WorldWideScience

Sample records for cell type-specific long-term

  1. Induction of long-term potentiation and long-term depression is cell-type specific in the spinal cord.

    Science.gov (United States)

    Kim, Hee Young; Jun, Jaebeom; Wang, Jigong; Bittar, Alice; Chung, Kyungsoon; Chung, Jin Mo

    2015-04-01

    The underlying mechanism of chronic pain is believed to be changes in excitability in spinal dorsal horn (DH) neurons that respond abnormally to peripheral input. Increased excitability in pain transmission neurons, and depression of inhibitory neurons, are widely recognized in the spinal cord of animal models of chronic pain. The possible occurrence of 2 parallel but opposing forms of synaptic plasticity, long-term potentiation (LTP) and long-term depression (LTD) was tested in 2 types of identified DH neurons using whole-cell patch-clamp recordings in mouse spinal cord slices. The test stimulus was applied to the sensory fibers to evoke excitatory postsynaptic currents in identified spinothalamic tract neurons (STTn) and GABAergic neurons (GABAn). Afferent conditioning stimulation (ACS) applied to primary afferent fibers with various stimulation parameters induced LTP in STTn but LTD in GABAn, regardless of stimulation parameters. These opposite responses were further confirmed by simultaneous dual patch-clamp recordings of STTn and GABAn from a single spinal cord slice. Both the LTP in STTn and the LTD in GABAn were blocked by an NMDA receptor antagonist, AP5, or an intracellular Ca chelator, BAPTA. Both the pattern and magnitude of intracellular Ca after ACS were almost identical between STTn and GABAn based on live-cell calcium imaging. The results suggest that the intense sensory input induces an NMDA receptor-dependent intracellular Ca increase in both STTn and GABAn, but produces opposing synaptic plasticity. This study shows that there is cell type-specific synaptic plasticity in the spinal DH. PMID:25785524

  2. Induction of long-term potentiation and long-term depression is cell-type specific in the spinal cord

    OpenAIRE

    Kim, Hee Young; Jun, Jaebeom; Wang, Jigong; Bittar, Alice; Chung, Kyungsoon; Chung, Jin Mo

    2015-01-01

    Abstract The underlying mechanism of chronic pain is believed to be changes in excitability in spinal dorsal horn (DH) neurons that respond abnormally to peripheral input. Increased excitability in pain transmission neurons, and depression of inhibitory neurons, are widely recognized in the spinal cord of animal models of chronic pain. The possible occurrence of 2 parallel but opposing forms of synaptic plasticity, long-term potentiation (LTP) and long-term depression (LTD) was tested in 2 ty...

  3. Layer- and cell-type-specific subthreshold and suprathreshold effects of long-term monocular deprivation in rat visual cortex.

    Science.gov (United States)

    Medini, Paolo

    2011-11-23

    Connectivity and dendritic properties are determinants of plasticity that are layer and cell-type specific in the neocortex. However, the impact of experience-dependent plasticity at the level of synaptic inputs and spike outputs remains unclear along vertical cortical microcircuits. Here I compared subthreshold and suprathreshold sensitivity to prolonged monocular deprivation (MD) in rat binocular visual cortex in layer 4 and layer 2/3 pyramids (4Ps and 2/3Ps) and in thick-tufted and nontufted layer 5 pyramids (5TPs and 5NPs), which innervate different extracortical targets. In normal rats, 5TPs and 2/3Ps are the most binocular in terms of synaptic inputs, and 5NPs are the least. Spike responses of all 5TPs were highly binocular, whereas those of 2/3Ps were dominated by either the contralateral or ipsilateral eye. MD dramatically shifted the ocular preference of 2/3Ps and 4Ps, mostly by depressing deprived-eye inputs. Plasticity was profoundly different in layer 5. The subthreshold ocular preference shift was sevenfold smaller in 5TPs because of smaller depression of deprived inputs combined with a generalized loss of responsiveness, and was undetectable in 5NPs. Despite their modest ocular dominance change, spike responses of 5TPs consistently lost their typically high binocularity during MD. The comparison of MD effects on 2/3Ps and 5TPs, the main affected output cells of vertical microcircuits, indicated that subthreshold plasticity is not uniquely determined by the initial degree of input binocularity. The data raise the question of whether 5TPs are driven solely by 2/3Ps during MD. The different suprathreshold plasticity of the two cell populations could underlie distinct functional deficits in amblyopia. PMID:22114282

  4. Long-term depression: a cell biological view

    OpenAIRE

    Sheng, Morgan; Ertürk, Ali

    2014-01-01

    Recent studies of the molecular mechanisms of long-term depression (LTD) suggest a crucial role for the signalling pathways of apoptosis (programmed cell death) in the weakening and elimination of synapses and dendritic spines. With this backdrop, we suggest that LTD can be considered as the electrophysiological aspect of a larger cell biological programme of synapse involution, which uses localized apoptotic mechanisms to sculpt synapses and circuits without causing cell death.

  5. Design of microdevices for long-term live cell imaging

    International Nuclear Information System (INIS)

    Advances in fluorescent live cell imaging provide high-content information that relates a cell's life events to its ancestors. An important requirement to track clonal growth and development is the retention of motile cells derived from an ancestor within the same microscopic field of view for days to weeks, while recording fluorescence images and controlling the mechanical and biochemical microenvironments that regulate cell growth and differentiation. The aim of this study was to design a microwell device for long-term, time-lapse imaging of motile cells with the specific requirements of (a) inoculating devices with an average of one cell per well and (b) retaining progeny of cells within a single microscopic field of view for extended growth periods. A two-layer PDMS microwell culture device consisting of a parallel-plate flow cell bonded on top of a microwell array was developed for cell capture and clonal culture. Cell deposition statistics were related to microwell geometry (plate separation and well depth) and the Reynolds number. Computational fluid dynamics was used to simulate flow in the microdevices as well as cell–fluid interactions. Analysis of the forces acting upon a cell was used to predict cell docking zones, which were confirmed by experimental observations. Cell–fluid dynamic interactions are important considerations for design of microdevices for long-term, live cell imaging. The analysis of force and torque balance provides a reasonable approximation for cell displacement forces. It is computationally less intensive compared to simulation of cell trajectories, and can be applied to a wide range of microdevice geometries to predict the cell docking behavior. (paper)

  6. Type-specific cell line models for type-specific ovarian cancer research.

    Directory of Open Access Journals (Sweden)

    Michael S Anglesio

    Full Text Available BACKGROUND: OVARIAN CARCINOMAS CONSIST OF AT LEAST FIVE DISTINCT DISEASES: high-grade serous, low-grade serous, clear cell, endometrioid, and mucinous. Biomarker and molecular characterization may represent a more biologically relevant basis for grouping and treating this family of tumors, rather than site of origin. Molecular characteristics have become the new standard for clinical pathology, however development of tailored type-specific therapies is hampered by a failure of basic research to recognize that model systems used to study these diseases must also be stratified. Unrelated model systems do offer value for study of biochemical processes but specific cellular context needs to be applied to assess relevant therapeutic strategies. METHODS: We have focused on the identification of clear cell carcinoma cell line models. A panel of 32 "ovarian cancer" cell lines has been classified into histotypes using a combination of mutation profiles, IHC mutation-surrogates, and a validated immunohistochemical model. All cell lines were identity verified using STR analysis. RESULTS: Many described ovarian clear cell lines have characteristic mutations (including ARID1A and PIK3CA and an overall molecular/immuno-profile typical of primary tumors. Mutations in TP53 were present in the majority of high-grade serous cell lines. Advanced genomic analysis of bona-fide clear cell carcinoma cell lines also support copy number changes in typical biomarkers such at MET and HNF1B and a lack of any recurrent expressed re-arrangements. CONCLUSIONS: As with primary ovarian tumors, mutation status of cancer genes like ARID1A and TP53 and a general immuno-profile serve well for establishing histotype of ovarian cancer cell We describe specific biomarkers and molecular features to re-classify generic "ovarian carcinoma" cell lines into type specific categories. Our data supports the use of prototype clear cell lines, such as TOV21G and JHOC-5, and questions the use of

  7. Long-term operation of manure-microbial fuel cell.

    Science.gov (United States)

    Zhang, Guodong; Zhao, Qingliang; Jiao, Yan; Lee, Duu-Jong

    2015-03-01

    Microbial fuel cell (MFC) is applied to produce electricity using dairy manure as a fuel. Since the way MFC utilizes manure as a fuel and the long-term operation stability of manure-MFC remains unclear, this study examined the evolution of dissolved organic matter (DOM) in anodic chamber and power generation by MFC in a 171days test. The tested MFC can produce electricity over the entire testing period by single feed of manure, with stable power output and total chemical oxygen demand (TCOD) removal rate in the period of day 30-140. The hydrophobic acid (HPO-A) and hydrophilic (HPI) fractions of manure were the principal components of anolyte DOM, with the concentrations of both being reduced over MFC operation. The degradable organic matters were converted to compounds with high aromaticity. PMID:25603729

  8. Long term survivors with small cell carcinoma of the lung

    International Nuclear Information System (INIS)

    A retrospective study was done of all patients who survived 2 years or more with small cell carcinoma (SCC) of the lung. The study period was 1970 to 1978 and patients with either local or metastatic disease were included. Pathology review documented 17 patients with an unequivocal diagnosis of SCC surviving 2 years or more. The important conclusions of this study are: (1) Local treatment (either surgery or radiation therapy) was an important part of therapy for long term survival; (2) Local tumor control in the lung was superior in those patients treated with surgery or high dose lung irradiation (>4800 rad) compared to patients with low dose lung irradiation (<3500 rad); and (3) 33% of the patients who were without evidence of disease at 2 years eventually relapsed, implying that even a 2 year follow-up is inadequate to fully assess treatment efficacy

  9. Cell type-specific transcriptome profiling in mammalian brains.

    Science.gov (United States)

    LoVerso, Peter R; Cui, Feng

    2016-01-01

    A mammalian brain contains numerous types of cells. Advances in neuroscience in the past decade allow us to identify and isolate neural cells of interest from mammalian brains. Recent developments in high-throughput technologies, such as microarrays and next-generation sequencing (NGS), provide detailed information on gene expression in pooled cells on a genomic scale. As a result, many novel genes have been found critical in cell type-specific transcriptional regulation. These differentially expressed genes can be used as molecular signatures, unique to a particular class of neural cells. Use of this gene expression-based approach can further differentiate neural cell types into subtypes, potentially linking some of them with neurological diseases. In this article, experimental techniques used to purify neural cells are described, followed by a review on recent microarray- or NGS-based transcriptomic studies of common neural cell types. The future prospects of cell type-specific research are also discussed. PMID:27100485

  10. Long-term high-fat-diet feeding induces skeletal muscle mitochondrial biogenesis in rats in a sex-dependent and muscle-type specific manner

    Directory of Open Access Journals (Sweden)

    Gómez-Pérez Yolanda

    2012-02-01

    Full Text Available Abstract Background Mitochondrial dysfunction is thought to play a crucial role in the etiology of insulin resistance, in which skeletal muscle is the main tissue contributor. Sex differences in skeletal muscle insulin and antioxidant responses to high-fat-diet (HFD feeding have been described. The aim of this study was to elucidate whether there is a sex dimorphism in the effects of HFD feeding on skeletal muscle mitochondrial biogenesis and on the adiponectin signaling pathway, as well as the influence of the muscle type (oxidative or glycolytic. Methods Gastrocnemius and soleus muscles of male and female Wistar rats of 2 months of age fed with a high-fat-diet (HFD or a low fat diet for 26 weeks were used. Mitochondrial biogenesis and oxidative damage markers, oxidative capacity and antioxidant defences were analyzed. Serum insulin sensitivity parameters and the levels of proteins involved in adiponectin signaling pathway were also determined. Results HFD feeding induced mitochondrial biogenesis in both sexes, but to a higher degree in male rats. Although HFD female rats showed greater antioxidant protection and maintained a better insulin sensitivity profile than their male counterparts, both sexes showed an impaired response to adiponectin, which was more evident in gastrocnemius muscle. Conclusions We conclude that HFD rats may induce skeletal muscle mitochondrial biogenesis as an attempt to compensate the deleterious consequences of adiponectin and insulin resistance on oxidative metabolism, and that the effects of HFD feeding are sex-dependent and muscle-type specific.

  11. Long-term Cultured Human Neural Stem Cells Undergo Spontaneous Transformation to Tumor-Initiating Cells

    OpenAIRE

    Weihua Wu, Qihua He, Xiaoxia Li, Xiaoyan Zhang, Aili Lu, Ruimin Ge, HongYing Zhen, Alfred E. Chang, Qiao Li, Li Shen

    2011-01-01

    In this report, we describe the spontaneous malignant transformation of long-term cultured human fetal striatum neural stem cells (hsNSCs, passage 17). After subcutaneous transplantation of long-term cultured hsNSCs into immunodeficient nude mice, 2 out of 15 mice formed xenografts which expressed neuroendocrine tumor markers CgA and NSE. T1 cells, a cell line that we derived from one of the two subcutaneous xenografts, have undergone continuous expansion in vitro. These T1 cells showed stem ...

  12. Long-term surveillance plan for the Burro Canyon disposal cell, Slick Rock, Colorado

    International Nuclear Information System (INIS)

    This long-term surveillance plant (LTSP) describes the US Department of energy's (DOE) long-term care program for the Uranium Mill Tailings Remediation Action (UMTRA) Project's burro Canyon disposal cell in San Miguel County, Colorado. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Burro Canyon disposal cell performs as designed. The program is based on site inspections to identify threats to disposal cell integrity. No ground water monitoring will be required at the Burro Canyon disposal cell because the ground water protection strategy is supplemental standards based on low-yield from the upper-most aquifer

  13. Long-term storage of nickel-hydrogen cells

    Science.gov (United States)

    Vaidyanathan, Hari

    1987-09-01

    Representative samples of nickel hydrogen cells for the INTELSAT program were used to evaluate the effects of prolonged storage under passive conditions such as open circuit discharged at 0 C, room temperature, and -20 C, and under quasidynamic conditions such as top-off charge and trickle charge. Cell capacity declines when cells are stored open-circuit discharged at room temperature, and a second plateau occurs in the discharge curve. Capacity loss was 47 percent for a cell with hydrogen precharge and 24.5 percent for one with no hydrogen precharge. Capacity recovery was observed following top-off charge storage of cells which had exhibited faded capacity as a result of passive storage at room temperature. Cells stored either at -20 C or on trickle charge maintained their capacity. At 0 C storage, the capacity of all three cells under tests was greater than 55 Ah (which exceeds the required minimum of 44 Ah) after 7 months.

  14. Miniature Bioreactor System for Long-Term Cell Culture

    Science.gov (United States)

    Gonda, Steve R.; Kleis, Stanley J.; Geffert, Sandara K.

    2010-01-01

    A prototype miniature bioreactor system is designed to serve as a laboratory benchtop cell-culturing system that minimizes the need for relatively expensive equipment and reagents and can be operated under computer control, thereby reducing the time and effort required of human investigators and reducing uncertainty in results. The system includes a bioreactor, a fluid-handling subsystem, a chamber wherein the bioreactor is maintained in a controlled atmosphere at a controlled temperature, and associated control subsystems. The system can be used to culture both anchorage-dependent and suspension cells, which can be either prokaryotic or eukaryotic. Cells can be cultured for extended periods of time in this system, and samples of cells can be extracted and analyzed at specified intervals. By integrating this system with one or more microanalytical instrument(s), one can construct a complete automated analytical system that can be tailored to perform one or more of a large variety of assays.

  15. Hippocampal Place Cell Firing Patterns can Induce Long-Term Synaptic Plasticity In Vitro

    OpenAIRE

    Isaac, John T. R.; Buchanan, Katherine A.; Muller, Robert U.; Mellor, Jack R.

    2009-01-01

    In the hippocampus, synaptic strength between pyramidal cells is modifiable by NMDA receptor (NMDAR)-dependent long-term potentiation (LTP) and long-term depression (LTD), both of which require coincident pre- and postsynaptic activity. In vivo, many pyramidal cells exhibit location-specific activity patterns and are known as “place cells”. The combination of these factors suggests that synaptic plasticity will be induced at synapses connecting place cells with overlapping firing fields, sinc...

  16. A Sealed Preparation for Long-Term Observations of Cultured Cells

    OpenAIRE

    sprotocols

    2014-01-01

    Authors: Greenfield Sluder, Joshua J. Nordberg, Frederick J. Miller and Edward H. Hinchcliffe This protocol was adapted from “A Sealed Preparation for Long-Term Observations of Cultured Cells,” Chapter 18, in *Live Cell Imaging* (eds. Goldman and Spector). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA, 2005. ### INTRODUCTION The continuous long-term observation of cultured cells on the microscope has always been a technically demanding undertaking. This protocol...

  17. Long-Term Performance of Uranium Tailings Disposal Cells - 13340

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, Kent; Daniel, Anamary; Pill, Ken [Professional Project Services, Inc., 1100 Bethel Valley Road, Oak Ridge, TN, 37922 (United States); Tachiev, Georgio; Noosai, Nantaporn; Villamizar, Viviana [Florida International University, 10555 W. Flagler St., EC 2100, Miami FL, 33174 (United States)

    2013-07-01

    Recently, there has been interest in the performance and evolution of Uranium Mill Tailings Remedial Action (UMTRA) Project disposal cell covers because some sites are not compliant with groundwater standards. Field observations of UMTRA disposal cells indicate that rock covers tend to become vegetated and that saturated conductivities in the upper portion of radon barriers may increase due to freeze/thaw cycles and biointrusion. This paper describes the results of modeling that addresses whether these potential changes and transient drainage of moisture in the tailings affect overall performance of the disposal cells. A numerical unsaturated/saturated 3-dimensional flow model was used to simulate whether increases in saturated conductivities in radon barriers with rock covers affect the overall performance of the disposal cells using field data from the Shiprock, NM, UMTRA site. A unique modeling approach allowed simulation with daily climatic conditions to determine changes in moisture and moisture flux from the disposal cell. Modeling results indicated that increases in the saturated conductivity at the top of radon barrier do not influence flux from the tailings with time because the tailings behave similar hydraulically to the radon barrier. The presence of a thin layer of low conductivity material anywhere in the cover or tailings restricts flux in the worst case to the saturated conductivity of that material. Where materials are unsaturated at depth within the radon barrier of tailings slimes, conductivities are typically less than 10{sup -8} centimeters per second. If the low conductivity layer is deep within the disposal cell, its saturated properties are less likely to change with time. The significance of this modeling is that operation and maintenance of the disposal cells can be minimized if they are allowed to progress to a natural condition with some vegetation and soil genesis. Because the covers and underlying tailings have a very low saturated

  18. Long-term surveillance plan for the Burro Canyon disposal cell Slick Rock, Colorado

    International Nuclear Information System (INIS)

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Burro Canyon disposal cell in San Miguel County, Colorado. This LSTP describes the long-term surveillance program the DOE will implement to ensure the Burro Canyon disposal cell performs as designed and is cared for in a manner that protects the public health and safety and the environment. The program is based on site inspections to identify threats to disposal cell integrity. Before each disposal cell is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP

  19. Long-term Cultured Human Neural Stem Cells Undergo Spontaneous Transformation to Tumor-Initiating Cells

    Directory of Open Access Journals (Sweden)

    Weihua Wu, Qihua He, Xiaoxia Li, Xiaoyan Zhang, Aili Lu, Ruimin Ge, HongYing Zhen, Alfred E. Chang, Qiao Li, Li Shen

    2011-01-01

    Full Text Available In this report, we describe the spontaneous malignant transformation of long-term cultured human fetal striatum neural stem cells (hsNSCs, passage 17. After subcutaneous transplantation of long-term cultured hsNSCs into immunodeficient nude mice, 2 out of 15 mice formed xenografts which expressed neuroendocrine tumor markers CgA and NSE. T1 cells, a cell line that we derived from one of the two subcutaneous xenografts, have undergone continuous expansion in vitro. These T1 cells showed stem cell-like features and expressed neural stem cell markers nestin and CD133. The T1 cells were involved in abnormal karyotype, genomic instability and fast proliferation. Importantly, after long-term in vitro culture, the T1 cells did not result in subcutaneous xenografts, but induced intracranial tumor formation, indicating that they adjusted themselves to the intracranial microenvironment. We further found that the T1 cells exhibited an overexpressed level of EGFR, and the CD133 positive T1 cells showed a truncation mutation in the exons 2-7 of the EGFR (EGFRvIII gene. These results suggest that continuous expansion of neural stem cells in culture may lead to malignant spontaneous transformation. This phenomenon may be functionally related to EGFR by EGFRvIII gene mutation.

  20. GABABR-Dependent Long-Term Depression at Hippocampal Synapses between CB1-Positive Interneurons and CA1 Pyramidal Cells.

    Science.gov (United States)

    Jappy, Dave; Valiullina, Fliza; Draguhn, Andreas; Rozov, Andrei

    2016-01-01

    Activity induced long lasting modifications of synaptic efficacy have been extensively studied in excitatory synapses, however, long term plasticity is also a property of inhibitory synapses. Inhibitory neurons in the hippocampal CA1 region can be subdivided according to the compartment they target on the pyramidal cell. Some interneurons preferentially innervate the perisomatic area and axon hillock of the pyramidal cells while others preferentially target dendritic branches and spines. Another characteristic feature allowing functional classification of interneurons is cell type specific expression of different neurochemical markers and receptors. In the hippocampal CA1 region, nearly 90% of the interneurons expressing cannabinoid type 1 receptors (CB1R) also express cholecystokinin (CCK). Therefore, the functional presence of CB1 receptors can be used for identification of the inhibitory input from CCK positive (CCK+) interneurons to CA1 pyramidal cells. The goal of this study was to explore the nature of long term plasticity at the synapses between interneurons expressing CB1Rs (putative CCK+) and pyramidal neurons in the CA1 region of the hippocampus in vitro. We found that theta burst stimulation triggered robust long-term depression (LTD) at this synapse. The locus of LTD induction was postsynaptic and required activation of GABAB receptors. We also showed that LTD at this synaptic connection involves GABABR-dependent suppression of adenylyl cyclase and consequent reduction of PKA activity. In this respect, CB1+ to pyramidal cell synapses differ from the majority of the other hippocampal inhibitory connections where theta burst stimulation results in long-term potentiation. PMID:26858602

  1. Method and Apparatus for a Miniature Bioreactor System for Long-Term Cell Culture

    Science.gov (United States)

    Kleis, Stanley J. (Inventor); Geffert, Sandra K. (Inventor); Gonda, Steve R. (Inventor)

    2015-01-01

    A bioreactor and method that permits continuous and simultaneous short, moderate, or long term cell culturing of one or more cell types or tissue in a laminar flow configuration is disclosed, where the bioreactor supports at least two laminar flow zones, which are isolated by laminar flow without the need for physical barriers between the zones. The bioreactors of this invention are ideally suited for studying short, moderate and long term studies of cell cultures and the response of cell cultures to one or more stressors such as pharmaceuticals, hypoxia, pathogens, or any other stressor. The bioreactors of this invention are also ideally suited for short, moderate or long term cell culturing with periodic cell harvesting and/or medium processing for secreted cellular components.

  2. GATA-3 REGULATES THE SELF-RENEWAL OF LONG-TERM HEMATOPOIETIC STEM CELLS

    Science.gov (United States)

    Frelin, Catherine; Herrington, Robert; Janmohamed, Salima; Barbara, Mary; Tran, Gary; Paige, Christopher J.; Benveniste, Patricia; Zuñiga-Pflücker, Juan-Carlos; Souabni, Abdallah; Busslinger, Meinrad; Iscove, Norman N

    2016-01-01

    Gata3 is expressed and required for differentiation and function throughout the T lymphocyte lineage. Despite evidence it may also be expressed in multipotent hematopoietic stem cells (HSC), any role in these cells has remained unclear. Here we show GATA3 was cytoplasmic in quiescent long-term stem cells from steady state bone marrow, but relocated to the nucleus when HSC cycle. Relocation depended on p38-MAPK signaling and was associated with diminished capacity for long-term reconstitution upon transfer to irradiated mice. Deletion of Gata3 enhanced repopulating capacity and augmented self-renewal of long term HSC in cell-autonomous fashion, without affecting cell cycle. These observations position Gata3 as a regulator of the balance between self-renewal and differentiation in HSC acting downstream of the p38 signaling pathway. PMID:23974957

  3. Long-term surveillance plan for the Burro Canyon disposal cell, Slick Rock, Colorado

    International Nuclear Information System (INIS)

    This long-term surveillance plan (LTSP) describes the US Department of Energy (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Burro Canyon disposal cell in San Miguel County, Colorado. The US Nuclear Regulatory Commission (NRC) developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Burro Canyon disposal cell. The general license becomes effective when the NRC concurs with the DOE's determination that remedial action is complete at the Burro Canyon disposal cell and the NRC formally accepts this LTSP. Attachment 1 contains the concurrence letters from NRC. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Burro Canyon disposal cell performs as designed. The program is based on site inspections to identify threats to disposal cell integrity. Ground water monitoring will not be required at the Burro Canyon disposal cell because the ground water protection strategy is supplemental standards based on low yield from the uppermost aquifer

  4. Long-term hematopoietic stem cell damage after external irradiation with X rays

    International Nuclear Information System (INIS)

    We have investigated the functionality of the lympho-hematopoietic stem cells long-term (9 months) after the irradiation (X rays) of mice at different stages of development, by means of a competitive bone marrow repopulation assay. Our data revealed that a dose of 1 Gy was only capable of inducing significant long-term failures in the functionality of the primitive repopulating cells in mice irradiated at the young-adult stage (12 week-old), but not in mice irradiated at the late stages of foetus development (17 day-old fetuses) nor at the early development of the embryo (4 day-old embryos). The differential generation of long-term stem cell defects as a function of the age was confirmed in mice irradiated with 3 Gy. While no significant effects in the long-term repopulating cells were observed in 4 day-old embryos, significant repopulation deficiencies were observed in this population when mice were irradiated at the 17 day of foetus development, and more markedly at the adult stage of growth. These data offer new evidence about the influence of the developmental stage of the animal on the generation of residual hematopoietic dysfunctions by external irradiation, with particular relevance to the very primitive lympho-hematopoietic stem cells. (author)

  5. Long-term maintenance of in vitro cultured honeybee (Apis mellifera embryonic cells

    Directory of Open Access Journals (Sweden)

    Aamodt Randi M

    2006-03-01

    Full Text Available Abstract Background In vitro cultivation of cells allows novel investigation of in vivo- mechanisms and is a helpful tool in developmental biology, biochemistry and functional genomics. Numerous cell lines of insect species, e.g., silkworm and mosquito, have been reported. However, this is not the case for successful long-term cultivation of cells in honeybees. Results Methods for cultivation of honeybee embryonic cells are discussed here. Pre-gastrula stage embryos were used to initiate cultures, and cells were reared on 96-wells microplates with Grace insect medium, supplemented with Fetal Bovine Serum. Cells proliferated in clusters, and maintained viable and mitotic for more than three months. Conclusion We report here, for the first time, long-term cultivation of honeybee cells. Results represent a highly useful in vitro-system for studying a model organism of increasing importance in areas such as aging, sociality and neurobiology.

  6. Ni/YSZ microstructure optimization for long-term stability of solid oxide electrolysis cells

    DEFF Research Database (Denmark)

    Hauch, Anne; Brodersen, Karen; Karas, Filip; Chen, Ming

    keeping the Ni particles in their required positions in the porous Ni/YSZ cermet close to the electrolyte. In this work we report cell tests and microstructures from reference and long-term tested SOEC with varied initial Ni/YSZ ratio with the aim of investigating the effect of changed Ni/YSZ ratio on...

  7. Long-term outcome of Hurler syndrome patients after hematopoietic cell transplantation : an international multicenter study

    NARCIS (Netherlands)

    Aldenhoven, Mieke; Wynn, Robert F.; Orchard, Paul J.; O'Meara, Anne; Veys, Paul; Fischer, Alain; Valayannopoulos, Vassili; Neven, Benedicte; Rovelli, Attilio; Prasad, Vinod K.; Tolar, Jakub; Allewelt, Heather; Jones, Simon A.; Parini, Rossella; Renard, Marleen; Bordon, Victoria; Wulffraat, Nico M.; de Koning, Tom J.; Shapiro, Elsa G.; Kurtzberg, Joanne; Boelens, Jaap Jan

    2015-01-01

    Mucopolysaccharidosis type I-Hurler syndrome (MPS-IH) is a lysosomal storage disease characterized by multisystem morbidity and death in early childhood. Although hematopoietic cell transplantation (HCT) has been performed in these patients for more than 30 years, large studies on the long-term outc

  8. Long-term outcome of Hurler syndrome patients after hematopoietic cell transplantation : An international multicenter study

    NARCIS (Netherlands)

    Aldenhoven, Mieke; Wynn, Robert F.; Orchard, Paul J.; O'Meara, Anne; Veys, Paul; Fischer, Alain; Valayannopoulos, Vassili; Neven, Benedicte; Rovelli, Attilio; Prasad, Vinod K.; Tolar, Jakub; Allewelt, Heather; Jones, Simon A.; Parini, Rossella; Renard, Marleen; Bordon, Victoria; Wulffraat, Nico M.; de Koning, Tom J.; Shapiro, Elsa G.; Kurtzberg, Joanne; Boelens, Jaap Jan

    2015-01-01

    Mucopolysaccharidosis type I-Hurler syndrome (MPS-IH) is a lysosomal storage disease characterized by multisystem morbidity and death in early childhood. Although hematopoietic cell transplantation (HCT) has been performed in these patients for more than 30 years, large studies on the long-term outc

  9. Long-term surveillance plan for the Burro Canyon disposal cell Slick Rock, Colorado

    International Nuclear Information System (INIS)

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Burro Canyon disposal cell in San Miguel County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Burro Canyon disposal cell. The general license becomes effective when the NRC concurs with the DOE's determination that remedial action is complete at the Burro Canyon disposal cell and the NRC formally accepts this LTSP. Attachment 1 contains the concurrence letters from NRC. This LTSP describes the long-term surveillance program the DOE has implemented to ensure that the Burro Canyon disposal cell performs as designed. The program is based on site inspections to identify threats to disposal cell integrity. Ground water monitoring will not be required at the Burro Canyon disposal cell because the ground water protection strategy is supplemental standards based on low yield from the uppermost aquifer. The LTSP is based on the UMTRA Project's long-term surveillance program guidance and meets the requirements of 10 CFR 40.27(b) and 40 CFR 192.03

  10. Phenotypic and Functional Characterization of Long-Term Cryopreserved Human Adipose-derived Stem Cells

    OpenAIRE

    Yong, Kar Wey; Pingguan-Murphy, Belinda; Xu, Feng; Abas, Wan Abu Bakar Wan; Choi, Jane Ru; Omar, Siti Zawiah; Azmi, Mat Adenan Noor; Chua, Kien Hui; Safwani, Wan Kamarul Zaman Wan

    2015-01-01

    Cryopreservation represents an effective technique to maintain the functional properties of human adipose-derived stem cells (ASCs) and allows pooling of cells via long-term storage for clinical applications, e.g., cell-based therapies. It is crucial to reduce freezing injury during the cryopreservation process by loading the ASCs with the optimum concentration of suitable cryoprotective agents (CPAs). In this study, human ASCs were preserved for 3 months in different combinations of CPAs, in...

  11. VH repertoire in progeny of long term lymphoid-cultured cells used to reconstitute immunodeficient mice

    International Nuclear Information System (INIS)

    VH gene utilization in the progeny of long term lymphoid-cultured cells used for reconstitution of severe combined immunodeficient mice under varying conditions was determined. Hybridomas made from the spleens of these animals were evaluated for clonality and donor origin and a panel of 146 independent hybridomas were subsequently examined for VH expression. Hybridomas derived from the spleens of SCID mice reconstituted with fresh cells, used as a control, utilized VH families in proportion to their numerical representation in the genome. However, hybridomas from the spleens of mice reconstituted with long term cultured cells utilized a predominance of the two VH gene families most proximal to JH, characteristic of cells early in B lymphocyte development. Coinjection of thymocytes with cultured fetal liver cells, to provide good levels of T lymphocytes, did not alter this pattern of VH utilization. Irradiation (3 Gy) of the mice before cultured cell injection, which leads to more complete reconstitution of the B cell compartment, was effective in removing this bias in the VH repertoire. Hybridomas derived from these mice expressed their VH genes more in proportion to family size, characteristic of cells later in B lymphocyte development. In this manner, long term lymphoid-cultured cells can be used to study the transitions that occur in VH repertoire expression which appear to be mediated by either B lymphocyte developmental microenvironment or population size

  12. Cell-type specific four-component hydrogel.

    Directory of Open Access Journals (Sweden)

    Timo Aberle

    Full Text Available In the field of regenerative medicine we aim to develop implant matrices for specific tissue needs. By combining two per se, cell-permissive gel systems with enzymatic crosslinkers (gelatin/transglutaminase and fibrinogen/thrombin to generate a blend (technical term: quattroGel, an unexpected cell-selectivity evolved. QuattroGels were porous and formed cavities in the cell diameter range, possessed gelation kinetics in the minute range, viscoelastic properties and a mechanical strength appropriate for general cell adhesion, and restricted diffusion. Cell proliferation of endothelial cells, chondrocytes and fibroblasts was essentially unaffected. In contrast, on quattroGels neither endothelial cells formed vascular tubes nor did primary neurons extend neurites in significant amounts. Only chondrocytes differentiated properly as judged by collagen isoform expression. The biophysical quattroGel characteristics appeared to leave distinct cell processes such as mitosis unaffected and favored differentiation of sessile cells, but hampered differentiation of migratory cells. This cell-type selectivity is of interest e.g. during articular cartilage or invertebral disc repair, where pathological innervation and angiogenesis represent adverse events in tissue engineering.

  13. Cell-type specific four-component hydrogel.

    Science.gov (United States)

    Aberle, Timo; Franke, Katrin; Rist, Elke; Benz, Karin; Schlosshauer, Burkhard

    2014-01-01

    In the field of regenerative medicine we aim to develop implant matrices for specific tissue needs. By combining two per se, cell-permissive gel systems with enzymatic crosslinkers (gelatin/transglutaminase and fibrinogen/thrombin) to generate a blend (technical term: quattroGel), an unexpected cell-selectivity evolved. QuattroGels were porous and formed cavities in the cell diameter range, possessed gelation kinetics in the minute range, viscoelastic properties and a mechanical strength appropriate for general cell adhesion, and restricted diffusion. Cell proliferation of endothelial cells, chondrocytes and fibroblasts was essentially unaffected. In contrast, on quattroGels neither endothelial cells formed vascular tubes nor did primary neurons extend neurites in significant amounts. Only chondrocytes differentiated properly as judged by collagen isoform expression. The biophysical quattroGel characteristics appeared to leave distinct cell processes such as mitosis unaffected and favored differentiation of sessile cells, but hampered differentiation of migratory cells. This cell-type selectivity is of interest e.g. during articular cartilage or invertebral disc repair, where pathological innervation and angiogenesis represent adverse events in tissue engineering. PMID:24475174

  14. Cell-Type Specific Four-Component Hydrogel

    OpenAIRE

    Timo Aberle; Katrin Franke; Elke Rist; Karin Benz; Burkhard Schlosshauer

    2014-01-01

    In the field of regenerative medicine we aim to develop implant matrices for specific tissue needs. By combining two per se, cell-permissive gel systems with enzymatic crosslinkers (gelatin/transglutaminase and fibrinogen/thrombin) to generate a blend (technical term: quattroGel), an unexpected cell-selectivity evolved. QuattroGels were porous and formed cavities in the cell diameter range, possessed gelation kinetics in the minute range, viscoelastic properties and a mechanical strength appr...

  15. Chromosome Damage and Repair in Children with Sickle Cell Anaemia and Long-Term Hydroxycarbamide Exposure

    OpenAIRE

    McGann, Patrick T.; Howard, Thad A.; Flanagan, Jonathan M.; Lahti, Jill M.; Ware, Russell E.

    2011-01-01

    Hydroxycarbamide (hydroxyurea) provides laboratory and clinical benefits for adults and children with sickle cell anaemia (SCA). Given its mechanism of action and prior reports of genotoxicity, concern exists regarding long-term toxicities and possible carcinogenicity. We performed cross-sectional analyses of chromosome stability using peripheral blood mononuclear cells (PBMC) from 51 children with SCA and 3-12 years of hydroxycarbamide exposure (mean age 13.2±4.1 years), compared to 28 child...

  16. Investigating Striatal Function through Cell-Type-Specific Manipulations

    OpenAIRE

    Kreitzer, Anatol C.; Berke, Joshua D.

    2011-01-01

    The striatum integrates convergent input from the cortex, thalamus, and midbrain, and has a powerful influence over motivated behavior via outputs to downstream basal ganglia nuclei. Although the anatomy and physiology of distinct classes of striatal neurons has been intensively studied, the specific functions of these cell subpopulations have been more difficult to address. Recently, application of new methodologies for perturbing activity and signaling in different cell types in vivo has be...

  17. CD133-targeted gene transfer into long-term repopulating hematopoietic stem cells.

    Science.gov (United States)

    Brendel, Christian; Goebel, Benjamin; Daniela, Abriss; Brugman, Martijn; Kneissl, Sabrina; Schwäble, Joachim; Kaufmann, Kerstin B; Müller-Kuller, Uta; Kunkel, Hana; Chen-Wichmann, Linping; Abel, Tobias; Serve, Hubert; Bystrykh, Leonid; Buchholz, Christian J; Grez, Manuel

    2015-01-01

    Gene therapy for hematological disorders relies on the genetic modification of CD34(+) cells, a heterogeneous cell population containing about 0.01% long-term repopulating cells. Here, we show that the lentiviral vector CD133-LV, which uses a surface marker on human primitive hematopoietic stem cells (HSCs) as entry receptor, transfers genes preferentially into cells with high engraftment capability. Transduction of unstimulated CD34(+) cells with CD133-LV resulted in gene marking of cells with competitive proliferative advantage in vitro and in immunodeficient mice. The CD133-LV-transduced population contained significantly more cells with repopulating capacity than cells transduced with vesicular stomatitis virus (VSV)-LV, a lentiviral vector pseudotyped with the vesicular stomatitis virus G protein. Upon transfer of a barcode library, CD133-LV-transduced cells sustained gene marking in vivo for a prolonged period of time with a 6.7-fold higher recovery of barcodes compared to transduced control cells. Moreover, CD133-LV-transduced cells were capable of repopulating secondary recipients. Lastly, we show that this targeting strategy can be used for transfer of a therapeutic gene into CD34(+) cells obtained from patients suffering of X-linked chronic granulomatous disease. In conclusion, direct gene transfer into CD133(+) cells allows for sustained long-term engraftment of gene corrected cells. PMID:25189742

  18. Long-term outcome of Hurler syndrome patients after hematopoietic cell transplantation: an international multicenter study.

    Science.gov (United States)

    Aldenhoven, Mieke; Wynn, Robert F; Orchard, Paul J; O'Meara, Anne; Veys, Paul; Fischer, Alain; Valayannopoulos, Vassili; Neven, Benedicte; Rovelli, Attilio; Prasad, Vinod K; Tolar, Jakub; Allewelt, Heather; Jones, Simon A; Parini, Rossella; Renard, Marleen; Bordon, Victoria; Wulffraat, Nico M; de Koning, Tom J; Shapiro, Elsa G; Kurtzberg, Joanne; Boelens, Jaap Jan

    2015-03-26

    Mucopolysaccharidosis type I-Hurler syndrome (MPS-IH) is a lysosomal storage disease characterized by multisystem morbidity and death in early childhood. Although hematopoietic cell transplantation (HCT) has been performed in these patients for more than 30 years, large studies on the long-term outcome of patients with MPS-IH after HCT are lacking. The goal of this international study was to identify predictors of the long-term outcome of patients with MPS-IH after successful HCT. Two hundred seventeen patients with MPS-IH successfully engrafted with a median follow-up age of 9.2 years were included in this retrospective analysis. Primary endpoints were neurodevelopmental outcomes and growth. Secondary endpoints included neurologic, orthopedic, cardiac, respiratory, ophthalmologic, audiologic, and endocrinologic outcomes. Considerable residual disease burden was observed in the majority of the transplanted patients with MPS-IH, with high variability between patients. Preservation of cognitive function at HCT and a younger age at transplantation were major predictors for superior cognitive development posttransplant. A normal α-l-iduronidase enzyme level obtained post-HCT was another highly significant predictor for superior long-term outcome in most organ systems. The long-term prognosis of patients with MPS-IH receiving HCT can be improved by reducing the age at HCT through earlier diagnosis, as well as using exclusively noncarrier donors and achieving complete donor chimerism. PMID:25624320

  19. Cell type-specific neuroprotective activity of untranslocated prion protein.

    Directory of Open Access Journals (Sweden)

    Elena Restelli

    Full Text Available BACKGROUND: A key pathogenic role in prion diseases was proposed for a cytosolic form of the prion protein (PrP. However, it is not clear how cytosolic PrP localization influences neuronal viability, with either cytotoxic or anti-apoptotic effects reported in different studies. The cellular mechanism by which PrP is delivered to the cytosol of neurons is also debated, and either retrograde transport from the endoplasmic reticulum or inefficient translocation during biosynthesis has been proposed. We investigated cytosolic PrP biogenesis and effect on cell viability in primary neuronal cultures from different mouse brain regions. PRINCIPAL FINDINGS: Mild proteasome inhibition induced accumulation of an untranslocated form of cytosolic PrP in cortical and hippocampal cells, but not in cerebellar granules. A cyclopeptolide that interferes with the correct insertion of the PrP signal sequence into the translocon increased the amount of untranslocated PrP in cortical and hippocampal cells, and induced its synthesis in cerebellar neurons. Untranslocated PrP boosted the resistance of cortical and hippocampal neurons to apoptotic insults but had no effect on cerebellar cells. SIGNIFICANCE: These results indicate cell type-dependent differences in the efficiency of PrP translocation, and argue that cytosolic PrP targeting might serve a physiological neuroprotective function.

  20. A random-effects model for long-term degradation analysis of solid oxide fuel cells

    International Nuclear Information System (INIS)

    Solid oxide fuel cells (SOFCs) are electrochemical devices converting the chemical energy into electricity with high efficiency and low pollutant emissions. Tough very promising, this technology is still in a developing phase, and degradation at the cell/stack level with operating time is still an issue of major concern. Methods to directly observe degradation modes and to measure their evolution over time are difficult to implement, and indirect performance indicators are adopted, typically related to voltage measurements in long-term tests. In order to describe long-term degradation tests, three components of the voltage measurements should be modelled: the smooth decay of voltage over time for each single unit; the variability of voltage decay among units; and the high-frequency small fluctuations of voltage due to experimental noise and lack of fit. In this paper, we propose an empirical random-effects regression model of polynomial type enabling to evaluate separately these three types of variability. Point and interval estimates are also derived for some performance measures, such as the mean voltage, the prediction of cell voltage, the reliability function and the cell-to-cell variability in SOFC stacks. Finally, the proposed methodology is applied to two real case-studies of long-term degradation tests of SOFC stacks. - Highlights: • We propose an empirical random-effects model for SOFC cells voltage in long runs. • Some SOFC performance and manufacturing quality measures are derived. • An application to two real case-studies of long-term degradation tests is provided. • The reliability function of SOFCs and its lower confidence limit are computed

  1. Long-term perturbation of hemopoiesis after moderate damage to stem cells

    International Nuclear Information System (INIS)

    Hematological indices of BDF1 mice characterizing regeneration in a complex fashion (peripheral cell counts, bone marrow CFU-S, GM-CFU, CFU-F, and the turnover state of bone marrow CFU-S) were followed periodically for 11-14 weeks after 0.5 Gy acute gamma irradiation in order to obtain detailed information about the nonsteady state of murine hemopoiesis after moderate damage to stem cells, demonstrated in previous experiments. Virtually complete hematological regeneration was followed by long-term increase in the proliferation rate of CFU-S, oscillation in some parameters (granulocyte count, CFU-S level) or an overshooting, sometimes multiwavelike regeneration in others (reticulocyte count, thrombocyte count, and GM-CFU and CFU-F levels). These data suggest a long-term perturbation of hemopoiesis and its environment after moderate damage to the bone marrow

  2. Long-term quantitative phase-contrast imaging of living cells by digital holographic microscopy

    Science.gov (United States)

    Liu, S.; Pan, F.; Wang, Z.; Wang, F.; Rong, L.; Shang, P.; Xiao, W.

    2011-04-01

    The dynamic analysis of biological living samples is one of the particular interests in life sciences. An improved digital holographic microscope for long-term quantitative phase-contrast imaging of living cells is presented in this paper. The optical configuration is optimized in the form of a free-space-fiber hybrid system which promotes the flexibility of imaging in complex or semi-enclosed experimental environment. Aberrations compensation is implemented taking into account the additional phase aberration induced by liquid culture medium in long-term observation. The proposed approach is applied to investigate living samples of MC3T3-E1 and MLO-Y4 cells. The experimental results demonstrate its availability in the analysis of cellular changes.

  3. Immune responsiveness and incidence of reticulum cell sarcoma in long-term syngeneic radiation chimeras

    International Nuclear Information System (INIS)

    Long-term syngeneic radiation chimeras displayed a very low incidence of reticulum cell sarcoma as compared with control mice. Immune reactivity of these animals was studied in vivo by anti-dinitrophenyl antibody titer and affinity and in vitro by mitotic responsiveness to phytohemagglutinin, concanavalin A and lipopolysaccharide. Antibody titer and affinity as well as the response to T lectins were found to be increased in chimeras. These results were attributed to increased function of mature T2 cells, which could explain the reduced incidence of reticulum cell sarcoma in chimeras

  4. U-251 revisited: genetic drift and phenotypic consequences of long-term cultures of glioblastoma cells

    International Nuclear Information System (INIS)

    It is well known that in vitro subculture represents a selection pressure on cell lines, and over time this may result in a genetic drift in the cancer cells. In addition, long-term cultures harbor the risk of cross-contamination with other cell lines. The consequences may have major impact on experimental results obtained in various laboratories, where the cell lines no longer reflect the original tumors that they are supposed to represent. Much neglected in the scientific community is a close monitoring of cell cultures by regular phenotypic and genetic characterization. In this report, we present a thorough characterization of the commonly used glioblastoma (GBM) model U-251, which in numerous publications has been wrongly identified as U-373, due to an earlier cross-contamination. In this work, the original U-251 and three subclones of U-251, commonly referred to as U-251 or U-373, were analyzed with regard to their DNA profile, morphology, phenotypic expression, and growth pattern. By array comparative genomic hybridization (aCGH), we show that only the original low-passaged U-251 cells, established in the 1960s, maintain a DNA copy number resembling a typical GBM profile, whereas all long-term subclones lost the typical GBM profile. Also the long-term passaged subclones displayed variations in phenotypic marker expression and showed an increased growth rate in vitro and a more aggressive growth in vivo. Taken together, the variations in genotype and phenotype as well as differences in growth characteristics may explain different results reported in various laboratories related to the U-251 cell line

  5. Long term maintenance of myeloid leukemic stem cells cultured with unrelated human mesenchymal stromal cells

    Directory of Open Access Journals (Sweden)

    Sawa Ito

    2015-01-01

    Full Text Available Mesenchymal stromal cells (MSCs support the growth and differentiation of normal hematopoietic stem cells (HSCs. Here we studied the ability of MSCs to support the growth and survival of leukemic stem cells (LSCs in vitro. Primary leukemic blasts isolated from the peripheral blood of 8 patients with acute myeloid leukemia (AML were co-cultured with equal numbers of irradiated MSCs derived from unrelated donor bone marrow, with or without cytokines for up to 6 weeks. Four samples showed CD34+CD38− predominance, and four were predominantly CD34+CD38+. CD34+ CD38− predominant leukemia cells maintained the CD34+ CD38− phenotype and were viable for 6 weeks when co-cultured with MSCs compared to co-cultures with cytokines or medium only, which showed rapid differentiation and loss of the LSC phenotype. In contrast, CD34+ CD38+ predominant leukemic cells maintained the CD34+CD38+ phenotype when co-cultured with MSCs alone, but no culture conditions supported survival beyond 4 weeks. Cell cycle analysis showed that MSCs maintained a higher proportion of CD34+ blasts in G0 than leukemic cells cultured with cytokines. AML blasts maintained in culture with MSCs for up to 6 weeks engrafted NSG mice with the same efficiency as their non-cultured counterparts, and the original karyotype persisted after co-culture. Chemosensitivity and transwell assays suggest that MSCs provide pro-survival benefits to leukemic blasts through cell–cell contact. We conclude that MSCs support long-term maintenance of LSCs in vitro. This simple and inexpensive approach will facilitate basic investigation of LSCs and enable screening of novel therapeutic agents targeting LSCs.

  6. B-cell Lymphoma in retrieved femoral heads: a long term follow up

    Directory of Open Access Journals (Sweden)

    van Kemenade Folkert J

    2009-05-01

    Full Text Available Abstract Background A relatively high incidence of pathological conditions in retrieved femoral heads, including a group of patients having low grade B-cell lymphoma, has been described before. At short term follow up none of these patients with low-grade B-cell lymphoma showed evidence of systemic disease. However, the long term follow up of these patients is not known. Methods From November 1994 up to and including December 2005 we screened all femoral heads removed at the time of primary total hip replacement histopathologically and included them in the bone banking protocol according to the guidelines of the American Associations of Tissue Banks (AATB and the European Association of Musculo-Skeletal Transplantation (EAMST. We determined the percentage of B-cell lymphoma in all femoral heads and in the group that fulfilled all criteria of the bone banking protocol and report on the long-term follow-up. Results Of 852 femoral heads fourteen (1.6% were highly suspicious for low-grade B-cell lymphoma. Of these 852 femoral heads, 504 were eligible for bone transplantation according to the guidelines of the AATB and the EAMST. Six femoral heads of this group of 504 were highly suspicious for low-grade B-cell lymphoma (1.2%. At long term follow up two (0.2% of all patients developed systemic malignant disease and one of them needed medical treatment for her condition. Conclusion In routine histopathological screening we found variable numbers of low-grade B-cell lymphoma throughout the years, even in a group of femoral heads that were eligible for bone transplantation. Allogenic transmission of malignancy has not yet been reported on, but surviving viruses are proven to be transmissible. Therefore, we recommend the routine histopathological evaluation of all femoral heads removed at primary total hip arthroplasty as a tool for quality control, whether the femoral head is used for bone banking or not.

  7. A microfluidic microbial fuel cell array that supports long-term multiplexed analyses of electricigens.

    Science.gov (United States)

    Hou, Huijie; Li, Lei; Ceylan, Cemile Ümran; Haynes, Abria; Cope, Julia; Wilkinson, Heather H; Erbay, Celal; de Figueiredo, Paul; Han, Arum

    2012-10-21

    Microbial fuel cells (MFCs) are green energy technologies that exploit microbial metabolism to generate electricity. The widespread implementation of MFC technologies has been stymied by their high cost and limited power. MFC arrays in which device configurations or microbial consortia can be screened have generated significant interest because of their potential for defining aspects that will improve performance featuring high throughput characteristics. However, current miniature MFCs and MFC array systems do not support long-term studies that mimic field conditions, and hence, have limitations in fully characterizing and understanding MFC performances in varieties of conditions. Here, we describe an MFC array device that incorporates microfluidic technology to enable continuous long-term analysis of MFC performance at high throughput utilizing periodic anolyte/catholyte replenishment. The system showed 360% higher power output and 700% longer operating time when compared to MFC arrays without catholyte replenishment. We further demonstrate the utility of the system by reporting its successful use in screening microbial consortia collected from geographically diverse environments for communities that support enhanced MFC performance. Taken together, this work demonstrates that anolyte/catholyte replenishment can significantly improve the long-term performance of microfabricated MFC arrays, and support the characterization of diverse microbial consortia. PMID:22868338

  8. Impact of process variations and long term degradation on 6T-SRAM cells

    Directory of Open Access Journals (Sweden)

    Th. Fischer

    2007-06-01

    Full Text Available In modern deep-submicron CMOS technologies voltage scaling can not keep up with the scaling of the dimensions of transistors. Therefore the electrical fields inside the transistors are not constant anymore, while scaling down the device area. The rising electrical fields bring up reliability problems, such as hot carrier injection. Also other long term degradation mechanisms like Negative Bias Temperature Instability (NBTI come into the focus of circuit design.

    Along with process device parameter variations (threshold voltage, mobility, variations due to the degradation of devices form a big challenge for designers to build circuits that both yield high under the influence of process variations and remain functional with respect to long term device drift.

    In this work we present the influence of long term degradation and process variations on the performance of SRAM core-cells and parametric yield of SRAM arrays. For different use cases we show the performance degradation depending on temperature and supply voltage.

  9. Long-Term Culture of Genome-Stable Bipotent Stem Cells from Adult Human Liver

    OpenAIRE

    Huch, Meritxell; Gehart, Helmuth; van Boxtel, Ruben; Hamer, Karien; Blokzijl, Francis; Verstegen, Monique M.A.; Ellis, Ewa; van Wenum, Martien; Fuchs, Sabine A.; de Ligt, Joep; van de Wetering, Marc; SASAKI, Nobuo; Boers, Susanne J.; Kemperman, Hans; de Jonge, Jeroen

    2015-01-01

    Summary Despite the enormous replication potential of the human liver, there are currently no culture systems available that sustain hepatocyte replication and/or function in vitro. We have shown previously that single mouse Lgr5+ liver stem cells can be expanded as epithelial organoids in vitro and can be differentiated into functional hepatocytes in vitro and in vivo. We now describe conditions allowing long-term expansion of adult bile duct-derived bipotent progenitor cells from human live...

  10. Long-Term Depression at Parallel Fiber to Golgi Cell Synapses

    OpenAIRE

    Robberechts, Quinten; Wijnants, Mike; Giugliano, Michele; De Schutter, Erik

    2010-01-01

    Golgi cells (GoCs) are the primary inhibitory interneurons of the granular layer of the cerebellum. Their inhibition of granule cells is central to operate the relay of excitatory inputs to the cerebellar cortex. Parallel fibers (PFs) establish synapses to the GoCs in the molecular layer; these synapses contain AMPA, N-methyl-d-aspartate (NMDA), and mostly group II metabotropic glutamate receptors. Long-term changes in the efficacy of synaptic transmission at the PF-GoC synapse have not been ...

  11. Long-Term In Vivo Imaging of Multiple Organs at the Single Cell Level

    OpenAIRE

    Chen, Benny J.; Jiao, Yiqun; Zhang, Ping; Sun, Albert Y.; Pitt, Geoffrey S.; DeOliveira, Divino; Drago, Nicholas; Ye, Tong; Liu, Chen; Chao, Nelson J.

    2013-01-01

    Two-photon microscopy has enabled the study of individual cell behavior in live animals. Many organs and tissues cannot be studied, especially longitudinally, because they are located too deep, behind bony structures or too close to the lung and heart. Here we report a novel mouse model that allows long-term single cell imaging of many organs. A wide variety of live tissues were successfully engrafted in the pinna of the mouse ear. Many of these engrafted tissues maintained the normal tissue ...

  12. Cell-type specific light-mediated transcript regulation in the multicellular alga Volvox carteri

    OpenAIRE

    Kianianmomeni, Arash

    2014-01-01

    Background The multicellular green alga Volvox carteri makes use of none less than 13 photoreceptors, which are mostly expressed in a cell-type specific manner. This gives reason to believe that trasncriptome pattern of each cell type could change differentially in response to environmental light. Here, the cell-type specific changes of various transcripts from different pathways in response to blue, red and far-red light were analyzed. Results In response to different light qualities, distin...

  13. Long-term nonprogression and broad HIV-1-specific proliferative T-cell responses

    Directory of Open Access Journals (Sweden)

    Nesrina eImami

    2013-03-01

    Full Text Available Complex mechanisms underlying the maintenance of fully functional, proliferative, HIV-1-specific T-cell responses involve processes from early T-cell development through to the final stages of T-cell differentiation and antigen recognition. Virus-specific proliferative CD4 and CD8 T-cell responses, important for the control of infection, are observed in some HIV-1+ patients during early stages of disease, and are maintained in long-term nonprogressing subjects. In the vast majority of HIV-1+ patients, full immune functionality is lost when proliferative HIV-1-specific T-cell responses undergo a variable progressive decline throughout the course of chronic infection. This appears irreparable despite administration of potent combination antiretroviral therapy, which to date is non-curative, necessitating life-long administration and the development of effective, novel, therapeutic interventions. While a sterilising cure, involving clearance of virus from the host, remains a primary aim, a functional cure may be a more feasible goal with considerable impact on worldwide HIV-1 infection. Such an approach would enable long-term co-existence of host and virus in the absence of toxic and costly drugs. Effective immune homeostasis coupled with a balanced response appropriately targeting conserved viral antigens, in a manner that avoids hyperactivation and exhaustion, may prove to be the strongest correlate of durable viral control. This review describes novel concepts underlying full immune functionality in the context of HIV-1 infection, which may be utilised in future strategies designed to improve upon existing therapy. The aim will be to induce long-term nonprogressor or elite controller status in every infected host, through immune-mediated control of viraemia and reduction of viral reservoirs, leading to lower HIV-1 transmission rates.

  14. Long-term multilineage engraftment of autologous genome-edited hematopoietic stem cells in nonhuman primates.

    Science.gov (United States)

    Peterson, Christopher W; Wang, Jianbin; Norman, Krystin K; Norgaard, Zachary K; Humbert, Olivier; Tse, Collette K; Yan, Jenny J; Trimble, Richard G; Shivak, David A; Rebar, Edward J; Gregory, Philip D; Holmes, Michael C; Kiem, Hans-Peter

    2016-05-19

    Genome editing in hematopoietic stem and progenitor cells (HSPCs) is a promising novel technology for the treatment of many human diseases. Here, we evaluated whether the disruption of the C-C chemokine receptor 5 (CCR5) locus in pigtailed macaque HSPCs by zinc finger nucleases (ZFNs) was feasible. We show that macaque-specific CCR5 ZFNs efficiently induce CCR5 disruption at levels of up to 64% ex vivo, 40% in vivo early posttransplant, and 3% to 5% in long-term repopulating cells over 6 months following HSPC transplant. These genome-edited HSPCs support multilineage engraftment and generate progeny capable of trafficking to secondary tissues including the gut. Using deep sequencing technology, we show that these ZFNs are highly specific for the CCR5 locus in primary cells. Further, we have adapted our clonal tracking methodology to follow individual CCR5 mutant cells over time in vivo, reinforcing that CCR5 gene-edited HSPCs are capable of long-term engraftment. Together, these data demonstrate that genome-edited HSPCs engraft, and contribute to multilineage repopulation after autologous transplantation in a clinically relevant large animal model, an important step toward the development of stem cell-based genome-editing therapies for HIV and potentially other diseases as well. PMID:26980728

  15. Phenotypic and functional characterization of human mammary stem/progenitor cells in long term culture.

    Directory of Open Access Journals (Sweden)

    Devaveena Dey

    Full Text Available BACKGROUND: Cancer stem cells exhibit close resemblance to normal stem cells in phenotype as well as function. Hence, studying normal stem cell behavior is important in understanding cancer pathogenesis. It has recently been shown that human breast stem cells can be enriched in suspension cultures as mammospheres. However, little is known about the behavior of these cells in long-term cultures. Since extensive self-renewal potential is the hallmark of stem cells, we undertook a detailed phenotypic and functional characterization of human mammospheres over long-term passages. METHODOLOGY: Single cell suspensions derived from human breast 'organoids' were seeded in ultra low attachment plates in serum free media. Resulting primary mammospheres after a week (termed T1 mammospheres were subjected to passaging every 7th day leading to the generation of T2, T3, and T4 mammospheres. PRINCIPAL FINDINGS: We show that primary mammospheres contain a distinct side-population (SP that displays a CD24(low/CD44(low phenotype, but fails to generate mammospheres. Instead, the mammosphere-initiating potential rests within the CD44(high/CD24(low cells, in keeping with the phenotype of breast cancer-initiating cells. In serial sphere formation assays we find that even though primary (T1 mammospheres show telomerase activity and fourth passage T4 spheres contain label-retaining cells, they fail to initiate new mammospheres beyond T5. With increasing passages, mammospheres showed an increase in smaller sized spheres, reduction in proliferation potential and sphere forming efficiency, and increased differentiation towards the myoepithelial lineage. Significantly, staining for senescence-associated beta-galactosidase activity revealed a dramatic increase in the number of senescent cells with passage, which might in part explain the inability to continuously generate mammospheres in culture. CONCLUSIONS: Thus, the self-renewal potential of human breast stem cells is

  16. Short and long-term conservation of blood and bone marrow cells for clinical use

    International Nuclear Information System (INIS)

    The development of methods to conserve bone marrow, blood and blood components is necessary to ensure adequate supplies of these at times of radiation accidents or during radiation therapy with accompanying destruction of the haemopoietic tissues and essential blood elements. In addition, with adequate supplies of stored blood, treatment of astronauts affected by radiation, particularly when interplanetary flights become feasible, will be possible and therapy for patients with blood dyscrasias can be greatly expanded. The creation and expansion of blood banks for long-term storage of haemotherapeutic products is necessarily dependent on improved methods of conservation of blood and bone marrow cells

  17. Tritium contamination of hematopoietic stem cells alters long-term hematopoietic reconstitution

    International Nuclear Information System (INIS)

    Purpose: In vivo effects of tritium contamination are poorly documented. Here, we study the effects of tritiated Thymidine ([3H] Thymidine) or tritiated water (HTO) contamination on the biological properties of hematopoietic stem cells (HSC). Materials and methods: Mouse HSC were contaminated with concentrations of [3H] Thymidine ranging from 0.37-37.03 kBq/ml or of HTO ranging from 5-50 kBq/ml. The biological properties of contaminated HSC were studied in vitro after HTO contamination and in vitro and in vivo after [3H] Thymidine contamination. Results: Proliferation, viability and double-strand breaks were dependent on [3H] Thymidine or HTO concentrations used for contamination but in vitro myeloid differentiation of HSC was not affected by [3H] Thymidine contamination. [3H] Thymidine contaminated HSC showed a compromised long-term capacity of hematopoietic reconstitution and competition experiments showed an up to two-fold decreased capacity of contaminated HSC to reconstitute hematopoiesis. These defects were not due to impaired homing in bone marrow but to an initial decreased proliferation rate of HSC. Conclusion: These results indicate that contaminations of HSC with doses of tritium that do not result in cell death, induce short-term effects on proliferation and cell cycle and long-term effects on hematopoietic reconstitution capacity of contaminated HSC. (authors)

  18. Neural Networks Based Physical Cell Identity Assignment for Self Organized 3GPP Long Term Evolution

    Directory of Open Access Journals (Sweden)

    Muhammad Basit Shahab

    2013-10-01

    Full Text Available This paper proposes neural networks based graph coloring technique to assign Physical Cell Identities throughout the self-organized 3GPP Long Term Evolution Networks. PCIs are allocated such that no two cells in the vicinity of each other or with a common neighbor get the same identity. Efficiency of proposed methodology resides in the fact that minimum number of identities is utilized in the network wise assignment. Simulations are performed on a very large scale network, where initially all the cells are without any PCIs assigned. Results of simulations are demonstrated to analyze the performance of the proposed technique. Discussions about the presence of femto cells and PCI assignment in them are also presented at the end.

  19. Chromosome damage and repair in children with sickle cell anaemia and long-term hydroxycarbamide exposure.

    Science.gov (United States)

    McGann, Patrick T; Howard, Thad A; Flanagan, Jonathan M; Lahti, Jill M; Ware, Russell E

    2011-07-01

    Hydroxycarbamide (hydroxyurea) provides laboratory and clinical benefits for adults and children with sickle cell anaemia (SCA). Given its mechanism of action and prior reports of genotoxicity, concern exists regarding long-term toxicities and possible carcinogenicity. We performed cross-sectional analyses of chromosome stability using peripheral blood mononuclear cells (PBMC) from 51 children with SCA and 3-12 years of hydroxycarbamide exposure (mean age 13·2 ± 4·1 years), compared to 28 children before treatment (9·4 ± 4·7 years). Chromosome damage was less for children receiving hydroxycarbamide than untreated patients (0·8 ± 1·2 vs. 1·9 ± 1·5 breaks per 100 cells, P = 0·004). There were no differences in repairing chromosome breaks after in vitro radiation; PBMC from children taking hydroxycarbamide had equivalent 2 Gy-induced chromosome breaks compared to untreated patients (30·8 ± 16·1 vs. 31·7 ± 8·9 per 100 cells, P = not significant). Radiation plus hydroxycarbamide resulted in similar numbers of unrepaired breaks in cells from children on hydroxycarbamide compared to untreated patients (95·8 ± 44·2 vs. 76·1 ± 23·1 per 100 cells, P = 0·08), but no differences were noted with longer exposure (97·9 ± 42·8 breaks per 100 cells for 3-6 years of hydroxycarbamide exposure vs. 91·2 ± 48·4 for 9-12 years of exposure). These observations provide important safety data regarding long-term risks of hydroxycarbamide exposure for children with SCA, and suggest low in vivo mutagenicity and carcinogenicity. PMID:21542824

  20. A zero-flow microfluidics for long-term cell culture and detection

    Directory of Open Access Journals (Sweden)

    Shengbo Sang

    2015-04-01

    Full Text Available A zero-flow microfluidic design is proposed in this paper, which can be used for long-term cell culture and detection, especially for a lab-on-chip integrated with a biosensor. It consists of two parts: a main microchannel; and a circle microchamber. The Finite Element Method (FEM was employed to predict the fluid transport properties for a minimum fluid flow disturbance. Some commonly used microfluidic structures were also analysed systematically to prove the designed structure. Then the designed microfluidics was fabricated. Based on the simulations and experiments, this design provides a continuous flow environment, with a relatively stable and low shear stress atmosphere, similar to a zero-flow environment. Furthermore, the nutrients maintaining cells’ normal growth can be taken into the chamber through the diffusion effect. It also proves that the microfluidics can realize long-term cell culture and detection. The application of the structure in the field of biological microelectromechenical systems (BioMEMS will provide a research foundation for microfluidic technology.

  1. Long-term Survival, Organ Function, and Malignancy after Hematopoietic Stem Cell Transplantation for Fanconi Anemia.

    Science.gov (United States)

    Bonfim, Carmem; Ribeiro, Lisandro; Nichele, Samantha; Bitencourt, Marco; Loth, Gisele; Koliski, Adriana; Funke, Vaneuza A M; Pilonetto, Daniela V; Pereira, Noemi F; Flowers, Mary E D; Velleuer, Eunike; Dietrich, Ralf; Fasth, Anders; Torres-Pereira, Cassius C; Pedruzzi, Paola; Eapen, Mary; Pasquini, Ricardo

    2016-07-01

    We report on long-term survival in 157 patients with Fanconi anemia (FA) who survived 2 years or longer after their first transplantation with a median follow-up of 9 years. Marrow failure (80%) was the most common indication for transplantation. There were 20 deaths beyond 2 years after transplantation, with 12 of the deaths occurring beyond 5 years after transplantation. Donor chimerism was available for 149 patients: 112 (76%) reported > 95% chimerism, 27 (18%) reported 90% to 95% chimerism, and 8 (5%) reported 20% to 89% donor chimerism. Two patients have donor chimerism. The 10- and 15-year probabilities of survival were 90% and 79%, respectively. Results of multivariate analysis showed higher mortality risks for transplantations before 2003 (hazard ratio [HR], 7.87; P = .001), chronic graft-versus-host disease (GVHD) (HR, 3.80; P = .004) and squamous cell carcinoma after transplantation (HR, 38.17; P < .0001). The predominant cause of late mortality was squamous cell carcinoma, with an incidence of 8% and 14% at 10 and 15 years after transplantation, respectively, and was more likely to occur in those with chronic GVHD. Other causes of late mortality included chronic GVHD, infection, graft failure, other cancers, and hemorrhage. Although most patients are disease free and functional long term, our data support aggressive surveillance for long periods to identify those at risk for late mortality. PMID:26976241

  2. Late Mortality and Causes of Death among Long-Term Survivors after Allogeneic Stem Cell Transplantation.

    Science.gov (United States)

    Atsuta, Yoshiko; Hirakawa, Akihiro; Nakasone, Hideki; Kurosawa, Saiko; Oshima, Kumi; Sakai, Rika; Ohashi, Kazuteru; Takahashi, Satoshi; Mori, Takehiko; Ozawa, Yukiyasu; Fukuda, Takahiro; Kanamori, Heiwa; Morishima, Yasuo; Kato, Koji; Yabe, Hiromasa; Sakamaki, Hisashi; Taniguchi, Shuichi; Yamashita, Takuya

    2016-09-01

    We sought to assess the late mortality risks and causes of death among long-term survivors of allogeneic hematopoietic stem cell transplantation (HCT). The cases of 11,047 relapse-free survivors of a first HCT at least 2 years after HCT were analyzed. Standardized mortality ratios (SMR) were calculated and specific causes of death were compared with those of the Japanese population. Among relapse-free survivors at 2 years, overall survival percentages at 10 and 15 years were 87% and 83%, respectively. The overall risk of mortality was significantly higher compared with that of the general population. The risk of mortality was significantly higher from infection (SMR = 57.0), new hematologic malignancies (SMR = 2.2), other new malignancies (SMR = 3.0), respiratory causes (SMR = 109.3), gastrointestinal causes (SMR = 3.8), liver dysfunction (SMR = 6.1), genitourinary dysfunction (SMR = 17.6), and external or accidental causes (SMR = 2.3). The overall annual mortality rate showed a steep decrease from 2 to 5 years after HCT; however, the decrease rate slowed after 10 years but was still higher than that of the general population at 20 years after HCT. SMRs in the earlier period of 2 to 4 years after HCT and 5 years or longer after HCT were 16.1 and 7.4, respectively. Long-term survivors after allogeneic HCT are at higher risk of mortality from various causes other than the underlying disease that led to HCT. Screening and preventive measures should be given a central role in reducing the morbidity and mortality of HCT recipients on long-term follow-up. PMID:27246369

  3. Sequence and chromatin determinants of cell-type-specific transcription factor binding.

    Science.gov (United States)

    Arvey, Aaron; Agius, Phaedra; Noble, William Stafford; Leslie, Christina

    2012-09-01

    Gene regulatory programs in distinct cell types are maintained in large part through the cell-type-specific binding of transcription factors (TFs). The determinants of TF binding include direct DNA sequence preferences, DNA sequence preferences of cofactors, and the local cell-dependent chromatin context. To explore the contribution of DNA sequence signal, histone modifications, and DNase accessibility to cell-type-specific binding, we analyzed 286 ChIP-seq experiments performed by the ENCODE Consortium. This analysis included experiments for 67 transcriptional regulators, 15 of which were profiled in both the GM12878 (lymphoblastoid) and K562 (erythroleukemic) human hematopoietic cell lines. To model TF-bound regions, we trained support vector machines (SVMs) that use flexible k-mer patterns to capture DNA sequence signals more accurately than traditional motif approaches. In addition, we trained SVM spatial chromatin signatures to model local histone modifications and DNase accessibility, obtaining significantly more accurate TF occupancy predictions than simpler approaches. Consistent with previous studies, we find that DNase accessibility can explain cell-line-specific binding for many factors. However, we also find that of the 10 factors with prominent cell-type-specific binding patterns, four display distinct cell-type-specific DNA sequence preferences according to our models. Moreover, for two factors we identify cell-specific binding sites that are accessible in both cell types but bound only in one. For these sites, cell-type-specific sequence models, rather than DNase accessibility, are better able to explain differential binding. Our results suggest that using a single motif for each TF and filtering for chromatin accessible loci is not always sufficient to accurately account for cell-type-specific binding profiles. PMID:22955984

  4. Pancreatic small cells: Analysis of quiescence, long-term maintenance and insulin expression in vitro

    International Nuclear Information System (INIS)

    We have previously identified a novel population of small cells in human and canine pancreas characterized by immature morphology, quiescence, and a glucose-responsive insulin secretion. Based on their immature phenotype and predominant presence in small islets, we have hypothesized that small cells serve as islet progenitors. This hypothesis remains untested, however, due to persistent quiescence and scarcity of small cells in vitro. We have recently developed a culture medium that allowed for modest small cell proliferation. In this study we characterized the expression of genes potentially involved in small cell growth regulation by Q-RT-PCR. Our results suggest that quiescence of small cells correlates with up-regulation of Cdk inhibitors p27Kip1, p16INK4a and p21CIP1, PTEN, Hep27 and Foxo1a and with down-regulation of c-Myc and the receptors for EGF, FGF2 and HGF. The exit from quiescence correlates with activation of EGFR expression and down-regulation of p27Kip1 and p16INK4a. We also report here that small cells can be maintained in long-term non-adherent cultures preserving insulin and glucagon production for up to 208 days. Therefore, expansion of small cells in vitro may have a significant potential for the treatment of diabetes. This study is an important step in understanding the mechanisms involved in small cell growth regulation, which is required to fully evaluate their functional potential

  5. Human cytomegalovirus gene expression in long-term infected glioma stem cells.

    Directory of Open Access Journals (Sweden)

    Estefania Fiallos

    Full Text Available The most common adult primary brain tumor, glioblastoma (GBM, is characterized by fifteen months median patient survival and has no clear etiology. We and others have identified the presence of human cytomegalovirus (HCMV gene products endogenously expressed in GBM tissue and primary cells, with a subset of viral genes being consistently expressed in most samples. Among these viral genes, several have important oncomodulatory properties, regulating tumor stemness, proliferation, immune evasion, invasion and angiogenesis. These findings lead us to hypothesize that a specific HCMV gene signature may be associated with GBM pathogenesis. To investigate this hypothesis, we used glioma cell lines and primary glioma stem-like cells (GSC infected with clinical and laboratory HCMV strains and measured relative viral gene expression levels along several time points up to 15 weeks post-infection. While HCMV gene expression was detected in several infected glioma lines through week 5 post-infection, only HCMV-infected GSC expressed viral gene products 15 weeks post-infection. Efficiency of infection across time was higher in GSC compared to cell lines. Importantly, HCMV-infected GSC outlived their uninfected counterparts, and this extended survival was paralleled by increased tumorsphere frequency and upregulation of stemness regulators, such as SOX2, p-STAT3, and BMX (a novel HCMV target identified in this study. Interleukin 6 (IL-6 treatment significantly upregulated HCMV gene expression in long-term infected glioma cultures, suggesting that pro-inflammatory signaling in the tumor milieu may further augment HCMV gene expression and subsequent tumor progression driven by viral-induced cellular signaling. Together, our data support a critical role for long-term, low-level HCMV infection in promoting survival, stemness, and proliferation of GSC that could significantly contribute to GBM pathogenesis.

  6. Long-term live cell imaging and automated 4D analysis of drosophila neuroblast lineages.

    Directory of Open Access Journals (Sweden)

    Catarina C F Homem

    Full Text Available The developing Drosophila brain is a well-studied model system for neurogenesis and stem cell biology. In the Drosophila central brain, around 200 neural stem cells called neuroblasts undergo repeated rounds of asymmetric cell division. These divisions typically generate a larger self-renewing neuroblast and a smaller ganglion mother cell that undergoes one terminal division to create two differentiating neurons. Although single mitotic divisions of neuroblasts can easily be imaged in real time, the lack of long term imaging procedures has limited the use of neuroblast live imaging for lineage analysis. Here we describe a method that allows live imaging of cultured Drosophila neuroblasts over multiple cell cycles for up to 24 hours. We describe a 4D image analysis protocol that can be used to extract cell cycle times and growth rates from the resulting movies in an automated manner. We use it to perform lineage analysis in type II neuroblasts where clonal analysis has indicated the presence of a transit-amplifying population that potentiates the number of neurons. Indeed, our experiments verify type II lineages and provide quantitative parameters for all cell types in those lineages. As defects in type II neuroblast lineages can result in brain tumor formation, our lineage analysis method will allow more detailed and quantitative analysis of tumorigenesis and asymmetric cell division in the Drosophila brain.

  7. Reversibility of β-Cell-Specific Transcript Factors Expression by Long-Term Caloric Restriction in db/db Mouse

    Directory of Open Access Journals (Sweden)

    Chunjun Sheng

    2016-01-01

    Full Text Available Type 2 diabetes (T2D is characterized by β-cell dedifferentiation, but underlying mechanisms remain unclear. The purpose of the current study was to explore the mechanisms of β-cell dedifferentiation with and without long-term control of calorie intake. We used a diabetes mouse model (db/db to analyze the changes in the expression levels of β-cell-specific transcription factors (TFs and functional factors with long-term caloric restriction (CR. Our results showed that chronic euglycemia was maintained in the db/db mice with long-term CR intervention, and β-cell dedifferentiation was significantly reduced. The expression of Glut2, Pdx1, and Nkx6.1 was reversed, while MafA expression was significantly increased with long-term CR. GLP-1 pathway was reactivated with long-term CR. Our work showed that the course of β-cell dedifferentiation can intervene by long-term control of calorie intake. Key β-cell-specific TFs and functional factors play important roles in maintaining β-cell differentiation. Targeting these factors could optimize T2D therapies.

  8. Stromal cells in long-term murine bone marrow culture: FACS studies and origin of stromal cells in radiation chimeras

    International Nuclear Information System (INIS)

    Adherent layers from hematopoietically active long-term bone marrow cultures (LTBMC), incubated with fluorescent beads, were analyzed for autofluorescence and phagocytic ability, using a fluorescence-activated cell sorter (FACS). Four groups of cells were separated from the adherent layers, including a group of large polygonal fibroblastoid stromal cells. Long-term chimeras were made by lethal irradiation of CBA/Ca (CBA) and C57Bl6/J (B6) mice and repopulation with phosphoglycerate kinase (PGK-1) alloenzyme-congenic bone marrow cells. Hematopoietically active LTBMC were established from such chimeras, and donor and host contributions of FACS-sorted adherent-layer cells were measured. While macrophages and other hematopoietic cells were of donor origin, the fibroblastoid stromal cells were mainly or entirely host derived

  9. Quantitative analysis of cell-type specific gene expression in the green alga Volvox carteri

    Directory of Open Access Journals (Sweden)

    Hallmann Armin

    2006-12-01

    Full Text Available Abstract Background The multicellular alga Volvox carteri possesses only two cell types: mortal, motile somatic cells and potentially immortal, immotile reproductive cells. It is therefore an attractive model system for studying how cell-autonomous cytodifferentiation is programmed within a genome. Moreover, there are ongoing genome projects both in Volvox carteri and in the closely related unicellular alga Chlamydomonas reinhardtii. However, gene sequencing is only the beginning. To identify cell-type specific expression and to determine relative expression rates, we evaluate the potential of real-time RT-PCR for quantifying gene transcript levels. Results Here we analyze a diversified pool of 39 target genes by real-time RT-PCR for each cell type. This gene pool contains previously known genes with unknown localization of cellular expression, 28 novel genes which are described in this study for the first time, and a few known, cell-type specific genes as a control. The respective gene products are, for instance, part of photosynthesis, cellular regulation, stress response, or transport processes. We provide expression data for all these genes. Conclusion The results show that quantitative real-time RT-PCR is a favorable approach to analyze cell-type specific gene expression in Volvox, which can be extended to a much larger number of genes or to developmental or metabolic mutants. Our expression data also provide a basis for a detailed analysis of individual, previously unknown, cell-type specifically expressed genes.

  10. Long-Term Degradation Testing of High-Temperature Electrolytic Cells

    Energy Technology Data Exchange (ETDEWEB)

    C.M. Stoots; J.E. O' Brien; J.S. Herring; G.K. Housley; D.G. Milobar; M.S. Sohal

    2009-08-01

    The Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cell for large-scale hydrogen production from steam over a temperature range of 800 to 900ºC. The INL has been testing various solid oxide cell designs to characterize their electrolytic performance operating in the electrolysis mode for hydrogen production. Some results presented in this report were obtained from cells, with an active area of 16 cm2 per cell. The electrolysis cells are electrode-supported, with ~10 µm thick yttria-stabilized zirconia (YSZ) electrolytes, ~1400 µm thick nickel-YSZ steam-hydrogen electrodes, and manganite (LSM) air-oxygen electrodes. The experiments were performed over a range of steam inlet mole fractions (0.1 to 0.6), gas flow rates, and current densities (0 to 0.6 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. On a molar basis, the steam consumption rate is equal to the hydrogen production rate. Cell performance was evaluated by performing DC potential sweeps at 800, 850, and 900°C. The voltage-current characteristics are presented, along with values of area-specific resistance as a function of current density. Long-term cell performance is also assessed to evaluate cell degradation. Details of the custom single-cell test apparatus developed for these experiments are also presented. NASA, in conjunction with the University of Toledo, has developed a new cell concept with the goals of reduced weight and high power density. This report presents results of the INL's testing of this new solid oxide cell design as an electrolyzer. Gas composition, operating voltage, and other parameters were varied during testing. Results to date show the NASA cell to be a promising design for both high power-to-weight fuel cell and electrolyzer applications.

  11. Feline Neural Progenitor Cells I: Long-Term Expansion under Defined Culture Conditions

    Directory of Open Access Journals (Sweden)

    Jing Yang

    2012-01-01

    Full Text Available Neural progenitor cells (NPCs of feline origin (cNPCs have demonstrated utility in transplantation experiments, yet are difficult to grow in culture beyond the 1 month time frame. Here we use an enriched, serum-free base medium (Ultraculture and report the successful long-term propagation of these cells. Primary cultures were derived from fetal brain tissue and passaged in DMEM/F12-based or Ultraculture-based proliferation media, both in the presence of EGF + bFGF. Cells in standard DMEM/F12-based medium ceased to proliferate by 1-month, whereas the cells in the Ultraculture-based medium continued to grow for at least 5 months (end of study with no evidence of senescence. The Ultraculture-based cultures expressed lower levels of progenitor and lineage-associated markers under proliferation conditions but retained multipotency as evidenced by the ability to differentiate into neurons and glia following growth factor removal in the presence of FBS. Importantly, later passage cNPCs did not develop chromosomal aberrations.

  12. Cell tropism predicts long-term nucleotide substitution rates of mammalian RNA viruses.

    Directory of Open Access Journals (Sweden)

    Allison L Hicks

    2014-01-01

    Full Text Available The high rates of RNA virus evolution are generally attributed to replication with error-prone RNA-dependent RNA polymerases. However, these long-term nucleotide substitution rates span three orders of magnitude and do not correlate well with mutation rates or selection pressures. This substitution rate variation may be explained by differences in virus ecology or intrinsic genomic properties. We generated nucleotide substitution rate estimates for mammalian RNA viruses and compiled comparable published rates, yielding a dataset of 118 substitution rates of structural genes from 51 different species, as well as 40 rates of non-structural genes from 28 species. Through ANCOVA analyses, we evaluated the relationships between these rates and four ecological factors: target cell, transmission route, host range, infection duration; and three genomic properties: genome length, genome sense, genome segmentation. Of these seven factors, we found target cells to be the only significant predictors of viral substitution rates, with tropisms for epithelial cells or neurons (P<0.0001 as the most significant predictors. Further, one-tailed t-tests showed that viruses primarily infecting epithelial cells evolve significantly faster than neurotropic viruses (P<0.0001 and P<0.001 for the structural genes and non-structural genes, respectively. These results provide strong evidence that the fastest evolving mammalian RNA viruses infect cells with the highest turnover rates: the highly proliferative epithelial cells. Estimated viral generation times suggest that epithelial-infecting viruses replicate more quickly than viruses with different cell tropisms. Our results indicate that cell tropism is a key factor in viral evolvability.

  13. A novel whole-cell mechanism for long-term memory enhancement.

    Directory of Open Access Journals (Sweden)

    Iris Reuveni

    Full Text Available Olfactory-discrimination learning was shown to induce a profound long-lasting enhancement in the strength of excitatory and inhibitory synapses of pyramidal neurons in the piriform cortex. Notably, such enhancement was mostly pronounced in a sub-group of neurons, entailing about a quarter of the cell population. Here we first show that the prominent enhancement in the subset of cells is due to a process in which all excitatory synapses doubled their strength and that this increase was mediated by a single process in which the AMPA channel conductance was doubled. Moreover, using a neuronal-network model, we show how such a multiplicative whole-cell synaptic strengthening in a sub-group of cells that form a memory pattern, sub-serves a profound selective enhancement of this memory. Network modeling further predicts that synaptic inhibition should be modified by complex learning in a manner that much resembles synaptic excitation. Indeed, in a subset of neurons all GABAA-receptors mediated inhibitory synapses also doubled their strength after learning. Like synaptic excitation, Synaptic inhibition is also enhanced by two-fold increase of the single channel conductance. These findings suggest that crucial learning induces a multiplicative increase in strength of all excitatory and inhibitory synapses in a subset of cells, and that such an increase can serve as a long-term whole-cell mechanism to profoundly enhance an existing Hebbian-type memory. This mechanism does not act as synaptic plasticity mechanism that underlies memory formation but rather enhances the response of already existing memory. This mechanism is cell-specific rather than synapse-specific; it modifies the channel conductance rather than the number of channels and thus has the potential to be readily induced and un-induced by whole-cell transduction mechanisms.

  14. Merkel cell carcinoma in patients on long-term immunosuppressive treatment

    International Nuclear Information System (INIS)

    Merkel cell carcinoma is a rare form of skin cancer of neuroendocrine origin that has been described as one of the most aggressive cutaneous malignancies. The annual incidence is estimated to be 0.23 per 100,000 in the white population. Most cases occur in elderly people, the average age being 69 years. MCC is most common in sun-exposed areas, with nearly 50% of lesions developing within the head and neck. It typically appears as a red-blue nodule with a shiny surface, often with overlying telangiectasia. One of the most important etiological factors is long-term immunosuppression, mainly in organ transplant recipients. Nowadays it is speculated that previously unknown polyoma virus - Merkel cell polyoma virus (MCV) - can be another probable etiologic agent of the disease. This paper presents the latest data on the pathogenesis of Merkel cell carcinoma and analyses the differences between MCC occurring in patients undergoing immunosuppressive treatment and MCC developing in immunocompetent patients. (authors)

  15. In vivo studies of the long-term 51Cr red cell survival of serologically incompatible red cell units

    International Nuclear Information System (INIS)

    The long-term survival of serologically incompatible red cell units was measured in five patients with antibodies to high-frequency antigens. Initially, the survival of 1 ml of 51Cr-labeled incompatible red cells was measured over 1 hour. After demonstrating that the 1-hour survival times were successful (greater than 70%), each patient then received 5 ml of the same 51Cr-labeled red cells followed by the transfusion of the remainder of the red cell unit. The long-term T 1/2Cr survival for each case was patient 1 (anti-McCa), 15 days; patient 2 (anti-JMH), 12 days; patient 3 (anti-Kna), 31 days; patient 4 (anti-McCa), 12 days; and patient 5 (anti-Hya), 14 days. Each antibody tested in an in vitro homologous macrophage assay showed less than 5 percent phagocytosis. Anti-JMH was the only antibody to react with IgG subclass antisera and was determined to be IgG4. The macrophage assay, IgG subclass testing, and short-term (1 hour, 1 ml) 51Cr survival studies all indicated that the short-term survival was good. However, only the measurement of long-term survival with transfused units of serologically incompatible red cells was able to determine the actual survival, and clinical significance of the alloantibodies. Determining the actual long-term survival by the method described here can be of importance for patients requiring chronic red cell transfusion

  16. Quantum dot-sized organic fluorescent dots for long-term cell tracing

    Science.gov (United States)

    Li, Kai; Tang, Ben Zhong; Liu, Bin

    2014-03-01

    Fluorescence techniques have been extensively employed to develop non-invasive methodologies for tracking and understanding complex biological processes both in vitro and in vivo, which is of high importance in modern life science research. Among a variety of fluorescent probes, inorganic semiconductor quantum dots (QDs) have shown advantages in terms of better photostability, larger Stokes shift and more feasible surface functionalization. However, their intrinsic toxic heavy metal components and unstable fluorescence at low pH greatly impede the applications of QDs in in vivo studies. In this work, we developed novel fluorescent probes that can outperform currently available QD based probes in practice. Using conjugated oligomer with aggregation-induced emission characteristics as the fluorescent domain and biocompatible lipid-PEG derivatives as the encapsulation matrix, the obtained organic dots have shown higher brightness, better stability in biological medium and comparable size and photostability as compared to their counterparts of inorganic QDs. More importantly, unlike QD-based probes, the organic fluorescent dots do not blink, and also do not contain heavy metal ions that could be potentially toxic when applied for living biosubstrates. Upon surface functionalization with a cell-penetrating peptide, the organic dots greatly outperform inorganic quantum dots in both in vitro and in vivo long-term cell tracing studies, which will be beneficial to answer crucial questions in stem cell/immune cell therapies. Considering the customized fluorescent properties and surface functionalities of the organic dots, a series of biocompatible organic dots will be developed to serve as a promising platform for multifarious bioimaging tasks in future.

  17. KCNK5 is Functionally Down-Regulated Upon Long-Term Hypotonicity in Ehrlich Ascites Tumor Cells

    DEFF Research Database (Denmark)

    Kirkegaard, S. S.; Wulff, Tune; Gammeltoft, S.;

    2013-01-01

    Background/Aims: Regulatory volume decrease (RVD) in response to acute cell swelling is well described and KCNK5 (also known as TASK-2 or K2P5.1) has been shown to be the volume sensitive K+ channel in Ehrlich cells. Very little is, on the other hand, known about the effects of long-term hypotoni...... physiological impairment of KCNK5 in Ehrlich cells after long-term hypotonic stimulation is predominantly due to down-regulation of the KCNK5 protein synthesis.© 2013 S. Karger AG, Basel...

  18. Long-term efficacy and safety of tocilizumab in giant cell arteritis and large vessel vasculitis

    Science.gov (United States)

    Evans, Jobie; Steel, Lauren; Borg, Frances; Dasgupta, Bhaskar

    2016-01-01

    Giant cell arteritis (GCA) is a chronic systemic vasculitis affecting large-sized and medium-sized vessels. Glucocorticoids are currently the mainstay of treatment for GCA and associated large vessel vasculitis (LVV) but are associated with frequent adverse events. Methotrexate has only demonstrated a modest benefit while anti-TNF biological agents (infliximab and etanercept) have been inefficacious. Elevated levels of interleukin-6 (IL-6), a proinflammatory cytokine, has been associated with GCA. Tocilizumab (TCZ), a humanised antihuman IL-6 receptor antibody, has been used successfully in several reports as a treatment for GCA and LVV. We report the potentially long-term successful use of TCZ in 8 cases of refractory LVV. All of our patients achieved a good clinical response to TCZ and C reactive protein reduced from an average of 70.3 to 2.5. In all cases, the glucocorticoid dose was reduced, from an average of 24.6 mg prednisolone prior to TCZ treatment to 4.7 mg, indicating that TCZ may enable a reduction in glucocorticoid-associated adverse events. However, regular TCZ administration was needed for disease control in most cases. TCZ was discontinued in one case due to the development of an empyema indicating the need for careful monitoring of infection when using this treatment. PMID:26819753

  19. Common and cell type-specific responses of human cells to mitochondrial dysfunction

    International Nuclear Information System (INIS)

    In yeast, mitochondrial dysfunction activates a specific pathway, termed retrograde regulation, which alters the expression of specific nuclear genes and results in increased replicative life span. In mammalian cells, the specific nuclear genes induced in response to loss of mitochondrial function are less well defined. This study characterizes responses in nuclear gene expression to loss of mitochondrial DNA sequences in three different human cell types: T143B, an osteosarcoma-derived cell line; ARPE19, a retinal pigment epithelium cell line; and GMO6225, a fibroblast cell population from an individual with Kearns-Sayre syndrome (KSS). Quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR) was used to measure gene expression of a selection of glycolysis, TCA cycle, mitochondrial, peroxisomal, extracellular matrix, stress response, and regulatory genes. Gene expression changes that were common to all three cell types included up-regulation of GCK (glucokinase), CS (citrate synthase), HOX1 (heme oxygenase 1), CKMT2 (mitochondrial creatine kinase 2), MYC (v-myc myelocytomatosis viral oncogene homolog), and WRN (Werner syndrome helicase), and down-regulation of FBP1 (fructose-1, 6-bisphosphatase 1) and COL4A1 (collagen, type IV, alpha 1). RNA interference experiments show that induction of MYC is important in ρ0 cells for the up-regulation of glycolysis. In addition, a variety of cell type-specific gene changes was detected and most likely depended upon the differentiated functions of the individual cell types. These expression changes may help explain the response of different tissues to the loss of mitochondrial function due to aging or disease

  20. Short- and long-term effects of T-cell modulating agents in experimental autoimmunity

    International Nuclear Information System (INIS)

    Due to the easy and reliable induction of a disease condition with many of the features present in human autoimmunity, mercury-induced autoimmunity (mHgAI) in rodents is a favourable autoimmune model. Genetically susceptible (H-2s) mice develop in response to mercury (Hg) a systemic autoimmune condition with antinucleolar antibodies (ANoA) targeting the protein fibrillarin, transient polyclonal B-cell activation, hyperimmunoglobulinemia, and systemic immune-complex (IC) deposits. In order to study the short- and long-term effects of treatment with immunomodulating agents on the disease parameters in HgAI, groups of B10.S (H-2s) mice were given 6 mg HgCl2/l drinking water for 22 weeks. Three weeks initial treatment with cyclosporin A (CyA), a high dose of tacrolimus (HD tacrolimus), or anti-CD4 monoclonal antibody (a-CD4) inhibited induction of ANoA and IC deposit by Hg. This effect persisted for the subsequent 19 weeks when the mice were only treated with Hg. Initial treatment with anti-IL-4 monoclonal antibody (a-IL-4) for 3 weeks inhibited induction of IgE and IC deposits by Hg, but not ANoA. However, subsequent treatment with Hg without a-IL-4 for 19 weeks induced IC deposits. The T-cell modulating agents aggravated some of the HgAI disease parameters: a-CD4 stimulated the polyclonal B-cell activation, a-IL-4 increased the IgG antichromatin antibody response, and a low dose of tacrolimus (LD tacrolimus) enhanced the ANoA, the polyclonal B-cell activation, and the IC deposits. We conclude that a short initial treatment with a-CD4 or CyA efficiently protects against induction of systemic autoimmunity for an extended period of time. However, some of the T-cell modulating agents, especially a low dose of tacrolimus, aggravate autoimmune manifestations not only during ongoing treatment, but also after treatment with these agents has ceased

  1. Prognostic factors for long term survival in patients with advanced non-small cell lung cancer

    Science.gov (United States)

    Moumtzi, Despoina; Lampaki, Sofia; Porpodis, Konstantinos; Lagoudi, Kalliopi; Hohenforst-Schmidt, Wolfgang; Pataka, Athanasia; Tsiouda, Theodora; Zissimopoulos, Athanasios; Lazaridis, George; Karavasilis, Vasilis; Timotheadou, Helen; Barbetakis, Nikolaos; Pavlidis, Pavlos; Kontakiotis, Theodoros; Zarogoulidis, Konstantinos

    2016-01-01

    Background Non-small cell lung cancer (NSCLC) represents 85% of all lung cancers. It is estimated that 60% of patients with NSCLC at time of diagnosis have advanced disease. The aim of this study was to investigate clinical and demographic prognostic factors of long term survival in patients with unresectable NSCLC. Methods We retrospectively reviewed data of 1,156 patients with NSCLC stage IIIB or IV who survived more than 60 days from the time of diagnosis and treated from August 1987 until March 2013 in the Oncology Department of Pulmonary Clinic of the General Hospital Papanikolaou. Initially univariate analysis using the log-rank test was conducted and then multivariate analysis using the proportional hazards model of Cox. Also Kaplan Meier curves were used to describe the distribution of survival times of patients. The level of significance was set at 0.05. Results The mean age at diagnosis was 62 years. About 11.9% of patients were women and 88.1% were male. The majority of cases were adenocarcinomas (42.2%), followed squamous (33%) and finally the large cell (6%). Unlike men, most common histological type among women was adenocarcinoma rather than squamous (63% vs. 10.9%). In univariate analysis statistically significant factors in the progression free survival (PFS) and overall survival (OS) were: weight loss ≥5%, histological type, line 1 drugs, line 1 combination, line 1 cycles and radio lung. Specifically radio lung gives clear survival benefit in the PFS and OS in stage IIIB (P=0.002) and IV (Pcell carcinoma recorded the shortest OS and PFS compared with adenocarcinoma (P=0.043 and P=0.016 respectively) and squamous cell carcinoma (P=0.021 and P=0.004 respectively). In multivariate analysis the same predictors were statistically significant except for line 1 drugs. Conclusions This study confirms the increased incidence of adenocarcinoma in women than in men and the aggressiveness of large cell carcinoma. It also underlines the vitality of factors

  2. Everolimus long-term safety and efficacy in subependymal giant cell astrocytoma

    Science.gov (United States)

    Krueger, Darcy A.; Care, Marguerite M.; Agricola, Karen; Tudor, Cindy; Mays, Maxwell

    2013-01-01

    Objective: To report long-term efficacy and safety data for everolimus for the treatment of subependymal giant cell astrocytoma (SEGA) in patients with tuberous sclerosis complex (TSC). Methods: This was an open-label extension phase of a prospective, phase 1–2 trial (NCT00411619) in patients ≥3 years of age with SEGA associated with TSC. Patients received oral everolimus starting at 3 mg/m2 per day and subsequently titrated, subject to tolerability, to attain whole blood trough concentrations of 5–15 ng/mL. Change in SEGA volume, seizures, and safety assessments were the main outcome measures. Results: Of 28 patients enrolled, 25 were still under treatment at the time of analysis. Median dose was 5.3 mg/m2/day and median treatment duration was 34.2 months (range 4.7–47.1). At all time points (18, 24, 30, and 36 months), primary SEGA volume was reduced by ≥30% from baseline (treatment response) in 65%–79% of patients. All patients reported ≥1 adverse event (AE), mostly grade 1/2 in severity, consistent with that previously reported, and none led to everolimus discontinuation. The most commonly reported drug-related AEs were upper respiratory infections (85.7%), stomatitis (85.7%), sinusitis (46.4%), and otitis media (35.7%). No drug-related grade 4 or 5 events occurred. Conclusion: Everolimus therapy is safe and effective for longer term (median exposure 34.2 months) treatment of patients with TSC with SEGA. Classification of evidence: This study provides Class III evidence that everolimus, titrated to trough serum levels of 5–15 ng/mL, was effective in reducing tumor size in patients with SEGA secondary to TSC for a median of 34 months. PMID:23325902

  3. Long-Term Outcomes of Sacrococcygeal Germ Cell Tumors in Infancy and Childhood

    Directory of Open Access Journals (Sweden)

    Rangsan Niramis

    2015-01-01

    Full Text Available Purpose. The aim of this study was to evaluate long-term outcomes of sacrococcygeal germ cell tumors (SC-GCTs over a 15-year period. Materials and Methods. A retrospective review was conducted of all pediatric patients treated for SC-GCTs at our hospital from 1998 to 2012. Results. Fifty-seven patients were treated for SC-GCTs with the most common in Altman’s classification type I. Age at surgery ranged from one day to 5.6 years. Tumor resection and coccygectomy were primarily performed in about 84% of the cases. Pathology revealed mature, immature, malignant sacrococcygeal teratomas (SCTs, and endodermal sinus tumors (ESTs in 41 (72%, 4 (77%, 6 (10.5%, and 6 (10.5%, respectively. Recurrence of discase occurred in 3 of 41 patients with mature teratomas (7.3%; 2 recurrences with mature teratomas and one recurrence with EST. Five of 6 malignant SCTs and 3 of 6 ESTs responded well to the treatment. Alpha-fetoprotein (AFP level was elevated in both malignant teratomas and ESTs. No immediate patient death was noted in any of the 57 cases, but 4 patients with malignant tumors and distant metastasis succumbed at home within 2 years of the initial treatment. Conclusion. Benign SCTs have a significant recurrence rate of approximately 7%. Close follow-up with serial AFP level monitoring should be done for 5 years after initial tumor resection and coccygectomy. The survival rate for malignant SC-GCTs with distant metastasis was unfavorable in the present study.

  4. Sequelae in long-term survivors of small cell lung cancer

    International Nuclear Information System (INIS)

    Purpose: Central nervous system (CNS) effects of chemotherapy and prophylactic cranial irradiation (PCI) are studied in long-term small cell lung cancer (SCLC) survivors. The exact significance and pathogenesis of the neurotoxicity is still unknown, as studies on this subject lack sufficient patient numbers and are performed in an extremely varied manner. Methods and Materials: Fifty-nine survivors (> 2 years from diagnosis) were examined neurologically and neuropsychologically, and underwent a cranial computed tomography (CT) scan or magnetic resonance (MR). Eight patients were excluded from further analysis for various reasons (not SCLC-related CNS disease, n 6; no chemotherapy nor PCI treatment, n = 2). The remaining 51 patients were divided into three groups; group 1 = chemotherapy alone (n = 21), group 2 sequential PCI (n = 19), and group 3 = concurrent or sandwiched PCI (n = 11). Groups were neuropsychologically compared to matched controls. Results: Performance status did not differ significantly between various treatment groups; all patients remained ambulatory and capable of self-care. Mental impairment (n = 20), motor abnormalities (n = 9), and visual complaints (n 1), were found in five patients in group 1 (24%), eight patients in group 2 (42%), and eight patients in group 3 (73%). Analysis of brain atrophy revealed no significant results; however, white matter abnormalities were found more frequently in group 3. Neuropsychologically no significant group differences existed, although interference sensitivity and difficulties with divided attention tended to occur more frequently in patients treated with PCI. Mean neuropsychometric results of treatment groups were significantly worse than those of matched controls. Conclusions: Although more intensively treated patients showed more neurologic impairment and patients in group 3 had more white matter abnormalities, there was no statistical evidence for additional neurotoxicity of PCI. Marked

  5. Phenotypic and Functional Properties of Porcine Dedifferentiated Fat Cells during the Long-Term Culture In Vitro

    OpenAIRE

    Xuewu Peng; Tongxing Song; Xiaoming Hu; Yuanfei Zhou; Hongkui Wei; Jian Peng; Siwen Jiang

    2015-01-01

    It has been proved that terminally differentiated mature adipocytes possess abilities to dedifferentiate into fibroblast-like progeny cells with self-renewal and multiple differentiation, termed dedifferentiated fat (DFAT) cells. However, the biological properties of DFAT cells during long-term culture in vitro have not been elucidated. Here, we obtained fibroblast-like morphology of porcine DFAT cells by ceiling culture. During the dedifferentiation process, round mature adipocytes with sing...

  6. Long term observations in combined modality therapy for limited stage small cell lung cancer

    International Nuclear Information System (INIS)

    Purpose/Objective: With the discovery that patients with small cell lung cancer (SCLC) exhibit a high level of sensitivity to both chemotherapy and radiotherapy, the treatment of SCLC became a model for the success of combined modality treatment. In this retrospective review, we analyze the outcomes and patterns of failure when patients are treated with chemotherapy and thoracic irradiation. The relative values of sequential and concurrent chemotherapy, in conjunction with chest irradiation, are assessed. The potential benefit of prophylactic cranial irradiation is explored. The impact of prognostic factors for long term survival of SCLC patients are examined to identify pretreatment patient characteristics and treatment parameters which might predict for a favorable outcome. Materials and Methods: We identified 190 patients treated at M.D. Anderson Cancer Center from January 1985 to December 1992 with curative intent for limited stage SCLC. Prognostic factors were determined using univariate and multivariate analysis. The significant covariates for each outcome endpoint were evaluated. Probabilities of local failure, overall survival, relapse-free survival, and distant metastasis-free survival were calculated from the time of treatment using actuarial life table analysis. Results: The median age was 61, with 51% males. There were 119 patients treated sequentially, and 71 concurrently. The Karnofsky Performance Status was >= 90 in 48% of patients in the concurrent cohort, vs. 35% of the sequential group. Prophylactic cranial irradiation (PCI) was delivered in 117 cases (62%). There were 51 long term survivors, defined as survival >=36 months. The median follow-up in surviving patients was 75 months. At the time of the analysis, 166 patients (87%) had expired. The crude 2 and 3 year survival rate for the entire group was 38.4% and 26.8%, respectively. The actuarial 2-year survival was 39.9%, and at 3 years the actuarial survival was 27.8%. The median actuarial

  7. Long-term depression of climbing fiber-evoked calcium transients in Purkinje cell dendrites.

    NARCIS (Netherlands)

    J.T. Weber (John); C.I. de Zeeuw (Chris); C.R.W. Hansel (Christian); D.J. Linden (David)

    2003-01-01

    textabstractIn recent years much has been learned about the molecular requirements for inducing long-term synaptic depression (LTD) in various brain regions. However, very little is known about the consequences of LTD induction for subsequent signaling events in postsynaptic neurons. We have address

  8. Accumulation of apoptosis-insensitive human bone marrow-mesenchymal stromal cells after long-term expansion.

    Science.gov (United States)

    Jeong, Sin-Gu; Cho, Goang-Won

    2016-07-01

    Cells undergo replicative senescence during in vitro expansion, which is induced by the accumulation of cellular damage caused by excessive reactive oxygen species. In this study, we investigated whether long-term-cultured human bone marrow mesenchymal stromal cells (MSCs) are insensitive to apoptotic stimulation. To examine this, we established replicative senescent cells from long-term cultures of human bone marrow MSCs. Senescent cells were identified based on declining population doublings, increased expression of senescence markers p16 and p53 and increased senescence-associated β-gal activity. In cell viability assays, replicative senescent MSCs in late passages (i.e. 15-19 passages) resisted damage induced by oxidative stress more than those in early passages did (i.e. 7-10 passages). This resistance occurred via caspase-9 and caspase-3 rather than via caspase-8. The senescent cells are gradually accumulated during long-term expansion. The oxidative stress-sensitive proteins ataxia-telangiectasia mutated and p53 were phosphorylated, and the expression of apoptosis molecules Bax increased, and Bcl-2 decreased in early passage MSCs; however, the expression of the apoptotic molecules did less change in response to apoptotic stimulation in late-passage MSCs, suggesting that the intrinsic apoptotic signalling pathway was not induced by oxidative stress in long-term-cultured MSCs. Based on these results, we propose that some replicative senescent cells may avoid apoptosis signalling via impairment of signalling molecules and accumulation during long-term expansion. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27212655

  9. Effectiveness of PET Scan in Postoperative Long Term Follow up of Patients with Nonsmall Cell Lung Cancer

    OpenAIRE

    Atilla Pekcolaklar; Murat Sezer; Adnan Sayar; Okan Solak; Makbule Ergin; Muzaffer Metin; Atilla Gürses

    2012-01-01

    Aim: There is very few data about the use of positron emission tomography [PET] in the long term follow up of patients operated for lung cancer. We aimed to evaluate the effectiveness of PET scan in detecting distant metastases in the long term follow up of asymptomatic patients operated for non-small cell lung cancer [NSCLC]. Material and Method: PET scan was performed to sixty five asymptomatic patients. The patients who had a positive PET scan for metastasis underwent MRI and/or biopsy to ...

  10. Elevated fluoride levels and periostitis in pediatric hematopoietic stem cell transplant recipients receiving long-term voriconazole.

    Science.gov (United States)

    Tarlock, Katherine; Johnson, Darren; Cornell, Cathy; Parnell, Shawn; Meshinchi, Soheil; Baker, K Scott; Englund, Janet A

    2015-05-01

    Azole therapy is widely utilized in hematopoietic stem cell transplant (HCT) recipients for the treatment of aspergillus. Complications of voriconazole treatment related to its elevated fluoride content have been described in adults, including reports of symptomatic skeletal fluorosis. We review fluoride levels, clinical, and laboratory data in five pediatric HCT recipients on long-term voriconazole therapy, all found to have elevated serum fluoride levels. Two patients had toxic fluoride levels, one infant had symptoms of significant pain with movement and radiographs confirmed skeletal fluorosis. Monitoring fluoride levels in children, especially with skeletal symptoms, should be considered in patients on long-term voriconazole. PMID:25327935

  11. Melatonin Treatment Improves Mesenchymal Stem Cells Therapy by Preserving Stemness during Long-term In Vitro Expansion.

    Science.gov (United States)

    Shuai, Yi; Liao, Li; Su, Xiaoxia; Yu, Yang; Shao, Bingyi; Jing, Huan; Zhang, Xinjing; Deng, Zhihong; Jin, Yan

    2016-01-01

    Mesenchymal stem cells (MSCs) are promising candidates for tissue regeneration and disease treatment. However, long-term in vitro passaging leads to stemness loss of MSCs, resulting in failure of MSCs therapy. Here, we report a melatonin-based strategy to improve cell therapy of in vitro cultured MSCs. Among four small molecules with anti-aging and stem cell-protection properties (rapamycin, resveratrol, quercetin and melatonin), colony forming, proliferation, and osteogenic differentiation assay showed that melatonin was the most efficient to preserve self-renewal and differentiation properties of rat bone marrow MSCs (BMMSCs) after long-term passaging. Functional assays confirmed melatonin treatment did not affect the colony forming, proliferation and osteogenic differentiation of BMMSCs cultured for 1 or 4 passages, but largely prevented the decline of self-renew and differentiation capacity of BMMSCs cultured for 15 passages in vitro. Furthermore, heterotopic osteogenesis assay, critical size calvarial defects repair assay, osteoporosis treatment and experimental colitis therapy assay strongly certified that melatonin preserved the therapeutic effect of long-term passaged BMMSCs on bone regeneration and immunotherapy in vivo. Mechanistically, melatonin functioned by activating antioxidant defense system, inhibiting the pathway of cell senescence, and preserving the expression of gene governing the stemness. Taken together, our findings showed that melatonin treatment efficiently prevented the dysfunction and therapeutic failure of BMMSCs after long-term passaging, providing a practical strategy to improve the application of BMMSCs in tissue engineering and cytotherapy. PMID:27570559

  12. Squamous cell carcinoma of the alveolus and buccal mucosa in a renal transplant recipient on long-term immunosuppression

    OpenAIRE

    Tamojit Chaudhuri; Kamlesh Yadava

    2012-01-01

    An increased risk of skin, head-neck (particularly lip) and lymphoreticular malignancies is well documented in renal transplant patients receiving long-term immunosuppressive therapy, but squamous cell carcinoma of the alveolus and buccal mucosa has not been reported previously in these patients.

  13. Long-term IL-2 therapy after transplantation of T cell depleted stem cells from alternative donors in children.

    Science.gov (United States)

    Schlegel, Patrick; Teltschik, Heiko-Manuel; Pfeiffer, Matthias; Handgretinger, Rupert; Schumm, Michael; Koscielniak, Ewa; Feuchtinger, Tobias; Klingebiel, Thomas; Bader, Peter; Schlegel, Paul-Gerhard; Greil, Johann; Lang, Peter

    2011-09-01

    The aim of this pilot study was to evaluate the feasibility of long-term subcutaneous application of low-dose IL-2 in children with malignancies at very high risk of relapse who underwent highly T cell and B cell depleted HLA-identical (MUD) or full haplotype mismatched related hematopoetic stem cell transplantation. We studied 11 patients with acute leukemias / myelodysplastic syndrome and juvenile myelomonocytic leukemia (active disease and/or second stem cell transplantation, n = 8; ≥CR 2, n = 2) and relapsed or progressive Ewing's sarcoma (n = 2) who received prophylactic IL-2 treatment for a high probability of disease recurrence after allo-HSCT. Toxicities from IL-2 were transient fever, fatigue and local inflammation. In one patient GvHD grade III with no clear association to IL-2 administration occurred. IL-2 administration was started at median day 57 (range 13-154) post-transplant for a mean duration of 28 days (range 15-250). IL-2 administration clearly increased NK cell activity. 3 of 11 patients (ALL, AML, multifocal Ewings sarcoma) survived with a follow-up of ten years. In conclusion, long-term low-dose IL-2 subcutaneous application is feasible in children due to a low side effect profile even after HLA mismatched transplantation and may be a strategy to prevent relapse in pediatric malignancies with extremely high risk of relapse. PMID:21925097

  14. General and cell-type specific mechanisms target TRPP2/PKD-2 to cilia.

    Science.gov (United States)

    Bae, Young-Kyung; Qin, Hongmin; Knobel, Karla M; Hu, Jinghua; Rosenbaum, Joel L; Barr, Maureen M

    2006-10-01

    Ciliary localization of the transient receptor potential polycystin 2 channel (TRPP2/PKD-2) is evolutionarily conserved, but how TRPP2 is targeted to cilia is not known. In this study, we characterize the motility and localization of PKD-2, a TRPP2 homolog, in C. elegans sensory neurons. We demonstrate that GFP-tagged PKD-2 moves bidirectionally in the dendritic compartment. Furthermore, we show a requirement for different molecules in regulating the ciliary localization of PKD-2. PKD-2 is directed to moving dendritic particles by the UNC-101/adaptor protein 1 (AP-1) complex. When expressed in non-native neurons, PKD-2 remains in cell bodies and is not observed in dendrites or cilia, indicating that cell-type specific factors are required for directing PKD-2 to the dendrite. PKD-2 stabilization in cilia and cell bodies requires LOV-1, a functional partner and a TRPP1 homolog. In lov-1 mutants, PKD-2 is greatly reduced in cilia and forms abnormal aggregates in neuronal cell bodies. Intraflagellar transport (IFT) is not essential for PKD-2 dendritic motility or access to the cilium, but may regulate PKD-2 ciliary abundance. We propose that both general and cell-type-specific factors govern TRPP2/PKD-2 subcellular distribution by forming at least two steps involving somatodendritic and ciliary sorting decisions. PMID:16943275

  15. Impact of process variations and long term degradation on 6T-SRAM cells

    OpenAIRE

    Fischer, Th.; Olbrich, A.; G. Georgakos; Lemaitre, B; D. Schmitt-Landsiedel

    2007-01-01

    In modern deep-submicron CMOS technologies voltage scaling can not keep up with the scaling of the dimensions of transistors. Therefore the electrical fields inside the transistors are not constant anymore, while scaling down the device area. The rising electrical fields bring up reliability problems, such as hot carrier injection. Also other long term degradation mechanisms like Negative Bias Temperature Instability (NBTI) come into the focus of circuit design. Alon...

  16. Impact of process variations and long term degradation on 6T-SRAM cells

    OpenAIRE

    Fischer, Th.; Olbrich, A.; G. Georgakos; Lemaitre, B.; D. Schmitt-Landsiedel

    2007-01-01

    In modern deep-submicron CMOS technologies voltage scaling can not keep up with the scaling of the dimensions of transistors. Therefore the electrical fields inside the transistors are not constant anymore, while scaling down the device area. The rising electrical fields bring up reliability problems, such as hot carrier injection. Also other long term degradation mechanisms like Negative Bias Temperature Instability (NBTI) come into the focus of circuit design.

    Along wit...

  17. Quantitative analysis of the acute and long-term CD4(+) T-cell response to a persistent gammaherpesvirus

    DEFF Research Database (Denmark)

    Christensen, Jan Pravsgaard; Doherty, P C

    1999-01-01

    compensatory response. The peak frequency within the splenic CD4(+) T-cell population may reach 1:50 in the acute response; it then drops to 1:400 to 1:500 within 4 months and stays at that level in the very long term. Sorting for L-selectin (CD62L) expression established that all virus-specific CD4(+) T cells...

  18. C/EBPβ Induces Chromatin Opening at a Cell-Type-Specific Enhancer▿

    OpenAIRE

    Plachetka, Annette; Chayka, Olesya; Wilczek, Carola; Melnik, Svitlana; Bonifer, Constanze; Klempnauer, Karl-Heinz

    2008-01-01

    We have used the chicken mim-1 gene as a model to study the mechanisms by which transcription factors gain initial access to their target sites in compacted chromatin. The expression of mim-1 is restricted to the myelomonocytic lineage of the hematopoietic system where it is regulated synergistically by the Myb and CCAAT/enhancer binding protein (C/EBP) factors. Myb and C/EBPβ cooperate at two distinct cis elements of mim-1, the promoter and a cell-type-specific enhancer, both of which are as...

  19. Reprogramming suppresses premature senescence phenotypes of Werner syndrome cells and maintains chromosomal stability over long-term culture.

    Directory of Open Access Journals (Sweden)

    Akira Shimamoto

    Full Text Available Werner syndrome (WS is a premature aging disorder characterized by chromosomal instability and cancer predisposition. Mutations in WRN are responsible for the disease and cause telomere dysfunction, resulting in accelerated aging. Recent studies have revealed that cells from WS patients can be successfully reprogrammed into induced pluripotent stem cells (iPSCs. In the present study, we describe the effects of long-term culture on WS iPSCs, which acquired and maintained infinite proliferative potential for self-renewal over 2 years. After long-term cultures, WS iPSCs exhibited stable undifferentiated states and differentiation capacity, and premature upregulation of senescence-associated genes in WS cells was completely suppressed in WS iPSCs despite WRN deficiency. WS iPSCs also showed recapitulation of the phenotypes during differentiation. Furthermore, karyotype analysis indicated that WS iPSCs were stable, and half of the descendant clones had chromosomal profiles that were similar to those of parental cells. These unexpected properties might be achieved by induced expression of endogenous telomerase gene during reprogramming, which trigger telomerase reactivation leading to suppression of both replicative senescence and telomere dysfunction in WS cells. These findings demonstrated that reprogramming suppressed premature senescence phenotypes in WS cells and WS iPSCs could lead to chromosomal stability over the long term. WS iPSCs will provide opportunities to identify affected lineages in WS and to develop a new strategy for the treatment of WS.

  20. Induced Neural Stem Cells Achieve Long-Term Survival and Functional Integration in the Adult Mouse Brain

    Directory of Open Access Journals (Sweden)

    Kathrin Hemmer

    2014-09-01

    Full Text Available Differentiated cells can be converted directly into multipotent neural stem cells (i.e., induced neural stem cells [iNSCs]. iNSCs offer an attractive alternative to induced pluripotent stem cell (iPSC technology with regard to regenerative therapies. Here, we show an in vivo long-term analysis of transplanted iNSCs in the adult mouse brain. iNSCs showed sound in vivo long-term survival rates without graft overgrowths. The cells displayed a neural multilineage potential with a clear bias toward astrocytes and a permanent downregulation of progenitor and cell-cycle markers, indicating that iNSCs are not predisposed to tumor formation. Furthermore, the formation of synaptic connections as well as neuronal and glial electrophysiological properties demonstrated that differentiated iNSCs migrated, functionally integrated, and interacted with the existing neuronal circuitry. We conclude that iNSC long-term transplantation is a safe procedure; moreover, it might represent an interesting tool for future personalized regenerative applications.

  1. The roadmap for estimation of cell-type-specific neuronal activity from non-invasive measurements.

    Science.gov (United States)

    Uhlirova, Hana; Kılıç, Kıvılcım; Tian, Peifang; Sakadžić, Sava; Gagnon, Louis; Thunemann, Martin; Desjardins, Michèle; Saisan, Payam A; Nizar, Krystal; Yaseen, Mohammad A; Hagler, Donald J; Vandenberghe, Matthieu; Djurovic, Srdjan; Andreassen, Ole A; Silva, Gabriel A; Masliah, Eliezer; Kleinfeld, David; Vinogradov, Sergei; Buxton, Richard B; Einevoll, Gaute T; Boas, David A; Dale, Anders M; Devor, Anna

    2016-10-01

    The computational properties of the human brain arise from an intricate interplay between billions of neurons connected in complex networks. However, our ability to study these networks in healthy human brain is limited by the necessity to use non-invasive technologies. This is in contrast to animal models where a rich, detailed view of cellular-level brain function with cell-type-specific molecular identity has become available due to recent advances in microscopic optical imaging and genetics. Thus, a central challenge facing neuroscience today is leveraging these mechanistic insights from animal studies to accurately draw physiological inferences from non-invasive signals in humans. On the essential path towards this goal is the development of a detailed 'bottom-up' forward model bridging neuronal activity at the level of cell-type-specific populations to non-invasive imaging signals. The general idea is that specific neuronal cell types have identifiable signatures in the way they drive changes in cerebral blood flow, cerebral metabolic rate of O2 (measurable with quantitative functional Magnetic Resonance Imaging), and electrical currents/potentials (measurable with magneto/electroencephalography). This forward model would then provide the 'ground truth' for the development of new tools for tackling the inverse problem-estimation of neuronal activity from multimodal non-invasive imaging data.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. PMID:27574309

  2. Long-term persistence of acquired resistance to 5-fluorouracil in the colon cancer cell line SW620

    International Nuclear Information System (INIS)

    Treatment resistance to antineoplastic drugs represents a major clinical problem. Here, we investigated the long-term stability of acquired resistance to 5-fluorouracil (FU) in an in vitro colon cancer model, using four sub-clones characterised by increasing FU-resistance derived from the cell line SW620. The resistance phenotype was preserved after FU withdrawal for 15 weeks (∼ 100 cell divisions) independent of the established level of drug resistance and of epigenetic silencing. Remarkably, resistant clones tolerated serum deprivation, adopted a CD133+ CD44- phenotype, and further exhibited loss of membrane-bound E-cadherin together with predominant nuclear β-catenin localisation. Thus, we provide evidence for a long-term memory of acquired drug resistance, driven by multiple cellular strategies (epithelial-mesenchymal transition and selective propagation of CD133+ cells). These resistance phenomena, in turn, accentuate the malignant phenotype.

  3. Long-term persistence of acquired resistance to 5-fluorouracil in the colon cancer cell line SW620

    Energy Technology Data Exchange (ETDEWEB)

    Tentes, I.K., E-mail: itentes@med.duth.gr [Department of Biochemistry, Medical School, Democritus University of Thrace, 6th km Alexandroupolis-Komotini (Dragana), 68100 Alexandroupolis (Greece); Schmidt, W.M. [Center for Anatomy and Cell Biology, Waehringer Strasse 13, 1090 Vienna (Austria); Krupitza, G. [Institute of Clinical Pathology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria); Steger, G.G.; Mikulits, W. [Department of Medicine I, Medical University of Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria); Kortsaris, A. [Department of Biochemistry, Medical School, Democritus University of Thrace, 6th km Alexandroupolis-Komotini (Dragana), 68100 Alexandroupolis (Greece); Mader, R.M. [Department of Medicine I, Medical University of Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria)

    2010-11-15

    Treatment resistance to antineoplastic drugs represents a major clinical problem. Here, we investigated the long-term stability of acquired resistance to 5-fluorouracil (FU) in an in vitro colon cancer model, using four sub-clones characterised by increasing FU-resistance derived from the cell line SW620. The resistance phenotype was preserved after FU withdrawal for 15 weeks ({approx} 100 cell divisions) independent of the established level of drug resistance and of epigenetic silencing. Remarkably, resistant clones tolerated serum deprivation, adopted a CD133{sup +} CD44{sup -} phenotype, and further exhibited loss of membrane-bound E-cadherin together with predominant nuclear {beta}-catenin localisation. Thus, we provide evidence for a long-term memory of acquired drug resistance, driven by multiple cellular strategies (epithelial-mesenchymal transition and selective propagation of CD133{sup +} cells). These resistance phenomena, in turn, accentuate the malignant phenotype.

  4. In Vivo Transplantation of Enteric Neural Crest Cells into Mouse Gut; Engraftment, Functional Integration and Long-Term Safety.

    Directory of Open Access Journals (Sweden)

    Julie E Cooper

    Full Text Available Enteric neuropathies are severe gastrointestinal disorders with unsatisfactory outcomes. We aimed to investigate the potential of enteric neural stem cell therapy approaches for such disorders by transplanting mouse enteric neural crest cells (ENCCs into ganglionic and aganglionic mouse gut in vivo and analysing functional integration and long-term safety.Neurospheres generated from yellow fluorescent protein (YFP expressing ENCCs selected from postnatal Wnt1-cre;R26R-YFP/YFP murine gut were transplanted into ganglionic hindgut of wild-type littermates or aganglionic hindgut of Ednrbtm1Ywa mice (lacking functional endothelin receptor type-B. Intestines were then assessed for ENCC integration and differentiation using immunohistochemistry, cell function using calcium imaging, and long-term safety using PCR to detect off-target YFP expression.YFP+ ENCCs engrafted, proliferated and differentiated into enteric neurons and glia within recipient ganglionic gut. Transplanted cells and their projections spread along the endogenous myenteric plexus to form branching networks. Electrical point stimulation of endogenous nerve fibres resulted in calcium transients (F/F0 = 1.16 ± 0.01;43 cells, n = 6 in YFP+ transplanted ENCCs (abolished with TTX. Long-term follow-up (24 months showed transplanted ENCCs did not give rise to tumours or spread to other organs (PCR negative in extraintestinal sites. In aganglionic gut ENCCs similarly spread and differentiated to form neuronal and glial networks with projections closely associated with endogenous neural networks of the transition zone.Transplanted ENCCs successfully engrafted into recipient ganglionic and aganglionic gut showing appropriate spread, localisation and, importantly, functional integration without any long-term safety issues. This study provides key support for the development and use of enteric neural stem cell therapies.

  5. Isolation and Assessment of Single Long-Term Reconstituting Hematopoietic Stem Cells from Adult Mouse Bone Marrow.

    Science.gov (United States)

    Kent, David G; Dykstra, Brad J; Eaves, Connie J

    2016-01-01

    Hematopoietic stem cells with long-term repopulating activity can now be routinely obtained at purities of 40% to 50% from suspensions of adult mouse bone marrow. Here we describe robust protocols for both their isolation as CD45(+) EPCR(+) CD150(+) CD48(-) (ESLAM) cells using multiparameter cell sorting and for tracking their clonal growth and differentiation activity in irradiated mice transplanted with single ESLAM cells. The simplicity of these procedures makes them attractive for characterizing the molecular and biological properties of individual hematopoietic stem cells with unprecedented power and precision. © 2016 by John Wiley & Sons, Inc. PMID:27532815

  6. Long-term Continuous Production of Monoclonal Antibody by Hybridoma Cells Immobilized in a Fibrous-Bed Bioreactor

    OpenAIRE

    Zhu, Hui; Yang, Shang-Tian

    2004-01-01

    The kinetics and long-term stability of continuous production of monoclonal antibody IgG2b by hybridoma HD-24 cells immobilized in a fibrous-bed bioreactor (FBB) were studied for a period of ∼8 months. The cells were immobilized in the fibrous bed by surface attachment of cells and entrapment of large cell clumps in the void space of the fibrous matrix. A high viable cell density of 1.01 × 108/ml was attained in the bioreactor, which was about 63 times higher than those in conventional T-flas...

  7. Towards identifying host cell-type specific response patterns to bacterial endosymbiosis

    DEFF Research Database (Denmark)

    Gavrilovic, Srdjan

    view, available techniques have relied heavily on whole organ analyses that disregard specificities of individual cell types. To address this issue we aimed to develop a technology for comparative global analysis of mature mRNA and small RNA populations at the cell type specific level in the model...... plant Lotus japonicus. A powerful approach referred to here as Defined Expression and RNA Affinity co-Purification (DERAP) was developed to study gene expression and small RNA populations in the host roots during early phases of signal exchange at the cell-type level. As a basis for DERAP analysis of......, namely epidermis with elongating root hairs, inner cortex, endodermis, phloem and xylem, were characterized in L. japonicus. In combination with tagged forms of a Ribosomal surface Protein (RP) and the viral small RNA binding protein P19, these promoters were introduced into L. japonicus ecotype Gifu...

  8. Mouse pancreas tissue slice culture facilitates long-term studies of exocrine and endocrine cell physiology in situ.

    Directory of Open Access Journals (Sweden)

    Anja Marciniak

    Full Text Available Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To overcome these limitations, we aimed to establish a pancreas tissue slice culture platform to allow long-term studies on exocrine and endocrine cells in the intact pancreatic environment. Mouse pancreas tissue slice morphology was assessed to determine optimal long-term culture settings for intact pancreatic tissue. Utilizing optimized culture conditions, cell specificity and function of exocrine acinar cells and endocrine beta cells were characterized over a culture period of 7 days. We found pancreas tissue slices cultured under optimized conditions to have intact tissue specific morphology for the entire culture period. Amylase positive intact acini were present at all time points of culture and acinar cells displayed a typical strong cell polarity. Amylase release from pancreas tissue slices decreased during culture, but maintained the characteristic bell-shaped dose-response curve to increasing caerulein concentrations and a ca. 4-fold maximal over basal release. Additionally, endocrine beta cell viability and function was well preserved until the end of the observation period. Our results show that the tissue slice culture platform provides unprecedented maintenance of pancreatic tissue specific morphology and function over a culture period for at least 4 days and in part even up to 1 week. This analytical advancement now allows mid -to long-term studies on the cell biology of pancreatic disorder pathogenesis and therapy in an intact surrounding in situ.

  9. Phenotypic and Functional Properties of Porcine Dedifferentiated Fat Cells during the Long-Term Culture In Vitro

    Directory of Open Access Journals (Sweden)

    Xuewu Peng

    2015-01-01

    Full Text Available It has been proved that terminally differentiated mature adipocytes possess abilities to dedifferentiate into fibroblast-like progeny cells with self-renewal and multiple differentiation, termed dedifferentiated fat (DFAT cells. However, the biological properties of DFAT cells during long-term culture in vitro have not been elucidated. Here, we obtained fibroblast-like morphology of porcine DFAT cells by ceiling culture. During the dedifferentiation process, round mature adipocytes with single large lipid droplets changed into spindle-shaped cells accompanied by the adipogenic markers PPARγ, aP2, LPL, and Adiponectin significant downregulation. Flow cytometric analysis showed that porcine DFAT cells displayed similar cell-surface antigen profile to mesenchymal stem cells (MSCs. Furthermore, different passages of porcine DFAT cells during long-term culture in vitro retained high levels of cell viabilities (>97%, efficient proliferative capacity including population doubling time ranged from 20 h to 22 h and population doubling reached 47.40±1.64 by 58 days of culture. In addition, porcine DFAT cells maintained the multiple differentiation capabilities into adipocytes, osteoblasts, and skeletal myocytes and displayed normal chromosomal karyotypes for prolonged passaging. Therefore, porcine DFAT cells may be a novel model of stem cells for studying the functions of gene in the different biological events.

  10. Glutamine synthetase is a genetic determinant of cell type-specific glutamine independence in breast epithelia.

    Directory of Open Access Journals (Sweden)

    Hsiu-Ni Kung

    2011-08-01

    Full Text Available Although significant variations in the metabolic profiles exist among different cells, little is understood in terms of genetic regulations of such cell type-specific metabolic phenotypes and nutrient requirements. While many cancer cells depend on exogenous glutamine for survival to justify the therapeutic targeting of glutamine metabolism, the mechanisms of glutamine dependence and likely response and resistance of such glutamine-targeting strategies among cancers are largely unknown. In this study, we have found a systematic variation in the glutamine dependence among breast tumor subtypes associated with mammary differentiation: basal- but not luminal-type breast cells are more glutamine-dependent and may be susceptible to glutamine-targeting therapeutics. Glutamine independence of luminal-type cells is associated mechanistically with lineage-specific expression of glutamine synthetase (GS. Luminal cells can also rescue basal cells in co-culture without glutamine, indicating a potential for glutamine symbiosis within breast ducts. The luminal-specific expression of GS is directly induced by GATA3 and represses glutaminase expression. Such distinct glutamine dependency and metabolic symbiosis is coupled with the acquisition of the GS and glutamine independence during the mammary differentiation program. Understanding the genetic circuitry governing distinct metabolic patterns is relevant to many symbiotic relationships among different cells and organisms. In addition, the ability of GS to predict patterns of glutamine metabolism and dependency among tumors is also crucial in the rational design and application of glutamine and other metabolic pathway targeted therapies.

  11. Long-term follow-up is crucial after treatment for granulosa cell tumours of the ovary

    OpenAIRE

    Mangili, G; Ottolina, J; Gadducci, A.; Giorda, G.; van Breda, E.; Savarese, A.; Candiani, M; Frigerio, L; Scarfone, G; Pignata, S; Rossi, R.; Marinaccio, M; Lorusso, D

    2013-01-01

    Objective: The aim of this study is to evaluate the long-term outcome of granulosa cell tumour (GCT) of the ovary in a large series of patients treated in MITO centres (Multicentre Italian Trials in Ovarian Cancer) and to define prognostic parameters for relapse and survival. Methods: A retrospective multi-institutional review of patients with GCTs of the ovary treated or referred to MITO centres was conducted. Surgical outcome, intraoperative and pathological findings and follow-up data were...

  12. The Drosophila cell adhesion molecule Klingon is required for long-term memory formation and is regulated by Notch

    OpenAIRE

    Matsuno, Motomi; Horiuchi, Junjiro; Tully, Tim; Saitoe, Minoru

    2008-01-01

    The ruslan (rus) mutant was previously identified in a behavioral screen for mutants defective in long-lasting memory, which consists of two consolidated memory types, anesthesia-resistant memory, and protein synthesis-dependent long-term memory (LTM). We demonstrate here that rus is a new allele of klingon (klg), which encodes a homophilic cell adhesion molecule. Klg is acutely required for LTM but not anesthesia-resistant memory formation, and Klg expression increases upon LTM induction. LT...

  13. Long-term Disease Free and Successful Pregnancy in a Woman with Gonadal Dysgenesis and Malignant Germ Cell Tumor

    OpenAIRE

    Azamsadat Mousavi; Mitra Gilani; Shirin Goodarzi; Ensieh Tehraninejad; Hayedeh Haeri

    2012-01-01

    Objective: To report a case of long-term disease free and successful pregnancy after fertility sparing staging surgery with adjuvant chemotherapy in a 46,Xy gonadal dysgenetic with malignant germ cell tumor.Materials and methods: A case report from a university hospital about a 19-year-old female with 46,XY karyotype ( Swyer syndrome). The patient underwent bilateral gonadectomy and staging with uterus preservation. Six course adjuvant chemotherapy with VBP (Vinblastin, Bleomycin, Cisplatin) ...

  14. Transcription factor co-localization patterns affect human cell type-specific gene expression

    Directory of Open Access Journals (Sweden)

    Wang Dennis

    2012-06-01

    Full Text Available Abstract Background Cellular development requires the precise control of gene expression states. Transcription factors are involved in this regulatory process through their combinatorial binding with DNA. Information about transcription factor binding sites can help determine which combinations of factors work together to regulate a gene, but it is unclear how far the binding data from one cell type can inform about regulation in other cell types. Results By integrating data on co-localized transcription factor binding sites in the K562 cell line with expression data across 38 distinct hematopoietic cell types, we developed regression models to describe the relationship between the expression of target genes and the transcription factors that co-localize nearby. With K562 binding sites identifying the predictors, the proportion of expression explained by the models is statistically significant only for monocytic cells (p-valueFOS, TAF1 and YY1 to a sparsely studied gene LRIG2. We also find that the activity of a transcription factor may be different depending on the cell type and the identity of other co-localized factors. Conclusion Our approach shows that gene expression can be explained by a modest number of co-localized transcription factors, however, information on cell-type specific binding is crucial for understanding combinatorial gene regulation.

  15. Investigation of mechanisms of indometophen on haemopoietic precursors cells in mouse long-term bone marrow cultures

    International Nuclear Information System (INIS)

    Influence of indometophen radioprotector (an analog of tamoxiphen) on the dynamic content and proliferative activity of colony-forming units and granulocyto-macrophages precursors and the level of colony-simulating factor in mouse long-term bone marrow cultures were studied for 4 weeks after administration. Five days after indometophen injection the long-term cultures were exposed to irradiation at a dose of 2.0 Gy and on the time course of postirradiation recovery haemopoietic precursor cells and dynamic release of granulocyto-macrophages colony-simulating factor in the culture supernatants were examined. Data of this report suggest that the mechanisms responsible for radioprotective action of indometophen may be associated both with its direct effects on the proliferation and differentiation of hemopoietic cellular precursors and with stimulation of release of growth-differential factors by hemopoietic microenvironmental elements

  16. Multiple origins of spontaneously arising micronuclei in HeLa cells: Direct evidence from long-term live cell imaging

    International Nuclear Information System (INIS)

    Although micronuclei (MNi) are extensively used to evaluate genotoxic effects and chromosome instability, the most basic issue regarding their origins has not been completely addressed due to limitations of traditional methods. Recently, long-term live cell imaging was developed to monitor the dynamics of single cell in a real-time and high-throughput manner. In the present study, this state-of-the-art technique was employed to examine spontaneous micronucleus (MN) formation in untreated HeLa cells. We demonstrate that spontaneous MNi are derived from incorrectly aligned chromosomes in metaphase (displaced chromosomes, DCs), lagging chromosomes (LCs) and broken chromosome bridges (CBs) in later mitotic stages, but not nuclear buds in S phase. However, most of bipolar mitoses with DCs (91.29%), LCs (73.11%) and broken CBs (88.93%) did not give rise to MNi. Our data also show directly, for the first time, that MNi could originate spontaneously from (1) MNi already presented in the mother cells; (2) nuclear fragments that appeared during mitosis with CB; and (3) chromosomes being extruded into a minicell which fused with one of the daughter cells later. Quantitatively, most of MNi originated from LCs (63.66%), DCs (10.97%) and broken CBs (9.25%). Taken together, these direct evidences show that there are multiple origins for spontaneously arising MNi in HeLa cells and each mechanism contributes to overall MN formation to different extents

  17. Cell-type specific mechanisms of D-serine uptake and release in the brain

    Directory of Open Access Journals (Sweden)

    Magalie eMartineau

    2014-05-01

    Full Text Available Accumulating evidence during the last decade established that D-serine is a key signaling molecule utilized by neurons and astroglia in the mammalian central nervous system. D-serine is increasingly appreciated as the main physiological endogenous coagonist for synaptic NMDA receptors at central excitatory synapses; it is mandatory for long-term changes in synaptic strength, memory, learning, and social interactions. Alterations in the extracellular levels of D-serine leading to disrupted cell-cell signaling are a trademark of many chronic or acute neurological (i.e. Alzheimer disease, epilepsy, stroke and psychiatric (i.e. schizophrenia disorders, and are associated with addictive behavior (i.e. cocaine addiction. Indeed, fine tuning of the extracellular levels of D-serine, achieved by various molecular machineries and signaling pathways, is necessary for maintenance of accurate NMDA receptor functions. Here, we review the experimental data supporting the notion that astroglia and neurons use different pathways to regulate levels of extracellular D-serine.

  18. Radioresistant cell strain of human fibrosarcoma cells obtained after long-term exposure to X-rays

    International Nuclear Information System (INIS)

    A radioresistant cell strain from human fibrosarcoma HT1080 has been obtained after prolonged exposure to x-rays for 7 months (2 Gy per day, 5 days per week). This new strain, HT1080R, differs from HT1080 in a significantly increased ability of clonogenical survival, with coefficient α decreasing from 0.161 to 0.123 Gy-1 and coefficient β decreasing from 0.0950 to 0.0565 Gy-2. Furthermore, the radioresistance of HT1080R proved to be stable in long-term passaged cultures as well as in frozen samples. Differences between the two cell lines are also observed in the G-banded karyotype; the new cell line shows monosomy of chromosome 17 and loss of 5p+ and 11q+ present in the parental cells. These data suggest that the radioresistance may have been caused by radiation-induced cell mutation and that the resistant cells may have been selected by repeated irradiations. In order to characterize this new strain, the ability of the cells to rejoin DNA double-strand breaks, the cell cycle distribution and the amount of apoptosis after irradiation have been estimated; however, no differences are observed between these two cell strains. Although the mechanism of the elevated radioresistance remains unknown, this pair of cell strains can provide a new model system for further investigations with regard to the mechanisms of cellular radioresistance. The results also show that any type of irradiation similar to the schedules used in radiotherapy can lead to the formation and selection of more radioresistant cell clones in vitro, a phenomenon with possible implications for radiotherapy. (orig.)

  19. Protein conservation and variation suggest mechanisms of cell type-specific modulation of signaling pathways.

    Directory of Open Access Journals (Sweden)

    Martin H Schaefer

    2014-06-01

    Full Text Available Many proteins and signaling pathways are present in most cell types and tissues and yet perform specialized functions. To elucidate mechanisms by which these ubiquitous pathways are modulated, we overlaid information about cross-cell line protein abundance and variability, and evolutionary conservation onto functional pathway components and topological layers in the pathway hierarchy. We found that the input (receptors and the output (transcription factors layers evolve more rapidly than proteins in the intermediary transmission layer. In contrast, protein expression variability decreases from the input to the output layer. We observed that the differences in protein variability between the input and transmission layer can be attributed to both the network position and the tendency of variable proteins to physically interact with constitutively expressed proteins. Differences in protein expression variability and conservation are also accompanied by the tendency of conserved and constitutively expressed proteins to acquire somatic mutations, while germline mutations tend to occur in cell type-specific proteins. Thus, conserved core proteins in the transmission layer could perform a fundamental role in most cell types and are therefore less tolerant to germline mutations. In summary, we propose that the core signal transmission machinery is largely modulated by a variable input layer through physical protein interactions. We hypothesize that the bow-tie organization of cellular signaling on the level of protein abundance variability contributes to the specificity of the signal response in different cell types.

  20. Protein conservation and variation suggest mechanisms of cell type-specific modulation of signaling pathways.

    Science.gov (United States)

    Schaefer, Martin H; Yang, Jae-Seong; Serrano, Luis; Kiel, Christina

    2014-06-01

    Many proteins and signaling pathways are present in most cell types and tissues and yet perform specialized functions. To elucidate mechanisms by which these ubiquitous pathways are modulated, we overlaid information about cross-cell line protein abundance and variability, and evolutionary conservation onto functional pathway components and topological layers in the pathway hierarchy. We found that the input (receptors) and the output (transcription factors) layers evolve more rapidly than proteins in the intermediary transmission layer. In contrast, protein expression variability decreases from the input to the output layer. We observed that the differences in protein variability between the input and transmission layer can be attributed to both the network position and the tendency of variable proteins to physically interact with constitutively expressed proteins. Differences in protein expression variability and conservation are also accompanied by the tendency of conserved and constitutively expressed proteins to acquire somatic mutations, while germline mutations tend to occur in cell type-specific proteins. Thus, conserved core proteins in the transmission layer could perform a fundamental role in most cell types and are therefore less tolerant to germline mutations. In summary, we propose that the core signal transmission machinery is largely modulated by a variable input layer through physical protein interactions. We hypothesize that the bow-tie organization of cellular signaling on the level of protein abundance variability contributes to the specificity of the signal response in different cell types. PMID:24922536

  1. Epigenetic regulation of normal human mammary cell type-specific miRNAs

    Energy Technology Data Exchange (ETDEWEB)

    Vrba, Lukas [Univ. of Arizona, Tucson, AZ (United States). Arizona Cancer Center; Inst. of Plant Molecular Biology, Ceske Budejovice (Czech Republic). Biology Centre ASCR; Garbe, James C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Center; Stampfer, Martha R. [Univ. of Arizona, Tucson, AZ (United States). Arizona Cancer Center; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Center; Futscher, Bernard W. [Univ. of Arizona, Tucson, AZ (United States). Arizona Cancer Center and Dept. of Pharmacology & Toxicology

    2011-08-26

    Epigenetic mechanisms are important regulators of cell type–specific genes, including miRNAs. In order to identify cell type-specific miRNAs regulated by epigenetic mechanisms, we undertook a global analysis of miRNA expression and epigenetic states in three isogenic pairs of human mammary epithelial cells (HMEC) and human mammary fibroblasts (HMF), which represent two differentiated cell types typically present within a given organ, each with a distinct phenotype and a distinct epigenotype. While miRNA expression and epigenetic states showed strong interindividual concordance within a given cell type, almost 10% of the expressed miRNA showed a cell type–specific pattern of expression that was linked to the epigenetic state of their promoter. The tissue-specific miRNA genes were epigenetically repressed in nonexpressing cells by DNA methylation (38%) and H3K27me3 (58%), with only a small set of miRNAs (21%) showing a dual epigenetic repression where both DNA methylation and H3K27me3 were present at their promoters, such as MIR10A and MIR10B. Individual miRNA clusters of closely related miRNA gene families can each display cell type–specific repression by the same or complementary epigenetic mechanisms, such as the MIR200 family, and MIR205, where fibroblasts repress MIR200C/141 by DNA methylation, MIR200A/200B/429 by H3K27me3, and MIR205 by both DNA methylation and H3K27me3. Since deregulation of many of the epigenetically regulated miRNAs that we identified have been linked to disease processes such as cancer, it is predicted that compromise of the epigenetic control mechanisms is important for this process. Overall, these results highlight the importance of epigenetic regulation in the control of normal cell type–specific miRNA expression.

  2. Pore-filled electrolyte membranes for facile fabrication of long-term stable dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Graphical abstract: Display Omitted -- Highlights: •Pore-filled film electrolytes (PFEMs) were investigated for facile DSSC fabrication. •Optimal mixed solvent was suggested to enhance the long-term stability of DSSCs. •The PFEMs promised both the excellent thermal stability and energy efficiency. •Thephotovoltaic efficiency was well correlated with porous structure of substrates. -- ABSTRACT: Pore-filled electrolyte membranes (PFEMs) have been prepared by employing an optimized porous substrate and stable electrolyte composition for a facile manufacturing process of dye-sensitized solar cells (DSSCs). The PFEMs could be easily loaded into a photovoltaic device without adding a traditional electrolyte injection through a hole. In order to meet the requirements of both high energy conversion efficiency and proper long-term stability, three different solvents with high boiling point, i.e. valeronitrile, dimethyl sulfoxide, and dimethylacetamide, were appropriately mixed as a volumetric ratio of 7:2:1, respectively. As a result, similar conductivity and viscosity as well as better chemical stability were obtained compared to those of conventional 3-methoxypropionitrile-based electrolyte. In addition, linear relations were observed between the photovoltaic efficiency and porous film properties (i.e. porosity and tortuosity). The DSSC employing the PFEM doped with the mixed solvent based electrolyte exhibited the photon-to-current conversion efficiency of 6.30% at one sun condition. Moreover, the long-term stability test fixed at an elevated temperature of 85 °C exhibited outstanding durability of DSSC for 500 h

  3. Dosimetric Factors Associated With Long-Term Dysphagia After Definitive Radiotherapy for Squamous Cell Carcinoma of the Head and Neck

    International Nuclear Information System (INIS)

    Purpose: Intensification of radiotherapy and chemotherapy for head-and-neck cancer may lead to increased rates of dysphagia. Dosimetric predictors of objective findings of long-term dysphagia were sought. Methods and Materials: From an institutional database, 83 patients were identified who underwent definitive intensity-modulated radiotherapy for squamous cell carcinoma of the head and neck, after exclusion of those who were treated for a second or recurrent head-and-neck primary lesion, had locoregional recurrence at any time, had less than 12 months of follow-up, or had postoperative radiotherapy. Dosimetric parameters were analyzed relative to three objective endpoints as a surrogate for severe long-term dysphagia: percutaneous endoscopic gastrostomy (PEG) tube dependence at 12 months, aspiration on modified barium swallow, or pharyngoesophageal stricture requiring dilation. Results: Mean dose greater than 41 Gy and volume receiving 60 Gy (V60) greater than 24% to the larynx were significantly associated with PEG tube dependence and aspiration. V60 greater than 12% to the inferior pharyngeal constrictor was also significantly associated with increased PEG tube dependence and aspiration. V65 greater than 33% to the superior pharyngeal constrictor or greater than 75% to the middle pharyngeal constrictor was associated with pharyngoesophageal stricture requiring dilation. Conclusions: Doses to the larynx and pharyngeal constrictors predicted long-term swallowing complications, even when controlled for other clinical factors. The addition of these structures to intensity-modulated radiotherapy optimization may reduce the incidence of dysphagia, although cautious clinical validation is necessary.

  4. Long-term operation of double chambered microbial fuel cell for bio-electro denitrification.

    Science.gov (United States)

    Oon, Yoong-Sin; Ong, Soon-An; Ho, Li-Ngee; Wong, Yee-Shian; Oon, Yoong-Ling; Lehl, Harvinder Kaur; Thung, Wei-Eng

    2016-06-01

    The main aim of this study is to investigate the performance of organic oxidation and denitrification of the system under long-term operation. The MFC reactor was operated in continuous mode for 180 days. Nitrate was successfully demonstrated as terminal electron acceptor, where nitrate was reduced at the cathode using electron provided by acetate oxidation at the anode. The removal efficiencies of chemical oxygen demand (COD) and nitrate were higher in the closed circuit system than in open circuit system. Both COD and nitrate reduction improved with the increase of organic loading and subsequently contributed to higher power output. The maximum nitrate removal efficiency was 88 ± 4 % (influent of 141 ± 14 mg/L). The internal resistant was 50 Ω, which was found to be low for a double chambered MFC. The maximum power density was 669 mW/m(3) with current density of 3487 mA/m(3). PMID:26894384

  5. The predominant mechanism of intercellular calcium wave propagation changes during long-term culture of human osteoblast-like cells

    DEFF Research Database (Denmark)

    Henriksen, Zanne; Hiken, Jeffrey F; Steinberg, Thomas H;

    2006-01-01

    cells still responded to addition of ATP, but P2Y desensitization did not inhibit ICW propagation. Our data indicate that the relative role of P2Y-mediated and gap junction-mediated ICW changes during osteoblast differentiation in vitro. In less differentiated cells, P2Y-mediated ICW predominate, but as......Intercellular calcium waves (ICW) are calcium transients that spread from cell to cell in response to different stimuli. We previously demonstrated that human osteoblast-like cells in culture propagate ICW in response to mechanical stimulation by two mechanisms. One mechanism involves autocrine...... activation of P2Y receptors, and the other requires gap junctional communication. In the current work we ask whether long-term culture of osteoblast-like cells affects the propagation of ICW by these two mechanisms. Human osteoblast-like cells were isolated from bone marrow. Mechanically induced ICW were...

  6. Imaging long-term fate of intramyocardially implanted mesenchymal stem cells in a porcine myocardial infarction model.

    Directory of Open Access Journals (Sweden)

    Emerson C Perin

    Full Text Available The long-term fate of stem cells after intramyocardial delivery is unknown. We used noninvasive, repetitive PET/CT imaging with [(18F]FEAU to monitor the long-term (up to 5 months spatial-temporal dynamics of MSCs retrovirally transduced with the sr39HSV1-tk gene (sr39HSV1-tk-MSC and implanted intramyocardially in pigs with induced acute myocardial infarction. Repetitive [(18F]FEAU PET/CT revealed a biphasic pattern of sr39HSV1-tk-MSC dynamics; cell proliferation peaked at 33-35 days after injection, in periinfarct regions and the major cardiac lymphatic vessels and lymph nodes. The sr39HSV1-tk-MSC-associated [(18F]FEAU signals gradually decreased thereafter. Cardiac lymphography studies using PG-Gd-NIRF813 contrast for MRI and near-infrared fluorescence imaging showed rapid clearance of the contrast from the site of intramyocardial injection through the subepicardial lymphatic network into the lymphatic vessels and periaortic lymph nodes. Immunohistochemical analysis of cardiac tissue obtained at 35 and 150 days demonstrated several types of sr39HSV1-tk expressing cells, including fibro-myoblasts, lymphovascular cells, and microvascular and arterial endothelium. In summary, this study demonstrated the feasibility and sensitivity of [(18F]FEAU PET/CT imaging for long-term, in-vivo monitoring (up to 5 months of the fate of intramyocardially injected sr39HSV1-tk-MSC cells. Intramyocardially transplanted MSCs appear to integrate into the lymphatic endothelium and may help improve myocardial lymphatic system function after MI.

  7. Cell-type specific roles for PTEN in establishing a functional retinal architecture.

    Directory of Open Access Journals (Sweden)

    Robert Cantrup

    Full Text Available BACKGROUND: The retina has a unique three-dimensional architecture, the precise organization of which allows for complete sampling of the visual field. Along the radial or apicobasal axis, retinal neurons and their dendritic and axonal arbors are segregated into layers, while perpendicular to this axis, in the tangential plane, four of the six neuronal types form patterned cellular arrays, or mosaics. Currently, the molecular cues that control retinal cell positioning are not well-understood, especially those that operate in the tangential plane. Here we investigated the role of the PTEN phosphatase in establishing a functional retinal architecture. METHODOLOGY/PRINCIPAL FINDINGS: In the developing retina, PTEN was localized preferentially to ganglion, amacrine and horizontal cells, whose somata are distributed in mosaic patterns in the tangential plane. Generation of a retina-specific Pten knock-out resulted in retinal ganglion, amacrine and horizontal cell hypertrophy, and expansion of the inner plexiform layer. The spacing of Pten mutant mosaic populations was also aberrant, as were the arborization and fasciculation patterns of their processes, displaying cell type-specific defects in the radial and tangential dimensions. Irregular oscillatory potentials were also observed in Pten mutant electroretinograms, indicative of asynchronous amacrine cell firing. Furthermore, while Pten mutant RGC axons targeted appropriate brain regions, optokinetic spatial acuity was reduced in Pten mutant animals. Finally, while some features of the Pten mutant retina appeared similar to those reported in Dscam-mutant mice, PTEN expression and activity were normal in the absence of Dscam. CONCLUSIONS/SIGNIFICANCE: We conclude that Pten regulates somal positioning and neurite arborization patterns of a subset of retinal cells that form mosaics, likely functioning independently of Dscam, at least during the embryonic period. Our findings thus reveal an unexpected

  8. Long-term frozen storage of stem cells: challenges and solutions

    OpenAIRE

    Harris, David

    2016-01-01

    David T Harris1-5 1University of Arizona Health Sciences Biorepository, 2Department of Immunology, 3Division of Translational Medicine, 4GMP Laboratory, University of Arizona, Tucson, 5Celebration Stem Cell Centre, Gilbert, AZ, USA Abstract: Stem cells are found in all multicellular organisms and are defined as cells that can differentiate into specialized mature cells as well as divide to produce more stem cells. Stem cells are commonly harvested for clinical and research applications from b...

  9. Autonomous Inter Cell Interference Avoidance under Fractional Load for Downlink Long Term Evolution

    DEFF Research Database (Denmark)

    Kumar, S.; Monghal, Guillaume Damien; Nin, Jaume; Ordas, Ivan; Mogensen, Preben

    2009-01-01

    The main source of interference in OFDMA system in downlink is inter-cell interference, which can severely limit the throughput of users near the cell edge. The inter-cell interference coordination (ICIC) is one method to improve the performance. In this paper autonomous inter-cell interference a...

  10. Long-Term Self-Renewal of Postnatal Muscle-derived Stem Cells

    OpenAIRE

    Deasy, B. M.; Gharaibeh, B. M.; Pollett, J. B.; Jones, M.M.; Lucas, M. A.; Kanda, Y.; Huard, J

    2005-01-01

    The ability to undergo self-renewal is a defining characteristic of stem cells. Self-replenishing activity sustains tissue homeostasis and regeneration. In addition, stem cell therapy strategies require a heightened understanding of the basis of the self-renewal process to enable researchers and clinicians to obtain sufficient numbers of undifferentiated stem cells for cell and gene therapy. Here, we used postnatal muscle-derived stem cells to test the basic biological assumption of unlimited...

  11. Effects of long-term low-dose cadmium exposure on genomic DNA methylation in human embryo lung fibroblast cells

    International Nuclear Information System (INIS)

    Cadmium is a toxic transition metal of continuing occupational and environmental concern. As a well-recognized human carcinogen, its carcinogenic mechanisms are still poorly understood. Cadmium has long been considered a non-genotoxic carcinogen and thought to act through epigenetic mechanisms. In the present study, we tested the effects of long-term low-dose cadmium exposure on DNA methylation in human embryo lung fibroblast (HLF) cells. After 2 months of exposure to 0-1.5 μmol/L cadmium, both the level of genomic DNA methylation and the enzyme activity of DNA methyltransferases (DNMTs) were increased in a concentration-related manner. Moreover, our results showed that cadmium exposure up-regulated the mRNA levels of DNMT1, DNMT3a and DNMT3b at higher concentrations. We further tested the growth dynamics of HLF cells, and observed significantly elevated growth rates, decreased cell population of G0/G1-phase and increased cell population of S-phase at 0.9, 1.2, and 1.5 μmol/L concentrations. Our study indicated that long-term low-dose cadmium exposure could disrupt DNA methylation, which may be one of the possible underlying carcinogenic mechanisms of cadmium

  12. Long-term expression of human adenosine deaminase in mice transplanted with retrovirus-infected hematopoietic stem cells

    International Nuclear Information System (INIS)

    Long-term stable expression of foreign genetic sequences transferred into hematopoietic stem cells by using retroviral vectors constitutes a relevant model for somatic gene therapy. Such stability of expression may depend on vector design, including the presence or absence of specific sequences within the vector, in combination with the nature and efficiency of infection of the hematopoietic target cells. The authors have previously reported successful transfer of human DNA encoding adenosine deaminase (ADA) into CFU-S (colony-forming unit-spleen) stem cells using simplified recombinant retroviral vectors. Human ADA was expressed in CFU-S-derived spleen colonies at levels near to endogenous enzyme. However, because of the lack of an efficient dominant selectable marker and low recombinant viral titers, stability of long-term expression of human ADA was not examined. They report here the development of an efficient method of infection of hematopoietic stem cells (HSC) without reliance on in vitro selection. Peripheral blood samples of 100% of mice transplanted with HSC infected by this protocol exhibit expression of human ADA 30 days after transplantation. Some mice (6 of 13) continue to express human ADA in all lineages after complete hematopoietic reconstitution (4 months). The use of recombinant retroviral vectors that efficiently transfer human ADA cDNA into HSC leading to stable expression of functional ADA in reconstituted mice, provides an experimental framework for future development of approaches to somatic gene therapy

  13. Long-Term Stability and Safety of Transgenic Cultured Epidermal Stem Cells in Gene Therapy of Junctional Epidermolysis Bullosa

    Directory of Open Access Journals (Sweden)

    Laura De Rosa

    2014-01-01

    Full Text Available We report a long-term follow-up (6.5 years of a phase I/II clinical trial envisaging the use of autologous genetically modified cultured epidermal stem cells for gene therapy of junctional epidermolysis bullosa, a devastating genetic skin disease. The critical goals of the trial were to evaluate the safety and long-term persistence of genetically modified epidermis. A normal epidermal-dermal junction was restored and the regenerated transgenic epidermis was found to be fully functional and virtually indistinguishable from a normal control. The epidermis was sustained by a discrete number of long-lasting, self-renewing transgenic epidermal stem cells that maintained the memory of the donor site, whereas the vast majority of transduced transit-amplifying progenitors were lost within the first few months after grafting. These data pave the way for the safe use of epidermal stem cells in combined cell and gene therapy for genetic skin diseases.

  14. Partitioning Heritability of Regulatory and Cell-Type-Specific Variants across 11 Common Diseases

    Science.gov (United States)

    Gusev, Alexander; Lee, S. Hong; Trynka, Gosia; Finucane, Hilary; Vilhjálmsson, Bjarni J.; Xu, Han; Zang, Chongzhi; Ripke, Stephan; Bulik-Sullivan, Brendan; Stahl, Eli; Ripke, Stephan; Neale, Benjamin M.; Corvin, Aiden; Walters, James T.R.; Farh, Kai-How; Holmans, Peter A.; Lee, Phil; Bulik-Sullivan, Brendan; Collier, David A.; Huang, Hailiang; Pers, Tune H.; Agartz, Ingrid; Agerbo, Esben; Albus, Margot; Alexander, Madeline; Amin, Farooq; Bacanu, Silviu A.; Begemann, Martin; Belliveau, Richard A.; Bene, Judit; Bergen, Sarah E.; Bevilacqua, Elizabeth; Bigdeli, Tim B.; Black, Donald W.; Børglum, Anders D.; Bruggeman, Richard; Buccola, Nancy G.; Buckner, Randy L.; Byerley, William; Cahn, Wiepke; Cai, Guiqing; Campion, Dominique; Cantor, Rita M.; Carr, Vaughan J.; Carrera, Noa; Catts, Stanley V.; Chambert, Kimberly D.; Chan, Raymond C.K.; Chen, Ronald Y.L.; Chen, Eric Y.H.; Cheng, Wei; Cheung, Eric F.C.; Chong, Siow Ann; Cloninger, C. Robert; Cohen, David; Cohen, Nadine; Cormican, Paul; Craddock, Nick; Crowley, James J.; Curtis, David; Davidson, Michael; Davis, Kenneth L.; Degenhardt, Franziska; Del Favero, Jurgen; DeLisi, Lynn E.; Demontis, Ditte; Dikeos, Dimitris; Dinan, Timothy; Djurovic, Srdjan; Donohoe, Gary; Drapeau, Elodie; Duan, Jubao; Dudbridge, Frank; Durmishi, Naser; Eichhammer, Peter; Eriksson, Johan; Escott-Price, Valentina; Essioux, Laurent; Fanous, Ayman H.; Farrell, Martilias S.; Frank, Josef; Franke, Lude; Freedman, Robert; Freimer, Nelson B.; Friedl, Marion; Friedman, Joseph I.; Fromer, Menachem; Genovese, Giulio; Georgieva, Lyudmila; Gershon, Elliot S.; Giegling, Ina; Giusti-Rodrguez, Paola; Godard, Stephanie; Goldstein, Jacqueline I.; Golimbet, Vera; Gopal, Srihari; Gratten, Jacob; Grove, Jakob; de Haan, Lieuwe; Hammer, Christian; Hamshere, Marian L.; Hansen, Mark; Hansen, Thomas; Haroutunian, Vahram; Hartmann, Annette M.; Henskens, Frans A.; Herms, Stefan; Hirschhorn, Joel N.; Hoffmann, Per; Hofman, Andrea; Hollegaard, Mads V.; Hougaard, David M.; Ikeda, Masashi; Joa, Inge; Julià, Antonio; Kahn, René S.; Kalaydjieva, Luba; Karachanak-Yankova, Sena; Karjalainen, Juha; Kavanagh, David; Keller, Matthew C.; Kelly, Brian J.; Kennedy, James L.; Khrunin, Andrey; Kim, Yunjung; Klovins, Janis; Knowles, James A.; Konte, Bettina; Kucinskas, Vaidutis; Kucinskiene, Zita Ausrele; Kuzelova-Ptackova, Hana; Kähler, Anna K.; Laurent, Claudine; Keong, Jimmy Lee Chee; Lee, S. Hong; Legge, Sophie E.; Lerer, Bernard; Li, Miaoxin; Li, Tao; Liang, Kung-Yee; Lieberman, Jeffrey; Limborska, Svetlana; Loughland, Carmel M.; Lubinski, Jan; Lnnqvist, Jouko; Macek, Milan; Magnusson, Patrik K.E.; Maher, Brion S.; Maier, Wolfgang; Mallet, Jacques; Marsal, Sara; Mattheisen, Manuel; Mattingsdal, Morten; McCarley, Robert W.; McDonald, Colm; McIntosh, Andrew M.; Meier, Sandra; Meijer, Carin J.; Melegh, Bela; Melle, Ingrid; Mesholam-Gately, Raquelle I.; Metspalu, Andres; Michie, Patricia T.; Milani, Lili; Milanova, Vihra; Mokrab, Younes; Morris, Derek W.; Mors, Ole; Mortensen, Preben B.; Murphy, Kieran C.; Murray, Robin M.; Myin-Germeys, Inez; Mller-Myhsok, Bertram; Nelis, Mari; Nenadic, Igor; Nertney, Deborah A.; Nestadt, Gerald; Nicodemus, Kristin K.; Nikitina-Zake, Liene; Nisenbaum, Laura; Nordin, Annelie; O’Callaghan, Eadbhard; O’Dushlaine, Colm; O’Neill, F. Anthony; Oh, Sang-Yun; Olincy, Ann; Olsen, Line; Van Os, Jim; Pantelis, Christos; Papadimitriou, George N.; Papiol, Sergi; Parkhomenko, Elena; Pato, Michele T.; Paunio, Tiina; Pejovic-Milovancevic, Milica; Perkins, Diana O.; Pietilinen, Olli; Pimm, Jonathan; Pocklington, Andrew J.; Powell, John; Price, Alkes; Pulver, Ann E.; Purcell, Shaun M.; Quested, Digby; Rasmussen, Henrik B.; Reichenberg, Abraham; Reimers, Mark A.; Richards, Alexander L.; Roffman, Joshua L.; Roussos, Panos; Ruderfer, Douglas M.; Salomaa, Veikko; Sanders, Alan R.; Schall, Ulrich; Schubert, Christian R.; Schulze, Thomas G.; Schwab, Sibylle G.; Scolnick, Edward M.; Scott, Rodney J.; Seidman, Larry J.; Shi, Jianxin; Sigurdsson, Engilbert; Silagadze, Teimuraz; Silverman, Jeremy M.; Sim, Kang; Slominsky, Petr; Smoller, Jordan W.; So, Hon-Cheong; Spencer, Chris C.A.; Stahl, Eli A.; Stefansson, Hreinn; Steinberg, Stacy; Stogmann, Elisabeth; Straub, Richard E.; Strengman, Eric; Strohmaier, Jana; Stroup, T. Scott; Subramaniam, Mythily; Suvisaari, Jaana; Svrakic, Dragan M.; Szatkiewicz, Jin P.; Sderman, Erik; Thirumalai, Srinivas; Toncheva, Draga; Tooney, Paul A.; Tosato, Sarah; Veijola, Juha; Waddington, John; Walsh, Dermot; Wang, Dai; Wang, Qiang; Webb, Bradley T.; Weiser, Mark; Wildenauer, Dieter B.; Williams, Nigel M.; Williams, Stephanie; Witt, Stephanie H.; Wolen, Aaron R.; Wong, Emily H.M.; Wormley, Brandon K.; Wu, Jing Qin; Xi, Hualin Simon; Zai, Clement C.; Zheng, Xuebin; Zimprich, Fritz; Wray, Naomi R.; Stefansson, Kari; Visscher, Peter M.; Adolfsson, Rolf; Andreassen, Ole A.; Blackwood, Douglas H.R.; Bramon, Elvira; Buxbaum, Joseph D.; Brglum, Anders D.; Cichon, Sven; Darvasi, Ariel; Domenici, Enrico; Ehrenreich, Hannelore; Esko, Tõnu; Gejman, Pablo V.; Gill, Michael; Gurling, Hugh; Hultman, Christina M.; Iwata, Nakao; Jablensky, Assen V.; Jönsson, Erik G.; Kendler, Kenneth S.; Kirov, George; Knight, Jo; Lencz, Todd; Levinson, Douglas F.; Li, Qingqin S.; Liu, Jianjun; Malhotra, Anil K.; McCarroll, Steven A.; McQuillin, Andrew; Moran, Jennifer L.; Mortensen, Preben B.; Mowry, Bryan J.; Nthen, Markus M.; Ophoff, Roel A.; Owen, Michael J.; Palotie, Aarno; Pato, Carlos N.; Petryshen, Tracey L.; Posthuma, Danielle; Rietschel, Marcella; Riley, Brien P.; Rujescu, Dan; Sham, Pak C.; Sklar, Pamela; St. Clair, David; Weinberger, Daniel R.; Wendland, Jens R.; Werge, Thomas; Daly, Mark J.; Sullivan, Patrick F.; O’Donovan, Michael C.; Ripke, Stephan; O’Dushlaine, Colm; Chambert, Kimberly; Moran, Jennifer L.; Kähler, Anna K.; Akterin, Susanne; Bergen, Sarah; Magnusson, Patrik K.E.; Neale, Benjamin M.; Ruderfer, Douglas; Scolnick, Edward; Purcell, Shaun; McCarroll, Steve; Sklar, Pamela; Hultman, Christina M.; Sullivan, Patrick F.; Kähler, Anna K.; Hultman, Christina M.; Purcell, Shaun M.; McCarroll, Steven A.; Daly, Mark; Pasaniuc, Bogdan; Sullivan, Patrick F.; Neale, Benjamin M.; Wray, Naomi R.; Raychaudhuri, Soumya; Price, Alkes L.

    2014-01-01

    Regulatory and coding variants are known to be enriched with associations identified by genome-wide association studies (GWASs) of complex disease, but their contributions to trait heritability are currently unknown. We applied variance-component methods to imputed genotype data for 11 common diseases to partition the heritability explained by genotyped SNPs (hg2) across functional categories (while accounting for shared variance due to linkage disequilibrium). Extensive simulations showed that in contrast to current estimates from GWAS summary statistics, the variance-component approach partitions heritability accurately under a wide range of complex-disease architectures. Across the 11 diseases DNaseI hypersensitivity sites (DHSs) from 217 cell types spanned 16% of imputed SNPs (and 24% of genotyped SNPs) but explained an average of 79% (SE = 8%) of hg2 from imputed SNPs (5.1× enrichment; p = 3.7 × 10−17) and 38% (SE = 4%) of hg2 from genotyped SNPs (1.6× enrichment, p = 1.0 × 10−4). Further enrichment was observed at enhancer DHSs and cell-type-specific DHSs. In contrast, coding variants, which span 1% of the genome, explained <10% of hg2 despite having the highest enrichment. We replicated these findings but found no significant contribution from rare coding variants in independent schizophrenia cohorts genotyped on GWAS and exome chips. Our results highlight the value of analyzing components of heritability to unravel the functional architecture of common disease. PMID:25439723

  15. Long-term In vitro Expansion Alters the Biology of Adult Mesenchymal Stem Cells

    OpenAIRE

    Izadpanah, Reza; Kaushal, Deepak; Kriedt, Christopher; Tsien, Fern; Patel, Bindiya; Dufour, Jason; Bunnell, Bruce A.

    2008-01-01

    Mesenchymal stem cells (MSC) derived from bone marrow stem cells (BMSC) and adipose tissue stem cells (ASC) of humans and rhesus macaques were evaluated for their cell cycle properties during protracted culture in vitro. Human ASCs (hASC) and rhesus BMSCs (rBMSC) underwent significantly more total population doublings than human BMSCs (hBMSC) and rhesus ASCs (rASC). The cell cycle profile of all MSCs was altered as cultures aged. hMSCs underwent an increase in the frequency of cells in the S ...

  16. Mechanisms of three-dimensional growth of thyroid cells during long-term simulated microgravity

    OpenAIRE

    Sascha Kopp; Elisabeth Warnke; Markus Wehland; Ganna Aleshcheva; Nils E. Magnusson; Ruth Hemmersbach; Thomas Juhl Corydon; Johann Bauer; Manfred Infanger; Daniela Grimm

    2015-01-01

    Three-dimensional multicellular spheroids (MCS) of human cells are important in cancer research. We investigated possible mechanisms of MCS formation of thyroid cells. Both, normal Nthy-ori 3–1 thyroid cells and the poorly differentiated follicular thyroid cancer cells FTC-133 formed MCS within 7 and 14 days of culturing on a Random Positioning Machine (RPM), while a part of the cells continued to grow adherently in each culture. The FTC-133 cancer cells formed larger and numerous MCS than th...

  17. Long-Term Extracorporeal Membrane Oxygenation as Bridging Strategies to Lung Transplantation in Rapidly Devastating Isolated Langerhans Cell Histiocytosis.

    Science.gov (United States)

    Sacco, Oliviero; Moscatelli, Andrea; Conte, Massimo; Grasso, Chiara; Magnano, Gian Michele; Sementa, Angela Rita; Martelli, Alberto; Rossi, Giovanni A

    2016-05-01

    Isolated pulmonary involvement in pediatric Langerhans cell histiocytosis (LCH) is extremely rare. While the multisystem-LCH course varies from spontaneous remission to rapid deterioration with lethal outcome, single system involvement is generally associated with favorable prognosis. A child with isolated pulmonary LCH had an extremely rapid progression leading to respiratory failure, despite treatment with prednisone and vinblastine. Since lung hyperinflation and cystic degeneration contraindicated conventional mechanical ventilation, extracorporeal membrane oxygenation (ECMO) was chosen for 50 days as a bridge to lung transplantation. The mechanisms involved in disease progression and the usefulness of long-term ECMO are discussed. PMID:26840616

  18. Evaluation of Bronchiolar and Alveolar Cell Injuries Induced by Short- and Long-term Exposure to Sidestream Smoke

    OpenAIRE

    Kwon, Kun-Young; Jung, Hye-Ra; Hwang, Ilseon; Choi, Won-Il

    2012-01-01

    Background We investigated effects of short- and long-term exposure to sidestream smoke on the bronchiolar and alveolar cells in Sprague-Dawley rats. Methods Rats were divided into five experimental groups: groups 1, 2, and 3 (1-month exposure to 3, 5, and 7 cigarettes a day, respectively), groups 4 and 5 (3- and 6 month exposure to five cigarettes a day, respectively). We examined the morphologic changes, the expressions of tumor necrosis factor α (TNF-α), tumor growth factor β1 (TGF-β1), in...

  19. Long-Term Oocyte-Like Cell Development in Cultures Derived from Neonatal Marmoset Monkey Ovary

    Directory of Open Access Journals (Sweden)

    Bentolhoda Fereydouni

    2016-01-01

    Full Text Available We use the common marmoset monkey (Callithrix jacchus as a preclinical nonhuman primate model to study reproductive and stem cell biology. The neonatal marmoset monkey ovary contains numerous primitive premeiotic germ cells (oogonia expressing pluripotent stem cell markers including OCT4A (POU5F1. This is a peculiarity compared to neonatal human and rodent ovaries. Here, we aimed at culturing marmoset oogonia from neonatal ovaries. We established a culture system being stable for more than 20 passages and 5 months. Importantly, comparative transcriptome analysis of the cultured cells with neonatal ovary, embryonic stem cells, and fibroblasts revealed a lack of germ cell and pluripotency genes indicating the complete loss of oogonia upon initiation of the culture. From passage 4 onwards, however, the cultured cells produced large spherical, free-floating cells resembling oocyte-like cells (OLCs. OLCs strongly expressed several germ cell genes and may derive from the ovarian surface epithelium. In summary, our novel primate ovarian cell culture initially lacked detectable germ cells but then produced OLCs over a long period of time. This culture system may allow a deeper analysis of early phases of female primate germ cell development and—after significant refinement—possibly also the production of monkey oocytes.

  20. CD19 CAR-targeted T cells induce long-term remission and B Cell Aplasia in an immunocompetent mouse model of B cell acute lymphoblastic leukemia.

    Directory of Open Access Journals (Sweden)

    Marco L Davila

    Full Text Available Although many adults with B cell acute lymphoblastic leukemia (B-ALL are induced into remission, most will relapse, underscoring the dire need for novel therapies for this disease. We developed murine CD19-specific chimeric antigen receptors (CARs and an immunocompetent mouse model of B-ALL that recapitulates the disease at genetic, cellular, and pathologic levels. Mouse T cells transduced with an all-murine CD3ζ/CD28-based CAR that is equivalent to the one being used in our clinical trials, eradicate B-ALL in mice and mediate long-term B cell aplasias. In this model, we find that increasing conditioning chemotherapy increases tumor eradication, B cell aplasia, and CAR-modified T cell persistence. Quantification of recipient B lineage cells allowed us to estimate an in vivo effector to endogenous target ratio for B cell aplasia maintenance. In mice exhibiting a dramatic B cell reduction we identified a small population of progenitor B cells in the bone marrow that may serve as a reservoir for long-term CAR-modified T cell stimulation. Lastly, we determine that infusion of CD8+ CAR-modified T cells alone is sufficient to maintain long-term B cell eradication. The mouse model we report here should prove valuable for investigating CAR-based and other therapies for adult B-ALL.

  1. Hematopoietic microenvironment. Origin, lineage, and transplantability of the stromal cells in long-term bone marrow cultures from chimeric mice

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, S.; Fleischman, R.A.

    1988-04-01

    Studies of bone marrow transplant patients have suggested that the stromal cells of the in vitro hematopoietic microenvironment are transplantable into conditioned recipients. Moreover, in patients with myeloproliferative disorders, all of the stromal cells, which include presumptive endothelial cells, appear to be derived from hematopoietic precursors. To confirm these findings, we have constructed two chimeric mouse models: (a) traditional radiation chimeras, and (b) fetal chimeras, produced by placental injection of bone marrow into genetically anemic Wx/Wv fetuses, a technique that essentially precludes engraftment of nonhematopoietic cells. Using two-color indirect immunofluorescence, the stromal cells in long-term bone marrow culture derived from these chimeras were analyzed for donor or host origin by strain-specific H-2 antigens, and for cell lineage by a variety of other specific markers. 75-95% of the stromal cells were shown to be hematopoietic cells of the monocyte-macrophage lineage, based upon donor origin, phagocytosis, and expression of specific hematopoietic surface antigens. The remaining 5-25% of the stromal cells were exclusively host in origin. Apart from occasional fat cells, these cells uniformly expressed collagen type IV, laminin, and a surface antigen associated with endothelial cells. Since these endothelial-like cells are not transplantable into radiation or fetal chimeras, they are not derived from hematopoietic stem cells. The contrast between our findings and human studies suggests either unexpected species differences in the origin of stromal lineages or limitations in the previous methodology used to detect nonhematopoietic stromal cells.

  2. Hematopoietic microenvironment. Origin, lineage, and transplantability of the stromal cells in long-term bone marrow cultures from chimeric mice

    International Nuclear Information System (INIS)

    Studies of bone marrow transplant patients have suggested that the stromal cells of the in vitro hematopoietic microenvironment are transplantable into conditioned recipients. Moreover, in patients with myeloproliferative disorders, all of the stromal cells, which include presumptive endothelial cells, appear to be derived from hematopoietic precursors. To confirm these findings, we have constructed two chimeric mouse models: (a) traditional radiation chimeras, and (b) fetal chimeras, produced by placental injection of bone marrow into genetically anemic Wx/Wv fetuses, a technique that essentially precludes engraftment of nonhematopoietic cells. Using two-color indirect immunofluorescence, the stromal cells in long-term bone marrow culture derived from these chimeras were analyzed for donor or host origin by strain-specific H-2 antigens, and for cell lineage by a variety of other specific markers. 75-95% of the stromal cells were shown to be hematopoietic cells of the monocyte-macrophage lineage, based upon donor origin, phagocytosis, and expression of specific hematopoietic surface antigens. The remaining 5-25% of the stromal cells were exclusively host in origin. Apart from occasional fat cells, these cells uniformly expressed collagen type IV, laminin, and a surface antigen associated with endothelial cells. Since these endothelial-like cells are not transplantable into radiation or fetal chimeras, they are not derived from hematopoietic stem cells. The contrast between our findings and human studies suggests either unexpected species differences in the origin of stromal lineages or limitations in the previous methodology used to detect nonhematopoietic stromal cells

  3. A machine learning approach for identifying novel cell type-specific transcriptional regulators of myogenesis.

    Science.gov (United States)

    Busser, Brian W; Taher, Leila; Kim, Yongsok; Tansey, Terese; Bloom, Molly J; Ovcharenko, Ivan; Michelson, Alan M

    2012-01-01

    coordinate cell type-specific developmental gene expression patterns. PMID:22412381

  4. Transformation of human mesenchymal stem cells in radiation carcinogenesis: long-term effect of ionizing radiation

    DEFF Research Database (Denmark)

    Christensen, Rikke; Alsner, Jan; Sørensen, Flemming Brandt;

    2008-01-01

    Increasing evidence on cancer stem cells suggest that stem cells are susceptive to carcinogenesis and consequently can be the origin of many cancers. We have recently established a telomerase-transduced human mesenchymal stem cell line and subsequently irradiated this in order to achieve malignant...

  5. Long-term trends of the Polar and Arctic cells influencing the Arctic climate since 1989

    Science.gov (United States)

    Qian, Weihong; Wu, Kaijun; Leung, Jeremy Cheuk-Hin; Shi, Jian

    2016-03-01

    The strengthening and broadening trends of the Hadley cell have been revealed, while the existence of the Arctic cell has also been confirmed in previous studies. This study extends previous strengthening trend analyses of the Hadley cell to the Polar and Arctic cells in the Northern Hemisphere and explores their climate influences. Results show that the Polar cell experienced an abrupt change from a slow to a rapid strengthening trend in 1989, while the Arctic cell showed an insignificant strengthening trend and a significant weakening trend successively. The strengthening subsidence flow associated with the Polar and Arctic cells can partly explain the warming surface air temperature and declining sea ice concentration through the increasing tropospheric height and temperature trends. These results provide new insights for understanding the interdecadal relationship between atmospheric circulation and climate change in the Arctic region.

  6. Thin-film photovoltaic cells: long-term metal(loid) leaching at their end-of-life.

    Science.gov (United States)

    Zimmermann, Yannick-Serge; Schäffer, Andreas; Corvini, Philippe F-X; Lenz, Markus

    2013-11-19

    The photovoltaic effect of thin-film copper indium gallium selenide cells (CIGS) is conferred by the latter elements. Organic photovoltaic cells (OPV), relying on organic light-absorbing molecules, also contain a variety of metals (e.g., Zn, Al, In, Sn, Ag). The environmental impact of such technologies is largely unknown, in particular when the physical integrity deteriorates upon end-of-life, possibly facilitating cell constituent leaching. This study analyzed long-term inorganic leaching from damaged OPV and CIGS into different model waters. Leachate concentrations were put into perspective by calculating the predicted environmental concentrations (PEC) for several scenarios. Roof-top acidic rain runoff from CIGS was found to be the predominant emission source for metals and metalloids, with Cd released to such extents that PEC (173.4 μg Cd L(-1)) would considerably exceed acute toxicity concentrations for Daphnia magna . Other PEC for CIGS (9.9 mg Mo L(-1) and 9.4 μg Se L(-1)) were in the range of teratogenic effects. In contrast, OPV released little metals with calculated PEC being below even conservative drinking water guidelines. Time-resolved single-particle ICP-MS indicated that some metals (Zn, Mo, Ag) were in nanoparticulate form, raising nanotoxicity concerns. Leaching kinetics called for revision of existing standardized (accelerated) leaching protocols because long-term release was most relevant. PMID:24134490

  7. Lim homeobox genes in the Ctenophore Mnemiopsis leidyi: the evolution of neural cell type specification

    Directory of Open Access Journals (Sweden)

    Simmons David K

    2012-01-01

    Full Text Available Abstract Background Nervous systems are thought to be important to the evolutionary success and diversification of metazoans, yet little is known about the origin of simple nervous systems at the base of the animal tree. Recent data suggest that ctenophores, a group of macroscopic pelagic marine invertebrates, are the most ancient group of animals that possess a definitive nervous system consisting of a distributed nerve net and an apical statocyst. This study reports on details of the evolution of the neural cell type specifying transcription factor family of LIM homeobox containing genes (Lhx, which have highly conserved functions in neural specification in bilaterian animals. Results Using next generation sequencing, the first draft of the genome of the ctenophore Mnemiopsis leidyi has been generated. The Lhx genes in all animals are represented by seven subfamilies (Lhx1/5, Lhx3/4, Lmx, Islet, Lhx2/9, Lhx6/8, and LMO of which four were found to be represented in the ctenophore lineage (Lhx1/5, Lhx3/4, Lmx, and Islet. Interestingly, the ctenophore Lhx gene complement is more similar to the sponge complement (sponges do not possess neurons than to either the cnidarian-bilaterian or placozoan Lhx complements. Using whole mount in situ hybridization, the Lhx gene expression patterns were examined and found to be expressed around the blastopore and in cells that give rise to the apical organ and putative neural sensory cells. Conclusion This research gives us a first look at neural cell type specification in the ctenophore M. leidyi. Within M. leidyi, Lhx genes are expressed in overlapping domains within proposed neural cellular and sensory cell territories. These data suggest that Lhx genes likely played a conserved role in the patterning of sensory cells in the ancestor of sponges and ctenophores, and may provide a link to the expression of Lhx orthologs in sponge larval photoreceptive cells. Lhx genes were later co-opted into patterning more

  8. Uptake of silica covered Quantum Dots into living cells: Long term vitality and morphology study on hyaluronic acid biomaterials.

    Science.gov (United States)

    D'Amico, Michele; Fiorica, Calogero; Palumbo, Fabio Salvatore; Militello, Valeria; Leone, Maurizio; Dubertret, Benoit; Pitarresi, Giovanna; Giammona, Gaetano

    2016-10-01

    Quantum Dots (QDs) are promising very bright and stable fluorescent probes for optical studies in the biological field but water solubility and possible metal bio-contamination need to be addressed. In this work, a simple silica-QD hybrid system is prepared and the uptake in bovine chondrocytes living cells without any functionalization of the external protective silica shield is demonstrated. Moreover, long term treated cells vitality (up to 14days) and the transfer of silica-QDs to the next cell generations are here reported. Confocal fluorescence microscopy was also used to determine the morphology of the so labelled cells and the relative silica-QDs distribution. Finally, we employ silica-QD stained chondrocytes to characterize, as proof of concept, hydrogels obtained from an amphiphilic derivative of hyaluronic acid (HA-EDA-C18) functionalized with different amounts of the RGD peptide. PMID:27287118

  9. Changes in mesenchymal stem cells following long-term culture in vitro.

    Science.gov (United States)

    Gu, Yajun; Li, Tao; Ding, Yanling; Sun, Lingxian; Tu, Tao; Zhu, Wei; Hu, Jiabo; Sun, Xiaochun

    2016-06-01

    Mesenchymal stem cells (MSCs), which can be isolated from umbilical cords and induced to differentiate into multiple cell types in vitro, represent an ideal source for cell and gene therapy. MSCs are typically expanded in culture prior to their therapeutic application. However, similar to other types of stem cell, MSCs undergo senescence following a certain number of cell expansion passages in vitro, and eventually stop proliferating. The objective of the present study was to measure the changes that occur over successive passages of MSCs during long‑term in vitro culture, and to detect the effect of aging on MSC morphology, phenotype, proliferation, cell cycle, differentiation, intracellular reactive oxygen species (ROS) levels and gene expression. To understand the importance of oxidative stress in the aging of adult stem cells, the current study established a cell model of H2O2‑induced MSC premature senescence. Analysis of the biological characteristics of human umbilical cord MSCs during replicative and premature senescence revealed the importance of extrinsic factors in the aging of stem cells, particularly ROS. The findings of the present study suggest that cellular senescence, a state of irreversible growth arrest, can be triggered by ROS. Thus, it is important to improve the extrinsic culture environment of MSCs to retain the phenotype of expanded cells and delay the process of senescence prior to their clinical application. PMID:27108540

  10. Mechanisms of three-dimensional growth of thyroid cells during long-term simulated microgravity.

    Science.gov (United States)

    Kopp, Sascha; Warnke, Elisabeth; Wehland, Markus; Aleshcheva, Ganna; Magnusson, Nils E; Hemmersbach, Ruth; Corydon, Thomas Juhl; Bauer, Johann; Infanger, Manfred; Grimm, Daniela

    2015-01-01

    Three-dimensional multicellular spheroids (MCS) of human cells are important in cancer research. We investigated possible mechanisms of MCS formation of thyroid cells. Both, normal Nthy-ori 3-1 thyroid cells and the poorly differentiated follicular thyroid cancer cells FTC-133 formed MCS within 7 and 14 days of culturing on a Random Positioning Machine (RPM), while a part of the cells continued to grow adherently in each culture. The FTC-133 cancer cells formed larger and numerous MCS than the normal cells. In order to explain the different behaviour, we analyzed the gene expression of IL6, IL7, IL8, IL17, OPN, NGAL, VEGFA and enzymes associated cytoskeletal or membrane proteins (ACTB, TUBB, PFN1, CPNE1, TGM2, CD44, FLT1, FLK1, PKB, PKC, ERK1/2, Casp9, Col1A1) as well as the amount of secreted proteins (IL-6, IL-7, IL-8, IL-17, OPN, NGAL, VEGFA). Several of these components changed during RPM-exposure in each cell line. Striking differences between normal and malignant cells were observed in regards to the expression of genes of NGAL, VEGFA, OPN, IL6 and IL17 and to the secretion of VEGFA, IL-17, and IL-6. These results suggest several gravi-sensitive growth or angiogenesis factors being involved in 3D formation of thyroid cells cultured under simulated microgravity. PMID:26576504

  11. Long-term culture and partial characterization of dog gallbladder epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Oda, D.; Lee, S.P.; Hayashi, A. (Univ. of Washington, Seattle (USA))

    1991-05-01

    We describe the successful isolation and maintenance of primary cultures of dog gallbladder epithelial cells. The surgically removed gallbladder was treated with trypsin/EDTA for 45 minutes and epithelial cells were collected and resuspended in Eagle's minimum essential medium with 10% fetal calf serum, and plated on Vitrogen-coated culture dishes. Each gallbladder yielded approximately 12 to 15 x 10{sup 6} columnar epithelial cells, greater than 95% of which were viable by trypan blue exclusion. In culture, cells maintained their polarity. They were arranged and grew in small and tight clusters that coalesced at confluency. When examined using transmission electron microscopy, prominent and numerous microville were identified on the apical portion of the plasma membrane. Cells were connected by well-formed desmosomes. Scanning electron microscopy revealed clusters of polyhedral cells with numerous papillary projections. Immunohistochemical studies demonstrated uniform staining of cells to keratin 35BH11 and AE1. Histochemical studies were positive for gamma-glutamyl transpeptidase and negative for glucose-6-phosphatase and albumin. Cells incorporated ({sup 3}H)uridine into intracellular proteins and ({sup 14}C)glucosamine into tissue and secreted mucous glycoproteins linearly over 2 to 24 hours. Flow cytometry studies demonstrated a consistent and reproducible number of cells (10 to 12%) at S-phase. However, the number of cells at S-phase was dramatically reduced to almost negligible as cells reached confluency. This method of culturing primary dog gallbladder epithelial cells is highly reproducible and reliable. These cells preserve their state of differentiation, polarity, histochemical and immunohistochemical profile, morphologic, and metabolic integrity with repeated passaging or after being frozen.

  12. Identification of Cell Type-Specific Differences in Erythropoietin Receptor Signaling in Primary Erythroid and Lung Cancer Cells

    Science.gov (United States)

    Salopiata, Florian; Depner, Sofia; Wäsch, Marvin; Böhm, Martin E.; Mücke, Oliver; Plass, Christoph; Lehmann, Wolf D.; Kreutz, Clemens; Timmer, Jens; Klingmüller, Ursula

    2016-01-01

    Lung cancer, with its most prevalent form non-small-cell lung carcinoma (NSCLC), is one of the leading causes of cancer-related deaths worldwide, and is commonly treated with chemotherapeutic drugs such as cisplatin. Lung cancer patients frequently suffer from chemotherapy-induced anemia, which can be treated with erythropoietin (EPO). However, studies have indicated that EPO not only promotes erythropoiesis in hematopoietic cells, but may also enhance survival of NSCLC cells. Here, we verified that the NSCLC cell line H838 expresses functional erythropoietin receptors (EPOR) and that treatment with EPO reduces cisplatin-induced apoptosis. To pinpoint differences in EPO-induced survival signaling in erythroid progenitor cells (CFU-E, colony forming unit-erythroid) and H838 cells, we combined mathematical modeling with a method for feature selection, the L1 regularization. Utilizing an example model and simulated data, we demonstrated that this approach enables the accurate identification and quantification of cell type-specific parameters. We applied our strategy to quantitative time-resolved data of EPO-induced JAK/STAT signaling generated by quantitative immunoblotting, mass spectrometry and quantitative real-time PCR (qRT-PCR) in CFU-E and H838 cells as well as H838 cells overexpressing human EPOR (H838-HA-hEPOR). The established parsimonious mathematical model was able to simultaneously describe the data sets of CFU-E, H838 and H838-HA-hEPOR cells. Seven cell type-specific parameters were identified that included for example parameters for nuclear translocation of STAT5 and target gene induction. Cell type-specific differences in target gene induction were experimentally validated by qRT-PCR experiments. The systematic identification of pathway differences and sensitivities of EPOR signaling in CFU-E and H838 cells revealed potential targets for intervention to selectively inhibit EPO-induced signaling in the tumor cells but leave the responses in erythroid

  13. Identification of Cell Type-Specific Differences in Erythropoietin Receptor Signaling in Primary Erythroid and Lung Cancer Cells.

    Science.gov (United States)

    Merkle, Ruth; Steiert, Bernhard; Salopiata, Florian; Depner, Sofia; Raue, Andreas; Iwamoto, Nao; Schelker, Max; Hass, Helge; Wäsch, Marvin; Böhm, Martin E; Mücke, Oliver; Lipka, Daniel B; Plass, Christoph; Lehmann, Wolf D; Kreutz, Clemens; Timmer, Jens; Schilling, Marcel; Klingmüller, Ursula

    2016-08-01

    Lung cancer, with its most prevalent form non-small-cell lung carcinoma (NSCLC), is one of the leading causes of cancer-related deaths worldwide, and is commonly treated with chemotherapeutic drugs such as cisplatin. Lung cancer patients frequently suffer from chemotherapy-induced anemia, which can be treated with erythropoietin (EPO). However, studies have indicated that EPO not only promotes erythropoiesis in hematopoietic cells, but may also enhance survival of NSCLC cells. Here, we verified that the NSCLC cell line H838 expresses functional erythropoietin receptors (EPOR) and that treatment with EPO reduces cisplatin-induced apoptosis. To pinpoint differences in EPO-induced survival signaling in erythroid progenitor cells (CFU-E, colony forming unit-erythroid) and H838 cells, we combined mathematical modeling with a method for feature selection, the L1 regularization. Utilizing an example model and simulated data, we demonstrated that this approach enables the accurate identification and quantification of cell type-specific parameters. We applied our strategy to quantitative time-resolved data of EPO-induced JAK/STAT signaling generated by quantitative immunoblotting, mass spectrometry and quantitative real-time PCR (qRT-PCR) in CFU-E and H838 cells as well as H838 cells overexpressing human EPOR (H838-HA-hEPOR). The established parsimonious mathematical model was able to simultaneously describe the data sets of CFU-E, H838 and H838-HA-hEPOR cells. Seven cell type-specific parameters were identified that included for example parameters for nuclear translocation of STAT5 and target gene induction. Cell type-specific differences in target gene induction were experimentally validated by qRT-PCR experiments. The systematic identification of pathway differences and sensitivities of EPOR signaling in CFU-E and H838 cells revealed potential targets for intervention to selectively inhibit EPO-induced signaling in the tumor cells but leave the responses in erythroid

  14. Long-Term Survival of Neonatal Porcine Islets Without Sertoli Cells in Rabbits

    OpenAIRE

    Rafael Vald and eacute;s-Gonz and aacute;lez; Ana L. Rodriguez-Ventura; Briceyda Gonz and aacute;lez-Ram and iacute;rez; Benjam and iacute;n Le and oacute;n-Mancilla; Pedro Valencia; Mar and iacute;a del Carmen Garc and iacute;a de Le and oacute;n; Ruy P and eacute;rez-Tamayo

    2013-01-01

    Cell-based therapy is a promising treatment for metabolic disorders such as type-1 diabetes. Transplantation protocols have investigated several anatomical sites for cell implantation; however, some of these procedures, such as intraportal infusion, can cause organ failure or thrombosis secondarily. Bio-artificial organs could be the choice, although concerns still remain. Using a subcutaneous device, we are able to preserve neonatal porcine islets without sertoli cells in healthy New Zealand...

  15. Th17 cells confer long-term adaptive immunity to oral mucosal Candida albicans infections.

    Science.gov (United States)

    Hernández-Santos, N; Huppler, A R; Peterson, A C; Khader, S A; McKenna, K C; Gaffen, S L

    2013-09-01

    Oropharyngeal candidiasis (OPC) is an opportunistic infection caused by Candida albicans. Despite its prevalence, little is known about C. albicans-specific immunity in the oral mucosa. Vaccines against Candida generate both T helper type 1 (Th1) and Th17 responses, and considerable evidence implicates interleukin (IL)-17 in immunity to OPC. However, IL-17 is also produced by innate immune cells that are remarkably similar to Th17 cells, expressing the same markers and localizing to similar mucosal sites. To date, the relative contribution(s) of Th1, Th17, and innate IL-17-producing cells in OPC have not been clearly defined. Here, we sought to determine the nature and function of adaptive T-cell responses to OPC, using a new recall infection model. Mice subjected to infection and re-challenge with Candida mounted a robust and stable antigen-specific IL-17 response in CD4+ but not CD8+ T cells. There was little evidence for Th1 or Th1/Th17 responses. The Th17 response promoted accelerated fungal clearance, and Th17 cells could confer protection in Rag1-/- mice upon adoptive transfer. Surprisingly, CD4 deficiency did not cause OPC but was instead associated with compensatory IL-17 production by Tc17 and CD3+CD4-CD8- cells. Therefore, classic CD4+Th17 cells protect from OPC but can be compensated by other IL-17-producing cells in CD4-deficient hosts. PMID:23250275

  16. Cell-type specific regulation of cortical excitability through the allatostatin receptor system

    Directory of Open Access Journals (Sweden)

    Tomoko Velasquez

    2012-01-01

    Full Text Available Recent technical advances enable the regulation of neuronal circuit activity with high spatial and temporal resolution through genetic delivery of molecular activation or inactivation systems. Among them, the allatostatin receptor (AlstR/ligand system has been developed for selective and quickly reversible silencing of mammalian neurons. However, targeted AlstR-mediated inactivation of specific neuronal types, particularly diverse types of inhibitory interneurons, remains to be established. In the present study, we achieved Cre-directed expression of AlstRs to excitatory and inhibitory cell types in the cortex, and found that the AlstR-mediated inactivation was specific and robust at single cell and neuronal population levels. Bath application of the allatostatin peptide markedly reduced spiking activity of AlstR-expressing excitatory and inhibitory neurons in response to intrasomatic current injections and laser photostimulation via glutamate uncaging, but control neurons without AlstR expression were not affected. As for the cortical network activity, the peptide application constrained photostimulation-evoked excitatory activity propagation detected by fast voltage-sensitive dye (VSD imaging of the slices expressing AlstRs selectively in excitatory neurons, while it augmented excitatory activity in those slices with inhibitory neurons expressing AlstRs. In addition, AlstR-mediated inactivation effectively suppressed pharmacologically-induced seizure activity in the slices targeting AlstRs to excitatory neurons. Taken together, our work demonstrated that the genetic delivery of AlstRs can be used for regulation of cortical excitability in a cell-type specific manner, and suggested that the AlstR system can be potentially used for fast seizure control.

  17. Long-term adaptation to hypoxia preserves hematopoietic stem cell function.

    Science.gov (United States)

    Chen, Jichun; Kang, Ju-Gyeong; Keyvanfar, Keyvan; Young, Neal S; Hwang, Paul M

    2016-09-01

    Molecular oxygen sustains aerobic life, but it also serves as the substrate for oxidative stress, which has been associated with the pathogenesis of disease and with aging. Compared with mice housed in normoxia (21% O2), reducing ambient oxygen to 10% O2 (hypoxia) resulted in increased hematopoietic stem cell (HSC) function as measured by bone marrow (BM) cell engraftment onto lethally irradiated recipients. The number of BM c-Kit(+)Sca-1(+)Lin(-) (KSL) cells as well as the number of cells with other hematopoietic stem and progenitor cell markers were increased in hypoxia mice, whereas the BM cells' colony-forming capacity remained unchanged. KSL cells from hypoxia mice showed a decreased level of oxidative stress and increased expression of transcription factor Gata1 and cytokine receptor c-Mpl, consistent with the observations of increased erythropoiesis and enhanced HSC engraftment. These observations demonstrate the benefit of a hypoxic HSC niche and suggest that hypoxic conditions can be further optimized to preserve stem cell integrity in vivo. PMID:27118043

  18. Modeling long-term host cell-Giardia lamblia interactions in an in vitro co-culture system.

    Directory of Open Access Journals (Sweden)

    Bridget S Fisher

    Full Text Available Globally, there are greater than 700,000 deaths per year associated with diarrheal disease. The flagellated intestinal parasite, Giardia lamblia, is one of the most common intestinal pathogens in both humans and animals throughout the world. While attached to the gastrointestinal epithelium, Giardia induces epithelial cell apoptosis, disrupts tight junctions, and increases intestinal permeability. The underlying cellular and molecular mechanisms of giardiasis, including the role lamina propria immune cells, such as macrophages, play in parasite control or clearance are poorly understood. Thus far, one of the major obstacles in ascertaining the mechanisms of Giardia pathology is the lack of a functionally relevant model for the long-term study of the parasite in vitro. Here we report on the development of an in vitro co-culture model which maintains the basolateral-apical architecture of the small intestine and allows for long-term survival of the parasite. Using transwell inserts, Caco-2 intestinal epithelial cells and IC-21 macrophages are co-cultured in the presence of Giardia trophozoites. Using the developed model, we show that Giardia trophozoites survive over 21 days and proliferate in a combination media of Caco-2 cell and Giardia medium. Giardia induces apoptosis of epithelial cells through caspase-3 activation and macrophages do not abrogate this response. Additionally, macrophages induce Caco-2 cells to secrete the pro-inflammatory cytokines, GRO and IL-8, a response abolished by Giardia indicating parasite induced suppression of the host immune response. The co-culture model provides additional complexity and information when compared to a single-cell model. This model will be a valuable tool for answering long-standing questions on host-parasite biology that may lead to discovery of new therapeutic interventions.

  19. Long-Term Survival of Neonatal Porcine Islets Without Sertoli Cells in Rabbits

    Directory of Open Access Journals (Sweden)

    Rafael Vald and eacute;s-Gonz and aacute;lez

    2013-04-01

    Full Text Available Cell-based therapy is a promising treatment for metabolic disorders such as type-1 diabetes. Transplantation protocols have investigated several anatomical sites for cell implantation; however, some of these procedures, such as intraportal infusion, can cause organ failure or thrombosis secondarily. Bio-artificial organs could be the choice, although concerns still remain. Using a subcutaneous device, we are able to preserve neonatal porcine islets without sertoli cells in healthy New Zealand rabbits. Devices were implanted in the back of the animals underneath the skin, and after 3 months the islets were transplanted. Histology showed the presence of inflammatory cells, predominantly eosinophils; however, insulin- and glucagon-positive cell clusters were identified inside the device at different time points for at least 90 days, and porcine C-peptide was also detected during the follow-up, indicating graft functionality. We have found that our device induces the deposition of a fibrous matrix enriched in blood vessels, which forms a good place for cell grafting, and this model is probably able to induce an immunoprivileged site. Under these conditions, transplanted porcine islet cells have the capability of producing insulin and glucagon for at least three months. [Arch Clin Exp Surg 2013; 2(2.000: 101-108

  20. Hyaluronan preserves the proliferation and differentiation potentials of long-term cultured murine adipose-derived stromal cells

    International Nuclear Information System (INIS)

    For long-term culture, murine adipose-derived stromal cells (mADSCs) at latter passages demonstrated a marked decline in proliferative activity, exhibited senescent morphology and reduced differentiation potentials, particularly osteogenesis. To extend the lifespan of mADSCs, two culture conditions containing hyaluronan (HA) was compared in our study, one as a culture medium supplement (SHA), and the other where HA was pre-coated on culture surface (CHA). mADSCs cultivated with SHA exhibited a prolonged lifespan, reduced cellular senescence, and enhanced osteogenic potential compared to regular culture condition (control). Upon CHA treatment, mADSCs tended to form cell aggregates with gradual growth profiles, while their differentiation activities remained similar to SHA groups. After transferring mADSCs from CHA to control surface, they were shown to have an extended lifespan and an increase of osteogenic potential. Our results suggested that HA can be useful for preserving the proliferation and differentiation potentials of long-term cultured mADSCs

  1. Long-Term Follow-Up after Reduced-Intensity Conditioning and Stem Cell Transplantation for Childhood Nonmalignant Disorders.

    Science.gov (United States)

    Madden, Lisa M; Hayashi, Robert J; Chan, Ka Wah; Pulsipher, Michael A; Douglas, Dorothea; Hale, Gregory A; Chaudhury, Sonali; Haut, Paul; Kasow, Kimberly A; Gilman, Andrew L; Murray, Lisa M; Shenoy, Shalini

    2016-08-01

    Reduced-intensity conditioning (RIC) before hematopoietic stem cell transplantation (HCT) in children could result in fewer complications during follow-up compared with myeloablative regimens. Hence, many RIC regimens are under investigation, but long-term follow-up is essential. We describe late follow-up beyond 2 years post-HCT in 43 children with nonmalignant disorders who underwent related or unrelated donor (56%) HCT on a multicenter study using a RIC regimen (alemtuzumab, fludarabine, and melphalan) followed by bone marrow (n = 30), peripheral blood (n = 3), or umbilical cord blood (n = 10) HCT for immune dysfunction, bone marrow failure, metabolic disorders, or hemoglobinopathy. Recipients (median age, 7.5 years; range, 3 to 26) underwent HCT 2 to 8 years (median, 3.1 years) before this report. Full donor (67%) or stable mixed chimerism (33%) was noted without late graft rejection. Five patients (12%) required systemic immunosuppression therapy (IST) beyond 2 years post-HCT for graft-versus-host disease (GVHD); 2 patients died 38 and 79 months later, whereas the others improved, enabling an IST wean. Overall, 17 complications were documented in 10 patients (23%). Complications not related to GVHD included hypothyroidism (n = 2), low grade neoplasms (n = 2), and delayed puberty (n = 1). One patient with GVHD had ovarian failure; all other postpubertal females resumed normal ovarian function. Twenty-seven of 28 school-age recipients were functioning at grade level. RIC HCT recipients thus had few regimen-related toxicities during long-term follow-up. However, objective long-term follow-up is still necessary to identify complications so timely intervention may be planned. PMID:27164064

  2. Long-term survival of exogenous embryonic stem cells in adult bone marrow

    Institute of Scientific and Technical Information of China (English)

    Yueying Li; Jing Xu; Weiping Yuan; Shaorong Gao; Tao Cheng; Yanfeng Liu; Jing He; Fengchao Wang; Sheng Liu; Yu Zhang; Zhaohui Kou; Zhenyu Ju; Guoguang Zheng

    2011-01-01

    @@ Dear Editor, Embryonic stem cell (ESC) is an attractive and promising source in regenerative medicine.However, current technologies for ESC differentiation do not ensure complete or synchronized conversion of ESCs into a specific functional tissue type for therapeutic purposes.

  3. Enhancing the survival of grafted cardiac stem cells for long-term imaging

    Energy Technology Data Exchange (ETDEWEB)

    Le, Uyenchi N.; Tae, Seong Ho; Bom, Hee Seung; Min, Jung Joon [Chonnam National University Medical School, Gwangju (Korea, Republic of)

    2007-07-01

    Heat shock treatment is known to induce the protection for cells from various environmental insults. Akt (protein kinase B) - with anti-apoptotic activity - has presently been reemerged as a critical enzyme in several signal transduction pathways involved in cell proliferation and programmed cell death. We hypothesized that thermotic treatment and Akt activity in genetically modified cardiomyoblasts would improve their survival after transplantation. Embryonic rat H9c2 cardiomyoblasts were simultaneously transfected with adenovirus containing luciferase reporter gene (MOl 50) and another containing Akt gene [MOl (0 100) ]. 5x106 harvested cells were i.m. implanted into murine skeletal muscles. Bioluminescence imaging was acquired for everyday and luciferase assay was performed to validate the imaging data. For thermotic challenge, adenovirus-mediated flue expressing H9c2 cells were subjected to great heat of 42 .deg. C for 1 hr and re-cultured at 37 .deg. C for 18 hours. Expression of heat shock protein in cells was detected in vitro by Western-blotting. 5x106 normal and shocked cells were implanted into mouse thigh (n = 5) and the animals were imaged with bioluminescence imaging system. In vitro evidences showed a high level expression of Akt and HSP in transfected H9c2 cells. Animals carrying Akt expressed bioluminescence signals until day 34 of post-implantation. The Flue activity was significantly higher in the shocked H9c2 cell-implanted rats and detected over 10 days as compared with the control group. The graft cell death was reduced by 73% at day 2 (1.46+ 10-7 p/s/cm{sup 2}/sr), 51% at day 3 (1.02+10-7 p/s/cm{sup 2}/sr), and 8% at day 10 (1.62+ 10-6 p/s/cm{sup 2}/sr). We revealed here improvement of donor cell's survival induced by the anti-apoptotic means of Akt genetic therapy or heat shock. Utility of bioluminescence imaging resulted in a potential to noninvasively and repetitively monitor implanted cardiac myoblasts over time.

  4. Comparison of Different Culture Mode for Long-term Expansion of Neural Stem Cells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1 Introduction The mammalian central nervous system(CNS) is incredibly complex and possesses only a limited ability to recover from damage~([1]). Fortunately, the discovery of self-renewing stem cell populations within the fetal and adult CNS has opened promising lines of inquiry. Neural stem cells (NSCs) can be cultured in two modes in vitro, suspension and monolayer. Reynolds~([2]) and other groups culture NSCs as neurospheres in suspension. Alternatively Gage cultured NSCs in monolayer. There is little s...

  5. A Novel Whole-Cell Mechanism for Long-Term Memory Enhancement

    OpenAIRE

    Iris Reuveni; Drorit Saar; Edi Barkai

    2013-01-01

    Olfactory-discrimination learning was shown to induce a profound long-lasting enhancement in the strength of excitatory and inhibitory synapses of pyramidal neurons in the piriform cortex. Notably, such enhancement was mostly pronounced in a sub-group of neurons, entailing about a quarter of the cell population. Here we first show that the prominent enhancement in the subset of cells is due to a process in which all excitatory synapses doubled their strength and that this increase was mediate...

  6. Th17 cells confer long term adaptive immunity to oral mucosal Candida albicans infections

    OpenAIRE

    Hernández-Santos, Nydiaris; Huppler, Anna R; Peterson, Alanna C.; Khader, Shabaana A.; McKenna, Kyle C.; Sarah L Gaffen

    2012-01-01

    Oropharyngeal candidiasis (OPC) is an opportunistic infection caused by Candida albicans. Despite its prevalence, little is known about C. albicans-specific immunity in the oral mucosa. Vaccines against Candida generate both Th1 and Th17 responses, and considerable evidence implicates IL-17 in immunity to OPC. However, IL-17 is also produced by innate immune cells that are remarkably similar to Th17 cells, expressing the same markers and localizing to similar mucosal sites. To date, the relat...

  7. Preliminary investigations of Spirulina effect on cancer cells: interest for long-term manned space missions

    Science.gov (United States)

    Baatout, S.; Bekaert, S.; Hendrickx, L.; Derradji, H.; Mergeay, M.

    Background In view of long haul space exploration missions the development of regenerative life support systems is of crucial importance to increase the crew autonomy and decrease the cost associated to the mass embarked Therefore in the late 80 s the European Space Agency initiated the MELiSSA project Micro-Ecological Life Support System Alternative MELiSSA has been conceived as a micro-organisms and higher plant process enabling high recycling efficiency The cyanobacteria Arthrospira sp is occupying one of the MELiSSA compartments Its genome is now being sequenced and this will help to better understand or improve its food value as well as to have a look at its putative toxic potential Aim In this study we were interested in studying the threshold of intrinsic cytotoxic effects of Spirulina dry extract from Sigma containing washed and lyophilized mixed Arthrospira strains on human cancer cells and its cell type dependency Method For that purpose we used flow cytometry to estimate cell death apoptosis and necrosis in three human leukaemic cell lines HELA cervix carcinoma IM-9 multiple myeloma K562 chronic myelogenous leukaemia Cells were cultured in the presence of an aqueous extract of Spirulina concentrations ranging from 0 to 500 mu g ml for 15 to 40 hours Apoptosis and necrosis were evaluated by annexin-V-PI staining cell size and granularity Early apoptosis was monitored by analysing the maintenance of mitochondrial membrane potential DioC 6 3 and the

  8. Genetically-directed, cell type-specific sparse labeling for the analysis of neuronal morphology.

    Directory of Open Access Journals (Sweden)

    Thomas Rotolo

    Full Text Available BACKGROUND: In mammals, genetically-directed cell labeling technologies have not yet been applied to the morphologic analysis of neurons with very large and complex arbors, an application that requires extremely sparse labeling and that is only rendered practical by limiting the labeled population to one or a few predetermined neuronal subtypes. METHODS AND FINDINGS: In the present study we have addressed this application by using CreER technology to non-invasively label very small numbers of neurons so that their morphologies can be fully visualized. Four lines of IRES-CreER knock-in mice were constructed to permit labeling selectively in cholinergic or catecholaminergic neurons [choline acetyltransferase (ChAT-IRES-CreER or tyrosine hydroxylase (TH-IRES-CreER], predominantly in projection neurons [neurofilament light chain (NFL-IRES-CreER], or broadly in neurons and some glia [vesicle-associated membrane protein2 (VAMP2-IRES-CreER]. When crossed to the Z/AP reporter and exposed to 4-hydroxytamoxifen in the early postnatal period, the number of neurons expressing the human placental alkaline phosphatase reporter can be reproducibly lowered to fewer than 50 per brain. Sparse Cre-mediated recombination in ChAT-IRES-CreER;Z/AP mice shows the full axonal and dendritic arbors of individual forebrain cholinergic neurons, the first time that the complete morphologies of these very large neurons have been revealed in any species. CONCLUSIONS: Sparse genetically-directed, cell type-specific neuronal labeling with IRES-creER lines should prove useful for studying a wide variety of questions in neuronal development and disease.

  9. Short- and long-term effects of silver nanoparticles on human microvascular endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Sara; Castiglioni; Clelia; Caspani; Alessandra; Cazzaniga; Jeanette; AM; Maier

    2014-01-01

    AIM: To study the response to silver nanoparticles(Ag NP) of human microvascular endothelial cells, protagonists of angiogenesis. METHODS: We cultured human microvascular endothelial cells and endothelial colony-forming cells in their corresponding growth medium. Stock solutions of Ag NP were prepared in culture medium and sonicated before use. They were added at different concentrations and for different times to culture media. The toxicity of Ag NP was investigated by measuring the reduction of yellow tetrazolium salt to dark purple formazan(MTT assay) at 575 nm. After staining with trypan blue, cell proliferation was assessed by counting viable cells. The lactate dehydrogenase leakage assay was performed on culture media by following the oxidation of NADH to NAD+ and monitoring the reaction kinetically at 340 nm. Reactive oxygen species production was quantified using 2’-7’-dichlorofluorescein diacetate. The alkaline comet assay was performed after mixing the cells with low melting-point agarose. Electrophoresis was then conducted and the samples were stained with ethidium bromide and analyzed with a fluorescence microscope.RESULTS: Ag NP are cytotoxic in a dose and time dependent fashion for HMEC. At high concentrations, Ag NP determine loss of membrane integrity as demonstrated by the increased activity of lactate dehydrogenase in the culture medium. Ag NP rapidly stimulate the formation of free radicals. However, pre-incubation with Trolox, apocynin, or N-acetyl-L-cysteine, antioxidants which have different structure and act through different mechanisms, is not sufficient to prevent cytotoxicity. Ag NP also induce DNA damage dose-dependently, as shown by comet assay. When exposed to sublethal concentrations of Ag NP for long times, the cells remain viable but are growth retarded. Interestingly, removal of Ag NP partially rescues cell growth. Also genotoxicity is reversible upon removal of Ag NP from culture medium, suggesting that no permanent

  10. TLR-2 activation induces regulatory T cells and long-term suppression of asthma manifestations in mice.

    Directory of Open Access Journals (Sweden)

    Martijn C Nawijn

    Full Text Available Asthma is a chronic inflammatory disease of the airways characterized by variable airway obstruction and airway hyperresponsiveness (AHR. The T regulatory (Treg cell subset is critically important for the regulation of immune responses. Adoptive transfer of Treg cells has been shown to be sufficient for the suppression of airway inflammation in experimental allergic asthma. Intervention strategies aimed at expanding the Treg cell population locally in the airways of sensitized individuals are therefore of high interest as a potential therapeutic treatment for allergic airway disease. Here, we aim to test whether long-term suppression of asthma manifestations can be achieved by locally expanding the Treg cell subset via intranasal administration of a TLR-2 agonist. To model therapeutic intervention aimed at expanding the endogenous Treg population in a sensitized host, we challenged OVA-sensitized mice by OVA inhalation with concomitant intranasal instillation of the TLR-2 agonist Pam3Cys, followed by an additional series of OVA challenges. Pam3Cys treatment induced an acute but transient aggravation of asthma manifestations, followed by a reduction or loss of AHR to methacholine, depending on the time between Pam3Cys treatment and OVA challenges. In addition, Pam3Cys-treatment induced significant reductions of eosinophils and increased numbers of Treg cells in the lung infiltrates. Our data show that, despite having adverse acute effects, TLR2 agonist treatment as a therapeutic intervention induces an expansion of the Treg cell population in the lungs and results in long-term protection against manifestation of allergic asthma upon subsequent allergen provocation. Our data indicate that local expansion of Tregs in allergic airway disease is an interesting therapeutic approach that warrants further investigation.

  11. Isolated tumor endothelial cells maintain specific character during long-term culture

    International Nuclear Information System (INIS)

    Tumor angiogenesis is necessary for solid tumor progression and metastasis. Increasing evidence indicates that tumor endothelial cells (TECs) are more relevant to the study of tumor angiogenesis than normal endothelial cells (NECs) because their morphologies and gene expression are different from NECs. However, it is challenging to isolate and culture large numbers of pure ECs from tumor tissue since the percentage of ECs is only about 1-2% and tumor cells and fibroblasts easily overgrow them. In addition, there has been concern that isolated TECs may lose their special phenotype once they are dissociated from tumor cells. In this study, we have successfully purified murine TECs from four different human tumor xenografts and NECs from murine dermal tissue. Isolated ECs expressed endothelial markers, such as CD31, VE-cadherin (CD144), and endoglin (CD105), for more than 3 months after isolation. TECs maintained tumor endothelial-specific markers, such as tumor endothelial marker 8 (TEM8) and aminopeptidase N (APN), as in tumor blood vessels in vivo. In addition, TECs were more proliferative and motile than NECs. TECs showed a higher response to VEGF and higher expression of VEGF receptors-1 and -2 than NECs did. Stem cell antigen-1 was up-regulated in all four TECs, suggesting that they have a kind of stemness. Cultured TECs maintain distinct biological differences from NECs as in vivo. In conclusion, it was suggested that TECs are relevant material for tumor angiogenesis research.

  12. Isolated tumor endothelial cells maintain specific character during long-term culture

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Kohei [Vascular Biology, Hokkaido University Graduate School of Dental Medicine, N13 W7, Kita-ku, Sapporo 060-8586 (Japan); Oral Pathology and Biology, Hokkaido University Graduate School of Dental Medicine, N13 W7, Kita-ku, Sapporo 060-8586 (Japan); Oral and Maxillofacial Surgery, Hokkaido University Graduate School of Dental Medicine, N13 W7, Kita-ku, Sapporo 060-8586 (Japan); Ohga, Noritaka [Vascular Biology, Hokkaido University Graduate School of Dental Medicine, N13 W7, Kita-ku, Sapporo 060-8586 (Japan); Hida, Yasuhiro [Surgical Oncology, Hokkaido University Graduate School of Medicine, N13 W7, Kita-ku, Sapporo 060-8586 (Japan); Muraki, Chikara [Oral Pathology and Biology, Hokkaido University Graduate School of Dental Medicine, N13 W7, Kita-ku, Sapporo 060-8586 (Japan); Oral and Maxillofacial Surgery, Hokkaido University Graduate School of Dental Medicine, N13 W7, Kita-ku, Sapporo 060-8586 (Japan); Tsuchiya, Kunihiko [Vascular Biology, Hokkaido University Graduate School of Dental Medicine, N13 W7, Kita-ku, Sapporo 060-8586 (Japan); Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, N13 W7, Kita-ku, Sapporo 060-8586 (Japan); Kurosu, Takuro [Vascular Biology, Hokkaido University Graduate School of Dental Medicine, N13 W7, Kita-ku, Sapporo 060-8586 (Japan); Oral Pathology and Biology, Hokkaido University Graduate School of Dental Medicine, N13 W7, Kita-ku, Sapporo 060-8586 (Japan); Oral and Maxillofacial Surgery, Hokkaido University Graduate School of Dental Medicine, N13 W7, Kita-ku, Sapporo 060-8586 (Japan); Akino, Tomoshige [Vascular Biology, Hokkaido University Graduate School of Dental Medicine, N13 W7, Kita-ku, Sapporo 060-8586 (Japan); Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, N13 W7, Kita-ku, Sapporo 060-8586 (Japan); Shih, Shou-Ching [Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215 (United States); and others

    2010-04-16

    Tumor angiogenesis is necessary for solid tumor progression and metastasis. Increasing evidence indicates that tumor endothelial cells (TECs) are more relevant to the study of tumor angiogenesis than normal endothelial cells (NECs) because their morphologies and gene expression are different from NECs. However, it is challenging to isolate and culture large numbers of pure ECs from tumor tissue since the percentage of ECs is only about 1-2% and tumor cells and fibroblasts easily overgrow them. In addition, there has been concern that isolated TECs may lose their special phenotype once they are dissociated from tumor cells. In this study, we have successfully purified murine TECs from four different human tumor xenografts and NECs from murine dermal tissue. Isolated ECs expressed endothelial markers, such as CD31, VE-cadherin (CD144), and endoglin (CD105), for more than 3 months after isolation. TECs maintained tumor endothelial-specific markers, such as tumor endothelial marker 8 (TEM8) and aminopeptidase N (APN), as in tumor blood vessels in vivo. In addition, TECs were more proliferative and motile than NECs. TECs showed a higher response to VEGF and higher expression of VEGF receptors-1 and -2 than NECs did. Stem cell antigen-1 was up-regulated in all four TECs, suggesting that they have a kind of stemness. Cultured TECs maintain distinct biological differences from NECs as in vivo. In conclusion, it was suggested that TECs are relevant material for tumor angiogenesis research.

  13. Replica-moulded polydimethylsiloxane culture vessel lids attenuate osmotic drift in long-term cell cultures

    Indian Academy of Sciences (India)

    Axel Blau; Tanja Neumann; Christiane Ziegler; Fabio Benfenati

    2009-03-01

    An imbalance in medium osmolarity is a determinant that affects cell culture longevity. Even in humidified incubators, evaporation of water leads to a gradual increase in osmolarity overtime. We present a simple replica-moulding strategy for producing self-sealing lids adaptable to standard, small-size cell-culture vessels. They are made of polydimethylsiloxane (PDMS), a flexible, transparent and biocompatible material, which is gas-permeable but largely impermeable to water. Keeping cell cultures in a humidified 5% CO2 incubator at 37°C, medium osmolarity increased by +6.86 mosmol/kg/day in standard 35 mm Petri dishes, while PDMS lids attenuated its rise by a factor of four to changes of +1.72 mosmol/kg/ day. Depending on the lid membrane thickness, pH drifts at ambient CO2 levels were attenuated by a factor of 4 to 9. Comparative evaporation studies at temperatures below 60°C yielded a 10-fold reduced water vapour flux of 1.75 g/day/dm2 through PDMS lids as compared with 18.69 g/day/dm2 with conventional Petri dishes. Using such PDMS lids, about 2/3 of the cell cultures grew longer than 30 days in vitro. Among these, the average survival time was 69 days with the longest survival being 284 days under otherwise conventional cell culture conditions.

  14. Long-term moisture measurements in large-scale bioreactor cells using TDR and neutron probes

    International Nuclear Information System (INIS)

    This paper investigates the measurement of moisture content in municipal solid waste using two different indirect techniques: neutron scattering and time-domain reflectometry (TDR). Therefore, six laboratory-scale landfill bioreactors were instrumented with both neutron and TDR probes; in addition to that a gravimetric moisture balance was established for each cell. Different leachate recirculation modes were applied to perform different wetting conditions. In a first step, both probes were calibrated based on the water balance from three cells presenting homogeneous water distributions and sufficient temporal moisture variations. The calibration functions were then used for temporal and spatial moisture monitoring of all six cells. The results show that both methods are sensitive to moisture variations and provide interesting information on the complexity of vertical flows within the municipal solid waste. Nevertheless, it appears that neutron scattering offers better accuracy at the laboratory scale.

  15. Clonal succession of hematopoietic cells in long-term bone marrow cultures

    International Nuclear Information System (INIS)

    The hypothesis that clonal expansion of hematopoietic cells takes place in cultures with succession of functioning clones is tested in this investigation. CBA and CBAT6T6 mice of both sexes aged 8-12 weeks were used. The animals were irradiated with 137 Cs gamma rays on an IPK apparatus in a dose of 12 Gy. Self-maintenance of a CFU-c was characterized by the number of daughter CFU-c produced by it in irradiated mice during the formation of an 11-day splenic colony. The results provide the authors with an argument in support of the view that CFU-c are incapable of true self-maintenance, but they are members of transient cell populations which mature consecutively, starting from certain earlier clonogenic precursors, or pre-CFU cells

  16. Long-term exposure to genistein improves insulin secretory function of pancreatic β-cells

    OpenAIRE

    Fu, Zhuo; Liu, Dongmin

    2009-01-01

    We recently found that genistein, a plant-derived natural compound, is a novel cAMP signaling agonist in pancreatic β-cells. In the present study, we further show that exposure of clonal insulin secreting (INS-1E) cells to genistein for 48 h enhanced glucose-stimulated insulin secretion (GSIS), whereas insulin content was not altered, suggesting that genistein-enhanced GSIS is not due to a modulation of insulin synthesis. This genistein’s effect is protein tyrosine kinase- and KATP channel-in...

  17. Study of the long-term operation of a vanadium/oxygen fuel cell

    Science.gov (United States)

    Noack, Jens; Cognard, Gwenn; Oral, Meryem; Küttinger, Michael; Roznyatovskaya, Nataliya; Pinkwart, Karsten; Tübke, Jens

    2016-09-01

    A vanadium/oxygen fuel cell (VOFC) with a geometrically active area of 51 cm2 and two membranes was discontinuously operated over a period of over 676 h with 47 successive tests at room temperature with a current density of 19.6 mA/cm2 in order to investigate signs of ageing. As well as measuring cell voltages, the test setup was also used to measure anode and redox potentials as well as cell and half-cell impedances. The performance data of the VOFC fluctuated widely over the course of the test period, due to different V2+ concentrations and instabilities of the starting solutions on the one hand and complex changes in cathode conditions on the other. The desired behaviour of the anode reactions was achieved primarily through improved methods for producing the V2+ solutions, and remained stable at the end of the experiments. The kinetics of the cathode reactions were temporarily increased by purging with 2 M H2SO4, however their performance decreased over time. The VOFC had symptoms of ageing by complex and overlaid changes in the cathode's triple phase boundary layer and in the special conditions between the two electrodes and membranes.

  18. Long-term survival after allogeneic haematopoietic cell transplantation for AML in remission

    DEFF Research Database (Denmark)

    Sengeløv, H; Gerds, T A; Brændstrup, P;

    2013-01-01

    We report the results of non-myeloablative (NM) and myeloablative (MA) conditioning for haematopoietic cell transplantation in 207 consecutive AML patients at a single institution. A total of 122 patients were transplanted in first CR (CR1) and 67 in second CR (CR2). MA conditioning was given to ...

  19. Comparison of Different Culture Mode for Long-term Expansion of Neural Stem Cells

    Institute of Scientific and Technical Information of China (English)

    Ke ZHENG; Dan GE; Tian-Qing LIU; Xue-Hu MA

    2005-01-01

    @@ 1 Introduction The mammalian central nervous system(CNS) is incredibly complex and possesses only a limited ability to recover from damage[1]. Fortunately, the discovery of self-renewing stem cell populations within the fetal and adult CNS has opened promising lines of inquiry.

  20. Promoting long-term survival of insulin-producing cell grafts that differentiate from adipose tissue-derived stem cells to cure type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Shuzi Zhang

    Full Text Available BACKGROUND: Insulin-producing cell clusters (IPCCs have recently been generated in vitro from adipose tissue-derived stem cells (ASCs to circumvent islet shortage. However, it is unknown how long they can survive upon transplantation, whether they are eventually rejected by recipients, and how their long-term survival can be induced to permanently cure type 1 diabetes. IPCC graft survival is critical for their clinical application and this issue must be systematically addressed prior to their in-depth clinical trials. METHODOLOGY/PRINCIPAL FINDINGS: Here we found that IPCC grafts that differentiated from murine ASCs in vitro, unlike their freshly isolated islet counterparts, did not survive long-term in syngeneic mice, suggesting that ASC-derived IPCCs have intrinsic survival disadvantage over freshly isolated islets. Indeed, β cells retrieved from IPCC syngrafts underwent faster apoptosis than their islet counterparts. However, blocking both Fas and TNF receptor death pathways inhibited their apoptosis and restored their long-term survival in syngeneic recipients. Furthermore, blocking CD40-CD154 costimulation and Fas/TNF signaling induced long-term IPCC allograft survival in overwhelming majority of recipients. Importantly, Fas-deficient IPCC allografts exhibited certain immune privilege and enjoyed long-term survival in diabetic NOD mice in the presence of CD28/CD40 joint blockade while their islet counterparts failed to do so. CONCLUSIONS/SIGNIFICANCE: Long-term survival of ASC-derived IPCC syngeneic grafts requires blocking Fas and TNF death pathways, whereas blocking both death pathways and CD28/CD40 costimulation is needed for long-term IPCC allograft survival in diabetic NOD mice. Our studies have important clinical implications for treating type 1 diabetes via ASC-derived IPCC transplantation.

  1. Biocompatible fluorescent supramolecular nanofibrous hydrogel for long-term cell tracking and tumor imaging applications

    Science.gov (United States)

    Wang, Huaimin; Mao, Duo; Wang, Youzhi; Wang, Kai; Yi, Xiaoyong; Kong, Deling; Yang, Zhimou; Liu, Qian; Ding, Dan

    2015-11-01

    Biocompatible peptide-based supramolecular hydrogel has recently emerged as a new and promising system for biomedical applications. In this work, Rhodamine B is employed as a new capping group of self-assembling peptide, which not only provides the driving force for supramolecular nanofibrous hydrogel formation, but also endows the hydrogel with intrinsic fluroescence signal, allowing for various bioimaging applications. The fluorescent peptide nanofibrous hydrogel can be formed via disulfide bond reduction. After dilution of the hydrogel with aqueous solution, the fluorescent nanofiber suspension can be obtained. The resultant nanofibers are able to be internalized by the cancer cells and effectively track the HeLa cells for as long as 7 passages. Using a tumor-bearing mouse model, it is also demonstrated that the fluorescent supramolecular nanofibers can serve as an efficient probe for tumor imaging in a high-contrast manner.

  2. LONG-TERM PERFORMANCE OF SOLID OXIDE STACKS WITH ELECTRODE-SUPPORTED CELLS OPERATING IN THE STEAM ELECTROLYSIS MODE

    Energy Technology Data Exchange (ETDEWEB)

    J. E. O' Brien; R. C. O' Brien; X. Zhang; G. Tao; B. J. Butler

    2011-11-01

    Performance characterization and durability testing have been completed on two five-cell high-temperature electrolysis stacks constructed with advanced cell and stack technologies. The solid oxide cells incorporate a negative-electrode-supported multi-layer design with nickel-zirconia cermet negative electrodes, thin-film yttria-stabilized zirconia electrolytes, and multi-layer lanthanum ferrite-based positive electrodes. The per-cell active area is 100 cm2. The stack is internally manifolded with compliant mica-glass seals. Treated metallic interconnects with integral flow channels separate the cells. Stack compression is accomplished by means of a custom spring-loaded test fixture. Initial stack performance characterization was determined through a series of DC potential sweeps in both fuel cell and electrolysis modes of operation. Results of these sweeps indicated very good initial performance, with area-specific resistance values less than 0.5 ?.cm2. Long-term durability testing was performed with A test duration of 1000 hours. Overall performance degradation was less than 10% over the 1000-hour period. Final stack performance characterization was again determined by a series of DC potential sweeps at the same flow conditions as the initial sweeps in both electrolysis and fuel cell modes of operation. A final sweep in the fuel cell mode indicated a power density of 0.356 W/cm2, with average per-cell voltage of 0.71 V at a current of 50 A.

  3. Microbial electrolysis cells for production of methane from CO2: long-term performance and perspectives

    OpenAIRE

    Eerten-Jansen, van, M.C.A.A.; Heijne, ter, A.; C J N Buisman; Hamelers, H.V.M.

    2012-01-01

    A methane-producing microbial electrolysis cell (MEC) is a technology to convert CO2 into methane, using electricity as an energy source and microorganisms as the catalyst. A methane-producing MEC provides the possibility to increase the fuel yield per hectare of land area, when the CO2 produced in biofuel production processes is converted to additional fuel methane. Besides increasing fuel yield per hectare of land area, this also results in more efficient use of land area, water, and nutrie...

  4. Long-term persistence of T cell memory to HBsAg after hepatitis B vaccination

    Institute of Scientific and Technical Information of China (English)

    Ru-Xiang Wang; Greet J. Boland; Jan van Hattum; Gijsbert C. de Gast

    2004-01-01

    AIM: To determine if the T cell memory to HBsAg can persist for a long time after hepatitis B (HB) vaccination.METHODS: Thirty one vaccine recipients who were healthcare workers (18 females and 13 males aged 34-58 years) from Utrecht University Hospital, Netherlands, and had previously Received a standard course of vaccination for hepatitis B were investigated and another 9 unvaccinated healthy volunteers from the same hospital were used as the control. Blood samples were taken just before the experiment to test serum anti-HBs levels and the subjects were classified into different groups according to their serum titers of anti-HBs and vaccination history. Their peripheral blood mononuclear cells (pBrvMc) were isolated from freshly heparinized venous blood and the proliferative response of Tlymphocytes to the recombinant hepatitis B surface antigen(HBsAg) was investigated.RESULTS: Positive serum anti-HBs was found in 61.3%(19/31) vaccine recipients and a significant in vitro lymphocyte proliferative response to recombinant HBsAg was observed in all the vaccinees with positive anti-HBs. Serum anti-HBs level ≤10 IU/L was found in 38.7% (12/31)subjects. In this study, we specially focused on lymphocyte proliferative response to recombinant HBsAg in those vaccine recipients with serum anti-HBsAg less than 10 IU/L.Most of them had Received a standard course of vaccination about 10 years before. T lymphocyte proliferative response was found positive in 7 of the 12 vaccine recipients. These results confirmed that HBsAg-specific memory T cells remained detectable in the circulation for a long time after vaccination, even when serum anti-HBs level had been undetectable.CONCLUSION: The T cell memory to HBsAg can persist for at least 10 years after HB vaccination. Further booster injection is not necessary in healthy responders to HB vaccine.

  5. Ultrastructural study of long-term canine distemper virus infection in tissue culture cells.

    OpenAIRE

    Narang, H K

    1982-01-01

    The morphogenesis of canine distemper virus was studied in Vero cell cultures for 43 days post-inoculation. Active replication of the virus was observed by electron microscopy and assay from 12 h after inoculation on, and peak production was observed on days 5, 14, and 22. From day 28 on, constant but smaller amounts of infectious virus were detected. Two ultrastructural types of intracytoplasmic nucleoprotein filaments were observed; although they first appeared at different times, their sub...

  6. Nanodefects of membranes cause destruction of packed red blood cells during long-term storage

    Energy Technology Data Exchange (ETDEWEB)

    Kozlova, Elena, E-mail: waterlake@mail.ru [V.A. Negovsky Scientific Research Institute of General Reanimatology, Moscow (Russian Federation); I.M. Sechenov First Moscow State Medical University, Moscow (Russian Federation); Chernysh, Aleksandr [V.A. Negovsky Scientific Research Institute of General Reanimatology, Moscow (Russian Federation); I.M. Sechenov First Moscow State Medical University, Moscow (Russian Federation); Moroz, Victor; Sergunova, Victoria; Gudkova, Olga; Kuzovlev, Artem [V.A. Negovsky Scientific Research Institute of General Reanimatology, Moscow (Russian Federation)

    2015-10-01

    Packed red blood cells (PRBC) are used for blood transfusion. PRBC were stored for 30 days under 4 °C in hermetic blood bags with CPD anticoagulant-preservative solution. Hematocrit was 50–55%. The distortions of PRBC membranes nanostructure and cells morphology during storage were studied by atomic force microscopy. Basic measurements were performed at the day 2, 6, 9, 16, 23 and 30 of storage and additionally 2–3 days after it. Topological defects occurred on RBC membranes by day 9. They appeared as domains with grain-like structures (“grains”) sized up to 200 nm. These domains were appeared in almost all cells. Later these domains merged and formed large defects on cells. It was the formation of domains with the “grains” which was onset process leading eventually to destruction of PRBC. Possible mechanisms of transformation of PRBC and their membrane are related to the alterations of spectrin cytoskeleton. During this storage period potassium ions and lactat concentrations increased, pH decreased, intracellular concentration of reduced glutathione diminished in the preservative solution. Changes of PRBC morphology were detected within the entire period of PRBC storage. Discocytes predominated at the days 1 and 2. By day 30 PRBC transformed into irreversible echinocytes and spheroechinocytes. Study of defects of membranes nanostructure may form the basis of assessing the quality of the stored PRBC. This method may allow to work out the best recommendations for blood transfusion. - Highlights: • Domains with “grains” are formed on membranes surface on 9–16 days of PRBC storage. • The development of domains is the reason of irreversible changes of PRBC structure. • The origin of domains is the consequence of alterations of spectrin cytoskeleton. • Study of nanostructure may form basis of assessing the quality of the stored PRBC.

  7. Nanodefects of membranes cause destruction of packed red blood cells during long-term storage

    International Nuclear Information System (INIS)

    Packed red blood cells (PRBC) are used for blood transfusion. PRBC were stored for 30 days under 4 °C in hermetic blood bags with CPD anticoagulant-preservative solution. Hematocrit was 50–55%. The distortions of PRBC membranes nanostructure and cells morphology during storage were studied by atomic force microscopy. Basic measurements were performed at the day 2, 6, 9, 16, 23 and 30 of storage and additionally 2–3 days after it. Topological defects occurred on RBC membranes by day 9. They appeared as domains with grain-like structures (“grains”) sized up to 200 nm. These domains were appeared in almost all cells. Later these domains merged and formed large defects on cells. It was the formation of domains with the “grains” which was onset process leading eventually to destruction of PRBC. Possible mechanisms of transformation of PRBC and their membrane are related to the alterations of spectrin cytoskeleton. During this storage period potassium ions and lactat concentrations increased, pH decreased, intracellular concentration of reduced glutathione diminished in the preservative solution. Changes of PRBC morphology were detected within the entire period of PRBC storage. Discocytes predominated at the days 1 and 2. By day 30 PRBC transformed into irreversible echinocytes and spheroechinocytes. Study of defects of membranes nanostructure may form the basis of assessing the quality of the stored PRBC. This method may allow to work out the best recommendations for blood transfusion. - Highlights: • Domains with “grains” are formed on membranes surface on 9–16 days of PRBC storage. • The development of domains is the reason of irreversible changes of PRBC structure. • The origin of domains is the consequence of alterations of spectrin cytoskeleton. • Study of nanostructure may form basis of assessing the quality of the stored PRBC

  8. Characterization and Long-Term Testing of Solid Oxide Electrolyzer Cells

    OpenAIRE

    Schiller, Günter; Hörlein, Michael; Tietz, Frank; Friedrich, K. Andreas

    2014-01-01

    A reliable energy supply which is based on increasing shares of sustainable and renewable energy sources, such as wind power and solar energy, requires appropriate storage technologies. Hydrogen as energy carrier, produced by water electrolysis using electric current from regenerative energy sources, offers a high potential in this respect. A very efficient option to produce hydrogen in this way is high-temperature steam electrolysis based on solid oxide electrolyzer cells (SOEC). This techno...

  9. Alcohol impairs long-term depression at the cerebellar parallel fiber-Purkinje cell synapse

    OpenAIRE

    Belmeguenai, A.; Botta, Paolo; Weber, John; Carta, Mario; De Ruiter, Martijn; De Zeeuw, Chris; Valenzuela, Fernando; Hansel, Christian

    2008-01-01

    textabstractAcute alcohol consumption causes deficits in motor coordination and gait, suggesting an involvement of cerebellar circuits, which play a role in the fine adjustment of movements and in motor learning. It has previously been shown that ethanol modulates inhibitory transmission in the cerebellum and affects synaptic transmission and plasticity at excitatory climbing fiber (CF) to Purkinje cell synapses. However, it has not been examined thus far how acute ethanol application affects...

  10. Long-term effects of tritium on cultured Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Experiments were undertaken to determine the mutagenic and chromosome-damaging effects of HTO and tritiated thymidine (3HTdR) under chronic exposure conditions. Chinese hamster ovary cells (CHO) cultured in vitro were maintained continuously for 90 days in a medium containing HTO at concentrations of 1.1-1.1x10-3 μCi/ml or 3HTdR at 4x10-1-4x10-4 μCi/ml. During the incubation period the induced gene mutations were determined for the hypoxanthineguanine phosphoribosyl transferase (HGPRT) locus, and the chromosome structural changes were analysed by standard methods. According to the experimental data the three higher concentrations of HTO and 3HTdR resulted in remarkably higher values for all mutations tested. After a 1-month exposure to the two middle concentrations, however, the frequencies showed a decreasing tendency and reached the control range after 90 days. At the lowest exposure levels no difference could be observed as compared with the controls. In the HTO series the amount of tritium 'bound firmly' to cells was measured (1-2%) and analysed biochemically; its pattern showed a uniform distribution among the cell macromolecules (DNA, RNA, protein). (author)

  11. Long-term effects of autologous bone marrow stem cell treatment in acute myocardial infarction: factors that may influence outcomes.

    Directory of Open Access Journals (Sweden)

    David M Clifford

    Full Text Available AIMS: To investigate whether there are important sources of heterogeneity between the findings of different clinical trials which administer autologous stem cell treatment for acute myocardial infarction (AMI and to evaluate what factors may influence the long-term effects of this treatment. METHODS AND RESULTS: MEDLINE (1950-January 2011, EMBASE (1974-January 2011, CENTRAL (The Cochrane Library 2011, Issue 1, CINAHL (1982-January 2011, and ongoing trials registers were searched for randomised trials of bone marrow stem cells as treatment for AMI. Hand-searching was used to screen recent, relevant conference proceedings (2005-2010/11. Meta-analyses were conducted using random-effects models and heterogeneity between subgroups was assessed using chi-squared tests. Planned analyses included length of follow-up, timing of cell infusion and dose, patient selection, small trial size effect, methodological quality, loss of follow-up and date of publication. Thirty-three trials with a total of 1,765 participants were included. There was no evidence of bias due to publication or time-lag, methodological quality of included studies, participant drop-out, duration of follow-up or date of the first disclosure of results. However, in long-term follow-ups the treatment seemed more effective when administered at doses greater than 10(8 cells and to patients with more severe heart dysfunction. CONCLUSIONS: Evaluation of heterogeneity between trials has not identified significant sources of bias in this study. However, clinical differences between trials are likely to exist which should be considered when undertaking future trials.

  12. Renal cell carcinoma in long-term survivors of advanced stage neuroblastoma in early childhood

    International Nuclear Information System (INIS)

    Renal cell carcinoma (RCC) is rare in children and comprises only 1-3% of all pediatric primary renal tumors. Recently, several case reports have described RCC developing in patients previously treated for advanced stage neuroblastoma (NB). Our experience with four patients treated for advanced stage NB during early childhood who developed RCC later in life are added to 14 others in the literature. These patients and our review of the literature suggest an association between RCC and NB that warrants further study. (orig.)

  13. Small airways dysfunction in long-term survivors of pediatric stem cell transplantation

    DEFF Research Database (Denmark)

    Uhlving, Hilde Hylland; Mathiesen, Sidsel; Buchvald, Frederik;

    2015-01-01

    BACKGROUND: Chronic graft-versus-host disease (cGvHD) in the lungs is a life-threatening complication of allogeneic hematopoietic stem cell transplantation (HSCT). Pulmonary cGvHD is initiated in the peripheral airways, and diagnosis may be delayed by low sensitivity of standard pulmonary function...... performed spirometry, whole-body plethysmography and MBWN2 . From MBWN2 the lung clearance index (LCI) and indices reflecting ventilation inhomogeneity arising close to the acinar lung zone (Sacin ) and in the conductive airway zone (Scond ) were derived. Subjective respiratory morbidity was assessed using...

  14. Cesium Enhances Long-Term Stability of Lead Bromide Perovskite-Based Solar Cells

    OpenAIRE

    Kulbak, Michael; Gupta, Satyajit; Kedem, Nir; Levine, Igal; Bendikov, Tatyana; Hodes, Gary; Cahen, David

    2015-01-01

    Direct comparison between perovskite-structured hybrid organic-inorganic - methyl ammonium lead bromide (MAPbBr3) and all-inorganic cesium lead bromide (CsPbBr3), allows identifying possible fundamental differences in their structural, thermal and electronic characteristics. Both materials possess a similar direct optical band-gap, but CsPbBr3 demonstrates a higher thermal stability than MAPbBr3. In order to compare device properties we fabricated solar cells, with similarly synthesized MAPbB...

  15. Cell-Type Specific Inactivation of Hippocampal CA1 Disrupts Location-Dependent Object Recognition in the Mouse

    Science.gov (United States)

    Haettig, Jakob; Sun, Yanjun; Wood, Marcelo A.; Xu, Xiangmin

    2013-01-01

    The allatostatin receptor (AlstR)/ligand inactivation system enables potent regulation of neuronal circuit activity. To examine how different cell types participate in memory formation, we have used this system through Cre-directed, cell-type specific expression in mouse hippocampal CA1 in vivo and examined functional effects of inactivation of…

  16. Long-term survival in uterine clear cell carcinoma and uterine papillary serous carcinoma.

    Science.gov (United States)

    Lindahl, Bengt; Persson, Jan; Ranstam, Jonas; Willén, Roger

    2010-09-01

    Uterine clear cell carcinoma (UCC) and uterine papillary serous carcinoma (UPSC) are rare entities that differ in clinical behavior from endometrial adenocarcinoma. Compared with endometrioid adenocarcinoma, they more often metastasize early and more commonly in the upper abdomen including the omentum. Treatment programs of UCC and UPSC at different stages vary and range from no adjuvant therapy in stage Ia to a wide variety of chemotherapies and radiotherapies in more advanced stages. This study presents the outcome of 109 patients with UCC or UPSC treated according to essentially the same treatment program from May 1993 to December 2004. Most patients were treated with a simple hysterectomy with no further adjuvant treatment. In stage Ia, 2/46 patients died of their disease and amongst all the stages, 30/109 patients died of their disease. These survival outcomes are comparable to or better than those presented previously. PMID:20944161

  17. Beta-cell function in isolated human pancreatic islets in long-term tissue culture

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis

    1981-01-01

    Human pancreatic islets were isolated by collagenase treatment of pancreatic tissue obtained from 27 individuals aged 12 to 69 years. The islets were maintained free floating in tissue culture medium RPMI 1640 supplemented with calf or human serum. In two cases the insulin production was followed...... adult human pancreatic tissue and that their beta-cell function can be maintained for up to two years. The variation in insulin production rate could not be ascribed to age or sex and may reflect both physiological and methodological factors....... up to nearly two years. The insulin production rate of the individual islet preparations varied between 0.2 and 8 ng per islet per day. No significant correlation with donor age or sex was found. The glucose concentration in the medium influenced the insulin release in a dose dependent manner. The...

  18. Low Dose BCG Regimen in T1 Transitional Cell Carcinoma of the Bladder: Long Term Results

    International Nuclear Information System (INIS)

    BCG has been used for more than 30 years and is currently the most effective agent for non-muscle invasive bladder cancer therapy after transurethral resection. The high-grade T1 lesion treated by transurethral resection alone is reported to progress to muscle invasion in 30% to 50% of the patients. Until now, optimal treatment schedule and optimal dose have not been defined as the toxicity related to BCG therapy is significant. In this study we tried to evaluate the efficacy and toxicity of 60 mg intravesical BCG (Pasteur strain) therapy in patients with T1 transitional cell carcinoma of the bladder. Patients and Methods: From January 2000 till December 2007, 74 patients with single T1 transitional cell carcinoma (TCC) of the urinary bladder (grade 3 in 24 patients and grade 2 in 50 patients) were treated by complete transurethral resection followed by a 6-weeks course of 60 mg BCG intravesically. Follow-up ranged from 26- 96 months with median of 61 months. Results: Nine patients (12.1%) exhibited recurrence with muscle invasion after 6-18 months (5 with grade 3 tumors and 4 with grade 2), all were subjected to radical cystectomy and urine diversion. Whereas 19 patients (29.2%) showed recurrent T1 tumor after 16-45 months (7 with grade 3 tumors and 12 with grade 2) and were treated by TUR-T followed by a second 6-weeks course of 60 mg BCG intravesically. Recurrence index was 0.82/100 patients/month and the median tumor free period was 20 months. Regarding toxicity; irritative symptoms occurred in 24% of patients, fever in 9%, microscopic hematuria in 14%; which appeared to be significantly low when compared with the rates reported for higher doses of BCG. Conclusion: Intravesical therapy of 60 mg BCG is effective in prophylaxis against recurrence and progression of T1 TCC of the bladder. Decreasing the dose resulted

  19. Facial stimulation induces long-term depression at cerebellar molecular layer interneuron–Purkinje cell synapses in vivo in mice

    Directory of Open Access Journals (Sweden)

    De-Lai eQiu

    2015-06-01

    Full Text Available Cerebellar long-term synaptic plasticity has been proposed to provide a cellular mechanism for motor learning. Numerous studies have demonstrated the induction and mechanisms of synaptic plasticity at parallel fiber–Purkinje cell (PF–PC, parallel fiber–molecular layer interneurons (PF–MLI and mossy fiber–granule cell (MF–GC synapses, but no study has investigated sensory stimulation-evoked synaptic plasticity at MLI–PC synapses in the cerebellar cortex of living animals. We studied the expression and mechanism of MLI–PC GABAergic synaptic plasticity induced by a train of facial stimulation in urethane-anesthetized mice by cell-attached recordings and pharmacological methods. We found that 1 Hz, but not a 2 Hz or 4 Hz, facial stimulation induced a long-term depression (LTD of GABAergic transmission at MLI–PC synapses, which was accompanied with a decrease in the stimulation-evoked pause of spike firing in PCs, but did not induce a significant change in the properties of the sensory-evoked spike events of MLIs. The MLI–PC GABAergic LTD could be prevented by blocking cannabinoid type 1 (CB1 receptors, and could be pharmacologically induced by a CB1 receptor agonist. Additionally, 1 Hz facial stimulation delivered in the presence of a metabotropic glutamate receptor 1 (mGluR1 antagonist, JNJ16259685, still induced the MLI–PC GABAergic LTD, whereas blocking N-methyl-D-aspartate (NMDA receptors during 1 Hz facial stimulation abolished the expression of MLI–PC GABAergic LTD. These results indicate that sensory stimulation can induce an endocannabinoid (eCB-dependent LTD of GABAergic transmission at MLI–PC synapses via activation of NMDA receptors in cerebellar cortical Crus II in vivo in mice. Our results suggest that the sensory stimulation-evoked MLI–PC GABAergic synaptic plasticity may play a critical role in motor learning in animals.

  20. Analysis of the Long-term Effect of Intraoperative Radiotherapy (IORT) for Non-Small Cell Lung Carcinoma (NSCLC)

    Institute of Scientific and Technical Information of China (English)

    Guxia Zhou; Tiwen Zeng; Lianyuan Wang; Lin Ma

    2007-01-01

    OBJECTIVE To analyze the long-term effects of treatment with an operation+postoperative irradiation (A group) and an operation+intraoperative radiotherapy+postoperative irradiation (B group) in non-small cell lung cancer patients.METHODS Through a prospective randomized clinical trial,a total of 154 patients with non-small cell lung carcinoma were divided into two groups of 77 cases.Among the 154 cases,there were 134 squamous carcinomas,17 adenocarcinomas and 3 adeno-squamous carcinomas.TNM staging:there were 17 in Stage Ⅰ.76 in Stage Ⅱ and 61 in Stage Ⅲ.Adosage of 15~25 Gy IORT,energy 9~16 MeV electrons,was delivered to the fumors.The doses given were 40~60 Gy postoperation.RESULTS The local control rates in A and B groups were 49.4% and 62.3% respectively (P<0.05).The survivals at 3,5 and 7 years for group A were 40.3%,27.3%,and 5.2% and for group B 44.2%,28.6% and 6.5% (P>0.05).There were 16 deaths from radiotherapy complications,with 2 cases in group A and 14 in group B.CONCLUSION IORT+postoperative irradiation can enhance the local control rate of non-small cell lung cancer patients and reduce the recurrentrates.but it can not improve long-term survival.KEYWORDS:lung neoplasms/surgery,lung neoplasms/radiotherapy,radiotherapy intraoperative,prognosis.

  1. Long Term Study of Protective Mechanisms of Human Adipose Derived Mesenchymal Stem Cells on Cisplatin Induced Kidney injury in Sprague-Dawley Rats

    OpenAIRE

    Elhusseini, Fatma M; Saad, Mohamed-Ahdy A.A; Anber, Nahla; Elghannam, Doaa; Sobh, Mohamed-Ahmed; ALSAYED, AZIZA; El-dusoky, Sara; SHEASHAA, HUSSEIN; Abdel-Ghaffar, Hassan; Sobh, Mohamed

    2016-01-01

    Background/Aims: Long-term evaluation of cisplatin induced nephrotoxicity and the probable renal protective activities of stem cells are lacking up until now. We evaluated the early and long-term role of human adipose derived mesenchymal stem cells (ADMSCs) in prevention or amelioration of cisplatin induced acute kidney injury (AKI) in Sprague-Dawley rats. For this, we determined the kidney tissue level of oxidative stress markers in conjugation with a renal histopathological scoring system o...

  2. Impact of radiotherapy on pain relief and recalcification in plasma cell neoplasms. Long-term experience

    Energy Technology Data Exchange (ETDEWEB)

    Balducci, Mario; Chiesa, Silvia; Manfrida, Stefania [Univ. Hospital ' Gemelli' , Rome (IT). Radiotherapy Dept.] (and others)

    2011-02-15

    Purpose: To evaluate the impact of radiotherapy on pain relief and on recalcification in patients with osteolytic lesions due to plasma cell neoplasm. Patients and Methods: Pain relief was evaluated according to a 0-10 verbal numerical rating scale (NRS) and recalcification was measured using radiological imaging. Results: From 1996-2007, 52 patients were treated. Median total dose was 38 Gy (range, 16-50 Gy). Pain before radiotherapy was reported by 45 of 52 (86.5%) patients as being severe (8 {<=} NRS {<=} 10) in 5 (11%), moderate (5 {<=} NRS {<=} 7) in 27 (60%), and mild in 13 (29%). Pain relief was achieved in 41 of 45 patients (91%): complete relief was obtained in 21 (51.2%) and partial relief in 20 patients (48.8%); patients with severe pain experienced resolution and none presented an increase of pain. Drugs reduction/suspension was achieved in 7 of the 21 patients with complete response. Of 42 patients evaluable for recalcification, 21 (50%) presented a radiological response, which was identified as complete in 16 (38%). Conclusion: Our data confirm the effectiveness of radiotherapy for pain relief, including a reduction in drug intake, and on recalcification, thus, supporting its use in a multidisciplinary approach. (orig.)

  3. Characterization of long-term extension of isolated cell walls from growing cucumber hypocotyls

    Science.gov (United States)

    Cosgrove, D. J.

    1989-01-01

    Walls from frozen-thawed cucumber (Cucumis sativus L.) hypocotyls extend for many hours when placed in tension under acidic conditions. This study examined whether such "creep" is a purely physical process dependent on wall viscoelasticity alone or whether enzymatic activities are needed to maintain wall extension. Chemical denaturants inhibited wall creep, some acting reversibly and others irreversibly. Brief (15 s) boiling in water irreversibly inhibited creep, as did pre-incubation with proteases. Creep exhibited a high Q10 (3.8) between 20 degrees and 30 degrees C, with slow inactivation at higher temperatures, whereas the viscous flow of pectin solutions exhibited a much lower Q10 (1.35). On the basis of its temperature sensitivity, involvement of pectic gel-sol transitions was judged to be of little importance in creep. Pre-incubation of walls in neutral pH irreversibly inactivated their ability to creep, with a half-time of about 40 min. At 1 mM, Cu2+, Hg2+ and Al3+ were strongly inhibitory whereas most other cations, including Ca2+, had little effect. Sulfhydryl-reducing agents strongly stimulated creep, apparently by stabilizing wall enzyme(s). The physical effects of these treatments on polymer interactions were examined by Instron and stress-relaxation analyses. Some treatments, such as pH and Cu2+, had significant effects on wall viscoelasticity, but others had little or no apparent effect, thus implicating an enzymatic creep mechanism. The results indicate that creep depends on relatively rugged enzymes that are firmly attached to or entangled in the wall. The sensitivity of creep to SH-reducing agents indicates that thiol reduction of wall enzymes might provide a control mechanism for endogenous cell growth.

  4. Long-term change in pulmonary function after definitive radiotherapy for non-small cell lung cancer

    DEFF Research Database (Denmark)

    Schytte, T.; Bentzen, S. M.; Brink, C.; Hansen, O.

    Purpose/Objective: Radiotherapy (RT) for non-small cell lung cancer (NSCLC) may cause late toxicities, such as heart toxicity, changes in pulmonary function (PF) and lung fibrosis, but late toxicity data are scarce in the literature for this category of patients. The objective of this study was to...... shrinkage and the acute side effect, radiation induced pneumonitis. PFT within 6 months prior to thoracic progression were excluded. The final study group comprised 106 patients with 1286 pairs of PFTs. For each patient complete dosimetric data, including GTV, PTV, mean lung dose, Vx for total lung volume...... were available as well as patient specific pretreatment factors such as age, gender, smoking status, performance status, and pretreatment PF. Multivariable regression analyses were performed with patient, treatment, and dose-volume metrics as covariates to investigate their possible impact on long term...

  5. Long-term cathode performance and the microbial communities that develop in microbial fuel cells fed different fermentation endproducts

    KAUST Repository

    Kiely, Patrick D.

    2011-01-01

    To better understand how cathode performance and substrates affected communities that evolved in these reactors over long periods of time, microbial fuel cells were operated for more than 1year with individual endproducts of lignocellulose fermentation (acetic acid, formic acid, lactic acid, succinic acid, or ethanol). Large variations in reactor performance were primarily due to the specific substrates, with power densities ranging from 835±21 to 62±1mW/m3. Cathodes performance degraded over time, as shown by an increase in power of up to 26% when the cathode biofilm was removed, and 118% using new cathodes. Communities that developed on the anodes included exoelectrogenic families, such as Rhodobacteraceae, Geobacteraceae, and Peptococcaceae, with the Deltaproteobacteria dominating most reactors. Pelobacter propionicus was the predominant member in reactors fed acetic acid, and it was abundant in several other MFCs. These results provide valuable insights into the effects of long-term MFC operation on reactor performance. © 2010 Elsevier Ltd.

  6. Effects of long-term, low dose rate fission neutron irradiation on the peripheral hematological cells in rats

    International Nuclear Information System (INIS)

    Objective: To evaluate the effects of long-term, low dose rate fission neutron irradiation on the peripheral hematological cells in rats. Methods: 96 rats were randomly divided into the control group and the irradiation group with low dose rate fission neutron (252Cf, 0.35 mGy/h) irradiation 20.5 h every day. 8 rats of each group were killed at 14 d, 28 d, 42d, 56d, 70d after irradiation and 35d after the irradiation, and their peripheral hematological cells were tested respectively. Results: Compared with the control group, peripheral blood WBC was reduced significantly at the dose of 0.3Gy and 0.4Gy (P < 0.05), and was reduced remarkably at dose of 0.5Gy (P<0.01) and 35d after stopping irradiation(P<0.01). At dose of 0.2Gy, Peripheral blood RBC was abnormally higher comparing with the control group (P<0.01), accompanying with higher HCT and HGB, which suggests condensed blood. At the other point, RBC tend to become lower, but only at dose 0.5Gy, and the difference is significant comparing with control group(P <0.05). At dose of 0.3Gy, 0.4Gy and 0.5Gy, HCT were significantly lower comparing with control group. Comparing with control group, MCV was higher at 35d after stopping irradiation, and PLT was significantly lower in dose of 0.2Gy. Conclusion: Long-term irradiation with low dose rate fission neutron could significantly reduce peripheral blood WBC, with less effects on RBC and PLT. The reduced WBC could not recover at 35d after stopping irradiation. (authors)

  7. Isotropic Versus Bipolar Functionalized Biomimetic Artificial Basement Membranes and Their Evaluation in Long-Term Human Cell Co-Culture.

    Science.gov (United States)

    Rossi, Angela; Wistlich, Laura; Heffels, Karl-Heinz; Walles, Heike; Groll, Jürgen

    2016-08-01

    In addition to dividing tissues into compartments, basement membranes are crucial as cell substrates and to regulate cellular behavior. The development of artificial basement membranes is indispensable for the ultimate formation of functional engineered tissues; however, pose a challenge due to their complex structure. Herein, biodegradable electrospun polyester meshes are presented, exhibiting isotropic or bipolar bioactivation as a biomimetic and biofunctional model of the natural basement membrane. In a one-step preparation process, reactive star-shaped prepolymer additives, which generate a hydrophilic fiber surface, are electrospun with cell-adhesion-mediating peptides, derived from major components of the basement membrane. Human skin cells adhere to the functionalized meshes, and long-term co-culture experiments confirm that the artificial basement membranes recapitulate and preserve tissue specific functions. Several layers of immortalized human keratinocytes grow on the membranes, differentiating toward the surface and expressing typical epithelial markers. Fibroblasts migrate into the reticular lamina mimicking part of the mesh. Both cells types begin to produce extracellular matrix proteins and to remodel the initial membrane. It is shown at the example of skin that the artificial basement membrane design provokes biomimetic responses of different cell types and can thus be used as basis for the future development of basement membrane containing tissues. PMID:27283510

  8. Long-term treatment follow-up of children with sickle cell disease monitored with abnormal transcranial Doppler velocities.

    Science.gov (United States)

    Bernaudin, Françoise; Verlhac, Suzanne; Arnaud, Cécile; Kamdem, Annie; Hau, Isabelle; Leveillé, Emmanuella; Vasile, Manuela; Kasbi, Florence; Madhi, Fouad; Fourmaux, Christine; Biscardi, Sandra; Gluckman, Eliane; Socié, Gérard; Dalle, Jean-Hugues; Epaud, Ralph; Pondarré, Corinne

    2016-04-01

    Stroke risk in sickle cell anemia (SCA), predicted by high transcranial Doppler (TCD) velocities, is prevented by transfusions. We present the long-term follow-up of SCA children from the Créteil newborn cohort (1992-2012) detected at risk by TCD and placed on chronic transfusions. Patients with normalized velocities and no stenosis were treated with hydroxyurea, known to decrease anemia and hemolytic rate. Trimestrial Doppler was performed and transfusions restarted immediately in the case of reversion to abnormal velocities. Patients with a genoidentical donor underwent transplant. Abnormal time-averaged maximum mean velocities (TAMMV) ≥200 cm/s were detected in 92 SCA children at a mean age of 3.7 years (range, 1.3-8.3 years). No stroke occurred posttransfusion after a mean follow-up of 6.1 years. Normalization of velocities (TAMMV < 170 cm/s) was observed in 83.5% of patients. Stenosis, present in 27.5% of patients, was associated with the risk of non-normalization (P< .001). Switch from transfusions to hydroxyurea was prescribed for 45 patients, with a mean follow-up of 3.4 years. Reversion, predicted by baseline reticulocyte count ≥400 × 10(9)/L (P< .001), occurred in 28.9% (13/45) patients at the mean age of 7.1 years (range, 4.3-9.5 years). Transplant, performed in 24 patients, allowed transfusions to be safely stopped in all patients and velocities to be normalized in 4 patients who still had abnormal velocities on transfusions. This long-term cohort study shows that transfusions can be stopped not only in transplanted patients but also in a subset of patients switched to hydroxyurea, provided trimestrial Doppler follow-up and immediate restart of transfusions in the case of reversion. PMID:26851292

  9. Short and long-term safety of lenograstim administration in healthy peripheral haematopoietic progenitor cell donors: a single centre experience.

    Science.gov (United States)

    Martino, M; Console, G; Dattola, A; Callea, I; Messina, G; Moscato, T; Massara, E; Irrera, G; Fedele, R; Gervasi, A; Bresolin, G; Iacopino, P

    2009-08-01

    Healthy donors (HDs) who were mobilized using lenograstim (LENO) and who were undergoing peripheral haematopoietic progenitor cell collection with apheresis (HPC-A) were enrolled in a surveillance protocol. In all, 184 HDs have been assessed with a median follow-up of 62 months (range 2-155). HDs received LENO at a median dose of 10 microg/kg (range 5-15). Bone pain was reported as the most frequent short-term adverse event (71.2%). Other commonly observed short-term symptoms included fatigue (19.0%), fever (5.4%), headache (27.7%), nausea (12.0%) and insomnia (22.3%). Spleen size increased in 4.3% of the donors. No vascular disorders or cardiac disease occurred. Long-term follow-up included monitoring of adverse events, neoplastic disease or other pathologies. Transit ischaemic attack occurred in one donor (39 months post-donation). One autoimmune event was reported at 28 months post-recombinant human granulocyte (rhG)-CSF (ankylosing spondylitis); one donor with a history of chronic obstructive pulmonary disease developed secondary polyglobulia (50 months post-rhG-CSF). One donor was diagnosed with lung cancer at 19 months post-donation. No haematological disease was observed. In conclusion, the short-term safety appears to be verified, whereas, although the study identified no increased risks of malignancy among HDs who received rhG-CSF, long-term safety requires more complete data sets, especially a longer follow-up and a larger number of HDs. PMID:19182833

  10. Older patients with inoperable non-small cell lung cancer. Long-term survival after concurrent chemoradiotherapy

    International Nuclear Information System (INIS)

    Considering the various comorbidities associated with aging, the feasibility and usefulness of concurrent chemoradiotherapy (CRT) in older patients with inoperable non-small cell lung cancer (NSCLC) is a controversial issue. Here, we compared the feasibility of CRT and the effects of various comorbidities on the prognosis of a minimally selected population of inoperable NSCLC patients aged 60-77 years. The study comprised 161 patients with inoperable NSCLC who received CRT with a target radiation dose greater than 60 Gy and platinum-based chemotherapy from 1998 to 2007. The total population included 69 patients aged 60-69 years and 53 aged 70-77 years. These two age cohorts were included in the study with a follow-up of a median 14.5 months. The two groups showed no differences in long-term survival, as reflected by the 5-year survival rates of 13.0 ± 4.1 % (60- to 69-year-olds) and 14.4 ± 4.9 % (70- to 77-year-olds). During the treatment phase, the groups were comparable in terms of toxicity and the feasibility of chemotherapy. Compared to patients in their 60s, the septuagenarians had more pulmonary comorbidities (p = 0.02), diabetes mellitus (p = 0.04), cardiac comorbidities (p = 0.08), and previous cancer disease (p = 0.08) that exerted a negative effect on survival. In patients without comorbidities, there were no differences between the age groups. Age is not a contraindication for concurrent CRT per se, because elderly patients do not have a worse long-term prognosis than younger seniors. However, ''elderly patients'' (≥ 70-77 years) have more concomitant diseases associated with shorter survival than ''moderately aged patients'' (≥ 60-69 years). (orig.)

  11. Modification of fluorous substrates with oligo(ethylene glycol) via "click" chemistry for long-term resistance of cell adhesion.

    Science.gov (United States)

    Contreras-Caceres, Rafael; Santos, Catherine M; Li, Siheng; Kumar, Amit; Zhu, Zhiling; Kolar, Satya S; Casado-Rodriguez, Miguel A; Huang, Yongkai; McDermott, Alison; Lopez-Romero, Juan Manuel; Cai, Chengzhi

    2015-11-15

    In this work perfluorinated substrates fabricated from SiO2 glass slides are modified with oligo(ethylene glycol) (OEG) units for long-term resistance of cell adhesion purposes, based on fluorous interactions and click chemistry. Specifically, fluorous substrates, prepared by treatment of glass slides with 1H, 1H, 2H, 2H-perfluorodecyltrimethoxysilane (FAS17), were coated with ethynyl-OEG-C8F17, followed by covalent attachment of an azido-OEG via copper-catalyzed azide-alkyne cycloaddition (CuAAC) "click" reaction. We demonstrate that the resultant surface avoid fibrinogen adsorption and resisted cell adhesion for over 14days. X-ray photoemission spectroscopy (XPS) analysis and contact angle goniometry measurements confirm the presence of the OEG molecules on the fluorous substrates. Bright field optical images show total absence of 3T3 fibroblast cells on the OEG modified fluorinated substrate for 1 and 5days, and a remarkably decrease of cell adhesion at 14days. PMID:26210101

  12. Improvement of the long term stability in the high temperature solid oxide fuel cell using functional layers

    Energy Technology Data Exchange (ETDEWEB)

    Brueckner, B.; Guenther, C.; Ruckdaeschel, R. [Siemens AG, Erlangen (Germany)] [and others

    1996-12-31

    In the planar Siemens design of the solid oxide fuel cell a metallic interconnector is used to seperate the ceramic single cells. A disadvantage of the metallic bipolar plate which consists of a chromium alloy is the formation of high volatile Cr-oxides and hydroxides at the surface at the cathode side. The reaction products evaporate and are reduced at the cathode/electrolyte interface to form new crystalline phases. This process gives rise to long term cell degradation. Protective coatings might be successful in preventing the chromium oxide evaporation. The required properties of the protective layers are (I) high electrical conductivity, (II) similar coefficients of thermal expansion to the bipolar plate (III), chemical compatibility to the bipolar plate and cathode material, (IV) a low diffusion coefficient of Cr and (V) chemical stability up to 1223K under oxygen atmosphere. Furthermore, during operation at 1223K an electrical contact between the metallic plate and the electrodes has to be maintained. This problem could be solved using ceramic layer between the metallic plate and the single cells.

  13. Variations in gene and protein expression in canine chondrodystrophic nucleus pulposus cells following long-term three-dimensional culture.

    Directory of Open Access Journals (Sweden)

    Munetaka Iwata

    Full Text Available Intervertebral disc (IVD degeneration greatly affects quality of life. The nucleus pulposus (NP of chondrodystrophic dog breeds (CDBs is similar to the human NP, because the cells disappear with age and are replaced by fibrochondrocyte-like cells. However, because IVD develops as early as within the first year of life, we used canines as a model to investigate in vitro the mechanisms underlying IVD degeneration. Specifically, we evaluated the potential of a three-dimensional (3D culture of healthy NP as an in vitro model system to investigate the mechanisms of IVD degeneration. Agarose hydrogels were populated with healthy NP cells from beagles after performing magnetic resonance imaging, and mRNA expression profiles and pericellular extracellular matrix (ECM protein distribution were determined. After 25 days of 3D culture, there was a tendency for redifferentiation into the native NP phenotype, and mRNA levels of Col2A1, COMP, and CK18 were not significantly different from those of freshly isolated cells. Our findings suggest that long-term 3D culture promoted chondrodystrophic NP redifferentiation through reconstruction of the pericellular microenvironment. Further, lipopolysaccharide (LPS induced expression of TNF-α, MMP3, MMP13, VEGF, and PGES mRNA in the 3D cultures, creating a molecular milieu that mimics that of degenerated NP. These results suggest that this in vitro model represents a reliable and cost-effective tool for evaluating new therapies for disc degeneration.

  14. Factors that contribute to long-term survival in patients with leukemia not in remission at allogeneic hematopoietic cell transplantation

    Directory of Open Access Journals (Sweden)

    Okamura Hiroshi

    2011-04-01

    Full Text Available Abstract Background There has been insufficient examination of the factors affecting long-term survival of more than 5 years in patients with leukemia that is not in remission at transplantation. Method We retrospectively analyzed leukemia not in remission at allogeneic hematopoietic cell transplantation (allo-HCT performed at our institution between January 1999 and July 2009. Forty-two patients with a median age of 39 years received intensified conditioning (n = 9, standard (n = 12 or reduced-intensity conditioning (n = 21 for allo-HCT. Fourteen patients received individual chemotherapy for cytoreduction during the three weeks prior to reduced-intensity conditioning. Diagnoses comprised acute leukemia (n = 29, chronic myeloid leukemia-accelerated phase (n = 2, myelodysplastic syndrome/acute myeloid leukemia (MDS/AML (n = 10 and plasma cell leukemia (n = 1. In those with acute leukemia, cytogenetic abnormalities were intermediate (44% or poor (56%. The median number of blast cells in bone marrow (BM was 26.0% (range; 0.2-100 before the start of chemotherapy for allo-HCT. Six patients had leukemic involvement of the central nervous system. Stem cell sources were related BM (7%, related peripheral blood (31%, unrelated BM (48% and unrelated cord blood (CB (14%. Results Engraftment was achieved in 33 (79% of 42 patients. Median time to engraftment was 17 days (range: 9-32. At five years, the cumulative probabilities of acute graft-versus-host disease (GVHD and chronic GVHD were 63% and 37%, respectively. With a median follow-up of 85 months for surviving patients, the five-year Kaplan-Meier estimates of leukemia-free survival rate and overall survival (OS were 17% and 19%, respectively. At five years, the cumulative probability of non-relapse mortality was 38%. In the univariable analyses of the influence of pre-transplant variables on OS, poor-risk cytogenetics, number of BM blasts (>26%, MDS overt AML and CB as stem cell source were

  15. Enhancement of cancer stem-like and epithelial−mesenchymal transdifferentiation property in oral epithelial cells with long-term nicotine exposure: Reversal by targeting SNAIL

    International Nuclear Information System (INIS)

    Cigarette smoking is one of the major risk factors in the development and further progression of tumorigenesis, including oral squamous cell carcinoma (OSCC). Recent studies suggest that interplay cancer stem-like cells (CSCs) and epithelial−mesenchymal transdifferentiation (EMT) properties are responsible for the tumor maintenance and metastasis in OSCC. The aim of the present study was to investigate the effects of long-term exposure with nicotine, a major component in cigarette, on CSCs and EMT characteristics. The possible reversal regulators were further explored in nicotine-induced CSCs and EMT properties in human oral epithelial (OE) cells. Long-term exposure with nicotine was demonstrated to up-regulate ALDH1 population in normal gingival and primary OSCC OE cells dose-dependently. Moreover, long-term nicotine treatment was found to enhance the self-renewal sphere-forming ability and stemness gene signatures expression and EMT regulators in OE cells. The migration/cell invasiveness/anchorage independent growth and in vivo tumor growth by nude mice xenotransplantation assay was enhanced in long-term nicotine-stimulated OE cells. Knockdown of Snail in long-term nicotine-treated OE cells was found to reduce their CSCs properties. Therapeutic delivery of Si-Snail significantly blocked the xenograft tumorigenesis of long-term nicotine-treated OSCC cells and largely significantly improved the recipient survival. The present study demonstrated that the enrichment of CSCs coupled EMT property in oral epithelial cells induced by nicotine is critical for the development of OSCC tumorigenesis. Targeting Snail might offer a new strategy for the treatment of OSCC patients with smoking habit. -- Highlights: ► Sustained nicotine treatment induced CSCs properties of oral epithelial cells. ► Long-term nicotine treatment enhance EMT properties of oral epithelial cells. ► Long-term nicotine exposure increased tumorigenicity of oral epithelial cells. ► Si

  16. Enhancement of cancer stem-like and epithelial−mesenchymal transdifferentiation property in oral epithelial cells with long-term nicotine exposure: Reversal by targeting SNAIL

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Cheng-Chia [Institute of Oral Science, Chung Shan Medical University, Taichung, Taiwan (China); School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Chang, Yu-Chao, E-mail: cyc@csmu.edu.tw [School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China)

    2013-02-01

    Cigarette smoking is one of the major risk factors in the development and further progression of tumorigenesis, including oral squamous cell carcinoma (OSCC). Recent studies suggest that interplay cancer stem-like cells (CSCs) and epithelial−mesenchymal transdifferentiation (EMT) properties are responsible for the tumor maintenance and metastasis in OSCC. The aim of the present study was to investigate the effects of long-term exposure with nicotine, a major component in cigarette, on CSCs and EMT characteristics. The possible reversal regulators were further explored in nicotine-induced CSCs and EMT properties in human oral epithelial (OE) cells. Long-term exposure with nicotine was demonstrated to up-regulate ALDH1 population in normal gingival and primary OSCC OE cells dose-dependently. Moreover, long-term nicotine treatment was found to enhance the self-renewal sphere-forming ability and stemness gene signatures expression and EMT regulators in OE cells. The migration/cell invasiveness/anchorage independent growth and in vivo tumor growth by nude mice xenotransplantation assay was enhanced in long-term nicotine-stimulated OE cells. Knockdown of Snail in long-term nicotine-treated OE cells was found to reduce their CSCs properties. Therapeutic delivery of Si-Snail significantly blocked the xenograft tumorigenesis of long-term nicotine-treated OSCC cells and largely significantly improved the recipient survival. The present study demonstrated that the enrichment of CSCs coupled EMT property in oral epithelial cells induced by nicotine is critical for the development of OSCC tumorigenesis. Targeting Snail might offer a new strategy for the treatment of OSCC patients with smoking habit. -- Highlights: ► Sustained nicotine treatment induced CSCs properties of oral epithelial cells. ► Long-term nicotine treatment enhance EMT properties of oral epithelial cells. ► Long-term nicotine exposure increased tumorigenicity of oral epithelial cells. ► Si

  17. Transplants of immunologically isolated xenogeneic chromaffin cells provide a long-term source of pain-reducing neuroactive substances.

    Science.gov (United States)

    Sagen, J; Wang, H; Tresco, P A; Aebischer, P

    1993-06-01

    Adrenal medullary chromaffin cells are a potential source of neuroactive substances for transplantation into the CNS to alleviate neurochemical deficits. In particular, work in our laboratory has suggested that adrenal medullary transplants in the spinal subarachnoid space can alleviate pain by providing sustained local delivery of catecholamines and opioid peptides. One of the major limitations for clinical application of neural transplantation is the availability of donor material in sufficient quantities. This limitation may be overcome by the use of xenogeneic donors if long-term graft rejection can be prevented. The purpose of this study was to assess whether xenogeneic chromaffin cells immunologically isolated by semipermeable membranes could survive and continue to reduce pain when transplanted into the CNS. Isolated bovine chromaffin cells were encapsulated by semipermeable polymer membranes and implanted into the rat spinal subarachnoid space. Pain sensitivity was assessed at several intervals up to 3 months following implantation. Results indicated that encapsulated bovine chromaffin cell implants, but not empty control capsules, could repeatedly reduce pain sensitivity with nicotine stimulation for the duration of the study. This response was dose related, indicating that pharmacologic integrity of the transplanted chromaffin cells is retained. The analgesia induced by encapsulated chromaffin cell implants could be attenuated by the opiate antagonist naloxone and the alpha-adrenergic antagonist phentolamine, suggesting the involvement of both opioid peptides and catecholamines in mediating this response. In addition, in vitro neurochemical studies of recultured capsules revealed sustained release of Met-enkephalin and catecholamines from encapsulated cells 3 months following implantation into the spinal subarachnoid space.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7684773

  18. Cell-based neurotrophin treatment supports long-term auditory neuron survival in the deaf guinea pig.

    Science.gov (United States)

    Gillespie, Lisa N; Zanin, Mark P; Shepherd, Robert K

    2015-01-28

    The cochlear implant provides auditory cues to profoundly deaf patients by electrically stimulating the primary auditory neurons (ANs) of the cochlea. However, ANs degenerate in deafness; the preservation of a robust AN target population, in combination with advances in cochlear implant technology, may provide improved hearing outcomes for cochlear implant patients. The exogenous delivery of neurotrophins such as brain-derived neurotrophic factor (BDNF) and neurotrophin-3 is well known to support AN survival in deafness, and cell-based therapies provide a potential clinically viable option for delivering neurotrophins into the deaf cochlea. This study utilized cells that were genetically modified to express BDNF and encapsulated in alginate microspheres, and investigated AN survival in the deaf guinea pig following (a) cell-based neurotrophin treatment in conjunction with chronic electrical stimulation from a cochlear implant, and (b) long-term cell-based neurotrophin delivery. In comparison to deafened controls, there was significantly greater AN survival following the cell-based neurotrophin treatment, and there were ongoing survival effects for at least six months. In addition, functional benefits were observed following cell-based neurotrophin treatment and chronic electrical stimulation, with a statistically significant decrease in electrically evoked auditory brainstem response thresholds observed during the experimental period. This study demonstrates that cell-based therapies, in conjunction with a cochlear implant, shows potential as a clinically transferable means of providing neurotrophin treatment to support AN survival in deafness. This technology also has the potential to deliver other therapeutic agents, and to be used in conjunction with other biomedical devices for the treatment of a variety of neurodegenerative conditions. PMID:25481440

  19. Improved salinity tolerance of rice through cell type-specific expression of AtHKT1;1

    OpenAIRE

    Darren Plett; Gehan Safwat; Matthew Gilliham; Inge Skrumsager Møller; Stuart Roy; Neil Shirley; Andrew Jacobs; Alexander Johnson; Mark Tester

    2010-01-01

    Previously, cell type-specific expression of AtHKT1;1, a sodium transporter, improved sodium (Na(+)) exclusion and salinity tolerance in Arabidopsis. In the current work, AtHKT1;1, was expressed specifically in the root cortical and epidermal cells of an Arabidopsis GAL4-GFP enhancer trap line. These transgenic plants were found to have significantly improved Na(+) exclusion under conditions of salinity stress. The feasibility of a similar biotechnological approach in crop plants was explored...

  20. Cell type specificity of female lung cancer associated with sulfur dioxide from air pollutants in Taiwan: An ecological study

    OpenAIRE

    Tseng Ching-Yu; Huang Yi-Chia; Su Shih-Yung; Huang Jing-Yang; Lai Cheng-Hsiu; Lung Chia-Chi; Ho Chien-Chang; Liaw Yung-Po

    2012-01-01

    Abstract Background Many studies have examined the association between air pollutants (including sulfur dioxide [SO2], carbon monoxide [CO], nitrogen dioxide [NO2], nitric oxide [NO], ozone [O3], and particulate matter < 10 μm [PM10]) and lung cancer. However, data from previous studies on pathological cell types were limited, especially for SO2 exposure. We aimed to explore the association between SO2 exposure from outdoor air pollutants and female lung cancer incidence by cell type specific...

  1. Analysis of long-term performance and microbial community structure in bio-cathode microbial desalination cells.

    Science.gov (United States)

    Zhang, Huichao; Wen, Qinxue; An, Zhongyi; Chen, Zhiqiang; Nan, Jun

    2016-03-01

    A microbial desalination cell (MDC) could desalinate salt water without energy consumption and simultaneously generate bioenergy. Compared with an abiotic cathode MDC, an aerobic bio-cathode MDC is more sustainable and is less expensive to operate. In this study, the long-term operation (5500 h) performance of a bio-cathode MDC was investigated in which the power density, Coulombic efficiency, and salt removal rate were decreased by 71, 44, and 27 %, respectively. The primary reason for the system performance decrease was biofouling on the membranes, which increased internal resistance and reduced the ionic transfer and energy conversion efficiency. Changing membranes was an effective method to recover the MDC performance. The microbial community diversity in the MDC anode was low compared with that of the reported microbial fuel cell (MFC), while the abundance of Proteobacteria was 30 % higher. The content of Planctomycetes in the cathode biofilm sample was much higher than that in biofouling on the cation exchange membrane (CEM), indicating that Planctomycetes were relevant to cathode oxygen reduction. PMID:26596826

  2. Establishment of a long-term three-dimensional primary culture of mouse glandular stomach epithelial cells within the stem cell niche

    International Nuclear Information System (INIS)

    Highlights: ► We established a 3D culture system to allow long-term culture of stomach cells. ► In this culture system, gastric epithelial cells grew for about 3 months. ► The cultured cells differentiated into multi-units of the stomach. ► This culture method should be useful for elucidating the cause of gastric diseases. -- Abstract: Compared to the small intestine and colon, little is known about stem cells in the stomach because of a lack of specific stem cell markers and an in vitro system that allows long-term culture. Here we describe a long-term three-dimensional (3D) primary gastric culture system within the stem cell niche. Glandular stomach cells from neonatal mice cultured in collagen gel yielded expanding sphere-like structures for 3 months. The wall of the gastrospheres consisted of a highly polarized epithelial monolayer with an outer lining of myofibroblasts. The epithelial cells showed a tall columnar cell shape, basal round nuclei, and mucus-filled cytoplasm as well as expression of MUC5AC, indicating differentiation into gastric surface mucous cells. These cells demonstrated the features of fully differentiated gastric surface mucous cells such as microvilli, junctional complexes, and glycogen and secretory granules. Fewer than 1% of cultured epithelial cells differentiated into enteroendocrine cells. Active proliferation of the epithelial cells and many apoptotic cells in the inner lumen revealed the rapid cell turnover in gastrospheres in vitro. This method enables us to investigate the role of signaling between cell–cell and epithelial–mesenchymal interactions in an environment that is extremely similar to the in vivo environment

  3. Establishment of a long-term three-dimensional primary culture of mouse glandular stomach epithelial cells within the stem cell niche

    Energy Technology Data Exchange (ETDEWEB)

    Katano, Takahito [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Ootani, Akifumi [Department of Gastroenterology and GI Endoscopy Center, Shin-Kokura Hospital, Federation of National Public Service Personnel Mutual Aid Associations, 1-3-1 Kanada, Kokurakita-ku, Kitakyushu 803-0816 (Japan); Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501 (Japan); Mizoshita, Tsutomu, E-mail: tmizoshi@med.nagoya-cu.ac.jp [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Tanida, Satoshi; Tsukamoto, Hironobu; Ozeki, Keiji; Ebi, Masahide; Mori, Yoshinori; Kataoka, Hiromi; Kamiya, Takeshi [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Toda, Shuji [Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501 (Japan); Joh, Takashi [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan)

    2013-03-22

    Highlights: ► We established a 3D culture system to allow long-term culture of stomach cells. ► In this culture system, gastric epithelial cells grew for about 3 months. ► The cultured cells differentiated into multi-units of the stomach. ► This culture method should be useful for elucidating the cause of gastric diseases. -- Abstract: Compared to the small intestine and colon, little is known about stem cells in the stomach because of a lack of specific stem cell markers and an in vitro system that allows long-term culture. Here we describe a long-term three-dimensional (3D) primary gastric culture system within the stem cell niche. Glandular stomach cells from neonatal mice cultured in collagen gel yielded expanding sphere-like structures for 3 months. The wall of the gastrospheres consisted of a highly polarized epithelial monolayer with an outer lining of myofibroblasts. The epithelial cells showed a tall columnar cell shape, basal round nuclei, and mucus-filled cytoplasm as well as expression of MUC5AC, indicating differentiation into gastric surface mucous cells. These cells demonstrated the features of fully differentiated gastric surface mucous cells such as microvilli, junctional complexes, and glycogen and secretory granules. Fewer than 1% of cultured epithelial cells differentiated into enteroendocrine cells. Active proliferation of the epithelial cells and many apoptotic cells in the inner lumen revealed the rapid cell turnover in gastrospheres in vitro. This method enables us to investigate the role of signaling between cell–cell and epithelial–mesenchymal interactions in an environment that is extremely similar to the in vivo environment.

  4. Molecular Characterization of Arabidopsis GAL4/UAS Enhancer Trap Lines Identifies Novel Cell-Type-Specific Promoters.

    Science.gov (United States)

    Radoeva, Tatyana; Ten Hove, Colette A; Saiga, Shunsuke; Weijers, Dolf

    2016-06-01

    Cell-type-specific gene expression is essential to distinguish between the numerous cell types of multicellular organism. Therefore, cell-type-specific gene expression is tightly regulated and for most genes RNA transcription is the central point of control. Thus, transcriptional reporters are broadly used markers for cell identity. In Arabidopsis (Arabidopsis thaliana), a recognized standard for cell identities is a collection of GAL4/UAS enhancer trap lines. Yet, while greatly used, very few of them have been molecularly characterized. Here, we have selected a set of 21 frequently used GAL4/UAS enhancer trap lines for detailed characterization of expression pattern and genomic insertion position. We studied their embryonic and postembryonic expression domains and grouped them into three groups (early embryo development, late embryo development, and embryonic root apical meristem lines) based on their dominant expression. We show that some of the analyzed lines are expressed in a domain often broader than the one that is reported. Additionally, we present an overview of the location of the T-DNA inserts of all lines, with one exception. Finally, we demonstrate how the obtained information can be used for generating novel cell-type-specific marker lines and for genotyping enhancer trap lines. The knowledge could therefore support the extensive use of these valuable lines. PMID:27208300

  5. Effects of inhaled anesthetic isoflurane on long-term potentiation of CA3 pyramidal cell afferents in vivo

    Directory of Open Access Journals (Sweden)

    Ballesteros KA

    2012-11-01

    Full Text Available Kristen A Ballesteros,1 Angela Sikorski,2 James E Orfila,3 Joe L Martinez Jr41Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA; 2Texas A&M University Texarkana, Texarkana, TX, USA; 3University of Colorado in Denver, Denver, CO, USA; 4University of Illinois in Chicago, Chicago, IL, USAAbstract: Isoflurane is a preferred anesthetic, due to its properties that allow a precise concentration to be delivered continually during in vivo experimentation. The major mechanism of action of isoflurane is modulation of the γ-amino butyric acid (GABAA receptor-chloride channel, mediating inhibitory synaptic transmission. Animal studies have shown that isoflurane does not cause cell death, but it does inhibit cell growth and causes long-term hippocampal learning deficits. As there are no studies characterizing the effects of isoflurane on electrophysiological aspects of long-term potentiation (LTP in the hippocampus, it is important to determine whether isoflurane alters the characteristic responses of hippocampal afferents to cornu ammonis region 3 (CA3. We investigated the effects of isoflurane on adult male rats during in vivo induction of LTP, using the mossy fiber pathway, the lateral perforant pathway, the medial perforant pathway, and the commissural CA3 (cCA3 to CA3, with intracranial administration of Ringer’s solution, naloxone, RS-aminoindan-1, 5-dicarboxylic acid (AIDA, or 3-[(R-2-carboxypiperazin-4-yl]-propo-2-enyl-1-phosphonic acid (CPP. Then, we compared these responses to published electrophysiological data, using sodium pentobarbital as an anesthetic, under similar experimental conditions. Our results showed that LTP was exhibited in animals anesthetized with isoflurane under vehicle conditions. With the exception of AIDA in the lateral perforant pathway, the defining characteristics of the four pathways appeared to remain intact, except for the observation that LTP was markedly reduced in animals

  6. Loading of red blood cells with an analyte-sensitive dye for development of a long-term monitoring technique

    Science.gov (United States)

    Ritter, Sarah C.; Meissner, Kenith E.

    2012-03-01

    Measurement of blood analytes, such as pH and glucose, provide crucial information about a patient's health. Some such analytes, such as glucose in the case of diabetes, require long-term or near-continuous monitoring for proper disease management. However, current monitoring techniques are far from ideal: multiple-per-day finger stick tests are inconvenient and painful for the patient; implantable sensors have short functional life spans (i.e., 3-7 days). Red blood cells serve as an attractive alternative for carriers of analyte sensors. Once reintroduced to the blood stream, these carriers may continue to live for the remainder of their life span (120 days for humans). They are also biodegradable and biocompatible, thereby eliminating the immune system response common for many implanted devices. The proposed carrier system takes advantage of the ability of the red blood cells to swell in response to a decrease in the osmolarity of the extracellular solution. Just before the membranes lyse, they develop small pores on the scale of tens of nanometers. Analyte-sensitive dyes in the extracellular solution may then diffuse into the perforated red blood cells and become entrapped upon restoration of physiological temperature and osmolarity. Because the membranes contain various analyte transporters, intracellular analyte levels rapidly equilibrate to those of the extracellular solution. A fluorescent dye has been loaded inside of red blood cells using a preswelling technique. Alterations in preparation parameters have been shown to affect characteristics of the resulting dye-loaded red blood cells (e.g., intensity of fluorescence).

  7. A long-term analysis of Pt counter electrodes for Dye-sensitized Solar Cells exploiting a microfluidic housing system

    International Nuclear Information System (INIS)

    The study of the degradation process occurring in Dye-sensitized Solar Cells (DSCs) is still a hot topic, in view of the final industrialization and application of this class of devices. Currently the long-term analysis of DSCs is carried out on the entire devices, while the monitoring of cell components cannot be performed in situ directly on the materials, but only through indirect methods. In this paper we report on the analysis of two different kinds of Pt counter electrodes through direct measurements performed under real operating conditions, thanks to the use of a home-made microfluidic housing system, which allows the opening and the investigation of the cell components. The counter electrode samples were studied through X-Ray Photoelectron Spectroscopy, Field Emission Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, UV–visible Spectroscopy and Electrochemical Impedance Spectroscopy for a period longer than 1 year. The results showed that the performances of both classes of Pt counter electrodes remained stable for all the investigation period, despite some slight variation of the morphology. DSCs fabricated employing aged counter electrodes exhibited the same photovoltaic performance behavior of reference cells using fresh-produced counter electrodes, thus demonstrating that both class of materials do not undergo degradation during normal operating conditions. - Highlights: • The analysis of Pt counter electrodes for Dye-sensitized Solar Cells was carried out. • Two families of counter electrodes were studied for a period longer than 1 year. • The analyzed samples were investigated in real operating condition. • A small detachment of the Pt clusters in the thermal samples was observed. • The charge transfer properties remained unchanged for all the investigation period

  8. A long-term analysis of Pt counter electrodes for Dye-sensitized Solar Cells exploiting a microfluidic housing system

    Energy Technology Data Exchange (ETDEWEB)

    Sacco, Adriano, E-mail: adriano.sacco@iit.it [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Pugliese, Diego; Lamberti, Andrea [Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Castellino, Micaela; Chiodoni, Angelica [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Virga, Alessandro [Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Bianco, Stefano [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2015-07-01

    The study of the degradation process occurring in Dye-sensitized Solar Cells (DSCs) is still a hot topic, in view of the final industrialization and application of this class of devices. Currently the long-term analysis of DSCs is carried out on the entire devices, while the monitoring of cell components cannot be performed in situ directly on the materials, but only through indirect methods. In this paper we report on the analysis of two different kinds of Pt counter electrodes through direct measurements performed under real operating conditions, thanks to the use of a home-made microfluidic housing system, which allows the opening and the investigation of the cell components. The counter electrode samples were studied through X-Ray Photoelectron Spectroscopy, Field Emission Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, UV–visible Spectroscopy and Electrochemical Impedance Spectroscopy for a period longer than 1 year. The results showed that the performances of both classes of Pt counter electrodes remained stable for all the investigation period, despite some slight variation of the morphology. DSCs fabricated employing aged counter electrodes exhibited the same photovoltaic performance behavior of reference cells using fresh-produced counter electrodes, thus demonstrating that both class of materials do not undergo degradation during normal operating conditions. - Highlights: • The analysis of Pt counter electrodes for Dye-sensitized Solar Cells was carried out. • Two families of counter electrodes were studied for a period longer than 1 year. • The analyzed samples were investigated in real operating condition. • A small detachment of the Pt clusters in the thermal samples was observed. • The charge transfer properties remained unchanged for all the investigation period.

  9. Different Immunological Phenotypes Associated with Preserved CD4+ T Cell Counts in HIV-Infected Controllers and Viremic Long Term Non-Progressors

    DEFF Research Database (Denmark)

    Gaardbo, Julie Christine; Hartling, Hans J; Ronit, Andreas;

    2013-01-01

    HIV-infected controllers control viral replication and maintain normal CD4+ T cell counts. Long Term Non-Progressors (LTNP) also maintain normal CD4+ T cell counts, but have on-going viral replication. We hypothesized that different immunological mechanisms are responsible for preserved CD4+ T cell...... counts in controllers and LTNP....

  10. The evolutionary emergence of cell type-specific genes inferred from the gene expression analysis of Hydra

    Science.gov (United States)

    Hwang, Jung Shan; Ohyanagi, Hajime; Hayakawa, Shiho; Osato, Naoki; Nishimiya-Fujisawa, Chiemi; Ikeo, Kazuho; David, Charles N.; Fujisawa, Toshitaka; Gojobori, Takashi

    2007-01-01

    Cell lineages of cnidarians including Hydra represent the fundamental cell types of metazoans and provides us a unique opportunity to study the evolutionary diversification of cell type in the animal kingdom. Hydra contains epithelial cells as well as a multipotent interstitial cell (I-cell) that gives rise to nematocytes, nerve cells, gland cells, and germ-line cells. We used cDNA microarrays to identify cell type-specific genes by comparing gene expression in normal Hydra with animals lacking the I-cell lineage, so-called epithelial Hydra. We then performed in situ hybridization to localize expression to specific cell types. Eighty-six genes were shown to be expressed in specific cell types of the I-cell lineage. An additional 29 genes were expressed in epithelial cells and were down-regulated in epithelial animals lacking I-cells. Based on the above information, we constructed a database (http://hydra.lab.nig.ac.jp/hydra/), which describes the expression patterns of cell type-specific genes in Hydra. Most genes expressed specifically in either I-cells or epithelial cells have homologues in higher metazoans. By comparison, most nematocyte-specific genes and approximately half of the gland cell- and nerve cell-specific genes are unique to the cnidarian lineage. Because nematocytes, gland cells, and nerve cells appeared along with the emergence of cnidarians, this suggests that lineage-specific genes arose in cnidarians in conjunction with the evolution of new cell types required by the cnidarians. PMID:17766437

  11. Long-term collections

    CERN Multimedia

    Collectes à long terme

    2007-01-01

    The Committee of the Long Term Collections (CLT) asks for your attention for the following message from a young Peruvian scientist, following the earthquake which devastated part of her country a month ago.

  12. Encapsulated living choroid plexus cells: potential long-term treatments for central nervous system disease and trauma

    Science.gov (United States)

    Skinner, S. J. M.; Geaney, M. S.; Lin, H.; Muzina, M.; Anal, A. K.; Elliott, R. B.; Tan, P. L. J.

    2009-12-01

    . Previously reported evidence demonstrated that CP cells support the survival and differentiation of neuronal cells in vitro and effectively treat acute brain injury and disease in rodents and non-human primates in vivo. The accumulated preclinical data together with the long-term survival of implanted encapsulated cells in vivo provide a sound base for the investigation of these treatments for chronic inherited and established neurodegenerative conditions.

  13. Loss of growth inhibitory effects of retinoic acid in human breast cancer cells following long-term exposure to retinoic acid

    OpenAIRE

    Stephen, R; Darbre, P D

    2000-01-01

    Although retinoids are known to be inhibitory to breast cancer cell growth, a key remaining question is whether they would remain effective if administered long-term. We describe here the long-term effects of all-trans retinoic acid on two oestrogen-dependent human breast cancer cell lines MCF7 and ZR-75-1. Although both cell lines were growth inhibited by retinoic acid in the short-term in either the absence or the presence of oestradiol, prolonged culture with 1 μM all-trans retinoic acid r...

  14. Long term high temperature oxidation characteristics of La and Cu alloyed ferritic stainless steels for solid oxide fuel cell interconnects

    Science.gov (United States)

    Swaminathan, Srinivasan; Lee, Young-Su; Kim, Dong-Ik

    2016-09-01

    To ensure the best performance of solid oxide fuel cell metallic interconnects, the Fe-22 wt.% Cr ferritic stainless steels with various La contents (0.006-0.6 wt.%) and Cu addition (1.57 wt.%), are developed. Long-term isothermal oxidation behavior of these steels is investigated in air at 800 °C, for 2700 h. Chemistry, morphology, and microstructure of the thermally grown oxide scale are examined using XPS, SEM-EDX, and XRD techniques. Broadly, all the steels show a double layer consisting of an inner Cr2O3 and outer (Mn, Cr)3O4. Distinctly, in the La-added steels, binary oxides of Cr, Mn and Ti are found at the oxide scale surface together with (Mn, Cr)3O4. Furthermore, all La-varied steels possess the metallic Fe protrusions along with discontinuous (Mn, Cr)3O4 spinel zones at the oxide scale/metal interface and isolated precipitates of Ti-oxides in the underlying matrix. Increase of La content to 0.6 wt.% is detrimental to the oxidation resistance. For the Cu-added steel, Cu is found to segregate strongly at the oxide scale/metal interface which inhibits the ingress of oxygen thereby suppressing the subscale formation of (Mn, Cr)3O4. Thus, Cu addition to the Fe-22Cr ferritic stainless steels benefits the oxidation resistance.

  15. Long-Term Performance of Chemically and Physically Modified Activated Carbons in Air Cathodes of Microbial Fuel Cells

    KAUST Repository

    Zhang, Xiaoyuan

    2014-07-31

    © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Activated carbon (AC) is a low-cost and effective catalyst for oxygen reduction in air cathodes of microbial fuel cells (MFCs), but its performance must be maintained over time. AC was modified by three methods: 1)pyrolysis with iron ethylenediaminetetraacetic acid (AC-Fe), 2)heat treatment (AC-heat), and 3)mixing with carbon black (AC-CB). The maximum power densities after one month with these AC cathodes were 35% higher with AC-Fe (1410±50mW m-2) and AC-heat (1400±20mW m-2), and 16% higher with AC-CB (1210±30mW m-2) than for plain AC (1040±20mW m-2), versus 1270±50mW m-2 for a Pt control. After 16months, the Pt cathodes produced only 250±10mW m-2. However, the AC-heat and AC-CB cathodes still produced 960-970mW m-2, whereas plain AC produced 860±60mW m-2. The performance of the AC cathodes was restored to >85% of the initial maximum power densities by cleaning with a weak acid solution. Based on cost considerations among the AC materials, AC-CB appears to be the best choice for long-term performance.

  16. Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells

    KAUST Repository

    Zhang, Fang

    2011-08-01

    Activated carbon (AC) air-cathodes are inexpensive and useful alternatives to Pt-catalyzed electrodes in microbial fuel cells (MFCs), but information is needed on their long-term stability for oxygen reduction. AC cathodes were constructed with diffusion layers (DLs) with two different porosities (30% and 70%) to evaluate the effects of increased oxygen transfer on power. The 70% DL cathode initially produced a maximum power density of 1214±123mW/m 2 (cathode projected surface area; 35±4W/m 3 based on liquid volume), but it decreased by 40% after 1 year to 734±18mW/m 2. The 30% DL cathode initially produced less power than the 70% DL cathode, but it only decreased by 22% after 1 year (from 1014±2mW/m 2 to 789±68mW/m 2). Electrochemical tests were used to examine the reasons for the degraded performance. Diffusion resistance in the cathode was found to be the primary component of the internal resistance, and it increased over time. Replacing the cathode after 1 year completely restored the original power densities. These results suggest that the degradation in cathode performance was due to clogging of the AC micropores. These findings show that AC is a cost-effective material for oxygen reduction that can still produce ~750mW/m 2 after 1 year. © 2011 Elsevier B.V.

  17. Urea as a long-term stable alternative to guanidium thiocyanate additive in dye-sensitized solar cell

    Science.gov (United States)

    Kim, Mi-Jeong; Park, Nam-Gyu

    2012-09-01

    Photovoltaic performance of 0.05 M urea-contained redox electrolyte is compared to that of 0.05 M guanidinium thiocyanate (GSCN)-contained one in dye-sensitized solar cell. No significant difference in the initial photovoltaic performance is observed, which means that the role of urea additive is similar to that of GSCN. Initial solar-to-electrical conversion efficiency of the device containing GSCN shows 7% that is diminished to 5.8% after 40 days, whereas the device containing urea exhibits stable photovoltaic performance showing that initial efficiency of 7.2% is almost remained unchanged after 40 days (7.1%). The lowered efficiency of the GSCN-contained device is mainly due to the decreased photocurrent density, which is ascribed to the formation of needle-shaped crystals on TiO2 layer. Infrared spectroscopic study confirms that the crystals are dye analogue, which is indicative of dye desorption in the presence of GSCN. On the other hand, no crystals are formed in the urea-contained electrolyte, which implies that dye desorption is negligible. Urea additive is thus found to be less reactive in dye desorption than GSCN, leading to long-term stability.

  18. Long-term Disease Free and Successful Pregnancy in a Woman with Gonadal Dysgenesis and Malignant Germ Cell Tumor

    Directory of Open Access Journals (Sweden)

    Azamsadat Mousavi

    2012-06-01

    Full Text Available Objective: To report a case of long-term disease free and successful pregnancy after fertility sparing staging surgery with adjuvant chemotherapy in a 46,Xy gonadal dysgenetic with malignant germ cell tumor.Materials and methods: A case report from a university hospital about a 19-year-old female with 46,XY karyotype ( Swyer syndrome. The patient underwent bilateral gonadectomy and staging with uterus preservation. Six course adjuvant chemotherapy with VBP (Vinblastin, Bleomycin, Cisplatin was given. The case got pregnant through IVF- embryo donation. Disease free period and successful pregnancy is reported.Results: After treatment the patient is free of the disease after 11 years follow-up. She underwent in vitro fertilization treatment with oocyte donation and gave birth to a healthy ch.Conclusion: Improved multimodality treatment, allowance for consideration of fertility options for some women with gynecologic cancers. Since major concern in women with XY gonadal dysgenesis is ovarian malignancy, even with stage II dysgerminoma hysterectomy may not be required in some cases considering the opportunity for childbearing with the use of embryo transfer.

  19. Cell-Type-Specific Transcriptome Analysis in the Drosophila Mushroom Body Reveals Memory-Related Changes in Gene Expression.

    Science.gov (United States)

    Crocker, Amanda; Guan, Xiao-Juan; Murphy, Coleen T; Murthy, Mala

    2016-05-17

    Learning and memory formation in Drosophila rely on a network of neurons in the mushroom bodies (MBs). Whereas numerous studies have delineated roles for individual cell types within this network in aspects of learning or memory, whether or not these cells can also be distinguished by the genes they express remains unresolved. In addition, the changes in gene expression that accompany long-term memory formation within the MBs have not yet been studied by neuron type. Here, we address both issues by performing RNA sequencing on single cell types (harvested via patch pipets) within the MB. We discover that the expression of genes that encode cell surface receptors is sufficient to identify cell types and that a subset of these genes, required for sensory transduction in peripheral sensory neurons, is not only expressed within individual neurons of the MB in the central brain, but is also critical for memory formation. PMID:27160913

  20. Amoeba-based computing for traveling salesman problem: long-term correlations between spatially separated individual cells of Physarum polycephalum.

    Science.gov (United States)

    Zhu, Liping; Aono, Masashi; Kim, Song-Ju; Hara, Masahiko

    2013-04-01

    A single-celled, multi-nucleated amoeboid organism, a plasmodium of the true slime mold Physarum polycephalum, can perform sophisticated computing by exhibiting complex spatiotemporal oscillatory dynamics while deforming its amorphous body. We previously devised an "amoeba-based computer (ABC)" to quantitatively evaluate the optimization capability of the amoeboid organism in searching for a solution to the traveling salesman problem (TSP) under optical feedback control. In ABC, the organism changes its shape to find a high quality solution (a relatively shorter TSP route) by alternately expanding and contracting its pseudopod-like branches that exhibit local photoavoidance behavior. The quality of the solution serves as a measure of the optimality of which the organism maximizes its global body area (nutrient absorption) while minimizing the risk of being illuminated (exposure to aversive stimuli). ABC found a high quality solution for the 8-city TSP with a high probability. However, it remains unclear whether intracellular communication among the branches of the organism is essential for computing. In this study, we conducted a series of control experiments using two individual cells (two single-celled organisms) to perform parallel searches in the absence of intercellular communication. We found that ABC drastically lost its ability to find a solution when it used two independent individuals. However, interestingly, when two individuals were prepared by dividing one individual, they found a solution for a few tens of minutes. That is, the two divided individuals remained correlated even though they were spatially separated. These results suggest the presence of a long-term memory in the intrinsic dynamics of this organism and its significance in performing sophisticated computing. PMID:23438635

  1. CAST-ChIP Maps Cell-Type-Specific Chromatin States in the Drosophila Central Nervous System

    Directory of Open Access Journals (Sweden)

    Tamás Schauer

    2013-10-01

    Full Text Available Chromatin organization and gene activity are responsive to developmental and environmental cues. Although many genes are transcribed throughout development and across cell types, much of gene regulation is highly cell-type specific. To readily track chromatin features at the resolution of cell types within complex tissues, we developed and validated chromatin affinity purification from specific cell types by chromatin immunoprecipitation (CAST-ChIP, a broadly applicable biochemical procedure. RNA polymerase II (Pol II CAST-ChIP identifies ∼1,500 neuronal and glia-specific genes in differentiated cells within the adult Drosophila brain. In contrast, the histone H2A.Z is distributed similarly across cell types and throughout development, marking cell-type-invariant Pol II-bound regions. Our study identifies H2A.Z as an active chromatin signature that is refractory to changes across cell fates. Thus, CAST-ChIP powerfully identifies cell-type-specific as well as cell-type-invariant chromatin states, enabling the systematic dissection of chromatin structure and gene regulation within complex tissues such as the brain.

  2. Effects of long-term space condition on cell ultrastructure and the molecular level change of the tomato

    Science.gov (United States)

    Jinying, L.; Min, L.; Huai, X.; Yi, P.; Chunhua, Z.; Nechitalo, G.

    Effects of long-term exposure to physical factors of space flight on dormant seeds were studied on plants derived from tomato seeds flown for 6 years on board of the space station MIR Upon return to the Earth the seeds were germinated and grown to maturity Samples of plants were compared to plants from parallel ground-based controls Various differences of ultrastructure of the tomato leaf cell were observed with an electron microscope One plant carried by space station has the anatomy of leaves with a three-layered palisade tissue and other plants similar with ground controls have the anatomy of leaves with a one-layered palisade tissue The number of starch grains per chloroplast of every space-treated tomato leaf increased significantly compared with that of the ground control The leaf cell walls of two plants carried by space station became contracted and deformed The size of chloroplast in some space-treated plants was larger and the lamellae s structure of some chloroplasts turned curvature and loose The results obtained point out to significant changes occurring on the molecular level among the space-flight treated seedlings and the ground control The leaves of plants were used for AFLP Amplification Fragment Length Polymorphism analysis For the first generation space-flight treated tomato plants among 64 pairs of primers used in this experiment 43 primers generated the same DNA bands type and 21 primers generated a different DNA band type 2582 DNA bands were produced among which 34 DNA bands were polymorphic with the percentage

  3. Cell-type-specific control elements of the lymphotropic papovavirus enhancer.

    OpenAIRE

    Erselius, J R; Jostes, B; Hatzopoulos, A K; Mosthaf, L; Gruss, P

    1990-01-01

    Lymphotropic papovavirus (LPV) exhibits a highly restricted host range, in which only cells of primate B-lymphocyte origin are permissive for infection. Its enhancer element contributes to this tropism, since transcriptional potentiation is confined to cells of the hematopoietic lineage. Nuclear extracts from B and T cells, but not from HeLa cells, contain protein factors that interact specifically with the LPV 63-base-pair enhancer repeat, as demonstrated by DNase I footprinting and gel reta...

  4. Carbazole dye with phosphonic acid anchoring groups for long-term heat stability of dye-sensitized solar cells

    International Nuclear Information System (INIS)

    In dye-sensitized solar cells (DSSCs), the binding strength between the dye and TiO2 surface may affect the heat stability of the DSSCs. Carboxylic acids have generally been used as the anchoring groups for the adsorption of dyes on TiO2 surfaces. However, a phosphonic acid anchor is expected to effect more stable bonding to a TiO2 surface because of its tridentate binding capability. In this study, we developed a new carbazole dye that employed a phosphonic acid anchor, MK-94. We studied the effect of the dye anchoring group on the heat stability of DSSCs by comparing MK-94, MK-2 (a carbazole dye with a carboxylic acid anchoring group), and Z-907 (a well-known, robust Ru complex dye with a carboxylic acid anchoring group). In the initial performance assessment, the DSSC with MK-94 exhibited a lower short circuit current (jsc) but a higher open circuit voltage (ΔVoc) than MK-2. With respect to heat stability, decreases in jsc and ΔVoc were suppressed with MK-94, and the drop of the power conversion efficiency (PCE) was kept within 6% after 504 h of heating. In addition, MK-94 demonstrated the longest electron lifetime and largest charge transfer resistance than the other dyes during the stability test. In contrast, the PCE decreased 27% from the initial value in the DSSC with MK-2. Thus, the phosphonic acid anchor was effective in extending the long-term heat stability of the DSSCs

  5. Reassessment of long-term depression in cerebellar Purkinje cells in mice carrying mutated GluA2 C terminus.

    Science.gov (United States)

    Yamaguchi, Kazuhiko; Itohara, Shigeyoshi; Ito, Masao

    2016-09-01

    Long-term depression (LTD) of synaptic transmission from parallel fibers (PFs) to a Purkinje cell (PC) in the cerebellum has been considered to be a core mechanism of motor learning. Recently, however, discrepancies between LTD and motor learning have been reported in mice with a mutation that targeted the expression of PF-PC LTD by blocking AMPA-subtype glutamate receptor internalization regulated via the phosphorylation of AMPA receptors. In these mice, motor learning behavior was normal, but no PF-PC LTD was observed. We reexamined slices obtained from these GluA2 K882A and GluA2 Δ7 knockin mutants at 3-6 mo of age. The conventional protocols of stimulation did not induce LTD in these mutant mice, as previously reported, but surprisingly, LTD was induced using certain modified protocols. Such modifications involved increases in the number of PF stimulation (from one to two or five), replacement of climbing fiber stimulation with somatic depolarization (50 ms), filling a patch pipette with a Cs(+)-based solution, or extension of the duration of conjunction. We also found that intracellular infusion of a selective PKCα inhibitor (Gö6976) blocked LTD induction in the mutants, as in WT, suggesting that functional compensation occurred downstream of PKCα. The possibility that LTD in the mutants was caused by changes in membrane resistance, access resistance, or presynaptic property was excluded. The present results demonstrate that LTD is inducible by intensified conjunctive stimulations even in K882A and Δ7 mutants, indicating no contradiction against the LTD hypothesis of motor learning. PMID:27551099

  6. Early Significant Tumor Volume Reduction After Radiosurgery in Brain Metastases From Renal Cell Carcinoma Results in Long-Term Survival

    International Nuclear Information System (INIS)

    Purpose: To retrospectively evaluate survival of patients with brain metastasis from renal cell carcinoma (RCC) after radiosurgery. Patients and Methods: Between 1998 and 2010, 46 patients were treated with radiosurgery, and the total number of lesions was 99. The mean age was 58.9 years (range, 33–78 years). Twenty-six patients (56.5%) had a single brain metastasis. The mean tumor volume was 3.0 cm3 (range, 0.01–35.1 cm3), and the mean marginal dose prescribed was 20.8 Gy (range, 12–25 Gy) at the 50% isodose line. A patient was classified into the good-response group when the sum of the volume of the brain metastases decreased to less than 75% of the original volume at a 1-month follow-up evaluation using MRI. Results: As of December 28, 2010, 39 patients (84.8%) had died, and 7 (15.2%) survived. The overall median survival time was 10.0 ± 0.4 months (95% confidence interval, 9.1–10.8). After treatment, local tumor control was achieved in 72 (84.7%) of the 85 tumors assessed using MRI after radiosurgery. The good-response group survived significantly longer than the poor-response group (median survival times of 18.0 and 9.0 months, respectively; p = 0.025). In a multivariate analysis, classification in the good-response group was the only independent prognostic factor for longer survival (p = 0.037; hazard ratio = 0.447; 95% confidence interval, 0.209–0.953). Conclusions: Radiosurgery seems to be an effective treatment modality for patients with brain metastases from RCC. The early significant tumor volume reduction observed after radiosurgery seems to result in long-term survival in RCC patients with brain metastases.

  7. Gene expression profiles of hepatic cell-type specific marker genes in progression of liver fibrosis

    Institute of Scientific and Technical Information of China (English)

    Yoshiyuki Takahara; Mitsuo Takahashi; Hiroki Wagatsuma; Fumihiko Yokoya; Qing-Wei Zhang; Mutsuyo Yamaguchi; Hiroyuki Aburatani; Norifumi Kawada

    2006-01-01

    AIM: To determine the gene expression profile data for the whole liver during development of dimethylnitrosamine (DMN)-induced hepatic fibrosis.METHODS: Marker genes were identified for different types of hepatic cells, including hepatic stellate cells (HSCs), Kupffer cells (including other inflammatory cells),and hepatocytes, using independent temporal DNA microarray data obtained from isolated hepatic cells.RESULTS: The cell-type analysis of gene expression gave several key results and led to formation of three hypotheses: (1) changes in the expression of HSCspecific marker genes during fibrosis were similar to gene expression data in in vitro cultured HSCs, suggesting a major role of the self-activating characteristics of HSCs in formation of fibrosis; (2) expression of mast cell-specific marker genes reached a peak during liver fibrosis,suggesting a possible role of mast cells in formation of fibrosis; and (3) abnormal expression of hepatocytespecific marker genes was found across several metabolic pathways during fibrosis, including sulfur-containing amino acid metabolism, fatty acid metabolism, and drug metabolism, suggesting a mechanistic relationship between these abnormalities and symptoms of liver fibrosis.CONCLUSION: Analysis of marker genes for specific hepatic cell types can identify the key aspects of fibrogenesis. Sequential activation of inflammatory cells and the self-supporting properties of HSCs play an important role in development of fibrosis.

  8. Dopamine D1 receptor expression is bipolar cell type-specific in the mouse retina.

    Science.gov (United States)

    Farshi, Pershang; Fyk-Kolodziej, Bozena; Krolewski, David M; Walker, Paul D; Ichinose, Tomomi

    2016-07-01

    In the retina, dopamine is a key molecule for daytime vision. Dopamine is released by retinal dopaminergic amacrine cells and transmits signaling either by conventional synaptic or by volume transmission. By means of volume transmission, dopamine modulates all layers of retinal neurons; however, it is not well understood how dopamine modulates visual signaling pathways in bipolar cells. Here we analyzed Drd1a-tdTomato BAC transgenic mice and found that the dopamine D1 receptor (D1R) is expressed in retinal bipolar cells in a type-dependent manner. Strong tdTomato fluorescence was detected in the inner nuclear layer and localized to type 1, 3b, and 4 OFF bipolar cells and type 5-2, XBC, 6, and 7 ON bipolar cells. In contrast, type 2, 3a, 5-1, 9, and rod bipolar cells did not express Drd1a-tdTomato. Other interneurons were also found to express tdTomato including horizontal cells and a subset (25%) of AII amacrine cells. Diverse visual processing pathways, such as color or motion-coded pathways, are thought to be initiated in retinal bipolar cells. Our results indicate that dopamine sculpts bipolar cell performance in a type-dependent manner to facilitate daytime vision. J. Comp. Neurol. 524:2059-2079, 2016. © 2015 Wiley Periodicals, Inc. PMID:26587737

  9. Natural killer T (NKT)–B-cell interactions promote prolonged antibody responses and long-term memory to pneumococcal capsular polysaccharides

    OpenAIRE

    Bai, Li; Deng, Shenglou; Reboulet, Rachel; Mathew, Rebecca; Teyton, Luc; Savage, Paul B.; Bendelac, Albert

    2013-01-01

    Antibodies directed against microbial polysaccharides are a critical component of protective immune responses and vaccines. We used nanoparticles coexpressing pneumococcal capsular polysaccharides and a cell wall lipid antigen analog to model NKT–B-cell interactions. Our study demonstrated CD1d-restricted cognate interactions, isotype switch, affinity maturation, and long-term memory, despite the apparent failure of NKT cells to differentiate into follicular helper cells. The findings demonst...

  10. Defining cell-type specificity at the transcriptional level in human disease

    OpenAIRE

    Ju, Wenjun; Greene, Casey S; Eichinger, Felix; Nair, Viji; Hodgin, Jeffrey B.; Bitzer, Markus; Lee, Young-Suk; Zhu, Qian; Kehata, Masami; Li, Min; Jiang, Song; Rastaldi, Maria Pia; Cohen, Clemens D; Troyanskaya, Olga G.; Kretzler, Matthias

    2013-01-01

    Cell-lineage–specific transcripts are essential for differentiated tissue function, implicated in hereditary organ failure, and mediate acquired chronic diseases. However, experimental identification of cell-lineage–specific genes in a genome-scale manner is infeasible for most solid human tissues. We developed the first genome-scale method to identify genes with cell-lineage–specific expression, even in lineages not separable by experimental microdissection. Our machine-learning–based approa...

  11. Cell-type-specific neuroanatomy of cliques of autism-related genes in the mouse brain

    Directory of Open Access Journals (Sweden)

    Pascal eGrange

    2015-05-01

    Full Text Available Two cliques of genes identified computationally for their high co-expression in the mouse brain according to the Allen Brain Atlas, and for their enrichment in genes related to autism spectrum disorder, have recently been shown to be highly co-expressed in the cerebellar cortex, compared to what could be expected by chance. Moreover, the expression of these cliques of genes is not homogeneous across the cerebellar cortex, and it has been noted that their expression pattern seems to highlight the granular layer. However, this observation was only made by eye, and recent advances in computational neuroanatomy allow to rank cell types in the mouse brain (characterized by their transcriptome profiles according to the similarity between their spatial density profiles and the expression profiles of the cliques. We establish by Monte Carlo simulation that with probability at least 99%, the expression profiles of the two cliques are more similar to the density profile of granule cells than 99% of the expression of cliques containing the same number of genes (Purkinje cells also score above 99% in one of the cliques. Thresholding the expression profiles shows that the signal is more intense in the granular layer. Finally, we work out pairs of cell types whose combined expression profiles are more similar to the expression profiles of the cliquesthan any single cell type. These pairs predominantly consist of one cortical pyramidal cell and one cerebellar cell (whichcan be either a granule cell or a Purkinje cell.

  12. Cell-type-specific neuroanatomy of cliques of autism-related genes in the mouse brain.

    Science.gov (United States)

    Grange, Pascal; Menashe, Idan; Hawrylycz, Michael

    2015-01-01

    Two cliques of genes identified computationally for their high co-expression in the mouse brain according to the Allen Brain Atlas, and for their enrichment in genes related to autism spectrum disorder (ASD), have recently been shown to be highly co-expressed in the cerebellar cortex, compared to what could be expected by chance. Moreover, the expression of these cliques of genes is not homogeneous across the cerebellar cortex, and it has been noted that their expression pattern seems to highlight the granular layer. However, this observation was only made by eye, and recent advances in computational neuroanatomy allow to rank cell types in the mouse brain (characterized by their transcriptome profiles) according to the similarity between their spatial density profiles and the spatial expression profiles of the cliques. We establish by Monte Carlo simulation that with probability at least 99%, the expression profiles of the two cliques are more similar to the density profile of granule cells than 99% of the expression of cliques containing the same number of genes (Purkinje cells also score above 99% in one of the cliques). Thresholding the expression profiles shows that the signal is more intense in the granular layer. Finally, we work out pairs of cell types whose combined expression profiles are more similar to the expression profiles of the cliques than any single cell type. These pairs predominantly consist of one cortical pyramidal cell and one cerebellar cell (which can be either a granule cell or a Purkinje cell). PMID:26074809

  13. Long-term survival and T-cell kinetics in relapsed/refractory ALL patients who achieved MRD response after blinatumomab treatment.

    Science.gov (United States)

    Zugmaier, Gerhard; Gökbuget, Nicola; Klinger, Matthias; Viardot, Andreas; Stelljes, Matthias; Neumann, Svenja; Horst, Heinz-A; Marks, Reinhard; Faul, Christoph; Diedrich, Helmut; Reichle, Albrecht; Brüggemann, Monika; Holland, Chris; Schmidt, Margit; Einsele, Hermann; Bargou, Ralf C; Topp, Max S

    2015-12-10

    This long-term follow-up analysis evaluated overall survival (OS) and relapse-free survival (RFS) in a phase 2 study of the bispecific T-cell engager antibody construct blinatumomab in 36 adults with relapsed/refractory B-precursor acute lymphoblastic leukemia (ALL). In the primary analysis, 25 (69%) patients with relapsed/refractory ALL achieved complete remission with full (CR) or partial (CRh) hematologic recovery of peripheral blood counts within the first 2 cycles. Twenty-five patients (69%) had a minimal residual disease (MRD) response (bone marrow, and 1 patient with normocellular bone marrow but low peripheral counts. Ten of the 36 patients (28%) were long-term survivors (OS ≥30 months). Median OS was 13.0 months (median follow-up, 32.6 months). MRD response was associated with significantly longer OS (Mantel-Byar P = .009). All 10 long-term survivors had an MRD response. Median RFS was 8.8 months (median follow-up, 28.9 months). A plateau for RFS was reached after ∼18 months. Six of the 10 long-term survivors remained relapse-free, including 4 who received allogeneic stem cell transplantation (allo-SCT) as consolidation for blinatumomab and 2 who received 3 additional cycles of blinatumomab instead of allo-SCT. Three long-term survivors had neurologic events or cytokine release syndrome, resulting in temporary blinatumomab discontinuation; all restarted blinatumomab successfully. Long-term survivors had more pronounced T-cell expansion than patients with OS <30 months. PMID:26480933

  14. Assessment of Membrane Fluidity Fluctuations during Cellular Development Reveals Time and Cell Type Specificity.

    Science.gov (United States)

    Noutsi, Pakiza; Gratton, Enrico; Chaieb, Sahraoui

    2016-01-01

    Cell membrane is made up of a complex structure of lipids and proteins that diffuse laterally giving rise to what we call membrane fluidity. During cellular development, such as differentiation cell membranes undergo dramatic fluidity changes induced by proteins such as ARC and Cofilin among others. In this study we used the generalized polarization (GP) property of fluorescent probe Laurdan using two-photon microscopy to determine membrane fluidity as a function of time and for various cell lines. A low GP value corresponds to a higher fluidity and a higher GP value is associated with a more rigid membrane. Four different cell lines were monitored such as hN2, NIH3T3, HEK293 and L6 cells. Membrane fluidity was measured at 12h, 72h and 92 h. Our results show significant changes in membrane fluidity among all cell types at different time points. GP values tend to increase significantly within 92 h in hN2 cells and 72 h in NIH3T3 cells and only at 92 h in HEK293 cells. L6 showed a marked decrease in membrane fluidity at 72 h and starts to increase at 92 h. As expected, NIH3T3 cells have more rigid membrane at earlier time points. On the other hand, neurons tend to have the highest membrane fluidity at early time points emphasizing its correlation with plasticity and the need for this malleability during differentiation. This study sheds light on the involvement of membrane fluidity during neuronal differentiation and development of other cell lines. PMID:27362860

  15. Assessment of Membrane Fluidity Fluctuations during Cellular Development Reveals Time and Cell Type Specificity

    KAUST Repository

    Noutsi, Pakiza

    2016-06-30

    Cell membrane is made up of a complex structure of lipids and proteins that diffuse laterally giving rise to what we call membrane fluidity. During cellular development, such as differentiation cell membranes undergo dramatic fluidity changes induced by proteins such as ARC and Cofilin among others. In this study we used the generalized polarization (GP) property of fluorescent probe Laurdan using two-photon microscopy to determine membrane fluidity as a function of time and for various cell lines. A low GP value corresponds to a higher fluidity and a higher GP value is associated with a more rigid membrane. Four different cell lines were monitored such as hN2, NIH3T3, HEK293 and L6 cells. Membrane fluidity was measured at 12h, 72h and 92 h. Our results show significant changes in membrane fluidity among all cell types at different time points. GP values tend to increase significantly within 92 h in hN2 cells and 72 h in NIH3T3 cells and only at 92 h in HEK293 cells. L6 showed a marked decrease in membrane fluidity at 72 h and starts to increase at 92 h. As expected, NIH3T3 cells have more rigid membrane at earlier time points. On the other hand, neurons tend to have the highest membrane fluidity at early time points emphasizing its correlation with plasticity and the need for this malleability during differentiation. This study sheds light on the involvement of membrane fluidity during neuronal differentiation and development of other cell lines.

  16. Cell contact as an independent factor modulating cardiac myocyte hypertrophy and survival in long-term primary culture

    Science.gov (United States)

    Clark, W. A.; Decker, M. L.; Behnke-Barclay, M.; Janes, D. M.; Decker, R. S.

    1998-01-01

    Cardiac myocytes maintained in cell culture develop hypertrophy both in response to mechanical loading as well as to receptor-mediated signaling mechanisms. However, it has been shown that the hypertrophic response to these stimuli may be modulated through effects of intercellular contact achieved by maintaining cells at different plating densities. In this study, we show that the myocyte plating density affects not only the hypertrophic response and features of the differentiated phenotype of isolated adult myocytes, but also plays a significant role influencing myocyte survival in vitro. The native rod-shaped phenotype of freshly isolated adult myocytes persists in an environment which minimizes myocyte attachment and spreading on the substratum. However, these conditions are not optimal for long-term maintenance of cultured adult cardiac myocytes. Conditions which promote myocyte attachment and spreading on the substratum, on the other hand, also promote the re-establishment of new intercellular contacts between myocytes. These contacts appear to play a significant role in the development of spontaneous activity, which enhances the redevelopment of highly differentiated contractile, junctional, and sarcoplasmic reticulum structures in the cultured adult cardiomyocyte. Although it has previously been shown that adult cardiac myocytes are typically quiescent in culture, the addition of beta-adrenergic agonists stimulates beating and myocyte hypertrophy, and thereby serves to increase the level of intercellular contact as well. However, in densely-plated cultures with intrinsically high levels of intercellular contact, spontaneous contractile activity develops without the addition of beta-adrenergic agonists. In this study, we compare the function, morphology, and natural history of adult feline cardiomyocytes which have been maintained in cultures with different levels of intercellular contact, with and without the addition of beta-adrenergic agonists

  17. Older patients with inoperable non-small cell lung cancer. Long-term survival after concurrent chemoradiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Semrau, Sabine; Fietkau, Rainer [Friedrich-Alexander-University Erlangen-Nuernberg, Department of Radiation Oncology, Erlangen (Germany); Zettl, Heike [Rostock Cancer Registry University of Rostock, Rostock (Germany); Hildebrandt, Guido [University of Rostock, Department of Radiation Therapy, Rostock (Germany); Klautke, Gunther [Klinikum Chemnitz, Department of Radiation Therapy, Chemnitz (Germany)

    2014-12-15

    Considering the various comorbidities associated with aging, the feasibility and usefulness of concurrent chemoradiotherapy (CRT) in older patients with inoperable non-small cell lung cancer (NSCLC) is a controversial issue. Here, we compared the feasibility of CRT and the effects of various comorbidities on the prognosis of a minimally selected population of inoperable NSCLC patients aged 60-77 years. The study comprised 161 patients with inoperable NSCLC who received CRT with a target radiation dose greater than 60 Gy and platinum-based chemotherapy from 1998 to 2007. The total population included 69 patients aged 60-69 years and 53 aged 70-77 years. These two age cohorts were included in the study with a follow-up of a median 14.5 months. The two groups showed no differences in long-term survival, as reflected by the 5-year survival rates of 13.0 ± 4.1 % (60- to 69-year-olds) and 14.4 ± 4.9 % (70- to 77-year-olds). During the treatment phase, the groups were comparable in terms of toxicity and the feasibility of chemotherapy. Compared to patients in their 60s, the septuagenarians had more pulmonary comorbidities (p = 0.02), diabetes mellitus (p = 0.04), cardiac comorbidities (p = 0.08), and previous cancer disease (p = 0.08) that exerted a negative effect on survival. In patients without comorbidities, there were no differences between the age groups. Age is not a contraindication for concurrent CRT per se, because elderly patients do not have a worse long-term prognosis than younger seniors. However, ''elderly patients'' (≥ 70-77 years) have more concomitant diseases associated with shorter survival than ''moderately aged patients'' (≥ 60-69 years). (orig.) [German] Hinsichtlich der verschiedenen altersbedingten Komorbiditaeten werden die Durchfuehrbarkeit und der Nutzen einer simultanen Chemoradiotherapie (''concurrent chemoradiotherapy'', CRT) bei alten Patienten mit einem inoperablen nicht

  18. Cell-Type Specific DNA Methylation Patterns Define Human Breast Cellular Identity

    Czech Academy of Sciences Publication Activity Database

    Novák, Petr; Stampfer, M.R.; Munoz-Rodriguez, J.L.; Garbe, J.C.; Ehrich, M.; Futscher, B. W.; Jensen, T.J.

    2012-01-01

    Roč. 7, č. 12 (2012), e52299. E-ISSN 1932-6203 Institutional research plan: CEZ:AV0Z50510513 Institutional support: RVO:60077344 Keywords : MAMMARY EPITHELIAL-CELLS * PLURIPOTENT STEM-CELLS * CPG ISLAND SHORES Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.730, year: 2012

  19. Gene Expression Programs in Response to Hypoxia: Cell Type Specificity and Prognostic Significance in Human Cancers.

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available BACKGROUND: Inadequate oxygen (hypoxia triggers a multifaceted cellular response that has important roles in normal physiology and in many human diseases. A transcription factor, hypoxia-inducible factor (HIF, plays a central role in the hypoxia response; its activity is regulated by the oxygen-dependent degradation of the HIF-1alpha protein. Despite the ubiquity and importance of hypoxia responses, little is known about the variation in the global transcriptional response to hypoxia among different cell types or how this variation might relate to tissue- and cell-specific diseases. METHODS AND FINDINGS: We analyzed the temporal changes in global transcript levels in response to hypoxia in primary renal proximal tubule epithelial cells, breast epithelial cells, smooth muscle cells, and endothelial cells with DNA microarrays. The extent of the transcriptional response to hypoxia was greatest in the renal tubule cells. This heightened response was associated with a uniquely high level of HIF-1alpha RNA in renal cells, and it could be diminished by reducing HIF-1alpha expression via RNA interference. A gene-expression signature of the hypoxia response, derived from our studies of cultured mammary and renal tubular epithelial cells, showed coordinated variation in several human cancers, and was a strong predictor of clinical outcomes in breast and ovarian cancers. In an analysis of a large, published gene-expression dataset from breast cancers, we found that the prognostic information in the hypoxia signature was virtually independent of that provided by the previously reported wound signature and more predictive of outcomes than any of the clinical parameters in current use. CONCLUSIONS: The transcriptional response to hypoxia varies among human cells. Some of this variation is traceable to variation in expression of the HIF1A gene. A gene-expression signature of the cellular response to hypoxia is associated with a significantly poorer prognosis

  20. Role of "Aplysia" Cell Adhesion Molecules during 5-HT-Induced Long-Term Functional and Structural Changes

    Science.gov (United States)

    Han, Jin-Hee; Lim, Chae-Seok; Lee, Yong-Seok; Kandel, Eric R.; Kaang, Bong-Kiun

    2004-01-01

    We previously reported that five repeated pulses of 5-HT lead to down-regulation of the TM-apCAM isoform at the surface of "Aplysia" sensory neurons (SNs). We here examined whether apCAM down-regulation is required for 5-HT-induced long-term facilitation. We also analyzed the role of the cytoplasmic and extracellular domains by overexpressing…

  1. Long-term follow-up of post hematopoietic stem cell transplantation for Hurler syndrome: Clinical, biochemical, and pathological improvements

    Directory of Open Access Journals (Sweden)

    Eriko Yasuda

    2015-03-01

    In conclusion, this long-term post-HSCT observation should shed light on a new aspect of therapeutic effect associated with skeletal pathology and GAG levels as a biomarker, indicating that HSCT is a primary choice at an early stage for not only CNS but also skeletal system in combination of appropriate surgical procedures.

  2. Long-Term Collections

    CERN Multimedia

    Comité des collectes à long terme

    2011-01-01

    It is the time of the year when our fireman colleagues go around the laboratory for their traditional calendars sale. A part of the money of the sales will be donated in favour of the long-term collections. We hope that you will welcome them warmly.

  3. Long term morphological modelling

    DEFF Research Database (Denmark)

    Kristensen, Sten Esbjørn; Deigaard, Rolf; Taaning, Martin;

    2010-01-01

    A morphological modelling concept for long term nearshore morphology is proposed and examples of its application are presented and discussed. The model concept combines parameterised representations of the cross-shore morphology, with a 2DH area model for waves, currents and sediment transport in...

  4. Cell-type specific adhesive interactions of skeletal myoblasts with thrombospondin-1.

    OpenAIRE

    Adams, J. C.; Lawler, J

    1994-01-01

    Thrombospondin-1 (TSP-1) is an extracellular matrix glycoprotein that may play important roles in the morphogenesis and repair of skeletal muscle. To begin to explore the role of thrombospondin-1 in this tissue, we have examined the interactions of three rodent skeletal muscle cell lines, C2C12, G8, and H9c2, with platelet TSP-1. The cells secrete thrombospondin and incorporate it into the cell layer in a distribution distinct from that of fibronectin. Myoblasts attach and spread on fibronect...

  5. Cell type specificity and structural determinants of IRES activity from the 5' leaders of different HIV-1 transcripts.

    Science.gov (United States)

    Plank, Terra-Dawn M; Whitehurst, James T; Kieft, Jeffrey S

    2013-07-01

    Internal ribosome entry site (IRES) RNAs are important regulators of gene expression, but their diverse molecular mechanisms remain partially understood. The HIV-1 gag transcript leader contains an IRES that may be a good model for understanding the function of many other IRESs. We investigated the possibility that this IRES' function is linked to both the structure of the RNA and its cellular environment. We find that in the context of a bicistronic reporter construct, HIV-1 gag IRES' activity is cell type-specific, with higher activity in T-cell culture systems that model the natural target cells for HIV-1 infection. This finding underscores how an IRES may be fine tuned to function in certain cells, perhaps owing to cell type-specific protein factors. Using RNA probing and mutagenesis, we demonstrate that the HIV-1 gag IRES does not use pre-folded RNA structure to drive function, a finding that gives insight into how conformationally dynamic IRESs operate. Furthermore, we find that a common exon drives IRES activity in a diverse set of alternatively spliced transcripts. We propose a mechanism in which a structurally plastic RNA element confers the ability to initiate translation internally, and activity from this common element is modulated by 3' nucleotides added by alternative splicing. PMID:23661682

  6. Cell type specificity and structural determinants of IRES activity from the 5′ leaders of different HIV-1 transcripts

    Science.gov (United States)

    Plank, Terra-Dawn M.; Whitehurst, James T.; Kieft, Jeffrey S.

    2013-01-01

    Internal ribosome entry site (IRES) RNAs are important regulators of gene expression, but their diverse molecular mechanisms remain partially understood. The HIV-1 gag transcript leader contains an IRES that may be a good model for understanding the function of many other IRESs. We investigated the possibility that this IRES’ function is linked to both the structure of the RNA and its cellular environment. We find that in the context of a bicistronic reporter construct, HIV-1 gag IRES’ activity is cell type-specific, with higher activity in T-cell culture systems that model the natural target cells for HIV-1 infection. This finding underscores how an IRES may be fine tuned to function in certain cells, perhaps owing to cell type-specific protein factors. Using RNA probing and mutagenesis, we demonstrate that the HIV-1 gag IRES does not use pre-folded RNA structure to drive function, a finding that gives insight into how conformationally dynamic IRESs operate. Furthermore, we find that a common exon drives IRES activity in a diverse set of alternatively spliced transcripts. We propose a mechanism in which a structurally plastic RNA element confers the ability to initiate translation internally, and activity from this common element is modulated by 3′ nucleotides added by alternative splicing. PMID:23661682

  7. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    Science.gov (United States)

    Stampfer, Martha R; Garbe, James C

    2015-02-24

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  8. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Stampfer, Martha R.; Garbe, James C.

    2016-06-28

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  9. Targeting the hemangioblast with a novel cell type-specific enhancer

    OpenAIRE

    Teixeira Vera; Arede Natacha; Gardner Rui; Rodríguez-León Joaquín; Tavares Ana T

    2011-01-01

    Abstract Background Hemangioblasts are known as the common precursors for primitive hematopoietic and endothelial lineages. Their existence has been supported mainly by the observation that both cell types develop in close proximity and by in vitro differentiation and genetic studies. However, more compelling evidence will arise from tracking their cell fates using a lineage-specific marker. Results We report the identification of a hemangioblast-specific enhancer (Hb) located in the cis-regu...

  10. Cell type-specific interactions of transcription factors with a housekeeping promoter in vivo.

    OpenAIRE

    Stapleton, G; Somma, M P; Lavia, P

    1993-01-01

    Mammalian housekeeping promoters represent a class of regulatory elements different from those of tissues-specific genes, lacking a TATA box and associated with CG-rich DNA. We have compared the organization of the housekeeping Htf9 promoter in different cell types by genomic footprinting. The sites of in vivo occupancy clearly reflected local combinations of tissue-specific and ubiquitous binding factors. The flexibility of the Htf9 promoter in acting as the target of cell-specific combinati...

  11. Long-term gene therapy causes transgene-specific changes in the morphology of regenerating retinal ganglion cells.

    Directory of Open Access Journals (Sweden)

    Jennifer Rodger

    Full Text Available Recombinant adeno-associated viral (rAAV vectors can be used to introduce neurotrophic genes into injured CNS neurons, promoting survival and axonal regeneration. Gene therapy holds much promise for the treatment of neurotrauma and neurodegenerative diseases; however, neurotrophic factors are known to alter dendritic architecture, and thus we set out to determine whether such transgenes also change the morphology of transduced neurons. We compared changes in dendritic morphology of regenerating adult rat retinal ganglion cells (RGCs after long-term transduction with rAAV2 encoding: (i green fluorescent protein (GFP, or (ii bi-cistronic vectors encoding GFP and ciliary neurotrophic factor (CNTF, brain-derived neurotrophic factor (BDNF or growth-associated protein-43 (GAP43. To enhance regeneration, rats received an autologous peripheral nerve graft onto the cut optic nerve of each rAAV2 injected eye. After 5-8 months, RGCs with regenerated axons were retrogradely labeled with fluorogold (FG. Live retinal wholemounts were prepared and GFP positive (transduced or GFP negative (non-transduced RGCs injected iontophoretically with 2% lucifer yellow. Dendritic morphology was analyzed using Neurolucida software. Significant changes in dendritic architecture were found, in both transduced and non-transduced populations. Multivariate analysis revealed that transgenic BDNF increased dendritic field area whereas GAP43 increased dendritic complexity. CNTF decreased complexity but only in a subset of RGCs. Sholl analysis showed changes in dendritic branching in rAAV2-BDNF-GFP and rAAV2-CNTF-GFP groups and the proportion of FG positive RGCs with aberrant morphology tripled in these groups compared to controls. RGCs in all transgene groups displayed abnormal stratification. Thus in addition to promoting cell survival and axonal regeneration, vector-mediated expression of neurotrophic factors has measurable, gene-specific effects on the morphology of injured

  12. Targeting the hemangioblast with a novel cell type-specific enhancer

    Directory of Open Access Journals (Sweden)

    Teixeira Vera

    2011-12-01

    Full Text Available Abstract Background Hemangioblasts are known as the common precursors for primitive hematopoietic and endothelial lineages. Their existence has been supported mainly by the observation that both cell types develop in close proximity and by in vitro differentiation and genetic studies. However, more compelling evidence will arise from tracking their cell fates using a lineage-specific marker. Results We report the identification of a hemangioblast-specific enhancer (Hb located in the cis-regulatory region of chick Cerberus gene (cCer that is able to direct the expression of enhanced green fluorescent protein (eGFP to the precursors of yolk sac blood and endothelial cells in electroporated chick embryos. Moreover, we present the Hb-eGFP reporter as a powerful live imaging tool for visualizing hemangioblast cell fate and blood island morphogenesis. Conclusions We hereby introduce the Hb enhancer as a valuable resource for genetically targeting the hemangioblast population as well as for studying the dynamics of vascular and blood cell development.

  13. Unique cell type-specific junctional complexes in vascular endothelium of human and rat liver sinusoids.

    Directory of Open Access Journals (Sweden)

    Cyrill Géraud

    Full Text Available Liver sinusoidal endothelium is strategically positioned to control access of fluids, macromolecules and cells to the liver parenchyma and to serve clearance functions upstream of the hepatocytes. While clearance of macromolecular debris from the peripheral blood is performed by liver sinusoidal endothelial cells (LSECs using a delicate endocytic receptor system featuring stabilin-1 and -2, the mannose receptor and CD32b, vascular permeability and cell trafficking are controlled by transcellular pores, i.e. the fenestrae, and by intercellular junctional complexes. In contrast to blood vascular and lymphatic endothelial cells in other organs, the junctional complexes of LSECs have not yet been consistently characterized in molecular terms. In a comprehensive analysis, we here show that LSECs express the typical proteins found in endothelial adherens junctions (AJ, i.e. VE-cadherin as well as α-, β-, p120-catenin and plakoglobin. Tight junction (TJ transmembrane proteins typical of endothelial cells, i.e. claudin-5 and occludin, were not expressed by rat LSECs while heterogenous immunreactivity for claudin-5 was detected in human LSECs. In contrast, junctional molecules preferentially associating with TJ such as JAM-A, B and C and zonula occludens proteins ZO-1 and ZO-2 were readily detected in LSECs. Remarkably, among the JAMs JAM-C was considerably over-expressed in LSECs as compared to lung microvascular endothelial cells. In conclusion, we show here that LSECs form a special kind of mixed-type intercellular junctions characterized by co-occurrence of endothelial AJ proteins, and of ZO-1 and -2, and JAMs. The distinct molecular architecture of the intercellular junctional complexes of LSECs corroborates previous ultrastructural findings and provides the molecular basis for further analyses of the endothelial barrier function of liver sinusoids under pathologic conditions ranging from hepatic inflammation to formation of liver metastasis.

  14. Analysis of cell-type-specific gene expression during mouse spermatogenesis

    DEFF Research Database (Denmark)

    Almstrup, Kristian; Nielsen, John E; Hansen, Martin Asser;

    2004-01-01

    In rodents, changes in gene expression during spermatogenesis can be monitored by sampling testis from each day during postnatal development. However, changes in gene expression at the tissue level can reflect changes in the concentration of an mRNA in a specific cell type, changes in volume of s...

  15. CD4+CD25+CD127 regulatory cells play multiple roles in maintaining HIV-1 p24 production in patients on long-term treatment: HIV-1 p24-producing cells and suppression of anti-HIV immunity

    Directory of Open Access Journals (Sweden)

    Yan-Mei Jiao

    2015-08-01

    Conclusions: CD4+CD25+CD127 regulatory cells play multiple roles in maintaining HIV-1 p24 production in long-term ART patients. Treg cells may be a target for eliminating the latent HIV reservoir after effective long-term ART.

  16. Strain Variation in Glycosaminoglycan Recognition Influences Cell-Type-Specific Binding by Lyme Disease Spirochetes

    OpenAIRE

    Parveen, Nikhat; Robbins, Douglas; Leong, John M.

    1999-01-01

    Lyme disease, a chronic multisystemic disorder that can affect the skin, heart, joints, and nervous system is caused by Borrelia burgdorferi sensu lato. Lyme disease spirochetes were previously shown to bind glycosaminoglycans (GAGs). In the current study, the GAG-binding properties of eight Lyme disease strains were determined. Binding by two high-passage HB19 derivatives to Vero cells could not be inhibited by enzymatic removal of GAGs or by the addition of exogenous GAG. The other six stra...

  17. Innate immune response to pulmonary contusion: Identification of cell-type specific inflammatory responses

    OpenAIRE

    Hoth, J. Jason; Wells, Jonathan D.; Yoza, Barbara K.; McCall, Charles E.

    2012-01-01

    Lung injury from pulmonary contusion is a common traumatic injury, predominantly seen after blunt chest trauma such as in vehicular accidents. The local and systemic inflammatory response to injury includes activation of innate immune receptors, elaboration of a variety inflammatory mediators, and recruitment of inflammatory cells to the injured lung. Using a mouse model of pulmonary contusion, we had previously shown that innate immune Toll like receptors 2 and 4 (TLR2 and TLR4) mediate the ...

  18. Cell Type-Specific Manipulation with GFP-Dependent Cre Recombinase

    OpenAIRE

    Tang, Jonathan C. Y.; Rudolph, Stephanie; Dhande, Onkar S.; Abraira, Victoria E.; Choi, Seungwon; Lapan, Sylvain; Drew, Iain R.; Drokhlyansky, Eugene; Huberman, Andrew D.; Regehr, Wade G.; Cepko, Constance L.

    2015-01-01

    Summary There are many transgenic GFP reporter lines that allow visualization of specific populations of cells. Using such lines for functional studies requires a method that transforms GFP into a molecule that enables genetic manipulation. Here we report the creation of a method that exploits GFP for gene manipulation, Cre Recombinase Dependent on GFP (CRE-DOG), a split component system that uses GFP and its derivatives to directly induce Cre/loxP recombination. Using plasmid electroporation...

  19. Cell-Type Specific Determinants of NRAMP1 Expression in Professional Phagocytes

    Directory of Open Access Journals (Sweden)

    Mathieu F. M. Cellier

    2013-01-01

    Full Text Available The Natural resistance-associated macrophage protein 1 (Nramp1 or Solute carrier 11 member 1, Slc11a1 transports divalent metals across the membrane of late endosomes and lysosomes in professional phagocytes. Nramp1 represents an ancient eukaryotic cell-autonomous defense whereas the gene duplication that yielded Nramp1 and Nramp2 predated the origin of Sarcopterygians (lobe-finned fishes and tetrapods. SLC11A1 genetic polymorphisms associated with human resistance to tuberculosis consist of potential regulatory variants. Herein, current knowledge of the regulation of SLC11A1 gene expression is reviewed and comprehensive analysis of ENCODE data available for hematopoietic cell-types suggests a hypothesis for the regulation of SLC11A1 expression during myeloid development and phagocyte functional polarization. SLC11A1 is part of a 34.6 kb CTCF-insulated locus scattered with predicted regulatory elements: a 3' enhancer, a large 5' enhancer domain and four elements spread around the transcription start site (TSS, including several C/EBP and PU.1 sites. SLC11A1 locus ends appear mobilized by ETS-related factors early during myelopoiesis; activation of both 5' and 3' enhancers in myelo-monocytic cells correlate with transcription factor binding at the TSS. Characterizing the corresponding cis/trans determinants functionally will establish the mechanisms involved and possibly reveal genetic variation that impacts susceptibility to infectious or immune diseases.

  20. Long-term exposure of A549 cells to titanium dioxide nanoparticles induces DNA damage and sensitizes cells towards genotoxic agents.

    Science.gov (United States)

    Armand, Lucie; Tarantini, Adeline; Beal, David; Biola-Clier, Mathilde; Bobyk, Laure; Sorieul, Sephanie; Pernet-Gallay, Karin; Marie-Desvergne, Caroline; Lynch, Iseult; Herlin-Boime, Nathalie; Carriere, Marie

    2016-09-01

    Titanium dioxide nanoparticles (TiO2-NPs) are one of the most produced NPs in the world. Their toxicity has been studied for a decade using acute exposure scenarios, i.e. high exposure concentrations and short exposure times. In the present study, we evaluated their genotoxic impact using long-term and low concentration exposure conditions. A549 alveolar epithelial cells were continuously exposed to 1-50 μg/mL TiO2-NPs, 86% anatase/14% rutile, 24 ± 6 nm average primary diameter, for up to two months. Their cytotoxicity, oxidative potential and intracellular accumulation were evaluated using MTT assay and reactive oxygen species measurement, transmission electron microscopy observation, micro-particle-induced X-ray emission and inductively-coupled plasma mass spectroscopy. Genotoxic impact was assessed using alkaline and Fpg-modified comet assay, immunostaining of 53BP1 foci and the cytokinesis-blocked micronucleus assay. Finally, we evaluated the impact of a subsequent exposure of these cells to the alkylating agent methyl methanesulfonate. We demonstrate that long-term exposure to TiO2-NPs does not affect cell viability but causes DNA damage, particularly oxidative damage to DNA and increased 53BP1 foci counts, correlated with increased intracellular accumulation of NPs. In addition, exposure over 2 months causes cellular responses suggestive of adaptation, characterized by decreased proliferation rate and stabilization of TiO2-NP intracellular accumulation, as well as sensitization to MMS. Taken together, these data underline the genotoxic impact and sensitization effect of long-term exposure of lung alveolar epithelial cells to low levels of TiO2-NPs. PMID:26785166

  1. Therapy-related leukemia as a result of long-term chemotherapy for non-small cell lung cancer

    International Nuclear Information System (INIS)

    Recent advances in chemotherapy have prolonged the survival of lung cancer patients. However, there have been reports of patients who suffer therapy-related leukemia after chemotherapy. A 64-year-old woman was given a diagnosis of adenocarcinoma (T4N0M0 stage IIIB) in 2004, and received chemotherapy with cisplatin and other drugs from 2004 to 2009, and radiotherapy for brain metastasis in 2008. In January 2009, she was admitted to our hospital with low-grade fever, fatigue, and prolonged neutropenia. A peripheral blood smear revealed a predominance of circulating myeloblasts. Examination of the bone marrow aspirate confirmed acute myelogenous leukemia. We think that therapy-related leukemia developed because of long-term chemotherapy and radiotherapy. Therapy-related leukemia can develop in lung cancer patients who undergo long-term therapy. (author)

  2. Measuring cell-type specific differential methylation in human brain tissue.

    Science.gov (United States)

    Montaño, Carolina M; Irizarry, Rafael A; Kaufmann, Walter E; Talbot, Konrad; Gur, Raquel E; Feinberg, Andrew P; Taub, Margaret A

    2013-01-01

    The behavior of epigenetic mechanisms in the brain is obscured by tissue heterogeneity and disease-related histological changes. Not accounting for these confounders leads to biased results. We develop a statistical methodology that estimates and adjusts for celltype composition by decomposing neuronal and non-neuronal differential signal. This method provides a conceptual framework for deconvolving heterogeneous epigenetic data from postmortem brain studies. We apply it to find cell-specific differentially methylated regions between prefrontal cortex and hippocampus. We demonstrate the utility of the method on both Infinium 450k and CHARM data. PMID:24000956

  3. In vivo vascularization of cell sheets provided better long-term tissue survival than injection of cell suspension.

    Science.gov (United States)

    Takeuchi, Ryohei; Kuruma, Yosuke; Sekine, Hidekazu; Dobashi, Izumi; Yamato, Masayuki; Umezu, Mitsuo; Shimizu, Tatsuya; Okano, Teruo

    2016-08-01

    Cell sheets have shown a remarkable ability for repairing damaged myocardium in clinical and preclinical studies. Although they demonstrate a high degree of viability as engrafted cells in vivo, the reason behind their survivability is unclear. In this study, the survival and vascularization of rat cardiac cell sheets transplanted in the subcutaneous tissue of athymic rats were investigated temporally. The cell sheets showed significantly higher survival than cell suspensions for up to 12 months, using an in vivo bioluminescence imaging system to detect luciferase-positive transplanted cells. Terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) assay also showed a smaller number of apoptotic cells in the cell sheets than in the cell suspensions at 1 day. Rapid vascular formation and maturation were observed inside the cell sheets using an in vivo imaging system. Leaky vessels appeared at 6 h, red blood cells flowing through functional vessels appeared at 12 h, and morphologically matured vessels appeared at 7 days. In addition, immunostaining of cell sheets with nerve/glial antigen-2 (NG2) showed that vessel maturity increased over time. Interestingly, these results correlated with the dynamics of cell sheet mRNA expression. Genes related to endothelial cells (ECs) proliferation, migration and vessel sprouting were highly expressed within 1 day, and genes related to pericyte recruitment and vessel maturation were highly expressed at 3 days or later. This suggested that the cell sheets could secrete appropriate angiogenic factors in a timely way after transplantation, and this ability might be a key reason for their high survival. Copyright © 2014 John Wiley & Sons, Ltd. PMID:24470393

  4. Precise and long-term tracking of adipose-derived stem cells and their regenerative capacity via superb bright and stable organic nanodots.

    Science.gov (United States)

    Ding, Dan; Mao, Duo; Li, Kai; Wang, Xiaomin; Qin, Wei; Liu, Rongrong; Chiam, David Shunzhong; Tomczak, Nikodem; Yang, Zhimou; Tang, Ben Zhong; Kong, Deling; Liu, Bin

    2014-12-23

    Monitoring and understanding long-term fate and regenerative therapy of administrated stem cells in vivo is of great importance. Herein we report organic nanodots with aggregation-induced emission characteristics (AIE dots) for long-term tracking of adipose-derived stem cells (ADSCs) and their regenerative capacity in living mice. The AIE dots possess high fluorescence (with a high quantum yield of 25±1%), excellent biological and photophysical stabilities, low in vivo toxicity, and superb retention in living ADSCs with negligible interference on their pluripotency and secretome. These AIE dots also exhibit superior in vitro cell tracking capability compared to the most popular commercial cell trackers, PKH26 and Qtracker 655. In vivo quantitative studies with bioluminescence and GFP labeling as the controls reveal that the AIE dots can precisely and quantitatively report the fate of ADSCs and their regenerative capacity for 42 days in an ischemic hind limb bearing mouse model. PMID:25427294

  5. Chimeric Allografts Induced by Short-Term Treatment With Stem Cell Mobilizing Agents Result in Long-Term Kidney Transplant Survival Without Immunosuppression: II, Study in Miniature Swine.

    Science.gov (United States)

    Cameron, A M; Wesson, R N; Ahmadi, A R; Singer, A L; Hu, X; Okabayashi, T; Wang, Y; Shigoka, M; Fu, Y; Gao, W; Raccusen, L C; Montgomery, R A; Williams, G M; Sun, Z

    2016-07-01

    Transplantation is now lifesaving therapy for patients with end-stage organ failure but requires lifelong immunosuppression with resultant morbidity. Current immunosuppressive strategies inhibit T cell activation and prevent donor-recipient engagement. Therefore, it is not surprising that few host cells are demonstrated in donor grafts. However, our recent small animal studies found large numbers of recipient stem cells present after transplantation and pharmacological mobilization, resulting in a chimeric, repopulated organ. We now confirm these findings in a well-characterized large animal preclinical model. Here, we show that AMD3100 and FK506 mobilization of endogenous stem cells immediately post kidney transplantation combined with repeat therapy at 1, 2, and 3 months led to drug-free long-term survival in maximally immunologically mismatched swine. Three long-term recipients have stable chimeric transplants, preserved antidonor skin graft responses, and normal serum creatinine levels despite withdrawal of all medication for 3 years. PMID:26748958

  6. Immunoregulatory T Cells May Be Involved in Preserving CD4 T Cell Counts in HIV-Infected Long-Term Nonprogressors and Controllers

    DEFF Research Database (Denmark)

    Gaardbo, Julie C; Ronit, Andreas; Hartling, Hans J;

    2014-01-01

    BACKGROUND: HIV-infected controllers control viral replication and maintain normal CD4 T cell counts. Long-term nonprogressors (LTNPs) also maintain normal CD4 T cell counts but have ongoing viral replication. We hypothesized that immunoregulatory mechanisms are involved in preserved CD4 T cell...... counts in controllers and in LTNPs. METHODS: Twenty HIV-infected viremic controllers, 5 elite controllers (ECs), and 14 LTNPs were included in this cross-sectional study. For comparison, 25 progressors and 34 healthy controls were included. Regulatory T cells (Tregs), Treg subpopulations, CD161+Th17...... patients and controls. However, both ECs and LTNPs displayed a large proportion of activated Tregs suggesting immunoregulatory mechanisms to be involved in preserving CD4 T cell counts in HIV-infected nonprogressors....

  7. NOX1-induced accumulation of reactive oxygen species in abdominal fat-derived mesenchymal stromal cells impinges on long-term proliferation

    OpenAIRE

    Sela, M; Tirza, G; Ravid, O; Volovitz, I; Solodeev, I; Friedman, O; Zipori, D; E. Gur; Krelin, Y; Shani, N

    2015-01-01

    Mesenchymal stromal cells (MSCs) are multipotent and can be derived from different adult tissues including fat. Our repeated attempts to produce long-term proliferative cultures of rat abdominal adipose stem cells (aASCs) under normal oxygen concentration (21%) were unsuccessful. We set to examine the events controlling this cytostasis of aASCs and found that it resulted from overproduction of reactive oxygen species (ROS) that led to apoptosis. ROS overproduction in aASCs was accompanied by ...

  8. Long-term Smoking Mediated Down-regulation of Smad3 Induces Resistance to Carboplatin in Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Debangshu Samanta

    2012-07-01

    Full Text Available While numerous cell signaling pathways are known to play decisive roles in chemotherapeutic response, relatively little is known about the impact of the Smad-dependent transforming growth factor β pathway on the therapeutic outcome. Previous reports suggested that patients with lung cancer who continue to smoke while receiving chemotherapy have a poorer outcome than their nonsmoking counterparts do. In our previous study, we showed that long-term cigarette smoke condensate (CSC-mediated down-regulation of Smad3 induces tumorigenesis. The objective of this study was to determine the mechanism of function of Smad3 in chemoresistance induced by CSC in human lung cell lines, namely, A549 and HPL1A. Long-term CSC treatment increases the half-maximal inhibitory concentration (IC50 of carboplatin and makes cells resistant to carboplatin. The increase in IC50 of long-term CSC-treated cells is due to the reduced induction in apoptosis by carboplatin. The increase in IC50 and decrease in apoptosis in long-term CSC-treated cells is correlated with the expression of Bcl2. We have determined that Bcl2 is both necessary and sufficient to make the cells resistant to carboplatin. We have also shown that Smad3 acts upstream to regulate the expression of Bcl2 specifically and, thus, sensitivity of the cells to carboplatin. This is supported by the inverse correlation between the expressions of Smad3 and Bcl2 in human lung tumors. Collectively, these data suggest that loss of Smad3 expression in CSC-treated cells induces resistance to carboplatin by upregulating the expression of Bcl2. This study explains, at least in part, the higher chemoresistance rate observed in smokers.

  9. Cell Type-Specific Control of Spike Timing by Gamma-Band Oscillatory Inhibition.

    Science.gov (United States)

    Hasenstaub, Andrea; Otte, Stephani; Callaway, Edward

    2016-02-01

    Many lines of theoretical and experimental investigation have suggested that gamma oscillations provide a temporal framework for cortical information processing, acting to either synchronize neuronal firing, restrict neuron's relative spike times, and/or provide a global reference signal to which neurons encode input strength. Each theory has been disputed and some believe that gamma is an epiphenomenon. We investigated the biophysical plausibility of these theories by performing in vitro whole-cell recordings from 6 cortical neuron subtypes and examining how gamma-band and slow fluctuations in injected input affect precision and phase of spike timing. We find that gamma is at least partially able to restrict the spike timing in all subtypes tested, but to varying degrees. Gamma exerts more precise control of spike timing in pyramidal neurons involved in cortico-cortical versus cortico-subcortical communication and in inhibitory neurons that target somatic versus dendritic compartments. We also find that relatively few subtypes are capable of phase-based information coding. Using simple neuron models and dynamic clamp, we determine which intrinsic differences lead to these variations in responsiveness and discuss both the flexibility and confounds of gamma-based spike-timing systems. PMID:25778344

  10. Cell-type specific oxytocin gene expression from AAV delivered promoter deletion constructs into the rat supraoptic nucleus in vivo.

    Directory of Open Access Journals (Sweden)

    Raymond L Fields

    Full Text Available The magnocellular neurons (MCNs in the hypothalamus selectively express either oxytocin (OXT or vasopressin (AVP neuropeptide genes, a property that defines their phenotypes. Here we examine the molecular basis of this selectivity in the OXT MCNs by stereotaxic microinjections of adeno-associated virus (AAV vectors that contain various OXT gene promoter deletion constructs using EGFP as the reporter into the rat supraoptic nucleus (SON. Two weeks following injection of the AAVs, immunohistochemical assays of EGFP expression from these constructs were done to determine whether the EGFP reporter co-localizes with either the OXT- or AVP-immunoreactivity in the MCNs. The results show that the key elements in the OT gene promoter that regulate the cell-type specific expression the SON are located -216 to -100 bp upstream of the transcription start site. We hypothesize that within this 116 bp domain a repressor exists that inhibits expression specifically in AVP MCNs, thereby leading to the cell-type specific expression of the OXT gene only in the OXT MCNs.

  11. Radio(chemo)therapy for locally advanced squamous cell carcinoma of the esophagus. Long-term outcome

    Energy Technology Data Exchange (ETDEWEB)

    Ordu, Arif Deniz; Deymann, Lisa Felicia; Scherer, Vera; Combs, Stephanie E. [Technische Universitaet Muenchen, Department of Radiation Oncology, Klinikum rechts der Isar, Muenchen (Germany); Nieder, Carsten [University of Tromsoe, Department of Oncology and Palliative Medicine, Nordland Hospital Trust, Bodoe (Norway); Institute of Clinical Medicine, Faculty of Health Sciences, Tromsoe (Norway); Geinitz, Hans [Technische Universitaet Muenchen, Department of Radiation Oncology, Klinikum rechts der Isar, Muenchen (Germany); Krankenhaus der Barmherzigen Schwestern Linz, Department of Radiation Oncology, Linz (Austria); Kup, Philipp Guenther [Marien Hospital Herne, Universitaetsklinikum der Ruhr-Universitaet Bochum, Department of Radiation Oncology, Herne (Germany); Fakhrian, Khashayar [Technische Universitaet Muenchen, Department of Radiation Oncology, Klinikum rechts der Isar, Muenchen (Germany); Marien Hospital Herne, Universitaetsklinikum der Ruhr-Universitaet Bochum, Department of Radiation Oncology, Herne (Germany); Universitaetsklinikum der Ruhr-Universitaet Bochum, Department of Radiation Oncology, Sankt Josef Hospital Bochum, Bochum (Germany)

    2014-11-18

    The purpose of this work is to report the long-term outcomes of three-dimensional conformal radio(chemo)therapy in the curative management of esophageal squamous cell carcinoma (ESCC). A retrospective analysis of patients treated with radio(chemo)therapy between 1988 and 2011 at Klinikum rechts der Isar, Technische Universitaet Muenchen was performed. In all, 168 patients received radio(chemo)therapy for ESCC in curative intention. The median follow-up time was 91 months (range 1-212 months). There were 128 men and 40 women with a median age of 63 years. Selection criteria for radio(chemo)therapy were unfit for surgery and/or unresectable primary tumor (n = 146, 87 %) or patients' choice (n = 22, 13 %). The majority of the patients received a combination of cisplatin and 5-fluorouracil chemotherapy with 54 Gy in 30 fractions of radiotherapy. The median overall survival (OS) was 20 months (95 % confidence interval 17-23 months). The OS at 2 and 5 years for the whole cohort was 41 ± 4 % and 22 ± 3 %, respectively. Forty patients (24 %) suffered an in-field recurrence. The most common acute nonhematologic toxicity >grade 2 was dysphagia in 35 % of the patients. Acute hematologic toxicity > grade 2 was recorded in 14 % of the patients. There was no grade 5 toxicity observed during the study. Poor ECOG performance status (0-1 vs. 2-3, HR = 1.70, p = 0.002) and weight loss ≥ 10 % before the start of therapy (HR = 1.99, p = 0.001) were among the factors significantly associated with poor OS in multivariate analysis. Three-dimensional conformal definitive radio(chemo)therapy is well tolerated and leads to long-term survival in more than 20 % of patients with advanced disease and/or contraindication to surgery. However, 24 % in-field recurrence remains a major concern. Prospective trials are warranted to assess if a well-tailored conformal radiochemotherapy can improve the local control and obviate the need for surgical resection in patients with good general

  12. Tumorigenic heterogeneity in cancer stem cells evolved from long-term cultures of telomerase-immortalized human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Burns, Jorge S; Abdallah, Basem M; Guldberg, Per;

    2005-01-01

    or if the stem cell origin allowed most cells to behave as cancer stem cells. Cultures of the hMSC-TERT20 strain at population doubling 440 were highly clonogenic (94%). From 110 single-cell clones expanded by 20 population doublings, 6 underwent detailed comparison. Like the parental population, each clone had...... approximately 1.2 days doubling time with loss of contact inhibition. All retained 1,25-(OH)(2) vitamin D(3)-induced expression of osteoblastic markers: collagen type I, alkaline phosphatase, and osteocalcin. All shared INK4a/ARF gene locus deletion and epigenetic silencing of the DBCCR1 tumor suppressor gene....... Despite in vitro commonality, only four of six clones shared the growth kinetics and 100% tumorigenicity of the parental population. In contrast, one clone consistently formed latent tumors and the other established tumors with only 30% penetrance. Changing the in vitro microenvironment to mimic in vivo...

  13. Rho-Signaling-Directed YAP/TAZ Activity Underlies the Long-Term Survival and Expansion of Human Embryonic Stem Cells.

    Science.gov (United States)

    Ohgushi, Masatoshi; Minaguchi, Maki; Sasai, Yoshiki

    2015-10-01

    Human embryonic stem cells (hESCs) can survive and proliferate for an extended period of time in culture, but unlike that of tumor-derived cells, this form of cellular immortality does not depend on genomic aberrations. In this study, we sought to elucidate the molecular basis of this long-term growth property of hESCs. We found that the survival of hESCs depends on the small GTPase Rho and its activator AKAP-Lbc. We show that AKAP-Lbc/Rho signaling sustains the nuclear function of the transcriptional cofactors YAP and TAZ by modulating actin microfilament organization. By inducing reprogramming and differentiation, we found that dependency on this Rho signaling pathway is associated with the pluripotent state. Thus, our findings show that the capacity of hESCs to undergo long-term expansion in vitro is intrinsically coupled to their cellular identity through interconnected molecular circuits that link cell survival to pluripotency. PMID:26321201

  14. Long term survival following the detection of circulating tumour cells in head and neck squamous cell carcinoma

    International Nuclear Information System (INIS)

    Techniques for detecting circulating tumor cells in the peripheral blood of patients with head and neck cancers may identify individuals likely to benefit from early systemic treatment. Reconstruction experiments were used to optimise immunomagnetic enrichment and RT-PCR detection of circulating tumor cells using four markers (ELF3, CK19, EGFR and EphB4). This method was then tested in a pilot study using samples from 16 patients with advanced head and neck carcinomas. Seven patients were positive for circulating tumour cells both prior to and after surgery, 4 patients were positive prior to but not after surgery, 3 patients were positive after but not prior to surgery and 2 patients were negative. Two patients tested positive for circulating cells but there was no other evidence of tumor spread. Given this patient cohort had mostly advanced disease, as expected the detection of circulating tumour cells was not associated with significant differences in overall or disease free survival. For the first time, we show that almost all patients with advanced head and neck cancers have circulating cells at the time of surgery. The clinical application of techniques for detection of spreading disease, such as the immunomagnetic enrichment RT-PCR analysis used in this study, should be explored further

  15. A Single CD8+ T Cell Epitope Sets the Long-Term Latent Load of a Murid Herpesvirus

    OpenAIRE

    Sofia Marques; Marta Alenquer; Stevenson, Philip G.; J. Pedro Simas

    2008-01-01

    Author Summary Persistent viruses present a major challenge to the immune response. Gamma-herpesviruses are a prime example, and the archetypal family member, Epstein-Barr virus (EBV), has been studied for many years. A major unanswered question with EBV is why long-term virus loads—a key pathogenesis outcome—vary so widely between individuals. As most EBV studies are necessarily descriptive, the murid gamma-herpesvirus MuHV-4 provides an important focus of pathogenesis research. Here, we use...

  16. A quantitative comparison of cell-type-specific microarray gene expression profiling methods in the mouse brain.

    Directory of Open Access Journals (Sweden)

    Benjamin W Okaty

    Full Text Available Expression profiling of restricted neural populations using microarrays can facilitate neuronal classification and provide insight into the molecular bases of cellular phenotypes. Due to the formidable heterogeneity of intermixed cell types that make up the brain, isolating cell types prior to microarray processing poses steep technical challenges that have been met in various ways. These methodological differences have the potential to distort cell-type-specific gene expression profiles insofar as they may insufficiently filter out contaminating mRNAs or induce aberrant cellular responses not normally present in vivo. Thus we have compared the repeatability, susceptibility to contamination from off-target cell-types, and evidence for stress-responsive gene expression of five different purification methods--Laser Capture Microdissection (LCM, Translating Ribosome Affinity Purification (TRAP, Immunopanning (PAN, Fluorescence Activated Cell Sorting (FACS, and manual sorting of fluorescently labeled cells (Manual. We found that all methods obtained comparably high levels of repeatability, however, data from LCM and TRAP showed significantly higher levels of contamination than the other methods. While PAN samples showed higher activation of apoptosis-related, stress-related and immediate early genes, samples from FACS and Manual studies, which also require dissociated cells, did not. Given that TRAP targets actively translated mRNAs, whereas other methods target all transcribed mRNAs, observed differences may also reflect translational regulation.

  17. Cell-Type-Specific Profiling of Gene Expression and Chromatin Binding without Cell Isolation: Assaying RNA Pol II Occupancy in Neural Stem Cells

    OpenAIRE

    Southall, Tony D.; Gold, Katrina S.; Egger, Boris; Davidson, Catherine M.; Caygill, Elizabeth E.; Marshall, Owen J.; Brand, Andrea H.

    2013-01-01

    Summary Cell-type-specific transcriptional profiling often requires the isolation of specific cell types from complex tissues. We have developed “TaDa,” a technique that enables cell-specific profiling without cell isolation. TaDa permits genome-wide profiling of DNA- or chromatin-binding proteins without cell sorting, fixation, or affinity purification. The method is simple, sensitive, highly reproducible, and transferable to any model system. We show that TaDa can be used to identify transc...

  18. Use of the α-mannosidase I inhibitor kifunensine allows the crystallization of apo CTLA-4 homodimer produced in long-term cultures of Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    The α-mannosidase I inhibitor kifunensine inhibited N-glycan processing in long-term cultures of Chinese hamster ovary cells, allowing deglycosylation and crystallization of the homodimeric extracellular region of the inhibitory glycoprotein receptor CTLA-4 (CD152). Glycoproteins present problems for structural analysis since they often have to be glycosylated in order to fold correctly and because their chemical and conformational heterogeneity generally inhibits crystallization. It is shown that the α-mannosidase I inhibitor kifunensine, which has previously been used for the purpose of glycoprotein crystallization in short-term (3–5 d) cultures, is apparently stable enough to be used to produce highly endoglycosidase H-sensitive glycoprotein in long-term (3–4 week) cultures of stably transfected Chinese hamster ovary (CHO) cells. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry-based analysis of the extracellular region of the cytotoxic T-lymphocyte antigen 4 (CTLA-4; CD152) homodimer expressed in long-term CHO cell cultures in the presence of kifunensine revealed that the inhibitor restricted CTLA-4 glycan processing to Man9GlcNAc2 and Man5GlcNAc2 structures. Complex-type glycans were undetectable, suggesting that the inhibitor was active for the entire duration of the cultures. Endoglycosidase treatment of the homodimer yielded protein that readily formed orthorhombic crystals with unit-cell parameters a = 43.9, b = 51.5, c = 102.9 Å and space group P212121 that diffracted to Bragg spacings of 1.8 Å. The results indicate that kifunensine will be effective in most, if not all, transient and long-term mammalian cell-based expression systems

  19. Tumor vaccine composed of C-class CpG oligodeoxynucleotides and irradiated tumor cells induces long-term antitumor immunity

    Directory of Open Access Journals (Sweden)

    Cerkovnik Petra

    2010-09-01

    Full Text Available Abstract Background An ideal tumor vaccine should activate both effector and memory immune response against tumor-specific antigens. Beside the CD8+ T cells that play a central role in the generation of a protective immune response and of long-term memory, dendritic cells (DCs are important for the induction, coordination and regulation of the adaptive immune response. The DCs can conduct all of the elements of the immune orchestra and are therefore a fundamental target and tool for vaccination. The present study was aimed at assessing the ability of tumor vaccine composed of C-class CpG ODNs and irradiated melanoma tumor cells B16F1 followed by two additional injections of CpG ODNs to induce the generation of a functional long-term memory response in experimental tumor model in mice (i.p. B16F1. Results It has been shown that the functional memory response in vaccinated mice persists for at least 60 days after the last vaccination. Repeated vaccination also improves the survival of experimental animals compared to single vaccination, whereas the proportion of animals totally protected from the development of aggressive i.p. B16F1 tumors after vaccination repeated three times varies between 88.9%-100.0%. Additionally, the long-term immune memory and tumor protection is maintained over a prolonged period of time of at least 8 months. Finally, it has been demonstrated that following the vaccination the tumor-specific memory cells predominantly reside in bone marrow and peritoneal tissue and are in a more active state than their splenic counterparts. Conclusions In this study we demonstrated that tumor vaccine composed of C-class CpG ODNs and irradiated tumor cells followed by two additional injections of CpG ODNs induces a long-term immunity against aggressive B16F1 tumors.

  20. Long-term detection of fluorescently labeled human mesenchymal stem cell in vitro and in vivo by semi-automated microscopy.

    Science.gov (United States)

    Polzer, Hans; Volkmer, Elias; Saller, Maximilian M; Prall, Wolf C; Haasters, Florian; Drosse, Inga; Anz, David; Mutschler, Wolf; Schieker, Matthias

    2012-02-01

    The use of seeded scaffolds in regenerative medicine is limited by the low survival of transplanted mesenchymal stem cells (MSC). Current approaches aim at improving cell viability but require an adequate long-term detection of the transplanted cells. Unfortunately, commonly performed labeling techniques have not been validated for this purpose, and studies often reveal inconclusive results. Consequently, we intended to identify the most suitable method for long-term detection of human MSC (hMSC) in vitro and in vivo. hMSC were labeled using the vital stainings PKH26 and carboxyfluorescein diacetate succinimidyl ester (CFDA-SE) as well as enhanced green fluorescent protein (eGFP) transduction. Metabolic activity and relative fluorescence intensity (RFI) were quantified in vitro over 21 days at 8 time points using standardized semi-automated microscopy and flow cytometry. In vivo, cell seeded scaffolds were subcutaneously implanted in nude mice, and RFI was analyzed over 42 days at 5 time points. In vitro, PKH26 and CFDA-SE significantly reduced metabolic activity. RFI of both stainings significantly decreased after 1 day and further faded to RFI over the total period of 21 days. In vivo, RFI of eGFP labeled cells reached a plateau phase after 21 days and displayed a 3.8-fold higher RFI compared with PKH26 and CFDA-SE on day 42 evaluated in 280 field of views per scaffold using three scaffolds for each labeling technique and time point. We conclude that PKH26 and CFDA-SE are unsuitable for long-term detection of hMSC. eGFP transduction, in turn, allows long-term detection of hMSC in vitro and in vivo. Our results suggest that eGFP is currently the best option among the fluorescent labeling techniques to follow the fate of transplanted hMSC. PMID:21951128

  1. Collectes à long terme

    CERN Document Server

    Collectes à long terme

    2014-01-01

    En cette fin d’année 2014 qui approche à grands pas, le Comité des Collectes à Long Terme remercie chaleureusement ses fidèles donatrices et donateurs réguliers pour leurs contributions à nos actions en faveur des plus démunis de notre planète. C’est très important, pour notre Comité, de pouvoir compter sur l’appui assidu que vous nous apportez. Depuis plus de 40 ans maintenant, le modèle des CLT est basé principalement sur des actions à long terme (soit une aide pendant 4-5 ans par projet, mais plus parfois selon les circonstances), et sa planification demande une grande régularité de ses soutiens financiers. Grand MERCI à vous ! D’autres dons nous parviennent au cours de l’année, et ils sont aussi les bienvenus. En particulier, nous tenons à remercier...

  2. The cytoskeleton of Drosophila-derived Schneider line-1 and Kc23 cells undergoes significant changes during long-term culture

    Science.gov (United States)

    Schatten, H.; Hedrick, J.; Chakrabarti, A.

    1998-01-01

    Insect cell cultures derived from Drosophila melanogaster are increasingly being used as an alternative system to mammalian cell cultures, as they are amenable to genetic manipulation. Although Drosophila cells are an excellent tool for the study of genes and expression of proteins, culture conditions have to be considered in the interpretation of biochemical results. Our studies indicate that significant differences occur in cytoskeletal structure during the long-term culture of the Drosophila-derived cell lines Schneider Line-1 (S1) and Kc23. Scanning, transmission-electron, and immunofluorescence microscopy studies reveal that microfilaments, microtubules, and centrosomes become increasingly different during the culture of these cells from 24 h to 7-14 days. Significant cytoskeletal changes are observed at the cell surface where actin polymerizes into microfilaments, during the elongation of long microvilli. Additionally, long protrusions develop from the cell surface; these protrusions are microtubule-based and establish contact with neighboring cells. In contrast, the microtubule network in the interior of the cells becomes disrupted after four days of culture, resulting in altered transport of mitochondria. Microtubules and centrosomes are also affected in a small percent of cells during cell division, indicating an instability of centrosomes. Thus, the cytoskeletal network of microfilaments, microtubules, and centrosomes is affected in Drosophila cells during long-term culture. This implies that gene regulation and post-translational modifications are probably different under different culture conditions.

  3. Gamma-Retrovirus Integration Marks Cell Type-Specific Cancer Genes: A Novel Profiling Tool in Cancer Genomics

    Science.gov (United States)

    Gilroy, Kathryn L.; Terry, Anne; Naseer, Asif; de Ridder, Jeroen; Wang, Weiwei; Carpenter, Eric; Mason, Andrew; Wong, Gane K-S.; Kilbey, Anna; Neil, James C.

    2016-01-01

    Retroviruses have been foundational in cancer research since early studies identified proto-oncogenes as targets for insertional mutagenesis. Integration of murine gamma-retroviruses into the host genome favours promoters and enhancers and entails interaction of viral integrase with host BET/bromodomain factors. We report that this integration pattern is conserved in feline leukaemia virus (FeLV), a gamma-retrovirus that infects many human cell types. Analysis of FeLV insertion sites in the MCF-7 mammary carcinoma cell line revealed strong bias towards active chromatin marks with no evidence of significant post-integration growth selection. The most prominent FeLV integration targets had little overlap with the most abundantly expressed transcripts, but were strongly enriched for annotated cancer genes. A meta-analysis based on several gamma-retrovirus integration profiling (GRIP) studies in human cells (CD34+, K562, HepG2) revealed a similar cancer gene bias but also remarkable cell-type specificity, with prominent exceptions including a universal integration hotspot at the long non-coding RNA MALAT1. Comparison of GRIP targets with databases of super-enhancers from the same cell lines showed that these have only limited overlap and that GRIP provides unique insights into the upstream drivers of cell growth. These observations elucidate the oncogenic potency of the gamma-retroviruses and support the wider application of GRIP to identify the genes and growth regulatory circuits that drive distinct cancer types. PMID:27097319

  4. Gamma-Retrovirus Integration Marks Cell Type-Specific Cancer Genes: A Novel Profiling Tool in Cancer Genomics.

    Science.gov (United States)

    Gilroy, Kathryn L; Terry, Anne; Naseer, Asif; de Ridder, Jeroen; Allahyar, Amin; Wang, Weiwei; Carpenter, Eric; Mason, Andrew; Wong, Gane K-S; Cameron, Ewan R; Kilbey, Anna; Neil, James C

    2016-01-01

    Retroviruses have been foundational in cancer research since early studies identified proto-oncogenes as targets for insertional mutagenesis. Integration of murine gamma-retroviruses into the host genome favours promoters and enhancers and entails interaction of viral integrase with host BET/bromodomain factors. We report that this integration pattern is conserved in feline leukaemia virus (FeLV), a gamma-retrovirus that infects many human cell types. Analysis of FeLV insertion sites in the MCF-7 mammary carcinoma cell line revealed strong bias towards active chromatin marks with no evidence of significant post-integration growth selection. The most prominent FeLV integration targets had little overlap with the most abundantly expressed transcripts, but were strongly enriched for annotated cancer genes. A meta-analysis based on several gamma-retrovirus integration profiling (GRIP) studies in human cells (CD34+, K562, HepG2) revealed a similar cancer gene bias but also remarkable cell-type specificity, with prominent exceptions including a universal integration hotspot at the long non-coding RNA MALAT1. Comparison of GRIP targets with databases of super-enhancers from the same cell lines showed that these have only limited overlap and that GRIP provides unique insights into the upstream drivers of cell growth. These observations elucidate the oncogenic potency of the gamma-retroviruses and support the wider application of GRIP to identify the genes and growth regulatory circuits that drive distinct cancer types. PMID:27097319

  5. Long-term results of a randomized phase III trial of TPF induction chemotherapy followed by surgery and radiation in locally advanced oral squamous cell carcinoma

    OpenAIRE

    Zhong, Lai-ping; Zhang, Chen-Ping; Ren, Guo-xin; Guo, Wei; William, William N.; Hong, Christopher S.; Sun, Jian; ZHU, HAN-GUANG; Tu, Wen-yong; Li, Jiang; Cai, Yi-li; Yin, Qiu-ming; WANG, LI-ZHEN; Wang, Zhong-he; Hu, Yong-jie

    2015-01-01

    Previously, we conducted a randomized phase III trial of TPF (docetaxel, cisplatin, and 5-fluorouracil) induction chemotherapy in surgically managed locally advanced oral squamous cell carcinoma (OSCC) and found no improvement in overall survival. This study reports long-term follow-up results from our initial trial. All patients had clinical stage III or IVA locally advanced OSCC. In the experimental group, patients received two cycles of TPF induction chemotherapy (75mg/m2 docetaxel d1, 75m...

  6. Purkinje cell long-term depression is prevented by T-588, a neuroprotective compound that reduces cytosolic calcium release from intracellular stores

    OpenAIRE

    Kimura, Tatsuo; Sugimori, Mutsuyuki; Llinás, Rodolfo R.

    2005-01-01

    Long-term depression (LTD) of the parallel-fiber (PF) Purkinje synapse induced by four different experimental paradigms could be prevented in rat cerebellar slices by T-588, a neuroprotective compound. The paradigms consisted of pairing PF activation with climbing-fiber activation, direct depolarization, glutamic iontophoretic depolarization, or caffeine. In all cases, LTD was determined by patch-clamp recording of PF excitatory postsynaptic currents at the Purkinje cell somata. T-588 at 1 μM...

  7. Canonical symplectic particle-in-cell method for long-term large-scale simulations of the Vlasov-Maxwell system

    OpenAIRE

    Qin, Hong; Liu, Jian; Xiao, Jianyuan; ZHANG, RUILI; He, Yang; Wang, Yulei; Sun, Yajuan; Burby, Joshua W.; Ellison, Leland; Zhou, Yao

    2015-01-01

    Particle-in-Cell (PIC) simulation is the most important numerical tool in plasma physics. However, its long-term accuracy has not been established. To overcome this difficulty, we developed a canonical symplectic PIC method for the Vlasov-Maxwell system by discretizing its canonical Poisson bracket. A fast local algorithm to solve the symplectic implicit time advance is discovered without root searching or global matrix inversion, enabling applications of the proposed method to very large-sca...

  8. Long-term outcomes after video-assisted thoracic surgery (VATS) lobectomy versus lobectomy via open thoracotomy for clinical stage IA non-small cell lung cancer

    OpenAIRE

    Higuchi, Mitsunori; Yaginuma, Hiroshi; Yonechi, Atsushi; Kanno, Ryuzo; Ohishi, Akio; Suzuki, Hiroyuki; Gotoh, Mitsukazu

    2014-01-01

    Background Video-assisted thoracic surgery (VATS) lobectomy is a standard treatment for lung cancer. This study retrospectively compared long-term outcomes after VATS lobectomy versus lobectomy via open thoracotomy for clinical stage IA non-small cell lung cancer (NSCLC). Methods From July 2002 to June 2012, 160 patients were diagnosed with clinical stage IA NSCLC and underwent lobectomy. Of these, 114 underwent VATS lobectomy and 46 underwent lobectomy via open thoracotomy. Results The 5-yea...

  9. Deferiprone versus deferoxamine in sickle cell disease: results from a 5-year long-term Italian multi-center randomized clinical trial.

    Science.gov (United States)

    Calvaruso, Giusi; Vitrano, Angela; Di Maggio, Rosario; Ballas, Samir; Steinberg, Martin H; Rigano, Paolo; Sacco, Massimiliano; Telfer, Paul; Renda, Disma; Barone, Rita; Maggio, Aurelio

    2014-12-01

    Blood transfusion and iron chelation currently represent a supportive therapy to manage anemia, vasculopathy and vaso-occlusion crises in Sickle-Cell-Disease. Here we describe the first 5-year long-term randomized clinical trial comparing Deferiprone versus Deferoxamine in patients with Sickle-Cell-Disease. The results of this study show that Deferiprone has the same effectiveness as Deferoxamine in decreasing body iron burden, measured as repeated measurements of serum ferritin concentrations on the same patient over 5-years and analyzed according to the linear mixed-effects model (LMM) (p=0.822). Both chelators are able to decrease, significantly, serum ferritin concentrations, during 5-years, without any effect on safety (p=0.005). Moreover, although the basal serum ferritin levels were higher in transfused compared with non-transfused group (p=0.031), the changes over time in serum ferritin levels were not statistically significantly different between transfused and non-transfused cohort of patients (p=0.389). Kaplan-Meier curve, during 5-years of study, suggests that Deferiprone does not alter survival in comparison with Deferoxamine (p=0.38). In conclusion, long-term iron chelation therapy with Deferiprone was associated with efficacy and safety similar to that of Deferoxamine. Therefore, in patients with Sickle-Cell-Disease, Deferiprone may represent an effective long-term treatment option. PMID:24814618

  10. Cell-type-specific tuning of Cav1.3 Ca2+-channels by a C-terminal automodulatory domain

    Science.gov (United States)

    Scharinger, Anja; Eckrich, Stephanie; Vandael, David H.; Schönig, Kai; Koschak, Alexandra; Hecker, Dietmar; Kaur, Gurjot; Lee, Amy; Sah, Anupam; Bartsch, Dusan; Benedetti, Bruno; Lieb, Andreas; Schick, Bernhard; Singewald, Nicolas; Sinnegger-Brauns, Martina J.; Carbone, Emilio; Engel, Jutta; Striessnig, Jörg

    2015-01-01

    Cav1.3 L-type Ca2+-channel function is regulated by a C-terminal automodulatory domain (CTM). It affects channel binding of calmodulin and thereby tunes channel activity by interfering with Ca2+- and voltage-dependent gating. Alternative splicing generates short C-terminal channel variants lacking the CTM resulting in enhanced Ca2+-dependent inactivation and stronger voltage-sensitivity upon heterologous expression. However, the role of this modulatory domain for channel function in its native environment is unkown. To determine its functional significance in vivo, we interrupted the CTM with a hemagglutinin tag in mutant mice (Cav1.3DCRDHA/HA). Using these mice we provide biochemical evidence for the existence of long (CTM-containing) and short (CTM-deficient) Cav1.3 α1-subunits in brain. The long (HA-labeled) Cav1.3 isoform was present in all ribbon synapses of cochlear inner hair cells. CTM-elimination impaired Ca2+-dependent inactivation of Ca2+-currents in hair cells but increased it in chromaffin cells, resulting in hyperpolarized resting potentials and reduced pacemaking. CTM disruption did not affect hearing thresholds. We show that the modulatory function of the CTM is affected by its native environment in different cells and thus occurs in a cell-type specific manner in vivo. It stabilizes gating properties of Cav1.3 channels required for normal electrical excitability. PMID:26379493

  11. Cell-type-specific tuning of Cav1.3 Ca2+-channels by a C-terminal automodulatory domain

    Directory of Open Access Journals (Sweden)

    Anja eScharinger

    2015-08-01

    Full Text Available Cav1.3 L-type Ca2+-channel function is regulated by a C-terminal automodulatory domain (CTM. It affects channel binding of calmodulin and thereby tunes channel activity by interfering with Ca2+- and voltage-dependent gating. Alternative splicing generates short C-terminal channel variants lacking the CTM resulting in enhanced Ca2+-dependent inactivation and stronger voltage-sensitivity upon heterologous expression. However, the role of this modulatory domain for channel function in its native environment is unkown. To determine its functional significance in vivo, we interrupted the CTM with a hemagglutinin tag in mutant mice (Cav1.3DCRDHA/HA. Using these mice we provide biochemical evidence for the existence of long (CTM-containing and short (CTM-deficient Cav1.3 α1-subunits in brain. The long (HA-labeled Cav1.3 isoform was present in all ribbon synapses of cochlear inner hair cells. CTM-elimination impaired Ca2+-dependent inactivation of Ca2+-currents in hair cells but increased it in chromaffin cells, resulting in hyperpolarized resting potentials and reduced pacemaking. CTM disruption did not affect hearing thresholds. We show that the modulatory function of the CTM is affected by its native environment in different cells and thus occurs in a cell-type specific manner in vivo. It is required to stabilize gating properties of Cav1.3 channels required for normal electrical excitability.

  12. Dual-specificity anti-sigma factor reinforces control of cell-type specific gene expression in Bacillus subtilis.

    Science.gov (United States)

    Serrano, Mónica; Gao, JinXin; Bota, João; Bate, Ashley R; Meisner, Jeffrey; Eichenberger, Patrick; Moran, Charles P; Henriques, Adriano O

    2015-04-01

    Gene expression during spore development in Bacillus subtilis is controlled by cell type-specific RNA polymerase sigma factors. σFand σE control early stages of development in the forespore and the mother cell, respectively. When, at an intermediate stage in development, the mother cell engulfs the forespore, σF is replaced by σG and σE is replaced by σK. The anti-sigma factor CsfB is produced under the control of σF and binds to and inhibits the auto-regulatory σG, but not σF. A position in region 2.1, occupied by an asparagine in σG and by a glutamate in οF, is sufficient for CsfB discrimination of the two sigmas, and allows it to delay the early to late switch in forespore gene expression. We now show that following engulfment completion, csfB is switched on in the mother cell under the control of σK and that CsfB binds to and inhibits σE but not σK, possibly to facilitate the switch from early to late gene expression. We show that a position in region 2.3 occupied by a conserved asparagine in σE and by a conserved glutamate in σK suffices for discrimination by CsfB. We also show that CsfB prevents activation of σG in the mother cell and the premature σG-dependent activation of σK. Thus, CsfB establishes negative feedback loops that curtail the activity of σE and prevent the ectopic activation of σG in the mother cell. The capacity of CsfB to directly block σE activity may also explain how CsfB plays a role as one of the several mechanisms that prevent σE activation in the forespore. Thus the capacity of CsfB to differentiate between the highly similar σF/σG and σE/σK pairs allows it to rinforce the cell-type specificity of these sigma factors and the transition from early to late development in B. subtilis, and possibly in all sporeformers that encode a CsfB orthologue. PMID:25835496

  13. Combinatorial topography and cell-type specific regulation of the ERK pathway by dopaminergic agonists in the mouse striatum.

    Science.gov (United States)

    Gangarossa, Giuseppe; Perroy, Julie; Valjent, Emmanuel

    2013-03-01

    Therapeutic agents and drugs of abuse regulate the extracellular signal-regulated kinase (ERK) cascade signaling in the medium-sized spiny neurons (MSNs) of the striatum. However, whether this regulation is associated with specific cortical and thalamic inputs has never been studied. We used Drd2-EGFP BAC-transgenic mice to undertake a topographical and cell-type specific analysis of ERK phosphorylation and two of its downstream targets histone H3 and ribosomal protein S6 (rS6) in the dorsal striatum following injection of SKF81297 (D1R-like agonist), quinpirole (D2R-like agonist) or apomorphine (non selective DA receptor agonist). In striatal areas receiving inputs from the cingulate/prelimbic, visual and auditory cortex, SKF81297 treatment increased phosphorylation of ERK, histone H3 and rS6 selectively in EGFP-negative MSNs of Drd2-EGFP mice. In contrast, no regulation was found in striatal region predominantly targeted by the sensorimotor and motor cortex. Apomorphine slightly enhanced ERK and rS6, but not histone H3 phosphorylation. This regulation occurred exclusively in EGFP-negative neurons mostly in striatal sectors receiving connections from the insular, visual and auditory cortex. Quinpirole administration inhibited basal ERK activation but did not change histone H3 and rS6 phosphorylation throughout the rostrocaudal axis of the dorsal striatum. This anatomo-functional study indicates that D1R and D2R agonists produce a unique topography and cell-type specific regulation of the ERK cascade signaling in the mouse striatum, and that those patterns are closely associated with particular cortical and thalamic inputs. This work evidences the need of a precise identification of the striatal areas under study to further understand striatal plasticity. PMID:22453353

  14. Long term morphological modelling

    DEFF Research Database (Denmark)

    Kristensen, Sten Esbjørn; Deigaard, Rolf; Taaning, Martin; Fredsøe, Jørgen; Drønen, Nils; Hjelmager Jensen, Jacob

    2010-01-01

    concept often used in one-line modelling of cross-shore shifting of an otherwise constant shape cross-shore profile is applied for the case of a groyne and a detached breakwater. In the case of alongshore bar/nourishment migration an alternative parameterization is adopted. All examples are presented......A morphological modelling concept for long term nearshore morphology is proposed and examples of its application are presented and discussed. The model concept combines parameterised representations of the cross-shore morphology, with a 2DH area model for waves, currents and sediment transport in...... the surf zone. Two parameterization schemes are tested for two different morphological phenomena: 1) Shoreline changes due to the presence of coastal structures and 2) alongshore migration of a nearshore nourishment and a bar by-passing a harbour. In the case of the shoreline evolution calculations, a...

  15. Canonical symplectic particle-in-cell method for long-term large-scale simulations of the Vlasov-Maxwell equations

    Science.gov (United States)

    Qin, Hong; Liu, Jian; Xiao, Jianyuan; Zhang, Ruili; He, Yang; Wang, Yulei; Sun, Yajuan; Burby, Joshua W.; Ellison, Leland; Zhou, Yao

    2016-01-01

    Particle-in-cell (PIC) simulation is the most important numerical tool in plasma physics. However, its long-term accuracy has not been established. To overcome this difficulty, we developed a canonical symplectic PIC method for the Vlasov-Maxwell system by discretising its canonical Poisson bracket. A fast local algorithm to solve the symplectic implicit time advance is discovered without root searching or global matrix inversion, enabling applications of the proposed method to very large-scale plasma simulations with many, e.g. 109, degrees of freedom. The long-term accuracy and fidelity of the algorithm enables us to numerically confirm Mouhot and Villani’s theory and conjecture on nonlinear Landau damping over several orders of magnitude using the PIC method, and to calculate the nonlinear evolution of the reflectivity during the mode conversion process from extraordinary waves to Bernstein waves.

  16. Canonical symplectic particle-in-cell method for long-term large-scale simulations of the Vlasov–Maxwell equations

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Hong; Liu, Jian; Xiao, Jianyuan; Zhang, Ruili; He, Yang; Wang, Yulei; Sun, Yajuan; Burby, Joshua W.; Ellison, Leland; Zhou, Yao

    2015-12-14

    Particle-in-cell (PIC) simulation is the most important numerical tool in plasma physics. However, its long-term accuracy has not been established. To overcome this difficulty, we developed a canonical symplectic PIC method for the Vlasov-Maxwell system by discretising its canonical Poisson bracket. A fast local algorithm to solve the symplectic implicit time advance is discovered without root searching or global matrix inversion, enabling applications of the proposed method to very large-scale plasma simulations with many, e.g. 10(9), degrees of freedom. The long-term accuracy and fidelity of the algorithm enables us to numerically confirm Mouhot and Villani's theory and conjecture on nonlinear Landau damping over several orders of magnitude using the PIC method, and to calculate the nonlinear evolution of the reflectivity during the mode conversion process from extraordinary waves to Bernstein waves.

  17. Balancing intestinal and systemic inflammation through cell type-specific expression of the aryl hydrocarbon receptor repressor.

    Science.gov (United States)

    Brandstätter, Olga; Schanz, Oliver; Vorac, Julia; König, Jessica; Mori, Tetsushi; Maruyama, Toru; Korkowski, Markus; Haarmann-Stemmann, Thomas; von Smolinski, Dorthe; Schultze, Joachim L; Abel, Josef; Esser, Charlotte; Takeyama, Haruko; Weighardt, Heike; Förster, Irmgard

    2016-01-01

    As a sensor of polyaromatic chemicals the aryl hydrocarbon receptor (AhR) exerts an important role in immune regulation besides its requirement for xenobiotic metabolism. Transcriptional activation of AhR target genes is counterregulated by the AhR repressor (AhRR) but the exact function of the AhRR in vivo is currently unknown. We here show that the AhRR is predominantly expressed in immune cells of the skin and intestine, different from other AhR target genes. Whereas AhRR antagonizes the anti-inflammatory function of the AhR in the context of systemic endotoxin shock, AhR and AhRR act in concert to dampen intestinal inflammation. Specifically, AhRR contributes to the maintenance of colonic intraepithelial lymphocytes and prevents excessive IL-1β production and Th17/Tc17 differentiation. In contrast, the AhRR enhances IFN-γ-production by effector T cells in the inflamed gut. Our findings highlight the physiologic importance of cell-type specific balancing of AhR/AhRR expression in response to microbial, nutritional and other environmental stimuli. PMID:27184933

  18. Introduction: Long term prediction

    International Nuclear Information System (INIS)

    Making a decision upon the right choice of a material appropriate to a given application should be based on taking into account several parameters as follows: cost, standards, regulations, safety, recycling, chemical properties, supplying, transformation, forming, assembly, mechanical and physical properties as well as the behaviour in practical conditions. Data taken from a private communication (J.H.Davidson) are reproduced presenting the life time range of materials from a couple of minutes to half a million hours corresponding to applications from missile technology up to high-temperature nuclear reactors or steam turbines. In the case of deep storage of nuclear waste the time required is completely different from these values since we have to ensure the integrity of the storage system for several thousand years. The vitrified nuclear wastes should be stored in metallic canisters made of iron and carbon steels, stainless steels, copper and copper alloys, nickel alloys or titanium alloys. Some of these materials are passivating metals, i.e. they develop a thin protective film, 2 or 3 nm thick - the so-called passive films. These films prevent general corrosion of the metal in a large range of chemical condition of the environment. In some specific condition, localized corrosion such as the phenomenon of pitting, occurs. Consequently, it is absolutely necessary to determine these chemical condition and their stability in time to understand the behavior of a given material. In other words the corrosion system is constituted by the complex material/surface/medium. For high level nuclear wastes the main features for resolving problem are concerned with: geological disposal; deep storage in clay; waste metallic canister; backfill mixture (clay-gypsum) or concrete; long term behavior; data needed for modelling and for predicting; choice of appropriate solution among several metallic candidates. The analysis of the complex material/surface/medium is of great importance

  19. LONG TERM COLLECTIONS

    CERN Multimedia

    STAFF ASSOCIATION

    2010-01-01

    ACKNOWLEDGMENTS The Long-Term Collections (CLT) committee would like to warmly thank its faithful donors who, year after year, support our actions all over the world. Without you, all this would not be possible. We would like to thank, in particular, the CERN Firemen’s Association who donated 5000 CHF in the spring thanks to the sale of their traditional calendar, and the generosity of the CERN community. A huge thank you to the firemen for their devotion to our cause. And thank you to all those who have opened their door, their heart, and their purses! Similarly, we warmly thank the CERN Yoga Club once again for its wonderful donation of 2000 CHF we recently received. We would also like to tell you that all our projects are running well. Just to remind you, we are currently supporting the activities of the «Réflexe-Partage» Association in Mali; the training centre of «Education et Développement» in Abomey, Benin; and the orphanage and ...

  20. Attempts to predict the long-term decrease in lung function due to radiotherapy of non-small cell lung cancer

    International Nuclear Information System (INIS)

    Purpose: To obtain a model which can predict long-term decrease in lung function due to radiation damage from dose-volume data for patients with non-small cell lung cancer. Patients and methods: 27 patients were included, all long-term survivors after radical radiation therapy. For each patient a regression analysis was performed on a post-RT succession of measurements of FEV1 in order to estimate the decrease after 2 years and a standard error (SE) on this regression estimate. The modelling was based on dose-volume histograms (DVH) exported from the treatment planning system, and involved fits of threshold models, a mean lung dose model as well as more complex models based on the relative damaged volume (rdV). Results: Decreases after 2 years of up to 28% in FEV1 was measured (median 10%), with significant day-to-day variation in FEV1 for the individual patient. The threshold models predicted the long-term decrease in FEV1 well when the SE was interpreted as the uncertainty of the measured decrease. The best threshold value, marginally, was 30 Gy with an R2 of 0.46. The mean lung dose model did not perform so well. A complex model based on rdV performed better than any of the other models (R2 =0.52). Conclusion: The long-term decrease in FEV1 could be predicted from a simple dose-volume model when the SE was interpreted as the uncertainty of the measured decrease

  1. Epigenetic targeting of glioma stem cells: Short-term and long-term treatments with valproic acid modulate DNA methylation and differentiation behavior, but not temozolomide sensitivity.

    Science.gov (United States)

    Riva, Gabriele; Butta, Valentina; Cilibrasi, Chiara; Baronchelli, Simona; Redaelli, Serena; Dalprà, Leda; Lavitrano, Marialuisa; Bentivegna, Angela

    2016-05-01

    Glioblastoma (GBM) is the most aggressive tumor of the central nervous system. GBM is a fatal tumor, incurable by conventional therapies. One of the factors underlying tumor recurrence and poor long-term survival is the presence of a cancer stem-like cell population, termed glioma stem cells (GSCs), which is particularly resistant to chemotherapy and radiotherapy and supports tumor self-renewal. The aim of the present study was to evaluate the impact and difference in effects of short-term and long‑term treatments with valproic acid (VPA), a histone deacetylase inhibitor, on seven GSC lines. We investigated for the first time the changes in the genome-wide DNA methylation profile and the differentiation behavior of GSCs induced by short-term and long-term VPA treatments. Moreover, we verified VPA sensitivity after long-term VPA pretreatment and, notably, the results provide evidence of a subpopulation more resistant to further VPA treatments. Finally, since short-term VPA treatment induced a reversal of the MGMT methylation status, we aimed to sensitize GSCs to temozolomide, the drug commonly used for this tumor, using this regimen. The overall data highlighted the heterogeneous behavior of GSC lines that is representative of tumor heterogeneity in GBM. The VPA effects were variable among these cell lines in terms of pro‑differentiating ability and DNA methylation switch. Here, we attempted to identify a suitable therapy for the eradication of the stem cell subpopulation, which is mandatory to achieve an effective treatment for this tumor. Differentiation-inducing and epigenetic therapies are the most promising approaches to affect the multiple properties of GSCs and, finally, defeat GBM. PMID:26986767

  2. Activity-dependent long-term plasticity of afferent synapses on grafted stem/progenitor cell-derived neurons.

    OpenAIRE

    Toft Sörensen, Andreas; Rogelius, Nina; Lundberg, Cecilia; Kokaia, Merab

    2011-01-01

    Stem cell-based cell replacement therapies aiming at restoring injured or diseased brain function ultimately rely on the capability of transplanted cells to promote functional recovery. The mechanisms by which stem cell-based therapies for neurological conditions can lead to functional recovery are uncertain, but structural and functional repair appears to depend on integration of transplanted cell-derived neurons into neuronal circuitries. The nature by which stem/progenitor cell-derived neu...

  3. A case of bilateral renal cell carcinoma associated with long-term dialysis showing false-positive immunoreactivity for TFE3 as Xp11 translocation renal cell carcinoma.

    Science.gov (United States)

    Kurisaki-Arakawa, Aiko; Saito, Tsuyoshi; Takahashi, Michiko; Mitani, Keiko; Fukumura, Yuki; Nagashima, Yoji; Argani, Pedrum; Yao, Takashi

    2013-01-01

    Renal carcinomas associated with Xp11.2 translocations/transcription factor 3 (TFE3) gene fusion (Xp11 translocation RCC) are a rare subtype of renal cell carcinoma. A middle-aged Japanese man, who had a medical history of dialysis for more than 12 years, had bilateral renal cancers with a background of acquired cystic disease of the kidney and remarkable deposition of calcium oxalate in the tumorous area. The right renal tumor showed papillary architecture of clear cells with diffuse and strong immunoreactivity for TFE3 and focal and weak positivity for cathepsin K, suggesting a possibility of Xp11 translocation RCC. However, RT-PCR failed to detect any type of the reported fusion genes involving TFE3. Thus, the sample was sent for a TFE3 break-apart FISH assay in a renal tumor consultation service, which reported no evidence of TFE3 gene rearrangement. The right renal tumor was finally diagnosed as papillary renal cell carcinoma with cystic change. We report here a case of bilateral renal cell carcinoma in a patient undergoing long-term dialysis, which showed false-positive immunoreactivity for TFE3 immunostaining. Titration of TFE3 immunohistochemical staining (IHC) should be performed and cross-referenced with the FISH or RT-PCR results to avoid the misinterpretation of TFE3 IHC results. PMID:24228124

  4. Combined gene/cell therapies provide long-term and pervasive rescue of multiple pathological symptoms in a murine model of globoid cell leukodystrophy.

    Science.gov (United States)

    Ricca, Alessandra; Rufo, Nicole; Ungari, Silvia; Morena, Francesco; Martino, Sabata; Kulik, Wilem; Alberizzi, Valeria; Bolino, Alessandra; Bianchi, Francesca; Del Carro, Ubaldo; Biffi, Alessandra; Gritti, Angela

    2015-06-15

    Globoid cell leukodystrophy (GLD) is a lysosomal storage disease caused by deficient activity of β-galactocerebrosidase (GALC). The infantile forms manifest with rapid and progressive central and peripheral demyelination, which represent a major hurdle for any treatment approach. We demonstrate here that neonatal lentiviral vector-mediated intracerebral gene therapy (IC GT) or transplantation of GALC-overexpressing neural stem cells (NSC) synergize with bone marrow transplant (BMT) providing dramatic extension of lifespan and global clinical-pathological rescue in a relevant GLD murine model. We show that timely and long-lasting delivery of functional GALC in affected tissues ensured by the exclusive complementary mode of action of the treatments underlies the outstanding benefit. In particular, the contribution of neural stem cell transplantation and IC GT during the early asymptomatic stage of the disease is instrumental to enhance long-term advantage upon BMT. We clarify the input of central nervous system, peripheral nervous system and periphery to the disease, and the relative contribution of treatments to the final therapeutic outcome, with important implications for treatment strategies to be tried in human patients. This study gives proof-of-concept of efficacy, tolerability and clinical relevance of the combined gene/cell therapies proposed here, which may constitute a feasible and effective therapeutic opportunity for children affected by GLD. PMID:25749991

  5. Mouse Pancreas Tissue Slice Culture Facilitates Long-Term Studies of Exocrine and Endocrine Cell Physiology in situ

    OpenAIRE

    Speier, Stephan; Marciniak, Anja; Selck, Claudia; Friedrich, Betty

    2013-01-01

    Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To ove...

  6. Long-term low-dose α-particle enhanced the potential of malignant transformation in human bronchial epithelial cells through MAPK/Akt pathway

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Weili; Xiao, Linlin; Dong, Chen; He, Mingyuan; Pan, Yan; Xie, Yuexia; Tu, Wenzhi; Fu, Jiamei; Shao, Chunlin, E-mail: clshao@shmu.edu.cn

    2014-05-09

    Highlights: • Multi-exposures of 25 mGy α-ray enhanced cell proliferation, adhesion, and invasion. • MAPK/Akt but not JNK/P66 was positively correlated with cell invasive phenotypes. • LDR of α-irradiation triggers cell malignant transformation through MAPK/Akt. - Abstract: Since the wide usage of ionizing radiation, the cancer risk of low dose radiation (LDR) (<0.1 Gy) has become attractive for a long time. However, most results are derived from epidemiologic studies on atomic-bomb survivors and nuclear accidents surrounding population, and the molecular mechanism of this risk is elusive. To explore the potential of a long-term LDR-induced malignant transformation, human bronchial epithelial cells Beas-2B were fractionally irradiated with 0.025 Gy α-particles for 8 times in total and then further cultured for 1–2 months. It was found that the cell proliferation, the abilities of adhesion and invasion, and the protein expressions of p-ERK, p-Akt, especially p-P38 were not only increased in the multiply-irradiated cells but also in their offspring 1–2 months after the final exposure, indicating high potentiality of cell malignant transformation. On opposite, the expressions of p-JNK and p-P66 were diminished in the subcultures of irradiated cells and thus may play a role of negative regulation in canceration. When the cells were transferred with p38 siRNA, the LDR-induced enhancements of cell adhesion and invasion were significantly reduced. These findings suggest that long-term LDR of α-particles could enhance the potential of malignant transformation incidence in human bronchial epithelial cells through MAPK/Akt pathway.

  7. DETECTION OF E6, E7 AND CELL-TYPE SPECIFIC ENHANCER OF HUMAN PAPILLOMAVIRUS TYPE 16 IN BREAST CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    HE Qian; CHU Yong-lie; JIA Xiao-li; ZHANG Shu-qun; LIU Wen-kang

    2008-01-01

    Objective To detect HPV16 E6, E7 genes and cell-type specific enhancer (CTSE) of long control region (LCR) in breast carcinoma (BC).Methods HPV16 E6,E7 genes and CTSE were detected in 40 BCs and 20 normal breast tissue (NBT) using polymerase chain reaction (PCR).Results The positive rates of HPV16 E6, E7genes and CTSE were 60% (24/40),55% (22/40) and 67.5%(27/40)respectively in BCs, whereas only 5% (1/20), 5%(1/20) and 15% (3/20) in NBTs (P<0.05). There exited significant correlation between E6 gene and CTSE in BCs (P<0.05), as well as E7 gene and CTSE. The infection of HPV16 E6, E7 and CTSE had no statistic relationship with pathological features.Conclusion There were HPV16 E6, E7 genes and CTSE together in BCs and CTSE may play an important role in pathogenesis of BC.

  8. Reversal of morphine-induced cell-type-specific synaptic plasticity in the nucleus accumbens shell blocks reinstatement.

    Science.gov (United States)

    Hearing, Matthew C; Jedynak, Jakub; Ebner, Stephanie R; Ingebretson, Anna; Asp, Anders J; Fischer, Rachel A; Schmidt, Clare; Larson, Erin B; Thomas, Mark John

    2016-01-19

    Drug-evoked plasticity at excitatory synapses on medium spiny neurons (MSNs) of the nucleus accumbens (NAc) drives behavioral adaptations in addiction. MSNs expressing dopamine D1 (D1R-MSN) vs. D2 receptors (D2R-MSN) can exert antagonistic effects in drug-related behaviors, and display distinct alterations in glutamate signaling following repeated exposure to psychostimulants; however, little is known of cell-type-specific plasticity induced by opiates. Here, we find that repeated morphine potentiates excitatory transmission and increases GluA2-lacking AMPA receptor expression in D1R-MSNs, while reducing signaling in D2-MSNs following 10-14 d of forced abstinence. In vivo reversal of this pathophysiology with optogenetic stimulation of infralimbic cortex-accumbens shell (ILC-NAc shell) inputs or treatment with the antibiotic, ceftriaxone, blocked reinstatement of morphine-evoked conditioned place preference. These findings confirm the presence of overlapping and distinct plasticity produced by classes of abused drugs within subpopulations of MSNs that may provide targetable molecular mechanisms for future pharmacotherapies. PMID:26739562

  9. As-prepared MoS2 quantum dot as a facile fluorescent probe for long-term tracing of live cells

    Science.gov (United States)

    Zhou, Kai; Zhang, Yue; Xia, Zhining; Wei, Weili

    2016-07-01

    Recently, the newly emerged two-dimensional nanomaterials, layered transition metal dichalcogenide (e.g. MoS2) nanosheets, have drawn tremendous attentions due to their extraordinary electronic and optical properties, and MoS2 quantum dots (MoS2 QDs) with lateral sizes less than 10 nm have been found to be highly luminescent. In the present study, a facile approach for large-scale preparation of MoS2 QDs by Na intercalation reaction without using any toxic organic reagents is proposed. MoS2 QDs were carefully characterized by various techniques including transmission electron microscopy, atomic force microscopy, dynamic light scattering, spectroscopy, in vitro cytotoxicology, and capillary electrophoresis. The as-prepared MoS2 QDs were strongly fluorescent, highly photo-stable, low in cytotoxicity, and readily reactive to thiols. These inherent properties of MoS2 QDs make them excellent fluorescent probes for long-term live cell tracing. The results of live cells imaging indicated that MoS2 QD stained cells remained highly fluorescent after long-term culture, and could be easily traced from other co-cultured cell lines.

  10. As-prepared MoS2 quantum dot as a facile fluorescent probe for long-term tracing of live cells.

    Science.gov (United States)

    Zhou, Kai; Zhang, Yue; Xia, Zhining; Wei, Weili

    2016-07-01

    Recently, the newly emerged two-dimensional nanomaterials, layered transition metal dichalcogenide (e.g. MoS2) nanosheets, have drawn tremendous attentions due to their extraordinary electronic and optical properties, and MoS2 quantum dots (MoS2 QDs) with lateral sizes less than 10 nm have been found to be highly luminescent. In the present study, a facile approach for large-scale preparation of MoS2 QDs by Na intercalation reaction without using any toxic organic reagents is proposed. MoS2 QDs were carefully characterized by various techniques including transmission electron microscopy, atomic force microscopy, dynamic light scattering, spectroscopy, in vitro cytotoxicology, and capillary electrophoresis. The as-prepared MoS2 QDs were strongly fluorescent, highly photo-stable, low in cytotoxicity, and readily reactive to thiols. These inherent properties of MoS2 QDs make them excellent fluorescent probes for long-term live cell tracing. The results of live cells imaging indicated that MoS2 QD stained cells remained highly fluorescent after long-term culture, and could be easily traced from other co-cultured cell lines. PMID:27242334

  11. Long-Term In Vitro Expansion of Salivary Gland Stem Cells Driven by Wnt Signals

    OpenAIRE

    Maimets, Martti; Rocchi, Cecilia; Bron, Reinier; Pringle, Sarah; Kuipers, Jeroen; Giepmans, Ben N.G.; Robert G.J. Vries; Clevers, Hans; de Haan, Gerald; van Os, Ronald; Coppes, Robert P.

    2015-01-01

    Summary Adult stem cells are the ultimate source for replenishment of salivary gland (SG) tissue. Self-renewal ability of stem cells is dependent on extrinsic niche signals that have not been unraveled for the SG. The ductal compartment in SG has been identified as the location harboring stem cells. Here, we report that rare SG ductal EpCAM+ cells express nuclear β-catenin, indicating active Wnt signaling. In cell culture experiments, EpCAMhigh cells respond potently to Wnt signals stimulatin...

  12. Long-Term Effects of Bone Marrow-Derived Mesenchymal Stem Cells in Dextran Sulfate Sodium-Induced Murine Chronic Colitis

    OpenAIRE

    Lee, Hyun Jung; Oh, Sun-Hee; Jang, Hui Won; Kwon, Ji-Hee; Lee, Kyoung Jin; Kim, Chung Hee; Park, Soo Jung; Hong, Sung Pil; Cheon, Jae Hee; Kim, Tae Il; Kim, Won Ho

    2016-01-01

    Background/Aims Bone marrow-derived mesenchymal stem cells (BM-MSCs) have shown beneficial effects in experimental colitis models, but the underlying mechanisms are not fully understood. We investigated the long-term effects of BM-MSCs, particularly in mice with chronic colitis. Methods Chronic colitis was induced by administering 3% dextran sulfate sodium (DSS) in a series of three cycles. BM-MSCs were injected intravenously into DSS-treated mice three times during the first cycle. On day 33...

  13. A phenomenological model of the synapse between the inner hair cell and auditory nerve: Long-term adaptation with power-law dynamics

    OpenAIRE

    Zilany, Muhammad S.A.; Bruce, Ian C.; Nelson, Paul C.; Carney, Laurel H.

    2009-01-01

    There is growing evidence that the dynamics of biological systems that appear to be exponential over short time courses are in some cases better described over the long-term by power-law dynamics. A model of rate adaptation at the synapse between inner hair cells and auditory-nerve (AN) fibers that includes both exponential and power-law dynamics is presented here. Exponentially adapting components with rapid and short-term time constants, which are mainly responsible for shaping onset respon...

  14. Canonical symplectic particle-in-cell method for long-term large-scale simulations of the Vlasov-Maxwell system

    CERN Document Server

    Qin, Hong; Xiao, Jianyuan; Zhang, Ruili; He, Yang; Wang, Yulei; Burby, Joshua W; Ellison, Leland; Zhou, Yao

    2015-01-01

    Particle-in-Cell (PIC) simulation is the most important numerical tool in plasma physics and accelerator physics. However, its long-term accuracy has not been established. To overcome this difficulty, we developed a canonical symplectic PIC method for the Vlasov-Maxwell system by discretizing the Marsden-Weinstein bracket. A fast local algorithm to solve the symplectic implicit time advance is discovered without root researching or global matrix inversion, enabling applications of the proposed method to very large-scale plasma simulations with many, e.g., $10^{9}$, degrees of freedom.

  15. A Two-Component DNA-Prime/Protein-Boost Vaccination Strategy for Eliciting Long-Term, Protective T Cell Immunity against Trypanosoma cruzi

    OpenAIRE

    Shivali Gupta; Garg, Nisha J.

    2015-01-01

    In this study, we evaluated the long-term efficacy of a two-component subunit vaccine against Trypanosoma cruzi infection. C57BL/6 mice were immunized with TcG2/TcG4 vaccine delivered by a DNA-prime/Protein-boost (D/P) approach and challenged with T. cruzi at 120 or 180 days post-vaccination (dpv). We examined whether vaccine-primed T cell immunity was capable of rapid expansion and intercepting the infecting T. cruzi. Our data showed that D/P vaccine elicited CD4+ (30-38%) and CD8+ (22-42%) ...

  16. Long-term T cell memory requires the surface expression of self-peptide/major histocompatibility complex molecules

    OpenAIRE

    Markiewicz, Mary A.; Girao, Cristina; Opferman, Joseph T.; Sun, Jiling; Hu, Qinghui; Agulnik, Alexander A.; Bishop, Colin E.; Thompson, Craig B.; Ashton-Rickardt, Philip G.

    1998-01-01

    How memory T cells are maintained in vivo is poorly understood. To address this problem, a male-specific peptide (H-Y) was identified and used to activate female anti-H-Y T cells in vitro. Anti-H-Y T cells survived in vivo for at least 70 days in the absence of antigen. This persistence was not because of the intrinsic ability of memory T cells to survive in vivo. Instead, the survival and function of adoptively transferred memory cells was found to require transporter of antigen protein 1-de...

  17. The age-dependent epigenetic and physiological changes in an Arabidopsis T87 cell suspension culture during long-term cultivation

    Energy Technology Data Exchange (ETDEWEB)

    Kwiatkowska, Aleksandra, E-mail: A.Kwiatkows@gmail.com [Department of Botany, University of Rzeszow, Kolbuszowa (Poland); Zebrowski, Jacek [Department of Plant Physiology, University of Rzeszow, Kolbuszowa (Poland); Oklejewicz, Bernadetta [Department of Genetics, University of Rzeszow, Kolbuszowa (Poland); Czarnik, Justyna [Department of Botany, University of Rzeszow, Kolbuszowa (Poland); Halibart-Puzio, Joanna [Department of Plant Physiology, University of Rzeszow, Kolbuszowa (Poland); Wnuk, Maciej [Department of Genetics, University of Rzeszow, Kolbuszowa (Poland)

    2014-05-02

    Highlights: • A decrease in proliferation rate during long-term cultivation of Arabidopsis cells. • Age-dependent increase in senescence-associated gene expression in Arabidopsis cells. • Age-related increase in DNA methylation, H3K9me2, and H3K27me3 in Arabidopsis cells. • High potential of photosynthetic efficiency of long-term cultured Arabidopsis cells. - Abstract: Plant cell suspension cultures represent good model systems applicable for both basic research and biotechnological purposes. Nevertheless, it is widely known that a prolonged in vitro cultivation of plant cells is associated with genetic and epigenetic instabilities, which may limit the usefulness of plant lines. In this study, the age-dependent epigenetic and physiological changes in an asynchronous Arabidopsis T87 cell culture were examined. A prolonged cultivation period was found to be correlated with a decrease in the proliferation rate and a simultaneous increase in the expression of senescence-associated genes, indicating that the aging process started at the late growth phase of the culture. In addition, increases in the heterochromatin-specific epigenetic markers, i.e., global DNA methylation, H3K9 dimethylation, and H3K27 trimethylation, were observed, suggesting the onset of chromatin condensation, a hallmark of the early stages of plant senescence. Although the number of live cells decreased with an increase in the age of the culture, the remaining viable cells retained a high potential to efficiently perform photosynthesis and did not exhibit any symptoms of photosystem II damage.

  18. The age-dependent epigenetic and physiological changes in an Arabidopsis T87 cell suspension culture during long-term cultivation

    International Nuclear Information System (INIS)

    Highlights: • A decrease in proliferation rate during long-term cultivation of Arabidopsis cells. • Age-dependent increase in senescence-associated gene expression in Arabidopsis cells. • Age-related increase in DNA methylation, H3K9me2, and H3K27me3 in Arabidopsis cells. • High potential of photosynthetic efficiency of long-term cultured Arabidopsis cells. - Abstract: Plant cell suspension cultures represent good model systems applicable for both basic research and biotechnological purposes. Nevertheless, it is widely known that a prolonged in vitro cultivation of plant cells is associated with genetic and epigenetic instabilities, which may limit the usefulness of plant lines. In this study, the age-dependent epigenetic and physiological changes in an asynchronous Arabidopsis T87 cell culture were examined. A prolonged cultivation period was found to be correlated with a decrease in the proliferation rate and a simultaneous increase in the expression of senescence-associated genes, indicating that the aging process started at the late growth phase of the culture. In addition, increases in the heterochromatin-specific epigenetic markers, i.e., global DNA methylation, H3K9 dimethylation, and H3K27 trimethylation, were observed, suggesting the onset of chromatin condensation, a hallmark of the early stages of plant senescence. Although the number of live cells decreased with an increase in the age of the culture, the remaining viable cells retained a high potential to efficiently perform photosynthesis and did not exhibit any symptoms of photosystem II damage

  19. In vivo proliferation of bone marrow stem cells of mice after combined long-term exposure to gamma radiation and acute exposure to X rays

    International Nuclear Information System (INIS)

    The aim of this paper was to ascertain whether a long-term exposure to gamma radiation at low dose rates, comparable to the professional permissible dose, can modify the response of bone marrow stem cells to single acute irradiation. The study was carried out by the method of exogenous spleen colonization. Continuous exposure to Co60 gamma rays was applied at dose rates of 0,223 mGy x h-1 and 1,25 mGy x h-1. The duration of exposure was 30-105 days, accumulated doses within this time were 0.16-0,56 Gy respectively. After the exposure was completed the mice were subjected to acute X-rays irradiation at the doses of 0,5-4,0 Gy. It was found the bone marrow stem cells, capable to form clones in the spleens, respond to the dose effect as well as at very low its values. The effect estimated by changed responsiveness to acute irradiation depends to accumulated dose only. The higher is the accumulated dose during long-term irradiation the greater is diminishing of repopulating ability of bone marrow cells after following acute irradiation. 4 refs., 3 figs., 1 tab. (author)

  20. Effects of Long-term exposure of Gelatinated and Non-gelatinated Cadmium Telluride Quantum Dots on Differentiated PC12 cells

    LENUS (Irish Health Repository)

    Prasad, Babu R

    2012-01-20

    Abstract Background The inherent toxicity of unmodified Quantum Dots (QDs) is a major hindrance to their use in biological applications. To make them more potent as neuroprosthetic and neurotherapeutic agents, thioglycolic acid (TGA) capped CdTe QDs, were coated with a gelatine layer and investigated in this study with differentiated pheochromocytoma 12 (PC12) cells. The QD - cell interactions were investigated after incubation periods of up to 17 days by MTT and APOTOX-Glo Triplex assays along with using confocal microscopy. Results Long term exposure (up to 17 days) to gelatinated TGA-capped CdTe QDs of PC12 cells in the course of differentiation and after neurites were grown resulted in dramatically reduced cytotoxicity compared to non-gelatinated TGA-capped CdTe QDs. Conclusion The toxicity mechanism of QDs was identified as caspase-mediated apoptosis as a result of cadmium leaking from the core of QDs. It was therefore concluded that the gelatine capping on the surface of QDs acts as a barrier towards the leaking of toxic ions from the core QDs in the long term (up to 17 days).

  1. Long-term clinical results of autologous bone marrow CD 133+ cell transplantation in patients with ST-elevation myocardial infarction

    Science.gov (United States)

    Kirgizova, M. A.; Suslova, T. E.; Markov, V. A.; Karpov, R. S.; Ryabov, V. V.

    2015-11-01

    The aim of the study was investigate the long-term results of autologous bone marrow CD 133+ cell transplantation in patients with primary ST-Elevation Myocardial Infarction (STEMI). Methods and results: From 2006 to 2007, 26 patients with primary STEMI were included in an open randomized study. Patients were randomized to two groups: 1st - included patients underwent PCI and transplantation of autologous bone marrow CD 133+ cell (n = 10); 2nd - patients with only PCI (n = 16). Follow-up study was performed 7.70±0.42 years after STEMI and consisted in physical examination, 6-min walking test, Echo exam. Total and cardiovascular mortality in group 1 was lower (20% (n = 2) vs. 44% (n = 7), p = 0.1 and 22% (n = 2) vs. 25% (n = 4), (p=0.53), respectively). Analysis of cardiac volumetric parameters shows significant differences between groups: EDV of 100.7 ± 50.2 mL vs. 144.40±42.7 mL, ESV of 56.3 ± 37.8 mL vs. 89.7 ± 38.7 mL in 1st and 2nd groups, respectively. Data of the study showed positive effects of autologous bone marrow CD 133+ cell transplantation on the long-term survival of patients and structural status of the heart.

  2. Comparative Analysis of KnockOut™ Serum with Fetal Bovine Serum for the In Vitro Long-Term Culture of Human Limbal Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Shaokun Zhang

    2016-01-01

    Full Text Available The limbal epithelial cells can be maintained on 3T3 feeder layer with fetal bovine serum supplemented culture medium, and these cells have been used to successfully treat limbal stem cell deficiency. However, fetal bovine serum contains unknown components and displays quantitative and qualitative lot-to-lot variations. To improve the culture condition, the defined KnockOut serum replacement was investigated to replace fetal bovine serum for culturing human limbal epithelial cell. Human primary limbal epithelial cells were cultured in KnockOut serum and fetal bovine serum supplemented medium, respectively. The cell growth rate, gene expression, and maintenance of limbal epithelial stem cells were studied and compared between these two groups. Human primary limbal epithelial cells were isolated and successfully serially cultivated in this novel KnockOut serum supplemented medium; the cell proliferation and stem cell maintenance were similar to those of cells grown in fetal bovine serum supplemented medium. These data suggests that this KnockOut serum supplemented medium is an efficient replacement to traditional fetal bovine serum supplemented medium for limbal epithelial cell culture, and this medium has great potential for long term maintenance of limbal epithelial cells, limbal epithelial stem cells transplantation, and tissue regeneration.

  3. The differential short- and long-term effects of HIV-1 latency-reversing agents on T cell function.

    Science.gov (United States)

    Clutton, G; Xu, Y; Baldoni, P L; Mollan, K R; Kirchherr, J; Newhard, W; Cox, Kara; Kuruc, J D; Kashuba, A; Barnard, R; Archin, N; Gay, C L; Hudgens, M G; Margolis, D M; Goonetilleke, N

    2016-01-01

    Despite the extraordinary success of HIV-1 antiretroviral therapy in prolonging life, infected individuals face lifelong therapy because of a reservoir of latently-infected cells that harbor replication competent virus. Recently, compounds have been identified that can reverse HIV-1 latency in vivo. These latency- reversing agents (LRAs) could make latently-infected cells vulnerable to clearance by immune cells, including cytolytic CD8+ T cells. We investigated the effects of two leading LRA classes on CD8+ T cell phenotype and function: the histone deacetylase inhibitors (HDACis) and protein kinase C modulators (PKCms). We observed that relative to HDACis, the PKCms induced much stronger T cell activation coupled with non-specific cytokine production and T cell proliferation. When examining antigen-specific CD8+ T cell function, all the LRAs except the HDACi Vorinostat reduced, but did not abolish, one or more measurements of CD8+ T cell function. Importantly, the extent and timing of these effects differed between LRAs. Panobinostat had detrimental effects within 10 hours of drug treatment, whereas the effects of the other LRAs were observed between 48 hours and 5 days. These observations suggest that scheduling of LRA and CD8+ T cell immunotherapy regimens may be critical for optimal clearance of the HIV-1 reservoir. PMID:27480951

  4. Long-term in vivo expression of genes introduced by retrovirus-mediated transfer into mammary epithelial cells.

    OpenAIRE

    Smith, G. H.; Gallahan, D; Zwiebel, J A; Freeman, S M; Bassin, R H; Callahan, R

    1991-01-01

    Nonimmortalized mouse mammary epithelial cells expressing Escherichia coli beta-galactosidase from a murine amphotropic packaged retroviral vector were injected into the epithelium-divested mammary fat pads of syngeneic mice. Mammary glands formed from the injected mammary epithelial cells contained ductal and lobular cells, both of which expressed beta-galactosidase when examined in situ more than 12 months later. These results indicate that stable recombinant gene expression can be achieved...

  5. TLR-2 Activation Induces Regulatory T Cells and Long-Term Suppression of Asthma Manifestations in Mice

    OpenAIRE

    Nawijn, Martijn C.; Motta, Alexandre C; Renée Gras; Soheila Shirinbak; Hadi Maazi; van Oosterhout, Antoon J. M.

    2013-01-01

    Asthma is a chronic inflammatory disease of the airways characterized by variable airway obstruction and airway hyperresponsiveness (AHR). The T regulatory (Treg) cell subset is critically important for the regulation of immune responses. Adoptive transfer of Treg cells has been shown to be sufficient for the suppression of airway inflammation in experimental allergic asthma. Intervention strategies aimed at expanding the Treg cell population locally in the airways of sensitized individuals a...

  6. [{sup 89}Zr]Oxinate{sub 4} for long-term in vivo cell tracking by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Charoenphun, Putthiporn; Meszaros, Levente K.; Chuamsaamarkkee, Krisanat; Sharif-Paghaleh, Ehsan; Ballinger, James R.; Mullen, Gregory E.D. [St Thomas' Hospital, King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Ferris, Trevor J.; Went, Michael J. [University of Kent, School of Physical Sciences, Canterbury (United Kingdom); Blower, Philip J. [St Thomas' Hospital, King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); King' s College London, Division of Chemistry, London (United Kingdom)

    2014-10-31

    {sup 111}In (typically as [{sup 111}In]oxinate{sub 3}) is a gold standard radiolabel for cell tracking in humans by scintigraphy. A long half-life positron-emitting radiolabel to serve the same purpose using positron emission tomography (PET) has long been sought. We aimed to develop an {sup 89}Zr PET tracer for cell labelling and compare it with [{sup 111}In]oxinate{sub 3} single photon emission computed tomography (SPECT). [{sup 89}Zr]Oxinate{sub 4} was synthesised and its uptake and efflux were measured in vitro in three cell lines and in human leukocytes. The in vivo biodistribution of eGFP-5T33 murine myeloma cells labelled using [{sup 89}Zr]oxinate{sub 4} or [{sup 111}In]oxinate{sub 3} was monitored for up to 14 days. {sup 89}Zr retention by living radiolabelled eGFP-positive cells in vivo was monitored by FACS sorting of liver, spleen and bone marrow cells followed by gamma counting. Zr labelling was effective in all cell types with yields comparable with {sup 111}In labelling. Retention of {sup 89}Zr in cells in vitro after 24 h was significantly better (range 71 to >90 %) than {sup 111}In (43-52 %). eGFP-5T33 cells in vivo showed the same early biodistribution whether labelled with {sup 111}In or {sup 89}Zr (initial pulmonary accumulation followed by migration to liver, spleen and bone marrow), but later translocation of radioactivity to kidneys was much greater for {sup 111}In. In liver, spleen and bone marrow at least 92 % of {sup 89}Zr remained associated with eGFP-positive cells after 7 days in vivo. [{sup 89}Zr]Oxinate{sub 4} offers a potential solution to the emerging need for a long half-life PET tracer for cell tracking in vivo and deserves further evaluation of its effects on survival and behaviour of different cell types. (orig.)

  7. Hematopoietic microenvironment. Origin, lineage, and transplantability of the stromal cells in long-term bone marrow cultures from chimeric mice.

    OpenAIRE

    Perkins, S; Fleischman, R A

    1988-01-01

    Studies of bone marrow transplant patients have suggested that the stromal cells of the in vitro hematopoietic microenvironment are transplantable into conditioned recipients. Moreover, in patients with myeloproliferative disorders, all of the stromal cells, which include presumptive endothelial cells, appear to be derived from hematopoietic precursors. To confirm these findings, we have constructed two chimeric mouse models: (a) traditional radiation chimeras, and (b) fetal chimeras, produce...

  8. Long-Term, Stable Differentiation Of Human Embryonic Stem Cell-Derived Neural Precursors Grafted Into The Adult Mammalian Neostriatum

    OpenAIRE

    Nasonkin, I; Mahairaki, V.; Xu, L.; Hatfield, G.; Cummings, B.J.; Eberhart, C.; Ryugo, D.; Maric, D; Bar, E; Koliatsos, V E

    2009-01-01

    Stem-cell grafts have been advocated as experimental treatments for neurological diseases by virtue of their ability to offer trophic support for injured neurons and, theoretically, to replace dead neurons. Human embryonic stem cells (HESCs) are a rich source of neural precursors (NPs) for grafting, but have been questioned for their tendency to form tumors. Here we studied the ability of HESC-derived NP grafts optimized for cell number and differentiation stage prior to transplantation, to s...

  9. Long-term outcomes among older patients following nonmyeloablative conditioning and allogeneic hematopoietic cell transplantation for advanced hematologic malignancies

    DEFF Research Database (Denmark)

    Sorror, Mohamed L; Sandmaier, Brenda M; Storer, Barry E;

    2011-01-01

    A minimally toxic nonmyeloablative regimen was developed for allogeneic hematopoietic cell transplantation (HCT) to treat patients with advanced hematologic malignancies who are older or have comorbid conditions....

  10. Long-term in-vivo tumorigenic assessment of human culture-expanded adipose stromal/stem cells

    Energy Technology Data Exchange (ETDEWEB)

    MacIsaac, Zoe Marie, E-mail: zmm4a@virgina.edu [University of Virginia (United States); Shang, Hulan, E-mail: shanghulan@gmail.com [Department of Plastic Surgery, University of Virginia (United States); Agrawal, Hitesh, E-mail: hiteshdos@hotmail.com [Department of Plastic Surgery, University of Virginia (United States); Yang, Ning, E-mail: ny6u@virgina.edu [Department of Plastic Surgery, University of Virginia (United States); Parker, Anna, E-mail: amp4v@virginia.edu [Department of Surgery, University of Virginia (United States); Katz, Adam J., E-mail: ajk2f@virginia.edu [Department of Plastic Surgery, University of Virginia (United States)

    2012-02-15

    After more than a decade of extensive experimentation, the promise of stem cells to revolutionize the field of medicine has negotiated their entry into clinical trial. Adipose tissue specifically holds potential as an attainable and abundant source of stem cells. Currently undergoing investigation are adipose stem cell (ASC) therapies for diabetes and critical limb ischemia, among others. In the enthusiastic pursuit of regenerative therapies, however, questions remain regarding ASC persistence and migration, and, importantly, their safety and potential for neoplasia. To date, assays of in vivo ASC activity have been limited by early end points. We hypothesized that with time, ASCs injected subcutaneously undergo removal by normal tissue turnover and homeostasis, and by the host's immune system. In this study, a high dose of culture expanded ASCs was formulated and implanted as multicellular aggregates into immunocompromised mice, which were maintained for over one year. Animals were monitored for toxicity, and surviving cells quantified at study endpoint. No difference in growth/weight or lifespan was found between cell-treated and vehicle treated animals, and no malignancies were detected in treated animals. Moreover, real-time PCR for a human specific sequence, ERV-3, detected no persistent ASCs. With the advent of clinical application, clarification of currently enigmatic stem cell properties has become imperative. Our study represents the longest duration determination of stem cell activity in vivo, and contributes strong evidence in support of the safety of adipose derived stem cell applications. -- Highlights: Black-Right-Pointing-Pointer Adipose stem cells promise novel clinical therapies. Black-Right-Pointing-Pointer Before clinical translation, safety profiles must be further elucidated. Black-Right-Pointing-Pointer Subcutaneously injected non-autologous adipose stem cells do not form tumors. Black-Right-Pointing-Pointer Subcutaneously injected non

  11. Long-term in-vivo tumorigenic assessment of human culture-expanded adipose stromal/stem cells

    International Nuclear Information System (INIS)

    After more than a decade of extensive experimentation, the promise of stem cells to revolutionize the field of medicine has negotiated their entry into clinical trial. Adipose tissue specifically holds potential as an attainable and abundant source of stem cells. Currently undergoing investigation are adipose stem cell (ASC) therapies for diabetes and critical limb ischemia, among others. In the enthusiastic pursuit of regenerative therapies, however, questions remain regarding ASC persistence and migration, and, importantly, their safety and potential for neoplasia. To date, assays of in vivo ASC activity have been limited by early end points. We hypothesized that with time, ASCs injected subcutaneously undergo removal by normal tissue turnover and homeostasis, and by the host's immune system. In this study, a high dose of culture expanded ASCs was formulated and implanted as multicellular aggregates into immunocompromised mice, which were maintained for over one year. Animals were monitored for toxicity, and surviving cells quantified at study endpoint. No difference in growth/weight or lifespan was found between cell-treated and vehicle treated animals, and no malignancies were detected in treated animals. Moreover, real-time PCR for a human specific sequence, ERV-3, detected no persistent ASCs. With the advent of clinical application, clarification of currently enigmatic stem cell properties has become imperative. Our study represents the longest duration determination of stem cell activity in vivo, and contributes strong evidence in support of the safety of adipose derived stem cell applications. -- Highlights: ► Adipose stem cells promise novel clinical therapies. ► Before clinical translation, safety profiles must be further elucidated. ► Subcutaneously injected non-autologous adipose stem cells do not form tumors. ► Subcutaneously injected non-autologous adipose stem cells undergo complete removal by one year.

  12. TLR-2 Activation Induces Regulatory T Cells and Long-Term Suppression of Asthma Manifestations in Mice

    NARCIS (Netherlands)

    Nawijn, Martijn C.; Motta, Alexandre C.; Gras, Renee; Shirinbak, Soheila; Maazi, Hadi; van Oosterhout, Antoon J. M.

    2013-01-01

    Asthma is a chronic inflammatory disease of the airways characterized by variable airway obstruction and airway hyperresponsiveness (AHR). The T regulatory (Treg) cell subset is critically important for the regulation of immune responses. Adoptive transfer of Treg cells has been shown to be sufficie

  13. Effects of long-term administration of cancer-promoting substances on oral subepithelial mast cells in the rat.

    Science.gov (United States)

    Sand, L; Hilliges, M; Larsson, P A; Wallstrom, M; Hirsch, J M

    2002-01-01

    The role of oral subepithelial mast cells in the defence against tumours is a matter of controversy. The effect of established and suggested carcinogens, such as the carcinogen 4-nitroquinoline-N-oxide (4-NQO) and Herpes simplex virus type 1 (HSV-1), in combination with oral snuff on lower lip subepithelial mast cells (MC) was studied in rats. The rats were exposed to prolonged use of oral snuff. The test substances were administered in a surgically created canal in the lower lip of the rats. There were 15 rats in each test group and 10 rats in the control group. The amount of countable subepithelial mast cells decreased significantly when the rat oral mucosa was exposed to the oral carcinogen 4-NQO but the effect of oral snuff and HSV-1 infection was weak. Our findings suggest that mast cells play a role in immunological cell defence against chemical carcinogens. Further studies are needed to clarify the mechanisms. PMID:12529973

  14. Expression of Gast, Cckbr, Reg1α genes in rat duodenal epithelial cells upon long-term gastric hypoacidity and after a multiprobiotic administration

    Directory of Open Access Journals (Sweden)

    Dranitsina A. S.

    2014-11-01

    Full Text Available Aim. Determination of the Cckbr, Gast and Reg1α genes expression in rat duodenal epithelial cells upon long- term hypoacidity and with the administration of the multiprobiotic Symbiter. Methods. The experiments were carried out on white non-strain male rats. The hypoacidic state was induced through intraperitoneal injection of omeprazole for 28 days. The level of genes expression was determined by semi-quantitative analysis with RT-PCR Results. The elevation of mRNA levels of the Cckbr and Gast genes in rat duodenal villus and crypt epitheliocytes, the increased expression of the Reg1A gene in crypt epithelial cells were shown as well as the appearance of the Reg1a gene expression in villus epitheliocytes upon hypoacidic conditions were shown. The content of mRNAs of the above mentioned genes decreased or remained at the control level upon the treatment of hypoacidic rats with the multiprobiotic Symbiter. Conclusions. Long-term gastric hypoacidity is accompanied by the changes in expression of the Cckbr, Gast and Reg1a genes in rat duodenum, whereas upon administration of the multiprobiotic Symbiter the pattern of studied gene expression did not changed in the most cases.

  15. Long term culture of mesenchymal stem cells in hypoxia promotes a genetic program maintaining their undifferentiated and multipotent status

    Directory of Open Access Journals (Sweden)

    de Carvalho Marcelo

    2011-03-01

    Full Text Available Abstract Background In the bone marrow, hematopietic and mesenchymal stem cells form a unique niche in which the oxygen tension is low. Hypoxia may have a role in maintaining stem cell fate, self renewal and multipotency. However, whereas most studies addressed the effect of transient in vitro exposure of MSC to hypoxia, permanent culture under hypoxia should reflect the better physiological conditions. Results Morphologic studies, differentiation and transcriptional profiling experiments were performed on MSC cultured in normoxia (21% O2 versus hypoxia (5% O2 for up to passage 2. Cells at passage 0 and at passage 2 were compared, and those at passage 0 in hypoxia generated fewer and smaller colonies than in normoxia. In parallel, MSC displayed (>4 fold inhibition of genes involved in DNA metabolism, cell cycle progression and chromosome cohesion whereas transcripts involved in adhesion and metabolism (CD93, ESAM, VWF, PLVAP, ANGPT2, LEP, TCF1 were stimulated. Compared to normoxic cells, hypoxic cells were morphologically undifferentiated and contained less mitochondrias. After this lag phase, cells at passage 2 in hypoxia outgrew the cells cultured in normoxia and displayed an enhanced expression of genes (4-60 fold involved in extracellular matrix assembly (SMOC2, neural and muscle development (NOG, GPR56, SNTG2, LAMA and epithelial development (DMKN. This group described herein for the first time was assigned by the Gene Ontology program to "plasticity". Conclusion The duration of hypoxemia is a critical parameter in the differentiation capacity of MSC. Even in growth promoting conditions, hypoxia enhanced a genetic program that maintained the cells undifferentiated and multipotent. This condition may better reflect the in vivo gene signature of MSC, with potential implications in regenerative medicine.

  16. Long-term MRI tracking of dual-labeled adipose-derived stem cells homing into mouse carotid artery injury

    Directory of Open Access Journals (Sweden)

    Qin JB

    2012-10-01

    Full Text Available Jin-Bao Qin,1,5,* Kang-An Li,2,* Xiang-Xiang Li,1,5 Qing-Song Xie,3 Jia-Ying Lin,4 Kai-Chuang Ye,1,5 Mi-Er Jiang,1,5 Gui-Xiang Zhang,2 Xin-Wu Lu1,51Department of Vascular Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, 2Department of Radiology, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 3Department of Neurosurgery, Cixi Municipal People's Hospital, Zhejiang Province, China; 4Clinic for Gynecology, Charite-Universitatsmedizin Berlin, Berlin, Germany; 5Vascular Center, Shanghai Jiao Tong University, Shanghai, China*These two authors contributed equally to this workBackground: Stem cell therapy has shown great promise for regenerative repair of injured or diseased tissues. Adipose-derived stem cells (ADSCs have become increasingly attractive candidates for cellular therapy. Magnetic resonance imaging has been proven to be effective in tracking magnetic-labeled cells and evaluating their clinical relevance after cell transplantation. This study investigated the feasibility of imaging green fluorescent protein-expressing ADSCs (GFP-ADSCs labeled with superparamagnetic iron oxide particles, and tracked them in vivo with noninvasive magnetic resonance imaging after cell transplantation in a model of mouse carotid artery injury.Methods: GFP-ADSCs were isolated from the adipose tissues of GFP mice and labeled with superparamagnetic iron oxide particles. Intracellular stability, proliferation, and viability of the labeled cells were evaluated in vitro. Next, the cells were transplanted into a mouse carotid artery injury model. Clinical 3 T magnetic resonance imaging was performed immediately before and 1, 3, 7, 14, 21, and 30 days after cell transplantation. Prussian blue staining and histological analysis were performed 7 and 30 days after transplantation.Results: GFP-ADSCs were found to be efficiently labeled with superparamagnetic iron oxide

  17. LONG-TERM (OF MANY DAYS NORMOTHERMAL LIMBAL GRAFTS PRESERVATION AS A METHOD OF QUANTITY AND ACTIVITY INCREASE OF MMSC-LIKE LIMBAL CELLS

    Directory of Open Access Journals (Sweden)

    S. A. Borzenok

    2012-01-01

    Full Text Available The reliability increase of corneal transplants engraftment may be achieved by combined transplantation with preserved limbal grafts (LG. We studied two methods of LG preservation: normothermal preservation in Borzenok–Moroz medium or standard culture medium for 35 days and cryopreservation at –80 °C in Borzenok– Moroz medium with/without DMSO addition for 1 month. We found that long-term normothermal preservation (for 28 days and cryopreservation maintain LG cells viability and their capacity to maintain cytokine balance as well as to keep cytokine balance and to retain phenotype of MMSC (multipotent mesenchymal stromal cells and to activate tolerogenic properties of limbal cells the latter improving quality and increasing capacity of corneal transplant engraftment reliability without systemic immunosupression. 

  18. Long-Term Fructose Intake Increases Adipogenic Potential: Evidence of Direct Effects of Fructose on Adipocyte Precursor Cells

    OpenAIRE

    Zubiría, María Guillermina; Alzamendi, Ana; Moreno, Griselda; Rey, María Amanda; Spinedi, Eduardo; Giovambattista, Andrés

    2016-01-01

    We have previously addressed that fructose rich diet (FRD) intake for three weeks increases the adipogenic potential of stromal vascular fraction cells from the retroperitoneal adipose tissue (RPAT). We have now evaluated the effect of prolonged FRD intake (eight weeks) on metabolic parameters, number of adipocyte precursor cells (APCs) and in vitro adipogenic potential from control (CTR) and FRD adult male rats. Additionally, we have examined the direct fructose effects on the adipogenic cap...

  19. Multilayer graphene for long-term corrosion protection of stainless steel bipolar plates for polymer electrolyte membrane fuel cell

    DEFF Research Database (Denmark)

    Stoot, Adam Carsten; Camilli, Luca; Spiegelhauer, Susie Ann;

    2015-01-01

    Abstract Motivated by similar investigations recently published (Pu et al., 2015), we report a comparative corrosion study of three sets of samples relevant as bipolar plates for polymer electrolyte fuel cells: stainless steel, stainless steel with a nickel seed layer (Ni/SS) and stainless steel...... graphene film is still intact with unchanged defect density. Our results show that even non-perfect multilayer graphene films can considerably increase the lifetime of future-generation bipolar plates for fuel cells....

  20. Effects of long-term hypothyroidism in the morphology and synaptic organization of cerebellar ectopic granule cells

    OpenAIRE

    Madeira, M. D.; Azevedo, F.P.; Paula-Barbosa, M M

    1988-01-01

    Abundant ectopic granule cells scattered in the cerebellar molecular layer have been observed in 30- day-old hypothyroid rats. Their morphological features indicate that they must be regarded as mature heterotopic cells arrested during their migration towards the granular layer. As their impoverished dendritic trees are identical to those seen in controls, it is unlikely that the lack of thyroid hormones played a major role in the deficient dendritic outgrowth....

  1. Efficient and stable MGMT-mediated selection of long-term repopulating stem cells in nonhuman primates

    OpenAIRE

    Brian C. Beard; Trobridge, Grant D.; Ironside, Christina; McCune, Jeannine S.; Adair, Jennifer E.; Kiem, Hans-Peter

    2010-01-01

    HSC transplantation using genetically modified autologous cells is a promising therapeutic strategy for various genetic diseases, cancer, and HIV. However, for many of these conditions, the current efficiency of gene transfer to HSCs is not sufficient for clinical use. The ability to increase the percentage of gene-modified cells following transplantation is critical to overcoming this obstacle. In vivo selection with mutant methylguanine methyltransferase (MGMTP140K) has been proposed to ove...

  2. Market perspectives of stationary fuel cells in a sustainable energy supply system-long-term scenarios for Germany

    International Nuclear Information System (INIS)

    Because of high efficiency, low environmental impacts and a potential role in transforming our energy system into a hydrogen economy, fuel cells are often considered as a key technology for a sustainable energy supply. However, the future framing conditions under which stationary fuel cells have to prove their technical and economic competitiveness are most likely characterised by a reduced demand for space heating, and a growing contribution of renewable energy sources to heat and electricity supply, which both directly limit the potential for combined heat and power generation, and thus also for fuel cells. Taking Germany as a case study, this paper explores the market potential of stationary fuel cells under the structural changes of the energy demand and supply system required to achieve a sustainable energy supply. Results indicate that among the scenarios analysed it is in particular a strategy oriented towards ambitious CO2-reduction targets, which due to its changes in the supply structure is in a position to mobilise a market potential that might be large enough for a successful fuel cell commercialisation. However, under the conditions of a business-as-usual trajectory the sales targets of fuel cell manufacturers cannot be met

  3. Drug and cell type-specific regulation of genes with different classes of estrogen receptor beta-selective agonists.

    Directory of Open Access Journals (Sweden)

    Sreenivasan Paruthiyil

    Full Text Available Estrogens produce biological effects by interacting with two estrogen receptors, ERalpha and ERbeta. Drugs that selectively target ERalpha or ERbeta might be safer for conditions that have been traditionally treated with non-selective estrogens. Several synthetic and natural ERbeta-selective compounds have been identified. One class of ERbeta-selective agonists is represented by ERB-041 (WAY-202041 which binds to ERbeta much greater than ERalpha. A second class of ERbeta-selective agonists derived from plants include MF101, nyasol and liquiritigenin that bind similarly to both ERs, but only activate transcription with ERbeta. Diarylpropionitrile represents a third class of ERbeta-selective compounds because its selectivity is due to a combination of greater binding to ERbeta and transcriptional activity. However, it is unclear if these three classes of ERbeta-selective compounds produce similar biological activities. The goals of these studies were to determine the relative ERbeta selectivity and pattern of gene expression of these three classes of ERbeta-selective compounds compared to estradiol (E(2, which is a non-selective ER agonist. U2OS cells stably transfected with ERalpha or ERbeta were treated with E(2 or the ERbeta-selective compounds for 6 h. Microarray data demonstrated that ERB-041, MF101 and liquiritigenin were the most ERbeta-selective agonists compared to estradiol, followed by nyasol and then diarylpropionitrile. FRET analysis showed that all compounds induced a similar conformation of ERbeta, which is consistent with the finding that most genes regulated by the ERbeta-selective compounds were similar to each other and E(2. However, there were some classes of genes differentially regulated by the ERbeta agonists and E(2. Two ERbeta-selective compounds, MF101 and liquiritigenin had cell type-specific effects as they regulated different genes in HeLa, Caco-2 and Ishikawa cell lines expressing ERbeta. Our gene profiling studies

  4. Cell type specificity of female lung cancer associated with sulfur dioxide from air pollutants in Taiwan: An ecological study

    Directory of Open Access Journals (Sweden)

    Tseng Ching-Yu

    2012-01-01

    Full Text Available Abstract Background Many studies have examined the association between air pollutants (including sulfur dioxide [SO2], carbon monoxide [CO], nitrogen dioxide [NO2], nitric oxide [NO], ozone [O3], and particulate matter 10] and lung cancer. However, data from previous studies on pathological cell types were limited, especially for SO2 exposure. We aimed to explore the association between SO2 exposure from outdoor air pollutants and female lung cancer incidence by cell type specificity. Methods We conducted an ecological study and calculated annual average concentration of 6 air pollutants (SO2, CO, NO2, NO, O3, and PM10 using data from Taiwan Environmental Protection Administration air quality monitoring stations. The Poisson regression models were used to evaluate the association between SO2 and age-standardized incidence rate of female lung cancer by two major pathological types (adenocarcinoma [AC] and squamous cell carcinoma [SCC]. In order to understand whether there is a dose-response relationship between SO2 and two major pathological types, we analyzed 4 levels of exposure based on quartiles of concentration of SO2. Results The Poisson regression results showed that with the first quartile of SO2 concentration as the baseline, the relative risks for AC/SCC type cancer among females were 1.20 (95% confidence interval [CI], 1.04-1.37/1.39 (95% CI, 0.96-2.01 for the second, 1.22 (95% CI, 1.04-1.43/1.58 (95% CI, 1.06-2.37 for the third, and 1.27 (95% CI, 1.06-1.52/1.80 (95% CI, 1.15-2.84 for the fourth quartile of SO2 concentration. The tests for trend were statistically significant for both AC and SCC at P = 0.0272 and 0.0145, respectively. Conclusion The current study suggests that SO2 exposure as an air pollutant may increase female lung cancer incidence and the associations with female lung cancer is much stronger for SCC than for AC. The findings of this study warrant further investigation on the role of SO2 in the etiology of SCC.

  5. Systemic Delivery of Allogenic Muscle Stem Cells Induces Long-Term Muscle Repair and Clinical Efficacy in Duchenne Muscular Dystrophy Dogs

    Science.gov (United States)

    Rouger, Karl; Larcher, Thibaut; Dubreil, Laurence; Deschamps, Jack-Yves; Le Guiner, Caroline; Jouvion, Gregory; Delorme, Bruno; Lieubeau, Blandine; Carlus, Marine; Fornasari, Benoît; Theret, Marine; Orlando, Priscilla; Ledevin, Mireille; Zuber, Céline; Leroux, Isabelle; Deleau, Stéphane; Guigand, Lydie; Testault, Isabelle; Le Rumeur, Elisabeth; Fiszman, Marc; Chérel, Yan

    2011-01-01

    Duchenne muscular dystrophy (DMD) is a genetic progressive muscle disease resulting from the lack of dystrophin and without effective treatment. Adult stem cell populations have given new impetus to cell-based therapy of neuromuscular diseases. One of them, muscle-derived stem cells, isolated based on delayed adhesion properties, contributes to injured muscle repair. However, these data were collected in dystrophic mice that exhibit a relatively mild tissue phenotype and clinical features of DMD patients. Here, we characterized canine delayed adherent stem cells and investigated the efficacy of their systemic delivery in the clinically relevant DMD animal model to assess potential therapeutic application in humans. Delayed adherent stem cells, named MuStem cells (muscle stem cells), were isolated from healthy dog muscle using a preplating technique. In vitro, MuStem cells displayed a large expansion capacity, an ability to proliferate in suspension, and a multilineage differentiation potential. Phenotypically, they corresponded to early myogenic progenitors and uncommitted cells. When injected in immunosuppressed dystrophic dogs, they contributed to myofiber regeneration, satellite cell replenishment, and dystrophin expression. Importantly, their systemic delivery resulted in long-term dystrophin expression, muscle damage course limitation with an increased regeneration activity and an interstitial expansion restriction, and persisting stabilization of the dog's clinical status. These results demonstrate that MuStem cells could provide an attractive therapeutic avenue for DMD patients. PMID:21924229

  6. Malignant cutaneous T-cell lymphoma among 1100 Iranian victims, two decades after exposure to sulfur mustard: a long term investigation

    International Nuclear Information System (INIS)

    Sulfur Mustard ((SM; 2, 2 -dichlorethyl sulfide)) is a potent chemical warfare agent that was widely used during First World War and Iran -Iraq conflict. Over 100,000 Iranians were injured by sulfur mustard. This vesicant agent has a lot of acute and chronic destructive influences on the skin, eye and respiratory system. SM via the alkylation of DNA and several cellular proteins (structural, cytoplasmic and enzymes) and cell nuclei; produce several toxic, mutagenic and carcinogenic effects on epidermis, dermis, dermal appendix and hypodermics. In acute phases flexural locations and thin epidermal area such as groin, scrotum, and axilla and eyelids showed the most severe complication. According to scientific studies on chemical victims depression of cell-mediated immunity and also lower percentage of NK cell has been observed in SM exposure furthermore cytokines and other growth factors produced and secreted during epidermal and dermal regeneration of healing skin blisters. In reference to the last study about long term effect of SM the cutaneous signs and disorders could be categorized into 3 different groups. Conclusion Human data on the carcinogenicity of SM are from (a) battlefield exposures, (b) accidents, and (c) workers in chemical factories. Both British and American studies and other researchers have investigated the increased incidences of leukemia, pulmonary and skin carcinoma arising from World War I battlefield exposure. Clinical documentation in our cases shows notable and common signs, symptoms and data such as 1- Middle ages 2- Location of CTCL (folds and exposed areas) 3- The similarity between CTCL and SM scar (pigmentory and vascular changes) 4- Chronic dermatitis especially xerosis and eczema with itching before the beginning of CTCL. All of this study and data leads us to the conclusion that SM can possibly cause CTCL in indirect and direct way. CTCL can be caused indirectly due to prolonged period of chronic dermatitis (xerosis, eczema

  7. Phenotypic malignant changes and untargeted lipidomic analysis of long-term exposed prostate cancer cells to endocrine disruptors

    Energy Technology Data Exchange (ETDEWEB)

    Bedia, Carmen, E-mail: carmen.bedia@idaea.csic.es; Dalmau, Núria, E-mail: nuria.dalmau@idaea.csic.es; Jaumot, Joaquim, E-mail: joaquim.jaumot@idaea.csic.es; Tauler, Romà, E-mail: roma.tauler@idaea.csic.es

    2015-07-15

    Endocrine disruptors (EDs) are a class of environmental toxic molecules able to interfere with the normal hormone metabolism. Numerous studies involve EDs exposure to initiation and development of cancers, including prostate cancer. In this work, three different EDs (aldrin, aroclor 1254 and chlorpyrifos (CPF)) were investigated as potential inducers of a malignant phenotype in DU145 prostate cancer cells after a chronic exposure. Epithelial to mesenchymal transition (EMT) induction, proliferation, migration, colony formation and release of metalloproteinase 2 (MMP-2) were analyzed in 50-day exposed cells to the selected EDs. As a result, aldrin and CPF exposure led to an EMT induction (loss of 16% and 14% of E-cadherin levels, respectively, compared to the unexposed cells). Aroclor and CPF presented an increased migration (134% and 126%, respectively), colony formation (204% and 144%, respectively) and MMP-2 release (137% in both cases) compared to the unexposed cells. An untargeted lipidomic analysis was performed to decipher the lipids involved in the observed transformations. As general results, aldrin exposure showed a global decrease in phospholipids and sphingolipids, and aroclor and CPF showed an increase of certain phospholipids, glycosphingolipids as well as a remarkable increase of some cardiolipin species. Furthermore, the three exposures resulted in an increase of some triglyceride species. In conclusion, some significant changes in lipids were identified and thus we postulate that some lipid compounds and lipid metabolic pathways could be involved in the acquisition of the malignant phenotype in exposed prostate cancer cells to the selected EDs. - Highlights: • Aldrin, aroclor and chlorpyrifos induced an aggressive phenotype in DU145 cells. • An untargeted lipidomic analysis has been performed on chronic exposed cells. • Lipidomic results showed changes in specific lipid species under chronic exposure. • These lipids may have a role in the

  8. Phenotypic malignant changes and untargeted lipidomic analysis of long-term exposed prostate cancer cells to endocrine disruptors

    International Nuclear Information System (INIS)

    Endocrine disruptors (EDs) are a class of environmental toxic molecules able to interfere with the normal hormone metabolism. Numerous studies involve EDs exposure to initiation and development of cancers, including prostate cancer. In this work, three different EDs (aldrin, aroclor 1254 and chlorpyrifos (CPF)) were investigated as potential inducers of a malignant phenotype in DU145 prostate cancer cells after a chronic exposure. Epithelial to mesenchymal transition (EMT) induction, proliferation, migration, colony formation and release of metalloproteinase 2 (MMP-2) were analyzed in 50-day exposed cells to the selected EDs. As a result, aldrin and CPF exposure led to an EMT induction (loss of 16% and 14% of E-cadherin levels, respectively, compared to the unexposed cells). Aroclor and CPF presented an increased migration (134% and 126%, respectively), colony formation (204% and 144%, respectively) and MMP-2 release (137% in both cases) compared to the unexposed cells. An untargeted lipidomic analysis was performed to decipher the lipids involved in the observed transformations. As general results, aldrin exposure showed a global decrease in phospholipids and sphingolipids, and aroclor and CPF showed an increase of certain phospholipids, glycosphingolipids as well as a remarkable increase of some cardiolipin species. Furthermore, the three exposures resulted in an increase of some triglyceride species. In conclusion, some significant changes in lipids were identified and thus we postulate that some lipid compounds and lipid metabolic pathways could be involved in the acquisition of the malignant phenotype in exposed prostate cancer cells to the selected EDs. - Highlights: • Aldrin, aroclor and chlorpyrifos induced an aggressive phenotype in DU145 cells. • An untargeted lipidomic analysis has been performed on chronic exposed cells. • Lipidomic results showed changes in specific lipid species under chronic exposure. • These lipids may have a role in the

  9. Peripubertal ovariectomy provides long-term postponement of age-associated decline in thymic cellularity and T-cell output

    Directory of Open Access Journals (Sweden)

    Perišić Milica

    2009-01-01

    Full Text Available The present study was undertaken to reassess the recently challenged role of ovarian hormones in age-associated thymic involution. For this purpose, in eleven-month-old peripubertally ovariectomized (Ox rats we analyzed: i thymic weight and cellularity, ii size of CD4+CD8+ double-positive (DP thymocyte population, which is believed to correlate to the thymic capacity to export mature T cells, iii number of recent thymic emigrants (RTEs, and iv number of peripheral blood CD4+ and CD8+ lymphocytes. It was found that both thymic weight and cellularity were greater in Ox than in control rats. In addition, in Ox rats the numbers of DP thymocytes and both CD4+ and CD8+ RTEs, were significantly greater than in controls, indicating a more efficient generation of T cells in these rats. Furthermore, these findings, coupled with data indicating that the number of neither CD4+ nor CD8+ peripheral blood lymphocytes was affected by ovariectomy, most likely, suggest a reduced homeostatic proliferation of memory cells in Ox rats, i.e. broadening of TCR peripheral repertoire without changes in the overall number of T cells leading to a more efficient response to newly encountered antigens. The results indicate that the ovarian steroid deprivation from early peripubertal period leads to a long lasting postponement/alleviation of age-associated decline in T-cell mediated immune response.

  10. Long-term delivery of nerve growth factor by encapsulated cell biodelivery in the Göttingen minipig basal forebrain

    DEFF Research Database (Denmark)

    Fjord-Larsen, L; Kusk, P; Tornøe, Jens;

    2010-01-01

    , capable of local delivery of NGF. The clinical device, named NsG0202, houses an NGF-secreting cell line (NGC-0295), which is derived from a human retinal pigment epithelial (RPE) cell line, stably genetically modified to secrete NGF. Bioactivity and correct processing of NGF was confirmed in vitro. Ns......G0202 devices were implanted in the basal forebrain of Göttingen minipigs and the function and retrievability were evaluated after 7 weeks, 6 and 12 months. All devices were implanted and retrieved without associated complications. They were physically intact and contained a high number of viable and...

  11. Rate of primary refractory disease in B and T-cell non-Hodgkin's lymphoma: correlation with long-term survival.

    Directory of Open Access Journals (Sweden)

    Corrado Tarella

    Full Text Available BACKGROUND: Primary refractory disease is a main challenge in the management of non-Hodgkin's Lymphoma (NHL. This survey was performed to define the rate of refractory disease to first-line therapy in B and T-cell NHL subtypes and the long-term survival of primary refractory compared to primary responsive patients. METHODS: Medical records were reviewed of 3,106 patients who had undergone primary treatment for NHL between 1982 and 2012, at the Hematology Centers of Torino and Bergamo, Italy. Primary treatment included CHOP or CHOP-like regimens (63.2%, intensive therapy with autograft (16.9%, or other therapies (19.9%. Among B-cell NHL, 1,356 (47.8% received first-line chemotherapy with rituximab. Refractory disease was defined as stable/progressive disease, or transient response with disease progression within six months. RESULTS: Overall, 690 (22.2% patients showed primary refractory disease, with a higher incidence amongst T-cell compared to B-cell NHL (41.9% vs. 20.5%, respectively, p<0.001. Several other clinico-pathological factors at presentation were variably associated with refractory disease, including histological aggressive disease, unfavorable clinical presentation, Bone Marrow involvement, low lymphocyte/monocyte ration and male gender. Amongst B-cell NHL, the addition of rituximab was associated with a marked reduction of refractory disease (13.6% vs. 26.7% for non-supplemented chemotherapy, p<0.001. Overall, primary responsive patients had a median survival of 19.8 years, compared to 1.3 yr. for refractory patients. A prolonged survival was consistently observed in all primary responsive patients regardless of the histology. The long life expectancy of primary responsive patients was documented in both series managed before and after 2.000. Response to first line therapy resulted by far the most predictive factor for long-term outcome (HR for primary refractory disease: 16.52, p<0.001. CONCLUSION: Chemosensitivity to primary

  12. Curcumin as a double-edged sword for stem cells: dose, time and cell type-specific responses to curcumin

    OpenAIRE

    Attari, Fatemeh; Zahmatkesh, Maryam; Aligholi, Hadi; Mehr, Shahram Ejtemaei; Sharifzadeh, Mohammad; Gorji, Ali; Mokhtari, Tahmineh; Khaksarian, Mojtaba; Hassanzadeh, Gholamreza

    2015-01-01

    Background The beneficial effects of curcumin which includes its antioxidant, anti-inflammatory and cancer chemo-preventive properties have been identified. Little information is available regarding the optimal dose and treatment periods of curcumin on the proliferation rate of different sources of stem cells. Methods In this study, the effect of various concentrations of curcumin on the survival and proliferation of two types of outstanding stem cells which includes bone marrow stem cells (B...

  13. Blood Vessel Matrix Seeded with Cells: A Better Alternative for Abdominal Wall Reconstruction—A Long-Term Study

    Directory of Open Access Journals (Sweden)

    Maciej Nowacki

    2015-01-01

    Full Text Available Purpose. The aim of this study was to present abdominal wall reconstruction using a porcine vascular graft seeded with MSC (mesenchymal stem cells on rat model. Material and Methods. Abdominal wall defect was prepared in 21 Wistar rats. Acellular porcine-vascular grafts taken from aorta and prepared with Triton X were used. 14 aortic grafts were implanted in place, of which 7 grafts were seeded with rat MSC cells (Group I, and 7 were acellular grafts (Group II. As a control, 7 standard polypropylene meshes were used for defect augmentation (Group III. The assessment method was performed by HE and CD31 staining after 6 months. The mechanical properties have been investigated by Zwick&Roell Z0.5. Results. The strongest angiogenesis and lowest inflammatory response were observed in Group I. Average capillaries density was 2.75, 0.75, and 1.53 and inflammatory effect was 0.29, 1.39, and 2.72 for Groups I, II, and III, respectively. The means of mechanical properties were 12.74±1.48, 7.27±1.56, and 14.4±3.7 N/cm in Groups I and II and control, respectively. Conclusions. Cell-seeded grafts have better mechanical properties than acellular grafts but worse than polypropylene mesh. Cells improved mechanical and physiological properties of decellularized natural scaffolds.

  14. Very Long Term Stability of Mixed Chimerism after Allogeneic Hematopoietic Stem Cell Transplantation in Patients with Hematologic Malignancies

    Directory of Open Access Journals (Sweden)

    Emmanuel Levrat

    2015-01-01

    Full Text Available The objective of this study is to analyze the evolution of chimerism of all patients transplanted for hematologic malignancies in our unit during a 20-year period, alive without relapse at 1 year after allogeneic hematopoietic stem cell transplantation (HSCT. Chimerism was tested using short tandem repeat polymorphisms after separation into mononuclear cells and granulocytes by Ficoll density gradient centrifugation. Of 155 patients studied, 89 had full chimerism (FC, 36 mononuclear cells mixed chimerism (MNC-MC, and 30 granulocytic MC with or without mononuclear cells MC (Gran-MC. Survival was significantly better in MNC-MC than in Gran-MC patients, with FC patients being intermediate. There was more disease relapse in the Gran-MC group but not in the MNC-MC group as compared to FC. MC was stable up to 21 years in the MNC-MC group and up to 19 years in the Gran-MC group. Of MC patients alive at 10 years, MC persisted in 83% in the MNC-MC and 57% in the Gran-MC groups. In conclusion, mixed chimerism may remain stable over a very long time period. In survivors without relapse at 1 year after HSCT, determining lineage specific chimerism may be useful as outcome differs, MNC-MC being associated with better outcome than Gran-MC.

  15. High-slope photoconductive cells based on screen-printed and sintered cadmium sulfide; the long-term stability properties

    Czech Academy of Sciences Publication Activity Database

    Franc, Jiří; Nešpůrek, Stanislav

    2007-01-01

    Roč. 9, č. 7 (2007), s. 2205-2210. ISSN 1454-4164 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z40500505 Keywords : photoconductive cell * cadmium sulfide * sintering Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.827, year: 2007

  16. Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells

    International Nuclear Information System (INIS)

    One of the biggest challenges in cell biology is the imaging of living cells. For this purpose, the most commonly used visualization tool is fluorescent markers. However, conventional labels, such as organic fluorescent dyes or green fluorescent proteins (GFP), lack the photostability to allow the tracking of cellular events that happen over minutes to days. In addition, they are either toxic to cells (dyes), or difficult to construct and manipulate (GFP). We report here the use of a new class of fluorescent labels, silanized CdSe/ZnS nanocrystal-peptide conjugates, for imaging the nuclei of living cells. CdSe/ZnS nanocrystals, or so called quantum dots (qdots), are extremely photostable, and have been used extensively in cellular imaging of fixed cells. However, most of the studies about living cells so far have been concerned only with particle entry into the cytoplasm or the localization of receptors on the cell membrane. Specific targeting of qdots to the nucleus of living cells ha s not been reported in previous studies, due to the lack of a targeting mechanism and proper particle size. Here we demonstrate for the first time the construction of a CdSe/ZnS nanocrystal-peptide conjugate that carries the SV40 large T antigen nuclear localization signal (NLS), and the transfection of the complex into living cells. By a novel adaptation of commonly used cell transfection techniques for qdots, we were able to introduce and retain the NLS-qdots conjugate in living cells for up to a week without detectable negative cellular effects. Moreover, we can visualize the movement of the CdSe/ZnS nanocrystal-peptide conjugates from cytoplasm to the nucleus, and the accumulation of the complex in the cell nucleus, over a long observation time period. This report opens the door for using qdots to visualize long-term biological events that happen in the cell nucleus, and provides a new nontoxic, long-term imaging platform for cell nuclear processes

  17. Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fanqing; Gerion, Daniele

    2004-06-14

    One of the biggest challenges in cell biology is the imaging of living cells. For this purpose, the most commonly used visualization tool is fluorescent markers. However, conventional labels, such as organic fluorescent dyes or green fluorescent proteins (GFP), lack the photostability to allow the tracking of cellular events that happen over minutes to days. In addition, they are either toxic to cells (dyes), or difficult to construct and manipulate (GFP). We report here the use of a new class of fluorescent labels, silanized CdSe/ZnS nanocrystal-peptide conjugates, for imaging the nuclei of living cells. CdSe/ZnS nanocrystals, or so called quantum dots (qdots), are extremely photostable, and have been used extensively in cellular imaging of fixed cells. However, most of the studies about living cells so far have been concerned only with particle entry into the cytoplasm or the localization of receptors on the cell membrane. Specific targeting of qdots to the nucleus of living cells ha s not been reported in previous studies, due to the lack of a targeting mechanism and proper particle size. Here we demonstrate for the first time the construction of a CdSe/ZnS nanocrystal-peptide conjugate that carries the SV40 large T antigen nuclear localization signal (NLS), and the transfection of the complex into living cells. By a novel adaptation of commonly used cell transfection techniques for qdots, we were able to introduce and retain the NLS-qdots conjugate in living cells for up to a week without detectable negative cellular effects. Moreover, we can visualize the movement of the CdSe/ZnS nanocrystal-peptide conjugates from cytoplasm to the nucleus, and the accumulation of the complex in the cell nucleus, over a long observation time period. This report opens the door for using qdots to visualize long-term biological events that happen in the cell nucleus, and provides a new nontoxic, long-term imaging platform for cell nuclear processes.

  18. Fluorescent CdSe/ZnS Nanocrystal-Peptide Conjugates for Long-term, Nontoxic Imaging and Nuclear Targeting in Living Cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, F; Gerion, D

    2004-06-08

    One of the biggest challenges in cell biology is the imaging of living cells. For this purpose, the most commonly used visualization tool is fluorescent markers. However, conventional labels, such as organic fluorescent dyes or green fluorescent proteins (GFP), lack the photostability to allow the tracking of cellular events that happen over minutes to days. In addition, they are either toxic to cells (dyes), or difficult to construct and manipulate (GFP). We report here the use of a new class of fluorescent labels, silanized CdSe/ZnS nanocrystal-peptide conjugates, for imaging the nuclei of living cells. CdSe/ZnS nanocrystals, or so called quantum dots (qdots), are extremely photostable, and have been used extensively in cellular imaging of fixed cells. Most of the studies about living cells so far have been concerned only with particle entry into the cytoplasm or the localization of receptors on the cell membrane. Specific targeting of qdots to the nucleus of living cells has not been reported in previous studies, due to the lack of a targeting mechanism and proper particle size. Here we demonstrate for the first time the construction of a CdSe/ZnS nanocrystal-peptide conjugate that carries the SV40 large T antigen nuclear localization signal (NLS), and the transfection of the complex into living cells. By a novel adaptation of a commonly used cell transfection technique for qdots, we were able to introduce and retain the NLS-qdot conjugates in living cells for up to a week without detectable negative cellular effects. Moreover, we can visualize the movement of the CdSe/ZnS qdot-peptide conjugates from cytoplasm to the nucleus, and the accumulation of the complex in the cell nucleus, over a long observation time period. This report opens the door for using qdots to visualize long-term biological events that happen in the cell nucleus, and provides a new nontoxic, long-term imaging platform for nuclear trafficking mechanisms and cell nuclear processes.

  19. Long-term effects of bariatric surgery on meal disposal and β-cell function in diabetic and nondiabetic patients

    DEFF Research Database (Denmark)

    Camastra, Stefania; Muscelli, Elza; Gastaldelli, Amalia;

    2013-01-01

    patients and 15 obese nondiabetic (ND) subjects before and 1 year after surgery (10 T2D and 11 ND) using the double-tracer technique and modeling of β-cell function. In both groups postsurgery, tracer-derived appearance of oral glucose was biphasic, a rapid increase followed by a sharp drop, a pattern......Gastric bypass surgery leads to marked improvements in glucose tolerance and insulin sensitivity in obese type 2 diabetes (T2D); the impact on glucose fluxes in response to a physiological stimulus, such as a mixed meal test (MTT), has not been determined. We administered an MTT to 12 obese T2D...... that was mirrored by postprandial glucose levels and insulin secretion. In diabetic patients, surgery lowered fasting and postprandial glucose levels, peripheral insulin sensitivity increased in proportion to weight loss (~30%), and β-cell glucose sensitivity doubled but did not normalize (compared with 21...

  20. Determination of the radiation sensitivity of the stromal cells in the murine long-term bone marrow culture by measuring the induction and rejoining of interphase chromosome breaks

    International Nuclear Information System (INIS)

    The purpose of this work was to determine the radiosensitivity of bone marrow stromal cells, the rate of interphase chromosome breakage and rejoining of stromal cells in the murine long term bone marrow culture and of human skin fibroblasts were compared. The cells were irradiated with doses up to 6 Gy and repair times up to 6 hr were investigated. After induction of premature chromosome condensation by fusing the cells with mitotic HeLa cells, the number of interphase chromosome fragments was counted. The number of radiation induced breaks was found to be not significantly different for both cell types with 6.16 ± 0.26 breaks per Gray for the fibroblasts and 5.96 ± 0.20 breaks per Gray for the stromal cells. A significant difference was observed in the repair rate. The fibroblasts rejoined 39.6% of the breaks induced initially during the first hour after irradiation and 5.6 ± 1.84 breaks remained unrejoined after 6 hr, while the stromal cells were able to rejoin 63.2% in 1 hr and had 2.05 ± 0.07 breaks unrejoined after 6 hr. If the well substantiated assumption is made, that the capacity to repair DNA double strand breaks or interphase chromosome breaks is correlated with the cellular radiosensitivity, these findings indicate that murine bone marrow stromal cells are more radioresistant than human skin fibroblasts. 30 refs., 2 figs

  1. Determination of the radiation sensitivity of the stromal cells in the murine long-term bone marrow culture by measuring the induction and rejoining of interphase chromosome breaks

    Energy Technology Data Exchange (ETDEWEB)

    Kodym, R. (Univ. of Ulm (Germany)); Hoerth, E. (Univ. of Vienna (Austria))

    1993-04-02

    The purpose of this work was to determine the radiosensitivity of bone marrow stromal cells, the rate of interphase chromosome breakage and rejoining of stromal cells in the murine long term bone marrow culture and of human skin fibroblasts were compared. The cells were irradiated with doses up to 6 Gy and repair times up to 6 hr were investigated. After induction of premature chromosome condensation by fusing the cells with mitotic HeLa cells, the number of interphase chromosome fragments was counted. The number of radiation induced breaks was found to be not significantly different for both cell types with 6.16 [+-] 0.26 breaks per Gray for the fibroblasts and 5.96 [+-] 0.20 breaks per Gray for the stromal cells. A significant difference was observed in the repair rate. The fibroblasts rejoined 39.6% of the breaks induced initially during the first hour after irradiation and 5.6 [+-] 1.84 breaks remained unrejoined after 6 hr, while the stromal cells were able to rejoin 63.2% in 1 hr and had 2.05 [+-] 0.07 breaks unrejoined after 6 hr. If the well substantiated assumption is made, that the capacity to repair DNA double strand breaks or interphase chromosome breaks is correlated with the cellular radiosensitivity, these findings indicate that murine bone marrow stromal cells are more radioresistant than human skin fibroblasts. 30 refs., 2 figs.

  2. Bright and stable CdSe/CdS@SiO2 nanoparticles suitable for long term cell labeling

    OpenAIRE

    Aubert, Tangi; Wassmuth, Daniel; Soenen, Stefaan; Braeckmans, Kevin; Hens, Zeger

    2014-01-01

    Semiconductor quantum dots (QDs) constitute very promising candidates as light emitters for numerous applications in the field of biotechnology, including cell labeling, in vivo imaging and diagnostics.[1] For such applications, semiconductor QDs represent an attractive alternative to classic organic fluorophores as they exhibit a higher brightness thanks to their large absorption cross-sections and high photoluminescence quantum yields. Nevertheless, QDs usually suffer from higly oxidative e...

  3. Modeling Long-Term Host Cell-Giardia lamblia Interactions in an In Vitro Co-Culture System

    OpenAIRE

    Fisher, Bridget S.; Estraño, Carlos E.; Cole, Judith A

    2013-01-01

    Globally, there are greater than 700,000 deaths per year associated with diarrheal disease. The flagellated intestinal parasite, Giardia lamblia, is one of the most common intestinal pathogens in both humans and animals throughout the world. While attached to the gastrointestinal epithelium, Giardia induces epithelial cell apoptosis, disrupts tight junctions, and increases intestinal permeability. The underlying cellular and molecular mechanisms of giardiasis, including the role lamina propri...

  4. Improving the long-term stability of PBDTTPD polymer solar cells through material purification aimed at removing organic impurities

    KAUST Repository

    Mateker, William R.

    2013-01-01

    While bulk heterojunction (BHJ) solar cells fabricated from high M n PBDTTPD achieve power conversion efficiencies (PCE) as high as 7.3%, the short-circuit current density (JSC) of these devices can drop by 20% after seven days of storage in the dark and under inert conditions. This degradation is characterized by the appearance of S-shape features in the reverse bias region of current-voltage (J-V) curves that increase in amplitude over time. Conversely, BHJ solar cells fabricated from low Mn PBDTTPD do not develop S-shaped J-V curves. However, S-shapes identical to those observed in high Mn PBDTTPD solar cells can be induced in low M n devices through intentional contamination with the TPD monomer. Furthermore, when high Mn PBDTTPD is purified via size exclusion chromatography (SEC) to reduce the content of low molecular weight species, the JSC of polymer devices is significantly more stable over time. After 111 days of storage in the dark under inert conditions, the J-V curves do not develop S-shapes and the JSC degrades by only 6%. The S-shape degradation feature, symptomatic of low device lifetimes, appears to be linked to the presence of low molecular weight contaminants, which may be trapped within samples of high Mn polymer that have not been purified by SEC. Although these impurities do not affect initial device PCE, they significantly reduce device lifetime, and solar cell stability is improved by increasing the purity of the polymer materials. © 2013 The Royal Society of Chemistry.

  5. Leptin contributes to long-term stabilization of HIF-1α in cancer cells subjected to oxygen limiting conditions.

    Science.gov (United States)

    Calgani, Alessia; Delle Monache, Simona; Cesare, Patrizia; Vicentini, Carlo; Bologna, Mauro; Angelucci, Adriano

    2016-06-28

    Leptin, a cytokine produced by the adipose tissue in response to food intake, is a key player in the regulation of energy balance and body weight control. Physiological action of leptin in modulating the metabolic adaptation of different peripheral tissues supports the hypothesis that it could also exert a direct effect on cancer cells. In vitro, treatment with leptin up-regulated HIF-1α and stimulated adhesion and invasion of prostate cancer cells cultured in hypoxia. Leptin action was effective in both low and high glycolytic cancer cell lines, and determined the up-regulation of lactate exporter MCT4 and its associated protein CD147. HIF-1α stabilization was oligomycin-independent and was associated with an important modulation of mitochondrial homeostasis. In fact, leptin treatment produced mitochondrial biogenesis, stabilization of mitochondrial membrane potential and increased uncoupled respiration through the up-regulation of UCP2. Furthermore, leptin counteracted the downmodulation of SIRT1 induced by hypoxia, and persistent high levels of SIRT1 were directly involved in HIF-1α stabilization. Leptin can sustain cancer progression in hypoxic environment and when mitochondrial respiration is impaired. Leptin signaling axis, including the new proposed intermediate SIRT1, could represent a new diagnostic and therapeutic target in prostate cancer. PMID:26996298

  6. Retinol and retinyl esters in parenchymal and nonparenchymal rat liver cell fractions after long-term administration of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, M.; Blomhoff, R.; Helgerud, P.; Solberg, L.A.; Berg, T.; Norum, K.R.

    1985-09-01

    Chronic ethanol consumption reduces the liver retinoid store in man and rat. We have studied the effect of ethanol on some aspects of retinoid metabolism in parenchymal and nonparenchymal liver cells. Rats fed 36% of total energy intake as ethanol for 5-6 weeks had the liver retinoid concentration reduced to about one-third, as compared to pair-fed controls. The reduction in liver retinoid affected both the parenchymal and the nonparenchymal cell fractions. Plasma retinol level was normal. Liver uptake of injected chylomicron (3H)retinyl ester was similar in the experimental and control group. The transport of retinoid from the parenchymal to the nonparenchymal cells was not found to be significantly retarded in the ethanol-fed rats. Despite the reduction in total retinoid level in liver, the concentrations of unesterified retinol and retinyl oleate were increased in the ethanol fed rats. Hepatic retinol esterification was not significantly affected in the ethanol-fed rats. Since our study has demonstrated that liver uptake of chylomicron retinyl ester is not impaired in the ethanol-fed rat, we suggest that liver retinoid metabolism may be increased.

  7. Retinol and retinyl esters in parenchymal and nonparenchymal rat liver cell fractions after long-term administration of ethanol

    International Nuclear Information System (INIS)

    Chronic ethanol consumption reduces the liver retinoid store in man and rat. We have studied the effect of ethanol on some aspects of retinoid metabolism in parenchymal and nonparenchymal liver cells. Rats fed 36% of total energy intake as ethanol for 5-6 weeks had the liver retinoid concentration reduced to about one-third, as compared to pair-fed controls. The reduction in liver retinoid affected both the parenchymal and the nonparenchymal cell fractions. Plasma retinol level was normal. Liver uptake of injected chylomicron [3H]retinyl ester was similar in the experimental and control group. The transport of retinoid from the parenchymal to the nonparenchymal cells was not found to be significantly retarded in the ethanol-fed rats. Despite the reduction in total retinoid level in liver, the concentrations of unesterified retinol and retinyl oleate were increased in the ethanol fed rats. Hepatic retinol esterification was not significantly affected in the ethanol-fed rats. Since our study has demonstrated that liver uptake of chylomicron retinyl ester is not impaired in the ethanol-fed rat, we suggest that liver retinoid metabolism may be increased

  8. OPTIMIZATION OF THE CATHODE LONG-TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Hector Colonmer; Prabhu Ganesan; Nalini Subramanian; Dr. Bala Haran; Dr. Ralph E. White; Dr. Branko N. Popov

    2002-09-01

    This project focused on addressing the two main problems associated with state of art Molten Carbonate Fuel Cells, namely loss of cathode active material and stainless steel current collector deterioration due to corrosion. We followed a dual approach where in the first case we developed novel materials to replace the cathode and current collector currently used in molten carbonate fuel cells. In the second case we improved the performance of conventional cathode and current collectors through surface modification. States of art NiO cathode in MCFC undergo dissolution in the cathode melt thereby limiting the lifetime of the cell. To prevent this we deposited cobalt using an electroless deposition process. We also coated perovskite (La{sub 0.8}Sr{sub 0.2}CoO{sub 3}) in NiO thorough a sol-gel process. The electrochemical oxidation behavior of Co and perovskites coated electrodes is similar to that of the bare NiO cathode. Co and perovskite coatings on the surface decrease the dissolution of Ni into the melt and thereby stabilize the cathode. Both, cobalt and provskites coated nickel oxide, show a higher polarization compared to that of nickel oxide, which could be due to the reduced surface area. Cobalt substituted lithium nickel oxide (LiNi{sub 0.8}Co{sub 0.2}O{sub 2}) and lithium cobalt oxide were also studied. LiNi{sub x}Co{sub 1-x}O{sub 2} was synthesized by solid-state reaction procedure using lithium nitrate, nickel hydroxide and cobalt oxalate precursor. LiNi{sub x}Co{sub 1-x}O{sub 2} showed smaller dissolution of nickel than state of art nickel oxide cathode. The performance was comparable to that of nickel oxide. The corrosion of the current collector in the cathode side was also studied. The corrosion characteristics of both SS304 and SS304 coated with Co-Ni alloy were studied. This study confirms that surface modification of SS304 leads to the formation of complex scales with better barrier properties and better electronic conductivity at 650 C. A three

  9. Long-term liraglutide treatment is associated with increased insulin content and secretion in β-cells, and a loss of α-cells in ZDF rats.

    Science.gov (United States)

    Schwasinger-Schmidt, Tiffany; Robbins, David C; Williams, S Janette; Novikova, Lesya; Stehno-Bittel, Lisa

    2013-10-01

    liraglutide-treated rats (24.3±4.4) compared to vehicle (9.1±2.8). Disrupted mitochondria were more commonly observed in the α-cells (51.9±10.3% of cells) than in the β-cells (27.2±4.4%) in the liraglutide-treated group. While liraglutide enhanced or maintained growth and function of certain islet cells, the overall ratio of α- to β-cells was decreased and there was an absolute reduction in islet α-cell content. There was selective disruption of intracellular α-cell organelles, representing an uncoupling of the bihormonal islet signaling that is required for normal metabolic regulation. The relevance of the findings to long-term liraglutide treatment in people with diabetes is unknown and should be investigated in appropriately designed clinical studies. PMID:23891763

  10. Respiratory syncytial virus-like nanoparticle vaccination induces long-term protection without pulmonary disease by modulating cytokines and T-cells partially through alveolar macrophages

    Directory of Open Access Journals (Sweden)

    Lee YT

    2015-07-01

    Full Text Available Young-Tae Lee,1,* Eun-Ju Ko,1,2,* Hye Suk Hwang,1,2 Jong Seok Lee,1,3 Ki-Hye Kim,1 Young-Man Kwon,1 Sang-Moo Kang1,2 1Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, 2Department of Biology, Georgia State University, Atlanta, GA, USA; 3National Institute of Biological Resources, Incheon, South Korea *These authors contributed equally to this work Abstract: The mechanisms of protection against respiratory syncytial virus (RSV are poorly understood. Virus-like nanoparticles expressing RSV glycoproteins (eg, a combination of fusion and glycoprotein virus-like nanoparticles [FG VLPs] have been suggested to be a promising RSV vaccine candidate. To understand the roles of alveolar macrophages (AMs in inducing long-term protection, mice that were 12 months earlier vaccinated with formalin-inactivated RSV (FI-RSV or FG VLPs were treated with clodronate liposome prior to RSV infection. FI-RSV immune mice with clodronate liposome treatment showed increases in eosinophils, plasmacytoid dendritic cells, interleukin (IL-4+ T-cell infiltration, proinflammatory cytokines, chemokines, and, in particular, mucus production upon RSV infection. In contrast to FI-RSV immune mice with severe pulmonary histopathology, FG VLP immune mice showed no overt sign of histopathology and significantly lower levels of eosinophils, T-cell infiltration, and inflammatory cytokines, but higher levels of interferon-γ, which are correlated with protection against RSV disease. FG VLP immune mice with depletion of AMs showed increases in inflammatory cytokines and chemokines, as well as eosinophils. The results in this study suggest that FG nanoparticle vaccination induces long-term protection against RSV and that AMs play a role in the RSV protection by modulating eosinophilia, mucus production, inflammatory cytokines, and T-cell infiltration. Keywords: alveolar macrophage, nanoparticle vaccine, VLP, FI-RSV, RSV disease

  11. Long-term environmental stewardship.

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Michael David

    2010-08-01

    The purpose of this Supplemental Information Source Document is to effectively describe Long-Term Environmental Stewardship (LTES) at Sandia National Laboratories/New Mexico (SNL/NM). More specifically, this document describes the LTES and Long-Term Stewardship (LTS) Programs, distinguishes between the LTES and LTS Programs, and summarizes the current status of the Environmental Restoration (ER) Project.

  12. Impact of Electrolytes Based on Different Solvents on the Long Term Stability of Dye Sensitized Solar Cells

    International Nuclear Information System (INIS)

    Highlights: •Aging studies were carried out under heat (60 °C) and illumination with DSSCs. •DSSCs with MPN, PC and GBL showed decrease in performance over 60 days. •With NMP, increase in JSC and efficiency was observed whereas VOC decreased. •Leaching of Zn2+ from sealant and desorption of NMP from TiO2 are possible causes. -- Abstract: The present article demonstrates the effect of different solvents used in the preparation of electrolyte on the photoelectrochemical characteristics of dye sensitized solar cells (DSSCs) aged under heat (60 °C) and illumination for 60 days. The study has been carried out with four different solvents: 3-methoxypropionitrile (MPN), N-methyl-2-pyrrolidone (NMP), propylene carbonate (PC) and γ-butyrolactone (GBL) which differ in terms of donor number, viscosity and dielectric constant. For DSSCs with electrolytes based on MPN, PC and GBL as solvents, performance decreases with time. In contrast, for DSSC with NMP as solvent in electrolyte, increase in JSC and hence, efficiency up to 15 days has been observed followed by a gradual decrease, but remaining above its initial value after 60 days. However, VOC of such cell decreases with time. There are two possible causes for the above observations. Desorption of NMP molecules from titania surface occurred with aging. Secondly, zinc ions leached into the electrolyte following reaction of NMP with sealant were adsorbed on titania surface. The causes behind aging behavior of cells prepared with different solvent based electrolytes have been analyzed using electrochemical impedance analysis of DSSCs, energy-dispersive X-ray spectroscopy (EDS) of photoanodes and inductively coupled plasma-atomic emission spectroscopy (ICP-AES) of electrolyte containing sealant sample which had also undergone aging under similar condition

  13. A Low Ethanol Dose Affects all Types of Cells in Mixed Long-Term Embryonic Cultures of the Cerebellum

    DEFF Research Database (Denmark)

    Pickering, Chris; Wicher, Grzegorz; Rosendahl, Sofi;

    2010-01-01

    . We exposed a primary culture of rat cerebellum from embryonic day 17 (corresponding to second trimester in humans) to ethanol at a concentration of 17.6 mM which is roughly equivalent to one glass of wine. Acutely, there was no change in cell viability after 5 or 8 days of exposure relative to...... of this ethanol dose, cultures were exposed for 30 days. After this period, virtually no neurons or myelinating oligodendrocytes were present in the ethanol-treated cultures. In conclusion, chronic exposure to ethanol, even at small doses, dramatically and persistently affects normal development....

  14. Design of Quantum Dot-Conjugated Lipids for Long-Term, High-Speed Tracking Experiments on Cell Surfaces

    OpenAIRE

    Murcia, Michael J.; Minner, Daniel. E.; Mustata, Gina-Mirela; Ritchie, Kenneth; Naumann, Christoph A.

    2008-01-01

    The current study reports the facile design of quantum dot (QD)-conjugated lipids and their application to high-speed tracking experiments on cell surfaces. CdSe/ZnS core/shell QDs with two types of hydrophilic coatings, 2-(2-aminoethoxy)ethanol (AEE-coating) and a 60:40 molar mixture of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethyleneglycol-2000] (LIPO-coating), are conjugated to sulfhydryl lipids via maleimide reactive ...

  15. Long-Term Fructose Intake Increases Adipogenic Potential: Evidence of Direct Effects of Fructose on Adipocyte Precursor Cells.

    Science.gov (United States)

    Zubiría, María Guillermina; Alzamendi, Ana; Moreno, Griselda; Rey, María Amanda; Spinedi, Eduardo; Giovambattista, Andrés

    2016-01-01

    We have previously addressed that fructose rich diet (FRD) intake for three weeks increases the adipogenic potential of stromal vascular fraction cells from the retroperitoneal adipose tissue (RPAT). We have now evaluated the effect of prolonged FRD intake (eight weeks) on metabolic parameters, number of adipocyte precursor cells (APCs) and in vitro adipogenic potential from control (CTR) and FRD adult male rats. Additionally, we have examined the direct fructose effects on the adipogenic capacity of normal APCs. FRD fed rats had increased plasma levels of insulin, triglyceride and leptin, and RPAT mass and adipocyte size. FACS studies showed higher APCs number and adipogenic potential in FRD RPAT pads; data is supported by high mRNA levels of competency markers: PPARγ2 and Zfp423. Complementary in vitro experiments indicate that fructose-exposed normal APCs displayed an overall increased adipogenic capacity. We conclude that the RPAT mass expansion observed in eight week-FRD fed rats depends on combined accelerated adipogenesis and adipocyte hypertrophy, partially due to a direct effect of fructose on APCs. PMID:27049396

  16. Long-Term Fructose Intake Increases Adipogenic Potential: Evidence of Direct Effects of Fructose on Adipocyte Precursor Cells

    Directory of Open Access Journals (Sweden)

    María Guillermina Zubiría

    2016-04-01

    Full Text Available We have previously addressed that fructose rich diet (FRD intake for three weeks increases the adipogenic potential of stromal vascular fraction cells from the retroperitoneal adipose tissue (RPAT. We have now evaluated the effect of prolonged FRD intake (eight weeks on metabolic parameters, number of adipocyte precursor cells (APCs and in vitro adipogenic potential from control (CTR and FRD adult male rats. Additionally, we have examined the direct fructose effects on the adipogenic capacity of normal APCs. FRD fed rats had increased plasma levels of insulin, triglyceride and leptin, and RPAT mass and adipocyte size. FACS studies showed higher APCs number and adipogenic potential in FRD RPAT pads; data is supported by high mRNA levels of competency markers: PPARγ2 and Zfp423. Complementary in vitro experiments indicate that fructose-exposed normal APCs displayed an overall increased adipogenic capacity. We conclude that the RPAT mass expansion observed in eight week-FRD fed rats depends on combined accelerated adipogenesis and adipocyte hypertrophy, partially due to a direct effect of fructose on APCs.

  17. Multilayer graphene for long-term corrosion protection of stainless steel bipolar plates for polymer electrolyte membrane fuel cell

    Science.gov (United States)

    Stoot, Adam C.; Camilli, Luca; Spiegelhauer, Susie-Ann; Yu, Feng; Bøggild, Peter

    2015-10-01

    Motivated by similar investigations recently published (Pu et al., 2015), we report a comparative corrosion study of three sets of samples relevant as bipolar plates for polymer electrolyte fuel cells: stainless steel, stainless steel with a nickel seed layer (Ni/SS) and stainless steel with Ni seed layer coated by a multi-layered graphene thin film (G/Ni/SS). The graphene film, synthesized by chemical vapour deposition (CVD), has a moderate amount of defects according to Raman spectroscopy. Short/medium-term corrosion test shows no significant advantage of using G/Ni/SS rather than Ni/SS, both samples exhibiting a similar trend, thus questioning the short-term positive effect of graphene coatings. However, partial immersion in boiling seawater for three weeks reveals a clear superiority of the graphene coating with respect to steel just protected by Ni. After the test, the graphene film is still intact with unchanged defect density. Our results show that even non-perfect multilayer graphene films can considerably increase the lifetime of future-generation bipolar plates for fuel cells.

  18. The Cebpa +37-kb enhancer directs transgene expression to myeloid progenitors and to long-term hematopoietic stem cells.

    Science.gov (United States)

    Guo, Hong; Ma, Ou; Friedman, Alan D

    2014-09-01

    C/EBPα is expressed preferentially in myeloid compared with lymphoid or erythroid cells and directs myeloid lineage specification. C/EBPα is also expressed at lower levels in HSCs and in several nonhematopoietic tissues. The Cebpa gene has a conserved, 450-bp segment at +37 kb that harbors enhancer-specific epigenetic marks and is activate in a myeloid cell line. Herein, we characterize transgenic C57BL/6 mice, in which the Cebpa enhancer and 845-bp promoter regulate a hCD4 reporter. FACS analysis, in vitro colony assays, and in vivo competitive and secondary transplantation revealed that myeloid but not MEPs or lymphoid progenitors and also functional LT-HSCs are found almost exclusively in the Cebpa-hCD4(+) compared with hCD4(-) marrow population. hCD4(+) CMP yielded predominantly myeloid, whereas hCD4(-) CMP generated mainly Meg/E colonies. Providing insight into control of CMP maturation, Cebpa and Pu.1 RNAs were preferentially expressed in hCD4(+) CMP, Scl, Gata2, Gata1, Klf1, Ets1, and Fli1 predominated in hCD4(-) CMP, and Runx1, Myb, HoxA9, and Erg levels were similar in both. Cebpa-hCD4 transgene expression was lacking in multiple nonhematopoietic tissues. In summary, the +37-kb Cebpa enhancer and promoter are sufficient for marrow myeloid progenitor and LT-HSC-specific expression. PMID:24868087

  19. Chemometrical assessment of the electrical parameters obtained by long-term operating freshwater sediment microbial fuel cells.

    Science.gov (United States)

    Mitov, Mario; Bardarov, Ivo; Mandjukov, Petko; Hubenova, Yolina

    2015-12-01

    The electrical parameters of nine freshwater sediment microbial fuel cells (SMFCs) were monitored for a period of over 20 months. The developed SMFCs, divided into three groups, were started up and continuously operated under different constant loads (100, 510 and 1100 Ω) for 2.5 months. At this stage of the experiment, the highest power density values, reaching 1.2 ± 0.2 mW/m(2), were achieved by the SMFCs loaded with 510 Ω. The maximum power obtained at periodical polarization during the rest period, however, ranged between 26.2 ± 2.8 and 35.3 ± 2.8 mW/m(2), strongly depending on the internal cell resistance. The statistical evaluation of data derived from the polarization curves shows that after 300 days of operation all examined SMFCs reached a steady-state and the system might be assumed as homoscedastic. The estimated values of standard and expanded uncertainties of the electric parameters indicate a high repeatability and reproducibility of the SMFCs' performance. Results obtained in subsequent discharge-recovery cycles reveal the opportunity for practical application of studied SMFCs as autonomous power sources. PMID:26073675

  20. Coordinated cell type-specific epigenetic remodeling in prefrontal cortex begins before birth and continues into early adulthood.

    Directory of Open Access Journals (Sweden)

    Hennady P Shulha

    2013-04-01

    Full Text Available Development of prefrontal and other higher-order association cortices is associated with widespread changes in the cortical transcriptome, particularly during the transitions from prenatal to postnatal development, and from early infancy to later stages of childhood and early adulthood. However, the timing and longitudinal trajectories of neuronal gene expression programs during these periods remain unclear in part because of confounding effects of concomitantly occurring shifts in neuron-to-glia ratios. Here, we used cell type-specific chromatin sorting techniques for genome-wide profiling of a histone mark associated with transcriptional regulation--H3 with trimethylated lysine 4 (H3K4me3--in neuronal chromatin from 31 subjects from the late gestational period to 80 years of age. H3K4me3 landscapes of prefrontal neurons were developmentally regulated at 1,157 loci, including 768 loci that were proximal to transcription start sites. Multiple algorithms consistently revealed that the overwhelming majority and perhaps all of developmentally regulated H3K4me3 peaks were on a unidirectional trajectory defined by either rapid gain or loss of histone methylation during the late prenatal period and the first year after birth, followed by similar changes but with progressively slower kinetics during early and later childhood and only minimal changes later in life. Developmentally downregulated H3K4me3 peaks in prefrontal neurons were enriched for Paired box (Pax and multiple Signal Transducer and Activator of Transcription (STAT motifs, which are known to promote glial differentiation. In contrast, H3K4me3 peaks subject to a progressive increase in maturing prefrontal neurons were enriched for activating protein-1 (AP-1 recognition elements that are commonly associated with activity-dependent regulation of neuronal gene expression. We uncovered a developmental program governing the remodeling of neuronal histone methylation landscapes in the prefrontal

  1. Significance of preoperative C-reactive protein as a parameter of the perioperative course and long-term prognosis in squamous cell carcinoma and adenocarcinoma of the oesophagus

    Institute of Scientific and Technical Information of China (English)

    Ines Gockel; Kathrin Dirksen; Claudia M Messow; Theodor Junginger

    2006-01-01

    AIM: C-reactive protein (CRP) is an acute-phase reactant and a known indicator of the malignant potential of the tumour. The aim of this study was to investigate the significance of preoperative CRP as a parameter of the perioperative course and long-term prognosis in patients with squamous cell carcinoma and adenocarcinoma of the oesophagus.METHODS: Serum CRP was determined preoperatively in 291 of 371 patients undergoing oesophagectomy for cancer from December 1989 to March 2004. Median patient age was 59 (28-79) year,82.5% of patients were males. Squamous cell carcinoma was diagnosed in 151(51.9%) and adenocarcinoma in 122 patients. Transhiatal oesophagectomy was done in 151 (51.9%) patients and 134 (46.0%) patients underwent the abdominothoracic procedure.RESULTS: In 127 (43.6%) patients the preoperative serum CRP concentration was within the normal range (<5 mg/dL), elevated CRP levels were measured in 164 (56.4%) patients. Tumour extension (P<0.0005)and the number of lymph nodes affected by metastatic spread (P=0.015) were significantly increased in the group with elevated CRP levels. Among the perioperative parameters both the number of blood transfusions (P =0.006) and the general complication rate (P=0.002)were higher in patients with elevated preoperative CRP levels. The long-term survival rate of 13.6 (0-109.8)mo was poorer in the group with elevated CRP levels compared to 18.9 (0-155.4) mo in the group with normal CRP levels (log-rank test:P=0.107). Multivariate analysis with backward variables selection identified preoperative CRP as an independent prognostic factor of the long-term prognosis in patients with oesophageal carcinoma, with a hazard ratio of 1.182 (95% confidence interval: 1.030-1.356).CONCLUSION: The preoperative serum CRP-level is an easily determined independent prognostic marker in patients with squamous cell carcinoma and adenocarcinoma of the oesophagus.

  2. Cell-type-specific profiling of protein-DNA interactions without cell isolation using targeted DamID with next-generation sequencing.

    Science.gov (United States)

    Marshall, Owen J; Southall, Tony D; Cheetham, Seth W; Brand, Andrea H

    2016-09-01

    This protocol is an extension to: Nat. Protoc. 2, 1467-1478 (2007); doi:10.1038/nprot.2007.148; published online 7 June 2007The ability to profile transcription and chromatin binding in a cell-type-specific manner is a powerful aid to understanding cell-fate specification and cellular function in multicellular organisms. We recently developed targeted DamID (TaDa) to enable genome-wide, cell-type-specific profiling of DNA- and chromatin-binding proteins in vivo without cell isolation. As a protocol extension, this article describes substantial modifications to an existing protocol, and it offers additional applications. TaDa builds upon DamID, a technique for detecting genome-wide DNA-binding profiles of proteins, by coupling it with the GAL4 system in Drosophila to enable both temporal and spatial resolution. TaDa ensures that Dam-fusion proteins are expressed at very low levels, thus avoiding toxicity and potential artifacts from overexpression. The modifications to the core DamID technique presented here also increase the speed of sample processing and throughput, and adapt the method to next-generation sequencing technology. TaDa is robust, reproducible and highly sensitive. Compared with other methods for cell-type-specific profiling, the technique requires no cell-sorting, cross-linking or antisera, and binding profiles can be generated from as few as 10,000 total induced cells. By profiling the genome-wide binding of RNA polymerase II (Pol II), TaDa can also identify transcribed genes in a cell-type-specific manner. Here we describe a detailed protocol for carrying out TaDa experiments and preparing the material for next-generation sequencing. Although we developed TaDa in Drosophila, it should be easily adapted to other organisms with an inducible expression system. Once transgenic animals are obtained, the entire experimental procedure-from collecting tissue samples to generating sequencing libraries-can be accomplished within 5 d. PMID:27490632

  3. Improving the Long-Term Stability of Perovskite Solar Cells with a Porous Al 2 O 3 Buffer Layer

    KAUST Repository

    Guarnera, Simone

    2015-02-05

    © 2015 American Chemical Society. Hybrid perovskites represent a new paradigm for photovoltaics, which have the potential to overcome the performance limits of current technologies and achieve low cost and high versatility. However, an efficiency drop is often observed within the first few hundred hours of device operation, which could become an important issue. Here, we demonstrate that the electrode\\'s metal migrating through the hole transporting material (HTM) layer and eventually contacting the perovskite is in part responsible for this early device degradation. We show that depositing the HTM within an insulating mesoporous "buffer layer" comprised of Al2O3 nanoparticles prevents the metal electrode migration while allowing for precise control of the HTM thickness. This enables an improvement in the solar cell fill factor and prevents degradation of the device after 350 h of operation. (Graph Presented).

  4. Impact of immune parameters on long-term survival in metastatic renal cell      carcinoma

    DEFF Research Database (Denmark)

    Donskov, Frede; Maase, Hans von der

    PURPOSE: The purpose of this study was to evaluate the impact of       immunologic prognostic factors in combination with established clinical       prognostic factors in patients with metastatic renal cell carcinoma       (mRCC). PATIENTS AND METHODS: A total of 120 consecutive patients with...... estimated       5-year survival rates of 60%, 25%, and 0%, respectively. These findings       were apparent in both our own prognostic model and in an extended Memorial       Sloan-Kettering Cancer Center (New York, NY) prognostic model. CONCLUSION:       This study points on five clinical and three...

  5. Long-term assessment of best cathode position to maximise microbial fuel cell performance in horizontal subsurface flow constructed wetlands.

    Science.gov (United States)

    Corbella, Clara; Garfí, Marianna; Puigagut, Jaume

    2016-09-01

    The cathode of microbial fuel cells (MFCs) implemented in constructed wetlands (CWs) is generally set in close contact with water surface to provide a rich oxygen environment. However, water level variations caused by plants evapotranspiration in CWs might decrease MFC performance by limiting oxygen transfer to the cathode. Main objective of this work was to quantify the effect of water level variation on MFC performance implemented in HSSF CW. For the purpose of this work two MFCs were implemented within a HSSF CW pilot plant fed with primary treated domestic wastewater. Cell voltage (Ecell) and the relative distance between the cathode and the water level were recorded for one year. Results showed that Ecell was greatly influenced by the relative distance between the cathode and the water level, giving an optimal cathode position of about 1 to 2cm above water level. Both water level variation and Ecell were daily and seasonal dependent, showing a pronounced day/night variation during warm periods and showing almost no daily variation during cold periods. Energy production under pronounced daily water level variation was 40% lower (80±56mWh/m(2)·day) than under low water level variation (131±61mWh/m(2)·day). Main conclusion of the present work is that of the performance of MFC implemented in HSSF CW is highly dependent on plants evapotranspiration. Therefore, MFC that are to be implemented in CWs shall be designed to be able to cope with pronounced water level variations. PMID:27151501

  6. Long-term complete remission in a patient with intravascular large B-cell lymphoma with central nervous system involvement

    Directory of Open Access Journals (Sweden)

    Sawada T

    2014-11-01

    Full Text Available Takeshi Sawada,1 Yasushi Omuro,1 Takeshi Kobayashi,2 Tunekazu Hishima,3 Fumiaki Koizumi,4 Yusuke Kanemasa,1 Tatsu Shimoyama,1 Eisaku Sasaki,1 Yoshiharu Maeda1 1Department of Chemotherapy, 2Department of Hematology, 3Department of Pathology, 4Department of Laboratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Bunkyo-ku, Tokyo, Japan Abstract: This report describes a patient with intravascular large B-cell lymphoma (IVLBCL with central nervous system involvement at the time of diagnosis who achieved complete remission for over 5 years in response to therapy. The patient, a 71 year-old woman, was previously healthy with the exception of taking verapamil for paroxysmal supraventricular tachycardia. She had presented with pyrexia and gradually progressive anemia. Brain magnetic resonance imaging revealed an infarct-like lesion in the pons, although no paralysis was observed. She was diagnosed with IVLBCL on the basis of random skin biopsy. After eight cycles of rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone therapy, abnormal laboratory data had normalized, and no pontine lesion was evident on magnetic resonance imaging without receiving any intrathecal chemotherapy. IVLBCL is associated with poor prognosis, particularly in patients with central nervous system involvement. Early initiation of rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone therapy and drug interactions between anticancer agents and verapamil as a p-glycoprotein inhibitor were considered the possible reasons for favorable outcome in the present case. Keywords: intravascular large B-cell lymphoma, random skin biopsy, CNS involvement, rituximab, verapamil, blood–brain barrier

  7. Long-term environmental exposure to metals (Cu, Cd, Pb, Zn) activates the immune cell stress response in the common European sea star (Asterias rubens).

    Science.gov (United States)

    Matranga, V; Pinsino, A; Randazzo, D; Giallongo, A; Dubois, P

    2012-05-01

    The common sea star Asterias rubens represents a key-species of the North-Eastern Atlantic macro benthic community. The cells of their immune system, known as coelomocytes, are the first line of defence against environmental hazards. Here, we report the results of investigations on the immune cells response of sea stars exposed to marine environmental pollution for long periods. We show that levels of the heat shock cognate protein 70 (HSC70) in coelomocytes from A. rubens, which were collected during a field study in the Sǿrfjord (North Sea, SW coast of Norway) along a contamination gradient, are directly associated with the long-term accumulation of Cd, Cu heavy metals exclusively in the tegument. Conversely, Pb and Zn accumulation in the tegument did not relate to HSC70 levels and none of the metals were found accumulated in the pyloric coeca. In addition the coelomocytes from A. rubens, collected in high and low metal impacted stations were examined by a proteomic approach using two-dimensional electrophoresis (2DE). By comparison of the proteomic maps, we observed that 31 protein spots differed in their relative abundance, indicating a gene expression response to the metal mixture exposure. All together, our results confirm that the echinoderm immune cells are a suitable model for the assessment of long-term exposure to environmental pollution, moreover that the increased level of HSC70 can be considered a signal of an acquired tolerance within a large spectrum of protein profile changes occurring in response to metal contamination. PMID:22000270

  8. Long-term follow-up of a hepatic metastatic acinus cell carcinoma of the pancreas using FDG-PET

    International Nuclear Information System (INIS)

    A 33 years old woman presented with cramp-like abdominal pain. Ultrasound examination revealed multiple lesions in the liver of hyper- and hypoechoic echogenicity which in accordance to subsequently performed computed tomography and dynamic hepatobiliary scintigraphy were considered to be a focal nodular hyperplasia (FNH). A severe increase of the serum lipase concentration, suspected to be an acute pancreatitis, was treated conservatively and led to a short improvement of symptoms. Some months later, a severe progression of the pain symptoms occurred, along with a measurable expansion of the abdominal circumference and palpable tumors of the liver. The dynamic hepatobiliary imaging and the static liver scan showed a decreased perfusion and function of the nodes as well as a reduced RES activity, respectively. A subsequently performed Positron Emission Tomography (PET) with F-18-Fluorodeoxyglucose (FDG) showed a massively increased glucose metabolism of the liver tumors. The histologic result of several biopsies of the tumors revealed metastases of an acinus cell carcinoma of the pancreas. Under systemic and local chemotherapy, a temporary remission could be obtained that was clearly detectable in a second FDG-PET. Nevertheless, during the further course of the disease, a progression occurred being detectable in an additional control PET-study by an increase in tumor size as well as in tumor glucose metabolism. The patient died in liver coma 15 months after the histologic diagnosis was obtained. (orig.)

  9. Long-term renal toxicity in children following fractionated total-body irradiation (TBI) before allogeneic stem cell transplantation (SCT)

    Energy Technology Data Exchange (ETDEWEB)

    Gerstein, Johanna; Meyer, Andreas; Fruehauf, Joerg; Karstens, Johann H.; Bremer, Michael [Dept. of Radiation Oncology, Medical School Hannover (Germany); Sykora, Karl-Walter [Dept. of Pediatric Hematology and Oncology, Medical School Hannover (Germany)

    2009-11-15

    Purpose: to retrospectively assess the incidence and time course of renal dysfunction in children ({<=} 16 years) following total-body irradiation (TBI) before allogeneic stem cell transplantation (SCT). Patients and methods: between 1986 and 2003, 92 children (median age, 11 years; range, 3-16 years) underwent TBI before allogeneic SCT. 43 of them had a minimum follow-up of 12 months (median, 51 months; range, 12-186 months) and were included into this analysis. Conditioning regimen included chemotherapy and fractionated TBI with 12 Gy (n = 26) or 11.1 Gy (n = 17). In one patient, renal dose was limited to 10 Gy by customized renal shielding due to known nephropathy prior to SCt. Renal dysfunction was defined as an increase of serum creatinine > 1.25 times the upper limit of age-dependent normal. Results: twelve children (28%) experienced an episode of renal dysfunction after a median of 2 months (range, 1-10 months) following SCT. In all but one patient renal dysfunction was transient and resolved after a median of 8 months (range, 3-16 months). One single patient developed persistent renal dysfunction with onset at 10 months after SCT. None of these patients required dialysis. The actuarial 3-year freedom from persistent renal toxicity for children surviving > 12 months after SCt was 97.3%. Conclusion: the incidence of persistent renal dysfunction after fractionated TBI with total doses {<=} 12 Gy was very low in this analysis. (orig.)

  10. Long-term improvement during tadalafil therapy in a patient with pulmonary hypertension secondary to pulmonary Langerhans cell histiocytosis.

    Science.gov (United States)

    Nemoto, Kenji; Oh-Ishi, Shuji; Inui, Toshihide; Nakazawa, Mariko; Hyodo, Kentaro; Nakajima, Masayuki; Kanazawa, Jun; Miura, Yukiko; Takaku, Takio; Minami, Yuko; Hayashihara, Kenji; Saito, Takefumi; Kawabata, Yoshinori

    2016-01-01

    Pulmonary arterial hypertension (PAH) secondary to pulmonary Langerhans cell histiocytosis (PLCH) is known to be a relatively common complication and is associated with a poor prognosis. However, the optimal therapeutic approach for these cases remains to be established. A 57-year-old man visited our hospital because of a progressive dry cough. A thoracic computed tomography examination showed a combination of diffuse thick-walled cysts and reticulonodular shadows that were predominant in bilateral upper lobes of the lungs. He was diagnosed as having PLCH based on the results of video-assisted thoracoscopic lung biopsies. During a 3-year clinical course, his condition deteriorated despite smoking cessation. A systemic evaluation demonstrated precapillary PAH caused by PLCH (PAH-PLCH), and treatment with tadalafil, a phosphodiesterase-5 inhibitor, was started. During a 50-month period of treatment with tadalafil, improvements in his dyspnea, 6-min walking distance, and hemodynamics were maintained without either overt hypoxemia or pulmonary edema. We considered that tadalafil therapy may be a useful option in the treatment of patients with PAH-PLCH. PMID:27330952

  11. Delta-9-tetrahydrocannabinol accumulation, metabolism and cell-type-specific adverse effects in aggregating brain cell cultures

    International Nuclear Information System (INIS)

    Despite the widespread use of Cannabis as recreational drug or as medicine, little is known about its toxicity. The accumulation, metabolism and toxicity of THC were analyzed 10 days after a single treatment, and after repeated exposures during 10 days. Mixed-cell aggregate cultures of fetal rat telencephalon were used as in vitro model, as well as aggregates enriched either in neurons or in glial cells. It was found that THC accumulated preferentially in neurons, and that glia-neuron interactions decreased THC accumulation. The quantification of 11-OH-THC and of THC-COOH showed that brain aggregates were capable of THC metabolism. No cell-type difference was found for the metabolite 11-OH-THC, whereas the THC-COOH content was higher in mixed-cell cultures. No cell death was found at THC concentrations of 2 μM in single treatment and of 1 μM and 2 μM in repeated treatments. Neurons, and particularly GABAergic neurons, were most sensitive to THC. Only the GABAergic marker was affected after the single treatment, whereas the GABAergic, cholinergic and astrocytic markers were decreased after the repeated treatments. JWH 015, a CB2 receptor agonist, showed effects similar to THC, whereas ACEA, a CB1 receptor agonist, had no effect. The expression of the cytokine IL-6 was upregulated 48 h after the single treatment with 5 μM of THC or JWH 015, whereas the expression of TNF-α remained unchanged. These results suggest that the adverse effects of THC were related either to THC accumulation or to cannabinoid receptor activation and associated with IL-6 upregulation

  12. Differential microRNA expression signatures and cell type-specific association with Taxol resistance in ovarian cancer cells

    Directory of Open Access Journals (Sweden)

    Kim YW

    2014-02-01

    Full Text Available Yong-Wan Kim,1 Eun Young Kim,1 Doin Jeon,1 Juinn-Lin Liu,2 Helena Suhyun Kim,3 Jin Woo Choi,4 Woong Shick Ahn5 1Cancer Research Institute of Medical Science, The Catholic University of Korea, Seoul, Republic of Korea; 2Brain Tumor Center, Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, TX, USA; 3Cancer Rehab Laboratory, RH Healthcare Systems Inc, TX, USA; 4Harvard Medical School and Wellman Center for Photomedicine, Cambridge, MA, USA; 5Department of Obstetrics and Gynecology, The Catholic University of Korea, Seoul, Republic of Korea Abstract: Paclitaxel (Taxol resistance remains a major obstacle for the successful treatment of ovarian cancer. MicroRNAs (miRNAs have oncogenic and tumor suppressor activity and are associated with poor prognosis phenotypes. miRNA screenings for this drug resistance are needed to estimate the prognosis of the disease and find better drug targets. miRNAs that were differentially expressed in Taxol-resistant ovarian cancer cells, compared with Taxol-sensitive cells, were screened by Illumina Human MicroRNA Expression BeadChips. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR was used to identify target genes of selected miRNAs. Kaplan–Meier survival analysis was applied to identify dysregulated miRNAs in ovarian cancer patients using data from The Cancer Genome Atlas. A total of 82 miRNAs were identified in ovarian carcinoma cells compared to normal ovarian cells. miR-141, miR-106a, miR-200c, miR-96, and miR-378 were overexpressed, and miR-411, miR-432, miR-494, miR-409-3p, and miR-655 were underexpressed in ovarian cancer cells. Seventeen miRNAs were overexpressed in Taxol-resistant cells, including miR-663, miR-622, and HS_188. Underexpressed miRNAs in Taxol-sensitive cells included miR-497, miR-187, miR-195, and miR-107. We further showed miR-663 and miR-622 as significant prognosis markers of the chemo-resistant patient group. In particular, the

  13. Cell inactivation and membrane damage after long-term treatments at sub-zero temperature in the supercooled and frozen states.

    Science.gov (United States)

    Moussa, Marwen; Dumont, Frédéric; Perrier-Cornet, Jean-Marie; Gervais, Patrick

    2008-12-15

    The survival of cells subjected to cooling at sub-zero temperature is of paramount concern in cryobiology. The susceptibility of cells to cryopreservation processes, especially freeze-thawing, stimulated considerable interest in better understanding the mechanisms leading to cell injury and inactivation. In this study, we assessed the viability of cells subjected to cold stress, through long-term supercooling experiments, versus freeze-thawing stress. The viability of Escherichia coli, Saccharomyces cerevisiae, and leukemia cells were assessed over time. Supercooled conditions were maintained for 71 days at -10 degrees C, and for 4 h at -15 degrees C, and -20 degrees C, without additives or emulsification. Results showed that cells could be inactivated by the only action of sub-zero temperature, that is, without any water crystallization. The loss of cell viability upon exposure to sub-zero temperatures is suggested to be caused by exposure to cold shock which induced membrane damage. During holding time in the supercooled state, elevated membrane permeability results in uncontrolled mass transfer to and from the cell maintained at cold conditions and thus leads to a loss of viability. With water crystallization, cells shrink suddenly and thus are exposed to cold osmotic shock, which is suggested to induce abrupt loss of cell viability. During holding time in the frozen state, cells remain suspended in the residual unfrozen fraction of the liquid and are exposed to cold stress that would cause membrane damage and loss of viability over time. However, the severity of such a stress seems to be moderated by the cell type and the increased solute concentration in the unfrozen fraction of the cell suspension. PMID:18814283

  14. Characterisation of CD4 T cells in healthy and diseased koalas (Phascolarctos cinereus) using cell-type-specific monoclonal antibodies.

    Science.gov (United States)

    Mangar, Chandan; Armitage, Charles W; Timms, Peter; Corcoran, Lynn M; Beagley, Kenneth W

    2016-07-01

    The koala (Phascolarctos cinereus) is an arboreal herbivorous marsupial that is an Australian icon. Koalas in many parts of Australia are under multiple threats including habitat destruction, dog attacks, vehicular accidents, and infectious diseases such as Chlamydia spp. and the koala retrovirus (KoRV), which may contribute to the incidence of lymphoma and leukaemia in this species. Due to a lack of koala-specific immune reagents and assays there is currently no way to adequately analyse the immune response in healthy, diseased or vaccinated animals. This paper reports the production and characterisation of the first anti-koala CD4 monoclonal antibody (mAb). The koala CD4 gene was identified and used to develop recombinant proteins for mAb production. Fluorochrome-conjugated anti-CD4 mAb was used to measure the levels of CD4(+) lymphocytes collected from koala spleens (41.1%, range 20-45.1%) lymph nodes (36.3%, range 19-55.9%) and peripheral blood (23.8%, range 17.3-35%) by flow cytometry. Biotin-conjugated anti-CD4 mAb was used for western blot to determine an approximate size of 52 kDa for the koala CD4 molecule and used in immunohistochemistry to identify CD4(+) cells in the paracortical region and germinal centres of spleen and lymph nodes. Using the anti-CD4 mab we showed that CD4 cells from vaccinated, but not control, koalas proliferated following in vitro stimulation with UV-inactivated Chlamydia pecorum and recombinant chlamydial antigens. Since CD4(+) T cells have been shown to play a pivotal role in clearing chlamydial infection in both human and mouse infections, using this novel antibody will help determine the role CD4(+) T cells play in protection against chlamydial infection in koalas and also enhance our knowledge of how KoRV affects the koala immune system. PMID:26905635

  15. Long-term survival after gemcitabine and cisplatin in patients with locally advanced transitional cell carcinoma of the bladder: focus on supplementary treatment strategies

    DEFF Research Database (Denmark)

    Als, Anne Birgitte; Sengelov, Lisa; von der Maase, Hans

    2007-01-01

    radiotherapy as supplementary treatment. CONCLUSIONS: In patients with locally advanced bladder cancer, NED following chemotherapy alone or chemotherapy plus supplementary cystectomy or radiotherapy is essential to achieve long-term survival. Patients with a partial response should be offered radical......OBJECTIVE: The objective was to evaluate response and survival, as well as efficacy of subsequent supplementary treatment and follow-up strategy in patients with locally advanced transitional cell carcinoma of the bladder following combination chemotherapy with gemcitabine and cisplatin (GC......: A total of 25 patients (29.8%) with complete response to chemotherapy were followed by close surveillance. This group achieved a median overall survival of 47.6 mo. Another 25 patients had partial response to chemotherapy. Of these patients, 16 had supplementary treatment, with 10 achieving "no evidence...

  16. Influence of prodigiozan on the postirradiation recovery of haemopoietic precursor cells and colony-stimulating factor level in long-term cultures of mouse bone marrow

    International Nuclear Information System (INIS)

    Prodigiozan injected to long-term cultures of mouse bone marrow 24 h before irradiation increased CFUs and CFU-GM number and colony-stimulating factor (CSF)level by the time of delivery of ionizing radiation. As early as 60 min following irradiation of bone marrow structures with a dose of 2 Gy the number of CFUs and CFU-GM decreased considerably, and from day 3 on after irradiation the indices under study were gradually restored. By day 14 the cultures preinjected with prodigiozan exhibited higher recovery levels. The decrease in the number of precursor cells 60 min after irradiation was accompanied by a drastic increase in the CSF content of cultures; the CSF release in cultures protected with prodigiozan was more moderate than in the irradiated controls

  17. A long-term degradation study of power generation characteristics of anode-supported solid oxide fuel cells using LaNi(Fe)O{sub 3} electrode

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, Takeshi; Watanabe, Kimitaka; Arakawa, Masayasu; Arai, Hajime [NTT Corporation, NTT Energy and Environment Systems Laboratories, Morinosato-Wakamiya 3-1, Atsugi-shi, Kanagawa 243-0198 (Japan)

    2009-09-05

    The long-term operation of an anode-supported solid oxide fuel cell was examined to study the degradation factor. The cell was constructed using LaNi{sub 0.6}Fe{sub 0.4}O{sub 3} (LNF), alumina-doped scandia stabilized zirconia (SASZ), and NiO-SASZ as the cathode, electrolyte, and anode respectively. The cell had Pt current collectors and was operated for 6500 h. The test was carried out at 1073 K with a constant load of 0.4 A cm{sup -2} and included thermal cycling. The cell voltage degradation rate was below 0.86%/1000 h when the cell was operated for up to 5200 h. Changes in the resistance of the cells during the experiments were analyzed by impedance spectroscopy. The cathode polarization resistance and ohmic resistance increased with time. The elements (Si and B) contained in the water condensed from the cathode exhaust gas were identified using inductively coupled plasma (ICP). (author)

  18. Layered long-term co-culture of hepatocytes and endothelial cells on a transwell membrane: toward engineering the liver sinusoid

    International Nuclear Information System (INIS)

    This paper presents a novel liver model that mimics the liver sinusoid where most liver activities occur. A key aspect of our current liver model is a layered co-culture of primary rat hepatocytes (PRHs) and primary rat liver sinusoidal endothelial cells (LSECs) or bovine aortic endothelial cells (BAECs) on a transwell membrane. When a layered co-culture was attempted with a thin Matrigel layer placed between hepatocytes and endothelial cells to mimic the space of Disse, the cells did not form completely separated monolayers. However, when hepatocytes and endothelial cells were cultured on the opposite sides of a transwell membrane, PRHs co-cultured with LSECs or BAECs maintained their viability and normal morphology for 39 and 57 days, respectively. We assessed the presence of hepatocyte-specific differentiation markers to verify that PRHs remained differentiated in the long-term co-culture and analyzed hepatocyte function by monitoring urea synthesis. We also noted that the expression of cytochrome P-450 remained similar in the co-cultured system from day 1 to day 48. Thus, our novel liver model system demonstrated that primary hepatocytes can be cultured for extended times and retain their hepatocyte-specific functions when layered with endothelial cells. (paper)

  19. Long-term upregulation of inflammation and suppression of cell proliferation in the brain of adult rats exposed to traumatic brain injury using the controlled cortical impact model.

    Directory of Open Access Journals (Sweden)

    Sandra A Acosta

    Full Text Available The long-term consequences of traumatic brain injury (TBI, specifically the detrimental effects of inflammation on the neurogenic niches, are not very well understood. In the present in vivo study, we examined the prolonged pathological outcomes of experimental TBI in different parts of the rat brain with special emphasis on inflammation and neurogenesis. Sixty days after moderate controlled cortical impact injury, adult Sprague-Dawley male rats were euthanized and brain tissues harvested. Antibodies against the activated microglial marker, OX6, the cell cycle-regulating protein marker, Ki67, and the immature neuronal marker, doublecortin, DCX, were used to estimate microglial activation, cell proliferation, and neuronal differentiation, respectively, in the subventricular zone (SVZ, subgranular zone (SGZ, striatum, thalamus, and cerebral peduncle. Stereology-based analyses revealed significant exacerbation of OX6-positive activated microglial cells in the striatum, thalamus, and cerebral peduncle. In parallel, significant decrements in Ki67-positive proliferating cells in SVZ and SGZ, but only trends of reduced DCX-positive immature neuronal cells in SVZ and SGZ were detected relative to sham control group. These results indicate a progressive deterioration of the TBI brain over time characterized by elevated inflammation and suppressed neurogenesis. Therapeutic intervention at the chronic stage of TBI may confer abrogation of these deleterious cell death processes.

  20. Long-term effects of ionizing radiation

    International Nuclear Information System (INIS)

    This paper approaches the long-term effects of ionizing radiation considering the common thought that killing of cells is the basis for deterministic effects and that the subtle changes in genetic information are important in the development of radiation-induced cancer, or genetic effects if these changes are induced in germ cells

  1. Aqueous exposure to Aroclor 1254 modulates the mitogenic response of Atlantic salmon anterior kidney T-cells: Indications of short- and long-term immunomodulation

    International Nuclear Information System (INIS)

    Polychlorinated biphenyls (PCBs) exist as persistent organic pollutants in numerous river systems in the United States. Unfortunately, some of these rivers are sites of active Atlantic salmon restoration programs, and polychlorinated biphenyls have been implicated as ancillary factors contributing to failed salmon restoration. Here, we investigate the immediate and chronic effects of intermediate duration aqueous PCB exposure (1 or 10 μg L-1 Aroclor 1254) on the mitogen-stimulated lymphoproliferative response of Atlantic salmon anterior kidney leukocytes (AKLs). A short-term study was designed to examine immunomodulation in Atlantic salmon smolts immediately following 21 days of aqueous exposure, while a long-term study evaluated chronic impacts in the mitogen response in parr 15 months post-exposure as larvae. The proliferative response of AKLs to the mitogens concanavalin A (CON A), phytohemaglutinnin-P (PHA-P), pokeweed mitogen (PWM), and lipopolysaccharide were used as an indice of immunomodulation. The proliferative response to the T-cell mitogens CON A and PHA-P was significantly increased in the 10 μg L-1 group (n = 10; P = 0.043 and 0.002, respectively) immediately following exposure of smolts. Additionally, The PHA-P response was significantly increased in the 1 μg L-1 exposure group (n = 10, P = 0.036). In fish treated as larvae and tested 15 months later, the PHA-P sensitive populations exhibited elevated proliferation in the 1 and 10 μg L-1 groups (n = 12, P -1 treated groups. These results demonstrate an immunomodulatory effect of PCBs on T-cell mitogen sensitive populations of lymphocytes in Atlantic salmon as well as long-term immunomodulation in PHA-P and PWM sensitive populations

  2. Mitomycin, cisplatin, and vindesine followed by radiotherapy combined with cisplatin in stage III nonsmall cell lung cancer: long-term results

    International Nuclear Information System (INIS)

    Purpose: To assess the tolerance, response rate, pattern of failure, and long-term survival of patients with unresectable nonsmall cell lung cancer treated with one cycle of induction chemotherapy followed by concurrent cisplatin and radiotherapy. Methods and Materials: From 1986 to 1988, 45 patients with histologically proven nonsmall cell lung cancer clinical Stage III (29 IIIA and 16 IIIB) were included in this study. Patients received one cycle of Mitomycin C 10 mg/m2 day 1, Cisplatin 120 mg/m2 day 1, and Vindesine 3 mg/m2 days 1, 8, 15, and 22, by i.v. bolus injection. Radiotherapy was started within 4-6 weeks after completion of chemotherapy, with a total tumor dose of 60 Gy, at 2 Gy/day. Cisplatin, 20 mg/m2/day by i.v. continuous infusion was administered for days 1-5 of radiation treatment. Results: The main toxic acute effects were nausea-vomiting grade 1-3 in 38 patients (85%). Ten patients (22%) developed esophagitis grade 3. Leukopenia grade 1-2 was observed in 18 patients (40%), grade 3 in 12 (27%), and grade 4 in 4 (9%). Three patients (6.6%) died by granulocytopenia and sepsis. A bronchoscopic proven complete response was achieved in 9 patients (21.5%) and partial response in 28 patients (67%). With a minimum follow-up of 65 months, overall median survival was 13 months, 2-year survival was 21%, and 5-year survival was 7%, with no statistical difference between Stage IIIA and IIIB. Median survival of patients with complete response was 23.2 months, and 5-year survival was 33%. Conclusion: This treatment scheme produced a severe toxicity and in spite of a high response rate, long-term survival is poor, similar to previous studies with radiotherapy alone

  3. Human pluripotent stem cell-derived cardiomyocytes: Genome-wide expression profiling of long-term in vitro maturation in comparison to human heart tissue

    Directory of Open Access Journals (Sweden)

    Ilaria Piccini

    2015-06-01

    Full Text Available Cardiomyocyte-like cells (CMs derived from human pluripotent stem cells (hPSCs present a valuable model for human disease modeling, studying early human development and, potentially, developing cell therapeutic approaches. However, the specification of early hPSC-derived CMs into defined cardiac subtypes such as atrial and ventricular cells is not well understood and, thus, poorly controlled. Moreover, the maturation status of hPSC-CMs is not well defined, yet it is known that these cells undergo at least some degree of maturation upon longer term in vitro culture. To gain insight into this process, and to assess their developmental status, we have recently generated a data set of hPSC-CMs monitoring global changes in gene expression upon long term maintenance in vitro, in comparison to human atrial and ventricular heart samples (GEO accession number GEO: GSE64189. These data present a rich resource for evaluating the maturation status of hPSC-CMs, for identifying suitable markers for subtype-specific gene expression, as well as for the generation of functional hypotheses. Here, we provide additional details and quality checks of this data set, and exemplify how it can be used to identify maturation-associated as well as cardiac subtype-specific markers.

  4. Human pluripotent stem cell-derived cardiomyocytes: Genome-wide expression profiling of long-term in vitro maturation in comparison to human heart tissue

    Science.gov (United States)

    Piccini, Ilaria; Rao, Jyoti; Seebohm, Guiscard; Greber, Boris

    2015-01-01

    Cardiomyocyte-like cells (CMs) derived from human pluripotent stem cells (hPSCs) present a valuable model for human disease modeling, studying early human development and, potentially, developing cell therapeutic approaches. However, the specification of early hPSC-derived CMs into defined cardiac subtypes such as atrial and ventricular cells is not well understood and, thus, poorly controlled. Moreover, the maturation status of hPSC-CMs is not well defined, yet it is known that these cells undergo at least some degree of maturation upon longer term in vitro culture. To gain insight into this process, and to assess their developmental status, we have recently generated a data set of hPSC-CMs monitoring global changes in gene expression upon long term maintenance in vitro, in comparison to human atrial and ventricular heart samples (GEO accession number GEO: GSE64189). These data present a rich resource for evaluating the maturation status of hPSC-CMs, for identifying suitable markers for subtype-specific gene expression, as well as for the generation of functional hypotheses. Here, we provide additional details and quality checks of this data set, and exemplify how it can be used to identify maturation-associated as well as cardiac subtype-specific markers. PMID:26484180

  5. Prognostic model for long-term survival of locally advanced non-small-cell lung cancer patients after neoadjuvant radiochemotherapy and resection integrating clinical and histopathologic factors

    International Nuclear Information System (INIS)

    Outcome of consecutive patients with locally advanced non-small cell lung cancer and histopathologically proven mediastional lymph node metastases treated with induction chemotherapy, neoadjuvant radiochemotherapy and thoracotomy at the West German Cancer Center between 08/2000 and 06/2012 was analysed. A clinico-pathological prognostic model for survival was built including partial or complete response according to computed tomography imaging (CT) as clinical parameters as well as pathologic complete remission (pCR) and mediastinal nodal clearance (MNC) as histopathologic factors. Proportional hazard analysis (PHA) and recursive partitioning analysis (RPA) were used to identify prognostic factors for survival. Long-term survival was defined as survival ≥ 36 months. A total of 157 patients were treated, median follow-up was 97 months. Among these patients, pCR and MNC were observed in 41 and 85 patients, respectively. Overall survival was 56 ± 4% and 36 ± 4% at 24 and 60 months, respectively. Sensitivities of pCR and MNC to detect long-term survivors were 38% and 61%, specificities were 84% and 52%, respectively. Multivariable survival analysis revealed pCR, cN3 category, and gender, as prognostic factors at a level of α < 0.05. Considering only preoperative available parameters, CT response became significant. Classifying patients with a predicted hazard above the median as high risk group and the remaining as low risk patients yielded better separation of the survival curves by the inclusion of histopathologic factors than by preoperative factors alone (p < 0.0001, log rank test). Using RPA, pCR was identified as the top prognostic factor above clinical factors (p = 0.0006). No long term survivors were observed in patients with cT3-4 cN3 tumors without pCR. pCR is the dominant histopathologic response parameter and improves prognostic classifiers, based on clinical parameters. The validated prognostic model can be used to estimate individual prognosis and

  6. Long term results of postoperative Intensity-Modulated Radiation Therapy (IMRT) in the treatment of Squamous Cell Carcinoma (SCC) located in the oropharynx or oral cavity

    International Nuclear Information System (INIS)

    To report our long-term results with postoperative intensity-modulated radiation therapy (IMRT) in patients suffering from squamous-cell carcinoma (SCC) of the oral cavity or oropharynx. Seventy five patients were retrospectively analyzed. Median age was 58 years and 84 % were male. 76 % of the primaries were located in the oropharynx. Surgery resulted in negative margins (R0) in 64 % of the patients while 36 % suffered from positive margins (R1). Postoperative stages were as follows: stage1:4 %, stage2:9 %, stage3:17 %, stage4a:69 % with positive nodes in 84 %. Perineural invasion (Pn+) and extracapsular extension (ECE) were present in 7 % and 29 %, respectively. All patients received IMRT using the step-and-shoot approach with a simultaneously integrated boost (SIB) in 84 %. Concurrent systemic therapy was applied to 53 patients, mainly cisplatin weekly. Median follow-up was 55 months (5–150). 13 patients showed locoregional failures (4 isolated local, 4 isolated neck, 5 combined) transferring into 5-year-LRC rates of 85 %. Number of positive lymph nodes (n > 2) and presence of ECE were significantly associated with decreased LRC in univariate analysis, but only the number of nodes remained significant in multivariate analysis. Overall treatment failures occurred in 20 patients (9 locoregional only, 7 distant only, 4 combined), transferring into 3-and 5-year-FFTF rates of 77 % and 75 %, respectively. The 3-and 5-year-OS rates were 80 % and 72 %, respectively. High clinical stage, high N stage, number of positive nodes (n > 2), ECE and Pn1 were significantly associated with worse FFTF and OS in univariate analysis, but only number of nodes remained significant for FFTF in multivariate analysis. Maximum acute toxicity was grade 3 in 64 % and grade 4 in 1 %, mainly hematological or mucositis/dysphagia. Maximum late toxicity was grade 3 in 23 % of the patients, mainly long-term tube feeding dependency. Postoperative IMRT achieved excellent LRC and good OS with

  7. Long-term results of a randomized phase III trial of TPF induction chemotherapy followed by surgery and radiation in locally advanced oral squamous cell carcinoma.

    Science.gov (United States)

    Zhong, Lai-ping; Zhang, Chen-ping; Ren, Guo-xin; Guo, Wei; William, William N; Hong, Christopher S; Sun, Jian; Zhu, Han-guang; Tu, Wen-yong; Li, Jiang; Cai, Yi-li; Yin, Qiu-ming; Wang, Li-zhen; Wang, Zhong-he; Hu, Yong-jie; Ji, Tong; Yang, Wen-jun; Ye, Wei-min; Li, Jun; He, Yue; Wang, Yan-an; Xu, Li-qun; Zhuang, Zhengping; Lee, J Jack; Myers, Jeffrey N; Zhang, Zhi-yuan

    2015-07-30

    Previously, we conducted a randomized phase III trial of TPF (docetaxel, cisplatin, and 5-fluorouracil) induction chemotherapy in surgically managed locally advanced oral squamous cell carcinoma (OSCC) and found no improvement in overall survival. This study reports long-term follow-up results from our initial trial. All patients had clinical stage III or IVA locally advanced OSCC. In the experimental group, patients received two cycles of TPF induction chemotherapy (75mg/m2 docetaxel d1, 75mg/m2 cisplatin d1, and 750mg/m2/day 5-fluorouracil d1-5) followed by radical surgery and post-operative radiotherapy; in the control group, patients received upfront radical surgery and post-operative radiotherapy. The primary endpoint was overall survival. Among 256 enrolled patients with a median follow-up of 70 months, estimated 5-year overall survival, disease-free survival, locoregional recurrence-free survival, and distant metastasis-free survival rates were 61.1%, 52.7%, 55.2%, and 60.4%, respectively. There were no significant differences in survival rates between experimental and control groups. However, patients with favorable pathologic responses had improved outcomes compared to those with unfavorable pathologic responses and to those in the control group. Although TPF induction chemotherapy did not improve long-term survival compared to surgery upfront in patients with stage III and IVA OSCC, a favorable pathologic response after induction chemotherapy may be used as a major endpoint and prognosticator in future studies. Furthermore, the negative results observed in this trial may be represent type II error from an underpowered study. Future larger scale phase III trials are warranted to investigate whether a significant benefit exists for TPF induction chemotherapy in surgically managed OSCC. PMID:26124084

  8. Chemoradiotherapy with or without consolidation chemotherapy using cisplatin and 5-fluorouracil in anal squamous cell carcinoma: long-term results in 31 patients

    International Nuclear Information System (INIS)

    The objectives of this study were to evaluate long-term results of concurrent chemoradiotherapy (CRT) with 5-fluorouracil and cisplatin and the potential benefit of consolidation chemotherapy in patients with anal squamous cell carcinoma (ASCC). Between January 1995 and February 2006, 31 patients with ASCC were treated with CRT. Radiotherapy was administered at 45 Gy over 5 weeks, followed by a boost of 9 Gy to complete or partial responders. Chemotherapy consisted of 5-fluorouracil (750 or 1,000 mg/m2) daily on days 1 to 5 and days 29 to 33; and, cisplatin (75 or 100 mg/m2) on day 2 and day 30. Twelve patients had T3–4 disease, whereas 18 patients presented with lymphadenopathy. Twenty-one (67.7%) received consolidation chemotherapy with the same doses of 5-fluorouracil and cisplatin, repeated every 4 weeks for maximum 4 cycles. Nineteen patients (90.5%) completed all four courses of consolidation chemotherapy. After CRT, 28 patients showed complete responses, while 3 showed partial responses. After a median follow-up period of 72 months, the 5-year overall, disease-free, and colostomy-free survival rates were 84.7%, 82.9% and 96.6%, demonstrating that CRT with 5-fluorouracil and cisplatin yields a good outcome in terms of survival and sphincter preservation. No differences in 5-year OS and DFS rates between patients treated with CRT alone and CRT with consolidation chemotherapy was observed. our study shows that CRT with 5-FU and cisplatin, with or without consolidation chemotherapy, was well tolerated and proved highly encouraging in terms of long-term survival and the preservation of anal function in ASCC. Further trials with a larger patient population are warranted in order to evaluate the potential role of consolidation chemotherapy

  9. Vascular Endothelial Cell Injury Is an Important Factor in the Development of Encapsulating Peritoneal Sclerosis in Long-Term Peritoneal Dialysis Patients

    Science.gov (United States)

    Tawada, Mitsuhiro; Ito, Yasuhiko; Hamada, Chieko; Honda, Kazuho; Mizuno, Masashi; Suzuki, Yasuhiro; Sakata, Fumiko; Terabayashi, Takeshi; Matsukawa, Yoshihisa; Maruyama, Shoichi; Imai, Enyu; Matsuo, Seiichi; Takei, Yoshifumi

    2016-01-01

    Background and Objectives Encapsulating peritoneal sclerosis (EPS) is a rare but serious and life-threatening complication of peritoneal dialysis (PD). However, the precise pathogenesis remains unclear; in addition, predictors and early diagnostic biomarkers for EPS have not yet to be established. Methods Eighty-three peritoneal membrane samples taken at catheter removal were examined to identify pathological characteristics of chronic peritoneal deterioration, which promotes EPS in patients undergoing long-term PD treatment with low occurrence of peritonitis. Results According to univariable logistic regression analysis of the pathological findings, thickness of the peritoneal membrane (P = 0.045), new membrane formation score (P = 0.006), ratio of luminal diameter to vessel diameter (L/V ratio, P<0.001), presence of CD31-negative vessels (P = 0.021), fibrin deposition (P<0.001), and collagen volume fraction (P = 0.018) were associated with EPS development. In analyses of samples with and without EPS matched for PD treatment period, non-diabetes, and PD solution, univariable analysis identified L/V ratio (per 0.1 increase: odds ratio (OR) 0.44, P = 0.003) and fibrin deposition (OR 6.35, P = 0.027) as the factors associated with EPS. L/V ratio was lower in patients with fibrin exudation than in patients without fibrin exudation. Conclusions These findings suggest that damage to vascular endothelial cells, as represented by low L/V ratio, could be a predictive finding for the development of EPS, particularly in long-term PD patients unaffected by peritonitis. PMID:27119341

  10. Long-term results of low dose daily cisplatin chemotherapy used concurrently with modestly accelerated radiotherapy in locally advanced squamous cell carcinomas of the head neck cancer region

    Directory of Open Access Journals (Sweden)

    Pramod Kumar Gupta

    2014-01-01

    Full Text Available Introduction: Concurrent single agent cisplatin (CDDP with radiotherapy (RT improves outcomes in locally advanced squamous cell carcinomas of the head neck (LA-SCCHN. CDDP at 100 mg/m 2 at 3 weekly intervals raise compliance, hospitalization, and supportive care issues. Low dose daily CDDP was delivered with RT to evaluate its compliance, long-term safety and efficacy. Patients and Methods: During the period of month between November 2005 and May 2007, 52 patients of stage III/IV LA-SCCHN were given with conventional RT in a phased manner (dose-70 Gy/35 fractions/6 weeks along with daily CDDP (6 mg/m 2 ; capped 10 mg-30 cycles over 6 weeks. No hospitalization or antiemetic cover was planned. Compliance, acute and late toxicity were recorded as per Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer grading system and survival outcomes were evaluated. Results : The median follow-up was 63 months. 43 (83% cases complied with RT schedule and >28 cycles of CDDP was administered in 38 (73% cases. Confluent mucositis was seen in 65%, Grade III/IV dysphagia in 67%; 77% required enteral feed and hospitalization in 15%. There were four treatment related deaths. At 5 years, the loco-regional control was 25% (median-11 months and the overall survival was 31% (median-11 months. The 5 years actuarial rates of late Grade III/IV toxicity was 24%. Late swallowing difficulty/aspiration were seen in 17%; xerostomia-40%; ototoxicity-6%; nephrotoxicity-4%; and no second malignancy. Conclusion: Low dose cisplatin with moderately accelerated RT schedule appears feasible and logistically suitable "out-patient" option without increasing long-term toxicity in LA-SCCHN cancer region.

  11. Regulation of insulin-like growth factor-binding protein-1 synthesis and secretion by progestin and relaxin in long term cultures of human endometrial stromal cells

    International Nuclear Information System (INIS)

    The decidualized endometrium during the first trimester of pregnancy synthesizes and secretes a 32-kDa insulin-like growth factor-binding protein (termed hIGFBP-1) at high levels. IGFBP-1 is the major soluble protein product of this tissue and is principally localized to the differentiated endometrial stromal cell, the decidual cell. In the present study long term culture of stromal cells from the nonpregnant endometrium have been employed to elucidate the hormonal requirements for IGFBP-1 production. Immunoreactive IGFBP-1 was undetectable in control cultures. However, inclusion of medroxyprogesterone acetate (MPA) induced rates of 0.35 +/- 0.09 microgram/0.1 mg cell DNA.day after 20-30 days. In these cultures cells exhibited morphological changes consistent with decidual cell differentiation. In all cultures removal of MPA after exposure for 10-16 days, with or without subsequent inclusion of relaxin (RLX), increased production of IGFBP-1 450- to 4600-fold to rates of 150-710 micrograms/0.1 mg cell DNA.day or 26-131 micrograms/10(6) cells.day on days 24-26. The rates tended to be higher with the inclusion of RLX and were sustained in contrast to cultures without RLX, where rates fell by day 30. Individual cultures responded differently to RLX when added from the initiation of culture, with either a response similar to MPA alone or a cyclical change in production, achieving maximal rates of 190-290 micrograms/0.1 mg cell DNA.day. Cultures in which RLX alone induced high IGFBP-1 high production were obtained from endometrium during the progesterone-dominated luteal phase. In cultures exhibiting high rates of immunoreactive IGFBP-1 production, the protein represented their major secretory protein product. This was confirmed by [35S]methionine incorporation and the presence of IGFBP-1 as the predominant protein in serum-free culture medium

  12. Regulation of insulin-like growth factor-binding protein-1 synthesis and secretion by progestin and relaxin in long term cultures of human endometrial stromal cells

    Energy Technology Data Exchange (ETDEWEB)

    Bell, S.C.; Jackson, J.A.; Ashmore, J.; Zhu, H.H.; Tseng, L. (Univ. of Leicester, (United Kingdom))

    1991-05-01

    The decidualized endometrium during the first trimester of pregnancy synthesizes and secretes a 32-kDa insulin-like growth factor-binding protein (termed hIGFBP-1) at high levels. IGFBP-1 is the major soluble protein product of this tissue and is principally localized to the differentiated endometrial stromal cell, the decidual cell. In the present study long term culture of stromal cells from the nonpregnant endometrium have been employed to elucidate the hormonal requirements for IGFBP-1 production. Immunoreactive IGFBP-1 was undetectable in control cultures. However, inclusion of medroxyprogesterone acetate (MPA) induced rates of 0.35 +/- 0.09 microgram/0.1 mg cell DNA.day after 20-30 days. In these cultures cells exhibited morphological changes consistent with decidual cell differentiation. In all cultures removal of MPA after exposure for 10-16 days, with or without subsequent inclusion of relaxin (RLX), increased production of IGFBP-1 450- to 4600-fold to rates of 150-710 micrograms/0.1 mg cell DNA.day or 26-131 micrograms/10(6) cells.day on days 24-26. The rates tended to be higher with the inclusion of RLX and were sustained in contrast to cultures without RLX, where rates fell by day 30. Individual cultures responded differently to RLX when added from the initiation of culture, with either a response similar to MPA alone or a cyclical change in production, achieving maximal rates of 190-290 micrograms/0.1 mg cell DNA.day. Cultures in which RLX alone induced high IGFBP-1 high production were obtained from endometrium during the progesterone-dominated luteal phase. In cultures exhibiting high rates of immunoreactive IGFBP-1 production, the protein represented their major secretory protein product. This was confirmed by ({sup 35}S)methionine incorporation and the presence of IGFBP-1 as the predominant protein in serum-free culture medium.

  13. Long-Term Safety Issues of iPSC-Based Cell Therapy in a Spinal Cord Injury Model: Oncogenic Transformation with Epithelial-Mesenchymal Transition

    Directory of Open Access Journals (Sweden)

    Satoshi Nori

    2015-03-01

    Full Text Available Previously, we described the safety and therapeutic potential of neurospheres (NSs derived from a human induced pluripotent stem cell (iPSC clone, 201B7, in a spinal cord injury (SCI mouse model. However, several safety issues concerning iPSC-based cell therapy remain unresolved. Here, we investigated another iPSC clone, 253G1, that we established by transducing OCT4, SOX2, and KLF4 into adult human dermal fibroblasts collected from the same donor who provided the 201B7 clone. The grafted 253G1-NSs survived, differentiated into three neural lineages, and promoted functional recovery accompanied by stimulated synapse formation 47 days after transplantation. However, long-term observation (for up to 103 days revealed deteriorated motor function accompanied by tumor formation. The tumors consisted of Nestin+ undifferentiated neural cells and exhibited activation of the OCT4 transgene. Transcriptome analysis revealed that a heightened mesenchymal transition may have contributed to the progression of tumors derived from grafted cells.

  14. Continuous Fermentation of Clostridium tyrobutyricum with Partial Cell Recycle as a Long-Term Strategy for Butyric Acid Production

    Directory of Open Access Journals (Sweden)

    Edgar C. Clausen

    2012-08-01

    Full Text Available In making alternative fuels from biomass feedstocks, the production of butyric acid is a key intermediate in the two-step production of butanol. The fermentation of glucose via Clostridium tyrobutyricum to butyric acid produces undesirable byproducts, including lactic acid and acetic acid, which significantly affect the butyric acid yield and productivity. This paper focuses on the production of butyric acid using Clostridium tyrobutyricum in a partial cell recycle mode to improve fermenter yield and productivity. Experiments with fermentation in batch, continuous culture and continuous culture with partial cell recycle by ultrafiltration were conducted. The results show that a continuous fermentation can be sustained for more than 120 days, which is the first reported long-term production of butyric acid in a continuous operation. Further, the results also show that partial cell recycle via membrane ultrafiltration has a great influence on the selectivity and productivity of butyric acid, with an increase in selectivity from ≈9% to 95% butyric acid with productivities as high as 1.13 g/Lh. Continuous fermentation with low dilution rate and high cell recycle ratio has been found to be desirable for optimum productivity and selectivity toward butyric acid and a comprehensive model explaining this phenomenon is given.

  15. Magnetic resonance hypointensive signal primarily originates from extracellular iron particles in the long-term tracking of mesenchymal stem cells transplanted in the infarcted myocardium

    Directory of Open Access Journals (Sweden)

    Huang Z

    2015-03-01

    Full Text Available Zheyong Huang,1,* Chenguang Li,1,* Shan Yang,2 Jianfeng Xu,1 Yunli Shen,3 Xinxing Xie,4 Yuxiang Dai,1 Hao Lu,1 Hui Gong,5 Aijun Sun,1 Juying Qian,1 Junbo Ge1 1Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China; 2Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China; 3Department of Cardiology, Shanghai East Hospital, Tongji University, Shanghai, People’s Republic of China; 4Department of Cardiology, Qianfoshan Hospital, Shandong University, Jinan, Shandong Province, People’s Republic of China; 5Institute of Biomedical Science, Fudan University, Shanghai, People’s Republic of China *These authors contributed equally to this work Purpose: The long-lasting hypointensities in cardiac magnetic resonance (CMR were believed to originate from superparamagnetic iron oxide (SPIO-engulfed macrophages during long-term stem cell tracking. However, the iron clearance capacity of the ischemic heart was limited. Therefore, we speculated that the extracellular SPIO particles may also be involved in the generation of false-positive signals.Methods and results: Male swine mesenchymal stem cells (MSCs were incubated with SPIO for 24 hours, and SPIO labeling had no significant effects on either cell viability or differentiation. In vitro studies showed that magnetic resonance failed to distinguish SPIO from living SPIO-MSCs or dead SPIO-MSCs. Two hours after the establishment of the female swine acute myocardial infarction model, 2×107 male SPIO-labeled MSCs (n=5 or unlabeled MSCs (n=5 were transextracardially injected into the infarcted myocardium at ten distinct sites. In vivo CMR with T2 star weighted imaging-flash-2D sequence revealed a signal void corresponding to the initial SPIO-MSC injection sites. At 6 months after transplantation, CMR identified 32 (64% of the 50 injection sites, where massive Prussian blue-positive iron

  16. Long-Term Fate Mapping Using Conditional Lentiviral Vectors Reveals a Continuous Contribution of Radial Glia-Like Cells to Adult Hippocampal Neurogenesis in Mice.

    Directory of Open Access Journals (Sweden)

    Sarah-Ann Aelvoet

    Full Text Available Newborn neurons are generated throughout life in two neurogenic regions, the subventricular zone and the hippocampal dentate gyrus. Stimulation of adult neurogenesis is considered as an attractive endogenous repair mechanism to treat different neurological disorders. Although tremendous progress has been made in our understanding of adult hippocampal neurogenesis, important questions remain unanswered, regarding the identity and the behavior of neural stem cells in the dentate gyrus. We previously showed that conditional Cre-Flex lentiviral vectors can be used to label neural stem cells in the subventricular zone and to track the migration of their progeny with non-invasive bioluminescence imaging. Here, we applied these Cre-Flex lentiviral vectors to study neurogenesis in the dentate gyrus with bioluminescence imaging and histological techniques. Stereotactic injection of the Cre-Flex vectors into the dentate gyrus of transgenic Nestin-Cre mice resulted in specific labeling of the nestin-positive neural stem cells. The labeled cell population could be detected with bioluminescence imaging until 9 months post injection, but no significant increase in the number of labeled cells over time was observed with this imaging technique. Nevertheless, the specific labeling of the nestin-positive neural stem cells, combined with histological analysis at different time points, allowed detailed analysis of their neurogenic potential. This long-term fate mapping revealed that a stable pool of labeled nestin-positive neural stem cells continuously contributes to the generation of newborn neurons in the mouse brain until 9 months post injection. In conclusion, the Cre-Flex technology is a valuable tool to address remaining questions regarding neural stem cell identity and behavior in the dentate gyrus.

  17. Prenatal stress induces long-term effects in cell turnover in the hippocampus-hypothalamus-pituitary axis in adult male rats.

    Directory of Open Access Journals (Sweden)

    Eva Baquedano

    Full Text Available Subchronic gestational stress leads to permanent modifications in the hippocampus-hypothalamus-pituitary-adrenal axis of offspring probably due to the increase in circulating glucocorticoids known to affect prenatal programming. The aim of this study was to investigate whether cell turnover is affected in the hippocampus-hypothalamus-pituitary axis by subchronic prenatal stress and the intracellular mechanisms involved. Restraint stress was performed in pregnant rats during the last week of gestation (45 minutes; 3 times/day. Only male offspring were used for this study and were sacrificed at 6 months of age. In prenatally stressed adults a decrease in markers of cell death and proliferation was observed in the hippocampus, hypothalamus and pituitary. This was associated with an increase in insulin-like growth factor-I mRNA levels, phosphorylation of CREB and calpastatin levels and inhibition of calpain -2 and caspase -8 activation. Levels of the anti-apoptotic protein Bcl-2 were increased and levels of the pro-apoptotic factor p53 were reduced. In conclusion, prenatal restraint stress induces a long-term decrease in cell turnover in the hippocampus-hypothalamus-pituitary axis that might be at least partly mediated by an autocrine-paracrine IGF-I effect. These changes could condition the response of this axis to future physiological and pathophysiological situations.

  18. Prenatal Stress Induces Long-Term Effects in Cell Turnover in the Hippocampus-Hypothalamus-Pituitary Axis in Adult Male Rats

    Science.gov (United States)

    Baquedano, Eva; García-Cáceres, Cristina; Diz-Chaves, Yolanda; Lagunas, Natalia; Calmarza-Font, Isabel; Azcoitia, Iñigo; Garcia-Segura, Luis M.; Argente, Jesús; Chowen, Julie A.; Frago, Laura M.

    2011-01-01

    Subchronic gestational stress leads to permanent modifications in the hippocampus-hypothalamus-pituitary-adrenal axis of offspring probably due to the increase in circulating glucocorticoids known to affect prenatal programming. The aim of this study was to investigate whether cell turnover is affected in the hippocampus-hypothalamus-pituitary axis by subchronic prenatal stress and the intracellular mechanisms involved. Restraint stress was performed in pregnant rats during the last week of gestation (45 minutes; 3 times/day). Only male offspring were used for this study and were sacrificed at 6 months of age. In prenatally stressed adults a decrease in markers of cell death and proliferation was observed in the hippocampus, hypothalamus and pituitary. This was associated with an increase in insulin-like growth factor-I mRNA levels, phosphorylation of CREB and calpastatin levels and inhibition of calpain -2 and caspase -8 activation. Levels of the anti-apoptotic protein Bcl-2 were increased and levels of the pro-apoptotic factor p53 were reduced. In conclusion, prenatal restraint stress induces a long-term decrease in cell turnover in the hippocampus-hypothalamus-pituitary axis that might be at least partly mediated by an autocrine-paracrine IGF-I effect. These changes could condition the response of this axis to future physiological and pathophysiological situations. PMID:22096592

  19. Long-term effects of low-level 239Pu contamination on murine bone-marrow stem cells and their progeny

    International Nuclear Information System (INIS)

    The effects of long-term internal contamination with 13.3 kBq kg-1239Pu injected intravenously were studied in 10-week-old ICR (SPF) female mice. Radiosensitivity of spleen colony-forming units (CFU-S) and 125IUdR incorporation into proliferating cells of vertebral bone marrow and spleens were determined in plutonium-treated and control animals one year after nuclide injection. The CFU-S in 239Pu-treated mice were more sensitive to X-rays (D0 = 0.52 +- 0.01 Gy) than in controls (D0 = 0.84 +- 0.02 Gy). 125IUdR incorporation into bone marrow and spleen cells was reduced after plutonium contamination. At one year following plutonium injection, the occurrence of chromosome aberrations was evaluated in metaphase figures of femoral bone marrow cells. The frequency of aberrations increased early after plutonium treatment, at later intervals it tended to decrease but not below the control level. While the relative numbers of vertebral marrow CFU-S decreased significantly, but only to 86% of normal, cellularity of vertebral bone marrow, peripheral blood counts and survival of 239Pu-treated mice did not differ from the control data. (author)

  20. Long-term multilayer adherent network (MAN) expansion, maintenance, and characterization, chemical and genetic manipulation, and transplantation of human fetal forebrain neural stem cells.

    Science.gov (United States)

    Wakeman, Dustin R; Hofmann, Martin R; Redmond, D Eugene; Teng, Yang D; Snyder, Evan Y

    2009-05-01

    Human neural stem/precursor cells (hNSC/hNPC) have been targeted for application in a variety of research models and as prospective candidates for cell-based therapeutic modalities in central nervous system (CNS) disorders. To this end, the successful derivation, expansion, and sustained maintenance of undifferentiated hNSC/hNPC in vitro, as artificial expandable neurogenic micro-niches, promises a diversity of applications as well as future potential for a variety of experimental paradigms modeling early human neurogenesis, neuronal migration, and neurogenetic disorders, and could also serve as a platform for small-molecule drug screening in the CNS. Furthermore, hNPC transplants provide an alternative substrate for cellular regeneration and restoration of damaged tissue in neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease. Human somatic neural stem/progenitor cells (NSC/NPC) have been derived from a variety of cadaveric sources and proven engraftable in a cytoarchitecturally appropriate manner into the developing and adult rodent and monkey brain while maintaining both functional and migratory capabilities in pathological models of disease. In the following unit, we describe a new procedure that we have successfully employed to maintain operationally defined human somatic NSC/NPC from developing fetal, pre-term post-natal, and adult cadaveric forebrain. Specifically, we outline the detailed methodology for in vitro expansion, long-term maintenance, manipulation, and transplantation of these multipotent precursors. PMID:19455542

  1. Long-term exposure to high levels of decabrominated diphenyl ether inhibits CD4 T-cell functions in C57Bl/6 mice.

    Science.gov (United States)

    Feng, Yan; Zeng, Weihong; Wang, Ying; Shen, Hao; Wang, Yan

    2016-09-01

    In recent years, the adverse health effects of decabrominated diphenyl ether (BDE-209) have raised more concerns as a growing number of studies reported its persistence in the environment and abundance in the human population, especially in occupational environmental compartments and exposed personnel. This study applies our previous animal model simulating occupational exposure to BDE-209 to investigate its potential adverse effects on CD4 T cells. Female C57Bl/6 mice were orally gavaged with BDE-209 at a dose of 800 mg kg(-1) every 2 days for 10 months and the blood of each mouse was collected for analysis. Kinetic changes of the peripheral immune system were investigated from 1 to 5 months of exposure. The chronic effects on cytokine production, proliferation and the antigen-specific responses of CD4 T cells were evaluated at 7, 9 and 10 months, respectively. The results have shown that impaired proliferation and cytokine (IFN-γ, IL-2 or TNF-α) production of CD4 T cells were observed in BDE-209-exposed mice, accompanied by increased T regulatory cells in the blood. BDE-209 exposure in vitro also suppressed the reactivity of CD4 T cells at concentrations of 0.01, 0.1, 1 and 10 μM. Furthermore, we observed weaker antigen-specific CD4 T-cell responses to Listeria monocytogenes infection in the mice exposed to BDE-209, suggesting decreased resistance to exogenous pathogens. Taken together, these observations indicate an impaired cellular immunity after long-term and relative high-dose exposure to BDE-209 in adult mice. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26682527

  2. miR-155 Drives Metabolic Reprogramming of ER+ Breast Cancer Cells Following Long-Term Estrogen Deprivation and Predicts Clinical Response to Aromatase Inhibitors.

    Science.gov (United States)

    Bacci, Marina; Giannoni, Elisa; Fearns, Antony; Ribas, Ricardo; Gao, Qiong; Taddei, Maria Letizia; Pintus, Gianfranco; Dowsett, Mitch; Isacke, Clare M; Martin, Lesley-Ann; Chiarugi, Paola; Morandi, Andrea

    2016-03-15

    Aromatase inhibitors (AI) have become the first-line endocrine treatment of choice for postmenopausal estrogen receptor-positive (ER(+)) breast cancer patients, but resistance remains a major challenge. Metabolic reprogramming is a hallmark of cancer and may contribute to drug resistance. Here, we investigated the link between altered breast cancer metabolism and AI resistance using AI-resistant and sensitive breast cancer cells, patient tumor samples, and AI-sensitive human xenografts. We found that long-term estrogen deprivation (LTED), a model of AI resistance, was associated with increased glycolysis dependency. Targeting the glycolysis-priming enzyme hexokinase-2 (HK2) in combination with the AI, letrozole, synergistically reduced cell viability in AI-sensitive models. Conversely, MCF7-LTED cells, which displayed a high degree of metabolic plasticity, switched to oxidative phosphorylation when glycolysis was impaired. This effect was ER dependent as breast cancer cells with undetectable levels of ER failed to exhibit metabolic plasticity. MCF7-LTED cells were also more motile than their parental counterparts and assumed amoeboid-like invasive abilities upon glycolysis inhibition with 2-deoxyglucose (2-DG). Mechanistic investigations further revealed an important role for miR-155 in metabolic reprogramming. Suppression of miR-155 resulted in sensitization of MCF7-LTED cells to metformin treatment and impairment of 2-DG-induced motility. Notably, high baseline miR-155 expression correlated with poor response to AI therapy in a cohort of ER(+) breast cancers treated with neoadjuvant anastrozole. These findings suggest that miR-155 represents a biomarker potentially capable of identifying the subset of breast cancers most likely to adapt to and relapse on AI therapy. PMID:26795347

  3. Long-term estrogen exposure promotes carcinogen bioactivation, induces persistent changes in gene expression, and enhances the tumorigenicity of MCF-7 human breast cancer cells

    International Nuclear Information System (INIS)

    The cumulative exposure to estrogens is an important determinant in the risk of breast cancer, yet the full range of mechanisms involving estrogens in the genesis and progression of breast cancer remains a subject of debate. Interactions of estrogens and environmental toxicants have received attention as putative factors contributing to carcinogenesis. Mechanistic studies have demonstrated interactions between estrogen receptor α (ERα) and the aryl hydrocarbon receptor (AhR), with consequences on the genes that they regulate. Many studies of ERα and AhR-mediated effects and crosstalk between them have focused on the initial molecular events. In this study, we investigated ERα- and AhR-mediated effects in long-term estrogen exposed (LTEE) MCF-7 human breast cancer cells, which were obtained by continuous culturing for at least 12 weeks in medium supplemented with 1 nM of 17β-estradiol (E2). With these LTEE cells and with parallel control cells cultured without E2 supplementation, we performed an extensive study of cytochrome P450 (CYP) induction, carcinogen bioactivation, global gene expression, and tumorigenicity in immunocompromised mice. We found that LTEE cells, in comparison with control cells, had higher levels of AhR mRNA and protein, greater responsiveness for AhR-regulated CYP1A1 and CYP1B1 induction, a 6-fold higher initial level of benzo(a)pyrene-DNA adducts as determined by liquid chromatography tandem mass spectrometry, marked differences in the expression of numerous genes, and a higher rate of E2-dependent tumor growth as xenografts. These studies indicate that LTEE causes adaptive responses in MCF-7 cells, which may reflect processes that contribute to the overall carcinogenic effect of E2.

  4. Investigation of the treatment results of advanced squamous cell carcinoma of the oral cavity and clinical necessity of long-term follow-up

    International Nuclear Information System (INIS)

    It has been considered that oral cancer is cured if more than five years pass without recurrence or metastasis after the initial treatment. Treatment results are usually evaluated as a 5-year survival rate, but we sometimes find recurrence more than five years after the initial treatment. We retrospectively investigated treatment results by long-term follow-up of advanced squamous cell carcinoma of the oral cavity after radical surgery, and analyzed the relation between the period of follow-up and the time to recurrence. One hundred and sixteen patients with advanced squamous cell carcinoma of the oral cavity were enrolled between November 1994 and October 2004 in this study. Seventy-six patients were Stage III and 40 were stage IV, and the mean age of this cohort was 63.0 years. All patients received radical surgery with or without preoperative chemoradiotherapy and were followed for a minimum of 5 years. Overall actuarial survival of all patients was 77.8% at 10 years. The 10-year cumulative local and regional recurrence rates were 20.1% and 12.9%, respectively. The actuarial loco-regional recurrence rate was the highest within 2 years after initial treatment at 19.0%, and was seen in 3.4% even after 5 years. These results showed that it is necessary to follow-up patients with advanced oral cancer even beyond 5 years after the initial treatment because there was delayed loco-regional recurrence in 3.4%. (author)

  5. Adverse Fat Depots and Marrow Adiposity Are Associated With Skeletal Deficits and Insulin Resistance in Long-Term Survivors of Pediatric Hematopoietic Stem Cell Transplantation.

    Science.gov (United States)

    Mostoufi-Moab, Sogol; Magland, Jeremy; Isaacoff, Elizabeth J; Sun, Wenli; Rajapakse, Chamith S; Zemel, Babette; Wehrli, Felix; Shekdar, Karuna; Baker, Joshua; Long, Jin; Leonard, Mary B

    2015-09-01

    Allogeneic hematopoietic stem-cell transplantation (alloHSCT) survivors treated with total body irradiation (TBI) exhibit bone deficits and excess adiposity, potentially related to altered mesenchymal stem cell differentiation into osteoblasts or adipocytes. We examined associations among fat distribution, bone microarchitecture, and insulin resistance in alloHSCT survivors after TBI. This was a cross-sectional observational study of 25 alloHSCT survivors (aged 12 to 25 years) a median of 9.7 (4.3 to 19.3) years after alloHSCT compared to 25 age-, race-, and sex-matched healthy controls. Vertebral MR spectroscopic imaging and tibia micro-MRI were used to quantify marrow adipose tissue (MAT) and trabecular microarchitecture. Additional measures included DXA whole-body fat mass (WB-FM), leg lean mass (Leg-LM), trunk visceral adipose tissue (VAT), and CT calf muscle density. Insulin resistance in alloHSCT survivors was estimated by HOMA-IR. AlloHSCT survivors had lower Leg-LM (p treatment-related morbidity and mortality in alloHSCT recipients after TBI. Trabecular deterioration was associated with marrow and visceral adiposity. Furthermore, long-term survivors demonstrated sarcopenic obesity, insulin resistance, and vertebral deformities. Future studies are needed to identify strategies to prevent and treat metabolic and skeletal complications in this growing population of childhood alloHSCT survivors. PMID:25801428

  6. Porcine adipose tissue-derived mesenchymal stem cells retain their proliferative characteristics, senescence, karyotype and plasticity after long-term cryopreservation.

    Directory of Open Access Journals (Sweden)

    Rafael Dariolli

    Full Text Available We and others have provided evidence that adipose tissue-derived mesenchymal stem cells (ASCs can mitigate rat cardiac functional deterioration after myocardial ischemia, even though the mechanism of action or the relevance of these findings to human conditions remains elusive. In this regard, the porcine model is a key translational step, because it displays heart anatomic-physiological features that are similar to those found in the human heart. Towards this end, we wanted to establish the cultural characteristics of porcine ASCs (pASCs with or without long-term cryostorage, considering that allogeneic transplantation may also be a future option. Compared to fresh pASCs, thawed cells displayed 90-95% viability and no changes in morphological characteristics or in the expression of surface markers (being pASCs characterized by positive markers CD29(+; CD90(+; CD44(+; CD140b(+; CD105(+; and negative markers CD31(-; CD34(-; CD45(- and SLA-DR(-; n = 3. Mean population doubling time was also comparable (64.26±15.11 hours to thawed cells vs. 62.74±18.07 hours to fresh cells and cumulative population doubling increased constantly until Passage 10 (P10 in the entire cell population, with a small and gradual increase in senescence (P5, 3.25%±0.26 vs. 3.47%±0.32 and P10, 9.6%±0.29 vs. 10.67%±1.25, thawed vs. fresh; SA-β-Gal staining. Chromosomal aberrations were not observed. In addition, under both conditions pASCs responded to adipogenic and osteogenic chemical cues in vitro. In conclusion, we have demonstrated the growth characteristics, senescence, and the capacity of pASCs to respond to chemical cues in vitro and have provided evidence that these properties are not influenced by cryostorage in 10% DMSO solution.

  7. Brief embryonic cadmium exposure induces a stress response and cell death in the developing olfactory system followed by long-term olfactory deficits in juvenile zebrafish

    International Nuclear Information System (INIS)

    The toxic effects of cadmium and other metals have been well established. A primary target of these metals is known to be the olfactory system, and fish exposed to a number of different waterborne metals display deficiencies in olfaction. Importantly, exposure over embryonic/larval development periods can cause deficits in chemosensory function in juvenile fish, but the specific cell types affected are unknown. We have previously characterized a transgenic zebrafish strain expressing the green fluorescent protein (eGFP) gene linked to the hsp70 gene promoter, and shown it to be a useful tool for examining cell-specific toxicity in living embryos and larvae. Here we show that the hsp70/eGFP transgene is strongly and specifically upregulated within the olfactory sensory neurons (OSNs) of transgenic zebrafish larvae following a brief 3-h exposure to water-borne cadmium. This molecular response was closely correlated to an endpoint for tissue damage within the olfactory placode, namely cell death. Furthermore, cadmium-induced olfactory cytotoxicity in zebrafish larvae gives rise to more permanent effects. Juvenile zebrafish briefly exposed to cadmium during early larval development display deficits in olfactory-dependent predator avoidance behaviors 4-6 weeks after a return to clean water. Lateral line neuromasts of exposed zebrafish larvae also activate both the endogenous hsp70 gene and the hsp70/eGFP transgene. The data reveal that even a very brief exposure period that gives rise to cell death within the developing olfactory placode results in long-term deficits in olfaction, and that hsp70/eGFP may serve as an effective indicator of sublethal cadmium exposure in sensory cells

  8. Cell Type-Specific Expression and Function of Toll-Like Receptors 2 and 4 in Human Placenta: Implications in Fetal Infection

    OpenAIRE

    Ma, Yuehong; Krikun, Graciela; Abrahams, Vikki M.; Mor, Gil; Guller, Seth

    2007-01-01

    Placental infection is associated with adverse fetal outcomes. Toll-like receptors (TLRs) are critical regulators of the innate immune response based on their ability to recognize and respond to pathogen-associated molecular patterns expressed by microbes. To date, cell-type specific expression and regulation of TLR function in human term placenta remains largely unelucidated. The goal of the current study was to examine the in vivo and in vitro patterns of TLR expression and function in majo...

  9. Autologous Bone Marrow Mononuclear Cells Exert Broad Effects on Short- and Long-Term Biological and Functional Outcomes in Rodents with Intracerebral Hemorrhage.

    Science.gov (United States)

    Suda, Satoshi; Yang, Bing; Schaar, Krystal; Xi, Xiaopei; Pido, Jennifer; Parsha, Kaushik; Aronowski, Jaroslaw; Savitz, Sean I

    2015-12-01

    Autologous bone marrow-derived mononuclear cells (MNCs) are a potential therapy for ischemic stroke. However, the effect of MNCs in intracerebral hemorrhage (ICH) has not been fully studied. In this study, we investigated the effects of autologous MNCs in experimental ICH. ICH was induced by infusion of autologous blood into the left striatum in young and aged male Long Evans rats. Twenty-four hours after ICH, rats were randomized to receive an intravenous administration of autologous MNCs (1 × 10(7) cells/kg) or saline. We examined brain water content, various markers related to the integrity of the neurovascular unit and inflammation, neurological deficit, neuroregeneration, and brain atrophy. We found that MNC-treated young rats showed a reduction in the neurotrophil infiltration, the number of inducible nitric oxide synthase-positive cells, and the expression of inflammatory-related signalings such as the high-mobility group protein box-1, S100 calcium binding protein B, matrix metalloproteinase-9, and aquaporin 4. Ultimately, MNCs reduced brain edema in the perihematomal area compared with saline-treated animals at 3 days after ICH. Moreover, MNCs increased vessel density and migration of doublecortin-positive cells, improved motor functional recovery, spatial learning, and memory impairment, and reduced brain atrophy compared with saline-treated animals at 28 days after ICH. We also found that MNCs reduced brain edema and brain atrophy and improved spatial learning and memory in aged rats after ICH. We conclude that autologous MNCs can be safely harvested and intravenously reinfused in rodent ICH and may improve long-term structural and functional recovery after ICH. The results of this study may be applicable when considering future clinical trials testing MNCs for ICH. PMID:26414707

  10. Promising long-term results with attenuated adverse effects by methotrexate-containing sequential chemoradiation therapy in locally advanced head and neck squamous cell carcinoma

    International Nuclear Information System (INIS)

    To reduce severe acute and late toxicities without compromising organ preservation survival in patients with locoregionally advanced head and neck squamous cell carcinoma, we performed three-drug induction methotrexate-cisplatin-fluorouracil with weekly cisplatin-fluorouracil concurrent chemoradiation. Two induction courses of methotrexate (40 mg/m2/day, days 1, 8 and 15), cisplatin and 5-fluorouracil (25 and 750 mg/m2/day, days 1-4) were given in new diagnoses of patients with non-nasopharyngeal locoregionally advanced head and neck squamous cell carcinoma. Responders received concurrent chemoradiation with weekly cisplatin (20 mg/m2/day) and 5-fluorouracil (400 mg/m2/day) on day 1. Among 57 patients (58% with Stage IV and hypopharyngeal cancer), the rates of Grade 3-4 toxicity were 30 and 74% during induction and concurrent chemoradiotherapy (CCRT), respectively. A total of 49 patients completed induction and began concurrent chemoradiation; 47 (96%) completed all planned treatment. With a median follow-up of 62 months (range 19-83 months) for the current survivors, the 3-year overall and disease-specific survival estimates were 50 and 58%, respectively. The 3-year organ preservation survival was 74% in patients who achieved complete remission after concurrent chemoradiation, and 96% of current survivors are tracheotomy and feeding tube-free. No patient without local/regional failure suffered from distant metastasis. Methotrexate-cisplatin-fluorouracil induction chemotherapy followed by weekly cisplatin-fluorouracil concurrent chemoradiation is an acute and late toxicity-acceptable protocol without attenuating organ preservation survival in patients with locoregionally advanced head and neck squamous cell carcinoma. In this patient cohort with advanced head and neck squamous cell carcinoma, overall and organ preservation survivals were encouraging, and provided promising long-term benefits of this approach. (author)

  11. Long-term outcome of irradiation with or without chemotherapy for esophageal squamous cell carcinoma: a final report on a prospective trial

    International Nuclear Information System (INIS)

    To investigate the long-term outcome of esophageal squamous cell carcinoma (SCC) treated by irradiation with or without concurrent chemotherapy. A prospective clinical trial was carried out from 1998 to 2000. One hundred and eleven patients were randomly enrolled to receive either late course accelerated hyperfractionated irradiation (LCAF) or LCAF with concurrent chemotherapy (LCAF + CT). For LCAF, 41.4 Gy in 23 fractions was first delivered at five fractions per week, followed by 27 Gy in 18 fractions at two 1.5 Gy fractions a day. Concurrent chemotherapy of cis-platinum and 5-fluorouracil was administered for four cycles. Overall survival (OS), locoregional recurrence and distant metastasis were observed. Late toxicity was scored by RTOG criteria, and quality of life (QOL) was also evaluated. The median follow-up time was 24 months for all patients and 138 months for 17 living patients. Median survival time was 25 months and 32 months in LCAF and LCAF + CT (p = 0.653), respectively. For an entire group of patients, overall survivals were 34%, 27% and 22%; locoregional recurrence rates were 30%, 36% and 41%; and distant metastasis rates were 26%, 28% and 29% at 5-yr, 8-yr and 10-yr, respectively. Incidences of ≥ Grade 3 late toxicity were 29% at 10-yr. There were no statistically significant differences between LCAF and LCAF + CT with respect to the parameters mentioned above. Cumulative incidence of late toxicities of ≥ Grade 3 increased sharply after the attained age of 70 years. Eighty-eight percent of patients lived with good KPS (≥ 90) and 94% could eat regular or soft diet. The long-term outcome of esophageal SCC patients who received LCAF or LCAF + CT was good. The locoregional and distant failures occurred more often in the first three years after treatment, but could continuously occur up to 10 years. The late toxicity was acceptable. Late toxicities ≥ Grade 3 were more likely to occur in elderly patients. QOL was good in living patients

  12. Long-term outcomes after proton therapy, with concurrent chemotherapy, for stage II–III inoperable non-small cell lung cancer

    International Nuclear Information System (INIS)

    Purpose: We report long-term disease control, survival, and toxicity for patients with locally advanced non-small cell lung cancer prospectively treated with concurrent proton therapy and chemotherapy on a nonrandomized case-only observational study. Methods: All patients received passive-scatter proton therapy, planned with 4D-CT–based simulation; all received proton therapy concurrent with weekly chemotherapy. Endpoints were local and distant control, disease-free survival (DFS), and overall survival (OS). Results: The 134 patients (21 stage II, 113 stage III; median age 69 years) had a median gross tumor volume (GTV) of 70 cm3 (range, 5–753 cm3); 77 patients (57%) received 74 Gy(RBE), and 57 (42%) received 60–72 Gy(RBE) (range, 60–74.1 Gy(RBE)). At a median follow-up time of 4.7 years, median OS times were 40.4 months (stage II) and 30.4 months (stage III). Five-year DFS rates were 17.3% (stage II) and 18.0% (stage III). OS, DFS, and local and distant control rates at 5 years did not differ by disease stage. Age and GTV were related to OS and DFS. Toxicity was tolerable, with 1 grade 4 esophagitis and 16 grade 3 events (2 pneumonitis, 6 esophagitis, 8 dermatitis). Conclusion: This report of outcomes after proton therapy for 134 patients indicated that this regimen produced excellent OS with tolerable toxicity

  13. Influence of (La,Sr)MnO3+δ cathode composition on cathode/electrolyte interfacial structure during long-term operation of solid oxide fuel cells

    Science.gov (United States)

    Matsui, Toshiaki; Mikami, Yuichi; Muroyama, Hiroki; Eguchi, Koichi

    2013-11-01

    Time-dependent events during operation of SOFCs, i.e., performance enhancement and/or deterioration, can be readily observed for the cell composed of strontium-doped lanthanum manganite (LSM) cathode and yttria-stabilized zirconia (YSZ) electrolyte, concomitant with the change in interfacial structure of LSM/YSZ. The influence of LSM composition on the electrochemical properties and microstructure of LSM/YSZ interface during prolonged operation was investigated. Four different LSM cathodes were used and the change in microstructure, especially TPB-length, was evaluated quantitatively by a focused ion beam-scanning electron microscope (FIB-SEM). For LSM cathodes with A-site deficient compositions, the change in TPB-length had a minor contribution to the performance enhancement after 20 h of galvanostatic operation. On the other hand, for 100 h duration an increase in cathode overpotential was confirmed, accompanied with the formation of thin layer of LSM over YSZ electrolyte. A series of phenomena were triggered by the change in oxygen nonstoichiometry of LSM under polarized states. The mechanism for microstructural change was proposed and the long-term stability of LSM/YSZ interface was discussed.

  14. Long-Term Survival in a Patient with Multiple Brain Metastases from Small-Cell Lung Cancer Treated with Gamma Knife Radiosurgery on Four Occasions: A Case Report

    Directory of Open Access Journals (Sweden)

    Ameer L. Elaimy

    2012-01-01

    Full Text Available Brain metastases are the most common cancerous neoplasm in the brain. The treatment of these lesions is challenging and often includes a multimodality management approach with whole-brain radiation therapy, stereotactic radiosurgery, and neurosurgery options. Although advances in biomedical imaging technologies and the treatment of extracranial cancer have led to the overall increase in the survival of brain metastases patients, the finding that select patients survive several years remains puzzling. For this reason, we present the case of a 70-year-old patient who was diagnosed with multiple brain metastases from small-cell lung cancer five years ago and is currently alive following treatment with chemotherapy for the primary cancer and whole-brain radiation therapy and Gamma Knife radiosurgery on four separate occasions for the neurological cancer. Since the diagnosis of brain metastases five years ago, the patient’s primary cancer has remained controlled. Furthermore, multiple repeat GKRS procedures provided this patient with high levels of local tumor control, which in combination with a stable primary cancer led to an extended period of survival and a highly functional life. Further analysis and clinical research will be valuable in assessing the durability of multiple GKRS for brain metastases patients who experience long-term survival.

  15. Splenic irradiation before hematopoietic stem cell transplantation for chronic myeloid leukemia: long-term follow-up of a prospective randomized study.

    Science.gov (United States)

    Gratwohl, Alois; Iacobelli, Simona; Bootsman, Natalia; van Biezen, Anja; Baldomero, Helen; Arcese, William; Arnold, Renate; Bron, Dominique; Cordonnier, Catherine; Ernst, Peter; Ferrant, Augustin; Frassoni, Francesco; Gahrton, Gösta; Richard, Carlos; Kolb, Hans Jochem; Link, Hartmut; Niederwieser, Dietger; Ruutu, Tapani; Schattenberg, Anton; Schmitz, Norbert; Torres-Gomez, Antonio; Zwaan, Ferry; Apperley, Jane; Olavarria, Eduardo; Kröger, Nicolaus

    2016-05-01

    In the context of discussions on the reproducibility of clinical studies, we reanalyzed a prospective randomized study on the role of splenic irradiation as adjunct to the conditioning for hematopoietic stem cell transplantation (HSCT) for chronic myeloid leukemia (CML). Between 1986 and 1989, a total of 229 patients with CML were randomized; of these, 225 (98 %; 112 with, 113 without splenic irradiation) could be identified in the database and their survival updated. Results confirmed the early findings with no significant differences in all measured endpoints (overall survival at 25 years: 42.7 %, 32.0-52.4 % vs 52.9 %, 43.2-62.6 %; p = 0.355, log rank test). Additional splenic irradiation failed to reduce relapse incidence. It did not increase non-relapse mortality nor the risk of late secondary malignancies. Comforting are the long-term results from this predefined consecutive cohort of patients: more than 60 % were alive at plus 25 years when they were transplanted with a low European Society for Blood and Marrow Transplantation (EBMT) risk sore. This needs to be considered today when treatment options are discussed for patients who failed initial tyrosine kinase inhibitor therapy and have an available low risk HLA-identical donor. PMID:26994010

  16. Long-term clinical outcome in patients with stage-i nonseminomatous germ cell cancer: a critical review of own treatment modalities in a retrospective study

    Directory of Open Access Journals (Sweden)

    Sandra Seseke

    2008-12-01

    Full Text Available PURPOSE: The optimal management of patients with clinical stage I non-seminomatous germ cell testicular cancer (NSGCT I was considered controversial until the European Germ Cell Cancer Consensus Group determined unambiguous treatment strategies. In order to assess the long-term outcome we evaluated the data of patients with NSGCT I. MATERIALS AND METHODS: In a retrospective evaluation, we included 52 patients with a mean age of 26 years (range 15-58 who were treated with different modalities at our department between 1989 and 2003. Mean follow-up was 5.9 years (range 2-14 years. After orchiectomy, 39 patients were treated with chemotherapy, 7 patients underwent retroperitoneal lymph node dissection and 6 men were managed using a surveillance strategy. Survival, recurrence rate and time of recurrence were evaluated. The histological staging and treatment modality was related to the relapse. RESULTS: Tumor specific overall mortality was 3.8%. The mortality and relapse rate of the surveillance strategy, retroperitoneal lymph node dissection and chemotherapy was 16.7% / 50%, 14.3% / 14.3% and 0% / 2.5% respectively. All relapsed patients in the surveillance group as well as in the RPLND group had at least one risk factor for developing metastatic disease. CONCLUSIONS: Following the European consensus on diagnosis and treatment of germ cell cancer in patients with NSGCT Stage I any treatment decision must be individually related to the patient according to prognostic factors and care capacity of the treating centre. In case of doubt, adjuvant chemotherapy should be the treatment of choice, as it provides the lowest risk of relapse or tumor related death.

  17. Glioma stem cells are more aggressive in recurrent tumors with malignant progression than in the primary tumor, and both can be maintained long-term in vitro

    International Nuclear Information System (INIS)

    Despite the advances made during decades of research, the mechanisms by which glioma is initiated and established remain elusive. The discovery of glioma stem cells (GSCs) may help to elucidate the processes of gliomagenesis with respect to their phenotype, differentiation and tumorigenic capacity during initiation and progression. Research on GSCs is still in its infancy, so no definitive conclusions about their role can yet be drawn. To understand the biology of GSCs fully, it is highly desirable to establish permanent and biologically stable GSC lines. In the current study, GSCs were isolated from surgical specimens of primary and recurrent glioma in a patient whose malignancy had progressed during the previous six months. The GSCs were cryopreserved and resuscitated periodically during long-term maintenance to establish glioma stem/progenitor cell (GSPC) lines, which were characterized by immunofluorescence, flow cytometry and transmission electronic microscopy. The primary and recurrent GSPC lines were also compared in terms of in vivo tumorigenicity and invasiveness. Molecular genetic differences between the two lines were identified by array-based comparative genomic hybridization and further validated by real-time PCR. Two GSPC lines, SU-1 (primary) and SU-2 (recurrent), were maintained in vitro for more than 44 months and 38 months respectively. Generally, the potentials for proliferation, self-renewal and multi-differentiation remained relatively stable even after a prolonged series of alternating episodes of cryopreservation and resuscitation. Intracranial transplantation of SU-1 cells produced relatively less invasive tumor mass in athymic nude mice, while SU-2 cells led to much more diffuse and aggressive lesions strikingly recapitulated their original tumors. Neither SU-1 nor SU-2 cells reached the terminal differentiation stage under conditions that would induce terminal differentiation in neural stem cells. The differentiation of most of the tumor

  18. Long term e-archiving

    OpenAIRE

    Dobratz, Susanne

    2002-01-01

    Conclusions of the breakout session "Long term e-archiving". Looking at the motto of this workshop “Gaining independence with e-Print archives and OAI” it suggests first of all that using e-Print publishing methods especially in the sense of a scholarly non-profit publishing independently from any commercial publishing house offers a unique chance to scientists.

  19. Microarray gene expression analysis to evaluate cell type specific expression of targets relevant for immunotherapy of hematological malignancies

    NARCIS (Netherlands)

    M.J. Pont (Margot); M.W. Honders; A.N. Kremer; C. van Kooten (Cees); C. Out; P.S. Hiemstra (Pieter); H.C. De Boer; M.J. Jager (Martine); E. Schmelzer; R.G.J. Vries (Robert); A.S. Al Hinai; W.G. Kroes (W.); R. Monajemi (Ramin); J.J. Goeman (Jelle); S. Böhringer (Stefan); W.A.F. Marijt; J.H.F. Falkenburg (Frederik); M. Griffioen

    2016-01-01

    textabstractCellular immunotherapy has proven to be effective in the treatment of hematological cancers by donor lymphocyte infusion after allogeneic hematopoietic stem cell transplantation and more recently by targeted therapy with chimeric antigen or T-cell receptor-engineered T cells. However, de

  20. Pulmonary function changes after radiotherapy in non-small-cell lung cancer patients with long-term disease-free survival

    International Nuclear Information System (INIS)

    Purpose: To evaluate the changes in pulmonary function after high-dose radiotherapy (RT) for non-small-cell lung cancer in patients with a long-term disease-free survival. Methods and Materials: Pulmonary function was measured in 34 patients with inoperable non-small-cell lung cancer before RT and at 3 and 18 months of follow-up. Thirteen of these patients had a pulmonary function test (PFT) 36 months after RT. The pulmonary function parameters (forced expiratory volume in 1 s [FEV1], diffusion capacity [Tlcoc], forced vital capacity, and alveolar volume) were expressed as a percentage of normal values. Changes were expressed as relative to the pre-RT value. We evaluated the impact of chronic obstructive pulmonary disease, radiation pneumonitis, mean lung dose, and PFT results before RT on the changes in pulmonary function. Results: At 3, 18, and 36 months, a significant decrease was observed for the Tlcoc (9.5%, 14.6%, and 22.0%, respectively) and the alveolar volume (5.8%, 6.6%, and 15.8%, respectively). The decrease in FEV1 was significant at 18 and 36 months (8.8% and 13.4%, respectively). No recovery of any of the parameters was observed. Chronic obstructive pulmonary disease was an important risk factor for larger PFT decreases. FEV1 and Tlcoc decreases were dependent on the mean lung dose. Conclusion: A significant decrease in pulmonary function was observed 3 months after RT. No recovery in pulmonary function was seen at 18 and 36 months after RT. The decrease in pulmonary function was dependent on the mean lung dose, and patients with chronic obstructive pulmonary disease had larger reductions in the PFTs

  1. Cell Type-Specific Activation of the Cytomegalovirus Promoter by Dimethylsulfoxide and 5-Aza-2′-deoxycytidine

    OpenAIRE

    Radhakrishnan, Prakash; Basma, Hesham; Klinkebiel, David; Christman, Judith; Cheng, Pi-Wan

    2008-01-01

    The cytomegalovirus promoter is a very potent promoter commonly used for driving the expression of transgenes, though it gradually becomes silenced in stably transfected cells. We examined the methylation status of the cytomegalovirus promoter in two different cell lines and characterized its mechanisms of activation by dimethylsulfoxide and 5-Aza-2′-deoxycytidine. The cytomegalovirus promoter stably transfected into Chinese hamster ovary cells is suppressed by DNA methylation-independent mec...

  2. Intrinsic properties of Tcf1 and Tcf4 splice variants determine cell-type-specific Wnt/β-catenin target gene expression

    OpenAIRE

    Wallmen, Britta; Schrempp, Monika; Hecht, Andreas

    2012-01-01

    T-cell factor (Tcf)/lymphoid-enhancer factor (Lef) proteins are a structurally diverse family of deoxyribonucleic acid-binding proteins that have essential nuclear functions in Wnt/β-catenin signalling. Expression of Wnt/β-catenin target genes is highly dependent on context, but the precise role of Tcf/Lef family members in the generation and maintenance of cell-type-specific Wnt/β-catenin responses is unknown. Herein, we show that induction of a subset of Wnt/β-catenin targets in embryonic s...

  3. CD44+/CD105+ Human Amniotic Fluid Mesenchymal Stem Cells Survive and Proliferate in the Ovary Long-Term in a Mouse Model of Chemotherapy-Induced Premature Ovarian Failure

    OpenAIRE

    LIU, TE; HUANG, YONGYI; Guo, Lihe; Cheng, Weiwei; Zou, Gang

    2012-01-01

    Objectives: Stem cell transplantation has been reported to rescue ovarian function in a preclinical mouse model of chemotherapy-induced premature ovarian failure (POF); however, maintaining the survival and self-renewal of transplanted seed cells in ovarian tissues over the long-term remains a troublesome issue. In this study we aimed to determine whether the CD44+/CD105+ human amniotic fluid cell (HuAFCs) subpopulation represent potential seed cells for stem cell transplantation treatments i...

  4. Microarray Gene Expression Analysis to Evaluate Cell Type Specific Expression of Targets Relevant for Immunotherapy of Hematological Malignancies.

    Directory of Open Access Journals (Sweden)

    M J Pont

    Full Text Available Cellular immunotherapy has proven to be effective in the treatment of hematological cancers by donor lymphocyte infusion after allogeneic hematopoietic stem cell transplantation and more recently by targeted therapy with chimeric antigen or T-cell receptor-engineered T cells. However, dependent on the tissue distribution of the antigens that are targeted, anti-tumor responses can be accompanied by undesired side effects. Therefore, detailed tissue distribution analysis is essential to estimate potential efficacy and toxicity of candidate targets for immunotherapy of hematological malignancies. We performed microarray gene expression analysis of hematological malignancies of different origins, healthy hematopoietic cells and various non-hematopoietic cell types from organs that are often targeted in detrimental immune responses after allogeneic stem cell transplantation leading to graft-versus-host disease. Non-hematopoietic cells were also cultured in the presence of IFN-γ to analyze gene expression under inflammatory circumstances. Gene expression was investigated by Illumina HT12.0 microarrays and quality control analysis was performed to confirm the cell-type origin and exclude contamination of non-hematopoietic cell samples with peripheral blood cells. Microarray data were validated by quantitative RT-PCR showing strong correlations between both platforms. Detailed gene expression profiles were generated for various minor histocompatibility antigens and B-cell surface antigens to illustrate the value of the microarray dataset to estimate efficacy and toxicity of candidate targets for immunotherapy. In conclusion, our microarray database provides a relevant platform to analyze and select candidate antigens with hematopoietic (lineage-restricted expression as potential targets for immunotherapy of hematological cancers.

  5. Nuclear Energy, Long Term Requirements

    International Nuclear Information System (INIS)

    There are serious warnings about depletion of oil and gas and even more serious warnings about dangers of climate change caused by emission of carbon dioxide. Should developed countries be called to replace CO2 emitting energy sources as soon as possible, and the time available may not be longer then few decades, can nuclear energy answer the call and what are the requirements? Assuming optimistic contribution of renewable energy sources, can nuclear energy expand to several times present level in order to replace large part of fossil fuels use? Paper considers intermediate and long-term requirements. Future of nuclear power depends on satisfactory answers on several questions. First group of questions are those important for near and intermediate future. They deal with economics and safety of nuclear power stations in the first place. On the same time scale a generally accepted concept for radioactive waste disposal is also required. All these issues are in the focus of present research and development. Safer and more economical reactors are targets of international efforts in Generation IV and INPRO projects, but aiming further ahead these innovative projects are also addressing issues such as waste reduction and proliferation resistance. However, even assuming successful technical development of these projects, and there is no reason to doubt it, long term and large-scale nuclear power use is thereby not yet secured. If nuclear power is to play an essential role in the long-term future energy production and in reduction of CO2 emission, than several additional questions must be replied. These questions will deal with long-term nuclear fuel sufficiency, with necessary contribution of nuclear power in sectors of transport and industrial processes and with nuclear proliferation safety. This last issue is more political then technical, thus sometimes neglected by nuclear engineers, yet it will have essential role for the long-term prospects of nuclear power. The

  6. Cell type-specific deficiency of c-kit gene expression in mutant mice of mi/mi genotype.

    OpenAIRE

    Isozaki, K; Tsujimura, T; Nomura, S; Morii, E; Koshimizu, U.; Nishimune, Y; Kitamura, Y.

    1994-01-01

    The mi locus of mice encodes a novel member of the basic-helix-loop-helix-leucine zipper protein family of transcription factors (hereafter called mi factor). In addition to microphthalmus, osteopetrosis, and lack of melanocytes, mice of mi/mi genotype are deficient in mast cells. Since the c-kit receptor tyrosine kinase plays an important role in the development of mast cells, and since the c-kit expression by cultured mast cells from mi/mi mice is deficient in both mRNA and protein levels, ...

  7. Fiber type specific response of skeletal muscle satellite cells to high-intensity resistance training in dialysis patients

    DEFF Research Database (Denmark)

    Molsted, Stig; Andersen, Jesper Løvind; Harrison, Adrian Paul;

    2015-01-01

    Introduction. The aim was to investigate the effect of high-intensity resistance training on satellite cell (SC) and myonuclear number in the muscle of patients undergoing dialysis. Methods. Patients (n=21) underwent a 16-week control period, followed by 16 weeks of resistance training thrice...... fibers of dialysis patients who perform resistance training suggests that satellite cell dysfunction is not the limiting factor for muscle growth. This article is protected by copyright. All rights reserved....

  8. Prolonged Exposure to NMDAR Antagonist Induces Cell-type Specific Changes of Glutamatergic Receptors in Rat Prefrontal Cortex

    OpenAIRE

    Wang, Huai-Xing; Gao, Wen-Jun

    2011-01-01

    N-methyl-D-aspartic acid (NMDA) receptors are critical for both normal brain functions and the pathogenesis of schizophrenia. We investigated the functional changes of glutamatergic receptors in the pyramidal cells and fast-spiking (FS) interneurons in the adolescent rat prefrontal cortex in MK-801 model of schizophrenia. We found that although both pyramidal cells and FS interneurons were affected by in vivo subchronic blockade of NMDA receptors, MK-801 induced distinct changes in αamino-3-h...

  9. 18F-FDG PET in small-cell cervical cancer: a prospective study with long-term follow-up

    International Nuclear Information System (INIS)

    Small-cell cervical cancer (SCCC) is rare and prone to metastasize. We conducted a prospective study to evaluate the role of 18F-FDG PET in the management of this aggressive malignancy. Patients with untreated primary, histologically confirmed SCCC were enrolled. 18F-FDG PET (or PET/CT) was performed immediately after MRI or CT, for primary staging, monitoring response to treatment or restaging when there was suspicion of recurrence. The clinical impact of PET was determined on a scan basis. A total of 25 patients were recruited and 43 PET scans were performed. The PET images were obtained for primary staging (25 patients), monitoring response (10 patients) and restaging when there was suspicion of recurrence (8 patients). The median follow-up time in event-free patients was 109.3 months (range 97.5 - 157.7 months). A positive impact of PET was found in 8 (18.6 %) of the 43 scans, which included detection of additional regions of distal lymph node (LN) metastasis (one primary staging scan, two restaging scans), bone metastasis (two primary staging scans, one monitoring response scan), and exclusion of false-positive lesions on MRI (one primary staging scan, one restaging scan). On the other hand, one negative impact was recorded as one false-positive lesion on a restaging PET scan. One positive impact was noted for monitoring response (bone metastasis). The impact of three scans was indeterminate. The positive impact of down-staging in avoiding overtreatment but finding additional distal LN (except one on restaging) or bone metastases had no beneficial effect on long-term survival. The results of this preliminary study suggest that PET is useful in the management of SCCC. PET could have more value in detecting occult metastases if future novel therapies are able to offer better control of extensive SCCC. (orig.)

  10. Long-Term Clinical Outcome of Intensity-Modulated Radiotherapy for Inoperable Non-Small Cell Lung Cancer: The MD Anderson Experience

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Zhiqin [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai (China); Yang Kunyu [Cancer Centre, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Komaki, Ritsuko; Wei Xiong [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Tucker, Susan L. [Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Zhuang Yan; Martel, Mary K.; Vedam, Sastray; Balter, Peter [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Zhu Guangying [Department of Radiation Oncology, Peking University School of Oncology, Beiijng Cancer Hospital and Institute, Beijing (China); Gomez, Daniel [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Lu, Charles [Department of Thoracic Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Mohan, Radhe [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Cox, James D. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Liao Zhongxing, E-mail: zliao@mdanderson.org [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States)

    2012-05-01

    Purpose: In 2007, we published our initial experience in treating inoperable non-small-cell lung cancer (NSCLC) with intensity-modulated radiation therapy (IMRT). The current report is an update of that experience with long-term follow-up. Methods and Materials: Patients in this retrospective review were 165 patients who began definitive radiotherapy, with or without chemotherapy, for newly diagnosed, pathologically confirmed NSCLC to a dose of {>=}60 Gy from 2005 to 2006. Early and late toxicities assessed included treatment-related pneumonitis (TRP), pulmonary fibrosis, esophagitis, and esophageal stricture, scored mainly according to the Common Terminology Criteria for Adverse Events 3.0. Other variables monitored were radiation-associated dermatitis and changes in body weight and Karnofsky performance status. The Kaplan-Meier method was used to compute survival and freedom from radiation-related acute and late toxicities as a function of time. Results: Most patients (89%) had Stage III to IV disease. The median radiation dose was 66 Gy given in 33 fractions (range, 60-76 Gy, 1.8-2.3 Gy per fraction). Median overall survival time was 1.8 years; the 2-year and 3-year overall survival rates were 46% and 30%. Rates of Grade {>=}3 maximum TRP (TRP{sub max}) were 11% at 6 months and 14% at 12 months. At 18 months, 86% of patients had developed Grade {>=}1 maximum pulmonary fibrosis (pulmonary fibrosis{sub max}) and 7% Grade {>=}2 pulmonary fibrosis{sub max}. The median times to maximum esophagitis (esophagitis{sub max}) were 3 weeks (range, 1-13 weeks) for Grade 2 and 6 weeks (range, 3-13 weeks) for Grade 3. A higher percentage of patients who experienced Grade 3 esophagitis{sub max} later developed Grade 2 to 3 esophageal stricture. Conclusions: In our experience, using IMRT to treat NSCLC leads to low rates of pulmonary and esophageal toxicity, and favorable clinical outcomes in terms of survival.

  11. Long-Term Clinical Outcome of Intensity-Modulated Radiotherapy for Inoperable Non-Small Cell Lung Cancer: The MD Anderson Experience

    International Nuclear Information System (INIS)

    Purpose: In 2007, we published our initial experience in treating inoperable non-small-cell lung cancer (NSCLC) with intensity-modulated radiation therapy (IMRT). The current report is an update of that experience with long-term follow-up. Methods and Materials: Patients in this retrospective review were 165 patients who began definitive radiotherapy, with or without chemotherapy, for newly diagnosed, pathologically confirmed NSCLC to a dose of ≥60 Gy from 2005 to 2006. Early and late toxicities assessed included treatment-related pneumonitis (TRP), pulmonary fibrosis, esophagitis, and esophageal stricture, scored mainly according to the Common Terminology Criteria for Adverse Events 3.0. Other variables monitored were radiation-associated dermatitis and changes in body weight and Karnofsky performance status. The Kaplan-Meier method was used to compute survival and freedom from radiation-related acute and late toxicities as a function of time. Results: Most patients (89%) had Stage III to IV disease. The median radiation dose was 66 Gy given in 33 fractions (range, 60–76 Gy, 1.8–2.3 Gy per fraction). Median overall survival time was 1.8 years; the 2-year and 3-year overall survival rates were 46% and 30%. Rates of Grade ≥3 maximum TRP (TRPmax) were 11% at 6 months and 14% at 12 months. At 18 months, 86% of patients had developed Grade ≥1 maximum pulmonary fibrosis (pulmonary fibrosismax) and 7% Grade ≥2 pulmonary fibrosismax. The median times to maximum esophagitis (esophagitismax) were 3 weeks (range, 1–13 weeks) for Grade 2 and 6 weeks (range, 3–13 weeks) for Grade 3. A higher percentage of patients who experienced Grade 3 esophagitismax later developed Grade 2 to 3 esophageal stricture. Conclusions: In our experience, using IMRT to treat NSCLC leads to low rates of pulmonary and esophageal toxicity, and favorable clinical outcomes in terms of survival.

  12. Pattern of employment and associated factors in long-term lymphoma survivors 10 years after high-dose chemotherapy with autologous stem cell transplantation.

    Science.gov (United States)

    Kiserud, C E; Fagerli, U-M; Smeland, K B; Fluge, Ø; Bersvendsen, H; Kvaløy, S; Holte, H; Dahl, A A

    2016-05-01

    Background This study examined employment patterns and associated factors in lymphoma survivors treated with high-dose chemotherapy with autologous stem cell transplantation (HDT-ASCT) from diagnosis to a follow-up survey at a mean of 10 years after HDT-ASCT. Patients and methods All lymphoma survivors aged ≥18 years at HDT-ASCT in Norway from 1987 to 2008, and alive at the end of 2011 were eligible for this cross-sectional study performed in 2012/2013. Participants completed a mailed questionnaire. Job status was dichotomized as either employed (paid work) or not-employed (disability and retirement pension, on economic support, home-makers, or students). Results The response rate was 78%, and the sample (N = 312) contained 60% men. Mean age at HDT-ASCT was 44.3 and at survey 54.0 years. At diagnosis 85% of survivors were employed, 77% before and 77% after HDT-ASCT, and 58% at follow-up. Forty seven percent of the survivors were employed at all time points. The not-employed group at survey was significantly older and included significantly more females than the employed group. No significant between-group differences were observed for lymphoma-related variables. Fatigue, mental distress and type D personality were significantly higher among those not-employed, while quality of life was significantly lower compared to the employed group. Older age at survey, being female, work ability and presence of type D personality remained significantly related to being not-employed at survey in the multivariable analysis. Conclusions Our findings show that not-employed long-term survivors after HDT-ASCT for lymphoma have more comorbidity, cognitive problems and higher levels of anxiety/depression than employed survivors. These factors should be checked and eventually treated in order to improve work ability. PMID:27123741

  13. {sup 18}F-FDG PET in small-cell cervical cancer: a prospective study with long-term follow-up

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Min-Yu; Chou, Hung-Hsueh; Chen, Chao-Yu; Lai, Chyong-Huey; Chang, Ting-Chang [Chang Gung Memorial Hospital and Chang Gung University, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Taoyuan (China); Chang Gung Memorial Hospital, Gynecologic Cancer Research Center, Taoyuan (China); Liu, Feng-Yuan; Yen, Tzu-Chen [Chang Gung Memorial Hospital and Chang Gung University, Department of Nuclear Medicine, Taoyuan (China); Chang Gung Memorial Hospital, Gynecologic Cancer Research Center, Taoyuan (China); Lin, Gigin [Chang Gung Memorial Hospital and Chang Gung University, Department of Medical Imaging and Intervention, Taoyuan (China); Chang Gung Memorial Hospital, Gynecologic Cancer Research Center, Taoyuan (China); Yang, Lan-Yan [Chang Gung Memorial Hospital and Chang Gung University, Biostatistics Unit, Clinical Trial Center, Taoyuan (China); Chang Gung Memorial Hospital, Gynecologic Cancer Research Center, Taoyuan (China); Pan, Yu-Bin [Chang Gung Memorial Hospital and Chang Gung University, Biostatistics Unit, Clinical Trial Center, Taoyuan (China); Jung, Shih-Ming; Wu, Ren-Chin [Chang Gung Memorial Hospital and Chang Gung University, Department of Pathology, Taoyuan (China); Chang Gung Memorial Hospital, Gynecologic Cancer Research Center, Taoyuan (China); Huang, Yi-Ting; Tsai, Jason Chien-Sheng [Chang Gung Memorial Hospital and Chang Gung University, Department of Radiation Oncology, Taoyuan (China); Chang Gung Memorial Hospital, Gynecologic Cancer Research Center, Taoyuan (China)

    2016-04-15

    Small-cell cervical cancer (SCCC) is rare and prone to metastasize. We conducted a prospective study to evaluate the role of {sup 18}F-FDG PET in the management of this aggressive malignancy. Patients with untreated primary, histologically confirmed SCCC were enrolled. {sup 18}F-FDG PET (or PET/CT) was performed immediately after MRI or CT, for primary staging, monitoring response to treatment or restaging when there was suspicion of recurrence. The clinical impact of PET was determined on a scan basis. A total of 25 patients were recruited and 43 PET scans were performed. The PET images were obtained for primary staging (25 patients), monitoring response (10 patients) and restaging when there was suspicion of recurrence (8 patients). The median follow-up time in event-free patients was 109.3 months (range 97.5 - 157.7 months). A positive impact of PET was found in 8 (18.6 %) of the 43 scans, which included detection of additional regions of distal lymph node (LN) metastasis (one primary staging scan, two restaging scans), bone metastasis (two primary staging scans, one monitoring response scan), and exclusion of false-positive lesions on MRI (one primary staging scan, one restaging scan). On the other hand, one negative impact was recorded as one false-positive lesion on a restaging PET scan. One positive impact was noted for monitoring response (bone metastasis). The impact of three scans was indeterminate. The positive impact of down-staging in avoiding overtreatment but finding additional distal LN (except one on restaging) or bone metastases had no beneficial effect on long-term survival. The results of this preliminary study suggest that PET is useful in the management of SCCC. PET could have more value in detecting occult metastases if future novel therapies are able to offer better control of extensive SCCC. (orig.)

  14. Stromal Cell-Derived Factor 1 Gene Polymorphism Is Associated with Susceptibility to Adverse Long-Term Allograft Outcomes in Non-Diabetic Kidney Transplant Recipients

    Directory of Open Access Journals (Sweden)

    Chung-Jieh Wang

    2014-07-01

    Full Text Available Although the genetic polymorphism of Stromal Cell-Derived Factor 1 (SDF-1 is associated with higher mortality of liver allograft recipients, the role of SDF-1 in the modulation of renal allograft outcomes is unclear. Between March 2000 and January 2008, we recruited 252 non-diabetic renal transplant recipients (RTRs. Baseline characteristics and blood chemistry were recorded. Genomic DNA extraction with polymerase chain reaction-restriction fragment length polymorphism was utilized to analyze the genetic polymorphisms of SDF-1 (rs1801157. The influence of SDF-1 on an adverse renal allograft outcome, defined as either a doubling of serum creatinine, graft failure, or patient death was evaluated. Sixteen patients with the SDF-1 AA/AG genotype and nine with the SDF-1 GG genotype reached an adverse outcome. According to Kaplan-Meier analysis, patients carrying the SDF-1 AA/AG genotype or A allele showed a significantly higher risk of reaching an adverse outcome than those carrying the SDF-1 GG genotype or G allele (p = 0.041; p = 0.0051, respectively; log rank test. Stepwise multivariate Cox proportional regression analysis revealed that patients carrying the SDF-1 AA/AG genotype and A allele had a 2.742-fold (95% CI. 1.106–6.799, p = 0.03 and 2.306-fold (95% CI. 1.254–4.24, p = 0.008 risk of experiencing an adverse outcome. The SDF-1 AA/AG genotype and A allele have a detrimental impact on the long-term outcome of RTRs.

  15. Prognostic factors and long term results of neo adjuvant therapy followed by surgery in stage IIIA N2 non-small cell lung cancer patients

    Directory of Open Access Journals (Sweden)

    Li Jing

    2009-01-01

    Full Text Available Background: Prognosis of stage IIIA N2 non-small cell lung cancer (NSCLC remains poor despite the changes in therapeutic strategies. Objectives: To assess long term results of neo adjuvant therapy followed by surgery for patients with stage IIIA N2 NSCLC and to analyze factors influencing survival. Materials and Methods: The methods adopted include: Retrospective review of medical records of 91 patients with stage IIIA N2 NSCLC, who received neo adjuvant therapy followed by surgery; collection of information on demographic information, staging procedure, preoperative therapy, clinical response, type of resection, pathologic response of tumor, status of lymph nodes and adjuvant chemotherapy; survival analysis by Kaplan-Meier and calculation of prognostic factors using log-rank and Cox regression model. Results: All patients received a platinum-based chemotherapy and 23 (29.1% had an associated radiotherapy. Eighty four patients underwent thoracotomy. Median survival was 26 months (95%CI, 22.6-30.8 months with three and five year survival rates of 31.6 and 20.9%, respectively. Prognostic factors for survival on univariate analysis was clinical response (P = 0.032, complete resection (P = 0.002, pathologic tumor response ( P < 0.001, and lymph nodal down staging (P = 0.001. Multivariate analyses identified complete resection, pathologic tumor response and lymph nodal down staging as independent prognostic factors. Conclusion: Survival of patients with stage IIIA N2 NSCLC who received neo adjuvant therapy is significantly influenced by clinical response, complete resection, pathologic tumor response, and lymph nodal down staging. These results can be helpful in guiding standard clinical practice and evaluating the outcome of neo adjuvant therapy followed by surgery in patients with stage IIIA N2 NSCLC.

  16. Comparing long term energy scenarios

    International Nuclear Information System (INIS)

    Major projection studies by international organizations and senior analysts have been compared with reference to individual key parameters (population, energy demand/supply, resources, technology, emissions and global warming) to understand trends and implications of the different scenarios. Then, looking at the long term (i.e., 2050 and beyond), parameters and trends have been compared together to understand and quantify whether and when possible crisis or market turbulence might occur due to shortage of resources or environmental problems

  17. A POP-1 repressor complex restricts inappropriate cell type-specific gene transcription during Caenorhabditis elegans embryogenesis

    OpenAIRE

    Calvo, Dominica; Victor, Martin; Gay, Frédérique; Sui, Guangchao; Luke, Margaret Po-Shan; Dufourcq, Pascale; Wen, Gengyun; Maduro, Morris; Rothman, Joel; Shi, Yang

    2001-01-01

    In Caenorhabditis elegans, histone acetyltransferase CBP-1 counteracts the repressive activity of the histone deacetylase HDA-1 to allow endoderm differentiation, which is specified by the E cell. In the sister MS cell, the endoderm fate is prevented by the action of an HMG box-containing protein, POP-1, through an unknown mechanism. In this study, we show that CBP-1, HDA-1 and POP-1 converge on end-1, an initial endoderm-determining gene. In the E lineage, an essential function of CBP-1 appe...

  18. Long-term moderate calorie restriction inhibits inflammation without impairing cell-mediated immunity: a randomized controlled trial in non obese humans

    Science.gov (United States)

    Calorie restriction (CR) inhibits inflammation and slows aging in many animal species, but in rodents housed in pathogen-free facilities, CR impairs immunity against certain pathogens. However, little is known about the effects of long-term moderate CR on immune function in humans. In this multi-cen...

  19. Autologous/reduced-intensity allogeneic stem cell transplantation vs autologous transplantation in multiple myeloma: long-term results of the EBMT-NMAM2000 study

    NARCIS (Netherlands)

    Gahrton, G.; Iacobelli, S.; Bjorkstrand, B.; Hegenbart, U.; Gruber, A.; Greinix, H.; Volin, L.; Narni, F.; Carella, A.M.; Beksac, M.; Bosi, A.; Milone, G.; Corradini, P.; Schonland, S.; Friberg, K.; Biezen, A. van; Goldschmidt, H.; Witte, T.J.M. de; Morris, C.; Niederwieser, D.; Garderet, L.; Kroger, N.

    2013-01-01

    Long-term follow-up of prospective studies comparing allogeneic transplantation to autologous transplantation in multiple myeloma is few and controversial. This is an update at a median follow-up of 96 months of the European Group for Blood and Marrow Transplantation Non-Myeloablative Allogeneic ste

  20. High Intensity Training May Reverse the Fiber Type Specific Decline in Myogenic Stem Cells in Multiple Sclerosis Patients

    DEFF Research Database (Denmark)

    Farup, Jean; Dalgas, Ulrik; Keytsman, Charly;

    2016-01-01

    = 23) and age matched healthy controls (HC, n = 18). Furthermore, the effects of 12 weeks of high intensity training on SC and myonuclei content were explored in MS. Muscle biopsies were obtained from m. Vastus Lateralis at baseline (MS and HC) and following 12 weeks of training (MS only). Frozen...... increased by 165% (p < 0.05) and 135% (p < 0.05), respectively. Furthermore, the type II fiber MN content tended (p = 0.06) to be increased by 35% following training. In conclusion, the SC content is lower in type II compared to type I fibers in both MS and HC. Furthermore, high intensity training was......Multiple sclerosis (MS) is associated with loss of skeletal muscle mass and function. The myogenic stem cells (satellite cells-SCs) are instrumental to accretion of myonuclei, but remain to be investigated in MS. The present study aimed to compare the SC and myonuclei content between MS patients (n...

  1. Gamma-retrovirus integration marks cell type-specific cancer genes: a novel profiling tool in cancer genomics

    OpenAIRE

    Gilroy, Kathryn L.; Terry, Anne; Naseer, Asif; De Ridder, Jeroen; Allahyar, Amin; Wang, Weiwei; Carpenter, Eric; Mason, Andrew; Wong, Gane K-S; Cameron, Ewan R; Kilbey, Anna; Neil, James C.

    2016-01-01

    Retroviruses have been foundational in cancer research since early studies identified proto-oncogenes as targets for insertional mutagenesis. Integration of murine gamma-retroviruses into the host genome favours promoters and enhancers and entails interaction of viral integrase with host BET/bromodomain factors. We report that this integration pattern is conserved in feline leukaemia virus (FeLV), a gamma-retrovirus that infects many human cell types. Analysis of FeLV insertion sites in the M...

  2. Cell-type-specific repression by methyl-CpG-binding protein 2 is biased toward long genes.

    Science.gov (United States)

    Sugino, Ken; Hempel, Chris M; Okaty, Benjamin W; Arnson, Hannah A; Kato, Saori; Dani, Vardhan S; Nelson, Sacha B

    2014-09-17

    Mutations in methyl-CpG-binding protein 2 (MeCP2) cause Rett syndrome and related autism spectrum disorders (Amir et al., 1999). MeCP2 is believed to be required for proper regulation of brain gene expression, but prior microarray studies in Mecp2 knock-out mice using brain tissue homogenates have revealed only subtle changes in gene expression (Tudor et al., 2002; Nuber et al., 2005; Jordan et al., 2007; Chahrour et al., 2008). Here, by profiling discrete subtypes of neurons we uncovered more dramatic effects of MeCP2 on gene expression, overcoming the "dilution problem" associated with assaying homogenates of complex tissues. The results reveal misregulation of genes involved in neuronal connectivity and communication. Importantly, genes upregulated following loss of MeCP2 are biased toward longer genes but this is not true for downregulated genes, suggesting MeCP2 may selectively repress long genes. Because genes involved in neuronal connectivity and communication, such as cell adhesion and cell-cell signaling genes, are enriched among longer genes, their misregulation following loss of MeCP2 suggests a possible etiology for altered circuit function in Rett syndrome. PMID:25232122

  3. Long-term Survival of Personalized Surgical Treatment of Locally Advanced Non-small Cell Lung Cancer Based on Molecular Staging

    Directory of Open Access Journals (Sweden)

    Qinghua ZHOU

    2011-02-01

    Full Text Available Background and objective Approximately 35%-40% of patients with newly diagnosed non-small cell Lung cancer have locally advanced disease. The average survival time of these patients only have 6-8 months with chemotherapy. The aim of this study is to explore and summarize the probability of detection of micrometastasis in peripheral blood for molecular staging, and for selection of indication of surgical treatment, and beneficiary of neoadjuvant chemotherapy and postoperative adjuvant therapy in locally advanced lung cancer; to summarize the long-time survival result of personalized surgical treatment of 516 patients with locally advanced non-small cell lung cancer based on molecular staging methods. Methods CK19 mRNA expression of peripheral blood samples was detected in 516 lung cancer patients by RT-PCR before operation for molecular diagnosis of micrometastasis, personalized molecular staging, and for selection of indication of surgical treatment and the beneficiary of neoadjuvant chemotherapy and postoperative adjuvant therapy in patients with locally advanced nonsmall cell lung cancer invaded heart, great vessels or both. The long-term survival result of personalized surgical treatment was retrospectively analyzed in 516 patients with locally advanced non-small cell lung cancer based on molecular staging methods. Results There were 322 patients with squamous cell carcinoma and 194 cases with adenocarcinoma in the series of 516 patients with locally advanced lung cancer involved heart, great vessels or both. There were 112 patients with IIIA disease and 404 cases with IIIB disease according to P-TNM staging. There were 97 patients with M-IIIA disease, 278 cases with M-IIIB disease and 141 cases with III disease according to our personalized molecular staging. Of the 516 patients, bronchoplastic procedures and pulmonary artery reconstruction was carried out in 256 cases; lobectomy combined with resection and reconstruction of partial left

  4. Long-term progression-free survival of mantle cell lymphoma after intensive front-line immunochemotherapy with in vivo-purged stem cell rescue: a nonrandomized phase 2 multicenter study by the Nordic Lymphoma Group

    DEFF Research Database (Denmark)

    Geisler, C.H.; Kolstad, A.; Laurell, A.;

    2008-01-01

    purged autologous stem cell support. Overall and complete response was achieved in 96% and 54%, respectively. The 6-year overall, event-free, and progression-free survival were 70%, 56%, and 66%, respectively, with no relapses occurring after 5 years. Multivariate analysis showed Ki-67 to be the sole...... progression-free survival, the duration of molecular remission, and the proportion of PCR-negative stem cell products were significantly increased (P < .001). Intensive immunochemotherapy with in vivo purged stem cell support can lead to long-term progression-free survival of MCL and perhaps cure. Registered...

  5. LaeA control of velvet family regulatory proteins for light-dependent development and fungal cell-type specificity.

    Directory of Open Access Journals (Sweden)

    Ozlem Sarikaya Bayram

    Full Text Available VeA is the founding member of the velvet superfamily of fungal regulatory proteins. This protein is involved in light response and coordinates sexual reproduction and secondary metabolism in Aspergillus nidulans. In the dark, VeA bridges VelB and LaeA to form the VelB-VeA-LaeA (velvet complex. The VeA-like protein VelB is another developmental regulator, and LaeA has been known as global regulator of secondary metabolism. In this study, we show that VelB forms a second light-regulated developmental complex together with VosA, another member of the velvet family, which represses asexual development. LaeA plays a key role, not only in secondary metabolism, but also in directing formation of the VelB-VosA and VelB-VeA-LaeA complexes. LaeA controls VeA modification and protein levels and possesses additional developmental functions. The laeA null mutant results