WorldWideScience

Sample records for cell type-specific long-term

  1. Post-ischaemic long-term synaptic potentiation in the striatum: a putative mechanism for cell type-specific vulnerability.

    Science.gov (United States)

    Calabresi, Paolo; Saulle, Emilia; Centonze, Diego; Pisani, Antonio; Marfia, Girolama A; Bernardi, Giorgio

    2002-04-01

    In the present in vitro study of rat brain, we report that transient oxygen and glucose deprivation (in vitro ischaemia) induced a post-ischaemic long-term synaptic potentiation (i-LTP) at corticostriatal synapses. We compared the physiological and pharmacological characteristics of this pathological form of synaptic plasticity with those of LTP induced by tetanic stimulation of corticostriatal fibres (t-LTP), which is thought to represent a cellular substrate of learning and memory. Activation of N-methyl-D-aspartate (NMDA) receptors was required for the induction of both forms of synaptic plasticity. The intraneuronal injection of the calcium chelator BAPTA [bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetate] and inhibitors of the mitogen-activated protein kinase pathway blocked both forms of synaptic plasticity. However, while t-LTP showed input specificity, i-LTP occurred also at synaptic pathways inactive during the ischaemic period. In addition, scopolamine, a muscarinic receptor antagonist, prevented the induction of t-LTP but not of i-LTP, indicating that endogenous acetylcholine is required for physiological but not for pathological synaptic potentiation. Finally, we found that striatal cholinergic interneurones, which are resistant to in vivo ischaemia, do not express i-LTP while they express t-LTP. We suggest that i-LTP represents a pathological form of synaptic plasticity that may account for the cell type-specific vulnerability observed in striatal spiny neurones following ischaemia and energy deprivation.

  2. Cell type-specific long-term plasticity at glutamatergic synapses onto hippocampal interneurons expressing either parvalbumin or CB1 cannabinoid receptor.

    Science.gov (United States)

    Nissen, Wiebke; Szabo, Andras; Somogyi, Jozsef; Somogyi, Peter; Lamsa, Karri P

    2010-01-27

    Different GABAergic interneuron types have specific roles in hippocampal function, and anatomical as well as physiological features vary greatly between interneuron classes. Long-term plasticity of interneurons has mostly been studied in unidentified GABAergic cells and is known to be very heterogeneous. Here we tested whether cell type-specific plasticity properties in distinct GABAergic interneuron types might underlie this heterogeneity. We show that long-term potentiation (LTP) and depression (LTD), two common forms of synaptic plasticity, are expressed in a highly cell type-specific manner at glutamatergic synapses onto hippocampal GABAergic neurons. Both LTP and LTD are generated in interneurons expressing parvalbumin (PV+), whereas interneurons with similar axon distributions but expressing cannabinoid receptor-1 show no lasting plasticity in response to the same protocol. In addition, LTP or LTD occurs in PV+ interneurons with different efferent target domains. Perisomatic-targeting PV+ basket and axo-axonic interneurons express LTP, whereas glutamatergic synapses onto PV+ bistratified cells display LTD. Both LTP and LTD are pathway specific, independent of NMDA receptors, and occur at synapses with calcium-permeable (CP) AMPA receptors. Plasticity in interneurons with CP-AMPA receptors strongly modulates disynaptic GABAergic transmission onto CA1 pyramidal cells. We propose that long-term plasticity adjusts the synaptic strength between pyramidal cells and interneurons in a cell type-specific manner and, in the defined CA1 interneurons, shifts the spatial pattern of inhibitory weight from pyramidal cell dendrites to the perisomatic region.

  3. Layer- and cell-type-specific subthreshold and suprathreshold effects of long-term monocular deprivation in rat visual cortex.

    Science.gov (United States)

    Medini, Paolo

    2011-11-23

    Connectivity and dendritic properties are determinants of plasticity that are layer and cell-type specific in the neocortex. However, the impact of experience-dependent plasticity at the level of synaptic inputs and spike outputs remains unclear along vertical cortical microcircuits. Here I compared subthreshold and suprathreshold sensitivity to prolonged monocular deprivation (MD) in rat binocular visual cortex in layer 4 and layer 2/3 pyramids (4Ps and 2/3Ps) and in thick-tufted and nontufted layer 5 pyramids (5TPs and 5NPs), which innervate different extracortical targets. In normal rats, 5TPs and 2/3Ps are the most binocular in terms of synaptic inputs, and 5NPs are the least. Spike responses of all 5TPs were highly binocular, whereas those of 2/3Ps were dominated by either the contralateral or ipsilateral eye. MD dramatically shifted the ocular preference of 2/3Ps and 4Ps, mostly by depressing deprived-eye inputs. Plasticity was profoundly different in layer 5. The subthreshold ocular preference shift was sevenfold smaller in 5TPs because of smaller depression of deprived inputs combined with a generalized loss of responsiveness, and was undetectable in 5NPs. Despite their modest ocular dominance change, spike responses of 5TPs consistently lost their typically high binocularity during MD. The comparison of MD effects on 2/3Ps and 5TPs, the main affected output cells of vertical microcircuits, indicated that subthreshold plasticity is not uniquely determined by the initial degree of input binocularity. The data raise the question of whether 5TPs are driven solely by 2/3Ps during MD. The different suprathreshold plasticity of the two cell populations could underlie distinct functional deficits in amblyopia.

  4. Cell-Type-Specific Optogenetics in Monkeys.

    Science.gov (United States)

    Namboodiri, Vijay Mohan K; Stuber, Garret D

    2016-09-08

    The recent advent of technologies enabling cell-type-specific recording and manipulation of neuronal activity spurred tremendous progress in neuroscience. However, they have been largely limited to mice, which lack the richness in behavior of primates. Stauffer et al. now present a generalizable method for achieving cell-type specificity in monkeys.

  5. Long-term survival in small-cell lung cancer

    DEFF Research Database (Denmark)

    Lassen, U; Osterlind, K; Hansen, M

    1995-01-01

    PURPOSE: To describe in patients with small-cell lung cancer (SCLC) the characteristics of those who survive for > or = 5 years, to identify long-term prognostic factors, to analyze survival data of 5-year survivors, and to study 10-year survival in patients entered before 1981. PATIENTS......, especially tobacco-related cancers and other tobacco-related diseases....

  6. Long term charge retention dynamics of SONOS cells

    Science.gov (United States)

    Arreghini, A.; Akil, N.; Driussi, F.; Esseni, D.; Selmi, L.; van Duuren, M. J.

    2008-09-01

    We present a model for charge retention dynamics in SONOS non volatile memory cells which accounts for the space and energy distributions of the trapped charge in the silicon nitride, self consistently with the potential. Long term retention measurements (beyond 106 s) versus temperature allowed us to decouple two charge loss mechanisms, to calibrate the model parameters and then to reproduce a large set of measurements on devices featuring different gate stacks, initial threshold voltages (including negative ones) and operation temperatures. A detailed analysis has been also carried out to compare the retention dynamics of cells featuring thin or thick tunnel oxide barriers.

  7. Purkinje cell intrinsic excitability increases after synaptic long term depression.

    Science.gov (United States)

    Yang, Zhen; Santamaria, Fidel

    2016-09-01

    Coding in cerebellar Purkinje cells not only depends on synaptic plasticity but also on their intrinsic membrane excitability. We performed whole cell patch-clamp recordings of Purkinje cells in sagittal cerebellar slices in mice. We found that inducing long-term depression (LTD) in the parallel fiber to Purkinje cell synapses results in an increase in the gain of the firing rate response. This increase in excitability is accompanied by an increase in the input resistance and a decrease in the amplitude of the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel-mediated voltage sag. Application of a HCN channel blocker prevents the increase in input resistance and excitability without blocking the expression of synaptic LTD. We conclude that the induction of parallel fiber-Purkinje cell LTD is accompanied by an increase in excitability of Purkinje cells through downregulation of the HCN-mediated h current. We suggest that HCN downregulation is linked to the biochemical pathway that sustains synaptic LTD. Given the diversity of information carried by the parallel fiber system, we suggest that changes in intrinsic excitability enhance the coding capacity of the Purkinje cell to specific input sources.

  8. The selection and function of cell type-specific enhancers.

    Science.gov (United States)

    Heinz, Sven; Romanoski, Casey E; Benner, Christopher; Glass, Christopher K

    2015-03-01

    The human body contains several hundred cell types, all of which share the same genome. In metazoans, much of the regulatory code that drives cell type-specific gene expression is located in distal elements called enhancers. Although mammalian genomes contain millions of potential enhancers, only a small subset of them is active in a given cell type. Cell type-specific enhancer selection involves the binding of lineage-determining transcription factors that prime enhancers. Signal-dependent transcription factors bind to primed enhancers, which enables these broadly expressed factors to regulate gene expression in a cell type-specific manner. The expression of genes that specify cell type identity and function is associated with densely spaced clusters of active enhancers known as super-enhancers. The functions of enhancers and super-enhancers are influenced by, and affect, higher-order genomic organization.

  9. Long-term three-dimensional perfusion culture of human adult bone marrow mononuclear cells in bioreactors.

    Science.gov (United States)

    Schmelzer, Eva; Finoli, Anthony; Nettleship, Ian; Gerlach, Jörg C

    2015-04-01

    The construction and long-term maintenance of three-dimensional in vitro bone marrow models is of great interest but still quite challenging. Here we describe the use of a multi-compartment hollow-fiber membrane based three-dimensional perfusion bioreactor for long-term culture of whole human bone marrow mononuclear cells. We also investigated bioreactors with incorporated open-porous foamed hydroxyapatite scaffolds, mimicking the in vivo bone matrix. Cells in bioreactors with and without scaffolds were cultured to 6 weeks and compared to Petri dish controls. Cells were analyzed for gene expression, surface markers by flow cytometry, metabolic activity, hematopoietic potential, viability, and attachment by immunocytochemistry. Cells in bioreactors were metabolic active during long-term culture. The percentages of hematopoietic stem cell and mature endothelial cell fractions were maintained in bioreactors. The expression of most of the analyzed genes stabilized and increased after long-term culture of 6 weeks. Compared to Petri dish culture controls, bioreactor perfusion culture improved in both the short and long-term, the colony formation unit capacity of hematopoietic progenitors. Cells attached to the ample surface area provided by hydroxyapatite scaffolds. The implementation of a hydroxyapatite scaffold did not influence colony formation capacity, percentages of cell type specific fractions, gene expression, cell viability or metabolic turnover when compared to control cells cultured in bioreactors without scaffolds. In conclusion, three-dimensional perfusion bioreactor culture enables long-term maintenance of primary human bone marrow cells, with hydroxyapatite scaffolds providing an in vivo-like scaffold for three-dimensional culture.

  10. Mathematical simulation of the induction of long-term depression in cerebellar Purkinje cells.

    Science.gov (United States)

    Murzina, G B

    2004-02-01

    The question of the mechanisms underlying the induction of associative and homosynaptic long-term depression in cerebellar Purkinje cells is addressed. Mathematical simulation was used to investigate the possibility that long-term depression, which is associated with a decrease in the efficiency of AMPA receptors, could be induced both by phosphorylation and dephosphorylation of these receptors.

  11. Immune reactivity of cells from long-term rat renal allograft survivors

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, A.; Stuart, F.P.; Fitch, F.W.

    1978-11-01

    Lewis rats receiving an LBN kidney allograft demonstrate no signs of rejection if they are pretreated with donor spleen cells and antiserum reactive with the donor alloantigen. We examined the cellular reactivity of long-term kidney allograft survivors. Normal proliferative and cytolytic responses were obtained with spleen cells from long-term survivors, in marked contrast to the diminished responses of cells from neonatally tolerant rats or the heightened cytolytic response of cells from rats that had rejected a renal allograft. Serum from long-term renal allograft survivors as well as serum obtained from rats at the time of transplantation did not suppress proliferative or cytolytic responses of normal cells. The results of this study suggest that long-term renal allograft survivors possess the precursors of those cells which are responsible for proliferative and cytolytic responses in mixed leukocyte cultures, but that they have not been sensitized to their renal allograft.

  12. Miniature Bioreactor System for Long-Term Cell Culture

    Science.gov (United States)

    Gonda, Steve R.; Kleis, Stanley J.; Geffert, Sandara K.

    2010-01-01

    A prototype miniature bioreactor system is designed to serve as a laboratory benchtop cell-culturing system that minimizes the need for relatively expensive equipment and reagents and can be operated under computer control, thereby reducing the time and effort required of human investigators and reducing uncertainty in results. The system includes a bioreactor, a fluid-handling subsystem, a chamber wherein the bioreactor is maintained in a controlled atmosphere at a controlled temperature, and associated control subsystems. The system can be used to culture both anchorage-dependent and suspension cells, which can be either prokaryotic or eukaryotic. Cells can be cultured for extended periods of time in this system, and samples of cells can be extracted and analyzed at specified intervals. By integrating this system with one or more microanalytical instrument(s), one can construct a complete automated analytical system that can be tailored to perform one or more of a large variety of assays.

  13. CD133-targeted Gene Transfer Into Long-term Repopulating Hematopoietic Stem Cells

    NARCIS (Netherlands)

    Brendel, Christian; Goebel, Benjamin; Daniela, Abriss; Brugman, Martijn; Kneissl, Sabrina; Schwaeble, Joachim; Kaufmann, Kerstin B.; Mueller-Kuller, Uta; Kunkel, Hana; Chen-Wichmann, Linping; Abel, Tobias; Serve, Hubert; Bystrykh, Leonid; Buchholz, Christian J.; Grez, Manuel

    2015-01-01

    Gene therapy for hematological disorders relies on the genetic modification of CD34(+) cells, a heterogeneous cell population containing about 0.01% long-term repopulating cells. Here, we show that the lentiviral vector CD133-LV, which uses a surface marker on human primitive hematopoietic stem cell

  14. Method and Apparatus for a Miniature Bioreactor System for Long-Term Cell Culture

    Science.gov (United States)

    Kleis, Stanley J. (Inventor); Geffert, Sandra K. (Inventor); Gonda, Steve R. (Inventor)

    2015-01-01

    A bioreactor and method that permits continuous and simultaneous short, moderate, or long term cell culturing of one or more cell types or tissue in a laminar flow configuration is disclosed, where the bioreactor supports at least two laminar flow zones, which are isolated by laminar flow without the need for physical barriers between the zones. The bioreactors of this invention are ideally suited for studying short, moderate and long term studies of cell cultures and the response of cell cultures to one or more stressors such as pharmaceuticals, hypoxia, pathogens, or any other stressor. The bioreactors of this invention are also ideally suited for short, moderate or long term cell culturing with periodic cell harvesting and/or medium processing for secreted cellular components.

  15. Ni/YSZ microstructure optimization for long-term stability of solid oxide electrolysis cells

    DEFF Research Database (Denmark)

    Hauch, Anne; Brodersen, Karen; Karas, Filip;

    2014-01-01

    In the last decade there has been a renewed and increased interest in electrolysis using solid oxide cells (SOC). So far the vast majority of results reported on long-term durability of solid oxide electrolysis cells (SOEC) have been obtained using SOC produced and optimized for fuel cell operation......; i.e. solid oxide fuel cells (SOFC). However, previous long-term tests have shown that the stability behavior of the Ni/yttria-stabilized-zirconia (Ni/YSZ) fuel electrode may fall out quite differently depending on whether the cell is operated in fuel cell or electrolysis mode at otherwise similar...... test conditions. Initial work has shown significant microstructural changes of the Ni/YSZ electrode close to the electrolyte interface after long-term steam electrolysis test at -1 A/cm2 at 800 C. The results indicate that it will be advantageous to optimize the electrode structure with the aim...

  16. In vitro generation of long-term repopulating hematopoietic stem cells by fibroblast growth factor-1

    NARCIS (Netherlands)

    de Haan, G; Weersing, E; Dontje, B; van Os, R; Bystrykh, LV; Vellenga, E; Miller, G

    2003-01-01

    The role of fibroblast growth factors and their receptors (FGFRs) in the regulation of normal hematopoietic stem cells is unknown. Here we show that, in mouse bone marrow, long-term repopulating stem cells are found exclusively in the FGFR(+) cell fraction. During differentiation toward committed pr

  17. Long-term stem cell labeling by collagen-functionalized single-walled carbon nanotubes

    Science.gov (United States)

    Mao, Hongli; Cai, Rong; Kawazoe, Naoki; Chen, Guoping

    2014-01-01

    The monitoring of grafted stem cells is crucial to assess the efficiency, effectiveness and safety of such stem cell-based therapies. In this regard, a reliable and cytocompatible labeling method for stem cells is critically needed. In this study, the collagen-functionalized single-walled carbon nanotubes (Col-SWCNTs) were used as imaging probes for labeling of human mesenchymal stem cells (hMSCs) and the inherent Raman scattering of SWCNTs was used to image the SWCNT-labeled cells. The results showed that the Col-SWCNTs exhibit efficient cellular internalization by hMSCs without affecting their proliferation and differentiation. The prolonged dwell time of Col-SWCNTs in cells ensured the long-term labeling for up to 2 weeks. This work reveals the potential of Col-SWCNTs as probes for long-term stem cell labeling.

  18. Intranasal mesenchymal stem cell treatment for neonatal brain damage : long-term cognitive and sensorimotor improvement

    NARCIS (Netherlands)

    Donega, Vanessa; van Velthoven, Cindy T J; Nijboer, Cora H; van Bel, Frank; Kas, Martien J H; Kavelaars, Annemieke; Heijnen, Cobi J

    2013-01-01

    Mesenchymal stem cell (MSC) administration via the intranasal route could become an effective therapy to treat neonatal hypoxic-ischemic (HI) brain damage. We analyzed long-term effects of intranasal MSC treatment on lesion size, sensorimotor and cognitive behavior, and determined the therapeutic wi

  19. [Mathematical simulation of induction of long-term depression in cerebellar Purkinje cells].

    Science.gov (United States)

    Murzina, G B

    2003-01-01

    Mechanisms of associative and homosynaptic long-term depression (LTD) in cerebellar Purkinje cells are discussed. The possibility of LTD induction related to a decrease in efficacy of AMPA receptors through either their dephosphorylation or phosphorylation is investigated by mathematical simulation.

  20. Long-term surveillance plan for the Burro Canyon disposal cell Slick Rock, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Burro Canyon disposal cell in San Miguel County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Burro Canyon disposal cell. The general license becomes effective when the NRC concurs with the DOE`s determination that remedial action is complete at the Burro Canyon disposal cell and the NRC formally accepts this LTSP. Attachment 1 contains the concurrence letters from NRC. This LTSP describes the long-term surveillance program the DOE has implemented to ensure that the Burro Canyon disposal cell performs as designed. The program is based on site inspections to identify threats to disposal cell integrity. Ground water monitoring will not be required at the Burro Canyon disposal cell because the ground water protection strategy is supplemental standards based on low yield from the uppermost aquifer. The LTSP is based on the UMTRA Project`s long-term surveillance program guidance and meets the requirements of 10 CFR 40.27(b) and 40 CFR 192.03.

  1. A sealed preparation for long-term observations of cultured cells.

    Science.gov (United States)

    Sluder, Greenfield; Nordberg, Joshua J; Miller, Frederick J; Hinchcliffe, Edward H

    2007-01-01

    INTRODUCTIONThe continuous long-term observation of cultured cells on the microscope has always been a technically demanding undertaking. This protocol describes a sealed preparation that allows the continuous long-term observation of cultured mammalian cells on upright or inverted microscopes without environmental CO(2) control. The preparation allows for optical conditions consistent with high-quality imaging and good cell viability for at least 100 hours. The preparation is an aluminum support slide with a square aperture cut in its center. The coverslip bearing the cells is attached to the top of the slide with a thin layer of silicone grease, and the bottom of the slide is similarly covered with a clean coverslip of the same size. The thickness of the slide is intended to coordinately maximize the volume of the medium while maintaining optical properties that allow Koehler illumination with standard condensers. The chamber is filled in equal parts with HEPES-buffered media containing fetal calf serum and a low-viscosity fluorocarbon oil. These oils have a high solubility for atmospheric gases. The inclusion of the oil in the preparations is intended to provide a source of oxygen and perhaps a sink for some of the CO(2) produced by the cells. Although the inclusion of fluorocarbon oil in the preparation may not be necessary for short-term (~24 hr) observations, particularly with cells that are sparsely plated, long-term cell viability is ensured when the oil is present.

  2. Highly Fluorescent and Photostable Polymeric Nanofibers as Scaffolds for Cell Interfacing and Long-Term Tracking.

    Science.gov (United States)

    Diao, Hua Jia; Wang, Kai; Long, Hong Yan; Wang, Mingfeng; Chew, Sing Yan

    2016-03-09

    Highly fluorescent polymeric nanofibers fabricated via electrospinning of PCL-DPP-PCL (photostable polycaprolactones-di(thiophene-2-yl)-diketopyrrolopyrrole-photostable polycaprolactones) and commercial PCL mixture show superior photostability and cytocompatibility for long-term tracking of cell-substrate interaction. As a proof of concept, these PCL-DPP-PCL nanofibers enable clear visualization of intricate cell-substrate interactions such as oligodendrocyte myelination.

  3. Long-Term Live Cell Imaging of Cell Migration: Effects of Pathogenic Fungi on Human Epithelial Cell Migration.

    Science.gov (United States)

    Wöllert, Torsten; Langford, George M

    2016-01-01

    Long-term live cell imaging was used in this study to determine the responses of human epithelial cells to pathogenic biofilms formed by Candida albicans. Epithelial cells of the skin represent the front line of defense against invasive pathogens such as C. albicans but under certain circumstances, especially when the host's immune system is compromised, the skin barrier is breached. The mechanisms by which the fungal pathogen penetrates the skin and invade the deeper layers are not fully understood. In this study we used keratinocytes grown in culture as an in vitro model system to determine changes in host cell migration and the actin cytoskeleton in response to virulence factors produced by biofilms of pathogenic C. albicans. It is clear that changes in epithelial cell migration are part of the response to virulence factors secreted by biofilms of C. albicans and the actin cytoskeleton is the downstream effector that mediates cell migration. Our goal is to understand the mechanism by which virulence factors hijack the signaling pathways of the actin cytoskeleton to alter cell migration and thereby invade host tissues. To understand the dynamic changes of the actin cytoskeleton during infection, we used long-term live cell imaging to obtain spatial and temporal information of actin filament dynamics and to identify signal transduction pathways that regulate the actin cytoskeleton and its associated proteins. Long-term live cell imaging was achieved using a high resolution, multi-mode epifluorescence microscope equipped with specialized light sources, high-speed cameras with high sensitivity detectors, and specific biocompatible fluorescent markers. In addition to the multi-mode epifluorescence microscope, a spinning disk confocal long-term live cell imaging system (Olympus CV1000) equipped with a stage incubator to create a stable in vitro environment for long-term real-time and time-lapse microscopy was used. Detailed descriptions of these two long-term live

  4. CD133-targeted gene transfer into long-term repopulating hematopoietic stem cells.

    Science.gov (United States)

    Brendel, Christian; Goebel, Benjamin; Daniela, Abriss; Brugman, Martijn; Kneissl, Sabrina; Schwäble, Joachim; Kaufmann, Kerstin B; Müller-Kuller, Uta; Kunkel, Hana; Chen-Wichmann, Linping; Abel, Tobias; Serve, Hubert; Bystrykh, Leonid; Buchholz, Christian J; Grez, Manuel

    2015-01-01

    Gene therapy for hematological disorders relies on the genetic modification of CD34(+) cells, a heterogeneous cell population containing about 0.01% long-term repopulating cells. Here, we show that the lentiviral vector CD133-LV, which uses a surface marker on human primitive hematopoietic stem cells (HSCs) as entry receptor, transfers genes preferentially into cells with high engraftment capability. Transduction of unstimulated CD34(+) cells with CD133-LV resulted in gene marking of cells with competitive proliferative advantage in vitro and in immunodeficient mice. The CD133-LV-transduced population contained significantly more cells with repopulating capacity than cells transduced with vesicular stomatitis virus (VSV)-LV, a lentiviral vector pseudotyped with the vesicular stomatitis virus G protein. Upon transfer of a barcode library, CD133-LV-transduced cells sustained gene marking in vivo for a prolonged period of time with a 6.7-fold higher recovery of barcodes compared to transduced control cells. Moreover, CD133-LV-transduced cells were capable of repopulating secondary recipients. Lastly, we show that this targeting strategy can be used for transfer of a therapeutic gene into CD34(+) cells obtained from patients suffering of X-linked chronic granulomatous disease. In conclusion, direct gene transfer into CD133(+) cells allows for sustained long-term engraftment of gene corrected cells.

  5. Cell search algorithms for the 3G long-term evolution

    Institute of Scientific and Technical Information of China (English)

    SU Huan; ZHANG Jian-hua

    2007-01-01

    This article presents downlink initial synchronization and cell identification algorithms for long term evolution (LTE) of third-generation (3G) mobile communication systems, which are based on synchronization channel (SCH) and cell specific pilot symbols, respectively. The key features of the proposed scheme are: it can improve performance of the frequency synchronization through oversampling of the SCH, it can support a large number of target cells by modulating a cell-specific pilot sequence over two symbols within a subframe, and it can guarantee cell identification performance by maximally ratio combining the frequency domain differential cross-correlation. Simulations show that the proposed scheme has a potential use in 3G LTE.

  6. Long-term proliferation in culture and germline transmission of mouse male germline stem cells.

    Science.gov (United States)

    Kanatsu-Shinohara, Mito; Ogonuki, Narumi; Inoue, Kimiko; Miki, Hiromi; Ogura, Atsuo; Toyokuni, Shinya; Shinohara, Takashi

    2003-08-01

    Spermatogenesis is a complex process that originates in a small population of spermatogonial stem cells. Here we report the in vitro culture of spermatogonial stem cells that proliferate for long periods of time. In the presence of glial cell line-derived neurotrophic factor, epidermal growth factor, basic fibroblast growth factor, and leukemia inhibitory factor, gonocytes isolated from neonatal mouse testis proliferated over a 5-month period (>10(14)-fold) and restored fertility to congenitally infertile recipient mice following transplantation into seminiferous tubules. Long-term spermatogonial stem cell culture will be useful for studying spermatogenesis mechanism and has important implications for developing new technology in transgenesis or medicine.

  7. Acute and long-term effects of hyperthermia in B16-F10 melanoma cells.

    Directory of Open Access Journals (Sweden)

    Mónica Pereira Garcia

    Full Text Available OBJECTIVE: Hyperthermia uses exogenous heat induction as a cancer therapy. This work addresses the acute and long-term effects of hyperthermia in the highly metastatic melanoma cell line B16-F10. MATERIALS AND METHODS: Melanoma cells were submitted to one heat treatment, 45°C for 30 min, and thereafter were kept at 37°C for an additional period of 14 days. Cultures maintained at 37°C were used as control. Cultures were assessed for the heat shock reaction. RESULTS: Immediately after the heat shock, cells began a process of fast degradation, and, in the first 24 h, cultures showed decreased viability, alterations in cell morphology and F-actin cytoskeleton organization, significant reduction in the number of adherent cells, most of them in a process of late apoptosis, and an altered gene expression profile. A follow-up of two weeks after heat exposure showed that viability and number of adherent cells remained very low, with a high percentage of early apoptotic cells. Still, heat-treated cultures maintained a low but relatively constant population of cells in S and G(2/M phases for a long period after heat exposure, evidencing the presence of metabolically active cells. CONCLUSION: The melanoma cell line B16-F10 is susceptible to one hyperthermia treatment at 45°C, with significant induced acute and long-term effects. However, a low but apparently stable percentage of metabolically active cells survived long after heat exposure.

  8. Long-term homeostasis and wound healing in an in vitro epithelial stem cell niche model

    Science.gov (United States)

    Miyashita, Hideyuki; Niwano, Hiroko; Yoshida, Satoru; Hatou, Shin; Inagaki, Emi; Tsubota, Kazuo; Shimmura, Shigeto

    2017-01-01

    Cultures of epithelial cells are limited by the proliferative capacity of primary cells and cell senescence. Herein we show that primary human epithelial cell sheets cultured without dermal equivalents maintained homeostasis in vitro for at least 1 year. Transparency of these sheets enabled live observation of pigmented melanocytes and Fluorescent Ubiquitination-based Cell Cycle Indicator (FUCCI) labeled epithelial cells during wound healing. Cell turn over and KRT15 expression pattern stabilized within 3 months, when KRT15 bright clusters often associated with niche-like melanocytes became apparent. EdU labels were retained in a subset of epithelial cells and melanocytes after 6 months chasing, suggesting their slow cell cycling property. FUCCI-labeling demonstrated robust cell migration and proliferation following wounding. Transparency and long-term (1 year) homeostasis of this model will be a powerful tool for the study of wound healing and cell linage tracing. PMID:28233843

  9. Freedom of expression: cell-type-specific gene profiling.

    Science.gov (United States)

    Otsuki, Leo; Cheetham, Seth W; Brand, Andrea H

    2014-01-01

    Cell fate and behavior are results of differential gene regulation, making techniques to profile gene expression in specific cell types highly desirable. Many methods now enable investigation at the DNA, RNA and protein level. This review introduces the most recent and popular techniques, and discusses key issues influencing the choice between these such as ease, cost and applicability of information gained. Interdisciplinary collaborations will no doubt contribute further advances, including not just in single cell type but single-cell expression profiling.

  10. Cell-type specific four-component hydrogel.

    Directory of Open Access Journals (Sweden)

    Timo Aberle

    Full Text Available In the field of regenerative medicine we aim to develop implant matrices for specific tissue needs. By combining two per se, cell-permissive gel systems with enzymatic crosslinkers (gelatin/transglutaminase and fibrinogen/thrombin to generate a blend (technical term: quattroGel, an unexpected cell-selectivity evolved. QuattroGels were porous and formed cavities in the cell diameter range, possessed gelation kinetics in the minute range, viscoelastic properties and a mechanical strength appropriate for general cell adhesion, and restricted diffusion. Cell proliferation of endothelial cells, chondrocytes and fibroblasts was essentially unaffected. In contrast, on quattroGels neither endothelial cells formed vascular tubes nor did primary neurons extend neurites in significant amounts. Only chondrocytes differentiated properly as judged by collagen isoform expression. The biophysical quattroGel characteristics appeared to leave distinct cell processes such as mitosis unaffected and favored differentiation of sessile cells, but hampered differentiation of migratory cells. This cell-type selectivity is of interest e.g. during articular cartilage or invertebral disc repair, where pathological innervation and angiogenesis represent adverse events in tissue engineering.

  11. Characterization of vascular smooth muscle cell phenotype in long-term culture.

    Science.gov (United States)

    Absher, M; Woodcock-Mitchell, J; Mitchell, J; Baldor, L; Low, R; Warshaw, D

    1989-02-01

    Studies of bovine carotid artery smooth muscle cells, during long-term in vitro subcultivation (up to 100 population doublings), have revealed phenotypic heterogeneity among cells, as characterized by differences in proliferative behavior, cell morphology, and contractile-cytoskeletal protein profiles. In vivo, smooth muscle cells were spindle-shaped and expressed desmin and alpha-smooth muscle actin (50% of total actin) as their predominant cytoskeletal and contractile proteins. Within 24 h of culture, vimentin rather than desmin was the predominant intermediate filament protein, with little change in alpha-actin content. Upon initial subcultivation, all cells were flattened and fibroblastic in appearance with a concomitant fivefold reduction in alpha-actin content, whereas the beta and gamma nonmuscle actins predominated. In three out of four cell lines studied, fluctuations in proliferative activity were observed during the life span of the culture. These spontaneous fluctuations in proliferation were accompanied by coordinated changes in morphology and contractile-cytoskeletal protein profiles. During periods of enhanced proliferation a significant proportion of cells reverted to their original spindle-shaped morphology with a simultaneous increase in alpha-actin content (20 to 30% of total actin). These results suggest that in long-term culture smooth muscle cells undergo spontaneous modulations in cell phenotype and may serve as a useful model for studying the regulation of intracellular protein expression.

  12. CD34 expression on long-term repopulating hematopoietic stem cells changes during developmental stages.

    Science.gov (United States)

    Matsuoka, S; Ebihara, Y; Xu, M; Ishii, T; Sugiyama, D; Yoshino, H; Ueda, T; Manabe, A; Tanaka, R; Ikeda, Y; Nakahata, T; Tsuji, K

    2001-01-15

    The CD34 antigen serves as an important marker for primitive hematopoietic cells in therapeutic transplantation of hematopoietic stem cells (HSC) and gene therapy, but it has remained an open question as to whether or not most HSC express CD34. Using a competitive long-term reconstitution assay, the results of this study confirm developmental changes in CD34 expression on murine HSC. In fetuses and neonates, CD34 was expressed on Lin(-)c-Kit(+) long-term repopulating HSC of bone marrow (BM), liver, and spleen. However, CD34 expression on HSC decreased with aging, and in mice older than 10 weeks, HSC were most enriched in the Lin(-)c-Kit(+)CD34(-) marrow cell fraction. A second transplantation was performed from primary recipients who were transplanted with neonatal Lin(-)c-Kit(+) CD34(high) HSC marrow. Although donor-type HSC resided in CD34-expressing cell fraction in BM cells of the first recipients 4 weeks after the first transplantation, the stem cell activity had shifted to Lin(-)c-Kit(+)CD34(-) cells after 16 weeks, indicating that adult Lin(-)c-Kit(+)CD34(-) HSC are the progeny of neonatal CD34-expresssing HSC. Assays for colony-forming cells showed that hematopoietic progenitor cells, unlike HSC, continue to express CD34 throughout murine development. The present findings are important because the clinical application of HSC can be extended, in particular as related to CD34-enriched HSC and umbilical cord blood HSC.

  13. Neurophysiology of space travel: energetic solar particles cause cell type-specific plasticity of neurotransmission.

    Science.gov (United States)

    Lee, Sang-Hun; Dudok, Barna; Parihar, Vipan K; Jung, Kwang-Mook; Zöldi, Miklós; Kang, Young-Jin; Maroso, Mattia; Alexander, Allyson L; Nelson, Gregory A; Piomelli, Daniele; Katona, István; Limoli, Charles L; Soltesz, Ivan

    2016-11-30

    In the not too distant future, humankind will embark on one of its greatest adventures, the travel to distant planets. However, deep space travel is associated with an inevitable exposure to radiation fields. Space-relevant doses of protons elicit persistent disruptions in cognition and neuronal structure. However, whether space-relevant irradiation alters neurotransmission is unknown. Within the hippocampus, a brain region crucial for cognition, perisomatic inhibitory control of pyramidal cells (PCs) is supplied by two distinct cell types, the cannabinoid type 1 receptor (CB1)-expressing basket cells (CB1BCs) and parvalbumin (PV)-expressing interneurons (PVINs). Mice subjected to low-dose proton irradiation were analyzed using electrophysiological, biochemical and imaging techniques months after exposure. In irradiated mice, GABA release from CB1BCs onto PCs was dramatically increased. This effect was abolished by CB1 blockade, indicating that irradiation decreased CB1-dependent tonic inhibition of GABA release. These alterations in GABA release were accompanied by decreased levels of the major CB1 ligand 2-arachidonoylglycerol. In contrast, GABA release from PVINs was unchanged, and the excitatory connectivity from PCs to the interneurons also underwent cell type-specific alterations. These results demonstrate that energetic charged particles at space-relevant low doses elicit surprisingly selective long-term plasticity of synaptic microcircuits in the hippocampus. The magnitude and persistent nature of these alterations in synaptic function are consistent with the observed perturbations in cognitive performance after irradiation, while the high specificity of these changes indicates that it may be possible to develop targeted therapeutic interventions to decrease the risk of adverse events during interplanetary travel.

  14. Autonomous Inter Cell Interference Avoidance under Fractional Load for Downlink Long Term Evolution

    DEFF Research Database (Denmark)

    Kumar, S.; Monghal, Guillaume Damien; Nin, Jaume;

    2009-01-01

    avoidance schemes under fractional load (FL) conditions in the downlink for 3rd generation partnership project (3GPP) long term evolution (LTE) are proposed. The proposed schemes do not require any inter-cell signaling for ICIC; rather the decision about the allocation of the spectrum in order to avoid......The main source of interference in OFDMA system in downlink is inter-cell interference, which can severely limit the throughput of users near the cell edge. The inter-cell interference coordination (ICIC) is one method to improve the performance. In this paper autonomous inter-cell interference...... the inter- cell interference is taken based on the information available within the cell itself. We show that the schemes for spectral resource selection is important for FL scenario to avoid high BLER. The proposed schemes further improve the SINR condition therefore higher cell throughput and coverage...

  15. Fetal hepatic progenitors support long-term expansion of hematopoietic stem cells.

    Science.gov (United States)

    Chou, Song; Flygare, Johan; Lodish, Harvey F

    2013-05-01

    We have developed a coculture system that establishes DLK(+) fetal hepatic progenitors as the authentic supportive cells for expansion of hematopoietic stem (HSCs) and progenitor cells. In 1-week cultures supplemented with serum and supportive cytokines, both cocultured DLK(+) fetal hepatic progenitors and their conditioned medium supported rapid expansion of hematopoietic progenitors and a small increase in HSC numbers. In 2- and 3-week cultures DLK(+) cells, but not their conditioned medium, continuously and significantly (>20-fold) expanded both hematopoietic stem and progenitor cells. Physical contact between HSCs and DLK(+) cells was crucial to maintaining this long-term expansion. Similar HSC expansion (approximately sevenfold) was achieved in cocultures using a serum-free, low cytokine- containing medium. In contrast, DLK(-) cells are incapable of expanding hematopoietic cells, demonstrating that hepatic progenitors are the principle supportive cells for HSC expansion in the fetal liver.

  16. B-cell Lymphoma in retrieved femoral heads: a long term follow up

    Directory of Open Access Journals (Sweden)

    van Kemenade Folkert J

    2009-05-01

    Full Text Available Abstract Background A relatively high incidence of pathological conditions in retrieved femoral heads, including a group of patients having low grade B-cell lymphoma, has been described before. At short term follow up none of these patients with low-grade B-cell lymphoma showed evidence of systemic disease. However, the long term follow up of these patients is not known. Methods From November 1994 up to and including December 2005 we screened all femoral heads removed at the time of primary total hip replacement histopathologically and included them in the bone banking protocol according to the guidelines of the American Associations of Tissue Banks (AATB and the European Association of Musculo-Skeletal Transplantation (EAMST. We determined the percentage of B-cell lymphoma in all femoral heads and in the group that fulfilled all criteria of the bone banking protocol and report on the long-term follow-up. Results Of 852 femoral heads fourteen (1.6% were highly suspicious for low-grade B-cell lymphoma. Of these 852 femoral heads, 504 were eligible for bone transplantation according to the guidelines of the AATB and the EAMST. Six femoral heads of this group of 504 were highly suspicious for low-grade B-cell lymphoma (1.2%. At long term follow up two (0.2% of all patients developed systemic malignant disease and one of them needed medical treatment for her condition. Conclusion In routine histopathological screening we found variable numbers of low-grade B-cell lymphoma throughout the years, even in a group of femoral heads that were eligible for bone transplantation. Allogenic transmission of malignancy has not yet been reported on, but surviving viruses are proven to be transmissible. Therefore, we recommend the routine histopathological evaluation of all femoral heads removed at primary total hip arthroplasty as a tool for quality control, whether the femoral head is used for bone banking or not.

  17. Homing and long-term engraftment of long- and short-term renewal hematopoietic stem cells.

    Directory of Open Access Journals (Sweden)

    Liansheng Liu

    Full Text Available Long-term hematopoietic stem cells (LT-HSC and short-term hematopoietic stem cells (ST-HSC have been characterized as having markedly different in vivo repopulation, but similar in vitro growth in liquid culture. These differences could be due to differences in marrow homing. We evaluated this by comparing results when purified ST-HSC and LT-HSC were administered to irradiated mice by three different routes: intravenous, intraperitoneal, and directly into the femur. Purified stem cells derived from B6.SJL mice were competed with marrow cells from C57BL/6J mice into lethally irradiated C57BL/6J mice. Serial transplants into secondary recipients were also carried out. We found no advantage for ST-HSC engraftment when the cells were administered intraperitoneally or directly into femur. However, to our surprise, we found that the purified ST-HSC were not short-term in nature but rather gave long-term multilineage engraftment out to 387 days, albeit at a lower level than the LT-HSC. The ST-HSC also gave secondary engraftment. These observations challenge current models of the stem cell hierarchy and suggest that stem cells are in a continuum of change.

  18. Impact of process variations and long term degradation on 6T-SRAM cells

    Directory of Open Access Journals (Sweden)

    Th. Fischer

    2007-06-01

    Full Text Available In modern deep-submicron CMOS technologies voltage scaling can not keep up with the scaling of the dimensions of transistors. Therefore the electrical fields inside the transistors are not constant anymore, while scaling down the device area. The rising electrical fields bring up reliability problems, such as hot carrier injection. Also other long term degradation mechanisms like Negative Bias Temperature Instability (NBTI come into the focus of circuit design.

    Along with process device parameter variations (threshold voltage, mobility, variations due to the degradation of devices form a big challenge for designers to build circuits that both yield high under the influence of process variations and remain functional with respect to long term device drift.

    In this work we present the influence of long term degradation and process variations on the performance of SRAM core-cells and parametric yield of SRAM arrays. For different use cases we show the performance degradation depending on temperature and supply voltage.

  19. Cell type-specific neuroprotective activity of untranslocated prion protein.

    Directory of Open Access Journals (Sweden)

    Elena Restelli

    Full Text Available BACKGROUND: A key pathogenic role in prion diseases was proposed for a cytosolic form of the prion protein (PrP. However, it is not clear how cytosolic PrP localization influences neuronal viability, with either cytotoxic or anti-apoptotic effects reported in different studies. The cellular mechanism by which PrP is delivered to the cytosol of neurons is also debated, and either retrograde transport from the endoplasmic reticulum or inefficient translocation during biosynthesis has been proposed. We investigated cytosolic PrP biogenesis and effect on cell viability in primary neuronal cultures from different mouse brain regions. PRINCIPAL FINDINGS: Mild proteasome inhibition induced accumulation of an untranslocated form of cytosolic PrP in cortical and hippocampal cells, but not in cerebellar granules. A cyclopeptolide that interferes with the correct insertion of the PrP signal sequence into the translocon increased the amount of untranslocated PrP in cortical and hippocampal cells, and induced its synthesis in cerebellar neurons. Untranslocated PrP boosted the resistance of cortical and hippocampal neurons to apoptotic insults but had no effect on cerebellar cells. SIGNIFICANCE: These results indicate cell type-dependent differences in the efficiency of PrP translocation, and argue that cytosolic PrP targeting might serve a physiological neuroprotective function.

  20. Testicular germ cell tumor: Short and long-term side effects of treatment among survivors.

    Science.gov (United States)

    Gil, Thierry; Sideris, Spyridon; Aoun, Fouad; van Velthoven, Roland; Sirtaine, Nicolas; Paesmans, Marianne; Ameye, Lieveke; Awada, Ahmad; Devriendt, Daniel; Peltier, Alexandre

    2016-09-01

    Long-term prognosis of germ cell tumor (GCT) types is excellent, however, treatment is associated with non-negligible complication rates and a negative impact on quality of life. The present study described treatment results in terms of survival, both short and long-term toxicity, and paternity rates in a cohort of patients treated at Jules Bordet Institute, University ULB of Brussels (Brussels, Belgium). The present study analyzed the data of a cohort of patients with GCT types. Pre-operative patient and tumor characteristics were described. Performance status, pulmonary function tests and renal clearance prior to chemotherapy were noted. Chemotherapeutic regimens and their associated toxicities were analyzed. The duration to event-free, cancer-specific and overall survivals were estimated using Kaplan-Meier curves. A total of 115 patients (median age, 31-years-old) were treated for a GCT at Jules Bordet Institute. At a median follow-up of 6-years, 11 (10%) patients had relapsed and 2 (2%) developed a second malignant neoplasm. At the final follow-up, 97 (89%) and 6 (5.5%) patients exhibited complete and partial remission, respectively. A total of 6% of patients exhibited a progressive disease. In terms of short-term toxicity, 11% of patients presented with febrile neutropenia. The 10-year overall survival rate and relapse-free survival rate were 93.4 and 89.8%, respectively. The paternity rate post-treatment was 27%. Testicular GCT survivors suffered from short- and long-term treatment-associated side effects on both a physical and psychological level. A long-term close follow-up is necessary in order to assist the patient with these treatment-induced complications.

  1. Metformin ameliorates ionizing irradiation-induced long-term hematopoietic stem cell injury in mice

    Science.gov (United States)

    Xu, Guoshun; Wu, Hongying; Zhang, Junling; Li, Deguan; Wang, Yueying; Wang, Yingying; Zhang, Heng; Lu, Lu; Li, Chengcheng; Huang, Song; Xing, Yonghua; Zhou, Daohong; Meng, Aimin

    2016-01-01

    Exposure to ionizing radiation (IR) increases the production of reactive oxygen species (ROS) not only by the radiolysis of water but also through IR-induced perturbation of the cellular metabolism and disturbance of the balance of reduction/oxidation reactions. Our recent studies showed that the increased production of intracellular ROS induced by IR contributes to IR-induced late effects, particularly in the hematopoietic system, because inhibition of ROS production with an antioxidant after IR exposure can mitigate IR-induced long-term bone marrow (BM) injury. Metformin is a widely used drug for the treatment of type 2 diabetes. Metformin also has the ability to regulate cellular metabolism and ROS production by activating AMP-activated protein kinase. Therefore, we examined whether metformin can ameliorate IR-induced long-term BM injury in a total-body irradiation (TBI) mouse model. Our results showed that the administration of metformin significantly attenuated TBI-induced increases in ROS production and DNA damage and upregulation of NADPH oxidase 4 expression in BM hematopoietic stem cells (HSCs). These changes were associated with a significant increase in BM HSC frequency, a considerable improvement in in vitro and in vivo HSC function, and complete inhibition of upregulation of p16Ink4a in HSCs after TBI. These findings demonstrate that metformin can attenuate TBI-induced long-term BM injury at least in part by inhibiting the induction of chronic oxidative stress in HSCs and HSC senescence. Therefore, metformin has the potential to be used as a novel radioprotectant to ameliorate TBI-induced long-term BM injury. PMID:26086617

  2. Long-term nonprogression and broad HIV-1-specific proliferative T-cell responses

    Directory of Open Access Journals (Sweden)

    Nesrina eImami

    2013-03-01

    Full Text Available Complex mechanisms underlying the maintenance of fully functional, proliferative, HIV-1-specific T-cell responses involve processes from early T-cell development through to the final stages of T-cell differentiation and antigen recognition. Virus-specific proliferative CD4 and CD8 T-cell responses, important for the control of infection, are observed in some HIV-1+ patients during early stages of disease, and are maintained in long-term nonprogressing subjects. In the vast majority of HIV-1+ patients, full immune functionality is lost when proliferative HIV-1-specific T-cell responses undergo a variable progressive decline throughout the course of chronic infection. This appears irreparable despite administration of potent combination antiretroviral therapy, which to date is non-curative, necessitating life-long administration and the development of effective, novel, therapeutic interventions. While a sterilising cure, involving clearance of virus from the host, remains a primary aim, a functional cure may be a more feasible goal with considerable impact on worldwide HIV-1 infection. Such an approach would enable long-term co-existence of host and virus in the absence of toxic and costly drugs. Effective immune homeostasis coupled with a balanced response appropriately targeting conserved viral antigens, in a manner that avoids hyperactivation and exhaustion, may prove to be the strongest correlate of durable viral control. This review describes novel concepts underlying full immune functionality in the context of HIV-1 infection, which may be utilised in future strategies designed to improve upon existing therapy. The aim will be to induce long-term nonprogressor or elite controller status in every infected host, through immune-mediated control of viraemia and reduction of viral reservoirs, leading to lower HIV-1 transmission rates.

  3. Long-term culture of human odontoma-derived cells with a Rho kinase inhibitor.

    Science.gov (United States)

    Uzawa, Katsuhiro; Kasamatsu, Atsushi; Saito, Tomoaki; Takahara, Toshikazu; Minakawa, Yasuyuki; Koike, Kazuyuki; Yamatoji, Masanobu; Nakashima, Dai; Higo, Morihiro; Sakamoto, Yosuke; Shiiba, Masashi; Tanzawa, Hideki

    2016-09-10

    Because of cellular senescence/apoptosis, no effective culture systems are available to maintain replication of cells from odontogenic tumors especially for odontoma, and, thus, the ability to isolate human odontoma-derived cells (hODCs) for functional studies is needed. The current study was undertaken to develop an approach to isolate hODCs and fully characterize the cells in vitro. The hODCs were cultured successfully with a Rho-associated protein kinase inhibitor (Y-27632) for an extended period with stabilized lengths of the telomeres to sustain a similar phenotype/property as the primary tumoral cells. While the hODCs showed stable long-term expansion with expression of major dental epithelial markers including dentin sialophosphoprotein (DSPP) even in the three-dimensional microenvironment, they lack the specific markers for the characteristics of stem cells. Moreover, cells from dental pulp showed significant up-regulation of DSPP when co-cultured with the hODCs, while control fibroblasts with the hODCs did not. Taken together, we propose that the hODCs can be isolated and expanded over the long term with Y-27632 to investigate not only the development of the hODCs but also other types of benign human tumors.

  4. Characterization of Porcine Ventral Mesencephalic Precursor Cells following Long-Term Propagation in 3D Culture

    Directory of Open Access Journals (Sweden)

    Pia S. Jensen

    2012-01-01

    Full Text Available The potential use of predifferentiated neural precursor cells for treatment of a neurological disorder like Parkinson’s disease combines stem cell research with previous experimental and clinical transplantation of developing dopaminergic neurons. One current obstacle is, however, the lack of ability to generate dopaminergic neurons after long-term in vitro propagation of the cells. The domestic pig is considered a useful nonprimate large animal model in neuroscience, because of a better resemblance of the larger gyrencephalic pig brain to the human brain than the commonly used brains of smaller rodents. In the present study, porcine embryonic (28–30 days, ventral mesencephalic precursor cells were isolated and propagated as free-floating neural tissue spheres in medium containing epidermal growth factor and fibroblast growth factor 2. For passaging, the tissue spheres were cut into quarters, avoiding mechanical or enzymatic dissociation in order to minimize cellular trauma and preserve intercellular contacts. Spheres were propagated for up to 237 days with analysis of cellular content and differentiation at various time points. Our study provides the first demonstration that porcine ventral mesencephalic precursor cells can be long-term propagated as neural tissue spheres, thereby providing an experimental 3D in vitro model for studies of neural precursor cells, their niche, and differentiation capacity.

  5. Film Grain-Size Related Long-Term Stability of Inverted Perovskite Solar Cells.

    Science.gov (United States)

    Chiang, Chien-Hung; Wu, Chun-Guey

    2016-09-22

    The power conversion efficiency (PCE) of the perovskite solar cell is high enough to be commercially viable. The next important issue is the stability of the device. This article discusses the effect of the perovskite grain-size on the long-term stability of inverted perovskite solar cells. Perovskite films composed of various sizes of grains were prepared by controlling the solvent annealing time. The grain-size related stability of the inverted cells was investigated both in ambient atmosphere at relative humidity of approximately 30-40 % and in a nitrogen filled glove box (H2 Osolar cell based on a perovskite film having the grain size larger than 1 μm (D-10) decreases less than 10 % with storage in a glove box and less than 15 % when it was stored under an ambient atmosphere for 30 days. However, the cell using the perovskite film composed of small (∼100 nm) perovskite grains (D-0) exhibits complete loss of PCE after storage under the ambient atmosphere for only 15 days and a PCE loss of up to 70 % with storage in the glove box for 30 days. These results suggest that, even under H2 O-free conditions, the chemical- and thermal-induced production of pin holes at the grain boundaries of the perovskite film could be the reason for long-term instability of inverted perovskite solar cells.

  6. Efficient long-term cryopreservation of pluripotent stem cells at −80 °C

    Science.gov (United States)

    Yuan, Ye; Yang, Ying; Tian, Yuchen; Park, Jinkyu; Dai, Aihua; Roberts, R. Michael; Liu, Yang; Han, Xu

    2016-01-01

    Current long term cryopreservation of cell stocks routinely requires the use of liquid nitrogen (LN2), because commonly used cryopreservation media containing cell membrane permeating cryoprotectants are thermally unstable when frozen at higher storage temperatures, e.g. −80 °C. This instability leads to ice recrystallization, causing progressive loss of cell viability over time under the storage conditions provided by most laboratory deep freezers. The dependency on LN2 for cell storage significantly increases operational expense and raises issues related to impaired working efficiency and safety. Here we demonstrate that addition of Ficoll 70 to cryoprotectant solutions significantly improves system thermal stability at the working temperature (~−80 °C) of laboratory deep freezers. Moreover, a medium comprised of Ficoll 70 and dimethyl sulfoxide (DMSO) in presence or absence of fetal bovine serum (FBS) can provide reliable cryopreservation of various kinds of human and porcine pluripotent stem cells at −80 °C for periods that extend up to at least one year, with the post-thaw viability, plating efficiency, and full retention of pluripotent phenotype comparable to that achieved with LN2 storage. These results illustrate the practicability of a promising long-term cryopreservation method that completely eliminates the need for LN2. PMID:27694817

  7. Cell proliferation as a long-term prognostic factor in diffuse large-cell lymphomas.

    Science.gov (United States)

    Silvestrini, R; Costa, A; Boracchi, P; Giardini, R; Rilke, F

    1993-05-01

    The relevance of cell proliferation rate--defined as the 3H-thymidine labeling index (3H-dT LI)--in predicting response to treatment (complete remission, CR), freedom from progression (FFP) and overall survival (OS) was evaluated in 86 patients with diffuse large-cell lymphoma (DLCL). The biologic variable was not associated with most of the established clinical factors, such as gender and age of the patient, performance status, B symptoms, tumor bulk, or extranodal disease, but was directly related to stage. 3H-dT LI significantly predicted short- and long-term clinical outcome. In fact, more patients with slowly proliferating DLCL reached CR and had longer median FFP and OS than patients with rapidly proliferating DLCL. Multiple-regression analysis to evaluate the relative contribution of the different biologic and clinical variables in predicting CR, FFP and OS showed that 3H-dT LI and Ann Arbor stage were the only 2 stable factors, which retained their prognostic significance even in the presence of other conventional factors, and that 3H-dT LI was the most powerful as an indicator of risk of death in DLCL patients.

  8. Phenotypic and functional characterization of human mammary stem/progenitor cells in long term culture.

    Directory of Open Access Journals (Sweden)

    Devaveena Dey

    Full Text Available BACKGROUND: Cancer stem cells exhibit close resemblance to normal stem cells in phenotype as well as function. Hence, studying normal stem cell behavior is important in understanding cancer pathogenesis. It has recently been shown that human breast stem cells can be enriched in suspension cultures as mammospheres. However, little is known about the behavior of these cells in long-term cultures. Since extensive self-renewal potential is the hallmark of stem cells, we undertook a detailed phenotypic and functional characterization of human mammospheres over long-term passages. METHODOLOGY: Single cell suspensions derived from human breast 'organoids' were seeded in ultra low attachment plates in serum free media. Resulting primary mammospheres after a week (termed T1 mammospheres were subjected to passaging every 7th day leading to the generation of T2, T3, and T4 mammospheres. PRINCIPAL FINDINGS: We show that primary mammospheres contain a distinct side-population (SP that displays a CD24(low/CD44(low phenotype, but fails to generate mammospheres. Instead, the mammosphere-initiating potential rests within the CD44(high/CD24(low cells, in keeping with the phenotype of breast cancer-initiating cells. In serial sphere formation assays we find that even though primary (T1 mammospheres show telomerase activity and fourth passage T4 spheres contain label-retaining cells, they fail to initiate new mammospheres beyond T5. With increasing passages, mammospheres showed an increase in smaller sized spheres, reduction in proliferation potential and sphere forming efficiency, and increased differentiation towards the myoepithelial lineage. Significantly, staining for senescence-associated beta-galactosidase activity revealed a dramatic increase in the number of senescent cells with passage, which might in part explain the inability to continuously generate mammospheres in culture. CONCLUSIONS: Thus, the self-renewal potential of human breast stem cells is

  9. Long Term Performance Study of a Direct Methanol Fuel Cell Fed with Alcohol Blends

    Directory of Open Access Journals (Sweden)

    Eleuterio Mora

    2013-01-01

    Full Text Available The use of alcohol blends in direct alcohol fuel cells may be a more environmentally friendly and less toxic alternative to the use of methanol alone in direct methanol fuel cells. This paper assesses the behaviour of a direct methanol fuel cell fed with aqueous methanol, aqueous ethanol and aqueous methanol/ethanol blends in a long term experimental study followed by modelling of polarization curves. Fuel cell performance is seen to decrease as the ethanol content rises, and subsequent operation with aqueous methanol only partly reverts this loss of performance. It seems that the difference in the oxidation rate of these alcohols may not be the only factor affecting fuel cell performance.

  10. Stevioside counteracts the alpha-cell hypersecretion caused by long-term palmitate exposure

    DEFF Research Database (Denmark)

    Hong, J; Chen, L; Jeppesen, P B;

    2006-01-01

    Long-term exposure to fatty acids impairs beta-cell function in type 2 diabetes, but little is known about the chronic effects of fatty acids on alpha-cells. We therefore studied the prolonged impact of palmitate on alpha-cell function and on the expression of genes related to fuel metabolism. We......-activated receptor-gamma, and stearoyl-CoA desaturase gene expressions in the presence of palmitate (Pacids leads to a hypersecretion of glucagon and an accumulation of TG content in clonal alpha-TC1-6 cells. Stevioside was able to counteract the alpha......-cell hypersecretion caused by palmitate and enhanced the expression of genes involved in fatty acid metabolism. This indicates that stevioside may be a promising antidiabetic agent in treatment of type 2 diabetes....

  11. Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation.

    Science.gov (United States)

    Chan, Vincent; Zorlutuna, Pinar; Jeong, Jae Hyun; Kong, Hyunjoon; Bashir, Rashid

    2010-08-21

    Cell-encapsulated hydrogels with complex three-dimensional (3D) structures were fabricated from photopolymerizable poly(ethylene glycol) diacrylate (PEGDA) using modified 'top-down' and 'bottoms-up' versions of a commercially available stereolithography apparatus (SLA). Swelling and mechanical properties were measured for PEGDA hydrogels with molecular weights (M(w)) ranging from 700 to 10 000 Daltons (Da). Long-term viability of encapsulated NIH/3T3 cells was quantitatively evaluated using an MTS assay and shown to improve over 14 days by increasing the M(w) of the hydrogels. Addition of adhesive RGDS peptide sequences resulted in increased cell viability, proliferation, and spreading compared to pristine PEG hydrogels of the same M(w). Spatial 3D layer-by-layer cell patterning was successfully demonstrated, and the feasibility of depositing multiple cell types and material compositions into distinct layers was established.

  12. Long-term label retaining cells localize to distinct regions within the female reproductive epithelium.

    Science.gov (United States)

    Patterson, Amanda L; Pru, James K

    2013-09-01

    The uterus is an extremely plastic organ that undergoes cyclical remodeling including endometrial regeneration during the menstrual cycle. Endometrial remodeling and regeneration also occur during pregnancy and following parturition, particularly in hemochorial implanting species. The mechanisms of endometrial regeneration are not well understood. Endometrial stem/progenitor cells are proposed to contribute to endometrial regeneration in both humans and mice. BrdU label retention has been used to identify potential stem/progenitor cells in mouse endometrium. However, methods are not available to isolate BrdU label-retaining cells (LRC) for functional analyses. Therefore, we employed a transgenic mouse model to identify H2B-GFP LRCs throughout the female reproductive tract with particular interest on the endometrium. We hypothesized that the female reproductive tract contains a population of long-term LRCs that persist even following pregnancy and endometrial regeneration. Endometrial cells were labeled (pulsed) either transplacentally/translactationally or peripubertally. When mice were pulsed transplacentally/translactationally, the label was not retained in the uterus. However, LRCs were concentrated to the distal oviduct and endocervical transition zone (TZ) following natural (i.e., pregnancy/parturition induced) and mechanically induced endometrial regeneration. LRCs in the distal oviduct and endocervical TZ expressed stem cell markers and did not express ERα or PGR, implying the undifferentiated phenotype of these cells. Oviduct and endocervical TZ LRCs did not proliferate during endometrial re-epithelialization, suggesting that they do not contribute to the endometrium in a stem/progenitor cell capacity. In contrast, when mice were pulsed peripubertally long-term LRCs were identified in the endometrial glandular compartment in mice as far out as 9 months post-pulse. These findings suggest that epithelial tissue of the female reproductive tract contains 3

  13. A zero-flow microfluidics for long-term cell culture and detection

    Science.gov (United States)

    Sang, Shengbo; Tang, Xiaoliang; Feng, Qiliang; Jian, Aoqun; Zhang, Wendong

    2015-04-01

    A zero-flow microfluidic design is proposed in this paper, which can be used for long-term cell culture and detection, especially for a lab-on-chip integrated with a biosensor. It consists of two parts: a main microchannel; and a circle microchamber. The Finite Element Method (FEM) was employed to predict the fluid transport properties for a minimum fluid flow disturbance. Some commonly used microfluidic structures were also analysed systematically to prove the designed structure. Then the designed microfluidics was fabricated. Based on the simulations and experiments, this design provides a continuous flow environment, with a relatively stable and low shear stress atmosphere, similar to a zero-flow environment. Furthermore, the nutrients maintaining cells' normal growth can be taken into the chamber through the diffusion effect. It also proves that the microfluidics can realize long-term cell culture and detection. The application of the structure in the field of biological microelectromechenical systems (BioMEMS) will provide a research foundation for microfluidic technology.

  14. Neural Networks Based Physical Cell Identity Assignment for Self Organized 3GPP Long Term Evolution

    Directory of Open Access Journals (Sweden)

    Muhammad Basit Shahab

    2013-10-01

    Full Text Available This paper proposes neural networks based graph coloring technique to assign Physical Cell Identities throughout the self-organized 3GPP Long Term Evolution Networks. PCIs are allocated such that no two cells in the vicinity of each other or with a common neighbor get the same identity. Efficiency of proposed methodology resides in the fact that minimum number of identities is utilized in the network wise assignment. Simulations are performed on a very large scale network, where initially all the cells are without any PCIs assigned. Results of simulations are demonstrated to analyze the performance of the proposed technique. Discussions about the presence of femto cells and PCI assignment in them are also presented at the end.

  15. Magnetic approaches to study collective three-dimensional cell mechanics in long-term cultures (invited).

    Science.gov (United States)

    Zhao, Ruogang; Boudou, Thomas; Wang, Wei-Gang; Chen, Christopher S; Reich, Daniel H

    2014-05-07

    Contractile forces generated by cells and the stiffness of the surrounding extracellular matrix are two central mechanical factors that regulate cell function. To characterize the dynamic evolution of these two mechanical parameters during tissue morphogenesis, we developed a magnetically actuated micro-mechanical testing system in which fibroblast-populated collagen microtissues formed spontaneously in arrays of microwells that each contains a pair of elastomeric microcantilevers. We characterized the magnetic actuation performance of this system and evaluated its capacity to support long-term cell culture. We showed that cells in the microtissues remained viable during prolonged culture periods of up to 15 days, and that the mechanical properties of the microtissues reached and maintained at a stable state after a fast initial increase stage. Together, these findings demonstrate the utility of this microfabricated bio-magneto-mechanical system in extended mechanobiological studies in a physiologically relevant 3D environment.

  16. Ultra-structural morphology of long-term cultivated white adipose tissue-derived stem cells.

    Science.gov (United States)

    Varga, Ivan; Miko, Michal; Oravcová, Lenka; Bačkayová, Tatiana; Koller, Ján; Danišovič, Ľuboš

    2015-12-01

    White adipose tissue was long perceived as a passive lipid storage depot but it is now considered as an active and important endocrine organ. It also harbours not only adipocytes and vascular cells but also a wide array of immunologically active cells, including macrophages and lymphocytes, which may induce obesity-related inflammation. Recently, adipose tissue has been reported as a source of adult mesenchymal stem cells with wide use in regenerative medicine and tissue engineering. Their relatively non-complicated procurement and collection (often performed as liposuction during aesthetic surgery) and grand plasticity support this idea even more. We focused our research on exploring the issues of isolation and long-term cultivation of mesenchymal stem cells obtained from adipose tissue. Ultra-structural morphology of the cells cultivated in vitro has been studied and analysed in several cultivation time periods and following serial passages--up to 30 passages. In the first passages they had ultra-structural characteristics of cells with high proteosynthetic activity. Within the cytoplasm, big number of small lipid droplets and between them, sparsely placed, small and inconspicuous, electron-dense, lamellar bodies, which resembled myelin figures were observed. The cells from the later passages contained high number of lamellar electron-dense structures, which filled out almost the entire cytoplasm. In between, mitochondria were often found. These bodies were sometimes small and resembled myelin figures, but several of them reached huge dimensions (more than 1 µm) and their lamellar structure was not distinguishable. We did not have an answer to the question about their function, but they probably represented the evidence of active metabolism of lipids present in the cytoplasm of these cells or represented residual bodies, which arise after the breakdown of cellular organelles, notably mitochondria during long-term cultivation.

  17. Interleukin-1 mediates long-term hippocampal dentate granule cell loss following postnatal viral infection.

    Science.gov (United States)

    Orr, Anna G; Sharma, Anup; Binder, Nikolaus B; Miller, Andrew H; Pearce, Bradley D

    2010-05-01

    Viral infections of the developing CNS can cause long-term neuropathological sequela through undefined mechanisms. Proinflammatory cytokines such as IL-1beta have gained attention in mediating neurodegeneration in corticohippocampal structures due to a variety of insults in adults, though there is less information on the developing brain. Little is known concerning the spatial-temporal pattern of IL-1beta induction in the developing hippocampus following live virus infection, and there are few studies addressing the long-term consequences of this cytokine induction. We report that infection of rats with lymphocytic choriomeningitis virus on postnatal day 4 induces IL-1beta protein in select regions of the hippocampus on 6, 15, 21, and 45 days after infection. This infection resulted in a 71% reduction of dentate granule cell neurons by the time the rats reached mid-adulthood. We further investigated the causative role of IL-1 in this dentate granule cell loss by blocking IL-1 activity using an IL-1ra-expressing adenoviral vector administered at the time of infection. Blockade of IL-1 abrogated the infection-associated neuron loss in this vivo model. Considering that IL-1 can be triggered by multiple perinatal insults, our findings suggest that early therapy with anti-inflammatory agents that block IL-1 may be effective for reducing adulthood neuropathology.

  18. Embryonic stem cells remain highly pluripotent following long term expansion as aggregates in suspension bioreactors.

    Science.gov (United States)

    zur Nieden, Nicole I; Cormier, Jaymi T; Rancourt, Derrick E; Kallos, Michael S

    2007-05-01

    Increasing attention has been drawn towards pluripotent embryonic stem cells (ESCs) and their potential use as the primary material in various tissue engineering applications. Successful clinical implementation of this technology would require a quality controlled reproducible culture system for the expansion of the cells to be used in the generation of functional tissues. Recently, we showed that suspension bioreactors could be used in the regulated large-scale expansion of highly pluripotent murine ESCs. The current study illustrates that these bioreactor protocols can be adapted for long term culture and that murine ESC cultures remain highly undifferentiated, when serially passaged in suspension bioreactors for extended periods. Flow cytometry analysis and gene expression profiles of several pluripotency markers, in addition to colony and embryoid body (EB) formation tests were conducted at the start and end of the experiment and all showed that the ESC cultures remained highly undifferentiated over extended culture time in suspension. In vivo teratoma formation and in vitro differentiation into neural, cardiomyocyte, osteoblast and chondrocyte lineages, performed at the end of the long term culture, further supported the presence of functional and undifferentiated ESCs in the expanded population. Overall, this system enables the controlled expansion of highly pluripotent murine ESC populations.

  19. Long-term Survival, Organ Function, and Malignancy after Hematopoietic Stem Cell Transplantation for Fanconi Anemia.

    Science.gov (United States)

    Bonfim, Carmem; Ribeiro, Lisandro; Nichele, Samantha; Bitencourt, Marco; Loth, Gisele; Koliski, Adriana; Funke, Vaneuza A M; Pilonetto, Daniela V; Pereira, Noemi F; Flowers, Mary E D; Velleuer, Eunike; Dietrich, Ralf; Fasth, Anders; Torres-Pereira, Cassius C; Pedruzzi, Paola; Eapen, Mary; Pasquini, Ricardo

    2016-07-01

    We report on long-term survival in 157 patients with Fanconi anemia (FA) who survived 2 years or longer after their first transplantation with a median follow-up of 9 years. Marrow failure (80%) was the most common indication for transplantation. There were 20 deaths beyond 2 years after transplantation, with 12 of the deaths occurring beyond 5 years after transplantation. Donor chimerism was available for 149 patients: 112 (76%) reported > 95% chimerism, 27 (18%) reported 90% to 95% chimerism, and 8 (5%) reported 20% to 89% donor chimerism. Two patients have < 20% donor chimerism. The 10- and 15-year probabilities of survival were 90% and 79%, respectively. Results of multivariate analysis showed higher mortality risks for transplantations before 2003 (hazard ratio [HR], 7.87; P = .001), chronic graft-versus-host disease (GVHD) (HR, 3.80; P = .004) and squamous cell carcinoma after transplantation (HR, 38.17; P < .0001). The predominant cause of late mortality was squamous cell carcinoma, with an incidence of 8% and 14% at 10 and 15 years after transplantation, respectively, and was more likely to occur in those with chronic GVHD. Other causes of late mortality included chronic GVHD, infection, graft failure, other cancers, and hemorrhage. Although most patients are disease free and functional long term, our data support aggressive surveillance for long periods to identify those at risk for late mortality.

  20. A zero-flow microfluidics for long-term cell culture and detection

    Directory of Open Access Journals (Sweden)

    Shengbo Sang

    2015-04-01

    Full Text Available A zero-flow microfluidic design is proposed in this paper, which can be used for long-term cell culture and detection, especially for a lab-on-chip integrated with a biosensor. It consists of two parts: a main microchannel; and a circle microchamber. The Finite Element Method (FEM was employed to predict the fluid transport properties for a minimum fluid flow disturbance. Some commonly used microfluidic structures were also analysed systematically to prove the designed structure. Then the designed microfluidics was fabricated. Based on the simulations and experiments, this design provides a continuous flow environment, with a relatively stable and low shear stress atmosphere, similar to a zero-flow environment. Furthermore, the nutrients maintaining cells’ normal growth can be taken into the chamber through the diffusion effect. It also proves that the microfluidics can realize long-term cell culture and detection. The application of the structure in the field of biological microelectromechenical systems (BioMEMS will provide a research foundation for microfluidic technology.

  1. A simple and efficient method for the long-term preservation of plant cell suspension cultures

    Directory of Open Access Journals (Sweden)

    Boisson Anne-Marie

    2012-01-01

    Full Text Available Abstract Background The repeated weekly subculture of plant cell suspension is labour intensive and increases the risk of variation from parental cells lines. Most of the procedures to preserve cultures are based on controlled freezing/thawing and storage in liquid nitrogen. However, cells viability after unfreezing is uncertain. The long-term storage and regeneration of plant cell cultures remains a priority. Results Sycamore (Acer pseudoplatanus and Arabidopsis cell were preserved over six months as suspensions cultures in a phosphate-free nutrient medium at 5°C. The cell recovery monitored via gas exchange measurements and metabolic profiling using in vitro and in vivo 13C- and 31P-NMR took a couple of hours, and cell growth restarted without appreciable delay. No measurable cell death was observed. Conclusion We provide a simple method to preserve physiologically homogenous plant cell cultures without subculture over several months. The protocol based on the blockage of cell growth and low culture temperature is robust for heterotrophic and semi-autotrophic cells and should be adjustable to cell lines other than those utilised in this study. It requires no specialized equipment and is suitable for routine laboratory use.

  2. Whole-body proton irradiation causes long-term damage to hematopoietic stem cells in mice.

    Science.gov (United States)

    Chang, Jianhui; Feng, Wei; Wang, Yingying; Luo, Yi; Allen, Antiño R; Koturbash, Igor; Turner, Jennifer; Stewart, Blair; Raber, Jacob; Hauer-Jensen, Martin; Zhou, Daohong; Shao, Lijian

    2015-02-01

    Space flight poses certain health risks to astronauts, including exposure to space radiation, with protons accounting for more than 80% of deep-space radiation. Proton radiation is also now being used with increasing frequency in the clinical setting to treat cancer. For these reasons, there is an urgent need to better understand the biological effects of proton radiation on the body. Such improved understanding could also lead to more accurate assessment of the potential health risks of proton radiation, as well as the development of improved strategies to prevent and mitigate its adverse effects. Previous studies have shown that exposure to low doses of protons is detrimental to mature leukocyte populations in peripheral blood, however, the underlying mechanisms are not known. Some of these detriments may be attributable to damage to hematopoietic stem cells (HSCs) that have the ability to self-renew, proliferate and differentiate into different lineages of blood cells through hematopoietic progenitor cells (HPCs). The goal of this study was to investigate the long-term effects of low-dose proton irradiation on HSCs. We exposed C57BL/6J mice to 1.0 Gy whole-body proton irradiation (150 MeV) and then studied the effects of proton radiation on HSCs and HPCs in the bone marrow (BM) 22 weeks after the exposure. The results showed that mice exposed to 1.0 Gy whole-body proton irradiation had a significant and persistent reduction of BM HSCs compared to unirradiated controls. In contrast, no significant changes were observed in BM HPCs after proton irradiation. Furthermore, irradiated HSCs and their progeny exhibited a significant impairment in clonogenic function, as revealed by the cobblestone area-forming cell (CAFC) and colony-forming cell assays, respectively. These long-term effects of proton irradiation on HSCs may be attributable to the induction of chronic oxidative stress in HSCs, because HSCs from irradiated mice exhibited a significant increase in NADPH

  3. Alcohol Impairs Long-Term Depression at the Cerebellar Parallel Fiber–Purkinje Cell Synapse

    Science.gov (United States)

    Belmeguenai, Amor; Botta, Paolo; Weber, John T.; Carta, Mario; De Ruiter, Martijn; De Zeeuw, Chris I.; Valenzuela, C. Fernando; Hansel, Christian

    2008-01-01

    Acute alcohol consumption causes deficits in motor coordination and gait, suggesting an involvement of cerebellar circuits, which play a role in the fine adjustment of movements and in motor learning. It has previously been shown that ethanol modulates inhibitory transmission in the cerebellum and affects synaptic transmission and plasticity at excitatory climbing fiber (CF) to Purkinje cell synapses. However, it has not been examined thus far how acute ethanol application affects long-term depression (LTD) and long-term potentiation (LTP) at excitatory parallel fiber (PF) to Purkinje cell synapses, which are assumed to mediate forms of cerebellar motor learning. To examine ethanol effects on PF synaptic transmission and plasticity, we performed whole cell patch-clamp recordings from Purkinje cells in rat cerebellar slices. We found that ethanol (50 mM) selectively blocked PF–LTD induction, whereas it did not change the amplitude of excitatory postsynaptic currents at PF synapses. In contrast, ethanol application reduced voltage-gated calcium currents and type 1 metabotropic glutamate receptor (mGluR1)–dependent responses in Purkinje cells, both of which are involved in PF–LTD induction. The selectivity of these effects is emphasized by the observation that ethanol did not impair PF–LTP and that PF–LTP could readily be induced in the presence of the group I mGluR antagonist AIDA or the mGluR1a antagonist LY367385. Taken together, these findings identify calcium currents and mGluR1-dependent signaling pathways as potential ethanol targets and suggest that an ethanol-induced blockade of PF–LTD could contribute to the motor coordination deficits resulting from alcohol consumption. PMID:18922952

  4. Cell search scheme for long-term evolution of TD-SCDMA system

    Institute of Scientific and Technical Information of China (English)

    SU Huan; ZHANG Jian-hua; LI Ke

    2008-01-01

    Cell search is an important aspect for 3G long-term evolution (LTE). This article deals with cell search in the time-division-synchronou code-division multiple access (TD-SCDMA) LTE system. On the basis of the synchronization channel (SCH) and cell specific reference symbols (CSRSs), the proposed cell search procedure includes five stages: frame detection and coarse timing, coarse carrier frequency offset (CFO) estimation, fine timing, fine CFO estimation, and cell identification. The key features of the proposed method are as follows: first, the neighboring three cells' CSRSs are frequency division multiplexed (FD) to mitigate inter-cell interference. Second, the frequency domain differential cross-correlation, computed from CSRSs are maximally ratio combined for cell identification. Finally, the large set Kasami sequences are quadrature phase shift key (QPSK) modulated to be cell specific sequences (CSSs), to support a large number of target cells. Simulations show that the FD method is better than the code division multiplexed (CD) method.

  5. Proteomic analysis of blood cells in fish exposed to chemotherapeutics: evidence for long term effects.

    Science.gov (United States)

    Pierrard, Marie-Aline; Kestemont, Patrick; Phuong, Nguyen Thanh; Tran, Minh Phu; Delaive, Edouard; Thezenas, Marie-Laëtitia; Dieu, Marc; Raes, Martine; Silvestre, Frédéric

    2012-04-18

    Proteomics technology are increasingly used in ecotoxicological studies to characterize and monitor biomarkers of exposure. The present study aims at identifying long term effects of malachite green (MG) exposure on the proteome of peripheral blood mononuclear cells (PBMC) from the Asian catfish, Pangasianodon hypophthalmus. A common (0.1 ppm) concentration for therapeutic treatment was applied twice with a 72 h interval. PBMC were collected directly at the end of the second bath of MG (T1) and after 1 month of decontamination (T2). Analytical 2D-DIGE gels were run and a total of 2551±364 spots were matched. Among them, MG induced significant changes in abundance of 116 spots with no recovery after one month of decontamination. Using LC-MS/MS and considering single identification per spot, we could identify 25 different proteins. Additionally, MG residues were measured in muscle and in blood indicating that leuco-MG has almost totally disappeared after one month of decontamination. This work highlights long term effects of MG treatment on the PBMC proteome from fish intended for human consumption.

  6. [Karyological study of a long-term cell culture of calf kidney].

    Science.gov (United States)

    Ignatova, M; Karadzhov, I

    1982-01-01

    Studied was the karyologic type of a long-term calf kidney cell culture. The optimal conditions were found for the preparation of good metaphase plaques of such cell culture, with clearly visible chromosomes. The changes in the chromosomes, setting in at the level of the 1st, 10th, 20th, and 27th passage were followed up. While the chromosomes in the first passage did not show any visible changes (with the exception of the 3rd chromosome where the presence of satelites was found), these underwent structural changes that started in the tenth passage, reached their peak in the twentieth passage, and receded later on. The most frequently encountered structural changes were the isochromosome gaps, dicentric configurations, acentric fragments, and polyploidy that appeared at the level of the 27th passage in four out of the twenty metaphase plaques. Discussed is the importance of the structural changes found.

  7. Long-term, large scale cryopreservation of insect cells at -80 °C.

    Science.gov (United States)

    Vyletova, Lucie; Rennalls, La'Verne P; Wood, Kirstin J L; Good, Valerie M

    2016-03-01

    Standard tissue culture methods advise freezing cells in small aliquots (≤1 × 10(7) cells in 1 mL), and storing in liquid nitrogen. This is inconvenient for laboratories culturing large quantities of insect cells for recombinant baculovirus expression, owing to the length of time taken to produce large scale cultures from small aliquots of cells. Liquid nitrogen storage requires use of specialized cryovials, personal protective equipment and oxygen monitoring systems. This paper describes the long-term, large scale cryopreservation of 8 × 10(8) insect cells at -80 °C, using standard 50 mL conical tubes to contain a 40 mL cell suspension. Sf9, Sf21 and High 5 cells were recovered with a viability > 90 % after storage for one year under these conditions, which compared favorably with the viability of cells stored in liquid nitrogen for the same length of time. Addition of green fluorescent protein encoding baculovirus demonstrated that cells were "expression ready" immediately post thaw. Our method enables large scale cultures to be recovered rapidly from stocks cryopreserved at -80 °C, thus avoiding the inconvenience, hazards and expense associated with liquid nitrogen.

  8. Human cytomegalovirus gene expression in long-term infected glioma stem cells.

    Directory of Open Access Journals (Sweden)

    Estefania Fiallos

    Full Text Available The most common adult primary brain tumor, glioblastoma (GBM, is characterized by fifteen months median patient survival and has no clear etiology. We and others have identified the presence of human cytomegalovirus (HCMV gene products endogenously expressed in GBM tissue and primary cells, with a subset of viral genes being consistently expressed in most samples. Among these viral genes, several have important oncomodulatory properties, regulating tumor stemness, proliferation, immune evasion, invasion and angiogenesis. These findings lead us to hypothesize that a specific HCMV gene signature may be associated with GBM pathogenesis. To investigate this hypothesis, we used glioma cell lines and primary glioma stem-like cells (GSC infected with clinical and laboratory HCMV strains and measured relative viral gene expression levels along several time points up to 15 weeks post-infection. While HCMV gene expression was detected in several infected glioma lines through week 5 post-infection, only HCMV-infected GSC expressed viral gene products 15 weeks post-infection. Efficiency of infection across time was higher in GSC compared to cell lines. Importantly, HCMV-infected GSC outlived their uninfected counterparts, and this extended survival was paralleled by increased tumorsphere frequency and upregulation of stemness regulators, such as SOX2, p-STAT3, and BMX (a novel HCMV target identified in this study. Interleukin 6 (IL-6 treatment significantly upregulated HCMV gene expression in long-term infected glioma cultures, suggesting that pro-inflammatory signaling in the tumor milieu may further augment HCMV gene expression and subsequent tumor progression driven by viral-induced cellular signaling. Together, our data support a critical role for long-term, low-level HCMV infection in promoting survival, stemness, and proliferation of GSC that could significantly contribute to GBM pathogenesis.

  9. Therapeutic benefits in thalassemic mice transplanted with long term cultured bone marrow cells

    Science.gov (United States)

    Hatada, Seigo; Walton, William; Hatada, Tomoko; Wofford, Anne; Fox, Raymond; Liu, Naiyou; Lill, Michael C.; Fair, Jeffery H.; Kirby, Suzanne L.; Smithies, Oliver

    2011-01-01

    Objective Autologous bone marrow (BM) cells with a faulty gene corrected by gene targeting could provide a powerful therapeutic option for patients with genetic blood diseases. Achieving this goal is hindered by the low abundance of therapeutically useful BM cells and the difficulty of maintaining them in tissue culture long enough for completing gene targeting without them differentiating. Our objective was to devise a simple long-term culture system, using unfractioned BM cells, that maintains and expands therapeutically useful cells for ≥4 weeks. Materials and Methods From 2 to 60 million BM cells from wild-type (WT) mice, or from mice carrying a truncated erythropoietin receptor transgene (tEpoR-tg), were plated with or without irradiated fetal-liver derived AFT024 stromal cells in 25 cm2 culture flasks. Four-week cultured cells were analyzed and transplanted into sublethally irradiated thalassemic mice (1 million cells / mouse). Results After 4 weeks, the cultures with AFT024 cells had extensive “cobblestone” areas. Optimum expansion of Sca-1 positive cells was 5.5-fold with 20 × 106 WT cells/flask and 27-fold with 2 × 106 tEpoR-tg cells. More than 85% of thalassemic mice transplanted with either type of cells had almost complete reversal of their thalassemic phenotype for at least 6 months, including blood smear dysmorphology, reticulocytosis, high ferritin plasma levels and hepatic/renal hemosiderosis. Conclusion When plated at high cell densities on irradiated fetal-liver derived stromal cells, BM cells from WT mice maintain their therapeutic potential for 4 weeks in culture, which is sufficient time for correction of a faulty gene by targeting. PMID:21184801

  10. Long-term live cell imaging and automated 4D analysis of drosophila neuroblast lineages.

    Directory of Open Access Journals (Sweden)

    Catarina C F Homem

    Full Text Available The developing Drosophila brain is a well-studied model system for neurogenesis and stem cell biology. In the Drosophila central brain, around 200 neural stem cells called neuroblasts undergo repeated rounds of asymmetric cell division. These divisions typically generate a larger self-renewing neuroblast and a smaller ganglion mother cell that undergoes one terminal division to create two differentiating neurons. Although single mitotic divisions of neuroblasts can easily be imaged in real time, the lack of long term imaging procedures has limited the use of neuroblast live imaging for lineage analysis. Here we describe a method that allows live imaging of cultured Drosophila neuroblasts over multiple cell cycles for up to 24 hours. We describe a 4D image analysis protocol that can be used to extract cell cycle times and growth rates from the resulting movies in an automated manner. We use it to perform lineage analysis in type II neuroblasts where clonal analysis has indicated the presence of a transit-amplifying population that potentiates the number of neurons. Indeed, our experiments verify type II lineages and provide quantitative parameters for all cell types in those lineages. As defects in type II neuroblast lineages can result in brain tumor formation, our lineage analysis method will allow more detailed and quantitative analysis of tumorigenesis and asymmetric cell division in the Drosophila brain.

  11. Simplified three-dimensional culture system for long-term expansion of embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    Christina; McKee; Mick; Perez-Cruet; Ferman; Chavez; G; Rasul; Chaudhry

    2015-01-01

    AIM: To devise a simplified and efficient method for long-term culture and maintenance of embryonic stem cells requiring less frequent passaging. METHODS: Mouse embryonic stem cells(ESCs) labeled with enhanced yellow fluorescent protein were cultured in three-dimensional(3-D) self-assembling scaffolds and compared with traditional two-dimentional(2-D) culture techniques requiring mouse embryonic fibroblast feeder layers or leukemia inhibitory factor. 3-D scaffolds encapsulating ESCs were prepared by mixing ESCs with polyethylene glycol tetra-acrylate(PEG-4-Acr) and thiolfunctionalized dextran(Dex-SH). Distribution of ESCs in 3-D was monitored by confocal microscopy. Viability and proliferation of encapsulated cells during long-term culture were determined by propidium iodide as well as direct cell counts and PrestoB lue(PB) assays. Genetic expression of pluripotency markers(Oct4, Nanog, Klf4, and Sox2) in ESCs grown under 2-D and 3-D cultureconditions was examined by quantitative real-time polymerase chain reaction. Protein expression of selected stemness markers was determined by two different methods, immunofluorescence staining(Oct4 and Nanog) and western blot analysis(Oct4, Nanog, and Klf4). Pluripotency of 3-D scaffold grown ESCs was analyzed by in vivo teratoma assay and in vitro differentiation via embryoid bodies into cells of all three germ layers. RESULTS: Self-assembling scaffolds encapsulating ESCs for 3-D culture without the loss of cell viability were prepared by mixing PEG-4-Acr and Dex-SH(1:1 v/v) to a final concentration of 5%(w/v). Scaffold integrity was dependent on the degree of thiol substitution of Dex-SH and cell concentration. Scaffolds prepared using Dex-SH with 7.5% and 33% thiol substitution and incubated in culture medium maintained their integrity for 11 and 13 d without cells and 22 ± 5 d and 37 ± 5 d with cells, respectively. ESCs formed compact colonies, which progressively increased in size over time due to cell proliferation as

  12. General approach for in vivo recovery of cell type-specific effector gene sets.

    Science.gov (United States)

    Barsi, Julius C; Tu, Qiang; Davidson, Eric H

    2014-05-01

    Differentially expressed, cell type-specific effector gene sets hold the key to multiple important problems in biology, from theoretical aspects of developmental gene regulatory networks (GRNs) to various practical applications. Although individual cell types of interest have been recovered by various methods and analyzed, systematic recovery of multiple cell type-specific gene sets from whole developing organisms has remained problematic. Here we describe a general methodology using the sea urchin embryo, a material of choice because of the large-scale GRNs already solved for this model system. This method utilizes the regulatory states expressed by given cells of the embryo to define cell type and includes a fluorescence activated cell sorting (FACS) procedure that results in no perturbation of transcript representation. We have extensively validated the method by spatial and qualitative analyses of the transcriptome expressed in isolated embryonic skeletogenic cells and as a consequence, generated a prototypical cell type-specific transcriptome database.

  13. Long-term effects of the transient COD concentration on the performance of microbial fuel cells.

    Science.gov (United States)

    Mateo, S; Gonzalez Del Campo, A; Lobato, J; Rodrigo, M; Cañizares, P; Fernandez-Morales, F J

    2016-07-08

    In this work, the long-term effects of transient chemical oxygen demands (COD) concentrations over the performance of a microbial fuel cell were studied. From the obtained results, it was observed that the repetitive change in the COD loading rate during 12 h conditioned the behavior of the system during periods of up to 7 days. The main modifications were the enhancement of the COD consumption rate and the exerted current. These enhancements yielded increasing Coulombic efficiencies (CEs) when working with COD concentrations of 300 mg/L, but constant CEs when working with COD concentrations from 900 to 1800 mg/L. This effect could be explained by the higher affinity for the substrate of Geobacter than that of the nonelectrogenic organisms such as Clostridia. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:883-890, 2016.

  14. Long-term stabilization of organic solar cells using hydroperoxide decomposers as additives

    Science.gov (United States)

    Turkovic, Vida; Engmann, Sebastian; Tsierkezos, Nikos; Hoppe, Harald; Madsen, Morten; Rubahn, Horst-Günter; Ritter, Uwe; Gobsch, Gerhard

    2016-03-01

    Stability of organic solar cells (OPV) remains a big problem on the way to their commercialization. Different approaches are being investigated: development of intrinsically more photochemically stable materials, optimization of encapsulation, and implementation of getter and UV blocking layers. In this study, we investigate stabilization of OPV devices using hydroperoxide decomposers as stabilizing additives. A set of five commercially available additives of organophosphorus, organosulfur, Ni chelate, and blocked thiol type are compared, ternary blended into the active layer, under exposure to aging under ISOS-3 degradation conditions. Improvements in long-term performance of OPV devices were observed upon stabilization with Advapak NEO-1120, lifetime was prolonged by a factor of 1.7, and accumulated power generation increased by a factor of 1.4. The stabilizing mechanisms are discussed using spectroscopic and microscopic measurements.

  15. Long-Term Degradation Testing of High-Temperature Electrolytic Cells

    Energy Technology Data Exchange (ETDEWEB)

    C.M. Stoots; J.E. O' Brien; J.S. Herring; G.K. Housley; D.G. Milobar; M.S. Sohal

    2009-08-01

    The Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cell for large-scale hydrogen production from steam over a temperature range of 800 to 900ºC. The INL has been testing various solid oxide cell designs to characterize their electrolytic performance operating in the electrolysis mode for hydrogen production. Some results presented in this report were obtained from cells, with an active area of 16 cm2 per cell. The electrolysis cells are electrode-supported, with ~10 µm thick yttria-stabilized zirconia (YSZ) electrolytes, ~1400 µm thick nickel-YSZ steam-hydrogen electrodes, and manganite (LSM) air-oxygen electrodes. The experiments were performed over a range of steam inlet mole fractions (0.1 to 0.6), gas flow rates, and current densities (0 to 0.6 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. On a molar basis, the steam consumption rate is equal to the hydrogen production rate. Cell performance was evaluated by performing DC potential sweeps at 800, 850, and 900°C. The voltage-current characteristics are presented, along with values of area-specific resistance as a function of current density. Long-term cell performance is also assessed to evaluate cell degradation. Details of the custom single-cell test apparatus developed for these experiments are also presented. NASA, in conjunction with the University of Toledo, has developed a new cell concept with the goals of reduced weight and high power density. This report presents results of the INL's testing of this new solid oxide cell design as an electrolyzer. Gas composition, operating voltage, and other parameters were varied during testing. Results to date show the NASA cell to be a promising design for both high power-to-weight fuel cell and electrolyzer applications.

  16. Differential effects of HOXB4 on nonhuman primate short- and long-term repopulating cells.

    Directory of Open Access Journals (Sweden)

    Xiao-Bing Zhang

    2006-05-01

    Full Text Available BACKGROUND: Hematopoietic stem cells (HSCs or repopulating cells are able to self-renew and differentiate into cells of all hematopoietic lineages, and they can be enriched using the CD34 cell surface marker. Because of this unique property, HSCs have been used for HSC transplantation and gene therapy applications. However, the inability to expand HSCs has been a significant limitation for clinical applications. Here we examine, in a clinically relevant nonhuman primate model, the ability of HOXB4 to expand HSCs to potentially overcome this limitation. METHODS AND FINDINGS: Using a competitive repopulation assay, we directly compared in six animals engraftment of HOXB4GFP (HOXB4 green fluorescent protein and control (yellow fluorescent protein [YFP]-transduced and expanded CD34+ cells. In three animals, cells were infused after a 3-d transduction culture, while in three other animals cells were infused after an additional 6-9 d of ex vivo expansion. We demonstrate that HOXB4 overexpression resulted in superior engraftment in all animals. The most dramatic effect of HOXB4 was observed early after transplantation, resulting in an up to 56-fold higher engraftment compared to the control cells. At 6 mo after transplantation, the proportion of marker gene-expressing cells in peripheral blood was still up to 5-fold higher for HOXB4GFP compared to YFP-transduced cells. CONCLUSIONS: These data demonstrate that HOXB4 overexpression in CD34+ cells has a dramatic effect on expansion and engraftment of short-term repopulating cells and a significant, but less pronounced, effect on long-term repopulating cells. These data should have important implications for the expansion and transplantation of HSCs, in particular for cord blood transplantations where often only suboptimal numbers of HSCs are available.

  17. Parotid small cell carcinoma presenting with long-term survival after surgery alone: a case report

    Directory of Open Access Journals (Sweden)

    Kanazawa Takeharu

    2012-12-01

    Full Text Available Abstract Introduction Primary involvement of the salivary glands in small cell carcinoma is rare, and has one of the worst prognoses of salivary gland neoplasms. However, it has been reported that some cases have a favorable outcome, although the prognostic factors are still under consideration. Multidisciplinary therapy was usually required to achieve long-term survival. Recently, a resemblance of some small cell carcinomas of the salivary gland to cutaneous Merkel cell carcinoma was suggested; the latter have the potential for spontaneous regression, which is related to a favorable clinical outcome. Case presentation We present a locoregional advanced parotid small cell carcinoma with multiple lymph node metastases in an 87-year-old Asian woman. The tumor was controlled by surgery alone, and nine-year disease-free survival was achieved without any adjunctive therapy. To the best of our knowledge, this is the longest reported follow-up of head and neck small cell carcinoma. Conclusion We believe this to be the first case of small cell carcinoma with involvement of the salivary glands reported in the literature with a good outcome after surgery alone without any adjunctive therapy.

  18. Propagation of human germ stem cells in long-term culture

    Directory of Open Access Journals (Sweden)

    Abbas Khodadadi

    2013-01-01

    Full Text Available Background: Spermatogonial stem cells (SSCs, a subset of undifferentiated type A spermatogonia, are the foundation of complex process of spermatogenesis and could be propagated in vitro culture conditions for long time for germ cell transplantation and fertility preservation. Objective: The aim of this study was in vitro propagation of human spermatogonial stem cells (SSCs and improvement of presence of human Germ Stem Cells (hGSCs were assessed by specific markers POU domain, class 5, transcription factor 1 (POU5F1, also known as Octamer-binding transcription factor 4 (Oct-4 and PLZF (Promyelocytic leukaemia zinc finger protein. Materials and Methods: Human testicular cells were isolated by enzymatic digestion (Collagenase IV and Trypsin. Germ cells were cultured in Stem-Pro 34 media supplemented by growth factors such as glial cell line-derived neurotrophic factor, basic fibroblast growth factor, epidermal growth factor and leukemia inhibitory factor to support self-renewal divisions. Germline stem cell clusters were passaged and expanded every week. Immunofluorecent study was accomplished by Anti-Oct4 antibody through the culture. The spermatogonial stem cells genes expression, PLZF, was studied in testis tissue and germ stem cells entire the culture. Results: hGSCs clusters from a brain dead patient developed in testicular cell culture and then cultured and propagated up to 6 weeks. During the culture Oct4 were a specific marker for identification of hGSCs in testis tissue. Expression of PLZF was applied on RNA level in germ stem cells. Conclusion: hGSCs indicated by SSCs specific marker can be cultured and propagated for long-term in vitro conditions.

  19. Bovine mammary epithelial cells retain stem-like phenotype in long-term cultures.

    Science.gov (United States)

    Cravero, Diego; Diego, Cravero; Martignani, Eugenio; Eugenio, Martignani; Miretti, Silvia; Silvia, Miretti; Macchi, Elisabetta; Elisabetta, Macchi; Accornero, Paolo; Paolo, Accornero; Baratta, Mario; Mario, Baratta

    2014-10-01

    The detection and characterization of bovine mammary stem cells may give a better understanding of the cyclic characteristic of mammary gland development. In turn, this could potentially offer techniques to manipulate lactation yield and for regenerative medicine. We previously demonstrated that adult stem cells reside in the bovine mammary gland and possess an intrinsic regenerative potential. In vitro maintenance and expansion of this primitive population is a challenging task that could make easier the study of adult mammary stem cells. The aim of this study is to investigate this possibility. Different subpopulations of mammary epithelial cells emerge when they are cultured in two defined culture conditions. Specific cell differentiation markers as cytokeratin 18 (CK18) and cytokeratin 14 (CK14) were expressed with significant differences according to culture conditions. Vimentin, a well-known fibroblast marker was observed to increase significantly (P day 20. In both conditions, after prolonged culture (25 days) a subset of cells still retained regenerative capabilities. These cells were able to form organized pseudo-alveoli when transplanted in immunodeficient mice as shown by the expression of cytokeratin 14 (CK14), cytokeratin 18 (CK18), p63 (a mammary basal cell layer marker) and Epithelial Cell Adhesion Molecule (EpCAM). We also were able to observe the presence of milk proteins signal in these regenerated structures, which is a specific marker of functional mammary alveoli. Progenitor content was also analyzed in vitro through Colony-Forming Cell (CFC) assays with no substantial differences among culture conditions and time points. These results demonstrate that long-term culture of a multipotent cell subpopulation with intrinsic regenerative potential is possible.

  20. Proliferation rate but not mismatch repair affects the long-term response of colon carcinoma cells to 5FU treatment.

    Science.gov (United States)

    Choudhary, B; Hanski, M L; Zeitz, M; Hanski, C

    2012-07-01

    The role of mismatch repair (MMR) in the response of colon carcinoma cells to 5-fluorouracil (5FU) is not well understood. In most of the in vitro studies only short-term response was investigated. We focussed here on the influence of MMR status on the mechanism of the short- and long-term response to clinically relevant 5FU concentrations by using isogenic or semiisogenic cell line pairs expressing/nonexpressing the hMLH1 protein, an important component of the MMR system. We show that the lower survival of MMR-proficient than of MMR-deficient cells in the clonogenic survival assay is due to a more frequent early cell arrest and to subsequent senescence. By contrast, the long-term cell growth after treatment, which is also affected by long-term arrest and senescence, is independent from the MMR status. The overall effect on the long-term cell growth is a cumulative result of cell proliferation rate-dependent growth inhibition, apoptosis and necrotic cell death. The main long-term cytotoxic effect of 5FU is the inhibition of growth while apoptosis and the necrotic cell death are minor contributions.

  1. Feline Neural Progenitor Cells I: Long-Term Expansion under Defined Culture Conditions

    Directory of Open Access Journals (Sweden)

    Jing Yang

    2012-01-01

    Full Text Available Neural progenitor cells (NPCs of feline origin (cNPCs have demonstrated utility in transplantation experiments, yet are difficult to grow in culture beyond the 1 month time frame. Here we use an enriched, serum-free base medium (Ultraculture and report the successful long-term propagation of these cells. Primary cultures were derived from fetal brain tissue and passaged in DMEM/F12-based or Ultraculture-based proliferation media, both in the presence of EGF + bFGF. Cells in standard DMEM/F12-based medium ceased to proliferate by 1-month, whereas the cells in the Ultraculture-based medium continued to grow for at least 5 months (end of study with no evidence of senescence. The Ultraculture-based cultures expressed lower levels of progenitor and lineage-associated markers under proliferation conditions but retained multipotency as evidenced by the ability to differentiate into neurons and glia following growth factor removal in the presence of FBS. Importantly, later passage cNPCs did not develop chromosomal aberrations.

  2. Mobile Cell Selection In 4G Long Term Evolution-Advanced (LTE-A Networks

    Directory of Open Access Journals (Sweden)

    Murtadha Ali Nsaif Shukur

    2016-08-01

    Full Text Available With the high demands for broadband mobile wireless communications and the emergence of new wireless multimedia applications constitute the motivation to the development of broadband wireless access technologies in recent years. The Long Term Evolution/System Architecture Evolution (LTE/SAE system has been specified by the Third Generation Partnership Project (3GPP on the way towards fourth-generation (4G mobile to ensure 3GPP keeping the dominance of the cellular communication technologies. Through the design and optimization of new radio access techniques and a further evolution of the LTE-A systems, Cell selection is the process of determining the cell(s that provide service to each mobile station. By study the potential benefits of global cell selection versus the current local mobile SNR-based decision protocol. In particular, and present the new possibility available in OFDMA & SC-FDMA based systems, such as IEEE 802.16m and LTEAdvanced, of satisfying the minimal demand of a mobile station simultaneously by more than one base station. After formalized the problems as an optimization problem; it's present how the mobile unit establishes this connection with the strongest cell station in vicinity. To do this, the mobile unit has to overcome the challenges of estimating the channel to communicate with the cell site and frequency synchronization. Also, multiple mobile units communicate to the same receiver and from various distances. Hence, it is up to the mobile to synchronize itself appropriately to the base stations. LTE-A uses two signals, the Primary Synchronization Signal and the Secondary Synchronization Signal sequentially to determine which of the available cell sites, a mobile would lock in to it. While inter-cell interference (ICI one of problems for the downlink and uplink of multi-cell systems (in general and OFDMA& SC-FDMA networks (in particular.

  3. A novel whole-cell mechanism for long-term memory enhancement.

    Directory of Open Access Journals (Sweden)

    Iris Reuveni

    Full Text Available Olfactory-discrimination learning was shown to induce a profound long-lasting enhancement in the strength of excitatory and inhibitory synapses of pyramidal neurons in the piriform cortex. Notably, such enhancement was mostly pronounced in a sub-group of neurons, entailing about a quarter of the cell population. Here we first show that the prominent enhancement in the subset of cells is due to a process in which all excitatory synapses doubled their strength and that this increase was mediated by a single process in which the AMPA channel conductance was doubled. Moreover, using a neuronal-network model, we show how such a multiplicative whole-cell synaptic strengthening in a sub-group of cells that form a memory pattern, sub-serves a profound selective enhancement of this memory. Network modeling further predicts that synaptic inhibition should be modified by complex learning in a manner that much resembles synaptic excitation. Indeed, in a subset of neurons all GABAA-receptors mediated inhibitory synapses also doubled their strength after learning. Like synaptic excitation, Synaptic inhibition is also enhanced by two-fold increase of the single channel conductance. These findings suggest that crucial learning induces a multiplicative increase in strength of all excitatory and inhibitory synapses in a subset of cells, and that such an increase can serve as a long-term whole-cell mechanism to profoundly enhance an existing Hebbian-type memory. This mechanism does not act as synaptic plasticity mechanism that underlies memory formation but rather enhances the response of already existing memory. This mechanism is cell-specific rather than synapse-specific; it modifies the channel conductance rather than the number of channels and thus has the potential to be readily induced and un-induced by whole-cell transduction mechanisms.

  4. Hydrogels as feeder-free scaffolds for long-term self-renewal of mouse induced pluripotent stem (mips) cells.

    OpenAIRE

    2012-01-01

    Expanding undifferentiated induced pluripotent stem (iPS) cells in vitro is a basic requirement for application of iPS cells in both fundamental research and clinical regeneration. In this study, we intended to establish a simple, low cost and efficient method for the long-term self-renewal of mouse induced pluripotent stem (miPS) cells without using feeder-cells and adhesive proteins. Three scaffolds were selected for the long-term subculture of miPS cells over two months starting from passa...

  5. Strategic improvement of the long-term stability of perovskite materials and perovskite solar cells.

    Science.gov (United States)

    Xu, Tingting; Chen, Lixin; Guo, Zhanhu; Ma, Tingli

    2016-10-05

    Perovskite solar cells (PSCs) have gained tremendous research interest in recent several years. To date the power conversion efficiency (PCE) of PSCs has been increased from 3.8% to over 22.1%, showing that they have a promising future as a renewable energy resource to compete with conventional silicon solar cells. However, a crucial challenge of PSCs currently is that perovskite materials and PSCs have limitations of easy degradation and inferior long-term stabilities, thus hampering their future commercial applications. In this review, the degradation mechanisms for instable perovskite materials and their corresponding solar cells are discussed. The stability study of perovskite materials and PSCs from the aspect of experimental tests and theoretical calculations is reviewed. The strategies for enhancing the stability of perovskite materials and PSCs are summarized from the viewpoints of perovskite material engineering, substituted organic and inorganic materials for hole transportation, alternative electrodes comprising mainly carbon and its relevant composites, interfacial modification, novel device structure construction and encapsulation, etc. Various approaches and outlooks on the future direction of perovskite materials and PSCs are highlighted. This review is expected to provide helpful insights for further enhancing the stability of perovskite materials and PSCs in this exciting field.

  6. Leukemia inhibitory factor favours neurogenic differentiation of long-term propagated human midbrain precursor cells

    DEFF Research Database (Denmark)

    Andersen, Rikke K; Widmer, Hans R; Zimmer, Jens;

    2009-01-01

    , human embryonic (5 weeks post-conception) ventral mesencephalic (VM) precursor cells were propagated as neural tissue-spheres (NTS) in epidermal growth factor (EGF; 20 ng/ml) and fibroblast growth factor 2 (FGF2; 20 ng/ml). After more than 325 days, the NTS were transferred to media containing either...... EGF+FGF2, EGF+FGF2+heparin or leukemia inhibitory factor (LIF; 10 ng/ml)+FGF2+heparin. Cultures were subsequently propagated for more than 180 days with NTS analyzed at various time-points. Our data show for the first time that human VM neural precursor cells can be long-term propagated as NTS...... in the presence of EGF and FGF2. A positive effect of heparin was found only after 150 days of treatment. After switching into different media, only NTS exposed to LIF contained numerous cells positive for markers of newly formed neurons. Besides of demonstrating the ability of human VM NTS to be long...

  7. Visualizing tropoelastin in a long-term human elastic fibre cell culture model.

    Science.gov (United States)

    Halm, M; Schenke-Layland, K; Jaspers, S; Wenck, H; Fischer, F

    2016-02-04

    Elastin is an essential protein found in a variety of tissues where resilience and flexibility are needed, such as the skin and the heart. When aiming to engineer suitable implants, elastic fibres are needed to allow adequate tissue renewal. However, the visualization of human elastogenesis remains in the dark. To date, the visualization of human tropoelastin (TE) production in a human cell context and its fibre assembly under live cell conditions has not been achieved. Here, we present a long-term cell culture model of human dermal fibroblasts expressing fluorescence-labelled human TE. We employed a lentiviral system to stably overexpress Citrine-labelled TE to build a fluorescent fibre network. Using immunofluorescence, we confirmed the functionality of the Citrine-tagged TE. Furthermore, we visualized the fibre assembly over the course of several days using confocal microscopy. Applying super resolution microscopy, we were able to investigate the inner structure of the elastin-fibrillin-1 fibre network. Future investigations will allow the tracking of TE produced under various conditions. In tissue engineering applications the fluorescent fibre network can be visualized under various conditions or it serves as a tool for investigating fibre degradation processes in disease-in-a-dish-models.

  8. Visualizing tropoelastin in a long-term human elastic fibre cell culture model

    Science.gov (United States)

    Halm, M.; Schenke-Layland, K.; Jaspers, S.; Wenck, H.; Fischer, F.

    2016-01-01

    Elastin is an essential protein found in a variety of tissues where resilience and flexibility are needed, such as the skin and the heart. When aiming to engineer suitable implants, elastic fibres are needed to allow adequate tissue renewal. However, the visualization of human elastogenesis remains in the dark. To date, the visualization of human tropoelastin (TE) production in a human cell context and its fibre assembly under live cell conditions has not been achieved. Here, we present a long-term cell culture model of human dermal fibroblasts expressing fluorescence-labelled human TE. We employed a lentiviral system to stably overexpress Citrine-labelled TE to build a fluorescent fibre network. Using immunofluorescence, we confirmed the functionality of the Citrine-tagged TE. Furthermore, we visualized the fibre assembly over the course of several days using confocal microscopy. Applying super resolution microscopy, we were able to investigate the inner structure of the elastin–fibrillin-1 fibre network. Future investigations will allow the tracking of TE produced under various conditions. In tissue engineering applications the fluorescent fibre network can be visualized under various conditions or it serves as a tool for investigating fibre degradation processes in disease-in-a-dish-models. PMID:26842906

  9. Stn1 is critical for telomere maintenance and long-term viability of somatic human cells.

    Science.gov (United States)

    Boccardi, Virginia; Razdan, Neetu; Kaplunov, Jessica; Mundra, Jyoti J; Kimura, Masayuki; Aviv, Abraham; Herbig, Utz

    2015-06-01

    Disruption of telomere maintenance pathways leads to accelerated entry into cellular senescence, a stable proliferative arrest that promotes aging-associated disorders in some mammals. The budding yeast CST complex, comprising Cdc13, Stn1, and Ctc1, is critical for telomere replication, length regulation, and end protection. Although mammalian homologues of CST have been identified recently, their role and function for telomere maintenance in normal somatic human cells are still incompletely understood. Here, we characterize the function of human Stn1 in cultured human fibroblasts and demonstrate its critical role in telomere replication, length regulation, and function. In the absence of high telomerase activity, shRNA-mediated knockdown of hStn1 resulted in aberrant and fragile telomeric structures, stochastic telomere attrition, increased telomere erosion rates, telomere dysfunction, and consequently accelerated entry into cellular senescence. Oxidative stress augmented the defects caused by Stn1 knockdown leading to almost immediate cessation of cell proliferation. In contrast, overexpression of hTERT suppressed some of the defects caused by hStn1 knockdown suggesting that telomerase can partially compensate for hStn1 loss. Our findings reveal a critical role for human Stn1 in telomere length maintenance and function, supporting the model that efficient replication of telomeric repeats is critical for long-term viability of normal somatic mammalian cells.

  10. KCNK5 is Functionally Down-Regulated Upon Long-Term Hypotonicity in Ehrlich Ascites Tumor Cells

    DEFF Research Database (Denmark)

    Kirkegaard, S. S.; Wulff, Tune; Gammeltoft, S.;

    2013-01-01

    Background/Aims: Regulatory volume decrease (RVD) in response to acute cell swelling is well described and KCNK5 (also known as TASK-2 or K2P5.1) has been shown to be the volume sensitive K+ channel in Ehrlich cells. Very little is, on the other hand, known about the effects of long-term hypotoni......Background/Aims: Regulatory volume decrease (RVD) in response to acute cell swelling is well described and KCNK5 (also known as TASK-2 or K2P5.1) has been shown to be the volume sensitive K+ channel in Ehrlich cells. Very little is, on the other hand, known about the effects of long......-term hypotonicity on expression and function of KCNK5, thus we have investigated the effect of long-term hypotonicity (24h - 48h) on KCNK5 in Ehrlich cells on the mRNA, protein and physiological levels. Methods: Physiological effects of long-term hypotonicity were measured using patch-clamp and Coulter counter...... physiological impairment of KCNK5 in Ehrlich cells after long-term hypotonic stimulation is predominantly due to down-regulation of the KCNK5 protein synthesis.© 2013 S. Karger AG, Basel...

  11. Neurotoxicity in long-term survivors of small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.S.; Umsawasdi, T.; Lee, Y.Y.; Barkley, H.T. Jr.; Murphy, W.K.; Welch, S.; Valdivieso, M.

    1986-03-01

    Chronic central nervous system neurotoxicity was studied in 38 long-term survivors (greater than or equal to 3 years) of small cell lung cancer who were treated at the University of Texas M. D. Anderson Hospital and Tumor Institute at Houston between 1971 and 1980. All but one patient received combination chemotherapy with or without chest irradiation. Twenty-four patients received whole brain irradiation (Group I), 22 for elective and two for therapeutic purposes, while 14 did not (Group II). Abnormalities in computed tomographic (CT) scans of the brain were more frequently observed in Group I than in Group II (70% vs. 0%, p less than 0.01). Clinical central nervous system neurotoxicity developed in three patients in Group I, while none developed in patients in Group II (p less than 0.05). Patients who received methotrexate and procarbazine after whole brain irradiation were at a higher risk for clinical central nervous system neurotoxicity (p less than 0.05), and for development of periventricular white matter changes in CT brain scans (p less than 0.05) than were patients in Group II. Impaired methylation of the myelin sheath is proposed as a possible underlying pathogenic mechanism.

  12. Long-term arsenic monitoring with an Enterobacter cloacae microbial fuel cell.

    Science.gov (United States)

    Rasmussen, Michelle; Minteer, Shelley D

    2015-12-01

    A microbial fuel cell was constructed with biofilms of Enterobacter cloacae grown on the anode. Bioelectrocatalysis was observed when the biofilm was grown in media containing sucrose as the carbon source and methylene blue as the mediator. The presence of arsenic caused a decrease in bioelectrocatalytic current. Biofilm growth in the presence of arsenic resulted in lower power outputs whereas addition of arsenic showed no immediate result in power output due to the short term arsenic resistance of the bacteria and slow transport of arsenic across cellular membranes to metabolic enzymes. Calibration curves plotted from the maximum current and maximum power of power curves after growth show that this system is able to quantify both arsenate and arsenate with low detection limits (46 μM for arsenate and 4.4 μM for arsenite). This system could be implemented as a method for long-term monitoring of arsenic concentration in environments where arsenic contamination could occur and alter the metabolism of the organisms resulting in a decrease in power output of the self-powered sensor.

  13. CDy6, a photostable probe for long-term real-time visualization of mitosis and proliferating cells.

    Science.gov (United States)

    Jeong, Yun-Mi; Duanting, Zhai; Hennig, Holger; Samanta, Animesh; Agrawalla, Bikram Keshari; Bray, Mark-Anthony; Carpenter, Anne E; Chang, Young-Tae

    2015-02-19

    Long-term real-time visualization of lysosomal dynamics has been challenging at the onset of mitosis due to the lack of fluorescent probes enabling convenient imaging of dividing cells. We developed a long-term real-time photostable mitotic or proliferating marker, CDy6, a BODIPY-derived compound of designation yellow 6, which labels lysosome. In long-term real-time, CDy6 displayed a sharp increase in intensity and change in localization in mitosis, improved photostability, and decreased toxicity compared with other widely used lysosomal and DNA markers, and the ability to label cells in mouse xenograft models. Therefore, CDy6 may open new possibilities to target and trace lysosomal contents during mitosis and to monitor cell proliferation, which can further our knowledge of the basic underlying biological mechanisms in the management of cancer.

  14. Prostaglandin E2 enhances long-term repopulation but does not permanently alter inherent stem cell competitiveness.

    Science.gov (United States)

    Hoggatt, Jonathan; Mohammad, Khalid S; Singh, Pratibha; Pelus, Louis M

    2013-10-24

    Hematopoietic stem cell (HSC) transplantation is a lifesaving therapy for malignant and nonmalignant hematologic diseases and metabolic disorders. Although successful, hematopoietic transplantation can be hindered by inadequate stem cell number or poor engrafting efficiency. To overcome these deficits, we and others have previously reported the HSC-enhancing ability of a short-term exposure of prostaglandin E2 (PGE2); this strategy has now progressed to phase 1 clinical trials in double cord blood transplantation. To further analyze the short- and long-term effects of HSC exposure to PGE2, we followed the repopulation kinetics of PGE2-treated hematopoietic grafts through 5 serial transplantations and compared inherent long-term competitiveness in a HSC head-to-head secondary transplantation model. Treatment with PGE2 did not result in a long-term increase in HSC competitiveness, lineage bias, or enhanced proliferative potential, demonstrating that pulse exposure to PGE2 results in transient increases in HSC homing and engraftment potential.

  15. Toxicological Effects of Caco-2 Cells Following Short-Term and Long-Term Exposure to Ag Nanoparticles

    Science.gov (United States)

    Chen, Ni; Song, Zheng-Mei; Tang, Huan; Xi, Wen-Song; Cao, Aoneng; Liu, Yuanfang; Wang, Haifang

    2016-01-01

    Extensive utilization increases the exposure of humans to Ag nanoparticles (NPs) via the oral pathway. To comprehensively address the action of Ag NPs to the gastrointestinal systems in real situations, i.e., the long-term low-dose exposure, we evaluated and compared the toxicity of three Ag NPs (20–30 nm with different surface coatings) to the human intestine cell Caco-2 after 1-day and 21-day exposures, using various biological assays. In both the short- and long-term exposures, the variety of surface coating predominated the toxicity of Ag NPs in a descending order of citrate-coated Ag NP (Ag-CIT), bare Ag NP (Ag-B), and poly (N-vinyl-2-pyrrolidone)-coated Ag NP (Ag-PVP). The short-term exposure induced cell growth inhibition and death. The cell viability loss appeared after cells were exposed to 0.7 μg/mL Ag-CIT, 0.9 μg/mL Ag-B or >1.0 μg/mL Ag-PVP for 24 h. The short-term and higher-dose exposure also induced reactive oxygen species (ROS) generation, mitochondrial damage, cell membrane leakage, apoptosis, and inflammation (IL-8 level). The long-term exposure only inhibited the cell proliferation. After 21-day exposure to 0.4 μg/mL Ag-CIT, the cell viability dropped to less than 50%, while cells exposed to 0.5 μg/mL Ag-PVP remained normal as the control. Generally, 0.3 μg/mL is the non-toxic dose for the long-term exposure of Caco-2 cells to Ag NPs in this study. However, cells presented inflammation after exposure to Ag NPs with the non-toxic dose in the long-term exposure. PMID:27338357

  16. Toxicological Effects of Caco-2 Cells Following Short-Term and Long-Term Exposure to Ag Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ni Chen

    2016-06-01

    Full Text Available Extensive utilization increases the exposure of humans to Ag nanoparticles (NPs via the oral pathway. To comprehensively address the action of Ag NPs to the gastrointestinal systems in real situations, i.e., the long-term low-dose exposure, we evaluated and compared the toxicity of three Ag NPs (20–30 nm with different surface coatings to the human intestine cell Caco-2 after 1-day and 21-day exposures, using various biological assays. In both the short- and long-term exposures, the variety of surface coating predominated the toxicity of Ag NPs in a descending order of citrate-coated Ag NP (Ag-CIT, bare Ag NP (Ag-B, and poly (N-vinyl-2-pyrrolidone-coated Ag NP (Ag-PVP. The short-term exposure induced cell growth inhibition and death. The cell viability loss appeared after cells were exposed to 0.7 μg/mL Ag-CIT, 0.9 μg/mL Ag-B or >1.0 μg/mL Ag-PVP for 24 h. The short-term and higher-dose exposure also induced reactive oxygen species (ROS generation, mitochondrial damage, cell membrane leakage, apoptosis, and inflammation (IL-8 level. The long-term exposure only inhibited the cell proliferation. After 21-day exposure to 0.4 μg/mL Ag-CIT, the cell viability dropped to less than 50%, while cells exposed to 0.5 μg/mL Ag-PVP remained normal as the control. Generally, 0.3 μg/mL is the non-toxic dose for the long-term exposure of Caco-2 cells to Ag NPs in this study. However, cells presented inflammation after exposure to Ag NPs with the non-toxic dose in the long-term exposure.

  17. Long-Term Outcomes of Sacrococcygeal Germ Cell Tumors in Infancy and Childhood

    Directory of Open Access Journals (Sweden)

    Rangsan Niramis

    2015-01-01

    Full Text Available Purpose. The aim of this study was to evaluate long-term outcomes of sacrococcygeal germ cell tumors (SC-GCTs over a 15-year period. Materials and Methods. A retrospective review was conducted of all pediatric patients treated for SC-GCTs at our hospital from 1998 to 2012. Results. Fifty-seven patients were treated for SC-GCTs with the most common in Altman’s classification type I. Age at surgery ranged from one day to 5.6 years. Tumor resection and coccygectomy were primarily performed in about 84% of the cases. Pathology revealed mature, immature, malignant sacrococcygeal teratomas (SCTs, and endodermal sinus tumors (ESTs in 41 (72%, 4 (77%, 6 (10.5%, and 6 (10.5%, respectively. Recurrence of discase occurred in 3 of 41 patients with mature teratomas (7.3%; 2 recurrences with mature teratomas and one recurrence with EST. Five of 6 malignant SCTs and 3 of 6 ESTs responded well to the treatment. Alpha-fetoprotein (AFP level was elevated in both malignant teratomas and ESTs. No immediate patient death was noted in any of the 57 cases, but 4 patients with malignant tumors and distant metastasis succumbed at home within 2 years of the initial treatment. Conclusion. Benign SCTs have a significant recurrence rate of approximately 7%. Close follow-up with serial AFP level monitoring should be done for 5 years after initial tumor resection and coccygectomy. The survival rate for malignant SC-GCTs with distant metastasis was unfavorable in the present study.

  18. KCNK5 is Functionally Down-Regulated Upon Long-Term Hypotonicity in Ehrlich Ascites Tumor Cells

    Directory of Open Access Journals (Sweden)

    Signe Skyum Kirkegaard

    2013-11-01

    Full Text Available Background/Aims: Regulatory volume decrease (RVD in response to acute cell swelling is well described and KCNK5 (also known as TASK-2 or K2P5.1 has been shown to be the volume sensitive K+ channel in Ehrlich cells. Very little is, on the other hand, known about the effects of long-term hypotonicity on expression and function of KCNK5, thus we have investigated the effect of long-term hypotonicity (24h - 48h on KCNK5 in Ehrlich cells on the mRNA, protein and physiological levels. Methods: Physiological effects of long-term hypotonicity were measured using patch-clamp and Coulter counter techniques. Expression patterns of KCNK5 on mRNA and protein levels were established using real-time qPCR and western blotting respectively. Results: The maximum swelling-activated current through KCNK5 was significantly decreased upon 48h of hypotonicity and likewise the RVD response was significantly impaired after both 24 and 48h of hypotonic stimulation. No significant differences in the KCNK5 mRNA expression patterns between control and stimulated cells were observed, but a significant decrease in the KCNK5 protein level 48h after stimulation was found. Conclusion: The data suggest that the strong physiological impairment of KCNK5 in Ehrlich cells after long-term hypotonic stimulation is predominantly due to down-regulation of the KCNK5 protein synthesis.

  19. Long-term maintenance of human induced pluripotent stem cells by automated cell culture system.

    Science.gov (United States)

    Konagaya, Shuhei; Ando, Takeshi; Yamauchi, Toshiaki; Suemori, Hirofumi; Iwata, Hiroo

    2015-11-17

    Pluripotent stem cells, such as embryonic stem cells and induced pluripotent stem (iPS) cells, are regarded as new sources for cell replacement therapy. These cells can unlimitedly expand under undifferentiated conditions and be differentiated into multiple cell types. Automated culture systems enable the large-scale production of cells. In addition to reducing the time and effort of researchers, an automated culture system improves the reproducibility of cell cultures. In the present study, we newly designed a fully automated cell culture system for human iPS maintenance. Using an automated culture system, hiPS cells maintained their undifferentiated state for 60 days. Automatically prepared hiPS cells had a potency of differentiation into three germ layer cells including dopaminergic neurons and pancreatic cells.

  20. Elevated fluoride levels and periostitis in pediatric hematopoietic stem cell transplant recipients receiving long-term voriconazole.

    Science.gov (United States)

    Tarlock, Katherine; Johnson, Darren; Cornell, Cathy; Parnell, Shawn; Meshinchi, Soheil; Baker, K Scott; Englund, Janet A

    2015-05-01

    Azole therapy is widely utilized in hematopoietic stem cell transplant (HCT) recipients for the treatment of aspergillus. Complications of voriconazole treatment related to its elevated fluoride content have been described in adults, including reports of symptomatic skeletal fluorosis. We review fluoride levels, clinical, and laboratory data in five pediatric HCT recipients on long-term voriconazole therapy, all found to have elevated serum fluoride levels. Two patients had toxic fluoride levels, one infant had symptoms of significant pain with movement and radiographs confirmed skeletal fluorosis. Monitoring fluoride levels in children, especially with skeletal symptoms, should be considered in patients on long-term voriconazole.

  1. Tumorigenic heterogeneity in cancer stem cells evolved from long-term cultures of telomerase-immortalized human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Burns, Jorge S; Abdallah, Basem M; Guldberg, Per

    2005-01-01

    Long-term cultures of telomerase-transduced adult human mesenchymal stem cells (hMSC) may evolve spontaneous genetic changes leading to tumorigenicity in immunodeficient mice (e.g., hMSC-TERT20). We wished to clarify whether this unusual phenotype reflected a rare but dominant subpopulation...... or if the stem cell origin allowed most cells to behave as cancer stem cells. Cultures of the hMSC-TERT20 strain at population doubling 440 were highly clonogenic (94%). From 110 single-cell clones expanded by 20 population doublings, 6 underwent detailed comparison. Like the parental population, each clone had...... tumorigenicity correlated with good viability plus capillary morphogenesis on serum starvation and high cyclin D1 expression. Thus, hMSC-TERT20 clones represent cancer stem cells with hierarchical tumorigenicity, providing new models to explore the stem cell hypothesis for cancer....

  2. Long-term stability for cobalt-based dye-sensitized solar cells obtained by electrolyte optimization.

    Science.gov (United States)

    Gao, Jiajia; Bhagavathi Achari, Muthuraaman; Kloo, Lars

    2014-06-14

    A significant improvement in the long-term stability for cobalt-based dye-sensitized solar cells (DSCs) under light-soaking conditions has been achieved by optimization of the composition of tris(2,2'-bipyridine) Co(ii)/Co(iii) electrolytes. The effects of component exchanges and changes were also studied during the optimization process.

  3. SLAM-enriched hematopoietic stem cells maintain long-term repopulating capacity after lentiviral transduction using an abbreviated protocol.

    Science.gov (United States)

    Laje, P; Zoltick, P W; Flake, A W

    2010-03-01

    Gene transfer to long-term repopulating hematopoietic stem cells (HSCs) using integrating viral vectors is an important goal in gene therapy. The SLAM (signaling lymphocyte activation molecule)-family receptors have recently been used for the isolation of highly enriched murine HSCs. This HSC enrichment protocol is relatively simple, and results in an HSC population with comparable repopulating capacity to c-kit(+)lin(-)Sca-1(+) (KSL) HSCs. The capacity to withstand genetic manipulation and, most importantly, to maintain long-term repopulating capacity of SLAM-enriched HSC populations has not been reported. In this study, SLAM-enriched HSCs were assessed for transduction efficiency and in vivo long-term repopulating capacity after lentiviral transduction using an abbreviated transduction protocol and KSL-enriched HSCs as a reference population. SLAM- and KSL-enriched HSCs were efficiently transduced by lentiviral vector using a simple protocol that involves minimal in vitro manipulation and no pre-stimulation. SLAM-HSCs are at least equal to KSL-HSCs with respect to efficiency of transduction and maintenance of long-term repopulating capacity. Although there was a reduction in repopulating capacity related to enrichment and culture manipulations relative to freshly isolated bone marrow (BM) cells, no detrimental effects were identified on long-term competitive capacity related to transduction, as transduced cells maintained stable levels of chimerism in competition with non-transduced cells and freshly isolated BM cells. These results support the SLAM-HSC enrichment protocol as a simple and efficient method for HSC enrichment for gene transfer studies.

  4. Fast stack activation procedure and effective long-term storage for high-performance polymer electrolyte membrane fuel cell

    Science.gov (United States)

    Yang, Seung Yong; Seo, Dong-Jun; Kim, Myeong-Ri; Seo, Min Ho; Hwang, Sun-Mi; Jung, Yong-Min; Kim, Beom-Jun; Yoon, Young-Gi; Han, Byungchan; Kim, Tae-Young

    2016-10-01

    Time-saving stack activation and effective long-term storage are one of most important issues that must be resolved for the commercialization of polymer electrolyte membrane fuel cell (PEMFC). Herein, we developed the cost-effective stack activation method to finish the whole activation within 30 min and the long-term storage method by using humidified N2 without any significant decrease in cell's performance for 30 days. Specifically, the pre-activation step with the direct injection of DI water into the stack and storage at 65 or 80 °C for 2 h increases the distinctive phase separation between the hydrophobic and hydrophilic regions in Nafion membrane, which significantly reduces the total activation time within 30 min. Additionally, the long-term storage with humidified N2 has no effect on the Pt oxidation and drying of Nafion membrane for 30 days due to its exergonic reaction in the cell. As a result, the high water content in Nafion membrane and the decrease of Pt oxidation are the critical factors that have a strong influence on the activation and long-term storage for high-performance PEMFC.

  5. Long-term stability of grafted polyethylene glycol surfaces for use with microstamped substrates in neuronal cell culture.

    Science.gov (United States)

    Branch, D W; Wheeler, B C; Brewer, G J; Leckband, D E

    2001-05-01

    Crucial to long-term stability of neuronal micropatterns is functional retention of the underlying substratum while exposed to cell culture conditions. We report on the ability of covalently bound PEG films in long-term cell culture to continually retard protein adhesion and cell growth. PDMS microstamps were used to create poly-d-lysine (PDL) substrates permissive to cell attachment and growth, and polyethylene glycol (PEG) substrates were used to minimize protein and cell adhesion. Film thickness was measured using null ellipsometry and atomic force microscopy (AFM). Organosilane film structure was examined using Fourier transform infrared (FT-IR) spectroscopy. Long-term film stability in cell culture conditions was tested by immersion in 0.1 M sodium phosphate buffer pH 7.4 for up to one month. Null ellipsometry and water contact measurements indicated that organosilane films were stable up to one month, whereas the PEG film thickness declined rapidly after day 25. Hippocampal cells plated at 200 cells/mm2 on uniform PEG substrates gave a steady increase in biofilm thickness on PEG films throughout the culture, possibly from proteins of neuronal origin. We found that all the layers in the cross-linking procedure were stable in cell culture conditions, with the exception of PEG, which degraded after day 25.

  6. Cell type-specific responses of peripheral blood mononuclear cells to silver nanoparticles.

    Science.gov (United States)

    Greulich, C; Diendorf, J; Gessmann, J; Simon, T; Habijan, T; Eggeler, G; Schildhauer, T A; Epple, M; Köller, M

    2011-09-01

    Silver nanoparticles (Ag-NP) are increasingly used in biomedical applications because of their remarkable antimicrobial activity. In biomedicine, Ag-NP are coated onto or embedded in wound dressings, surgical instruments and bone substitute biomaterials, such as silver-containing calcium phosphate cements. Free Ag-NP and silver ions are released from these coatings or after the degradation of a biomaterial, and may come into close contact with blood cells. Despite the widespread use of Ag-NP as an antimicrobial agent, there is a serious lack of information on the biological effects of Ag-NP on human blood cells. In this study, the uptake of Ag-NP by peripheral monocytes and lymphocytes (T-cells) was analyzed, and the influence of nanosilver on cell biological functions (proliferation, the expression of adhesion molecules, cytokine release and the generation of reactive oxygen species) was studied. After cell culture in the presence of monodispersed Ag-NP (5-30μgml(-1) silver concentration), agglomerates of nanoparticles were detected within monocytes (CD14+) but not in T-cells (CD3+) by light microscopy, flow cytometry and combined focused ion beam/scanning electron microscopy. The uptake rate of nanoparticles was concentration dependent, and the silver agglomerates were typically found in the cytoplasm. Furthermore, a concentration-dependent activation (e.g. an increased expression of adhesion molecule CD54) of monocytes at Ag-NP concentrations of 10-15μgml(-1) was observed, and cytotoxicity of Ag-NP-treated monocytes was observed at Ag-NP levels of 25μgml(-1) and higher. However, no modulation of T-cell proliferation was observed in the presence of Ag-NP. Taken together, our results provide the first evidence for a cell-type-specific uptake of Ag-NP by peripheral blood mononuclear cells (PBMC) and the resultant cellular responses after exposure.

  7. An integrated environmental perfusion chamber and heating system for long-term, high resolution imaging of living cells.

    Science.gov (United States)

    Hing, W A; Poole, C A; Jensen, C G; Watson, M

    2000-08-01

    This communication presents the design and application of an integrated environmental perfusion chamber and stage heating blanket suitable for time-lapse video microscopy of living cells. The system consists of two independently regulated components: a perfusion chamber suitable for the maintenance of cell viability and the variable delivery of environmental factors, and a separate heating blanket to control the temperature of the microscope stage and limit thermal conduction from the perfusion chamber. Two contrasting experiments are presented to demonstrate the versatility of the system. One long-term sequence illustrates the behaviour of cells exposed to ceramic fibres. The other shows the shrinking response of cultured articular cartilage chondrons under dynamic hyper-osmotic conditions designed to simulate joint loading. The chamber is simple in design, economical to produce and permits long-term examination of dynamic cellular behaviour while satisfying the fundamental requirements for the maintenance of environmental factors that influence cell viability.

  8. Long Term Aggresome Accumulation Leads to DNA Damage, p53-dependent Cell Cycle Arrest, and Steric Interference in Mitosis.

    Science.gov (United States)

    Lu, Meng; Boschetti, Chiara; Tunnacliffe, Alan

    2015-11-13

    Juxtanuclear aggresomes form in cells when levels of aggregation-prone proteins exceed the capacity of the proteasome to degrade them. It is widely believed that aggresomes have a protective function, sequestering potentially damaging aggregates until these can be removed by autophagy. However, most in-cell studies have been carried out over a few days at most, and there is little information on the long term effects of aggresomes. To examine these long term effects, we created inducible, single-copy cell lines that expressed aggregation-prone polyglutamine proteins over several months. We present evidence that, as perinuclear aggresomes accumulate, they are associated with abnormal nuclear morphology and DNA double-strand breaks, resulting in cell cycle arrest via the phosphorylated p53 (Ser-15)-dependent pathway. Further analysis reveals that aggresomes can have a detrimental effect on mitosis by steric interference with chromosome alignment, centrosome positioning, and spindle formation. The incidence of apoptosis also increased in aggresome-containing cells. These severe defects developed gradually after juxtanuclear aggresome formation and were not associated with small cytoplasmic aggregates alone. Thus, our findings demonstrate that, in dividing cells, aggresomes are detrimental over the long term, rather than protective. This suggests a novel mechanism for polyglutamine-associated developmental and cell biological abnormalities, particularly those with early onset and non-neuronal pathologies.

  9. Analyzing gene function in adult long-term hematopoietic stem cells using the interferon inducible Mx1-Cre mouse system.

    Science.gov (United States)

    Gudmundsson, Kristbjorn Orri; Oakley, Kevin; Han, Yufen; Du, Yang

    2014-01-01

    Long-term hematopoietic stem cells (LT-HSCs) have the ability to self-renew and differentiate into all blood cell lineages. Understanding the genetic networks that regulate LT-HSC function in the adult bone marrow requires inducible gene targeting and bone marrow transplantations. In this chapter we describe the use of the inducible Mx1-Cre mouse model to delete genes in LT-HSCs and methodologies for examining the function of LT-HSCs following deletion.

  10. Organotypic functional cultures of human liver cells for long-term maintenance and assessment of drug-induced metabolome effects

    OpenAIRE

    MÜLLER Daniel

    2011-01-01

    The goals of this thesis were (i) to establish and improve organotypic liver cell culture techniques for long-term pharmacological studies and (ii) to develop and apply a metabolomics based approach for the assessment of drug-induced effects. As first model, a 3D bioreactor system was characterized in terms of cell physiology and functionality. Primary human hepatocytes could be kept viable and functional for more than 2 weeks in this system. Optimization of the system allowed determination o...

  11. Highly Efficient Organic Hole Transporting Materials for Perovskite and Organic Solar Cells with Long-Term Stability.

    Science.gov (United States)

    Reddy, Saripally Sudhaker; Gunasekar, Kumarasamy; Heo, Jin Hyuck; Im, Sang Hyuk; Kim, Chang Su; Kim, Dong-Ho; Moon, Jong Hun; Lee, Jin Yong; Song, Myungkwan; Jin, Sung-Ho

    2016-01-27

    Small molecules based on N-atom-linked phenylcarbazole-fluorene as the main scaffold, end-capped with spirobifluorene derivatives, are developed as organic hole-transporting materials for highly efficient perovskite solar cells (PSCs) and bulk heterojunction (BHJ) inverted organic solar cells (IOSCs). The CzPAF-SBF-based devices show remarkable device performance with excellent long-term stability in PSCs and BHJ IOSCs with a maximum PCE of 17.21% and 7.93%, respectively.

  12. The impact of long-term haemofiltration (continuous veno-venous haemofiltration) on cell-mediated immunity during endotoxaemia

    DEFF Research Database (Denmark)

    Toft, P; Nilsen, B U; Bollen, P;

    2007-01-01

    BACKGROUND: Increased survival with high-volume continuous veno-venous haemofiltration (CVVH) has been demonstrated in critically ill patients. This may be the result of intensified blood purification or an effect on the immune system. We hypothesized that CVVH modifies the cell-mediated immunity....... However, in the long term, CVVH was unable to modify the endotoxin-induced changes in cell-mediated immunity....

  13. Common themes and cell type specific variations of higher order chromatin arrangements in the mouse

    Directory of Open Access Journals (Sweden)

    Cremer Thomas

    2005-12-01

    Full Text Available Abstract Background Similarities as well as differences in higher order chromatin arrangements of human cell types were previously reported. For an evolutionary comparison, we now studied the arrangements of chromosome territories and centromere regions in six mouse cell types (lymphocytes, embryonic stem cells, macrophages, fibroblasts, myoblasts and myotubes with fluorescence in situ hybridization and confocal laser scanning microscopy. Both species evolved pronounced differences in karyotypes after their last common ancestors lived about 87 million years ago and thus seem particularly suited to elucidate common and cell type specific themes of higher order chromatin arrangements in mammals. Results All mouse cell types showed non-random correlations of radial chromosome territory positions with gene density as well as with chromosome size. The distribution of chromosome territories and pericentromeric heterochromatin changed during differentiation, leading to distinct cell type specific distribution patterns. We exclude a strict dependence of these differences on nuclear shape. Positional differences in mouse cell nuclei were less pronounced compared to human cell nuclei in agreement with smaller differences in chromosome size and gene density. Notably, the position of chromosome territories relative to each other was very variable. Conclusion Chromosome territory arrangements according to chromosome size and gene density provide common, evolutionary conserved themes in both, human and mouse cell types. Our findings are incompatible with a previously reported model of parental genome separation.

  14. Towards identifying host cell-type specific response patterns to bacterial endosymbiosis

    DEFF Research Database (Denmark)

    Gavrilovic, Srdjan

    of view, available techniques have relied heavily on whole organ analyses that disregard specificities of individual cell types. To address this issue we aimed to develop a technology for comparative global analysis of mature mRNA and small RNA populations at the cell type specific level in the model...... plant Lotus japonicus. A powerful approach referred to here as Defined Expression and RNA Affinity co-Purification (DERAP) was developed to study gene expression and small RNA populations in the host roots during early phases of signal exchange at the cell-type level. As a basis for DERAP analysis...

  15. Induced Neural Stem Cells Achieve Long-Term Survival and Functional Integration in the Adult Mouse Brain

    Directory of Open Access Journals (Sweden)

    Kathrin Hemmer

    2014-09-01

    Full Text Available Differentiated cells can be converted directly into multipotent neural stem cells (i.e., induced neural stem cells [iNSCs]. iNSCs offer an attractive alternative to induced pluripotent stem cell (iPSC technology with regard to regenerative therapies. Here, we show an in vivo long-term analysis of transplanted iNSCs in the adult mouse brain. iNSCs showed sound in vivo long-term survival rates without graft overgrowths. The cells displayed a neural multilineage potential with a clear bias toward astrocytes and a permanent downregulation of progenitor and cell-cycle markers, indicating that iNSCs are not predisposed to tumor formation. Furthermore, the formation of synaptic connections as well as neuronal and glial electrophysiological properties demonstrated that differentiated iNSCs migrated, functionally integrated, and interacted with the existing neuronal circuitry. We conclude that iNSC long-term transplantation is a safe procedure; moreover, it might represent an interesting tool for future personalized regenerative applications.

  16. Reprogramming suppresses premature senescence phenotypes of Werner syndrome cells and maintains chromosomal stability over long-term culture.

    Directory of Open Access Journals (Sweden)

    Akira Shimamoto

    Full Text Available Werner syndrome (WS is a premature aging disorder characterized by chromosomal instability and cancer predisposition. Mutations in WRN are responsible for the disease and cause telomere dysfunction, resulting in accelerated aging. Recent studies have revealed that cells from WS patients can be successfully reprogrammed into induced pluripotent stem cells (iPSCs. In the present study, we describe the effects of long-term culture on WS iPSCs, which acquired and maintained infinite proliferative potential for self-renewal over 2 years. After long-term cultures, WS iPSCs exhibited stable undifferentiated states and differentiation capacity, and premature upregulation of senescence-associated genes in WS cells was completely suppressed in WS iPSCs despite WRN deficiency. WS iPSCs also showed recapitulation of the phenotypes during differentiation. Furthermore, karyotype analysis indicated that WS iPSCs were stable, and half of the descendant clones had chromosomal profiles that were similar to those of parental cells. These unexpected properties might be achieved by induced expression of endogenous telomerase gene during reprogramming, which trigger telomerase reactivation leading to suppression of both replicative senescence and telomere dysfunction in WS cells. These findings demonstrated that reprogramming suppressed premature senescence phenotypes in WS cells and WS iPSCs could lead to chromosomal stability over the long term. WS iPSCs will provide opportunities to identify affected lineages in WS and to develop a new strategy for the treatment of WS.

  17. Long-term persistence of acquired resistance to 5-fluorouracil in the colon cancer cell line SW620

    Energy Technology Data Exchange (ETDEWEB)

    Tentes, I.K., E-mail: itentes@med.duth.gr [Department of Biochemistry, Medical School, Democritus University of Thrace, 6th km Alexandroupolis-Komotini (Dragana), 68100 Alexandroupolis (Greece); Schmidt, W.M. [Center for Anatomy and Cell Biology, Waehringer Strasse 13, 1090 Vienna (Austria); Krupitza, G. [Institute of Clinical Pathology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria); Steger, G.G.; Mikulits, W. [Department of Medicine I, Medical University of Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria); Kortsaris, A. [Department of Biochemistry, Medical School, Democritus University of Thrace, 6th km Alexandroupolis-Komotini (Dragana), 68100 Alexandroupolis (Greece); Mader, R.M. [Department of Medicine I, Medical University of Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria)

    2010-11-15

    Treatment resistance to antineoplastic drugs represents a major clinical problem. Here, we investigated the long-term stability of acquired resistance to 5-fluorouracil (FU) in an in vitro colon cancer model, using four sub-clones characterised by increasing FU-resistance derived from the cell line SW620. The resistance phenotype was preserved after FU withdrawal for 15 weeks ({approx} 100 cell divisions) independent of the established level of drug resistance and of epigenetic silencing. Remarkably, resistant clones tolerated serum deprivation, adopted a CD133{sup +} CD44{sup -} phenotype, and further exhibited loss of membrane-bound E-cadherin together with predominant nuclear {beta}-catenin localisation. Thus, we provide evidence for a long-term memory of acquired drug resistance, driven by multiple cellular strategies (epithelial-mesenchymal transition and selective propagation of CD133{sup +} cells). These resistance phenomena, in turn, accentuate the malignant phenotype.

  18. Th17 cells are refractory to senescence and retain robust antitumor activity after long-term ex vivo expansion

    Science.gov (United States)

    Bowers, Jacob S.; Nelson, Michelle H.; Majchrzak, Kinga; Bailey, Stefanie R.; Rohrer, Baerbel; Kaiser, Andrew D.M.; Atkinson, Carl; Paulos, Chrystal M.

    2017-01-01

    Adoptive immunotherapy for solid tumors relies on infusing large numbers of T cells to mediate successful antitumor responses in patients. While long-term rapid-expansion protocols (REPs) produce sufficient numbers of CD8+ T cells for treatment, they also cause decline in the cell’s therapeutic fitness. In contrast, we discovered that IL-17–producing CD4+ T cells (Th17 cells) do not require REPs to expand 5,000-fold over 3 weeks. Also, unlike Th1 cells, Th17 cells do not exhibit hallmarks of senescence or apoptosis, retaining robust antitumor efficacy in vivo. Three-week-expanded Th17 cells eliminated melanoma as effectively as Th17 cells expanded for 1 week when infused in equal numbers into mice. However, treating mice with large recalcitrant tumors required the infusion of all cells generated after 2 or 3 weeks of expansion, while the cell yield obtained after 1-week expansion was insufficient. Long-term-expanded Th17 cells also protected mice from tumor rechallenge including lung metastasis. Importantly, 2-week-expanded human chimeric antigen receptor–positive (CAR+) Th17 cells also retained their ability to regress human mesothelioma, while CAR+ Th1 cells did not. Our results indicate that tumor-reactive Th17 cells are an effective cell therapy for cancer, remaining uncompromised when expanded for a long duration owing to their resistance to senescence. PMID:28289713

  19. In Vivo Transplantation of Enteric Neural Crest Cells into Mouse Gut; Engraftment, Functional Integration and Long-Term Safety.

    Directory of Open Access Journals (Sweden)

    Julie E Cooper

    Full Text Available Enteric neuropathies are severe gastrointestinal disorders with unsatisfactory outcomes. We aimed to investigate the potential of enteric neural stem cell therapy approaches for such disorders by transplanting mouse enteric neural crest cells (ENCCs into ganglionic and aganglionic mouse gut in vivo and analysing functional integration and long-term safety.Neurospheres generated from yellow fluorescent protein (YFP expressing ENCCs selected from postnatal Wnt1-cre;R26R-YFP/YFP murine gut were transplanted into ganglionic hindgut of wild-type littermates or aganglionic hindgut of Ednrbtm1Ywa mice (lacking functional endothelin receptor type-B. Intestines were then assessed for ENCC integration and differentiation using immunohistochemistry, cell function using calcium imaging, and long-term safety using PCR to detect off-target YFP expression.YFP+ ENCCs engrafted, proliferated and differentiated into enteric neurons and glia within recipient ganglionic gut. Transplanted cells and their projections spread along the endogenous myenteric plexus to form branching networks. Electrical point stimulation of endogenous nerve fibres resulted in calcium transients (F/F0 = 1.16 ± 0.01;43 cells, n = 6 in YFP+ transplanted ENCCs (abolished with TTX. Long-term follow-up (24 months showed transplanted ENCCs did not give rise to tumours or spread to other organs (PCR negative in extraintestinal sites. In aganglionic gut ENCCs similarly spread and differentiated to form neuronal and glial networks with projections closely associated with endogenous neural networks of the transition zone.Transplanted ENCCs successfully engrafted into recipient ganglionic and aganglionic gut showing appropriate spread, localisation and, importantly, functional integration without any long-term safety issues. This study provides key support for the development and use of enteric neural stem cell therapies.

  20. Cell-type-specific, Aptamer-functionalized Agents for Targeted Disease Therapy.

    Science.gov (United States)

    Zhou, Jiehua; Rossi, John J

    2014-06-17

    One hundred years ago, Dr. Paul Ehrlich popularized the "magic bullet" concept for cancer therapy in which an ideal therapeutic agent would only kill the specific tumor cells it targeted. Since then, "targeted therapy" that specifically targets the molecular defects responsible for a patient's condition has become a long-standing goal for treating human disease. However, safe and efficient drug delivery during the treatment of cancer and infectious disease remains a major challenge for clinical translation and the development of new therapies. The advent of SELEX technology has inspired many groundbreaking studies that successfully adapted cell-specific aptamers for targeted delivery of active drug substances in both in vitro and in vivo models. By covalently linking or physically functionalizing the cell-specific aptamers with therapeutic agents, such as siRNA, microRNA, chemotherapeutics or toxins, or delivery vehicles, such as organic or inorganic nanocarriers, the targeted cells and tissues can be specifically recognized and the therapeutic compounds internalized, thereby improving the local concentration of the drug and its therapeutic efficacy. Currently, many cell-type-specific aptamers have been developed that can target distinct diseases or tissues in a cell-type-specific manner. In this review, we discuss recent advances in the use of cell-specific aptamers for targeted disease therapy, as well as conjugation strategies and challenges.

  1. Mouse pancreas tissue slice culture facilitates long-term studies of exocrine and endocrine cell physiology in situ.

    Directory of Open Access Journals (Sweden)

    Anja Marciniak

    Full Text Available Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To overcome these limitations, we aimed to establish a pancreas tissue slice culture platform to allow long-term studies on exocrine and endocrine cells in the intact pancreatic environment. Mouse pancreas tissue slice morphology was assessed to determine optimal long-term culture settings for intact pancreatic tissue. Utilizing optimized culture conditions, cell specificity and function of exocrine acinar cells and endocrine beta cells were characterized over a culture period of 7 days. We found pancreas tissue slices cultured under optimized conditions to have intact tissue specific morphology for the entire culture period. Amylase positive intact acini were present at all time points of culture and acinar cells displayed a typical strong cell polarity. Amylase release from pancreas tissue slices decreased during culture, but maintained the characteristic bell-shaped dose-response curve to increasing caerulein concentrations and a ca. 4-fold maximal over basal release. Additionally, endocrine beta cell viability and function was well preserved until the end of the observation period. Our results show that the tissue slice culture platform provides unprecedented maintenance of pancreatic tissue specific morphology and function over a culture period for at least 4 days and in part even up to 1 week. This analytical advancement now allows mid -to long-term studies on the cell biology of pancreatic disorder pathogenesis and therapy in an intact surrounding in situ.

  2. Long-term ultra-low-dose acyclovir against varicella-zoster virus reactivation after allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Asano-Mori, Yuki; Kanda, Yoshinobu; Oshima, Kumi; Kako, Shinichi; Shinohara, Akihito; Nakasone, Hideki; Sato, Hiroyuki; Watanabe, Takuro; Hosoya, Noriko; Izutsu, Koji; Asai, Takashi; Hangaishi, Akira; Motokura, Toru; Chiba, Shigeru; Kurokawa, Mineo

    2008-06-01

    To evaluate the efficacy of long-term prophylaxis with ultra-low-dose acyclovir against varicella-zoster virus (VZV) reactivation, we analyzed the records of 242 Japanese adult patients who underwent allogeneic hematopoietic stem cell transplantation for the first time from 1995 to 2006 at our hospital. We started long-term oral acyclovir at 200 mg/day in July 2001. Acyclovir was continued until the end of immunosuppressive therapy and at least 1 year after transplantation. Sixty-six patients developed VZV reactivation at a median of 248 days after HSCT, with a cumulative incidence of 34.7%. Only one breakthrough reactivation occurred during long-term acyclovir, which responded well to therapeutic dose of valacyclovir. The use of long-term acyclovir was the only independent determinant that significantly decreased the overall incidence of VZV reactivation (20% vs. 50%, P < 0.0001). With this prophylaxis, visceral dissemination and serious complications other than post-herpetic neuralgia was completely eliminated, and thereby need for hospitalization was significantly reduced (21% vs. 71%, P = 0.0034). Fifteen of the 57 patients who discontinued acyclovir developed VZV reactivation, with a cumulative incidence of 32.1%. VZV reactivation following discontinuation tended to occur in patients who were receiving immunosuppressive therapy at the cessation of acyclovir. These findings suggested that long-term prophylaxis of ultra-low-dose acyclovir resulted in a successful prevention of severe VZV-related symptoms and death, with a significantly decreased overall incidence of VZV reactivation. Prolongation of prophylactic acyclovir on profound immunosuppression might be important for thorough suppression of VZV reactivation.

  3. Transition to chaos in random networks with cell-type-specific connectivity

    Science.gov (United States)

    Aljadeff, Johnatan; Stern, Merav; Sharpee, Tatyana

    2015-01-01

    In neural circuits, statistical connectivity rules strongly depend on cell-type identity. We study dynamics of neural networks with cell-type specific connectivity by extending the dynamic mean field method, and find that these networks exhibit a phase transition between silent and chaotic activity. By analyzing the locus of this transition, we derive a new result in random matrix theory: the spectral radius of a random connectivity matrix with block-structured variances. We apply our results to show how a small group of hyper-excitable neurons within the network can significantly increase the network’s computational capacity by bringing it into the chaotic regime. PMID:25768781

  4. Phenotypic and Functional Properties of Porcine Dedifferentiated Fat Cells during the Long-Term Culture In Vitro

    Directory of Open Access Journals (Sweden)

    Xuewu Peng

    2015-01-01

    Full Text Available It has been proved that terminally differentiated mature adipocytes possess abilities to dedifferentiate into fibroblast-like progeny cells with self-renewal and multiple differentiation, termed dedifferentiated fat (DFAT cells. However, the biological properties of DFAT cells during long-term culture in vitro have not been elucidated. Here, we obtained fibroblast-like morphology of porcine DFAT cells by ceiling culture. During the dedifferentiation process, round mature adipocytes with single large lipid droplets changed into spindle-shaped cells accompanied by the adipogenic markers PPARγ, aP2, LPL, and Adiponectin significant downregulation. Flow cytometric analysis showed that porcine DFAT cells displayed similar cell-surface antigen profile to mesenchymal stem cells (MSCs. Furthermore, different passages of porcine DFAT cells during long-term culture in vitro retained high levels of cell viabilities (>97%, efficient proliferative capacity including population doubling time ranged from 20 h to 22 h and population doubling reached 47.40±1.64 by 58 days of culture. In addition, porcine DFAT cells maintained the multiple differentiation capabilities into adipocytes, osteoblasts, and skeletal myocytes and displayed normal chromosomal karyotypes for prolonged passaging. Therefore, porcine DFAT cells may be a novel model of stem cells for studying the functions of gene in the different biological events.

  5. Phenotypic and Functional Properties of Porcine Dedifferentiated Fat Cells during the Long-Term Culture In Vitro.

    Science.gov (United States)

    Peng, Xuewu; Song, Tongxing; Hu, Xiaoming; Zhou, Yuanfei; Wei, Hongkui; Peng, Jian; Jiang, Siwen

    2015-01-01

    It has been proved that terminally differentiated mature adipocytes possess abilities to dedifferentiate into fibroblast-like progeny cells with self-renewal and multiple differentiation, termed dedifferentiated fat (DFAT) cells. However, the biological properties of DFAT cells during long-term culture in vitro have not been elucidated. Here, we obtained fibroblast-like morphology of porcine DFAT cells by ceiling culture. During the dedifferentiation process, round mature adipocytes with single large lipid droplets changed into spindle-shaped cells accompanied by the adipogenic markers PPARγ, aP2, LPL, and Adiponectin significant downregulation. Flow cytometric analysis showed that porcine DFAT cells displayed similar cell-surface antigen profile to mesenchymal stem cells (MSCs). Furthermore, different passages of porcine DFAT cells during long-term culture in vitro retained high levels of cell viabilities (>97%), efficient proliferative capacity including population doubling time ranged from 20 h to 22 h and population doubling reached 47.40 ± 1.64 by 58 days of culture. In addition, porcine DFAT cells maintained the multiple differentiation capabilities into adipocytes, osteoblasts, and skeletal myocytes and displayed normal chromosomal karyotypes for prolonged passaging. Therefore, porcine DFAT cells may be a novel model of stem cells for studying the functions of gene in the different biological events.

  6. Cell-type specific DNA methylation patterns define human breast cellular identity.

    Directory of Open Access Journals (Sweden)

    Petr Novak

    Full Text Available DNA methylation plays a role in a variety of biological processes including embryonic development, imprinting, X-chromosome inactivation, and stem cell differentiation. Tissue specific differential methylation has also been well characterized. We sought to extend these studies to create a map of differential DNA methylation between different cell types derived from a single tissue. Using three pairs of isogenic human mammary epithelial and fibroblast cells, promoter region DNA methylation was characterized using MeDIP coupled to microarray analysis. Comparison of DNA methylation between these cell types revealed nearly three thousand cell-type specific differentially methylated regions (ctDMRs. MassARRAY was performed upon 87 ctDMRs to confirm and quantify differential DNA methylation. Each of the examined regions exhibited statistically significant differences ranging from 10-70%. Gene ontology analysis revealed the overrepresentation of many transcription factors involved in developmental processes. Additionally, we have shown that ctDMRs are associated with histone related epigenetic marks and are often aberrantly methylated in breast cancer. Overall, our data suggest that there are thousands of ctDMRs which consistently exhibit differential DNA methylation and may underlie cell type specificity in human breast tissue. In addition, we describe the pathways affected by these differences and provide insight into the molecular mechanisms and physiological overlap between normal cellular differentiation and breast carcinogenesis.

  7. Innate immune response to pulmonary contusion: identification of cell type-specific inflammatory responses.

    Science.gov (United States)

    Hoth, J Jason; Wells, Jonathan D; Yoza, Barbara K; McCall, Charles E

    2012-04-01

    Lung injury from pulmonary contusion is a common traumatic injury, predominantly seen after blunt chest trauma, such as in vehicular accidents. The local and systemic inflammatory response to injury includes activation of innate immune receptors, elaboration of a variety of inflammatory mediators, and recruitment of inflammatory cells to the injured lung. Using a mouse model of pulmonary contusion, we had previously shown that innate immune Toll-like receptors 2 and 4 (TLR2 and TLR4) mediate the inflammatory response to lung injury. In this study, we used chimeric mice generated by adoptive bone marrow transfer between TLR2 or TLR4 and wild-type mice. We found that, in the lung, both bone marrow-derived and nonmyeloid cells contribute to TLR-dependent inflammatory responses after injury in a cell type-specific manner. We also show a novel TLR2-dependent injury mechanism that is associated with enhanced airway epithelial cell apoptosis and increased pulmonary FasL and Fas expression in the lungs from injured mice. Thus, in addition to cardiopulmonary physiological dysfunction, cell type-specific TLR and their differential response to injury may provide novel specific targets for management of patients with pulmonary contusion.

  8. The treatment of giant cell tumors by curettage and filling with acrylic cement. Long-term functional results.

    Science.gov (United States)

    Segura, J; Albareda, J; Bueno, A L; Nuez, A; Palanca, D; Seral, F

    1997-01-01

    Curettage and filling with acrylic cement in the treatment of para-articular giant cell tumor (GCT) has multiple advantages as compared to other methods; nonetheless, the possibility of progression in arthrosis is still a drawback. The literature does not report long-term functional results when this method was used. Four cases are presented with a mean long-term follow-up of 13.5 years (minimum 11, maximum 18). Clinical results, evaluated by the Enneking system (18), were excellent, and there were no radiological modifications, so that we believe that this is the method to choose for Campanacci stage I and II GCT (1), and in some stage III cases, as joint function is not compromised in time.

  9. WI-38 cell long-term quiescence model system: a valuable tool to study molecular events that regulate growth.

    Science.gov (United States)

    Soprano, K J

    1994-04-01

    A number of cell culture model systems have been used to study the regulation of cell cycle progression at the molecular level. In this paper we describe the WI-38 cell long-term quiescence model system. By modulating the length of time that WI-38 cells are density arrested, it is possible to proportionately alter the length of the prereplicative or G-1 phase which the cell traverses after growth factor stimulation in preparation for entry into DNA synthesis. Through studies aimed at understanding the cause and molecular nature of the prolongation of the prereplicative phase, we have determined that gene expression plays an important role in establishing growth factor "competence" and that once the cell becomes "competent" there is a defined order to the molecular events that follow during the remainder of G-1. More specifically, we have determined that the prolongation represents a delay in the ability of long term quiescent cells to become fully "competent" to respond to growth factors which regulate progression through G-1 into S. This prolongation appears to occur as a result of changes during long term quiescence in the ability of immediate early G-1 specific genes (such as c-myc) to activate the expression of early G-1 specific genes (such as ornithine decarboxylase). While ODC is the first and thus far only growth associated gene identified as a target of c-myc (and the Myc/Max protein complex), it is likely that further studies in this model system will reveal other early G-1 growth regulatory genes. We anticipate that future follow-up studies in this model system will provide additional valuable information about the function of growth-regulatory genes in controlling growth factor responsiveness and cell cycle progression.

  10. Long-term leptin treatment exerts a pro-apoptotic effect on renal tubular cells via prostaglandin E2 augmentation.

    Science.gov (United States)

    Hsu, Yung-Ho; Cheng, Chung-Yi; Chen, Yen-Cheng; Chen, Tso-Hsiao; Sue, Yuh-Mou; Tsai, Wei-Lun; Chen, Cheng-Hsien

    2012-08-15

    Adipokine leptin reportedly acts on the kidney in pathophysiological states. However, the influence of leptin on renal tubular epithelial cells is still unclear. Gentamicin, a widely used antibiotic for the treatment of bacterial infection, can cause nephrotoxicity. This study aims to investigate the influence of long-term leptin treatment on gentamicin-induced apoptosis in rat renal tubular cells (NRK-52E) and mice. We monitored apoptosis and molecular mechanisms using annexin V/ propidium iodide staining and small interfering RNA transfection. In NRK-52E cells, leptin reduced gentamicin-induced apoptosis at 24h, but significantly increased apoptosis at 48 h. Long-term treatment of leptin decreased Bcl-x(L) expression and increased caspase activity in gentamicin-treated NRK-52E cells. Leptin also increased the expression of cyclooxygenase-2 (COX-2) and its product, prostaglandin E(2) (PGE(2)), in a dose-dependent manner. The COX-2 inhibitor, NS398 (N-[2-(Cyclohexyloxy)-4- nitrophenyl]methanesulfonamide), blocked PGE(2) augmentation and the pro-apoptotic effects of leptin. The addition of PGE(2) recovered the pro-apoptotic effect of leptin in NS398-treated NRK-52E cells. In a mouse animal model, a 10 day leptin treatment significantly increased gentamicin-induced apoptotic cells in proximal tubules. NS398 treatment inhibited this in vivo pro-apoptotic effect of leptin. Results reveal that long-term elevation of leptin induces COX-2-mediated PGE(2) augmentation in renal tubular cells, and then increases these cells' susceptibility to gentamicin-induced apoptosis.

  11. VARIATION ANALYSIS OF HPV16 CELL-TYPE-SPECIFIC ENHANCER IN CERVICAL CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Human papillomavirus16type(HPV16)ishighly associated with cervical carcinoma.Sometransfor mation genes in high-risk HPV genomeplayed ani mportant role[1].The E6and E7genes inHPV16can over-express intransfor mepithelial cellsand viral early promoter P97controls the expressionof E6/E7genes.Long control region(LCR)inHPV16genome induces the activity of P97.Thereexits cell-type-specific enhancer(CTSE)in LCRand there are many cellar factors specific bindingsites in CTSE such as NF1,AP1,TEF-2,whichbindspecifically...

  12. Ligation-free ribosome profiling of cell type-specific translation in the brain.

    Science.gov (United States)

    Hornstein, Nicholas; Torres, Daniela; Das Sharma, Sohani; Tang, Guomei; Canoll, Peter; Sims, Peter A

    2016-01-01

    Ribosome profiling has emerged as a powerful tool for genome-wide measurements of translation, but library construction requires multiple ligation steps and remains cumbersome relative to more conventional deep-sequencing experiments. We report a new, ligation-free approach to ribosome profiling that does not require ligation. Library construction for ligation-free ribosome profiling can be completed in one day with as little as 1 ng of purified RNA footprints. We apply ligation-free ribosome profiling to mouse brain tissue to identify new patterns of cell type-specific translation and test its ability to identify translational targets of mTOR signaling in the brain.

  13. Systematic and Cell Type-Specific Telomere Length Changes in Subsets of Lymphocytes

    Directory of Open Access Journals (Sweden)

    Jue Lin

    2016-01-01

    Full Text Available Telomeres, the protective DNA-protein complexes at the ends of linear chromosomes, are important for genome stability. Leukocyte or peripheral blood mononuclear cell (PBMC telomere length is a potential biomarker for human aging that integrates genetic, environmental, and lifestyle factors and is associated with mortality and risks for major diseases. However, only a limited number of studies have examined longitudinal changes of telomere length and few have reported data on sorted circulating immune cells. We examined the average telomere length (TL in CD4+, CD8+CD28+, and CD8+CD28− T cells, B cells, and PBMCs, cross-sectionally and longitudinally, in a cohort of premenopausal women. We report that TL changes over 18 months were correlated among these three T cell types within the same participant. Additionally, PBMC TL change was also correlated with those of all three T cell types, and B cells. The rate of shortening for B cells was significantly greater than for the three T cell types. CD8+CD28− cells, despite having the shortest TL, showed significantly more rapid attrition when compared to CD8+CD28+ T cells. These results suggest systematically coordinated, yet cell type-specific responses to factors and pathways contribute to telomere length regulation.

  14. Systematic and Cell Type-Specific Telomere Length Changes in Subsets of Lymphocytes.

    Science.gov (United States)

    Lin, Jue; Cheon, Joshua; Brown, Rashida; Coccia, Michael; Puterman, Eli; Aschbacher, Kirstin; Sinclair, Elizabeth; Epel, Elissa; Blackburn, Elizabeth H

    2016-01-01

    Telomeres, the protective DNA-protein complexes at the ends of linear chromosomes, are important for genome stability. Leukocyte or peripheral blood mononuclear cell (PBMC) telomere length is a potential biomarker for human aging that integrates genetic, environmental, and lifestyle factors and is associated with mortality and risks for major diseases. However, only a limited number of studies have examined longitudinal changes of telomere length and few have reported data on sorted circulating immune cells. We examined the average telomere length (TL) in CD4+, CD8+CD28+, and CD8+CD28- T cells, B cells, and PBMCs, cross-sectionally and longitudinally, in a cohort of premenopausal women. We report that TL changes over 18 months were correlated among these three T cell types within the same participant. Additionally, PBMC TL change was also correlated with those of all three T cell types, and B cells. The rate of shortening for B cells was significantly greater than for the three T cell types. CD8+CD28- cells, despite having the shortest TL, showed significantly more rapid attrition when compared to CD8+CD28+ T cells. These results suggest systematically coordinated, yet cell type-specific responses to factors and pathways contribute to telomere length regulation.

  15. Cell type-specific glycosylation of Orai1 modulates store-operated Ca2+ entry.

    Science.gov (United States)

    Dörr, Kathrin; Kilch, Tatiana; Kappel, Sven; Alansary, Dalia; Schwär, Gertrud; Niemeyer, Barbara A; Peinelt, Christine

    2016-03-08

    N-glycosylation of cell surface proteins affects protein function, stability, and interaction with other proteins. Orai channels, which mediate store-operated Ca(2+) entry (SOCE), are composed of N-glycosylated subunits. Upon activation by Ca(2+) sensor proteins (stromal interaction molecules STIM1 or STIM2) in the endoplasmic reticulum, Orai Ca(2+) channels in the plasma membrane mediate Ca(2+) influx. Lectins are carbohydrate-binding proteins, and Siglecs are a family of sialic acid-binding lectins with immunoglobulin-like repeats. Using Western blot analysis and lectin-binding assays from various primary human cells and cancer cell lines, we found that glycosylation of Orai1 is cell type-specific. Ca(2+) imaging experiments and patch-clamp experiments revealed that mutation of the only glycosylation site of Orai1 (Orai1N223A) enhanced SOCE in Jurkat T cells. Knockdown of the sialyltransferase ST6GAL1 reduced α-2,6-linked sialic acids in the glycan structure of Orai1 and was associated with increased Ca(2+) entry in Jurkat T cells. In human mast cells, inhibition of sialyl sulfation altered the N-glycan of Orai1 (and other proteins) and increased SOCE. These data suggest that cell type-specific glycosylation influences the interaction of Orai1 with specific lectins, such as Siglecs, which then attenuates SOCE. In summary, the glycosylation state of Orai1 influences SOCE-mediated Ca(2+) signaling and, thus, may contribute to pathophysiological Ca(2+) signaling observed in immune disease and cancer.

  16. Multiple origins of spontaneously arising micronuclei in HeLa cells: Direct evidence from long-term live cell imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rao Xiaotang; Zhang Yingyin; Yi Qiyi; Hou Heli; Xu Bo; Chu Liang; Huang Yun; Zhang Wenrui [Laboratory of Molecular and Cell Genetics, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 (China); Fenech, Michael [CSIRO Human Nutrition, PO Box 10041, Adelaide BC, Adelaide, SA 5000 (Australia); Shi Qinghua [Laboratory of Molecular and Cell Genetics, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 (China)], E-mail: qshi@ustc.edu.cn

    2008-11-10

    Although micronuclei (MNi) are extensively used to evaluate genotoxic effects and chromosome instability, the most basic issue regarding their origins has not been completely addressed due to limitations of traditional methods. Recently, long-term live cell imaging was developed to monitor the dynamics of single cell in a real-time and high-throughput manner. In the present study, this state-of-the-art technique was employed to examine spontaneous micronucleus (MN) formation in untreated HeLa cells. We demonstrate that spontaneous MNi are derived from incorrectly aligned chromosomes in metaphase (displaced chromosomes, DCs), lagging chromosomes (LCs) and broken chromosome bridges (CBs) in later mitotic stages, but not nuclear buds in S phase. However, most of bipolar mitoses with DCs (91.29%), LCs (73.11%) and broken CBs (88.93%) did not give rise to MNi. Our data also show directly, for the first time, that MNi could originate spontaneously from (1) MNi already presented in the mother cells; (2) nuclear fragments that appeared during mitosis with CB; and (3) chromosomes being extruded into a minicell which fused with one of the daughter cells later. Quantitatively, most of MNi originated from LCs (63.66%), DCs (10.97%) and broken CBs (9.25%). Taken together, these direct evidences show that there are multiple origins for spontaneously arising MNi in HeLa cells and each mechanism contributes to overall MN formation to different extents.

  17. Long-term cultures of testicular biopsies from boys with cryptorchidism: effect of FSH and LH on the number of germ cells

    DEFF Research Database (Denmark)

    Larsen, Hans-Peter Ejler; Thorup, Jørgen; Skovgaard, Lene Theil

    2002-01-01

    A long-term culture system of testicular biopsies from boys with undescended testes was established to evaluate the effect of gonadotrophins on germ cell survival and growth.......A long-term culture system of testicular biopsies from boys with undescended testes was established to evaluate the effect of gonadotrophins on germ cell survival and growth....

  18. IGF-1 Acts as Controlling Switch for Long-term Proliferation and Maintenance of EGF/FGF-responsive Striatal Neural Stem Cells

    NARCIS (Netherlands)

    Supeno, N.E.; Pati, S.; Hadi, R.A.; Ghani, A.R.; Mustafa, Z.; Abdullah, J.M.; Idris, F.M.; Han, X.; Jaafar, H.

    2013-01-01

    Background: Long-term maintenance of neural stem cells in vitro is crucial for their stage specific roles in neurogenesis. To have an in-depth understanding of optimal conditional microenvironmental niche for long-term maintenance of neural stem cells (NSCs), we imposed different combinatorial treat

  19. Labeling and imaging of human mesenchymal stem cells with quantum dot bioconjugates during proliferation and osteogenic differentiation in long term.

    Science.gov (United States)

    Shah, B; Clark, P; Stroscio, M; Mao, J

    2006-01-01

    Quantum dots (QDs) are semiconductor nanocrystals that serve as promising alternatives to organic dyes for cell labeling. Because of their unique spectral, physical and chemical properties, QDs are useful for concurrently monitoring several intercellular and intracellular interactions in live normal cells and cancer cells over periods ranging from less than a second to over several days (several divisions of cells). Here, peptide CGGGRGD is immobilized on CdSe-ZnS QDs coated with carboxyl groups by cross linking with amine groups. These conjugates are directed by the peptide to bind with selected integrins on the membrane of human Mesenchymal stem cells. Upon overnight incubation with optimal concentration, QDs effectively labeled all the cells. Here, we report long-term labeling of human bone-marrow-derived mesenchymal stem cells (hMSCs) with RGD-conjugated QDs during self replication and differentiation into osteogenic cell lineages.

  20. Upregulation of CD11A on Hematopoietic Stem Cells Denotes the Loss of Long-Term Reconstitution Potential

    Directory of Open Access Journals (Sweden)

    John W. Fathman

    2014-11-01

    Full Text Available Small numbers of hematopoietic stem cells (HSCs generate large numbers of mature effector cells through the successive amplification of transiently proliferating progenitor cells. HSCs and their downstream progenitors have been extensively characterized based on their cell-surface phenotype and functional activities during transplantation assays. These cells dynamically lose and acquire specific sets of surface markers during differentiation, leading to the identification of markers that allow for more refined separation of HSCs from early hematopoietic progenitors. Here, we describe a marker, CD11A, which allows for the enhanced purification of mouse HSCs. We show through in vivo transplantations that upregulation of CD11A on HSCs denotes the loss of their long-term reconstitution potential. Surprisingly, nearly half of phenotypic HSCs (defined as Lin−KIT+SCA-1+CD150+CD34− are CD11A+ and lack long-term self-renewal potential. We propose that CD11A+Lin−KIT+SCA-1+CD150+CD34− cells are multipotent progenitors and CD11A−Lin−KIT+SCA-1+CD150+CD34− cells are true HSCs.

  1. Cell type-specific synaptic dynamics of synchronized bursting in the juvenile CA3 rat hippocampus.

    Science.gov (United States)

    Aradi, Ildiko; Maccaferri, Gianmaria

    2004-10-27

    Spontaneous synchronous bursting of the CA3 hippocampus in vitro is a widely studied model of physiological and pathological network synchronization. The role of inhibitory conductances during network bursting is not understood in detail, despite the fact that several antiepileptic drugs target GABA(A) receptors. Here, we show that the first manifestation of a burst event is a cell type-specific flurry of GABA(A) receptor-mediated inhibitory input to pyramidal cells, but not to stratum oriens horizontal interneurons. Moreover, GABA(A) receptor-mediated synaptic input is proportionally smaller in these interneurons compared with pyramidal cells. Computational models and dynamic-clamp studies using experimentally derived conductance waveforms indicate that both these factors modulate spike timing during synchronized activity. In particular, the different kinetics and the larger strength of GABAergic input to pyramidal cells defer action potential initiation and contribute to the observed delay of firing, so that the interneuronal activity leads the burst cycle. In contrast, excitatory inputs to both neuronal populations during a burst are kinetically similar, as required to maintain synchronicity. We also show that the natural pattern of activation of inhibitory and excitatory conductances during a synchronized burst cycle is different within the same neuronal population. In particular, GABA(A) receptor-mediated currents activate earlier and outlast the excitatory components driving the bursts. Thus, cell type-specific balance and timing of GABA(A) receptor-mediated input are critical to set the appropriate spike timing in pyramidal cells and interneurons and coordinate additional neurotransmitter release modulating burst strength and network frequency.

  2. Unconventional cytokine profiles and development of T cell memory in long-term survivors after cancer vaccination

    DEFF Research Database (Denmark)

    Kyte, Jon Amund; Trachsel, Sissel; Risberg, Bente

    2009-01-01

    Cancer vaccine trials frequently report on immunological responses, without any clinical benefit. This paradox may reflect the challenge of discriminating between effective and pointless immune responses and sparse knowledge on their long-term development. Here, we have analyzed T cell responses......-delineation applies to cancer vaccine responses. T cell clones were generated from all nine patients studied. We find that surviving patients harbor durable tumor-specific responses against vaccine antigens from telomerase, RAS or TGFbeta receptor II. Analyses of consecutive samples suggest that booster...

  3. Imaging long-term fate of intramyocardially implanted mesenchymal stem cells in a porcine myocardial infarction model.

    Directory of Open Access Journals (Sweden)

    Emerson C Perin

    Full Text Available The long-term fate of stem cells after intramyocardial delivery is unknown. We used noninvasive, repetitive PET/CT imaging with [(18F]FEAU to monitor the long-term (up to 5 months spatial-temporal dynamics of MSCs retrovirally transduced with the sr39HSV1-tk gene (sr39HSV1-tk-MSC and implanted intramyocardially in pigs with induced acute myocardial infarction. Repetitive [(18F]FEAU PET/CT revealed a biphasic pattern of sr39HSV1-tk-MSC dynamics; cell proliferation peaked at 33-35 days after injection, in periinfarct regions and the major cardiac lymphatic vessels and lymph nodes. The sr39HSV1-tk-MSC-associated [(18F]FEAU signals gradually decreased thereafter. Cardiac lymphography studies using PG-Gd-NIRF813 contrast for MRI and near-infrared fluorescence imaging showed rapid clearance of the contrast from the site of intramyocardial injection through the subepicardial lymphatic network into the lymphatic vessels and periaortic lymph nodes. Immunohistochemical analysis of cardiac tissue obtained at 35 and 150 days demonstrated several types of sr39HSV1-tk expressing cells, including fibro-myoblasts, lymphovascular cells, and microvascular and arterial endothelium. In summary, this study demonstrated the feasibility and sensitivity of [(18F]FEAU PET/CT imaging for long-term, in-vivo monitoring (up to 5 months of the fate of intramyocardially injected sr39HSV1-tk-MSC cells. Intramyocardially transplanted MSCs appear to integrate into the lymphatic endothelium and may help improve myocardial lymphatic system function after MI.

  4. Cell type-specific bipolar cell input to ganglion cells in the mouse retina.

    Science.gov (United States)

    Neumann, S; Hüser, L; Ondreka, K; Auler, N; Haverkamp, S

    2016-03-01

    Many distinct ganglion cell types, which are the output elements of the retina, were found to encode for specific features of a visual scene such as contrast, color information or movement. The detailed composition of retinal circuits leading to this tuning of retinal ganglion cells, however, is apart from some prominent examples, largely unknown. Here we aimed to investigate if ganglion cell types in the mouse retina receive selective input from specific bipolar cell types or if they sample their synaptic input non-selectively from all bipolar cell types stratifying within their dendritic tree. To address this question we took an anatomical approach and immunolabeled retinae of two transgenic mouse lines (GFP-O and JAM-B) with markers for ribbon synapses and type 2 bipolar cells. We morphologically identified all green fluorescent protein (GFP)-expressing ganglion cell types, which co-stratified with type 2 bipolar cells and assessed the total number of bipolar input synapses and the proportion of synapses deriving from type 2 bipolar cells. Only JAM-B ganglion cells received synaptic input preferentially from bipolar cell types other than type 2 bipolar cells whereas the other analyzed ganglion cell types sampled their bipolar input most likely from all bipolar cell terminals within their dendritic arbor.

  5. The female gametophyte: an emerging model for cell type-specific systems biology in plant development

    Directory of Open Access Journals (Sweden)

    Marc William Schmid

    2015-11-01

    Full Text Available Systems biology, a holistic approach describing a system emerging from the interactions of its molecular components, critically depends on accurate qualitative determination and quantitative measurements of these components. Development and improvement of large-scale profiling methods (omics now facilitates comprehensive measurements of many relevant molecules. For multicellular organisms, such as animals, fungi, algae, and plants, the complexity of the system is augmented by the presence of specialized cell types and organs, and a complex interplay within and between them. Cell type-specific analyses are therefore crucial for the understanding of developmental processes and environmental responses. This review first gives an overview of current methods used for large-scale profiling of specific cell types exemplified by recent advances in plant biology. The focus then lies on suitable model systems to study plant development and cell type specification. We introduce the female gametophyte of flowering plants as an ideal model to study fundamental developmental processes. Moreover, the female reproductive lineage is of importance for the emergence of evolutionary novelties such as an unequal parental contribution to the tissue nurturing the embryo or the clonal production of seeds by asexual reproduction (apomixis. Understanding these processes is not only interesting from a developmental or evolutionary perspective, but bears great potential for further crop improvement and the simplification of breeding efforts. We finally highlight novel methods, which are already available or which will likely soon facilitate large-scale profiling of the specific cell types of the female gametophyte in both model and non-model species. We conclude that it may take only few years until an evolutionary systems biology approach toward female gametogenesis may decipher some of its biologically most interesting and economically most valuable processes.

  6. Cell type-specific translational repression of Cyclin B during meiosis in males.

    Science.gov (United States)

    Baker, Catherine Craig; Gim, Byung Soo; Fuller, Margaret T

    2015-10-01

    The unique cell cycle dynamics of meiosis are controlled by layers of regulation imposed on core mitotic cell cycle machinery components by the program of germ cell development. Although the mechanisms that regulate Cdk1/Cyclin B activity in meiosis in oocytes have been well studied, little is known about the trans-acting factors responsible for developmental control of these factors in male gametogenesis. During meiotic prophase in Drosophila males, transcript for the core cell cycle protein Cyclin B1 (CycB) is expressed in spermatocytes, but the protein does not accumulate in spermatocytes until just before the meiotic divisions. Here, we show that two interacting proteins, Rbp4 and Fest, expressed at the onset of spermatocyte differentiation under control of the developmental program of male gametogenesis, function to direct cell type- and stage-specific repression of translation of the core G2/M cell cycle component cycB during the specialized cell cycle of male meiosis. Binding of Fest to Rbp4 requires a 31-amino acid region within Rbp4. Rbp4 and Fest are required for translational repression of cycB in immature spermatocytes, with Rbp4 binding sequences in a cell type-specific shortened form of the cycB 3' UTR. Finally, we show that Fest is required for proper execution of meiosis I.

  7. Cell-intrinsic in vivo requirement for the E47-p21 pathway in long-term hematopoietic stem cells.

    Science.gov (United States)

    Santos, Patricia M; Ding, Ying; Borghesi, Lisa

    2014-01-01

    Major regulators of long-term hematopoietic stem cell (LT-HSC) self-renewal and proliferation have been identified, but knowledge of their in vivo interaction in a linear pathway is lacking. In this study, we show a direct genetic link between the transcription factor E47 and the major cell cycle regulator p21 in controlling LT-HSC integrity in vivo under repopulation stress. Numerous studies have shown that E47 activates p21 transcription in hematopoietic subsets in vitro, and we now reveal the in vivo relevance of the E47-p21 pathway by reducing the gene dose of each factor individually (E47(het) or p21(het)) versus in tandem (E47(het)p21(het)). E47(het)p21(het) LT-HSCs and downstream short-term hematopoietic stem cells exhibit hyperproliferation and preferential susceptibility to mitotoxin compared to wild-type or single haploinsufficient controls. In serial adoptive transfers that rigorously challenge self-renewal, E47(het)p21(het) LT-HSCs dramatically and progressively decline, indicating the importance of cell-intrinsic E47-p21 in preserving LT-HSCs under stress. Transient numeric recovery of downstream short-term hematopoietic stem cells enabled the production of functionally competent myeloid but not lymphoid cells, as common lymphoid progenitors were decreased, and peripheral lymphocytes were virtually ablated. Thus, we demonstrate a developmental compartment-specific and lineage-specific requirement for the E47-p21 pathway in maintaining LT-HSCs, B cells, and T cells under hematopoietic repopulation stress in vivo.

  8. Analysis of cell-type-specific gene expression during mouse spermatogenesis

    DEFF Research Database (Denmark)

    Almstrup, Kristian; Nielsen, John E; Hansen, Martin Asser

    2004-01-01

    In rodents, changes in gene expression during spermatogenesis can be monitored by sampling testis from each day during postnatal development. However, changes in gene expression at the tissue level can reflect changes in the concentration of an mRNA in a specific cell type, changes in volume....... Combining results from these techniques allows determination of the cell-type-specific gene-expression patterns of many genes during spermatogenesis. Differential display was used to determine expression profiles with high sensitivity and independent of prior knowledge of the sequence, whereas DNA arrays...... quickly assess the expression profiles of all the genes. This identified three groups of gene-expression profiles. The major group corresponds to genes that are upregulated in spermatocytes during either the mid- or late- pachytene phase of spermatogenesis (stages VII-XI). This pachytene cluster...

  9. Long-Term Stability and Safety of Transgenic Cultured Epidermal Stem Cells in Gene Therapy of Junctional Epidermolysis Bullosa

    Directory of Open Access Journals (Sweden)

    Laura De Rosa

    2014-01-01

    Full Text Available We report a long-term follow-up (6.5 years of a phase I/II clinical trial envisaging the use of autologous genetically modified cultured epidermal stem cells for gene therapy of junctional epidermolysis bullosa, a devastating genetic skin disease. The critical goals of the trial were to evaluate the safety and long-term persistence of genetically modified epidermis. A normal epidermal-dermal junction was restored and the regenerated transgenic epidermis was found to be fully functional and virtually indistinguishable from a normal control. The epidermis was sustained by a discrete number of long-lasting, self-renewing transgenic epidermal stem cells that maintained the memory of the donor site, whereas the vast majority of transduced transit-amplifying progenitors were lost within the first few months after grafting. These data pave the way for the safe use of epidermal stem cells in combined cell and gene therapy for genetic skin diseases.

  10. Cell-type specific mechanisms of D-serine uptake and release in the brain

    Directory of Open Access Journals (Sweden)

    Magalie eMartineau

    2014-05-01

    Full Text Available Accumulating evidence during the last decade established that D-serine is a key signaling molecule utilized by neurons and astroglia in the mammalian central nervous system. D-serine is increasingly appreciated as the main physiological endogenous coagonist for synaptic NMDA receptors at central excitatory synapses; it is mandatory for long-term changes in synaptic strength, memory, learning, and social interactions. Alterations in the extracellular levels of D-serine leading to disrupted cell-cell signaling are a trademark of many chronic or acute neurological (i.e. Alzheimer disease, epilepsy, stroke and psychiatric (i.e. schizophrenia disorders, and are associated with addictive behavior (i.e. cocaine addiction. Indeed, fine tuning of the extracellular levels of D-serine, achieved by various molecular machineries and signaling pathways, is necessary for maintenance of accurate NMDA receptor functions. Here, we review the experimental data supporting the notion that astroglia and neurons use different pathways to regulate levels of extracellular D-serine.

  11. [Long-term subculture and biological characterization of the murine bone marrow endothelial cell line].

    Science.gov (United States)

    Huang, Chang; Zhu, Wen-Biao; Zhu, Hai-Ling; Wang, Bao-He; Wang, Qi-Ru

    2007-12-01

    The murine bone marrow endothelial cell line (mBMEC) has been maintained by means of subculture and cryopreservation for over 10 years since it was established in our laboratory. This study was aimed to newly identify biological characteristics of this cell line for further study. The cultured mBMEC cells were observed by inverted microscopy and transmission electron microscopy (TEM). PECAM-1 (CD31) and von Willebrand factor (vWF) were detected by immunofluorescent staining. The phagocytotic activity of the cells in culture was tested by using fluorescent acetylated low-density lipoprotein (Dil-Ac-LDL). The cell growth kinetics analysis and karyotype analysis were performed. The results showed that the adherent cells were mostly elliptical, rounded and spindle-shaped, and some of them connected to each other to form cord- and network-like arrangements in mBMEC cultures at subconfluence. The adherent cells grew up to confluence as a cobblestone-like monolayer. Several ultrastructural features of the endothelial cells could be observed in TEM sections of the cultured cells. More than 94% of mBMEC cells were positive for either CD31 or vWF. The phagocytotic ingestion of Dil-Ac-LDL occurred in 98.5% of cells. In normal culture conditions, the cells grew with a mean population doubling time of 54.6 hours and the maximal mitotic index was 38 per thousand in the rapid growth period. The colony yields were 4.33% to 7.40% depending on the plating density of cells. Karyotypes of all the cells were aneuploidy with a greater percentage of hyperdiploid. It is concluded that mBMEC cells retain the fundamental properties of endothelial cells, but the growth kinetics and biological behaviors are slightly different from those in the early days after the establishment of this cell line.

  12. Long-Term Oocyte-Like Cell Development in Cultures Derived from Neonatal Marmoset Monkey Ovary

    Directory of Open Access Journals (Sweden)

    Bentolhoda Fereydouni

    2016-01-01

    Full Text Available We use the common marmoset monkey (Callithrix jacchus as a preclinical nonhuman primate model to study reproductive and stem cell biology. The neonatal marmoset monkey ovary contains numerous primitive premeiotic germ cells (oogonia expressing pluripotent stem cell markers including OCT4A (POU5F1. This is a peculiarity compared to neonatal human and rodent ovaries. Here, we aimed at culturing marmoset oogonia from neonatal ovaries. We established a culture system being stable for more than 20 passages and 5 months. Importantly, comparative transcriptome analysis of the cultured cells with neonatal ovary, embryonic stem cells, and fibroblasts revealed a lack of germ cell and pluripotency genes indicating the complete loss of oogonia upon initiation of the culture. From passage 4 onwards, however, the cultured cells produced large spherical, free-floating cells resembling oocyte-like cells (OLCs. OLCs strongly expressed several germ cell genes and may derive from the ovarian surface epithelium. In summary, our novel primate ovarian cell culture initially lacked detectable germ cells but then produced OLCs over a long period of time. This culture system may allow a deeper analysis of early phases of female primate germ cell development and—after significant refinement—possibly also the production of monkey oocytes.

  13. Hyperpolarization induces a long-term increase in the spontaneous firing rate of cerebellar Golgi cells

    OpenAIRE

    Hull, Court; Chu, YunXiang; Thanawala, Monica; Regehr, Wade G.

    2013-01-01

    Golgi cells (GoCs) are inhibitory interneurons that influence the cerebellar cortical response to sensory input by regulating the excitability of the granule cell layer. While GoC inhibition is essential for normal motor coordination, little is known about the circuit dynamics that govern the activity of these cells. In particular, while GoC spontaneous spiking influences the extent of inhibition and gain throughout the granule cell layer, it is not known whether this spontaneous activity can...

  14. Short and long-term repopulating hematopoietic stem cells in the mouse

    NARCIS (Netherlands)

    J.C.M. van der Loo

    1995-01-01

    textabstractThe formation and development of blood cells, or hematopoiesis, normally takes place in the bone marrow, which serves as the major hematopoietic organ during adult life. A small population of bone marrow cells (BMC), designated as hematopoietic stem cells, underlies the process of blood

  15. Long-term dexamethasone treatment alters the histomorphology of acinar cells in rat parotid and submandibular glands.

    Science.gov (United States)

    Bighetti, Bruna B; d Assis, Gerson F; Vieira, Danilo C; Violato, Natalia M; Cestari, Tania M; Taga, Rumio; Bosqueiro, José R; Rafacho, Alex

    2014-10-01

    Glucocorticoids (GCs) induce insulin resistance (IR), a condition known to alter oral homeostasis. This study investigated the effects of long-term dexamethasone administration on morphofunctional aspects of salivary glands. Male Wistar rats received daily injections of dexamethasone [0.1 mg/kg body weight (b.w.), intraperitoneally] for 10 days (DEX), whereas control rats received saline. Subsequently, glycaemia, insulinaemia, insulin secretion and salivary flow were analysed. The parotid and submandibular glands were collected for histomorphometric evaluation and Western blot experiments. The DEX rats were found to be normoglycaemic, hyperinsulinaemic, insulin resistant and glucose intolerant (P glands (P salivary flux rate. The hypotrophy in both glands observed in the DEX group was associated with marked reduction in the volume of the acinar cells in these glands of 50% and 26% respectively (P acinar cells was increased in the submandibular glands of the DEX rats (P glands. The levels of proteins related to insulin and survival signalling in both glands did not differ between the groups. In conclusion, the long-term administration of dexamethasone caused IR, which was associated with significant reductions in both mass and flux rate of the salivary glands. The parotid and submandibular glands exhibited reduced acinar cell volume; however, the submandibular glands displayed acinar hyperplasia, indicating a gland-specific response to GCs. Our data emphasize that GC-based therapies and insulin-resistant states have a negative impact on salivary gland homeostasis.

  16. Long-term survival and late deaths after hematopoietic cell transplantation for primary immunodeficiency diseases and inborn errors of metabolism.

    Science.gov (United States)

    Eapen, Mary; Ahn, Kwang Woo; Orchard, Paul J; Cowan, Morton J; Davies, Stella M; Fasth, Anders; Hassebroek, Anna; Ayas, Mouhab; Bonfim, Carmem; O'Brien, Tracey A; Gross, Thomas G; Horwitz, Mitchell; Horwitz, Edwin; Kapoor, Neena; Kurtzberg, Joanne; Majhail, Navneet; Ringden, Olle; Szabolcs, Paul; Veys, Paul; Baker, K Scott

    2012-09-01

    It is uncertain whether late mortality rates after hematopoietic cell transplantation for severe combined immunodeficiency (SCID), non-SCID primary immunodeficiency diseases (non-SCID PIDD), and inborn errors of metabolism (IEM) return to rates observed in the general population, matched for age, sex, and nationality. We studied patients with SCID (n = 201), non-SCID PIDD (n = 405), and IEM (n = 348) who survived for at least 2 years after transplantation with normal T cell function (SCID) or >95% donor chimerism (non-SCID PIDD and IEM). Importantly, mortality rate was significantly higher in these patients compared with the general population for several years after transplantation. The rate decreased toward the normal rate in patients with SCID and non-SCID PIDD beyond 6 years after transplantation, but not in patients with IEM. Active chronic graft-versus-host disease at 2 years was associated with increased risk of late mortality for all diseases (hazard ratio [HR], 1.87; P = .05). In addition, late mortality was higher in patients with non-SCID PIDD who received T cell-depleted grafts (HR 4.16; P = .007) and in patients with IEM who received unrelated donor grafts (HR, 2.72; P = .03) or mismatched related donor grafts (HR, 3.76; P = .01). The finding of higher mortality rates in these long-term survivors for many years after transplantation confirms the need for long-term surveillance.

  17. Tracking the extramedullary PML-RARα-positive cell reservoirs in a preclinical model: biomarker of long-term drug efficacy.

    Science.gov (United States)

    Pokorna, Katerina; Le Pogam, Carole; Chopin, Martine; Balitrand, Nicole; Reboul, Murielle; Cassinat, Bruno; Chomienne, Christine; Padua, Rose Ann; Pla, Marika

    2013-02-01

    Using an acute promyelocytic leukemia (APL) preclinical model, we show that oncogene-specific PCR (Polymerase Chain Reaction)-based assays allow to evaluate the efficacy of immunotherapy combining all-trans retinoic acid (ATRA) and a DNA-based vaccine targeting the promyelocytic leukemia-retinoic acid receptor alpha (PML-RARα) oncogene. Kaplan-Meier survival analysis according to the peripheral blood PML-RARα normalized copy number (NCN) clearly shows that ATRA + DNA-treated mice with an NCN lower than 10 (43%) formed the group with a highly significant (p < 0.0001) survival advantage. Furthermore, a PCR assay was used to assess various tissues and organs for the presence of PML-RARα-positive cells in long-term survivors (n = 15). As expected, the majority of mice (n = 10) had no measurable tissue level of PML-RARα. However, five mice showed a weak positive signal in both the brain and spleen (n = 2), in the brain only (n = 2) and in the spleen only (n = 1). Thus tracking the oncogene-positive cells in long-term survivors reveals for the first time that extramedullary PML-RARα-positive cell reservoirs such as the brain may persist and be involved in relapses.

  18. VARIATION ANALYSIS OF HPV16 CELL-TYPE-SPECIFIC ENHANCER IN CERVICAL CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    Liu Wenkang; Chu Yonglie; Ma Tianyou; Yang E; Cao Chunxia

    2006-01-01

    Objective To investigate the cell-type-specific enhancer (CTSE) in HPV16 and its variation in cervical carcinoma. Methods CTSEs were detected by polymerase chain reaction (PCR) in 58 cervical carcinoma from Shaanxi province; in addition variation of CTSEs was analyzed through single-strand conformation polymorphisms (SSCP). Results HPV16 CTSEs were detectable in 34 of 58 (57%) specimens and mutant rate was 41%(14/34) and the main mutations of chosen randomly variant CTSE (CTSEv) happened at YY1 binding sites in addition to glucocoticoid response elements (GRE). Conclusion CTSE in some specimens of Shaanxi province was obviously different from that in HPV16 wild type and variant CTSE might affect the transcriptional regulation of LCR on viral P97, which regulates over-expression of viral oncogenes in cervical carcinoma.

  19. Long-term exposures to low doses of cobalt nanoparticles induce cell transformation enhanced by oxidative damage.

    Science.gov (United States)

    Annangi, Balasubramanyam; Bach, Jordi; Vales, Gerard; Rubio, Laura; Marcos, Ricard; Hernández, Alba

    2015-03-01

    A weak aspect of the in vitro studies devoted to get information on the toxic, genotoxic and carcinogenic properties of nanomaterials is that they are usually conducted under acute-exposure and high-dose conditions. This makes difficult to extrapolate the results to human beings. To overcome this point, we have evaluated the cell transforming ability of cobalt nanoparticles (CoNPs) after long-term exposures (12 weeks) to sub-toxic doses (0.05 and 0.1 µg/mL). To get further information on whether CoNPs-induced oxidative DNA damage is relevant for CoNPs carcinogenesis, the cell lines selected for the study were the wild-type mouse embryonic fibroblast (MEF Ogg1(+/+)) and its isogenic Ogg1 knockout partner (MEF Ogg1(-)(/)(-)), unable to properly eliminate the 8-OH-dG lesions from DNA. Our initial short-term exposure experiments demonstrate that low doses of CoNPs are able to induce reactive oxygen species (ROS) and that MEF Ogg1(-)(/)(-) cells are more sensitive to CoNPs-induced acute toxicity and oxidative DNA damage. On the other hand, long-term exposures of MEF cells to sub-toxic doses of CoNPs were able to induce cell transformation, as indicated by the observed morphological cell changes, significant increases in the secretion of metalloproteinases (MMPs) and anchorage-independent cell growth ability, all cancer-like phenotypic hallmarks. Interestingly, such changes were significantly dependent on the cell line used, the Ogg1(-)(/)(-) cells being particularly sensitive. Altogether, the data presented here confirms the potential carcinogenic risk of CoNPs and points out the relevance of ROS and Ogg1 genetic background on CoNPs-associated effects.

  20. Protein conservation and variation suggest mechanisms of cell type-specific modulation of signaling pathways.

    Directory of Open Access Journals (Sweden)

    Martin H Schaefer

    2014-06-01

    Full Text Available Many proteins and signaling pathways are present in most cell types and tissues and yet perform specialized functions. To elucidate mechanisms by which these ubiquitous pathways are modulated, we overlaid information about cross-cell line protein abundance and variability, and evolutionary conservation onto functional pathway components and topological layers in the pathway hierarchy. We found that the input (receptors and the output (transcription factors layers evolve more rapidly than proteins in the intermediary transmission layer. In contrast, protein expression variability decreases from the input to the output layer. We observed that the differences in protein variability between the input and transmission layer can be attributed to both the network position and the tendency of variable proteins to physically interact with constitutively expressed proteins. Differences in protein expression variability and conservation are also accompanied by the tendency of conserved and constitutively expressed proteins to acquire somatic mutations, while germline mutations tend to occur in cell type-specific proteins. Thus, conserved core proteins in the transmission layer could perform a fundamental role in most cell types and are therefore less tolerant to germline mutations. In summary, we propose that the core signal transmission machinery is largely modulated by a variable input layer through physical protein interactions. We hypothesize that the bow-tie organization of cellular signaling on the level of protein abundance variability contributes to the specificity of the signal response in different cell types.

  1. Species- and cell type-specific interactions between CD47 and human SIRPalpha.

    Science.gov (United States)

    Subramanian, Shyamsundar; Parthasarathy, Ranganath; Sen, Shamik; Boder, Eric T; Discher, Dennis E

    2006-03-15

    CD47 on red blood cells (RBCs) reportedly signals "self" by binding SIRPalpha on phagocytes, at least in mice. Such interactions across and within species, from mouse to human, are not yet clear and neither is the relation to cell adhesion. Using human SIRPalpha1 as a probe, antibody-inhibitable binding to CD47 was found only with human and pig RBCs (not mouse, rat, or cow). In addition, CD47-mediated adhesion of human and pig RBCs to SIRPalpha1 surfaces resists sustained forces in centrifugation (as confirmed by atomic force microscopy) but only at SIRPalpha-coating densities far above those measurable on human neutrophils, monocytes, and THP-1 macrophages. While interactions strengthen with deglycosylation of SIRPalpha1, low copy numbers explain the absence of RBC adhesion to phagocytes under physiologic conditions and imply that the interaction being studied is not responsible for red cell clearance in humans. Evidence of clustering nonetheless suggests mechanisms of avidity enhancement. Finally, using the same CD47 antibodies and soluble SIRPalpha1, bone marrow-derived mesenchymal stem cells were assayed and found to display CD47 but not bind SIRPalpha1 significantly. The results thus demonstrate that SIRPalpha-CD47 interactions, which reportedly define self, exhibit cell type specificity and limited cross-species reactivity.

  2. Cell type specific applicability of 5-ethynyl-2'-deoxyuridine (EdU) for dynamic proliferation assessment in flow cytometry.

    Science.gov (United States)

    Diermeier-Daucher, Simone; Clarke, Scott T; Hill, Dani; Vollmann-Zwerenz, Arabel; Bradford, Jolene A; Brockhoff, Gero

    2009-06-01

    Using the nucleoside analogue EdU (5-ethynyl-2'-deoxyuridine) for thymidine substitution instead of BrdU (5-bromo-2'-deoxyuridine) in cell proliferation assays has recently been proposed. However, the effect of EdU on cell viability, DNA synthesis, and cell cycle progression and consequently its usability for dynamic cell proliferation analysis in vitro has not been explored. We compared the effect of EdU and BrdU incorporation into SK-BR-3 and BT474 breast cancer cells and the impact on cell cycle kinetics, cell viability, and DNA damage. We found that EdU can be used not only for pulse but also for continuous cell labeling and henceforth in high resolution EdU/Hoechst quenching assays. BrdU and EdU proliferation assays based on click chemistry revealed comparable results. However, cell viability of SK-BR-3 breast cancer cells was highly affected by long term exposure to EdU. Both SK-BR-3 as well as BT474 cells show cell cycle arrests upon long term EdU treatment whereas only SK-BR-3 cells were driven into necrotic cell death by long term exposure to EdU. In contrast BT474 cells appeared essentially unharmed by EdU treatment in terms of viability. Consequently using EdU enables highly sensitive and quantitative detection of proliferating cells and facilitates even continuous cell cycle assessment. Nevertheless, potential cellular susceptibility needs to be individually evaluated.

  3. Assessment of long-term effects of nanoparticles in a microcarrier cell culture system.

    Directory of Open Access Journals (Sweden)

    Maria Mrakovcic

    Full Text Available Nano-sized materials could find multiple applications in medical diagnosis and therapy. One main concern is that engineered nanoparticles, similar to combustion-derived nanoparticles, may cause adverse effects on human health by accumulation of entire particles or their degradation products. Chronic cytotoxicity must therefore be evaluated. In order to perform chronic cytotoxicity testing of plain polystyrene nanoparticles on the endothelial cell line EAhy 926, we established a microcarrier cell culture system for anchorage-dependent cells (BioLevitator(TM. Cells were cultured for four weeks and exposed to doses, which were not cytotoxic upon 24 hours of exposure. For comparison, these particles were also studied in regularly sub-cultured cells, a method that has traditionally been used to assess chronic cellular effects. Culturing on basal membrane coated microcarriers produced very high cell densities. Fluorescent particles were mainly localized in the lysosomes of the exposed cells. After four weeks of exposure, the number of cells exposed to 20 nm polystyrene particles decreased by 60% as compared to untreated controls. When tested in sub-cultured cells, the same particles decreased cell numbers to 80% of the untreated controls. Dose-dependent decreases in cell numbers were also noted after exposure of microcarrier cultured cells to 50 nm short multi-walled carbon nanotubes. Our findings support that necrosis, but not apoptosis, contributed to cell death of the exposed cells in the microcarrier culture system. In conclusion, the established microcarrier model appears to be more sensitive for the identification of cellular effects upon prolonged and repeated exposure to nanoparticles than traditional sub-culturing.

  4. Uptake of silica covered Quantum Dots into living cells: Long term vitality and morphology study on hyaluronic acid biomaterials.

    Science.gov (United States)

    D'Amico, Michele; Fiorica, Calogero; Palumbo, Fabio Salvatore; Militello, Valeria; Leone, Maurizio; Dubertret, Benoit; Pitarresi, Giovanna; Giammona, Gaetano

    2016-10-01

    Quantum Dots (QDs) are promising very bright and stable fluorescent probes for optical studies in the biological field but water solubility and possible metal bio-contamination need to be addressed. In this work, a simple silica-QD hybrid system is prepared and the uptake in bovine chondrocytes living cells without any functionalization of the external protective silica shield is demonstrated. Moreover, long term treated cells vitality (up to 14days) and the transfer of silica-QDs to the next cell generations are here reported. Confocal fluorescence microscopy was also used to determine the morphology of the so labelled cells and the relative silica-QDs distribution. Finally, we employ silica-QD stained chondrocytes to characterize, as proof of concept, hydrogels obtained from an amphiphilic derivative of hyaluronic acid (HA-EDA-C18) functionalized with different amounts of the RGD peptide.

  5. Epigenetic regulation of normal human mammary cell type-specific miRNAs

    Energy Technology Data Exchange (ETDEWEB)

    Vrba, Lukas [Univ. of Arizona, Tucson, AZ (United States). Arizona Cancer Center; Inst. of Plant Molecular Biology, Ceske Budejovice (Czech Republic). Biology Centre ASCR; Garbe, James C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Center; Stampfer, Martha R. [Univ. of Arizona, Tucson, AZ (United States). Arizona Cancer Center; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Center; Futscher, Bernard W. [Univ. of Arizona, Tucson, AZ (United States). Arizona Cancer Center and Dept. of Pharmacology & Toxicology

    2011-08-26

    Epigenetic mechanisms are important regulators of cell type–specific genes, including miRNAs. In order to identify cell type-specific miRNAs regulated by epigenetic mechanisms, we undertook a global analysis of miRNA expression and epigenetic states in three isogenic pairs of human mammary epithelial cells (HMEC) and human mammary fibroblasts (HMF), which represent two differentiated cell types typically present within a given organ, each with a distinct phenotype and a distinct epigenotype. While miRNA expression and epigenetic states showed strong interindividual concordance within a given cell type, almost 10% of the expressed miRNA showed a cell type–specific pattern of expression that was linked to the epigenetic state of their promoter. The tissue-specific miRNA genes were epigenetically repressed in nonexpressing cells by DNA methylation (38%) and H3K27me3 (58%), with only a small set of miRNAs (21%) showing a dual epigenetic repression where both DNA methylation and H3K27me3 were present at their promoters, such as MIR10A and MIR10B. Individual miRNA clusters of closely related miRNA gene families can each display cell type–specific repression by the same or complementary epigenetic mechanisms, such as the MIR200 family, and MIR205, where fibroblasts repress MIR200C/141 by DNA methylation, MIR200A/200B/429 by H3K27me3, and MIR205 by both DNA methylation and H3K27me3. Since deregulation of many of the epigenetically regulated miRNAs that we identified have been linked to disease processes such as cancer, it is predicted that compromise of the epigenetic control mechanisms is important for this process. Overall, these results highlight the importance of epigenetic regulation in the control of normal cell type–specific miRNA expression.

  6. Proteome Analysis of Thyroid Cancer Cells After Long-Term Exposure to a Random Positioning Machine

    Science.gov (United States)

    Pietsch, Jessica; Bauer, Johann; Weber, Gerhard; Nissum, Mikkel; Westphal, Kriss; Egli, Marcel; Grosse, Jirka; Schönberger, Johann; Eilles, Christoph; Infanger, Manfred; Grimm, Daniela

    2011-11-01

    Annulling gravity during cell culturing triggers various types of cells to change their protein expression in a time dependent manner. We therefore decided to determine gravity sensitive proteins and their period of sensitivity to the effects of gravity. In this study, thyroid cancer cells of the ML-1 cell line were cultured under normal gravity (1 g) or in a random positioning machine (RPM), which simulated near weightlessness for 7 and 11 days. Cells were then sonicated and proteins released into the supernatant were separated from those that remained attached to the cell fragments. Subsequently, both types of proteins were fractionated by free-flow isoelectric focussing (FF-IEF). The fractions obtained were further separated by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) to which comparable FF-IEF fractions derived from cells cultured either under 1 g or on the RPM had been applied side by side. The separation resulted in pairs of lanes, on which a number of identical bands were observed. Selected gel pieces were excised and their proteins determined by mass spectrometry. Equal proteins from cells cultured under normal gravity and the RPM, respectively, were detected in comparable gel pieces. However, many of these proteins had received different Mascot scores. Quantifying heat shock cognate 71 kDa protein, glutathione S-transferase P, nucleoside diphosphate kinase A and annexin-2 by Western blotting using whole cell lysates indicated usefulness of Mascot scores for selecting the most efficient antibodies.

  7. Long-Term Effects of Stem Cells on Total-Body Irradiated Mice

    Science.gov (United States)

    Vyalkina, M. V.; Alchinova, I. B.; Yakovenko, E. N.; Medvedeva, Yu S.; Saburina, I. N.; Karganov, M. Yu

    2017-01-01

    C57Bl/6 mice were exposed to γ-radiation in a sublethal dose of 7.5 Gy. In 3 hours injection 106/mouse of bone marrow multipotent mesenchymal stromal cells stem cells intravenously to experimental group was done. Methods used: body weight measurement, open field behavior, subfraction composition of blood serum (laser correlation spectroscopy, LCS), histological examination of the spleen, liver, and pancreas, count of T and B cells, white blood formula. After 1.5 and 3 months the general trend towards intermediate position of the parameters observed in the experimental between those in intact and irradiated controls attests to partial protective/restorative effects of the injected cells.

  8. Transformation of human mesenchymal stem cells in radiation carcinogenesis: long-term effect of ionizing radiation

    DEFF Research Database (Denmark)

    Christensen, Rikke; Alsner, Jan; Sørensen, Flemming Brandt;

    2008-01-01

    . A subclone of the cells irradiated with 2.5 Gy of gamma-rays formed tumors after implantation to severe combined immunodeficiency mice. During the process of transformation, the cells showed accelerated telomere shortening, increased levels of anaphase bridges and a shift from balanced to unbalanced...

  9. Quantifying Epithelial Early Common Progenitors from Long-Term Primary or Cell Line Sphere Culture.

    Science.gov (United States)

    Clément, Flora; Zhu, Helen He; Gao, Wei-Qiang; Delay, Emmanuel; Maguer-Satta, Véronique

    2015-11-04

    Here, a protocol to quantify epithelial early common progenitor/stem cells grown as spheres in non-adherent culture conditions is described. This protocol is based on the combination of two functional tests: the sphere assay to maintain and enrich early progenitor/stem cells, and the epithelial colony-forming cells (E-CFC) assay to identify and quantify further differentiated epithelial progenitors. Primary spheres mainly contain progenitors and rare stem/early common progenitor cells while secondary and tertiary spheres contain progenitor cells derived from the early common progenitor/stem cell population maintained through passages and partially differentiated. Spheres are enzymatically and mechanically dissociated; the derived cells are subsequently plated on irradiated NIH-3T3 fibroblasts for further processing, as in the E-CFC assay. The principle of this assay is to quantify the number of epithelial colonies generated by cells present in the different sequential spheres. This assay has therefore been named the early common progenitor-derived colonies assay (ECP-DC).

  10. Long-term repeated biodesulfurization by immobilized Rhodococcus erythropolis KA2-5-1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Naito, M.; Kawamoto, T.; Tanaka, A. [Kyoto Univ., Yoshida (Japan). Dept. of Synthetic Chemistry and Biological Chemistry; Fujino, K.; Kobayashi, M.; Maruhashi, K. [Advanced Technology and Research Inst., Petroleum Energy Center, Shizuoka (Japan)

    2001-07-01

    In this study, biodesulfurization (BDS) was carried out using immobilized Rhodococcus erythropolis KA2-5-1 in n-tetradecane containing dibenzothiophene (DBT) as a model oil (n-tetradecane/immobilized cell biphasic system). The cells were immobilized by entrapping them with calcium alginate, agar, photo-crosslinkable resin prepolymers (ENT-4000 and ENTP-4000), and urethane prepolymers (PU-3 and PU-6); and it was found that ENT-4000-immobilized cells had the highest DBT desulfurization activity in the model oil system without leakage of cells from the support. Furthermore, ENT-4000-immobilized cells could catalyze BDS repeatedly in this system for more than 900 h with reactivation; and recovery of both the biocatalyst and the desulfurized model oil was easy. This study would give a solution to the problems in BDS, such as the troublesome process of recovering desulfurized oil and the short life of BDS biocatalysts. (orig.)

  11. Long-Term Survival of Neonatal Porcine Islets Without Sertoli Cells in Rabbits

    Directory of Open Access Journals (Sweden)

    Rafael Vald and eacute;s-Gonz and aacute;lez

    2013-04-01

    Full Text Available Cell-based therapy is a promising treatment for metabolic disorders such as type-1 diabetes. Transplantation protocols have investigated several anatomical sites for cell implantation; however, some of these procedures, such as intraportal infusion, can cause organ failure or thrombosis secondarily. Bio-artificial organs could be the choice, although concerns still remain. Using a subcutaneous device, we are able to preserve neonatal porcine islets without sertoli cells in healthy New Zealand rabbits. Devices were implanted in the back of the animals underneath the skin, and after 3 months the islets were transplanted. Histology showed the presence of inflammatory cells, predominantly eosinophils; however, insulin- and glucagon-positive cell clusters were identified inside the device at different time points for at least 90 days, and porcine C-peptide was also detected during the follow-up, indicating graft functionality. We have found that our device induces the deposition of a fibrous matrix enriched in blood vessels, which forms a good place for cell grafting, and this model is probably able to induce an immunoprivileged site. Under these conditions, transplanted porcine islet cells have the capability of producing insulin and glucagon for at least three months. [Arch Clin Exp Surg 2013; 2(2.000: 101-108

  12. Long-term primary culture of secretory cells of Bothrops jararaca venom gland for venom production in vitro.

    Science.gov (United States)

    Yamanouye, Norma; Kerchove, Celine Marie; Moura-da-Silva, Ana Maria; Carneiro, Sylvia M; Markus, Regina P

    2006-01-01

    This protocol details the optimal conditions to establish a long-term primary culture of secretory cells from the venom gland of the Bothrops jararaca snake. Furthermore, these conditions allow the production and secretion of venom into the culture medium. Snake venom is a rich source of active molecules and has been used for bioprospection studies. However, obtaining enough venom from snakes is a major obstacle. Secretory cells of venom glands are capable of producing active toxins. Therefore, a culture of secretory cells is a good in vitro system to acquire the venom of snakes without capturing the animal from the wild. The protocol described here provides a rapid (approximately 4 h) and reproducible means of producing sufficient amounts of snake venom for biological investigations.

  13. Adult neural stem cells: Long-term self-renewal, replenishment by the immune system, or both?

    Science.gov (United States)

    Beltz, Barbara S; Cockey, Emily L; Li, Jingjing; Platto, Jody F; Ramos, Kristina A; Benton, Jeanne L

    2015-05-01

    The current model of adult neurogenesis in mammals suggests that adult-born neurons are generated by stem cells that undergo long-term self-renewal, and that a lifetime supply of stem cells resides in the brain. In contrast, it has recently been demonstrated that adult-born neurons in crayfish are generated by precursors originating in the immune system. This is particularly interesting because studies done many years ago suggest that a similar mechanism might exist in rodents and humans, with bone marrow providing stem cells that can generate neurons. However, the relevance of these findings for natural mechanisms underlying adult neurogenesis in mammals is not clear, because of uncertainties at many levels. We argue here that the recent findings in crayfish send a strong signal to re-examine existing data from rodents and humans, and to design new experiments that will directly test the contributions of the immune system to adult neurogenesis in mammals.

  14. Comparison of Different Culture Mode for Long-term Expansion of Neural Stem Cells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1 Introduction The mammalian central nervous system(CNS) is incredibly complex and possesses only a limited ability to recover from damage~([1]). Fortunately, the discovery of self-renewing stem cell populations within the fetal and adult CNS has opened promising lines of inquiry. Neural stem cells (NSCs) can be cultured in two modes in vitro, suspension and monolayer. Reynolds~([2]) and other groups culture NSCs as neurospheres in suspension. Alternatively Gage cultured NSCs in monolayer. There is little s...

  15. Positive biocompatibility of several graphene derivatives with dopaminergic cells at long term culture

    OpenAIRE

    Rodriguez-Losada, Noela; Wendelbo, Rune; Arenas, Ernest; Aguirre, José A.

    2015-01-01

    The emerging carbon nanomaterial graphene (G) and its oxidized derivative graphene oxide (GO) have recently gained considerable attention in biomedical applications such as cancer therapy or biosensors. It has for example been demonstrated that G has an efficient bioconjugation with common biomolecules and activates cell differentiation of neuronal stem cells (Li et al., 2013). This way, G could acts as a physical support or scaffold to promote axonal sprout as a “deceleration” support for th...

  16. Cell-Type Specific Roles for PTEN in Establishing a Functional Retinal Architecture

    Science.gov (United States)

    Cantrup, Robert; Dixit, Rajiv; Palmesino, Elena; Bonfield, Stephan; Shaker, Tarek; Tachibana, Nobuhiko; Zinyk, Dawn; Dalesman, Sarah; Yamakawa, Kazuhiro; Stell, William K.; Wong, Rachel O.; Reese, Benjamin E.; Kania, Artur; Sauvé, Yves; Schuurmans, Carol

    2012-01-01

    Background The retina has a unique three-dimensional architecture, the precise organization of which allows for complete sampling of the visual field. Along the radial or apicobasal axis, retinal neurons and their dendritic and axonal arbors are segregated into layers, while perpendicular to this axis, in the tangential plane, four of the six neuronal types form patterned cellular arrays, or mosaics. Currently, the molecular cues that control retinal cell positioning are not well-understood, especially those that operate in the tangential plane. Here we investigated the role of the PTEN phosphatase in establishing a functional retinal architecture. Methodology/Principal Findings In the developing retina, PTEN was localized preferentially to ganglion, amacrine and horizontal cells, whose somata are distributed in mosaic patterns in the tangential plane. Generation of a retina-specific Pten knock-out resulted in retinal ganglion, amacrine and horizontal cell hypertrophy, and expansion of the inner plexiform layer. The spacing of Pten mutant mosaic populations was also aberrant, as were the arborization and fasciculation patterns of their processes, displaying cell type-specific defects in the radial and tangential dimensions. Irregular oscillatory potentials were also observed in Pten mutant electroretinograms, indicative of asynchronous amacrine cell firing. Furthermore, while Pten mutant RGC axons targeted appropriate brain regions, optokinetic spatial acuity was reduced in Pten mutant animals. Finally, while some features of the Pten mutant retina appeared similar to those reported in Dscam-mutant mice, PTEN expression and activity were normal in the absence of Dscam. Conclusions/Significance We conclude that Pten regulates somal positioning and neurite arborization patterns of a subset of retinal cells that form mosaics, likely functioning independently of Dscam, at least during the embryonic period. Our findings thus reveal an unexpected level of cellular

  17. Cell-type specific roles for PTEN in establishing a functional retinal architecture.

    Directory of Open Access Journals (Sweden)

    Robert Cantrup

    Full Text Available BACKGROUND: The retina has a unique three-dimensional architecture, the precise organization of which allows for complete sampling of the visual field. Along the radial or apicobasal axis, retinal neurons and their dendritic and axonal arbors are segregated into layers, while perpendicular to this axis, in the tangential plane, four of the six neuronal types form patterned cellular arrays, or mosaics. Currently, the molecular cues that control retinal cell positioning are not well-understood, especially those that operate in the tangential plane. Here we investigated the role of the PTEN phosphatase in establishing a functional retinal architecture. METHODOLOGY/PRINCIPAL FINDINGS: In the developing retina, PTEN was localized preferentially to ganglion, amacrine and horizontal cells, whose somata are distributed in mosaic patterns in the tangential plane. Generation of a retina-specific Pten knock-out resulted in retinal ganglion, amacrine and horizontal cell hypertrophy, and expansion of the inner plexiform layer. The spacing of Pten mutant mosaic populations was also aberrant, as were the arborization and fasciculation patterns of their processes, displaying cell type-specific defects in the radial and tangential dimensions. Irregular oscillatory potentials were also observed in Pten mutant electroretinograms, indicative of asynchronous amacrine cell firing. Furthermore, while Pten mutant RGC axons targeted appropriate brain regions, optokinetic spatial acuity was reduced in Pten mutant animals. Finally, while some features of the Pten mutant retina appeared similar to those reported in Dscam-mutant mice, PTEN expression and activity were normal in the absence of Dscam. CONCLUSIONS/SIGNIFICANCE: We conclude that Pten regulates somal positioning and neurite arborization patterns of a subset of retinal cells that form mosaics, likely functioning independently of Dscam, at least during the embryonic period. Our findings thus reveal an unexpected

  18. Long-term performance of a plant microbial fuel cell with Spartina anglica

    Energy Technology Data Exchange (ETDEWEB)

    Timmers, Ruud A.; Strik, David P.B.T.B.; Hamelers, Hubertus V.M.; Buisman, Cees J.N. [Wageningen Univ. (Netherlands). Sub-dept. of Environmental Technology

    2010-04-15

    The plant microbial fuel cell is a sustainable and renewable way of electricity production. The plant is integrated in the anode of the microbial fuel cell which consists of a bed of graphite granules. In the anode, organic compounds deposited by plant roots are oxidized by electrochemically active bacteria. In this research, salt marsh species Spartina anglica generated current for up to 119 days in a plant microbial fuel cell. Maximum power production was 100 mW m{sup -2} geometric anode area, highest reported power output for a plant microbial fuel cell. Cathode overpotential was the main potential loss in the period of oxygen reduction due to slow oxygen reduction kinetics at the cathode. Ferricyanide reduction improved the kinetics at the cathode and increased current generation with a maximum of 254%. In the period of ferricyanide reduction, the main potential loss was transport loss. This research shows potential application of microbial fuel cell technology in salt marshes for bio-energy production with the plant microbial fuel cell. (orig.)

  19. Energy Harvesting by Subcutaneous Solar Cells: A Long-Term Study on Achievable Energy Output.

    Science.gov (United States)

    Bereuter, L; Williner, S; Pianezzi, F; Bissig, B; Buecheler, S; Burger, J; Vogel, R; Zurbuchen, A; Haeberlin, A

    2017-01-03

    Active electronic implants are powered by primary batteries, which induces the necessity of implant replacement after battery depletion. This causes repeated interventions in a patients' life, which bears the risk of complications and is costly. By using energy harvesting devices to power the implant, device replacements may be avoided and the device size may be reduced dramatically. Recently, several groups presented prototypes of implants powered by subcutaneous solar cells. However, data about the expected real-life power output of subcutaneously implanted solar cells was lacking so far. In this study, we report the first real-life validation data of energy harvesting by subcutaneous solar cells. Portable light measurement devices that feature solar cells (cell area = 3.6 cm(2)) and continuously measure a subcutaneous solar cell's output power were built. The measurement devices were worn by volunteers in their daily routine in summer, autumn and winter. In addition to the measured output power, influences such as season, weather and human activity were analyzed. The obtained mean power over the whole study period was 67 µW (=19 µW cm(-2)), which is sufficient to power e.g. a cardiac pacemaker.

  20. Preliminary investigations of Spirulina effect on cancer cells: interest for long-term manned space missions

    Science.gov (United States)

    Baatout, S.; Bekaert, S.; Hendrickx, L.; Derradji, H.; Mergeay, M.

    Background In view of long haul space exploration missions the development of regenerative life support systems is of crucial importance to increase the crew autonomy and decrease the cost associated to the mass embarked Therefore in the late 80 s the European Space Agency initiated the MELiSSA project Micro-Ecological Life Support System Alternative MELiSSA has been conceived as a micro-organisms and higher plant process enabling high recycling efficiency The cyanobacteria Arthrospira sp is occupying one of the MELiSSA compartments Its genome is now being sequenced and this will help to better understand or improve its food value as well as to have a look at its putative toxic potential Aim In this study we were interested in studying the threshold of intrinsic cytotoxic effects of Spirulina dry extract from Sigma containing washed and lyophilized mixed Arthrospira strains on human cancer cells and its cell type dependency Method For that purpose we used flow cytometry to estimate cell death apoptosis and necrosis in three human leukaemic cell lines HELA cervix carcinoma IM-9 multiple myeloma K562 chronic myelogenous leukaemia Cells were cultured in the presence of an aqueous extract of Spirulina concentrations ranging from 0 to 500 mu g ml for 15 to 40 hours Apoptosis and necrosis were evaluated by annexin-V-PI staining cell size and granularity Early apoptosis was monitored by analysing the maintenance of mitochondrial membrane potential DioC 6 3 and the

  1. Short- and long-term effects of silver nanoparticles on human microvascular endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Sara; Castiglioni; Clelia; Caspani; Alessandra; Cazzaniga; Jeanette; AM; Maier

    2014-01-01

    AIM: To study the response to silver nanoparticles(Ag NP) of human microvascular endothelial cells, protagonists of angiogenesis. METHODS: We cultured human microvascular endothelial cells and endothelial colony-forming cells in their corresponding growth medium. Stock solutions of Ag NP were prepared in culture medium and sonicated before use. They were added at different concentrations and for different times to culture media. The toxicity of Ag NP was investigated by measuring the reduction of yellow tetrazolium salt to dark purple formazan(MTT assay) at 575 nm. After staining with trypan blue, cell proliferation was assessed by counting viable cells. The lactate dehydrogenase leakage assay was performed on culture media by following the oxidation of NADH to NAD+ and monitoring the reaction kinetically at 340 nm. Reactive oxygen species production was quantified using 2’-7’-dichlorofluorescein diacetate. The alkaline comet assay was performed after mixing the cells with low melting-point agarose. Electrophoresis was then conducted and the samples were stained with ethidium bromide and analyzed with a fluorescence microscope.RESULTS: Ag NP are cytotoxic in a dose and time dependent fashion for HMEC. At high concentrations, Ag NP determine loss of membrane integrity as demonstrated by the increased activity of lactate dehydrogenase in the culture medium. Ag NP rapidly stimulate the formation of free radicals. However, pre-incubation with Trolox, apocynin, or N-acetyl-L-cysteine, antioxidants which have different structure and act through different mechanisms, is not sufficient to prevent cytotoxicity. Ag NP also induce DNA damage dose-dependently, as shown by comet assay. When exposed to sublethal concentrations of Ag NP for long times, the cells remain viable but are growth retarded. Interestingly, removal of Ag NP partially rescues cell growth. Also genotoxicity is reversible upon removal of Ag NP from culture medium, suggesting that no permanent

  2. Red blood cell engineering in stroma and serum/plasma-free conditions and long term storage.

    Science.gov (United States)

    Kim, Hyun Ok; Baek, Eun Jung

    2012-01-01

    In vitro generation of artificial red blood cells (RBCs) is very important to overcome insufficient and unsafe blood supply. Despite recent progresses in RBCs engineering from several stem cell sources, none of them could succeed in generation of functional RBCs in the absence of serum/plasma and feeder cells. Without the elimination of serum and plasma, human RBC engineering in a large scale is impossible, especially for the future bioreactor system. Using an appropriate combination of cost-effective and safe reagents, the present study demonstrated the terminal maturation of hematopoietic stem cells into enucleated RBCs, which were functional comparable to donated human RBCs. Surprisingly, the viability of erythroid cells was higher in our serum- and feeder-free culture condition than in the previous serum-added condition. This was possible by supplementation with vitamin C in media and hypothermic conditions. Also, our report firstly presents the storability of artificial RBCs, which possibility is essential for clinical application. In summary, our report demonstrates engineering of human applicable RBCs with a dramatically enhanced viability and shelf-life in both serum- and stroma-free conditions. This innovative culture technology could contribute to the realization of the large-scale pharming of human RBCs using bioreactor systems.

  3. Replica-moulded polydimethylsiloxane culture vessel lids attenuate osmotic drift in long-term cell cultures

    Indian Academy of Sciences (India)

    Axel Blau; Tanja Neumann; Christiane Ziegler; Fabio Benfenati

    2009-03-01

    An imbalance in medium osmolarity is a determinant that affects cell culture longevity. Even in humidified incubators, evaporation of water leads to a gradual increase in osmolarity overtime. We present a simple replica-moulding strategy for producing self-sealing lids adaptable to standard, small-size cell-culture vessels. They are made of polydimethylsiloxane (PDMS), a flexible, transparent and biocompatible material, which is gas-permeable but largely impermeable to water. Keeping cell cultures in a humidified 5% CO2 incubator at 37°C, medium osmolarity increased by +6.86 mosmol/kg/day in standard 35 mm Petri dishes, while PDMS lids attenuated its rise by a factor of four to changes of +1.72 mosmol/kg/ day. Depending on the lid membrane thickness, pH drifts at ambient CO2 levels were attenuated by a factor of 4 to 9. Comparative evaporation studies at temperatures below 60°C yielded a 10-fold reduced water vapour flux of 1.75 g/day/dm2 through PDMS lids as compared with 18.69 g/day/dm2 with conventional Petri dishes. Using such PDMS lids, about 2/3 of the cell cultures grew longer than 30 days in vitro. Among these, the average survival time was 69 days with the longest survival being 284 days under otherwise conventional cell culture conditions.

  4. Isolated tumor endothelial cells maintain specific character during long-term culture

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Kohei [Vascular Biology, Hokkaido University Graduate School of Dental Medicine, N13 W7, Kita-ku, Sapporo 060-8586 (Japan); Oral Pathology and Biology, Hokkaido University Graduate School of Dental Medicine, N13 W7, Kita-ku, Sapporo 060-8586 (Japan); Oral and Maxillofacial Surgery, Hokkaido University Graduate School of Dental Medicine, N13 W7, Kita-ku, Sapporo 060-8586 (Japan); Ohga, Noritaka [Vascular Biology, Hokkaido University Graduate School of Dental Medicine, N13 W7, Kita-ku, Sapporo 060-8586 (Japan); Hida, Yasuhiro [Surgical Oncology, Hokkaido University Graduate School of Medicine, N13 W7, Kita-ku, Sapporo 060-8586 (Japan); Muraki, Chikara [Oral Pathology and Biology, Hokkaido University Graduate School of Dental Medicine, N13 W7, Kita-ku, Sapporo 060-8586 (Japan); Oral and Maxillofacial Surgery, Hokkaido University Graduate School of Dental Medicine, N13 W7, Kita-ku, Sapporo 060-8586 (Japan); Tsuchiya, Kunihiko [Vascular Biology, Hokkaido University Graduate School of Dental Medicine, N13 W7, Kita-ku, Sapporo 060-8586 (Japan); Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, N13 W7, Kita-ku, Sapporo 060-8586 (Japan); Kurosu, Takuro [Vascular Biology, Hokkaido University Graduate School of Dental Medicine, N13 W7, Kita-ku, Sapporo 060-8586 (Japan); Oral Pathology and Biology, Hokkaido University Graduate School of Dental Medicine, N13 W7, Kita-ku, Sapporo 060-8586 (Japan); Oral and Maxillofacial Surgery, Hokkaido University Graduate School of Dental Medicine, N13 W7, Kita-ku, Sapporo 060-8586 (Japan); Akino, Tomoshige [Vascular Biology, Hokkaido University Graduate School of Dental Medicine, N13 W7, Kita-ku, Sapporo 060-8586 (Japan); Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, N13 W7, Kita-ku, Sapporo 060-8586 (Japan); Shih, Shou-Ching [Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215 (United States); and others

    2010-04-16

    Tumor angiogenesis is necessary for solid tumor progression and metastasis. Increasing evidence indicates that tumor endothelial cells (TECs) are more relevant to the study of tumor angiogenesis than normal endothelial cells (NECs) because their morphologies and gene expression are different from NECs. However, it is challenging to isolate and culture large numbers of pure ECs from tumor tissue since the percentage of ECs is only about 1-2% and tumor cells and fibroblasts easily overgrow them. In addition, there has been concern that isolated TECs may lose their special phenotype once they are dissociated from tumor cells. In this study, we have successfully purified murine TECs from four different human tumor xenografts and NECs from murine dermal tissue. Isolated ECs expressed endothelial markers, such as CD31, VE-cadherin (CD144), and endoglin (CD105), for more than 3 months after isolation. TECs maintained tumor endothelial-specific markers, such as tumor endothelial marker 8 (TEM8) and aminopeptidase N (APN), as in tumor blood vessels in vivo. In addition, TECs were more proliferative and motile than NECs. TECs showed a higher response to VEGF and higher expression of VEGF receptors-1 and -2 than NECs did. Stem cell antigen-1 was up-regulated in all four TECs, suggesting that they have a kind of stemness. Cultured TECs maintain distinct biological differences from NECs as in vivo. In conclusion, it was suggested that TECs are relevant material for tumor angiogenesis research.

  5. Cell-type specificity of ChIP-predicted transcription factor binding sites

    Directory of Open Access Journals (Sweden)

    Håndstad Tony

    2012-08-01

    Full Text Available Abstract Background Context-dependent transcription factor (TF binding is one reason for differences in gene expression patterns between different cellular states. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq identifies genome-wide TF binding sites for one particular context—the cells used in the experiment. But can such ChIP-seq data predict TF binding in other cellular contexts and is it possible to distinguish context-dependent from ubiquitous TF binding? Results We compared ChIP-seq data on TF binding for multiple TFs in two different cell types and found that on average only a third of ChIP-seq peak regions are common to both cell types. Expectedly, common peaks occur more frequently in certain genomic contexts, such as CpG-rich promoters, whereas chromatin differences characterize cell-type specific TF binding. We also find, however, that genotype differences between the cell types can explain differences in binding. Moreover, ChIP-seq signal intensity and peak clustering are the strongest predictors of common peaks. Compared with strong peaks located in regions containing peaks for multiple transcription factors, weak and isolated peaks are less common between the cell types and are less associated with data that indicate regulatory activity. Conclusions Together, the results suggest that experimental noise is prevalent among weak peaks, whereas strong and clustered peaks represent high-confidence binding events that often occur in other cellular contexts. Nevertheless, 30-40% of the strongest and most clustered peaks show context-dependent regulation. We show that by combining signal intensity with additional data—ranging from context independent information such as binding site conservation and position weight matrix scores to context dependent chromatin structure—we can predict whether a ChIP-seq peak is likely to be present in other cellular contexts.

  6. Enhanced Long-Term Brain Magnetic Resonance Imaging Evaluation of Children with Sickle Cell Disease after Hematopoietic Cell Transplantation.

    Science.gov (United States)

    Green, Nancy S; Bhatia, Monica; Griffith, Erica Y; Qureshi, Mahvish; Briamonte, Courtney; Savone, Mirko; Sands, Stephen; Lee, Margaret T; Lignelli, Angela; Brickman, Adam M

    2017-04-01

    Progressive neurovasculopathy in children with sickle cell disease (SCD) results in decreased cognitive function and quality of life (QoL). Hematopoietic cell transplantation (HCT) is believed to halt progression of neurovasculopathy. Quantitative analysis of T2-weighted fluid attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI) for white matter hyperintensity (WMH) burden provides a meaningful estimate of small vessel cerebrovascular disease. We asked if quantitative analysis of WMH could complement standardized clinical assessment of MRI/magnetic resonance angiography (MRA) for assessing SCD central nervous system vasculopathy before and after HCT. Retrospective longitudinal clinical examination of scheduled annual MRI/MRA and quantitative analysis of WMH were performed before and 1 to 7 years after HCT at scheduled annual intervals, along with QoL measurements, in children who had engrafted after HCT. Of 18 patients alive and persistently engrafted (median age, 9.1 years), pretransplantation MRI demonstrated that 9 and 5 had sickle-related stroke and/or small infarcts, respectively. Patients were divided into WMH severity tertiles based on pretransplantation WMH volumes. MRI and WMH were assessed 1 to 7 years after HCT. MRI/MRA and WMH volume were stable or slightly better in 17 of 18 patients. By parent- and self-report, post-HCT QoL improved for children in the lowest WMH tertile significantly more than in the other groups. Based on this single-institution retrospective sample, we report that WMH appears to quantitatively support MRI-based findings that HCT stabilizes long-term small and large vessel cerebrovascular changes and is associated with the degree of improved QoL. While confirmation in larger prospective studies and evaluation by neurocognitive testing are needed, these findings suggest that WMH is a useful biomarker of neurovasculopathy after transplantation for SCD.

  7. Comparison of Different Culture Mode for Long-term Expansion of Neural Stem Cells

    Institute of Scientific and Technical Information of China (English)

    Ke ZHENG; Dan GE; Tian-Qing LIU; Xue-Hu MA

    2005-01-01

    @@ 1 Introduction The mammalian central nervous system(CNS) is incredibly complex and possesses only a limited ability to recover from damage[1]. Fortunately, the discovery of self-renewing stem cell populations within the fetal and adult CNS has opened promising lines of inquiry.

  8. Long-term survival of encapsulated GDNF secreting cells implanted within the striatum of parkinsonized rats.

    Science.gov (United States)

    Grandoso, Laura; Ponce, Sara; Manuel, Ivan; Arrúe, Aurora; Ruiz-Ortega, Jose A; Ulibarri, Isabel; Orive, Gorka; Hernández, Rosa M; Rodríguez, Alicia; Rodríguez-Puertas, Rafael; Zumárraga, Mercedes; Linazasoro, Gurutz; Pedraz, Jose Luis; Ugedo, Luisa

    2007-10-01

    Several findings suggest that glial cell line-derived neurotrophic factor (GDNF) may be a useful tool to treat parkinsonism by acting as a neuroprotective and neurotrophic factor for dopaminergic neurotransmission systems. In the present study, we implanted alginate-poly-L-lysine-alginate microcapsules containing immobilized Fischer rat 3T3 fibroblasts transfected to produce GDNF in vitro into the striatum of 6-hydroxydopamine (6-OHDA) lesioned rats. Microencapsulated GDNF secreting cells were stable for at least 3 weeks in vitro. Intrastriatal implantation of microencapsulated GDNF secreting cells into 6-OHDA lesioned rats resulted in a decrease in apomorphine-induced rotations by 84%, 64%, 84%, 60% and 52% (2, 5, 8, 16 and 24 weeks, respectively) with respect to the value before implantation and with respect to the value obtained from the empty microcapsule implanted-group at each time point. Six months after transplantation, immunohistochemical detection of GDNF revealed strong immunoreactivity in the striatal tissue surrounding the microcapsules in the absence of tissue damage due to microcapsule implantation. No changes in the levels of dopamine and its metabolites or of tyrosine hydroxylase immunoreactivity were detected in the striatum. In summary, the implantation of microencapsulated GDNF secreting cells allows the delivery of this molecule into the rat striatum for at least 6 months and results in substantial behavioral improvement.

  9. Microbial electrolysis cells for production of methane from CO2: long-term performance and perspectives

    NARCIS (Netherlands)

    Eerten-Jansen, van M.C.A.A.; Heijne, ter A.; Buisman, C.J.N.; Hamelers, H.V.M.

    2012-01-01

    A methane-producing microbial electrolysis cell (MEC) is a technology to convert CO2 into methane, using electricity as an energy source and microorganisms as the catalyst. A methane-producing MEC provides the possibility to increase the fuel yield per hectare of land area, when the CO2 produced in

  10. Study of the long-term operation of a vanadium/oxygen fuel cell

    Science.gov (United States)

    Noack, Jens; Cognard, Gwenn; Oral, Meryem; Küttinger, Michael; Roznyatovskaya, Nataliya; Pinkwart, Karsten; Tübke, Jens

    2016-09-01

    A vanadium/oxygen fuel cell (VOFC) with a geometrically active area of 51 cm2 and two membranes was discontinuously operated over a period of over 676 h with 47 successive tests at room temperature with a current density of 19.6 mA/cm2 in order to investigate signs of ageing. As well as measuring cell voltages, the test setup was also used to measure anode and redox potentials as well as cell and half-cell impedances. The performance data of the VOFC fluctuated widely over the course of the test period, due to different V2+ concentrations and instabilities of the starting solutions on the one hand and complex changes in cathode conditions on the other. The desired behaviour of the anode reactions was achieved primarily through improved methods for producing the V2+ solutions, and remained stable at the end of the experiments. The kinetics of the cathode reactions were temporarily increased by purging with 2 M H2SO4, however their performance decreased over time. The VOFC had symptoms of ageing by complex and overlaid changes in the cathode's triple phase boundary layer and in the special conditions between the two electrodes and membranes.

  11. LONG-TERM SURVIVAL OF SMALL-CELL LUNG-CANCER PATIENTS AFTER CHEMOTHERAPY

    NARCIS (Netherlands)

    VANDERGAAST, A; POSTMUS, PE; BURGHOUTS, J; VANBOLHUIS, C; STAM, J; SPLINTER, TAW

    1993-01-01

    Eighty-one patients with small cell lung cancer (SCLC) with a survival Of more than 2 years start of chemotherapy were studied. Twenty-six of the 28 patients who died of relapsed SCLC had in relapsed before two years and of the 55 who had not then only two (4%) relapsed subsequently. It is stressed

  12. Human breast microvascular endothelial cells retain phenotypic traits in long-term finite life span culture

    DEFF Research Database (Denmark)

    Sigurdsson, Valgardur; Fridriksdottir, Agla J R; Kjartansson, Jens

    2007-01-01

    uptake of low-density lipoprotein, and had E-selectin induced upon treatment with tumor necrosis factor-alpha. The first signs of senescence in passage 14 were accompanied by gain of trisomy 11. At passage 18 cells showed chromosomal aberrations and growth arrest as revealed by beta...

  13. Long-Term Treatment with Erlotinib for EGFR Wild-Type Non-Small Cell Lung Cancer: A Case Report.

    Science.gov (United States)

    Polychronidou, Genovefa; Papakotoulas, Pavlos

    2013-01-01

    The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) gefitinib and erlotinib are known to have greater efficacy in EGFR mutation-positive non-small cell lung cancer (NSCLC), although erlotinib also has activity in wild-type disease. We report the successful long-term maintenance treatment of a patient with EGFR wild-type NSCLC with gefitinib and later erlotinib. The patient (male; 44 years old; smoker) was diagnosed with EGFR wild-type NSCLC after computer tomography had revealed a mediastinal mass, and histology and mutation testing had identified the tumor as an EGFR wild-type grade 3 adenocarcinoma. The patient received multiple rounds of chemotherapy, followed by gefitinib maintenance (3 years). Later on, he received erlotinib maintenance and developed a persistent rash (grade 1/2) that lasted throughout the treatment. The patient's condition has remained stable on erlotinib for more than 5 years, with no evidence of progression. We describe the patient's disease course and treatment in the context of EGFR TKI therapy and the prognostic factors for long-term clinical outcomes of NSCLC, including the development of erlotinib-induced rash.

  14. Nanodefects of membranes cause destruction of packed red blood cells during long-term storage

    Energy Technology Data Exchange (ETDEWEB)

    Kozlova, Elena, E-mail: waterlake@mail.ru [V.A. Negovsky Scientific Research Institute of General Reanimatology, Moscow (Russian Federation); I.M. Sechenov First Moscow State Medical University, Moscow (Russian Federation); Chernysh, Aleksandr [V.A. Negovsky Scientific Research Institute of General Reanimatology, Moscow (Russian Federation); I.M. Sechenov First Moscow State Medical University, Moscow (Russian Federation); Moroz, Victor; Sergunova, Victoria; Gudkova, Olga; Kuzovlev, Artem [V.A. Negovsky Scientific Research Institute of General Reanimatology, Moscow (Russian Federation)

    2015-10-01

    Packed red blood cells (PRBC) are used for blood transfusion. PRBC were stored for 30 days under 4 °C in hermetic blood bags with CPD anticoagulant-preservative solution. Hematocrit was 50–55%. The distortions of PRBC membranes nanostructure and cells morphology during storage were studied by atomic force microscopy. Basic measurements were performed at the day 2, 6, 9, 16, 23 and 30 of storage and additionally 2–3 days after it. Topological defects occurred on RBC membranes by day 9. They appeared as domains with grain-like structures (“grains”) sized up to 200 nm. These domains were appeared in almost all cells. Later these domains merged and formed large defects on cells. It was the formation of domains with the “grains” which was onset process leading eventually to destruction of PRBC. Possible mechanisms of transformation of PRBC and their membrane are related to the alterations of spectrin cytoskeleton. During this storage period potassium ions and lactat concentrations increased, pH decreased, intracellular concentration of reduced glutathione diminished in the preservative solution. Changes of PRBC morphology were detected within the entire period of PRBC storage. Discocytes predominated at the days 1 and 2. By day 30 PRBC transformed into irreversible echinocytes and spheroechinocytes. Study of defects of membranes nanostructure may form the basis of assessing the quality of the stored PRBC. This method may allow to work out the best recommendations for blood transfusion. - Highlights: • Domains with “grains” are formed on membranes surface on 9–16 days of PRBC storage. • The development of domains is the reason of irreversible changes of PRBC structure. • The origin of domains is the consequence of alterations of spectrin cytoskeleton. • Study of nanostructure may form basis of assessing the quality of the stored PRBC.

  15. Long-term persistence of T cell memory to HBsAg after hepatitis B vaccination

    Institute of Scientific and Technical Information of China (English)

    Ru-Xiang Wang; Greet J. Boland; Jan van Hattum; Gijsbert C. de Gast

    2004-01-01

    AIM: To determine if the T cell memory to HBsAg can persist for a long time after hepatitis B (HB) vaccination.METHODS: Thirty one vaccine recipients who were healthcare workers (18 females and 13 males aged 34-58 years) from Utrecht University Hospital, Netherlands, and had previously Received a standard course of vaccination for hepatitis B were investigated and another 9 unvaccinated healthy volunteers from the same hospital were used as the control. Blood samples were taken just before the experiment to test serum anti-HBs levels and the subjects were classified into different groups according to their serum titers of anti-HBs and vaccination history. Their peripheral blood mononuclear cells (pBrvMc) were isolated from freshly heparinized venous blood and the proliferative response of Tlymphocytes to the recombinant hepatitis B surface antigen(HBsAg) was investigated.RESULTS: Positive serum anti-HBs was found in 61.3%(19/31) vaccine recipients and a significant in vitro lymphocyte proliferative response to recombinant HBsAg was observed in all the vaccinees with positive anti-HBs. Serum anti-HBs level ≤10 IU/L was found in 38.7% (12/31)subjects. In this study, we specially focused on lymphocyte proliferative response to recombinant HBsAg in those vaccine recipients with serum anti-HBsAg less than 10 IU/L.Most of them had Received a standard course of vaccination about 10 years before. T lymphocyte proliferative response was found positive in 7 of the 12 vaccine recipients. These results confirmed that HBsAg-specific memory T cells remained detectable in the circulation for a long time after vaccination, even when serum anti-HBs level had been undetectable.CONCLUSION: The T cell memory to HBsAg can persist for at least 10 years after HB vaccination. Further booster injection is not necessary in healthy responders to HB vaccine.

  16. Genotype instability during long-term subculture of lymphoblastoid cell lines.

    Science.gov (United States)

    Oh, Ji Hee; Kim, Young Jin; Moon, Sanghoon; Nam, Hye-Young; Jeon, Jae-Pil; Lee, Jong Ho; Lee, Jong-Young; Cho, Yoon Shin

    2013-01-01

    Epstein-Barr virus (EBV)-transformed lymphoblastoid cell lines (LCLs) promise to address the challenge posed by the limited availability of primary cells needed as a source of genomic DNA for genetic studies. However, the genetic stability of LCLs following prolonged culture has never been rigorously investigated. To evaluate genotypic errors caused by EBV integration into human chromosomes, we isolated genomic DNA from human peripheral blood mononuclear cells and LCLs collected from 20 individuals and genotyped the DNA samples using the Affymetrix 500K SNP array set. Genotype concordance measurements between two sources of DNA from the same individual indicated that genotypic discordance is negligible in early-passage LCLs (50 passages). Analysis of concordance on a chromosome-by-chromosome basis identified genomic regions with a high frequency of genotypic errors resulting from the loss of heterozygosity observed in late-passage LCLs. Our findings suggest that, although LCLs harvested during early stages of propagation are a reliable source of genomic DNA for genetic studies, investigations that involve genotyping of the entire genome should not use DNA from late-passage LCLs.

  17. Partitioning Heritability of Regulatory and Cell-Type-Specific Variants across 11 Common Diseases

    Science.gov (United States)

    Gusev, Alexander; Lee, S. Hong; Trynka, Gosia; Finucane, Hilary; Vilhjálmsson, Bjarni J.; Xu, Han; Zang, Chongzhi; Ripke, Stephan; Bulik-Sullivan, Brendan; Stahl, Eli; Ripke, Stephan; Neale, Benjamin M.; Corvin, Aiden; Walters, James T.R.; Farh, Kai-How; Holmans, Peter A.; Lee, Phil; Bulik-Sullivan, Brendan; Collier, David A.; Huang, Hailiang; Pers, Tune H.; Agartz, Ingrid; Agerbo, Esben; Albus, Margot; Alexander, Madeline; Amin, Farooq; Bacanu, Silviu A.; Begemann, Martin; Belliveau, Richard A.; Bene, Judit; Bergen, Sarah E.; Bevilacqua, Elizabeth; Bigdeli, Tim B.; Black, Donald W.; Børglum, Anders D.; Bruggeman, Richard; Buccola, Nancy G.; Buckner, Randy L.; Byerley, William; Cahn, Wiepke; Cai, Guiqing; Campion, Dominique; Cantor, Rita M.; Carr, Vaughan J.; Carrera, Noa; Catts, Stanley V.; Chambert, Kimberly D.; Chan, Raymond C.K.; Chen, Ronald Y.L.; Chen, Eric Y.H.; Cheng, Wei; Cheung, Eric F.C.; Chong, Siow Ann; Cloninger, C. Robert; Cohen, David; Cohen, Nadine; Cormican, Paul; Craddock, Nick; Crowley, James J.; Curtis, David; Davidson, Michael; Davis, Kenneth L.; Degenhardt, Franziska; Del Favero, Jurgen; DeLisi, Lynn E.; Demontis, Ditte; Dikeos, Dimitris; Dinan, Timothy; Djurovic, Srdjan; Donohoe, Gary; Drapeau, Elodie; Duan, Jubao; Dudbridge, Frank; Durmishi, Naser; Eichhammer, Peter; Eriksson, Johan; Escott-Price, Valentina; Essioux, Laurent; Fanous, Ayman H.; Farrell, Martilias S.; Frank, Josef; Franke, Lude; Freedman, Robert; Freimer, Nelson B.; Friedl, Marion; Friedman, Joseph I.; Fromer, Menachem; Genovese, Giulio; Georgieva, Lyudmila; Gershon, Elliot S.; Giegling, Ina; Giusti-Rodrguez, Paola; Godard, Stephanie; Goldstein, Jacqueline I.; Golimbet, Vera; Gopal, Srihari; Gratten, Jacob; Grove, Jakob; de Haan, Lieuwe; Hammer, Christian; Hamshere, Marian L.; Hansen, Mark; Hansen, Thomas; Haroutunian, Vahram; Hartmann, Annette M.; Henskens, Frans A.; Herms, Stefan; Hirschhorn, Joel N.; Hoffmann, Per; Hofman, Andrea; Hollegaard, Mads V.; Hougaard, David M.; Ikeda, Masashi; Joa, Inge; Julià, Antonio; Kahn, René S.; Kalaydjieva, Luba; Karachanak-Yankova, Sena; Karjalainen, Juha; Kavanagh, David; Keller, Matthew C.; Kelly, Brian J.; Kennedy, James L.; Khrunin, Andrey; Kim, Yunjung; Klovins, Janis; Knowles, James A.; Konte, Bettina; Kucinskas, Vaidutis; Kucinskiene, Zita Ausrele; Kuzelova-Ptackova, Hana; Kähler, Anna K.; Laurent, Claudine; Keong, Jimmy Lee Chee; Lee, S. Hong; Legge, Sophie E.; Lerer, Bernard; Li, Miaoxin; Li, Tao; Liang, Kung-Yee; Lieberman, Jeffrey; Limborska, Svetlana; Loughland, Carmel M.; Lubinski, Jan; Lnnqvist, Jouko; Macek, Milan; Magnusson, Patrik K.E.; Maher, Brion S.; Maier, Wolfgang; Mallet, Jacques; Marsal, Sara; Mattheisen, Manuel; Mattingsdal, Morten; McCarley, Robert W.; McDonald, Colm; McIntosh, Andrew M.; Meier, Sandra; Meijer, Carin J.; Melegh, Bela; Melle, Ingrid; Mesholam-Gately, Raquelle I.; Metspalu, Andres; Michie, Patricia T.; Milani, Lili; Milanova, Vihra; Mokrab, Younes; Morris, Derek W.; Mors, Ole; Mortensen, Preben B.; Murphy, Kieran C.; Murray, Robin M.; Myin-Germeys, Inez; Mller-Myhsok, Bertram; Nelis, Mari; Nenadic, Igor; Nertney, Deborah A.; Nestadt, Gerald; Nicodemus, Kristin K.; Nikitina-Zake, Liene; Nisenbaum, Laura; Nordin, Annelie; O’Callaghan, Eadbhard; O’Dushlaine, Colm; O’Neill, F. Anthony; Oh, Sang-Yun; Olincy, Ann; Olsen, Line; Van Os, Jim; Pantelis, Christos; Papadimitriou, George N.; Papiol, Sergi; Parkhomenko, Elena; Pato, Michele T.; Paunio, Tiina; Pejovic-Milovancevic, Milica; Perkins, Diana O.; Pietilinen, Olli; Pimm, Jonathan; Pocklington, Andrew J.; Powell, John; Price, Alkes; Pulver, Ann E.; Purcell, Shaun M.; Quested, Digby; Rasmussen, Henrik B.; Reichenberg, Abraham; Reimers, Mark A.; Richards, Alexander L.; Roffman, Joshua L.; Roussos, Panos; Ruderfer, Douglas M.; Salomaa, Veikko; Sanders, Alan R.; Schall, Ulrich; Schubert, Christian R.; Schulze, Thomas G.; Schwab, Sibylle G.; Scolnick, Edward M.; Scott, Rodney J.; Seidman, Larry J.; Shi, Jianxin; Sigurdsson, Engilbert; Silagadze, Teimuraz; Silverman, Jeremy M.; Sim, Kang; Slominsky, Petr; Smoller, Jordan W.; So, Hon-Cheong; Spencer, Chris C.A.; Stahl, Eli A.; Stefansson, Hreinn; Steinberg, Stacy; Stogmann, Elisabeth; Straub, Richard E.; Strengman, Eric; Strohmaier, Jana; Stroup, T. Scott; Subramaniam, Mythily; Suvisaari, Jaana; Svrakic, Dragan M.; Szatkiewicz, Jin P.; Sderman, Erik; Thirumalai, Srinivas; Toncheva, Draga; Tooney, Paul A.; Tosato, Sarah; Veijola, Juha

    2014-01-01

    Regulatory and coding variants are known to be enriched with associations identified by genome-wide association studies (GWASs) of complex disease, but their contributions to trait heritability are currently unknown. We applied variance-component methods to imputed genotype data for 11 common diseases to partition the heritability explained by genotyped SNPs (hg2) across functional categories (while accounting for shared variance due to linkage disequilibrium). Extensive simulations showed that in contrast to current estimates from GWAS summary statistics, the variance-component approach partitions heritability accurately under a wide range of complex-disease architectures. Across the 11 diseases DNaseI hypersensitivity sites (DHSs) from 217 cell types spanned 16% of imputed SNPs (and 24% of genotyped SNPs) but explained an average of 79% (SE = 8%) of hg2 from imputed SNPs (5.1× enrichment; p = 3.7 × 10−17) and 38% (SE = 4%) of hg2 from genotyped SNPs (1.6× enrichment, p = 1.0 × 10−4). Further enrichment was observed at enhancer DHSs and cell-type-specific DHSs. In contrast, coding variants, which span 1% of the genome, explained <10% of hg2 despite having the highest enrichment. We replicated these findings but found no significant contribution from rare coding variants in independent schizophrenia cohorts genotyped on GWAS and exome chips. Our results highlight the value of analyzing components of heritability to unravel the functional architecture of common disease. PMID:25439723

  18. The effect of gallium nitride on long-term culture induced aging of neuritic function in cerebellar granule cells.

    Science.gov (United States)

    Chen, Chi-Ruei; Young, Tai-Horng

    2008-04-01

    Gallium nitride (GaN) has been developed for a variety of microelectronic and optical applications due to its unique electric property and chemical stability. In the present study, n-type and p-type GaN were used as substrates to culture cerebellar granule neurons to examine the effect of GaN on cell response for a long-term culture period. It was found that GaN could rapidly induce cultured neurons to exhibit a high phosphorylated Akt level after 20h of incubation. It was assumed that the anti-apoptotic effect of Akt phosphorylation could be correlated with cell survival, neurite growth and neuronal function for up to 35 days of incubation. Morphological studies showed GaN induced larger neuronal aggregates and neurite fasciculation to exhibit a dense fiber network after 8 days of incubation. Western blot analysis and immunocytochemical characterization showed that GaN still exhibited the expression of neurite growth and function, such as high levels of GAP-43, synapsin I and synaptophysin even after 35 days of incubation. In addition, survival of cerebellar granule neurons on GaN was improved by the analysis of lactate dehydrogenase (LDH) release from damaged cells. These results indicated that neuronal connections were formed on GaN by a gradual process from Akt activation and cell aggregation to develop neurite growth, fasciculation and function. Therefore, GaN offers a good model system to identify a well-characterized pattern of neuronal behavior for a long-term culture period, consistent with the development of a neurochip requiring the integration of biological system and semiconductor material.

  19. Oxide sandwiched metal thin-film electrodes for long-term stable organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, Sylvio; Hermenau, Martin; Meiss, Jan; Mueller-Meskamp, Lars; Leo, Karl [Institut fuer Angewandte Photophysik, Technische Universitaet Dresden, George-Baehr Strasse 1, 01062 Dresden (Germany)

    2012-12-05

    Oxide/silver/oxide multilayers as semitransparent top electrode for small molecule organic solar cells (OSCs) are presented. It is shown that two oxide layers sandwiching a central metal layer greatly improve the stability and lifetime of the organic solar cell. Thermally evaporated MoO{sub 3}, WO{sub 3}, or V{sub 2}O{sub 5} layers are employed as an interlayer for subsequent silver deposition and significantly change the morphology of the ultrathin silver layer, improving charge extraction and electrodes series resistance. The transmittance of the electrode is increased by introducing oxide or oxide and organic multilayers as capping layer, which leads to higher photocurrent generation in the absorber layer. Application of 1 nm MoO{sub 3}/11 nm Ag/10 nm MoO{sub 3}/50 nm Alq{sub 3} multilayer electrodes in OSCs lead to an efficiency of 2.6% for a standard ZnPc:C60 cell, showing superior performance compared to devices with pure silver top contacts. The device lifetime is also strongly increased. MoO{sub 3} layers can saturate and stabilize the inner and outer metal surface, passivating it against most of the degradation mechanisms. With such an oxide/silver/oxide multilayer electrode, the time until the glass encapsulated OSC is degraded to 80% of its starting efficiency is enhanced from 86 h to approximately 4500 h compared to an OSC without an oxide interlayer. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. MURINE HEMATOPOIETIC STEM-CELLS WITH LONG-TERM ENGRAFTMENT AND MARROW REPOPULATING ABILITY ARE MORE RESISTANT TO GAMMA-RADIATION THAN ARE SPLEEN COLONY-FORMING CELLS

    NARCIS (Netherlands)

    PLOEMACHER, RE; VANOS, R; VANBEURDEN, CAJ; DOWN, JD

    1992-01-01

    The radiation sensitivity of various subsets in the haemopoietic stem cell hierarchy was defined using a limiting dilution type long-term bone marrow culture technique that was previously shown to allow quantification of cells with spleen colony-forming potential (day-12 CFU-S) and in vivo marrow re

  1. Long-Term Clinical Responses of Neoadjuvant Dendritic Cell Infusions and Radiation in Soft Tissue Sarcoma

    Directory of Open Access Journals (Sweden)

    Shailaja Raj

    2015-01-01

    Full Text Available Purpose. Patients with large >5 cm, high-grade resectable soft tissue sarcomas (STS have the highest risk of distant metastases. Previously we have shown that dendritic cell (DC based vaccines show consistent immune responses. Methods. This was a Phase I single institution study of neoadjuvant radiation with DC injections on 18 newly diagnosed high-risk STS patients. Neoadjuvant treatment consisted of 50 Gy of external beam radiation (EBRT, given in 25 fractions delivered five days/week, combined with four intratumoral injections of DCs followed by complete resection. The primary endpoint was to establish the immunological response to neoadjuvant therapy and obtain data on its clinical safety and outcomes. Results. There were no unexpected toxicities or serious adverse events. Twelve out of 18 (67% patients were alive, of which an encouraging 11/18 (61% were alive with no systemic recurrence over a period of 2–8 years. Favorable immunological responses correlated with clinical responses in some cases. Conclusions. This study provides clinical support to using dendritic cell injections along with radiation in sarcomas, which when used optimally in combination can help clinical outcomes in soft tissue sarcoma. Study registration number is NCT00365872.

  2. Long-term kinetics of T cell production in HIV-infected subjects treated with highly active antiretroviral therapy

    Science.gov (United States)

    Fleury, S.; Rizzardi, G. P.; Chapuis, A.; Tambussi, G.; Knabenhans, C.; Simeoni, E.; Meuwly, J.-Y.; Corpataux, J.-M.; Lazzarin, A.; Miedema, F.; Pantaleo, G.

    2000-01-01

    The long-term kinetics of T cell production following highly active antiretroviral therapy (HAART) were investigated in blood and lymph node in a group of HIV-infected subjects at early stage of established infection and prospectively studied for 72 wk. Before HAART, CD4 and CD8 T cell turnover was increased. However, the total number of proliferating CD4+ T lymphocytes, i.e., CD4+Ki67+ T lymphocytes, was not significantly different in HIV-infected (n = 73) and HIV-negative (n = 15) subjects, whereas proliferating CD8+Ki67+ T lymphocytes were significantly higher in HIV-infected subjects. After HAART, the total body number of proliferating CD4+Ki67+ T lymphocytes increased over time and was associated with an increase of both naive and memory CD4+ T cells. The maximal increase (2-fold) was observed at week 36, whereas at week 72 the number of proliferating CD4+ T cells dropped to baseline levels, i.e., before HAART. The kinetics of the fraction of proliferating CD4 and CD8 T cells were significantly correlated with the changes in the total body number of these T cell subsets. These results demonstrate a direct relationship between ex vivo measures of T cell production and quantitative changes in total body T lymphocyte populations. This study provides advances in the delineation of the kinetics of T cell production in HIV infection in the presence and/or in the absence of HAART. PMID:10805798

  3. The squamous cell carcinoma case that received long-term COPD treatment

    Directory of Open Access Journals (Sweden)

    Figen Türk

    2013-03-01

    Full Text Available Primary tracheal tumors are rare, and composed of variousbenign and malignant pathologies. They often cansimulate obstructive pulmonary diseases, such as asthmaand chronic obstructive pulmonary disease, and patientswith malign tracheal tumors sometimes undergolong-term treatment for such diseases, without any improvement.Therefore, these tumors should be includedin the differential diagnosis in patients presenting tracheobronchialtree obstruction. We present a squamous cellendotracheal carcinoma case that had received treatmentwith a diagnosis of chronic obstructive pulmonarydisease for a long time. The recent increase in symptomshad been thought to be due to an exacerbation of the disorderbut the bronchoscopy performed after 3 months ofno improvement revealed an endotracheal mass lesion.Full recovery was obtained with bronchoscopic resectionof the tumor.Key words: Endotracheal tumor, chronic obstructive pulmonary disease, squamous cell carcinoma

  4. Long-term survival after allogeneic haematopoietic cell transplantation for AML in remission

    DEFF Research Database (Denmark)

    Sengeløv, H; Gerds, Thomas Alexander; Brændstrup, P;

    2013-01-01

    We report the results of non-myeloablative (NM) and myeloablative (MA) conditioning for haematopoietic cell transplantation in 207 consecutive AML patients at a single institution. A total of 122 patients were transplanted in first CR (CR1) and 67 in second CR (CR2). MA conditioning was given to 60...... patients in CR1 and 50 in CR2. NM conditioning was given to 62 patients in CR1 and 17 patients in CR2. MA patients in CR1 experienced more acute GVHD than NM patients, 60.5% versus 22.9%, but the 5-year post transplant cumulative TRM was not different. Relapse incidence at 5 years in CR1 patients was 23...

  5. Predicting the ageing and the long-term durability of organic polymer solar cells

    Science.gov (United States)

    Gardette, Jean-Luc; Rivaton, Agnès; Thérias, Sandrine; Chambon, Sylvain; Manceau, Matthieu; Gaume, Julien

    2010-06-01

    Organic solar cells based on conductive polymers exhibit a unique combination of properties which include low cost, flexibility and large surface processability. Organic photovoltaic could then prevail for some applications alongside silicon, such as nomad or indoor. To achieve this objective, the sustainability of the initial properties in conditions of use of the cell is required, since it could be a lock to the emergence of these devices in the market. The polymers used in solar cells are indeed known to exhibit low resistance to environmental constraints, in particular to the combined action of sunlight, oxygen and water. We present recent results on both the accelerated artificial and the natural outdoors ageing of MDMO-PPV (Poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-Phenylenevinylene) and P3HT/PCBM blends poly(3-hexylthiophene) (P3HT) (methano-fullerene[6,6]-phenyl C61-butyric acid methyl ester) ([60] PCBM). The influence of various parameters such as the temperature and the presence of oxygen were studied. The modifications of the chemical structure of both the components of the blend were monitored by spectroscopic analysis (infrared, UV-visible), the morphology of the blends was analysed by AFM and XRD and the photovoltaic performances all along the exposure were recorded. Two important results have been pointed out: on one hand, the Achilles heel of the chemical structure of MDMO-PPV and P3HT under the impact of light has been evidenced. On the other hand, it has been shown that P3HT:PCBM blends are much more stable than MDMO:PCBM blends whatever the conditions of ageing are. Results show that a convenient encapsulation can ensure a promising lifetime of P3HT/PCBM blends in real conditions of use. This work also focuses on this last point and proposes to study and try to understand the behavior of the materials used in the active layer when submitted to photoaging and thermal aging in the absence of oxygen. To fulfil very good encapsulation, glass

  6. Stable Marking and Transgene Expression Without Progression to Monoclonality in Canine Long-Term Hematopoietic Repopulating Cells Transduced with Lentiviral Vectors

    OpenAIRE

    Enssle, Joerg; Trobridge, Grant D.; Keyser, Kirsten A.; Ironside, Christina; Beard, Brian C; Kiem, Hans-Peter

    2010-01-01

    Lentiviral gene transfer vectors have a number of potential advantages over gammaretroviral vectors including more efficient transduction of nondividing cells, a more favorable integration site profile, and the ability to accommodate large transgenes. Here, we present long-term follow-up data of animals that received lentivirus-transduced CD34-enriched cells. Six long-term surviving dogs were available for analysis. Transgene expression was analyzed from at least 12 months to more than 5 year...

  7. Facial stimulation induces long-term depression at cerebellar molecular layer interneuron–Purkinje cell synapses in vivo in mice

    Directory of Open Access Journals (Sweden)

    De-Lai eQiu

    2015-06-01

    Full Text Available Cerebellar long-term synaptic plasticity has been proposed to provide a cellular mechanism for motor learning. Numerous studies have demonstrated the induction and mechanisms of synaptic plasticity at parallel fiber–Purkinje cell (PF–PC, parallel fiber–molecular layer interneurons (PF–MLI and mossy fiber–granule cell (MF–GC synapses, but no study has investigated sensory stimulation-evoked synaptic plasticity at MLI–PC synapses in the cerebellar cortex of living animals. We studied the expression and mechanism of MLI–PC GABAergic synaptic plasticity induced by a train of facial stimulation in urethane-anesthetized mice by cell-attached recordings and pharmacological methods. We found that 1 Hz, but not a 2 Hz or 4 Hz, facial stimulation induced a long-term depression (LTD of GABAergic transmission at MLI–PC synapses, which was accompanied with a decrease in the stimulation-evoked pause of spike firing in PCs, but did not induce a significant change in the properties of the sensory-evoked spike events of MLIs. The MLI–PC GABAergic LTD could be prevented by blocking cannabinoid type 1 (CB1 receptors, and could be pharmacologically induced by a CB1 receptor agonist. Additionally, 1 Hz facial stimulation delivered in the presence of a metabotropic glutamate receptor 1 (mGluR1 antagonist, JNJ16259685, still induced the MLI–PC GABAergic LTD, whereas blocking N-methyl-D-aspartate (NMDA receptors during 1 Hz facial stimulation abolished the expression of MLI–PC GABAergic LTD. These results indicate that sensory stimulation can induce an endocannabinoid (eCB-dependent LTD of GABAergic transmission at MLI–PC synapses via activation of NMDA receptors in cerebellar cortical Crus II in vivo in mice. Our results suggest that the sensory stimulation-evoked MLI–PC GABAergic synaptic plasticity may play a critical role in motor learning in animals.

  8. Analysis of the Long-term Effect of Intraoperative Radiotherapy (IORT) for Non-Small Cell Lung Carcinoma (NSCLC)

    Institute of Scientific and Technical Information of China (English)

    Guxia Zhou; Tiwen Zeng; Lianyuan Wang; Lin Ma

    2007-01-01

    OBJECTIVE To analyze the long-term effects of treatment with an operation+postoperative irradiation (A group) and an operation+intraoperative radiotherapy+postoperative irradiation (B group) in non-small cell lung cancer patients.METHODS Through a prospective randomized clinical trial,a total of 154 patients with non-small cell lung carcinoma were divided into two groups of 77 cases.Among the 154 cases,there were 134 squamous carcinomas,17 adenocarcinomas and 3 adeno-squamous carcinomas.TNM staging:there were 17 in Stage Ⅰ.76 in Stage Ⅱ and 61 in Stage Ⅲ.Adosage of 15~25 Gy IORT,energy 9~16 MeV electrons,was delivered to the fumors.The doses given were 40~60 Gy postoperation.RESULTS The local control rates in A and B groups were 49.4% and 62.3% respectively (P<0.05).The survivals at 3,5 and 7 years for group A were 40.3%,27.3%,and 5.2% and for group B 44.2%,28.6% and 6.5% (P>0.05).There were 16 deaths from radiotherapy complications,with 2 cases in group A and 14 in group B.CONCLUSION IORT+postoperative irradiation can enhance the local control rate of non-small cell lung cancer patients and reduce the recurrentrates.but it can not improve long-term survival.KEYWORDS:lung neoplasms/surgery,lung neoplasms/radiotherapy,radiotherapy intraoperative,prognosis.

  9. Cell-type specific requirements for thiol/disulfide exchange during HIV-1 entry and infection

    Directory of Open Access Journals (Sweden)

    Stantchev Tzanko S

    2012-12-01

    Full Text Available Abstract Background The role of disulfide bond remodeling in HIV-1 infection is well described, but the process still remains incompletely characterized. At present, the data have been predominantly obtained using established cell lines and/or CXCR4-tropic laboratory-adapted virus strains. There is also ambiguity about which disulfide isomerases/ reductases play a major role in HIV-1 entry, as protein disulfide isomerase (PDI and/or thioredoxin (Trx have emerged as the two enzymes most often implicated in this process. Results We have extended our previous findings and those of others by focusing on CCR5-using HIV-1 strains and their natural targets - primary human macrophages and CD4+ T lymphocytes. We found that the nonspecific thiol/disulfide exchange inhibitor, 5,5'-dithiobis(2-nitrobenzoic acid (DTNB, significantly reduced HIV-1 entry and infection in cell lines, human monocyte-derived macrophages (MDM, and also phytohemagglutinin (PHA-stimulated peripheral blood mononuclear cells (PBMC. Subsequent studies were performed using specific anti-PDI or Trx monoclonal antibodies (mAb in HIV-1 envelope pseudotyped and wild type (wt virus infection systems. Although human donor-to-donor variability was observed as expected, Trx appeared to play a greater role than PDI in HIV-1 infection of MDM. In contrast, PDI, but not Trx, was predominantly involved in HIV-1 entry and infection of the CD4+/CCR5+ T cell line, PM-1, and PHA-stimulated primary human T lymphocytes. Intriguingly, both PDI and Trx were present on the surface of MDM, PM-1 and PHA-stimulated CD4+ T cells. However, considerably lower levels of Trx were detected on freshly isolated CD4+ lymphocytes, compared to PHA-stimulated cells. Conclusions Our findings clearly demonstrate the role of thiol/disulfide exchange in HIV-1 entry in primary T lymphocytes and MDM. They also establish a cell-type specificity regarding the involvement of particular disulfide isomerases/reductases in this

  10. Spontaneous and electrically-evoked catecholamine secretion from long-term cultures of bovine adrenal chromaffin cells.

    Science.gov (United States)

    Noga, Brian R; Pinzon, Alberto

    2013-09-05

    Catecholamine release was measured from bovine adrenal medullary chromaffin cell (CC) cultures maintained over a period of three months. Cells were plated over simple biocompatible cell platforms with electrical stimulation capability and at specified times transferred to an acrylic superfusion chamber designed to allow controlled flow of superfusate over the culture. Catecholamine release was measured from the superfusates using fast cyclic voltammetry before, during and after electrical stimulation of the cells. Immunocytochemical staining of CC cultures revealed that they were composed of epinephrine (EP) and/or norepinephrine (NE) type cells. Both spontaneous and evoked-release of catecholamines from CCs were observed throughout the testing period. EP predominated during spontaneous release, whereas NE was more prevalent during electrically-evoked release. Electrical stimulation for 20 s, increased total catecholamine release by 60-130% (measured over a period of 500 s) compared to that observed for an equivalent 20 s period of spontaneous release. Stimulus intensity was correlated with the amount of evoked release, up to a plateau which was observed near the highest intensities. Shorter intervals between stimulation trials did not significantly affect the initial amount of release, and the amount of evoked release was relatively stable over time and did not decrease significantly with age of the culture. The present study demonstrates long-term survival of CC cultures in vitro and describes a technique useful for rapid assessment of cell functionality and release properties of cultured monoaminergic cell types that later can be transplanted for neurotransmitter replacement following injury or disease.

  11. Characterization of long-term extension of isolated cell walls from growing cucumber hypocotyls

    Science.gov (United States)

    Cosgrove, D. J.

    1989-01-01

    Walls from frozen-thawed cucumber (Cucumis sativus L.) hypocotyls extend for many hours when placed in tension under acidic conditions. This study examined whether such "creep" is a purely physical process dependent on wall viscoelasticity alone or whether enzymatic activities are needed to maintain wall extension. Chemical denaturants inhibited wall creep, some acting reversibly and others irreversibly. Brief (15 s) boiling in water irreversibly inhibited creep, as did pre-incubation with proteases. Creep exhibited a high Q10 (3.8) between 20 degrees and 30 degrees C, with slow inactivation at higher temperatures, whereas the viscous flow of pectin solutions exhibited a much lower Q10 (1.35). On the basis of its temperature sensitivity, involvement of pectic gel-sol transitions was judged to be of little importance in creep. Pre-incubation of walls in neutral pH irreversibly inactivated their ability to creep, with a half-time of about 40 min. At 1 mM, Cu2+, Hg2+ and Al3+ were strongly inhibitory whereas most other cations, including Ca2+, had little effect. Sulfhydryl-reducing agents strongly stimulated creep, apparently by stabilizing wall enzyme(s). The physical effects of these treatments on polymer interactions were examined by Instron and stress-relaxation analyses. Some treatments, such as pH and Cu2+, had significant effects on wall viscoelasticity, but others had little or no apparent effect, thus implicating an enzymatic creep mechanism. The results indicate that creep depends on relatively rugged enzymes that are firmly attached to or entangled in the wall. The sensitivity of creep to SH-reducing agents indicates that thiol reduction of wall enzymes might provide a control mechanism for endogenous cell growth.

  12. Long-term cathode performance and the microbial communities that develop in microbial fuel cells fed different fermentation endproducts

    KAUST Repository

    Kiely, Patrick D.

    2011-01-01

    To better understand how cathode performance and substrates affected communities that evolved in these reactors over long periods of time, microbial fuel cells were operated for more than 1year with individual endproducts of lignocellulose fermentation (acetic acid, formic acid, lactic acid, succinic acid, or ethanol). Large variations in reactor performance were primarily due to the specific substrates, with power densities ranging from 835±21 to 62±1mW/m3. Cathodes performance degraded over time, as shown by an increase in power of up to 26% when the cathode biofilm was removed, and 118% using new cathodes. Communities that developed on the anodes included exoelectrogenic families, such as Rhodobacteraceae, Geobacteraceae, and Peptococcaceae, with the Deltaproteobacteria dominating most reactors. Pelobacter propionicus was the predominant member in reactors fed acetic acid, and it was abundant in several other MFCs. These results provide valuable insights into the effects of long-term MFC operation on reactor performance. © 2010 Elsevier Ltd.

  13. Maternal deprivation has sexually dimorphic long-term effects on hypothalamic cell-turnover, body weight and circulating hormone levels.

    Science.gov (United States)

    Viveros, María-Paz; Llorente, Ricardo; Díaz, Francisca; Romero-Zerbo, Silvana Y; Bermudez-Silva, Francisco J; Rodríguez de Fonseca, Fernando; Argente, Jesús; Chowen, Julie A

    2010-11-01

    Maternal deprivation (MD) has numerous outcomes, including modulation of neuroendocrine functions. We previously reported that circulating leptin levels are reduced and hypothalamic cell-turnover is affected during MD, with some of these effects being sexually dimorphic. As leptin modulates the development of hypothalamic circuits involved in metabolic control, we asked whether MD has long-term consequences on body weight, leptin levels and the expression of neuropeptides involved in metabolism. Rats were separated from their mother for 24h starting on postnatal day (PND) 9 and sacrificed at PNDs 13, 35 and 75. In both sexes MD reduced body weight, but only until puberty, while leptin levels were unchanged at PND 35 and significantly reduced at PND 75. Adiponectin levels were also reduced at PND 75 in females, while testosterone levels were reduced in males. At PND 13, MD modulated cell-turnover markers in the hypothalamus of males, but not females and increased nestin, a marker of immature neurons, in both sexes, with males having higher levels than females and a significantly greater rise in response to MD. There was no effect of MD on hypothalamic mRNA levels of the leptin receptor or metabolic neuropeptides or the mRNA levels of leptin and adiponectin in adipose tissue. Thus, MD has long-term effects on the levels of circulating hormones that are not correlated with changes in body weight. Furthermore, these endocrine outcomes are different between males and females, which could be due to the fact that MD may have sexually dimorphic effects on hypothalamic development.

  14. Uptake of silica covered Quantum Dots into living cells: Long term vitality and morphology study on hyaluronic acid biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    D' Amico, Michele [Dip. Biomedico di Medicina Interna e Specialistica, Universitá degli Studi di Palermo, Piazza delle Cliniche, 2, 90127 Palermo (Italy); Dip. di Fisica e Chimica, Universitá degli Studi di Palermo, Viale delle Scienze, Ed. 18, 90128 Palermo (Italy); Fiorica, Calogero, E-mail: calogero.fiorica@unipa.it [Dip. di Scienze e Tecnologie Molecolari e Biomolecolari, Sezione di Chimica e Tecnologie Farmaceutiche, Universitá degli Studi di Palermo, Via Archirafi, 28, 90136 Palermo (Italy); Palumbo, Fabio Salvatore [Dip. di Scienze e Tecnologie Molecolari e Biomolecolari, Sezione di Chimica e Tecnologie Farmaceutiche, Universitá degli Studi di Palermo, Via Archirafi, 28, 90136 Palermo (Italy); Militello, Valeria; Leone, Maurizio [Dip. di Fisica e Chimica, Universitá degli Studi di Palermo, Viale delle Scienze, Ed. 18, 90128 Palermo (Italy); Dubertret, Benoit [Laboratoire de Physique et d’Etude des Matèriaux, ESPCI-ParisTech, PSL Research University, Sorbonne Universitè UPMC Univ. Paris 06, CNRS, 10 rue Vauquelin, 75005 Paris (France); Pitarresi, Giovanna; Giammona, Gaetano [Dip. di Scienze e Tecnologie Molecolari e Biomolecolari, Sezione di Chimica e Tecnologie Farmaceutiche, Universitá degli Studi di Palermo, Via Archirafi, 28, 90136 Palermo (Italy)

    2016-10-01

    Quantum Dots (QDs) are promising very bright and stable fluorescent probes for optical studies in the biological field but water solubility and possible metal bio-contamination need to be addressed. In this work, a simple silica-QD hybrid system is prepared and the uptake in bovine chondrocytes living cells without any functionalization of the external protective silica shield is demonstrated. Moreover, long term treated cells vitality (up to 14 days) and the transfer of silica-QDs to the next cell generations are here reported. Confocal fluorescence microscopy was also used to determine the morphology of the so labelled cells and the relative silica-QDs distribution. Finally, we employ silica-QD stained chondrocytes to characterize, as proof of concept, hydrogels obtained from an amphiphilic derivative of hyaluronic acid (HA-EDA-C {sub 18}) functionalized with different amounts of the RGD peptide. - Highlights: • Non functionalized silica-quantum dots fluorescent nanoparticles uptake is observed. • Morphology studies of such cells could be done by confocal fluorescence microscopy. • Labelled chondrocytes are viable until at least 14 days. • RGD functionalized Hyaluronic Acid hydrogels are studied as cell scaffolds. • Chondrocyte are promptly attached on RGD-functionalized hydrogels.

  15. Prion protein is expressed on long-term repopulating hematopoietic stem cells and is important for their self-renewal.

    Science.gov (United States)

    Zhang, Cheng Cheng; Steele, Andrew D; Lindquist, Susan; Lodish, Harvey F

    2006-02-14

    Although the wild-type prion protein (PrP) is abundant and widely expressed in various types of tissues and cells, its physiological function(s) remain unknown, and PrP knockout mice do not exhibit overt and undisputed phenotypes. Here we showed that PrP is expressed on the surface of several bone marrow cell populations successively enriched in long-term (LT) hematopoietic stem cells (HSCs) using flow cytometry analysis. Affinity purification of the PrP-positive and -negative fractions from these populations, followed by competitive bone marrow reconstitution assays, shows that all LT HSCs express PrP. HSCs from PrP-null bone marrow exhibited impaired self-renewal in serial transplantation of lethally irradiated mouse recipients both in the presence and absence of competitors. When treated with a cell cycle-specific myelotoxic agent, the animals reconstituted with PrP-null HSCs exhibit increased sensitivity to hematopoietic cell depletion. Ectopic expression of PrP in PrP-null bone marrow cells by retroviral infection rescued the defective hematopoietic engraftment during serial transplantation. Therefore, PrP is a marker for HSCs and supports their self-renewal.

  16. Pairing of pre- and postsynaptic activities in cerebellar Purkinje cells induces long-term changes in synaptic efficacy in vitro.

    Science.gov (United States)

    Crepel, F; Jaillard, D

    1991-01-01

    1. An in vitro slice preparation of rat cerebellar cortex was used to analyse long-lasting modifications of synaptic transmission at parallel fibre (PF)-Purkinje cell (PC) synapses. These use-dependent changes were induced by pairing PF-mediated EPSPs evoked at low frequency (1 Hz) with different levels of membrane polarization (or bioelectrical activities) of PCs for 15 min. 2. Experiments were performed on forty-eight PCs recorded intracellularly in a conventional perfused chamber, and in fifty other cells maintained in a static chamber either in the presence (n = 21) or in the absence (n = 29) of 400 nM-phorbol 12,13-dibutyrate (PDBu). 3. In these three experimental conditions, PF-mediated EPSPs were always measured on PCs maintained at a holding potential of -75 mV, and further hyperpolarized by constant hyperpolarizing pulses. This allowed us both to test the input resistance of PCs and to avoid their firing during PF-mediated EPSPs. 4. In all cells retained for the present study, latencies of PF-mediated EPSPs evoked at 0.2 Hz were stable during the pre-pairing period, and the same was true for their amplitude and time course. 5. In the perfused chamber, pairing of PF-mediated EPSPs with the same hyperpolarization of PCs as that used for measurements of synaptic responses had no effect on these EPSPs in 30% of PCs. It induced long-term depression (LTD) and long-term potentiation (LTP) in 23 and 47% of the tested cells respectively (n = 17). 6. In the perfused chamber, pairing of PF-mediated EPSPs with moderate depolarization of PCs (n = 19) giving rise to a sustained firing of sodium spikes significantly favoured the appearance of LTP as compared to the previous pairing protocol. However, there were still 27 and 15% of cells which showed no modification and LTD respectively. 7. In contrast, pairing of PF-mediated EPSPs with calcium (Ca2+) spikes evoked by strong depolarization of PCs (n = 12) led to LTD of synaptic transmission in nearly half of the tested

  17. Regeneration-associated WNT Signaling Is Activated in Long-term Reconstituting AC133bright Acute Myeloid Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Alessandro Beghini

    2012-12-01

    Full Text Available Acute myeloid leukemia (AML is a genetically heterogeneous clonal disorder characterized by two molecularly distinct self-renewing leukemic stem cell (LSC populations most closely related to normal progenitors and organized as a hierarchy. A requirement for WNT/β-catenin signaling in the pathogenesis of AML has recently been suggested by a mouse model. However, its relationship to a specific molecular function promoting retention of self-renewing leukemia-initiating cells (LICs in human remains elusive. To identify transcriptional programs involved in the maintenance of a self-renewing state in LICs, we performed the expression profiling in normal (n = 10 and leukemic (n = 33 human long-term reconstituting AC133+ cells, which represent an expanded cell population in most AML patients. This study reveals the ligand-dependent WNT pathway activation in AC133bright AML cells and shows a diffuse expression and release of WNT10B, a hematopoietic stem cell regenerative-associated molecule. The establishment of a primary AC133+ AML cell culture (A46 demonstrated that leukemia cells synthesize and secrete WNT ligands, increasing the levels of dephosphorylated β-catenin in vivo. We tested the LSC functional activity in AC133+ cells and found significant levels of engraftment upon transplantation of A46 cells into irradiated Rag2-/-γc-/- mice. Owing to the link between hematopoietic regeneration and developmental signaling, we transplanted A46 cells into developing zebrafish. This system revealed the formation of ectopic structures by activating dorsal organizer markers that act downstream of the WNT pathway. In conclusion, our findings suggest that AC133bright LSCs are promoted by misappropriating homeostatic WNT programs that control hematopoietic regeneration.

  18. Long-term durability of HT-PEM fuel cells based on thermally cross-linked polybenzimidazole

    Science.gov (United States)

    Søndergaard, Tonny; Cleemann, Lars Nilausen; Becker, Hans; Aili, David; Steenberg, Thomas; Hjuler, Hans Aage; Seerup, Larisa; Li, Qingfeng; Jensen, Jens Oluf

    2017-02-01

    Long-term durability of high temperature polymer electrolyte membrane fuel cells based on thermally cross-linked polybenzimidazole membranes was studied and compared with reference membranes based on linear polybenzimidazole. The test was conducted at 160 °C under constant load currents of 200 mA cm-2 for periods of 1000, 4400, and 13,000 h. Extensive beginning-of-life (BoL) and end-of-test (EoT) characterisation was carried out, and disturbance of the steady state operated cells was minimised by limiting in-line diagnostics to the low-invasive technique of electrochemical impedance spectroscopy (EIS). Up until the operating time of 9200 h, the cell equipped with the cross-linked membrane showed an average degradation rate of 0.5 μV h-1, compared to 2.6 μV h-1 for the reference membrane, though parallel tests for a shorter period of time showed deviations, likely due to malfunctioning contact between layers or cell components. For the full test period of 13,000 h, the average voltage decay rate was about 1.4 and 4.6 μV h-1 for cells equipped with cross-linked and linear polybenzimidazole membranes, respectively. EIS and post-test analysis revealed that the cross-linked membrane showed better stability in terms of area specific resistance due to improved acid retention characteristics.

  19. Long-term time series analysis of quantum dot encoded cells by deconvolution of the autofluorescence signal.

    Science.gov (United States)

    Brown, M Rowan; Summers, Huw D; Rees, Paul; Chappell, Sally C; Silvestre, Oscar F; Khan, Imtiaz A; Smith, Paul J; Errington, Rachel J

    2010-10-01

    The monitoring of cells labeled with quantum dot endosome-targeted markers in a highly proliferative population provides a quantitative approach to determine the redistribution of quantum dot signal as cells divide over generations. We demonstrate that the use of time-series flow cytometry in conjunction with a stochastic numerical simulation to provide a means to describe the proliferative features and quantum dot inheritance over multiple generations of a human tumor population. However, the core challenge for long-term tracking where the original quantum dot fluorescence signal over time becomes redistributed across a greater cell number requires accountability of background fluorescence in the simulation. By including an autofluorescence component, we are able to continue even when this signal predominates (i.e., >80% of the total signal) and obtain valid readouts of the proliferative system. We determine the robustness of the technique by tracking a human osteosarcoma cell population over 8 days and discuss the accuracy and certainty of the model parameters obtained. This systems biology approach provides insight into both cell heterogeneity and division dynamics within the population and furthermore informs on the lineage history of its members.

  20. IGF-1-mediated osteoblastic niche expansion enhances long-term hematopoietic stem cell engraftment after murine bone marrow transplantation.

    Science.gov (United States)

    Caselli, Anna; Olson, Timothy S; Otsuru, Satoru; Chen, Xiaohua; Hofmann, Ted J; Nah, Hyun-Duck; Grisendi, Giulia; Paolucci, Paolo; Dominici, Massimo; Horwitz, Edwin M

    2013-10-01

    The efficiency of hematopoietic stem cell (HSC) engraftment after bone marrow (BM) transplantation depends largely on the capacity of the marrow microenvironment to accept the transplanted cells. While radioablation of BM damages osteoblastic stem cell niches, little is known about their restoration and mechanisms governing their receptivity to engraft transplanted HSCs. We previously reported rapid restoration and profound expansion of the marrow endosteal microenvironment in response to marrow radioablation. Here, we show that this reorganization represents proliferation of mature endosteal osteoblasts which seem to arise from a small subset of high-proliferative, relatively radio-resistant endosteal cells. Multiple layers of osteoblasts form along the endosteal surface within 48 hours after total body irradiation, concomitant with a peak in marrow cytokine expression. This niche reorganization fosters homing of the transplanted hematopoietic cells to the host marrow space and engraftment of long-term-HSC. Inhibition of insulin-like growth factor (IGF)-1-receptor tyrosine kinase signaling abrogates endosteal osteoblast proliferation and donor HSC engraftment, suggesting that the cytokine IGF-1 is a crucial mediator of endosteal niche reorganization and consequently donor HSC engraftment. Further understanding of this novel mechanism of IGF-1-dependent osteoblastic niche expansion and HSC engraftment may yield clinical applications for improving engraftment efficiency after clinical HSC transplantation.

  1. Long-term effects of chromatin remodeling and DNA damage in stem cells induced by environmental and dietary agents.

    Science.gov (United States)

    Bariar, Bhawana; Vestal, C Greer; Richardson, Christine

    2013-01-01

    The presence of histones acts as a barrier to protein access; thus chromatin remodeling must occur for essential processes such as transcription and replication. In conjunction with histone modifications, DNA methylation plays critical roles in gene silencing through chromatin remodeling. Chromatin remodeling is also interconnected with the DNA damage response, maintenance of stem cell properties, and cell differentiation programs. Chromatin modifications have increasingly been shown to produce long-lasting alterations in chromatin structure and transcription. Recent studies have shown environmental exposures in utero have the potential to alter normal developmental signaling networks, physiologic responses, and disease susceptibility later in life during a process known as developmental reprogramming. In this review we discuss the long-term impact of exposure to environmental compounds, the chromatin modifications that they induce, and the differentiation and developmental programs of multiple stem and progenitor cell types altered by exposure. The main focus is to highlight agents present in the human lifestyle that have the potential to promote epigenetic changes that impact developmental programs of specific cell types, may promote tumorigenesis through altering epigenetic marks, and may be transgenerational, for example, those able to be transmitted through multiple cell divisions.

  2. The transplantation of human fetal neuroretinal cells in advanced retinitis pigmentosa patients: results of a long-term safety study.

    Science.gov (United States)

    Das, T; del Cerro, M; Jalali, S; Rao, V S; Gullapalli, V K; Little, C; Loreto, D A; Sharma, S; Sreedharan, A; del Cerro, C; Rao, G N

    1999-05-01

    The purpose of this study was to determine the long-term safety of transplanting human fetal neuroretinal cells (14 to 18 week gestational age) into a series of patients with advanced retinitis pigmentosa (RP). After obtaining informed consent, both hosts and mothers of donors were screened for transmissible diseases. Pre- and postoperative clinical exams, visual acuity, electroretinograms, and fluorescein angiograms were performed and visual field testing was attempted in each case. Surgically, an anterior approach through pars plana ciliaris was used. A retinotomy was performed in the paramacular area and a two-function cannula was introduced into the subretinal space to deliver a suspension of donor cells. The cell suspension carried approximately 4000 cells/microl; the volume injected did not exceed 150 microl. The patients were examined for periods ranging from 12 to 40 months posttransplantation. To date, no evidence of inflammation, infection, or overt rejection of the graft was noted in the host eye, neither was any change observed in the contralateral, unoperated eye. In conclusion, neuroretinal cells were injected into the subretinal space of 14 patients with advanced RP with no clinical appearance of detrimental effects at the time of surgery or up to 40 months postinjection except in 1 patient who developed retinal detachment. This sets the stage for a phase II clinical trial to determine the possible beneficial effects of this procedure in patients blinded by degenerative retinal disease.

  3. Establishment of human cell type-specific iPS cells with enhanced chondrogenic potential.

    Science.gov (United States)

    Guzzo, Rosa M; Scanlon, Vanessa; Sanjay, Archana; Xu, Ren-He; Drissi, Hicham

    2014-12-01

    The propensity of induced pluripotent stem (iPS) cells to differentiate into specific lineages may be influenced by a number of factors, including the selection of the somatic cell type used for reprogramming. Herein we report the generation of new iPS cells, which we derived from human articular chondrocytes and from cord blood mononucleocytes via lentiviral-mediated delivery of Oct4, Klf4, Sox2, and cMyc. Molecular, cytochemical, and cytogenic analyses confirmed the acquisition of hallmark features of pluripotency, as well as the retention of normal karyotypes following reprogramming of both the human articular chondrocytes (AC) and the cord blood (CB) cells. In vitro and in vivo functional analyses formally established the pluripotent differentiation capacity of all cell lines. Chondrogenic differentiation assays comparing iPS cells derived from AC, CB, and a well established dermal fibroblast cell line (HDFa-Yk26) identified enhanced proteoglycan-rich matrix formation and cartilage-associated gene expression from AC-derived iPS cells. These findings suggest that the tissue of origin may impact the fate potential of iPS cells for differentiating into specialized cell types, such as chondrocytes. Thus, we generated new cellular tools for the identification of inherent features driving high chondrogenic potential of reprogrammed cells.

  4. Modification of fluorous substrates with oligo(ethylene glycol) via "click" chemistry for long-term resistance of cell adhesion.

    Science.gov (United States)

    Contreras-Caceres, Rafael; Santos, Catherine M; Li, Siheng; Kumar, Amit; Zhu, Zhiling; Kolar, Satya S; Casado-Rodriguez, Miguel A; Huang, Yongkai; McDermott, Alison; Lopez-Romero, Juan Manuel; Cai, Chengzhi

    2015-11-15

    In this work perfluorinated substrates fabricated from SiO2 glass slides are modified with oligo(ethylene glycol) (OEG) units for long-term resistance of cell adhesion purposes, based on fluorous interactions and click chemistry. Specifically, fluorous substrates, prepared by treatment of glass slides with 1H, 1H, 2H, 2H-perfluorodecyltrimethoxysilane (FAS17), were coated with ethynyl-OEG-C8F17, followed by covalent attachment of an azido-OEG via copper-catalyzed azide-alkyne cycloaddition (CuAAC) "click" reaction. We demonstrate that the resultant surface avoid fibrinogen adsorption and resisted cell adhesion for over 14days. X-ray photoemission spectroscopy (XPS) analysis and contact angle goniometry measurements confirm the presence of the OEG molecules on the fluorous substrates. Bright field optical images show total absence of 3T3 fibroblast cells on the OEG modified fluorinated substrate for 1 and 5days, and a remarkably decrease of cell adhesion at 14days.

  5. Improvement of the long term stability in the high temperature solid oxide fuel cell using functional layers

    Energy Technology Data Exchange (ETDEWEB)

    Brueckner, B.; Guenther, C.; Ruckdaeschel, R. [Siemens AG, Erlangen (Germany)] [and others

    1996-12-31

    In the planar Siemens design of the solid oxide fuel cell a metallic interconnector is used to seperate the ceramic single cells. A disadvantage of the metallic bipolar plate which consists of a chromium alloy is the formation of high volatile Cr-oxides and hydroxides at the surface at the cathode side. The reaction products evaporate and are reduced at the cathode/electrolyte interface to form new crystalline phases. This process gives rise to long term cell degradation. Protective coatings might be successful in preventing the chromium oxide evaporation. The required properties of the protective layers are (I) high electrical conductivity, (II) similar coefficients of thermal expansion to the bipolar plate (III), chemical compatibility to the bipolar plate and cathode material, (IV) a low diffusion coefficient of Cr and (V) chemical stability up to 1223K under oxygen atmosphere. Furthermore, during operation at 1223K an electrical contact between the metallic plate and the electrodes has to be maintained. This problem could be solved using ceramic layer between the metallic plate and the single cells.

  6. Variations in gene and protein expression in canine chondrodystrophic nucleus pulposus cells following long-term three-dimensional culture.

    Directory of Open Access Journals (Sweden)

    Munetaka Iwata

    Full Text Available Intervertebral disc (IVD degeneration greatly affects quality of life. The nucleus pulposus (NP of chondrodystrophic dog breeds (CDBs is similar to the human NP, because the cells disappear with age and are replaced by fibrochondrocyte-like cells. However, because IVD develops as early as within the first year of life, we used canines as a model to investigate in vitro the mechanisms underlying IVD degeneration. Specifically, we evaluated the potential of a three-dimensional (3D culture of healthy NP as an in vitro model system to investigate the mechanisms of IVD degeneration. Agarose hydrogels were populated with healthy NP cells from beagles after performing magnetic resonance imaging, and mRNA expression profiles and pericellular extracellular matrix (ECM protein distribution were determined. After 25 days of 3D culture, there was a tendency for redifferentiation into the native NP phenotype, and mRNA levels of Col2A1, COMP, and CK18 were not significantly different from those of freshly isolated cells. Our findings suggest that long-term 3D culture promoted chondrodystrophic NP redifferentiation through reconstruction of the pericellular microenvironment. Further, lipopolysaccharide (LPS induced expression of TNF-α, MMP3, MMP13, VEGF, and PGES mRNA in the 3D cultures, creating a molecular milieu that mimics that of degenerated NP. These results suggest that this in vitro model represents a reliable and cost-effective tool for evaluating new therapies for disc degeneration.

  7. Fluorescent Nanodiamond: A Versatile Tool for Long-Term Cell Tracking, Super-Resolution Imaging, and Nanoscale Temperature Sensing.

    Science.gov (United States)

    Hsiao, Wesley Wei-Wen; Hui, Yuen Yung; Tsai, Pei-Chang; Chang, Huan-Cheng

    2016-03-15

    Fluorescent nanodiamond (FND) has recently played a central role in fueling new discoveries in interdisciplinary fields spanning biology, chemistry, physics, and materials sciences. The nanoparticle is unique in that it contains a high density ensemble of negatively charged nitrogen-vacancy (NV(-)) centers as built-in fluorophores. The center possesses a number of outstanding optical and magnetic properties. First, NV(-) has an absorption maximum at ∼550 nm, and when exposed to green-orange light, it emits bright fluorescence at ∼700 nm with a lifetime of longer than 10 ns. These spectroscopic properties are little affected by surface modification but are distinctly different from those of cell autofluorescence and thus enable background-free imaging of FNDs in tissue sections. Such characteristics together with its excellent biocompatibility render FND ideal for long-term cell tracking applications, particularly in stem cell research. Next, as an artificial atom in the solid state, the NV(-) center is perfectly photostable, without photobleaching and blinking. Therefore, the NV-containing FND is suitable as a contrast agent for super-resolution imaging by stimulated emission depletion (STED). An improvement of the spatial resolution by 20-fold is readily achievable by using a high-power STED laser to deplete the NV(-) fluorescence. Such improvement is crucial in revealing the detailed structures of biological complexes and assemblies, including cellular organelles and subcellular compartments. Further enhancement of the resolution for live cell imaging is possible by manipulating the charge states of the NV centers. As the "brightest" member of the nanocarbon family, FND holds great promise and potential for bioimaging with unprecedented resolution and precision. Lastly, the NV(-) center in diamond is an atom-like quantum system with a total electron spin of 1. The ground states of the spins show a crystal field splitting of 2.87 GHz, separating the ms = 0 and

  8. The proliferative potential of human cardiac stem cells was unaffected after a long-term cryopreservation of tissue blocks

    Science.gov (United States)

    Iguchi, Nobuo; Cho, Yasunori; Inoue, Masaki; Murakami, Tsutomu; Tabata, Minoru; Takanashi, Shuichiro; Tomoike, Hitonobu

    2017-01-01

    Background Human c-kit-positive cardiac stem cells (CSCs) have been used to treat patients suffering from ischemic cardiomyopathy. This study aimed to investigate whether a long-term storage of cardiac tissues would influence the growth potential of the subsequently isolated CSCs. Methods A total of 34 fresh samples were obtained from various cardiac regions [right atrium (RA), left atrium (LA), and/or left ventricle (LV)] of 21 patients. From 12 of these patients, 18 samples kept frozen for ~2 years were employed to prepare and characterize the CSCs. After confirming the specificity of the cell sorting by c-kit immunolabeling, the growth rate (number of doublings per day), BrdU positivity, and colony forming unit (CFU) were measured in each CSC population; the values were compared among distinct cardiac regions as well as between fresh and frozen tissues from which CSCs were derived. Results Among independent measurements indicating growth potential, the growth rate and BrdU positivity remarkably correlated in freshly prepared CSCs. The cells obtained from every examined region displayed a high proliferative capacity with the growth rate of 0.48±0.19 and the BrdU positivity of 15.0%±7.6%. The right atrial CSCs tended to show a greater growth than those in the other two areas. Similarly, the CSCs were isolated from tissue blocks, cryopreserved for ~2 years, and compared with CSCs derived from the fresh specimens of the same patients. Importantly, we were able to obtain and culture CSCs from every frozen material, and their proliferative potential, represented by the growth rate of 0.47±0.22 and the BrdU positivity of 13.7%±7.9%, was not inferior to that of the freshly prepared cells. Conclusions The long-term cryopreservation of cardiac tissues did not affect the growth potential of the derivative CSCs. Our findings should expand the therapeutic applications of these cells over a longer time span. PMID:28251120

  9. Regulatory Domain Selectivity in the Cell-Type Specific PKN-Dependence of Cell Migration

    OpenAIRE

    Sylvie Lachmann; Amy Jevons; Manu De Rycker; Adele Casamassima; Simone Radtke; Alejandra Collazos; Peter J Parker

    2011-01-01

    The mammalian protein kinase N (PKN) family of Serine/Threonine kinases comprises three isoforms, which are targets for Rho family GTPases. Small GTPases are major regulators of the cellular cytoskeleton, generating interest in the role(s) of specific PKN isoforms in processes such as cell migration and invasion. It has been reported that PKN3 is required for prostate tumour cell invasion but not PKN1 or 2. Here we employ a cell model, the 5637 bladder tumour cell line where PKN2 is relativel...

  10. Enhancement of cancer stem-like and epithelial−mesenchymal transdifferentiation property in oral epithelial cells with long-term nicotine exposure: Reversal by targeting SNAIL

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Cheng-Chia [Institute of Oral Science, Chung Shan Medical University, Taichung, Taiwan (China); School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Chang, Yu-Chao, E-mail: cyc@csmu.edu.tw [School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China)

    2013-02-01

    Cigarette smoking is one of the major risk factors in the development and further progression of tumorigenesis, including oral squamous cell carcinoma (OSCC). Recent studies suggest that interplay cancer stem-like cells (CSCs) and epithelial−mesenchymal transdifferentiation (EMT) properties are responsible for the tumor maintenance and metastasis in OSCC. The aim of the present study was to investigate the effects of long-term exposure with nicotine, a major component in cigarette, on CSCs and EMT characteristics. The possible reversal regulators were further explored in nicotine-induced CSCs and EMT properties in human oral epithelial (OE) cells. Long-term exposure with nicotine was demonstrated to up-regulate ALDH1 population in normal gingival and primary OSCC OE cells dose-dependently. Moreover, long-term nicotine treatment was found to enhance the self-renewal sphere-forming ability and stemness gene signatures expression and EMT regulators in OE cells. The migration/cell invasiveness/anchorage independent growth and in vivo tumor growth by nude mice xenotransplantation assay was enhanced in long-term nicotine-stimulated OE cells. Knockdown of Snail in long-term nicotine-treated OE cells was found to reduce their CSCs properties. Therapeutic delivery of Si-Snail significantly blocked the xenograft tumorigenesis of long-term nicotine-treated OSCC cells and largely significantly improved the recipient survival. The present study demonstrated that the enrichment of CSCs coupled EMT property in oral epithelial cells induced by nicotine is critical for the development of OSCC tumorigenesis. Targeting Snail might offer a new strategy for the treatment of OSCC patients with smoking habit. -- Highlights: ► Sustained nicotine treatment induced CSCs properties of oral epithelial cells. ► Long-term nicotine treatment enhance EMT properties of oral epithelial cells. ► Long-term nicotine exposure increased tumorigenicity of oral epithelial cells. ► Si

  11. Construction of cell type-specific logic models of signaling networks using CellNOpt.

    Science.gov (United States)

    Morris, Melody K; Melas, Ioannis; Saez-Rodriguez, Julio

    2013-01-01

    Mathematical models are useful tools for understanding protein signaling networks because they provide an integrated view of pharmacological and toxicological processes at the molecular level. Here we describe an approach previously introduced based on logic modeling to generate cell-specific, mechanistic and predictive models of signal transduction. Models are derived from a network encoding prior knowledge that is trained to signaling data, and can be either binary (based on Boolean logic) or quantitative (using a recently developed formalism, constrained fuzzy logic). The approach is implemented in the freely available tool CellNetOptimizer (CellNOpt). We explain the process CellNOpt uses to train a prior knowledge network to data and illustrate its application with a toy example as well as a realistic case describing signaling networks in the HepG2 liver cancer cell line.

  12. Expansion and long-term culture of human spermatogonial stem cells via the activation of SMAD3 and AKT pathways

    Science.gov (United States)

    Guo, Ying; Liu, Linhong; Sun, Min; Hai, Yanan; Li, Zheng

    2015-01-01

    Spermatogonial stem cells (SSCs) can differentiate into spermatids, reflecting that they could be used in reproductive medicine for treating male infertility. SSCs are able to become embryonic stem-like cells with the potentials of differentiating into numerous cell types of the three germ layers and they can transdifferentiate to mature and functional cells of other lineages, highlighting significant applications of human SSCs for treating human diseases. However, human SSCs are very rare and a long-term culture system of human SSCs has not yet established. This aim of study was to isolate, identify and culture human SSCs for a long period. We isolated GPR125-positive spermatogonia with high purity and viability from adult human testicular tissues utilizing the two-step enzymatic digestion and magnetic-activated cell sorting with antibody against GPR125. These freshly isolated cells expressed a number of markers for SSCs, including GPR125, PLZF, GFRA1, RET, THY1, UCHL1 and MAGEA4, but not the hallmarks for spermatocytes and spermatozoa, e.g. SYCP1, SYCP3, PRM1, and TNP1. The isolated human SSCs could be cultured for two months with a significant increase of cell number with the defined medium containing growth factors and hydrogel. Notably, the expression of numerous SSC markers was maintained during the cultivation of human SSCs. Furthermore, SMAD3 and AKT phosphorylation was enhanced during the culture of human SSCs. Collectively, these results suggest that human SSCs can be cultivated for a long period and expanded whilst retaining an undifferentiated status via the activation of SMAD3 and AKT pathways. This study could provide sufficient cells of SSCs for their basic research and clinic applications in reproductive and regenerative medicine. PMID:26088866

  13. Cell-Type Specific Inactivation of Hippocampal CA1 Disrupts Location-Dependent Object Recognition in the Mouse

    Science.gov (United States)

    Haettig, Jakob; Sun, Yanjun; Wood, Marcelo A.; Xu, Xiangmin

    2013-01-01

    The allatostatin receptor (AlstR)/ligand inactivation system enables potent regulation of neuronal circuit activity. To examine how different cell types participate in memory formation, we have used this system through Cre-directed, cell-type specific expression in mouse hippocampal CA1 in vivo and examined functional effects of inactivation of…

  14. Calcium Dynamics of Ex Vivo Long-Term Cultured CD8+ T Cells Are Regulated by Changes in Redox Metabolism

    Science.gov (United States)

    Gran, Margaret A.; Potnis, Anish; Hill, Abby; Lu, Hang

    2016-01-01

    T cells reach a state of replicative senescence characterized by a decreased ability to proliferate and respond to foreign antigens. Calcium release associated with TCR engagement is widely used as a surrogate measure of T cell response. Using an ex vivo culture model that partially replicates features of organismal aging, we observe that while the amplitude of Ca2+ signaling does not change with time in culture, older T cells exhibit faster Ca2+ rise and a faster decay. Gene expression analysis of Ca2+ channels and pumps expressed in T cells by RT-qPCR identified overexpression of the plasma membrane CRAC channel subunit ORAI1 and PMCA in older T cells. To test whether overexpression of the plasma membrane Ca2+ channel is sufficient to explain the kinetic information, we adapted a previously published computational model by Maurya and Subramaniam to include additional details on the store-operated calcium entry (SOCE) process to recapitulate Ca2+ dynamics after T cell receptor stimulation. Simulations demonstrated that upregulation of ORAI1 and PMCA channels is not sufficient to explain the observed alterations in Ca2+ signaling. Instead, modeling analysis identified kinetic parameters associated with the IP3R and STIM1 channels as potential causes for alterations in Ca2+ dynamics associated with the long term ex vivo culturing protocol. Due to these proteins having known cysteine residues susceptible to oxidation, we subsequently investigated and observed transcriptional remodeling of metabolic enzymes, a shift to more oxidized redox couples, and post-translational thiol oxidation of STIM1. The model-directed findings from this study highlight changes in the cellular redox environment that may ultimately lead to altered T cell calcium dynamics during immunosenescence or organismal aging. PMID:27526200

  15. Regulatory domain selectivity in the cell-type specific PKN-dependence of cell migration.

    Science.gov (United States)

    Lachmann, Sylvie; Jevons, Amy; De Rycker, Manu; Casamassima, Adele; Radtke, Simone; Collazos, Alejandra; Parker, Peter J

    2011-01-01

    The mammalian protein kinase N (PKN) family of Serine/Threonine kinases comprises three isoforms, which are targets for Rho family GTPases. Small GTPases are major regulators of the cellular cytoskeleton, generating interest in the role(s) of specific PKN isoforms in processes such as cell migration and invasion. It has been reported that PKN3 is required for prostate tumour cell invasion but not PKN1 or 2. Here we employ a cell model, the 5637 bladder tumour cell line where PKN2 is relatively highly expressed, to assess the potential redundancy of these isoforms in migratory responses. It is established that PKN2 has a critical role in the migration and invasion of these cells. Furthermore, using a PKN wild-type and chimera rescue strategy, it is shown that PKN isoforms are not simply redundant in supporting migration, but appear to be linked through isoform specific regulatory domain properties to selective upstream signals. It is concluded that intervention in PKNs may need to be directed at multiple isoforms to be effective in different cell types.

  16. Regulatory domain selectivity in the cell-type specific PKN-dependence of cell migration.

    Directory of Open Access Journals (Sweden)

    Sylvie Lachmann

    Full Text Available The mammalian protein kinase N (PKN family of Serine/Threonine kinases comprises three isoforms, which are targets for Rho family GTPases. Small GTPases are major regulators of the cellular cytoskeleton, generating interest in the role(s of specific PKN isoforms in processes such as cell migration and invasion. It has been reported that PKN3 is required for prostate tumour cell invasion but not PKN1 or 2. Here we employ a cell model, the 5637 bladder tumour cell line where PKN2 is relatively highly expressed, to assess the potential redundancy of these isoforms in migratory responses. It is established that PKN2 has a critical role in the migration and invasion of these cells. Furthermore, using a PKN wild-type and chimera rescue strategy, it is shown that PKN isoforms are not simply redundant in supporting migration, but appear to be linked through isoform specific regulatory domain properties to selective upstream signals. It is concluded that intervention in PKNs may need to be directed at multiple isoforms to be effective in different cell types.

  17. Long-term collections

    CERN Multimedia

    Collectes à long terme

    2007-01-01

    The Committee of the Long Term Collections (CLT) asks for your attention for the following message from a young Peruvian scientist, following the earthquake which devastated part of her country a month ago.

  18. Sniff-Like Patterned Input Results in Long-Term Plasticity at the Rat Olfactory Bulb Mitral and Tufted Cell to Granule Cell Synapse

    Science.gov (United States)

    Perez de los Cobos Pallares, Fernando; Loebel, Alex; Lukas, Michael

    2016-01-01

    During odor sensing the activity of principal neurons of the mammalian olfactory bulb, the mitral and tufted cells (MTCs), occurs in repetitive bursts that are synchronized to respiration, reminiscent of hippocampal theta-gamma coupling. Axonless granule cells (GCs) mediate self- and lateral inhibitory interactions between the excitatory MTCs via reciprocal dendrodendritic synapses. We have explored long-term plasticity at this synapse by using a theta burst stimulation (TBS) protocol and variations thereof. GCs were excited via glomerular stimulation in acute brain slices. We find that TBS induces exclusively long-term depression in the majority of experiments, whereas single bursts (“single-sniff paradigm”) can elicit both long-term potentiation and depression. Statistical analysis predicts that the mechanism underlying this bidirectional plasticity involves the proportional addition or removal of presynaptic release sites. Gamma stimulation with the same number of APs as in TBS was less efficient in inducing plasticity. Both TBS- and “single-sniff paradigm”-induced plasticity depend on NMDA receptor activation. Since the onset of plasticity is very rapid and requires little extra activity, we propose that these forms of plasticity might play a role already during an ongoing search for odor sources. Our results imply that components of both short-term and long-term olfactory memory may be encoded at this synapse. PMID:27747107

  19. Sniff-Like Patterned Input Results in Long-Term Plasticity at the Rat Olfactory Bulb Mitral and Tufted Cell to Granule Cell Synapse

    Directory of Open Access Journals (Sweden)

    Mahua Chatterjee

    2016-01-01

    Full Text Available During odor sensing the activity of principal neurons of the mammalian olfactory bulb, the mitral and tufted cells (MTCs, occurs in repetitive bursts that are synchronized to respiration, reminiscent of hippocampal theta-gamma coupling. Axonless granule cells (GCs mediate self- and lateral inhibitory interactions between the excitatory MTCs via reciprocal dendrodendritic synapses. We have explored long-term plasticity at this synapse by using a theta burst stimulation (TBS protocol and variations thereof. GCs were excited via glomerular stimulation in acute brain slices. We find that TBS induces exclusively long-term depression in the majority of experiments, whereas single bursts (“single-sniff paradigm” can elicit both long-term potentiation and depression. Statistical analysis predicts that the mechanism underlying this bidirectional plasticity involves the proportional addition or removal of presynaptic release sites. Gamma stimulation with the same number of APs as in TBS was less efficient in inducing plasticity. Both TBS- and “single-sniff paradigm”-induced plasticity depend on NMDA receptor activation. Since the onset of plasticity is very rapid and requires little extra activity, we propose that these forms of plasticity might play a role already during an ongoing search for odor sources. Our results imply that components of both short-term and long-term olfactory memory may be encoded at this synapse.

  20. Analysis of long-term performance and microbial community structure in bio-cathode microbial desalination cells.

    Science.gov (United States)

    Zhang, Huichao; Wen, Qinxue; An, Zhongyi; Chen, Zhiqiang; Nan, Jun

    2016-03-01

    A microbial desalination cell (MDC) could desalinate salt water without energy consumption and simultaneously generate bioenergy. Compared with an abiotic cathode MDC, an aerobic bio-cathode MDC is more sustainable and is less expensive to operate. In this study, the long-term operation (5500 h) performance of a bio-cathode MDC was investigated in which the power density, Coulombic efficiency, and salt removal rate were decreased by 71, 44, and 27 %, respectively. The primary reason for the system performance decrease was biofouling on the membranes, which increased internal resistance and reduced the ionic transfer and energy conversion efficiency. Changing membranes was an effective method to recover the MDC performance. The microbial community diversity in the MDC anode was low compared with that of the reported microbial fuel cell (MFC), while the abundance of Proteobacteria was 30 % higher. The content of Planctomycetes in the cathode biofilm sample was much higher than that in biofouling on the cation exchange membrane (CEM), indicating that Planctomycetes were relevant to cathode oxygen reduction.

  1. Effects of inhaled anesthetic isoflurane on long-term potentiation of CA3 pyramidal cell afferents in vivo

    Directory of Open Access Journals (Sweden)

    Ballesteros KA

    2012-11-01

    Full Text Available Kristen A Ballesteros,1 Angela Sikorski,2 James E Orfila,3 Joe L Martinez Jr41Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA; 2Texas A&M University Texarkana, Texarkana, TX, USA; 3University of Colorado in Denver, Denver, CO, USA; 4University of Illinois in Chicago, Chicago, IL, USAAbstract: Isoflurane is a preferred anesthetic, due to its properties that allow a precise concentration to be delivered continually during in vivo experimentation. The major mechanism of action of isoflurane is modulation of the γ-amino butyric acid (GABAA receptor-chloride channel, mediating inhibitory synaptic transmission. Animal studies have shown that isoflurane does not cause cell death, but it does inhibit cell growth and causes long-term hippocampal learning deficits. As there are no studies characterizing the effects of isoflurane on electrophysiological aspects of long-term potentiation (LTP in the hippocampus, it is important to determine whether isoflurane alters the characteristic responses of hippocampal afferents to cornu ammonis region 3 (CA3. We investigated the effects of isoflurane on adult male rats during in vivo induction of LTP, using the mossy fiber pathway, the lateral perforant pathway, the medial perforant pathway, and the commissural CA3 (cCA3 to CA3, with intracranial administration of Ringer’s solution, naloxone, RS-aminoindan-1, 5-dicarboxylic acid (AIDA, or 3-[(R-2-carboxypiperazin-4-yl]-propo-2-enyl-1-phosphonic acid (CPP. Then, we compared these responses to published electrophysiological data, using sodium pentobarbital as an anesthetic, under similar experimental conditions. Our results showed that LTP was exhibited in animals anesthetized with isoflurane under vehicle conditions. With the exception of AIDA in the lateral perforant pathway, the defining characteristics of the four pathways appeared to remain intact, except for the observation that LTP was markedly reduced in animals

  2. A long-term analysis of Pt counter electrodes for Dye-sensitized Solar Cells exploiting a microfluidic housing system

    Energy Technology Data Exchange (ETDEWEB)

    Sacco, Adriano, E-mail: adriano.sacco@iit.it [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Pugliese, Diego; Lamberti, Andrea [Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Castellino, Micaela; Chiodoni, Angelica [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Virga, Alessandro [Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Bianco, Stefano [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2015-07-01

    The study of the degradation process occurring in Dye-sensitized Solar Cells (DSCs) is still a hot topic, in view of the final industrialization and application of this class of devices. Currently the long-term analysis of DSCs is carried out on the entire devices, while the monitoring of cell components cannot be performed in situ directly on the materials, but only through indirect methods. In this paper we report on the analysis of two different kinds of Pt counter electrodes through direct measurements performed under real operating conditions, thanks to the use of a home-made microfluidic housing system, which allows the opening and the investigation of the cell components. The counter electrode samples were studied through X-Ray Photoelectron Spectroscopy, Field Emission Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, UV–visible Spectroscopy and Electrochemical Impedance Spectroscopy for a period longer than 1 year. The results showed that the performances of both classes of Pt counter electrodes remained stable for all the investigation period, despite some slight variation of the morphology. DSCs fabricated employing aged counter electrodes exhibited the same photovoltaic performance behavior of reference cells using fresh-produced counter electrodes, thus demonstrating that both class of materials do not undergo degradation during normal operating conditions. - Highlights: • The analysis of Pt counter electrodes for Dye-sensitized Solar Cells was carried out. • Two families of counter electrodes were studied for a period longer than 1 year. • The analyzed samples were investigated in real operating condition. • A small detachment of the Pt clusters in the thermal samples was observed. • The charge transfer properties remained unchanged for all the investigation period.

  3. Loading of red blood cells with an analyte-sensitive dye for development of a long-term monitoring technique

    Science.gov (United States)

    Ritter, Sarah C.; Meissner, Kenith E.

    2012-03-01

    Measurement of blood analytes, such as pH and glucose, provide crucial information about a patient's health. Some such analytes, such as glucose in the case of diabetes, require long-term or near-continuous monitoring for proper disease management. However, current monitoring techniques are far from ideal: multiple-per-day finger stick tests are inconvenient and painful for the patient; implantable sensors have short functional life spans (i.e., 3-7 days). Red blood cells serve as an attractive alternative for carriers of analyte sensors. Once reintroduced to the blood stream, these carriers may continue to live for the remainder of their life span (120 days for humans). They are also biodegradable and biocompatible, thereby eliminating the immune system response common for many implanted devices. The proposed carrier system takes advantage of the ability of the red blood cells to swell in response to a decrease in the osmolarity of the extracellular solution. Just before the membranes lyse, they develop small pores on the scale of tens of nanometers. Analyte-sensitive dyes in the extracellular solution may then diffuse into the perforated red blood cells and become entrapped upon restoration of physiological temperature and osmolarity. Because the membranes contain various analyte transporters, intracellular analyte levels rapidly equilibrate to those of the extracellular solution. A fluorescent dye has been loaded inside of red blood cells using a preswelling technique. Alterations in preparation parameters have been shown to affect characteristics of the resulting dye-loaded red blood cells (e.g., intensity of fluorescence).

  4. Long-term potentiation promotes proliferation/survival and neuronal differentiation of neural stem/progenitor cells.

    Directory of Open Access Journals (Sweden)

    Taesup Cho

    Full Text Available Neural stem cell (NSC replacement therapy is considered a promising cell replacement therapy for various neurodegenerative diseases. However, the low rate of NSC survival and neurogenesis currently limits its clinical potential. Here, we examined if hippocampal long-term potentiation (LTP, one of the most well characterized forms of synaptic plasticity, promotes neurogenesis by facilitating proliferation/survival and neuronal differentiation of NSCs. We found that the induction of hippocampal LTP significantly facilitates proliferation/survival and neuronal differentiation of both endogenous neural progenitor cells (NPCs and exogenously transplanted NSCs in the hippocampus in rats. These effects were eliminated by preventing LTP induction by pharmacological blockade of the N-methyl-D-aspartate glutamate receptor (NMDAR via systemic application of the receptor antagonist, 3-[(R-2-carboxypiperazin-4-yl]-propyl-1-phosphonic acid (CPP. Moreover, using a NPC-neuron co-culture system, we were able to demonstrate that the LTP-promoted NPC neurogenesis is at least in part mediated by a LTP-increased neuronal release of brain-derived neurotrophic factor (BDNF and its consequent activation of tropomysosin receptor kinase B (TrkB receptors on NSCs. Our results indicate that LTP promotes the neurogenesis of both endogenous and exogenously transplanted NSCs in the brain. The study suggests that pre-conditioning of the host brain receiving area with a LTP-inducing deep brain stimulation protocol prior to NSC transplantation may increase the likelihood of success of using NSC transplantation as an effective cell therapy for various neurodegenerative diseases.

  5. Encapsulated living choroid plexus cells: potential long-term treatments for central nervous system disease and trauma

    Science.gov (United States)

    Skinner, S. J. M.; Geaney, M. S.; Lin, H.; Muzina, M.; Anal, A. K.; Elliott, R. B.; Tan, P. L. J.

    2009-12-01

    . Previously reported evidence demonstrated that CP cells support the survival and differentiation of neuronal cells in vitro and effectively treat acute brain injury and disease in rodents and non-human primates in vivo. The accumulated preclinical data together with the long-term survival of implanted encapsulated cells in vivo provide a sound base for the investigation of these treatments for chronic inherited and established neurodegenerative conditions.

  6. Development and Long-Term Stability of a Novel Microbial Fuel Cell BOD Sensor with MnO2 Catalyst

    Science.gov (United States)

    Kharkwal, Shailesh; Tan, Yi Chao; Lu, Min; Ng, How Yong

    2017-01-01

    A novel microbial fuel cell (MFC)-based biosensor was designed for continuous monitoring of biochemical oxygen demand (BOD) in real wastewater. To lower the material cost, manganese dioxide (MnO2) was tested as an innovative cathode catalyst for oxygen reduction in a single chamber air-cathode MFC, and two different crystalline structures obtained during synthesis of MnO2 (namely β- and γ-MnO2) were compared. The BOD sensor was studied in a comprehensive way, using both sodium acetate solution and real domestic wastewater (DWW). The optimal performance of the sensor was obtained with a β-MnO2 catalyst, with R2 values of 0.99 and 0.98 using sodium acetate solution and DWW, respectively. The BOD values predicted by the β-MnO2 biosensor for DWW were in agreement with the BOD5 values, determined according to standard methods, with slight variations in the range from 3% to 12%. Finally, the long-term stability of the BOD biosensor was evaluated over 1.5 years. To the best of our knowledge, this is the first report of an MFC BOD sensor using an MnO2 catalyst at the cathode; the feasibility of using a low-cost catalyst in an MFC for online measurement of BOD in real wastewater broadens the scope of applications for such devices. PMID:28134838

  7. Development and Long-Term Stability of a Novel Microbial Fuel Cell BOD Sensor with MnO₂ Catalyst.

    Science.gov (United States)

    Kharkwal, Shailesh; Tan, Yi Chao; Lu, Min; Ng, How Yong

    2017-01-28

    A novel microbial fuel cell (MFC)-based biosensor was designed for continuous monitoring of biochemical oxygen demand (BOD) in real wastewater. To lower the material cost, manganese dioxide (MnO₂) was tested as an innovative cathode catalyst for oxygen reduction in a single chamber air-cathode MFC, and two different crystalline structures obtained during synthesis of MnO₂ (namely β- and γ-MnO₂) were compared. The BOD sensor was studied in a comprehensive way, using both sodium acetate solution and real domestic wastewater (DWW). The optimal performance of the sensor was obtained with a β-MnO₂ catalyst, with R² values of 0.99 and 0.98 using sodium acetate solution and DWW, respectively. The BOD values predicted by the β-MnO₂ biosensor for DWW were in agreement with the BOD₅ values, determined according to standard methods, with slight variations in the range from 3% to 12%. Finally, the long-term stability of the BOD biosensor was evaluated over 1.5 years. To the best of our knowledge, this is the first report of an MFC BOD sensor using an MnO₂ catalyst at the cathode; the feasibility of using a low-cost catalyst in an MFC for online measurement of BOD in real wastewater broadens the scope of applications for such devices.

  8. Creep Behavior of Glass/Ceramic Sealant and its Effect on Long-term Performance of Solid Oxide Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenning N.; Sun, Xin; Koeppel, Brian J.; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2009-10-14

    The creep behavior of glass or glass-ceramic sealant materials used in solid oxide fuel cells (SOFCs) becomes relevant under SOFC operating temperatures. In this paper, the creep of glass-ceramic sealants was experimentally examined, and a standard linear solid model was applied to capture the creep behavior of glass ceramic sealant materials developed for planar SOFCs at high temperatures. The parameters of this model were determined based on the creep test results. Furthermore, the creep model was incorporated into finite-element software programs SOFC-MP and Mentat-FC developed at Pacific Northwest National Laboratory for multi-physics simulation of SOFCs. The effect of creep of glass ceramic sealant materials on the long-term performance of SOFC stacks was investigated by studying the stability of the flow channels and the stress redistribution in the glass seal and on the various interfaces of the glass seal with other layers. Finite element analyses were performed to quantify the stresses in various parts. The stresses in glass seals were released because of creep behavior during operations.

  9. Long-Term Performance of Chemically and Physically Modified Activated Carbons in Air Cathodes of Microbial Fuel Cells

    KAUST Repository

    Zhang, Xiaoyuan

    2014-07-31

    © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Activated carbon (AC) is a low-cost and effective catalyst for oxygen reduction in air cathodes of microbial fuel cells (MFCs), but its performance must be maintained over time. AC was modified by three methods: 1)pyrolysis with iron ethylenediaminetetraacetic acid (AC-Fe), 2)heat treatment (AC-heat), and 3)mixing with carbon black (AC-CB). The maximum power densities after one month with these AC cathodes were 35% higher with AC-Fe (1410±50mW m-2) and AC-heat (1400±20mW m-2), and 16% higher with AC-CB (1210±30mW m-2) than for plain AC (1040±20mW m-2), versus 1270±50mW m-2 for a Pt control. After 16months, the Pt cathodes produced only 250±10mW m-2. However, the AC-heat and AC-CB cathodes still produced 960-970mW m-2, whereas plain AC produced 860±60mW m-2. The performance of the AC cathodes was restored to >85% of the initial maximum power densities by cleaning with a weak acid solution. Based on cost considerations among the AC materials, AC-CB appears to be the best choice for long-term performance.

  10. Long term high temperature oxidation characteristics of La and Cu alloyed ferritic stainless steels for solid oxide fuel cell interconnects

    Science.gov (United States)

    Swaminathan, Srinivasan; Lee, Young-Su; Kim, Dong-Ik

    2016-09-01

    To ensure the best performance of solid oxide fuel cell metallic interconnects, the Fe-22 wt.% Cr ferritic stainless steels with various La contents (0.006-0.6 wt.%) and Cu addition (1.57 wt.%), are developed. Long-term isothermal oxidation behavior of these steels is investigated in air at 800 °C, for 2700 h. Chemistry, morphology, and microstructure of the thermally grown oxide scale are examined using XPS, SEM-EDX, and XRD techniques. Broadly, all the steels show a double layer consisting of an inner Cr2O3 and outer (Mn, Cr)3O4. Distinctly, in the La-added steels, binary oxides of Cr, Mn and Ti are found at the oxide scale surface together with (Mn, Cr)3O4. Furthermore, all La-varied steels possess the metallic Fe protrusions along with discontinuous (Mn, Cr)3O4 spinel zones at the oxide scale/metal interface and isolated precipitates of Ti-oxides in the underlying matrix. Increase of La content to 0.6 wt.% is detrimental to the oxidation resistance. For the Cu-added steel, Cu is found to segregate strongly at the oxide scale/metal interface which inhibits the ingress of oxygen thereby suppressing the subscale formation of (Mn, Cr)3O4. Thus, Cu addition to the Fe-22Cr ferritic stainless steels benefits the oxidation resistance.

  11. Autologous hematopoietic cell transplantation following high-dose immunosuppressive therapy for advanced multiple sclerosis: long-term results.

    Science.gov (United States)

    Bowen, J D; Kraft, G H; Wundes, A; Guan, Q; Maravilla, K R; Gooley, T A; McSweeney, P A; Pavletic, S Z; Openshaw, H; Storb, R; Wener, M; McLaughlin, B A; Henstorf, G R; Nash, R A

    2012-07-01

    The purpose of the study was to determine the long-term safety and effectiveness of high-dose immunosuppressive therapy (HDIT) followed by autologous hematopoietic cell transplantation (AHCT) in advanced multiple sclerosis (MS). TBI, CY and antithymocyte globulin were followed by transplantation of autologous, CD34-selected PBSCs. Neurological examinations, brain magnetic resonance imaging and cerebrospinal fluid (CSF) for oligoclonal bands (OCB) were serially evaluated. Patients (n=26, mean Expanded Disability Status Scale (EDSS)=7.0, 17 secondary progressive, 8 primary progressive, 1 relapsing/remitting) were followed for a median of 48 months after HDIT followed by AHCT. The 72-month probability of worsening ≥1.0 EDSS point was 0.52 (95% confidence interval, 0.30-0.75). Five patients had an EDSS at baseline of ≤6.0; four of them had not failed treatment at last study visit. OCB in CSF persisted with minor changes in the banding pattern. Four new or enhancing lesions were seen on MRI, all within 13 months of treatment. In this population with high baseline EDSS, a significant proportion of patients with advanced MS remained stable for as long as 7 years after transplant. Non-inflammatory events may have contributed to neurological worsening after treatment. HDIT/AHCT may be more effective in patients with less advanced relapsing/remitting MS.

  12. Long-term Disease Free and Successful Pregnancy in a Woman with Gonadal Dysgenesis and Malignant Germ Cell Tumor

    Directory of Open Access Journals (Sweden)

    Azamsadat Mousavi

    2012-06-01

    Full Text Available Objective: To report a case of long-term disease free and successful pregnancy after fertility sparing staging surgery with adjuvant chemotherapy in a 46,Xy gonadal dysgenetic with malignant germ cell tumor.Materials and methods: A case report from a university hospital about a 19-year-old female with 46,XY karyotype ( Swyer syndrome. The patient underwent bilateral gonadectomy and staging with uterus preservation. Six course adjuvant chemotherapy with VBP (Vinblastin, Bleomycin, Cisplatin was given. The case got pregnant through IVF- embryo donation. Disease free period and successful pregnancy is reported.Results: After treatment the patient is free of the disease after 11 years follow-up. She underwent in vitro fertilization treatment with oocyte donation and gave birth to a healthy ch.Conclusion: Improved multimodality treatment, allowance for consideration of fertility options for some women with gynecologic cancers. Since major concern in women with XY gonadal dysgenesis is ovarian malignancy, even with stage II dysgerminoma hysterectomy may not be required in some cases considering the opportunity for childbearing with the use of embryo transfer.

  13. A review on durability issues and restoration techniques in long-term operations of direct methanol fuel cells

    Science.gov (United States)

    Mehmood, Asad; Scibioh, M. Aulice; Prabhuram, Joghee; An, Myung-Gi; Ha, Heung Yong

    2015-11-01

    Direct methanol fuel cells (DMFCs) remain attractive among advanced energy conversion technologies due to their high energy density and simple system configuration. Although they made an early market entry but failed to attain a large-scale commercialization mainly because of their inferior performance sustainment in lifetime operations and high production costs. There have been lots of R&D efforts made to upgrade the long-term durability of DMFCs to a commercially acceptable standard. These rigorous efforts have been useful in gaining insights about various degradation mechanisms and their origins. This review first briefly describes the recent progress in lifetime enhancement of DMFC technology reported by various groups in academia and industry. Then, it is followed by comprehensive discussions on the major performance degradation routes and associated physico-chemical origins, and influence of operational parameters, together with the methods which have been employed to alleviate and restore the performance losses. Finally, a brief summary of the presented literature survey is provided in conjunction with some possible future research directions.

  14. Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells

    KAUST Repository

    Zhang, Fang

    2011-08-01

    Activated carbon (AC) air-cathodes are inexpensive and useful alternatives to Pt-catalyzed electrodes in microbial fuel cells (MFCs), but information is needed on their long-term stability for oxygen reduction. AC cathodes were constructed with diffusion layers (DLs) with two different porosities (30% and 70%) to evaluate the effects of increased oxygen transfer on power. The 70% DL cathode initially produced a maximum power density of 1214±123mW/m 2 (cathode projected surface area; 35±4W/m 3 based on liquid volume), but it decreased by 40% after 1 year to 734±18mW/m 2. The 30% DL cathode initially produced less power than the 70% DL cathode, but it only decreased by 22% after 1 year (from 1014±2mW/m 2 to 789±68mW/m 2). Electrochemical tests were used to examine the reasons for the degraded performance. Diffusion resistance in the cathode was found to be the primary component of the internal resistance, and it increased over time. Replacing the cathode after 1 year completely restored the original power densities. These results suggest that the degradation in cathode performance was due to clogging of the AC micropores. These findings show that AC is a cost-effective material for oxygen reduction that can still produce ~750mW/m 2 after 1 year. © 2011 Elsevier B.V.

  15. Long-term B cell depletion in murine lupus eliminates autoantibody-secreting cells and is associated with alterations in the kidney plasma cell niche.

    Science.gov (United States)

    Wang, Wensheng; Rangel-Moreno, Javier; Owen, Teresa; Barnard, Jennifer; Nevarez, Sarah; Ichikawa, H Travis; Anolik, Jennifer H

    2014-04-01

    Autoantibodies to dsDNA, produced by autoreactive plasma cells (PCs), are a hallmark of systemic lupus erythematosus and play a key role in disease pathogenesis. Recent data suggest that autoreactive PCs accumulate not only in lymphoid tissues, but also in the inflamed kidney in lupus nephritis. We hypothesized that the variable efficacy of anti-CD20 (rituximab)-mediated B cell depletion in systemic lupus erythematosus may be related to the absence of an effect on autoreactive PCs in the kidney. In this article, we report that an enrichment of autoreactive dsDNA Ab-secreting cells (ASCs) in the kidney of lupus-prone mice (up to 40% of the ASCs) coincided with a progressive increase in splenic germinal centers and PCs, and an increase in renal expression for PC survival factors (BAFF, a proliferation-inducing ligand, and IL-6) and PC attracting chemokines (CXCL12). Short-term treatment with anti-CD20 (4 wk) neither decreased anti-dsDNA nor IgG ASCs in different anatomical locations. However, long-term treatment (12 wk) significantly reduced both IgG- and dsDNA-specific ASCs. In addition, long-term treatment substantially decreased splenic germinal center and PC generation, and unexpectedly reduced the expression for PC survival factors in the kidney. These results suggest that prolonged B cell depletion may alter the PC survival niche in the kidney, regulating the accumulation and maintenance of autoreactive PCs.

  16. Fibroblast growth factor-1 and-2 preserve long-term repopulating ability of hematopoietic stem cells in serum-free cultures

    NARCIS (Netherlands)

    Yeoh, Joyce S. G.; van Os, Ronald; Weersing, Ellen; Ausema, Albertina; Dontje, Bert; Vellenga, Edo; de Haan, Gerald

    2006-01-01

    In this study, we demonstrate that extended culture of unfractionated mouse bone marrow (BM) cells, in serum-free medium, supplemented only with fibroblast growth factor (FGF)-1, FGF-2, or FGF-1 + 2 preserves long-term repopulating hematopoietic stem cells (HSCs). Using competitive repopulation assa

  17. Matched unrelated donor allogeneic transplantation provides comparable long-term outcome to HLA-identical sibling transplantation in relapsed diffuse large B-cell lymphoma

    NARCIS (Netherlands)

    Avivi, I.; Canals, C.; Vernant, J.P.; Wulf, G.; Nagler, A.; Hermine, O.; Petersen, E.; Yakoub-Agha, I.; Craddock, C.; Schattenberg, A.V.; Niederwieser, D.; Thomson, K.; Blaise, D.; Attal, M.; Pfreundschuh, M.; Passweg, J.; Russell, N.; Dreger, P.; Sureda, A.

    2014-01-01

    The objective of this retrospective analysis was to compare outcomes of patients with diffuse large B-cell lymphoma (DLBCL) who received either a matched sibling (sib) or an unrelated donor (URD) allogeneic hematopoietic cell transplantation (allo-HCT). Long-term outcome of 172 DLBCL patients receiv

  18. Coculture of autologous limbal and conjunctival epithelial cells to treat severe ocular surface disorders: Long-term survival analysis

    Directory of Open Access Journals (Sweden)

    Sandhya V Subramaniam

    2013-01-01

    Full Text Available Background: Cultivated limbal epithelium for reconstruction of corneal surface is a well-established procedure; however, it is not adequate for damage which also extensively involves the conjunctiva. In severe cases of ocular surface damage that warrant additional conjunctival transplantation apart from cultivated limbal stem cell transplantation, we describe the long-term survival of a novel method of cocultivating autologous limbal and conjunctival epithelium on a single substrate. Materials and Methods: Forty eyes of 39 patients with severe limbal stem cell deficiency and conjunctival scarring or symblepharon underwent transplantation of autologous cocultivated epithelium on human amniotic membrane. A ring barrier was used to segregate the central limbal and peripheral conjunctival epithelia in vitro. Patients were followed up at regular intervals to assess stability of the ocular surface, defined by absence of conjunctivalization into the central 4 mm of the cornea and absence of diffuse fluorescein staining. Penetrating keratoplasty (PKP was subsequently performed, where indicated, in patients with surface stability. Results: The cumulative survival probability was 60% at 1 year and 45% at 4 years by Kaplan-Meier analysis (mean follow-up duration: 33 ± 29 months, range: 1-87 months. Best-corrected visual acuity improved to greater than 20/200 in 38% eyes at the last follow-up, compared with 5% eyes before surgery. Immunohistochemistry in five of the corneal buttons excised for PKP showed an epithelial phenotype similar to cornea in all five. Conclusions: Synchronous use of cultured limbal and conjunctival epithelium offers a feasible alternative and a simpler one-step surgical approach to treat severe ocular surface disorders involving limbus and conjunctiva.

  19. Long-term survival of human neural stem cells in the ischemic rat brain upon transient immunosuppression.

    Directory of Open Access Journals (Sweden)

    Laura Rota Nodari

    Full Text Available Understanding the physiology of human neural stem cells (hNSCs in the context of cell therapy for neurodegenerative disorders is of paramount importance, yet large-scale studies are hampered by the slow-expansion rate of these cells. To overcome this issue, we previously established immortal, non-transformed, telencephalic-diencephalic hNSCs (IhNSCs from the fetal brain. Here, we investigated the fate of these IhNSC's immediate progeny (i.e. neural progenitors; IhNSC-Ps upon unilateral implantation into the corpus callosum or the hippocampal fissure of adult rat brain, 3 days after global ischemic injury. One month after grafting, approximately one fifth of the IhNSC-Ps had survived and migrated through the corpus callosum, into the cortex or throughout the dentate gyrus of the hippocampus. By the fourth month, they had reached the ipsilateral subventricular zone, CA1-3 hippocampal layers and the controlateral hemisphere. Notably, these results could be accomplished using transient immunosuppression, i.e administering cyclosporine for 15 days following the ischemic event. Furthermore, a concomitant reduction of reactive microglia (Iba1+ cells and of glial, GFAP+ cells was also observed in the ipsilateral hemisphere as compared to the controlateral one. IhNSC-Ps were not tumorigenic and, upon in vivo engraftment, underwent differentiation into GFAP+ astrocytes, and β-tubulinIII+ or MAP2+ neurons, which displayed GABAergic and GLUTAmatergic markers. Electron microscopy analysis pointed to the formation of mature synaptic contacts between host and donor-derived neurons, showing the full maturation of the IhNSC-P-derived neurons and their likely functional integration into the host tissue. Thus, IhNSC-Ps possess long-term survival and engraftment capacity upon transplantation into the globally injured ischemic brain, into which they can integrate and mature into neurons, even under mild, transient immunosuppressive conditions. Most notably

  20. Efficient long-term survival of cell grafts after myocardial infarction with thick viable cardiac tissue entirely from pluripotent stem cells.

    Science.gov (United States)

    Matsuo, Takehiko; Masumoto, Hidetoshi; Tajima, Shuhei; Ikuno, Takeshi; Katayama, Shiori; Minakata, Kenji; Ikeda, Tadashi; Yamamizu, Kohei; Tabata, Yasuhiko; Sakata, Ryuzo; Yamashita, Jun K

    2015-11-20

    Poor engraftment of cells after transplantation to the heart is a common and unresolved problem in the cardiac cell therapies. We previously generated cardiovascular cell sheets entirely from pluripotent stem cells with cardiomyocytes, endothelial cells and vascular mural cells. Though sheet transplantation showed a better engraftment and improved cardiac function after myocardial infarction, stacking limitation (up to 3 sheets) by hypoxia hampered larger structure formation and long-term survival of the grafts. Here we report an efficient method to overcome the stacking limitation. Insertion of gelatin hydrogel microspheres (GHMs) between each cardiovascular cell sheet broke the viable limitation via appropriate spacing and fluid impregnation with GHMs. Fifteen sheets with GHMs (15-GHM construct; >1 mm thickness) were stacked within several hours and viable after 1 week in vitro. Transplantation of 5-GHM constructs (≈2 × 10(6) of total cells) to a rat myocardial infarction model showed rapid and sustained functional improvements. The grafts were efficiently engrafted as multiple layered cardiovascular cells accompanied by functional capillary networks. Large engrafted cardiac tissues (0.8 mm thickness with 40 cell layers) successfully survived 3 months after TX. We developed an efficient method to generate thicker viable tissue structures and achieve long-term survival of the cell graft to the heart.

  1. Breast Implant–Associated Anaplastic Large-Cell Lymphoma: Long-Term Follow-Up of 60 Patients

    Science.gov (United States)

    Miranda, Roberto N.; Aladily, Tariq N.; Prince, H. Miles; Kanagal-Shamanna, Rashmi; de Jong, Daphne; Fayad, Luis E.; Amin, Mitual B.; Haideri, Nisreen; Bhagat, Govind; Brooks, Glen S.; Shifrin, David A.; O'Malley, Dennis P.; Cheah, Chan Y.; Bacchi, Carlos E.; Gualco, Gabriela; Li, Shiyong; Keech, John A.; Hochberg, Ephram P.; Carty, Matthew J.; Hanson, Summer E.; Mustafa, Eid; Sanchez, Steven; Manning, John T.; Xu-Monette, Zijun Y.; Miranda, Alonso R.; Fox, Patricia; Bassett, Roland L.; Castillo, Jorge J.; Beltran, Brady E.; de Boer, Jan Paul; Chakhachiro, Zaher; Ye, Dongjiu; Clark, Douglas; Young, Ken H.; Medeiros, L. Jeffrey

    2014-01-01

    Purpose Breast implant–associated anaplastic large-cell lymphoma (ALCL) is a recently described clinicopathologic entity that usually presents as an effusion-associated fibrous capsule surrounding an implant. Less frequently, it presents as a mass. The natural history of this disease and long-term outcomes are unknown. Patients and Methods We reviewed the literature for all published cases of breast implant–associated ALCL from 1997 to December 2012 and contacted corresponding authors to update clinical follow-up. Results The median overall survival (OS) for 60 patients was 12 years (median follow-up, 2 years; range, 0-14 years). Capsulectomy and implant removal was performed on 56 of 60 patients (93%). Therapeutic data were available for 55 patients: 39 patients (78%) received systemic chemotherapy, and of the 16 patients (28%) who did not receive chemotherapy, 12 patients opted for watchful waiting and four patients received radiation therapy alone. Thirty-nine (93%) of 42 patients with disease confined by the fibrous capsule achieved complete remission, compared with complete remission in 13 (72%) of 18 patients with a tumor mass. Patients with a breast mass had worse OS and progression-free survival (PFS; P = .052 and P = .03, respectively). The OS or PFS were similar between patients who received and did not receive chemotherapy (P = .44 and P = .28, respectively). Conclusion Most patients with breast implant–associated ALCL who had disease confined within the fibrous capsule achieved complete remission. Proper management for these patients may be limited to capsulectomy and implant removal. Patients who present with a mass have a more aggressive clinical course that may be fatal, justifying cytotoxic chemotherapy in addition to removal of implants. PMID:24323027

  2. Long-Term Collections

    CERN Multimedia

    Comité des collectes à long terme

    2011-01-01

    It is the time of the year when our fireman colleagues go around the laboratory for their traditional calendars sale. A part of the money of the sales will be donated in favour of the long-term collections. We hope that you will welcome them warmly.

  3. Input- and Cell-Type-Specific Endocannabinoid-Dependent LTD in the Striatum

    Directory of Open Access Journals (Sweden)

    Yu-Wei Wu

    2015-01-01

    Full Text Available Changes in basal ganglia plasticity at the corticostriatal and thalamostriatal levels are required for motor learning. Endocannabinoid-dependent long-term depression (eCB-LTD is known to be a dominant form of synaptic plasticity expressed at these glutamatergic inputs; however, whether eCB-LTD can be induced at all inputs on all striatal neurons is still debatable. Using region-specific Cre mouse lines combined with optogenetic techniques, we directly investigated and distinguished between corticostriatal and thalamostriatal projections. We found that eCB-LTD was successfully induced at corticostriatal synapses, independent of postsynaptic striatal spiny projection neuron (SPN subtype. Conversely, eCB-LTD was only nominally present at thalamostriatal synapses. This dichotomy was attributable to the minimal expression of cannabinoid type 1 (CB1 receptors on thalamostriatal terminals. Furthermore, coactivation of dopamine receptors on SPNs during LTD induction re-established SPN-subtype-dependent eCB-LTD. Altogether, our findings lay the groundwork for understanding corticostriatal and thalamostriatal synaptic plasticity and for striatal eCB-LTD in motor learning.

  4. Chromosomal instability and telomere shortening in long-term culture of hematopoietic stem cells: insights from a cell culture model of RPS14 haploinsufficiency.

    Science.gov (United States)

    Thomay, K; Schienke, A; Vajen, B; Modlich, U; Schambach, A; Hofmann, W; Schlegelberger, B; Göhring, G

    2014-01-01

    The fate of cultivated primary hematopoietic stem cells (HSCs) with respect to genetic instability and telomere attrition has not yet been described in great detail. Thus, knowledge of the genetic constitution of HSCs is important when interpreting results of HSCs in culture. While establishing a cell culture model for myelodysplastic syndrome with a deletion in 5q by performing RPS14 knockdown, we found surprising data that may be of importance for any CD34+ cell culture experiments. We performed cytogenetic analyses and telomere length measurement on transduced CD34+ cells and untransduced control cells to observe the effects of long-term culturing. Initially, CD34+ cells had a normal median telomere length of about 12 kb and showed no signs of chromosomal instability. During follow-up, the median telomere length seemed to decrease and, simultaneously, increased chromosomal instability could be observed - in modified and control cells. One culture showed a clonal monosomy 7 - independent of prior RPS14 knockdown. During further culturing, it seemed that the telomeres re-elongated, and chromosomes stabilized, while TERT expression was not elevated. In summary, irrespective of our results of RPS14 knockdown in the long-term culture of CD34+ cells, it becomes clear that cell culture artefacts inducing telomere shortening and chromosomal instability have to be taken into account and regular cytogenetic analyses should always be performed.

  5. Older patients with inoperable non-small cell lung cancer. Long-term survival after concurrent chemoradiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Semrau, Sabine; Fietkau, Rainer [Friedrich-Alexander-University Erlangen-Nuernberg, Department of Radiation Oncology, Erlangen (Germany); Zettl, Heike [Rostock Cancer Registry University of Rostock, Rostock (Germany); Hildebrandt, Guido [University of Rostock, Department of Radiation Therapy, Rostock (Germany); Klautke, Gunther [Klinikum Chemnitz, Department of Radiation Therapy, Chemnitz (Germany)

    2014-12-15

    Considering the various comorbidities associated with aging, the feasibility and usefulness of concurrent chemoradiotherapy (CRT) in older patients with inoperable non-small cell lung cancer (NSCLC) is a controversial issue. Here, we compared the feasibility of CRT and the effects of various comorbidities on the prognosis of a minimally selected population of inoperable NSCLC patients aged 60-77 years. The study comprised 161 patients with inoperable NSCLC who received CRT with a target radiation dose greater than 60 Gy and platinum-based chemotherapy from 1998 to 2007. The total population included 69 patients aged 60-69 years and 53 aged 70-77 years. These two age cohorts were included in the study with a follow-up of a median 14.5 months. The two groups showed no differences in long-term survival, as reflected by the 5-year survival rates of 13.0 ± 4.1 % (60- to 69-year-olds) and 14.4 ± 4.9 % (70- to 77-year-olds). During the treatment phase, the groups were comparable in terms of toxicity and the feasibility of chemotherapy. Compared to patients in their 60s, the septuagenarians had more pulmonary comorbidities (p = 0.02), diabetes mellitus (p = 0.04), cardiac comorbidities (p = 0.08), and previous cancer disease (p = 0.08) that exerted a negative effect on survival. In patients without comorbidities, there were no differences between the age groups. Age is not a contraindication for concurrent CRT per se, because elderly patients do not have a worse long-term prognosis than younger seniors. However, ''elderly patients'' (≥ 70-77 years) have more concomitant diseases associated with shorter survival than ''moderately aged patients'' (≥ 60-69 years). (orig.) [German] Hinsichtlich der verschiedenen altersbedingten Komorbiditaeten werden die Durchfuehrbarkeit und der Nutzen einer simultanen Chemoradiotherapie (''concurrent chemoradiotherapy'', CRT) bei alten Patienten mit einem inoperablen nicht

  6. Long-term reproducible expression in human fetal liver hematopoietic stem cells with a UCOE-based lentiviral vector.

    Directory of Open Access Journals (Sweden)

    Niraja Dighe

    Full Text Available Hematopoietic Stem Cell (HSC targeted gene transfer is an attractive treatment option for a number of hematopoietic disorders caused by single gene defects. However, extensive methylation of promoter sequences results in silencing of therapeutic gene expression. The choice of an appropriate promoter is therefore crucial for reproducible, stable and long-term transgene expression in clinical gene therapy. Recent studies suggest efficient and stable expression of transgenes from the ubiquitous chromatin opening element (UCOE derived from the human HNRPA2B1-CBX3 locus can be achieved in murine HSC. Here, we compared the use of HNRPA2B1-CBX3 UCOE (A2UCOE-mediated transgene regulation to two other frequently used promoters namely EF1α and PGK in human fetal liver-derived HSC (hflHSC. Efficient transduction of hflHSC with a lentiviral vector containing an HNRPA2B1-CBX3 UCOE-eGFP (A2UCOE-eGFP cassette was achieved at higher levels than that obtained with umbilical cord blood derived HSC (3.1x; p<0.001. While hflHSC were readily transduced with all three test vectors (A2UCOE-eGFP, PGK-eGFP and EF1α-eGFP, only the A2-UCOE construct demonstrated sustained transgene expression in vitro over 24 days (p<0.001. In contrast, within 10 days in culture a rapid decline in transgene expression in both PGK-eGFP and EF1α-eGFP transduced hflHSC was seen. Subsequently, injection of transduced cells into immunodeficient mice (NOD/SCID/Il2rg-/- demonstrated sustained eGFP expression for the A2UCOE-eGFP group up to 10 months post transplantation whereas PGK-eGFP and EF1α-eGFP transduced hflHSC showed a 5.1 and 22.2 fold reduction respectively over the same time period. We conclude that the A2UCOE allows a more efficient and stable expression in hflHSC to be achieved than either the PGK or EF1α promoters and at lower vector copy number per cell.

  7. Long-term follow-up of post hematopoietic stem cell transplantation for Hurler syndrome: Clinical, biochemical, and pathological improvements

    Directory of Open Access Journals (Sweden)

    Eriko Yasuda

    2015-03-01

    In conclusion, this long-term post-HSCT observation should shed light on a new aspect of therapeutic effect associated with skeletal pathology and GAG levels as a biomarker, indicating that HSCT is a primary choice at an early stage for not only CNS but also skeletal system in combination of appropriate surgical procedures.

  8. Effects of long-term 50Hz power-line frequency electromagnetic field on cell behavior in Balb/c 3T3 cells.

    Science.gov (United States)

    An, Guang-Zhou; Xu, Hui; Zhou, Yan; Du, Le; Miao, Xia; Jiang, Da-Peng; Li, Kang-Chu; Guo, Guo-Zhen; Zhang, Chen; Ding, Gui-Rong

    2015-01-01

    Power-line frequency electromagnetic field (PF-EMF) was reported as a human carcinogen by some epidemiological research, but the conclusion is lack of robust experiment evidence. To identify the effects of long-term PF-EMF exposure on cell behavior, Balb/c 3T3 cells in exponential growth phase were exposed or sham-exposed to 50 Hertz (Hz) PF-EMF at 2.3 mT for 2 hours (h) one day, 5 days every week. After 11 weeks exposure, cells were collected instantly. Cell morphology was observed under invert microscope and Giemsa staining, cell viability was detected by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, cell cycle and apoptosis was examined by flow cytometry, the protein level of Proliferating Cell Nuclear Antigen (PCNA) and CyclinD1 was detected by western blot, cell transformation was examined by soft agar clone assay and plate clone forming test, and cell migration ability was observed by scratch adhesion test. It was found that after PF-EMF exposure, cell morphology, apoptosis, cell migration ability and cell transformation didn't change. However, compared with sham group, cell viability obviously decreased and cell cycle distribution also changed after 11 weeks PF-EMF exposure. Meanwhile, the protein level of PCNA and CyclinD1 significantly decreased after PF-EMF exposure. These data suggested that although long-term 50Hz PF-EMF exposure under this experimental condition had no effects on apoptosis, cell migration ability and cell transformation, it could affect cell proliferation and cell cycle by down-regulation the expression of PCNA and CyclinD1 protein.

  9. Transplantation of hematopoietic stem cells and long-term survival for primary immunodeficiencies in Europe : Entering a new century, do we do better?

    NARCIS (Netherlands)

    Gennery, Andrew R.; Slatter, Mary A.; Grandin, Laure; Taupin, Pierre; Cant, Andrew J.; Veys, Paul; Amrolia, Persis J.; Gaspar, H. Bobby; Davies, E. Graham; Friedrich, Wilhelm; Hoenig, Manfred; Notarangelo, Luigi D.; Mazzolari, Evelina; Porta, Fulvio; Bredius, Robbert G. M.; Lankester, Arjen C.; Wulffraat, Nico M.; Seger, Reinhard; Guengoer, Tayfun; Fasth, Anders; Sedlacek, Petr; Neven, Benedicte; Blanche, Stephane; Fischer, Alain; Cavazzana-Calvo, Marina; Landais, Paul

    2010-01-01

    Background: Hematopoietic stem cell transplantation remains the only treatment for most patients with severe combined immunodeficiencies (SCIDs) or other primary immunodeficiencies (non-SCID PIDs). Objective: To analyze the long-term outcome of patients with SCID and non-SCID PID from European cente

  10. Long-term gene therapy causes transgene-specific changes in the morphology of regenerating retinal ganglion cells.

    Directory of Open Access Journals (Sweden)

    Jennifer Rodger

    Full Text Available Recombinant adeno-associated viral (rAAV vectors can be used to introduce neurotrophic genes into injured CNS neurons, promoting survival and axonal regeneration. Gene therapy holds much promise for the treatment of neurotrauma and neurodegenerative diseases; however, neurotrophic factors are known to alter dendritic architecture, and thus we set out to determine whether such transgenes also change the morphology of transduced neurons. We compared changes in dendritic morphology of regenerating adult rat retinal ganglion cells (RGCs after long-term transduction with rAAV2 encoding: (i green fluorescent protein (GFP, or (ii bi-cistronic vectors encoding GFP and ciliary neurotrophic factor (CNTF, brain-derived neurotrophic factor (BDNF or growth-associated protein-43 (GAP43. To enhance regeneration, rats received an autologous peripheral nerve graft onto the cut optic nerve of each rAAV2 injected eye. After 5-8 months, RGCs with regenerated axons were retrogradely labeled with fluorogold (FG. Live retinal wholemounts were prepared and GFP positive (transduced or GFP negative (non-transduced RGCs injected iontophoretically with 2% lucifer yellow. Dendritic morphology was analyzed using Neurolucida software. Significant changes in dendritic architecture were found, in both transduced and non-transduced populations. Multivariate analysis revealed that transgenic BDNF increased dendritic field area whereas GAP43 increased dendritic complexity. CNTF decreased complexity but only in a subset of RGCs. Sholl analysis showed changes in dendritic branching in rAAV2-BDNF-GFP and rAAV2-CNTF-GFP groups and the proportion of FG positive RGCs with aberrant morphology tripled in these groups compared to controls. RGCs in all transgene groups displayed abnormal stratification. Thus in addition to promoting cell survival and axonal regeneration, vector-mediated expression of neurotrophic factors has measurable, gene-specific effects on the morphology of injured

  11. Long-term follow-up of kidney allografts in patients with sickle cell hemoglobinopathy Transplante renal na anemia falciforme

    Directory of Open Access Journals (Sweden)

    João R. Friedrisch

    2003-06-01

    Full Text Available Although sickle cell anemia and sickle cell disease produce a variety of functional renal abnormalities they uncommonly cause end stage renal failure. Renal transplantation has been a successful alternative for the treatment of the rare terminal chronic renal failure with outcomes comparable with non-sickle recipients. This approach, however, has not been often described on patients with renal failure associated with SC hemoglobinopathy. Here we report the outcomes of two patients with chronic renal failure due to SC hemoglobinopathies who underwent renal transplantation. At the time of the transplantation they were both severely anemic and had frequent vasoocclosive pain crises. Both patients evolved with good allograft function, near normal hematological parameters, and very rare pain crisis, thirteen and eight years after transplant. These cases illustrate that terminal renal failure due to SC hemoglobinopathy can be successfully managed by renal transplantation and satisfactory long-term results are achievable not only in terms of renal allograft function but also of their hematological condition.Embora a anemia falciforme e as síndromes falciformes freqüentemente causem várias alterações funcionais renais, não é comum a insuficiência renal terminal. Nestes casos, o transplante renal é uma alternativa que se acompanha de resultados comparáveis aos obtidos em receptores sem hemoglobinopatias. Esta estratégia terapêutica tem sido, no entanto, pouco relatada para portadores de hemoglobinopatia SC. Este relato descreve a evolução de dois pacientes portadores de hemoglobinopatia SC que foram submetidos ao transplante renal. No momento do transplante ambos apresentavam severa anemia e crises dolorosas freqüentes. Os pacientes evoluíram com boa função do enxerto, parâmetros hematológicos quase normais e praticamente assintomáticos do ponto de vista da hemoglobinopatia, treze e oito anos após o transplante. Estes casos ilustram

  12. CAST-ChIP Maps Cell-Type-Specific Chromatin States in the Drosophila Central Nervous System

    Directory of Open Access Journals (Sweden)

    Tamás Schauer

    2013-10-01

    Full Text Available Chromatin organization and gene activity are responsive to developmental and environmental cues. Although many genes are transcribed throughout development and across cell types, much of gene regulation is highly cell-type specific. To readily track chromatin features at the resolution of cell types within complex tissues, we developed and validated chromatin affinity purification from specific cell types by chromatin immunoprecipitation (CAST-ChIP, a broadly applicable biochemical procedure. RNA polymerase II (Pol II CAST-ChIP identifies ∼1,500 neuronal and glia-specific genes in differentiated cells within the adult Drosophila brain. In contrast, the histone H2A.Z is distributed similarly across cell types and throughout development, marking cell-type-invariant Pol II-bound regions. Our study identifies H2A.Z as an active chromatin signature that is refractory to changes across cell fates. Thus, CAST-ChIP powerfully identifies cell-type-specific as well as cell-type-invariant chromatin states, enabling the systematic dissection of chromatin structure and gene regulation within complex tissues such as the brain.

  13. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    Science.gov (United States)

    Stampfer, Martha R; Garbe, James C

    2015-02-24

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  14. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Stampfer, Martha R.; Garbe, James C.

    2016-06-28

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  15. CD4+CD25+CD127 regulatory cells play multiple roles in maintaining HIV-1 p24 production in patients on long-term treatment: HIV-1 p24-producing cells and suppression of anti-HIV immunity

    Directory of Open Access Journals (Sweden)

    Yan-Mei Jiao

    2015-08-01

    Conclusions: CD4+CD25+CD127 regulatory cells play multiple roles in maintaining HIV-1 p24 production in long-term ART patients. Treg cells may be a target for eliminating the latent HIV reservoir after effective long-term ART.

  16. Effect of 1,25-dihydroxyvitamin D3 on spontaneous calcium responses in rat dental epithelial SF2 cells revealed by long-term imaging.

    Science.gov (United States)

    Murata, Kaori; Takahashi, Ayumi; Morita, Takao; Nezu, Akihiro; Fukumoto, Satoshi; Saitoh, Masato; Tanimura, Akihiro

    2016-01-01

    Genetically encoded calcium indicators (GECIs) are suitable for long-term imaging studies. In this study, we employed a highly sensitive GECI, G-GECO, and achieved efficient gene delivery with an adenoviral vector. The adenoviral vector allowed us to express G-GECO in more than 80% of cells. More than 80% of G-GECO-expressing cells showed an ATP-induced increase in fluorescence intensity due to Ca(2+) release from intracellular stores and subsequent Ca(2+) entry. The fluorescence intensity of these cells was increased more than 2-fold by stimulation with 10 μM ATP. We applied long-term imaging (for ~10 h) to monitor Ca(2+) responses in SF2, a rat dental epithelial cell line, in culture conditions. SF2 cells showed intermittent rises in the intracellular Ca(2+) concentration in the presence of 100 nM 1,25-dihydroxyvitamin D3. Many of these Ca(2+) responses began at a specific location in the cytoplasm and spread throughout the entire cytoplasm. The combination of efficient gene delivery with an adenoviral vector and long-term imaging with a highly sensitive GECI enabled detection of intermittent Ca(2+) responses that occur only 3-10 times/h/100 cells. This method could be useful to study the effects of Ca(2+) responses for regulating longterm processes, such as gene expression, cell migration, and cell division, in many cell types.

  17. Long-term exposure of A549 cells to titanium dioxide nanoparticles induces DNA damage and sensitizes cells towards genotoxic agents.

    Science.gov (United States)

    Armand, Lucie; Tarantini, Adeline; Beal, David; Biola-Clier, Mathilde; Bobyk, Laure; Sorieul, Sephanie; Pernet-Gallay, Karin; Marie-Desvergne, Caroline; Lynch, Iseult; Herlin-Boime, Nathalie; Carriere, Marie

    2016-09-01

    Titanium dioxide nanoparticles (TiO2-NPs) are one of the most produced NPs in the world. Their toxicity has been studied for a decade using acute exposure scenarios, i.e. high exposure concentrations and short exposure times. In the present study, we evaluated their genotoxic impact using long-term and low concentration exposure conditions. A549 alveolar epithelial cells were continuously exposed to 1-50 μg/mL TiO2-NPs, 86% anatase/14% rutile, 24 ± 6 nm average primary diameter, for up to two months. Their cytotoxicity, oxidative potential and intracellular accumulation were evaluated using MTT assay and reactive oxygen species measurement, transmission electron microscopy observation, micro-particle-induced X-ray emission and inductively-coupled plasma mass spectroscopy. Genotoxic impact was assessed using alkaline and Fpg-modified comet assay, immunostaining of 53BP1 foci and the cytokinesis-blocked micronucleus assay. Finally, we evaluated the impact of a subsequent exposure of these cells to the alkylating agent methyl methanesulfonate. We demonstrate that long-term exposure to TiO2-NPs does not affect cell viability but causes DNA damage, particularly oxidative damage to DNA and increased 53BP1 foci counts, correlated with increased intracellular accumulation of NPs. In addition, exposure over 2 months causes cellular responses suggestive of adaptation, characterized by decreased proliferation rate and stabilization of TiO2-NP intracellular accumulation, as well as sensitization to MMS. Taken together, these data underline the genotoxic impact and sensitization effect of long-term exposure of lung alveolar epithelial cells to low levels of TiO2-NPs.

  18. Cocultivation of umbilical cord blood CD34+ cells with retro-transduced hMSCs leads to effective amplification of long-term culture-initiating cells

    Institute of Scientific and Technical Information of China (English)

    Chun-Gang Xie; Jin-Fu Wang; Ying Xiang; Li-Yan Qiu; Bing-Bing Jia; Li-Juan Wang; Guo-Zhong Wang; Guo-Ping Huang

    2006-01-01

    AIM: To establish a novel coculture system for ex vivo expansion of umbilical cord blood(UCB) hematopoietic progenitors using thrombopoietin (TPO)/Flt-3 ligand(FL)-transduced human marrow-derived mesenchymal stem cells (tfhMSCs) as feeder.METHODS: UCB CD34+ cells were isolated and cultured using four culture systems in serum-containing or serumfree medium. Suitable aliquots of cultured cells were used to monitor cell production, clonogenic activity,and long-term culture-initiating culture (LTC-IC) output.Finally, the severe-combined immunodeficient (SCID)mouse-repopulating cell (SRC) assay was performed to confirm ability of the cultured cells to reconstitute longterm hematopoiesis.RESULTS: There were no significant differences in the number of total nucleated cells among different culture systems in serum-containing medium during 21-d culture. However, on d 14, the outputs of CD34+ cells,CFU-C and CFU-GEMM in tfhMSCs coculture system were significantly enhanced. LTC-IC assay demonstrated that the tfhMSCs coculture system had the most powerful activity. The severe-combined immunodeficient (SCID)mouse repopulating cell (SRC) assay confirmed extensive ability of the expanded cells to reconstitute long-term hematopoiesis. Furthermore, PCR analysis demonstrated the presence of human hematopoietic cells in the bone marrow and peripheral blood cells of NOD/SCID mice.CONCLUSION: The TPO/FL-transduced hMSCs, in combination with additive cytokines, can effectively expand hematopoietic progenitors from UCB in vitro and the tfhMSCs coculture system may be a suitable system for ex vivo manipulation of primitive progenitor cells under contact culture conditions.

  19. Polycistronic lentivirus induced pluripotent stem cells from skin biopsies after long term storage, blood outgrowth endothelial cells and cells from milk teeth.

    Science.gov (United States)

    Dambrot, C; van de Pas, S; van Zijl, L; Brändl, B; Wang, J W; Schalij, M J; Hoeben, R C; Atsma, D E; Mikkers, H M; Mummery, C L; Freund, C

    2013-02-01

    The generation of human induced pluripotent stem cells (hiPSCs) requires the collection of donor tissue, but clinical circumstances in which the interests of patients have highest priority may compromise the quality and availability of cells that are eventually used for reprogramming. Here we compared (i) skin biopsies stored in standard physiological salt solution for up to two weeks (ii) blood outgrowth endothelial cells (BOECs) isolated from fresh peripheral blood and (iii) children's milk teeth lost during normal replacement for their ability to form somatic cell cultures suitable for reprogramming to hiPSCs. We derived all hiPSC lines using the same reprogramming method (a conditional (FLPe) polycistronic lentivirus) and under similar conditions (same batch of virus, fetal calf serum and feeder cells). Skin fibroblasts could be reprogrammed robustly even after long-term biopsy storage. Generation of hiPSCs from juvenile dental pulp cells gave similar high efficiencies, but that of BOECs was lower. In terms of invasiveness of biopsy sampling, biopsy storage and reprogramming efficiencies skin fibroblasts appeared best for the generation of hiPSCs, but where non-invasive procedures are required (e.g., for children and minors) dental pulp cells from milk teeth represent a valuable alternative.

  20. Long-term in vivo provision of antigen-specific T cell immunity by programming hematopoietic stem cells

    Science.gov (United States)

    Yang, Lili; Baltimore, David

    2005-03-01

    A method to genetically program mouse hematopoietic stem cells to develop into functional CD8 or CD4 T cells of defined specificity in vivo is described. For this purpose, a bicistronic retroviral vector was engineered that efficiently delivers genes for both and chains of T cell receptor (TCR) to hematopoietic stem cells. When modified cell populations were used to reconstruct the hematopoietic lineages of recipient mice, significant percentages of antigen-specific CD8 or CD4 T cells were observed. These cells expressed normal surface markers and responded to peptide antigen stimulation by proliferation and cytokine production. Moreover, they could mature into memory cells after peptide stimulation. Using TCRs specific for a model tumor antigen, we found that the recipient mice were able to partially resist a challenge with tumor cells carrying the antigen. By combining cells modified with CD8- and CD4-specific TCRs, and boosting with dendritic cells pulsed with cognate peptides, complete suppression of tumor could be achieved and even tumors that had become established would regress and be eliminated after dendritic cell/peptide immunization. This methodology of "instructive immunotherapy" could be developed for controlling the growth of human tumors and attacking established pathogens.

  1. Advances in plant cell type-specific genome-wide studies of gene expression

    Institute of Scientific and Technical Information of China (English)

    Ying WANG; Yuling JIAO

    2011-01-01

    Cell is the functional unit of life.To study the complex interactions of systems of biological molecules,it is crucial to dissect these molecules at the cell level.In recent years,major progresses have been made by plant biologists to profile gene expression in specific cell types at the genome-wide level.Approaches based on the isolation of cells,polysomes or nuclei have been developed and successfully used for studying the cell types from distinct organs of several plant species.These cell-level data sets revealed previously unrecognized cellular properties,such as cell-specific gene expression modules and hormone response centers,and should serve as essential resources for functional genomic analyses.Newly developed technologies are more affordable to many laboratories and should help to provide new insights at the cellular resolution in the near future.

  2. Gene expression profiles of hepatic cell-type specific marker genes in progression of liver fibrosis

    Institute of Scientific and Technical Information of China (English)

    Yoshiyuki Takahara; Mitsuo Takahashi; Hiroki Wagatsuma; Fumihiko Yokoya; Qing-Wei Zhang; Mutsuyo Yamaguchi; Hiroyuki Aburatani; Norifumi Kawada

    2006-01-01

    AIM: To determine the gene expression profile data for the whole liver during development of dimethylnitrosamine (DMN)-induced hepatic fibrosis.METHODS: Marker genes were identified for different types of hepatic cells, including hepatic stellate cells (HSCs), Kupffer cells (including other inflammatory cells),and hepatocytes, using independent temporal DNA microarray data obtained from isolated hepatic cells.RESULTS: The cell-type analysis of gene expression gave several key results and led to formation of three hypotheses: (1) changes in the expression of HSCspecific marker genes during fibrosis were similar to gene expression data in in vitro cultured HSCs, suggesting a major role of the self-activating characteristics of HSCs in formation of fibrosis; (2) expression of mast cell-specific marker genes reached a peak during liver fibrosis,suggesting a possible role of mast cells in formation of fibrosis; and (3) abnormal expression of hepatocytespecific marker genes was found across several metabolic pathways during fibrosis, including sulfur-containing amino acid metabolism, fatty acid metabolism, and drug metabolism, suggesting a mechanistic relationship between these abnormalities and symptoms of liver fibrosis.CONCLUSION: Analysis of marker genes for specific hepatic cell types can identify the key aspects of fibrogenesis. Sequential activation of inflammatory cells and the self-supporting properties of HSCs play an important role in development of fibrosis.

  3. Long-term administration of scopolamine interferes with nerve cell proliferation, differentiation and migration in adult mouse hippocampal dentate gyrus, but it does not induce cell death

    Institute of Scientific and Technical Information of China (English)

    Bing Chun Yan; Yun Lyul Lee; Il-Jun Kang; Moo-Ho Won; Joon Ha Park; Bai Hui Chen; Jeong-Hwi Cho; In Hye Kim; Ji Hyeon Ahn; Jae-Chul Lee; In Koo Hwang; Jun Hwi Cho

    2014-01-01

    Long-term administration of scopolamine, a muscarinic receptor antagonist, can inhibit the survival of newly generated cells, but its effect on the proliferation, differentiation and migration of nerve cells in the adult mouse hippocampal dentate gyrus remain poorly understood. In this study, we used immunohistochemistry and western blot methods to weekly detect the biological behaviors of nerve cells in the hippocampal dentate gyrus of adult mice that received intraperito-neal administration of scopolamine for 4 weeks. Expression of neuronal nuclear antigen (NeuN;a neuronal marker) and Fluoro-Jade B (a marker for the localization of neuronal degeneration) was also detected. After scopolamine treatment, mouse hippocampal neurons did not die, and Ki-67 (a marker for proliferating cells)-immunoreactive cells were reduced in number and reac hed the lowest level at 4 weeks. Doublecortin (DCX; a marker for newly generated neurons)-im-munoreactive cells were gradually shortened in length and reduced in number with time. After scopolamine treatment for 4 weeks, nearly all of the 5-bromo-2′-deoxyuridine (BrdU)-labeled newly generated cells were located in the subgranular zone of the dentate gyrus, but they did not migrate into the granule cell layer. Few mature BrdU/NeuN double-labeled cells were seen in the subgranular zone of the dentate gyrus. These ifndings suggest that long-term administration of scopolamine interferes with the proliferation, differentiation and migration of nerve cells in the adult mouse hippocampal dentate gyrus, but it does not induce cell death.

  4. Cell-type-specific enrichment of risk-associated regulatory elements at ovarian cancer susceptibility loci.

    Science.gov (United States)

    Coetzee, Simon G; Shen, Howard C; Hazelett, Dennis J; Lawrenson, Kate; Kuchenbaecker, Karoline; Tyrer, Jonathan; Rhie, Suhn K; Levanon, Keren; Karst, Alison; Drapkin, Ronny; Ramus, Susan J; Couch, Fergus J; Offit, Kenneth; Chenevix-Trench, Georgia; Monteiro, Alvaro N A; Antoniou, Antonis; Freedman, Matthew; Coetzee, Gerhard A; Pharoah, Paul D P; Noushmehr, Houtan; Gayther, Simon A

    2015-07-01

    Understanding the regulatory landscape of the human genome is a central question in complex trait genetics. Most single-nucleotide polymorphisms (SNPs) associated with cancer risk lie in non-protein-coding regions, implicating regulatory DNA elements as functional targets of susceptibility variants. Here, we describe genome-wide annotation of regions of open chromatin and histone modification in fallopian tube and ovarian surface epithelial cells (FTSECs, OSECs), the debated cellular origins of high-grade serous ovarian cancers (HGSOCs) and in endometriosis epithelial cells (EECs), the likely precursor of clear cell ovarian carcinomas (CCOCs). The regulatory architecture of these cell types was compared with normal human mammary epithelial cells and LNCaP prostate cancer cells. We observed similar positional patterns of global enhancer signatures across the three different ovarian cancer precursor cell types, and evidence of tissue-specific regulatory signatures compared to non-gynecological cell types. We found significant enrichment for risk-associated SNPs intersecting regulatory biofeatures at 17 known HGSOC susceptibility loci in FTSECs (P = 3.8 × 10(-30)), OSECs (P = 2.4 × 10(-23)) and HMECs (P = 6.7 × 10(-15)) but not for EECs (P = 0.45) or LNCaP cells (P = 0.88). Hierarchical clustering of risk SNPs conditioned on the six different cell types indicates FTSECs and OSECs are highly related (96% of samples using multi-scale bootstrapping) suggesting both cell types may be precursors of HGSOC. These data represent the first description of regulatory catalogues of normal precursor cells for different ovarian cancer subtypes, and provide unique insights into the tissue specific regulatory variation with respect to the likely functional targets of germline genetic susceptibility variants for ovarian cancer.

  5. Cell-type-specific neuroanatomy of cliques of autism-related genes in the mouse brain

    Directory of Open Access Journals (Sweden)

    Pascal eGrange

    2015-05-01

    Full Text Available Two cliques of genes identified computationally for their high co-expression in the mouse brain according to the Allen Brain Atlas, and for their enrichment in genes related to autism spectrum disorder, have recently been shown to be highly co-expressed in the cerebellar cortex, compared to what could be expected by chance. Moreover, the expression of these cliques of genes is not homogeneous across the cerebellar cortex, and it has been noted that their expression pattern seems to highlight the granular layer. However, this observation was only made by eye, and recent advances in computational neuroanatomy allow to rank cell types in the mouse brain (characterized by their transcriptome profiles according to the similarity between their spatial density profiles and the expression profiles of the cliques. We establish by Monte Carlo simulation that with probability at least 99%, the expression profiles of the two cliques are more similar to the density profile of granule cells than 99% of the expression of cliques containing the same number of genes (Purkinje cells also score above 99% in one of the cliques. Thresholding the expression profiles shows that the signal is more intense in the granular layer. Finally, we work out pairs of cell types whose combined expression profiles are more similar to the expression profiles of the cliquesthan any single cell type. These pairs predominantly consist of one cortical pyramidal cell and one cerebellar cell (whichcan be either a granule cell or a Purkinje cell.

  6. Radio(chemo)therapy for locally advanced squamous cell carcinoma of the esophagus. Long-term outcome

    Energy Technology Data Exchange (ETDEWEB)

    Ordu, Arif Deniz; Deymann, Lisa Felicia; Scherer, Vera; Combs, Stephanie E. [Technische Universitaet Muenchen, Department of Radiation Oncology, Klinikum rechts der Isar, Muenchen (Germany); Nieder, Carsten [University of Tromsoe, Department of Oncology and Palliative Medicine, Nordland Hospital Trust, Bodoe (Norway); Institute of Clinical Medicine, Faculty of Health Sciences, Tromsoe (Norway); Geinitz, Hans [Technische Universitaet Muenchen, Department of Radiation Oncology, Klinikum rechts der Isar, Muenchen (Germany); Krankenhaus der Barmherzigen Schwestern Linz, Department of Radiation Oncology, Linz (Austria); Kup, Philipp Guenther [Marien Hospital Herne, Universitaetsklinikum der Ruhr-Universitaet Bochum, Department of Radiation Oncology, Herne (Germany); Fakhrian, Khashayar [Technische Universitaet Muenchen, Department of Radiation Oncology, Klinikum rechts der Isar, Muenchen (Germany); Marien Hospital Herne, Universitaetsklinikum der Ruhr-Universitaet Bochum, Department of Radiation Oncology, Herne (Germany); Universitaetsklinikum der Ruhr-Universitaet Bochum, Department of Radiation Oncology, Sankt Josef Hospital Bochum, Bochum (Germany)

    2014-11-18

    The purpose of this work is to report the long-term outcomes of three-dimensional conformal radio(chemo)therapy in the curative management of esophageal squamous cell carcinoma (ESCC). A retrospective analysis of patients treated with radio(chemo)therapy between 1988 and 2011 at Klinikum rechts der Isar, Technische Universitaet Muenchen was performed. In all, 168 patients received radio(chemo)therapy for ESCC in curative intention. The median follow-up time was 91 months (range 1-212 months). There were 128 men and 40 women with a median age of 63 years. Selection criteria for radio(chemo)therapy were unfit for surgery and/or unresectable primary tumor (n = 146, 87 %) or patients' choice (n = 22, 13 %). The majority of the patients received a combination of cisplatin and 5-fluorouracil chemotherapy with 54 Gy in 30 fractions of radiotherapy. The median overall survival (OS) was 20 months (95 % confidence interval 17-23 months). The OS at 2 and 5 years for the whole cohort was 41 ± 4 % and 22 ± 3 %, respectively. Forty patients (24 %) suffered an in-field recurrence. The most common acute nonhematologic toxicity >grade 2 was dysphagia in 35 % of the patients. Acute hematologic toxicity > grade 2 was recorded in 14 % of the patients. There was no grade 5 toxicity observed during the study. Poor ECOG performance status (0-1 vs. 2-3, HR = 1.70, p = 0.002) and weight loss ≥ 10 % before the start of therapy (HR = 1.99, p = 0.001) were among the factors significantly associated with poor OS in multivariate analysis. Three-dimensional conformal definitive radio(chemo)therapy is well tolerated and leads to long-term survival in more than 20 % of patients with advanced disease and/or contraindication to surgery. However, 24 % in-field recurrence remains a major concern. Prospective trials are warranted to assess if a well-tailored conformal radiochemotherapy can improve the local control and obviate the need for surgical resection in patients with good general

  7. Assessment of Membrane Fluidity Fluctuations during Cellular Development Reveals Time and Cell Type Specificity

    KAUST Repository

    Noutsi, Pakiza

    2016-06-30

    Cell membrane is made up of a complex structure of lipids and proteins that diffuse laterally giving rise to what we call membrane fluidity. During cellular development, such as differentiation cell membranes undergo dramatic fluidity changes induced by proteins such as ARC and Cofilin among others. In this study we used the generalized polarization (GP) property of fluorescent probe Laurdan using two-photon microscopy to determine membrane fluidity as a function of time and for various cell lines. A low GP value corresponds to a higher fluidity and a higher GP value is associated with a more rigid membrane. Four different cell lines were monitored such as hN2, NIH3T3, HEK293 and L6 cells. Membrane fluidity was measured at 12h, 72h and 92 h. Our results show significant changes in membrane fluidity among all cell types at different time points. GP values tend to increase significantly within 92 h in hN2 cells and 72 h in NIH3T3 cells and only at 92 h in HEK293 cells. L6 showed a marked decrease in membrane fluidity at 72 h and starts to increase at 92 h. As expected, NIH3T3 cells have more rigid membrane at earlier time points. On the other hand, neurons tend to have the highest membrane fluidity at early time points emphasizing its correlation with plasticity and the need for this malleability during differentiation. This study sheds light on the involvement of membrane fluidity during neuronal differentiation and development of other cell lines.

  8. Assessment of Membrane Fluidity Fluctuations during Cellular Development Reveals Time and Cell Type Specificity.

    Directory of Open Access Journals (Sweden)

    Pakiza Noutsi

    Full Text Available Cell membrane is made up of a complex structure of lipids and proteins that diffuse laterally giving rise to what we call membrane fluidity. During cellular development, such as differentiation cell membranes undergo dramatic fluidity changes induced by proteins such as ARC and Cofilin among others. In this study we used the generalized polarization (GP property of fluorescent probe Laurdan using two-photon microscopy to determine membrane fluidity as a function of time and for various cell lines. A low GP value corresponds to a higher fluidity and a higher GP value is associated with a more rigid membrane. Four different cell lines were monitored such as hN2, NIH3T3, HEK293 and L6 cells. Membrane fluidity was measured at 12h, 72h and 92 h. Our results show significant changes in membrane fluidity among all cell types at different time points. GP values tend to increase significantly within 92 h in hN2 cells and 72 h in NIH3T3 cells and only at 92 h in HEK293 cells. L6 showed a marked decrease in membrane fluidity at 72 h and starts to increase at 92 h. As expected, NIH3T3 cells have more rigid membrane at earlier time points. On the other hand, neurons tend to have the highest membrane fluidity at early time points emphasizing its correlation with plasticity and the need for this malleability during differentiation. This study sheds light on the involvement of membrane fluidity during neuronal differentiation and development of other cell lines.

  9. Gene Expression Programs in Response to Hypoxia: Cell Type Specificity and Prognostic Significance in Human Cancers.

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available BACKGROUND: Inadequate oxygen (hypoxia triggers a multifaceted cellular response that has important roles in normal physiology and in many human diseases. A transcription factor, hypoxia-inducible factor (HIF, plays a central role in the hypoxia response; its activity is regulated by the oxygen-dependent degradation of the HIF-1alpha protein. Despite the ubiquity and importance of hypoxia responses, little is known about the variation in the global transcriptional response to hypoxia among different cell types or how this variation might relate to tissue- and cell-specific diseases. METHODS AND FINDINGS: We analyzed the temporal changes in global transcript levels in response to hypoxia in primary renal proximal tubule epithelial cells, breast epithelial cells, smooth muscle cells, and endothelial cells with DNA microarrays. The extent of the transcriptional response to hypoxia was greatest in the renal tubule cells. This heightened response was associated with a uniquely high level of HIF-1alpha RNA in renal cells, and it could be diminished by reducing HIF-1alpha expression via RNA interference. A gene-expression signature of the hypoxia response, derived from our studies of cultured mammary and renal tubular epithelial cells, showed coordinated variation in several human cancers, and was a strong predictor of clinical outcomes in breast and ovarian cancers. In an analysis of a large, published gene-expression dataset from breast cancers, we found that the prognostic information in the hypoxia signature was virtually independent of that provided by the previously reported wound signature and more predictive of outcomes than any of the clinical parameters in current use. CONCLUSIONS: The transcriptional response to hypoxia varies among human cells. Some of this variation is traceable to variation in expression of the HIF1A gene. A gene-expression signature of the cellular response to hypoxia is associated with a significantly poorer prognosis

  10. Mouse Testicular Cell Type-Specific Antiviral Response against Mumps Virus Replication

    Science.gov (United States)

    Wu, Han; Zhao, Xiang; Wang, Fei; Jiang, Qian; Shi, Lili; Gong, Maolei; Liu, Weihua; Gao, Bo; Song, Chengyi; Li, Qihan; Chen, Yongmei; Han, Daishu

    2017-01-01

    Mumps virus (MuV) infection has high tropism to the testis and usually leads to orchitis, an etiological factor in male infertility. However, MuV replication in testicular cells and the cellular antiviral responses against MuV are not fully understood. The present study showed that MuV infected the majority of testicular cells, including Leydig cells (LC), testicular macrophages, Sertoli cells (SC), and male germ cells (GC). MuV was replicated at relatively high efficiencies in SC compared with LC and testicular macrophages. In contrast, MuV did not replicate in male GC. Notably, testicular cells exhibited different innate antiviral responses against MuV replication. We showed that interferon β (IFN-β) inhibited MuV replication in LC, macrophages, and SC, which were associated with the upregulation of major antiviral proteins. We provided primary evidence that autophagy plays a role in blocking MuV replication in male GC. Autophagy was also involved in limiting MuV replication in testicular macrophages but not in Leydig and SC. These findings indicate the involvement of the innate defense against MuV replication in testicular cells. PMID:28239382

  11. Phytoestrogens modulate prostaglandin production in bovine endometrium: cell type specificity and intracellular mechanisms.

    Science.gov (United States)

    Woclawek-Potocka, Izabela; Acosta, Tomas J; Korzekwa, Anna; Bah, Mamadou M; Shibaya, Masami; Okuda, Kiyoshi; Skarzynski, Dariusz J

    2005-05-01

    Prostaglandins (PGs) are known to modulate the proper cyclicity of bovine reproductive organs. The main luteolytic agent in ruminants is PGF2alpha, whereas PGE2 has luteotropic actions. Estradiol 17beta (E2) regulates uterus function by influencing PG synthesis. Phytoestrogens structurally resemble E2 and possess estrogenic activity; therefore, they may mimic the effects of E2 on PG synthesis and influence the reproductive system. Using a cell-culture system of bovine epithelial and stromal cells, we determined cell-specific effects of phytoestrogens (i.e., daidzein, genistein), their metabolites (i.e., equol and para-ethyl-phenol, respectively), and E2 on PGF2alpha and PGE2 synthesis and examined the intracellular mechanisms of their actions. Both PGs produced by stromal and epithelial cells were significantly stimulated by phytoestrogens and their metabolites. However, PGF2alpha synthesis by both kinds of cells was greater stimulated than PGE2 synthesis. Moreover, epithelial cells treated with phytoestrogens synthesized more PGF2alpha than stromal cells, increasing the PGF2alpha to PGE2 ratio. The epithelial and stromal cells were preincubated with an estrogen-receptor (ER) antagonist (i.e., ICI), a translation inhibitor (i.e., actinomycin D), a protein kinase A inhibitor (i.e., staurosporin), and a phospholipase C inhibitor (i.e., U73122) for 0.5 hrs and then stimulated with equol, para-ethyl-phenol, or E2. Although the action of E2 on PGF2alpha synthesis was blocked by all reagents, the stimulatory effect of phytoestrogens was blocked only by ICI and actinomycin D in both cell types. Moreover, in contrast to E2 action, phytoestrogens did not cause intracellular calcium mobilization in either epithelial or stromal cells. Phytoestrogens stimulate both PGF2alpha and PGE2 in both cell types of bovine endometrium via an ER-dependent genomic pathway. However, because phytoestrogens preferentially stimulated PGF2alpha synthesis in epithelial cells of bovine

  12. Long-Term Collections

    CERN Multimedia

    Staff Association

    2016-01-01

    45 years helping in developing countries! CERN personnel have been helping the least fortunate people on the planet since 1971. How? With the Long-Term Collections! Dear Colleagues, The Staff Association’s Long-Term Collections (LTC) Committee is delighted to share this important milestone in the life of our Laboratory with you. Indeed, whilst the name of CERN is known worldwide for scientific discoveries, it also shines in the many humanitarian projects which have been supported by the LTC since 1971. Several schools and clinics, far and wide, carry its logo... Over the past 45 years, 74 projects have been supported (9 of which are still ongoing). This all came from a group of colleagues who wanted to share a little of what life offered them here at CERN, in this haven of mutual understanding, peace and security, with those who were less fortunate elsewhere. Thus, the LTC were born... Since then, we have worked as a team to maintain the dream of these visionaries, with the help of regular donat...

  13. Long-Term Collection

    CERN Multimedia

    Staff Association

    2016-01-01

    Dear Colleagues, As previously announced in Echo (No. 254), your delegates took action to draw attention to the projects of the Long-Term Collections (LTC), the humanitarian body of the CERN Staff Association. On Tuesday, 11 October, at noon, small Z-Cards were widely distributed at the entrances of CERN restaurants and we thank you all for your interest. We hope to have achieved an important part of our goal, which was to inform you, convince you and find new supporters among you. We will find out in the next few days! An exhibition of the LTC was also set up in the Main Building for the entire week. The Staff Association wants to celebrate the occasion of the Long-Term Collection’s 45th anniversary at CERN because, ever since 1971, CERN personnel have showed great support in helping the least fortunate people on the planet in a variety of ways according to their needs. On a regular basis, joint fundraising appeals are made with the Directorate to help the victims of natural disasters around th...

  14. Collectes à long terme

    CERN Document Server

    Collectes à long terme

    2014-01-01

    En cette fin d’année 2014 qui approche à grands pas, le Comité des Collectes à Long Terme remercie chaleureusement ses fidèles donatrices et donateurs réguliers pour leurs contributions à nos actions en faveur des plus démunis de notre planète. C’est très important, pour notre Comité, de pouvoir compter sur l’appui assidu que vous nous apportez. Depuis plus de 40 ans maintenant, le modèle des CLT est basé principalement sur des actions à long terme (soit une aide pendant 4-5 ans par projet, mais plus parfois selon les circonstances), et sa planification demande une grande régularité de ses soutiens financiers. Grand MERCI à vous ! D’autres dons nous parviennent au cours de l’année, et ils sont aussi les bienvenus. En particulier, nous tenons à remercier...

  15. Cell type-specific tuning of hippocampal interneuron firing during gamma oscillations in vivo.

    Science.gov (United States)

    Tukker, John J; Fuentealba, Pablo; Hartwich, Katja; Somogyi, Peter; Klausberger, Thomas

    2007-08-01

    Cortical gamma oscillations contribute to cognitive processing and are thought to be supported by perisomatic-innervating GABAergic interneurons. We performed extracellular recordings of identified interneurons in the hippocampal CA1 area of anesthetized rats, revealing that the firing patterns of five distinct interneuron types are differentially correlated to spontaneous gamma oscillations. The firing of bistratified cells, which target dendrites of pyramidal cells coaligned with the glutamatergic input from hippocampal area CA3, is strongly phase locked to field gamma oscillations. Parvalbumin-expressing basket, axo-axonic, and cholecystokinin-expressing interneurons exhibit moderate gamma modulation, whereas the spike timing of distal dendrite-innervating oriens-lacunosum moleculare interneurons is not correlated to field gamma oscillations. Cholecystokinin-expressing interneurons fire earliest in the gamma cycle, a finding that is consistent with their suggested function of thresholding individual pyramidal cells. Furthermore, we show that field gamma amplitude correlates with interneuronal spike-timing precision and firing rate. Overall, our recordings suggest that gamma synchronization in vivo is assisted by temporal- and domain-specific GABAergic inputs to pyramidal cells and is initiated in pyramidal cell dendrites in addition to somata and axon initial segments.

  16. Unique cell type-specific junctional complexes in vascular endothelium of human and rat liver sinusoids.

    Directory of Open Access Journals (Sweden)

    Cyrill Géraud

    Full Text Available Liver sinusoidal endothelium is strategically positioned to control access of fluids, macromolecules and cells to the liver parenchyma and to serve clearance functions upstream of the hepatocytes. While clearance of macromolecular debris from the peripheral blood is performed by liver sinusoidal endothelial cells (LSECs using a delicate endocytic receptor system featuring stabilin-1 and -2, the mannose receptor and CD32b, vascular permeability and cell trafficking are controlled by transcellular pores, i.e. the fenestrae, and by intercellular junctional complexes. In contrast to blood vascular and lymphatic endothelial cells in other organs, the junctional complexes of LSECs have not yet been consistently characterized in molecular terms. In a comprehensive analysis, we here show that LSECs express the typical proteins found in endothelial adherens junctions (AJ, i.e. VE-cadherin as well as α-, β-, p120-catenin and plakoglobin. Tight junction (TJ transmembrane proteins typical of endothelial cells, i.e. claudin-5 and occludin, were not expressed by rat LSECs while heterogenous immunreactivity for claudin-5 was detected in human LSECs. In contrast, junctional molecules preferentially associating with TJ such as JAM-A, B and C and zonula occludens proteins ZO-1 and ZO-2 were readily detected in LSECs. Remarkably, among the JAMs JAM-C was considerably over-expressed in LSECs as compared to lung microvascular endothelial cells. In conclusion, we show here that LSECs form a special kind of mixed-type intercellular junctions characterized by co-occurrence of endothelial AJ proteins, and of ZO-1 and -2, and JAMs. The distinct molecular architecture of the intercellular junctional complexes of LSECs corroborates previous ultrastructural findings and provides the molecular basis for further analyses of the endothelial barrier function of liver sinusoids under pathologic conditions ranging from hepatic inflammation to formation of liver metastasis.

  17. Triplet repeat mutation length gains correlate with cell-type specific vulnerability in Huntington disease brain.

    Science.gov (United States)

    Shelbourne, Peggy F; Keller-McGandy, Christine; Bi, Wenya Linda; Yoon, Song-Ro; Dubeau, Louis; Veitch, Nicola J; Vonsattel, Jean Paul; Wexler, Nancy S; Arnheim, Norman; Augood, Sarah J

    2007-05-15

    Huntington disease is caused by the expansion of a CAG repeat encoding an extended glutamine tract in a protein called huntingtin. Here, we provide evidence supporting the hypothesis that somatic increases of mutation length play a role in the progressive nature and cell-selective aspects of HD pathogenesis. Results from micro-dissected tissue and individual laser-dissected cells obtained from human HD cases and knock-in HD mice indicate that the CAG repeat is unstable in all cell types tested although neurons tend to have longer mutation length gains than glia. Mutation length gains occur early in the disease process and continue to accumulate as the disease progresses. In keeping with observed patterns of cell loss, neuronal mutation length gains tend to be more prominent in the striatum than in the cortex of low-grade human HD cases, less so in more advanced cases. Interestingly, neuronal sub-populations of HD mice appear to have different propensities for mutation length gains; in particular, smaller mutation length gains occur in nitric oxide synthase-positive striatal interneurons (a relatively spared cell type in HD) compared with the pan-striatal neuronal population. More generally, the data demonstrate that neuronal changes in HD repeat length can be at least as great, if not greater, than those observed in the germline. The fact that significant CAG repeat length gains occur in non-replicating cells also argues that processes such as inappropriate mismatch repair rather than DNA replication are involved in generating mutation instability in HD brain tissue.

  18. Highly efficient cell-type-specific gene inactivation reveals a key function for the Drosophila FUS homolog cabeza in neurons.

    Science.gov (United States)

    Frickenhaus, Marie; Wagner, Marina; Mallik, Moushami; Catinozzi, Marica; Storkebaum, Erik

    2015-03-16

    To expand the rich genetic toolkit of Drosophila melanogaster, we evaluated whether introducing FRT or LoxP sites in endogenous genes could allow for cell-type-specific gene inactivation in both dividing and postmitotic cells by GAL4-driven expression of FLP or Cre recombinase. For proof of principle, conditional alleles were generated for cabeza (caz), the Drosophila homolog of human FUS, a gene implicated in the neurodegenerative disorders amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Upon selective expression in neurons or muscle, both FLP and Cre mediated caz inactivation in all neurons or muscle cells, respectively. Neuron-selective caz inactivation resulted in failure of pharate adult flies to eclose from the pupal case, and adult escapers displayed motor performance defects and reduced life span. Due to Cre-toxicity, FLP/FRT is the preferred system for cell-type-specific gene inactivation, and this strategy outperforms RNAi-mediated knock-down. Furthermore, the GAL80 target system allowed for temporal control over gene inactivation, as induction of FLP expression from the adult stage onwards still inactivated caz in >99% of neurons. Remarkably, selective caz inactivation in adult neurons did not affect motor performance and life span, indicating that neuronal caz is required during development, but not for maintenance of adult neuronal function.

  19. Effect of long-term exposure of SH-SY5Y cells to morphine: a whole cell proteomic analysis

    Directory of Open Access Journals (Sweden)

    Moulédous Lionel

    2006-12-01

    Full Text Available Abstract Background Opiate addiction reflects plastic changes that endurably alter synaptic transmission within relevant neuronal circuits. The biochemical mechanisms of these adaptations remain largely unknown and proteomics-based approaches could lead to a broad characterization of the molecular events underlying adaptations to chronic drug exposure. Results Thus, we have started proteomic analyses of the effects of chronic morphine exposure in a recombinant human neuroblastoma SH-SY5Y clone that stably overexpresses the μ-opioid receptor. Cells were treated with morphine for 6, 24 and 72 hours, the proteins were separated by 2-D gel electrophoresis and stained with Coomassie blue, and the protein map was compared with that obtained from untreated cells. Spots showing a statistically significant variation were selected for identification using mass spectrometric analyses. Conclusion A total of 45 proteins were identified, including proteins involved in cellular metabolism, cytoskeleton organization, vesicular trafficking, transcriptional and translational regulation, and cell signaling.

  20. A unique role of the cholera toxin A1-DD adjuvant for long-term plasma and memory B cell development.

    Science.gov (United States)

    Bemark, Mats; Bergqvist, Peter; Stensson, Anneli; Holmberg, Anna; Mattsson, Johan; Lycke, Nils Y

    2011-02-01

    Adjuvants have traditionally been appreciated for their immunoenhancing effects, whereas their impact on immunological memory has largely been neglected. In this paper, we have compared three mechanistically distinct adjuvants: aluminum salts (Alum), Ribi (monophosphoryl lipid A), and the cholera toxin A1 fusion protein CTA1-DD. Their influence on long-term memory development was dramatically different. Whereas a single immunization i.p. with 4-hydroxy-3-nitrophenyl acetyl (NP)-chicken γ-globulin and adjuvant stimulated serum anti-NP IgG titers that were comparable at 5 wk, CTA1-DD-adjuvanted responses were maintained for >16 mo with a half-life of anti-NP IgG ∼36 wk, but DD dose-dependent increase in germinal center (GC) size and numbers was found, with >60% of splenic B cell follicles hosting GC at an optimal CTA1-DD dose. Roughly 7% of these GC were NP specific. This GC-promoting effect correlated well with the persistence of long-term plasma cells in the bone marrow and memory B cells in the spleen. CTA1-DD also facilitated increased somatic hypermutation and affinity maturation of NP-specific IgG Abs in a dose-dependent fashion, hence arguing that large GC not only promotes higher Ab titers but also high-quality Ab production. Adoptive transfer of splenic CD80(+), but not CD80(-), B cells, at 1 y after immunization demonstrated functional long-term anti-NP IgG and IgM memory cells. To our knowledge, this is the first report to specifically compare and document that adjuvants can differ considerably in their support of long-term immune responses. Differential effects on the GC reaction appear to be the basis for these differences.

  1. Cardiovascular protection of magnolol: cell-type specificity and dose-related effects

    Directory of Open Access Journals (Sweden)

    Ho Jennifer

    2012-07-01

    Full Text Available Abstract Magnolia officinalis has been widely used in traditional Chinese medicine. Magnolol, an active component isolated from Magnolia officinalis, is known to be a cardiovascular protector since 1994. The multiplex mechanisms of magnolol on cardiovascular protection depends on cell types and dosages, and will be reviewed and discussed in this article. Magnolol under low and moderate dosage possesses the ability to protect heart from ischemic/reperfusion injury, reduces atherosclerotic change, protects endothelial cell against apoptosis and inhibits neutrophil-endothelial adhesion. The moderate to high concentration of magnolol mainly acts on smooth muscle cells and platelets. Magnolol induces apoptosis in vascular smooth muscle cells at moderate concentration and inhibits proliferation at moderate and high concentration. High concentration of magnolol also abrogates platelet activation, aggregation and thrombus formation. Magnolol also serves as an smooth muscle relaxant only upon the high concentration. Oral intake of magnolol to reach the therapeutic level for cardiovascular protection is applicable, thus makes magnolol an agent of great potential for preventing cardiovascular diseases in high-risk patients.

  2. Monitoring of nuclear factor of activated T-cell-regulated gene expression in de novo and long-term liver transplant recipients treated with cyclosporine a.

    Science.gov (United States)

    Herden, Uta; Kromminga, Arno; Hagel, Christine; Hartleb, Jürgen; Nashan, Björn; Sterneck, Martina; Fischer, Lutz

    2011-04-01

    Pharmacodynamic drug monitoring might allow an improved use of immunosuppressive medication in transplant recipients. We assessed whether drug concentrations reflect the effect of cyclosporine (CsA) on expression of nuclear factor of activated T-cells-regulated cytokines. CsA drug concentrations and expression of interleukin-2, interferon-γ, and granulocyte-macrophage colony-stimulating factor in stimulated blood lymphocytes were determined predose (C0) and 2 hours after (C2) CsA intake in 20 de novo (less than 3 months) and 20 long-term (3 months to 10 years) liver transplant patients. The residual cytokine expression at C2 relative to C0 was calculated. Mean CsA C0 and C2 concentrations were 236 and 776 μg/L in de novo and 100 and 573 μg/L in long-term liver transplant patients, respectively. Two hours after CsA intake, the residual cytokine expression for all cytokines was comparable in both groups (de novo patients mean 16%; long-term patients mean 17%). CsA C2 concentrations showed a significant (P < 0.01) correlation with the residual cytokine expression of interleukin-2, interferon-γ, and granulocyte-macrophage colony-stimulating factor in both de novo and long-term patients, whereas CsA C0 concentrations did not. The data suggest that CsA C2 concentrations, but not C0 concentrations, reflect the effect of CsA on downregulation of cytokine expression in both de novo and long-term liver transplant patients.

  3. Dopaminergic neurons write and update memories with cell-type-specific rules.

    Science.gov (United States)

    Aso, Yoshinori; Rubin, Gerald M

    2016-07-21

    Associative learning is thought to involve parallel and distributed mechanisms of memory formation and storage. In Drosophila, the mushroom body (MB) is the major site of associative odor memory formation. Previously we described the anatomy of the adult MB and defined 20 types of dopaminergic neurons (DANs) that each innervate distinct MB compartments (Aso et al., 2014a, 2014b). Here we compare the properties of memories formed by optogenetic activation of individual DAN cell types. We found extensive differences in training requirements for memory formation, decay dynamics, storage capacity and flexibility to learn new associations. Even a single DAN cell type can either write or reduce an aversive memory, or write an appetitive memory, depending on when it is activated relative to odor delivery. Our results show that different learning rules are executed in seemingly parallel memory systems, providing multiple distinct circuit-based strategies to predict future events from past experiences.

  4. Innate immune response to pulmonary contusion: Identification of cell-type specific inflammatory responses

    OpenAIRE

    Hoth, J. Jason; Wells, Jonathan D.; Yoza, Barbara K.; McCall, Charles E.

    2012-01-01

    Lung injury from pulmonary contusion is a common traumatic injury, predominantly seen after blunt chest trauma such as in vehicular accidents. The local and systemic inflammatory response to injury includes activation of innate immune receptors, elaboration of a variety inflammatory mediators, and recruitment of inflammatory cells to the injured lung. Using a mouse model of pulmonary contusion, we had previously shown that innate immune Toll like receptors 2 and 4 (TLR2 and TLR4) mediate the ...

  5. One-pot synthesis of aptamer-functionalized silver nanoclusters for cell-type-specific imaging.

    Science.gov (United States)

    Li, Jingjing; Zhong, Xiaoqin; Cheng, Fangfang; Zhang, Jian-Rong; Jiang, Li-Ping; Zhu, Jun-Jie

    2012-05-01

    As an emerging category of fluorescent metal nanoclusters, oligonucleotide-templated silver nanoclusters (Ag NCs) have attracted a lot of interest and have shown wide application in biorelated disciplines. However, the weak fluorescence emission and poor permeability to cell membranes tethered further intracellular applications of Ag NCs. AS1411 is an antiproliferative G-rich phosphodiester oligonucleotide and currently an anticancer agent under phase II clinical trials. Herein, we present a strategy to synthesize AS1411-functionalized Ag NCs with excellent fluorescence through a facile one-pot process. Confocal laser scanning microscopy and Z-axis scanning confirmed that the AS1411-functionalized Ag NCs could be internalized into MCF-7 human breast cancer cells and were able to specifically stain nuclei with red color. To our surprise, 3-[4,5-dimethylthiazol-z-yl]-2,5-diphenyltetrazolium bromide (MTT) assay demonstrated the Ag NCs were cytocompatible and showed better inhibition effects than pure AS1411 on MCF-7 human breast cancer cells. In addition, a universal design of the oligonucleotide scaffold for synthesis of Ag NCs was extended to other aptamers, such as Sgc8c and mucin 1 aptamer. Due to the facile synthesis procedure and capability of specific target recognition, this fluorescent platform will potentially broaden the applications of Ag NCs in biosensing and biological imaging.

  6. Cell-Type-Specific Activity in Prefrontal Cortex during Goal-Directed Behavior.

    Science.gov (United States)

    Pinto, Lucas; Dan, Yang

    2015-07-15

    The prefrontal cortex (PFC) plays a key role in controlling goal-directed behavior. Although a variety of task-related signals have been observed in the PFC, whether they are differentially encoded by various cell types remains unclear. Here we performed cellular-resolution microendoscopic Ca(2+) imaging from genetically defined cell types in the dorsomedial PFC of mice performing a PFC-dependent sensory discrimination task. We found that inhibitory interneurons of the same subtype were similar to each other, but different subtypes preferentially signaled different task-related events: somatostatin-positive neurons primarily signaled motor action (licking), vasoactive intestinal peptide-positive neurons responded strongly to action outcomes, whereas parvalbumin-positive neurons were less selective, responding to sensory cues, motor action, and trial outcomes. Compared to each interneuron subtype, pyramidal neurons showed much greater functional heterogeneity, and their responses varied across cortical layers. Such cell-type and laminar differences in neuronal functional properties may be crucial for local computation within the PFC microcircuit.

  7. Cell-Type Specific Determinants of NRAMP1 Expression in Professional Phagocytes

    Directory of Open Access Journals (Sweden)

    Mathieu F. M. Cellier

    2013-01-01

    Full Text Available The Natural resistance-associated macrophage protein 1 (Nramp1 or Solute carrier 11 member 1, Slc11a1 transports divalent metals across the membrane of late endosomes and lysosomes in professional phagocytes. Nramp1 represents an ancient eukaryotic cell-autonomous defense whereas the gene duplication that yielded Nramp1 and Nramp2 predated the origin of Sarcopterygians (lobe-finned fishes and tetrapods. SLC11A1 genetic polymorphisms associated with human resistance to tuberculosis consist of potential regulatory variants. Herein, current knowledge of the regulation of SLC11A1 gene expression is reviewed and comprehensive analysis of ENCODE data available for hematopoietic cell-types suggests a hypothesis for the regulation of SLC11A1 expression during myeloid development and phagocyte functional polarization. SLC11A1 is part of a 34.6 kb CTCF-insulated locus scattered with predicted regulatory elements: a 3' enhancer, a large 5' enhancer domain and four elements spread around the transcription start site (TSS, including several C/EBP and PU.1 sites. SLC11A1 locus ends appear mobilized by ETS-related factors early during myelopoiesis; activation of both 5' and 3' enhancers in myelo-monocytic cells correlate with transcription factor binding at the TSS. Characterizing the corresponding cis/trans determinants functionally will establish the mechanisms involved and possibly reveal genetic variation that impacts susceptibility to infectious or immune diseases.

  8. Cell type specificity and mechanism of control of a gene may be reverted in different strains of Dictyostelium discoideum.

    Science.gov (United States)

    Mangiarotti, G; Giorda, R

    2000-06-21

    Twelve genes which are expressed exclusively in pre-spore cells of Dictyostelium strain AX3 are expressed exclusively in pre-stalk cells of strain AX2. One gene has the opposite behavior: it is expressed in pre-stalk cells in AX3 and in pre-spore cells in AX2. The change in cell type specificity involves a change in the mechanism of control of gene expression. When they are expressed in pre-stalk cells, genes are controlled at the level of transcription, whilst in pre-spore cells, they are controlled at the level of mRNA stability. Genes expressed in pre-stalk cells in strain AX2, fused with an AX2 pre-spore specific promoter, become regulated at the level of mRNA stability. These findings indicate that at least a group of pre-stalk mRNAs possess the cis-destabilizing element typical of pre-spore mRNAs, though they are not destabilized in disaggregated cells. This is due to the fact that ribosomal protein S6, phosphorylation of which is responsible for controlling the stability of pre-spore mRNAs, is not dephosphorylated in disaggregated pre-stalk cells. These cells lack an S6 phosphatase activity which has been purified from disaggregated pre-spore cells.

  9. The cytoskeleton of Drosophila-derived Schneider line-1 and Kc23 cells undergoes significant changes during long-term culture

    Science.gov (United States)

    Schatten, H.; Hedrick, J.; Chakrabarti, A.

    1998-01-01

    Insect cell cultures derived from Drosophila melanogaster are increasingly being used as an alternative system to mammalian cell cultures, as they are amenable to genetic manipulation. Although Drosophila cells are an excellent tool for the study of genes and expression of proteins, culture conditions have to be considered in the interpretation of biochemical results. Our studies indicate that significant differences occur in cytoskeletal structure during the long-term culture of the Drosophila-derived cell lines Schneider Line-1 (S1) and Kc23. Scanning, transmission-electron, and immunofluorescence microscopy studies reveal that microfilaments, microtubules, and centrosomes become increasingly different during the culture of these cells from 24 h to 7-14 days. Significant cytoskeletal changes are observed at the cell surface where actin polymerizes into microfilaments, during the elongation of long microvilli. Additionally, long protrusions develop from the cell surface; these protrusions are microtubule-based and establish contact with neighboring cells. In contrast, the microtubule network in the interior of the cells becomes disrupted after four days of culture, resulting in altered transport of mitochondria. Microtubules and centrosomes are also affected in a small percent of cells during cell division, indicating an instability of centrosomes. Thus, the cytoskeletal network of microfilaments, microtubules, and centrosomes is affected in Drosophila cells during long-term culture. This implies that gene regulation and post-translational modifications are probably different under different culture conditions.

  10. Tissue-culture light sheet fluorescence microscopy (TC-LSFM) allows long-term imaging of three-dimensional cell cultures under controlled conditions.

    Science.gov (United States)

    Pampaloni, Francesco; Berge, Ulrich; Marmaras, Anastasios; Horvath, Peter; Kroschewski, Ruth; Stelzer, Ernst H K

    2014-10-01

    Fluorescence long-term imaging of cellular processes in three-dimensional cultures requires the control of media supply, temperature, and pH, as well as minimal photodamage. We describe a system based on a light sheet fluorescence microscope (LSFM), which is optimized for long-term, multi-position imaging of three-dimensional in-gel cell cultures. The system integrates a stable culture condition control system in the optical path of the light-sheet microscope. A further essential element is a biocompatible agarose container suitable for the LSFM, in which any cell type can be cultured in different gel matrices. The TC-LSFM allows studying any in vitro cultured cell type reacting to, dividing in, or migrating through a three-dimensional extracellular matrix (ECM) gel. For this reason we called it "tissue culture-LSFM" (TC-LSFM). The TC-LSFM system allows fast imaging at multiple locations within a millimeter-sized ECM gel. This increases the number of analyzed events and allows testing population effects. As an example, we show the maturation of a cyst of MDCK (canine kidney epithelial) cells over a period of three days. Moreover, we imaged, tracked, and analyzed MDCK cells during the first five days of cell aggregate formation and discovered a remarkable heterogeneity in cell cycle lengths and an interesting cell death pattern. Thus, TC-LSFM allows performing new long-term assays assessing cellular behavior in three-dimensional ECM-gel cultures. For example migration, invasion or differentiation in epithelial cell systems, stem cells, as well as cancer cells can be investigated.

  11. Junctional adhesion molecule-A, JAM-A, is a novel cell-surface marker for long-term repopulating hematopoietic stem cells.

    Science.gov (United States)

    Sugano, Yasuyoshi; Takeuchi, Masaki; Hirata, Ayami; Matsushita, Hirokazu; Kitamura, Toshio; Tanaka, Minoru; Miyajima, Atsushi

    2008-02-01

    Junctional adhesion molecule-A (JAM-A/JAM-1/F11R) is a cell adhesion molecule expressed in epithelial and endothelial cells, and also hematopoietic cells, such as leukocytes, platelets, and erythrocytes. Here, we show that JAM-A is expressed at a high level in the enriched hematopoietic stem cell (HSC) fraction; that is, CD34(+)c-Kit(+) cells in embryonic day 11.5 (E11.5) aorta-gonod-mesonephros (AGM) and E11.5 fetal liver (FL), as well as c-Kit(+)Sca-1(+)Lineage(-) (KSL) cells in E14.5 FL, E18.5FL, and adult bone marrow (BM). Although the percentage of JAM-A(+) cells in those tissues decreases during development, the expression in the HSC fraction is maintained throughout life. Colony-forming assays reveal that multilineage colony-forming activity in JAM-A(+) cells is higher than that in JAM-A(-) cells in the enriched HSC fraction in all of those tissues. Transplantation assays show that long-term reconstituting HSC (LTR-HSC) activity is exclusively in the JAM-A(+) population and is highly enriched in the JAM-A(+) cells sorted directly from whole BM cells by anti-JAM-A antibody alone. Together, these results indicate that JAM-A is expressed on hematopoietic precursors in various hematopoietic tissues and is an excellent marker to isolate LTR-HSCs.

  12. Long-term Temozolomide Treatment Induces Marked Amino Metabolism Modifications and an Increase in TMZ Sensitivity in Hs683 Oligodendroglioma Cells

    Directory of Open Access Journals (Sweden)

    Delphine Lamoral-Theys

    2010-01-01

    Full Text Available Gliomas account for more than 50% of all primary brain tumors. The worst prognosis is associated with gliomas of astrocytic origin, whereas gliomas with an oligodendroglial origin offer higher sensitivity to chemotherapy, especially when oligodendroglioma cells display 1p19q deletions. Temozolomide (TMZ provides therapeutic benefits and is commonly used with radiotherapy in highly malignant astrocytic tumors, including glioblastomas. The actual benefits of TMZ during long-term treatment in oligodendroglioma patients have not yet been clearly defined. In this study, we have investigated the effects of such a long-term TMZ treatment in the unique Hs683 oligodendroglioma model. We have observed increased TMZ sensitivity of Hs683 orthotopic tumors that were previously treated in vitro with months of progressive exposure to increasing TMZ concentrations before being xenografted into the brains of immunocompromised mice. Whole-genome and proteomic analyses have revealed that this increased TMZ sensitivity of Hs683 oligodendroglioma cells previously treated for long periods with TMZ can be explained, at least partly, by a TMZ-induced p38-dependant dormancy state, which in turn resulted in changes in amino acid metabolism balance, in growth delay, and in a decrease in Hs683 oligodendroglioma cell-invasive properties. Thus, long-term TMZ treatment seems beneficial in this Hs683 oligodendroglioma model, which revealed itself unable to develop resistance against TMZ.

  13. Deferiprone versus deferoxamine in sickle cell disease: results from a 5-year long-term Italian multi-center randomized clinical trial.

    Science.gov (United States)

    Calvaruso, Giusi; Vitrano, Angela; Di Maggio, Rosario; Ballas, Samir; Steinberg, Martin H; Rigano, Paolo; Sacco, Massimiliano; Telfer, Paul; Renda, Disma; Barone, Rita; Maggio, Aurelio

    2014-12-01

    Blood transfusion and iron chelation currently represent a supportive therapy to manage anemia, vasculopathy and vaso-occlusion crises in Sickle-Cell-Disease. Here we describe the first 5-year long-term randomized clinical trial comparing Deferiprone versus Deferoxamine in patients with Sickle-Cell-Disease. The results of this study show that Deferiprone has the same effectiveness as Deferoxamine in decreasing body iron burden, measured as repeated measurements of serum ferritin concentrations on the same patient over 5-years and analyzed according to the linear mixed-effects model (LMM) (p=0.822). Both chelators are able to decrease, significantly, serum ferritin concentrations, during 5-years, without any effect on safety (p=0.005). Moreover, although the basal serum ferritin levels were higher in transfused compared with non-transfused group (p=0.031), the changes over time in serum ferritin levels were not statistically significantly different between transfused and non-transfused cohort of patients (p=0.389). Kaplan-Meier curve, during 5-years of study, suggests that Deferiprone does not alter survival in comparison with Deferoxamine (p=0.38). In conclusion, long-term iron chelation therapy with Deferiprone was associated with efficacy and safety similar to that of Deferoxamine. Therefore, in patients with Sickle-Cell-Disease, Deferiprone may represent an effective long-term treatment option.

  14. Cell-Type-Specific Sensorimotor Processing in Striatal Projection Neurons during Goal-Directed Behavior.

    Science.gov (United States)

    Sippy, Tanya; Lapray, Damien; Crochet, Sylvain; Petersen, Carl C H

    2015-10-21

    Goal-directed sensorimotor transformation drives important aspects of mammalian behavior. The striatum is thought to play a key role in reward-based learning and action selection, receiving glutamatergic sensorimotor signals and dopaminergic reward signals. Here, we obtain whole-cell membrane potential recordings from the dorsolateral striatum of mice trained to lick a reward spout after a whisker deflection. Striatal projection neurons showed strong task-related modulation, with more depolarization and action potential firing on hit trials compared to misses. Direct pathway striatonigral neurons, but not indirect pathway striatopallidal neurons, exhibited a prominent early sensory response. Optogenetic stimulation of direct pathway striatonigral neurons, but not indirect pathway striatopallidal neurons, readily substituted for whisker stimulation evoking a licking response. Our data are consistent with direct pathway striatonigral neurons contributing a "go" signal for goal-directed sensorimotor transformation leading to action initiation. VIDEO ABSTRACT.

  15. Investigation of Neuronal Cell Type-Specific Gene Expression of Ca2+/Calmodulin-dependent Protein Kinase II.

    Directory of Open Access Journals (Sweden)

    Mima Kazuko

    2002-01-01

    Full Text Available The promoter activity of the rat Ca2+/calmodulin-dependent protein kinase II gene was analyzed using the luciferase reporter gene in neuronal and non-neuronal cell lines. Neuronal cell type-specific promoter activity was found in the 5'-flanking region of &agr; and &bgr; isoform genes of the kinase. Silencer elements were also found further upstream of promoter regions. A brain-specific protein bound to the DNA sequence of the 5'-flanking region of the gene was found by gel mobility shift analysis in the nuclear extract of the rat brain, including the cerebellum, forebrain, and brainstem, but not in that of non-neuronal tissues, including liver, kidney and spleen. The luciferase expression system and gel shift analysis can be used as an additional and better index by which to monitor gene expression in most cell types.

  16. Cell-type specific oxytocin gene expression from AAV delivered promoter deletion constructs into the rat supraoptic nucleus in vivo.

    Directory of Open Access Journals (Sweden)

    Raymond L Fields

    Full Text Available The magnocellular neurons (MCNs in the hypothalamus selectively express either oxytocin (OXT or vasopressin (AVP neuropeptide genes, a property that defines their phenotypes. Here we examine the molecular basis of this selectivity in the OXT MCNs by stereotaxic microinjections of adeno-associated virus (AAV vectors that contain various OXT gene promoter deletion constructs using EGFP as the reporter into the rat supraoptic nucleus (SON. Two weeks following injection of the AAVs, immunohistochemical assays of EGFP expression from these constructs were done to determine whether the EGFP reporter co-localizes with either the OXT- or AVP-immunoreactivity in the MCNs. The results show that the key elements in the OT gene promoter that regulate the cell-type specific expression the SON are located -216 to -100 bp upstream of the transcription start site. We hypothesize that within this 116 bp domain a repressor exists that inhibits expression specifically in AVP MCNs, thereby leading to the cell-type specific expression of the OXT gene only in the OXT MCNs.

  17. MOBE-ChIP: a large-scale chromatin immunoprecipitation assay for cell type-specific studies.

    Science.gov (United States)

    Lau, On Sun; Bergmann, Dominique C

    2015-10-01

    Cell type-specific transcriptional regulators play critical roles in the generation and maintenance of multicellularity. As they are often expressed at low levels, in vivo DNA-binding studies of these regulators by standard chromatin immunoprecipitation (ChIP) assays are technically challenging. We describe here an optimized ChIP protocol termed Maximized Objects for Better Enrichment (MOBE)-ChIP, which enhances the sensitivity of ChIP assays for detecting cell type-specific signals. The protocol, which is based on the disproportional increase of target signals over background at higher scales, uses substantially greater volume of starting materials than conventional ChIPs to achieve high signal enrichment. This technique can capture weak binding events that are ambiguous in standard ChIP assays, and is useful both in gene-specific and whole-genome analysis. This protocol has been optimized for Arabidopsis, but should be applicable to other model systems with minor modifications. The full procedure can be completed within 3 days.

  18. Cell type-specific thalamic innervation in a column of rat vibrissal cortex.

    Science.gov (United States)

    Meyer, Hanno S; Wimmer, Verena C; Hemberger, Mike; Bruno, Randy M; de Kock, Christiaan P J; Frick, Andreas; Sakmann, Bert; Helmstaedter, Moritz

    2010-10-01

    This is the concluding article in a series of 3 studies that investigate the anatomical determinants of thalamocortical (TC) input to excitatory neurons in a cortical column of rat primary somatosensory cortex (S1). We used viral synaptophysin-enhanced green fluorescent protein expression in thalamic neurons and reconstructions of biocytin-labeled cortical neurons in TC slices to quantify the number and distribution of boutons from the ventral posterior medial (VPM) and posteromedial (POm) nuclei potentially innervating dendritic arbors of excitatory neurons located in layers (L)2-6 of a cortical column in rat somatosensory cortex. We found that 1) all types of excitatory neurons potentially receive substantial TC input (90-580 boutons per neuron); 2) pyramidal neurons in L3-L6 receive dual TC input from both VPM and POm that is potentially of equal magnitude for thick-tufted L5 pyramidal neurons (ca. 300 boutons each from VPM and POm); 3) L3, L4, and L5 pyramidal neurons have multiple (2-4) subcellular TC innervation domains that match the dendritic compartments of pyramidal cells; and 4) a subtype of thick-tufted L5 pyramidal neurons has an additional VPM innervation domain in L4. The multiple subcellular TC innervation domains of L5 pyramidal neurons may partly explain their specific action potential patterns observed in vivo. We conclude that the substantial potential TC innervation of all excitatory neuron types in a cortical column constitutes an anatomical basis for the initial near-simultaneous representation of a sensory stimulus in different neuron types.

  19. Canonical symplectic particle-in-cell method for long-term large-scale simulations of the Vlasov–Maxwell equations

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Hong; Liu, Jian; Xiao, Jianyuan; Zhang, Ruili; He, Yang; Wang, Yulei; Sun, Yajuan; Burby, Joshua W.; Ellison, Leland; Zhou, Yao

    2015-12-14

    Particle-in-cell (PIC) simulation is the most important numerical tool in plasma physics. However, its long-term accuracy has not been established. To overcome this difficulty, we developed a canonical symplectic PIC method for the Vlasov-Maxwell system by discretising its canonical Poisson bracket. A fast local algorithm to solve the symplectic implicit time advance is discovered without root searching or global matrix inversion, enabling applications of the proposed method to very large-scale plasma simulations with many, e.g. 10(9), degrees of freedom. The long-term accuracy and fidelity of the algorithm enables us to numerically confirm Mouhot and Villani's theory and conjecture on nonlinear Landau damping over several orders of magnitude using the PIC method, and to calculate the nonlinear evolution of the reflectivity during the mode conversion process from extraordinary waves to Bernstein waves.

  20. Long-term remission in mantle cell lymphoma following high-dose sequential chemotherapy and in vivo rituximab-purged stem cell autografting (R-HDS regimen).

    Science.gov (United States)

    Gianni, Alessandro M; Magni, Michele; Martelli, Maurizio; Di Nicola, Massimo; Carlo-Stella, Carmelo; Pilotti, Silvana; Rambaldi, Alessandro; Cortelazzo, Sergio; Patti, Caterina; Parvis, Guido; Benedetti, Fabio; Capria, Saveria; Corradini, Paolo; Tarella, Corrado; Barbui, Tiziano

    2003-07-15

    Mantle cell lymphoma (MCL) is rarely cured with standard-dose chemotherapy. From January 1997 to February 2000, 28 previously untreated advanced-stage MCL patients younger than 61 years of age were treated at 9 Italian hematologic departments with 3 cycles of standard-dose debulking chemotherapy followed by a high-dose rituximab-supplemented sequence (R-HDS) including intravenous administration of high-dose cyclophosphamide, high-dose cytarabine, high-dose melphalan, and high-dose mitoxantrone plus melphalan. Study end points included toxicity, clinical and molecular response rates, long-term event-free survival (EFS), and overall survival (OS) rates, as well as the ability to harvest tumor-free peripheral blood stem cells. Optimal amounts of polymerase chain reaction-negative (PCR-negative) CD34+ cells were collected from all 20 informative patients. One patient died of toxicity. All 27 patients assessable for response achieved a complete response (CR), of which 24 remain in continuous complete remission (CCR) after a median follow-up of 35 months. Three patients had transient evidence of PCR-detectable disease in the bone marrow. The OS and EFS rates at 54 months were 89% and 79%, respectively. These results compare with the 42% OS rate and the 18% EFS rate observed in 35 age-matched historic controls treated with standard-dose chemotherapy at the participating centers. The use of rituximab in combination with high-dose chemotherapy represents a very effective in vivo purging method. The R-HDS regimen can be safely applied in a multicenter hematology setting and leads to long-term EFS and OS in the majority of patients with an otherwise incurable disease.

  1. Derivation and long-term culture of an embryonic stem cell-like line from zebrafish blastomeres under feeder-free condition.

    Science.gov (United States)

    Ho, Sing Yee; Goh, Crystal Wei Pin; Gan, Jen Yang; Lee, Youn Sing; Lam, Millie Kuen Kuen; Hong, Ni; Hong, Yunhan; Chan, Woon Khiong; Shu-Chien, Alexander Chong

    2014-10-01

    Existing zebrafish embryonic stem (ES) cell lines are derived and maintained using feeder layers. We describe here the derivation and long-term culture of an ES cell-like line derived from zebrafish blastomeres without the use of feeder cells. This line, designated as ZES1, has been maintained for more than 800 days in defined Dulbecco's modified Eagle's medium supplemented with fetal bovine serum, zebrafish embryo extract, trout serum, and human basic fibroblast growth factor. ZES1 cells possessed a morphology typical of ES cells, being round or polygonal in shape with a large nucleus and sparse cytoplasm and were mostly diploid. The cells formed individual colonies consisting of tightly packed cells that stained positively for alkaline phosphatase. ZES1 cells also formed embryoid bodies when transferred onto uncoated wells. The pluripotent nature of ZES1 cells was confirmed when they could be induced to differentiate in vitro into several cell types, through low- or high-density culture conditions. Treatment with retinoic acid also induced the differentiation of ZES1 cells into primarily neuronal cells. Using immunostaining and real-time polymerase chain reaction, we showed that Sox2, a known pluripotent marker in mammalian ES cells, was also present in ZES1 cells. Chimera experiments revealed that fluorescent-labeled ZES1 cells microinjected into zebrafish blastulas participated in the formation of all three germ layers. Using GFP-labeled ZES1 cells, chimera germline transmission was also demonstrated at the F1 generation. In conclusion, ZES1 cells possess both in vitro and in vivo pluripotency characteristics, indicating that nonmammalian ES cells can be readily derived and maintained for a long term under feeder-free culture conditions.

  2. LONG TERM COLLECTIONS

    CERN Multimedia

    STAFF ASSOCIATION

    2010-01-01

    ACKNOWLEDGMENTS The Long-Term Collections (CLT) committee would like to warmly thank its faithful donors who, year after year, support our actions all over the world. Without you, all this would not be possible. We would like to thank, in particular, the CERN Firemen’s Association who donated 5000 CHF in the spring thanks to the sale of their traditional calendar, and the generosity of the CERN community. A huge thank you to the firemen for their devotion to our cause. And thank you to all those who have opened their door, their heart, and their purses! Similarly, we warmly thank the CERN Yoga Club once again for its wonderful donation of 2000 CHF we recently received. We would also like to tell you that all our projects are running well. Just to remind you, we are currently supporting the activities of the «Réflexe-Partage» Association in Mali; the training centre of «Education et Développement» in Abomey, Benin; and the orphanage and ...

  3. Age-associated and cell-type-specific neurofibrillary pathology in transgenic mice expressing the human midsized neurofilament subunit.

    Science.gov (United States)

    Vickers, J C; Morrison, J H; Friedrich, V L; Elder, G A; Perl, D P; Katz, R N; Lazzarini, R A

    1994-09-01

    Alterations in neurofilaments are a common occurrence in neurons of the human nervous system during aging and diseases associated with aging. Such pathologic changes may be attributed to species-specific properties of human neurofilaments as well as cell-type-specific regulation of this element of the cytoskeleton. The development of transgenic animals containing human neurofilament subunits offers an opportunity to study the effects of aging and other experimental conditions on the human-specific form of these proteins in a rodent model. The present study shows that mice from the transgenic line NF(M)27, which express the human midsized neurofilament subunit at low levels (2-25% of the endogenous NF-M), develop neurofilamentous accumulations in specific subgroups of neurons that are age dependent, affecting 78% of transgenic mice over 12 months of age. Similar accumulations do not occur in age-matched, wild-type littermates or in 3-month-old transgenic mice. In 12-month-old transgenic mice, somatic neurofilament accumulations resembling neurofibrillary tangles were present predominantly in layers III and V of the neocortex, as well as in select subpopulations of subcortical neurons. Intraperikaryal, spherical neurofilamentous accumulations were particularly abundant in cell bodies in layer II of the neocortex, and neurofilament-containing distentions of Purkinje cell proximal axons occurred in the cerebellum. These pathological accumulations contained mouse as well as human NF subunits, but could be distinguished by their content of phosphorylation-dependent NF epitopes. These cytoskeletal alterations closely resemble the cell-type-specific alterations in neurofilaments that occur during normal human aging and in diseases associated with aging, indicating that these transgenic animals may serve as models of some aspects of the pathologic features of human neurodegenerative diseases.

  4. Long Term Culture of the A549 Cancer Cell Line Promotes Multilamellar Body Formation and Differentiation towards an Alveolar Type II Pneumocyte Phenotype

    Science.gov (United States)

    Cooper, James Ross; Abdullatif, Muhammad Bilal; Burnett, Edward C.; Kempsell, Karen E.; Conforti, Franco; Tolley, Howard; Collins, Jane E.; Davies, Donna E.

    2016-01-01

    Pulmonary research requires models that represent the physiology of alveolar epithelium but concerns with reproducibility, consistency and the technical and ethical challenges of using primary or stem cells has resulted in widespread use of continuous cancer or other immortalized cell lines. The A549 ‘alveolar’ cell line has been available for over four decades but there is an inconsistent view as to its suitability as an appropriate model for primary alveolar type II (ATII) cells. Since most work with A549 cells involves short term culture of proliferating cells, we postulated that culture conditions that reduced proliferation of the cancer cells would promote a more differentiated ATII cell phenotype. We examined A549 cell growth in different media over long term culture and then used microarray analysis to investigate temporal regulation of pathways involved in cell cycle and ATII differentiation; we also made comparisons with gene expression in freshly isolated human ATII cells. Analyses indicated that long term culture in Ham’s F12 resulted in substantial modulation of cell cycle genes to result in a quiescent population of cells with significant up-regulation of autophagic, differentiation and lipidogenic pathways. There were also increased numbers of up- and down-regulated genes shared with primary cells suggesting adoption of ATII characteristics and multilamellar body (MLB) development. Subsequent Oil Red-O staining and Transmission Electron Microscopy confirmed MLB expression in the differentiated A549 cells. This work defines a set of conditions for promoting ATII differentiation characteristics in A549 cells that may be advantageous for studies with this cell line. PMID:27792742

  5. Combined effect of brain-derived neurotrophic factor and LINGO-1 fusion protein on long-term survival of retinal ganglion cells in chronic glaucoma.

    Science.gov (United States)

    Fu, Q-L; Li, X; Yip, H K; Shao, Z; Wu, W; Mi, S; So, K-F

    2009-08-18

    Glaucoma is a progressive neuropathy characterized by loss of vision as a result of retinal ganglion cell (RGC) death. There are no effective neuroprotectants to treat this disorder. Brain-derived neurotrophic factor (BDNF) is well known to transiently delay RGC death in ocular hypertensive eyes. The CNS-specific leucine-rich repeat protein LINGO-1 contributes to the negative regulation to some trophic pathways. We thereby examined whether BDNF combined with LINGO-1 antagonists can promote long-term RGC survival after ocular hypertension. In this study, intraocular pressure was elevated in adult rats using an argon laser to photocoagulate the episcleral and limbal veins. BDNF alone shows slight neuroprotection to RGCs after a long-term progress of 4 weeks following the induction of ocular hypertension. However, combination of BDNF and LINGO-1-Fc prevents RGC death in the same condition. We further identified that (1) LINGO-1 was co-expressed with BDNF receptor, TrkB in the RGCs, and (2) BDNF combined with LINGO-1-Fc activated more TrkB in the injured retina compared to BDNF alone. These results indicate that the combination of BDNF with LINGO-1 antagonist can provide long-term protection for RGCs in a chronic ocular hypertension model. TrkB may be the predominant mediator of this neuroprotection.

  6. Long-Term Quantitative Biodistribution and Side Effects of Human Mesenchymal Stem Cells (hMSCs Engraftment in NOD/SCID Mice following Irradiation

    Directory of Open Access Journals (Sweden)

    Sabine François

    2014-01-01

    Full Text Available There is little information on the fate of infused mesenchymal stem cells (MSCs and long-term side effects after irradiation exposure. We addressed these questions using human MSCs (hMSCs intravenously infused to nonobese diabetic/severe combined immunodeficient (NOD/SCID mice submitted to total body irradiation (TBI or local irradiation (abdominal or leg irradiation. The animals were sacrificed 3 to 120 days after irradiation and the quantitative and spatial distribution of hMSCs were studied by polymerase chain reaction (PCR. Following their infusion into nonirradiated animals, hMSCs homed to various tissues. Engraftment depended on the dose of irradiation and the area exposed. Total body irradiation induced an increased hMSC engraftment level compared to nonirradiated mice, while local irradiations increased hMSC engraftment locally in the area of irradiation. Long-term engraftment of systemically administered hMSCs in NOD/SCID mice increased significantly in response to tissue injuries produced by local or total body irradiation until 2 weeks then slowly decreased depending on organs and the configuration of irradiation. In all cases, no tissue abnormality or abnormal hMSCs proliferation was observed at 120 days after irradiation. This work supports the safe and efficient use of MSCs by injection as an alternative approach in the short- and long-term treatment of severe complications after radiotherapy for patients refractory to conventional treatments.

  7. Long-term safety and efficacy of deferasirox (Exjade) for up to 5 years in transfusional iron-overloaded patients with sickle cell disease.

    Science.gov (United States)

    Vichinsky, Elliott; Bernaudin, Françoise; Forni, Gian Luca; Gardner, Renee; Hassell, Kathryn; Heeney, Matthew M; Inusa, Baba; Kutlar, Abdullah; Lane, Peter; Mathias, Liesl; Porter, John; Tebbi, Cameron; Wilson, Felicia; Griffel, Louis; Deng, Wei; Giannone, Vanessa; Coates, Thomas

    2011-08-01

    To date, there is a lack of long-term safety and efficacy data for iron chelation therapy in transfusion-dependent patients with sickle cell disease (SCD). To evaluate the long-term safety and efficacy of deferasirox (a once-daily oral iron chelator), patients with SCD completing a 1-year, Phase II, randomized, deferoxamine (DFO)-controlled study entered a 4-year extension, continuing to receive deferasirox, or switching from DFO to deferasirox. Average actual deferasirox dose was 19·4 ± 6·3 mg/kg per d. Of 185 patients who received at least one deferasirox dose, 33·5% completed the 5-year study. The most common reasons for discontinuation were withdrawal of consent (23·8%), lost to follow-up (9·2%) and adverse events (AEs) (7·6%). Investigator-assessed drug-related AEs were predominantly gastrointestinal [including nausea (14·6%), diarrhoea (10·8%)], mild-to-moderate and transient in nature. Creatinine clearance remained within the normal range throughout the study. Despite conservative initial dosing, serum ferritin levels in patients with ≥ 4 years deferasirox exposure significantly decreased by -591 μg/l (95% confidence intervals, -1411, -280 μg/l; P = 0·027; n = 67). Long-term deferasirox treatment for up to 5 years had a clinically acceptable safety profile, including maintenance of normal renal function, in patients with SCD. Iron burden was substantially reduced with appropriate dosing in patients treated for at least 4 years.

  8. Long-term exposures to low doses of silver nanoparticles enhanced in vitro malignant cell transformation in non-tumorigenic BEAS-2B cells.

    Science.gov (United States)

    Choo, Wun Hak; Park, Cho Hee; Jung, Shi Eun; Moon, Byeonghak; Ahn, Huiyeon; Ryu, Jung Seok; Kim, Keun-Soo; Lee, Yong Hwa; Yu, Il Je; Oh, Seung Min

    2016-12-01

    To predict carcinogenic potential of AgNPs on the respiratory system, BEAS-2B cells (human bronchial epithelial cells) were chronically exposed to low- and non-cytotoxic dose (0.13 and 1.33μg/ml) of AgNPs for 4months (#40 passages). To assess malignant cell transformation of chronic exposure to AgNPs, several bioassays including anchorage independent agar colony formation, cell migration/invasion assay, and epithelial-mesenchymal transition (EMT) were performed in BEAS-2B cells. Chronic exposure to AgNPs showed a significant increase of anchorage independent agar colony formation and cell migration/invasion. EMT, which is the loss of epithelial markers (E-Cadherin and Keratin) and the gain of mesenchymal marker (N-cadherin and Vimentin), was induced by chronic exposure to AgNPs. These responses indicated that chronic exposure to AgNPs could acquire characteristics of tumorigenic cells from normal BEAS-2B cells. In addition, caspase-3, p-p53, p-p38, and p-JNK were significantly decreased, while p-ERK1/2 was significantly increased. MMP-9 related to cell migration/invasion was upregulated, while a MMP-9 inhibitor, TIMP-1 was down-regulated. These results indicated that BEAS-2B cells exposed to AgNPs could induce anti-apoptotic response/anoikis resistance, and cell migration/invasion by complex regulation of MAPK kinase (p38, JNK, and ERK) and p53 signaling pathways. Therefore, we suggested that long-term exposure to low-dose of AgNPs could enhance malignant cell transformation in non-tumorigenic BEAS-2B cells. Our findings provide useful information needed to assess the carcinogenic potential of AgNPs.

  9. Long-term MRI cell tracking after intraventricular delivery in a patient with global cerebral ischemia and prospects for magnetic navigation of stem cells within the CSF.

    Directory of Open Access Journals (Sweden)

    Miroslaw Janowski

    Full Text Available BACKGROUND: The purpose of the study was to evaluate the long-term clinical tracking of magnetically labeled stem cells after intracerebroventricular transplantation as well as to investigate in vitro feasibility for magnetic guidance of cell therapy within large fluid compartments. METHOD: After approval by our Institutional Review Board, an 18-month-old patient, diagnosed as being in a vegetative state due to global cerebral ischemia, underwent cell transplantation to the frontal horn of the lateral ventricle, with umbilical cord blood-derived stem cells labeled with superparamagnetic iron oxide (SPIO contrast agent. The patient was followed over 33 months with clinical examinations and MRI. To evaluate the forces governing the distribution of cells within the fluid compartment of the ventricular system in vivo, a gravity-driven sedimentation assay and a magnetic field-driven cell attraction assay were developed in vitro. RESULTS: Twenty-four hours post-transplantation, MR imaging (MRI was able to detect hypointense cells in the occipital horn of the lateral ventricle. The signal gradually decreased over 4 months and became undetectable at 33 months. In vitro, no significant difference in cell sedimentation between SPIO-labeled and unlabeled cells was observed (p = NS. An external magnet was effective in attracting cells over distances comparable to the size of human lateral ventricles. CONCLUSIONS: MR imaging of SPIO-labeled cells allows monitoring of cells within lateral ventricles. While the initial biodistribution is governed by gravity-driven sedimentation, an external magnetic field may possibly be applied to further direct the distribution of labeled cells within large fluid compartments such as the ventricular system.

  10. Human brain derived cells respond in a type-specific manner after exposure to urban particulate matter (PM).

    Science.gov (United States)

    Campbell, Arezoo; Daher, Nancy; Solaimani, Parrisa; Mendoza, Kriscelle; Sioutas, Constantinos

    2014-10-01

    Exposure to particulate matter (PM), a component of urban air pollution, may cause adverse effects in the brain. Although the exact mechanisms involved are unknown, both oxidative and inflammatory responses have been reported. Since the main route of exposure to particulate matter is through inhalation, there is a potential for compounds to directly enter the brain and alter normal cellular function. Enhancement in both oxidative stress and neuroinflammatory markers has been observed in neurodegenerative disorders and PM-induced potentiation of these events may accelerate the disease process. The objective of this pilot study was to use normal human brain cells, a model system which has not been previously used, to assess cell-type-specific responses after exposure to ultrafine particles (UFP). Human microglia, neurons, and astrocytes were grown separately or as co-cultures and then exposed to aqueous UFP suspensions. Reactive Oxygen Species (ROS) formation and the proinflammatory cytokine tumor necrosis factor alpha (TNF-α) were measured as markers of oxidative stress or inflammation respectively. Our results revealed that after exposure to 2 μg/ml of particles, normal human neurons exhibit a decrease in ROS formation and an increase in TNF-α. The observed decrease in ROS formation persisted in the presence of glial cells, which contrasts previous studies done in rodent cells reporting that PM-induced microglial activation modulates neuronal responses. Our study indicates that human CNS cells may respond differently compared to rodent cells and that their use may be more predictive in risk assessment.

  11. Ex vivo assays to study self-renewal, long-term expansion, and leukemic transformation of genetically modified human hematopoietic and patient-derived leukemic stem cells.

    Science.gov (United States)

    Sontakke, Pallavi; Carretta, Marco; Capala, Marta; Schepers, Hein; Schuringa, Jan Jacob

    2014-01-01

    With the emergence of the concept of the leukemic stem cell (LSC), assays to study them remain pivotal in understanding (leukemic) stem cell biology. Although the in vivo NOD-SCID or NSG xenotransplantation model is currently still the favored assay of choice in most cases, this system has some limitations as well such as its cost-effectiveness, duration, and lack of engraftability of cells from some acute myeloid leukemia (AML) patients. Here, we describe in vitro assays in which long-term expansion and self-renewal of LSCs isolated from AML patients can be evaluated. We have optimized lentiviral transduction procedures in order to stably express genes of interest or stably downmodulate genes using RNAi in primary AML cells, and these approaches are described in detail here. Also, we describe bone marrow stromal coculture systems in which cobblestone area-forming cell activity, self-renewal, long-term expansion, and in vitro myeloid or lymphoid transformation can be evaluated in human CD34(+) cells of fetal or adult origin that are engineered to express oncogenes. Together, these tools should allow a further molecular elucidation of derailed signal transduction in LSCs.

  12. Cell-type-specific tuning of Cav1.3 Ca2+-channels by a C-terminal automodulatory domain

    Directory of Open Access Journals (Sweden)

    Anja eScharinger

    2015-08-01

    Full Text Available Cav1.3 L-type Ca2+-channel function is regulated by a C-terminal automodulatory domain (CTM. It affects channel binding of calmodulin and thereby tunes channel activity by interfering with Ca2+- and voltage-dependent gating. Alternative splicing generates short C-terminal channel variants lacking the CTM resulting in enhanced Ca2+-dependent inactivation and stronger voltage-sensitivity upon heterologous expression. However, the role of this modulatory domain for channel function in its native environment is unkown. To determine its functional significance in vivo, we interrupted the CTM with a hemagglutinin tag in mutant mice (Cav1.3DCRDHA/HA. Using these mice we provide biochemical evidence for the existence of long (CTM-containing and short (CTM-deficient Cav1.3 α1-subunits in brain. The long (HA-labeled Cav1.3 isoform was present in all ribbon synapses of cochlear inner hair cells. CTM-elimination impaired Ca2+-dependent inactivation of Ca2+-currents in hair cells but increased it in chromaffin cells, resulting in hyperpolarized resting potentials and reduced pacemaking. CTM disruption did not affect hearing thresholds. We show that the modulatory function of the CTM is affected by its native environment in different cells and thus occurs in a cell-type specific manner in vivo. It is required to stabilize gating properties of Cav1.3 channels required for normal electrical excitability.

  13. Cell-type-specific recruitment of amygdala interneurons to hippocampal theta rhythm and noxious stimuli in vivo.

    Science.gov (United States)

    Bienvenu, Thomas C M; Busti, Daniela; Magill, Peter J; Ferraguti, Francesco; Capogna, Marco

    2012-06-21

    Neuronal synchrony in the basolateral amygdala (BLA) is critical for emotional behavior. Coordinated theta-frequency oscillations between the BLA and the hippocampus and precisely timed integration of salient sensory stimuli in the BLA are involved in fear conditioning. We characterized GABAergic interneuron types of the BLA and determined their contribution to shaping these network activities. Using in vivo recordings in rats combined with the anatomical identification of neurons, we found that the firing of BLA interneurons associated with network activities was cell type specific. The firing of calbindin-positive interneurons targeting dendrites was precisely theta-modulated, but other cell types were heterogeneously modulated, including parvalbumin-positive basket cells. Salient sensory stimuli selectively triggered axo-axonic cells firing and inhibited firing of a disctinct projecting interneuron type. Thus, GABA is released onto BLA principal neurons in a time-, domain-, and sensory-specific manner. These specific synaptic actions likely cooperate to promote amygdalo-hippocampal synchrony involved in emotional memory formation.

  14. Long-term safety of umbilical cord mesenchymal stem cells transplantation for systemic lupus erythematosus: a 6-year follow-up study.

    Science.gov (United States)

    Wang, Dandan; Niu, Lingying; Feng, Xuebing; Yuan, Xinran; Zhao, Shengnan; Zhang, Huayong; Liang, Jun; Zhao, Cheng; Wang, Hong; Hua, Bingzhu; Sun, Lingyun

    2016-06-07

    The aim of this study is to assess the long-term safety of allogeneic umbilical cord mesenchymal stem cells (UC MSCs) transplantation for patients with refractory systemic lupus erythematosus (SLE). Nine SLE patients, who were refractory to steroid and immunosuppressive drugs treatment and underwent MSCs transplantation in 2009, were enrolled. One million allogeneic UC MSCs per kilogram of body weight were infused intravenously at days 0 and 7. The possible adverse events, including immediately after MSCs infusions, as well as the long-term safety profiles were observed. Blood and urine routine test, liver function, electrocardiogram, chest radiography and serum levels of tumor markers, including alpha fetal protein (AFP), cancer embryo antigen (CEA), carbohydrate antigen 155 (CA155) and CA199, were assayed before and 1, 2, 4 and 6 years after MSCs transplantation. All the patients completed two times of MSCs infusions. One patient had mild dizzy and warm sensation 5 min after MSCs infusion, and the symptoms disappeared quickly. No other adverse event, including fluster, headache, nausea or vomit, was observed. There was no change in peripheral white blood cell count, red blood cell count and platelet number in these patients after followed up for 6 years. Liver functional analysis showed that serum alanine aminotransferase, glutamic-oxalacetic transaminase, total bilirubin and direct bilirubin remained in normal range after MSCs infusions. No newly onset abnormality was detected on electrocardiogram and chest radiography. Moreover, we found no rise of serum tumor markers, including AFP, CEA, CA125 and CA199, before and 6 years after MSCs infusions. Our long-term observational study demonstrated a good safety profile of allogeneic UC MSCs in SLE patients.

  15. As-prepared MoS2 quantum dot as a facile fluorescent probe for long-term tracing of live cells

    Science.gov (United States)

    Zhou, Kai; Zhang, Yue; Xia, Zhining; Wei, Weili

    2016-07-01

    Recently, the newly emerged two-dimensional nanomaterials, layered transition metal dichalcogenide (e.g. MoS2) nanosheets, have drawn tremendous attentions due to their extraordinary electronic and optical properties, and MoS2 quantum dots (MoS2 QDs) with lateral sizes less than 10 nm have been found to be highly luminescent. In the present study, a facile approach for large-scale preparation of MoS2 QDs by Na intercalation reaction without using any toxic organic reagents is proposed. MoS2 QDs were carefully characterized by various techniques including transmission electron microscopy, atomic force microscopy, dynamic light scattering, spectroscopy, in vitro cytotoxicology, and capillary electrophoresis. The as-prepared MoS2 QDs were strongly fluorescent, highly photo-stable, low in cytotoxicity, and readily reactive to thiols. These inherent properties of MoS2 QDs make them excellent fluorescent probes for long-term live cell tracing. The results of live cells imaging indicated that MoS2 QD stained cells remained highly fluorescent after long-term culture, and could be easily traced from other co-cultured cell lines.

  16. As-prepared MoS2 quantum dot as a facile fluorescent probe for long-term tracing of live cells.

    Science.gov (United States)

    Zhou, Kai; Zhang, Yue; Xia, Zhining; Wei, Weili

    2016-07-01

    Recently, the newly emerged two-dimensional nanomaterials, layered transition metal dichalcogenide (e.g. MoS2) nanosheets, have drawn tremendous attentions due to their extraordinary electronic and optical properties, and MoS2 quantum dots (MoS2 QDs) with lateral sizes less than 10 nm have been found to be highly luminescent. In the present study, a facile approach for large-scale preparation of MoS2 QDs by Na intercalation reaction without using any toxic organic reagents is proposed. MoS2 QDs were carefully characterized by various techniques including transmission electron microscopy, atomic force microscopy, dynamic light scattering, spectroscopy, in vitro cytotoxicology, and capillary electrophoresis. The as-prepared MoS2 QDs were strongly fluorescent, highly photo-stable, low in cytotoxicity, and readily reactive to thiols. These inherent properties of MoS2 QDs make them excellent fluorescent probes for long-term live cell tracing. The results of live cells imaging indicated that MoS2 QD stained cells remained highly fluorescent after long-term culture, and could be easily traced from other co-cultured cell lines.

  17. Conditioned Medium Derived from Neural Progenitor Cells Induces Long-term Post-ischemic Neuroprotection, Sustained Neurological Recovery, Neurogenesis, and Angiogenesis.

    Science.gov (United States)

    Doeppner, Thorsten R; Traut, Viktorija; Heidenreich, Alexander; Kaltwasser, Britta; Bosche, Bert; Bähr, Mathias; Hermann, Dirk M

    2017-03-01

    Adult neural progenitor cells (NPCs) induce post-ischemic long-term neuroprotection and brain remodeling by releasing of survival- and plasticity-promoting mediators. To evaluate whether secreted factors may mimic neuroprotective and restorative effects of NPCs, we exposed male C57BL6 mice to focal cerebral ischemia and intravenously applied conditioned medium (CM) derived from subventricular zone NPCs. CM dose-dependently reduced infarct volume and brain leukocyte infiltration after 48 h when delivered up to 12 h after focal cerebral ischemia. Neuroprotection persisted in the post-acute stroke phase yielding enhanced neurological recovery that lasted throughout the 28-day observation period. Increased Bcl-2, phosphorylated Akt and phosphorylated STAT-3 abundance, and reduced caspase-3 activity and Bax abundance were noted in ischemic brains of CM-treated mice at 48 h post-stroke, indicative of enhanced cell survival signaling. Long-term neuroprotection was associated with increased brain glial cell line-derived neurotrophic factor (GDNF) and vascular endothelial growth factor (VEGF) concentrations at 28 days resulting in increased neurogenesis and angiogenesis. The observation that NPC-derived CM induces sustained neuroprotection and neurological recovery suggests that cell transplantation may be dispensable when secreted factors are instead administered.

  18. Microcystin release and Microcystis cell damage mechanism by alum treatment with long-term and large dose as in-lake treatment.

    Science.gov (United States)

    Han, Jisun; Jeon, Bong-Seok; Park, Ho-Dong

    2016-01-01

    Most of our previous studies reported aluminum causes no cell damage or lysis, and no subsequent toxin release in conventional treatment of drinking water or in the laboratory, on the contrary, we investigated the effect of long-term and large-dose alum treatment, because the environmental conditions in lakes and treatment plants are widely different. The microcosm experiments were designed to simulate the effect of adding alum under the similar conditions of common lakes and reservoirs, and the bottle experiments were conducted to examine the budget or dynamics of microcystin after adding alum. In precipitate analyses, we also confirm the release and dynamics of microcystin and the damage mechanisms of Microcystis cells under alum treatment. In microcosms treated with alum alone, the extracellular microcystin-LR (MC-LR) concentration increased to approximately 82% in 7 days. Similar results were obtained in bottle experiments. By plotting the concentration of released microcystin over time, we inferred that the extracellular MC-LR concentration exponentially rose toward an asymptotic maximum. Moreover, in scanning electron microscope images, some cells exhibited torn membranes with miniscule traces of aluminum hydroxide coating. We conclude that alum treatment, particularly at maximum dosage administered over long periods, seriously damages Microcystis cells and induces microcystin release. Therefore, long-term application of large alum doses is not recommended as an in-lake treatment.

  19. Long-Term Cultured Human Term Placenta-Derived Mesenchymal Stem Cells of Maternal Origin Displays Plasticity

    Directory of Open Access Journals (Sweden)

    Vikram Sabapathy

    2012-01-01

    Flow analysis established bonafied MSCs phenotypic characteristics, staining positively for CD29, CD73, CD90, CD105 and negatively for CD14, CD34, CD45 markers. Pluripotency of the cultured MSCs was assessed by in vitro differentiation towards not only intralineage cells like adipocytes, osteocytes, chondrocytes, and myotubules cells but also translineage differentiated towards pancreatic progenitor cells, neural cells, and retinal cells displaying plasticity. These cells did not significantly alter cell cycle or apoptosis pattern while maintaining the normal karyotype; they also have limited expression of MHC-II antigens and are Naive for stimulatory factors CD80 and CD 86. Further soft agar assays revealed that placental MSCs do not have the ability to form invasive colonies. Taking together all these characteristics into consideration, it indicates that placental MSCs could serve as good candidates for development and progress of stem-cell based therapeutics.

  20. Preservation of vaccine-induced long-term B cell memory and the effects of immunosuppressive treatment

    OpenAIRE

    Ingelman-Sundberg, Hanna M.

    2015-01-01

    Immune memory after vaccination is largely dependent on the combination of antibody production from long-lived plasma cells, and a supporting pool of antigen-primed memory B cells. It has been observed that individuals with certain immunosuppressive conditions or treatments have a weakened B cell memory, but the mechanisms behind remain elusive. The aim of this thesis was to evaluate B cell immunity in healthy children, and how HIV-1 infection, antineoplastic therapy, and rheum...

  1. Autonomous isolation, long-term culture and differentiation potential of adult salivary gland-derived stem/progenitor cells.

    Science.gov (United States)

    Baek, Hyunjung; Noh, Yoo Hun; Lee, Joo Hee; Yeon, Soo-In; Jeong, Jaemin; Kwon, Heechung

    2014-09-01

    Salivary gland stem/progenitor cells belong to the endodermal lineage and may serve as good candidates to replace their dysfunctional counterparts. The objective of this study was to isolate large numbers of salivary gland tissue-derived stem cells (SGSCs) from adult rats in order to develop a clinically applicable method that does not involve sorting or stem cell induction by duct ligation. We analysed SGSCs isolated from normal rat salivary glands to determine whether they retained the major characteristics of stem cells, self-renewal and multipotency, especially with respect to the various endodermal cell types. SGSCs expressed high levels of integrin α6β1 and c-kit, which are surface markers of SGSCs. In particular, the integrin α6β1(+) /c-kit(+) salivary gland cells maintained the morphology, proliferation activity and multipotency of stem cells for up to 92 passages in 12 months. Furthermore, we analysed the capacity of SGSCs to differentiate into endoderm lineage cell types, such as acinar-like and insulin-secreting cells. When cultured on growth factor reduced matrigel, the morphology of progenitor cells changed to acinar-like structures and these cells expressed the acinar cell-specific marker, α-amylase, and tight junction markers. Moreover, reverse transcription-polymerase chain reaction (RT-PCR) data showed increased expression of pancreatic cell markers, including insulin, Pdx1, pan polypeptide and neurogenin-3, when these cells formed pancreatic clusters in the presence of activin A, exendin-4 and retinoic acid. These data demonstrate that adult salivary stem/progenitor cells may serve as a potential source for cell therapy in salivary gland hypofunction and diabetes.

  2. Implementing the LIM code: the structural basis for cell type-specific assembly of LIM-homeodomain complexes

    Energy Technology Data Exchange (ETDEWEB)

    Bhati, Mugdha; Lee, Christopher; Nancarrow, Amy L.; Lee, Mihwa; Craig, Vanessa J.; Bach, Ingolf; Guss, J. Mitchell; Mackay, Joel P.; Matthews, Jacqueline M. (UMASS, MED); (Sydney)

    2008-09-03

    LIM-homeodomain (LIM-HD) transcription factors form a combinatorial 'LIM code' that contributes to the specification of cell types. In the ventral spinal cord, the binary LIM homeobox protein 3 (Lhx3)/LIM domain-binding protein 1 (Ldb1) complex specifies the formation of V2 interneurons. The additional expression of islet-1 (Isl1) in adjacent cells instead specifies the formation of motor neurons through assembly of a ternary complex in which Isl1 contacts both Lhx3 and Ldb1, displacing Lhx3 as the binding partner of Ldb1. However, little is known about how this molecular switch occurs. Here, we have identified the 30-residue Lhx3-binding domain on Isl1 (Isl1{sub LBD}). Although the LIM interaction domain of Ldb1 (Ldb1{sub LID}) and Isl1{sub LBD} share low levels of sequence homology, X-ray and NMR structures reveal that they bind Lhx3 in an identical manner, that is, Isl1{sub LBD} mimics Ldb1{sub LID}. These data provide a structural basis for the formation of cell type-specific protein-protein interactions in which unstructured linear motifs with diverse sequences compete to bind protein partners. The resulting alternate protein complexes can target different genes to regulate key biological events.

  3. Dissection of thousands of cell type-specific enhancers identifies dinucleotide repeat motifs as general enhancer features.

    Science.gov (United States)

    Yáñez-Cuna, J Omar; Arnold, Cosmas D; Stampfel, Gerald; Boryń, Lukasz M; Gerlach, Daniel; Rath, Martina; Stark, Alexander

    2014-07-01

    Gene expression is determined by genomic elements called enhancers, which contain short motifs bound by different transcription factors (TFs). However, how enhancer sequences and TF motifs relate to enhancer activity is unknown, and general sequence requirements for enhancers or comprehensive sets of important enhancer sequence elements have remained elusive. Here, we computationally dissect thousands of functional enhancer sequences from three different Drosophila cell lines. We find that the enhancers display distinct cis-regulatory sequence signatures, which are predictive of the enhancers' cell type-specific or broad activities. These signatures contain transcription factor motifs and a novel class of enhancer sequence elements, dinucleotide repeat motifs (DRMs). DRMs are highly enriched in enhancers, particularly in enhancers that are broadly active across different cell types. We experimentally validate the importance of the identified TF motifs and DRMs for enhancer function and show that they can be sufficient to create an active enhancer de novo from a nonfunctional sequence. The function of DRMs as a novel class of general enhancer features that are also enriched in human regulatory regions might explain their implication in several diseases and provides important insights into gene regulation.

  4. High-throughput sequencing reveals miRNA effects on the primary and secondary production properties in long-term subcultured Taxus cells.

    Science.gov (United States)

    Zhang, Meng; Dong, Yanshan; Nie, Lin; Lu, Mingbo; Fu, Chunhua; Yu, Longjiang

    2015-01-01

    Plant-cell culture technology is a promising alternative for production of high-value secondary metabolites but is limited by the decreased metabolite production after long-term subculture. The goal of this study was to determine the effects of miRNAs on altered gene expression profiles during long-term subculture. Two Taxus cell lines, CA (subcultured for 10 years) and NA (subcultured for 6 months), were high-throughput sequenced at the mRNA and miRNA levels. A total of 265 known (78.87% of 336) and 221 novel (79.78% of 277) miRNAs were differentially expressed. Furthermore, 67.17% of the known differentially expressed (DE) miRNAs (178) and 60.63% of the novel DE-miRNAs (134) were upregulated in NA. A total of 275 inverse-related miRNA/mRNA modules were identified by target prediction analysis. Functional annotation of the targets revealed that the high-ranking miRNA targets were those implicated in primary metabolism and abiotic or biotic signal transduction. For example, various genes for starch metabolism and oxidative phosphorylation were inversely related to the miRNA levels, thereby indicating that miRNAs have important roles in these pathways. Interestingly, only a few genes for secondary metabolism were inversely related to miRNA, thereby indicating that factors other than miRNA are present in the regulatory system. Moreover, miR8154 and miR5298b were upregulated miRNAs that targeted a mass of DE genes. The overexpression of these miRNAs in CA increased the genes of taxol, phenylpropanoid, and flavonoid biosynthesis, thereby suggesting their function as crucial factors that regulate the entire metabolic network during long-term subculture. Our current studies indicated that a positive conversion of production properties from secondary metabolism to primary metabolism occurred in long-term subcultured cells. miRNAs are important regulators in the upregulation of primary metabolism.

  5. Acinetobacter baylyi long-term stationary-phase protein StiP is a protease required for normal cell morphology and resistance to tellurite.

    Science.gov (United States)

    Reichert, Blake; Dornbusch, Amber J; Arguello, Joshua; Stanley, Sarah E; Lang, Kristine M; Lostroh, C Phoebe; Daugherty, Margaret A

    2013-11-01

    We investigated the Acinetobacter baylyi gene ACIAD1960, known from previous work to be expressed during long-term stationary phase. The protein encoded by this gene had been annotated as a Conserved Hypothetical Protein, surrounded by putative tellurite resistance ("Ter") proteins. Sequence analysis suggested that the protein belongs to the DUF1796 putative papain-like protease family. Here, we show that the purified protein, subsequently named StiP, has cysteine protease activity. Deletion of stiP causes hypersensitivity to tellurite, altered population dynamics during long-term batch culture, and most strikingly, dramatic alteration of normal cell morphology. StiP and associated Ter proteins (the StiP-Ter cluster) are therefore important for regulating cell morphology, likely in response to oxidative damage or depletion of intracellular thiol pools, triggered artificially by tellurite exposure. Our finding has broad significance because while tellurite is an extremely rare compound in nature, oxidative damage, the need to maintain a particular balance of intracellular thiols, and the need to regulate cell morphology are ubiquitous.

  6. Effects of long-term exposure of gelatinated and non-gelatinated cadmium telluride quantum dots on differentiated PC12 cells

    Directory of Open Access Journals (Sweden)

    Prasad Babu R

    2012-01-01

    Full Text Available Abstract Background The inherent toxicity of unmodified Quantum Dots (QDs is a major hindrance to their use in biological applications. To make them more potent as neuroprosthetic and neurotherapeutic agents, thioglycolic acid (TGA capped CdTe QDs, were coated with a gelatine layer and investigated in this study with differentiated pheochromocytoma 12 (PC12 cells. The QD - cell interactions were investigated after incubation periods of up to 17 days by MTT and APOTOX-Glo Triplex assays along with using confocal microscopy. Results Long term exposure (up to 17 days to gelatinated TGA-capped CdTe QDs of PC12 cells in the course of differentiation and after neurites were grown resulted in dramatically reduced cytotoxicity compared to non-gelatinated TGA-capped CdTe QDs. Conclusion The toxicity mechanism of QDs was identified as caspase-mediated apoptosis as a result of cadmium leaking from the core of QDs. It was therefore concluded that the gelatine capping on the surface of QDs acts as a barrier towards the leaking of toxic ions from the core QDs in the long term (up to 17 days.

  7. Effects of Long-term exposure of Gelatinated and Non-gelatinated Cadmium Telluride Quantum Dots on Differentiated PC12 cells

    LENUS (Irish Health Repository)

    Prasad, Babu R

    2012-01-20

    Abstract Background The inherent toxicity of unmodified Quantum Dots (QDs) is a major hindrance to their use in biological applications. To make them more potent as neuroprosthetic and neurotherapeutic agents, thioglycolic acid (TGA) capped CdTe QDs, were coated with a gelatine layer and investigated in this study with differentiated pheochromocytoma 12 (PC12) cells. The QD - cell interactions were investigated after incubation periods of up to 17 days by MTT and APOTOX-Glo Triplex assays along with using confocal microscopy. Results Long term exposure (up to 17 days) to gelatinated TGA-capped CdTe QDs of PC12 cells in the course of differentiation and after neurites were grown resulted in dramatically reduced cytotoxicity compared to non-gelatinated TGA-capped CdTe QDs. Conclusion The toxicity mechanism of QDs was identified as caspase-mediated apoptosis as a result of cadmium leaking from the core of QDs. It was therefore concluded that the gelatine capping on the surface of QDs acts as a barrier towards the leaking of toxic ions from the core QDs in the long term (up to 17 days).

  8. Role of morphology and crystallinity of nanorod and planar electron transport layers on the performance and long term durability of perovskite solar cells

    Science.gov (United States)

    Fakharuddin, Azhar; Di Giacomo, Francesco; Ahmed, Irfan; Wali, Qamar; Brown, Thomas M.; Jose, Rajan

    2015-06-01

    High efficiency is routinely reported in CH3NH3PbI3-xClx sensitized mesoscopic solar cells (PSCs) employing planar and scaffold architectures; however, a systematic comparison of their photovoltaic performance under similar experimental conditions and their long term stability have so far not been discussed. In this paper, we compare the performance and durability of PSCs employing these two device configurations and conclude that although a planar architecture routinely provides high initial photoconversion efficiency (PCE), particularly high open-circuit voltage (VOC), a scaffold is crucial to achieve long term durable performance of such devices. In a comparative study of scaffold (rutile nanorods, NRs) vs. planar devices, the efficiency in latter dropped off by one order of magnitude in ∼300 h despite their similar initial PCE of ∼12%. We compared the performance and the durability of two types of scaffolds, i.e., pristine and TiCl4 treated NRs, and observed that the pristine NRs showed >10% improvement in the PCE after ∼1300 h whereas the cells employing post-treated NR scaffold retained ∼60% of initial value. We address the origin of the different photovoltaic performance of planar and scaffold devices in the context of photoanode morphology and its possible effect on the cell durability.

  9. Long-term clinical results of autologous bone marrow CD 133+ cell transplantation in patients with ST-elevation myocardial infarction

    Science.gov (United States)

    Kirgizova, M. A.; Suslova, T. E.; Markov, V. A.; Karpov, R. S.; Ryabov, V. V.

    2015-11-01

    The aim of the study was investigate the long-term results of autologous bone marrow CD 133+ cell transplantation in patients with primary ST-Elevation Myocardial Infarction (STEMI). Methods and results: From 2006 to 2007, 26 patients with primary STEMI were included in an open randomized study. Patients were randomized to two groups: 1st - included patients underwent PCI and transplantation of autologous bone marrow CD 133+ cell (n = 10); 2nd - patients with only PCI (n = 16). Follow-up study was performed 7.70±0.42 years after STEMI and consisted in physical examination, 6-min walking test, Echo exam. Total and cardiovascular mortality in group 1 was lower (20% (n = 2) vs. 44% (n = 7), p = 0.1 and 22% (n = 2) vs. 25% (n = 4), (p=0.53), respectively). Analysis of cardiac volumetric parameters shows significant differences between groups: EDV of 100.7 ± 50.2 mL vs. 144.40±42.7 mL, ESV of 56.3 ± 37.8 mL vs. 89.7 ± 38.7 mL in 1st and 2nd groups, respectively. Data of the study showed positive effects of autologous bone marrow CD 133+ cell transplantation on the long-term survival of patients and structural status of the heart.

  10. The age-dependent epigenetic and physiological changes in an Arabidopsis T87 cell suspension culture during long-term cultivation

    Energy Technology Data Exchange (ETDEWEB)

    Kwiatkowska, Aleksandra, E-mail: A.Kwiatkows@gmail.com [Department of Botany, University of Rzeszow, Kolbuszowa (Poland); Zebrowski, Jacek [Department of Plant Physiology, University of Rzeszow, Kolbuszowa (Poland); Oklejewicz, Bernadetta [Department of Genetics, University of Rzeszow, Kolbuszowa (Poland); Czarnik, Justyna [Department of Botany, University of Rzeszow, Kolbuszowa (Poland); Halibart-Puzio, Joanna [Department of Plant Physiology, University of Rzeszow, Kolbuszowa (Poland); Wnuk, Maciej [Department of Genetics, University of Rzeszow, Kolbuszowa (Poland)

    2014-05-02

    Highlights: • A decrease in proliferation rate during long-term cultivation of Arabidopsis cells. • Age-dependent increase in senescence-associated gene expression in Arabidopsis cells. • Age-related increase in DNA methylation, H3K9me2, and H3K27me3 in Arabidopsis cells. • High potential of photosynthetic efficiency of long-term cultured Arabidopsis cells. - Abstract: Plant cell suspension cultures represent good model systems applicable for both basic research and biotechnological purposes. Nevertheless, it is widely known that a prolonged in vitro cultivation of plant cells is associated with genetic and epigenetic instabilities, which may limit the usefulness of plant lines. In this study, the age-dependent epigenetic and physiological changes in an asynchronous Arabidopsis T87 cell culture were examined. A prolonged cultivation period was found to be correlated with a decrease in the proliferation rate and a simultaneous increase in the expression of senescence-associated genes, indicating that the aging process started at the late growth phase of the culture. In addition, increases in the heterochromatin-specific epigenetic markers, i.e., global DNA methylation, H3K9 dimethylation, and H3K27 trimethylation, were observed, suggesting the onset of chromatin condensation, a hallmark of the early stages of plant senescence. Although the number of live cells decreased with an increase in the age of the culture, the remaining viable cells retained a high potential to efficiently perform photosynthesis and did not exhibit any symptoms of photosystem II damage.

  11. Successful autologous stem cell collection with filgrastim and plerixafor after long-term lenalidomide therapy for multiple myeloma

    Directory of Open Access Journals (Sweden)

    Rishi Agarwal

    2012-12-01

    Full Text Available Novel agents such as lenalidomide have demonstrated responses similar to high-dose melphalan and autologous stem cell transplant in multiple myeloma. For patients who are started on lenalidomide, it is advisable to collect stem cells early if future transplant is contemplated. We are reporting a patient who underwent successful stem cell mobilization after 68 cycles of lenalidomide. A 60-year old male presented with back pain. He was diagnosed with stage IIA, IgA multiple myeloma. He was enrolled in a clinical trial and was randomized to receive lenalidomide plus dexamethasone. He received a total of 68 cycles of lenalidomide before progressing. He underwent mobilization of stem cells using filgrastim and plerixafor. He underwent successful stem cell transplant. Longer duration of lenalidomide adversely effects stem cell mobilization. To the best of our knowledge, there has been no other case reported in which stem cell mobilization was feasible after such a long (68 months duration of uninterrupted lenalidomide therapy.

  12. The predominant mechanism of intercellular calcium wave propagation changes during long-term culture of human osteoblast-like cells

    DEFF Research Database (Denmark)

    Henriksen, Zanne; Hiken, Jeffrey F; Steinberg, Thomas H;

    2006-01-01

    Intercellular calcium waves (ICW) are calcium transients that spread from cell to cell in response to different stimuli. We previously demonstrated that human osteoblast-like cells in culture propagate ICW in response to mechanical stimulation by two mechanisms. One mechanism involves autocrine...... assessed by video imaging of Fura-2 loaded cells after 1, 2 and 4 months culture. The P2Y2 receptor and the gap junction protein Cx43 were assessed by Western blot and real-time PCR. In resting conditions, P2Y mediated ICW prevailed and spread rapidly to about 13 cells. P2Y receptor desensitization by ATP......, but as cells differentiate in culture, gap-junction-mediated ICW become more prominent. These results suggest that P2Y receptor-mediated and gap junction-mediated mechanisms of intercellular calcium signaling may play different roles during differentiation of bone-forming cells....

  13. In Vivo Senescence in the Sbds-Deficient Murine Pancreas: Cell-Type Specific Consequences of Translation Insufficiency.

    Science.gov (United States)

    Tourlakis, Marina E; Zhang, Siyi; Ball, Heather L; Gandhi, Rikesh; Liu, Hongrui; Zhong, Jian; Yuan, Julie S; Guidos, Cynthia J; Durie, Peter R; Rommens, Johanna M

    2015-06-01

    Genetic models of ribosome dysfunction show selective organ failure, highlighting a gap in our understanding of cell-type specific responses to translation insufficiency. Translation defects underlie a growing list of inherited and acquired cancer-predisposition syndromes referred to as ribosomopathies. We sought to identify molecular mechanisms underlying organ failure in a recessive ribosomopathy, with particular emphasis on the pancreas, an organ with a high and reiterative requirement for protein synthesis. Biallelic loss of function mutations in SBDS are associated with the ribosomopathy Shwachman-Diamond syndrome, which is typified by pancreatic dysfunction, bone marrow failure, skeletal abnormalities and neurological phenotypes. Targeted disruption of Sbds in the murine pancreas resulted in p53 stabilization early in the postnatal period, specifically in acinar cells. Decreased Myc expression was observed and atrophy of the adult SDS pancreas could be explained by the senescence of acinar cells, characterized by induction of Tgfβ, p15(Ink4b) and components of the senescence-associated secretory program. This is the first report of senescence, a tumour suppression mechanism, in association with SDS or in response to a ribosomopathy. Genetic ablation of p53 largely resolved digestive enzyme synthesis and acinar compartment hypoplasia, but resulted in decreased cell size, a hallmark of decreased translation capacity. Moreover, p53 ablation resulted in expression of acinar dedifferentiation markers and extensive apoptosis. Our findings indicate a protective role for p53 and senescence in response to Sbds ablation in the pancreas. In contrast to the pancreas, the Tgfβ molecular signature was not detected in fetal bone marrow, liver or brain of mouse models with constitutive Sbds ablation. Nevertheless, as observed with the adult pancreas phenotype, disease phenotypes of embryonic tissues, including marked neuronal cell death due to apoptosis, were determined to

  14. Superparamagnetic iron oxide nanoparticles function as a long-term, multi-modal imaging label for non-invasive tracking of implanted progenitor cells.

    Directory of Open Access Journals (Sweden)

    Christina A Pacak

    Full Text Available The purpose of this study was to determine the ability of superparamagnetic iron oxide (SPIO nanoparticles to function as a long-term tracking label for multi-modal imaging of implanted engineered tissues containing muscle-derived progenitor cells using magnetic resonance imaging (MRI and X-ray micro-computed tomography (μCT. SPIO-labeled primary myoblasts were embedded in fibrin sealant and imaged to obtain intensity data by MRI or radio-opacity information by μCT. Each imaging modality displayed a detection gradient that matched increasing SPIO concentrations. Labeled cells were then incorporated in fibrin sealant, injected into the atrioventricular groove of rat hearts, and imaged in vivo and ex vivo for up to 1 year. Transplanted cells were identified in intact animals and isolated hearts using both imaging modalities. MRI was better able to detect minuscule amounts of SPIO nanoparticles, while μCT more precisely identified the location of heavily-labeled cells. Histological analyses confirmed that iron oxide particles were confined to viable, skeletal muscle-derived cells in the implant at the expected location based on MRI and μCT. These analyses showed no evidence of phagocytosis of labeled cells by macrophages or release of nanoparticles from transplanted cells. In conclusion, we established that SPIO nanoparticles function as a sensitive and specific long-term label for MRI and μCT, respectively. Our findings will enable investigators interested in regenerative therapies to non-invasively and serially acquire complementary, high-resolution images of transplanted cells for one year using a single label.

  15. Superparamagnetic iron oxide nanoparticles function as a long-term, multi-modal imaging label for non-invasive tracking of implanted progenitor cells.

    Science.gov (United States)

    Pacak, Christina A; Hammer, Peter E; MacKay, Allison A; Dowd, Rory P; Wang, Kai-Roy; Masuzawa, Akihiro; Sill, Bjoern; McCully, James D; Cowan, Douglas B

    2014-01-01

    The purpose of this study was to determine the ability of superparamagnetic iron oxide (SPIO) nanoparticles to function as a long-term tracking label for multi-modal imaging of implanted engineered tissues containing muscle-derived progenitor cells using magnetic resonance imaging (MRI) and X-ray micro-computed tomography (μCT). SPIO-labeled primary myoblasts were embedded in fibrin sealant and imaged to obtain intensity data by MRI or radio-opacity information by μCT. Each imaging modality displayed a detection gradient that matched increasing SPIO concentrations. Labeled cells were then incorporated in fibrin sealant, injected into the atrioventricular groove of rat hearts, and imaged in vivo and ex vivo for up to 1 year. Transplanted cells were identified in intact animals and isolated hearts using both imaging modalities. MRI was better able to detect minuscule amounts of SPIO nanoparticles, while μCT more precisely identified the location of heavily-labeled cells. Histological analyses confirmed that iron oxide particles were confined to viable, skeletal muscle-derived cells in the implant at the expected location based on MRI and μCT. These analyses showed no evidence of phagocytosis of labeled cells by macrophages or release of nanoparticles from transplanted cells. In conclusion, we established that SPIO nanoparticles function as a sensitive and specific long-term label for MRI and μCT, respectively. Our findings will enable investigators interested in regenerative therapies to non-invasively and serially acquire complementary, high-resolution images of transplanted cells for one year using a single label.

  16. Interphase FISH Demonstrates that Human Adipose Stromal Cells Maintain a High Level of Genomic Stability in Long-Term Culture

    OpenAIRE

    2008-01-01

    Human adipose stromal cells (ASCs) reside within the stromal-vascular fraction (SVF) in fat tissue, can be readily isolated, and include stem-like cells that may be useful for therapy. An important consideration for clinical application and functional studies of stem/progenitor cells is their capacity to maintain chromosome stability in culture. In this study, cultured ASC populations and ASC clones were evaluated at intervals for maintenance of chromosome stability. Uncultured SVF (uSVF) cel...

  17. Isolation of mesenchymal stem cells from human bone and long-term cultivation under physiologic oxygen conditions.

    Science.gov (United States)

    Klepsch, Sebastian; Jamnig, Angelika; Trimmel, Daniela; Schimke, Magdalena; Kapferer, Werner; Brunauer, Regina; Singh, Sarvpreet; Reitinger, Stephan; Lepperdinger, Günter

    2013-01-01

    Bone-derived stroma cells contain a rare subpopulation, which exhibits enhanced stemness characteristics. Therefore, this particular cell type is often attributed the mesenchymal stem cell (MSC). Due to their high proliferation potential, multipotential differentiation capacity, and immunosuppressive properties, MSCs are now widely appreciated for cell therapeutic applications in a multitude of clinical aspects. In line with this, maintenance of MSC stemness during isolation and culture expansion is considered pivot. Here, we provide step-by-step protocols which allow selection for, and in vitro propagation of high quality MSC from human bone.

  18. Long-term in-vivo tumorigenic assessment of human culture-expanded adipose stromal/stem cells

    Energy Technology Data Exchange (ETDEWEB)

    MacIsaac, Zoe Marie, E-mail: zmm4a@virgina.edu [University of Virginia (United States); Shang, Hulan, E-mail: shanghulan@gmail.com [Department of Plastic Surgery, University of Virginia (United States); Agrawal, Hitesh, E-mail: hiteshdos@hotmail.com [Department of Plastic Surgery, University of Virginia (United States); Yang, Ning, E-mail: ny6u@virgina.edu [Department of Plastic Surgery, University of Virginia (United States); Parker, Anna, E-mail: amp4v@virginia.edu [Department of Surgery, University of Virginia (United States); Katz, Adam J., E-mail: ajk2f@virginia.edu [Department of Plastic Surgery, University of Virginia (United States)

    2012-02-15

    After more than a decade of extensive experimentation, the promise of stem cells to revolutionize the field of medicine has negotiated their entry into clinical trial. Adipose tissue specifically holds potential as an attainable and abundant source of stem cells. Currently undergoing investigation are adipose stem cell (ASC) therapies for diabetes and critical limb ischemia, among others. In the enthusiastic pursuit of regenerative therapies, however, questions remain regarding ASC persistence and migration, and, importantly, their safety and potential for neoplasia. To date, assays of in vivo ASC activity have been limited by early end points. We hypothesized that with time, ASCs injected subcutaneously undergo removal by normal tissue turnover and homeostasis, and by the host's immune system. In this study, a high dose of culture expanded ASCs was formulated and implanted as multicellular aggregates into immunocompromised mice, which were maintained for over one year. Animals were monitored for toxicity, and surviving cells quantified at study endpoint. No difference in growth/weight or lifespan was found between cell-treated and vehicle treated animals, and no malignancies were detected in treated animals. Moreover, real-time PCR for a human specific sequence, ERV-3, detected no persistent ASCs. With the advent of clinical application, clarification of currently enigmatic stem cell properties has become imperative. Our study represents the longest duration determination of stem cell activity in vivo, and contributes strong evidence in support of the safety of adipose derived stem cell applications. -- Highlights: Black-Right-Pointing-Pointer Adipose stem cells promise novel clinical therapies. Black-Right-Pointing-Pointer Before clinical translation, safety profiles must be further elucidated. Black-Right-Pointing-Pointer Subcutaneously injected non-autologous adipose stem cells do not form tumors. Black-Right-Pointing-Pointer Subcutaneously injected non

  19. Thin-Film Photovoltaic Cells: Long-Term Metal(loid) Leaching at Their End-of-Life

    NARCIS (Netherlands)

    Zimmermann, Y.S.; Schäffer, A.; Corvini, P.F.X.; Lenz, M.

    2013-01-01

    The photovoltaic effect of thin-film copper indium gallium selenide cells (CIGS) is conferred by the latter elements. Organic photovoltaic cells (OPV), relying on organic light-absorbing molecules, also contain a variety of metals (e.g., Zn, Al, In, Sn, Ag). The environmental impact of such technolo

  20. Long-term outcomes among older patients following nonmyeloablative conditioning and allogeneic hematopoietic cell transplantation for advanced hematologic malignancies

    DEFF Research Database (Denmark)

    Sorror, Mohamed L; Sandmaier, Brenda M; Storer, Barry E;

    2011-01-01

    A minimally toxic nonmyeloablative regimen was developed for allogeneic hematopoietic cell transplantation (HCT) to treat patients with advanced hematologic malignancies who are older or have comorbid conditions.......A minimally toxic nonmyeloablative regimen was developed for allogeneic hematopoietic cell transplantation (HCT) to treat patients with advanced hematologic malignancies who are older or have comorbid conditions....

  1. Quantitative analysis of the acute and long-term CD4(+) T-cell response to a persistent gammaherpesvirus

    DEFF Research Database (Denmark)

    Christensen, Jan Pravsgaard; Doherty, P C

    1999-01-01

    The murine gammaherpesvirus 68 (MHV-68) replicates in respiratory epithelial cells, where it establishes a persistent, latent infection limited predominantly to B lymphocytes. The virus-specific CD4(+) T-cell response in C57BL/6 mice challenged intranasally with MHV-68 is detected first in the me......The murine gammaherpesvirus 68 (MHV-68) replicates in respiratory epithelial cells, where it establishes a persistent, latent infection limited predominantly to B lymphocytes. The virus-specific CD4(+) T-cell response in C57BL/6 mice challenged intranasally with MHV-68 is detected first...... were initially CD62Llow, with >80% maintaining that phenotype for the next 14 months. The overall conclusion is that MHV-68-specific CD4(+) T cells remain activated (CD62Llow) and at a stable frequency in the face of persistent infection....

  2. Expression of Gast, Cckbr, Reg1α genes in rat duodenal epithelial cells upon long-term gastric hypoacidity and after a multiprobiotic administration

    Directory of Open Access Journals (Sweden)

    Dranitsina A. S.

    2014-11-01

    Full Text Available Aim. Determination of the Cckbr, Gast and Reg1α genes expression in rat duodenal epithelial cells upon long- term hypoacidity and with the administration of the multiprobiotic Symbiter. Methods. The experiments were carried out on white non-strain male rats. The hypoacidic state was induced through intraperitoneal injection of omeprazole for 28 days. The level of genes expression was determined by semi-quantitative analysis with RT-PCR Results. The elevation of mRNA levels of the Cckbr and Gast genes in rat duodenal villus and crypt epitheliocytes, the increased expression of the Reg1A gene in crypt epithelial cells were shown as well as the appearance of the Reg1a gene expression in villus epitheliocytes upon hypoacidic conditions were shown. The content of mRNAs of the above mentioned genes decreased or remained at the control level upon the treatment of hypoacidic rats with the multiprobiotic Symbiter. Conclusions. Long-term gastric hypoacidity is accompanied by the changes in expression of the Cckbr, Gast and Reg1a genes in rat duodenum, whereas upon administration of the multiprobiotic Symbiter the pattern of studied gene expression did not changed in the most cases.

  3. Long-term safety and efficacy of deferasirox (Exjade®) for up to 5 years in transfusional iron-overloaded patients with sickle cell disease

    Science.gov (United States)

    Vichinsky, Elliott; Bernaudin, Françoise; Forni, Gian Luca; Gardner, Renee; Hassell, Kathryn; Heeney, Matthew M; Inusa, Baba; Kutlar, Abdullah; Lane, Peter; Mathias, Liesl; Porter, John; Tebbi, Cameron; Wilson, Felicia; Griffel, Louis; Deng, Wei; Giannone, Vanessa; Coates, Thomas

    2011-01-01

    To date, there is a lack of long-term safety and efficacy data for iron chelation therapy in transfusion-dependent patients with sickle cell disease (SCD). To evaluate the long-term safety and efficacy of deferasirox (a once-daily oral iron chelator), patients with SCD completing a 1-year, Phase II, randomized, deferoxamine (DFO)-controlled study entered a 4-year extension, continuing to receive deferasirox, or switching from DFO to deferasirox. Average actual deferasirox dose was 19·4 ± 6·3 mg/kg per d. Of 185 patients who received at least one deferasirox dose, 33·5% completed the 5-year study. The most common reasons for discontinuation were withdrawal of consent (23·8%), lost to follow-up (9·2%) and adverse events (AEs) (7·6%). Investigator-assessed drug-related AEs were predominantly gastrointestinal [including nausea (14·6%), diarrhoea (10·8%)], mild-to-moderate and transient in nature. Creatinine clearance remained within the normal range throughout the study. Despite conservative initial dosing, serum ferritin levels in patients with ≥4 years deferasirox exposure significantly decreased by −591 μg/l (95% confidence intervals, −1411, −280 μg/l; P=0·027; n=67). Long-term deferasirox treatment for up to 5 years had a clinically acceptable safety profile, including maintenance of normal renal function, in patients with SCD. Iron burden was substantially reduced with appropriate dosing in patients treated for at least 4 years. PMID:21592110

  4. A high throughput system for long term application of intermittent cyclic hydrostatic pressure on cells in culture.

    Science.gov (United States)

    Rottmar, Markus; Ackerknecht, Sabine; Wick, Peter; Maniura-Weber, Katharina

    2011-02-01

    The process of bone remodeling is governed by mechanical stresses and strains. Studies on the effects of mechanical stimulation on cell response are often difficult to compare as the nature of the stimuli and differences in parameters applied vary greatly. Experimental systems for the investigation of mechanical stimuli are mostly limited in throughput or flexibility and often the sum of several stimuli is applied. In this work, a flexible system that allows the investigation of cell response to isolated intermittent cyclic hydrostatic pressure (icHP) on a high throughput level is shown. Human bone derived cells were cultivated with or without mechanical stimulus in the presence or absence of chemical cues triggering osteogenesis for 7-10 days. Cell proliferation and osteogenic differentiation were evaluated by cell counting and immunohistochemical staining for bone alkaline phosphatase as well as collagen 1, respectively. In either medium, both cell proliferation and level of differentiation were increased when the cultures were mechanically stimulated. These initial results therefore qualify the present system for studies on the effects of isolated icHP on cell fate and encourage further investigations on the details behind the observed effects.

  5. Long term culture of mesenchymal stem cells in hypoxia promotes a genetic program maintaining their undifferentiated and multipotent status

    Directory of Open Access Journals (Sweden)

    de Carvalho Marcelo

    2011-03-01

    Full Text Available Abstract Background In the bone marrow, hematopietic and mesenchymal stem cells form a unique niche in which the oxygen tension is low. Hypoxia may have a role in maintaining stem cell fate, self renewal and multipotency. However, whereas most studies addressed the effect of transient in vitro exposure of MSC to hypoxia, permanent culture under hypoxia should reflect the better physiological conditions. Results Morphologic studies, differentiation and transcriptional profiling experiments were performed on MSC cultured in normoxia (21% O2 versus hypoxia (5% O2 for up to passage 2. Cells at passage 0 and at passage 2 were compared, and those at passage 0 in hypoxia generated fewer and smaller colonies than in normoxia. In parallel, MSC displayed (>4 fold inhibition of genes involved in DNA metabolism, cell cycle progression and chromosome cohesion whereas transcripts involved in adhesion and metabolism (CD93, ESAM, VWF, PLVAP, ANGPT2, LEP, TCF1 were stimulated. Compared to normoxic cells, hypoxic cells were morphologically undifferentiated and contained less mitochondrias. After this lag phase, cells at passage 2 in hypoxia outgrew the cells cultured in normoxia and displayed an enhanced expression of genes (4-60 fold involved in extracellular matrix assembly (SMOC2, neural and muscle development (NOG, GPR56, SNTG2, LAMA and epithelial development (DMKN. This group described herein for the first time was assigned by the Gene Ontology program to "plasticity". Conclusion The duration of hypoxemia is a critical parameter in the differentiation capacity of MSC. Even in growth promoting conditions, hypoxia enhanced a genetic program that maintained the cells undifferentiated and multipotent. This condition may better reflect the in vivo gene signature of MSC, with potential implications in regenerative medicine.

  6. Long Term Stability Investigation of Solid Oxide Electrolysis Cell with Infiltrated Porous YSZ Air Electrode Under High Current

    DEFF Research Database (Denmark)

    Veltzé, Sune; Ovtar, Simona; Simonsen, Søren Bredmose

    2015-01-01

    activity, due to high surface area of catalyst nano particles. Advantage of infiltration is also separate production of electrolyte backbone structure with good ionic connectivity and mechanical properties. With this study we present the results of a solid oxide cell with infiltrated porous yttria...... and the backbone, and perovskite catalyst material. Cobalt doped lanthanum nickelate was used as the perovskite catalyst due to its excellent performance. The cell was tested in steam electrolysis for at least 2000h. This initial test indicate that a stable air electrode was formed, and that the cell performance...

  7. Long-term MRI tracking of dual-labeled adipose-derived stem cells homing into mouse carotid artery injury

    Directory of Open Access Journals (Sweden)

    Qin JB

    2012-10-01

    Full Text Available Jin-Bao Qin,1,5,* Kang-An Li,2,* Xiang-Xiang Li,1,5 Qing-Song Xie,3 Jia-Ying Lin,4 Kai-Chuang Ye,1,5 Mi-Er Jiang,1,5 Gui-Xiang Zhang,2 Xin-Wu Lu1,51Department of Vascular Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, 2Department of Radiology, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 3Department of Neurosurgery, Cixi Municipal People's Hospital, Zhejiang Province, China; 4Clinic for Gynecology, Charite-Universitatsmedizin Berlin, Berlin, Germany; 5Vascular Center, Shanghai Jiao Tong University, Shanghai, China*These two authors contributed equally to this workBackground: Stem cell therapy has shown great promise for regenerative repair of injured or diseased tissues. Adipose-derived stem cells (ADSCs have become increasingly attractive candidates for cellular therapy. Magnetic resonance imaging has been proven to be effective in tracking magnetic-labeled cells and evaluating their clinical relevance after cell transplantation. This study investigated the feasibility of imaging green fluorescent protein-expressing ADSCs (GFP-ADSCs labeled with superparamagnetic iron oxide particles, and tracked them in vivo with noninvasive magnetic resonance imaging after cell transplantation in a model of mouse carotid artery injury.Methods: GFP-ADSCs were isolated from the adipose tissues of GFP mice and labeled with superparamagnetic iron oxide particles. Intracellular stability, proliferation, and viability of the labeled cells were evaluated in vitro. Next, the cells were transplanted into a mouse carotid artery injury model. Clinical 3 T magnetic resonance imaging was performed immediately before and 1, 3, 7, 14, 21, and 30 days after cell transplantation. Prussian blue staining and histological analysis were performed 7 and 30 days after transplantation.Results: GFP-ADSCs were found to be efficiently labeled with superparamagnetic iron oxide

  8. Spontaneous rupture of a liver cell adenoma after long term methyltestosterone: report of a case successfully treated by emergency right hepatic lobectomy.

    Science.gov (United States)

    Bird, D; Vowles, K; Anthony, P P

    1979-03-01

    A case of spontaneous rupture of a liver cell adenoma is reported in a female transexual treated with methyltestosterone 150 mg daily for 7 years. Emergency right hepatic lobectomy was performed successfully. Histology showed peliosis hepatis also. Emergency resection of a liver cell adenoma has been reported in a young woman taking oral contraceptives, and an elective resection in another female transexual treated with methyltestosterone. However, to the best of our knowledge this is the first case of emergency resection of a spontaneously ruptured liver cell adenoma in a transexual treated with long term methyltestosterone. Since there are numerous other patients similarly treated, it may be expected that this complication will be seen again.

  9. Experiments on tissue culture in the genus Lycopersicon miller : Shoot formation from protoplasts of tomato long-term cell cultures.

    Science.gov (United States)

    Koblitz, H; Koblitz, D

    1982-06-01

    Callus cultures from cotyledon explants were established and maintained in culture for more than two years. After several months callus cultures were transferred into liquid medium and cultured as cell suspensions. Protoplasts were isolated from these cell suspension cultures and cultured in a liquid medium. After formation of new cell walls the cells were further cultured in liquid medium and afterwards transferred to an agar-solidified medium to give a vigorously growing callus culture. In the case of the cultivar 'Lukullus' shoots were recovered from callus. All efforts to root these shoots failed and this, in addition to variations in appearence, suggests that the shoots are changed genetically possibly due to the prolonged culture period.

  10. Long-term operation of a solid oxide cell stack for coelectrolysis of steam and CO2

    DEFF Research Database (Denmark)

    Agersted, Karsten; Chen, Ming; Blennow, Peter

    2016-01-01

    High temperature electrolysis based on solid oxide electrolysis cells (SOECs) is a promising technology for production of synthetic fuels. The SOEC units can be used for co-electrolysis of steam and CO2 to produce synthesis gas (syngas, CO+H2), which can be further processed to a variety of synth......High temperature electrolysis based on solid oxide electrolysis cells (SOECs) is a promising technology for production of synthetic fuels. The SOEC units can be used for co-electrolysis of steam and CO2 to produce synthesis gas (syngas, CO+H2), which can be further processed to a variety...... of synthetic fuels such as methane, methanol or DME. Previously we have reported electrolysis operation of solid oxide cell stacks for periods up to about 1000 hours. In this work, operation of a Haldor Topsoe 8-cell stack (stack design of 2014) in co-electrolysis mode for 6000 hours is reported. The stack...

  11. Cell-type-specific expression of STAT transcription factors in tissue samples from patients with lymphocytic thyroiditis.

    Science.gov (United States)

    Staab, Julia; Barth, Peter J; Meyer, Thomas

    2012-09-01

    Expression of cytokine-regulated signal transducer and activator of transcription (STAT) proteins was histochemically assessed in patients diagnosed as having Hashimoto's disease or focal lymphocytic thyroiditis (n = 10). All surgical specimens showed histological features of lymphocytic thyroiditis, including a diffuse infiltration with mononuclear cells and an incomplete loss of thyroid follicles, resulting in the destruction of glandular tissue architecture. Immunohistochemical analysis demonstrated differential expression patterns of the various members of the STAT transcription factors examined, indicating that each member of this conserved protein family has its distinct functions in the development of the disease. Using an antibody that specifically recognized the phosphorylated tyrosine residue in position 701, we detected activated STAT1 dimers in numerous germinal macrophages and infiltrating lymphocytes as well as in oncocytes. In contrast, STAT3 expression was restricted to epithelial cells and showed a clear colocalization with the antiapoptotic protein Bcl-2. Moreover, expression of phospho-STAT3 was associated with low levels of stromal fibrosis, suggesting that STAT3 serves as a protective factor in the remodeling of the inflamed thyroid gland. Phospho-STAT5 immunoreactivity was detected in numerous infiltrating cells of hematopoietic origin and, additionally, in hyperplastic follicular epithelia. This tissue distribution demonstrated that activated STAT5 molecules participate in both lymphocytopoiesis and possibly also in the buildup of regenerating thyroid follicles. Taken together, the cell-type-specific expression patterns of STAT proteins in human lymphocytic thyroiditis reflect their distinct and partially antagonistic roles in orchestrating the balance between degenerating and regenerating processes within a changing cytokine environment.

  12. Long-term follow-up of kidney allografts in patients with sickle cell hemoglobinopathy Transplante renal na anemia falciforme

    OpenAIRE

    Friedrisch,João R.; Barros, Elvino J.; Roberto C. Manfro; Bittar,Cristhina M.; Silla,Lúcia M. R.

    2003-01-01

    Although sickle cell anemia and sickle cell disease produce a variety of functional renal abnormalities they uncommonly cause end stage renal failure. Renal transplantation has been a successful alternative for the treatment of the rare terminal chronic renal failure with outcomes comparable with non-sickle recipients. This approach, however, has not been often described on patients with renal failure associated with SC hemoglobinopathy. Here we report the outcomes of two patients with chroni...

  13. Long-Term Effects of Chromatin Remodeling and DNA Damage in Stem Cells Induced by Environmental and Dietary Agents

    OpenAIRE

    Bariar, Bhawana; Vestal, C. Greer; Richardson, Christine

    2013-01-01

    The presence of histones acts as a barrier to protein access; thus chromatin remodeling must occur for essential processes such as transcription and replication. In conjunction with histone modifications, DNA methylation plays critical roles in gene silencing through chromatin remodeling. Chromatin remodeling is also interconnected with the DNA damage response, maintenance of stem cell properties, and cell differentiation programs. Chromatin modifications have increasingly been shown to produ...

  14. Long term presence of a single predominant tyrosinase-specific T-cell clone associated with disease control in a patient with metastatic melanoma.

    Science.gov (United States)

    Ochsenreither, Sebastian; Fusi, Alberto; Busse, Antonia; Letsch, Anne; Haase, Doreen; Thiel, Eckhard; Scheibenbogen, Carmen; Keilholz, Ulrich

    2010-05-15

    In an earlier study, we described a patient who developed an anti-tyrosinase T-cell response leading to long-term tumor control. Here we analyzed this response with regard to T-cell receptor (TCR) Vbeta family usage and clonality in order to further elucidate the nature of the T cell response in this patient. For identification of expanded specific cytotoxic T-cell (CTL) clones, tetramer enrichment of tyrosinase reactive T-cells was followed by comparative quantitative reverse transcribed PCR (qRT PCR) quantification of all TCR Vbeta-families and sequencing of family Vbeta4 elevated in the enriched fraction. The predominant specific clone was quantified by clonotypic qRT PCR in multiple samples from blood, bone marrow, and tumor tissue. FACS analyses with staining of TYR.A2 and TCR Vbeta4 were performed. Epitope specific enrichment revealed an isolated increase of Vbeta-family 4. FACS analysis showed a shift of specific CTLs to Vbeta-family 4 during tumor regression with a maximum of 80% of all TYR.A2 specific cells belonging to this family. Sequencing revealed a single predominant clone against polyclonal background coding for identical CDR3 loops. The predominant clone was highly expressed in bone marrow and tumor tissue, and was detectable in blood over a period of ten years. Considering the results of previous studies showing a specific effector phenotype in blood and a specific memory compartment in bone marrow of this patient, this data implicate the predominant clone featured all attributes of a sufficient CTL response including homing capacity and memory formation resulting in long term clonal persistence and tumor control.

  15. Leishmania braziliensis-reactive T cells are down-regulated in long-term cured cutaneous Leishmaniasis, but the renewal capacity of T effector memory compartments is preserved.

    Directory of Open Access Journals (Sweden)

    Regina Pereira-Carvalho

    Full Text Available Leishmania (Viannia braziliensis control and tissue damage relate to the effector immune response, which in turn affects clinical outcome. Leishmania reactive CD4(+ and CD8(+ T cells are expanded in long-term healed cutaneous leishmaniasis (hCL patients but their functional characteristics remain to be determined. This study investigates antigen-specific recall in long-term healed CL caused by L. braziliensis infection. Healed CL subjects were grouped according to the time elapsed since the end of therapy: less than two years and two to five years. Activation phenotype (CD69(+ or CD25(+ and subpopulations of memory T cell phenotypes [central memory (Tcm: CD45RO(+ CCR7(+ or effector memory (Tem: CD45RO(+ CCR7(-] were quantified in ex vivo blood mononuclear cells and after Leishmania antigens stimuli. A reduction in the percentage of activated Leishmania-responder CD4(+ and CD8(+ T cells in hCL was associated with the time elapsed since clinical cure. Percentage of CD69(+ in TCD4(+ and TCD8(+ cells were negatively correlated with IL-10 levels. Ex vivo analyses showed contracted Tem CD4(+ and Tem CD8(+ compartments from hCL with long time elapsed since clinical cure, although renewal of these compartments was observed following in vitro exposure to leishmanial stimuli. Our results show that healed L. braziliensis infected patients exhibit a recall response to Leishmania antigens with evident expansion of effector memory T cells. Regulated leishmanial-specific response seems to emerge only about two years after initial contact with the parasite antigens.

  16. Phenotypic malignant changes and untargeted lipidomic analysis of long-term exposed prostate cancer cells to endocrine disruptors

    Energy Technology Data Exchange (ETDEWEB)

    Bedia, Carmen, E-mail: carmen.bedia@idaea.csic.es; Dalmau, Núria, E-mail: nuria.dalmau@idaea.csic.es; Jaumot, Joaquim, E-mail: joaquim.jaumot@idaea.csic.es; Tauler, Romà, E-mail: roma.tauler@idaea.csic.es

    2015-07-15

    Endocrine disruptors (EDs) are a class of environmental toxic molecules able to interfere with the normal hormone metabolism. Numerous studies involve EDs exposure to initiation and development of cancers, including prostate cancer. In this work, three different EDs (aldrin, aroclor 1254 and chlorpyrifos (CPF)) were investigated as potential inducers of a malignant phenotype in DU145 prostate cancer cells after a chronic exposure. Epithelial to mesenchymal transition (EMT) induction, proliferation, migration, colony formation and release of metalloproteinase 2 (MMP-2) were analyzed in 50-day exposed cells to the selected EDs. As a result, aldrin and CPF exposure led to an EMT induction (loss of 16% and 14% of E-cadherin levels, respectively, compared to the unexposed cells). Aroclor and CPF presented an increased migration (134% and 126%, respectively), colony formation (204% and 144%, respectively) and MMP-2 release (137% in both cases) compared to the unexposed cells. An untargeted lipidomic analysis was performed to decipher the lipids involved in the observed transformations. As general results, aldrin exposure showed a global decrease in phospholipids and sphingolipids, and aroclor and CPF showed an increase of certain phospholipids, glycosphingolipids as well as a remarkable increase of some cardiolipin species. Furthermore, the three exposures resulted in an increase of some triglyceride species. In conclusion, some significant changes in lipids were identified and thus we postulate that some lipid compounds and lipid metabolic pathways could be involved in the acquisition of the malignant phenotype in exposed prostate cancer cells to the selected EDs. - Highlights: • Aldrin, aroclor and chlorpyrifos induced an aggressive phenotype in DU145 cells. • An untargeted lipidomic analysis has been performed on chronic exposed cells. • Lipidomic results showed changes in specific lipid species under chronic exposure. • These lipids may have a role in the

  17. Rate of primary refractory disease in B and T-cell non-Hodgkin's lymphoma: correlation with long-term survival.

    Directory of Open Access Journals (Sweden)

    Corrado Tarella

    Full Text Available BACKGROUND: Primary refractory disease is a main challenge in the management of non-Hodgkin's Lymphoma (NHL. This survey was performed to define the rate of refractory disease to first-line therapy in B and T-cell NHL subtypes and the long-term survival of primary refractory compared to primary responsive patients. METHODS: Medical records were reviewed of 3,106 patients who had undergone primary treatment for NHL between 1982 and 2012, at the Hematology Centers of Torino and Bergamo, Italy. Primary treatment included CHOP or CHOP-like regimens (63.2%, intensive therapy with autograft (16.9%, or other therapies (19.9%. Among B-cell NHL, 1,356 (47.8% received first-line chemotherapy with rituximab. Refractory disease was defined as stable/progressive disease, or transient response with disease progression within six months. RESULTS: Overall, 690 (22.2% patients showed primary refractory disease, with a higher incidence amongst T-cell compared to B-cell NHL (41.9% vs. 20.5%, respectively, p<0.001. Several other clinico-pathological factors at presentation were variably associated with refractory disease, including histological aggressive disease, unfavorable clinical presentation, Bone Marrow involvement, low lymphocyte/monocyte ration and male gender. Amongst B-cell NHL, the addition of rituximab was associated with a marked reduction of refractory disease (13.6% vs. 26.7% for non-supplemented chemotherapy, p<0.001. Overall, primary responsive patients had a median survival of 19.8 years, compared to 1.3 yr. for refractory patients. A prolonged survival was consistently observed in all primary responsive patients regardless of the histology. The long life expectancy of primary responsive patients was documented in both series managed before and after 2.000. Response to first line therapy resulted by far the most predictive factor for long-term outcome (HR for primary refractory disease: 16.52, p<0.001. CONCLUSION: Chemosensitivity to primary

  18. Long-term urethral catheterisation.

    Science.gov (United States)

    Turner, Bruce; Dickens, Nicola

    This article discusses long-term urethral catheterisation, focusing on the relevant anatomy and physiology, indications for the procedure, catheter selection and catheter care. It is important that nurses have a good working knowledge of long-term catheterisation as the need for this intervention will increase with the rise in chronic health conditions and the ageing population.

  19. Adolescent maturation of inhibitory inputs onto cingulate cortex neurons is cell-type specific and TrkB dependent

    Directory of Open Access Journals (Sweden)

    Angela eVandenberg

    2015-02-01

    Full Text Available The maturation of inhibitory circuits during adolescence may be tied to the onset of mental health disorders such as schizophrenia. Neurotrophin signaling likely plays a critical role in supporting inhibitory circuit development and is also implicated in psychiatric disease. Within the neocortex, subcircuits may mature at different times and show differential sensitivity to neurotrophin signaling. We measured miniature inhibitory and excitatory postsynaptic currents (mIPSC and mEPSCs in Layer 5 cell-types in the mouse anterior cingulate across the periadolescent period. We differentiated cell-types mainly by Thy1 YFP transgene expression and also retrobead injection labeling in the contralateral cingulate and ipsilateral pons. We found that YFP- neurons and commissural projecting neurons had lower frequency of mIPSCs than neighboring YFP+ neurons or pons projecting neurons in juvenile mice (P21-25. YFP- neurons and to a lesser extent commissural projecting neurons also showed a significant increase in mIPSC amplitude during the periadolescent period (P21-25 vs. P40-50, which was not seen in YFP+ neurons or pons projecting neurons. Systemic disruption of tyrosine kinase receptor B (TrkB signaling during P23-50 in TrkBF616A mice blocked developmental changes in mIPSC amplitude, without affecting miniature excitatory post synaptic currents (mEPSCs. Our data suggest that the maturation of inhibitory inputs onto layer 5 pyramidal neurons is cell-type specific. These data may inform our understanding of adolescent brain development across species and aid in identifying candidate subcircuits that may show greater vulnerability in mental illness.

  20. Cell type-specific genes show striking and distinct patterns of spatial expression in the mouse brain.

    Science.gov (United States)

    Ko, Younhee; Ament, Seth A; Eddy, James A; Caballero, Juan; Earls, John C; Hood, Leroy; Price, Nathan D

    2013-02-19

    To characterize gene expression patterns in the regional subdivisions of the mammalian brain, we integrated spatial gene expression patterns from the Allen Brain Atlas for the adult mouse with panels of cell type-specific genes for neurons, astrocytes, and oligodendrocytes from previously published transcriptome profiling experiments. We found that the combined spatial expression patterns of 170 neuron-specific transcripts revealed strikingly clear and symmetrical signatures for most of the brain's major subdivisions. Moreover, the brain expression spatial signatures correspond to anatomical structures and may even reflect developmental ontogeny. Spatial expression profiles of astrocyte- and oligodendrocyte-specific genes also revealed regional differences; these defined fewer regions and were less distinct but still symmetrical in the coronal plane. Follow-up analysis suggested that region-based clustering of neuron-specific genes was related to (i) a combination of individual genes with restricted expression patterns, (ii) region-specific differences in the relative expression of functional groups of genes, and (iii) regional differences in neuronal density. Products from some of these neuron-specific genes are present in peripheral blood, raising the possibility that they could reflect the activities of disease- or injury-perturbed networks and collectively function as biomarkers for clinical disease diagnostics.

  1. DETECTION OF E6, E7 AND CELL-TYPE SPECIFIC ENHANCER OF HUMAN PAPILLOMAVIRUS TYPE 16 IN BREAST CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    HE Qian; CHU Yong-lie; JIA Xiao-li; ZHANG Shu-qun; LIU Wen-kang

    2008-01-01

    Objective To detect HPV16 E6, E7 genes and cell-type specific enhancer (CTSE) of long control region (LCR) in breast carcinoma (BC).Methods HPV16 E6,E7 genes and CTSE were detected in 40 BCs and 20 normal breast tissue (NBT) using polymerase chain reaction (PCR).Results The positive rates of HPV16 E6, E7genes and CTSE were 60% (24/40),55% (22/40) and 67.5%(27/40)respectively in BCs, whereas only 5% (1/20), 5%(1/20) and 15% (3/20) in NBTs (P<0.05). There exited significant correlation between E6 gene and CTSE in BCs (P<0.05), as well as E7 gene and CTSE. The infection of HPV16 E6, E7 and CTSE had no statistic relationship with pathological features.Conclusion There were HPV16 E6, E7 genes and CTSE together in BCs and CTSE may play an important role in pathogenesis of BC.

  2. A Low Ethanol Dose Affects all Types of Cells in Mixed Long-Term Embryonic Cultures of the Cerebellum

    DEFF Research Database (Denmark)

    Pickering, Chris; Wicher, Grzegorz; Rosendahl, Sofi

    2010-01-01

    . We exposed a primary culture of rat cerebellum from embryonic day 17 (corresponding to second trimester in humans) to ethanol at a concentration of 17.6 mM which is roughly equivalent to one glass of wine. Acutely, there was no change in cell viability after 5 or 8 days of exposure relative...

  3. Long-Term and Late Effects of Germ Cell Testicular Cancer Treatment and Implications for Follow-Up

    NARCIS (Netherlands)

    Haugnes, Hege S.; Bosl, George J.; Boer, Hink; Gietema, Jourik A.; Brydoy, Marianne; Oldenburg, Jan; Dahl, Alv A.; Bremnes, Roy M.; Fossa, Sophie D.

    2012-01-01

    Germ cell testicular cancer (TC) represents a malignancy with high cure rates. Since the introduction of cisplatin-based chemotherapy in the late 1970s, the 5-year survival rate has increased considerably, and it is currently above 95%. Because TC is usually diagnosed before the age of 40 years, the

  4. Long-term delivery of nerve growth factor by encapsulated cell biodelivery in the Göttingen minipig basal forebrain

    DEFF Research Database (Denmark)

    Fjord-Larsen, Lone; Kusk, Philip; Tornøe, Jens;

    2010-01-01

    Nerve growth factor (NGF) prevents cholinergic degeneration in Alzheimer's disease (AD) and improves memory in AD animal models. In humans, the safe delivery of therapeutic doses of NGF is challenging. For clinical use, we have therefore developed an encapsulated cell (EC) biodelivery device...

  5. Long-Term Excess Mortality for Survivors of Non-small Cell Lung Cancer in the Netherlands

    NARCIS (Netherlands)

    Janssen-Heijnen, Maryska L.; van Steenbergen, Liza N.; Steyerberg, Ewout; Visser, Otto; De Ruysscher, Dirk K.; Groen, Harry J.

    2012-01-01

    Introduction: Most patients diagnosed with non-small cell lung cancer (NSCLC) die within the first few years after diagnosis. However, only little is known about those who have survived these first years. We aimed to study conditional 5-year relative survival rates for NSCLC patients during long-ter

  6. The Neural Cell Adhesion Molecule-Derived Peptide FGL Facilitates Long-Term Plasticity in the Dentate Gyrus in Vivo

    Science.gov (United States)

    Dallerac, Glenn; Zerwas, Meike; Novikova, Tatiana; Callu, Delphine; Leblanc-Veyrac, Pascale; Bock, Elisabeth; Berezin, Vladimir; Rampon, Claire; Doyere, Valerie

    2011-01-01

    The neural cell adhesion molecule (NCAM) is known to play a role in developmental and structural processes but also in synaptic plasticity and memory of the adult animal. Recently, FGL, a NCAM mimetic peptide that binds to the Fibroblast Growth Factor Receptor 1 (FGFR-1), has been shown to have a beneficial impact on normal memory functioning, as…

  7. Using Long-Term Time-Lapse Imaging of Mammalian Cell Cycle Progression for Laboratory Instruction and Analysis

    Science.gov (United States)

    Hinchcliffe, Edward H.

    2005-01-01

    Cinemicrography--the capture of moving cellular sequences through the microscope--has been influential in revealing the dynamic nature of cellular behavior. One of the more dramatic cellular events is mitosis, the division of sister chromatids into two daughter cells. Mitosis has been extensively studied in a variety of organisms, both…

  8. Blood Vessel Matrix Seeded with Cells: A Better Alternative for Abdominal Wall Reconstruction—A Long-Term Study

    Directory of Open Access Journals (Sweden)

    Maciej Nowacki

    2015-01-01

    Full Text Available Purpose. The aim of this study was to present abdominal wall reconstruction using a porcine vascular graft seeded with MSC (mesenchymal stem cells on rat model. Material and Methods. Abdominal wall defect was prepared in 21 Wistar rats. Acellular porcine-vascular grafts taken from aorta and prepared with Triton X were used. 14 aortic grafts were implanted in place, of which 7 grafts were seeded with rat MSC cells (Group I, and 7 were acellular grafts (Group II. As a control, 7 standard polypropylene meshes were used for defect augmentation (Group III. The assessment method was performed by HE and CD31 staining after 6 months. The mechanical properties have been investigated by Zwick&Roell Z0.5. Results. The strongest angiogenesis and lowest inflammatory response were observed in Group I. Average capillaries density was 2.75, 0.75, and 1.53 and inflammatory effect was 0.29, 1.39, and 2.72 for Groups I, II, and III, respectively. The means of mechanical properties were 12.74±1.48, 7.27±1.56, and 14.4±3.7 N/cm in Groups I and II and control, respectively. Conclusions. Cell-seeded grafts have better mechanical properties than acellular grafts but worse than polypropylene mesh. Cells improved mechanical and physiological properties of decellularized natural scaffolds.

  9. Adverse psychological outcomes in long-term survivors of hematopoietic cell transplantation: a report from the Bone Marrow Transplant Survivor Study (BMTSS).

    Science.gov (United States)

    Sun, Can-Lan; Francisco, Liton; Baker, K Scott; Weisdorf, Daniel J; Forman, Stephen J; Bhatia, Smita

    2011-10-27

    Little information exists regarding long-term psychological health of hematopoietic cell transplantation (HCT) survivors. Using resources offered by the Bone Marrow Transplant Survivor Study (BMTSS), we evaluated adverse psychological outcomes in 1065 long-term HCT survivors and a healthy comparison group composed of siblings. Psychological health status was evaluated using the Brief Symptom Inventory-18. Twenty-two percent of the HCT survivors reported adverse psychological outcomes, compared with 8% of the siblings. Exposure to prednisone was associated with psychological distress across all domains (anxiety, depression, and somatic distress). Fifteen percent of the HCT survivors reported somatic distress, representing an almost 3-fold higher risk comparing to siblings. Among survivors, in addition to low annual household income and self-reported poor health, having severe/life-threatening conditions and presence of active chronic GVHD were associated with a 2-fold increased risk for somatic distress. Seven percent of the HCT survivors expressed suicidal ideation; patients with higher scores on depression subscale were most vulnerable. This study demonstrates that somatic distress is the biggest challenge faced by survivors long after HCT. These results identify vulnerable subpopulations and provide patients, families, and healthcare providers with necessary information to plan for post-HCT needs many years after HCT.

  10. Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fanqing; Gerion, Daniele

    2004-06-14

    One of the biggest challenges in cell biology is the imaging of living cells. For this purpose, the most commonly used visualization tool is fluorescent markers. However, conventional labels, such as organic fluorescent dyes or green fluorescent proteins (GFP), lack the photostability to allow the tracking of cellular events that happen over minutes to days. In addition, they are either toxic to cells (dyes), or difficult to construct and manipulate (GFP). We report here the use of a new class of fluorescent labels, silanized CdSe/ZnS nanocrystal-peptide conjugates, for imaging the nuclei of living cells. CdSe/ZnS nanocrystals, or so called quantum dots (qdots), are extremely photostable, and have been used extensively in cellular imaging of fixed cells. However, most of the studies about living cells so far have been concerned only with particle entry into the cytoplasm or the localization of receptors on the cell membrane. Specific targeting of qdots to the nucleus of living cells ha s not been reported in previous studies, due to the lack of a targeting mechanism and proper particle size. Here we demonstrate for the first time the construction of a CdSe/ZnS nanocrystal-peptide conjugate that carries the SV40 large T antigen nuclear localization signal (NLS), and the transfection of the complex into living cells. By a novel adaptation of commonly used cell transfection techniques for qdots, we were able to introduce and retain the NLS-qdots conjugate in living cells for up to a week without detectable negative cellular effects. Moreover, we can visualize the movement of the CdSe/ZnS nanocrystal-peptide conjugates from cytoplasm to the nucleus, and the accumulation of the complex in the cell nucleus, over a long observation time period. This report opens the door for using qdots to visualize long-term biological events that happen in the cell nucleus, and provides a new nontoxic, long-term imaging platform for cell nuclear processes.

  11. Fluorescent CdSe/ZnS Nanocrystal-Peptide Conjugates for Long-term, Nontoxic Imaging and Nuclear Targeting in Living Cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, F; Gerion, D

    2004-06-08

    One of the biggest challenges in cell biology is the imaging of living cells. For this purpose, the most commonly used visualization tool is fluorescent markers. However, conventional labels, such as organic fluorescent dyes or green fluorescent proteins (GFP), lack the photostability to allow the tracking of cellular events that happen over minutes to days. In addition, they are either toxic to cells (dyes), or difficult to construct and manipulate (GFP). We report here the use of a new class of fluorescent labels, silanized CdSe/ZnS nanocrystal-peptide conjugates, for imaging the nuclei of living cells. CdSe/ZnS nanocrystals, or so called quantum dots (qdots), are extremely photostable, and have been used extensively in cellular imaging of fixed cells. Most of the studies about living cells so far have been concerned only with particle entry into the cytoplasm or the localization of receptors on the cell membrane. Specific targeting of qdots to the nucleus of living cells has not been reported in previous studies, due to the lack of a targeting mechanism and proper particle size. Here we demonstrate for the first time the construction of a CdSe/ZnS nanocrystal-peptide conjugate that carries the SV40 large T antigen nuclear localization signal (NLS), and the transfection of the complex into living cells. By a novel adaptation of a commonly used cell transfection technique for qdots, we were able to introduce and retain the NLS-qdot conjugates in living cells for up to a week without detectable negative cellular effects. Moreover, we can visualize the movement of the CdSe/ZnS qdot-peptide conjugates from cytoplasm to the nucleus, and the accumulation of the complex in the cell nucleus, over a long observation time period. This report opens the door for using qdots to visualize long-term biological events that happen in the cell nucleus, and provides a new nontoxic, long-term imaging platform for nuclear trafficking mechanisms and cell nuclear processes.

  12. Brain metastasis of ALK positive anaplastic large cell lymphoma after a long-term disease free survival in an old adult

    Science.gov (United States)

    Wang, Cai-Xia; Wang, Hai; Li, Jie; Ma, Heng-Hui; Yu, Bo; Shi, Shan-Shan; Zhou, Xiao-Jun; Shi, Qun-Li

    2014-01-01

    Anaplastic large cell lymphoma (ALCL) is a subtype of non-Hodgkin lymphoma composed of CD30-positive cells and now recognized as three different entities: primary cutaneous ALCL, primary systemic anaplastic lymphoma kinase (ALK)-positive (ALK+) ALCL and primary ALK-negative (ALK-) ALCL. ALK+ ALCL is supposed to have a better prognosis than ALK- ALCL. It is rarely metastasized to other sites, especially to the central nervous system (CNS). Herein, we present a rare case of systemic ALK+ ALCL which metastasized to the brain after a long-term disease free survival in an adult. Neuroimaging revealed a well-enhanced mass in the left frontal lobe. And it was completely resected. The results of the pathological and immunohistochemical studies were consistent with the metastasized ALK+ ALCL. The clinical findings, pathologic characteristics and treatment are described. PMID:24696735

  13. Long-term effects of bariatric surgery on meal disposal and β-cell function in diabetic and nondiabetic patients

    DEFF Research Database (Denmark)

    Camastra, Stefania; Muscelli, Elza; Gastaldelli, Amalia;

    2013-01-01

    Gastric bypass surgery leads to marked improvements in glucose tolerance and insulin sensitivity in obese type 2 diabetes (T2D); the impact on glucose fluxes in response to a physiological stimulus, such as a mixed meal test (MTT), has not been determined. We administered an MTT to 12 obese T2D...... patients and 15 obese nondiabetic (ND) subjects before and 1 year after surgery (10 T2D and 11 ND) using the double-tracer technique and modeling of β-cell function. In both groups postsurgery, tracer-derived appearance of oral glucose was biphasic, a rapid increase followed by a sharp drop, a pattern...... that was mirrored by postprandial glucose levels and insulin secretion. In diabetic patients, surgery lowered fasting and postprandial glucose levels, peripheral insulin sensitivity increased in proportion to weight loss (~30%), and β-cell glucose sensitivity doubled but did not normalize (compared with 21...

  14. Improving the long-term stability of PBDTTPD polymer solar cells through material purification aimed at removing organic impurities

    KAUST Repository

    Mateker, William R.

    2013-01-01

    While bulk heterojunction (BHJ) solar cells fabricated from high M n PBDTTPD achieve power conversion efficiencies (PCE) as high as 7.3%, the short-circuit current density (JSC) of these devices can drop by 20% after seven days of storage in the dark and under inert conditions. This degradation is characterized by the appearance of S-shape features in the reverse bias region of current-voltage (J-V) curves that increase in amplitude over time. Conversely, BHJ solar cells fabricated from low Mn PBDTTPD do not develop S-shaped J-V curves. However, S-shapes identical to those observed in high Mn PBDTTPD solar cells can be induced in low M n devices through intentional contamination with the TPD monomer. Furthermore, when high Mn PBDTTPD is purified via size exclusion chromatography (SEC) to reduce the content of low molecular weight species, the JSC of polymer devices is significantly more stable over time. After 111 days of storage in the dark under inert conditions, the J-V curves do not develop S-shapes and the JSC degrades by only 6%. The S-shape degradation feature, symptomatic of low device lifetimes, appears to be linked to the presence of low molecular weight contaminants, which may be trapped within samples of high Mn polymer that have not been purified by SEC. Although these impurities do not affect initial device PCE, they significantly reduce device lifetime, and solar cell stability is improved by increasing the purity of the polymer materials. © 2013 The Royal Society of Chemistry.

  15. The neural cell adhesion molecule-derived peptide FGL facilitates long-term plasticity in the dentate gyrus in vivo

    DEFF Research Database (Denmark)

    Dallérac, Glenn; Zerwas, Meike; Novikova, Tatiana;

    2011-01-01

    The neural cell adhesion molecule (NCAM) is known to play a role in developmental and structural processes but also in synaptic plasticity and memory of the adult animal. Recently, FGL, a NCAM mimetic peptide that binds to the Fibroblast Growth Factor Receptor 1 (FGFR-1), has been shown to have...... by mimicking its heterophilic interaction with FGFR facilitates hippocampal synaptic plasticity in the awake, freely moving animal....

  16. Long-term effect on in vitro cloning efficiency after treatment of somatic cells with Xenopus egg extract in the pig.

    Science.gov (United States)

    Liu, Ying; Ostrup, Olga; Li, Rong; Li, Juan; Vajta, Gábor; Kragh, Peter M; Schmidt, Mette; Purup, Stig; Hyttel, Poul; Klærke, Dan; Callesen, Henrik

    2014-08-01

    In somatic cell nuclear transfer (SCNT), donor cell reprogramming is considered as a biologically important and vulnerable event. Various donor cell pre-treatments with Xenopus egg extracts can promote reprogramming. Here we investigated if the reprogramming effect of one treatment with Xenopus egg extract on donor cells was maintained for several cell passages. The extract treatment resulted in increased cell-colony formation from early passages in treated porcine fibroblasts (ExTES), and increased development of cloned embryos. Partial dedifferentiation was observed in ExTES cells, shown as a tendency towards upregulation of NANOG, c-MYC and KLF-4 and downregulation of DESMIM compared with ExTES at Passage 2. Compared with our routine SCNT, continuously increased development of cloned embryos was observed in the ExTES group, and ExTES cloned blastocysts displayed hypermethylated DNA patterns and hypermethylation of H3K4me3 and H3K27me3 in ICM compared with TE. All seven recipients became pregnant after transferral of ExTES cloned embryos and gave birth to 7-22 piglets per litter (average 12). In conclusion, our results demonstrate that one treatment of porcine fibroblasts with Xenopus egg extract can result in long-term increased ability of the cells to promote their in vitro function in subsequent SCNT. Finally these cells can also result in successful development of cloned embryos to term.

  17. OPTIMIZATION OF THE CATHODE LONG-TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Hector Colonmer; Prabhu Ganesan; Nalini Subramanian; Dr. Bala Haran; Dr. Ralph E. White; Dr. Branko N. Popov

    2002-09-01

    This project focused on addressing the two main problems associated with state of art Molten Carbonate Fuel Cells, namely loss of cathode active material and stainless steel current collector deterioration due to corrosion. We followed a dual approach where in the first case we developed novel materials to replace the cathode and current collector currently used in molten carbonate fuel cells. In the second case we improved the performance of conventional cathode and current collectors through surface modification. States of art NiO cathode in MCFC undergo dissolution in the cathode melt thereby limiting the lifetime of the cell. To prevent this we deposited cobalt using an electroless deposition process. We also coated perovskite (La{sub 0.8}Sr{sub 0.2}CoO{sub 3}) in NiO thorough a sol-gel process. The electrochemical oxidation behavior of Co and perovskites coated electrodes is similar to that of the bare NiO cathode. Co and perovskite coatings on the surface decrease the dissolution of Ni into the melt and thereby stabilize the cathode. Both, cobalt and provskites coated nickel oxide, show a higher polarization compared to that of nickel oxide, which could be due to the reduced surface area. Cobalt substituted lithium nickel oxide (LiNi{sub 0.8}Co{sub 0.2}O{sub 2}) and lithium cobalt oxide were also studied. LiNi{sub x}Co{sub 1-x}O{sub 2} was synthesized by solid-state reaction procedure using lithium nitrate, nickel hydroxide and cobalt oxalate precursor. LiNi{sub x}Co{sub 1-x}O{sub 2} showed smaller dissolution of nickel than state of art nickel oxide cathode. The performance was comparable to that of nickel oxide. The corrosion of the current collector in the cathode side was also studied. The corrosion characteristics of both SS304 and SS304 coated with Co-Ni alloy were studied. This study confirms that surface modification of SS304 leads to the formation of complex scales with better barrier properties and better electronic conductivity at 650 C. A three

  18. Fiber Type-Specific Satellite Cell Content in Cyclists Following Heavy Training with Carbohydrate and Carbohydrate-Protein Supplementation

    Science.gov (United States)

    McKenzie, Alec I.; D'Lugos, Andrew C.; Saunders, Michael J.; Gworek, Keith D.; Luden, Nicholas D.

    2016-01-01

    The central purpose of this study was to evaluate the fiber type-specific satellite cell and myonuclear responses of endurance-trained cyclists to a block of intensified training, when supplementing with carbohydrate (CHO) vs. carbohydrate-protein (PRO). In a crossover design, endurance-trained cyclists (n = 8) performed two consecutive training periods, once supplementing with CHO (de facto “control” condition) and the other with PRO. Each training period consisted of 10 days of intensified cycle training (ICT–120% increase in average training duration) followed by 10 days of recovery (RVT–reduced volume training; 33% volume reduction vs. normal training). Skeletal muscle biopsies were obtained from the vastus lateralis before and after ICT and again following RVT. Immunofluorescent microscopy was used to quantify SCs (Pax7+), myonuclei (DAPI+), and myosin heavy chain I (MyHC I). Data are expressed as percent change ± 90% confidence limits. The 10-day block of ICTCHO increased MyHC I SC content (35 ± 28%) and myonuclear density (16 ± 6%), which remained elevated following RVTCHO (SC = 69 ± 50% vs. PRE; Nuclei = 17 ± 15% vs. PRE). MyHC II SC and myonuclei were not different following ICTCHO, but were higher following RVTCHO (SC = +33 ± 31% vs. PRE; Nuclei = 15 ± 14% vs. PRE), indicating a delayed response compared to MyHC I fibers. The MyHC I SC pool increased following ICTPRO (37 ± 37%), but without a concomitant increase in myonuclei. There were no changes in MyHC II SC or myonuclei following ICTPRO. Collectively, these trained endurance cyclists possessed a relatively large pool of SCs that facilitated rapid (MyHC I) and delayed (MyHC II) satellite cell proliferation and myonuclear accretion under carbohydrate conditions. The current findings strengthen the growing body of evidence demonstrating alterations in satellite cell number in the absence of hypertrophy. Satellite cell pool expansion is typically viewed as an advantageous response to

  19. Respiratory syncytial virus-like nanoparticle vaccination induces long-term protection without pulmonary disease by modulating cytokines and T-cells partially through alveolar macrophages

    Directory of Open Access Journals (Sweden)

    Lee YT

    2015-07-01

    Full Text Available Young-Tae Lee,1,* Eun-Ju Ko,1,2,* Hye Suk Hwang,1,2 Jong Seok Lee,1,3 Ki-Hye Kim,1 Young-Man Kwon,1 Sang-Moo Kang1,2 1Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, 2Department of Biology, Georgia State University, Atlanta, GA, USA; 3National Institute of Biological Resources, Incheon, South Korea *These authors contributed equally to this work Abstract: The mechanisms of protection against respiratory syncytial virus (RSV are poorly understood. Virus-like nanoparticles expressing RSV glycoproteins (eg, a combination of fusion and glycoprotein virus-like nanoparticles [FG VLPs] have been suggested to be a promising RSV vaccine candidate. To understand the roles of alveolar macrophages (AMs in inducing long-term protection, mice that were 12 months earlier vaccinated with formalin-inactivated RSV (FI-RSV or FG VLPs were treated with clodronate liposome prior to RSV infection. FI-RSV immune mice with clodronate liposome treatment showed increases in eosinophils, plasmacytoid dendritic cells, interleukin (IL-4+ T-cell infiltration, proinflammatory cytokines, chemokines, and, in particular, mucus production upon RSV infection. In contrast to FI-RSV immune mice with severe pulmonary histopathology, FG VLP immune mice showed no overt sign of histopathology and significantly lower levels of eosinophils, T-cell infiltration, and inflammatory cytokines, but higher levels of interferon-γ, which are correlated with protection against RSV disease. FG VLP immune mice with depletion of AMs showed increases in inflammatory cytokines and chemokines, as well as eosinophils. The results in this study suggest that FG nanoparticle vaccination induces long-term protection against RSV and that AMs play a role in the RSV protection by modulating eosinophilia, mucus production, inflammatory cytokines, and T-cell infiltration. Keywords: alveolar macrophage, nanoparticle vaccine, VLP, FI-RSV, RSV disease

  20. Early and prolonged antiretroviral therapy is associated with an HIV-1-specific T-cell profile comparable to that of long-term non-progressors.

    Directory of Open Access Journals (Sweden)

    Cristina Cellerai

    Full Text Available BACKGROUND: Intervention with antiretroviral treatment (ART and control of viral replication at the time of HIV-1 seroconversion may curtail cumulative immunological damage. We have therefore hypothesized that ART maintenance over a very prolonged period in HIV-1 seroconverters could induce an immuno-virological status similar to that of HIV-1 long-term non-progressors (LTNPs. METHODOLOGY/PRINCIPAL FINDINGS: We have investigated a cohort of 20 HIV-1 seroconverters on long-term ART (LTTS and compared it to one of 15 LTNPs. Residual viral replication and reservoirs in peripheral blood, as measured by cell-associated HIV-1 RNA and DNA, respectively, were demonstrated to be similarly low in both cohorts. These two virologically matched cohorts were then comprehensively analysed by polychromatic flow cytometry for HIV-1-specific CD4(+ and CD8(+ T-cell functional profile in terms of cytokine production and cytotoxic capacity using IFN-γ, IL-2, TNF-α production and perforin expression, respectively. Comparable levels of highly polyfunctional HIV-1-specific CD4(+ and CD8(+ T-cells were found in LTTS and LTNPs, with low perforin expression on HIV-1-specific CD8(+ T-cells, consistent with a polyfunctional/non-cytotoxic profile in a context of low viral burden. CONCLUSIONS: Our results indicate that prolonged ART initiated at the time of HIV-1 seroconversion is associated with immuno-virological features which resemble those of LTNPs, strengthening the recent emphasis on the positive impact of early treatment initiation and paving the way for further interventions to promote virological control after treatment interruption.

  1. Pairing-specific long-term depression of Purkinje cell excitatory postsynaptic potentials results from a classical conditioning procedure in the rabbit cerebellar slice.

    Science.gov (United States)

    Schreurs, B G; Oh, M M; Alkon, D L

    1996-03-01

    1. Using a rabbit cerebellar slice preparation, we stimulated a classical conditioning procedure by stimulating parallel fiber inputs to Purkinje cells with the use of a brief, high-frequency train of eight constant-current pulses 80 ms before climbing fiber inputs to the same Purkinje cell were stimulated with the use of a brief, lower frequency train of three constant-current pulses. In all experiments, we assessed the effects of stimulation by measuring the peak amplitude of Purkinje cell excitatory postsynaptic potentials (EPSPs) to single parallel fiber test pulses. 2. Intradendritically recorded Purkinje cell EPSPs underwent a long-term (> 20 min) reduction in peak amplitude (30%) after paired stimulation of the parallel and climbing fibers but not after unpaired or parallel fiber alone stimulation. We call this phenomenon pairing-specific long-term depression (PSD). 3. Facilitation of the peak amplitude of a second EPSP elicited by a parallel fiber train occurred both before and after paired stimulation suggesting that the locus of depression was not presynaptic. Depression of the peak amplitude of a depolarizing response to focal application of glutamate following pairings of parallel and climbing fiber stimulation added support to a suggested postsynaptic locus of the PSD effect. 4. The application of aniracetam potentiated EPSP peak amplitude by 40%, but these values returned to baseline as a result of pairings. With the removal of aniracetam from the bath 20 min after pairings, normal levels of pairing-specific EPSP depression were observed, indicating that the effect did not result from direct desensitization of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-proprionic acid (AMPA) receptors. 5. Incubation of slices in the protein kinase inhibitor H-7 potentiated EPSP peak amplitudes slightly (9%), but peak amplitudes returned to baseline levels after pairings. The net reduction in EPSP peak amplitude of classical conditioning.

  2. Potassium Current Is Not Affected by Long-Term Exposure to Ghrelin or GHRP-6 in Somatotropes GC Cells

    Directory of Open Access Journals (Sweden)

    Belisario Domínguez Mancera

    2013-01-01

    Full Text Available Ghrelin is a growth hormone (GH secretagogue (GHS and GHRP-6 is a synthetic peptide analogue; both act through the GHS receptor. GH secretion depends directly on the intracellular concentration of Ca2+; this is determined from the intracellular reserves and by the entrance of Ca2+ through the voltage-dependent calcium channels, which are activated by the membrane depolarization. Membrane potential is mainly determined by K+ channels. In the present work, we investigated the effect of ghrelin (10 nM or GHRP-6 (100 nM for 96 h on functional expression of voltage-dependent K+ channels in rat somatotropes: GC cell line. Physiological patch-clamp whole-cell recording was used to register the K+ currents. With Cd2+ (1 mM and tetrodotoxin (1 μm in the bath solution recording, three types of currents were characterized on the basis of their biophysical and pharmacological properties. GC cells showed a K+ current with a transitory component sensitive to 4-aminopyridine, which represents ~40% of the total outgoing current; a sustained component named delayed rectifier , sensitive to tetraethylammonium; and a third type of K+ current was recorded at potentials more negative than −80 mV, permitting the entrance of K+ named inward rectifier (KIR. Chronic treatment with ghrelin or GHRP-6 did not modify the functional expression of K+ channels, without significant changes ( in the amplitudes of the three currents observed; in addition, there were no modifications in their biophysical properties and kinetic activation or inactivation.

  3. Seladin-1 is a fundamental mediator of the neuroprotective effects of estrogen in human neuroblast long-term cell cultures.

    Science.gov (United States)

    Luciani, Paola; Deledda, Cristiana; Rosati, Fabiana; Benvenuti, Susanna; Cellai, Ilaria; Dichiara, Francesca; Morello, Matteo; Vannelli, Gabriella Barbara; Danza, Giovanna; Serio, Mario; Peri, Alessandro

    2008-09-01

    Estrogen exerts neuroprotective effects and reduces beta-amyloid accumulation in models of Alzheimer's disease (AD). A few years ago, a new neuroprotective gene, i.e. seladin-1 (for selective AD indicator-1), was identified and found to be down-regulated in AD vulnerable brain regions. Seladin-1 inhibits the activation of caspase-3, a key modulator of apoptosis. In addition, it has been demonstrated that the seladin-1 gene encodes 3beta-hydroxysterol Delta24-reductase, which catalyzes the synthesis of cholesterol from desmosterol. We have demonstrated previously that in fetal neuroepithelial cells, 17beta-estradiol (17betaE2), raloxifene, and tamoxifen exert neuroprotective effects and increase the expression of seladin-1. The aim of the present study was to elucidate whether seladin-1 is directly involved in estrogen-mediated neuroprotection. Using the small interfering RNA methodology, significantly reduced levels of seladin-1 mRNA and protein were obtained in fetal neuroepithelial cells. Seladin-1 silencing determined the loss of the protective effect of 17betaE2 against beta-amyloid and oxidative stress toxicity and caspase-3 activation. A computer-assisted analysis revealed the presence of half-palindromic estrogen responsive elements upstream from the coding region of the seladin-1 gene. A 1490-bp region was cloned in a luciferase reporter vector, which was transiently cotransfected with the estrogen receptor alpha in Chinese hamster ovarian cells. The exposure to 17betaE2, raloxifene, tamoxifen, and the soy isoflavones genistein and zearalenone increased luciferase activity, thus suggesting a functional role for the half-estrogen responsive elements of the seladin-1 gene. Our data provide for the first time a direct demonstration that seladin-1 may be considered a fundamental mediator of the neuroprotective effects of estrogen.

  4. Long-term palliative treatment of patient with signet ring cell gastric cancer using endoscopic photodynamic therapy

    OpenAIRE

    Sokolov, V. V.; E. V. Filonenko; E. S. Karpova

    2014-01-01

    A case of multiple course of photodynamic therapy (PDT) in patient with gastric cancer T1N0M0. Morpholological diagnosis in this patient was signet ring cell cancer. For 8 years the patient underwent endoscopic organ-sparing treatment: PDT with Photohem (17 courses), electrocoagulation of tumor (3 sessions). The drug Photohem was introduced intravenously at dose of 3.0 mg/kg body weight for 48 h before PDT. The treatment result was only partial regression of gastric tumor, the maximal follow-...

  5. Cell-Type Specific Channelopathies in the Prefrontal Cortex of the fmr1-/y Mouse Model of Fragile X Syndrome.

    Science.gov (United States)

    Kalmbach, Brian E; Johnston, Daniel; Brager, Darrin H

    2015-01-01

    Fragile X syndrome (FXS) is caused by transcriptional silencing of the fmr1 gene resulting in the loss of fragile X mental retardation protein (FMRP) expression. FXS patients display several behavioral phenotypes associated with prefrontal cortex (PFC) dysfunction. Voltage-gated ion channels, some of which are regulated by FMRP, heavily influence PFC neuron function. Although there is evidence for brain region-specific alterations to the function a single type of ion channel in FXS, it is unclear whether subtypes of principal neurons within a brain region are affected uniformly. We tested for alterations to ion channels critical in regulating neural excitability in two subtypes of prefrontal L5 pyramidal neurons. Using somatic and dendritic patch-clamp recordings, we provide evidence that the functional expression of h-channels (Ih) is down-regulated, whereas A-type K(+) channel function is up-regulated in pyramidal tract-projecting (PT) neurons in the fmr1-/y mouse PFC. This is the opposite pattern of results from published findings from hippocampus where Ih is up-regulated and A-type K(+) channel function is down-regulated. Additionally, we find that somatic Kv1-mediated current is down-regulated, resulting in increased excitability of fmr1-/y PT neurons. Importantly, these h- and K(+) channel differences do not extend to neighboring intratelencephalic-projecting neurons. Thus, the absence of FMRP has divergent effects on the function of individual types of ion channels not only between brain regions, but also variable effects across cell types within the same brain region. Given the importance of ion channels in regulating neural circuits, these results suggest cell-type-specific phenotypes for the disease.

  6. Long-term culture of chicken primordial germ cells isolated from embryonic blood and production of germline chimaeric chickens.

    Science.gov (United States)

    Naito, Mitsuru; Harumi, Takashi; Kuwana, Takashi

    2015-02-01

    Production of germline chimaeric chickens by the transfer of cultured primordial germ cells (PGC) is a useful system for germline manipulation. A novel culture system was developed for chicken PGC isolated from embryonic blood. The isolated PGC were cultured on feeder cells derived from chicken embryonic fibroblast. The cultured PGC formed colonies and they proliferated about 300-times during the first 30 days. The cultured PGC retained the ability to migrate to recipient gonads and were also chicken VASA homologue (CVH)-positive. Female PGC were present in the mixed-sex PGC populations cultured for more than 90 days and gave rise to viable offspring efficiently via germline chimaeric chickens. Male cultured PGC were transferred to recipient embryos and produced putative chimaeric chickens. The DNA derived from the cultured PGC was detected in the sperm samples of male putative chimaeric chickens, but no donor derived offspring were obtained. Donor-derived offspring were also obtained from germline chimaeric chickens by the transfer of frozen-thawed cultured PGC. The culture method for PGC developed in the present study is useful for manipulation of the germline in chickens, such as preservation of genetic resources and gene transfer.

  7. Chemometrical assessment of the electrical parameters obtained by long-term operating freshwater sediment microbial fuel cells.

    Science.gov (United States)

    Mitov, Mario; Bardarov, Ivo; Mandjukov, Petko; Hubenova, Yolina

    2015-12-01

    The electrical parameters of nine freshwater sediment microbial fuel cells (SMFCs) were monitored for a period of over 20 months. The developed SMFCs, divided into three groups, were started up and continuously operated under different constant loads (100, 510 and 1100 Ω) for 2.5 months. At this stage of the experiment, the highest power density values, reaching 1.2 ± 0.2 mW/m(2), were achieved by the SMFCs loaded with 510 Ω. The maximum power obtained at periodical polarization during the rest period, however, ranged between 26.2 ± 2.8 and 35.3 ± 2.8 mW/m(2), strongly depending on the internal cell resistance. The statistical evaluation of data derived from the polarization curves shows that after 300 days of operation all examined SMFCs reached a steady-state and the system might be assumed as homoscedastic. The estimated values of standard and expanded uncertainties of the electric parameters indicate a high repeatability and reproducibility of the SMFCs' performance. Results obtained in subsequent discharge-recovery cycles reveal the opportunity for practical application of studied SMFCs as autonomous power sources.

  8. Long-term activity of covalent grafted biocatalysts during intermittent use of a glucose/O{sub 2} biofuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Merle, G. [Institut Europeen des Membranes, UMR 5635, Place Eugene Bataillon, CC 047, 34095 Montpellier (France); Habrioux, A.; Servat, K. [LACCO ' Equipe Electrocatalyse' , UMR 6503, CNRS-Universite de Poitiers, 40 av. du Recteur Pineau, 86022 Poitiers (France); Rolland, M.; Innocent, C. [Institut Europeen des Membranes, UMR 5635, Place Eugene Bataillon, CC 047, 34095 Montpellier (France); Kokoh, K.B. [LACCO ' Equipe Electrocatalyse' , UMR 6503, CNRS-Universite de Poitiers, 40 av. du Recteur Pineau, 86022 Poitiers (France); Tingry, S. [Institut Europeen des Membranes, UMR 5635, Place Eugene Bataillon, CC 047, 34095 Montpellier (France)], E-mail: sophie.tingry@iemm.univ-montp2.fr

    2009-04-15

    The operational stability of enzymes in a concentric glucose/O{sub 2} biofuel cell has been significantly improved with the synthesis of grafted enzyme electrodes compared to entrapped enzyme electrodes. The concentric device combined glucose electro-oxidation by glucose oxidase at the anode and oxygen electro-reduction by bilirubin oxidase at the cathode. The entrapped enzyme electrodes were prepared from physical immobilization of the enzymes by a polypyrrole polymer onto the electrode surface. The grafted enzyme electrodes were synthesized by grafting the enzymes via alkyl spacer arms to a poly(aminopropylpyrrole) film onto the electrode surface. From spectrophotometric and electrochemical analyses, it was demonstrated that the spacer arms increased the operational stability and enzyme mobility that favoured electron transfer from their active sites to the electrode. The maximum power output of the assembled biofuel cell was 20 {mu}W cm{sup -2}, at 0.20 V with 10 mM glucose in phosphate buffer pH 7.4. The grafted enzyme electrodes presented an unprecedented operational stability as the maximum of power density of the BFC remains constant after intermittent use over a 45-day period. This was a remarkable improvement compared to electrodes with entrapped enzymes, which lost 74% of their initial power density after intermittent use over a 17-day period.

  9. Feline cutaneous mast cell tumours: a UK-based study comparing signalment and histological features with long-term outcomes.

    Science.gov (United States)

    Melville, Kirsty; Smith, Ken C; Dobromylskyj, Melanie J

    2015-06-01

    Feline cutaneous mast cell tumours (MCTs) are the second most common skin tumour in cats; but, unlike in dogs, there is currently no histological grading system for this type of tumour. This study recorded the signalment and anatomical location from a total of 287 records from MCTs submitted to a UK commercial diagnostic laboratory. Questionnaires to submitting practices were used to obtain follow-up data, and the histological features of 86 tumours were evaluated from 69 cats with a known outcome. Twelve of the 69 cats (17.4%) died of MCTs, with significantly lower survival times. The median age of cats presenting with MCTs was 11 years (range 5 months-19 years), with no sex or neutered status predilection. Some pedigree breeds were more susceptible to MCTs, particularly the Siamese, Burmese, Russian Blue and Ragdoll. The head was the most common site in younger cats, compared with the trunk in older cats. The number of tumours had no effect on survival. A new subcategory of well-differentiated MCTs with prominent multinucleated cells is described, and three of the five cats with this novel form died from MCT-related disease. There was an association between mitotic index and survival time. However, there was no significant association between histological type and survival.

  10. Impact of immune parameters on long-term survival in metastatic renal cell      carcinoma

    DEFF Research Database (Denmark)

    Donskov, Frede; Maase, Hans von der

    2006-01-01

    PURPOSE: The purpose of this study was to evaluate the impact of       immunologic prognostic factors in combination with established clinical       prognostic factors in patients with metastatic renal cell carcinoma       (mRCC). PATIENTS AND METHODS: A total of 120 consecutive patients with    ......PURPOSE: The purpose of this study was to evaluate the impact of       immunologic prognostic factors in combination with established clinical       prognostic factors in patients with metastatic renal cell carcinoma       (mRCC). PATIENTS AND METHODS: A total of 120 consecutive patients...... with estimated       5-year survival rates of 60%, 25%, and 0%, respectively. These findings       were apparent in both our own prognostic model and in an extended Memorial       Sloan-Kettering Cancer Center (New York, NY) prognostic model. CONCLUSION:       This study points on five clinical and three...

  11. Significance of preoperative C-reactive protein as a parameter of the perioperative course and long-term prognosis in squamous cell carcinoma and adenocarcinoma of the oesophagus

    Institute of Scientific and Technical Information of China (English)

    Ines Gockel; Kathrin Dirksen; Claudia M Messow; Theodor Junginger

    2006-01-01

    AIM: C-reactive protein (CRP) is an acute-phase reactant and a known indicator of the malignant potential of the tumour. The aim of this study was to investigate the significance of preoperative CRP as a parameter of the perioperative course and long-term prognosis in patients with squamous cell carcinoma and adenocarcinoma of the oesophagus.METHODS: Serum CRP was determined preoperatively in 291 of 371 patients undergoing oesophagectomy for cancer from December 1989 to March 2004. Median patient age was 59 (28-79) year,82.5% of patients were males. Squamous cell carcinoma was diagnosed in 151(51.9%) and adenocarcinoma in 122 patients. Transhiatal oesophagectomy was done in 151 (51.9%) patients and 134 (46.0%) patients underwent the abdominothoracic procedure.RESULTS: In 127 (43.6%) patients the preoperative serum CRP concentration was within the normal range (<5 mg/dL), elevated CRP levels were measured in 164 (56.4%) patients. Tumour extension (P<0.0005)and the number of lymph nodes affected by metastatic spread (P=0.015) were significantly increased in the group with elevated CRP levels. Among the perioperative parameters both the number of blood transfusions (P =0.006) and the general complication rate (P=0.002)were higher in patients with elevated preoperative CRP levels. The long-term survival rate of 13.6 (0-109.8)mo was poorer in the group with elevated CRP levels compared to 18.9 (0-155.4) mo in the group with normal CRP levels (log-rank test:P=0.107). Multivariate analysis with backward variables selection identified preoperative CRP as an independent prognostic factor of the long-term prognosis in patients with oesophageal carcinoma, with a hazard ratio of 1.182 (95% confidence interval: 1.030-1.356).CONCLUSION: The preoperative serum CRP-level is an easily determined independent prognostic marker in patients with squamous cell carcinoma and adenocarcinoma of the oesophagus.

  12. Long-term effects on the histology and function of livers and spleens in rats after 33% toploading of PEG-PLA-nano artificial red blood cells.

    Science.gov (United States)

    Liu, Zun Chang; Chang, Thomas M S

    2008-01-01

    This study is to investigate the long-term effects of nanodimension PEG-PLA artificial red blood cells containing hemoglobin and red blood cell enzymes on the liver and spleen after 1/3 blood volume top loading in rats. The experimental rats received one of the following infusions: Nano artificial red blood cells in Ringer lactate, Ringer lactate, stroma-free hemoglobin, polyhemoglobin, and autologous rat whole blood. Blood samples were taken before infusions and on days 1, 7, and 21 after infusions for analysis. Nano artificial red blood cells, polyhemoglobin, Ringer lactate and rat red blood cells did not have any significant adverse effects on alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, creatine kinase, amylase and creatine kinase. On the other hand, stroma-free hemoglobin induced significant adverse effects on liver as shown by elevation in alanine aminotransferase and aspartate aminotransferase throughout the 21 days. On day 21 after infusions rats were sacrificed and livers and spleens were excised for histological examination. Nano artificial red blood cells, polyhemoglobin, Ringer lactate and rat red blood cells did not cause any abnormalities in the microscopic histology of the livers and spleens. In the stroma-free hemoglobin group the livers showed accumulation of hemoglobin in central veins and sinusoids, and hepatic steatosis. In conclusion, injected nano artificial red blood cells can be efficiently metabolized and removed by the reticuloendothelial system, and do not have any biochemical or histological adverse effects on the livers or the spleens.

  13. Microbial community analysis in a long-term membrane-less microbial electrolysis cell with hydrogen and methane production.

    Science.gov (United States)

    Rago, Laura; Ruiz, Yolanda; Baeza, Juan A; Guisasola, Albert; Cortés, Pilar

    2015-12-01

    A single-chamber microbial electrolysis cell (MEC) aiming at hydrogen production with acetate as sole carbon source failed due to methanogenesis build-up despite the significant amount of 2-bromoethanesulfonate (BES) dosage, 50 mM. Specific batch experiments and a thorough microbial community analysis, pyrosequencing and qPCR, of cathode, anode and medium were performed to understand these observations. The experimental data rebuts different hypothesis and shows that methanogenesis at high BES concentration was likely due to the capacity of some Archaea (hydrogen-oxidizing genus Methanobrevibacter) to resist high BES concentration up to 200 mM. Methanobrevibacter, of the Methanobacteriales order, represented almost the 98% of the total Archaea in the cathode whereas Geobacter was highly abundant in the anode (72% of bacteria). Moreover, at higher BES concentration (up to 200 mM), methanogenesis activity decreased resulting in an increase of homoacetogenic activity, which challenged the performance of the MEC for H2 production.

  14. Quality of life, social challenges, and psychosocial support for long-term survivors after allogeneic hematopoietic stem-cell transplantation.

    Science.gov (United States)

    Norkin, Maxim; Hsu, Jack W; Wingard, John R

    2012-01-01

    Over the last two decades quality of life (QoL) and the social challenges of allogeneic hematopoietic stem cell transplant (allo-HSCT) survivors have been emerging as subjects of extensive research and are now considered as very important aspects in the pretransplant evaluation and management of allo-HSCT recipients. Recognition of QoL challenges in allo-HSCT survivors allows timely interventions leading to improvement of post-transplant outcomes. It needs to be recognized that long-lasting life changes associated with survivorship after allo-HSCT also significantly affect QoL of partners of allo-HSCT survivors. Currently, resources should be focused on how research findings can be used by patients, their partners, and physicians to optimize QoL and psychosocial adjustment.

  15. Improving the Long-Term Stability of Perovskite Solar Cells with a Porous Al 2 O 3 Buffer Layer

    KAUST Repository

    Guarnera, Simone

    2015-02-05

    © 2015 American Chemical Society. Hybrid perovskites represent a new paradigm for photovoltaics, which have the potential to overcome the performance limits of current technologies and achieve low cost and high versatility. However, an efficiency drop is often observed within the first few hundred hours of device operation, which could become an important issue. Here, we demonstrate that the electrode\\'s metal migrating through the hole transporting material (HTM) layer and eventually contacting the perovskite is in part responsible for this early device degradation. We show that depositing the HTM within an insulating mesoporous "buffer layer" comprised of Al2O3 nanoparticles prevents the metal electrode migration while allowing for precise control of the HTM thickness. This enables an improvement in the solar cell fill factor and prevents degradation of the device after 350 h of operation. (Graph Presented).

  16. Modeling Cu Migration in CdTe Solar Cells Under Device-Processing and Long-Term Stability Conditions (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Teeter, G.; Asher, S.

    2008-05-01

    An impurity migration model for systems with material interfaces is applied to Cu migration in CdTe solar cells. In the model, diffusion fluxes are calculated from the Cu chemical potential gradient. Inputs to the model include Cu diffusivities, solubilities, and segregation enthalpies in CdTe, CdS and contact materials. The model yields transient and equilibrium Cu distributions in CdTe devices during device processing and under field-deployed conditions. Preliminary results for Cu migration in CdTe PV devices using available diffusivity and solubility data from the literature show that Cu segregates in the CdS, a phenomenon that is commonly observed in devices after back-contact processing and/or stress conditions.

  17. Modeling Cu Migration in CdTe Solar Cells Under Device-Processing and Long-Term Stability Conditions: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Teeter, G.; Asher, S.

    2008-05-01

    An impurity migration model for systems with material interfaces is applied to Cu migration in CdTe solar cells. In the model, diffusion fluxes are calculated from the Cu chemical potential gradient. Inputs to the model include Cu diffusivities, solubilities, and segregation enthalpies in CdTe, CdS and contact materials. The model yields transient and equilibrium Cu distributions in CdTe devices during device processing and under field-deployed conditions. Preliminary results for Cu migration in CdTe photovoltaic devices using available diffusivity and solubility data from the literature show that Cu segregates in the CdS, a phenomenon that is commonly observed in devices after back-contact processing and/or stress conditions.

  18. Long-term palliative treatment of patient with signet ring cell gastric cancer using endoscopic photodynamic therapy

    Directory of Open Access Journals (Sweden)

    V. V. Sokolov

    2014-01-01

    Full Text Available A case of multiple course of photodynamic therapy (PDT in patient with gastric cancer T1N0M0. Morpholological diagnosis in this patient was signet ring cell cancer. For 8 years the patient underwent endoscopic organ-sparing treatment: PDT with Photohem (17 courses, electrocoagulation of tumor (3 sessions. The drug Photohem was introduced intravenously at dose of 3.0 mg/kg body weight for 48 h before PDT. The treatment result was only partial regression of gastric tumor, the maximal follow-up period with no endoscopic and morphological signs of tumor growth accounted for 8 months. However besides incomplete removal of gastric tumor and morphological type, for check-up examination 8 years after the onset of endoscopic treatment there were no features of regional and distant metastases according to chest and abdominal CT and US. 

  19. Long-term complete remission in a patient with intravascular large B-cell lymphoma with central nervous system involvement

    Directory of Open Access Journals (Sweden)

    Sawada T

    2014-11-01

    Full Text Available Takeshi Sawada,1 Yasushi Omuro,1 Takeshi Kobayashi,2 Tunekazu Hishima,3 Fumiaki Koizumi,4 Yusuke Kanemasa,1 Tatsu Shimoyama,1 Eisaku Sasaki,1 Yoshiharu Maeda1 1Department of Chemotherapy, 2Department of Hematology, 3Department of Pathology, 4Department of Laboratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Bunkyo-ku, Tokyo, Japan Abstract: This report describes a patient with intravascular large B-cell lymphoma (IVLBCL with central nervous system involvement at the time of diagnosis who achieved complete remission for over 5 years in response to therapy. The patient, a 71 year-old woman, was previously healthy with the exception of taking verapamil for paroxysmal supraventricular tachycardia. She had presented with pyrexia and gradually progressive anemia. Brain magnetic resonance imaging revealed an infarct-like lesion in the pons, although no paralysis was observed. She was diagnosed with IVLBCL on the basis of random skin biopsy. After eight cycles of rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone therapy, abnormal laboratory data had normalized, and no pontine lesion was evident on magnetic resonance imaging without receiving any intrathecal chemotherapy. IVLBCL is associated with poor prognosis, particularly in patients with central nervous system involvement. Early initiation of rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone therapy and drug interactions between anticancer agents and verapamil as a p-glycoprotein inhibitor were considered the possible reasons for favorable outcome in the present case. Keywords: intravascular large B-cell lymphoma, random skin biopsy, CNS involvement, rituximab, verapamil, blood–brain barrier

  20. Alteration of histone acetylation pattern during long-term serum-free culture conditions of human fetal placental mesenchymal stem cells.

    Science.gov (United States)

    Zhu, Yongzhao; Song, Xumei; Han, Fei; Li, Yukui; Wei, Jun; Liu, Xiaoming

    2015-01-01

    Increasing evidence suggests that the mesenchymal stem cells (MSCs) derived from placenta of fetal origin (fPMSCs) are superior to MSCs of other sources for cell therapy. Since the initial number of isolated MSCs is limited, in vitro propagation is often required to reach sufficient numbers of cells for therapeutic applications, during which MSCs may undergo genetic and/or epigenetic alterations that subsequently increase the probability of spontaneous malignant transformation. Thus, factors that influence genomic and epigenetic stability of MSCs following long-term expansions need to be clarified before cultured MSCs are employed for clinical settings. To date, the genetic and epigenetic stability of fPMSCs after long-term in vitro expansion has not been fully investigated. In this report, alterations to histone acetylation and consequence on the expression pattern of fPMSCs following in vitro propagation under serum-free conditions were explored. The results show that fPMSCs maintain their MSC characteristics before they reached a senescent state. Furthermore, acetylation modification patterns were changed in fPMSCs along with gradually increased global histone deacetylase (HDAC) activity and expression of HDAC subtypes HDAC4, HDAC5 and HDAC6, as well as a down-regulated global histone H3/H4 acetylation during in vitro culturing. In line with the acetylation alterations, the expression of oncogenes Oct4, Sox2 and TERT were significantly decreased over the propagation period. Of note, the down-regulation of Oct4 was strongly associated with changes in acetylation. Intriguingly, telomere length in fPMSCs did not significantly change during the propagating process. These findings suggest that human fPMSCs may be a safe and reliable resource of MSCs and can be propagated under serum-free conditions with less risk of spontaneous malignancy, and warrants further validation in clinical settings.

  1. Adipose tissue-derived mesenchymal stem cells in long-term dialysis patients display downregulation of PCAF expression and poor angiogenesis activation.

    Directory of Open Access Journals (Sweden)

    Shuichiro Yamanaka

    Full Text Available We previously demonstrated that mesenchymal stem cells (MSCs differentiate into functional kidney cells capable of urine and erythropoietin production, indicating that they may be used for kidney regeneration. However, the viability of MSCs from dialysis patients may be affected under uremic conditions. In this study, we isolated MSCs from the adipose tissues of end-stage kidney disease (ESKD patients undergoing long-term dialysis (KD-MSCs; mean: 72.3 months and from healthy controls (HC-MSCs to compare their viability. KD-MSCs and HC-MSCs were assessed for their proliferation potential, senescence, and differentiation capacities into adipocytes, osteoblasts, and chondrocytes. Gene expression of stem cell-specific transcription factors was analyzed by PCR array and confirmed by western blot analysis at the protein level. No significant differences of proliferation potential, senescence, or differentiation capacity were observed between KD-MSCs and HC-MSCs. However, gene and protein expression of p300/CBP-associated factor (PCAF was significantly suppressed in KD-MSCs. Because PCAF is a histone acetyltransferase that mediates regulation of hypoxia-inducible factor-1α (HIF-1α, we examined the hypoxic response in MSCs. HC-MSCs but not KD-MSCs showed upregulation of PCAF protein expression under hypoxia. Similarly, HIF-1α and vascular endothelial growth factor (VEGF expression did not increase under hypoxia in KD-MSCs but did so in HC-MSCs. Additionally, a directed in vivo angiogenesis assay revealed a decrease in angiogenesis activation of KD-MSCs. In conclusion, long-term uremia leads to persistent and systematic downregulation of PCAF gene and protein expression and poor angiogenesis activation of MSCs from patients with ESKD. Furthermore, PCAF, HIF-1α, and VEGF expression were not upregulated by hypoxic stimulation of KD-MSCs. These results suggest that the hypoxic response may be blunted in MSCs from ESKD patients.

  2. Nanoparticulate Mineralized Collagen Scaffolds and BMP-9 Induce a Long-Term Bone Cartilage Construct in Human Mesenchymal Stem Cells.

    Science.gov (United States)

    Ren, Xiaoyan; Weisgerber, Daniel W; Bischoff, David; Lewis, Michael S; Reid, Russell R; He, Tong-Chuan; Yamaguchi, Dean T; Miller, Timothy A; Harley, Brendan A C; Lee, Justine C

    2016-07-01

    Engineering the osteochondral junction requires fabrication of a microenvironment that supports both osteogenesis and chondrogenesis. Multiphasic scaffold strategies utilizing a combination of soluble factors and extracellular matrix components are ideally suited for such applications. In this work, the contribution of an osteogenic nanoparticulate mineralized glycosaminoglycan scaffold (MC-GAG) and a dually chondrogenic and osteogenic growth factor, BMP-9, in the differentiation of primary human mesenchymal stem cells (hMSCs) is evaluated. Although 2D cultures demonstrate alkaline phosphatase activity and mineralization of hMSCs induced by BMP-9, MC-GAG scaffolds do not demonstrate significant differences in the collagen I expression, osteopontin expression, or mineralization. Instead, BMP-9 increases expression of collagen II, Sox9, aggrecan (ACAN), and cartilage oligomeric protein. However, the hypertrophic chondrocyte marker, collagen X, is not elevated with BMP-9 treatment. In addition, histologic analyses demonstrate that while BMP-9 does not increase mineralization, BMP-9 treatment results in an increase of sulfated glycosaminoglycans. Thus, the combination of BMP-9 and MC-GAG stimulates chondrocytic and osteogenic differentiation of hMSCs.

  3. Comparing the short and long term stability of biodegradable, ceramic and cation exchange membranes in microbial fuel cells.

    Science.gov (United States)

    Winfield, Jonathan; Chambers, Lily D; Rossiter, Jonathan; Ieropoulos, Ioannis

    2013-11-01

    The long and short-term stability of two porous dependent ion exchange materials; starch-based compostable bags (BioBag) and ceramic, were compared to commercially available cation exchange membrane (CEM) in microbial fuel cells. Using bi-directional polarisation methods, CEM exhibited power overshoot during the forward sweep followed by significant power decline over the reverse sweep (38%). The porous membranes displayed no power overshoot with comparably smaller drops in power during the reverse sweep (ceramic 8%, BioBag 5.5%). The total internal resistance at maximum power increased by 64% for CEM compared to 4% (ceramic) and 6% (BioBag). Under fixed external resistive loads, CEM exhibited steeper pH reductions than the porous membranes. Despite its limited lifetime, the BioBag proved an efficient material for a stable microbial environment until failing after 8 months, due to natural degradation. These findings highlight porous separators as ideal candidates for advancing MFC technology in terms of cost and operation stability.

  4. Long-term renal toxicity in children following fractionated total-body irradiation (TBI) before allogeneic stem cell transplantation (SCT)

    Energy Technology Data Exchange (ETDEWEB)

    Gerstein, Johanna; Meyer, Andreas; Fruehauf, Joerg; Karstens, Johann H.; Bremer, Michael [Dept. of Radiation Oncology, Medical School Hannover (Germany); Sykora, Karl-Walter [Dept. of Pediatric Hematology and Oncology, Medical School Hannover (Germany)

    2009-11-15

    Purpose: to retrospectively assess the incidence and time course of renal dysfunction in children ({<=} 16 years) following total-body irradiation (TBI) before allogeneic stem cell transplantation (SCT). Patients and methods: between 1986 and 2003, 92 children (median age, 11 years; range, 3-16 years) underwent TBI before allogeneic SCT. 43 of them had a minimum follow-up of 12 months (median, 51 months; range, 12-186 months) and were included into this analysis. Conditioning regimen included chemotherapy and fractionated TBI with 12 Gy (n = 26) or 11.1 Gy (n = 17). In one patient, renal dose was limited to 10 Gy by customized renal shielding due to known nephropathy prior to SCt. Renal dysfunction was defined as an increase of serum creatinine > 1.25 times the upper limit of age-dependent normal. Results: twelve children (28%) experienced an episode of renal dysfunction after a median of 2 months (range, 1-10 months) following SCT. In all but one patient renal dysfunction was transient and resolved after a median of 8 months (range, 3-16 months). One single patient developed persistent renal dysfunction with onset at 10 months after SCT. None of these patients required dialysis. The actuarial 3-year freedom from persistent renal toxicity for children surviving > 12 months after SCt was 97.3%. Conclusion: the incidence of persistent renal dysfunction after fractionated TBI with total doses {<=} 12 Gy was very low in this analysis. (orig.)

  5. Recurrent dermatomyositis manifesting as a sign of recurrent transitional cell carcinoma of urinary bladder: Long-term survival

    Directory of Open Access Journals (Sweden)

    John Fitzpatrick

    2014-01-01

    Full Text Available The association between urological malignancies and paraneoplastic syndromes has been well documented. We report a case of recurrent dermatomyositis manifesting as a sign of metastatic recurrence of non-muscle-invasive transitional cell carcinoma of the bladder, a relationship which has only been referred to in a few reports. The case highlights a few important clinical challenges; firstly, the importance of thorough investigation for underlying malignancy in patients with dermatomyositis, as successful treatment of such malignancy can lead to resolution of paraneoplastic symptoms, and secondly, a high index of suspicion of recurrence in cases where paraneoplastic manifestations recur. Metastatic pulmonary recurrence without local evidence of disease at a follow-up of 4 years makes this case unique. Moreover, in the light of our experience and reported literature, a framework is suggested to approach such a diagnostic dilemma in the future. Description of the case will guide clinicians in the future, in case they encounter such an unusual clinical scenario. This could also serve as a hypothesis-generating source for designing future research as well.

  6. Long-term testing of a high-temperature proton exchange membrane fuel cell short stack operated with improved polybenzimidazole-based composite membranes

    Science.gov (United States)

    Pinar, F. Javier; Cañizares, Pablo; Rodrigo, Manuel A.; Úbeda, Diego; Lobato, Justo

    2015-01-01

    In this work, the feasibility of a 150 cm2 high-temperature proton exchange membrane fuel cell (HT-PEMFC) stack operated with modified proton exchange membranes is demonstrated. The short fuel cell stack was manufactured using a total of three 50 cm2 membrane electrode assemblies (MEAs). The PEM technology is based on a polybenzimidazole (PBI) membrane. The obtained results were compared with those obtained using a HT-PEMFC stack with unmodified membranes. The membranes were cast from a PBI polymer synthesized in the laboratory, and the modified membranes contained 2 wt.% micro-sized TiO2 as a filler. Long-term tests were performed in both constant and dynamic loading modes. The fuel cell stack with 2 wt.% TiO2 composite PBI membranes exhibited an irreversible voltage loss of less than 2% after 1100 h of operation. In addition, the acid loss was reduced from 2% for the fuel cell stack with unmodified membranes to 0.6% for the fuel cell stack with modified membranes. The results demonstrate that introducing filler into the membranes enhances the durability and stability of this type of fuel cell technology. Moreover, the fuel cell stack system also exhibits very rapid and stable power and voltage output responses under dynamic load regimes.

  7. Long-Term Survival of a Patient with Giant Cell Glioblastoma: Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    E. Naydenov

    2009-07-01

    Full Text Available Glioblastoma multiforme (GBM is the most common glial tumor of the central nervous system. Overall survival is less than a year in most of the cases in spite of multimodal treatment approaches. A 45-year-old female with histologically confirmed giant cell GBM was treated at our institution. Subtotal excision of the lesion situated in the right precentral area was performed during the initial stay in August 2005. The patient improved after the procedure with no hypertension and additional neurological deficit. Radiotherapy plus concomitant and adjuvant temozolomide was performed. The patient was symptom-free for 35 months after initial surgery. From July 2008 the patient developed partial motor seizures in the left side of the body and progressive hemiparesis. Local tumor progression was demonstrated on the neuroimaging studies. In December 2008, a second operative intervention was performed with subtotal excision of the tumor. Forty-five months after the initial diagnosis the patient is still alive with moderate neurological deficit. Microarray analysis of the tumor found the following numeric chromosomal aberrations: monosomy 8, 10, 13, 22, and trisomy 21, as well as amplifications in 4q34.1, 4q28.2, 6q16.3, 7q36.1, 7p21.3, and deletions in 1q42.12, 1q32.2, 1q25.2, 1p33, 2q37.2, 18q22.3, 19p13.2, Xq28, and Xq27.3. GBMs seem to be a heterogeneous group of glial tumors with different clinical course and therapeutic response. Microarray analysis is a useful method to establish a number of possible molecular predictors.

  8. Diffuse large B-cell lymphoma associated with the use of biologic and other investigational agents: the importance of long-term post-marketing safety surveillance.

    Science.gov (United States)

    Goddard, Allison; Borovicka, Judy H; West, Dennis P; Evens, Andrew M; Laumann, Anne

    2011-01-01

    This case report describes a patient who developed diffuse large B-cell lymphoma (DLBCL) after receiving courses of two investigational biologic agents and cyclosporine followed by more than four years of subcutaneous efalizumab for the treatment of extensive chronic plaque psoriasis. Three years later, the patient remains free of lymphoma and his psoriasis is well controlled with thrice-weekly narrow-band ultraviolet phototherapy. This case emphasizes the importance of continued long-term post-marketing safety surveillance and the early reporting of all possible serious side effects, including cancers, related to the use of any newly available product. In particular, surveillance should focus on the immunomodulating biologic agents in order to identify possible dangerous sequelae.

  9. Long-term Survival of A Patient with Advanced Non-small Cell Lung Cancer 
on Bevacizumab Therapy: Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Wei WU

    2013-06-01

    Full Text Available We report an advanced stage Chinese female lung adenocarcinoma patient who was negative for epidermal growth factor receptor (EGFR, V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS gene mutations, also negative for chinodem microtubule-associated protein-like 4/anaplastic lymphoma kinase (EML4-ALK gene rearrangement and treated with bevacizumab (15 mg/kg in combination with 6 cycles of conventional doses of paclitaxel and carboplatin chemotherapy. She was then treated with maintenance bevacizumab for a total of 42 cycles, the total dose of bevacizumab is 44,730 mg. The progression-free survival was 39 months. Our findings suggest that maintenance bevacizumab for the treatment of non-small cell lung cancer (NSCLC is safe and its benefit for long-term survival overwhelms its side effects.

  10. Long-term results of a randomized controlled trial evaluating preoperative chemotherapy in resectable non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Chen ZW

    2013-06-01

    Full Text Available Zhiwei Chen,* Qingquan Luo,* Hong Jian, Zhen Zhou, Baijun Cheng, Shun Lu, Meilin LiaoShanghai Lung Tumor Clinical Medical Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People’s Republic of China *These authors contributed equallyObjective: We aimed to evaluate whether preoperative chemotherapy provides benefits in the survival and prognosis of patients with non-small cell lung cancer (NSCLC in resectable stages I to IIIA, except T1N0. Methods: In this randomized, controlled trial, 356 patients with stage I (except for T1N0, II and IIIA NSCLC were assigned to either the preoperative chemotherapy plus surgery arm (179 patients or the primary surgery arm (177 patients. Both treatments were followed by adjuvant chemotherapy. The end point of this study included overall survival (OS, progression-free survival (PFS, and survival rate associated with clinical remission. Results: Statistical survival difference was found between the preoperative chemotherapy plus surgery arm and the surgery-alone arm. However, the median survival time (MST in the preoperative chemotherapy arm was lower than that of surgery-alone arm (MST, 45.42 months vs 57.59 months (P = 0.016. When comparing the effect of preoperative chemotherapy at each stage of NSCLC, a statistical survival difference was found in stage II NSCLC but not in stage I and IIIA (MST 40.86 months vs 80.81 months (P = 0.044. However, no statistically significant difference in PFS was noticed between the two arms, except for stage I NSCLC (hazard radio [HR] = 0.87; 95% CI, 0.561−1.629; P = 0.027. The survival rate was higher for patients who had clinical remission after preoperative chemotherapy, but the differences did not reach statistical significance (MST 42.10 months vs 35.33 months (P = 0.630. Conclusion: Preoperative chemotherapy did not show benefits in OS and PFS for stage I-IIIA NSCLC patients. Keywords: NSCLC, neoadjuvent, mitomycin, cisplatin, vindesine

  11. Cell type-specific and common characteristics of exosomes derived from mouse cell lines: Yield, physicochemical properties, and pharmacokinetics.

    Science.gov (United States)

    Charoenviriyakul, Chonlada; Takahashi, Yuki; Morishita, Masaki; Matsumoto, Akihiro; Nishikawa, Makiya; Takakura, Yoshinobu

    2017-01-01

    Exosomes are small membrane vesicles secreted from cells and are expected to be used as drug delivery systems. Important characteristics of exosomes, such as yield, physicochemical properties, and pharmacokinetics, may be different among different cell types. However, there is limited information about the effect of cell type on these characteristics. In the present study, we evaluated these characteristics of exosomes derived from five different types of mouse cell lines: B16BL6 murine melanoma cells, C2C12 murine myoblast cells, NIH3T3 murine fibroblasts cells, MAEC murine aortic endothelial cells, and RAW264.7 murine macrophage-like cells. Exosomes were collected using a differential ultracentrifugation method. The exosomes collected from all the cell types were negatively charged globular vesicles with a diameter of approximately 100nm. C2C12 and RAW264.7 cells produced more exosomes than the other types of cells. The exosomes were labeled with a fusion protein of Gaussia luciferase and lactadherin to evaluate their pharmacokinetics. After intravenous injection into mice, all the exosomes rapidly disappeared from the systemic circulation and mainly distributed to the liver. In conclusion, the exosome yield was significantly different among the cell types, and all the exosomes evaluated in this study showed comparable physicochemical and pharmacokinetic properties.

  12. Docosahexaenoic acid signaling modulates cell survival in experimental ischemic stroke penumbra and initiates long-term repair in young and aged rats.

    Directory of Open Access Journals (Sweden)

    Tiffany N Eady

    Full Text Available BACKGROUND: Docosahexaenoic acid, a major omega-3 essential fatty acid family member, improves behavioral deficit and reduces infarct volume and edema after experimental focal cerebral ischemia. We hypothesize that DHA elicits neuroprotection by inducing AKT/p70S6K phosphorylation, which in turn leads to cell survival and protects against ischemic stroke in young and aged rats. METHODS AND RESULTS: Rats underwent 2 h of middle cerebral artery occlusion (MCAo. DHA, neuroprotectin D1 (NPD1 or vehicle (saline was administered 3 h after onset of stroke. Neurological function was evaluated on days 1, 2, 3, and 7. DHA treatment improved functional recovery and reduced cortical, subcortical and total infarct volumes 7 days after stroke. DHA also reduced microglia infiltration and increased the number of astrocytes and neurons when compared to vehicle on days 1 and 7. Increases in p473 AKT and p308 AKT phosphorylation/activation were observed in animals treated with DHA 4 h after MCAo. Activation of other members of the AKT signaling pathway were also observed in DHA treated animals including increases in pS6 at 4 h and pGSK at 24 h. DHA or NPD1 remarkably reduced total and cortical infarct in aged rats. Moreover, we show that in young and aged rats DHA treatment after MCAo potentiates NPD1 biosynthesis. The phosphorylation of p308 AKT or pGSK was not different between groups in aged rats. However, pS6 expression was increased with DHA or NPD1 treatment when compared to vehicle. CONCLUSIONS: We suggest that DHA induces cell survival, modulates the neuroinflammatory response and triggers long term restoration of synaptic circuits. Both DHA and NPD1 elicited remarkable protection in aged animals. Accordingly, activation of DHA signaling might provide benefits in the management of ischemic stroke both acutely as well as long term to limit ensuing disabilities.

  13. Stem cell mobilisation by granulocyte-colony stimulating factor in patients with acute myocardial infarction. Long-term results of the REVIVAL-2 trial.

    Science.gov (United States)

    Steppich, Birgit; Hadamitzky, Martin; Ibrahim, Tareq; Groha, Philip; Schunkert, Heribert; Laugwitz, Karl-Ludwig; Kastrati, Adnan; Ott, Ilka

    2016-04-01

    Treatment with granulocyte-colony stimulating factor (G-CSF) mobilises cells from the bone marrow to the peripheral blood. Previous preclinical and early clinical trials may suggest that treatment with G-CSF leads to improved myocardial perfusion and function in acute or chronic ischaemic heart disease. In the REVIVAL-2 study we found that stem cell mobilisation by G-CSF does not influence infarct size, left ventricular function and coronary restenosis in patients with acute myocardial infarction (MI) that underwent successful percutaneous coronary intervention. The objective of the present analysis was to assess the impact of G-CSF treatment on seven-year clinical outcomes from the REVIVAL-2 trial. In the randomized, double-blind, placebo-controlled REVIVAL-2 study, 114 patients with the diagnosis of acute myocardial infarction were enrolled five days after successful reperfusion by percutaneous coronary intervention. Patients were assigned to receive 10 µg/kg G-CSF (n=56) or placebo (n=58) for five days. The primary endpoint for this long-term outcome analysis was the composite of death, myocardial infarction or stroke seven years after randomisation. The endpoint occurred in 14.3 % of patients in the G-CSF group versus 17.2 % assigned to placebo (p=0.67). The combined incidence of death or myocardial infarction occurred in 14.3 % of the patients assigned to G-CSF and 15.5 % of the patients assigned to placebo (p=0.85). In conclusion, these long-term follow-up data show that G-CSF does not improve clinical outcomes of patients with acute myocardial infarction.

  14. A long-term degradation study of power generation characteristics of anode-supported solid oxide fuel cells using LaNi(Fe)O{sub 3} electrode

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, Takeshi; Watanabe, Kimitaka; Arakawa, Masayasu; Arai, Hajime [NTT Corporation, NTT Energy and Environment Systems Laboratories, Morinosato-Wakamiya 3-1, Atsugi-shi, Kanagawa 243-0198 (Japan)

    2009-09-05

    The long-term operation of an anode-supported solid oxide fuel cell was examined to study the degradation factor. The cell was constructed using LaNi{sub 0.6}Fe{sub 0.4}O{sub 3} (LNF), alumina-doped scandia stabilized zirconia (SASZ), and NiO-SASZ as the cathode, electrolyte, and anode respectively. The cell had Pt current collectors and was operated for 6500 h. The test was carried out at 1073 K with a constant load of 0.4 A cm{sup -2} and included thermal cycling. The cell voltage degradation rate was below 0.86%/1000 h when the cell was operated for up to 5200 h. Changes in the resistance of the cells during the experiments were analyzed by impedance spectroscopy. The cathode polarization resistance and ohmic resistance increased with time. The elements (Si and B) contained in the water condensed from the cathode exhaust gas were identified using inductively coupled plasma (ICP). (author)

  15. Drug and cell type-specific regulation of genes with different classes of estrogen receptor beta-selective agonists.

    Directory of Open Access Journals (Sweden)

    Sreenivasan Paruthiyil

    Full Text Available Estrogens produce biological effects by interacting with two estrogen receptors, ERalpha and ERbeta. Drugs that selectively target ERalpha or ERbeta might be safer for conditions that have been traditionally treated with non-selective estrogens. Several synthetic and natural ERbeta-selective compounds have been identified. One class of ERbeta-selective agonists is represented by ERB-041 (WAY-202041 which binds to ERbeta much greater than ERalpha. A second class of ERbeta-selective agonists derived from plants include MF101, nyasol and liquiritigenin that bind similarly to both ERs, but only activate transcription with ERbeta. Diarylpropionitrile represents a third class of ERbeta-selective compounds because its selectivity is due to a combination of greater binding to ERbeta and transcriptional activity. However, it is unclear if these three classes of ERbeta-selective compounds produce similar biological activities. The goals of these studies were to determine the relative ERbeta selectivity and pattern of gene expression of these three classes of ERbeta-selective compounds compared to estradiol (E(2, which is a non-selective ER agonist. U2OS cells stably transfected with ERalpha or ERbeta were treated with E(2 or the ERbeta-selective compounds for 6 h. Microarray data demonstrated that ERB-041, MF101 and liquiritigenin were the most ERbeta-selective agonists compared to estradiol, followed by nyasol and then diarylpropionitrile. FRET analysis showed that all compounds induced a similar conformation of ERbeta, which is consistent with the finding that most genes regulated by the ERbeta-selective compounds were similar to each other and E(2. However, there were some classes of genes differentially regulated by the ERbeta agonists and E(2. Two ERbeta-selective compounds, MF101 and liquiritigenin had cell type-specific effects as they regulated different genes in HeLa, Caco-2 and Ishikawa cell lines expressing ERbeta. Our gene profiling studies

  16. Molecular beacon-enabled purification of living cells by targeting cell type-specific mRNAs.

    Science.gov (United States)

    Wile, Brian M; Ban, Kiwon; Yoon, Young-Sup; Bao, Gang

    2014-10-01

    Molecular beacons (MBs) are dual-labeled oligonucleotides that fluoresce only in the presence of complementary mRNA. The use of MBs to target specific mRNAs allows sorting of specific cells from a mixed cell population. In contrast to existing approaches that are limited by available surface markers or selectable metabolic characteristics, the MB-based method enables the isolation of a wide variety of cells. For example, the ability to purify specific cell types derived from pluripotent stem cells (PSCs) is important for basic research and therapeutics. In addition to providing a general protocol for MB design, validation and nucleofection into cells, we describe how to isolate a specific cell population from differentiating PSCs. By using this protocol, we have successfully isolated cardiomyocytes differentiated from mouse or human PSCs (hPSCs) with ∼ 97% purity, as confirmed by electrophysiology and immunocytochemistry. After designing MBs, their ordering and validation requires 2 weeks, and the isolation process requires 3 h.

  17. Long-term haematological recovery following high-dose chemotherapy with autologous bone marrow transplantation or peripheral stem cell transplantation in patients with solid tumours

    NARCIS (Netherlands)

    Nieboer, P; de Vries, EGE; Mulder, NH; Sleijfer, DT; Willemse, PHB; Hospers, GAP; Gietema, JA; Sluiter, WJ; van der Graaf, WTA

    2001-01-01

    Long-term peripheral blood counts and factors influencing long-term trilineage haematological recovery of consecutive patients in a single institution treated with high-dose chemotherapy (HDC) and ABMT or PSCT for solid tumours were examined. Patients with a relapse-free survival of >1 year were inc

  18. Chemoradiotherapy with or without consolidation chemotherapy using cisplatin and 5-fluorouracil in anal squamous cell carcinoma: long-term results in 31 patients

    Directory of Open Access Journals (Sweden)

    Roh Jae

    2008-01-01

    Full Text Available Abstract Background The objectives of this study were to evaluate long-term results of concurrent chemoradiotherapy (CRT with 5-fluorouracil and cisplatin and the potential benefit of consolidation chemotherapy in patients with anal squamous cell carcinoma (ASCC. Methods Between January 1995 and February 2006, 31 patients with ASCC were treated with CRT. Radiotherapy was administered at 45 Gy over 5 weeks, followed by a boost of 9 Gy to complete or partial responders. Chemotherapy consisted of 5-fluorouracil (750 or 1,000 mg/m2 daily on days 1 to 5 and days 29 to 33; and, cisplatin (75 or 100 mg/m2 on day 2 and day 30. Twelve patients had T3–4 disease, whereas 18 patients presented with lymphadenopathy. Twenty-one (67.7% received consolidation chemotherapy with the same doses of 5-fluorouracil and cisplatin, repeated every 4 weeks for maximum 4 cycles. Results Nineteen patients (90.5% completed all four courses of consolidation chemotherapy. After CRT, 28 patients showed complete responses, while 3 showed partial responses. After a median follow-up period of 72 months, the 5-year overall, disease-free, and colostomy-free survival rates were 84.7%, 82.9% and 96.6%, demonstrating that CRT with 5-fluorouracil and cisplatin yields a good outcome in terms of survival and sphincter preservation. No differences in 5-year OS and DFS rates between patients treated with CRT alone and CRT with consolidation chemotherapy was observed. Conclusion our study shows that CRT with 5-FU and cisplatin, with or without consolidation chemotherapy, was well tolerated and proved highly encouraging in terms of long-term survival and the preservation of anal function in ASCC. Further trials with a larger patient population are warranted in order to evaluate the potential role of consolidation chemotherapy.

  19. Investigation of a methanol reformer concept considering the particular impact of dynamics and long-term stability for use in a fuel-cell-powered passenger car

    Science.gov (United States)

    Peters, R.; Düsterwald, H. G.; Höhlein, B.

    A methanol reformer concept including a reformer, a catalytic burner, a gas cleaning unit, a PEMFC and an electric motor for use in fuel-cell-powered passenger cars was investigated. Special emphasis was placed on the dynamics and the long-term stability of the reformer. Experiments on a laboratory scale were performed in a methanol steam reformer consisting of four different reactor tubes, which were separately balanced. Due to the endothermy of the steam reforming reaction of methanol, a sharp drop in the reaction temperature of about 50 K occurs at the beginning of the catalyst bed. This agrees well with the high catalytic activity at the entrance of the catalyst bed. Forty-five percent of the methanol was converted within the first 10 cm of the catalyst bed where 12.6 g of the CuO/ZnO catalyst was located. Furthermore, CO formation during methanol steam reforming strongly depends on methanol conversion. Long-term measurements for more than 700 h show that the active reaction zone moved through the catalyst bed. Calculations, on the basis of these experiments, revealed that 63 g of reforming catalyst was necessary for mobile PEMFC applications, in this case for 400 W el at a system efficiency of 42% and a theoretical specific hydrogen production of 5.2 m 3n/(h kg Cat). This amount of catalyst was assumed to maintain a hydrogen production of at least 80% of the original amount over an operating range of 3864 h. Cycled start-up and shut-down processes of the methanol steam reformer under nitrogen and hydrogen atmospheres did not harm the catalytic activity. The simulation of the breakdown of the heating system, in which a liquid water/methanol mixture was in close contact with the catalyst, did not reveal any deactivation of the catalytic activity.

  20. Continuous Fermentation of Clostridium tyrobutyricum with Partial Cell Recycle as a Long-Term Strategy for Butyric Acid Production

    Directory of Open Access Journals (Sweden)

    Edgar C. Clausen

    2012-08-01

    Full Text Available In making alternative fuels from biomass feedstocks, the production of butyric acid is a key intermediate in the two-step production of butanol. The fermentation of glucose via Clostridium tyrobutyricum to butyric acid produces undesirable byproducts, including lactic acid and acetic acid, which significantly affect the butyric acid yield and productivity. This paper focuses on the production of butyric acid using Clostridium tyrobutyricum in a partial cell recycle mode to improve fermenter yield and productivity. Experiments with fermentation in batch, continuous culture and continuous culture with partial cell recycle by ultrafiltration were conducted. The results show that a continuous fermentation can be sustained for more than 120 days, which is the first reported long-term production of butyric acid in a continuous operation. Further, the results also show that partial cell recycle via membrane ultrafiltration has a great influence on the selectivity and productivity of butyric acid, with an increase in selectivity from ≈9% to 95% butyric acid with productivities as high as 1.13 g/Lh. Continuous fermentation with low dilution rate and high cell recycle ratio has been found to be desirable for optimum productivity and selectivity toward butyric acid and a comprehensive model explaining this phenomenon is given.

  1. Long-Term Safety Issues of iPSC-Based Cell Therapy in a Spinal Cord Injury Model: Oncogenic Transformation with Epithelial-Mesenchymal Transition

    Directory of Open Access Journals (Sweden)

    Satoshi Nori

    2015-03-01

    Full Text Available Previously, we described the safety and therapeutic potential of neurospheres (NSs derived from a human induced pluripotent stem cell (iPSC clone, 201B7, in a spinal cord injury (SCI mouse model. However, several safety issues concerning iPSC-based cell therapy remain unresolved. Here, we investigated another iPSC clone, 253G1, that we established by transducing OCT4, SOX2, and KLF4 into adult human dermal fibroblasts collected from the same donor who provided the 201B7 clone. The grafted 253G1-NSs survived, differentiated into three neural lineages, and promoted functional recovery accompanied by stimulated synapse formation 47 days after transplantation. However, long-term observation (for up to 103 days revealed deteriorated motor function accompanied by tumor formation. The tumors consisted of Nestin+ undifferentiated neural cells and exhibited activation of the OCT4 transgene. Transcriptome analysis revealed that a heightened mesenchymal transition may have contributed to the progression of tumors derived from grafted cells.

  2. Magnetic resonance hypointensive signal primarily originates from extracellular iron particles in the long-term tracking of mesenchymal stem cells transplanted in the infarcted myocardium

    Directory of Open Access Journals (Sweden)

    Huang Z

    2015-03-01

    Full Text Available Zheyong Huang,1,* Chenguang Li,1,* Shan Yang,2 Jianfeng Xu,1 Yunli Shen,3 Xinxing Xie,4 Yuxiang Dai,1 Hao Lu,1 Hui Gong,5 Aijun Sun,1 Juying Qian,1 Junbo Ge1 1Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China; 2Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China; 3Department of Cardiology, Shanghai East Hospital, Tongji University, Shanghai, People’s Republic of China; 4Department of Cardiology, Qianfoshan Hospital, Shandong University, Jinan, Shandong Province, People’s Republic of China; 5Institute of Biomedical Science, Fudan University, Shanghai, People’s Republic of China *These authors contributed equally to this work Purpose: The long-lasting hypointensities in cardiac magnetic resonance (CMR were believed to originate from superparamagnetic iron oxide (SPIO-engulfed macrophages during long-term stem cell tracking. However, the iron clearance capacity of the ischemic heart was limited. Therefore, we speculated that the extracellular SPIO particles may also be involved in the generation of false-positive signals.Methods and results: Male swine mesenchymal stem cells (MSCs were incubated with SPIO for 24 hours, and SPIO labeling had no significant effects on either cell viability or differentiation. In vitro studies showed that magnetic resonance failed to distinguish SPIO from living SPIO-MSCs or dead SPIO-MSCs. Two hours after the establishment of the female swine acute myocardial infarction model, 2×107 male SPIO-labeled MSCs (n=5 or unlabeled MSCs (n=5 were transextracardially injected into the infarcted myocardium at ten distinct sites. In vivo CMR with T2 star weighted imaging-flash-2D sequence revealed a signal void corresponding to the initial SPIO-MSC injection sites. At 6 months after transplantation, CMR identified 32 (64% of the 50 injection sites, where massive Prussian blue-positive iron

  3. Coordinated cell type-specific epigenetic remodeling in prefrontal cortex begins before birth and continues into early adulthood.

    Directory of Open Access Journals (Sweden)

    Hennady P Shulha

    2013-04-01

    Full Text Available Development of prefrontal and other higher-order association cortices is associated with widespread changes in the cortical transcriptome, particularly during the transitions from prenatal to postnatal development, and from early infancy to later stages of childhood and early adulthood. However, the timing and longitudinal trajectories of neuronal gene expression programs during these periods remain unclear in part because of confounding effects of concomitantly occurring shifts in neuron-to-glia ratios. Here, we used cell type-specific chromatin sorting techniques for genome-wide profiling of a histone mark associated with transcriptional regulation--H3 with trimethylated lysine 4 (H3K4me3--in neuronal chromatin from 31 subjects from the late gestational period to 80 years of age. H3K4me3 landscapes of prefrontal neurons were developmentally regulated at 1,157 loci, including 768 loci that were proximal to transcription start sites. Multiple algorithms consistently revealed that the overwhelming majority and perhaps all of developmentally regulated H3K4me3 peaks were on a unidirectional trajectory defined by either rapid gain or loss of histone methylation during the late prenatal period and the first year after birth, followed by similar changes but with progressively slower kinetics during early and later childhood and only minimal changes later in life. Developmentally downregulated H3K4me3 peaks in prefrontal neurons were enriched for Paired box (Pax and multiple Signal Transducer and Activator of Transcription (STAT motifs, which are known to promote glial differentiation. In contrast, H3K4me3 peaks subject to a progressive increase in maturing prefrontal neurons were enriched for activating protein-1 (AP-1 recognition elements that are commonly associated with activity-dependent regulation of neuronal gene expression. We uncovered a developmental program governing the remodeling of neuronal histone methylation landscapes in the prefrontal

  4. Long-term survival and regeneration of neuronal and vasculature cells inside the core region after ischemic stroke in adult mice.

    Science.gov (United States)

    Jiang, Michael Qize; Zhao, Ying-Ying; Cao, Wenyuan; Wei, Zheng Zachory; Gu, Xiaohuan; Wei, Ling; Yu, Shan Ping

    2016-08-11

    Focal cerebral ischemia results in an ischemic core surrounded by the peri-infarct region (penumbra). Most research attention has been focused on penumbra while the pattern of cell fates inside the ischemic core is poorly defined. In the present investigation, we tested the hypothesis that, inside the ischemic core, some neuronal and vascular cells could survive the initial ischemic insult while regenerative niches might exist many days after stroke in the adult brain. Adult mice were subjected to focal cerebral ischemia induced by permanent occlusion of distal branches of the middle cerebral artery (MCA) plus transient ligations of bilateral common carotid artery (CCA). The ischemic insult uniformly reduced the local cerebral blood flow (LCBF) by 90%. Massive cell death occurred due to multiple mechanisms and a significant infarction was cultivated in the ischemic cortex 24 h later. Nevertheless, normal or even higher levels of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) persistently remained in the core tissue, some NeuN-positive and Glut-1/College IV-positive cells with intact ultrastructural features resided in the core 7-14 days post stroke. BrdU-positive but TUNEL-negative neuronal and endothelial cells were detected in the core where extensive extracellular matrix infrastructure developed. Meanwhile, GFAP-positive astrocytes accumulated in the penumbra and Iba-1-positive microglial/macrophages invaded the core several days after stroke. The long term survival of neuronal and vascular cells inside the ischemic core was also seen after a severe ischemic stroke induced by permanent embolic occlusion of the MCA. We demonstrate that a therapeutic intervention of pharmacological hypothermia could save neurons/endothelial cells inside the core. These data suggest that the ischemic core is an actively regulated brain region with residual and newly formed viable neuronal and vascular cells acutely and chronically after at

  5. Cell-type-specific profiling of protein-DNA interactions without cell isolation using targeted DamID with next-generation sequencing.

    Science.gov (United States)

    Marshall, Owen J; Southall, Tony D; Cheetham, Seth W; Brand, Andrea H

    2016-09-01

    This protocol is an extension to: Nat. Protoc. 2, 1467-1478 (2007); doi:10.1038/nprot.2007.148; published online 7 June 2007The ability to profile transcription and chromatin binding in a cell-type-specific manner is a powerful aid to understanding cell-fate specification and cellular function in multicellular organisms. We recently developed targeted DamID (TaDa) to enable genome-wide, cell-type-specific profiling of DNA- and chromatin-binding proteins in vivo without cell isolation. As a protocol extension, this article describes substantial modifications to an existing protocol, and it offers additional applications. TaDa builds upon DamID, a technique for detecting genome-wide DNA-binding profiles of proteins, by coupling it with the GAL4 system in Drosophila to enable both temporal and spatial resolution. TaDa ensures that Dam-fusion proteins are expressed at very low levels, thus avoiding toxicity and potential artifacts from overexpression. The modifications to the core DamID technique presented here also increase the speed of sample processing and throughput, and adapt the method to next-generation sequencing technology. TaDa is robust, reproducible and highly sensitive. Compared with other methods for cell-type-specific profiling, the technique requires no cell-sorting, cross-linking or antisera, and binding profiles can be generated from as few as 10,000 total induced cells. By profiling the genome-wide binding of RNA polymerase II (Pol II), TaDa can also identify transcribed genes in a cell-type-specific manner. Here we describe a detailed protocol for carrying out TaDa experiments and preparing the material for next-generation sequencing. Although we developed TaDa in Drosophila, it should be easily adapted to other organisms with an inducible expression system. Once transgenic animals are obtained, the entire experimental procedure-from collecting tissue samples to generating sequencing libraries-can be accomplished within 5 d.

  6. Effects of long-term in vitro culturing of transgenic bovine donor fibroblasts on cell viability and in vitro developmental potential after nuclear transfer.

    Science.gov (United States)

    Bressan, F F; Miranda, M S; Bajgelman, M C; Perecin, F; Mesquita, L G; Fantinato-Neto, P; Merighe, G F K; Strauss, B E; Meirelles, F V

    2013-04-01

    with early or late-passage cells when fusion (63.1% and 49%), cleavage (67.7% and 69.9%), eight-cell embryo (36.4% and 44.4%) and blastocyst (21.6% and 20.8%) rates were compared. In conclusion, culture behavior was different between control and eGFP cells. However, when different in vitro culturing periods were compared, long-term cultured transgenic fetal fibroblasts remained competent for blastocyst production when used as nuclei donors in the nuclear transfer technique, a feature needed for the genetic manipulation of cell culture experiments aiming for transgenic animal production.

  7. Differential microRNA expression signatures and cell type-specific association with Taxol resistance in ovarian cancer cells.

    Science.gov (United States)

    Kim, Yong-Wan; Kim, Eun Young; Jeon, Doin; Liu, Juinn-Lin; Kim, Helena Suhyun; Choi, Jin Woo; Ahn, Woong Shick

    2014-01-01

    Paclitaxel (Taxol) resistance remains a major obstacle for the successful treatment of ovarian cancer. MicroRNAs (miRNAs) have oncogenic and tumor suppressor activity and are associated with poor prognosis phenotypes. miRNA screenings for this drug resistance are needed to estimate the prognosis of the disease and find better drug targets. miRNAs that were differentially expressed in Taxol-resistant ovarian cancer cells, compared with Taxol-sensitive cells, were screened by Illumina Human MicroRNA Expression BeadChips. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to identify target genes of selected miRNAs. Kaplan-Meier survival analysis was applied to identify dysregulated miRNAs in ovarian cancer patients using data from The Cancer Genome Atlas. A total of 82 miRNAs were identified in ovarian carcinoma cells compared to normal ovarian cells. miR-141, miR-106a, miR-200c, miR-96, and miR-378 were overexpressed, and miR-411, miR-432, miR-494, miR-409-3p, and miR-655 were underexpressed in ovarian cancer cells. Seventeen miRNAs were overexpressed in Taxol-resistant cells, including miR-663, miR-622, and HS_188. Underexpressed miRNAs in Taxol-sensitive cells included miR-497, miR-187, miR-195, and miR-107. We further showed miR-663 and miR-622 as significant prognosis markers of the chemo-resistant patient group. In particular, the downregulation of the two miRNAs was associated with better survival, perhaps increasing the sensitivity of cancer cells to Taxol. In the chemo-sensitive patient group, only miR-647 could be a prognosis marker. These miRNAs inhibit several interacting genes of p53 networks, especially in TUOS-3 and TUOS-4, and showed cell line-specific inhibition effects. Taken together, the data indicate that the three miRNAs are closely associated with Taxol resistance and potentially better prognosis factors. Our results suggest that these miRNAs were successfully and reliably identified and would be used in the

  8. The Effect of Long-Term Exercise on the Production of Osteoclastogenic and Antiosteoclastogenic Cytokines by Peripheral Blood Mononuclear Cells and on Serum Markers of Bone Metabolism

    Directory of Open Access Journals (Sweden)

    J. Kelly Smith

    2016-01-01

    Full Text Available Although it is recognized that the mechanical stresses associated with physical activity augment bone mineral density and improve bone quality, our understanding of how exercise modulates bone homeostasis at the molecular level is lacking. In a before and after trial involving 43 healthy adults, we measured the effect of six months of supervised exercise training on the spontaneous and phytohemagglutinin-induced production of osteoclastogenic cytokines (interleukin-1α, tumor necrosis factor-α, antiosteoclastogenic cytokines (transforming growth factor-β1 and interleukins 4 and 10, pleiotropic cytokines with variable effects on osteoclastogenesis (interferon-γ, interleukin-6, and T cell growth and differentiation factors (interleukins 2 and 12 by peripheral blood mononuclear cells. We also measured lymphocyte phenotypes and serum markers of bone formation (osteocalcin, bone resorption (C-terminal telopeptides of Type I collagen, and bone homeostasis (25 (OH vitamin D, estradiol, testosterone, parathyroid hormone, and insulin-like growth factor 1. A combination of aerobic, resistance, and flexibility exercises done on average of 2.5 hours a week attenuated the production of osteoclastogenic cytokines and enhanced the production of antiosteoclastogenic cytokines. These changes were accompanied by a 16% reduction in collagen degradation products and a 9.8% increase in osteocalcin levels. We conclude that long-term moderate intensity exercise exerts a favorable effect on bone resorption by changing the balance between blood mononuclear cells producing osteoclastogenic cytokines and those producing antiosteoclastogenic cytokines. This trial is registered with Clinical Trials.gov Identifier: NCT02765945.

  9. Prenatal stress induces long-term effects in cell turnover in the hippocampus-hypothalamus-pituitary axis in adult male rats.

    Directory of Open Access Journals (Sweden)

    Eva Baquedano

    Full Text Available Subchronic gestational stress leads to permanent modifications in the hippocampus-hypothalamus-pituitary-adrenal axis of offspring probably due to the increase in circulating glucocorticoids known to affect prenatal programming. The aim of this study was to investigate whether cell turnover is affected in the hippocampus-hypothalamus-pituitary axis by subchronic prenatal stress and the intracellular mechanisms involved. Restraint stress was performed in pregnant rats during the last week of gestation (45 minutes; 3 times/day. Only male offspring were used for this study and were sacrificed at 6 months of age. In prenatally stressed adults a decrease in markers of cell death and proliferation was observed in the hippocampus, hypothalamus and pituitary. This was associated with an increase in insulin-like growth factor-I mRNA levels, phosphorylation of CREB and calpastatin levels and inhibition of calpain -2 and caspase -8 activation. Levels of the anti-apoptotic protein Bcl-2 were increased and levels of the pro-apoptotic factor p53 were reduced. In conclusion, prenatal restraint stress induces a long-term decrease in cell turnover in the hippocampus-hypothalamus-pituitary axis that might be at least partly mediated by an autocrine-paracrine IGF-I effect. These changes could condition the response of this axis to future physiological and pathophysiological situations.

  10. Prenatal Stress Induces Long-Term Effects in Cell Turnover in the Hippocampus-Hypothalamus-Pituitary Axis in Adult Male Rats

    Science.gov (United States)

    Baquedano, Eva; García-Cáceres, Cristina; Diz-Chaves, Yolanda; Lagunas, Natalia; Calmarza-Font, Isabel; Azcoitia, Iñigo; Garcia-Segura, Luis M.; Argente, Jesús; Chowen, Julie A.; Frago, Laura M.

    2011-01-01

    Subchronic gestational stress leads to permanent modifications in the hippocampus-hypothalamus-pituitary-adrenal axis of offspring probably due to the increase in circulating glucocorticoids known to affect prenatal programming. The aim of this study was to investigate whether cell turnover is affected in the hippocampus-hypothalamus-pituitary axis by subchronic prenatal stress and the intracellular mechanisms involved. Restraint stress was performed in pregnant rats during the last week of gestation (45 minutes; 3 times/day). Only male offspring were used for this study and were sacrificed at 6 months of age. In prenatally stressed adults a decrease in markers of cell death and proliferation was observed in the hippocampus, hypothalamus and pituitary. This was associated with an increase in insulin-like growth factor-I mRNA levels, phosphorylation of CREB and calpastatin levels and inhibition of calpain -2 and caspase -8 activation. Levels of the anti-apoptotic protein Bcl-2 were increased and levels of the pro-apoptotic factor p53 were reduced. In conclusion, prenatal restraint stress induces a long-term decrease in cell turnover in the hippocampus-hypothalamus-pituitary axis that might be at least partly mediated by an autocrine-paracrine IGF-I effect. These changes could condition the response of this axis to future physiological and pathophysiological situations. PMID:22096592

  11. Slug-dependent upregulation of L1CAM is responsible for the increased invasion potential of pancreatic cancer cells following long-term 5-FU treatment.

    Directory of Open Access Journals (Sweden)

    Kaja Lund

    Full Text Available Pancreatic adenocarcinoma is a lethal disease with 5-year survival of less than 5%. 5-fluorouracil (5-FU is a principal first-line therapy, but treatment only extends survival modestly and is seldom curative. Drug resistance and disease recurrence is typical and there is a pressing need to overcome this. To investigate acquired 5-FU resistance in pancreatic adenocarcinoma, we established chemoresistant monoclonal cell lines from the Panc 03.27 cell line by long-term exposure to increasing doses of 5-FU.5-FU-resistant cell lines exhibited increased expression of markers associated with multidrug resistance explaining their reduced sensitivity to 5-FU. In addition, 5-FU-resistant cell lines showed alterations typical for an epithelial-to-mesenchymal transition (EMT, including upregulation of mesenchymal markers and increased invasiveness. Microarray analysis revealed the L1CAM pathway as one of the most upregulated pathways in the chemoresistant clones, and a significant upregulation of L1CAM was seen on the RNA and protein level. In pancreatic cancer, expression of L1CAM is associated with a chemoresistant and migratory phenotype. Using esiRNA targeting L1CAM, or by blocking the extracellular part of L1CAM with antibodies, we show that the increased invasiveness observed in the chemoresistant cells functionally depends on L1CAM. Using esiRNA targeting β-catenin and/or Slug, we demonstrate that in the chemoresistant cell lines, L1CAM expression depends on Slug rather than β-catenin.Our findings establish Slug-induced L1CAM expression as a mediator of a chemoresistant and migratory phenotype in pancreatic adenocarcinoma cells.

  12. Long Term Study of Protective Mechanisms of Human Adipose Derived Mesenchymal Stem Cells on Cisplatin Induced Kidney injury in Sprague-Daweley Rats

    Directory of Open Access Journals (Sweden)

    Elhusseini FM

    2016-05-01

    Full Text Available Background/Aims: Long-term evaluation of cisplatin induced nephrotoxicity and the probable renal protective activities of stem cells are lacking up until now. We evaluated the early and long-term role of human adipose derived mesenchymal stem cells (ADMSCs in prevention or amelioration of cisplatin induced acute kidney injury (AKI in Sprague-Dawley rats. For this, we determined the kidney tissue level of oxidative stress markers in conjugation with a renal histopathological scoring system of both acute and chronic renal changes. Methods: This study used eighty Sprague-Dawley (SD rats weighing 250-300g. They were assigned into four equal groups (each group n=20: (I Negative control group, rats injected with single dose of 1 ml normal saline. (II Positive control cisplatin, rats injected with a single dose of 5 mg/kg I.P in 1 ml saline. (III Cisplatin and culture media group, rats injected with 0.5 ml of culture media single dose into the tail vein and (IV Cisplatin and ADMSCs group, rats injected with a single dose of 0.5 ml of culture media containing 5 x106ADMSCs into the tail vein one day after cisplatin administration. Each main group was further divided according to the timing of sacrifice into four subgroups (each subgroup n=5. Rats in the subgroup A were sacrificed after 4 days; subgroup B were sacrificed after 7 days; subgroup C were sacrificed after 11 days; and subgroup D were sacrificed after 30 days. Before sacrifice, 24 hrs.-urine was collected using a metabolic cage. Renal function was evaluated through blood urea nitrogen (BUN, serum creatinine and creatinine clearance. Kidney tissue homogenate oxidative stress parameters, Malondialdehyde (MDA, Superoxide dismutase (SOD and Glutathione (GSH were determined. In addition, histopathological analysis for active injury, regenerative and chronic changes was performed. Results: ADMSCs were characterized and their capability of differentiation was proved. Cisplatin induced a significant

  13. Differential microRNA expression signatures and cell type-specific association with Taxol resistance in ovarian cancer cells

    Directory of Open Access Journals (Sweden)

    Kim YW

    2014-02-01

    Full Text Available Yong-Wan Kim,1 Eun Young Kim,1 Doin Jeon,1 Juinn-Lin Liu,2 Helena Suhyun Kim,3 Jin Woo Choi,4 Woong Shick Ahn5 1Cancer Research Institute of Medical Science, The Catholic University of Korea, Seoul, Republic of Korea; 2Brain Tumor Center, Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, TX, USA; 3Cancer Rehab Laboratory, RH Healthcare Systems Inc, TX, USA; 4Harvard Medical School and Wellman Center for Photomedicine, Cambridge, MA, USA; 5Department of Obstetrics and Gynecology, The Catholic University of Korea, Seoul, Republic of Korea Abstract: Paclitaxel (Taxol resistance remains a major obstacle for the successful treatment of ovarian cancer. MicroRNAs (miRNAs have oncogenic and tumor suppressor activity and are associated with poor prognosis phenotypes. miRNA screenings for this drug resistance are needed to estimate the prognosis of the disease and find better drug targets. miRNAs that were differentially expressed in Taxol-resistant ovarian cancer cells, compared with Taxol-sensitive cells, were screened by Illumina Human MicroRNA Expression BeadChips. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR was used to identify target genes of selected miRNAs. Kaplan–Meier survival analysis was applied to identify dysregulated miRNAs in ovarian cancer patients using data from The Cancer Genome Atlas. A total of 82 miRNAs were identified in ovarian carcinoma cells compared to normal ovarian cells. miR-141, miR-106a, miR-200c, miR-96, and miR-378 were overexpressed, and miR-411, miR-432, miR-494, miR-409-3p, and miR-655 were underexpressed in ovarian cancer cells. Seventeen miRNAs were overexpressed in Taxol-resistant cells, including miR-663, miR-622, and HS_188. Underexpressed miRNAs in Taxol-sensitive cells included miR-497, miR-187, miR-195, and miR-107. We further showed miR-663 and miR-622 as significant prognosis markers of the chemo-resistant patient group. In particular, the

  14. Developmental and cell type-specific exp