Undergo Commitment and Terminal Cell-Cycle Arrest

    Directory of Open Access Journals (Sweden)

    Helena Carén

    2015-11-01

    Full Text Available Glioblastoma (GBM is an aggressive brain tumor whose growth is driven by stem cell-like cells. BMP signaling triggers cell-cycle exit and differentiation of GBM stem cells (GSCs and, therefore, might have therapeutic value. However, the epigenetic mechanisms that accompany differentiation remain poorly defined. It is also unclear whether cell-cycle arrest is terminal. Here we find only a subset of GSC cultures exhibit astrocyte differentiation in response to BMP. Although overtly differentiated non-cycling astrocytes are generated, they remain vulnerable to cell-cycle re-entry and fail to appropriately reconfigure DNA methylation patterns. Chromatin accessibility mapping identified loci that failed to alter in response to BMP and these were enriched in SOX transcription factor-binding motifs. SOX transcription factors, therefore, may limit differentiation commitment. A similar propensity for cell-cycle re-entry and de-differentiation was observed in GSC-derived oligodendrocyte-like cells. These findings highlight significant obstacles to BMP-induced differentiation as therapy for GBM.

  17. Characterization of small, mononuclear blood cells from salmon having high phagocytic capacity and ability to differentiate into dendritic like cells.

    Science.gov (United States)

    Haugland, Gyri T; Jordal, Ann-Elise O; Wergeland, Heidrun I

    2012-01-01

    Phagocytes are the principal component of the innate immune system, playing a key role in the clearance of foreign particles that include potential pathogens. In vertebrates, both neutrophils and mononuclear cells like monocytes, macrophages and dendritic cells are all professional phagocytes. In teleosts, B-lymphocytes also have potent phagocytic ability. We have isolated a population of small (neutrophils as shown by qRT-PCR, flow cytometry and immunoblotting. A remarkable feature of these cells is their potent phagocytic capacity. Their oxygen-independent killing mechanism, as shown by intense acid phosphatase staining, is supported by lack of respiratory burst and myeloperoxidase activity and the acid phosphatase's sensitivity to tartrate. They show a high level of morphological plasticity, as, upon stimulation with mitogens, they change morphology and obtain branching protrusions similarly to dendritic cells. We suggest, based on our findings, that the small, round cells described here are progenitor cells with potential to differentiate into dendritic like cells, although we can not exclude the possibility that they represent a novel cell type.

  18. Isolation and characterization of a metastatic hybrid cell line generated by ER negative and ER positive breast cancer cells in mouse bone marrow.

    Directory of Open Access Journals (Sweden)

    Keya De Mukhopadhyay

    Full Text Available BACKGROUND: The origin and the contribution of breast tumor heterogeneity to its progression are not clear. We investigated the effect of a growing orthotopic tumor formed by an aggressive estrogen receptor (ER-negative breast cancer cell line on the metastatic potential of a less aggressive ER-positive breast cancer cell line for the elucidation of how the presence of heterogeneous cancer cells might affect each other's metastatic behavior. METHODS: ER positive ZR-75-1/GFP/puro cells, resistant to puromycin and non-tumorigenic/non-metastatic without exogenous estrogen supplementation, were injected intracardiacally into mice bearing growing orthotopic tumors, formed by ER negative MDA-MB-231/GFP/Neo cells resistant to G418. A variant cell line B6, containing both estrogen-dependent and -independent cells, were isolated from GFP expressing cells in the bone marrow and re-inoculated in nude mice to generate an estrogen-independent cell line B6TC. RESULTS: The presence of ER negative orthotopic tumors resulted in bone metastasis of ZR-75-1 without estrogen supplementation. The newly established B6TC cell line was tumorigenic without estrogen supplementation and resistant to both puromycin and G418 suggesting its origin from the fusion of MDA-MB-231/GFP/Neo and ZR-75-1/GFP/puro in the mouse bone marrow. Compared to parental cells, B6TC cells were more metastatic to lung and bone after intracardiac inoculation. More significantly, B6TC mice also developed brain metastasis, which was not observed in the MDA-MB-231/GFP/Neo cell-inoculated mice. Low expression of ERα and CD24, and high expression of EMT-related markers such as Vimentin, CXCR4, and Integrin-β1 along with high CD44 and ALDH expression indicated stem cell-like characteristics of B6TC. Gene microarray analysis demonstrated a significantly different gene expression profile of B6TC in comparison to those of parental cell lines. CONCLUSIONS: Spontaneous generation of the novel hybrid cell

  19. Gingival fibroblasts as a promising source of induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Hiroshi Egusa

    Full Text Available BACKGROUND: Induced pluripotent stem (iPS cells efficiently generated from accessible tissues have the potential for clinical applications. Oral gingiva, which is often resected during general dental treatments and treated as biomedical waste, is an easily obtainable tissue, and cells can be isolated from patients with minimal discomfort. METHODOLOGY/PRINCIPAL FINDINGS: We herein demonstrate iPS cell generation from adult wild-type mouse gingival fibroblasts (GFs via introduction of four factors (Oct3/4, Sox2, Klf4 and c-Myc; GF-iPS-4F cells or three factors (the same as GF-iPS-4F cells, but without the c-Myc oncogene; GF-iPS-3F cells without drug selection. iPS cells were also generated from primary human gingival fibroblasts via four-factor transduction. These cells exhibited the morphology and growth properties of embryonic stem (ES cells and expressed ES cell marker genes, with a decreased CpG methylation ratio in promoter regions of Nanog and Oct3/4. Additionally, teratoma formation assays showed ES cell-like derivation of cells and tissues representative of all three germ layers. In comparison to mouse GF-iPS-4F cells, GF-iPS-3F cells showed consistently more ES cell-like characteristics in terms of DNA methylation status and gene expression, although the reprogramming process was substantially delayed and the overall efficiency was also reduced. When transplanted into blastocysts, GF-iPS-3F cells gave rise to chimeras and contributed to the development of the germline. Notably, the four-factor reprogramming efficiency of mouse GFs was more than 7-fold higher than that of fibroblasts from tail-tips, possibly because of their high proliferative capacity. CONCLUSIONS/SIGNIFICANCE: These results suggest that GFs from the easily obtainable gingival tissues can be readily reprogrammed into iPS cells, thus making them a promising cell source for investigating the basis of cellular reprogramming and pluripotency for future clinical applications

  20. Similar prognosis of transformed and de novo diffuse large B-cell lymphomas in patients treated with immunochemotherapy.

    Science.gov (United States)

    Sorigue, Marc; Garcia, Olga; Baptista, Maria Joao; Sancho, Juan-Manuel; Tapia, Gustavo; Mate, José Luis; Feliu, Evarist; Navarro, José-Tomás; Ribera, Josep-Maria

    2017-03-22

    The prognosis of diffuse large B-cell lymphomas (DLBCL) transformed from indolent lymphoma (TL) has been considered poorer than that of de novo DLBCL. However, it seems to have improved since the introduction of rituximab. We compared the characteristics (including the cell-of-origin), and the prognosis of 29 patients with TL and 101 with de novo DLBCL treated with immunochemotherapy. Patients with TL and de novo DLBCL had similar characteristics. All TL cases evolving from follicular lymphoma were germinal-center B-cell-like, while those TL from marginal zone lymphoma or chronic lymphocytic leukemia were non-germinal-center B-cell-like. The complete response rate was similar in TL and de novo DLBCL (62 vs. 66%, P=.825). The 5-year overall and progression-free survival probabilities (95% CI) were 59% (40-78) and 41% (22-60) for TL and 63% (53-73) and 60% (50-70) for de novo DLBCL, respectively (P=.732 for overall survival and P=.169 for progression-free survival). In this study, the prognosis of TL and de novo DLBCL treated with immunochemotherapy was similar. The role of intensification with stem cell transplantation in the management of TL may be questionable in the rituximab era. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  1. Therapeutic potential of stem cells in veterinary practice

    Directory of Open Access Journals (Sweden)

    Nitin E Gade

    Full Text Available Stem cell research acquired great attention during last decade inspite of incredible therapeutic potential of these cells the ethical controversies exists. Stem cells have enormous uses in animal cloning, drug discovery, gene targeting, transgenic production and regenerative therapy. Stem cells are the naïve cells of body which can self-renew and differentiate into other cell types to carry out multiple functions, these properties have been utilized in therapeutic application of stem cells in human and veterinary medicine. The application of stem cells in human medicine is well established and it is commonly used for chronic and accidental injuries. In Veterinary sciences previous studies mostly focused on establishing protocols for isolation and their characterization but with advancement in array of techniques for in vitro studies, stem cells rapidly became a viable tool for regenerative therapy of chronic, debilitating and various unresponsive clinical diseases and disorders. Multipotent adult stem cells have certain advantages over embryonic stem cells like easy isolation and expansion from numerous sources, less immunogenicity and no risk of teratoma formation hence their use is preferred in therapeutics. Adult stem cells have been utilized for treatment of spinal injuries, tendonitis, cartilage defects, osteoarthritis and ligament defects, liver diseases, wounds, cardiac and bone defects in animals. The multi-potential capability of these cells can be better utilized in near future to overcome the challenges faced by the clinicians. This review will emphasize on the therapeutic utilization and success of stem cell therapies in animals. [Vet. World 2012; 5(8.000: 499-507

  2. Getting to the heart of the matter in cancer: Novel approaches to targeting cancer stem cells.

    Science.gov (United States)

    Colvin, Hugh; Mori, Masaki

    2017-01-01

    Cancer is one of the leading causes of deaths worldwide. While cancers may initially show good response to chemotherapy or radiotherapy, it is not uncommon for them to recur at a later date. This phenomenon may be explained by the existence of a small population of cancer stem cells, which are inherently resistant to anti-cancer treatment as well as being capable of self-renewal. Therefore, while most of the tumour bulk consisting of cells that are not cancer stem cells respond to treatment, the cancer stem cells remain, leading to disease recurrence. Following this logic, the effective targeting of cancer stem cells holds promise for providing long-term cure in individuals with cancer. Cancer stem cells, like normal stem cells are endowed with mechanisms to protect themselves against a wide range of insults including anti-cancer treatments, such as the enhancement of the DNA damage response and the ability to extrude drugs. It is therefore important to develop new strategies if cancer stem cells are to be eradicated. In this review, we describe the strategies that we have developed to target cancer stem cells. These strategies include the targeting of the histone demethylase jumonji, AT rich interactive domain 1B (JARID1B), which we found to be functionally significant in the maintenance of cancer stem cells. Other strategies being pursued include reprogramming of cancer stem cells and the targeting of a functional cell surface marker of liver cancer stem cells, the aminopeptidase CD13.

  3. Emergent structures and dynamics of cell colonies by contact inhibition of locomotion.

    Science.gov (United States)

    Smeets, Bart; Alert, Ricard; Pešek, Jiří; Pagonabarraga, Ignacio; Ramon, Herman; Vincent, Romaric

    2016-12-20

    Cells in tissues can organize into a broad spectrum of structures according to their function. Drastic changes of organization, such as epithelial-mesenchymal transitions or the formation of spheroidal aggregates, are often associated either to tissue morphogenesis or to cancer progression. Here, we study the organization of cell colonies by means of simulations of self-propelled particles with generic cell-like interactions. The interplay between cell softness, cell-cell adhesion, and contact inhibition of locomotion (CIL) yields structures and collective dynamics observed in several existing tissue phenotypes. These include regular distributions of cells, dynamic cell clusters, gel-like networks, collectively migrating monolayers, and 3D aggregates. We give analytical predictions for transitions between noncohesive, cohesive, and 3D cell arrangements. We explicitly show how CIL yields an effective repulsion that promotes cell dispersal, thereby hindering the formation of cohesive tissues. Yet, in continuous monolayers, CIL leads to collective cell motion, ensures tensile intercellular stresses, and opposes cell extrusion. Thus, our work highlights the prominent role of CIL in determining the emergent structures and dynamics of cell colonies.

  4. Reprogramming of Melanoma Tumor-Infiltrating Lymphocytes to Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Hidehito Saito

    2016-01-01

    Full Text Available Induced pluripotent stem cells (iPSCs derived from somatic cells of patients hold great promise for autologous cell therapies. One of the possible applications of iPSCs is to use them as a cell source for producing autologous lymphocytes for cell-based therapy against cancer. Tumor-infiltrating lymphocytes (TILs that express programmed cell death protein-1 (PD-1 are tumor-reactive T cells, and adoptive cell therapy with autologous TILs has been found to achieve durable complete response in selected patients with metastatic melanoma. Here, we describe the derivation of human iPSCs from melanoma TILs expressing high level of PD-1 by Sendai virus-mediated transduction of the four transcription factors, OCT3/4, SOX2, KLF4, and c-MYC. TIL-derived iPSCs display embryonic stem cell-like morphology, have normal karyotype, express stem cell-specific surface antigens and pluripotency-associated transcription factors, and have the capacity to differentiate in vitro and in vivo. A wide variety of T cell receptor gene rearrangement patterns in TIL-derived iPSCs confirmed the heterogeneity of T cells infiltrating melanomas. The ability to reprogram TILs containing patient-specific tumor-reactive repertoire might allow the generation of patient- and tumor-specific polyclonal T cells for cancer immunotherapy.

  5. Y-27632, a ROCK Inhibitor, Promoted Limbal Epithelial Cell Proliferation and Corneal Wound Healing.

    Directory of Open Access Journals (Sweden)

    Chi-Chin Sun

    Full Text Available Transplantation of ex vivo cultured limbal epithelial cells is proven effective in restoring limbal stem cell deficiency. The present study aimed to investigate the promoting effect of Y-27632 on limbal epithelial cell proliferation. Limbal explants isolated from human donor eyes were expanded three weeks on culture dishes and outgrowth of epithelial cells was subsequently subcultured for in vitro experiments. In the presence of Y-27632, the ex vivo limbal outgrowth was accelerated, particularly the cells with epithelial cell-like morphology. Y-27632 dose-dependently promoted the proliferation of in vitro cultured human limbal epithelial cells as examined by phase contrast microscopy and luminescent cell-viability assay 30 hours after the treatment. The colony forming efficacy determined 7 days after the treatment was enhanced by Y-27632 also in a dose-dependent manner. The number of p63- or Ki67-positive cells was dose-dependently increased in Y-27632-treated cultures as detected by immunofluorescent staining and western blotanalysis. Cell cycle analysis by flow cytometric method revealed an increase in S-phase proliferating cells. The epithelial woundclosure rate was shown to be faster in experimental group received topical treatment withY-27632 than the sham control using a rat corneal wounding model. These resultsdemonstrate that Y-27632 can promote both the ex vivo and in vitro proliferation oflimbal epithelial cell proliferation. The in vivo enhanced epithelial wound healingfurther implies that the Y-27632 may act as a new strategy for treating limbal stem cell deficiency.

  6. Electrical characterization of dye sensitized nano solar cell using natural pomegranate juice as photosensitizer

    Science.gov (United States)

    Adithi, U.; Thomas, Sara; Uma, V.; Pradeep, N.

    2013-02-01

    This paper shows Electrical characterization of Dye Sensitized Solar Cell using natural dye, extracted from the pomegranate as a photo sensitizer and ZnO nanoparticles as semiconductor. The constituents of fabricated dye sensitized solar cell were working electrode, dye, electrolyte and counter electrode. ZnO nanoparticles were synthesized and used as semiconductor in working electrode. Carbon soot was used as counter electrode. The resistance of ZnO film on ITO film was found out. There was an increase in the resistance of the film and film changes from conducting to semiconducting. Photovoltaic parameters of the fabricated cell like Short circuit current, open circuit voltage, Fill factor and Efficiency were found out. This paper shows that usage of natural dyes like pomegranate juice as sensitizer enables faster and simpler production of cheaper and environmental friendly solar cell.

  7. Loss of CSL Unlocks a Hypoxic Response and Enhanced Tumor Growth Potential in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Eike-Benjamin Braune

    2016-05-01

    Full Text Available Notch signaling is an important regulator of stem cell differentiation. All canonical Notch signaling is transmitted through the DNA-binding protein CSL, and hyperactivated Notch signaling is associated with tumor development; thus it may be anticipated that CSL deficiency should reduce tumor growth. In contrast, we report that genetic removal of CSL in breast tumor cells caused accelerated growth of xenografted tumors. Loss of CSL unleashed a hypoxic response during normoxic conditions, manifested by stabilization of the HIF1α protein and acquisition of a polyploid giant-cell, cancer stem cell-like, phenotype. At the transcriptome level, loss of CSL upregulated more than 1,750 genes and less than 3% of those genes were part of the Notch transcriptional signature. Collectively, this suggests that CSL exerts functions beyond serving as the central node in the Notch signaling cascade and reveals a role for CSL in tumorigenesis and regulation of the cellular hypoxic response.

  8. Tc17 cells mediate vaccine immunity against lethal fungal pneumonia in immune deficient hosts lacking CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Som Gowda Nanjappa

    Full Text Available Vaccines may help reduce the growing incidence of fungal infections in immune-suppressed patients. We have found that, even in the absence of CD4(+ T-cell help, vaccine-induced CD8(+ T cells persist and confer resistance against Blastomyces dermatitidis and Histoplasma capsulatum. Type 1 cytokines contribute to that resistance, but they also are dispensable. Although the role of T helper 17 cells in immunity to fungi is debated, IL-17 producing CD8(+ T cells (Tc17 cells have not been investigated. Here, we show that Tc17 cells are indispensable in antifungal vaccine immunity in hosts lacking CD4(+ T cells. Tc17 cells are induced upon vaccination, recruited to the lung on pulmonary infection, and act non-redundantly in mediating protection in a manner that requires neutrophils. Tc17 cells did not influence type I immunity, nor did the lack of IL-12 signaling augment Tc17 cells, indicating a distinct lineage and function. IL-6 was required for Tc17 differentiation and immunity, but IL-1R1 and Dectin-1 signaling was unexpectedly dispensable. Tc17 cells expressed surface CXCR3 and CCR6, but only the latter was essential in recruitment to the lung. Although IL-17 producing T cells are believed to be short-lived, effector Tc17 cells expressed low levels of KLRG1 and high levels of the transcription factor TCF-1, predicting their long-term survival and stem-cell like behavior. Our work has implications for designing vaccines against fungal infections in immune suppressed patients.

  9. Tc17 cells mediate vaccine immunity against lethal fungal pneumonia in immune deficient hosts lacking CD4+ T cells.

    Science.gov (United States)

    Nanjappa, Som Gowda; Heninger, Erika; Wüthrich, Marcel; Gasper, David Joseph; Klein, Bruce S

    2012-01-01

    Vaccines may help reduce the growing incidence of fungal infections in immune-suppressed patients. We have found that, even in the absence of CD4(+) T-cell help, vaccine-induced CD8(+) T cells persist and confer resistance against Blastomyces dermatitidis and Histoplasma capsulatum. Type 1 cytokines contribute to that resistance, but they also are dispensable. Although the role of T helper 17 cells in immunity to fungi is debated, IL-17 producing CD8(+) T cells (Tc17 cells) have not been investigated. Here, we show that Tc17 cells are indispensable in antifungal vaccine immunity in hosts lacking CD4(+) T cells. Tc17 cells are induced upon vaccination, recruited to the lung on pulmonary infection, and act non-redundantly in mediating protection in a manner that requires neutrophils. Tc17 cells did not influence type I immunity, nor did the lack of IL-12 signaling augment Tc17 cells, indicating a distinct lineage and function. IL-6 was required for Tc17 differentiation and immunity, but IL-1R1 and Dectin-1 signaling was unexpectedly dispensable. Tc17 cells expressed surface CXCR3 and CCR6, but only the latter was essential in recruitment to the lung. Although IL-17 producing T cells are believed to be short-lived, effector Tc17 cells expressed low levels of KLRG1 and high levels of the transcription factor TCF-1, predicting their long-term survival and stem-cell like behavior. Our work has implications for designing vaccines against fungal infections in immune suppressed patients.

  10. Diffuse large B-cell lymphoma involving the central nervous system.

    Science.gov (United States)

    Gualco, Gabriela; Weiss, Lawrence M; Barber, Glen N; Bacchi, Carlos E

    2011-02-01

    Lymphomas involving the central nervous system are recognized increasingly in immunocompetent as well as immunosuppressed individuals, and the majority of the cases are diffuse large B-cell lymphoma (DLBCL). The aim of this study was to compare the immunophenotype, clinicopathological features, and association with Epstein-Barr virus (EBV) of DLBCL of the central nervous system (CNS) in 3 different clinical situations: primary, in immunocompetent patients; "primary," in immunosuppressed patients; and in patients with secondary involvement by systemic lymphoma. The authors reviewed the clinicopathological features, morphology, immunophenotype (according to germinal-center B-cell-like and nongerminal B-cell-like subtypes), and association with EBV in 36 cases of DLBCL of the CNS, including 25 primary cases, 5 associated with immunosuppression, and 6 cases with secondary involvement. Survival was evaluated in 15 cases of primary CNS lymphomas. Of the 36 patients, 19 were male and 18 female. Only 2 cases of lymphomas were EBV-positive; both occurred in immunosuppressed patients. Separation into germinal-center and non-germinal center subtypes by an immunohistochemistry panel showed that 68% of primary, 80% of secondary, and 83% of the cases associated with immunosuppression were of non-germinal-center subtype, respectively. Patients with non-germinal-center immunophenotype showed significantly worse survival than those with CNS lymphomas of the germinal-center subtype.

  11. Semi-synthetic minimal cells as a tool for biochemical ICT.

    Science.gov (United States)

    Stano, Pasquale; Rampioni, Giordano; Carrara, Paolo; Damiano, Luisa; Leoni, Livia; Luisi, Pier Luigi

    2012-07-01

    Biological systems evolved with the ability to communicate with their biotic surroundings through chemical signalling. Production, perception and decoding of the information carried by signal molecules allow individuals of a community to interact, cooperate, and coordinate their activities, establishing complex social behaviours. In this paper we speculate about the opportunity to use semi synthetic minimal cells (SSMCs) as artificial entities able to communicate, by processing biochemical information, with natural systems. SSMCs are liposome-based cell-like molecular assemblies designed for displaying minimal cellular functions, like gene transcription and translation. The technological advancements in the last few years led to successful production of functional proteins in SSMCs raises the possibility to generate semi synthetic cell-like systems expressing the biochemical apparatus for signal molecules production, perception and decoding. The variety of chemical "languages" evolutionary selected by bacteria to communicate provides a broad spectrum of biochemical opportunities exploitable to reach this goal in the near future. More in general, the consequences arising from the construction of synthetic systems capable of communicating with natural living organisms would greatly impact the applications of synthetic biology and biochemical-based information and communication technologies (ICTs) in medical sciences, for example for smart programmable and drug-producing systems.

  12. Transcription factor TFAP2C regulates major programs required for murine fetal germ cell maintenance and haploinsufficiency predisposes to teratomas in male mice.

    Directory of Open Access Journals (Sweden)

    Jana Schemmer

    Full Text Available Maintenance and maturation of primordial germ cells is controlled by complex genetic and epigenetic cascades, and disturbances in this network lead to either infertility or malignant aberration. Transcription factor TFAP2C has been described to be essential for primordial germ cell maintenance and to be upregulated in several human germ cell cancers. Using global gene expression profiling, we identified genes deregulated upon loss of Tfap2c in embryonic stem cells and primordial germ cell-like cells. We show that loss of Tfap2c affects many aspects of the genetic network regulating germ cell biology, such as downregulation of maturation markers and induction of markers indicative for somatic differentiation, cell cycle, epigenetic remodeling and pluripotency. Chromatin-immunoprecipitation analyses demonstrated binding of TFAP2C to regulatory regions of deregulated genes (Sfrp1, Dmrt1, Nanos3, c-Kit, Cdk6, Cdkn1a, Fgf4, Klf4, Dnmt3b and Dnmt3l suggesting that these genes are direct transcriptional targets of TFAP2C in primordial germ cells. Since Tfap2c deficient primordial germ cell-like cells display cancer related deregulations in epigenetic remodeling, cell cycle and pluripotency control, the Tfap2c-knockout allele was bred onto 129S2/Sv genetic background. There, mice heterozygous for Tfap2c develop with high incidence germ cell cancer resembling human pediatric germ cell tumors. Precursor lesions can be observed as early as E16.5 in developing testes displaying persisting expression of pluripotency markers. We further demonstrate that mice with a heterozygous deletion of the TFAP2C target gene Nanos3 are also prone to develop teratomas. These data highlight TFAP2C as a critical and dose-sensitive regulator of germ cell fate.

  13. The contribution of HGAL/GCET2 in immunohistological algorithms: a comparative study in 424 cases of nodal diffuse large B-cell lymphoma.

    Science.gov (United States)

    Gualco, Gabriela; Bacchi, Lívia M; Domeny-Duarte, Pollyanna; Natkunam, Yasodha; Bacchi, Carlos E

    2012-11-01

    Diffuse large B-cell lymphoma can be subclassified into at least two molecular subgroups by gene expression profiling: germinal center B-cell like and activated B-cell like diffuse large B-cell lymphoma. Several immunohistological algorithms have been proposed as surrogates to gene expression profiling at the level of protein expression, but their reliability has been an issue of controversy. Furthermore, the proportion of misclassified cases of germinal center B-cell subgroup by immunohistochemistry, in all reported algorithms, is higher compared with germinal center B-cell cases defined by gene expression profiling. We analyzed 424 cases of nodal diffuse large B-cell lymphoma with the panel of markers included in the three previously described algorithms: Hans, Choi, and Tally. To test whether the sensitivity of detecting germinal center B-cell cases could be improved, the germinal center B-cell marker HGAL/GCET2 was also added to all three algorithms. Our results show that the inclusion of HGAL/GCET2 significantly increased the detection of germinal center B-cell cases in all three algorithms (P<0.001). The proportions of germinal center B-cell cases in the original algorithms were 27%, 34%, and 19% for Hans, Choi, and Tally, respectively. In the modified algorithms, with the inclusion of HGAL/GCET2, the frequencies of germinal center B-cell cases were increased to 38%, 48%, and 35%, respectively. Therefore, HGAL/GCET2 protein expression may function as a marker for germinal center B-cell type diffuse large B-cell lymphoma. Consideration should be given to the inclusion of HGAL/GCET2 analysis in algorithms to better predict the cell of origin. These findings bear further validation, from comparison to gene expression profiles and from clinical/therapeutic data.

  14. Unique immunomodulatory effects of azelastine on dendritic cells in vitro.

    Science.gov (United States)

    Schumacher, S; Kietzmann, M; Stark, H; Bäumer, W

    2014-11-01

    Allergic contact dermatitis and atopic dermatitis are among the most common inflammatory skin diseases in western countries, and antigen-presenting cells like dendritic cells (DC) are key players in their pathophysiology. Histamine, an important mediator of allergic reactions, influences DC maturation and cytokine secretion, which led us to investigate the immunomodulatory potential of the well-known histamine H1 receptor antagonists: azelastine, olopatadine, cetirizine, and pyrilamine. Unlike other H1 antihistamines, azelastine decreased lipopolysaccharide-induced tumor necrosis factor α and interleukin-12 secretion from murine bone marrow-derived DC. This effect was independent of histamine receptors H1, H2, or H4 and may be linked to inhibition of the nuclear factor kappa B pathway. Moreover, only azelastine reduced proliferation of allogenic T cells in a mixed leukocyte reaction. We then tested topical application of the H1 antihistamines on mice sensitized against toluene-2,4-diisocyanate, a model of Th2-mediated allergic contact dermatitis. In contrast to the in vitro results, all investigated substances were efficacious in reducing allergic ear swelling. Azelastine has unique effects on dendritic cells and T cell interaction in vitro. However, this did not translate into superior in vivo efficacy for Th2-mediated allergic dermatitis, possibly due to the effects of the antihistamines on other cell types involved in skin inflammation. Future research will have to clarify whether these properties are relevant to in vivo models of allergic inflammation with a different T cell polarization.

  15. Identification and immunophenotypic characterization of normal and pathological mast cells.

    Science.gov (United States)

    Morgado, José Mário; Sánchez-Muñoz, Laura; Teodósio, Cristina; Escribano, Luís

    2014-01-01

    Mast cells (MCs) are secretory cells that are central players in human allergic disease and immune responses. With the exception of a few pathological situations, MCs are usually present at relatively low frequencies in most tissues. Since their first description, MCs in tissues were identified mostly using their morphological characteristics and their typical coloration when stained with aniline dyes. However, increasing availability of highly specific antibodies now permits the use of fluorescence-based flow cytometry as the method of choice for the quantification, characterization, and purification of cells in suspension. This technique allows for a rapid analysis of thousands of events and for the identification of cells present at frequencies as low as one event in 10(6) unwanted cells. This method also permits for simultaneous characterization of multiple antigens at a single-cell level, which is ideal in order to study rare populations of cells like MCs. Here we describe the basis of flow cytometry-based immunophenotyping applied to the study of MC. The protocol focuses on the study of human MCs present in body fluids (mainly bone marrow) but can easily be adapted to study MCs from other tissues and species.

  16. EGF-mediated EGFR/ERK signaling pathway promotes germinative cell proliferation in Echinococcus multilocularis that contributes to larval growth and development.

    Science.gov (United States)

    Cheng, Zhe; Liu, Fan; Li, Xiu; Dai, Mengya; Wu, Jianjian; Guo, Xinrui; Tian, Huimin; Heng, Zhijie; Lu, Ying; Chai, Xiaoli; Wang, Yanhai

    2017-02-01

    Larvae of the tapeworm E. multilocularis cause alveolar echinococcosis (AE), one of the most lethal helminthic infections in humans. A population of stem cell-like cells, the germinative cells, is considered to drive the larval growth and development within the host. The molecular mechanisms controlling the behavior of germinative cells are largely unknown. Using in vitro cultivation systems we show here that the EGFR/ERK signaling in the parasite can promote germinative cell proliferation in response to addition of human EGF, resulting in stimulated growth and development of the metacestode larvae. Inhibition of the signaling by either the EGFR inhibitors CI-1033 and BIBW2992 or the MEK/ERK inhibitor U0126 impairs germinative cell proliferation and larval growth. These data demonstrate the contribution of EGF-mediated EGFR/ERK signaling to the regulation of germinative cells in E. multilocularis, and suggest the EGFR/ERK signaling as a potential therapeutic target for AE and perhaps other human cestodiasis.

  17. Effect of proton and gamma irradiation on human lung carcinoma cells: Gene expression, cell cycle, cell death, epithelial–mesenchymal transition and cancer-stem cell trait as biological end points

    Energy Technology Data Exchange (ETDEWEB)

    Narang, Himanshi, E-mail: narangh@barc.gov.in [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kumar, Amit [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Bhat, Nagesh [Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Pandey, Badri N.; Ghosh, Anu [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2015-10-15

    Highlights: • Biological effectiveness of proton and gamma irradiation is compared in A549 cells. • Proton irradiation is two times more cytotoxic than gamma irradiation. • It alters ten times more number of early genes, as observed by microarray study. • It does not enhance cell migration, invasion and adhesion, unlike gamma irradiation. • It was more effective in reducing the percentage of cancer stem cell like cells. - Abstract: Proton beam therapy is a cutting edge modality over conventional gamma radiotherapy because of its physical dose deposition advantage. However, not much is known about its biological effects vis-a-vis gamma irradiation. Here we investigated the effect of proton- and gamma- irradiation on cell cycle, death, epithelial-mesenchymal transition (EMT) and “stemness” in human non-small cell lung carcinoma cells (A549). Proton beam (3 MeV) was two times more cytotoxic than gamma radiation and induced higher and longer cell cycle arrest. At equivalent doses, numbers of genes responsive to proton irradiation were ten times higher than those responsive to gamma irradiation. At equitoxic doses, the proton-irradiated cells had reduced cell adhesion and migration ability as compared to the gamma-irradiated cells. It was also more effective in reducing population of Cancer Stem Cell (CSC) like cells as revealed by aldehyde dehydrogenase activity and surface phenotyping by CD44{sup +}, a CSC marker. These results can have significant implications for proton therapy in the context of suppression of molecular and cellular processes that are fundamental to tumor expansion.

  18. CD90 and CD110 correlate with cancer stem cell potentials in human T-acute lymphoblastic leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, Hiroto; Nishida, Hiroko; Iwata, Satoshi [Division of Clinical Immunology, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo 108-8639 (Japan); Dang, Nam H. [Department of Hematologic Malignancies, Nevada Cancer Institute, Las Vegas, NV (United States); Morimoto, Chikao, E-mail: morimoto@ims.u-tokyo.ac.jp [Division of Clinical Immunology, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo 108-8639 (Japan)

    2009-05-29

    Although cancer stem cells (CSCs) have been recently identified in myeloid leukemia, published data on lymphoid malignancy have been sparse. T-acute lymphoblastic leukemia (T-ALL) is characterized by the abnormal proliferation of T-cell precursors and is generally aggressive. As CD34 is the only positive-selection marker for CSCs in T-ALL, we performed extensive analysis of CD markers in T-ALL cell lines. We found that some of the tested lines consisted of heterogeneous populations of cells with various levels of surface marker expression. In particular, a small subpopulation of CD90 (Thy-1) and CD110 (c-Mpl) were shown to correlate with stem cell properties both in vitro and in transplantation experiments. As these markers are expressed on hematopoietic stem cells, our results suggest that stem cell-like population are enriched in CD90+/CD110+ fraction and they are useful positive-selection markers for the isolation of CSCs in some cases of T-ALL.

  19. Epigenetics targeted protein-vorinostat nanomedicine inducing apoptosis in heterogeneous population of primary acute myeloid leukemia cells including refractory and relapsed cases.

    Science.gov (United States)

    Chandran, Parwathy; Kavalakatt, Anu; Malarvizhi, Giridharan Loghanathan; Vasanthakumari, Divya Rani Vikraman Nair; Retnakumari, Archana Payickattu; Sidharthan, Neeraj; Pavithran, Keechilat; Nair, Shantikumar; Koyakutty, Manzoor

    2014-05-01

    Aberrant epigenetics play a key role in the onset and progression of acute myeloid leukemia (AML). Herein we report in silico modelling based development of a novel, protein-vorinostat nanomedicine exhibiting selective and superior anti-leukemic activity against heterogeneous population of AML patient samples (n=9), including refractory and relapsed cases, and three representative cell lines expressing CD34(+)/CD38(-) stem cell phenotype (KG-1a), promyelocytic phenotype (HL-60) and FLT3-ITD mutation (MV4-11). Nano-vorinostat having ~100nm size exhibited enhanced cellular uptake rendering significantly lower IC50 in AML cell lines and patient samples, and induced enhanced HDAC inhibition, oxidative injury, cell cycle arrest and apoptosis compared to free vorinostat. Most importantly, nanomedicine showed exceptional single-agent activity against the clonogenic proliferative capability of bone marrow derived leukemic progenitors, while remaining non-toxic to healthy bone marrow cells. Collectively, this epigenetics targeted nanomedicine appears to be a promising therapeutic strategy against various French-American-British (FAB) classes of AML. Through the use of a protein-vorinostat agent, exceptional single-agent activity was demonstrated against the clonogenic proliferative capability of bone marrow derived leukemic progenitors, while remaining non-toxic to healthy bone marrow cells. The studied epigenetics targeted nanomedicine approach is a promising therapeutic strategy against various French-American-British classes of acute myeloid leukemia. © 2014 Elsevier Inc. All rights reserved.

  20. Therapeutic Implications of Newly Identified Stem Cell Populations From the Skin Dermis.

    Science.gov (United States)

    Chen, Zelin; Wang, Yu; Shi, Chunmeng

    2015-01-01

    Skin, the largest organ of the body, is a promising reservoir for adult stem cells. The epidermal stem cells and hair follicle stem cells have been well studied for their important roles in homeostasis, regeneration, and repair of the epidermis and appendages for decades. However, stem cells residing in dermis were not identified until the year 2001, when a variety of stem cell subpopulations have been isolated and identified from the dermis of mammalian skin such as neural crest stem cells, mesenchymal stem cell-like dermal stem cells, and dermal hematopoietic cells. These stem cell subpopulations exhibited capabilities of self-renewing, multipotent differentiating, and immunosuppressive properties. Hence, the dermis-derived stem cells showed extensive potential applications in regenerative medicine, especially for wound healing/tissue repair, neural repair, and hematopoietic recovery. Here we summarized current research on the stem cell subpopulations derived from the dermis and aimed to provide a comprehensive review on their isolation, specific markers, differentiation capacity, and the functional activities in homeostasis, regeneration, and tissue repair.

  1. Development of regulatory T cells requires IL-7Ralpha stimulation by IL-7 or TSLP.

    Science.gov (United States)

    Mazzucchelli, Renata; Hixon, Julie A; Spolski, Rosanne; Chen, Xin; Li, Wen Qing; Hall, Veronica L; Willette-Brown, Jami; Hurwitz, Arthur A; Leonard, Warren J; Durum, Scott K

    2008-10-15

    Interleukin-7 (IL-7), a cytokine produced by stromal cells, is required for thymic development and peripheral homeostasis of most major subsets of T cells. We examined whether regulatory T (Treg) cells also required the IL-7 pathway by analyzing IL-7Ralpha(-/-) mice. We observed a striking reduction in cells with the Treg surface phenotype (CD4, CD25, GITR (glucocorticoid-induced tumor necrosis factor [TNF]-like receptor), CD45RB, CD62L, CD103) or intracellular markers (cytotoxic T-lymphocyte-associated antigen-4, CTLA-4, and forkhead box transcription factor 3, Foxp3). Foxp3 transcripts were virtually absent in IL-7Ralpha(-/-) lymphoid tissues, and no Treg cell suppressive activity could be detected. There are 2 known ligands for IL-7Ralpha: IL-7 itself and thymic stromal lymphopoietin (TSLP). Surprisingly, mice deficient in IL-7 or the other chain of the TSLP receptor (TSLPR) developed relatively normal numbers of Treg cells. Combined deletion of IL-7 and TSLP receptor greatly reduced Treg cell development in the thymus but was not required for survival of mature peripheral Treg cells. We conclude that Treg cells, like other T cells, require signals from the IL-7 receptor, but unlike other T cells, do not require IL-7 itself because of at least partially overlapping actions of IL-7 and TSLP for development of Treg cells.

  2. Crucial role of carbonic anhydrase IX in tumorigenicity of xenotransplanted adult T-cell leukemia-derived cells.

    Science.gov (United States)

    Nasu, Kentaro; Yamaguchi, Kazunori; Takanashi, Tomoka; Tamai, Keiichi; Sato, Ikuro; Ine, Shoji; Sasaki, Osamu; Satoh, Kennichi; Tanaka, Nobuyuki; Tanaka, Yuetsu; Fukushima, Takuya; Harigae, Hideo; Sugamura, Kazuo

    2017-03-01

    Carbonic anhydrase IX (CA9) is a membrane-associated carbonic anhydrase that regulates cellular pH, is upregulated in various solid tumors, and is considered to be a therapeutic target. Here, we describe the essential role of CA9 in the tumorigenicity of cells derived from human adult T-cell leukemia/lymphoma (ATL). We previously established the highly tumorigenic ST1-N6 subline from the ATL-derived ST1 cell line by serial xenotransplantation in NOG mice. In the present study, we first show that CA9 expression is strongly enhanced in ST1-N6 cells. We then sorted ST1 cells by high or low CA9 expression and established ST1-CA9(high) and ST1-CA9(low) sublines. ST1-CA9(high) cells, like ST1-N6 cells, were more strongly tumorigenic than ST1-CA9(low) or parental ST1 cells when injected into NOG mice. Knockdown of CA9 with shRNAs suppressed the ability of ST1-CA9(high) cells to initiate tumors, and the tumorigenicity of ST1 cells was significantly enhanced by introducing wild-type CA9 or a CA9 mutant with deletion of an intracytoplasmic domain. However, a CA9 with point mutations in the catalytic site did not increase the tumorigenicity of ST1 cells. Furthermore, we detected a small population of CA9(+) CD25(+) cells in lymph nodes of ATL patients. These findings suggest that CA9, and particularly its carbonic anhydrase activity, promotes the tumorigenicity of ATL-derived cells and may be involved in malignant development of lymphoma-type ATL. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  3. Evidence for embryonic stem-like signature and epithelial-mesenchymal transition features in the spheroid cells derived from lung adenocarcinoma.

    Science.gov (United States)

    Roudi, Raheleh; Madjd, Zahra; Ebrahimi, Marzieh; Najafi, Ali; Korourian, Alireza; Shariftabrizi, Ahmad; Samadikuchaksaraei, Ali

    2016-09-01

    Identification of the cellular and molecular aspects of lung cancer stem cells (LCSCs) that are suggested to be the main culprit of tumor initiation, maintenance, drug resistance, and relapse is a prerequisite for targeted therapy of lung cancer. In the current study, LCSCs subpopulation of A549 cells was enriched, and after characterization of the spheroid cells, complementary DNA (cDNA) microarray analysis was applied to identify differentially expressed genes (DEGs) between the spheroid and parental cells. Microarray results were validated using quantitative real-time reverse transcription-PCR (qRT-PCR), flow cytometry, and western blotting. Our results showed that spheroid cells had higher clonogenic potential, up-regulation of stemness gene Sox2, loss of CD44 expression, and gain of CD24 expression compared to parental cells. Among a total of 160 genes that were differentially expressed between the spheroid cells and the parental cells, 104 genes were up-regulated and 56 genes were down-regulated. Analysis of cDNA microarray revealed an embryonic stem cell-like signature and over-expression of epithelial-mesenchymal transition (EMT)-associated genes in the spheroid cells. cDNA microarray results were validated at the gene expression level using qRT-PCR, and further validation was performed at the protein level by flow cytometry and western blotting. The embryonic stem cell-like signature in the spheroid cells supports two important notions: maintenance of CSCs phenotype by dedifferentiating mechanisms activated through oncogenic pathways and the origination of CSCs from embryonic stem cells (ESCs). PI3/AKT3, as the most common up-regulated pathway, and other pathways related to aggressive tumor behavior and EMT process can confer to the spheroid cells' high potential for metastasis and distant seeding.

  4. Dendritic Cell

    OpenAIRE

    Sevda Söker

    2005-01-01

    Dendritic cells, a member of family of antigen presenting cells, are most effective cells in the primary immune response. Dendritic cells originated from dendron, in mean of tree in the Greek, because of their long and elaborate cytoplasmic branching processes. Dendritic cells constitute approximately 0.1 to 1 percent of the blood’s mononuclear cell. Dendritic cells are widely distributed, and specialized for antigen capture and T cell stimulation. In this article, structures and functions of...

  5. Endothelin uncouples gap junctions in sustentacular cells and olfactory ensheathing cells of the olfactory mucosa.

    Science.gov (United States)

    Le Bourhis, Mikaël; Rimbaud, Stéphanie; Grebert, Denise; Congar, Patrice; Meunier, Nicolas

    2014-09-01

    Several factors modulate the first step of odour detection in the rat olfactory mucosa (OM). Among others, vasoactive peptides such as endothelin might play multifaceted roles in the different OM cells. Like their counterparts in the central nervous system, the olfactory sensory neurons are encompassed by different glial-like non-neuronal OM cells; sustentacular cells (SCs) surround their cell bodies, whereas olfactory ensheathing cells (OECs) wrap their axons. Whereas SCs maintain both the structural and ionic integrity of the OM, OECs assure protection, local blood flow control and guiding of olfactory sensory neuron axons toward the olfactory bulb. We previously showed that these non-neuronal OM cells are particularly responsive to endothelin in vitro. Here, we confirmed that the endothelin system is strongly expressed in the OM using in situ hybridization. We then further explored the effects of endothelin on SCs and OECs using electrophysiological recordings and calcium imaging approaches on both in vitro and ex vivo OM preparations. Endothelin induced both robust calcium signals and gap junction uncoupling in both types of cells. This latter effect was mimicked by carbenoxolone, a known gap junction uncoupling agent. However, although endothelin is known for its antiapoptotic effect in the OM, the uncoupling of gap junctions by carbenoxolone was not sufficient to limit the cellular death induced by serum deprivation in OM primary culture. The functional consequence of the endothelin 1-induced reduction of the gap junctional communication between OM non-neuronal cells thus remains to be elucidated. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  6. Snail regulates Nanog status during the epithelial–mesenchymal transition via the Smad1/Akt/GSK3β signaling pathway in non-small-cell lung cancer

    Science.gov (United States)

    Liu, Chen-Wei; Li, Ching-Hao; Yi-Jen, Peng; Cheng, Yu-Wen; Chen, Huei-Wen; Liao, Po-Lin; Kang, Jaw-Jou; Yeng, Mao-Hsiung

    2014-01-01

    The epithelial–mesenchymal transition (EMT), a crucial step in cancer metastasis, is important in transformed cancer cells with stem cell-like properties. In this study, we established a Snail-overexpressing cell model for non-small-cell lung cancer (NSCLC) and investigated its underlying mechanism. We also identified the downstream molecular signaling pathway that contributes to the role of Snail in regulating Nanog expression. Our data shows that high levels of Snail expression correlate with metastasis and high levels of Nanog expression in NSCLC. NSCLC cells expressing Snail are characterized by active EMT characteristics and exhibit an increased ability to migrate, chemoresistance, sphere formation, and stem cell-like properties. We also investigated the signals required for Snail-mediated Nanog expression. Our data demonstrate that LY294002, SB431542, LDN193189, and Noggin pretreatment inhibit Snail-induced Nanog expression during EMT. This study shows a significant correlation between Snail expression and phosphorylation of Smad1, Akt, and GSK3β. In addition, pretreatment with SB431542, LDN193189, or Noggin prevented Snail-induced Smad1 and Akt hyperactivation and reactivated GSK3β. Moreover, LY294002 pretreatment prevented Akt hyperactivation and reactivated GSK3β without altering Smad1 activation. These findings provide a novel mechanistic insight into the important role of Snail in NSCLC during EMT and indicate potentially useful therapeutic targets for NSCLC. PMID:25003810

  7. Stem cells: progressions and applications in clinical medicine

    Directory of Open Access Journals (Sweden)

    Ali Hosseini Bereshneh

    2016-05-01

    of them in transferring gene into different cells. Today, this method have had considerable progress in the treatment of many disease. In this review study, some aspect of stem cells like types and characteristic, origin, derivation techniques, storage conditions and differentiation to target tissues, current clinical usage and their therapeutic capabilities will be discussed.

  8. Gene expression analysis of PTEN positive glioblastoma stem cells identifies DUB3 and Wee1 modulation in a cell differentiation model.

    Directory of Open Access Journals (Sweden)

    Stefano Forte

    Full Text Available The term astrocytoma defines a quite heterogeneous group of neoplastic diseases that collectively represent the most frequent brain tumors in humans. Among them, glioblastoma multiforme represents the most malignant form and its associated prognosis is one of the poorest among tumors of the central nervous system. It has been demonstrated that a small population of tumor cells, isolated from the brain neoplastic tissue, can reproduce the parental tumor when transplanted in immunodeficient mouse. These tumor initiating cells are supposed to be involved in cancer development and progression and possess stem cell-like features; like their normal counterpart, these cells remain quiescent until they are committed to differentiation. Many studies have shown that the role of the tumor suppressor protein PTEN in cell cycle progression is fundamental for tumor dynamics: in low grade gliomas, PTEN contributes to maintain cells in G1 while the loss of its activity is frequently observed in high grade gliomas. The mechanisms underlying the above described PTEN activity have been studied in many tumors, but those involved in the maintenance of tumor initiating cells quiescence remain to be investigated in more detail. The aim of the present study is to shed light on the role of PTEN pathway on cell cycle regulation in Glioblastoma stem cells, through a cell differentiation model. Our results suggest the existence of a molecular mechanism, that involves DUB3 and WEE1 gene products in the regulation of Cdc25a, as functional effector of the PTEN/Akt pathway.

  9. Differentiating of banked human umbilical cord blood-derived mesenchymal stem cells into insulin-secreting cells.

    Science.gov (United States)

    Phuc, Pham Van; Nhung, Truong Hai; Loan, Dang Thi Tung; Chung, Doan Chinh; Ngoc, Phan Kim

    2011-01-01

    Umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) are multipotent cells. They are able to differentiate into functional cells from not only mesoderm but also endoderm. Many researches showed that cells derived from fresh human UCB could transdifferentiate into insulin-secreting cells. In this study, transdifferentiating potential of cryopreserved human UCB-derived MSCs into insulin-secreting cell was investigated. Fresh human UCB was enriched the mononuclear cells by Ficoll-Paque centrifugation. The mononuclear cell population was cryopreserved in cryo-medium containing Iscove's modified Dulbecco's media (IMDM) with 10% DMSO at -196°C for 1 yr. After thawing, mononuclear cells were cultured to isolate MSCs in medium IMDM with 20% FBS supplemented with growth factors. At the fifth passages, MSCs were confirmed by flow cytometry about expression of CD13, CD14, CD34, CD45, CD166, and HLA-DR markers; after that, they were induced to differentiate into adipocytes and osteoblasts. After inducing with specific medium for islet differentiation, there were many clusters of cell like islet at day 14-28. Using real-time reverse transcription polymerase chain reaction (RT-PCR) to analyze the expression of functional genes, the result showed that Nestin, Pdx-1, Ngn3, Ils-1, Pax6, Pax4, Nkx2.2, Nkx6.1, Glut-2, Insulin genes expressed. The results showed that MSCs derived from banked cord blood can differentiate into functional pancreatic islet-like cells in vitro. If human MSCs, especially MSCs from banked cord blood of diabetes patients themselves can be isolated, proliferated, differentiated into functional pancreatic islet-like cells, and transplanted back into them (autologous transplantation), their high-proliferation potency and rejection avoidance will provide one promising therapy for diabetes.

  10. Evaluation of cloned cells, animal model, and ATRA sensitivity of human testicular yolk sac tumor

    Directory of Open Access Journals (Sweden)

    Zhao Junfeng

    2012-03-01

    Full Text Available Abstract The testicular yolk sac tumor (TYST is the most common neoplasm originated from germ cells differentiated abnormally, a major part of pediatric malignant testicular tumors. The present study aimed at developing and validating the in vitro and vivo models of TYST and evaluating the sensitivity of TYST to treatments, by cloning human TYST cells and investigating the histology, ultra-structure, growth kinetics and expression of specific proteins of cloned cells. We found biological characteristics of cloned TYST cells were similar to the yolk sac tumor and differentiated from the columnar to glandular-like or goblet cells-like cells. Chromosomes for tumor identification in each passage met nature of the primary tumor. TYST cells were more sensitive to all-trans-retinoic acid which had significantly inhibitory effects on cell proliferation. Cisplatin induced apoptosis of TYST cells through the activation of p53 expression and down-regulation of Bcl- expression. Thus, we believe that cloned TYST cells and the animal model developed here are useful to understand the molecular mechanism of TYST cells and develop potential therapies for human TYST.

  11. 2-NBDG, a fluorescent analogue of glucose, as a marker for detecting cell electropermeabilization in vitro.

    Science.gov (United States)

    Raeisi, Elham; Mir, Lluis M

    2012-10-01

    This study investigated whether molecules spontaneously transported inside cells, like glucose derivatives, can also be used as electropermeabilization markers. Uptake of a fluorescent deoxyglucose derivative (2-NBDG) by normal and electropermeabilized cells in culture was analyzed. 2-NBDG was added to DC-3F cell suspensions and cells, exposed or not to eight square-wave electric pulses of 100-μs duration and of appropriate field amplitude at a repetition frequency of 1 Hz or 5 kHz, were incubated at 37 °C. 2-NBDG uptake was temperature-, concentration- and time-dependent in cells submitted or not to the electric pulses. In spite of significant uptake of 2-NBDG mediated by GLUT transporters into nonpermeabilized cells, the electric pulses significantly increased about ten to hundred times the 2-NBDG uptake into the cells. The increase in the field amplitude from 900 to 1,500 V/cm resulted in a progressive increase of 2-NDBG. Our results show that under the conditions of in vivo exposure duration to FDG and the physiological concentration of D-glucose, electric pulses increased 2-NBDG uptake into electropermeabilized cells. Under our experimental conditions, the percentage of permeabilized cells within the population of cells exposed to electric pulses remained at the same level regardless of the pulse frequency used, 1 Hz or 5 kHz. The findings showed that glucose derivatives can also be used to detect electropermeabilized cells exposed to electric pulses.

  12. [The level of EGF receptor expression effects its transactivation by IFN gamma in epithelial cells].

    Science.gov (United States)

    Gonchar, I V; Dorosh, V N; Nikol'skiĭ, N N; Burova, E B

    2008-01-01

    Earlier, we demonstrated transactivation of the epidermal growth factor receptor (EGFR) in response to interferon gamma (IFNgamma) in epidermal carcinoma A431 cells. It was shown