WorldWideScience

Sample records for cell type-specific investigation

  1. Cell-Type-Specific Optogenetics in Monkeys.

    Science.gov (United States)

    Namboodiri, Vijay Mohan K; Stuber, Garret D

    2016-09-08

    The recent advent of technologies enabling cell-type-specific recording and manipulation of neuronal activity spurred tremendous progress in neuroscience. However, they have been largely limited to mice, which lack the richness in behavior of primates. Stauffer et al. now present a generalizable method for achieving cell-type specificity in monkeys.

  2. Investigation of Neuronal Cell Type-Specific Gene Expression of Ca2+/Calmodulin-dependent Protein Kinase II.

    Directory of Open Access Journals (Sweden)

    Mima Kazuko

    2002-01-01

    Full Text Available The promoter activity of the rat Ca2+/calmodulin-dependent protein kinase II gene was analyzed using the luciferase reporter gene in neuronal and non-neuronal cell lines. Neuronal cell type-specific promoter activity was found in the 5'-flanking region of &agr; and &bgr; isoform genes of the kinase. Silencer elements were also found further upstream of promoter regions. A brain-specific protein bound to the DNA sequence of the 5'-flanking region of the gene was found by gel mobility shift analysis in the nuclear extract of the rat brain, including the cerebellum, forebrain, and brainstem, but not in that of non-neuronal tissues, including liver, kidney and spleen. The luciferase expression system and gel shift analysis can be used as an additional and better index by which to monitor gene expression in most cell types.

  3. The selection and function of cell type-specific enhancers.

    Science.gov (United States)

    Heinz, Sven; Romanoski, Casey E; Benner, Christopher; Glass, Christopher K

    2015-03-01

    The human body contains several hundred cell types, all of which share the same genome. In metazoans, much of the regulatory code that drives cell type-specific gene expression is located in distal elements called enhancers. Although mammalian genomes contain millions of potential enhancers, only a small subset of them is active in a given cell type. Cell type-specific enhancer selection involves the binding of lineage-determining transcription factors that prime enhancers. Signal-dependent transcription factors bind to primed enhancers, which enables these broadly expressed factors to regulate gene expression in a cell type-specific manner. The expression of genes that specify cell type identity and function is associated with densely spaced clusters of active enhancers known as super-enhancers. The functions of enhancers and super-enhancers are influenced by, and affect, higher-order genomic organization.

  4. Freedom of expression: cell-type-specific gene profiling.

    Science.gov (United States)

    Otsuki, Leo; Cheetham, Seth W; Brand, Andrea H

    2014-01-01

    Cell fate and behavior are results of differential gene regulation, making techniques to profile gene expression in specific cell types highly desirable. Many methods now enable investigation at the DNA, RNA and protein level. This review introduces the most recent and popular techniques, and discusses key issues influencing the choice between these such as ease, cost and applicability of information gained. Interdisciplinary collaborations will no doubt contribute further advances, including not just in single cell type but single-cell expression profiling.

  5. Cell type-specific neuroprotective activity of untranslocated prion protein.

    Directory of Open Access Journals (Sweden)

    Elena Restelli

    Full Text Available BACKGROUND: A key pathogenic role in prion diseases was proposed for a cytosolic form of the prion protein (PrP. However, it is not clear how cytosolic PrP localization influences neuronal viability, with either cytotoxic or anti-apoptotic effects reported in different studies. The cellular mechanism by which PrP is delivered to the cytosol of neurons is also debated, and either retrograde transport from the endoplasmic reticulum or inefficient translocation during biosynthesis has been proposed. We investigated cytosolic PrP biogenesis and effect on cell viability in primary neuronal cultures from different mouse brain regions. PRINCIPAL FINDINGS: Mild proteasome inhibition induced accumulation of an untranslocated form of cytosolic PrP in cortical and hippocampal cells, but not in cerebellar granules. A cyclopeptolide that interferes with the correct insertion of the PrP signal sequence into the translocon increased the amount of untranslocated PrP in cortical and hippocampal cells, and induced its synthesis in cerebellar neurons. Untranslocated PrP boosted the resistance of cortical and hippocampal neurons to apoptotic insults but had no effect on cerebellar cells. SIGNIFICANCE: These results indicate cell type-dependent differences in the efficiency of PrP translocation, and argue that cytosolic PrP targeting might serve a physiological neuroprotective function.

  6. Cell-type specific four-component hydrogel.

    Directory of Open Access Journals (Sweden)

    Timo Aberle

    Full Text Available In the field of regenerative medicine we aim to develop implant matrices for specific tissue needs. By combining two per se, cell-permissive gel systems with enzymatic crosslinkers (gelatin/transglutaminase and fibrinogen/thrombin to generate a blend (technical term: quattroGel, an unexpected cell-selectivity evolved. QuattroGels were porous and formed cavities in the cell diameter range, possessed gelation kinetics in the minute range, viscoelastic properties and a mechanical strength appropriate for general cell adhesion, and restricted diffusion. Cell proliferation of endothelial cells, chondrocytes and fibroblasts was essentially unaffected. In contrast, on quattroGels neither endothelial cells formed vascular tubes nor did primary neurons extend neurites in significant amounts. Only chondrocytes differentiated properly as judged by collagen isoform expression. The biophysical quattroGel characteristics appeared to leave distinct cell processes such as mitosis unaffected and favored differentiation of sessile cells, but hampered differentiation of migratory cells. This cell-type selectivity is of interest e.g. during articular cartilage or invertebral disc repair, where pathological innervation and angiogenesis represent adverse events in tissue engineering.

  7. General approach for in vivo recovery of cell type-specific effector gene sets.

    Science.gov (United States)

    Barsi, Julius C; Tu, Qiang; Davidson, Eric H

    2014-05-01

    Differentially expressed, cell type-specific effector gene sets hold the key to multiple important problems in biology, from theoretical aspects of developmental gene regulatory networks (GRNs) to various practical applications. Although individual cell types of interest have been recovered by various methods and analyzed, systematic recovery of multiple cell type-specific gene sets from whole developing organisms has remained problematic. Here we describe a general methodology using the sea urchin embryo, a material of choice because of the large-scale GRNs already solved for this model system. This method utilizes the regulatory states expressed by given cells of the embryo to define cell type and includes a fluorescence activated cell sorting (FACS) procedure that results in no perturbation of transcript representation. We have extensively validated the method by spatial and qualitative analyses of the transcriptome expressed in isolated embryonic skeletogenic cells and as a consequence, generated a prototypical cell type-specific transcriptome database.

  8. VARIATION ANALYSIS OF HPV16 CELL-TYPE-SPECIFIC ENHANCER IN CERVICAL CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    Liu Wenkang; Chu Yonglie; Ma Tianyou; Yang E; Cao Chunxia

    2006-01-01

    Objective To investigate the cell-type-specific enhancer (CTSE) in HPV16 and its variation in cervical carcinoma. Methods CTSEs were detected by polymerase chain reaction (PCR) in 58 cervical carcinoma from Shaanxi province; in addition variation of CTSEs was analyzed through single-strand conformation polymorphisms (SSCP). Results HPV16 CTSEs were detectable in 34 of 58 (57%) specimens and mutant rate was 41%(14/34) and the main mutations of chosen randomly variant CTSE (CTSEv) happened at YY1 binding sites in addition to glucocoticoid response elements (GRE). Conclusion CTSE in some specimens of Shaanxi province was obviously different from that in HPV16 wild type and variant CTSE might affect the transcriptional regulation of LCR on viral P97, which regulates over-expression of viral oncogenes in cervical carcinoma.

  9. Cell-Type Specific Roles for PTEN in Establishing a Functional Retinal Architecture

    Science.gov (United States)

    Cantrup, Robert; Dixit, Rajiv; Palmesino, Elena; Bonfield, Stephan; Shaker, Tarek; Tachibana, Nobuhiko; Zinyk, Dawn; Dalesman, Sarah; Yamakawa, Kazuhiro; Stell, William K.; Wong, Rachel O.; Reese, Benjamin E.; Kania, Artur; Sauvé, Yves; Schuurmans, Carol

    2012-01-01

    Background The retina has a unique three-dimensional architecture, the precise organization of which allows for complete sampling of the visual field. Along the radial or apicobasal axis, retinal neurons and their dendritic and axonal arbors are segregated into layers, while perpendicular to this axis, in the tangential plane, four of the six neuronal types form patterned cellular arrays, or mosaics. Currently, the molecular cues that control retinal cell positioning are not well-understood, especially those that operate in the tangential plane. Here we investigated the role of the PTEN phosphatase in establishing a functional retinal architecture. Methodology/Principal Findings In the developing retina, PTEN was localized preferentially to ganglion, amacrine and horizontal cells, whose somata are distributed in mosaic patterns in the tangential plane. Generation of a retina-specific Pten knock-out resulted in retinal ganglion, amacrine and horizontal cell hypertrophy, and expansion of the inner plexiform layer. The spacing of Pten mutant mosaic populations was also aberrant, as were the arborization and fasciculation patterns of their processes, displaying cell type-specific defects in the radial and tangential dimensions. Irregular oscillatory potentials were also observed in Pten mutant electroretinograms, indicative of asynchronous amacrine cell firing. Furthermore, while Pten mutant RGC axons targeted appropriate brain regions, optokinetic spatial acuity was reduced in Pten mutant animals. Finally, while some features of the Pten mutant retina appeared similar to those reported in Dscam-mutant mice, PTEN expression and activity were normal in the absence of Dscam. Conclusions/Significance We conclude that Pten regulates somal positioning and neurite arborization patterns of a subset of retinal cells that form mosaics, likely functioning independently of Dscam, at least during the embryonic period. Our findings thus reveal an unexpected level of cellular

  10. Cell-type specific roles for PTEN in establishing a functional retinal architecture.

    Directory of Open Access Journals (Sweden)

    Robert Cantrup

    Full Text Available BACKGROUND: The retina has a unique three-dimensional architecture, the precise organization of which allows for complete sampling of the visual field. Along the radial or apicobasal axis, retinal neurons and their dendritic and axonal arbors are segregated into layers, while perpendicular to this axis, in the tangential plane, four of the six neuronal types form patterned cellular arrays, or mosaics. Currently, the molecular cues that control retinal cell positioning are not well-understood, especially those that operate in the tangential plane. Here we investigated the role of the PTEN phosphatase in establishing a functional retinal architecture. METHODOLOGY/PRINCIPAL FINDINGS: In the developing retina, PTEN was localized preferentially to ganglion, amacrine and horizontal cells, whose somata are distributed in mosaic patterns in the tangential plane. Generation of a retina-specific Pten knock-out resulted in retinal ganglion, amacrine and horizontal cell hypertrophy, and expansion of the inner plexiform layer. The spacing of Pten mutant mosaic populations was also aberrant, as were the arborization and fasciculation patterns of their processes, displaying cell type-specific defects in the radial and tangential dimensions. Irregular oscillatory potentials were also observed in Pten mutant electroretinograms, indicative of asynchronous amacrine cell firing. Furthermore, while Pten mutant RGC axons targeted appropriate brain regions, optokinetic spatial acuity was reduced in Pten mutant animals. Finally, while some features of the Pten mutant retina appeared similar to those reported in Dscam-mutant mice, PTEN expression and activity were normal in the absence of Dscam. CONCLUSIONS/SIGNIFICANCE: We conclude that Pten regulates somal positioning and neurite arborization patterns of a subset of retinal cells that form mosaics, likely functioning independently of Dscam, at least during the embryonic period. Our findings thus reveal an unexpected

  11. Cell type-specific bipolar cell input to ganglion cells in the mouse retina.

    Science.gov (United States)

    Neumann, S; Hüser, L; Ondreka, K; Auler, N; Haverkamp, S

    2016-03-01

    Many distinct ganglion cell types, which are the output elements of the retina, were found to encode for specific features of a visual scene such as contrast, color information or movement. The detailed composition of retinal circuits leading to this tuning of retinal ganglion cells, however, is apart from some prominent examples, largely unknown. Here we aimed to investigate if ganglion cell types in the mouse retina receive selective input from specific bipolar cell types or if they sample their synaptic input non-selectively from all bipolar cell types stratifying within their dendritic tree. To address this question we took an anatomical approach and immunolabeled retinae of two transgenic mouse lines (GFP-O and JAM-B) with markers for ribbon synapses and type 2 bipolar cells. We morphologically identified all green fluorescent protein (GFP)-expressing ganglion cell types, which co-stratified with type 2 bipolar cells and assessed the total number of bipolar input synapses and the proportion of synapses deriving from type 2 bipolar cells. Only JAM-B ganglion cells received synaptic input preferentially from bipolar cell types other than type 2 bipolar cells whereas the other analyzed ganglion cell types sampled their bipolar input most likely from all bipolar cell terminals within their dendritic arbor.

  12. Cell type-specific responses of peripheral blood mononuclear cells to silver nanoparticles.

    Science.gov (United States)

    Greulich, C; Diendorf, J; Gessmann, J; Simon, T; Habijan, T; Eggeler, G; Schildhauer, T A; Epple, M; Köller, M

    2011-09-01

    Silver nanoparticles (Ag-NP) are increasingly used in biomedical applications because of their remarkable antimicrobial activity. In biomedicine, Ag-NP are coated onto or embedded in wound dressings, surgical instruments and bone substitute biomaterials, such as silver-containing calcium phosphate cements. Free Ag-NP and silver ions are released from these coatings or after the degradation of a biomaterial, and may come into close contact with blood cells. Despite the widespread use of Ag-NP as an antimicrobial agent, there is a serious lack of information on the biological effects of Ag-NP on human blood cells. In this study, the uptake of Ag-NP by peripheral monocytes and lymphocytes (T-cells) was analyzed, and the influence of nanosilver on cell biological functions (proliferation, the expression of adhesion molecules, cytokine release and the generation of reactive oxygen species) was studied. After cell culture in the presence of monodispersed Ag-NP (5-30μgml(-1) silver concentration), agglomerates of nanoparticles were detected within monocytes (CD14+) but not in T-cells (CD3+) by light microscopy, flow cytometry and combined focused ion beam/scanning electron microscopy. The uptake rate of nanoparticles was concentration dependent, and the silver agglomerates were typically found in the cytoplasm. Furthermore, a concentration-dependent activation (e.g. an increased expression of adhesion molecule CD54) of monocytes at Ag-NP concentrations of 10-15μgml(-1) was observed, and cytotoxicity of Ag-NP-treated monocytes was observed at Ag-NP levels of 25μgml(-1) and higher. However, no modulation of T-cell proliferation was observed in the presence of Ag-NP. Taken together, our results provide the first evidence for a cell-type-specific uptake of Ag-NP by peripheral blood mononuclear cells (PBMC) and the resultant cellular responses after exposure.

  13. Common themes and cell type specific variations of higher order chromatin arrangements in the mouse

    Directory of Open Access Journals (Sweden)

    Cremer Thomas

    2005-12-01

    Full Text Available Abstract Background Similarities as well as differences in higher order chromatin arrangements of human cell types were previously reported. For an evolutionary comparison, we now studied the arrangements of chromosome territories and centromere regions in six mouse cell types (lymphocytes, embryonic stem cells, macrophages, fibroblasts, myoblasts and myotubes with fluorescence in situ hybridization and confocal laser scanning microscopy. Both species evolved pronounced differences in karyotypes after their last common ancestors lived about 87 million years ago and thus seem particularly suited to elucidate common and cell type specific themes of higher order chromatin arrangements in mammals. Results All mouse cell types showed non-random correlations of radial chromosome territory positions with gene density as well as with chromosome size. The distribution of chromosome territories and pericentromeric heterochromatin changed during differentiation, leading to distinct cell type specific distribution patterns. We exclude a strict dependence of these differences on nuclear shape. Positional differences in mouse cell nuclei were less pronounced compared to human cell nuclei in agreement with smaller differences in chromosome size and gene density. Notably, the position of chromosome territories relative to each other was very variable. Conclusion Chromosome territory arrangements according to chromosome size and gene density provide common, evolutionary conserved themes in both, human and mouse cell types. Our findings are incompatible with a previously reported model of parental genome separation.

  14. Towards identifying host cell-type specific response patterns to bacterial endosymbiosis

    DEFF Research Database (Denmark)

    Gavrilovic, Srdjan

    of view, available techniques have relied heavily on whole organ analyses that disregard specificities of individual cell types. To address this issue we aimed to develop a technology for comparative global analysis of mature mRNA and small RNA populations at the cell type specific level in the model...... plant Lotus japonicus. A powerful approach referred to here as Defined Expression and RNA Affinity co-Purification (DERAP) was developed to study gene expression and small RNA populations in the host roots during early phases of signal exchange at the cell-type level. As a basis for DERAP analysis...

  15. Cell-type-specific, Aptamer-functionalized Agents for Targeted Disease Therapy.

    Science.gov (United States)

    Zhou, Jiehua; Rossi, John J

    2014-06-17

    One hundred years ago, Dr. Paul Ehrlich popularized the "magic bullet" concept for cancer therapy in which an ideal therapeutic agent would only kill the specific tumor cells it targeted. Since then, "targeted therapy" that specifically targets the molecular defects responsible for a patient's condition has become a long-standing goal for treating human disease. However, safe and efficient drug delivery during the treatment of cancer and infectious disease remains a major challenge for clinical translation and the development of new therapies. The advent of SELEX technology has inspired many groundbreaking studies that successfully adapted cell-specific aptamers for targeted delivery of active drug substances in both in vitro and in vivo models. By covalently linking or physically functionalizing the cell-specific aptamers with therapeutic agents, such as siRNA, microRNA, chemotherapeutics or toxins, or delivery vehicles, such as organic or inorganic nanocarriers, the targeted cells and tissues can be specifically recognized and the therapeutic compounds internalized, thereby improving the local concentration of the drug and its therapeutic efficacy. Currently, many cell-type-specific aptamers have been developed that can target distinct diseases or tissues in a cell-type-specific manner. In this review, we discuss recent advances in the use of cell-specific aptamers for targeted disease therapy, as well as conjugation strategies and challenges.

  16. Transition to chaos in random networks with cell-type-specific connectivity

    Science.gov (United States)

    Aljadeff, Johnatan; Stern, Merav; Sharpee, Tatyana

    2015-01-01

    In neural circuits, statistical connectivity rules strongly depend on cell-type identity. We study dynamics of neural networks with cell-type specific connectivity by extending the dynamic mean field method, and find that these networks exhibit a phase transition between silent and chaotic activity. By analyzing the locus of this transition, we derive a new result in random matrix theory: the spectral radius of a random connectivity matrix with block-structured variances. We apply our results to show how a small group of hyper-excitable neurons within the network can significantly increase the network’s computational capacity by bringing it into the chaotic regime. PMID:25768781

  17. Cell-type specific DNA methylation patterns define human breast cellular identity.

    Directory of Open Access Journals (Sweden)

    Petr Novak

    Full Text Available DNA methylation plays a role in a variety of biological processes including embryonic development, imprinting, X-chromosome inactivation, and stem cell differentiation. Tissue specific differential methylation has also been well characterized. We sought to extend these studies to create a map of differential DNA methylation between different cell types derived from a single tissue. Using three pairs of isogenic human mammary epithelial and fibroblast cells, promoter region DNA methylation was characterized using MeDIP coupled to microarray analysis. Comparison of DNA methylation between these cell types revealed nearly three thousand cell-type specific differentially methylated regions (ctDMRs. MassARRAY was performed upon 87 ctDMRs to confirm and quantify differential DNA methylation. Each of the examined regions exhibited statistically significant differences ranging from 10-70%. Gene ontology analysis revealed the overrepresentation of many transcription factors involved in developmental processes. Additionally, we have shown that ctDMRs are associated with histone related epigenetic marks and are often aberrantly methylated in breast cancer. Overall, our data suggest that there are thousands of ctDMRs which consistently exhibit differential DNA methylation and may underlie cell type specificity in human breast tissue. In addition, we describe the pathways affected by these differences and provide insight into the molecular mechanisms and physiological overlap between normal cellular differentiation and breast carcinogenesis.

  18. Innate immune response to pulmonary contusion: identification of cell type-specific inflammatory responses.

    Science.gov (United States)

    Hoth, J Jason; Wells, Jonathan D; Yoza, Barbara K; McCall, Charles E

    2012-04-01

    Lung injury from pulmonary contusion is a common traumatic injury, predominantly seen after blunt chest trauma, such as in vehicular accidents. The local and systemic inflammatory response to injury includes activation of innate immune receptors, elaboration of a variety of inflammatory mediators, and recruitment of inflammatory cells to the injured lung. Using a mouse model of pulmonary contusion, we had previously shown that innate immune Toll-like receptors 2 and 4 (TLR2 and TLR4) mediate the inflammatory response to lung injury. In this study, we used chimeric mice generated by adoptive bone marrow transfer between TLR2 or TLR4 and wild-type mice. We found that, in the lung, both bone marrow-derived and nonmyeloid cells contribute to TLR-dependent inflammatory responses after injury in a cell type-specific manner. We also show a novel TLR2-dependent injury mechanism that is associated with enhanced airway epithelial cell apoptosis and increased pulmonary FasL and Fas expression in the lungs from injured mice. Thus, in addition to cardiopulmonary physiological dysfunction, cell type-specific TLR and their differential response to injury may provide novel specific targets for management of patients with pulmonary contusion.

  19. VARIATION ANALYSIS OF HPV16 CELL-TYPE-SPECIFIC ENHANCER IN CERVICAL CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Human papillomavirus16type(HPV16)ishighly associated with cervical carcinoma.Sometransfor mation genes in high-risk HPV genomeplayed ani mportant role[1].The E6and E7genes inHPV16can over-express intransfor mepithelial cellsand viral early promoter P97controls the expressionof E6/E7genes.Long control region(LCR)inHPV16genome induces the activity of P97.Thereexits cell-type-specific enhancer(CTSE)in LCRand there are many cellar factors specific bindingsites in CTSE such as NF1,AP1,TEF-2,whichbindspecifically...

  20. Ligation-free ribosome profiling of cell type-specific translation in the brain.

    Science.gov (United States)

    Hornstein, Nicholas; Torres, Daniela; Das Sharma, Sohani; Tang, Guomei; Canoll, Peter; Sims, Peter A

    2016-01-01

    Ribosome profiling has emerged as a powerful tool for genome-wide measurements of translation, but library construction requires multiple ligation steps and remains cumbersome relative to more conventional deep-sequencing experiments. We report a new, ligation-free approach to ribosome profiling that does not require ligation. Library construction for ligation-free ribosome profiling can be completed in one day with as little as 1 ng of purified RNA footprints. We apply ligation-free ribosome profiling to mouse brain tissue to identify new patterns of cell type-specific translation and test its ability to identify translational targets of mTOR signaling in the brain.

  1. Systematic and Cell Type-Specific Telomere Length Changes in Subsets of Lymphocytes

    Directory of Open Access Journals (Sweden)

    Jue Lin

    2016-01-01

    Full Text Available Telomeres, the protective DNA-protein complexes at the ends of linear chromosomes, are important for genome stability. Leukocyte or peripheral blood mononuclear cell (PBMC telomere length is a potential biomarker for human aging that integrates genetic, environmental, and lifestyle factors and is associated with mortality and risks for major diseases. However, only a limited number of studies have examined longitudinal changes of telomere length and few have reported data on sorted circulating immune cells. We examined the average telomere length (TL in CD4+, CD8+CD28+, and CD8+CD28− T cells, B cells, and PBMCs, cross-sectionally and longitudinally, in a cohort of premenopausal women. We report that TL changes over 18 months were correlated among these three T cell types within the same participant. Additionally, PBMC TL change was also correlated with those of all three T cell types, and B cells. The rate of shortening for B cells was significantly greater than for the three T cell types. CD8+CD28− cells, despite having the shortest TL, showed significantly more rapid attrition when compared to CD8+CD28+ T cells. These results suggest systematically coordinated, yet cell type-specific responses to factors and pathways contribute to telomere length regulation.

  2. Systematic and Cell Type-Specific Telomere Length Changes in Subsets of Lymphocytes.

    Science.gov (United States)

    Lin, Jue; Cheon, Joshua; Brown, Rashida; Coccia, Michael; Puterman, Eli; Aschbacher, Kirstin; Sinclair, Elizabeth; Epel, Elissa; Blackburn, Elizabeth H

    2016-01-01

    Telomeres, the protective DNA-protein complexes at the ends of linear chromosomes, are important for genome stability. Leukocyte or peripheral blood mononuclear cell (PBMC) telomere length is a potential biomarker for human aging that integrates genetic, environmental, and lifestyle factors and is associated with mortality and risks for major diseases. However, only a limited number of studies have examined longitudinal changes of telomere length and few have reported data on sorted circulating immune cells. We examined the average telomere length (TL) in CD4+, CD8+CD28+, and CD8+CD28- T cells, B cells, and PBMCs, cross-sectionally and longitudinally, in a cohort of premenopausal women. We report that TL changes over 18 months were correlated among these three T cell types within the same participant. Additionally, PBMC TL change was also correlated with those of all three T cell types, and B cells. The rate of shortening for B cells was significantly greater than for the three T cell types. CD8+CD28- cells, despite having the shortest TL, showed significantly more rapid attrition when compared to CD8+CD28+ T cells. These results suggest systematically coordinated, yet cell type-specific responses to factors and pathways contribute to telomere length regulation.

  3. Cell type-specific glycosylation of Orai1 modulates store-operated Ca2+ entry.

    Science.gov (United States)

    Dörr, Kathrin; Kilch, Tatiana; Kappel, Sven; Alansary, Dalia; Schwär, Gertrud; Niemeyer, Barbara A; Peinelt, Christine

    2016-03-08

    N-glycosylation of cell surface proteins affects protein function, stability, and interaction with other proteins. Orai channels, which mediate store-operated Ca(2+) entry (SOCE), are composed of N-glycosylated subunits. Upon activation by Ca(2+) sensor proteins (stromal interaction molecules STIM1 or STIM2) in the endoplasmic reticulum, Orai Ca(2+) channels in the plasma membrane mediate Ca(2+) influx. Lectins are carbohydrate-binding proteins, and Siglecs are a family of sialic acid-binding lectins with immunoglobulin-like repeats. Using Western blot analysis and lectin-binding assays from various primary human cells and cancer cell lines, we found that glycosylation of Orai1 is cell type-specific. Ca(2+) imaging experiments and patch-clamp experiments revealed that mutation of the only glycosylation site of Orai1 (Orai1N223A) enhanced SOCE in Jurkat T cells. Knockdown of the sialyltransferase ST6GAL1 reduced α-2,6-linked sialic acids in the glycan structure of Orai1 and was associated with increased Ca(2+) entry in Jurkat T cells. In human mast cells, inhibition of sialyl sulfation altered the N-glycan of Orai1 (and other proteins) and increased SOCE. These data suggest that cell type-specific glycosylation influences the interaction of Orai1 with specific lectins, such as Siglecs, which then attenuates SOCE. In summary, the glycosylation state of Orai1 influences SOCE-mediated Ca(2+) signaling and, thus, may contribute to pathophysiological Ca(2+) signaling observed in immune disease and cancer.

  4. Cell type-specific synaptic dynamics of synchronized bursting in the juvenile CA3 rat hippocampus.

    Science.gov (United States)

    Aradi, Ildiko; Maccaferri, Gianmaria

    2004-10-27

    Spontaneous synchronous bursting of the CA3 hippocampus in vitro is a widely studied model of physiological and pathological network synchronization. The role of inhibitory conductances during network bursting is not understood in detail, despite the fact that several antiepileptic drugs target GABA(A) receptors. Here, we show that the first manifestation of a burst event is a cell type-specific flurry of GABA(A) receptor-mediated inhibitory input to pyramidal cells, but not to stratum oriens horizontal interneurons. Moreover, GABA(A) receptor-mediated synaptic input is proportionally smaller in these interneurons compared with pyramidal cells. Computational models and dynamic-clamp studies using experimentally derived conductance waveforms indicate that both these factors modulate spike timing during synchronized activity. In particular, the different kinetics and the larger strength of GABAergic input to pyramidal cells defer action potential initiation and contribute to the observed delay of firing, so that the interneuronal activity leads the burst cycle. In contrast, excitatory inputs to both neuronal populations during a burst are kinetically similar, as required to maintain synchronicity. We also show that the natural pattern of activation of inhibitory and excitatory conductances during a synchronized burst cycle is different within the same neuronal population. In particular, GABA(A) receptor-mediated currents activate earlier and outlast the excitatory components driving the bursts. Thus, cell type-specific balance and timing of GABA(A) receptor-mediated input are critical to set the appropriate spike timing in pyramidal cells and interneurons and coordinate additional neurotransmitter release modulating burst strength and network frequency.

  5. The female gametophyte: an emerging model for cell type-specific systems biology in plant development

    Directory of Open Access Journals (Sweden)

    Marc William Schmid

    2015-11-01

    Full Text Available Systems biology, a holistic approach describing a system emerging from the interactions of its molecular components, critically depends on accurate qualitative determination and quantitative measurements of these components. Development and improvement of large-scale profiling methods (omics now facilitates comprehensive measurements of many relevant molecules. For multicellular organisms, such as animals, fungi, algae, and plants, the complexity of the system is augmented by the presence of specialized cell types and organs, and a complex interplay within and between them. Cell type-specific analyses are therefore crucial for the understanding of developmental processes and environmental responses. This review first gives an overview of current methods used for large-scale profiling of specific cell types exemplified by recent advances in plant biology. The focus then lies on suitable model systems to study plant development and cell type specification. We introduce the female gametophyte of flowering plants as an ideal model to study fundamental developmental processes. Moreover, the female reproductive lineage is of importance for the emergence of evolutionary novelties such as an unequal parental contribution to the tissue nurturing the embryo or the clonal production of seeds by asexual reproduction (apomixis. Understanding these processes is not only interesting from a developmental or evolutionary perspective, but bears great potential for further crop improvement and the simplification of breeding efforts. We finally highlight novel methods, which are already available or which will likely soon facilitate large-scale profiling of the specific cell types of the female gametophyte in both model and non-model species. We conclude that it may take only few years until an evolutionary systems biology approach toward female gametogenesis may decipher some of its biologically most interesting and economically most valuable processes.

  6. Cell type-specific translational repression of Cyclin B during meiosis in males.

    Science.gov (United States)

    Baker, Catherine Craig; Gim, Byung Soo; Fuller, Margaret T

    2015-10-01

    The unique cell cycle dynamics of meiosis are controlled by layers of regulation imposed on core mitotic cell cycle machinery components by the program of germ cell development. Although the mechanisms that regulate Cdk1/Cyclin B activity in meiosis in oocytes have been well studied, little is known about the trans-acting factors responsible for developmental control of these factors in male gametogenesis. During meiotic prophase in Drosophila males, transcript for the core cell cycle protein Cyclin B1 (CycB) is expressed in spermatocytes, but the protein does not accumulate in spermatocytes until just before the meiotic divisions. Here, we show that two interacting proteins, Rbp4 and Fest, expressed at the onset of spermatocyte differentiation under control of the developmental program of male gametogenesis, function to direct cell type- and stage-specific repression of translation of the core G2/M cell cycle component cycB during the specialized cell cycle of male meiosis. Binding of Fest to Rbp4 requires a 31-amino acid region within Rbp4. Rbp4 and Fest are required for translational repression of cycB in immature spermatocytes, with Rbp4 binding sequences in a cell type-specific shortened form of the cycB 3' UTR. Finally, we show that Fest is required for proper execution of meiosis I.

  7. Analysis of cell-type-specific gene expression during mouse spermatogenesis

    DEFF Research Database (Denmark)

    Almstrup, Kristian; Nielsen, John E; Hansen, Martin Asser

    2004-01-01

    In rodents, changes in gene expression during spermatogenesis can be monitored by sampling testis from each day during postnatal development. However, changes in gene expression at the tissue level can reflect changes in the concentration of an mRNA in a specific cell type, changes in volume....... Combining results from these techniques allows determination of the cell-type-specific gene-expression patterns of many genes during spermatogenesis. Differential display was used to determine expression profiles with high sensitivity and independent of prior knowledge of the sequence, whereas DNA arrays...... quickly assess the expression profiles of all the genes. This identified three groups of gene-expression profiles. The major group corresponds to genes that are upregulated in spermatocytes during either the mid- or late- pachytene phase of spermatogenesis (stages VII-XI). This pachytene cluster...

  8. Protein conservation and variation suggest mechanisms of cell type-specific modulation of signaling pathways.

    Directory of Open Access Journals (Sweden)

    Martin H Schaefer

    2014-06-01

    Full Text Available Many proteins and signaling pathways are present in most cell types and tissues and yet perform specialized functions. To elucidate mechanisms by which these ubiquitous pathways are modulated, we overlaid information about cross-cell line protein abundance and variability, and evolutionary conservation onto functional pathway components and topological layers in the pathway hierarchy. We found that the input (receptors and the output (transcription factors layers evolve more rapidly than proteins in the intermediary transmission layer. In contrast, protein expression variability decreases from the input to the output layer. We observed that the differences in protein variability between the input and transmission layer can be attributed to both the network position and the tendency of variable proteins to physically interact with constitutively expressed proteins. Differences in protein expression variability and conservation are also accompanied by the tendency of conserved and constitutively expressed proteins to acquire somatic mutations, while germline mutations tend to occur in cell type-specific proteins. Thus, conserved core proteins in the transmission layer could perform a fundamental role in most cell types and are therefore less tolerant to germline mutations. In summary, we propose that the core signal transmission machinery is largely modulated by a variable input layer through physical protein interactions. We hypothesize that the bow-tie organization of cellular signaling on the level of protein abundance variability contributes to the specificity of the signal response in different cell types.

  9. Species- and cell type-specific interactions between CD47 and human SIRPalpha.

    Science.gov (United States)

    Subramanian, Shyamsundar; Parthasarathy, Ranganath; Sen, Shamik; Boder, Eric T; Discher, Dennis E

    2006-03-15

    CD47 on red blood cells (RBCs) reportedly signals "self" by binding SIRPalpha on phagocytes, at least in mice. Such interactions across and within species, from mouse to human, are not yet clear and neither is the relation to cell adhesion. Using human SIRPalpha1 as a probe, antibody-inhibitable binding to CD47 was found only with human and pig RBCs (not mouse, rat, or cow). In addition, CD47-mediated adhesion of human and pig RBCs to SIRPalpha1 surfaces resists sustained forces in centrifugation (as confirmed by atomic force microscopy) but only at SIRPalpha-coating densities far above those measurable on human neutrophils, monocytes, and THP-1 macrophages. While interactions strengthen with deglycosylation of SIRPalpha1, low copy numbers explain the absence of RBC adhesion to phagocytes under physiologic conditions and imply that the interaction being studied is not responsible for red cell clearance in humans. Evidence of clustering nonetheless suggests mechanisms of avidity enhancement. Finally, using the same CD47 antibodies and soluble SIRPalpha1, bone marrow-derived mesenchymal stem cells were assayed and found to display CD47 but not bind SIRPalpha1 significantly. The results thus demonstrate that SIRPalpha-CD47 interactions, which reportedly define self, exhibit cell type specificity and limited cross-species reactivity.

  10. Epigenetic regulation of normal human mammary cell type-specific miRNAs

    Energy Technology Data Exchange (ETDEWEB)

    Vrba, Lukas [Univ. of Arizona, Tucson, AZ (United States). Arizona Cancer Center; Inst. of Plant Molecular Biology, Ceske Budejovice (Czech Republic). Biology Centre ASCR; Garbe, James C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Center; Stampfer, Martha R. [Univ. of Arizona, Tucson, AZ (United States). Arizona Cancer Center; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Center; Futscher, Bernard W. [Univ. of Arizona, Tucson, AZ (United States). Arizona Cancer Center and Dept. of Pharmacology & Toxicology

    2011-08-26

    Epigenetic mechanisms are important regulators of cell type–specific genes, including miRNAs. In order to identify cell type-specific miRNAs regulated by epigenetic mechanisms, we undertook a global analysis of miRNA expression and epigenetic states in three isogenic pairs of human mammary epithelial cells (HMEC) and human mammary fibroblasts (HMF), which represent two differentiated cell types typically present within a given organ, each with a distinct phenotype and a distinct epigenotype. While miRNA expression and epigenetic states showed strong interindividual concordance within a given cell type, almost 10% of the expressed miRNA showed a cell type–specific pattern of expression that was linked to the epigenetic state of their promoter. The tissue-specific miRNA genes were epigenetically repressed in nonexpressing cells by DNA methylation (38%) and H3K27me3 (58%), with only a small set of miRNAs (21%) showing a dual epigenetic repression where both DNA methylation and H3K27me3 were present at their promoters, such as MIR10A and MIR10B. Individual miRNA clusters of closely related miRNA gene families can each display cell type–specific repression by the same or complementary epigenetic mechanisms, such as the MIR200 family, and MIR205, where fibroblasts repress MIR200C/141 by DNA methylation, MIR200A/200B/429 by H3K27me3, and MIR205 by both DNA methylation and H3K27me3. Since deregulation of many of the epigenetically regulated miRNAs that we identified have been linked to disease processes such as cancer, it is predicted that compromise of the epigenetic control mechanisms is important for this process. Overall, these results highlight the importance of epigenetic regulation in the control of normal cell type–specific miRNA expression.

  11. Cell-type specificity of ChIP-predicted transcription factor binding sites

    Directory of Open Access Journals (Sweden)

    Håndstad Tony

    2012-08-01

    Full Text Available Abstract Background Context-dependent transcription factor (TF binding is one reason for differences in gene expression patterns between different cellular states. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq identifies genome-wide TF binding sites for one particular context—the cells used in the experiment. But can such ChIP-seq data predict TF binding in other cellular contexts and is it possible to distinguish context-dependent from ubiquitous TF binding? Results We compared ChIP-seq data on TF binding for multiple TFs in two different cell types and found that on average only a third of ChIP-seq peak regions are common to both cell types. Expectedly, common peaks occur more frequently in certain genomic contexts, such as CpG-rich promoters, whereas chromatin differences characterize cell-type specific TF binding. We also find, however, that genotype differences between the cell types can explain differences in binding. Moreover, ChIP-seq signal intensity and peak clustering are the strongest predictors of common peaks. Compared with strong peaks located in regions containing peaks for multiple transcription factors, weak and isolated peaks are less common between the cell types and are less associated with data that indicate regulatory activity. Conclusions Together, the results suggest that experimental noise is prevalent among weak peaks, whereas strong and clustered peaks represent high-confidence binding events that often occur in other cellular contexts. Nevertheless, 30-40% of the strongest and most clustered peaks show context-dependent regulation. We show that by combining signal intensity with additional data—ranging from context independent information such as binding site conservation and position weight matrix scores to context dependent chromatin structure—we can predict whether a ChIP-seq peak is likely to be present in other cellular contexts.

  12. Partitioning Heritability of Regulatory and Cell-Type-Specific Variants across 11 Common Diseases

    Science.gov (United States)

    Gusev, Alexander; Lee, S. Hong; Trynka, Gosia; Finucane, Hilary; Vilhjálmsson, Bjarni J.; Xu, Han; Zang, Chongzhi; Ripke, Stephan; Bulik-Sullivan, Brendan; Stahl, Eli; Ripke, Stephan; Neale, Benjamin M.; Corvin, Aiden; Walters, James T.R.; Farh, Kai-How; Holmans, Peter A.; Lee, Phil; Bulik-Sullivan, Brendan; Collier, David A.; Huang, Hailiang; Pers, Tune H.; Agartz, Ingrid; Agerbo, Esben; Albus, Margot; Alexander, Madeline; Amin, Farooq; Bacanu, Silviu A.; Begemann, Martin; Belliveau, Richard A.; Bene, Judit; Bergen, Sarah E.; Bevilacqua, Elizabeth; Bigdeli, Tim B.; Black, Donald W.; Børglum, Anders D.; Bruggeman, Richard; Buccola, Nancy G.; Buckner, Randy L.; Byerley, William; Cahn, Wiepke; Cai, Guiqing; Campion, Dominique; Cantor, Rita M.; Carr, Vaughan J.; Carrera, Noa; Catts, Stanley V.; Chambert, Kimberly D.; Chan, Raymond C.K.; Chen, Ronald Y.L.; Chen, Eric Y.H.; Cheng, Wei; Cheung, Eric F.C.; Chong, Siow Ann; Cloninger, C. Robert; Cohen, David; Cohen, Nadine; Cormican, Paul; Craddock, Nick; Crowley, James J.; Curtis, David; Davidson, Michael; Davis, Kenneth L.; Degenhardt, Franziska; Del Favero, Jurgen; DeLisi, Lynn E.; Demontis, Ditte; Dikeos, Dimitris; Dinan, Timothy; Djurovic, Srdjan; Donohoe, Gary; Drapeau, Elodie; Duan, Jubao; Dudbridge, Frank; Durmishi, Naser; Eichhammer, Peter; Eriksson, Johan; Escott-Price, Valentina; Essioux, Laurent; Fanous, Ayman H.; Farrell, Martilias S.; Frank, Josef; Franke, Lude; Freedman, Robert; Freimer, Nelson B.; Friedl, Marion; Friedman, Joseph I.; Fromer, Menachem; Genovese, Giulio; Georgieva, Lyudmila; Gershon, Elliot S.; Giegling, Ina; Giusti-Rodrguez, Paola; Godard, Stephanie; Goldstein, Jacqueline I.; Golimbet, Vera; Gopal, Srihari; Gratten, Jacob; Grove, Jakob; de Haan, Lieuwe; Hammer, Christian; Hamshere, Marian L.; Hansen, Mark; Hansen, Thomas; Haroutunian, Vahram; Hartmann, Annette M.; Henskens, Frans A.; Herms, Stefan; Hirschhorn, Joel N.; Hoffmann, Per; Hofman, Andrea; Hollegaard, Mads V.; Hougaard, David M.; Ikeda, Masashi; Joa, Inge; Julià, Antonio; Kahn, René S.; Kalaydjieva, Luba; Karachanak-Yankova, Sena; Karjalainen, Juha; Kavanagh, David; Keller, Matthew C.; Kelly, Brian J.; Kennedy, James L.; Khrunin, Andrey; Kim, Yunjung; Klovins, Janis; Knowles, James A.; Konte, Bettina; Kucinskas, Vaidutis; Kucinskiene, Zita Ausrele; Kuzelova-Ptackova, Hana; Kähler, Anna K.; Laurent, Claudine; Keong, Jimmy Lee Chee; Lee, S. Hong; Legge, Sophie E.; Lerer, Bernard; Li, Miaoxin; Li, Tao; Liang, Kung-Yee; Lieberman, Jeffrey; Limborska, Svetlana; Loughland, Carmel M.; Lubinski, Jan; Lnnqvist, Jouko; Macek, Milan; Magnusson, Patrik K.E.; Maher, Brion S.; Maier, Wolfgang; Mallet, Jacques; Marsal, Sara; Mattheisen, Manuel; Mattingsdal, Morten; McCarley, Robert W.; McDonald, Colm; McIntosh, Andrew M.; Meier, Sandra; Meijer, Carin J.; Melegh, Bela; Melle, Ingrid; Mesholam-Gately, Raquelle I.; Metspalu, Andres; Michie, Patricia T.; Milani, Lili; Milanova, Vihra; Mokrab, Younes; Morris, Derek W.; Mors, Ole; Mortensen, Preben B.; Murphy, Kieran C.; Murray, Robin M.; Myin-Germeys, Inez; Mller-Myhsok, Bertram; Nelis, Mari; Nenadic, Igor; Nertney, Deborah A.; Nestadt, Gerald; Nicodemus, Kristin K.; Nikitina-Zake, Liene; Nisenbaum, Laura; Nordin, Annelie; O’Callaghan, Eadbhard; O’Dushlaine, Colm; O’Neill, F. Anthony; Oh, Sang-Yun; Olincy, Ann; Olsen, Line; Van Os, Jim; Pantelis, Christos; Papadimitriou, George N.; Papiol, Sergi; Parkhomenko, Elena; Pato, Michele T.; Paunio, Tiina; Pejovic-Milovancevic, Milica; Perkins, Diana O.; Pietilinen, Olli; Pimm, Jonathan; Pocklington, Andrew J.; Powell, John; Price, Alkes; Pulver, Ann E.; Purcell, Shaun M.; Quested, Digby; Rasmussen, Henrik B.; Reichenberg, Abraham; Reimers, Mark A.; Richards, Alexander L.; Roffman, Joshua L.; Roussos, Panos; Ruderfer, Douglas M.; Salomaa, Veikko; Sanders, Alan R.; Schall, Ulrich; Schubert, Christian R.; Schulze, Thomas G.; Schwab, Sibylle G.; Scolnick, Edward M.; Scott, Rodney J.; Seidman, Larry J.; Shi, Jianxin; Sigurdsson, Engilbert; Silagadze, Teimuraz; Silverman, Jeremy M.; Sim, Kang; Slominsky, Petr; Smoller, Jordan W.; So, Hon-Cheong; Spencer, Chris C.A.; Stahl, Eli A.; Stefansson, Hreinn; Steinberg, Stacy; Stogmann, Elisabeth; Straub, Richard E.; Strengman, Eric; Strohmaier, Jana; Stroup, T. Scott; Subramaniam, Mythily; Suvisaari, Jaana; Svrakic, Dragan M.; Szatkiewicz, Jin P.; Sderman, Erik; Thirumalai, Srinivas; Toncheva, Draga; Tooney, Paul A.; Tosato, Sarah; Veijola, Juha

    2014-01-01

    Regulatory and coding variants are known to be enriched with associations identified by genome-wide association studies (GWASs) of complex disease, but their contributions to trait heritability are currently unknown. We applied variance-component methods to imputed genotype data for 11 common diseases to partition the heritability explained by genotyped SNPs (hg2) across functional categories (while accounting for shared variance due to linkage disequilibrium). Extensive simulations showed that in contrast to current estimates from GWAS summary statistics, the variance-component approach partitions heritability accurately under a wide range of complex-disease architectures. Across the 11 diseases DNaseI hypersensitivity sites (DHSs) from 217 cell types spanned 16% of imputed SNPs (and 24% of genotyped SNPs) but explained an average of 79% (SE = 8%) of hg2 from imputed SNPs (5.1× enrichment; p = 3.7 × 10−17) and 38% (SE = 4%) of hg2 from genotyped SNPs (1.6× enrichment, p = 1.0 × 10−4). Further enrichment was observed at enhancer DHSs and cell-type-specific DHSs. In contrast, coding variants, which span 1% of the genome, explained <10% of hg2 despite having the highest enrichment. We replicated these findings but found no significant contribution from rare coding variants in independent schizophrenia cohorts genotyped on GWAS and exome chips. Our results highlight the value of analyzing components of heritability to unravel the functional architecture of common disease. PMID:25439723

  13. Neurophysiology of space travel: energetic solar particles cause cell type-specific plasticity of neurotransmission.

    Science.gov (United States)

    Lee, Sang-Hun; Dudok, Barna; Parihar, Vipan K; Jung, Kwang-Mook; Zöldi, Miklós; Kang, Young-Jin; Maroso, Mattia; Alexander, Allyson L; Nelson, Gregory A; Piomelli, Daniele; Katona, István; Limoli, Charles L; Soltesz, Ivan

    2016-11-30

    In the not too distant future, humankind will embark on one of its greatest adventures, the travel to distant planets. However, deep space travel is associated with an inevitable exposure to radiation fields. Space-relevant doses of protons elicit persistent disruptions in cognition and neuronal structure. However, whether space-relevant irradiation alters neurotransmission is unknown. Within the hippocampus, a brain region crucial for cognition, perisomatic inhibitory control of pyramidal cells (PCs) is supplied by two distinct cell types, the cannabinoid type 1 receptor (CB1)-expressing basket cells (CB1BCs) and parvalbumin (PV)-expressing interneurons (PVINs). Mice subjected to low-dose proton irradiation were analyzed using electrophysiological, biochemical and imaging techniques months after exposure. In irradiated mice, GABA release from CB1BCs onto PCs was dramatically increased. This effect was abolished by CB1 blockade, indicating that irradiation decreased CB1-dependent tonic inhibition of GABA release. These alterations in GABA release were accompanied by decreased levels of the major CB1 ligand 2-arachidonoylglycerol. In contrast, GABA release from PVINs was unchanged, and the excitatory connectivity from PCs to the interneurons also underwent cell type-specific alterations. These results demonstrate that energetic charged particles at space-relevant low doses elicit surprisingly selective long-term plasticity of synaptic microcircuits in the hippocampus. The magnitude and persistent nature of these alterations in synaptic function are consistent with the observed perturbations in cognitive performance after irradiation, while the high specificity of these changes indicates that it may be possible to develop targeted therapeutic interventions to decrease the risk of adverse events during interplanetary travel.

  14. Cell-type specific requirements for thiol/disulfide exchange during HIV-1 entry and infection

    Directory of Open Access Journals (Sweden)

    Stantchev Tzanko S

    2012-12-01

    Full Text Available Abstract Background The role of disulfide bond remodeling in HIV-1 infection is well described, but the process still remains incompletely characterized. At present, the data have been predominantly obtained using established cell lines and/or CXCR4-tropic laboratory-adapted virus strains. There is also ambiguity about which disulfide isomerases/ reductases play a major role in HIV-1 entry, as protein disulfide isomerase (PDI and/or thioredoxin (Trx have emerged as the two enzymes most often implicated in this process. Results We have extended our previous findings and those of others by focusing on CCR5-using HIV-1 strains and their natural targets - primary human macrophages and CD4+ T lymphocytes. We found that the nonspecific thiol/disulfide exchange inhibitor, 5,5'-dithiobis(2-nitrobenzoic acid (DTNB, significantly reduced HIV-1 entry and infection in cell lines, human monocyte-derived macrophages (MDM, and also phytohemagglutinin (PHA-stimulated peripheral blood mononuclear cells (PBMC. Subsequent studies were performed using specific anti-PDI or Trx monoclonal antibodies (mAb in HIV-1 envelope pseudotyped and wild type (wt virus infection systems. Although human donor-to-donor variability was observed as expected, Trx appeared to play a greater role than PDI in HIV-1 infection of MDM. In contrast, PDI, but not Trx, was predominantly involved in HIV-1 entry and infection of the CD4+/CCR5+ T cell line, PM-1, and PHA-stimulated primary human T lymphocytes. Intriguingly, both PDI and Trx were present on the surface of MDM, PM-1 and PHA-stimulated CD4+ T cells. However, considerably lower levels of Trx were detected on freshly isolated CD4+ lymphocytes, compared to PHA-stimulated cells. Conclusions Our findings clearly demonstrate the role of thiol/disulfide exchange in HIV-1 entry in primary T lymphocytes and MDM. They also establish a cell-type specificity regarding the involvement of particular disulfide isomerases/reductases in this

  15. Establishment of human cell type-specific iPS cells with enhanced chondrogenic potential.

    Science.gov (United States)

    Guzzo, Rosa M; Scanlon, Vanessa; Sanjay, Archana; Xu, Ren-He; Drissi, Hicham

    2014-12-01

    The propensity of induced pluripotent stem (iPS) cells to differentiate into specific lineages may be influenced by a number of factors, including the selection of the somatic cell type used for reprogramming. Herein we report the generation of new iPS cells, which we derived from human articular chondrocytes and from cord blood mononucleocytes via lentiviral-mediated delivery of Oct4, Klf4, Sox2, and cMyc. Molecular, cytochemical, and cytogenic analyses confirmed the acquisition of hallmark features of pluripotency, as well as the retention of normal karyotypes following reprogramming of both the human articular chondrocytes (AC) and the cord blood (CB) cells. In vitro and in vivo functional analyses formally established the pluripotent differentiation capacity of all cell lines. Chondrogenic differentiation assays comparing iPS cells derived from AC, CB, and a well established dermal fibroblast cell line (HDFa-Yk26) identified enhanced proteoglycan-rich matrix formation and cartilage-associated gene expression from AC-derived iPS cells. These findings suggest that the tissue of origin may impact the fate potential of iPS cells for differentiating into specialized cell types, such as chondrocytes. Thus, we generated new cellular tools for the identification of inherent features driving high chondrogenic potential of reprogrammed cells.

  16. Regulatory Domain Selectivity in the Cell-Type Specific PKN-Dependence of Cell Migration

    OpenAIRE

    Sylvie Lachmann; Amy Jevons; Manu De Rycker; Adele Casamassima; Simone Radtke; Alejandra Collazos; Peter J Parker

    2011-01-01

    The mammalian protein kinase N (PKN) family of Serine/Threonine kinases comprises three isoforms, which are targets for Rho family GTPases. Small GTPases are major regulators of the cellular cytoskeleton, generating interest in the role(s) of specific PKN isoforms in processes such as cell migration and invasion. It has been reported that PKN3 is required for prostate tumour cell invasion but not PKN1 or 2. Here we employ a cell model, the 5637 bladder tumour cell line where PKN2 is relativel...

  17. Construction of cell type-specific logic models of signaling networks using CellNOpt.

    Science.gov (United States)

    Morris, Melody K; Melas, Ioannis; Saez-Rodriguez, Julio

    2013-01-01

    Mathematical models are useful tools for understanding protein signaling networks because they provide an integrated view of pharmacological and toxicological processes at the molecular level. Here we describe an approach previously introduced based on logic modeling to generate cell-specific, mechanistic and predictive models of signal transduction. Models are derived from a network encoding prior knowledge that is trained to signaling data, and can be either binary (based on Boolean logic) or quantitative (using a recently developed formalism, constrained fuzzy logic). The approach is implemented in the freely available tool CellNetOptimizer (CellNOpt). We explain the process CellNOpt uses to train a prior knowledge network to data and illustrate its application with a toy example as well as a realistic case describing signaling networks in the HepG2 liver cancer cell line.

  18. Cell-Type Specific Inactivation of Hippocampal CA1 Disrupts Location-Dependent Object Recognition in the Mouse

    Science.gov (United States)

    Haettig, Jakob; Sun, Yanjun; Wood, Marcelo A.; Xu, Xiangmin

    2013-01-01

    The allatostatin receptor (AlstR)/ligand inactivation system enables potent regulation of neuronal circuit activity. To examine how different cell types participate in memory formation, we have used this system through Cre-directed, cell-type specific expression in mouse hippocampal CA1 in vivo and examined functional effects of inactivation of…

  19. Regulatory domain selectivity in the cell-type specific PKN-dependence of cell migration.

    Science.gov (United States)

    Lachmann, Sylvie; Jevons, Amy; De Rycker, Manu; Casamassima, Adele; Radtke, Simone; Collazos, Alejandra; Parker, Peter J

    2011-01-01

    The mammalian protein kinase N (PKN) family of Serine/Threonine kinases comprises three isoforms, which are targets for Rho family GTPases. Small GTPases are major regulators of the cellular cytoskeleton, generating interest in the role(s) of specific PKN isoforms in processes such as cell migration and invasion. It has been reported that PKN3 is required for prostate tumour cell invasion but not PKN1 or 2. Here we employ a cell model, the 5637 bladder tumour cell line where PKN2 is relatively highly expressed, to assess the potential redundancy of these isoforms in migratory responses. It is established that PKN2 has a critical role in the migration and invasion of these cells. Furthermore, using a PKN wild-type and chimera rescue strategy, it is shown that PKN isoforms are not simply redundant in supporting migration, but appear to be linked through isoform specific regulatory domain properties to selective upstream signals. It is concluded that intervention in PKNs may need to be directed at multiple isoforms to be effective in different cell types.

  20. Regulatory domain selectivity in the cell-type specific PKN-dependence of cell migration.

    Directory of Open Access Journals (Sweden)

    Sylvie Lachmann

    Full Text Available The mammalian protein kinase N (PKN family of Serine/Threonine kinases comprises three isoforms, which are targets for Rho family GTPases. Small GTPases are major regulators of the cellular cytoskeleton, generating interest in the role(s of specific PKN isoforms in processes such as cell migration and invasion. It has been reported that PKN3 is required for prostate tumour cell invasion but not PKN1 or 2. Here we employ a cell model, the 5637 bladder tumour cell line where PKN2 is relatively highly expressed, to assess the potential redundancy of these isoforms in migratory responses. It is established that PKN2 has a critical role in the migration and invasion of these cells. Furthermore, using a PKN wild-type and chimera rescue strategy, it is shown that PKN isoforms are not simply redundant in supporting migration, but appear to be linked through isoform specific regulatory domain properties to selective upstream signals. It is concluded that intervention in PKNs may need to be directed at multiple isoforms to be effective in different cell types.

  1. CAST-ChIP Maps Cell-Type-Specific Chromatin States in the Drosophila Central Nervous System

    Directory of Open Access Journals (Sweden)

    Tamás Schauer

    2013-10-01

    Full Text Available Chromatin organization and gene activity are responsive to developmental and environmental cues. Although many genes are transcribed throughout development and across cell types, much of gene regulation is highly cell-type specific. To readily track chromatin features at the resolution of cell types within complex tissues, we developed and validated chromatin affinity purification from specific cell types by chromatin immunoprecipitation (CAST-ChIP, a broadly applicable biochemical procedure. RNA polymerase II (Pol II CAST-ChIP identifies ∼1,500 neuronal and glia-specific genes in differentiated cells within the adult Drosophila brain. In contrast, the histone H2A.Z is distributed similarly across cell types and throughout development, marking cell-type-invariant Pol II-bound regions. Our study identifies H2A.Z as an active chromatin signature that is refractory to changes across cell fates. Thus, CAST-ChIP powerfully identifies cell-type-specific as well as cell-type-invariant chromatin states, enabling the systematic dissection of chromatin structure and gene regulation within complex tissues such as the brain.

  2. Advances in plant cell type-specific genome-wide studies of gene expression

    Institute of Scientific and Technical Information of China (English)

    Ying WANG; Yuling JIAO

    2011-01-01

    Cell is the functional unit of life.To study the complex interactions of systems of biological molecules,it is crucial to dissect these molecules at the cell level.In recent years,major progresses have been made by plant biologists to profile gene expression in specific cell types at the genome-wide level.Approaches based on the isolation of cells,polysomes or nuclei have been developed and successfully used for studying the cell types from distinct organs of several plant species.These cell-level data sets revealed previously unrecognized cellular properties,such as cell-specific gene expression modules and hormone response centers,and should serve as essential resources for functional genomic analyses.Newly developed technologies are more affordable to many laboratories and should help to provide new insights at the cellular resolution in the near future.

  3. Gene expression profiles of hepatic cell-type specific marker genes in progression of liver fibrosis

    Institute of Scientific and Technical Information of China (English)

    Yoshiyuki Takahara; Mitsuo Takahashi; Hiroki Wagatsuma; Fumihiko Yokoya; Qing-Wei Zhang; Mutsuyo Yamaguchi; Hiroyuki Aburatani; Norifumi Kawada

    2006-01-01

    AIM: To determine the gene expression profile data for the whole liver during development of dimethylnitrosamine (DMN)-induced hepatic fibrosis.METHODS: Marker genes were identified for different types of hepatic cells, including hepatic stellate cells (HSCs), Kupffer cells (including other inflammatory cells),and hepatocytes, using independent temporal DNA microarray data obtained from isolated hepatic cells.RESULTS: The cell-type analysis of gene expression gave several key results and led to formation of three hypotheses: (1) changes in the expression of HSCspecific marker genes during fibrosis were similar to gene expression data in in vitro cultured HSCs, suggesting a major role of the self-activating characteristics of HSCs in formation of fibrosis; (2) expression of mast cell-specific marker genes reached a peak during liver fibrosis,suggesting a possible role of mast cells in formation of fibrosis; and (3) abnormal expression of hepatocytespecific marker genes was found across several metabolic pathways during fibrosis, including sulfur-containing amino acid metabolism, fatty acid metabolism, and drug metabolism, suggesting a mechanistic relationship between these abnormalities and symptoms of liver fibrosis.CONCLUSION: Analysis of marker genes for specific hepatic cell types can identify the key aspects of fibrogenesis. Sequential activation of inflammatory cells and the self-supporting properties of HSCs play an important role in development of fibrosis.

  4. Cell type-specific thalamic innervation in a column of rat vibrissal cortex.

    Science.gov (United States)

    Meyer, Hanno S; Wimmer, Verena C; Hemberger, Mike; Bruno, Randy M; de Kock, Christiaan P J; Frick, Andreas; Sakmann, Bert; Helmstaedter, Moritz

    2010-10-01

    This is the concluding article in a series of 3 studies that investigate the anatomical determinants of thalamocortical (TC) input to excitatory neurons in a cortical column of rat primary somatosensory cortex (S1). We used viral synaptophysin-enhanced green fluorescent protein expression in thalamic neurons and reconstructions of biocytin-labeled cortical neurons in TC slices to quantify the number and distribution of boutons from the ventral posterior medial (VPM) and posteromedial (POm) nuclei potentially innervating dendritic arbors of excitatory neurons located in layers (L)2-6 of a cortical column in rat somatosensory cortex. We found that 1) all types of excitatory neurons potentially receive substantial TC input (90-580 boutons per neuron); 2) pyramidal neurons in L3-L6 receive dual TC input from both VPM and POm that is potentially of equal magnitude for thick-tufted L5 pyramidal neurons (ca. 300 boutons each from VPM and POm); 3) L3, L4, and L5 pyramidal neurons have multiple (2-4) subcellular TC innervation domains that match the dendritic compartments of pyramidal cells; and 4) a subtype of thick-tufted L5 pyramidal neurons has an additional VPM innervation domain in L4. The multiple subcellular TC innervation domains of L5 pyramidal neurons may partly explain their specific action potential patterns observed in vivo. We conclude that the substantial potential TC innervation of all excitatory neuron types in a cortical column constitutes an anatomical basis for the initial near-simultaneous representation of a sensory stimulus in different neuron types.

  5. Cell-type-specific enrichment of risk-associated regulatory elements at ovarian cancer susceptibility loci.

    Science.gov (United States)

    Coetzee, Simon G; Shen, Howard C; Hazelett, Dennis J; Lawrenson, Kate; Kuchenbaecker, Karoline; Tyrer, Jonathan; Rhie, Suhn K; Levanon, Keren; Karst, Alison; Drapkin, Ronny; Ramus, Susan J; Couch, Fergus J; Offit, Kenneth; Chenevix-Trench, Georgia; Monteiro, Alvaro N A; Antoniou, Antonis; Freedman, Matthew; Coetzee, Gerhard A; Pharoah, Paul D P; Noushmehr, Houtan; Gayther, Simon A

    2015-07-01

    Understanding the regulatory landscape of the human genome is a central question in complex trait genetics. Most single-nucleotide polymorphisms (SNPs) associated with cancer risk lie in non-protein-coding regions, implicating regulatory DNA elements as functional targets of susceptibility variants. Here, we describe genome-wide annotation of regions of open chromatin and histone modification in fallopian tube and ovarian surface epithelial cells (FTSECs, OSECs), the debated cellular origins of high-grade serous ovarian cancers (HGSOCs) and in endometriosis epithelial cells (EECs), the likely precursor of clear cell ovarian carcinomas (CCOCs). The regulatory architecture of these cell types was compared with normal human mammary epithelial cells and LNCaP prostate cancer cells. We observed similar positional patterns of global enhancer signatures across the three different ovarian cancer precursor cell types, and evidence of tissue-specific regulatory signatures compared to non-gynecological cell types. We found significant enrichment for risk-associated SNPs intersecting regulatory biofeatures at 17 known HGSOC susceptibility loci in FTSECs (P = 3.8 × 10(-30)), OSECs (P = 2.4 × 10(-23)) and HMECs (P = 6.7 × 10(-15)) but not for EECs (P = 0.45) or LNCaP cells (P = 0.88). Hierarchical clustering of risk SNPs conditioned on the six different cell types indicates FTSECs and OSECs are highly related (96% of samples using multi-scale bootstrapping) suggesting both cell types may be precursors of HGSOC. These data represent the first description of regulatory catalogues of normal precursor cells for different ovarian cancer subtypes, and provide unique insights into the tissue specific regulatory variation with respect to the likely functional targets of germline genetic susceptibility variants for ovarian cancer.

  6. Cell-type-specific neuroanatomy of cliques of autism-related genes in the mouse brain

    Directory of Open Access Journals (Sweden)

    Pascal eGrange

    2015-05-01

    Full Text Available Two cliques of genes identified computationally for their high co-expression in the mouse brain according to the Allen Brain Atlas, and for their enrichment in genes related to autism spectrum disorder, have recently been shown to be highly co-expressed in the cerebellar cortex, compared to what could be expected by chance. Moreover, the expression of these cliques of genes is not homogeneous across the cerebellar cortex, and it has been noted that their expression pattern seems to highlight the granular layer. However, this observation was only made by eye, and recent advances in computational neuroanatomy allow to rank cell types in the mouse brain (characterized by their transcriptome profiles according to the similarity between their spatial density profiles and the expression profiles of the cliques. We establish by Monte Carlo simulation that with probability at least 99%, the expression profiles of the two cliques are more similar to the density profile of granule cells than 99% of the expression of cliques containing the same number of genes (Purkinje cells also score above 99% in one of the cliques. Thresholding the expression profiles shows that the signal is more intense in the granular layer. Finally, we work out pairs of cell types whose combined expression profiles are more similar to the expression profiles of the cliquesthan any single cell type. These pairs predominantly consist of one cortical pyramidal cell and one cerebellar cell (whichcan be either a granule cell or a Purkinje cell.

  7. Assessment of Membrane Fluidity Fluctuations during Cellular Development Reveals Time and Cell Type Specificity

    KAUST Repository

    Noutsi, Pakiza

    2016-06-30

    Cell membrane is made up of a complex structure of lipids and proteins that diffuse laterally giving rise to what we call membrane fluidity. During cellular development, such as differentiation cell membranes undergo dramatic fluidity changes induced by proteins such as ARC and Cofilin among others. In this study we used the generalized polarization (GP) property of fluorescent probe Laurdan using two-photon microscopy to determine membrane fluidity as a function of time and for various cell lines. A low GP value corresponds to a higher fluidity and a higher GP value is associated with a more rigid membrane. Four different cell lines were monitored such as hN2, NIH3T3, HEK293 and L6 cells. Membrane fluidity was measured at 12h, 72h and 92 h. Our results show significant changes in membrane fluidity among all cell types at different time points. GP values tend to increase significantly within 92 h in hN2 cells and 72 h in NIH3T3 cells and only at 92 h in HEK293 cells. L6 showed a marked decrease in membrane fluidity at 72 h and starts to increase at 92 h. As expected, NIH3T3 cells have more rigid membrane at earlier time points. On the other hand, neurons tend to have the highest membrane fluidity at early time points emphasizing its correlation with plasticity and the need for this malleability during differentiation. This study sheds light on the involvement of membrane fluidity during neuronal differentiation and development of other cell lines.

  8. Assessment of Membrane Fluidity Fluctuations during Cellular Development Reveals Time and Cell Type Specificity.

    Directory of Open Access Journals (Sweden)

    Pakiza Noutsi

    Full Text Available Cell membrane is made up of a complex structure of lipids and proteins that diffuse laterally giving rise to what we call membrane fluidity. During cellular development, such as differentiation cell membranes undergo dramatic fluidity changes induced by proteins such as ARC and Cofilin among others. In this study we used the generalized polarization (GP property of fluorescent probe Laurdan using two-photon microscopy to determine membrane fluidity as a function of time and for various cell lines. A low GP value corresponds to a higher fluidity and a higher GP value is associated with a more rigid membrane. Four different cell lines were monitored such as hN2, NIH3T3, HEK293 and L6 cells. Membrane fluidity was measured at 12h, 72h and 92 h. Our results show significant changes in membrane fluidity among all cell types at different time points. GP values tend to increase significantly within 92 h in hN2 cells and 72 h in NIH3T3 cells and only at 92 h in HEK293 cells. L6 showed a marked decrease in membrane fluidity at 72 h and starts to increase at 92 h. As expected, NIH3T3 cells have more rigid membrane at earlier time points. On the other hand, neurons tend to have the highest membrane fluidity at early time points emphasizing its correlation with plasticity and the need for this malleability during differentiation. This study sheds light on the involvement of membrane fluidity during neuronal differentiation and development of other cell lines.

  9. Gene Expression Programs in Response to Hypoxia: Cell Type Specificity and Prognostic Significance in Human Cancers.

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available BACKGROUND: Inadequate oxygen (hypoxia triggers a multifaceted cellular response that has important roles in normal physiology and in many human diseases. A transcription factor, hypoxia-inducible factor (HIF, plays a central role in the hypoxia response; its activity is regulated by the oxygen-dependent degradation of the HIF-1alpha protein. Despite the ubiquity and importance of hypoxia responses, little is known about the variation in the global transcriptional response to hypoxia among different cell types or how this variation might relate to tissue- and cell-specific diseases. METHODS AND FINDINGS: We analyzed the temporal changes in global transcript levels in response to hypoxia in primary renal proximal tubule epithelial cells, breast epithelial cells, smooth muscle cells, and endothelial cells with DNA microarrays. The extent of the transcriptional response to hypoxia was greatest in the renal tubule cells. This heightened response was associated with a uniquely high level of HIF-1alpha RNA in renal cells, and it could be diminished by reducing HIF-1alpha expression via RNA interference. A gene-expression signature of the hypoxia response, derived from our studies of cultured mammary and renal tubular epithelial cells, showed coordinated variation in several human cancers, and was a strong predictor of clinical outcomes in breast and ovarian cancers. In an analysis of a large, published gene-expression dataset from breast cancers, we found that the prognostic information in the hypoxia signature was virtually independent of that provided by the previously reported wound signature and more predictive of outcomes than any of the clinical parameters in current use. CONCLUSIONS: The transcriptional response to hypoxia varies among human cells. Some of this variation is traceable to variation in expression of the HIF1A gene. A gene-expression signature of the cellular response to hypoxia is associated with a significantly poorer prognosis

  10. Mouse Testicular Cell Type-Specific Antiviral Response against Mumps Virus Replication

    Science.gov (United States)

    Wu, Han; Zhao, Xiang; Wang, Fei; Jiang, Qian; Shi, Lili; Gong, Maolei; Liu, Weihua; Gao, Bo; Song, Chengyi; Li, Qihan; Chen, Yongmei; Han, Daishu

    2017-01-01

    Mumps virus (MuV) infection has high tropism to the testis and usually leads to orchitis, an etiological factor in male infertility. However, MuV replication in testicular cells and the cellular antiviral responses against MuV are not fully understood. The present study showed that MuV infected the majority of testicular cells, including Leydig cells (LC), testicular macrophages, Sertoli cells (SC), and male germ cells (GC). MuV was replicated at relatively high efficiencies in SC compared with LC and testicular macrophages. In contrast, MuV did not replicate in male GC. Notably, testicular cells exhibited different innate antiviral responses against MuV replication. We showed that interferon β (IFN-β) inhibited MuV replication in LC, macrophages, and SC, which were associated with the upregulation of major antiviral proteins. We provided primary evidence that autophagy plays a role in blocking MuV replication in male GC. Autophagy was also involved in limiting MuV replication in testicular macrophages but not in Leydig and SC. These findings indicate the involvement of the innate defense against MuV replication in testicular cells. PMID:28239382

  11. Phytoestrogens modulate prostaglandin production in bovine endometrium: cell type specificity and intracellular mechanisms.

    Science.gov (United States)

    Woclawek-Potocka, Izabela; Acosta, Tomas J; Korzekwa, Anna; Bah, Mamadou M; Shibaya, Masami; Okuda, Kiyoshi; Skarzynski, Dariusz J

    2005-05-01

    Prostaglandins (PGs) are known to modulate the proper cyclicity of bovine reproductive organs. The main luteolytic agent in ruminants is PGF2alpha, whereas PGE2 has luteotropic actions. Estradiol 17beta (E2) regulates uterus function by influencing PG synthesis. Phytoestrogens structurally resemble E2 and possess estrogenic activity; therefore, they may mimic the effects of E2 on PG synthesis and influence the reproductive system. Using a cell-culture system of bovine epithelial and stromal cells, we determined cell-specific effects of phytoestrogens (i.e., daidzein, genistein), their metabolites (i.e., equol and para-ethyl-phenol, respectively), and E2 on PGF2alpha and PGE2 synthesis and examined the intracellular mechanisms of their actions. Both PGs produced by stromal and epithelial cells were significantly stimulated by phytoestrogens and their metabolites. However, PGF2alpha synthesis by both kinds of cells was greater stimulated than PGE2 synthesis. Moreover, epithelial cells treated with phytoestrogens synthesized more PGF2alpha than stromal cells, increasing the PGF2alpha to PGE2 ratio. The epithelial and stromal cells were preincubated with an estrogen-receptor (ER) antagonist (i.e., ICI), a translation inhibitor (i.e., actinomycin D), a protein kinase A inhibitor (i.e., staurosporin), and a phospholipase C inhibitor (i.e., U73122) for 0.5 hrs and then stimulated with equol, para-ethyl-phenol, or E2. Although the action of E2 on PGF2alpha synthesis was blocked by all reagents, the stimulatory effect of phytoestrogens was blocked only by ICI and actinomycin D in both cell types. Moreover, in contrast to E2 action, phytoestrogens did not cause intracellular calcium mobilization in either epithelial or stromal cells. Phytoestrogens stimulate both PGF2alpha and PGE2 in both cell types of bovine endometrium via an ER-dependent genomic pathway. However, because phytoestrogens preferentially stimulated PGF2alpha synthesis in epithelial cells of bovine

  12. Cell type-specific tuning of hippocampal interneuron firing during gamma oscillations in vivo.

    Science.gov (United States)

    Tukker, John J; Fuentealba, Pablo; Hartwich, Katja; Somogyi, Peter; Klausberger, Thomas

    2007-08-01

    Cortical gamma oscillations contribute to cognitive processing and are thought to be supported by perisomatic-innervating GABAergic interneurons. We performed extracellular recordings of identified interneurons in the hippocampal CA1 area of anesthetized rats, revealing that the firing patterns of five distinct interneuron types are differentially correlated to spontaneous gamma oscillations. The firing of bistratified cells, which target dendrites of pyramidal cells coaligned with the glutamatergic input from hippocampal area CA3, is strongly phase locked to field gamma oscillations. Parvalbumin-expressing basket, axo-axonic, and cholecystokinin-expressing interneurons exhibit moderate gamma modulation, whereas the spike timing of distal dendrite-innervating oriens-lacunosum moleculare interneurons is not correlated to field gamma oscillations. Cholecystokinin-expressing interneurons fire earliest in the gamma cycle, a finding that is consistent with their suggested function of thresholding individual pyramidal cells. Furthermore, we show that field gamma amplitude correlates with interneuronal spike-timing precision and firing rate. Overall, our recordings suggest that gamma synchronization in vivo is assisted by temporal- and domain-specific GABAergic inputs to pyramidal cells and is initiated in pyramidal cell dendrites in addition to somata and axon initial segments.

  13. Unique cell type-specific junctional complexes in vascular endothelium of human and rat liver sinusoids.

    Directory of Open Access Journals (Sweden)

    Cyrill Géraud

    Full Text Available Liver sinusoidal endothelium is strategically positioned to control access of fluids, macromolecules and cells to the liver parenchyma and to serve clearance functions upstream of the hepatocytes. While clearance of macromolecular debris from the peripheral blood is performed by liver sinusoidal endothelial cells (LSECs using a delicate endocytic receptor system featuring stabilin-1 and -2, the mannose receptor and CD32b, vascular permeability and cell trafficking are controlled by transcellular pores, i.e. the fenestrae, and by intercellular junctional complexes. In contrast to blood vascular and lymphatic endothelial cells in other organs, the junctional complexes of LSECs have not yet been consistently characterized in molecular terms. In a comprehensive analysis, we here show that LSECs express the typical proteins found in endothelial adherens junctions (AJ, i.e. VE-cadherin as well as α-, β-, p120-catenin and plakoglobin. Tight junction (TJ transmembrane proteins typical of endothelial cells, i.e. claudin-5 and occludin, were not expressed by rat LSECs while heterogenous immunreactivity for claudin-5 was detected in human LSECs. In contrast, junctional molecules preferentially associating with TJ such as JAM-A, B and C and zonula occludens proteins ZO-1 and ZO-2 were readily detected in LSECs. Remarkably, among the JAMs JAM-C was considerably over-expressed in LSECs as compared to lung microvascular endothelial cells. In conclusion, we show here that LSECs form a special kind of mixed-type intercellular junctions characterized by co-occurrence of endothelial AJ proteins, and of ZO-1 and -2, and JAMs. The distinct molecular architecture of the intercellular junctional complexes of LSECs corroborates previous ultrastructural findings and provides the molecular basis for further analyses of the endothelial barrier function of liver sinusoids under pathologic conditions ranging from hepatic inflammation to formation of liver metastasis.

  14. Triplet repeat mutation length gains correlate with cell-type specific vulnerability in Huntington disease brain.

    Science.gov (United States)

    Shelbourne, Peggy F; Keller-McGandy, Christine; Bi, Wenya Linda; Yoon, Song-Ro; Dubeau, Louis; Veitch, Nicola J; Vonsattel, Jean Paul; Wexler, Nancy S; Arnheim, Norman; Augood, Sarah J

    2007-05-15

    Huntington disease is caused by the expansion of a CAG repeat encoding an extended glutamine tract in a protein called huntingtin. Here, we provide evidence supporting the hypothesis that somatic increases of mutation length play a role in the progressive nature and cell-selective aspects of HD pathogenesis. Results from micro-dissected tissue and individual laser-dissected cells obtained from human HD cases and knock-in HD mice indicate that the CAG repeat is unstable in all cell types tested although neurons tend to have longer mutation length gains than glia. Mutation length gains occur early in the disease process and continue to accumulate as the disease progresses. In keeping with observed patterns of cell loss, neuronal mutation length gains tend to be more prominent in the striatum than in the cortex of low-grade human HD cases, less so in more advanced cases. Interestingly, neuronal sub-populations of HD mice appear to have different propensities for mutation length gains; in particular, smaller mutation length gains occur in nitric oxide synthase-positive striatal interneurons (a relatively spared cell type in HD) compared with the pan-striatal neuronal population. More generally, the data demonstrate that neuronal changes in HD repeat length can be at least as great, if not greater, than those observed in the germline. The fact that significant CAG repeat length gains occur in non-replicating cells also argues that processes such as inappropriate mismatch repair rather than DNA replication are involved in generating mutation instability in HD brain tissue.

  15. Highly efficient cell-type-specific gene inactivation reveals a key function for the Drosophila FUS homolog cabeza in neurons.

    Science.gov (United States)

    Frickenhaus, Marie; Wagner, Marina; Mallik, Moushami; Catinozzi, Marica; Storkebaum, Erik

    2015-03-16

    To expand the rich genetic toolkit of Drosophila melanogaster, we evaluated whether introducing FRT or LoxP sites in endogenous genes could allow for cell-type-specific gene inactivation in both dividing and postmitotic cells by GAL4-driven expression of FLP or Cre recombinase. For proof of principle, conditional alleles were generated for cabeza (caz), the Drosophila homolog of human FUS, a gene implicated in the neurodegenerative disorders amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Upon selective expression in neurons or muscle, both FLP and Cre mediated caz inactivation in all neurons or muscle cells, respectively. Neuron-selective caz inactivation resulted in failure of pharate adult flies to eclose from the pupal case, and adult escapers displayed motor performance defects and reduced life span. Due to Cre-toxicity, FLP/FRT is the preferred system for cell-type-specific gene inactivation, and this strategy outperforms RNAi-mediated knock-down. Furthermore, the GAL80 target system allowed for temporal control over gene inactivation, as induction of FLP expression from the adult stage onwards still inactivated caz in >99% of neurons. Remarkably, selective caz inactivation in adult neurons did not affect motor performance and life span, indicating that neuronal caz is required during development, but not for maintenance of adult neuronal function.

  16. Cardiovascular protection of magnolol: cell-type specificity and dose-related effects

    Directory of Open Access Journals (Sweden)

    Ho Jennifer

    2012-07-01

    Full Text Available Abstract Magnolia officinalis has been widely used in traditional Chinese medicine. Magnolol, an active component isolated from Magnolia officinalis, is known to be a cardiovascular protector since 1994. The multiplex mechanisms of magnolol on cardiovascular protection depends on cell types and dosages, and will be reviewed and discussed in this article. Magnolol under low and moderate dosage possesses the ability to protect heart from ischemic/reperfusion injury, reduces atherosclerotic change, protects endothelial cell against apoptosis and inhibits neutrophil-endothelial adhesion. The moderate to high concentration of magnolol mainly acts on smooth muscle cells and platelets. Magnolol induces apoptosis in vascular smooth muscle cells at moderate concentration and inhibits proliferation at moderate and high concentration. High concentration of magnolol also abrogates platelet activation, aggregation and thrombus formation. Magnolol also serves as an smooth muscle relaxant only upon the high concentration. Oral intake of magnolol to reach the therapeutic level for cardiovascular protection is applicable, thus makes magnolol an agent of great potential for preventing cardiovascular diseases in high-risk patients.

  17. Dopaminergic neurons write and update memories with cell-type-specific rules.

    Science.gov (United States)

    Aso, Yoshinori; Rubin, Gerald M

    2016-07-21

    Associative learning is thought to involve parallel and distributed mechanisms of memory formation and storage. In Drosophila, the mushroom body (MB) is the major site of associative odor memory formation. Previously we described the anatomy of the adult MB and defined 20 types of dopaminergic neurons (DANs) that each innervate distinct MB compartments (Aso et al., 2014a, 2014b). Here we compare the properties of memories formed by optogenetic activation of individual DAN cell types. We found extensive differences in training requirements for memory formation, decay dynamics, storage capacity and flexibility to learn new associations. Even a single DAN cell type can either write or reduce an aversive memory, or write an appetitive memory, depending on when it is activated relative to odor delivery. Our results show that different learning rules are executed in seemingly parallel memory systems, providing multiple distinct circuit-based strategies to predict future events from past experiences.

  18. Innate immune response to pulmonary contusion: Identification of cell-type specific inflammatory responses

    OpenAIRE

    Hoth, J. Jason; Wells, Jonathan D.; Yoza, Barbara K.; McCall, Charles E.

    2012-01-01

    Lung injury from pulmonary contusion is a common traumatic injury, predominantly seen after blunt chest trauma such as in vehicular accidents. The local and systemic inflammatory response to injury includes activation of innate immune receptors, elaboration of a variety inflammatory mediators, and recruitment of inflammatory cells to the injured lung. Using a mouse model of pulmonary contusion, we had previously shown that innate immune Toll like receptors 2 and 4 (TLR2 and TLR4) mediate the ...

  19. One-pot synthesis of aptamer-functionalized silver nanoclusters for cell-type-specific imaging.

    Science.gov (United States)

    Li, Jingjing; Zhong, Xiaoqin; Cheng, Fangfang; Zhang, Jian-Rong; Jiang, Li-Ping; Zhu, Jun-Jie

    2012-05-01

    As an emerging category of fluorescent metal nanoclusters, oligonucleotide-templated silver nanoclusters (Ag NCs) have attracted a lot of interest and have shown wide application in biorelated disciplines. However, the weak fluorescence emission and poor permeability to cell membranes tethered further intracellular applications of Ag NCs. AS1411 is an antiproliferative G-rich phosphodiester oligonucleotide and currently an anticancer agent under phase II clinical trials. Herein, we present a strategy to synthesize AS1411-functionalized Ag NCs with excellent fluorescence through a facile one-pot process. Confocal laser scanning microscopy and Z-axis scanning confirmed that the AS1411-functionalized Ag NCs could be internalized into MCF-7 human breast cancer cells and were able to specifically stain nuclei with red color. To our surprise, 3-[4,5-dimethylthiazol-z-yl]-2,5-diphenyltetrazolium bromide (MTT) assay demonstrated the Ag NCs were cytocompatible and showed better inhibition effects than pure AS1411 on MCF-7 human breast cancer cells. In addition, a universal design of the oligonucleotide scaffold for synthesis of Ag NCs was extended to other aptamers, such as Sgc8c and mucin 1 aptamer. Due to the facile synthesis procedure and capability of specific target recognition, this fluorescent platform will potentially broaden the applications of Ag NCs in biosensing and biological imaging.

  20. Cell-Type-Specific Activity in Prefrontal Cortex during Goal-Directed Behavior.

    Science.gov (United States)

    Pinto, Lucas; Dan, Yang

    2015-07-15

    The prefrontal cortex (PFC) plays a key role in controlling goal-directed behavior. Although a variety of task-related signals have been observed in the PFC, whether they are differentially encoded by various cell types remains unclear. Here we performed cellular-resolution microendoscopic Ca(2+) imaging from genetically defined cell types in the dorsomedial PFC of mice performing a PFC-dependent sensory discrimination task. We found that inhibitory interneurons of the same subtype were similar to each other, but different subtypes preferentially signaled different task-related events: somatostatin-positive neurons primarily signaled motor action (licking), vasoactive intestinal peptide-positive neurons responded strongly to action outcomes, whereas parvalbumin-positive neurons were less selective, responding to sensory cues, motor action, and trial outcomes. Compared to each interneuron subtype, pyramidal neurons showed much greater functional heterogeneity, and their responses varied across cortical layers. Such cell-type and laminar differences in neuronal functional properties may be crucial for local computation within the PFC microcircuit.

  1. Cell-Type Specific Determinants of NRAMP1 Expression in Professional Phagocytes

    Directory of Open Access Journals (Sweden)

    Mathieu F. M. Cellier

    2013-01-01

    Full Text Available The Natural resistance-associated macrophage protein 1 (Nramp1 or Solute carrier 11 member 1, Slc11a1 transports divalent metals across the membrane of late endosomes and lysosomes in professional phagocytes. Nramp1 represents an ancient eukaryotic cell-autonomous defense whereas the gene duplication that yielded Nramp1 and Nramp2 predated the origin of Sarcopterygians (lobe-finned fishes and tetrapods. SLC11A1 genetic polymorphisms associated with human resistance to tuberculosis consist of potential regulatory variants. Herein, current knowledge of the regulation of SLC11A1 gene expression is reviewed and comprehensive analysis of ENCODE data available for hematopoietic cell-types suggests a hypothesis for the regulation of SLC11A1 expression during myeloid development and phagocyte functional polarization. SLC11A1 is part of a 34.6 kb CTCF-insulated locus scattered with predicted regulatory elements: a 3' enhancer, a large 5' enhancer domain and four elements spread around the transcription start site (TSS, including several C/EBP and PU.1 sites. SLC11A1 locus ends appear mobilized by ETS-related factors early during myelopoiesis; activation of both 5' and 3' enhancers in myelo-monocytic cells correlate with transcription factor binding at the TSS. Characterizing the corresponding cis/trans determinants functionally will establish the mechanisms involved and possibly reveal genetic variation that impacts susceptibility to infectious or immune diseases.

  2. Cell type specificity and mechanism of control of a gene may be reverted in different strains of Dictyostelium discoideum.

    Science.gov (United States)

    Mangiarotti, G; Giorda, R

    2000-06-21

    Twelve genes which are expressed exclusively in pre-spore cells of Dictyostelium strain AX3 are expressed exclusively in pre-stalk cells of strain AX2. One gene has the opposite behavior: it is expressed in pre-stalk cells in AX3 and in pre-spore cells in AX2. The change in cell type specificity involves a change in the mechanism of control of gene expression. When they are expressed in pre-stalk cells, genes are controlled at the level of transcription, whilst in pre-spore cells, they are controlled at the level of mRNA stability. Genes expressed in pre-stalk cells in strain AX2, fused with an AX2 pre-spore specific promoter, become regulated at the level of mRNA stability. These findings indicate that at least a group of pre-stalk mRNAs possess the cis-destabilizing element typical of pre-spore mRNAs, though they are not destabilized in disaggregated cells. This is due to the fact that ribosomal protein S6, phosphorylation of which is responsible for controlling the stability of pre-spore mRNAs, is not dephosphorylated in disaggregated pre-stalk cells. These cells lack an S6 phosphatase activity which has been purified from disaggregated pre-spore cells.

  3. Cell-type specific mechanisms of D-serine uptake and release in the brain

    Directory of Open Access Journals (Sweden)

    Magalie eMartineau

    2014-05-01

    Full Text Available Accumulating evidence during the last decade established that D-serine is a key signaling molecule utilized by neurons and astroglia in the mammalian central nervous system. D-serine is increasingly appreciated as the main physiological endogenous coagonist for synaptic NMDA receptors at central excitatory synapses; it is mandatory for long-term changes in synaptic strength, memory, learning, and social interactions. Alterations in the extracellular levels of D-serine leading to disrupted cell-cell signaling are a trademark of many chronic or acute neurological (i.e. Alzheimer disease, epilepsy, stroke and psychiatric (i.e. schizophrenia disorders, and are associated with addictive behavior (i.e. cocaine addiction. Indeed, fine tuning of the extracellular levels of D-serine, achieved by various molecular machineries and signaling pathways, is necessary for maintenance of accurate NMDA receptor functions. Here, we review the experimental data supporting the notion that astroglia and neurons use different pathways to regulate levels of extracellular D-serine.

  4. Cell-Type-Specific Sensorimotor Processing in Striatal Projection Neurons during Goal-Directed Behavior.

    Science.gov (United States)

    Sippy, Tanya; Lapray, Damien; Crochet, Sylvain; Petersen, Carl C H

    2015-10-21

    Goal-directed sensorimotor transformation drives important aspects of mammalian behavior. The striatum is thought to play a key role in reward-based learning and action selection, receiving glutamatergic sensorimotor signals and dopaminergic reward signals. Here, we obtain whole-cell membrane potential recordings from the dorsolateral striatum of mice trained to lick a reward spout after a whisker deflection. Striatal projection neurons showed strong task-related modulation, with more depolarization and action potential firing on hit trials compared to misses. Direct pathway striatonigral neurons, but not indirect pathway striatopallidal neurons, exhibited a prominent early sensory response. Optogenetic stimulation of direct pathway striatonigral neurons, but not indirect pathway striatopallidal neurons, readily substituted for whisker stimulation evoking a licking response. Our data are consistent with direct pathway striatonigral neurons contributing a "go" signal for goal-directed sensorimotor transformation leading to action initiation. VIDEO ABSTRACT.

  5. Cell-type specific oxytocin gene expression from AAV delivered promoter deletion constructs into the rat supraoptic nucleus in vivo.

    Directory of Open Access Journals (Sweden)

    Raymond L Fields

    Full Text Available The magnocellular neurons (MCNs in the hypothalamus selectively express either oxytocin (OXT or vasopressin (AVP neuropeptide genes, a property that defines their phenotypes. Here we examine the molecular basis of this selectivity in the OXT MCNs by stereotaxic microinjections of adeno-associated virus (AAV vectors that contain various OXT gene promoter deletion constructs using EGFP as the reporter into the rat supraoptic nucleus (SON. Two weeks following injection of the AAVs, immunohistochemical assays of EGFP expression from these constructs were done to determine whether the EGFP reporter co-localizes with either the OXT- or AVP-immunoreactivity in the MCNs. The results show that the key elements in the OT gene promoter that regulate the cell-type specific expression the SON are located -216 to -100 bp upstream of the transcription start site. We hypothesize that within this 116 bp domain a repressor exists that inhibits expression specifically in AVP MCNs, thereby leading to the cell-type specific expression of the OXT gene only in the OXT MCNs.

  6. MOBE-ChIP: a large-scale chromatin immunoprecipitation assay for cell type-specific studies.

    Science.gov (United States)

    Lau, On Sun; Bergmann, Dominique C

    2015-10-01

    Cell type-specific transcriptional regulators play critical roles in the generation and maintenance of multicellularity. As they are often expressed at low levels, in vivo DNA-binding studies of these regulators by standard chromatin immunoprecipitation (ChIP) assays are technically challenging. We describe here an optimized ChIP protocol termed Maximized Objects for Better Enrichment (MOBE)-ChIP, which enhances the sensitivity of ChIP assays for detecting cell type-specific signals. The protocol, which is based on the disproportional increase of target signals over background at higher scales, uses substantially greater volume of starting materials than conventional ChIPs to achieve high signal enrichment. This technique can capture weak binding events that are ambiguous in standard ChIP assays, and is useful both in gene-specific and whole-genome analysis. This protocol has been optimized for Arabidopsis, but should be applicable to other model systems with minor modifications. The full procedure can be completed within 3 days.

  7. Input- and Cell-Type-Specific Endocannabinoid-Dependent LTD in the Striatum

    Directory of Open Access Journals (Sweden)

    Yu-Wei Wu

    2015-01-01

    Full Text Available Changes in basal ganglia plasticity at the corticostriatal and thalamostriatal levels are required for motor learning. Endocannabinoid-dependent long-term depression (eCB-LTD is known to be a dominant form of synaptic plasticity expressed at these glutamatergic inputs; however, whether eCB-LTD can be induced at all inputs on all striatal neurons is still debatable. Using region-specific Cre mouse lines combined with optogenetic techniques, we directly investigated and distinguished between corticostriatal and thalamostriatal projections. We found that eCB-LTD was successfully induced at corticostriatal synapses, independent of postsynaptic striatal spiny projection neuron (SPN subtype. Conversely, eCB-LTD was only nominally present at thalamostriatal synapses. This dichotomy was attributable to the minimal expression of cannabinoid type 1 (CB1 receptors on thalamostriatal terminals. Furthermore, coactivation of dopamine receptors on SPNs during LTD induction re-established SPN-subtype-dependent eCB-LTD. Altogether, our findings lay the groundwork for understanding corticostriatal and thalamostriatal synaptic plasticity and for striatal eCB-LTD in motor learning.

  8. Inflammatory cytokines IL-1β and TNF-α regulate p75NTR expression in CNS neurons and astrocytes by distinct cell-type-specific signalling mechanisms

    Directory of Open Access Journals (Sweden)

    Wilma J Friedman

    2009-05-01

    Full Text Available The p75NTR (where NTR is neurotrophin receptor can mediate many distinct cellular functions, including cell survival and apoptosis, axonal growth and cell proliferation, depending on the cellular context. This multifunctional receptor is widely expressed in the CNS (central nervous system during development, but its expression is restricted in the adult brain. However, p75NTR is induced by a variety of pathophysiological insults, including seizures, lesions and degenerative disease. We have demonstrated previously that p75NTR is induced by seizures in neurons, where it induces apoptosis, and in astrocytes, where it may regulate proliferation. In the present study, we have investigated whether the inflammatory cytokines IL (interleukin-1β and TNF-α (tumour necrosis factor-α, that are commonly elevated in these pathological conditions, mediate the regulation of p75NTR in neurons and astrocytes. We have further analysed the signal transduction pathways by which these cytokines induce p75NTR expression in the different cell types, specifically investigating the roles of the NF-κB (nuclear factor κB and p38 MAPK (mitogen-activated protein kinase pathways. We have demonstrated that both cytokines regulate p75NTR expression; however, the mechanisms governing this regulation are cytokine- and cell-type specific. The distinct mechanisms of cytokine-mediated p75NTR regulation that we demonstrate in the present study may facilitate therapeutic intervention in regulation of this receptor in a cell-selective manner.

  9. Age-associated and cell-type-specific neurofibrillary pathology in transgenic mice expressing the human midsized neurofilament subunit.

    Science.gov (United States)

    Vickers, J C; Morrison, J H; Friedrich, V L; Elder, G A; Perl, D P; Katz, R N; Lazzarini, R A

    1994-09-01

    Alterations in neurofilaments are a common occurrence in neurons of the human nervous system during aging and diseases associated with aging. Such pathologic changes may be attributed to species-specific properties of human neurofilaments as well as cell-type-specific regulation of this element of the cytoskeleton. The development of transgenic animals containing human neurofilament subunits offers an opportunity to study the effects of aging and other experimental conditions on the human-specific form of these proteins in a rodent model. The present study shows that mice from the transgenic line NF(M)27, which express the human midsized neurofilament subunit at low levels (2-25% of the endogenous NF-M), develop neurofilamentous accumulations in specific subgroups of neurons that are age dependent, affecting 78% of transgenic mice over 12 months of age. Similar accumulations do not occur in age-matched, wild-type littermates or in 3-month-old transgenic mice. In 12-month-old transgenic mice, somatic neurofilament accumulations resembling neurofibrillary tangles were present predominantly in layers III and V of the neocortex, as well as in select subpopulations of subcortical neurons. Intraperikaryal, spherical neurofilamentous accumulations were particularly abundant in cell bodies in layer II of the neocortex, and neurofilament-containing distentions of Purkinje cell proximal axons occurred in the cerebellum. These pathological accumulations contained mouse as well as human NF subunits, but could be distinguished by their content of phosphorylation-dependent NF epitopes. These cytoskeletal alterations closely resemble the cell-type-specific alterations in neurofilaments that occur during normal human aging and in diseases associated with aging, indicating that these transgenic animals may serve as models of some aspects of the pathologic features of human neurodegenerative diseases.

  10. Human brain derived cells respond in a type-specific manner after exposure to urban particulate matter (PM).

    Science.gov (United States)

    Campbell, Arezoo; Daher, Nancy; Solaimani, Parrisa; Mendoza, Kriscelle; Sioutas, Constantinos

    2014-10-01

    Exposure to particulate matter (PM), a component of urban air pollution, may cause adverse effects in the brain. Although the exact mechanisms involved are unknown, both oxidative and inflammatory responses have been reported. Since the main route of exposure to particulate matter is through inhalation, there is a potential for compounds to directly enter the brain and alter normal cellular function. Enhancement in both oxidative stress and neuroinflammatory markers has been observed in neurodegenerative disorders and PM-induced potentiation of these events may accelerate the disease process. The objective of this pilot study was to use normal human brain cells, a model system which has not been previously used, to assess cell-type-specific responses after exposure to ultrafine particles (UFP). Human microglia, neurons, and astrocytes were grown separately or as co-cultures and then exposed to aqueous UFP suspensions. Reactive Oxygen Species (ROS) formation and the proinflammatory cytokine tumor necrosis factor alpha (TNF-α) were measured as markers of oxidative stress or inflammation respectively. Our results revealed that after exposure to 2 μg/ml of particles, normal human neurons exhibit a decrease in ROS formation and an increase in TNF-α. The observed decrease in ROS formation persisted in the presence of glial cells, which contrasts previous studies done in rodent cells reporting that PM-induced microglial activation modulates neuronal responses. Our study indicates that human CNS cells may respond differently compared to rodent cells and that their use may be more predictive in risk assessment.

  11. Cell-type-specific tuning of Cav1.3 Ca2+-channels by a C-terminal automodulatory domain

    Directory of Open Access Journals (Sweden)

    Anja eScharinger

    2015-08-01

    Full Text Available Cav1.3 L-type Ca2+-channel function is regulated by a C-terminal automodulatory domain (CTM. It affects channel binding of calmodulin and thereby tunes channel activity by interfering with Ca2+- and voltage-dependent gating. Alternative splicing generates short C-terminal channel variants lacking the CTM resulting in enhanced Ca2+-dependent inactivation and stronger voltage-sensitivity upon heterologous expression. However, the role of this modulatory domain for channel function in its native environment is unkown. To determine its functional significance in vivo, we interrupted the CTM with a hemagglutinin tag in mutant mice (Cav1.3DCRDHA/HA. Using these mice we provide biochemical evidence for the existence of long (CTM-containing and short (CTM-deficient Cav1.3 α1-subunits in brain. The long (HA-labeled Cav1.3 isoform was present in all ribbon synapses of cochlear inner hair cells. CTM-elimination impaired Ca2+-dependent inactivation of Ca2+-currents in hair cells but increased it in chromaffin cells, resulting in hyperpolarized resting potentials and reduced pacemaking. CTM disruption did not affect hearing thresholds. We show that the modulatory function of the CTM is affected by its native environment in different cells and thus occurs in a cell-type specific manner in vivo. It is required to stabilize gating properties of Cav1.3 channels required for normal electrical excitability.

  12. Cell-type-specific recruitment of amygdala interneurons to hippocampal theta rhythm and noxious stimuli in vivo.

    Science.gov (United States)

    Bienvenu, Thomas C M; Busti, Daniela; Magill, Peter J; Ferraguti, Francesco; Capogna, Marco

    2012-06-21

    Neuronal synchrony in the basolateral amygdala (BLA) is critical for emotional behavior. Coordinated theta-frequency oscillations between the BLA and the hippocampus and precisely timed integration of salient sensory stimuli in the BLA are involved in fear conditioning. We characterized GABAergic interneuron types of the BLA and determined their contribution to shaping these network activities. Using in vivo recordings in rats combined with the anatomical identification of neurons, we found that the firing of BLA interneurons associated with network activities was cell type specific. The firing of calbindin-positive interneurons targeting dendrites was precisely theta-modulated, but other cell types were heterogeneously modulated, including parvalbumin-positive basket cells. Salient sensory stimuli selectively triggered axo-axonic cells firing and inhibited firing of a disctinct projecting interneuron type. Thus, GABA is released onto BLA principal neurons in a time-, domain-, and sensory-specific manner. These specific synaptic actions likely cooperate to promote amygdalo-hippocampal synchrony involved in emotional memory formation.

  13. Implementing the LIM code: the structural basis for cell type-specific assembly of LIM-homeodomain complexes

    Energy Technology Data Exchange (ETDEWEB)

    Bhati, Mugdha; Lee, Christopher; Nancarrow, Amy L.; Lee, Mihwa; Craig, Vanessa J.; Bach, Ingolf; Guss, J. Mitchell; Mackay, Joel P.; Matthews, Jacqueline M. (UMASS, MED); (Sydney)

    2008-09-03

    LIM-homeodomain (LIM-HD) transcription factors form a combinatorial 'LIM code' that contributes to the specification of cell types. In the ventral spinal cord, the binary LIM homeobox protein 3 (Lhx3)/LIM domain-binding protein 1 (Ldb1) complex specifies the formation of V2 interneurons. The additional expression of islet-1 (Isl1) in adjacent cells instead specifies the formation of motor neurons through assembly of a ternary complex in which Isl1 contacts both Lhx3 and Ldb1, displacing Lhx3 as the binding partner of Ldb1. However, little is known about how this molecular switch occurs. Here, we have identified the 30-residue Lhx3-binding domain on Isl1 (Isl1{sub LBD}). Although the LIM interaction domain of Ldb1 (Ldb1{sub LID}) and Isl1{sub LBD} share low levels of sequence homology, X-ray and NMR structures reveal that they bind Lhx3 in an identical manner, that is, Isl1{sub LBD} mimics Ldb1{sub LID}. These data provide a structural basis for the formation of cell type-specific protein-protein interactions in which unstructured linear motifs with diverse sequences compete to bind protein partners. The resulting alternate protein complexes can target different genes to regulate key biological events.

  14. Dissection of thousands of cell type-specific enhancers identifies dinucleotide repeat motifs as general enhancer features.

    Science.gov (United States)

    Yáñez-Cuna, J Omar; Arnold, Cosmas D; Stampfel, Gerald; Boryń, Lukasz M; Gerlach, Daniel; Rath, Martina; Stark, Alexander

    2014-07-01

    Gene expression is determined by genomic elements called enhancers, which contain short motifs bound by different transcription factors (TFs). However, how enhancer sequences and TF motifs relate to enhancer activity is unknown, and general sequence requirements for enhancers or comprehensive sets of important enhancer sequence elements have remained elusive. Here, we computationally dissect thousands of functional enhancer sequences from three different Drosophila cell lines. We find that the enhancers display distinct cis-regulatory sequence signatures, which are predictive of the enhancers' cell type-specific or broad activities. These signatures contain transcription factor motifs and a novel class of enhancer sequence elements, dinucleotide repeat motifs (DRMs). DRMs are highly enriched in enhancers, particularly in enhancers that are broadly active across different cell types. We experimentally validate the importance of the identified TF motifs and DRMs for enhancer function and show that they can be sufficient to create an active enhancer de novo from a nonfunctional sequence. The function of DRMs as a novel class of general enhancer features that are also enriched in human regulatory regions might explain their implication in several diseases and provides important insights into gene regulation.

  15. In Vivo Senescence in the Sbds-Deficient Murine Pancreas: Cell-Type Specific Consequences of Translation Insufficiency.

    Science.gov (United States)

    Tourlakis, Marina E; Zhang, Siyi; Ball, Heather L; Gandhi, Rikesh; Liu, Hongrui; Zhong, Jian; Yuan, Julie S; Guidos, Cynthia J; Durie, Peter R; Rommens, Johanna M

    2015-06-01

    Genetic models of ribosome dysfunction show selective organ failure, highlighting a gap in our understanding of cell-type specific responses to translation insufficiency. Translation defects underlie a growing list of inherited and acquired cancer-predisposition syndromes referred to as ribosomopathies. We sought to identify molecular mechanisms underlying organ failure in a recessive ribosomopathy, with particular emphasis on the pancreas, an organ with a high and reiterative requirement for protein synthesis. Biallelic loss of function mutations in SBDS are associated with the ribosomopathy Shwachman-Diamond syndrome, which is typified by pancreatic dysfunction, bone marrow failure, skeletal abnormalities and neurological phenotypes. Targeted disruption of Sbds in the murine pancreas resulted in p53 stabilization early in the postnatal period, specifically in acinar cells. Decreased Myc expression was observed and atrophy of the adult SDS pancreas could be explained by the senescence of acinar cells, characterized by induction of Tgfβ, p15(Ink4b) and components of the senescence-associated secretory program. This is the first report of senescence, a tumour suppression mechanism, in association with SDS or in response to a ribosomopathy. Genetic ablation of p53 largely resolved digestive enzyme synthesis and acinar compartment hypoplasia, but resulted in decreased cell size, a hallmark of decreased translation capacity. Moreover, p53 ablation resulted in expression of acinar dedifferentiation markers and extensive apoptosis. Our findings indicate a protective role for p53 and senescence in response to Sbds ablation in the pancreas. In contrast to the pancreas, the Tgfβ molecular signature was not detected in fetal bone marrow, liver or brain of mouse models with constitutive Sbds ablation. Nevertheless, as observed with the adult pancreas phenotype, disease phenotypes of embryonic tissues, including marked neuronal cell death due to apoptosis, were determined to

  16. Folic acid induces cell type-specific changes in the transcriptome of breast cancer cell lines: a proof-of-concept study.

    Science.gov (United States)

    Price, R Jordan; Lillycrop, Karen A; Burdge, Graham C

    2016-01-01

    The effect of folic acid (FA) on breast cancer (BC) risk is uncertain. We hypothesised that this uncertainty may be due, in part, to differential effects of FA between BC cells with different phenotypes. To test this we investigated the effect of treatment with FA concentrations within the range of unmetabolised FA reported in humans on the expression of the transcriptome of non-transformed (MCF10A) and cancerous (MCF7 and Hs578T) BC cells. The total number of transcripts altered was: MCF10A, seventy-five (seventy up-regulated); MCF7, twenty-four (fourteen up-regulated); and Hs578T, 328 (156 up-regulated). Only the cancer-associated gene TAGLN was altered by FA in all three cell lines. In MCF10A and Hs578T cells, FA treatment decreased pathways associated with apoptosis, cell death and senescence, but increased those associated with cell proliferation. The folate transporters SLC19A1, SLC46A1 and FOLR1 were differentially expressed between cell lines tested. However, the level of expression was not altered by FA treatment. These findings suggest that physiological concentrations of FA can induce cell type-specific changes in gene regulation in a manner that is consistent with proliferative phenotype. This has implications for understanding the role of FA in BC risk. In addition, these findings support the suggestion that differences in gene expression induced by FA may involve differential activities of folate transporters. Together these findings indicate the need for further studies of the effect of FA on BC.

  17. Cell-type-specific expression of STAT transcription factors in tissue samples from patients with lymphocytic thyroiditis.

    Science.gov (United States)

    Staab, Julia; Barth, Peter J; Meyer, Thomas

    2012-09-01

    Expression of cytokine-regulated signal transducer and activator of transcription (STAT) proteins was histochemically assessed in patients diagnosed as having Hashimoto's disease or focal lymphocytic thyroiditis (n = 10). All surgical specimens showed histological features of lymphocytic thyroiditis, including a diffuse infiltration with mononuclear cells and an incomplete loss of thyroid follicles, resulting in the destruction of glandular tissue architecture. Immunohistochemical analysis demonstrated differential expression patterns of the various members of the STAT transcription factors examined, indicating that each member of this conserved protein family has its distinct functions in the development of the disease. Using an antibody that specifically recognized the phosphorylated tyrosine residue in position 701, we detected activated STAT1 dimers in numerous germinal macrophages and infiltrating lymphocytes as well as in oncocytes. In contrast, STAT3 expression was restricted to epithelial cells and showed a clear colocalization with the antiapoptotic protein Bcl-2. Moreover, expression of phospho-STAT3 was associated with low levels of stromal fibrosis, suggesting that STAT3 serves as a protective factor in the remodeling of the inflamed thyroid gland. Phospho-STAT5 immunoreactivity was detected in numerous infiltrating cells of hematopoietic origin and, additionally, in hyperplastic follicular epithelia. This tissue distribution demonstrated that activated STAT5 molecules participate in both lymphocytopoiesis and possibly also in the buildup of regenerating thyroid follicles. Taken together, the cell-type-specific expression patterns of STAT proteins in human lymphocytic thyroiditis reflect their distinct and partially antagonistic roles in orchestrating the balance between degenerating and regenerating processes within a changing cytokine environment.

  18. Layer- and cell-type-specific subthreshold and suprathreshold effects of long-term monocular deprivation in rat visual cortex.

    Science.gov (United States)

    Medini, Paolo

    2011-11-23

    Connectivity and dendritic properties are determinants of plasticity that are layer and cell-type specific in the neocortex. However, the impact of experience-dependent plasticity at the level of synaptic inputs and spike outputs remains unclear along vertical cortical microcircuits. Here I compared subthreshold and suprathreshold sensitivity to prolonged monocular deprivation (MD) in rat binocular visual cortex in layer 4 and layer 2/3 pyramids (4Ps and 2/3Ps) and in thick-tufted and nontufted layer 5 pyramids (5TPs and 5NPs), which innervate different extracortical targets. In normal rats, 5TPs and 2/3Ps are the most binocular in terms of synaptic inputs, and 5NPs are the least. Spike responses of all 5TPs were highly binocular, whereas those of 2/3Ps were dominated by either the contralateral or ipsilateral eye. MD dramatically shifted the ocular preference of 2/3Ps and 4Ps, mostly by depressing deprived-eye inputs. Plasticity was profoundly different in layer 5. The subthreshold ocular preference shift was sevenfold smaller in 5TPs because of smaller depression of deprived inputs combined with a generalized loss of responsiveness, and was undetectable in 5NPs. Despite their modest ocular dominance change, spike responses of 5TPs consistently lost their typically high binocularity during MD. The comparison of MD effects on 2/3Ps and 5TPs, the main affected output cells of vertical microcircuits, indicated that subthreshold plasticity is not uniquely determined by the initial degree of input binocularity. The data raise the question of whether 5TPs are driven solely by 2/3Ps during MD. The different suprathreshold plasticity of the two cell populations could underlie distinct functional deficits in amblyopia.

  19. Adolescent maturation of inhibitory inputs onto cingulate cortex neurons is cell-type specific and TrkB dependent

    Directory of Open Access Journals (Sweden)

    Angela eVandenberg

    2015-02-01

    Full Text Available The maturation of inhibitory circuits during adolescence may be tied to the onset of mental health disorders such as schizophrenia. Neurotrophin signaling likely plays a critical role in supporting inhibitory circuit development and is also implicated in psychiatric disease. Within the neocortex, subcircuits may mature at different times and show differential sensitivity to neurotrophin signaling. We measured miniature inhibitory and excitatory postsynaptic currents (mIPSC and mEPSCs in Layer 5 cell-types in the mouse anterior cingulate across the periadolescent period. We differentiated cell-types mainly by Thy1 YFP transgene expression and also retrobead injection labeling in the contralateral cingulate and ipsilateral pons. We found that YFP- neurons and commissural projecting neurons had lower frequency of mIPSCs than neighboring YFP+ neurons or pons projecting neurons in juvenile mice (P21-25. YFP- neurons and to a lesser extent commissural projecting neurons also showed a significant increase in mIPSC amplitude during the periadolescent period (P21-25 vs. P40-50, which was not seen in YFP+ neurons or pons projecting neurons. Systemic disruption of tyrosine kinase receptor B (TrkB signaling during P23-50 in TrkBF616A mice blocked developmental changes in mIPSC amplitude, without affecting miniature excitatory post synaptic currents (mEPSCs. Our data suggest that the maturation of inhibitory inputs onto layer 5 pyramidal neurons is cell-type specific. These data may inform our understanding of adolescent brain development across species and aid in identifying candidate subcircuits that may show greater vulnerability in mental illness.

  20. Post-ischaemic long-term synaptic potentiation in the striatum: a putative mechanism for cell type-specific vulnerability.

    Science.gov (United States)

    Calabresi, Paolo; Saulle, Emilia; Centonze, Diego; Pisani, Antonio; Marfia, Girolama A; Bernardi, Giorgio

    2002-04-01

    In the present in vitro study of rat brain, we report that transient oxygen and glucose deprivation (in vitro ischaemia) induced a post-ischaemic long-term synaptic potentiation (i-LTP) at corticostriatal synapses. We compared the physiological and pharmacological characteristics of this pathological form of synaptic plasticity with those of LTP induced by tetanic stimulation of corticostriatal fibres (t-LTP), which is thought to represent a cellular substrate of learning and memory. Activation of N-methyl-D-aspartate (NMDA) receptors was required for the induction of both forms of synaptic plasticity. The intraneuronal injection of the calcium chelator BAPTA [bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetate] and inhibitors of the mitogen-activated protein kinase pathway blocked both forms of synaptic plasticity. However, while t-LTP showed input specificity, i-LTP occurred also at synaptic pathways inactive during the ischaemic period. In addition, scopolamine, a muscarinic receptor antagonist, prevented the induction of t-LTP but not of i-LTP, indicating that endogenous acetylcholine is required for physiological but not for pathological synaptic potentiation. Finally, we found that striatal cholinergic interneurones, which are resistant to in vivo ischaemia, do not express i-LTP while they express t-LTP. We suggest that i-LTP represents a pathological form of synaptic plasticity that may account for the cell type-specific vulnerability observed in striatal spiny neurones following ischaemia and energy deprivation.

  1. Cell type-specific genes show striking and distinct patterns of spatial expression in the mouse brain.

    Science.gov (United States)

    Ko, Younhee; Ament, Seth A; Eddy, James A; Caballero, Juan; Earls, John C; Hood, Leroy; Price, Nathan D

    2013-02-19

    To characterize gene expression patterns in the regional subdivisions of the mammalian brain, we integrated spatial gene expression patterns from the Allen Brain Atlas for the adult mouse with panels of cell type-specific genes for neurons, astrocytes, and oligodendrocytes from previously published transcriptome profiling experiments. We found that the combined spatial expression patterns of 170 neuron-specific transcripts revealed strikingly clear and symmetrical signatures for most of the brain's major subdivisions. Moreover, the brain expression spatial signatures correspond to anatomical structures and may even reflect developmental ontogeny. Spatial expression profiles of astrocyte- and oligodendrocyte-specific genes also revealed regional differences; these defined fewer regions and were less distinct but still symmetrical in the coronal plane. Follow-up analysis suggested that region-based clustering of neuron-specific genes was related to (i) a combination of individual genes with restricted expression patterns, (ii) region-specific differences in the relative expression of functional groups of genes, and (iii) regional differences in neuronal density. Products from some of these neuron-specific genes are present in peripheral blood, raising the possibility that they could reflect the activities of disease- or injury-perturbed networks and collectively function as biomarkers for clinical disease diagnostics.

  2. DETECTION OF E6, E7 AND CELL-TYPE SPECIFIC ENHANCER OF HUMAN PAPILLOMAVIRUS TYPE 16 IN BREAST CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    HE Qian; CHU Yong-lie; JIA Xiao-li; ZHANG Shu-qun; LIU Wen-kang

    2008-01-01

    Objective To detect HPV16 E6, E7 genes and cell-type specific enhancer (CTSE) of long control region (LCR) in breast carcinoma (BC).Methods HPV16 E6,E7 genes and CTSE were detected in 40 BCs and 20 normal breast tissue (NBT) using polymerase chain reaction (PCR).Results The positive rates of HPV16 E6, E7genes and CTSE were 60% (24/40),55% (22/40) and 67.5%(27/40)respectively in BCs, whereas only 5% (1/20), 5%(1/20) and 15% (3/20) in NBTs (P<0.05). There exited significant correlation between E6 gene and CTSE in BCs (P<0.05), as well as E7 gene and CTSE. The infection of HPV16 E6, E7 and CTSE had no statistic relationship with pathological features.Conclusion There were HPV16 E6, E7 genes and CTSE together in BCs and CTSE may play an important role in pathogenesis of BC.

  3. Cell type-specific adaptation of cellular and nuclear volume in micro-engineered 3D environments.

    Science.gov (United States)

    Greiner, Alexandra M; Klein, Franziska; Gudzenko, Tetyana; Richter, Benjamin; Striebel, Thomas; Wundari, Bayu G; Autenrieth, Tatjana J; Wegener, Martin; Franz, Clemens M; Bastmeyer, Martin

    2015-11-01

    Bio-functionalized three-dimensional (3D) structures fabricated by direct laser writing (DLW) are structurally and mechanically well-defined and ideal for systematically investigating the influence of three-dimensionality and substrate stiffness on cell behavior. Here, we show that different fibroblast-like and epithelial cell lines maintain normal proliferation rates and form functional cell-matrix contacts in DLW-fabricated 3D scaffolds of different mechanics and geometry. Furthermore, the molecular composition of cell-matrix contacts forming in these 3D micro-environments and under conventional 2D culture conditions is identical, based on the analysis of several marker proteins (paxillin, phospho-paxillin, phospho-focal adhesion kinase, vinculin, β1-integrin). However, fibroblast-like and epithelial cells differ markedly in the way they adapt their total cell and nuclear volumes in 3D environments. While fibroblast-like cell lines display significantly increased cell and nuclear volumes in 3D substrates compared to 2D substrates, epithelial cells retain similar cell and nuclear volumes in 2D and 3D environments. Despite differential cell volume regulation between fibroblasts and epithelial cells in 3D environments, the nucleus-to-cell (N/C) volume ratios remain constant for all cell types and culture conditions. Thus, changes in cell and nuclear volume during the transition from 2D to 3D environments are strongly cell type-dependent, but independent of scaffold stiffness, while cells maintain the N/C ratio regardless of culture conditions.

  4. Fiber Type-Specific Satellite Cell Content in Cyclists Following Heavy Training with Carbohydrate and Carbohydrate-Protein Supplementation

    Science.gov (United States)

    McKenzie, Alec I.; D'Lugos, Andrew C.; Saunders, Michael J.; Gworek, Keith D.; Luden, Nicholas D.

    2016-01-01

    The central purpose of this study was to evaluate the fiber type-specific satellite cell and myonuclear responses of endurance-trained cyclists to a block of intensified training, when supplementing with carbohydrate (CHO) vs. carbohydrate-protein (PRO). In a crossover design, endurance-trained cyclists (n = 8) performed two consecutive training periods, once supplementing with CHO (de facto “control” condition) and the other with PRO. Each training period consisted of 10 days of intensified cycle training (ICT–120% increase in average training duration) followed by 10 days of recovery (RVT–reduced volume training; 33% volume reduction vs. normal training). Skeletal muscle biopsies were obtained from the vastus lateralis before and after ICT and again following RVT. Immunofluorescent microscopy was used to quantify SCs (Pax7+), myonuclei (DAPI+), and myosin heavy chain I (MyHC I). Data are expressed as percent change ± 90% confidence limits. The 10-day block of ICTCHO increased MyHC I SC content (35 ± 28%) and myonuclear density (16 ± 6%), which remained elevated following RVTCHO (SC = 69 ± 50% vs. PRE; Nuclei = 17 ± 15% vs. PRE). MyHC II SC and myonuclei were not different following ICTCHO, but were higher following RVTCHO (SC = +33 ± 31% vs. PRE; Nuclei = 15 ± 14% vs. PRE), indicating a delayed response compared to MyHC I fibers. The MyHC I SC pool increased following ICTPRO (37 ± 37%), but without a concomitant increase in myonuclei. There were no changes in MyHC II SC or myonuclei following ICTPRO. Collectively, these trained endurance cyclists possessed a relatively large pool of SCs that facilitated rapid (MyHC I) and delayed (MyHC II) satellite cell proliferation and myonuclear accretion under carbohydrate conditions. The current findings strengthen the growing body of evidence demonstrating alterations in satellite cell number in the absence of hypertrophy. Satellite cell pool expansion is typically viewed as an advantageous response to

  5. Cell-Type Specific Channelopathies in the Prefrontal Cortex of the fmr1-/y Mouse Model of Fragile X Syndrome.

    Science.gov (United States)

    Kalmbach, Brian E; Johnston, Daniel; Brager, Darrin H

    2015-01-01

    Fragile X syndrome (FXS) is caused by transcriptional silencing of the fmr1 gene resulting in the loss of fragile X mental retardation protein (FMRP) expression. FXS patients display several behavioral phenotypes associated with prefrontal cortex (PFC) dysfunction. Voltage-gated ion channels, some of which are regulated by FMRP, heavily influence PFC neuron function. Although there is evidence for brain region-specific alterations to the function a single type of ion channel in FXS, it is unclear whether subtypes of principal neurons within a brain region are affected uniformly. We tested for alterations to ion channels critical in regulating neural excitability in two subtypes of prefrontal L5 pyramidal neurons. Using somatic and dendritic patch-clamp recordings, we provide evidence that the functional expression of h-channels (Ih) is down-regulated, whereas A-type K(+) channel function is up-regulated in pyramidal tract-projecting (PT) neurons in the fmr1-/y mouse PFC. This is the opposite pattern of results from published findings from hippocampus where Ih is up-regulated and A-type K(+) channel function is down-regulated. Additionally, we find that somatic Kv1-mediated current is down-regulated, resulting in increased excitability of fmr1-/y PT neurons. Importantly, these h- and K(+) channel differences do not extend to neighboring intratelencephalic-projecting neurons. Thus, the absence of FMRP has divergent effects on the function of individual types of ion channels not only between brain regions, but also variable effects across cell types within the same brain region. Given the importance of ion channels in regulating neural circuits, these results suggest cell-type-specific phenotypes for the disease.

  6. Developmental and cell type-specific expression of thyroid hormone transporters in the mouse brain and in primary brain cells.

    Science.gov (United States)

    Braun, Doreen; Kinne, Anita; Bräuer, Anja U; Sapin, Remy; Klein, Marc O; Köhrle, Josef; Wirth, Eva K; Schweizer, Ulrich

    2011-03-01

    Cellular thyroid hormone uptake and efflux are mediated by transmembrane transport proteins. One of these, monocarboxylate transporter 8 (MCT8) is mutated in Allan-Herndon-Dudley syndrome, a severe mental retardation associated with abnormal thyroid hormone constellations. Since mice deficient in Mct8 exhibit a milder neurological phenotype than patients, we hypothesized that alternative thyroid hormone transporters may compensate in murine brain cells for the lack of Mct8. Using qPCR, Western Blot, and immunocytochemistry, we investigated the expression of three different thyroid hormone transporters, i.e., Mct8 and L-type amino acid transporters Lat1 and Lat2, in mouse brain. All three thyroid hormone transporters are expressed from corticogenesis and peak around birth. Primary cultures of neurons and astrocytes express Mct8, Lat1, and Lat2. Microglia specifically expresses Mct10 and Slco4a1 in addition to high levels of Lat2 mRNA and protein. As in vivo, a brain microvascular endothelial cell line expressed Mct8 and Lat1. 158N, an oligodendroglial cell line expressed Mct8 protein, consistent with delayed myelination in MCT8-deficient patients. Functional T(3)- and T(4)-transport assays into primary astrocytes showed K(M) values of 4.2 and 3.7 μM for T(3) and T(4). Pharmacological inhibition of L-type amino acid transporters by BCH and genetic inactivation of Lat2 reduced astrocytic T(3) uptake to the same extent. BSP, a broad spectrum inhibitor, including Mct8, reduced T(3) uptake further suggesting the cooperative activity of several T(3) transporters in astrocytes.

  7. Cell type-specific and common characteristics of exosomes derived from mouse cell lines: Yield, physicochemical properties, and pharmacokinetics.

    Science.gov (United States)

    Charoenviriyakul, Chonlada; Takahashi, Yuki; Morishita, Masaki; Matsumoto, Akihiro; Nishikawa, Makiya; Takakura, Yoshinobu

    2017-01-01

    Exosomes are small membrane vesicles secreted from cells and are expected to be used as drug delivery systems. Important characteristics of exosomes, such as yield, physicochemical properties, and pharmacokinetics, may be different among different cell types. However, there is limited information about the effect of cell type on these characteristics. In the present study, we evaluated these characteristics of exosomes derived from five different types of mouse cell lines: B16BL6 murine melanoma cells, C2C12 murine myoblast cells, NIH3T3 murine fibroblasts cells, MAEC murine aortic endothelial cells, and RAW264.7 murine macrophage-like cells. Exosomes were collected using a differential ultracentrifugation method. The exosomes collected from all the cell types were negatively charged globular vesicles with a diameter of approximately 100nm. C2C12 and RAW264.7 cells produced more exosomes than the other types of cells. The exosomes were labeled with a fusion protein of Gaussia luciferase and lactadherin to evaluate their pharmacokinetics. After intravenous injection into mice, all the exosomes rapidly disappeared from the systemic circulation and mainly distributed to the liver. In conclusion, the exosome yield was significantly different among the cell types, and all the exosomes evaluated in this study showed comparable physicochemical and pharmacokinetic properties.

  8. Drug and cell type-specific regulation of genes with different classes of estrogen receptor beta-selective agonists.

    Directory of Open Access Journals (Sweden)

    Sreenivasan Paruthiyil

    Full Text Available Estrogens produce biological effects by interacting with two estrogen receptors, ERalpha and ERbeta. Drugs that selectively target ERalpha or ERbeta might be safer for conditions that have been traditionally treated with non-selective estrogens. Several synthetic and natural ERbeta-selective compounds have been identified. One class of ERbeta-selective agonists is represented by ERB-041 (WAY-202041 which binds to ERbeta much greater than ERalpha. A second class of ERbeta-selective agonists derived from plants include MF101, nyasol and liquiritigenin that bind similarly to both ERs, but only activate transcription with ERbeta. Diarylpropionitrile represents a third class of ERbeta-selective compounds because its selectivity is due to a combination of greater binding to ERbeta and transcriptional activity. However, it is unclear if these three classes of ERbeta-selective compounds produce similar biological activities. The goals of these studies were to determine the relative ERbeta selectivity and pattern of gene expression of these three classes of ERbeta-selective compounds compared to estradiol (E(2, which is a non-selective ER agonist. U2OS cells stably transfected with ERalpha or ERbeta were treated with E(2 or the ERbeta-selective compounds for 6 h. Microarray data demonstrated that ERB-041, MF101 and liquiritigenin were the most ERbeta-selective agonists compared to estradiol, followed by nyasol and then diarylpropionitrile. FRET analysis showed that all compounds induced a similar conformation of ERbeta, which is consistent with the finding that most genes regulated by the ERbeta-selective compounds were similar to each other and E(2. However, there were some classes of genes differentially regulated by the ERbeta agonists and E(2. Two ERbeta-selective compounds, MF101 and liquiritigenin had cell type-specific effects as they regulated different genes in HeLa, Caco-2 and Ishikawa cell lines expressing ERbeta. Our gene profiling studies

  9. Molecular beacon-enabled purification of living cells by targeting cell type-specific mRNAs.

    Science.gov (United States)

    Wile, Brian M; Ban, Kiwon; Yoon, Young-Sup; Bao, Gang

    2014-10-01

    Molecular beacons (MBs) are dual-labeled oligonucleotides that fluoresce only in the presence of complementary mRNA. The use of MBs to target specific mRNAs allows sorting of specific cells from a mixed cell population. In contrast to existing approaches that are limited by available surface markers or selectable metabolic characteristics, the MB-based method enables the isolation of a wide variety of cells. For example, the ability to purify specific cell types derived from pluripotent stem cells (PSCs) is important for basic research and therapeutics. In addition to providing a general protocol for MB design, validation and nucleofection into cells, we describe how to isolate a specific cell population from differentiating PSCs. By using this protocol, we have successfully isolated cardiomyocytes differentiated from mouse or human PSCs (hPSCs) with ∼ 97% purity, as confirmed by electrophysiology and immunocytochemistry. After designing MBs, their ordering and validation requires 2 weeks, and the isolation process requires 3 h.

  10. Coordinated cell type-specific epigenetic remodeling in prefrontal cortex begins before birth and continues into early adulthood.

    Directory of Open Access Journals (Sweden)

    Hennady P Shulha

    2013-04-01

    Full Text Available Development of prefrontal and other higher-order association cortices is associated with widespread changes in the cortical transcriptome, particularly during the transitions from prenatal to postnatal development, and from early infancy to later stages of childhood and early adulthood. However, the timing and longitudinal trajectories of neuronal gene expression programs during these periods remain unclear in part because of confounding effects of concomitantly occurring shifts in neuron-to-glia ratios. Here, we used cell type-specific chromatin sorting techniques for genome-wide profiling of a histone mark associated with transcriptional regulation--H3 with trimethylated lysine 4 (H3K4me3--in neuronal chromatin from 31 subjects from the late gestational period to 80 years of age. H3K4me3 landscapes of prefrontal neurons were developmentally regulated at 1,157 loci, including 768 loci that were proximal to transcription start sites. Multiple algorithms consistently revealed that the overwhelming majority and perhaps all of developmentally regulated H3K4me3 peaks were on a unidirectional trajectory defined by either rapid gain or loss of histone methylation during the late prenatal period and the first year after birth, followed by similar changes but with progressively slower kinetics during early and later childhood and only minimal changes later in life. Developmentally downregulated H3K4me3 peaks in prefrontal neurons were enriched for Paired box (Pax and multiple Signal Transducer and Activator of Transcription (STAT motifs, which are known to promote glial differentiation. In contrast, H3K4me3 peaks subject to a progressive increase in maturing prefrontal neurons were enriched for activating protein-1 (AP-1 recognition elements that are commonly associated with activity-dependent regulation of neuronal gene expression. We uncovered a developmental program governing the remodeling of neuronal histone methylation landscapes in the prefrontal

  11. Cell-type-specific profiling of protein-DNA interactions without cell isolation using targeted DamID with next-generation sequencing.

    Science.gov (United States)

    Marshall, Owen J; Southall, Tony D; Cheetham, Seth W; Brand, Andrea H

    2016-09-01

    This protocol is an extension to: Nat. Protoc. 2, 1467-1478 (2007); doi:10.1038/nprot.2007.148; published online 7 June 2007The ability to profile transcription and chromatin binding in a cell-type-specific manner is a powerful aid to understanding cell-fate specification and cellular function in multicellular organisms. We recently developed targeted DamID (TaDa) to enable genome-wide, cell-type-specific profiling of DNA- and chromatin-binding proteins in vivo without cell isolation. As a protocol extension, this article describes substantial modifications to an existing protocol, and it offers additional applications. TaDa builds upon DamID, a technique for detecting genome-wide DNA-binding profiles of proteins, by coupling it with the GAL4 system in Drosophila to enable both temporal and spatial resolution. TaDa ensures that Dam-fusion proteins are expressed at very low levels, thus avoiding toxicity and potential artifacts from overexpression. The modifications to the core DamID technique presented here also increase the speed of sample processing and throughput, and adapt the method to next-generation sequencing technology. TaDa is robust, reproducible and highly sensitive. Compared with other methods for cell-type-specific profiling, the technique requires no cell-sorting, cross-linking or antisera, and binding profiles can be generated from as few as 10,000 total induced cells. By profiling the genome-wide binding of RNA polymerase II (Pol II), TaDa can also identify transcribed genes in a cell-type-specific manner. Here we describe a detailed protocol for carrying out TaDa experiments and preparing the material for next-generation sequencing. Although we developed TaDa in Drosophila, it should be easily adapted to other organisms with an inducible expression system. Once transgenic animals are obtained, the entire experimental procedure-from collecting tissue samples to generating sequencing libraries-can be accomplished within 5 d.

  12. Differential microRNA expression signatures and cell type-specific association with Taxol resistance in ovarian cancer cells.

    Science.gov (United States)

    Kim, Yong-Wan; Kim, Eun Young; Jeon, Doin; Liu, Juinn-Lin; Kim, Helena Suhyun; Choi, Jin Woo; Ahn, Woong Shick

    2014-01-01

    Paclitaxel (Taxol) resistance remains a major obstacle for the successful treatment of ovarian cancer. MicroRNAs (miRNAs) have oncogenic and tumor suppressor activity and are associated with poor prognosis phenotypes. miRNA screenings for this drug resistance are needed to estimate the prognosis of the disease and find better drug targets. miRNAs that were differentially expressed in Taxol-resistant ovarian cancer cells, compared with Taxol-sensitive cells, were screened by Illumina Human MicroRNA Expression BeadChips. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to identify target genes of selected miRNAs. Kaplan-Meier survival analysis was applied to identify dysregulated miRNAs in ovarian cancer patients using data from The Cancer Genome Atlas. A total of 82 miRNAs were identified in ovarian carcinoma cells compared to normal ovarian cells. miR-141, miR-106a, miR-200c, miR-96, and miR-378 were overexpressed, and miR-411, miR-432, miR-494, miR-409-3p, and miR-655 were underexpressed in ovarian cancer cells. Seventeen miRNAs were overexpressed in Taxol-resistant cells, including miR-663, miR-622, and HS_188. Underexpressed miRNAs in Taxol-sensitive cells included miR-497, miR-187, miR-195, and miR-107. We further showed miR-663 and miR-622 as significant prognosis markers of the chemo-resistant patient group. In particular, the downregulation of the two miRNAs was associated with better survival, perhaps increasing the sensitivity of cancer cells to Taxol. In the chemo-sensitive patient group, only miR-647 could be a prognosis marker. These miRNAs inhibit several interacting genes of p53 networks, especially in TUOS-3 and TUOS-4, and showed cell line-specific inhibition effects. Taken together, the data indicate that the three miRNAs are closely associated with Taxol resistance and potentially better prognosis factors. Our results suggest that these miRNAs were successfully and reliably identified and would be used in the

  13. Microarray Gene Expression Analysis to Evaluate Cell Type Specific Expression of Targets Relevant for Immunotherapy of Hematological Malignancies.

    Directory of Open Access Journals (Sweden)

    M J Pont

    Full Text Available Cellular immunotherapy has proven to be effective in the treatment of hematological cancers by donor lymphocyte infusion after allogeneic hematopoietic stem cell transplantation and more recently by targeted therapy with chimeric antigen or T-cell receptor-engineered T cells. However, dependent on the tissue distribution of the antigens that are targeted, anti-tumor responses can be accompanied by undesired side effects. Therefore, detailed tissue distribution analysis is essential to estimate potential efficacy and toxicity of candidate targets for immunotherapy of hematological malignancies. We performed microarray gene expression analysis of hematological malignancies of different origins, healthy hematopoietic cells and various non-hematopoietic cell types from organs that are often targeted in detrimental immune responses after allogeneic stem cell transplantation leading to graft-versus-host disease. Non-hematopoietic cells were also cultured in the presence of IFN-γ to analyze gene expression under inflammatory circumstances. Gene expression was investigated by Illumina HT12.0 microarrays and quality control analysis was performed to confirm the cell-type origin and exclude contamination of non-hematopoietic cell samples with peripheral blood cells. Microarray data were validated by quantitative RT-PCR showing strong correlations between both platforms. Detailed gene expression profiles were generated for various minor histocompatibility antigens and B-cell surface antigens to illustrate the value of the microarray dataset to estimate efficacy and toxicity of candidate targets for immunotherapy. In conclusion, our microarray database provides a relevant platform to analyze and select candidate antigens with hematopoietic (lineage-restricted expression as potential targets for immunotherapy of hematological cancers.

  14. Microarray Gene Expression Analysis to Evaluate Cell Type Specific Expression of Targets Relevant for Immunotherapy of Hematological Malignancies.

    Science.gov (United States)

    Pont, M J; Honders, M W; Kremer, A N; van Kooten, C; Out, C; Hiemstra, P S; de Boer, H C; Jager, M J; Schmelzer, E; Vries, R G; Al Hinai, A S; Kroes, W G; Monajemi, R; Goeman, J J; Böhringer, S; Marijt, W A F; Falkenburg, J H F; Griffioen, M

    2016-01-01

    Cellular immunotherapy has proven to be effective in the treatment of hematological cancers by donor lymphocyte infusion after allogeneic hematopoietic stem cell transplantation and more recently by targeted therapy with chimeric antigen or T-cell receptor-engineered T cells. However, dependent on the tissue distribution of the antigens that are targeted, anti-tumor responses can be accompanied by undesired side effects. Therefore, detailed tissue distribution analysis is essential to estimate potential efficacy and toxicity of candidate targets for immunotherapy of hematological malignancies. We performed microarray gene expression analysis of hematological malignancies of different origins, healthy hematopoietic cells and various non-hematopoietic cell types from organs that are often targeted in detrimental immune responses after allogeneic stem cell transplantation leading to graft-versus-host disease. Non-hematopoietic cells were also cultured in the presence of IFN-γ to analyze gene expression under inflammatory circumstances. Gene expression was investigated by Illumina HT12.0 microarrays and quality control analysis was performed to confirm the cell-type origin and exclude contamination of non-hematopoietic cell samples with peripheral blood cells. Microarray data were validated by quantitative RT-PCR showing strong correlations between both platforms. Detailed gene expression profiles were generated for various minor histocompatibility antigens and B-cell surface antigens to illustrate the value of the microarray dataset to estimate efficacy and toxicity of candidate targets for immunotherapy. In conclusion, our microarray database provides a relevant platform to analyze and select candidate antigens with hematopoietic (lineage)-restricted expression as potential targets for immunotherapy of hematological cancers.

  15. Differential microRNA expression signatures and cell type-specific association with Taxol resistance in ovarian cancer cells

    Directory of Open Access Journals (Sweden)

    Kim YW

    2014-02-01

    Full Text Available Yong-Wan Kim,1 Eun Young Kim,1 Doin Jeon,1 Juinn-Lin Liu,2 Helena Suhyun Kim,3 Jin Woo Choi,4 Woong Shick Ahn5 1Cancer Research Institute of Medical Science, The Catholic University of Korea, Seoul, Republic of Korea; 2Brain Tumor Center, Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, TX, USA; 3Cancer Rehab Laboratory, RH Healthcare Systems Inc, TX, USA; 4Harvard Medical School and Wellman Center for Photomedicine, Cambridge, MA, USA; 5Department of Obstetrics and Gynecology, The Catholic University of Korea, Seoul, Republic of Korea Abstract: Paclitaxel (Taxol resistance remains a major obstacle for the successful treatment of ovarian cancer. MicroRNAs (miRNAs have oncogenic and tumor suppressor activity and are associated with poor prognosis phenotypes. miRNA screenings for this drug resistance are needed to estimate the prognosis of the disease and find better drug targets. miRNAs that were differentially expressed in Taxol-resistant ovarian cancer cells, compared with Taxol-sensitive cells, were screened by Illumina Human MicroRNA Expression BeadChips. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR was used to identify target genes of selected miRNAs. Kaplan–Meier survival analysis was applied to identify dysregulated miRNAs in ovarian cancer patients using data from The Cancer Genome Atlas. A total of 82 miRNAs were identified in ovarian carcinoma cells compared to normal ovarian cells. miR-141, miR-106a, miR-200c, miR-96, and miR-378 were overexpressed, and miR-411, miR-432, miR-494, miR-409-3p, and miR-655 were underexpressed in ovarian cancer cells. Seventeen miRNAs were overexpressed in Taxol-resistant cells, including miR-663, miR-622, and HS_188. Underexpressed miRNAs in Taxol-sensitive cells included miR-497, miR-187, miR-195, and miR-107. We further showed miR-663 and miR-622 as significant prognosis markers of the chemo-resistant patient group. In particular, the

  16. Cell type-specific long-term plasticity at glutamatergic synapses onto hippocampal interneurons expressing either parvalbumin or CB1 cannabinoid receptor.

    Science.gov (United States)

    Nissen, Wiebke; Szabo, Andras; Somogyi, Jozsef; Somogyi, Peter; Lamsa, Karri P

    2010-01-27

    Different GABAergic interneuron types have specific roles in hippocampal function, and anatomical as well as physiological features vary greatly between interneuron classes. Long-term plasticity of interneurons has mostly been studied in unidentified GABAergic cells and is known to be very heterogeneous. Here we tested whether cell type-specific plasticity properties in distinct GABAergic interneuron types might underlie this heterogeneity. We show that long-term potentiation (LTP) and depression (LTD), two common forms of synaptic plasticity, are expressed in a highly cell type-specific manner at glutamatergic synapses onto hippocampal GABAergic neurons. Both LTP and LTD are generated in interneurons expressing parvalbumin (PV+), whereas interneurons with similar axon distributions but expressing cannabinoid receptor-1 show no lasting plasticity in response to the same protocol. In addition, LTP or LTD occurs in PV+ interneurons with different efferent target domains. Perisomatic-targeting PV+ basket and axo-axonic interneurons express LTP, whereas glutamatergic synapses onto PV+ bistratified cells display LTD. Both LTP and LTD are pathway specific, independent of NMDA receptors, and occur at synapses with calcium-permeable (CP) AMPA receptors. Plasticity in interneurons with CP-AMPA receptors strongly modulates disynaptic GABAergic transmission onto CA1 pyramidal cells. We propose that long-term plasticity adjusts the synaptic strength between pyramidal cells and interneurons in a cell type-specific manner and, in the defined CA1 interneurons, shifts the spatial pattern of inhibitory weight from pyramidal cell dendrites to the perisomatic region.

  17. Cell-Type-Specific Effects of Silibinin on Vitamin D-Induced Differentiation of Acute Myeloid Leukemia Cells Are Associated with Differential Modulation of RXRα Levels

    Directory of Open Access Journals (Sweden)

    Rina Wassermann

    2012-01-01

    Full Text Available Plant polyphenols have been shown to enhance the differentiation of acute myeloid leukemia (AML cells induced by the hormonal form of vitamin D3 (1α,25-dihydroxyvitamin D3; 1,25D. However, how these agents modulate 1,25D effects in different subtypes of AML cells remains poorly understood. Here, we show that both carnosic acid (CA and silibinin (SIL synergistically enhancd 1,25D-induced differentiation of myeloblastic HL60 cells. However, in promonocytic U937 cells, only CA caused potentiation while SIL attenuated 1,25D effect. The enhanced effect of 1,25D+CA was accompanied by increases in both the vitamin D receptor (VDR and retinoid X receptor alpha (RXRα protein levels and vitamin D response element (VDRE transactivation in both cell lines. Similar increases were observed in HL60 cells treated with 1,25D + SIL. In U937 cells, however, SIL inhibited 1,25D-induced VDRE transactivation concomitant with downregulation of RXRα at both transcriptional and posttranscriptional levels. These inhibitory effects correlated with the inability of SIL, with or without 1,25D, to activate the Nrf2/antioxidant response element signaling pathway in U937 cells. These results suggest that opposite effects of SIL on 1,25D-induced differentiation of HL60 and U937 cells may be determined by cell-type-specific signaling and transcriptional responses to this polyphenol resulting in differential modulation of RXRα expression.

  18. Peroxisome proliferator-activated receptor subtype- and cell-type-specific activation of genomic target genes upon adenoviral transgene delivery

    DEFF Research Database (Denmark)

    Nielsen, Ronni; Grøntved, Lars; Stunnenberg, Hendrik G

    2006-01-01

    Investigations of the molecular events involved in activation of genomic target genes by peroxisome proliferator-activated receptors (PPARs) have been hampered by the inability to establish a clean on/off state of the receptor in living cells. Here we show that the combination of adenoviral...... delivery and chromatin immunoprecipitation (ChIP) is ideal for dissecting these mechanisms. Adenoviral delivery of PPARs leads to a rapid and synchronous expression of the PPAR subtypes, establishment of transcriptional active complexes at genomic loci, and immediate activation of even silent target genes...

  19. Cell type-specific over-expression of chromosome 21 genes in fibroblasts and fetal hearts with trisomy 21

    Directory of Open Access Journals (Sweden)

    Zigman Warren B

    2006-03-01

    Full Text Available Abstract Background Down syndrome (DS is caused by trisomy 21 (+21, but the aberrations in gene expression resulting from this chromosomal aneuploidy are not yet completely understood. Methods We used oligonucleotide microarrays to survey mRNA expression in early- and late-passage control and +21 fibroblasts and mid-gestation fetal hearts. We supplemented this analysis with northern blotting, western blotting, real-time RT-PCR, and immunohistochemistry. Results We found chromosome 21 genes consistently over-represented among the genes over-expressed in the +21 samples. However, these sets of over-expressed genes differed across the three cell/tissue types. The chromosome 21 gene MX1 was strongly over-expressed (mean 16-fold in senescent +21 fibroblasts, a result verified by northern and western blotting. MX1 is an interferon target gene, and its mRNA was induced by interferons present in +21 fibroblast conditioned medium, suggesting an autocrine loop for its over-expression. By immunohistochemistry the p78MX1 protein was induced in lesional tissue of alopecia areata, an autoimmune disorder associated with DS. We found strong over-expression of the purine biosynthesis gene GART (mean 3-fold in fetal hearts with +21 and verified this result by northern blotting and real-time RT-PCR. Conclusion Different subsets of chromosome 21 genes are over-expressed in different cell types with +21, and for some genes this over-expression is non-linear (>1.5X. Hyperactive interferon signaling is a candidate pathway for cell senescence and autoimmune disorders in DS, and abnormal purine metabolism should be investigated for a potential role in cardiac defects.

  20. Cell type specific applicability of 5-ethynyl-2'-deoxyuridine (EdU) for dynamic proliferation assessment in flow cytometry.

    Science.gov (United States)

    Diermeier-Daucher, Simone; Clarke, Scott T; Hill, Dani; Vollmann-Zwerenz, Arabel; Bradford, Jolene A; Brockhoff, Gero

    2009-06-01

    Using the nucleoside analogue EdU (5-ethynyl-2'-deoxyuridine) for thymidine substitution instead of BrdU (5-bromo-2'-deoxyuridine) in cell proliferation assays has recently been proposed. However, the effect of EdU on cell viability, DNA synthesis, and cell cycle progression and consequently its usability for dynamic cell proliferation analysis in vitro has not been explored. We compared the effect of EdU and BrdU incorporation into SK-BR-3 and BT474 breast cancer cells and the impact on cell cycle kinetics, cell viability, and DNA damage. We found that EdU can be used not only for pulse but also for continuous cell labeling and henceforth in high resolution EdU/Hoechst quenching assays. BrdU and EdU proliferation assays based on click chemistry revealed comparable results. However, cell viability of SK-BR-3 breast cancer cells was highly affected by long term exposure to EdU. Both SK-BR-3 as well as BT474 cells show cell cycle arrests upon long term EdU treatment whereas only SK-BR-3 cells were driven into necrotic cell death by long term exposure to EdU. In contrast BT474 cells appeared essentially unharmed by EdU treatment in terms of viability. Consequently using EdU enables highly sensitive and quantitative detection of proliferating cells and facilitates even continuous cell cycle assessment. Nevertheless, potential cellular susceptibility needs to be individually evaluated.

  1. Microarray gene expression analysis to evaluate cell type specific expression of targets relevant for immunotherapy of hematological malignancies

    NARCIS (Netherlands)

    M.J. Pont (Margot); M.W. Honders; A.N. Kremer; C. van Kooten (Cees); C. Out; P.S. Hiemstra (Pieter); H.C. De Boer; M.J. Jager (Martine); E. Schmelzer; R.G.J. Vries (Robert); A.S. Al Hinai; W.G. Kroes (W.); R. Monajemi (Ramin); J.J. Goeman (Jelle); S. Böhringer (Stefan); W.A.F. Marijt; J.H.F. Falkenburg (Frederik); M. Griffioen

    2016-01-01

    textabstractCellular immunotherapy has proven to be effective in the treatment of hematological cancers by donor lymphocyte infusion after allogeneic hematopoietic stem cell transplantation and more recently by targeted therapy with chimeric antigen or T-cell receptor-engineered T cells. However, de

  2. The phosphorylated C-terminus of cAR1 plays a role in cell-type-specific gene expression and STATa tyrosine phosphorylation.

    Science.gov (United States)

    Briscoe, C; Moniakis, J; Kim, J Y; Brown, J M; Hereld, D; Devreotes, P N; Firtel, R A

    2001-05-01

    cAMP receptors mediate some signaling pathways via coupled heterotrimeric G proteins, while others are G-protein-independent. This latter class includes the activation of the transcription factors GBF and STATa. Within the cellular mounds formed by aggregation of Dictyostelium, micromolar levels of cAMP activate GBF function, thereby inducing the transcription of postaggregative genes and initiating multicellular differentiation. Activation of STATa, a regulator of culmination and ecmB expression, results from cAMP receptor-dependent tyrosine phosphorylation and nuclear localization, also in mound-stage cells. During mound development, the cAMP receptor cAR1 is in a low-affinity state and is phosphorylated on multiple serine residues in its C-terminus. This paper addresses possible roles of cAMP receptor phosphorylation in the cAMP-mediated stimulation of GBF activity, STATa tyrosine phosphorylation, and cell-type-specific gene expression. To accomplish this, we have expressed cAR1 mutants in a strain in which the endogenous cAMP receptors that mediate postaggregative gene expression in vivo are deleted. We then examined the ability of these cells to undergo morphogenesis and induce postaggregative and cell-type-specific gene expression and STATa tyrosine phosphorylation. Analysis of cAR1 mutants in which the C-terminal tail is deleted or the ligand-mediated phosphorylation sites are mutated suggests that the cAR1 C-terminus is not essential for GBF-mediated postaggregative gene expression or STATa tyrosine phosphorylation, but may play a role in regulating cell-type-specific gene expression and morphogenesis. A mutant receptor, in which the C-terminal tail is constitutively phosphorylated, exhibits constitutive activation of STATa tyrosine phosphorylation in pulsed cells in suspension and a significantly impaired ability to induce cell-type-specific gene expression. The constitutively phosphorylated receptor also exerts a partial dominant negative effect on

  3. Microarray Gene Expression Analysis to Evaluate Cell Type Specific Expression of Targets Relevant for Immunotherapy of Hematological Malignancies

    OpenAIRE

    Pont, M. J.; Honders, M.W.; Kremer, A. N.; van Kooten, C.; C Out; Hiemstra, P. S.; de Boer, H. C.; Jager, M J; Schmelzer, E; Vries, R.G.; A S Al Hinai; Kroes, W. G.; Monajemi, R.; Goeman, J.J.; Böhringer, S

    2016-01-01

    Cellular immunotherapy has proven to be effective in the treatment of hematological cancers by donor lymphocyte infusion after allogeneic hematopoietic stem cell transplantation and more recently by targeted therapy with chimeric antigen or T-cell receptor-engineered T cells. However, dependent on the tissue distribution of the antigens that are targeted, anti-tumor responses can be accompanied by undesired side effects. Therefore, detailed tissue distribution analysis is essential to estimat...

  4. Cell type-specific response to high intracellular loading of polyacrylic acid-coated magnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    Lojk J

    2015-02-01

    Full Text Available Jasna Lojk,1 Vladimir B Bregar,1 Maruša Rajh,1 Katarina Miš,2 Mateja Erdani Kreft,3 Sergej Pirkmajer,2 Peter Veranič,3 Mojca Pavlin1 1Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, 2Institute of Pathophysiology, Faculty of Medicine, 3Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia Abstract: Magnetic nanoparticles (NPs are a special type of NP with a ferromagnetic, electron-dense core that enables several applications such as cell tracking, hyperthermia, and magnetic separation, as well as multimodality. So far, superparamagnetic iron oxide NPs (SPIONs are the only clinically approved type of metal oxide NPs, but cobalt ferrite NPs have properties suitable for biomedical applications as well. In this study, we analyzed the cellular responses to magnetic cobalt ferrite NPs coated with polyacrylic acid (PAA in three cell types: Chinese Hamster Ovary (CHO, mouse melanoma (B16 cell line, and primary human myoblasts (MYO. We compared the internalization pathway, intracellular trafficking, and intracellular fate of our NPs using fluorescence and transmission electron microscopy (TEM as well as quantified NP uptake and analyzed uptake dynamics. We determined cell viability after 24 or 96 hours’ exposure to increasing concentrations of NPs, and quantified the generation of reactive oxygen species (ROS upon 24 and 48 hours’ exposure. Our NPs have been shown to readily enter and accumulate in cells in high quantities using the same two endocytic pathways; mostly by macropinocytosis and partially by clathrin-mediated endocytosis. The cell types differed in their uptake rate, the dynamics of intracellular trafficking, and the uptake capacity, as well as in their response to higher concentrations of internalized NPs. The observed differences in cell responses stress the importance of evaluation of NP–cell interactions on several different cell types for better

  5. Identifying Cell Type-Specific Transcription Factors by Integrating ChIP-seq and eQTL Data-Application to Monocyte Gene Regulation.

    Science.gov (United States)

    Choudhury, Mudra; Ramsey, Stephen A

    2016-01-01

    We describe a novel computational approach to identify transcription factors (TFs) that are candidate regulators in a human cell type of interest. Our approach involves integrating cell type-specific expression quantitative trait locus (eQTL) data and TF data from chromatin immunoprecipitation-to-tag-sequencing (ChIP-seq) experiments in cell lines. To test the method, we used eQTL data from human monocytes in order to screen for TFs. Using a list of known monocyte-regulating TFs, we tested the hypothesis that the binding sites of cell type-specific TF regulators would be concentrated in the vicinity of monocyte eQTLs. For each of 397 ChIP-seq data sets, we obtained an enrichment ratio for the number of ChIP-seq peaks that are located within monocyte eQTLs. We ranked ChIP-seq data sets according to their statistical significances for eQTL overlap, and from this ranking, we observed that monocyte-regulating TFs are more highly ranked than would be expected by chance. We identified 27 TFs that had significant monocyte enrichment scores and mapped them into a protein interaction network. Our analysis uncovered two novel candidate monocyte-regulating TFs, BCLAF1 and SIN3A. Our approach is an efficient method to identify candidate TFs that can be used for any cell/tissue type for which eQTL data are available.

  6. Cell Type-Specific Activation of AKT and ERK Signaling Pathways by Small Negatively-Charged Magnetic Nanoparticles

    Science.gov (United States)

    Rauch, Jens; Kolch, Walter; Mahmoudi, Morteza

    2012-11-01

    The interaction of nanoparticles (NPs) with living organisms has become a focus of public and scientific debate due to their potential wide applications in biomedicine, but also because of unwanted side effects. Here, we show that superparamagnetic iron oxide NPs (SPIONs) with different surface coatings can differentially affect signal transduction pathways. Using isogenic pairs of breast and colon derived cell lines we found that the stimulation of ERK and AKT signaling pathways by SPIONs is selectively dependent on the cell type and SPION type. In general, cells with Ras mutations respond better than their non-mutant counterparts. Small negatively charged SPIONs (snSPIONs) activated ERK to a similar extent as epidermal growth factor (EGF), and used the same upstream signaling components including activation of the EGF receptor. Importantly, snSPIONs stimulated the proliferation of Ras transformed breast epithelial cells as efficiently as EGF suggesting that NPs can mimic physiological growth factors.

  7. Cell-Type-Specific Differentiation and Molecular Profiles in Skin Transplantation: Implication of Medical Approach for Genetic Skin Diseases

    Directory of Open Access Journals (Sweden)

    Noritaka Oyama

    2011-01-01

    Full Text Available Skin is highly accessible and valuable organ, which holds promise to accelerate the understanding of future medical innovation in association with skin transplantation, engineering, and wound healing. In skin transplantation biology, multistage and multifocal damages occur in both grafted donor and perilesional host skin and need to be repaired properly for the engraftment and maintenance of characteristic skin architecture. These local events are more unlikely to be regulated by the host immunity, because human skin transplantation has accomplished the donor skin engraftment onto the immunocompromised or immunosuppressive animals. Recent studies have emerged the importance of α-smooth muscle actin- (SMA- positive myofibroblasts, via stage- and cell-specific contribution of TGFβ, PDGF, ET-1, CCN-2 signalling pathways, and mastocyte-derived mediators (e.g., histamine and tryptase, for the functional reorganisation of the grafted skin. Moreover, particular cell lineages from bone marrow (BM cells have been shown to harbour the diferentiation capacity into multiple skin cell phenotypes, including epidermal keratinocytes and dermal endothelial cells and pericytes, undercontrolled by chemokines or cytokines. From a dermatological viewpoint, we review the recent update of cell-type- and molecular-specific action associated with reconstitution of the grafted skin and also focus on the novel application of BM transplantation medicine in genetic skin diseases.

  8. Cell type-specific modulation of lipid mediator's formation in murine adipose tissue by omega-3 fatty acids.

    Science.gov (United States)

    Kuda, Ondrej; Rombaldova, Martina; Janovska, Petra; Flachs, Pavel; Kopecky, Jan

    2016-01-15

    Mutual interactions between adipocytes and immune cells in white adipose tissue (WAT) are involved in modulation of lipid metabolism in the tissue and also in response to omega-3 polyunsaturated fatty acids (PUFA), which counteract adverse effects of obesity. This complex interplay depends in part on in situ formed anti- as well as pro-inflammatory lipid mediators, but cell types engaged in the synthesis of the specific mediators need to be better characterized. We used tissue fractionation and metabolipidomic analysis to identify cells producing lipid mediators in epididymal WAT of mice fed for 5 weeks obesogenic high-fat diet (lipid content 35% wt/wt), which was supplemented or not by omega-3 PUFA (4.3 mg eicosapentaenoic acid and 14.7 mg docosahexaenoic acid per g of diet). Our results demonstrate selective increase in levels of anti-inflammatory lipid mediators in WAT in response to omega-3, reflecting either their association with adipocytes (endocannabinoid-related N-docosahexaenoylethanolamine) or with stromal vascular cells (pro-resolving lipid mediator protectin D1). In parallel, tissue levels of obesity-associated pro-inflammatory endocannabinoids were suppressed. Moreover, we show that adipose tissue macrophages (ATMs), which could be isolated using magnetic force from the stromal vascular fraction, are not the major producers of protectin D1 and that omega-3 PUFA lowered lipid load in ATMs while promoting their less-inflammatory phenotype. Taken together, these results further document specific roles of various cell types in WAT in control of WAT inflammation and metabolism and they suggest that also other cells but ATMs are engaged in production of pro-resolving lipid mediators in response to omega-3 PUFA.

  9. A roadmap of cell-type specific gene expression during sequential stages of the arbuscular mycorrhiza symbiosis

    Science.gov (United States)

    2013-01-01

    Background About 80% of today’s land plants are able to establish an arbuscular mycorrhizal (AM) symbiosis with Glomeromycota fungi to improve their access to nutrients and water in the soil. On the molecular level, the development of AM symbioses is only partly understood, due to the asynchronous development of the microsymbionts in the host roots. Although many genes specifically activated during fungal colonization have been identified, genome-wide information on the exact place and time point of their activation remains limited. Results In this study, we relied on a combination of laser-microdissection and the use of Medicago GeneChips to perform a genome-wide analysis of transcription patterns in defined cell-types of Medicago truncatula roots mycorrhized with Glomus intraradices. To cover major stages of AM development, we harvested cells at 5-6 and at 21 days post inoculation (dpi). Early developmental stages of the AM symbiosis were analysed by monitoring gene expression in appressorial and non-appressorial areas from roots harbouring infection units at 5-6 dpi. Here, the use of laser-microdissection for the first time enabled the targeted harvest of those sites, where fungal hyphae first penetrate the root. Circumventing contamination with developing arbuscules, we were able to specifically detect gene expression related to early infection events. To cover the late stages of AM formation, we studied arbusculated cells, cortical cells colonized by intraradical hyphae, and epidermal cells from mature mycorrhizal roots at 21 dpi. Taken together, the cell-specific expression patterns of 18014 genes were revealed, including 1392 genes whose transcription was influenced by mycorrhizal colonization at different stages, namely the pre-contact phase, the infection of roots via fungal appressoria, the subsequent colonization of the cortex by fungal hyphae, and finally the formation of arbuscules. Our cellular expression patterns identified distinct groups of AM

  10. Cell-type-specific circuit connectivity of hippocampal CA1 revealed through Cre-dependent rabies tracing.

    Science.gov (United States)

    Sun, Yanjun; Nguyen, Amanda Q; Nguyen, Joseph P; Le, Luc; Saur, Dieter; Choi, Jiwon; Callaway, Edward M; Xu, Xiangmin

    2014-04-10

    We developed and applied a Cre-dependent, genetically modified rabies-based tracing system to map direct synaptic connections to specific CA1 neuron types in the mouse hippocampus. We found common inputs to excitatory and inhibitory CA1 neurons from CA3, CA2, the entorhinal cortex (EC), the medial septum (MS), and, unexpectedly, the subiculum. Excitatory CA1 neurons receive inputs from both cholinergic and GABAergic MS neurons, whereas inhibitory neurons receive a great majority of inputs from GABAergic MS neurons. Both cell types also receive weaker input from glutamatergic MS neurons. Comparisons of inputs to CA1 PV+ interneurons versus SOM+ interneurons showed similar strengths of input from the subiculum, but PV+ interneurons received much stronger input than SOM+ neurons from CA3, the EC, and the MS. Thus, rabies tracing identifies hippocampal circuit connections and maps how the different input sources to CA1 are distributed with different strengths on each of its constituent cell types.

  11. The intestinal epithelium during damage and regeneration : cell type-specific responses in experimental colitis and after cytostatic drug treatment

    NARCIS (Netherlands)

    I.B. Renes (Ingrid)

    2002-01-01

    textabstractIn the first part of this thesis the role of the colonic epithelium and in particular its associated mucus-layer during IBD and in several experimental colitis models is discussed (Chapter 2). In Chapter 3-5 our investigations regarding the colonic epithelium in rat during the different

  12. Research data supporting “Towards Cellular Sieving: Exploring the Limits of Scaffold Accessibility for Cell-Type Specific Invasion”

    OpenAIRE

    Ashworth, Jennifer C; Mehr, Marco; Buxton, Paul G.; Best, Serena M.; Cameron, Ruth E.

    2016-01-01

    Zip folder containing sample reconstructed Micro-CT scans (.tif files) from each scaffold condition. Image pixel size is 3.1 μm. Each image plane is perpendicular to the direction of cell invasion (i.e. parallel to the seeding plane). Two Microsoft Excel files, containing the raw measurements of pore size and of L and d (as defined in the manuscript) for calculation of percolation diameter. Units are in pixels unless specified. Zip folder containing raw images (.png files) of each scaffold se...

  13. Cell-Type-Specific Circuit Connectivity of Hippocampal CA1 Revealed through Cre-Dependent Rabies Tracing

    Directory of Open Access Journals (Sweden)

    Yanjun Sun

    2014-04-01

    Full Text Available We developed and applied a Cre-dependent, genetically modified rabies-based tracing system to map direct synaptic connections to specific CA1 neuron types in the mouse hippocampus. We found common inputs to excitatory and inhibitory CA1 neurons from CA3, CA2, the entorhinal cortex (EC, the medial septum (MS, and, unexpectedly, the subiculum. Excitatory CA1 neurons receive inputs from both cholinergic and GABAergic MS neurons, whereas inhibitory neurons receive a great majority of inputs from GABAergic MS neurons. Both cell types also receive weaker input from glutamatergic MS neurons. Comparisons of inputs to CA1 PV+ interneurons versus SOM+ interneurons showed similar strengths of input from the subiculum, but PV+ interneurons received much stronger input than SOM+ neurons from CA3, the EC, and the MS. Thus, rabies tracing identifies hippocampal circuit connections and maps how the different input sources to CA1 are distributed with different strengths on each of its constituent cell types.

  14. Opening up the blackbox: an interpretable deep neural network-based classifier for cell-type specific enhancer predictions

    OpenAIRE

    Kim, Seong Gon; Theera-Ampornpunt, Nawanol; Fang, Chih-Hao; Harwani, Mrudul; Grama, Ananth; Chaterji, Somali

    2016-01-01

    Background Gene expression is mediated by specialized cis-regulatory modules (CRMs), the most prominent of which are called enhancers. Early experiments indicated that enhancers located far from the gene promoters are often responsible for mediating gene transcription. Knowing their properties, regulatory activity, and genomic targets is crucial to the functional understanding of cellular events, ranging from cellular homeostasis to differentiation. Recent genome-wide investigation of epigeno...

  15. The Stage- and Cell Type-Specific Localization of Fragile X Mental Retardation Protein in Rat Ovaries.

    Science.gov (United States)

    Takahashi, Noriyuki; Tarumi, Wataru; Itoh, Masanori T; Ishizuka, Bunpei

    2015-12-01

    Premutations of the fragile X mental retardation 1 (FMR1) gene are associated with increased risk of primary ovarian insufficiency. Here we examined the localization of the Fmr1 gene protein product, fragile X mental retardation protein (FMRP), in rat ovaries at different stages, including fetus, neonate, and old age. In ovaries dissected from 19 days postcoitum embryos, the germ cells were divided into 2 types: one with decondensed chromatin in the nucleus was FMRP positive in the cytoplasm, but the other with strongly condensed chromatin in the nucleus was FMRP negative in the cytoplasm. The FMRP was predominantly localized to the cytoplasm of oocytes in growing ovarian follicles. Levels of FMRP in oocytes from elderly (9 or 14 months of age) ovaries were lower than in those from younger ovaries. These results suggest that FMRP is associated with the activation of oogenesis and oocyte function. Especially, FMRP is likely to be implicated in germline development during oogenesis.

  16. An atlas for Schistosoma mansoni organs and life-cycle stages using cell type-specific markers and confocal microscopy.

    Directory of Open Access Journals (Sweden)

    James J Collins

    Full Text Available Schistosomiasis (bilharzia is a tropical disease caused by trematode parasites (Schistosoma that affects hundreds of millions of people in the developing world. Currently only a single drug (praziquantel is available to treat this disease, highlighting the importance of developing new techniques to study Schistosoma. While molecular advances, including RNA interference and the availability of complete genome sequences for two Schistosoma species, will help to revolutionize studies of these animals, an array of tools for visualizing the consequences of experimental perturbations on tissue integrity and development needs to be made widely available. To this end, we screened a battery of commercially available stains, antibodies and fluorescently labeled lectins, many of which have not been described previously for analyzing schistosomes, for their ability to label various cell and tissue types in the cercarial stage of S. mansoni. This analysis uncovered more than 20 new markers that label most cercarial tissues, including the tegument, the musculature, the protonephridia, the secretory system and the nervous system. Using these markers we present a high-resolution visual depiction of cercarial anatomy. Examining the effectiveness of a subset of these markers in S. mansoni adults and miracidia, we demonstrate the value of these tools for labeling tissues in a variety of life-cycle stages. The methodologies described here will facilitate functional analyses aimed at understanding fundamental biological processes in these parasites.

  17. Mapping mammalian cell-type-specific transcriptional regulatory networks using KD-CAGE and ChIP-seq data in the TC-YIK cell line.

    Directory of Open Access Journals (Sweden)

    Marina eLizio

    2015-11-01

    Full Text Available Mammals are composed of hundreds of different cell types with specialized functions. Each of these cellular phenotypes are controlled by different combinations of transcription factors. Using a human non islet cell insulinoma cell line (TC-YIK which expresses insulin and the majority of known pancreatic beta cell specific genes as an example, we describe a general approach to identify key cell-type-specific transcription factors (TFs and their direct and indirect targets. By ranking all human TFs by their level of enriched expression in TC-YIK relative to a broad collection of samples (FANTOM5, we confirmed known key regulators of pancreatic function and development. Systematic siRNA mediated perturbation of these TFs followed by qRT-PCR revealed their interconnections with NEUROD1 at the top of the regulation hierarchy and its depletion drastically reducing insulin levels. For 15 of the TF knock-downs (KD, we then used Cap Analysis of Gene Expression (CAGE to identify thousands of their targets genome-wide (KD-CAGE. The data confirm NEUROD1 as a key positive regulator in the transcriptional regulatory network (TRN, and ISL1 and PROX1 as antagonists. As a complimentary approach we used ChIP-seq on four of these factors to identify NEUROD1, LMX1A, PAX6 and RFX6 binding sites in the human genome. Examining the overlap between genes perturbed in the KD-CAGE experiments and genes with a ChIP-seq peak within 1kb of their promoter, we identified direct transcriptional targets of these TFs. Integration of KD-CAGE and ChIP-seq data shows that both NEUROD1 and LMX1A work as the main transcriptional activators. In the core TRN (i.e. TF-TF only, NEUROD1 directly transcriptionally activates the pancreatic TFs HSF4, INSM1, MLXIPL, MYT1, NKX6-3, ONECUT2, PAX4, PROX1, RFX6, ST18, DACH1 and SHOX2, while LMX1A directly transcriptionally activates DACH1, SHOX2, PAX6 and PDX1. Analysis of these complementary datasets suggests the need for caution in interpreting

  18. Mapping Mammalian Cell-type-specific Transcriptional Regulatory Networks Using KD-CAGE and ChIP-seq Data in the TC-YIK Cell Line.

    Science.gov (United States)

    Lizio, Marina; Ishizu, Yuri; Itoh, Masayoshi; Lassmann, Timo; Hasegawa, Akira; Kubosaki, Atsutaka; Severin, Jessica; Kawaji, Hideya; Nakamura, Yukio; Suzuki, Harukazu; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R R

    2015-01-01

    Mammals are composed of hundreds of different cell types with specialized functions. Each of these cellular phenotypes are controlled by different combinations of transcription factors. Using a human non islet cell insulinoma cell line (TC-YIK) which expresses insulin and the majority of known pancreatic beta cell specific genes as an example, we describe a general approach to identify key cell-type-specific transcription factors (TFs) and their direct and indirect targets. By ranking all human TFs by their level of enriched expression in TC-YIK relative to a broad collection of samples (FANTOM5), we confirmed known key regulators of pancreatic function and development. Systematic siRNA mediated perturbation of these TFs followed by qRT-PCR revealed their interconnections with NEUROD1 at the top of the regulation hierarchy and its depletion drastically reducing insulin levels. For 15 of the TF knock-downs (KD), we then used Cap Analysis of Gene Expression (CAGE) to identify thousands of their targets genome-wide (KD-CAGE). The data confirm NEUROD1 as a key positive regulator in the transcriptional regulatory network (TRN), and ISL1, and PROX1 as antagonists. As a complimentary approach we used ChIP-seq on four of these factors to identify NEUROD1, LMX1A, PAX6, and RFX6 binding sites in the human genome. Examining the overlap between genes perturbed in the KD-CAGE experiments and genes with a ChIP-seq peak within 50 kb of their promoter, we identified direct transcriptional targets of these TFs. Integration of KD-CAGE and ChIP-seq data shows that both NEUROD1 and LMX1A work as the main transcriptional activators. In the core TRN (i.e., TF-TF only), NEUROD1 directly transcriptionally activates the pancreatic TFs HSF4, INSM1, MLXIPL, MYT1, NKX6-3, ONECUT2, PAX4, PROX1, RFX6, ST18, DACH1, and SHOX2, while LMX1A directly transcriptionally activates DACH1, SHOX2, PAX6, and PDX1. Analysis of these complementary datasets suggests the need for caution in interpreting Ch

  19. Triiodothyronine regulates angiogenic growth factor and cytokine secretion by isolated human decidual cells in a cell-type specific and gestational age-dependent manner

    Science.gov (United States)

    Vasilopoulou, E.; Loubière, L.S.; Lash, G.E.; Ohizua, O.; McCabe, C.J.; Franklyn, J.A.; Kilby, M.D.; Chan, S.Y.

    2014-01-01

    , TRβ1) required for thyroid hormone-responsiveness in uNK cells and macrophages from the first trimester. The viability of total decidual cells and the different cell isolates were unaffected by T3 so changes in cell numbers could not account for any observed effects. In the first trimester, T3 decreased VEGF-A secretion by total decidual cells (P < 0.05) and increased angiopoietin-2 secretion by stromal-depleted cells (P < 0.05) but in the second trimester total decidual cells showed only increased angiogenin secretion (P < 0.05). In the first trimester, T3 reduced IL-10 secretion by total decidual cells (P < 0.05), and reduced granulocyte macrophage colony stimulating factor (P < 0.01), IL-8 (P < 0.05), IL-10 (P < 0.01), IL-1β (P < 0.05) and monocyte chemotactic protein -1 (P < 0.001) secretion by macrophages, but increased tumour necrosis factor-α secretion by stromal-depleted cells (P < 0.05) and increased IL-6 by uNK cells (P < 0.05). In contrast, in the second trimester T3 increased IL-10 secretion by total decidual cells (P < 0.01) but did not affect cytokine secretion by uNK cells and macrophages. Conditioned media from first trimester T3-treated total decidual cells and macrophages did not alter EVT invasion compared with untreated controls. Thus, treatment of decidual cells with T3 resulted in changes in both angiogenic growth factor and cytokine secretion in a cell type-specific and gestational age-dependent manner, with first trimester decidual macrophages being the most responsive to T3 treatment, but these changes in decidual cell secretome did not affect EVT invasion in vitro. LIMITATIONS, REASONS FOR CAUTION Our results are based on in vitro findings and we cannot be certain if a similar response occurs in human pregnancy in vivo. WIDER IMPLICATIONS OF THE FINDINGS Optimal maternal thyroid hormone concentrations could play a critical role in maintaining a balanced inflammatory response in early pregnancy to prevent fetal immune rejection and promote

  20. Cell type-specific transcriptome analysis reveals a major role for Zeb1 and miR-200b in mouse inner ear morphogenesis.

    Directory of Open Access Journals (Sweden)

    Ronna Hertzano

    2011-09-01

    Full Text Available Cellular heterogeneity hinders the extraction of functionally significant results and inference of regulatory networks from wide-scale expression profiles of complex mammalian organs. The mammalian inner ear consists of the auditory and vestibular systems that are each composed of hair cells, supporting cells, neurons, mesenchymal cells, other epithelial cells, and blood vessels. We developed a novel protocol to sort auditory and vestibular tissues of newborn mouse inner ears into their major cellular components. Transcriptome profiling of the sorted cells identified cell type-specific expression clusters. Computational analysis detected transcription factors and microRNAs that play key roles in determining cell identity in the inner ear. Specifically, our analysis revealed the role of the Zeb1/miR-200b pathway in establishing epithelial and mesenchymal identity in the inner ear. Furthermore, we detected a misregulation of the ZEB1 pathway in the inner ear of Twirler mice, which manifest, among other phenotypes, malformations of the auditory and vestibular labyrinth. The association of misregulation of the ZEB1/miR-200b pathway with auditory and vestibular defects in the Twirler mutant mice uncovers a novel mechanism underlying deafness and balance disorders. Our approach can be employed to decipher additional complex regulatory networks underlying other hearing and balance mouse mutants.

  1. Correlation of mRNA and protein levels: Cell type-specific gene expression of cluster designation antigens in the prostate

    Directory of Open Access Journals (Sweden)

    Deutsch Eric W

    2008-05-01

    Full Text Available Abstract Background: Expression levels of mRNA and protein by cell types exhibit a range of correlations for different genes. In this study, we compared levels of mRNA abundance for several cluster designation (CD genes determined by gene arrays using magnetic sorted and laser-capture microdissected human prostate cells with levels of expression of the respective CD proteins determined by immunohistochemical staining in the major cell types of the prostate – basal epithelial, luminal epithelial, stromal fibromuscular, and endothelial – and for prostate precursor/stem cells and prostate carcinoma cells. Immunohistochemical stains of prostate tissues from more than 50 patients were scored for informative CD antigen expression and compared with cell-type specific transcriptomes. Results: Concordance between gene and protein expression findings based on 'present' vs. 'absent' calls ranged from 46 to 68%. Correlation of expression levels was poor to moderate (Pearson correlations ranged from 0 to 0.63. Divergence between the two data types was most frequently seen for genes whose array signals exceeded background (> 50 but lacked immunoreactivity by immunostaining. This could be due to multiple factors, e.g. low levels of protein expression, technological sensitivities, sample processing, probe set definition or anatomical origin of tissue and actual biological differences between transcript and protein abundance. Conclusion: Agreement between these two very different methodologies has great implications for their respective use in both molecular studies and clinical trials employing molecular biomarkers.

  2. Regional and cell-type-specific effects of DAMGO on striatal D1 and D2 dopamine receptor-expressing medium-sized spiny neurons

    Directory of Open Access Journals (Sweden)

    Christopher J Evans

    2012-03-01

    Full Text Available The striatum can be divided into the DLS (dorsolateral striatum and the VMS (ventromedial striatum, which includes NAcC (nucleus accumbens core and NAcS (nucleus accumbens shell. Here, we examined differences in electrophysiological properties of MSSNs (medium-sized spiny neurons based on their location, expression of DA (dopamine D1/D2 receptors and responses to the μ-opioid receptor agonist, DAMGO {[D-Ala2-MePhe4-Gly(ol5]enkephalin}. The main differences in morphological and biophysical membrane properties occurred among striatal sub-regions. MSSNs in the DLS were larger, had higher membrane capacitances and lower Rin (input resistances compared with cells in the VMS. RMPs (resting membrane potentials were similar among regions except for D2 cells in the NAcC, which displayed a significantly more depolarized RMP. In contrast, differences in frequency of spontaneous excitatory synaptic inputs were more prominent between cell types, with D2 cells receiving significantly more excitatory inputs than D1 cells, particularly in the VMS. Inhibitory inputs were not different between D1 and D2 cells. However, MSSNs in the VMS received more inhibitory inputs than those in the DLS. Acute application of DAMGO reduced the frequency of spontaneous excitatory and inhibitory postsynaptic currents, but the effect was greater in the VMS, in particular in the NAcS, where excitatory currents from D2 cells and inhibitory currents from D1 cells were inhibited by the largest amount. DAMGO also increased cellular excitability in the VMS, as shown by reduced threshold for evoking APs (action potentials. Together the present findings help elucidate the regional and cell-type-specific substrate of opioid actions in the striatum and point to the VMS as a critical mediator of DAMGO effects.

  3. Global mapping of cell type-specific open chromatin by FAIRE-seq reveals the regulatory role of the NFI family in adipocyte differentiation.

    Directory of Open Access Journals (Sweden)

    Hironori Waki

    2011-10-01

    Full Text Available Identification of regulatory elements within the genome is crucial for understanding the mechanisms that govern cell type-specific gene expression. We generated genome-wide maps of open chromatin sites in 3T3-L1 adipocytes (on day 0 and day 8 of differentiation and NIH-3T3 fibroblasts using formaldehyde-assisted isolation of regulatory elements coupled with high-throughput sequencing (FAIRE-seq. FAIRE peaks at the promoter were associated with active transcription and histone modifications of H3K4me3 and H3K27ac. Non-promoter FAIRE peaks were characterized by H3K4me1+/me3-, the signature of enhancers, and were largely located in distal regions. The non-promoter FAIRE peaks showed dynamic change during differentiation, while the promoter FAIRE peaks were relatively constant. Functionally, the adipocyte- and preadipocyte-specific non-promoter FAIRE peaks were, respectively, associated with genes up-regulated and down-regulated by differentiation. Genes highly up-regulated during differentiation were associated with multiple clustered adipocyte-specific FAIRE peaks. Among the adipocyte-specific FAIRE peaks, 45.3% and 11.7% overlapped binding sites for, respectively, PPARγ and C/EBPα, the master regulators of adipocyte differentiation. Computational motif analyses of the adipocyte-specific FAIRE peaks revealed enrichment of a binding motif for nuclear family I (NFI transcription factors. Indeed, ChIP assay showed that NFI occupy the adipocyte-specific FAIRE peaks and/or the PPARγ binding sites near PPARγ, C/EBPα, and aP2 genes. Overexpression of NFIA in 3T3-L1 cells resulted in robust induction of these genes and lipid droplet formation without differentiation stimulus. Overexpression of dominant-negative NFIA or siRNA-mediated knockdown of NFIA or NFIB significantly suppressed both induction of genes and lipid accumulation during differentiation, suggesting a physiological function of these factors in the adipogenic program. Together, our

  4. Staphylococcus aureus alpha-toxin mediates general and cell type-specific changes in metabolite concentrations of immortalized human airway epithelial cells.

    Directory of Open Access Journals (Sweden)

    Philipp Gierok

    Full Text Available Staphylococcus aureus alpha-toxin (Hla is a potent pore-forming cytotoxin that plays an important role in the pathogenesis of S. aureus infections, including pneumonia. The impact of Hla on the dynamics of the metabolome in eukaryotic host cells has not been investigated comprehensively. Using 1H-NMR, GC-MS and HPLC-MS, we quantified the concentrations of 51 intracellular metabolites and assessed alterations in the amount of 25 extracellular metabolites in the two human bronchial epithelial cell lines S9 and 16HBE14o- under standard culture conditions and after treatment with sub-lethal amounts (2 µg/ml of recombinant Hla (rHla in a time-dependent manner. Treatment of cells with rHla caused substantial decreases in the concentrations of intracellular metabolites from different metabolic pathways in both cell lines, including ATP and amino acids. Concomitant increases in the extracellular concentrations were detected for various intracellular compounds, including nucleotides, glutathione disulfide and NAD+. Our results indicate that rHla has a major impact on the metabolome of eukaryotic cells as a consequence of direct rHla-mediated alterations in plasma membrane permeability or indirect effects mediated by cellular signalling. However, cell-specific changes also were observed. Glucose consumption and lactate production rates suggest that the glycolytic activity of S9 cells, but not of 16HBE14o- cells, is increased in response to rHla. This could contribute to the observed higher level of resistance of S9 cells against rHla-induced membrane damage.

  5. Cell-type-specific and differentiation-status-dependent variations in cytotoxicity of tributyltin in cultured rat cerebral neurons and astrocytes.

    Science.gov (United States)

    Oyanagi, Koshi; Tashiro, Tomoko; Negishi, Takayuki

    2015-08-01

    Tributyltin (TBT) is an organotin used as an anti-fouling agent for fishing nets and ships and it is a widespread environmental contaminant at present. There is an increasing concern about imperceptible but serious adverse effect(s) of exposure to chemicals existing in the environment on various organs and their physiological functions, e.g. brain and mental function. Here, so as to contribute to improvement of and/or advances in in vitro cell-based assay systems for evaluating brain-targeted adverse effect of chemicals, we tried to evaluate cell-type-specific and differentiation-status-dependent variations in the cytotoxicity of TBT towards neurons and astrocytes using the four culture systems differing in the relative abundance of these two types of cells; primary neuron culture (> 95% neurons), primary neuron-astrocyte (2 : 1) mix culture, primary astrocyte culture (> 95% astrocytes), and passaged astrocyte culture (100% proliferative astrocytes). Cell viability was measured at 48 hr after exposure to TBT in serum-free medium. IC50's of TBT were 198 nM in primary neuron culture, 288 nM in primary neuron-astrocyte mix culture, 2001 nM in primary astrocyte culture, and 1989 nM in passaged astrocyte culture. Furthermore, in primary neuron-astrocyte mix culture, vulnerability of neurons cultured along with astrocytes to TBT toxicity was lower than that of neurons cultured purely in primary neuron culture. On the other hand, astrocytes in primary neuron-astrocyte mix culture were considered to be more vulnerable to TBT than those in primary or passaged astrocyte culture. The present study demonstrated variable cytotoxicity of TBT in neural cells depending on the culture condition.

  6. Cell type specific DNA methylation in cord blood: A 450K-reference data set and cell count-based validation of estimated cell type composition.

    Science.gov (United States)

    Gervin, Kristina; Page, Christian Magnus; Aass, Hans Christian D; Jansen, Michelle A; Fjeldstad, Heidi Elisabeth; Andreassen, Bettina Kulle; Duijts, Liesbeth; van Meurs, Joyce B; van Zelm, Menno C; Jaddoe, Vincent W; Nordeng, Hedvig; Knudsen, Gunn Peggy; Magnus, Per; Nystad, Wenche; Staff, Anne Cathrine; Felix, Janine F; Lyle, Robert

    2016-09-01

    Epigenome-wide association studies of prenatal exposure to different environmental factors are becoming increasingly common. These studies are usually performed in umbilical cord blood. Since blood comprises multiple cell types with specific DNA methylation patterns, confounding caused by cellular heterogeneity is a major concern. This can be adjusted for using reference data consisting of DNA methylation signatures in cell types isolated from blood. However, the most commonly used reference data set is based on blood samples from adult males and is not representative of the cell type composition in neonatal cord blood. The aim of this study was to generate a reference data set from cord blood to enable correct adjustment of the cell type composition in samples collected at birth. The purity of the isolated cell types was very high for all samples (>97.1%), and clustering analyses showed distinct grouping of the cell types according to hematopoietic lineage. We explored whether this cord blood and the adult peripheral blood reference data sets impact the estimation of cell type composition in cord blood samples from an independent birth cohort (MoBa, n = 1092). This revealed significant differences for all cell types. Importantly, comparison of the cell type estimates against matched cell counts both in the cord blood reference samples (n = 11) and in another independent birth cohort (Generation R, n = 195), demonstrated moderate to high correlation of the data. This is the first cord blood reference data set with a comprehensive examination of the downstream application of the data through validation of estimated cell types against matched cell counts.

  7. The multifunctional FUS, EWS and TAF15 proto-oncoproteins show cell type-specific expression patterns and involvement in cell spreading and stress response

    Directory of Open Access Journals (Sweden)

    Stenman Göran

    2008-07-01

    Full Text Available Abstract Background FUS, EWS and TAF15 are structurally similar multifunctional proteins that were first discovered upon characterization of fusion oncogenes in human sarcomas and leukemias. The proteins belong to the FET (previously TET family of RNA-binding proteins and are implicated in central cellular processes such as regulation of gene expression, maintenance of genomic integrity and mRNA/microRNA processing. In the present study, we investigated the expression and cellular localization of FET proteins in multiple human tissues and cell types. Results FUS, EWS and TAF15 were expressed in both distinct and overlapping patterns in human tissues. The three proteins showed almost ubiquitous nuclear expression and FUS and TAF15 were in addition present in the cytoplasm of most cell types. Cytoplasmic EWS was more rarely detected and seen mainly in secretory cell types. Furthermore, FET expression was downregulated in differentiating human embryonic stem cells, during induced differentiation of neuroblastoma cells and absent in terminally differentiated melanocytes and cardiac muscle cells. The FET proteins were targeted to stress granules induced by heat shock and oxidative stress and FUS required its RNA-binding domain for this translocation. Furthermore, FUS and TAF15 were detected in spreading initiation centers of adhering cells. Conclusion Our results point to cell-specific expression patterns and functions of the FET proteins rather than the housekeeping roles inferred from earlier studies. The localization of FET proteins to stress granules suggests activities in translational regulation during stress conditions. Roles in central processes such as stress response, translational control and adhesion may explain the FET proteins frequent involvement in human cancer.

  8. p53 shapes genome-wide and cell type-specific changes in microRNA expression during the human DNA damage response.

    Science.gov (United States)

    Hattori, Hiroyoshi; Janky, Rekin's; Nietfeld, Wilfried; Aerts, Stein; Madan Babu, M; Venkitaraman, Ashok R

    2014-01-01

    The human DNA damage response (DDR) triggers profound changes in gene expression, whose nature and regulation remain uncertain. Although certain micro-(mi)RNA species including miR34, miR-18, miR-16 and miR-143 have been implicated in the DDR, there is as yet no comprehensive description of genome-wide changes in the expression of miRNAs triggered by DNA breakage in human cells. We have used next-generation sequencing (NGS), combined with rigorous integrative computational analyses, to describe genome-wide changes in the expression of miRNAs during the human DDR. The changes affect 150 of 1523 miRNAs known in miRBase v18 from 4-24 h after the induction of DNA breakage, in cell-type dependent patterns. The regulatory regions of the most-highly regulated miRNA species are enriched in conserved binding sites for p53. Indeed, genome-wide changes in miRNA expression during the DDR are markedly altered in TP53-/- cells compared to otherwise isogenic controls. The expression levels of certain damage-induced, p53-regulated miRNAs in cancer samples correlate with patient survival. Our work reveals genome-wide and cell type-specific alterations in miRNA expression during the human DDR, which are regulated by the tumor suppressor protein p53. These findings provide a genomic resource to identify new molecules and mechanisms involved in the DDR, and to examine their role in tumor suppression and the clinical outcome of cancer patients.

  9. Modeling of autosomal-dominant retinitis pigmentosa in Caenorhabditis elegans uncovers a nexus between global impaired functioning of certain splicing factors and cell type-specific apoptosis.

    Science.gov (United States)

    Rubio-Peña, Karinna; Fontrodona, Laura; Aristizábal-Corrales, David; Torres, Silvia; Cornes, Eric; García-Rodríguez, Francisco J; Serrat, Xènia; González-Knowles, David; Foissac, Sylvain; Porta-De-La-Riva, Montserrat; Cerón, Julián

    2015-12-01

    Retinitis pigmentosa (RP) is a rare genetic disease that causes gradual blindness through retinal degeneration. Intriguingly, seven of the 24 genes identified as responsible for the autosomal-dominant form (adRP) are ubiquitous spliceosome components whose impairment causes disease only in the retina. The fact that these proteins are essential in all organisms hampers genetic, genomic, and physiological studies, but we addressed these difficulties by using RNAi in Caenorhabditis elegans. Our study of worm phenotypes produced by RNAi of splicing-related adRP (s-adRP) genes functionally distinguishes between components of U4 and U5 snRNP complexes, because knockdown of U5 proteins produces a stronger phenotype. RNA-seq analyses of worms where s-adRP genes were partially inactivated by RNAi, revealed mild intron retention in developing animals but not in adults, suggesting a positive correlation between intron retention and transcriptional activity. Interestingly, RNAi of s-adRP genes produces an increase in the expression of atl-1 (homolog of human ATR), which is normally activated in response to replicative stress and certain DNA-damaging agents. The up-regulation of atl-1 correlates with the ectopic expression of the pro-apoptotic gene egl-1 and apoptosis in hypodermal cells, which produce the cuticle, but not in other cell types. Our model in C. elegans resembles s-adRP in two aspects: The phenotype caused by global knockdown of s-adRP genes is cell type-specific and associated with high transcriptional activity. Finally, along with a reduced production of mature transcripts, we propose a model in which the retina-specific cell death in s-adRP patients can be induced through genomic instability.

  10. Cell type-specific anti-cancer properties of valproic acid: independent effects on HDAC activity and Erk1/2 phosphorylation

    DEFF Research Database (Denmark)

    Gotfryd, Kamil; Skladchikova, Galina; Lepekhin, Eugene E

    2010-01-01

    ABSTRACT: BACKGROUND: The anti-epileptic drug valproic acid (VPA) has attracted attention as an anti-cancer agent. Methods: The present study investigated effects of VPA exposure on histone deacetylase (HDAC) inhibition, cell growth, cell speed, and the degree of Erk1/2 phosphorylation in 10 cell....../2 phosphorylation are also important for the anti-cancer properties of VPA....

  11. Antibody-based screening of cell wall matrix glycans in ferns reveals taxon, tissue and cell-type specific distribution patterns

    DEFF Research Database (Denmark)

    Leroux, Olivier; Sørensen, Iben; Marcus, Susan E.;

    2015-01-01

    plants, ferns have been largely neglected in cell wall comparative studies. Results: To explore fern cell wall diversity sets of monoclonal antibodies directed to matrix glycans of angiosperm cell walls have been used in glycan microarray and in situ analyses with 76 fern species and four species...... across the ferns and specifically associated with phloem cell walls and similarly the LM11 xylan epitope was associated with xylem cell walls. The LM5 galactan and LM6 arabinan epitopes, linked to pectic supramolecules in angiosperms, were associated with vascular structures with only limited detection...... in ground tissues. Mannan epitopes were found to be associated with the development of mechanical tissues. We provided the first evidence for the presence of MLG in leptosporangiate ferns. Conclusions: The data sets indicate that cell wall diversity in land plants is multifaceted and that matrix glycan...

  12. A type-specific nested PCR assay established and applied for investigation of HBV genotype and subgenotype in Chinese patients with chronic HBV infection

    OpenAIRE

    Nie Jing-Jing; Sun Kui-Xia; Li Jie; Wang Jie; Jin Hui; Wang Ling; Lu Feng-Min; Li Tong; Yan Ling; Yang Jing-Xian; Sun Mi-Shu; Zhuang Hui

    2012-01-01

    Abstract Background Many studies have suggested that hepatitis B virus (HBV) genotypes show not only geographical distribution and race specificity, but also are associated with disease progression and response to interferon treatment. The objective of this study was to develop a nested polymerase chain reaction (nPCR) assay for genotypes A-D and subgenotypes B1, B2, C1 and C2 of hepatitis B virus (HBV) and to investigate the distribution characteristics of HBV genotypes/subgenotype in China....

  13. Antibody-based screening of cell wall matrix glycans in ferns reveals taxon, tissue and cell-type specific distribution patterns

    DEFF Research Database (Denmark)

    Leroux, Olivier; Sørensen, Iben; Marcus, Susan E.;

    2015-01-01

    across the ferns and specifically associated with phloem cell walls and similarly the LM11 xylan epitope was associated with xylem cell walls. The LM5 galactan and LM6 arabinan epitopes, linked to pectic supramolecules in angiosperms, were associated with vascular structures with only limited detection...

  14. A type-specific nested PCR assay established and applied for investigation of HBV genotype and subgenotype in Chinese patients with chronic HBV infection

    Directory of Open Access Journals (Sweden)

    Nie Jing-Jing

    2012-06-01

    Full Text Available Abstract Background Many studies have suggested that hepatitis B virus (HBV genotypes show not only geographical distribution and race specificity, but also are associated with disease progression and response to interferon treatment. The objective of this study was to develop a nested polymerase chain reaction (nPCR assay for genotypes A-D and subgenotypes B1, B2, C1 and C2 of hepatitis B virus (HBV and to investigate the distribution characteristics of HBV genotypes/subgenotype in China. Methods After redesigning the primers and optimizing the reaction conditions using common Taq polymerase, the sensitivity, specificity and reproducibility of the method were evaluated using plasmids and serum samples. In total, 642 serum samples from patients with chronic HBV infection were applied to investigate the distribution of HBV genotype and subgenotype in China. Results The genotype and subgenotype could be identified when the HBV DNA load of a sample was ≥102.3 IU/mL. For the 639 successfully genotyped samples, the sequencing results of 130 randomly selected samples (20.3%, 130/639 were consistent with those of the nPCR method. The present study showed that HBV genotype B (11.2%, 72/642, C (68.2%, 438/642 and D (7.2%, 46/642 were circulating in China, while genotype C was the dominant strain except for western region where genotype D was the prevalent strain. The main subgenotypes of genotypes B and C were B2 (87.5%, 63/72 and C2 (92.9%, 407/438, respectively. Conclusions The low-cost nPCR method would be a useful tool for clinical and epidemiological investigation in the regions where genotypes A-D are predominant.

  15. Neuronal and glial cell type-specific promoters within adenovirus recombinants restrict the expression of the apoptosis-inducing molecule Fas ligand to predetermined brain cell types, and abolish peripheral liver toxicity.

    Science.gov (United States)

    Morelli, A E; Larregina, A T; Smith-Arica, J; Dewey, R A; Southgate, T D; Ambar, B; Fontana, A; Castro, M G; Lowenstein, P R

    1999-03-01

    Gene therapy using Fas ligand (FasL) for treatment of tumours and protection of transplant rejection is hampered because of the systemic toxicity of FasL. In the present study, recombinant replication-defective adenovirus vectors (RAds) encoding FasL under the control of either the neuronal-specific neuronal-specific enolase (NSE) promoter or the astrocyte-specific glial fibrillary acidic protein (GFAP) promoter have been constructed. The cell type-specific expression of FasL in both neurons and glial cells in primary cultures, and in neuronal and glial cell lines is demonstrated. Furthermore, transgene expression driven by the neuronal and glial promoter was not detected in fibroblastic or epithelial cell lines. Expression of FasL driven by a major immediate early human cytomegalovirus promoter (MIEhCMV) was, however, achieved in all cells tested. As a final test of the stringency of transgene-specific expression, the RAds were injected directly into the bloodstream of mice. The RAds encoding FasL under the control of the non-cell type-specific MIEhCMV promoter induced acute generalized liver haemorrhage with hepatocyte apoptosis, while the RAds containing the NSE or GFAP promoter sequences were completely non-toxic. This demonstrates the specificity of transgene expression, enhanced safety during systemic administration, and tightly regulated control of transgene expression of highly cytotoxic gene products, encoded within transcriptionally targeted RAds.

  16. High Glutathione and Glutathione Peroxidase-2 Levels Mediate Cell-Type-Specific DNA Damage Protection in Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Benjamin Dannenmann

    2015-05-01

    Full Text Available Pluripotent stem cells must strictly maintain genomic integrity to prevent transmission of mutations. In human induced pluripotent stem cells (iPSCs, we found that genome surveillance is achieved via two ways, namely, a hypersensitivity to apoptosis and a very low accumulation of DNA lesions. The low apoptosis threshold was mediated by constitutive p53 expression and a marked upregulation of proapoptotic p53 target genes of the BCL-2 family, ensuring the efficient iPSC removal upon genotoxic insults. Intriguingly, despite the elevated apoptosis sensitivity, both mitochondrial and nuclear DNA lesions induced by genotoxins were less frequent in iPSCs compared to fibroblasts. Gene profiling identified that mRNA expression of several antioxidant proteins was considerably upregulated in iPSCs. Knockdown of glutathione peroxidase-2 and depletion of glutathione impaired protection against DNA lesions. Thus, iPSCs ensure genomic integrity through enhanced apoptosis induction and increased antioxidant defense, contributing to protection against DNA damage.

  17. High frequency, cell type-specific visualization of fluorescent-tagged genomic sites in interphase and mitotic cells of living Arabidopsis plants

    Directory of Open Access Journals (Sweden)

    van der Winden Johannes

    2010-01-01

    Full Text Available Abstract Background Interphase chromosome organization and dynamics can be studied in living cells using fluorescent tagging techniques that exploit bacterial operator/repressor systems and auto-fluorescent proteins. A nuclear-localized Repressor Protein-Fluorescent Protein (RP-FP fusion protein binds to operator repeats integrated as transgene arrays at defined locations in the genome. Under a fluorescence microscope, the tagged sites appear as bright fluorescent dots in living cells. This technique has been used successfully in plants, but is often hampered by low expression of genes encoding RP-FP fusion proteins, perhaps owing to one or more gene silencing mechanisms that are prevalent in plant cells. Results We used two approaches to overcome this problem. First, we tested mutations in four factors involved in different types of gene silencing and/or epigenetic modifications for their effects on nuclear fluorescence. Only mutations in DDM1, a chromatin remodelling ATPase involved in repeat-induced heterochromatin formation and DNA methylation, released silencing of the RP-FP fusion protein. This result suggested that the operator repeats can trigger silencing of the adjacent gene encoding the RP-FP fusion protein. In the second approach, we transformed the tagged lines with a second T-DNA encoding the RP-FP fusion protein but lacking operator repeats. This strategy avoided operator repeat-induced gene silencing and increased the number of interphase nuclei displaying fluorescent dots. In a further extension of the technique, we show that green fluorescent-tagged sites can be visualized on moving mitotic chromosomes stained with red fluorescent-labelled histone H2B. Conclusions The results illustrate the propensity of operator repeat arrays to form heterochromatin that can silence the neighbouring gene encoding the RP-FP fusion protein. Supplying the RP-FP fusion protein in trans from a second T-DNA largely alleviates this problem. Depending

  18. Dynamics and Cell-Type Specificity of the DNA Double-Strand Break Repair Protein RecN in the Developmental Cyanobacterium Anabaena sp. Strain PCC 7120.

    Directory of Open Access Journals (Sweden)

    Sheng Hu

    Full Text Available DNA replication and repair are two fundamental processes required in life proliferation and cellular defense and some common proteins are involved in both processes. The filamentous cyanobacterium Anabaena sp. strain PCC 7120 is capable of forming heterocysts for N2 fixation in the absence of a combined-nitrogen source. This developmental process is intimately linked to cell cycle control. In this study, we investigated the localization of the DNA double-strand break repair protein RecN during key cellular events, such as chromosome damaging, cell division, and heterocyst differentiation. Treatment by a drug causing DNA double-strand breaks (DSBs induced reorganization of the RecN focus preferentially towards the mid-cell position. RecN-GFP was absent in most mature heterocysts. Furthermore, our results showed that HetR, a central player in heterocyst development, was involved in the proper positioning and distribution of RecN-GFP. These results showed the dynamics of RecN in DSB repair and suggested a differential regulation of DNA DSB repair in vegetative cell and heterocysts. The absence of RecN in mature heterocysts is compatible with the terminal nature of these cells.

  19. Dynamics and Cell-Type Specificity of the DNA Double-Strand Break Repair Protein RecN in the Developmental Cyanobacterium Anabaena sp. Strain PCC 7120.

    Science.gov (United States)

    Hu, Sheng; Wang, Jinglan; Wang, Li; Zhang, Cheng-Cai; Chen, Wen-Li

    2015-01-01

    DNA replication and repair are two fundamental processes required in life proliferation and cellular defense and some common proteins are involved in both processes. The filamentous cyanobacterium Anabaena sp. strain PCC 7120 is capable of forming heterocysts for N2 fixation in the absence of a combined-nitrogen source. This developmental process is intimately linked to cell cycle control. In this study, we investigated the localization of the DNA double-strand break repair protein RecN during key cellular events, such as chromosome damaging, cell division, and heterocyst differentiation. Treatment by a drug causing DNA double-strand breaks (DSBs) induced reorganization of the RecN focus preferentially towards the mid-cell position. RecN-GFP was absent in most mature heterocysts. Furthermore, our results showed that HetR, a central player in heterocyst development, was involved in the proper positioning and distribution of RecN-GFP. These results showed the dynamics of RecN in DSB repair and suggested a differential regulation of DNA DSB repair in vegetative cell and heterocysts. The absence of RecN in mature heterocysts is compatible with the terminal nature of these cells.

  20. Cell Type-Specific Delivery of RNAi by Ligand-Functionalized Curdlan Nanoparticles: Balancing the Receptor Mediation and the Charge Motivation.

    Science.gov (United States)

    Wu, Yinga; Cai, Jia; Han, Jingfen; Baigude, Huricha

    2015-09-30

    Tissue-specific delivery of therapeutic RNAi has great potential for clinical applications. Receptor-mediated endocytosis plays a crucial role in targeted delivery of biotherapeutics including short interfering RNA (siRNA). Previously we reported a novel Curdlan-based nanoparticle for intracellular delivery of siRNA. Here we designed a nanoparticle based on ligand-functionalized Curdlan. Disaccharides were site-specifically conjugated to 6-deoxy-6-amino Curdlan, and the cell line specificity, cellular uptake, cytotoxicity, and siRNA delivery efficiency of the corresponding disaccharide-modified 6-deoxy-6-amino-Curdlan were investigated. Observation by fluorescence microscopy as well as flow cytometry showed that galactose-containing Curdlan derivatives delivered fluorescently labeled short nucleic acid to HepG2 cells expressing ASGPR receptor but not in other cells lacking surface ASGPR protein. Moreover, highly galactose-substituted Curdlan derivatives delivered siRNA specifically to ASGPR-expressing cells and induced RNAi activities, silencing endogenous GAPDH gene expression. Our data demonstrated that galactose-functionalized 6-deoxy-6-amino-Curdlan is a promising carrier for short therapeutic nucleic acids for clinical applications.

  1. Cell-type-specific expression and regulation of a c-fos-NGF fusion gene in neurons and astrocytes of transgenic mice.

    Science.gov (United States)

    Onténiente, B; Horellou, P; Neveu, I; Makeh, I; Suzuki, F; Bourdet, C; Grimber, G; Colin, P; Brachet, P; Mallet, J

    1994-02-01

    A mouse line transgenic for nerve growth factor (NGF) was developed using the mouse prepro-NGF cDNA inserted within a plasmid containing the proximal region (-10 to -550 bp) of the c-fos promoter and the transcription termination and polyadenylation signals of the rabbit beta-globin gene. No significant modification of gross behavior or central nervous system anatomy was detected in adult animals as assessed by immunohistochemistry and in situ hybridization for NGF and choline acetyltransferase. The expression of the transgene and the possible regulation of its expression by agents acting on the promoter were investigated in vitro. Despite the presence of an additional pool of NGF mRNA specific to the transgene, basal levels of NGF in the supernatant of transgenic astrocytes were similar to normal ones. On the other hand, transgenic neurons spontaneously synthesized and released levels of NGF two to three times higher than normal neurons, while mRNA levels were barely detectable by conventional Northern blotting. The tissue-specificity of NGF expression was respected, with higher levels in hippocampal than neocortical neurons. Increases of NGF mRNA by agents acting on the promoter could be observed in normal and transgenic astrocytes only after inhibition of the protein synthesis by cycloheximide, suggesting a similar rapid turnover of normal and transgenic transcripts. Cyclic AMP agonists specifically increased the secretion of NGF protein by transgenic astrocytes and neurons, while activators of the protein kinase C had a similar effect on transgenic and normal cells. Differences between amounts of NGF secreted by neurons and astrocytes with regards to their respective content in mRNA suggest that transgenic transcripts are subject to normal cell- and tissue-specific post-transcriptional regulations. Agents acting on the c-fos promoter through the protein kinase C or cyclic AMP routes differentially increased the secretion of NGF by transgenic astrocytes or

  2. The M-current contributes to high threshold membrane potential oscillations in a cell type-specific way in the pedunculopontine nucleus of mice

    Directory of Open Access Journals (Sweden)

    Csilla eBordas

    2015-04-01

    Full Text Available The pedunculopontine nucleus is known as a cholinergic nucleus of the reticular activating system, participating in regulation of sleep and wakefulness. Besides cholinergic neurons, it consists of GABAergic and glutamatergic neurons as well. According to classical and recent studies, more subgroups of neurons were defined. Groups based on the neurotransmitter released by a neuron are not homogenous, but can be further subdivided.The PPN neurons do not only provide cholinergic and non-cholinergic inputs to several subcortical brain areas but they are also targets of cholinergic and other different neuromodulatory actions. Although cholinergic neuromodulation has been already investigated in the nucleus, one of its characteristic targets, the M-type potassium current has not been described yet.Using slice electrophysiology, we provide evidence in the present work that cholinergic neurons possess M-current, whereas GABAergic neurons lack it. The M-current contributes to certain functional differences of cholinergic and GABAergic neurons, as spike frequency adaptation, action potential firing frequency or the amplitude difference of medium afterhyperpolarizations. Furthermore, we showed that high threshold membrane potential oscillation with high power, around 20 Hz frequency is a functional property of almost all cholinergic cells, whereas GABAergic neurons have only low amplitude oscillations. Blockade of the M-current abolished the oscillatory activity at 20 Hz, and largely diminished it at other frequencies.Taken together, the M-current seems to be characteristic for PPN cholinergic neurons. It provides a possibility for modulating gamma band activity of these cells, thus contributing to neuromodulatory regulation of the reticular activating system.

  3. Biological adhesion of the flatworm Macrostomum lignano relies on a duo-gland system and is mediated by a cell type-specific intermediate filament protein

    NARCIS (Netherlands)

    Lengerer, Birgit; Pjeta, Robert; Wunderer, Julia; Rodrigues, Marcelo; Arbore, Roberto; Schaerer, Lukas; Berezikov, Eugene; Hess, Michael W.; Pfaller, Kristian; Egger, Bernhard; Obwegeser, Sabrina; Salvenmoser, Willi; Ladurner, Peter

    2014-01-01

    Background: Free-living flatworms, in both marine and freshwater environments, are able to adhere to and release from a substrate several times within a second. This reversible adhesion relies on adhesive organs comprised of three cell types: an adhesive gland cell, a releasing gland cell, and an an

  4. Molecular analysis of cell type-specific gene expression profile during mouse spermatogenesis by laser microdissection and qRT-PCR.

    Science.gov (United States)

    Esakky, Prabagaran; Hansen, Deborah A; Drury, Andrea M; Moley, Kelle H

    2013-03-01

    Laser microdissection (LMD) is a selective cell isolation technique that enables the separation of desired homogenous cell subpopulations from complex tissues such as the testes under direct microscopic visualization. The LMD accompanied by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) represents an indispensable tool in quantifying messenger RNA (mRNA) expression among defined cell populations. Gene expression is temporally and spatially regulated at 3 sequential phases of mitotic, meiotic, and postmeiotic stages of spermatogenesis. The present study demonstrates a short modified LMD protocol based upon hematoxylin and eosin (H&E) staining. Stage-specific LMD success was validated by the use of mRNA profiling of "marker genes" which are conserved across species and are known to be differentially expressed during spermatogenesis. Magea4, Hspa2, Cox6b2, Tnp1, Prm1, and Prm2 are used to differentiate among the microdissected cell populations, namely spermatogonia (group I), spermatocytes (group II), round and condensing spermatids (group III), and elongated and condensed spermatids (group IV), respectively. The LMD combined with qRT-PCR is further extended to assess the cell stage-specific distribution of selected stress response genes such as Hsp90aa1, Gpx4, Ucp2, Sod1, and Sod2. The germ cell-specific mRNA profiles are suitably complemented by Western blot of the LMD samples, immunohistochemistry, and confocal localization of the corresponding proteins. The current study suggests that LMD can successfully isolate cell subpopulations from the complex tissues of the testes; and establish cell stage-specific basal expression patterns of selected stress response genes and proteins. It is our hypothesis that the baseline expression of stress response genes will differ by cell stage to create discrete stage-specific vulnerabilities to reproductive toxicants.

  5. Cell-type-specific Jumonji histone demethylase gene expression in the healthy rat CNS: detection by a novel flow cytometry method

    Directory of Open Access Journals (Sweden)

    Stephanie M.C. Smith

    2014-05-01

    Full Text Available Our understanding of how histone demethylation contributes to the regulation of basal gene expression in the brain is largely unknown in any injury model, and especially in the healthy adult brain. Although Jumonji genes are often regulated transcriptionally, cell-specific gene expression of Jumonji histone demethylases in the brain remains poorly understood. Thus, in the present study we profiled the mRNA levels of 26 Jumonji genes in microglia (CD11b+, neurons (NeuN+ and astrocytes (GFAP+ from the healthy adult rat brain. We optimized a method combining a mZBF (modified zinc-based fixative and FCM (flow cytometry to simultaneously sort cells from non-transgenic animals. We evaluated cell-surface, intracellular and nuclear proteins, including histones, as well as messenger- and micro-RNAs in different cell types simultaneously from a single-sorted sample. We found that 12 Jumonji genes were differentially expressed between adult microglia, neurons and astrocytes. While JMJD2D was neuron-restricted, PHF8 and JMJD1C were expressed in all three cell types although the expression was highest in neurons. JMJD3 and JMJD5 were expressed in all cell types, but were highly enriched in microglia; astrocytes had the lowest expression of UTX and JHDM1D. Levels of global H3K27 (H3 lysine 27 methylation varied among cell types and appeared to be lowest in microglia, indicating that differences in basal gene expression of specific Jumonji histone demethylases may contribute to cell-specific gene expression in the CNS (central nervous system. This multiparametric technique will be valuable for simultaneously assaying chromatin modifications and gene regulation in the adult CNS.

  6. Genetic deletion of SEPT7 reveals a cell type-specific role of septins in microtubule destabilization for the completion of cytokinesis.

    Directory of Open Access Journals (Sweden)

    Manoj B Menon

    2014-08-01

    Full Text Available Cytokinesis terminates mitosis, resulting in separation of the two sister cells. Septins, a conserved family of GTP-binding cytoskeletal proteins, are an absolute requirement for cytokinesis in budding yeast. We demonstrate that septin-dependence of mammalian cytokinesis differs greatly between cell types: genetic loss of the pivotal septin subunit SEPT7 in vivo reveals that septins are indispensable for cytokinesis in fibroblasts, but expendable in cells of the hematopoietic system. SEPT7-deficient mouse embryos fail to gastrulate, and septin-deficient fibroblasts exhibit pleiotropic defects in the major cytokinetic machinery, including hyperacetylation/stabilization of microtubules and stalled midbody abscission, leading to constitutive multinucleation. We identified the microtubule depolymerizing protein stathmin as a key molecule aiding in septin-independent cytokinesis, demonstrated that stathmin supplementation is sufficient to override cytokinesis failure in SEPT7-null fibroblasts, and that knockdown of stathmin makes proliferation of a hematopoietic cell line sensitive to the septin inhibitor forchlorfenuron. Identification of septin-independent cytokinesis in the hematopoietic system could serve as a key to identify solid tumor-specific molecular targets for inhibition of cell proliferation.

  7. Cell type-specific control of protein synthesis and proliferation by FGF-dependent signaling to the translation repressor 4E-BP.

    Science.gov (United States)

    Ruoff, Rachel; Katsara, Olga; Kolupaeva, Victoria

    2016-07-05

    Regulation of protein synthesis plays a vital role in posttranscriptional modulation of gene expression. Translational control most commonly targets the initiation of protein synthesis: loading 40S ribosome complexes onto mRNA and AUG start codon recognition. This step is initiated by eukaryotic initiation factor 4E (eIF4E) (the m7GTP cap-binding protein), whose binding to eIF4G (a scaffolding subunit) and eIF4A (an ATP-dependent RNA helicase) leads to assembly of active eIF4F complex. The ability of eIF4E to recognize the cap is prevented by its binding to eIF4E binding protein (4E-BP), which thereby inhibits cap-dependent translation by sequestering eIF4E. The 4E-BP activity is, in turn, inhibited by mTORC1 [mTOR (the mechanistic target of rapamycin) complex 1] mediated phosphorylation. Here, we define a previously unidentified mechanism of mTOR-independent 4E-BP1 regulation that is used by chondrocytes upon FGF signaling. Chondrocytes are responsible for the formation of the skeleton long bones. Unlike the majority of cell types where FGF signaling triggers proliferation, chondrocytes respond to FGF with inhibition. We establish that FGF specifically suppresses protein synthesis in chondrocytes, but not in any other cells of mesenchymal origin. Furthermore, 4E-BP1 repressor activity is necessary not only for suppression of protein synthesis, but also for FGF-induced cell-cycle arrest. Importantly, FGF-induced changes in the 4E-BP1 activity observed in cell culture are likewise detected in vivo and reflect the action of FGF signaling on downstream targets during bone development. Thus, our findings demonstrate that FGF signaling differentially impacts protein synthesis through either stimulation or repression, in a cell-type-dependent manner, with 4E-BP1 being a key player.

  8. A Recombination Directionality Factor Controls the Cell Type-Specific Activation of σK and the Fidelity of Spore Development in Clostridium difficile

    Science.gov (United States)

    Serrano, Mónica; Kint, Nicolas; Pereira, Fátima C.; Saujet, Laure; Boudry, Pierre; Dupuy, Bruno; Martin-Verstraete, Isabelle

    2016-01-01

    The strict anaerobe Clostridium difficile is the most common cause of nosocomial diarrhea, and the oxygen-resistant spores that it forms have a central role in the infectious cycle. The late stages of sporulation require the mother cell regulatory protein σK. In Bacillus subtilis, the onset of σK activity requires both excision of a prophage-like element (skinBs) inserted in the sigK gene and proteolytical removal of an inhibitory pro-sequence. Importantly, the rearrangement is restricted to the mother cell because the skinBs recombinase is produced specifically in this cell. In C. difficile, σK lacks a pro-sequence but a skinCd element is present. The product of the skinCd gene CD1231 shares similarity with large serine recombinases. We show that CD1231 is necessary for sporulation and skinCd excision. However, contrary to B. subtilis, expression of CD1231 is observed in vegetative cells and in both sporangial compartments. Nevertheless, we show that skinCd excision is under the control of mother cell regulatory proteins σE and SpoIIID. We then demonstrate that σE and SpoIIID control the expression of the skinCd gene CD1234, and that this gene is required for sporulation and skinCd excision. CD1231 and CD1234 appear to interact and both proteins are required for skinCd excision while only CD1231 is necessary for skinCd integration. Thus, CD1234 is a recombination directionality factor that delays and restricts skinCd excision to the terminal mother cell. Finally, while the skinCd element is not essential for sporulation, deletion of skinCd results in premature activity of σK and in spores with altered surface layers. Thus, skinCd excision is a key element controlling the onset of σK activity and the fidelity of spore development. PMID:27631621

  9. Mutations in the Caenorhabditis elegans let-23 EGFR-like gene define elements important for cell-type specificity and function.

    Science.gov (United States)

    Aroian, R V; Lesa, G M; Sternberg, P W

    1994-01-01

    The Caenorhabditis elegans let-23 gene is a genetically characterized member of the epidermal growth factor receptor (EGFR) tyrosine kinase family. Mutations in let-23 can produce five phenotypes in the nematode. Alleles of let-23 include null alleles, reduction-of-function alleles and alleles that disrupt function in some cell types and not others. We have sequenced some of these mutations to identify sequences and regions important for overall let-23 function and for let-23 function in specific cell types. Our data indicate that in vivo, the receptor's C-terminus can be partitioned into at least three domains that each contribute to receptor function in different cell types. In particular, we find distinct domains that mediate hermaphrodite fertility and vulval induction. Our data also demonstrate for the first time that a single, conserved residue in the ligand binding domain is critical for function in vivo and that mutations in the extracellular cysteines characteristic of the EGFR family can lead to a partial or a complete reduction of receptor function. Images PMID:8313880

  10. Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model.

    Science.gov (United States)

    Ron, Mily; Kajala, Kaisa; Pauluzzi, Germain; Wang, Dongxue; Reynoso, Mauricio A; Zumstein, Kristina; Garcha, Jasmine; Winte, Sonja; Masson, Helen; Inagaki, Soichi; Federici, Fernán; Sinha, Neelima; Deal, Roger B; Bailey-Serres, Julia; Brady, Siobhan M

    2014-10-01

    Agrobacterium rhizogenes (or Rhizobium rhizogenes) is able to transform plant genomes and induce the production of hairy roots. We describe the use of A. rhizogenes in tomato (Solanum spp.) to rapidly assess gene expression and function. Gene expression of reporters is indistinguishable in plants transformed by Agrobacterium tumefaciens as compared with A. rhizogenes. A root cell type- and tissue-specific promoter resource has been generated for domesticated and wild tomato (Solanum lycopersicum and Solanum pennellii, respectively) using these approaches. Imaging of tomato roots using A. rhizogenes coupled with laser scanning confocal microscopy is facilitated by the use of a membrane-tagged protein fused to a red fluorescent protein marker present in binary vectors. Tomato-optimized isolation of nuclei tagged in specific cell types and translating ribosome affinity purification binary vectors were generated and used to monitor associated messenger RNA abundance or chromatin modification. Finally, transcriptional reporters, translational reporters, and clustered regularly interspaced short palindromic repeats-associated nuclease9 genome editing demonstrate that SHORT-ROOT and SCARECROW gene function is conserved between Arabidopsis (Arabidopsis thaliana) and tomato.

  11. Coupling the GAL4 UAS system with alcR for versatile cell type-specific chemically inducible gene expression in Arabidopsis.

    Science.gov (United States)

    Sakvarelidze, Lali; Tao, Zheng; Bush, Max; Roberts, Gethin R; Leader, David J; Doonan, John H; Rawsthorne, Stephen

    2007-07-01

    The Aspergillus alc regulon encodes a transcription factor, ALCR, which regulates transcription from cognate promoters such as alcA(p). In the presence of suitable chemical inducers, ALCR activates gene expression from alcA(p). The alc regulon can be transferred to other species and can be used to control the expression of reporter, metabolic and developmental genes in response to low-level ethanol exposure. In this paper, we describe a versatile system for targeting the alc regulon to specific cell types in Arabidopsis by driving ALCR expression from the GAL4 upstream activator sequence (UAS). Large numbers of Arabidopsis lines are available in which GAL4 is expressed in a variety of spatial patterns and, in turn, drives the expression of any gene cloned downstream of the UAS. We have used a previously characterized line that directs gene expression to the endosperm to demonstrate spatially restricted ethanol-inducible gene expression. We also show that the domain of inducible gene expression can easily be altered by crossing the UAS::ALCR cassette into different driver lines. We conclude that this gene switch can be used to drive gene expression in a highly responsive, but spatially restricted, manner.

  12. Expression of the Ly-6 family proteins Lynx1 and Ly6H in the rat brain is compartmentalized, cell-type specific, and developmentally regulated

    DEFF Research Database (Denmark)

    Thomsen, Morten Skøtt; Cinar, Betül; Jensen, Majbrit Myrup

    2014-01-01

    regarding the distribution and developmental regulation of these proteins in the brain. We use protein cross-linking and synaptosomal fractions to demonstrate that the Ly-6 proteins Lynx1 and Ly6H are membrane-bound proteins in the brain, which are present on the cell surface and localize to synaptic...... compartments. We further estimate the amount of Lynx1 in the rat cortex using known amounts of a heterologously expressed soluble Lynx1 variant (ws-Lynx1) to be approximately 8.6 ng/μg total protein, which is in line with the concentrations of ws-Lynx1 required to affect nAChR function. In addition, we...... demonstrate that Lynx1 and Ly6H are expressed in cultured neurons, but not cultured micro- or astroglial cultures. In addition, Lynx1, but not Ly6H was detected in the CSF. Finally, we show that the Ly-6 proteins Lynx1, Lynx2, Ly6H, and PSCA, display distinct expression patterns during postnatal development...

  13. Cell-type specific deletion of GABA(A)α1 in corticotropin-releasing factor-containing neurons enhances anxiety and disrupts fear extinction.

    Science.gov (United States)

    Gafford, Georgette M; Guo, Ji-Dong; Flandreau, Elizabeth I; Hazra, Rimi; Rainnie, Donald G; Ressler, Kerry J

    2012-10-02

    Corticotropin-releasing factor (CRF) is critical for the endocrine, autonomic, and behavioral responses to stressors, and it has been shown to modulate fear and anxiety. The CRF receptor is widely expressed across a variety of cell types, impeding progress toward understanding the contribution of specific CRF-containing neurons to fear dysregulation. We used a unique CRF-Cre driver transgenic mouse line to remove floxed GABA(A)α1 subunits specifically from CRF neurons [CRF-GABA(A)α1 KO]. This process resulted in mice with decreased GABA(A)α1 expression only in CRF neurons and increased CRF mRNA within the amygdala, bed nucleus of the stria terminalis (BNST) and paraventricular nucleus of the hypothalamus. These mice show normal locomotor and pain responses and no difference in depressive-like behavior or Pavlovian fear conditioning. However, CRF-GABA(A)α1 KO increased anxiety-like behavior and impaired extinction of conditioned fear, coincident with an increase in plasma corticosterone concentration. These behavioral impairments were rescued with systemic or BNST infusion of the CRF antagonist R121919. Infusion of Zolpidem, a GABA(A)α1-preferring benzodiazepine-site agonist, into the BNST of the CRF-GABA(A)α1 KO was ineffective at decreasing anxiety. Electrophysiological findings suggest a disruption in inhibitory current may play a role in these changes. These data indicate that disturbance of CRF containing GABA(A)α1 neurons causes increased anxiety and impaired fear extinction, both of which are symptoms diagnostic for anxiety disorders, such as posttraumatic stress disorder.

  14. Cell type-specific dependency on the PI3K/Akt signaling pathway for the endogenous Epo and VEGF induction by baicalein in neurons versus astrocytes.

    Directory of Open Access Journals (Sweden)

    Yu-Yo Sun

    Full Text Available The neuroprotective effect of baicalein is generally attributed to inhibition of 12/15-lipoxygenase (12/15-LOX and suppression of oxidative stress, but recent studies showed that baicalein also activates hypoxia-inducible factor-α (HIF1α through inhibition of prolyl hydrolase 2 (PHD2 and activation of the phosphatidylinositide-3 kinase (PI3K/Akt signaling pathway. Yet, the significance and regulation of prosurvival cytokines erythropoietin (Epo and vascular endothelial growth factor (VEGF, two transcriptional targets of HIF1α, in baicalein-mediated neuroprotection in neurons and astrocytes remains unknown. Here we investigated the causal relationship between the PI3K/Akt signaling pathway and Epo/VEGF expression in baicalein-mediated neuroprotection in primary rat cortical neurons and astrocytes. Our results show that baicalein induced Epo and VEGF expression in a HIF1α- and PI3K/Akt-dependent manner in neurons. Baicalein also protected neurons against excitotoxicity in a PI3K- and Epo/VEGF-dependent manner without affecting neuronal excitability. In contrast, at least a 10-fold higher concentration of baicalein was needed to induce Epo/VEGF production and PI3K/Akt activity in astrocytes for protection of neurons. Moreover, only baicalein-induced astrocytic VEGF, but not Epo expression requires HIF1α, while PI3K/Akt signaling had little role in baicalein-induced astrocytic Epo/VEGF expression. These results suggest distinct mechanisms of baicalein-mediated Epo/VEGF production in neurons and astrocytes for neuroprotection, and provide new insights into the mechanisms and potential of baicalein in treating brain injury in vivo.

  15. Cell type-specific dependency on the PI3K/Akt signaling pathway for the endogenous Epo and VEGF induction by baicalein in neurons versus astrocytes.

    Science.gov (United States)

    Sun, Yu-Yo; Lin, Shang-Hsuan; Lin, Hung-Cheng; Hung, Chia-Chi; Wang, Chen-Yu; Lin, Yen-Chu; Hung, Kuo-Sheng; Lien, Cheng-Chang; Kuan, Chia-Yi; Lee, Yi-Hsuan

    2013-01-01

    The neuroprotective effect of baicalein is generally attributed to inhibition of 12/15-lipoxygenase (12/15-LOX) and suppression of oxidative stress, but recent studies showed that baicalein also activates hypoxia-inducible factor-α (HIF1α) through inhibition of prolyl hydrolase 2 (PHD2) and activation of the phosphatidylinositide-3 kinase (PI3K)/Akt signaling pathway. Yet, the significance and regulation of prosurvival cytokines erythropoietin (Epo) and vascular endothelial growth factor (VEGF), two transcriptional targets of HIF1α, in baicalein-mediated neuroprotection in neurons and astrocytes remains unknown. Here we investigated the causal relationship between the PI3K/Akt signaling pathway and Epo/VEGF expression in baicalein-mediated neuroprotection in primary rat cortical neurons and astrocytes. Our results show that baicalein induced Epo and VEGF expression in a HIF1α- and PI3K/Akt-dependent manner in neurons. Baicalein also protected neurons against excitotoxicity in a PI3K- and Epo/VEGF-dependent manner without affecting neuronal excitability. In contrast, at least a 10-fold higher concentration of baicalein was needed to induce Epo/VEGF production and PI3K/Akt activity in astrocytes for protection of neurons. Moreover, only baicalein-induced astrocytic VEGF, but not Epo expression requires HIF1α, while PI3K/Akt signaling had little role in baicalein-induced astrocytic Epo/VEGF expression. These results suggest distinct mechanisms of baicalein-mediated Epo/VEGF production in neurons and astrocytes for neuroprotection, and provide new insights into the mechanisms and potential of baicalein in treating brain injury in vivo.

  16. The complex becomes more complex: protein-protein interactions of SnRK1 with DUF581 family proteins provide a framework for cell- and stimulus type-specific SnRK1 signaling in plants.

    Science.gov (United States)

    Nietzsche, Madlen; Schießl, Ingrid; Börnke, Frederik

    2014-01-01

    In plants, SNF1-related kinase (SnRK1) responds to the availability of carbohydrates as well as to environmental stresses by down-regulating ATP consuming biosynthetic processes, while stimulating energy-generating catabolic reactions through gene expression and post-transcriptional regulation. The functional SnRK1 complex is a heterotrimer where the catalytic α subunit associates with a regulatory β subunit and an activating γ subunit. Several different metabolites as well as the hormone abscisic acid (ABA) have been shown to modulate SnRK1 activity in a cell- and stimulus-type specific manner. It has been proposed that tissue- or stimulus-specific expression of adapter proteins mediating SnRK1 regulation can at least partly explain the differences observed in SnRK1 signaling. By using yeast two-hybrid and in planta bi-molecular fluorescence complementation assays we were able to demonstrate that proteins containing the domain of unknown function (DUF) 581 could interact with both isoforms of the SnRK1α subunit (AKIN10/11) of Arabidopsis. A structure/function analysis suggests that the DUF581 is a generic SnRK1 interaction module and co-expression with DUF581 proteins in plant cells leads to reallocation of the kinase to specific regions within the nucleus. Yeast two-hybrid analyses suggest that SnRK1 and DUF581 proteins share common interaction partners inside the nucleus. The analysis of available microarray data implies that expression of the 19 members of the DUF581 encoding gene family in Arabidopsis is differentially regulated by hormones and environmental cues, indicating specialized functions of individual family members. We hypothesize that DUF581 proteins could act as mediators conferring tissue- and stimulus-type specific differences in SnRK1 regulation.

  17. The complex becomes more complex: protein-protein interactions of SnRK1 with DUF581 family proteins provide a framework for cell- and stimulus type-specific SnRK1 signaling in plants

    Directory of Open Access Journals (Sweden)

    Madlen eNietzsche

    2014-02-01

    Full Text Available In plants, SNF1-related kinase (SnRK1 responds to the availability of carbohydrates as well as to environmental stresses by down-regulating ATP consuming biosynthetic processes, while stimulating energy-generating catabolic reactions through gene expression and post-transcriptional regulation. The functional SnRK1 complex is a heterotrimer where the catalytic alpha subunit associates with a regulatory beta subunit and an activating gamma subunit. Several different metabolites as well as the hormone abscisic acid (ABA have been shown to modulate SnRK1 activity in a cell- and stimulus-type specific manner. It has been proposed that tissue- or stimulus-specific expression of adapter proteins mediating SnRK1 regulation can at least partly explain the differences observed in SnRK1 signaling. By using yeast two-hybrid and in planta bi-molecular fluorescence complementation assays we were able to demonstrate that proteins containing the domain of unknown function (DUF 581 could interact with both isoforms of the SnRK1 alpha subunit (AKIN10/11 of Arabidopsis. A structure/function analysis suggests that the DUF581 is a generic SnRK1 interaction module and co-expression with DUF581 proteins in plant cells leads to reallocation of the kinase to specific regions within the nucleus. Yeast two-hybrid analyses suggest that SnRK1 and DUF581 proteins can share common interaction partners inside the nucleus. The analysis of available microarray data implies that expression of the 19 members of the DUF581 encoding gene family in Arabidopsis is differentially regulated by hormones and environmental cues, indicating specialized functions of individual family members. We hypothesize that DUF581 proteins could act as mediators conferring tissue- and stimulus-type specific differences in SnRK1 regulation.

  18. The complex becomes more complex: protein-protein interactions of SnRK1 with DUF581 family proteins provide a framework for cell- and stimulus type-specific SnRK1 signaling in plants

    Science.gov (United States)

    Nietzsche, Madlen; Schießl, Ingrid; Börnke, Frederik

    2014-01-01

    In plants, SNF1-related kinase (SnRK1) responds to the availability of carbohydrates as well as to environmental stresses by down-regulating ATP consuming biosynthetic processes, while stimulating energy-generating catabolic reactions through gene expression and post-transcriptional regulation. The functional SnRK1 complex is a heterotrimer where the catalytic α subunit associates with a regulatory β subunit and an activating γ subunit. Several different metabolites as well as the hormone abscisic acid (ABA) have been shown to modulate SnRK1 activity in a cell- and stimulus-type specific manner. It has been proposed that tissue- or stimulus-specific expression of adapter proteins mediating SnRK1 regulation can at least partly explain the differences observed in SnRK1 signaling. By using yeast two-hybrid and in planta bi-molecular fluorescence complementation assays we were able to demonstrate that proteins containing the domain of unknown function (DUF) 581 could interact with both isoforms of the SnRK1α subunit (AKIN10/11) of Arabidopsis. A structure/function analysis suggests that the DUF581 is a generic SnRK1 interaction module and co-expression with DUF581 proteins in plant cells leads to reallocation of the kinase to specific regions within the nucleus. Yeast two-hybrid analyses suggest that SnRK1 and DUF581 proteins share common interaction partners inside the nucleus. The analysis of available microarray data implies that expression of the 19 members of the DUF581 encoding gene family in Arabidopsis is differentially regulated by hormones and environmental cues, indicating specialized functions of individual family members. We hypothesize that DUF581 proteins could act as mediators conferring tissue- and stimulus-type specific differences in SnRK1 regulation. PMID:24600465

  19. Androgen and taxol cause cell type-specific alterations of centrosome and DNA organization in androgen-responsive LNCaP and androgen-independent DU145 prostate cancer cells

    Science.gov (United States)

    Schatten, H.; Ripple, M.; Balczon, R.; Weindruch, R.; Chakrabarti, A.; Taylor, M.; Hueser, C. N.

    2000-01-01

    We investigated the effects of androgen and taxol on the androgen-responsive LNCaP and androgen-independent DU145 prostate cancer cell lines. Cells were treated for 48 and 72 h with 0.05-1 nM of the synthetic androgen R1881 and with 100 nM taxol. Treatment of LNCaP cells with 0.05 nM R1881 led to increased cell proliferation, whereas treatment with 1 nM R1881 resulted in inhibited cell division, DNA cycle arrest, and altered centrosome organization. After treatment with 1 nM R1881, chromatin became clustered, nuclear envelopes convoluted, and mitochondria accumulated around the nucleus. Immunofluorescence microscopy with antibodies to centrosomes showed altered centrosome structure. Although centrosomes were closely associated with the nucleus in untreated cells, they dispersed into the cytoplasm after treatment with 1 nM R1881. Microtubules were only faintly detected in 1 nM R1881-treated LNCaP cells. The effects of taxol included microtubule bundling and altered mitochondria morphology, but not DNA organization. As expected, the androgen-independent prostate cancer cell line DU145 was not affected by R1881. Treatment with taxol resulted in bundling of microtubules in both cell lines. Additional taxol effects were seen in DU145 cells with micronucleation of DNA, an indication of apoptosis. Simultaneous treatment with R1881 and taxol had no additional effects on LNCaP or DU145 cells. These results suggest that LNCaP and DU145 prostate cancer cells show differences not only in androgen responsiveness but in sensitivity to taxol as well. Copyright 2000 Wiley-Liss, Inc.

  20. The cell-type specific uptake of polymer-coated or micelle-embedded QDs and SPIOs does not provoke an acute pro-inflammatory response in the liver

    Directory of Open Access Journals (Sweden)

    Markus Heine

    2014-09-01

    Full Text Available Semiconductor quantum dots (QD and superparamagnetic iron oxide nanocrystals (SPIO have exceptional physical properties that are well suited for biomedical applications in vitro and in vivo. For future applications, the direct injection of nanocrystals for imaging and therapy represents an important entry route into the human body. Therefore, it is crucial to investigate biological responses of the body to nanocrystals to avoid harmful side effects. In recent years, we established a system to embed nanocrystals with a hydrophobic oleic acid shell either by lipid micelles or by the amphiphilic polymer poly(maleic anhydride-alt-1-octadecene (PMAOD. The goal of the current study is to investigate the uptake processes as well as pro-inflammatory responses in the liver after the injection of these encapsulated nanocrystals. By immunofluorescence and electron microscopy studies using wild type mice, we show that 30 min after injection polymer-coated nanocrystals are primarily taken up by liver sinusoidal endothelial cells. In contrast, by using wild type, Ldlr-/- as well as Apoe-/- mice we show that nanocrystals embedded within lipid micelles are internalized by Kupffer cells and, in a process that is dependent on the LDL receptor and apolipoprotein E, by hepatocytes. Gene expression analysis of pro-inflammatory markers such as tumor necrosis factor alpha (TNFα or chemokine (C-X-C motif ligand 10 (Cxcl10 indicated that 48 h after injection internalized nanocrystals did not provoke pro-inflammatory pathways. In conclusion, internalized nanocrystals at least in mouse liver cells, namely endothelial cells, Kupffer cells and hepatocytes are at least not acutely associated with potential adverse side effects, underlining their potential for biomedical applications.

  1. Prevalence of type-specific HPV infection in Uruguay.

    Science.gov (United States)

    Berois, Nora; Heard, Isabelle; Fort, Zoraida; Alonso, Rafael; Sica, Adela; Moerzinger, Patricia; Rodriguez, Guillermo; Sancho-Garnier, Hélène; Osinaga, Eduardo; Favre, Michel

    2014-04-01

    The aim of this work was to describe the prevalence of type-specific Human papillomavirus (HPV) infection in women attending organized cervical cancer screening program in Uruguay. Nine hundred sixty-five liquid cervical cell samples obtained after collection of cervical smears for cytology were assessed for HPV DNA using the Papillocheck system (Greiner BioOne). The overall prevalence of High-Risk (HR) HPV infections was 20.8% and increased from 16.5% in women with normal cytology to 93.3% in HSIL. Prevalence of HPV 16 and/or 18 was 6.3% and HPV 16 was the most prevalent genotype in normal cytology (3.6%). The five most prevalent genotypes were HPV 16, 31, 51, 56, and 39. The overall prevalence peaked below age 30. This study provides essential baseline information at national level on type-specific HPV prevalence in Uruguay before the introduction of HPV vaccination. It documents the current prevalence of each of the oncogenic genotypes in a population attending cervical cancer screening program, suggesting that at least 64.7% of high risk lesions are potentially preventable by available HPV vaccines, and possibly augmentable if cross-protection against non-vaccine HPV types 31, 33, and 45 is confirmed.

  2. Type I interferon production during herpes simplex virus infection is controlled by cell-type-specific viral recognition through Toll-like receptor 9, the mitochondrial antiviral signaling protein pathway, and novel recognition systems

    DEFF Research Database (Denmark)

    Rasmussen, Simon Brandtoft; Sørensen, Louise Nørgaard; Malmgaard, Lene

    2007-01-01

    and fibroblasts, where the virus was able to replicate, HSV-induced IFN-alpha/beta production was dependent on both viral entry and replication, and ablated in cells unable to signal through the mitochondrial antiviral signaling protein pathway. Thus, during an HSV infection in vivo, multiple mechanisms......Recognition of viruses by germ line-encoded pattern recognition receptors of the innate immune system is essential for rapid production of type I interferon (IFN) and early antiviral defense. We investigated the mechanisms of viral recognition governing production of type I IFN during herpes....... In conventional DCs, the IFN response occurred independently of viral replication but was dependent on viral entry. Moreover, using a HSV-1 UL15 mutant, which fails to package viral DNA into the virion, we found that entry-dependent IFN induction also required the presence of viral genomic DNA. In macrophages...

  3. A single N-linked glycosylation site in the Japanese encephalitis virus prM protein is critical for cell type-specific prM protein biogenesis, virus particle release, and pathogenicity in mice.

    Science.gov (United States)

    Kim, Jeong-Min; Yun, Sang-Im; Song, Byung-Hak; Hahn, Youn-Soo; Lee, Chan-Hee; Oh, Hyun-Woo; Lee, Young-Min

    2008-08-01

    The prM protein of Japanese encephalitis virus (JEV) contains a single potential N-linked glycosylation site, N(15)-X(16)-T(17), which is highly conserved among JEV strains and closely related flaviviruses. To investigate the role of this site in JEV replication and pathogenesis, we manipulated the RNA genome by using infectious JEV cDNA to generate three prM mutants (N15A, T17A, and N15A/T17A) with alanine substituting for N(15) and/or T(17) and one mutant with silent point mutations introduced into the nucleotide sequences corresponding to all three residues in the glycosylation site. An analysis of these mutants in the presence or absence of endoglycosidases confirmed the addition of oligosaccharides to this potential glycosylation site. The loss of prM N glycosylation, without significantly altering the intracellular levels of viral RNA and proteins, led to an approximately 20-fold reduction in the production of extracellular virions, which had protein compositions and infectivities nearly identical to those of wild-type virions; this reduction occurred at the stage of virus release, rather than assembly. This release defect was correlated with small-plaque morphology and an N-glycosylation-dependent delay in viral growth. A more conservative mutation, N15Q, had the same effect as N15A. One of the four prM mutants, N15A/T17A, showed an additional defect in virus growth in mosquito C6/36 cells but not human neuroblastoma SH-SY5Y or hamster BHK-21 cells. This cell type dependence was attributed to abnormal N-glycosylation-independent biogenesis of prM. In mice, the elimination of prM N glycosylation resulted in a drastic decrease in virulence after peripheral inoculation. Overall, our findings indicate that this highly conserved N-glycosylation motif in prM is crucial for multiple stages of JEV biology: prM biogenesis, virus release, and pathogenesis.

  4. Neuronal survival in the brain: neuron type-specific mechanisms.

    Science.gov (United States)

    Pfisterer, Ulrich; Khodosevich, Konstantin

    2017-03-02

    Neurogenic regions of mammalian brain produce many more neurons that will eventually survive and reach a mature stage. Developmental cell death affects both embryonically produced immature neurons and those immature neurons that are generated in regions of adult neurogenesis. Removal of substantial numbers of neurons that are not yet completely integrated into the local circuits helps to ensure that maturation and homeostatic function of neuronal networks in the brain proceed correctly. External signals from brain microenvironment together with intrinsic signaling pathways determine whether a particular neuron will die. To accommodate this signaling, immature neurons in the brain express a number of transmembrane factors as well as intracellular signaling molecules that will regulate the cell survival/death decision, and many of these factors cease being expressed upon neuronal maturation. Furthermore, pro-survival factors and intracellular responses depend on the type of neuron and region of the brain. Thus, in addition to some common neuronal pro-survival signaling, different types of neurons possess a variety of 'neuron type-specific' pro-survival constituents that might help them to adapt for survival in a certain brain region. This review focuses on how immature neurons survive during normal and impaired brain development, both in the embryonic/neonatal brain and in brain regions associated with adult neurogenesis, and emphasizes neuron type-specific mechanisms that help to survive for various types of immature neurons. Importantly, we mainly focus on in vivo data to describe neuronal survival specifically in the brain, without extrapolating data obtained in the PNS or spinal cord, and thus emphasize the influence of the complex brain environment on neuronal survival during development.

  5. Bonafide, type-specific human papillomavirus persistence among HIV-positive pregnant women: predictive value for cytological abnormalities, a longitudinal cohort study

    Directory of Open Access Journals (Sweden)

    Angela RI Meyrelles

    2016-02-01

    Full Text Available This study investigated the rate of human papillomavirus (HPV persistence, associated risk factors, and predictors of cytological alteration outcomes in a cohort of human immunodeficiency virus-infected pregnant women over an 18-month period. HPV was typed through L1 gene sequencing in cervical smears collected during gestation and at 12 months after delivery. Outcomes were defined as nonpersistence (clearance of the HPV in the 2nd sample, re-infection (detection of different types of HPV in the 2 samples, and type-specific HPV persistence (the same HPV type found in both samples. An unfavourable cytological outcome was considered when the second exam showed progression to squamous intraepithelial lesion or high squamous intraepithelial lesion. Ninety patients were studied. HPV DNA persistence occurred in 50% of the cases composed of type-specific persistence (30% or re-infection (20%. A low CD4+T-cell count at entry was a risk factor for type-specific, re-infection, or HPV DNA persistence. The odds ratio (OR was almost three times higher in the type-specific group when compared with the re-infection group (OR = 2.8; 95% confidence interval: 0.43-22.79. Our findings show that bonafide (type-specific HPV persistence is a stronger predictor for the development of cytological abnormalities, highlighting the need for HPV typing as opposed to HPV DNA testing in the clinical setting.

  6. Bonafide, type-specific human papillomavirus persistence among HIV-positive pregnant women: predictive value for cytological abnormalities, a longitudinal cohort study

    Science.gov (United States)

    Meyrelles, Angela RI; Siqueira, Juliana D; dos Santos, Pâmela P; Hofer, Cristina B; Luiz, Ronir R; Seuánez, Héctor N; Almeida, Gutemberg; Soares, Marcelo A; Soares, Esmeralda A; Machado, Elizabeth S

    2016-01-01

    This study investigated the rate of human papillomavirus (HPV) persistence, associated risk factors, and predictors of cytological alteration outcomes in a cohort of human immunodeficiency virus-infected pregnant women over an 18-month period. HPV was typed through L1 gene sequencing in cervical smears collected during gestation and at 12 months after delivery. Outcomes were defined as nonpersistence (clearance of the HPV in the 2nd sample), re-infection (detection of different types of HPV in the 2 samples), and type-specific HPV persistence (the same HPV type found in both samples). An unfavourable cytological outcome was considered when the second exam showed progression to squamous intraepithelial lesion or high squamous intraepithelial lesion. Ninety patients were studied. HPV DNA persistence occurred in 50% of the cases composed of type-specific persistence (30%) or re-infection (20%). A low CD4+T-cell count at entry was a risk factor for type-specific, re-infection, or HPV DNA persistence. The odds ratio (OR) was almost three times higher in the type-specific group when compared with the re-infection group (OR = 2.8; 95% confidence interval: 0.43-22.79). Our findings show that bonafide (type-specific) HPV persistence is a stronger predictor for the development of cytological abnormalities, highlighting the need for HPV typing as opposed to HPV DNA testing in the clinical setting. PMID:26872340

  7. Silicon Carbide Solar Cells Investigated

    Science.gov (United States)

    Bailey, Sheila G.; Raffaelle, Ryne P.

    2001-01-01

    The semiconductor silicon carbide (SiC) has long been known for its outstanding resistance to harsh environments (e.g., thermal stability, radiation resistance, and dielectric strength). However, the ability to produce device-quality material is severely limited by the inherent crystalline defects associated with this material and their associated electronic effects. Much progress has been made recently in the understanding and control of these defects and in the improved processing of this material. Because of this work, it may be possible to produce SiC-based solar cells for environments with high temperatures, light intensities, and radiation, such as those experienced by solar probes. Electronics and sensors based on SiC can operate in hostile environments where conventional silicon-based electronics (limited to 350 C) cannot function. Development of this material will enable large performance enhancements and size reductions for a wide variety of systems--such as high-frequency devices, high-power devices, microwave switching devices, and high-temperature electronics. These applications would supply more energy-efficient public electric power distribution and electric vehicles, more powerful microwave electronics for radar and communications, and better sensors and controls for cleaner-burning, more fuel-efficient jet aircraft and automobile engines. The 6H-SiC polytype is a promising wide-bandgap (Eg = 3.0 eV) semiconductor for photovoltaic applications in harsh solar environments that involve high-temperature and high-radiation conditions. The advantages of this material for this application lie in its extremely large breakdown field strength, high thermal conductivity, good electron saturation drift velocity, and stable electrical performance at temperatures as high as 600 C. This behavior makes it an attractive photovoltaic solar cell material for devices that can operate within three solar radii of the Sun.

  8. Investigation on Silicon Thin Film Solar Cells

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The preparation, current status and trends are investigated for silicon thin film solar cells. The advantages and disadvantages of amorphous silicon thin film, polycrystalline silicon thin film and mono-crystalline silicon thin film solar cells are compared. The future development trends are pointed out. It is found that polycrystalline silicon thin film solar cells will be more promising for application with great potential.

  9. Investigation of CNTs interaction with fibroblast cells.

    Science.gov (United States)

    Pensabene, V; Vittorio, O; Raffa, V; Menciassi, A; Dario, P

    2007-01-01

    The need for toxicological studies on carbon nanotubes (CNTs) has arisen from the rapidly emerging applications of CNTs well beyond material science and engineering. In order to provide a method to collect data about toxicology, we characterized by Scanning Electron Microscopy (SEM), by Energy Dispersive X-ray Spectrometry (EDS) analysis and by Focused Ion Beam (FIB) microscopy different kinds of treated CNTs. The bio-interaction was investigated seeding Crandell feline kidney fibroblasts with CNT-modified medium; a dedicated sample preparation by FIB has been defined to fix cells. In the present study, the cytotoxic effects of CNTs with 91% and 97% of purity were compared and changes in the growth behaviour of cells after 3 days in culture with modified medium have been recorded, considering also the distribution of CNTs within cells. While lower purified CNTs induced a slight cytotoxic effect, homogeneously suspended CNTs with high purity were less cytotoxic, and the rate of cell growth remained constant. CNTs aggregated in bundles, showed high adhesion on cell membrane. Interestingly, CNTs bundles were observed inside cells, underneath the cell membrane, and despite of that, cells were extended, in good vitality conditions and no cell-degeneration was observed.

  10. Neuronal survival in the brain: neuron type-specific mechanisms

    DEFF Research Database (Denmark)

    Pfisterer, Ulrich Gottfried; Khodosevich, Konstantin

    2017-01-01

    Neurogenic regions of mammalian brain produce many more neurons that will eventually survive and reach a mature stage. Developmental cell death affects both embryonically produced immature neurons and those immature neurons that are generated in regions of adult neurogenesis. Removal of substantial...... a particular neuron will die. To accommodate this signaling, immature neurons in the brain express a number of transmembrane factors as well as intracellular signaling molecules that will regulate the cell survival/death decision, and many of these factors cease being expressed upon neuronal maturation...... numbers of neurons that are not yet completely integrated into the local circuits helps to ensure that maturation and homeostatic function of neuronal networks in the brain proceed correctly. External signals from brain microenvironment together with intrinsic signaling pathways determine whether...

  11. Laboratory investigations in cell biology. Second edition

    Energy Technology Data Exchange (ETDEWEB)

    Bregman, A.A.

    1987-01-01

    This text contains 18 lab projects that explore the structural, biochemical, and physiological nature of eukaryotic cells. Topics are largely traditional, however, several investigations employ new methodologies. Offers extended coverage of biochemistry. Materials have been selected for availability and ease of handling: e.g. Project 4 - extraction of DNA and RNA done with calf liver, Project 9 - succinate dehydrogenase activity studied in mitochondria isolated from cauliflower. There is more procedural detail than found in most lab manuals, negating the need for constant instructional details. And a variety of methodologies is introduced, such as Cytochemistry, Spectrophotometry, Electrophoresis, Cell Fractionation, silver staining of active sites of RNA transcription, and many more. Pages are perforated for collecting and grading.

  12. Ctip2-, Satb2-, Prox1-, and GAD65-Expressing Neurons in Rat Cultures: Preponderance of Single- and Double-Positive Cells, and Cell Type-Specific Expression of Neuron-Specific Gene Family Members, Nsg-1 (NEEP21) and Nsg-2 (P19).

    Science.gov (United States)

    Digilio, Laura; Yap, Chan Choo; Winckler, Bettina

    2015-01-01

    The brain consists of many distinct neuronal cell types, but which cell types are present in widely used primary cultures of embryonic rodent brain is often not known. We characterized how abundantly four cell type markers (Ctip2, Satb2, Prox1, GAD65) were represented in cultured rat neurons, how easily neurons expressing different markers can be transfected with commonly used plasmids, and whether neuronal-enriched endosomal proteins Nsg-1 (NEEP21) and Nsg-2 (P19) are ubiquitously expressed in all types of cultured neurons. We found that cultured neurons stably maintain cell type identities that are reflective of cell types in vivo. This includes neurons maintaining simultaneous expression of two transcription factors, such as Ctip2+/Satb2+ or Prox1+/Ctip2+ double-positive cells, which have also been described in vivo. Secondly, we established the superior efficiency of CAG promoters for both Lipofectamine-mediated transfection as well as for electroporation. Thirdly, we discovered that Nsg-1 and Nsg-2 were not expressed equally in all neurons: whereas high levels of both Nsg-1 and Nsg-2 were found in Satb2-, Ctip2-, and GAD65-positive neurons, Prox1-positive neurons in hippocampal cultures expressed low levels of both. Our findings thus highlight the importance of identifying neuronal cell types for doing cell biology in cultured neurons: Keeping track of neuronal cell type might uncover effects in assays that might otherwise be masked by the mixture of responsive and non-responsive neurons in the dish.

  13. Ctip2-, Satb2-, Prox1-, and GAD65-Expressing Neurons in Rat Cultures: Preponderance of Single- and Double-Positive Cells, and Cell Type-Specific Expression of Neuron-Specific Gene Family Members, Nsg-1 (NEEP21 and Nsg-2 (P19.

    Directory of Open Access Journals (Sweden)

    Laura Digilio

    Full Text Available The brain consists of many distinct neuronal cell types, but which cell types are present in widely used primary cultures of embryonic rodent brain is often not known. We characterized how abundantly four cell type markers (Ctip2, Satb2, Prox1, GAD65 were represented in cultured rat neurons, how easily neurons expressing different markers can be transfected with commonly used plasmids, and whether neuronal-enriched endosomal proteins Nsg-1 (NEEP21 and Nsg-2 (P19 are ubiquitously expressed in all types of cultured neurons. We found that cultured neurons stably maintain cell type identities that are reflective of cell types in vivo. This includes neurons maintaining simultaneous expression of two transcription factors, such as Ctip2+/Satb2+ or Prox1+/Ctip2+ double-positive cells, which have also been described in vivo. Secondly, we established the superior efficiency of CAG promoters for both Lipofectamine-mediated transfection as well as for electroporation. Thirdly, we discovered that Nsg-1 and Nsg-2 were not expressed equally in all neurons: whereas high levels of both Nsg-1 and Nsg-2 were found in Satb2-, Ctip2-, and GAD65-positive neurons, Prox1-positive neurons in hippocampal cultures expressed low levels of both. Our findings thus highlight the importance of identifying neuronal cell types for doing cell biology in cultured neurons: Keeping track of neuronal cell type might uncover effects in assays that might otherwise be masked by the mixture of responsive and non-responsive neurons in the dish.

  14. Muscle fiber-type distribution, fiber-type-specific damage, and the Pompe disease phenotype.

    Science.gov (United States)

    van den Berg, L E M; Drost, M R; Schaart, G; de Laat, J; van Doorn, P A; van der Ploeg, A T; Reuser, A J J

    2013-09-01

    Pompe disease is a lysosomal storage disorder caused by acid α-glucosidase deficiency and characterized by progressive muscle weakness. Enzyme replacement therapy (ERT) has ameliorated patients' perspectives, but reversal of skeletal muscle pathology remains a challenge. We studied pretreatment biopsies of 22 patients with different phenotypes to investigate to what extent fiber-type distribution and fiber-type-specific damage contribute to clinical diversity. Pompe patients have the same fiber-type distribution as healthy persons, but among nonclassic patients with the same GAA mutation (c.-32-13T>G), those with early onset of symptoms tend to have more type 2 muscle fibers than those with late-onset disease. Further, it seemed that the older, more severely affected classic infantile patients and the wheelchair-bound and ventilated nonclassic patients had a greater proportion of type 2x muscle fibers. However, as in other diseases, this may be caused by physical inactivity of those patients.

  15. Quantum Dots Investigated for Solar Cells

    Science.gov (United States)

    Bailey, Sheila G.; Castro, Stephanie L.; Raffaelle, Ryne P.; Hepp, Aloysius F.

    2001-01-01

    The NASA Glenn Research Center has been investigating the synthesis of quantum dots of CdSe and CuInS2 for use in intermediate-bandgap solar cells. Using quantum dots in a solar cell to create an intermediate band will allow the harvesting of a much larger portion of the available solar spectrum. Theoretical studies predict a potential efficiency of 63.2 percent, which is approximately a factor of 2 better than any state-of-the-art devices available today. This technology is also applicable to thin-film devices--where it offers a potential four-fold increase in power-to-weight ratio over the state of the art. Intermediate-bandgap solar cells require that quantum dots be sandwiched in an intrinsic region between the photovoltaic solar cell's ordinary p- and n-type regions (see the preceding figure). The quantum dots form the intermediate band of discrete states that allow sub-bandgap energies to be absorbed. However, when the current is extracted, it is limited by the bandgap, not the individual photon energies. The energy states of the quantum dot can be controlled by controlling the size of the dot. Ironically, the ground-state energy levels are inversely proportional to the size of the quantum dots. We have prepared a variety of quantum dots using the typical organometallic synthesis routes pioneered by Ba Wendi et al., in the early 1990's. The most studied quantum dots prepared by this method have been of CdSe. To produce these dots, researchers inject a syringe of the desired organometallic precursors into heated triocytlphosphine oxide (TOPO) that has been vigorously stirred under an inert atmosphere (see the following figure). The solution immediately begins to change from colorless to yellow, then orange and red/brown, as the quantum dots increase in size. When the desired size is reached, the heat is removed from the flask. Quantum dots of different sizes can be identified by placing them under a "black light" and observing the various color differences in

  16. Rapid, sensitive, type specific PCR detection of the E7 region of human papillomavirus type 16 and 18 from paraffin embedded sections of cervical carcinoma

    DEFF Research Database (Denmark)

    Lesnikova, Iana; Lidang, Marianne; Hamilton-Dutoit, Steven;

    2010-01-01

    embedded (FFPE) sections of cervical cancer.Tissue blocks from 35 cases of in situ or invasive cervical squamous cell carcinoma and surrogate FFPE sections containing the cell lines HeLa and SiHa were tested for HPV 16 and HPV18 by conventional PCR using type specific primers, and for the housekeeping gene...

  17. Optical Investigations of Endothelial Cell Motility

    DEFF Research Database (Denmark)

    Rossen, Ninna Struck

    of tissues and holds great promises for treatments and regenerative therapies. It faces an important obstacle before such promises can be realized, the engineered tissues needs to be of a size large enough to function and to relieve the damaged bodily functions. The current state of the art in tissue......A monolayer of endothelial cells lines the entire circulatory system and create a barrier between the circulatory system and the tissues. To create and maintain an intact barrier, the individual cells have to connect tightly with their neighbors, which causes a highly correlated motion between...... are fascinating from a biophysical point of view. The vasculature also plays a signi cant role in many pathologies. In diabetic blindness or ischemic diseases the ow of blood is insucient to sustain certain tissues or whole limbs. The creation of new blood vessels can relieve or treat such diseases. In other...

  18. Investigating reliability attributes of silicon photovoltaic cells - An overview

    Science.gov (United States)

    Royal, E. L.

    1982-01-01

    Reliability attributes are being developed on a wide variety of advanced single-crystal silicon solar cells. Two separate investigations: cell-contact integrity (metal-to-silicon adherence), and cracked cells identified with fracture-strength-reducing flaws are discussed. In the cell-contact-integrity investigation, analysis of contact pull-strength data shows that cell types made with different metallization technologies, i.e., vacuum, plated, screen-printed and soldered, have appreciably different reliability attributes. In the second investigation, fracture strength was measured using Czochralski wafers and cells taken at various stages of processing and differences were noted. Fracture strength, which is believed to be governed by flaws introduced during wafer sawing, was observed to improve (increase) after chemical polishing and other process steps that tend to remove surface and edge flaws.

  19. Investigation of the selenium metabolism in cancer cell lines

    DEFF Research Database (Denmark)

    Lunøe, Kristoffer; Gabel-Jensen, Charlotte; Stürup, Stefan

    2011-01-01

    incubated with cells for 24 h and the induction of cell death was measured using flow cytometry. The amounts of total selenium in cell medium, cell lysate and the insoluble fractions was determined by ICP-MS. Speciation analysis of cellular fractions was performed by reversed phase, anion exchange and size...... except MeSeA. Speciation analysis showed that MeSeA was completely transformed during the incubations, while metabolic conversion of the other Se compounds was limited. Production of volatile dimethyl diselenide was observed for MeSeA and MeSeCys. MeSeA, MeSeCys and selenite showed noticeable protein......The aim of this work was to compare different selenium species for their ability to induce cell death in different cancer cell lines, while investigating the underlying chemistry by speciation analysis. A prostate cancer cell line (PC-3), a colon cancer cell line (HT-29) and a leukaemia cell line...

  20. INVESTIGATION OF PEM FUEL CELL FOR AUTOMOTIVE USE

    Directory of Open Access Journals (Sweden)

    A. K. M. Mohiuddin

    2015-11-01

    Full Text Available This paper provides a brief investigation on suitability of Proton-exchange  membrane fuel cells (PEMFCs as the source of power for transportation purposes. Hydrogen is an attractive alternative transportation fuel. It is the least polluting fuel that can be used in an internal combustion engine (ICE and it is widely available. If hydrogen is used in a fuel cell which converts the chemical energy of hydrogen into electricity, (NOx emissions are eliminated. The investigation was carried out on a  fuel cell car model by implementing polymer electrolyte membrane (PEM types of fuel cell as the source of power to propel the prototype car. This PEMFC has capability to propel the electric motor by converting chemical energy stored in hydrogen gas into useful electrical energy. PEM fuel cell alone is used as the power source for the electric motor without the aid of any other power source such as battery associated with it. Experimental investigations were carried out to investigate the characteristics of fuel cell used and the performance of the fuel cell car. Investigated papameters are the power it develops, voltage, current and speed it produces under different load conditions. KEYWORDS: fuel cell; automotive; proton exchange membrane; polymer electrolyte membrane; internal combustion engine

  1. Development of a multiplex taqMan real-time PCR assay for typing of Mycoplasma pneumoniae based on type-specific indels identified through whole genome sequencing.

    Science.gov (United States)

    Wolff, Bernard J; Benitez, Alvaro J; Desai, Heta P; Morrison, Shatavia S; Diaz, Maureen H; Winchell, Jonas M

    2017-03-01

    We developed a multiplex real-time PCR assay for simultaneously detecting M. pneumoniae and typing into historically-defined P1 types. Typing was achieved based on the presence of short type-specific indels identified through whole genome sequencing. This assay was 100% specific compared to existing methods and may be useful during epidemiologic investigations.

  2. Immortalization of human alveolar epithelial cells to investigate nanoparticle uptake.

    Science.gov (United States)

    Kemp, Sarah J; Thorley, Andrew J; Gorelik, Julia; Seckl, Michael J; O'Hare, Michael J; Arcaro, Alexandre; Korchev, Yuri; Goldstraw, Peter; Tetley, Teresa D

    2008-11-01

    Primary human alveolar type 2 (AT2) cells were immortalized by transduction with the catalytic subunit of telomerase and simian virus 40 large-tumor antigen. Characterization by immunochemical and morphologic methods demonstrated an AT1-like cell phenotype. Unlike primary AT2 cells, immortalized cells no longer expressed alkaline phosphatase, pro-surfactant protein C, and thyroid transcription factor-1, but expressed increased caveolin-1 and receptor for advanced glycation end products (RAGE). Live cell imaging using scanning ion conductance microscopy showed that the cuboidal primary AT2 cells were approximately 15 microm and enriched with surface microvilli, while the immortal AT1 cells were attenuated more than 40 microm, resembling these cells in situ. Transmission electron microscopy highlighted the attenuated morphology and showed endosomal vesicles in some immortal AT1 cells (but not primary AT2 cells) as found in situ. Particulate air pollution exacerbates cardiopulmonary disease. Interaction of ultrafine, nano-sized particles with the alveolar epithelium and/or translocation into the cardiovasculature may be a contributory factor. We hypothesized differential uptake of nanoparticles by AT1 and AT2 cells, depending on particle size and surface charge. Uptake of 50-nm and 1-microm fluorescent latex particles was investigated using confocal microscopy and scanning surface confocal microscopy of live cells. Fewer than 10% of primary AT2 cells internalized particles. In contrast, 75% immortal AT1 cells internalized negatively charged particles, while less than 55% of these cells internalized positively charged particles; charge, rather than size, mattered. The process was rapid: one-third of the total cell-associated negatively charged 50-nm particle fluorescence measured at 24 hours was internalized during the first hour. AT1 cells could be important in translocation of particles from the lung into the circulation.

  3. Porosimetry as an effective method of fuel cell investigation

    Energy Technology Data Exchange (ETDEWEB)

    Kazarinov, V.E.

    1996-04-01

    A porosimetric method is described for the investigation of all kinds of porous materials including soft or frail materials and powders. The method is well suited for the investigation of electrodes in fuel cells and batteries. The method is nondestructive and allows for repeated measurements on the same sample.

  4. A cell-type-specific role for murine Commd1 in liver inflammation

    NARCIS (Netherlands)

    Bartuzi, Paulina; Wijshake, Tobias; Dekker, Daphne C.; Fedoseienko, Alina; Kloosterhuis, Niels J.; Youssef, Sameh A.; Li, Haiying; Shiri-Sverdlov, Ronit; Kuivenhoven, Jan-Albert; de Bruin, Alain; Burstein, Ezra; Hofker, Marten H.; van de Sluis, Bait

    2014-01-01

    The transcription factor NF-kappa B plays a critical role in the inflammatory response and it has been implicated in various diseases, including non-alcoholic fatty liver disease (NAFLD). Although transient NF-kappa B activation may protect tissues from stress, a prolonged NF-kappa B activation can

  5. eFORGE : A Tool for Identifying Cell Type-Specific Signal in Epigenomic Data

    NARCIS (Netherlands)

    Breeze, Charles E.; Paul, Dirk S.; van Dongen, Jenny; Butcher, Lee M.; Ambrose, John C.; Barrett, James E.; Lowe, Robert; Rakyan, Vardhman K.; Iotchkova, Valentina; Frontini, Mattia; Downes, Kate; Ouwehand, Willem H.; Laperle, Jonathan; Jacques, Pierre-ETienne; Bourque, Guillaume; Bergmann, Anke K.; Siebert, Reiner; Vellenga, Edo; Saeed, Sadia; Matarese, Filomena; Martens, Joost H. A.; Stunnenberg, Hendrik G.; Teschendorff, Andrew E.; Herrero, Javier; Birney, Ewan; Dunham, Ian; Beck, Stephan

    2016-01-01

    Epigenome-wide association studies (EWAS) provide an alternative approach for studying human disease through consideration of non-genetic variants such as altered DNA methylation. To advance the complex interpretation of EWAS, we developed eFORGE (http://eforge.cs.ucl.ac.uk/), a new stand-alone and

  6. Frequency of nuclear mutant huntingtin inclusion formation in neurons and glia is cell-type-specific

    NARCIS (Netherlands)

    Jansen, Anne H P; van Hal, Maurik; Op den Kelder, Ilse C; Meier, Romy T; de Ruiter, Anna-Aster; Schut, Menno H; Smith, Donna L; Grit, Corien; Brouwer, Nieske; Kamphuis, Willem; Boddeke, H W G M; den Dunnen, Wilfred F A; van Roon, Willeke M C; Bates, Gillian P; Hol, Elly M; Reits, Eric A

    2017-01-01

    Huntington's disease (HD) is an autosomal dominant inherited neurodegenerative disorder that is caused by a CAG expansion in the Huntingtin (HTT) gene, leading to HTT inclusion formation in the brain. The mutant huntingtin protein (mHTT) is ubiquitously expressed and therefore nuclear inclusions cou

  7. Partitioning Heritability of Regulatory and Cell-Type-Specific Variants across 11 Common Diseases

    DEFF Research Database (Denmark)

    Gusev, Alexander; Lee, S Hong; Trynka, Gosia

    2014-01-01

    Regulatory and coding variants are known to be enriched with associations identified by genome-wide association studies (GWASs) of complex disease, but their contributions to trait heritability are currently unknown. We applied variance-component methods to imputed genotype data for 11 common...... enrichment. We replicated these findings but found no significant contribution from rare coding variants in independent schizophrenia cohorts genotyped on GWAS and exome chips. Our results highlight the value of analyzing components of heritability to unravel the functional architecture of common disease....

  8. Cell type-specific properties and environment shape tissue specificity of cancer genes.

    Science.gov (United States)

    Schaefer, Martin H; Serrano, Luis

    2016-02-09

    One of the biggest mysteries in cancer research remains why mutations in certain genes cause cancer only at specific sites in the human body. The poor correlation between the expression level of a cancer gene and the tissues in which it causes malignant transformations raises the question of which factors determine the tissue-specific effects of a mutation. Here, we explore why some cancer genes are associated only with few different cancer types (i.e., are specific), while others are found mutated in a large number of different types of cancer (i.e., are general). We do so by contrasting cellular functions of specific-cancer genes with those of general ones to identify properties that determine where in the body a gene mutation is causing malignant transformations. We identified different groups of cancer genes that did not behave as expected (i.e., DNA repair genes being tissue specific, immune response genes showing a bimodal specificity function or strong association of generally expressed genes to particular cancers). Analysis of these three groups demonstrates the importance of environmental impact for understanding why certain cancer genes are only involved in the development of some cancer types but are rarely found mutated in other types of cancer.

  9. Cell type specificity of tissue plasminogen activator in the mouse barrel cortex

    Directory of Open Access Journals (Sweden)

    Philip Chu

    2015-09-01

    Full Text Available We provide data in this article related to (C.C. Chen et al.,. Neurosci. Lett., 599 (2015 152–157. [1] where the expression of tissue plasminogen activator (tPA is expressed by the whisker representation in the somatosensory cortex. Here, we provide immunocytochemistry data indicating that tPA is expressed by putative excitatory neurons as well as parvalbumin+ interneurons but not by somatostatin+ inhibitory interneurons. We also provide data showing that microglia do not normally express high levels of tPA, but upregulate their levels following cortical penetration with a recording electrode.

  10. Cell type-specific delivery of short interfering RNAs by dye-functionalised theranostic nanoparticles

    Science.gov (United States)

    Press, Adrian T.; Traeger, Anja; Pietsch, Christian; Mosig, Alexander; Wagner, Michael; Clemens, Mark G.; Jbeily, Nayla; Koch, Nicole; Gottschaldt, Michael; Bézière, Nicolas; Ermolayev, Volodymyr; Ntziachristos, Vasilis; Popp, Jürgen; Kessels, Michael M.; Qualmann, Britta; Schubert, Ulrich S.; Bauer, Michael

    2014-12-01

    Efficient delivery of short interfering RNAs reflects a prerequisite for the development of RNA interference therapeutics. Here, we describe highly specific nanoparticles, based on near infrared fluorescent polymethine dye-derived targeting moieties coupled to biodegradable polymers. The fluorescent dye, even when coupled to a nanoparticle, mimics a ligand for hepatic parenchymal uptake transporters resulting in hepatobiliary clearance of approximately 95% of the dye within 45 min. Body distribution, hepatocyte uptake and excretion into bile of the dye itself, or dye-coupled nanoparticles can be tracked by intravital microscopy or even non-invasively by multispectral optoacoustic tomography. Efficacy of delivery is demonstrated in vivo using 3-hydroxy-3-methyl-glutaryl-CoA reductase siRNA as an active payload resulting in a reduction of plasma cholesterol levels if siRNA was formulated into dye-functionalised nanoparticles. This suggests that organ-selective uptake of a near infrared dye can be efficiently transferred to theranostic nanoparticles allowing novel possibilities for personalised silencing of disease-associated genes.

  11. Improvement of human dendritic cell culture for immunotoxicological investigations.

    Science.gov (United States)

    Hymery, N; Sibiril, Y; Parent-Massin, D

    2006-07-01

    A toxic injury such as a decrease in the number of immature dendritic cells caused by a cytotoxic effect or a disturbance in their maturation process can be responsible for immunodepression. There is a need to improve in vitro assays on human dendritic cells used to detect and evaluate adverse effects of xenobiotics. Two aspects were explored in this work: cytotoxic effects of xenobiotics on immature dendritic cells, and the interference of xenobiotics with dendritic cell maturation. Dendritic cells of two different origins were tested. Dendritic cells obtained either from umbilical cord blood CD34(+) cells or, for the first time, from umbilical cord blood monocytes. The cytotoxicity assay on immature dendritic cells has been improved. For the study of the potential adverse effects of xenobiotics on the maturation process of dendritic cells, several parameters were selected such as expression of markers (CD86, CD83, HLA-DR), secretion of interleukins 10 and 12, and proliferation of autologous lymphocytes. The relevance and the efficiency of the protocol applied were tested using two mycotoxins, T-2 toxin and deoxynivalence, DON, which are known to be immunosuppressive, and one phycotoxin, domoic acid, which is known not to have any immunotoxic effect. Assays using umbilical cord monocyte dendritic cell cultures with the protocol defined in this work, which involves a cytotoxicity study followed by evaluation of several markers of adverse effects on the dendritic cell maturation process, revealed their usefulness for investigating xenobiotic immunotoxicity toward immune primary reactions.

  12. Investigation of temperature effect on cell mechanics by optofluidic microchips.

    Science.gov (United States)

    Yang, Tie; Nava, Giovanni; Minzioni, Paolo; Veglione, Manuela; Bragheri, Francesca; Lelii, Francesca Demetra; Vazquez, Rebeca Martinez; Osellame, Roberto; Cristiani, Ilaria

    2015-08-01

    Here we present the results of a study concerning the effect of temperature on cell mechanical properties. Two different optofluidic microchips with external temperature control are used to investigate the temperature-induced changes of highly metastatic human melanoma cells (A375MC2) in the range of ~0 - 35 °C. By means of an integrated optical stretcher, we observe that cells' optical deformability is strongly enhanced by increasing cell and buffer-fluid temperature. This finding is supported by the results obtained from a second device, which probes the cells' ability to be squeezed through a constriction. Measured data demonstrate a marked dependence of cell mechanical properties on temperature, thus highlighting the importance of including a proper temperature-control system in the experimental apparatus.

  13. Investigation of Indoor Stability Testing of Polymer Solar Cell

    Directory of Open Access Journals (Sweden)

    Pelin Kavak

    2016-01-01

    Full Text Available We have fabricated organic solar cell of a new low bandgap polymer poly[4,4-bis(2-ethylhexyl-4H-cyclopenta[2,1-b:3,4-b′]dithiophene-2,6-diyl-alt-4,7-bis(2-thienyl-2,1,3-benzothiadiazole-5′,5′′-diyl] (PCPDTTBTT. We have investigated for the first time the stability tests, ISOS-L-1 and ISOS-D-3, of PCPDTTBTT solar cells. Thermal annealing of PCPDTTBTT solar cells at 80°C brought about an improvement of photocurrent generation, stability, and efficiency of the solar cells. T80 value of PCPDTTBTT solar cell is about 150 hours which is close to P3HT (235 h. PCPDTTBTT is very promising polymer for both polymer solar cell efficiency and stability.

  14. Investigation of the selenium metabolism in cancer cell lines.

    Science.gov (United States)

    Lunøe, Kristoffer; Gabel-Jensen, Charlotte; Stürup, Stefan; Andresen, Lars; Skov, Søren; Gammelgaard, Bente

    2011-02-01

    The aim of this work was to compare different selenium species for their ability to induce cell death in different cancer cell lines, while investigating the underlying chemistry by speciation analysis. A prostate cancer cell line (PC-3), a colon cancer cell line (HT-29) and a leukaemia cell line (Jurkat E6-1) were incubated with five selenium compounds representing inorganic as well as organic Se compounds in different oxidation states. Selenomethionine (SeMet), Se-methylselenocysteine (MeSeCys), methylseleninic acid (MeSeA), selenite and selenate in the concentration range 5-100 μM were incubated with cells for 24 h and the induction of cell death was measured using flow cytometry. The amounts of total selenium in cell medium, cell lysate and the insoluble fractions was determined by ICP-MS. Speciation analysis of cellular fractions was performed by reversed phase, anion exchange and size exclusion chromatography and ICP-MS detection. The selenium compounds exhibited large differences in their ability to induce cell death in the three cell lines and the susceptibilities of the cell lines were different. Full recovery of selenium in the cellular fractions was observed for all Se compounds except MeSeA. Speciation analysis showed that MeSeA was completely transformed during the incubations, while metabolic conversion of the other Se compounds was limited. Production of volatile dimethyl diselenide was observed for MeSeA and MeSeCys. MeSeA, MeSeCys and selenite showed noticeable protein binding. Correlations between cell death induction and the Se compounds transformations could not be demonstrated.

  15. Spectroscopic investigation of local mechanical impedance of living cells

    CERN Document Server

    Costa, Luca; Benseny-Cases, Núria; Mayeaux, Véronique; Chevrier, Joël; Comin, Fabio

    2013-01-01

    The mechanical properties of PC12 living cells have been studied at the nanoscale with a Force Feedback Microscope using two experimental approaches. Firstly, the local mechanical impedance of the cell membrane has been mapped simultaneously to the cell morphology at constant force. As the force of the interaction is gradually increased, we observed the appearance of the sub-membrane cytoskeleton. We shall compare the results obtained with this method with the measurement of other existing techniques. Secondly, a spectroscopic investigation has been performed varying the indentation of the tip in the cell membrane and consequently the force applied on it. In contrast with conventional dynamic atomic force microscopy techniques, here the small oscillation amplitude of the tip is not necessarily imposed at the cantilever first eigenmode. This allows the user to arbitrarily choose the excitation frequency in developing spectroscopic AFM techniques. The mechanical response of the PC12 cell membrane is found to be...

  16. Investigating the role of retinal Müller cells with approaches in genetics and cell biology.

    Science.gov (United States)

    Fu, Suhua; Zhu, Meili; Ash, John D; Wang, Yunchang; Le, Yun-Zheng

    2014-01-01

    Müller cells are major macroglia and play many essential roles as a supporting cell in the retina. As Müller cells only constitute a small portion of retinal cells, investigating the role of Müller glia in retinal biology and diseases is particularly challenging. To overcome this problem, we first generated a Cre/lox-based conditional gene targeting system that permits the genetic manipulation and functional dissection of gene of interests in Müller cells. To investigate diabetes-induced alteration of Müller cells, we recently adopted methods to analyze Müller cells survival/death in vitro and in vivo. We also used normal and genetically altered primary cell cultures to reveal the mechanistic insights for Müller cells in biological and disease processes. In this article, we will discuss the applications and limitations of these methodologies, which may be useful for research in retinal Müller cell biology and pathophysiology.

  17. Fundamental investigations on periodic nano- and microstructured organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Niggemann, M.

    2005-03-15

    Using organic semiconducting materials in solar cells is a new approach with promising possibilities. The great potential of low cost production combined with mechanical flexibility gives rise to new applications. Due to the relatively simple fabrication process from solution and the mechanical flexibility, the production of organic solar cells by the cost effective roll-to-roll process appears promising. However, the preconditions for commercialization are not fulfilled as yet. The demands on organic solar cells strongly depend on the type of application. The highest demands on solar cell technologies are set by the energy market. Organic solar cells are only expected to be competitive on the energy market when the requirements on efficiency, lifetime and costs are fulfilled at the same time. Regarding this as a long term goal, a less demanding but still challenging medium term goal would be the application of relatively small organic solar cell modules for i.e. portable electronic devices. The integration of Organic Field Effect Transistors (OFET) and Organic Light Emitting Diodes (OLED) to all-polymer electronic devices is still under development. Nevertheless, the integration of organic solar cells as one functional component appears promising as the production technologies are expected to be compatible. The innovative contribution of this thesis to the development of organic solar cells is as follows: Motivated by the desire to fabricate efficient and cost effective organic solar cells, the approach of developing novel solar cell architectures based on periodic nano- and microstructures is followed. At present, planar organic solar cells with indium tin oxide (ITO) as a transparent electrode are intensively studied. One decisive cost factor would, however, be the indium price, which is the key component of the ITO electrode. The planar cell architecture can be conceived as a one-dimensional photonic device, however the presented work widens the investigations

  18. Fnip1 regulates skeletal muscle fiber type specification, fatigue resistance, and susceptibility to muscular dystrophy.

    Science.gov (United States)

    Reyes, Nicholas L; Banks, Glen B; Tsang, Mark; Margineantu, Daciana; Gu, Haiwei; Djukovic, Danijel; Chan, Jacky; Torres, Michelle; Liggitt, H Denny; Hirenallur-S, Dinesh K; Hockenbery, David M; Raftery, Daniel; Iritani, Brian M

    2015-01-13

    Mammalian skeletal muscle is broadly characterized by the presence of two distinct categories of muscle fibers called type I "red" slow twitch and type II "white" fast twitch, which display marked differences in contraction strength, metabolic strategies, and susceptibility to fatigue. The relative representation of each fiber type can have major influences on susceptibility to obesity, diabetes, and muscular dystrophies. However, the molecular factors controlling fiber type specification remain incompletely defined. In this study, we describe the control of fiber type specification and susceptibility to metabolic disease by folliculin interacting protein-1 (Fnip1). Using Fnip1 null mice, we found that loss of Fnip1 increased the representation of type I fibers characterized by increased myoglobin, slow twitch markers [myosin heavy chain 7 (MyH7), succinate dehydrogenase, troponin I 1, troponin C1, troponin T1], capillary density, and mitochondria number. Cultured Fnip1-null muscle fibers had higher oxidative capacity, and isolated Fnip1-null skeletal muscles were more resistant to postcontraction fatigue relative to WT skeletal muscles. Biochemical analyses revealed increased activation of the metabolic sensor AMP kinase (AMPK), and increased expression of the AMPK-target and transcriptional coactivator PGC1α in Fnip1 null skeletal muscle. Genetic disruption of PGC1α rescued normal levels of type I fiber markers MyH7 and myoglobin in Fnip1-null mice. Remarkably, loss of Fnip1 profoundly mitigated muscle damage in a murine model of Duchenne muscular dystrophy. These results indicate that Fnip1 controls skeletal muscle fiber type specification and warrant further study to determine whether inhibition of Fnip1 has therapeutic potential in muscular dystrophy diseases.

  19. Human Papilloma Virus prevalence and type-specific relative contribution in invasive cervical cancer specimens from Italy

    Directory of Open Access Journals (Sweden)

    Lloveras Belén

    2010-06-01

    Full Text Available Abstract Background Cervical cancer represents an important global public health problem. It is the 2nd most common cancer among women worldwide. Human Papillomavirus (HPV infection is now well-established as a necessary cause of invasive cervical cancer (ICC development. Only a few studies on HPV prevalence and type-specific distribution in ICC have been conducted in Italy. Aim To describe the prevalence of HPV and the HPV type-specific distribution in ICC cases identified in Rome, Italy. Methods 140 paraffin embedded tissue blocks of primary ICC diagnosed between 2001 and 2006 were identified at the Regina Elena Cancer Institute in Rome (Italy. HPV was detected through amplification of HPV DNA using SPF-10 HPV broad-spectrum primers followed by DEIA and then genotyping by LiPA25 (version 1. Results 134 cases were considered suitable for HPV DNA detection after histological evaluation; and overall, 90.3% (121/134 HPV prevalence was detected. 111 cases had a single HPV type, 4 cases had an uncharacterized type (HPVX and 6 cases had multiple HPV infections. The five most common single HPV types among positive cases were: HPV16 (71/121; 58.7%, HPV18 (12/121; 9.9%, HPV31, HPV45 and HPV58 (5/121; 4.1% each. 2 (1.5% of the single infections and 2 (1.5% of the multiple infections contained low risk types. Statistically significant differences in the relative contribution of HPV18 were found when comparing squamous cell carcinomas with adenocarcinomas. Conclusions HPV16 and HPV18 accounted for almost 70% of all the HPV positive ICC cases. The study provides baseline information for further evaluation on the impact of recently introduced HPV vaccines in Italy.

  20. Malignant mesothelioma, clinical, diagnostic and cell biological investigations

    NARCIS (Netherlands)

    M.A. Versnel (Marjan)

    1989-01-01

    textabstractThe purpose of this study was to improve the diagnosis of human malignant mesothelioma on the one hand and to investigate the growth regulation and transformation of normal and malignant mesothelial cells on the other hand. In this thesis improvement of diagnosis was approached by the se

  1. Investigation of radiosensitivity gene signatures in cancer cell lines.

    Directory of Open Access Journals (Sweden)

    John S Hall

    Full Text Available Intrinsic radiosensitivity is an important factor underlying radiotherapy response, but there is no method for its routine assessment in human tumours. Gene signatures are currently being derived and some were previously generated by expression profiling the NCI-60 cell line panel. It was hypothesised that focusing on more homogeneous tumour types would be a better approach. Two cell line cohorts were used derived from cervix [n = 16] and head and neck [n = 11] cancers. Radiosensitivity was measured as surviving fraction following irradiation with 2 Gy (SF2 by clonogenic assay. Differential gene expression between radiosensitive and radioresistant cell lines (SF2 median was investigated using Affymetrix GeneChip Exon 1.0ST (cervix or U133A Plus2 (head and neck arrays. There were differences within cell line cohorts relating to tissue of origin reflected by expression of the stratified epithelial marker p63. Of 138 genes identified as being associated with SF2, only 2 (1.4% were congruent between the cervix and head and neck carcinoma cell lines (MGST1 and TFPI, and these did not partition the published NCI-60 cell lines based on SF2. There was variable success in applying three published radiosensitivity signatures to our cohorts. One gene signature, originally trained on the NCI-60 cell lines, did partially separate sensitive and resistant cell lines in all three cell line datasets. The findings do not confirm our hypothesis but suggest that a common transcriptional signature can reflect the radiosensitivity of tumours of heterogeneous origins.

  2. Human papillomavirus type-specific prevalence in the cervical cancer screening population of Czech women.

    Directory of Open Access Journals (Sweden)

    Ruth Tachezy

    Full Text Available BACKGROUND: Infection with high-risk human papillomavirus (HPVtypes has been recognized as a causal factor for the development of cervical cancer and a number of other malignancies. Today, vaccines against HPV, highly effective in the prevention of persistent infection and precancerous lesions, are available for the routine clinical practice. OBJECTIVES: The data on the prevalence and type-specific HPV distribution in the population of each country are crucial for the surveillance of HPV type-specific prevalence at the onset of vaccination against HPV. METHODS: Women attending a preventive gynecological examination who had no history of abnormal cytological finding and/or surgery for cervical lesions were enrolled. All samples were tested for the presence of HPV by High-Risk Hybrid Capture 2 (HR HC2 and by a modified PCR-reverse line blot assay with broad spectrum primers (BS-RLB. RESULTS: Cervical smears of 1393 women were analyzed. In 6.5% of women, atypical cytological findings were detected. Altogether, 28.3% (394/1393 of women were positive for any HPV type by BS-RLB, 18.2% (254/1393 by HR HC2, and 22.3% (310/1393 by BS-RLB for HR HPV types. In women with atypical findings the prevalence for HR and any HPV types were significantly higher than in women with normal cytological findings. Overall, 36 different HPV types were detected, with HPV 16 being the most prevalent (4.8%. HPV positivity decreased with age; the highest prevalence was 31.5% in the age group 21-25 years. CONCLUSIONS: Our study subjects represent the real screening population. HPV prevalence in this population in the Czech Republic is higher than in other countries of Eastern Europe. Also the spectrum of the most prevalent HPV types differs from those reported by others but HPV 16 is, concordantly, the most prevalent type. Country-specific HPV type-specific prevalences provide baseline information which will enable to measure the impact of HPV vaccination in the future.

  3. Investigation of MEK activity in COS7 cells entering mitosis.

    Science.gov (United States)

    Shi, Huaiping; Zhang, Tianying; Yi, Yongqing; Luo, Jun

    2014-12-01

    Although the mitogen-activated protein kinase (MAPK) pathway has been extensively investigated, numerous events remain unclear. In the present study, we examined mitogen-activated protein kinase kinase (MEK) expression from interphase to mitosis. Following nocodazole treatment, COS7 cells gradually became round as early as 4 h after treatment. Cyclin B1 expression gradually increased from 4 to 24 h in the presence of nocodazole. When cells were treated with nocodazole for 4 h, the level of epidermal growth factor (EGF)-mediated MEK phosphorylation did not significantly change between nocodazole-untreated and -treated (4 h) cells (P>0.05). However, EGF-mediated MEK phosphorylation was significantly inhibited upon treatment with nocodazole for 8 and 24 h compared to nocodazole-untreated cells (P0.05). The results showed that MEK expression is gradually inhibited from cell interphase to mitosis, and that MEK downstream signaling is affected by this inhibition, which probably reflects the requirements of cell physiology during mitosis.

  4. Unique somatic and malignant expression patterns implicate PIWI-interacting RNAs in cancer-type specific biology

    Science.gov (United States)

    Martinez, Victor D.; Vucic, Emily A.; Thu, Kelsie L.; Hubaux, Roland; Enfield, Katey S.S.; Pikor, Larissa A.; Becker-Santos, Daiana D.; Brown, Carolyn J.; Lam, Stephen; Lam, Wan L.

    2015-01-01

    Human PIWI-interacting RNAs (piRNAs) are known to be expressed in germline cells, functionally silencing LINEs and SINEs. Their expression patterns in somatic tissues are largely uncharted. We analyzed 6,260 human piRNA transcriptomes derived from non-malignant and tumour tissues from 11 organs. We discovered that only 273 of the 20,831 known piRNAs are expressed in somatic non-malignant tissues. However, expression patterns of these piRNAs were able to distinguish tissue-of-origin. A total of 522 piRNAs are expressed in corresponding tumour tissues, largely distinguishing tumour from non-malignant tissues in a cancer-type specific manner. Most expressed piRNAs mapped to known transcripts, contrary to “piRNA clusters” reported in germline cells. We showed that piRNA expression can delineate clinical features, such as histological subgroups, disease stages, and survival. PiRNAs common to many cancer types might represent a core gene-set that facilitates cancer growth, while piRNAs unique to individual cancer types likely contribute to cancer-specific biology. PMID:26013764

  5. Fibre type-specific change in FXYD1 phosphorylation during acute intense exercise in humans

    DEFF Research Database (Denmark)

    Thomassen, Martin; Murphy, Robyn M; Bangsbo, Jens

    2013-01-01

    The aim of the present study was to examine fibre type-specific Na(+)-K(+) pump subunit expression and exercise-induced alterations in phospholemman (FXYD1) phosphorylation in humans. Segments of human skeletal muscle fibres were dissected and fibre typed, and protein expression was determined...... by Western blotting. The protein expression of the Na(+)-K(+) pump a2 isoform was lower in type I than in type II fibres (0.63 ± 0.04 a.u. vs. 1.00 ± 0.07 a.u., P ... channel Kir6.2 was higher in type I compared with type II fibres. In both type I (P type II fibres (P

  6. Investigation of force approximations in tethered cells simulations

    CERN Document Server

    Zakrisson, Johan; Axner, Ove; Andersson, Magnus

    2015-01-01

    Simulations of tethered cells in viscous sub-layers are frequently performed using the Stokes drag force, but without taking into account contributions from surface corrections, lift forces, buoyancy, the Basset force, the cells finite inertia, or added mass. In this work, we investigate to which extent such contributions influence, under a variety of hydrodynamic conditions, the force at the anchor point of a tethered cell and the survival probability of a bacterium that is attached to a host by either a slip or a catch bond via a tether with a few different biomechanical properties. We show that a consequence of not including some of these contributions is that the force to which a bond is exposed can be significantly underestimated; in general by ~32-46 %, where the influence of the surface corrections dominate (the parallel and normal correction coefficients contribute with ~5-8 or 23-26 %, respectively). The Basset force is a major contributor, up to 20 %, for larger cells and shear rates. The lift force...

  7. Silicon pin solar cells investigated by multi-frequency EDMR

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Christoph; Teutloff, Christian; Behrends, Jan; Bittl, Robert [Fachbereich Physik, Freie Universitaet Berlin, Arnimallee 14, 14195 Berlin (Germany); Fehr, Matthias; Schnegg, Alexander; Lips, Klaus [Institut fuer Silizium-Photovoltaik, Helmholtz-Zentrum Berlin fuer Materialien und Energie, Kekulestr. 5, 12489 Berlin (Germany)

    2011-07-01

    Electrically detected magnetic resonance (EDMR) can be used to investigate paramagnetic centres influencing charge transport in semiconductors even at concentrations well below the sensitivity threshold of conventional electron paramagnetic resonance (EPR). This technique measures conductivity changes in the sample that occur when spin transitions cause an enhancement or a quenching of currents. EDMR was e.g. successfully employed to microcrystalline Si pin solar cells in X-band (9.7 GHz). We present the application of EDMR to Si pin solar cells at Q-band frequency (34 GHz). We could demonstrate a gain of spectral resolution. With multi-frequency EDMR we distinguished between field-dependent and field-independent interactions. Further, we realized EDMR in a non-resonant setup at 94 GHz (W-band) and show first results.

  8. Optical and THz reflectance investigations of organic solar cells

    Science.gov (United States)

    Sporea, Dan; Mihai, Laura; Sporea, Adelina; Galagan, Yulia

    2016-04-01

    Two Organic Photovoltaic devices having a photoactive layer containing Poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5- (4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM, 99%), and the layer sequences - glass/ITO/ZnO/PAL/PEDOT:PSS/Ag/encapsulation were non-destructively investigated by diffuse optical spectral reflectance, THz spectroscopy and THz imaging. The proposed methods proved to be powerful tools to support quality assurance in organic solar cells development, facilitating both the localization of manufacturing defects and the device degradation, as they are combined with "classical" evaluation means.

  9. Investigating the cell death mechanisms in primary prostate cancer cells using low-temperature plasma treatment

    Science.gov (United States)

    O'Connell, Deborah; Hirst, A. M.; Packer, J. R.; Simms, M. S.; Mann, V. M.; Frame, F. M.; Maitland, N. J.

    2016-09-01

    Atmospheric pressure plasmas have shown considerable promise as a potential cancer therapy. An atmospheric pressure plasma driven with kHz kV excitation, operated with helium and oxygen admixtures is used to investigate the interaction with prostate cancer cells. The cytopathic effect was verified first in two commonly used prostate cancer cell lines (BPH-1 and PC-3 cells) and further extended to examine the effects in paired normal and tumour prostate epithelial cells cultured directly from patient tissues. Through the formation of reactive species in cell culture media, and potentially other plasma components, we observed high levels of DNA damage, together with reduced cell viability and colony-forming ability. We observed differences in response between the prostate cell lines and primary cells, particularly in terms of the mechanism of cell death. The primary cells ultimately undergo necrotic cell death in both the normal and tumour samples, in the complete absence of apoptosis. In addition, we provide the first evidence of an autophagic response in primary cells. This work highlights the importance of studying primary cultures in order to gain a more realistic insight into patient efficacy. EPSRC EP/H003797/1 & EP/K018388/1, Yorkshire Cancer Research: YCR Y257PA.

  10. Human muscle fiber type-specific insulin signaling: impact of obesity and type 2 diabetes.

    Science.gov (United States)

    Albers, Peter H; Pedersen, Andreas J T; Birk, Jesper B; Kristensen, Dorte E; Vind, Birgitte F; Baba, Otto; Nøhr, Jane; Højlund, Kurt; Wojtaszewski, Jørgen F P

    2015-02-01

    Skeletal muscle is a heterogeneous tissue composed of different fiber types. Studies suggest that insulin-mediated glucose metabolism is different between muscle fiber types. We hypothesized that differences are due to fiber type-specific expression/regulation of insulin signaling elements and/or metabolic enzymes. Pools of type I and II fibers were prepared from biopsies of the vastus lateralis muscles from lean, obese, and type 2 diabetic subjects before and after a hyperinsulinemic-euglycemic clamp. Type I fibers compared with type II fibers have higher protein levels of the insulin receptor, GLUT4, hexokinase II, glycogen synthase (GS), and pyruvate dehydrogenase-E1α (PDH-E1α) and a lower protein content of Akt2, TBC1 domain family member 4 (TBC1D4), and TBC1D1. In type I fibers compared with type II fibers, the phosphorylation response to insulin was similar (TBC1D4, TBC1D1, and GS) or decreased (Akt and PDH-E1α). Phosphorylation responses to insulin adjusted for protein level were not different between fiber types. Independently of fiber type, insulin signaling was similar (TBC1D1, GS, and PDH-E1α) or decreased (Akt and TBC1D4) in muscle from patients with type 2 diabetes compared with lean and obese subjects. We conclude that human type I muscle fibers compared with type II fibers have a higher glucose-handling capacity but a similar sensitivity for phosphoregulation by insulin.

  11. Spectrally resolved fluorescence lifetime imaging to investigate cell metabolism in malignant and nonmalignant oral mucosa cells

    Science.gov (United States)

    Rück, Angelika; Hauser, Carmen; Mosch, Simone; Kalinina, Sviatlana

    2014-09-01

    Fluorescence-guided diagnosis of tumor tissue is in many cases insufficient, because false positive results interfere with the outcome. Improvement through observation of cell metabolism might offer the solution, but needs a detailed understanding of the origin of autofluorescence. With respect to this, spectrally resolved multiphoton fluorescence lifetime imaging was investigated to analyze cell metabolism in metabolic phenotypes of malignant and nonmalignant oral mucosa cells. The time-resolved fluorescence characteristics of NADH were measured in cells of different origins. The fluorescence lifetime of bound and free NADH was calculated from biexponential fitting of the fluorescence intensity decay within different spectral regions. The mean lifetime was increased from nonmalignant oral mucosa cells to different squamous carcinoma cells, where the most aggressive cells showed the longest lifetime. In correlation with reports in the literature, the total amount of NADH seemed to be less for the carcinoma cells and the ratio of free/bound NADH was decreased from nonmalignant to squamous carcinoma cells. Moreover for squamous carcinoma cells a high concentration of bound NADH was found in cytoplasmic organelles (mainly mitochondria). This all together indicates that oxidative phosphorylation and a high redox potential play an important role in the energy metabolism of these cells.

  12. Spectrally resolved fluorescence lifetime imaging to investigate cell metabolism in malignant and nonmalignant oral mucosa cells.

    Science.gov (United States)

    Rück, Angelika; Hauser, Carmen; Mosch, Simone; Kalinina, Sviatlana

    2014-09-01

    Fluorescence-guided diagnosis of tumor tissue is in many cases insufficient, because false positive results interfere with the outcome. Improvement through observation of cell metabolism might offer the solution, but needs a detailed understanding of the origin of autofluorescence. With respect to this, spectrally resolved multiphoton fluorescence lifetime imaging was investigated to analyze cell metabolism in metabolic phenotypes of malignant and nonmalignant oral mucosa cells. The time-resolved fluorescence characteristics of NADH were measured in cells of different origins. The fluorescence lifetime of bound and free NADH was calculated from biexponential fitting of the fluorescence intensity decay within different spectral regions. The mean lifetime was increased from nonmalignant oral mucosa cells to different squamous carcinoma cells, where the most aggressive cells showed the longest lifetime. In correlation with reports in the literature, the total amount of NADH seemed to be less for the carcinoma cells and the ratio of free/bound NADH was decreased from nonmalignant to squamous carcinoma cells. Moreover for squamous carcinoma cells a high concentration of bound NADH was found in cytoplasmic organelles (mainly mitochondria). This all together indicates that oxidative phosphorylation and a high redox potential play an important role in the energy metabolism of these cells.

  13. Streptococcus pneumoniae Transmission Is Blocked by Type-Specific Immunity in an Infant Mouse Model

    Science.gov (United States)

    Zangari, Tonia; Wang, Yang

    2017-01-01

    ABSTRACT Epidemiological studies on Streptococcus pneumoniae show that rates of carriage are highest in early childhood and that the major benefit of the pneumococcal conjugate vaccine (PCV) is a reduction in the incidence of nasopharyngeal colonization through decreased transmission within a population. In this study, we sought to understand how anti-S. pneumoniae immunity affects nasal shedding of bacteria, the limiting step in experimental pneumococcal transmission. Using an infant mouse model, we examined the role of immunity (passed from mother to pup) on shedding and within-litter transmission of S. pneumoniae by pups infected at 4 days of life. Pups from both previously colonized immune and PCV-vaccinated mothers had higher levels of anti-S. pneumoniae IgG than pups from non-immune or non-vaccinated mothers and shed significantly fewer S. pneumoniae over the first 5 days of infection. By setting up cross-foster experiments, we demonstrated that maternal passage of antibody to pups either in utero or post-natally decreases S. pneumoniae shedding. Passive immunization experiments showed that type-specific antibody to capsular polysaccharide is sufficient to decrease shedding and that the agglutinating function of immunoglobulin is required for this effect. Finally, we established that anti-pneumococcal immunity and anti-PCV vaccination block host-to-host transmission of S. pneumoniae. Moreover, immunity in either the donor or recipient pups alone was sufficient to reduce rates of transmission, indicating that decreased shedding and protection from acquisition of colonization are both contributing factors. Our findings provide a mechanistic explanation for the reduced levels of S. pneumoniae transmission between hosts immune from prior exposure and among vaccinated children. PMID:28292980

  14. World Health Organization Guidelines for Containment of Poliovirus Following Type-Specific Polio Eradication - Worldwide, 2015.

    Science.gov (United States)

    Previsani, Nicoletta; Tangermann, Rudolph H; Tallis, Graham; Jafari, Hamid S

    2015-08-28

    In 1988, the World Health Assembly of the World Health Organization (WHO) resolved to eradicate polio worldwide. Among the three wild poliovirus (WPV) types (type 1, type 2, and type 3), WPV type 2 (WPV2) has been eliminated in the wild since 1999, and WPV type 3 (WPV3) has not been reported since 2012. In 2015, only Afghanistan and Pakistan have reported WPV transmission. On May 25, 2015, all WHO Member States endorsed World Health Assembly resolution 68.3 on full implementation of the Polio Eradication and Endgame Strategic Plan 2013-2018 (the Endgame Plan), and with it, the third Global Action Plan to minimize poliovirus facility-associated risk (GAPIII). All WHO Member States have committed to implementing appropriate containment of WPV2 in essential laboratory and vaccine production facilities* by the end of 2015 and of type 2 oral poliovirus vaccine (OPV2) within 3 months of global withdrawal of OPV2, which is planned for April 2016. This report summarizes critical steps for essential laboratory and vaccine production facilities that intend to retain materials confirmed to contain or potentially containing type-specific WPV, vaccine-derived poliovirus (VDPV), or OPV/Sabin viruses, and steps for nonessential facilities† that process specimens that contain or might contain polioviruses. National authorities will need to certify that the essential facilities they host meet the containment requirements described in GAPIII. After certification of WPV eradication, the use of all OPV will cease; final containment of all polioviruses after polio eradication and OPV cessation will minimize the risk for reintroduction of poliovirus into a polio-free world.

  15. Muscle-Type Specific Autophosphorylation of CaMKII Isoforms after Paced Contractions

    Science.gov (United States)

    Eilers, Wouter; Gevers, Wouter; van Overbeek, Daniëlle; de Haan, Arnold; Jaspers, Richard T.; Hilbers, Peter A.; van Riel, Natal; Flück, Martin

    2014-01-01

    We explored to what extent isoforms of the regulator of excitation-contraction and excitation-transcription coupling, calcium/calmodulin protein kinase II (CaMKII) contribute to the specificity of myocellular calcium sensing between muscle types and whether concentration transients in its autophosphorylation can be simulated. CaMKII autophosphorylation at Thr287 was assessed in three muscle compartments of the rat after slow or fast motor unit-type stimulation and was compared against a computational model (CaMuZclE) coupling myocellular calcium dynamics with CaMKII Thr287 phosphorylation. Qualitative differences existed between fast- (gastrocnemius medialis) and slow-type muscle (soleus) for the expression pattern of CaMKII isoforms. Phospho-Thr287 content of δA CaMKII, associated with nuclear functions, demonstrated a transient and compartment-specific increase after excitation, which contrasted to the delayed autophosphorylation of the sarcoplasmic reticulum-associated βM CaMKII. In soleus muscle, excitation-induced δA CaMKII autophosphorylation demonstrated frequency dependence (P = 0.02). In the glycolytic compartment of gastrocnemius medialis, CaMKII autophosphorylation after excitation was blunted. In silico assessment emphasized the importance of mitochondrial calcium buffer capacity for excitation-induced CaMKII autophosphorylation but did not predict its isoform specificity. The findings expose that CaMKII autophosphorylation with paced contractions is regulated in an isoform and muscle type-specific fashion and highlight properties emerging for phenotype-specific regulation of CaMKII. PMID:25054156

  16. Muscle-Type Specific Autophosphorylation of CaMKII Isoforms after Paced Contractions

    Directory of Open Access Journals (Sweden)

    Wouter Eilers

    2014-01-01

    Full Text Available We explored to what extent isoforms of the regulator of excitation-contraction and excitation-transcription coupling, calcium/calmodulin protein kinase II (CaMKII contribute to the specificity of myocellular calcium sensing between muscle types and whether concentration transients in its autophosphorylation can be simulated. CaMKII autophosphorylation at Thr287 was assessed in three muscle compartments of the rat after slow or fast motor unit-type stimulation and was compared against a computational model (CaMuZclE coupling myocellular calcium dynamics with CaMKII Thr287 phosphorylation. Qualitative differences existed between fast- (gastrocnemius medialis and slow-type muscle (soleus for the expression pattern of CaMKII isoforms. Phospho-Thr287 content of δA CaMKII, associated with nuclear functions, demonstrated a transient and compartment-specific increase after excitation, which contrasted to the delayed autophosphorylation of the sarcoplasmic reticulum-associated βM CaMKII. In soleus muscle, excitation-induced δA CaMKII autophosphorylation demonstrated frequency dependence (P = 0.02. In the glycolytic compartment of gastrocnemius medialis, CaMKII autophosphorylation after excitation was blunted. In silico assessment emphasized the importance of mitochondrial calcium buffer capacity for excitation-induced CaMKII autophosphorylation but did not predict its isoform specificity. The findings expose that CaMKII autophosphorylation with paced contractions is regulated in an isoform and muscle type-specific fashion and highlight properties emerging for phenotype-specific regulation of CaMKII.

  17. Linear Multi-Epitope (Glyco)peptides for Type-specific Serology of Herpes Simplex Virus (HSV) infections.

    Science.gov (United States)

    Risinger, Christian Walter; Sørensen, Kasper Kildegaard; Jensen, Knud J; Olofsson, Sigvard; Bergstrom, Tomas; Blixt, Ola

    2017-02-26

    Detection of type-specific antibodies is an important and essential part of accurate diagnosis, even in silent carriers of HSV-1 (oral) and HSV-2 (genital) infections. Serologic assays that identify HSV-1 and HSV-2 type-specific antibodies have been commercially available for more than a decade but often face problems related to cross-reactivity and similar issues. Attempts to identify type specific peptide epitopes for use in serology for both HSV-1 and HSV-2 have been limited. We recently demonstrated epitope mapping of envelope glycoprotein G2 and identified a type-specific glycopeptide epitope that broadly recognized HSV-2 infected individuals. In the present work we have performed a comprehensive glycopeptide synthesis and microarray epitope mapping of 14 envelope proteins from HSV-1 and HSV-2, namely: gB, gC, gD, gE, gG, gH and gI, using sera from HSV-1 and HSV-2 infected individuals and control sera. Several unique type-specific peptide epitopes with a high cumulative sensitivity were identified and synthesized as one large linear multi-epitope sequence using microwave assisted solid-phase-(glyco)peptide synthesis. Microarray validation with clinically defined HSV and Varicella Zoster (VZV) sera confirmed excellent specificities and sensitivities.

  18. Investigating Nanosilver Effects on Blood Cells Counter in Male Rats

    Directory of Open Access Journals (Sweden)

    H Aghababa

    2013-03-01

    Full Text Available Introduction: Nanosilver particles are one of the functional grounds in nanotechnology field. These nanoparticles may produce free radicals and destruct different cells. In this study, Nanosilver toxic effects on RBC and WBC numbers in male Rats were studied. Thus, male rats were treated with nanosilver and RBC and WBC were detected. Methods: In this study, RBC was detected in male Wistar rats following exposure to 50, 100, 200 and 400ppm concentration of silver nanoparticles administrated peritoneally. Then, RBC and WBC were collected in rats 3, 8 and 12 days after treatment of nanosilver particles. Numbers of RBC and WBC were compared in treatment and control groups. Results: The study results indicated that dose of 400ppm nanosilver was effective on decrease of RBC and increase of WBC in treatment rats 12 day after treatment. These results were significant (p≤0/01. Discussion: The efficiency of 400ppm concentration of nanosilver, RBC decease and WBC increase could be referred to probabale lyses of RBC cell membranes and sever incitement of cellular immune system. The extra investigation is recommended regarding variety of new shapes, sizes and composition of nanosilver.

  19. Muscle fiber type specific induction of slow myosin heavy chain 2 gene expression by electrical stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Crew, Jennifer R.; Falzari, Kanakeshwari [Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064 (United States); DiMario, Joseph X., E-mail: joseph.dimario@rosalindfranklin.edu [Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064 (United States)

    2010-04-01

    Vertebrate skeletal muscle fiber types are defined by a broad array of differentially expressed contractile and metabolic protein genes. The mechanisms that establish and maintain these different fiber types vary throughout development and with changing functional demand. Chicken skeletal muscle fibers can be generally categorized as fast and fast/slow based on expression of the slow myosin heavy chain 2 (MyHC2) gene in fast/slow muscle fibers. To investigate the cellular and molecular mechanisms that control fiber type formation in secondary or fetal muscle fibers, myoblasts from the fast pectoralis major (PM) and fast/slow medial adductor (MA) muscles were isolated, allowed to differentiate in vitro, and electrically stimulated. MA muscle fibers were induced to express the slow MyHC2 gene by electrical stimulation, whereas PM muscle fibers did not express the slow MyHC2 gene under identical stimulation conditions. However, PM muscle fibers did express the slow MyHC2 gene when electrical stimulation was combined with inhibition of inositol triphosphate receptor (IP3R) activity. Electrical stimulation was sufficient to increase nuclear localization of expressed nuclear-factor-of-activated-T-cells (NFAT), NFAT-mediated transcription, and slow MyHC2 promoter activity in MA muscle fibers. In contrast, both electrical stimulation and inhibitors of IP3R activity were required for these effects in PM muscle fibers. Electrical stimulation also increased levels of peroxisome-proliferator-activated receptor-{gamma} co-activator-1 (PGC-1{alpha}) protein in PM and MA muscle fibers. These results indicate that MA muscle fibers can be induced by electrical stimulation to express the slow MyHC2 gene and that fast PM muscle fibers are refractory to stimulation-induced slow MyHC2 gene expression due to fast PM muscle fiber specific cellular mechanisms involving IP3R activity.

  20. Cell Specific eQTL Analysis without Sorting Cells.

    Directory of Open Access Journals (Sweden)

    Harm-Jan Westra

    2015-05-01

    Full Text Available The functional consequences of trait associated SNPs are often investigated using expression quantitative trait locus (eQTL mapping. While trait-associated variants may operate in a cell-type specific manner, eQTL datasets for such cell-types may not always be available. We performed a genome-environment interaction (GxE meta-analysis on data from 5,683 samples to infer the cell type specificity of whole blood cis-eQTLs. We demonstrate that this method is able to predict neutrophil and lymphocyte specific cis-eQTLs and replicate these predictions in independent cell-type specific datasets. Finally, we show that SNPs associated with Crohn's disease preferentially affect gene expression within neutrophils, including the archetypal NOD2 locus.

  1. Human induced pluripotent stem cell-derived models to investigate human cytomegalovirus infection in neural cells.

    Directory of Open Access Journals (Sweden)

    Leonardo D'Aiuto

    Full Text Available Human cytomegalovirus (HCMV infection is one of the leading prenatal causes of congenital mental retardation and deformities world-wide. Access to cultured human neuronal lineages, necessary to understand the species specific pathogenic effects of HCMV, has been limited by difficulties in sustaining primary human neuronal cultures. Human induced pluripotent stem (iPS cells now provide an opportunity for such research. We derived iPS cells from human adult fibroblasts and induced neural lineages to investigate their susceptibility to infection with HCMV strain Ad169. Analysis of iPS cells, iPS-derived neural stem cells (NSCs, neural progenitor cells (NPCs and neurons suggests that (i iPS cells are not permissive to HCMV infection, i.e., they do not permit a full viral replication cycle; (ii Neural stem cells have impaired differentiation when infected by HCMV; (iii NPCs are fully permissive for HCMV infection; altered expression of genes related to neural metabolism or neuronal differentiation is also observed; (iv most iPS-derived neurons are not permissive to HCMV infection; and (v infected neurons have impaired calcium influx in response to glutamate.

  2. Investigation of materials for inert electrodes in aluminum electrodeposition cells

    Energy Technology Data Exchange (ETDEWEB)

    Haggerty, J. S.; Sadoway, D. R.

    1987-09-14

    Work was divided into major efforts. The first was the growth and characterization of specimens; the second was Hall cell performance testing. Cathode and anode materials were the subject of investigation. Preparation of specimens included growth of single crystals and synthesis of ultra high purity powders. Special attention was paid to ferrites as they were considered to be the most promising anode materials. Ferrite anode corrosion rates were studied and the electrical conductivities of a set of copper-manganese ferrites were measured. Float Zone, Pendant Drop Cryolite Experiments were undertaken because unsatisfactory choices of candidate materials were being made on the basis of a flawed set of selection criteria applied to an incomplete and sometimes inaccurate data base. This experiment was then constructed to determine whether the apparatus used for float zone crystal growth could be adapted to make a variety of important based melts and their interactions with candidate inert anode materials. The third major topic was Non Consumable Anode (Data Base, Candidate Compositions), driven by our perception that the basis for prior selection of candidate materials was inadequate. Results are presented. 162 refs., 39 figs., 18 tabs.

  3. Using Tissue Culture To Investigate Plant Cell Differentiation and Dedifferentiation.

    Science.gov (United States)

    Bozzone, Donna M.

    1997-01-01

    Describes an experimental project that uses plant tissue culture techniques to examine cell differentiation in the carrot. Allows students to gain experience in some important techniques and to explore fundamental questions about cell differentiation. (DDR)

  4. Contrast observation and investigation of wheat endosperm transfer cells and nucellar projection transfer cells.

    Science.gov (United States)

    Zheng, Yankun; Wang, Zhong

    2011-07-01

    In cereal seed, there are no symplastic connections between the maternal tissues and the endosperm. In order to facilitate solute transport, both the nucellar projection and its opposite endosperm epithelial cells in wheat caryopsis differentiate into transfer cells. In this paper, we did contrast observation and investigation of wheat endosperm transfer cells (ETC) and nucellar projection transfer cells (NPTC). The experimental results showed that there were some similarities and differences between ETC and NPTC. ETC and NPTC almost developed synchronously. Wall ingrowths of ETC and NPTC formed firstly in the first layer nearest to the endosperm cavity, and formed later in the inner layer further from the endosperm cavity. The mature ETC were mainly three layers and the mature NPTC were mainly four layers. Wall ingrowths of ETC were flange type and wall ingrowths of NPTC were reticulate type. NPTC were not nutrient-storing cells, but the first layer of ETC had aleurone cell features, and the second layer and third layer of ETC accumulated starch granules and protein bodies.

  5. Microfluidic device with dual mechanical cues for cell migration investigation.

    Science.gov (United States)

    Tsai, Chin-Hsiung; Kuo, Po-Ling

    2013-01-01

    Cell migration plays an important role in numerous physiological and pathological conditions, such as angiogenesis, wound healing and cancer metastasis. Understanding the fundamental mechanisms of cell migration is crucial to develop strategies for disease treatment and regenerative medicine. Several biomechanical cues have been well studied about their effects on guiding cell migration. However, the effects of dual or multiple cues on cell migration are barely addressed. In this work, we developed a microfluidic-based device to study the combinatory effects of osmotic and stiffness gradient on cell migration. Computer simulation and experimental validation showed that the device was capable of providing stable osmotic and stiffness gradient to cultured cells at the same time. Preliminary results suggest that our device has a valuable potential in studying cell migration in complex conditions which better recapitulate the complex environmental conditions in vivo.

  6. INVESTIGATION OF THIN FILM CADMIUM SULFIDE SOLAR CELLS.

    Science.gov (United States)

    SOLAR CELLS , *CADMIUM COMPOUNDS, FILMS, SULFIDES, VAPOR PLATING, VACUUM APPARATUS, SINGLE CRYSTALS, TITANIUM, COPPER COMPOUNDS, CHLORIDES, INDIUM, MOLYBDENUM, SILICON COMPOUNDS, MONOXIDES, SURFACE PROPERTIES, ENERGY CONVERSION.

  7. Investigating evolutionary conservation of dendritic cell subset identity and functions

    Directory of Open Access Journals (Sweden)

    Thien-Phong eVu Manh

    2015-06-01

    Full Text Available Dendritic cells (DC were initially defined as mononuclear phagocytes with a dendritic morphology and an exquisite efficiency for naïve T cell activation. DC encompass several subsets initially identified by their expression of specific cell surface molecules and later shown to excel in distinct functions and to develop under the instruction of different transcription factors or cytokines. Very few cell surface molecules are expressed in a specific manner on any immune cell type. Hence, to identify cell types, the sole use of a small number of cell surface markers in classical flow cytometry can be deceiving. Moreover, the markers currently used to define mononuclear phagocyte subsets vary depending on the tissue and animal species studied and even between laboratories. This has led to confusion in the definition of DC subset identity and in their attribution of specific functions. There is a strong need to identify a rigorous and consensus way to define mononuclear phagocyte subsets, with precise guidelines potentially applicable throughout tissues and species. We will discuss the advantages, drawbacks and complementarities of different methodologies: cell surface phenotyping, ontogeny, functional characterization and molecular profiling. We will advocate that gene expression profiling is a very rigorous, largely unbiased and accessible method to define the identity of mononuclear phagocyte subsets, which strengthens and refines surface phenotyping. It is uniquely powerful to yield new, experimentally testable, hypotheses on the ontogeny or functions of mononuclear phagocyte subsets, their molecular regulation and their evolutionary conservation. We propose defining cell populations based on a combination of cell surface phenotyping, expression analysis of hallmark genes and robust functional assays, in order to reach a consensus and integrate faster the huge but scattered knowledge accumulated by different laboratories on different cell types

  8. Investigation of high-rate lithium-thionyl chloride cells

    Science.gov (United States)

    Hayes, Catherine A.; Gust, Steven; Farrington, Michael D.; Lockwood, Judith A.; Donaldson, George J.

    Chemical analysis of a commercially produced high-rate D-size lithium-thionyl cell was carried out, as a function of rate of discharge (1 ohm and 5 ohms), depth of discharge, and temperature (25 C and -40 C), using specially developed methods for identifying suspected minor cell products or impurities which may effect cell performance. These methods include a product-retrieval system which involves solvent extraction to enhance the recovery of suspected semivolatile minor chemicals, and methods of quantitative GC analysis of volatile and semivolatile products. The nonvolatile products were analyzed by wet chemical methods. The results of the analyses indicate that the predominant discharge reaction in this cell is 4Li + 2SOCl2 going to 4LiCl + S + SO2, with SO2 formation decreasing towards the end of cell life (7 to 12 Ah). The rate of discharge had no effect on the product distribution. Upon discharge of the high-rate cell at -40 C, one cell exploded, and all others exhibited overheating and rapid internal pressure rise when allowed to warm up to room temperature.

  9. Macromolecular Dynamics in Red Blood Cells Investigated Using Neutron Spectroscopy

    CERN Document Server

    Stadler, Andreas Maximilian; Demmel, Franz; Artmann, Gerhard; 10.1098/rsif.2010.0306

    2011-01-01

    We present neutron scattering measurements on the dynamics of hemoglobin (Hb) in human red blood cells in vivo. Global and internal Hb dynamics were measured in the ps to ns time- and {\\AA} length-scale using quasielastic neutron backscattering spectroscopy. We observed the cross-over from global Hb short-time to long-time self-diffusion. Both short- and long-time diffusion coefficients agree quantitatively with predicted values from hydrodynamic theory of non-charged hard-sphere suspensions when a bound water fraction of around 0.23g H2O/ g Hb is taken into account. The higher amount of water in the cells facilitates internal protein fluctuations in the ps time-scale when compared to fully hydrated Hb powder. Slower internal dynamics of Hb in red blood cells in the ns time-range were found to be rather similar to results obtained with fully hydrated protein powders, solutions and E. coli cells.

  10. Stem cells for investigation and treatment of inherited retinal disease.

    Science.gov (United States)

    Tucker, Budd A; Mullins, Robert F; Stone, Edwin M

    2014-09-15

    Vision is the most important human sense. It facilitates every major activity of daily living ranging from basic communication, mobility and independence to an appreciation of art and nature. Heritable diseases of the retina, such as age-related macular degeneration and retinitis pigmentosa, are the leading cause of blindness in the developed world, collectively affecting as many as one-third of all people over the age of 75, to some degree. For decades, scientists have dreamed of preventing vision loss or of restoring the vision of patients affected with retinal degeneration through some type of drug, gene or cell-based transplantation approach. In this review, we will discuss the current literature pertaining to retinal transplantation. We will focus on the use of induced pluripotent stem cells for interrogation of disease pathophysiology, analysis of drug and gene therapeutics and as a source of autologous cells for cell replacement.

  11. Three-dimensional cell culture models for investigating human viruses.

    Science.gov (United States)

    He, Bing; Chen, Guomin; Zeng, Yi

    2016-10-01

    Three-dimensional (3D) culture models are physiologically relevant, as they provide reproducible results, experimental flexibility and can be adapted for high-throughput experiments. Moreover, these models bridge the gap between traditional two-dimensional (2D) monolayer cultures and animal models. 3D culture systems have significantly advanced basic cell science and tissue engineering, especially in the fields of cell biology and physiology, stem cell research, regenerative medicine, cancer research, drug discovery, and gene and protein expression studies. In addition, 3D models can provide unique insight into bacteriology, virology, parasitology and host-pathogen interactions. This review summarizes and analyzes recent progress in human virological research with 3D cell culture models. We discuss viral growth, replication, proliferation, infection, virus-host interactions and antiviral drugs in 3D culture models.

  12. Theoretical and experimental investigation of 'grating' type photovoltaic cells

    Science.gov (United States)

    Loferski, J. J.; Crisman, E. E.; Armitage, W.; Chen, L. Y.

    1974-01-01

    The fabrication procedure and properties of 'grating' cells made by forming a fine grating pattern of aluminum alloyed into n-silicon wafers are described. The finest grating lines achieved in the cells described were 5 microns; the smallest spacing was about 15 microns. The best temperature for alloying was found to be about 600 C, a bit above the Si-Al eutectic temperature (576 C). The short-circuit current obtained from the best of these cells exposed to 100 mW/sq cm of (simulated air mass zero) illumination was at least equal to that obtained from conventional diffused cells, but their open-circuit voltage was lower. Their quantum yield was strongly blue-shifted; it was flat from 4000 to 8500 A.

  13. Investigation of the photovoltaic cell/ thermoelectric element hybrid system performance

    Science.gov (United States)

    Cotfas, D. T.; Cotfas, P. A.; Machidon, O. M.; Ciobanu, D.

    2016-06-01

    The PV/TEG hybrid system, consisting of the photovoltaic cells and thermoelectric element, is presented in the paper. The dependence of the PV/TEG hybrid system parameters on the illumination levels and the temperature is analysed. The maxim power values of the photovoltaic cell, of the thermoelectric element and of the PV/TEG system are calculated and a comparison between them is presented and analysed. An economic analysis is also presented.

  14. A Virus-type Specific Serological Diagnosis of Flavivirus Infection Using Virus-like Particles

    Institute of Scientific and Technical Information of China (English)

    Min QING; Zhi-ming YUAN; Pei-Yong Shi

    2009-01-01

    Many flaviviruses are emerging and reemerging pathogens, such as West Nile virus (WNV), dengue virus (DENV), yellow fever virus (YFV), and Japanese encephalitis virus. Serological assay is the dominant method for diagnosis of flavivirus infections in human. Because antibodies generated during flavivirus infections cross-react with other flavivirus members, plaque reduction neutralization test (PRNT) is the only available assay to determine the infecting flavivirus type.Since PRNT requires culturing raw viruses, it must be performed in biosafety level-3 or level-4 containment for many flaviviruses, and takes more than ten days to complete. To overcome these problems, we have developed flavivirus viral-like particles (VLPs) that could be used to replace raw viruses in the neutralization assay. The VLPs were prepared by trans packaging a luciferase-reporting replicon with viral structural proteins. This novel assay involves three simple steps: (ⅰ) VLPs from a panel of flaviviruses are incubated with flavivirus-infected sera at 37℃ for 1 h; (ⅱ)the neutralized VLPs are used to infect Vero cells; and (ⅲ) the infected cells are measured for luciferase activities at 22 h post-infection. The virus type whose VLP is most efficiently neutralized by the serum specimen (as quantified by the luciferase activities) is the etiologic agent. As a proof-of-concept, we show that a WNV-infected mouse serum neutralized the WNV VLP more efficiently and selectively than the DENV and YFV VLPs. Our results demonstrate that the VLP neutralization assay maintains the "gold standard" of the classic PRNT; importantly, it shortens the assay time from >10 days to <1 day, and can be performed in biosafety level-2 facility.

  15. Nano thermo-hydrodynamics method for investigating cell membrane fluidity

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    As a barrier to compartmentalize cells,mem-branes form the interface between a cell and its surround-ings.The essential function of a membrane is to maintain a relatively stable environment in the cell,exchange sub-stances selectively and transfer energy and information continually from the outside.It is intriguing that above the phase transition temperature,the membrane lipid molecule will have three modes-lateral diffusion,rotational movement and flip-flop activity.These thermodynamic processes are vital to cell existence,growth,division,differentiation and are also responsible for hundreds of thousands of phenomena in life.Previously,species transport across the membrane was interpreted mainly from a phenomenological view using a lumped system model.Therefore,detailed flow processes occurred in the membrane domain and clues related to life mechanism were not sufficiently tackled.Such important issues can be clarifled by modeling nano scale thermal hydrodynamics over the gap space of a cell membrane.Previously observed complex membrane behaviors will be shown in this paper and explained by the thermally induced fluidic convections inside the membrane.A correlation between nano scale hydrodynamics,non-equilibrium thermodynamics and eell membrane activities is set up.The disclosed mechanisms are expected to provide a new viewpoint on the interaction between intracellular and extracellular processes through the membrane.

  16. Computational investigation of epithelial cell dynamic phenotype in vitro

    Directory of Open Access Journals (Sweden)

    Debnath Jayanta

    2009-05-01

    Full Text Available Abstract Background When grown in three-dimensional (3D cultures, epithelial cells typically form cystic organoids that recapitulate cardinal features of in vivo epithelial structures. Characterizing essential cell actions and their roles, which constitute the system's dynamic phenotype, is critical to gaining deeper insight into the cystogenesis phenomena. Methods Starting with an earlier in silico epithelial analogue (ISEA1 that validated for several Madin-Darby canine kidney (MDCK epithelial cell culture attributes, we built a revised analogue (ISEA2 to increase overlap between analogue and cell culture traits. Both analogues used agent-based, discrete event methods. A set of axioms determined ISEA behaviors; together, they specified the analogue's operating principles. A new experimentation framework enabled tracking relative axiom use and roles during simulated cystogenesis along with establishment of the consequences of their disruption. Results ISEA2 consistently produced convex cystic structures in a simulated embedded culture. Axiom use measures provided detailed descriptions of the analogue's dynamic phenotype. Dysregulating key cell death and division axioms led to disorganized structures. Adhering to either axiom less than 80% of the time caused ISEA1 to form easily identified morphological changes. ISEA2 was more robust to identical dysregulation. Both dysregulated analogues exhibited characteristics that resembled those associated with an in vitro model of early glandular epithelial cancer. Conclusion We documented the causal chains of events, and their relative roles, responsible for simulated cystogenesis. The results stand as an early hypothesis–a theory–of how individual MDCK cell actions give rise to consistently roundish, cystic organoids.

  17. Spin-cast bulk heterojunction solar cells: A dynamical investigation

    KAUST Repository

    Chou, Kang Wei

    2013-02-22

    Spin-coating is extensively used in the lab-based manufacture of organic solar cells, including most of the record-setting solution-processed cells. We report the first direct observation of photoactive layer formation as it occurs during spin-coating. The study provides new insight into mechanisms and kinetics of bulk heterojunction formation, which may be crucial for its successful transfer to scalable printing processes. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Electric Cell-Substrate Impedance Sensing (ECIS with Microelectrode Arrays for Investigation of Cancer Cell - Fibroblasts Interaction.

    Directory of Open Access Journals (Sweden)

    Trong Binh Tran

    Full Text Available The tumor microenvironment, including stromal cells, surrounding blood vessels and extracellular matrix components, has been defined as a crucial factor that influences the proliferation, drug-resistance, invasion and metastasis of malignant epithelial cells. Among other factors, the communications and interaction between cancer cells and stromal cells have been reported to play pivotal roles in cancer promotion and progression. To investigate these relationships, an on-chip co-culture model was developed to study the cellular interaction between A549-human lung carcinoma cells and MRC-5-human lung epithelial cells in both normal proliferation and treatment conditions. In brief, a co-culture device consisting of 2 individual fluidic chambers in parallel, which were separated by a 100 μm fence was utilized for cell patterning. Microelectrodes arrays were installed within each chamber including electrodes at various distances away from the confrontation line for the electrochemical impedimetric sensing assessment of cell-to-cell influence. After the fence was removed and cell-to-cell contact occurred, by evaluating the impedance signal responses representing cell condition and behavior, both direct and indirect cell-to-cell interactions through conditioned media were investigated. The impact of specific distances that lead to different influences of fibroblast cells on cancer cells in the co-culture environment was also defined.

  19. Electric Cell-Substrate Impedance Sensing (ECIS) with Microelectrode Arrays for Investigation of Cancer Cell – Fibroblasts Interaction

    Science.gov (United States)

    Tran, Trong Binh; Baek, Changyoon; Min, Junhong

    2016-01-01

    The tumor microenvironment, including stromal cells, surrounding blood vessels and extracellular matrix components, has been defined as a crucial factor that influences the proliferation, drug-resistance, invasion and metastasis of malignant epithelial cells. Among other factors, the communications and interaction between cancer cells and stromal cells have been reported to play pivotal roles in cancer promotion and progression. To investigate these relationships, an on-chip co-culture model was developed to study the cellular interaction between A549—human lung carcinoma cells and MRC-5—human lung epithelial cells in both normal proliferation and treatment conditions. In brief, a co-culture device consisting of 2 individual fluidic chambers in parallel, which were separated by a 100 μm fence was utilized for cell patterning. Microelectrodes arrays were installed within each chamber including electrodes at various distances away from the confrontation line for the electrochemical impedimetric sensing assessment of cell-to-cell influence. After the fence was removed and cell-to-cell contact occurred, by evaluating the impedance signal responses representing cell condition and behavior, both direct and indirect cell-to-cell interactions through conditioned media were investigated. The impact of specific distances that lead to different influences of fibroblast cells on cancer cells in the co-culture environment was also defined. PMID:27088611

  20. Bioassay for investigation of auxin transport in single cell layers

    Directory of Open Access Journals (Sweden)

    Alina B. Wodzicki

    2014-02-01

    Full Text Available Auxin was collected from the cambial region of Pinus sylvestris by applying agar strips to the cut surfaces of stem sections which comprised a single layer of 2 to 4-mm long, mainly intact fusiform cells. Sections of the agar strips were either bioassayed immediately to determine their auxin content or stored for several months at -80oC, extracted with 80% MeOH and redissolved in hot agar prior to bioassay. Auxin concentrations were determined by Went's oat coleoptile test, as described by Funke, which was modified considerably to give highly reproducible results. The modifications proved essential for good replication of results and are described in detail together with the use of the bioassay to determine changes in cambial cell polarity during ageing and senescence in P. sylvestris.

  1. Investigation of zinc biosorption by brewer's yeast cells

    Directory of Open Access Journals (Sweden)

    Dodić Siniša N.

    2005-01-01

    Full Text Available The highest amount of zinc (= 90% is bound after 3 hrs of contact at low initial (total concentrations of zinc in suspension of yeast, 10-100 mg/l at 10-30°C. The equilibrium between bound and free zinc ions is established after 6 hrs of contact time, independently on the total zinc concentration in yeast milk. No bigger changes of content of zinc bound to brewer's yeast cells was determined at temperatures 10°C and 30°C. 40% of bound zinc in the equilibrium state is bound during the first 15 min of contact of zinc ions and brewer's yeast cells at all initial (total zinc concentrations in suspension of yeast both at 10°C and 30°C. The "KEKAM" equation can be used for the description of kinetics of zinc biosorption by waste brewer's yeast cells, for the ranges of zinc concentration 10-100 mg/l at 30°C (mean correlation coefficient 0,96 and 60,0-100 mg/l at 10°C (mean correlation coefficient 0,95.

  2. Investigation of Solar Cells Power Degradation Due to Electrostatic Discharge

    Directory of Open Access Journals (Sweden)

    Hossein Fayazi

    2014-07-01

    Full Text Available Satellites are surrounded with protons, electrons and heavy charged particles. Space radiation impact on satellite sub-systems cause several anomalies which are important problem for satellite designers. Until recently, the majority of spacecraft primary power systems used solar arrays and rechargeable batteries to supply 28 V. For low-inclination spacecraft, 28 V systems have not been observed to arc. As the power requirements for spacecraft increased, however, high-voltage solar arrays were baselined to minimize total mass and increase power production efficiency. With the advent of 100 V systems in the late 1980s, arcing began to be observed on a number of spacecraft. The mechanism proposed in this paper, described electrical and physical degradation of solar cells due to electrostatic discharge anomalies on satellites. The cell was characterized again after arcing to determine the change in efficiency. This paper details the process for designing the circuit to create the arcing, and the different setups used to degrade the cells electrically and physically. It also describes the final setups to be used in space laboratory. This model is designed using Matlab and SPENVIS. Identification and simulation this mechanism is an important step in solar array design for space application

  3. Developmentally programmed 3' CpG island methylation confers tissue- and cell-type-specific transcriptional activation

    Science.gov (United States)

    During development, a small but significant number of CpG islands (CGIs) becomes methylated. The timing of developmentally programmed CGI methylation and associated mechanisms of transcriptional regulation during cellular differentiation, however, remain poorly characterized. Here we used genome-wid...

  4. Spiking in primary somatosensory cortex during natural whisking in awake head-restrained rats is cell-type specific

    NARCIS (Netherlands)

    C.P.J. de Kock (Christiaan); B. Sakmann (Bert)

    2009-01-01

    textabstractSensation involves active movement of sensory organs, but it remains unknown how position or movement of sensory organs is encoded in cortex. In the rat whisker system, each whisker is represented by an individual cortical (barrel) column. Here, we quantified in awake, head-fixed rats th

  5. Comparative immunological characterization of type-specific and conserved B-cell epitopes of pinniped, felid and canid herpesviruses.

    NARCIS (Netherlands)

    M. Lebich; T.C. Harder (Timm); H.R. Frey; I.K.G. Visser (Ilona); A.D.M.E. Osterhaus (Albert); B. Liess

    1994-01-01

    textabstractMurine monoclonal antibodies (MAbs) were generated against phocid herpesviruses (PhHV 2557/Han88 and 7848/Han90) isolated from European harbour seals (Phoca vitulina), and against strains of both felid (FHV strain FVR 605) and canid herpesviruses (CHV isolate 5105/Han89). MAbs were chara

  6. The fiber-type specific response of skeletal muscle satellite cells to high-intensity resistance training in dialysis patients

    DEFF Research Database (Denmark)

    Molsted, Stig; Andersen, Jesper Løvind; Harrison, Adrian Paul;

    2015-01-01

    weekly. SC and myonuclear number were determined by immunohistochemistry of vastus lateralis muscle biopsy cross-sections. Knee extension torque was tested in a dynamometer. Results. During training SCs/type I fibers increased by 15%, whereas SCs/type II fibers remained unchanged. Myonuclear content...... of type II, but not type I, fibers increased with training. Before the control period, the SC content of type II fibers was lower than type I fibers, whereas contents were comparable when normalized to fiber area. Torque increased after training. Discussion. Increased myonuclear content of type II muscle...

  7. Investigation of adhesion and mechanical properties of human glioma cells by single cell force spectroscopy and atomic force microscopy.

    Science.gov (United States)

    Andolfi, Laura; Bourkoula, Eugenia; Migliorini, Elisa; Palma, Anita; Pucer, Anja; Skrap, Miran; Scoles, Giacinto; Beltrami, Antonio Paolo; Cesselli, Daniela; Lazzarino, Marco

    2014-01-01

    Active cell migration and invasion is a peculiar feature of glioma that makes this tumor able to rapidly infiltrate into the surrounding brain tissue. In our recent work, we identified a novel class of glioma-associated-stem cells (defined as GASC for high-grade glioma--HG--and Gasc for low-grade glioma--LG) that, although not tumorigenic, act supporting the biological aggressiveness of glioma-initiating stem cells (defined as GSC for HG and Gsc for LG) favoring also their motility. Migrating cancer cells undergo considerable molecular and cellular changes by remodeling their cytoskeleton and cell interactions with surrounding environment. To get a better understanding about the role of the glioma-associated-stem cells in tumor progression, cell deformability and interactions between glioma-initiating stem cells and glioma-associated-stem cells were investigated. Adhesion of HG/LG-cancer cells on HG/LG-glioma-associated stem cells was studied by time-lapse microscopy, while cell deformability and cell-cell adhesion strengths were quantified by indentation measurements by atomic force microscopy and single cell force spectroscopy. Our results demonstrate that for both HG and LG glioma, cancer-initiating-stem cells are softer than glioma-associated-stem cells, in agreement with their neoplastic features. The adhesion strength of GSC on GASC appears to be significantly lower than that observed for Gsc on Gasc. Whereas, GSC spread and firmly adhere on Gasc with an adhesion strength increased as compared to that obtained on GASC. These findings highlight that the grade of glioma-associated-stem cells plays an important role in modulating cancer cell adhesion, which could affect glioma cell migration, invasion and thus cancer aggressiveness. Moreover this work provides evidence about the importance of investigating cell adhesion and elasticity for new developments in disease diagnostics and therapeutics.

  8. Investigation of adhesion and mechanical properties of human glioma cells by single cell force spectroscopy and atomic force microscopy.

    Directory of Open Access Journals (Sweden)

    Laura Andolfi

    Full Text Available Active cell migration and invasion is a peculiar feature of glioma that makes this tumor able to rapidly infiltrate into the surrounding brain tissue. In our recent work, we identified a novel class of glioma-associated-stem cells (defined as GASC for high-grade glioma--HG--and Gasc for low-grade glioma--LG that, although not tumorigenic, act supporting the biological aggressiveness of glioma-initiating stem cells (defined as GSC for HG and Gsc for LG favoring also their motility. Migrating cancer cells undergo considerable molecular and cellular changes by remodeling their cytoskeleton and cell interactions with surrounding environment. To get a better understanding about the role of the glioma-associated-stem cells in tumor progression, cell deformability and interactions between glioma-initiating stem cells and glioma-associated-stem cells were investigated. Adhesion of HG/LG-cancer cells on HG/LG-glioma-associated stem cells was studied by time-lapse microscopy, while cell deformability and cell-cell adhesion strengths were quantified by indentation measurements by atomic force microscopy and single cell force spectroscopy. Our results demonstrate that for both HG and LG glioma, cancer-initiating-stem cells are softer than glioma-associated-stem cells, in agreement with their neoplastic features. The adhesion strength of GSC on GASC appears to be significantly lower than that observed for Gsc on Gasc. Whereas, GSC spread and firmly adhere on Gasc with an adhesion strength increased as compared to that obtained on GASC. These findings highlight that the grade of glioma-associated-stem cells plays an important role in modulating cancer cell adhesion, which could affect glioma cell migration, invasion and thus cancer aggressiveness. Moreover this work provides evidence about the importance of investigating cell adhesion and elasticity for new developments in disease diagnostics and therapeutics.

  9. Experimental investigation on thermoelectric air conditioner driven by solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Xu Lizhen; Li Yan; Qin Feng; Chen Changhe [Key Lab. for Thermal Science and Power Engineering, Ministry of Education of China, Dept. of Thermal Engineering, Tsinghua Univ., BJ (China)

    2008-07-01

    The thermoelectric devices can convert solar energy into a temperature difference to act as coolers or heater with the help of PV arrays, especially in the remote area without power network. The experiment device is composed of thermoelectric refrigeration modules, fan, air channel, cooling cabinet and temperature measurement system. The thermoelectric air conditioner (TEAC) system is tested with different working electric voltage of thermopile; its operational parameters are obtained for different operational conditions. The Coefficient of Performance (COP) is analyzed in experimental ways. The factors that affect the efficiency of TEAC are discussed on the basis of experimental investigation by air-cooled thermoelectric module and water-cooled thermoelectric module. (orig.)

  10. Prevalence of type-specific HPV infection by age and grade of cervical cytology: data from the ARTISTIC trial.

    Science.gov (United States)

    Sargent, A; Bailey, A; Almonte, M; Turner, A; Thomson, C; Peto, J; Desai, M; Mather, J; Moss, S; Roberts, C; Kitchener, H C

    2008-05-20

    Human papillomavirus (HPV) infection causes cervical cancer and premalignant dysplasia. Type-specific HPV prevalence data provide a basis for assessing the impact of HPV vaccination programmes on cervical cytology. We report high-risk HPV (HR-HPV) type-specific prevalence data in relation to cervical cytology for 24,510 women (age range: 20-64; mean age 40.2 years) recruited into the ARTISTIC trial, which is being conducted within the routine NHS Cervical Screening Programme in Greater Manchester. The most common HR-HPV types were HPV16, 18, 31, 51 and 52, which accounted for 60% of all HR-HPV types detected. There was a marked decline in the prevalence of HR-HPV infection with age, but the proportion due to each HPV type did not vary greatly with age. Multiple infections were common below the age of 30 years but less so between age 30 and 64 years. Catch-up vaccination of this sexually active cohort would be expected to reduce the number of women with moderate or worse cytology by 45%, but the number with borderline or mild cytology would fall by only 7%, giving an overall reduction of 12% in the number of women with abnormal cytology and 27% in the number with any HR-HPV infection. In the absence of broader cross-protection, the large majority of low-grade and many high-grade abnormalities may still occur in sexually active vaccinated women.

  11. Fiber type specific expression of TNF-alpha, IL-6 and IL-18 in human skeletal muscles.

    Science.gov (United States)

    Plomgaard, Peter; Penkowa, Milena; Pedersen, Bente K

    2005-01-01

    Skeletal muscle is now recognized as an endocrine organ with the capacity to produce signal peptides in response to muscle contractions. Here we demonstrate that resting healthy human muscles express cytokines in a fiber type specific manner. Human muscle biopsies from seven healthy young males were obtained from m. triceps, m. quadriceps vastus lateralis and m. soleus. Type I fibers contributed (mean +/- SE) 24.0 +/- 2.5% in triceps of total fibers, 51.3 +/- 2.4% in vastus and 84.9 +/- 22% in soleus. As expected, differences in the fiber type composition were accompanied by marked differences between the three muscles with regard to MHC I and MHC IIa mRNA expression. Immunohistochemistry demonstrated that tumor necrosis factor (TNF)-alpha and interleukin (IL)-18 were solely expressed by type II fibers, whereas the expression of IL-6 was more prominent in type I compared to type II fibers. The fiber type specificity was found in triceps, vastus and soleus indicating that the level of daily muscle activity did not influence basal cytokine expression. The specificity of cytokine expression in different muscle fiber types in healthy young males suggests that cytokines may play specific regulatory roles in normal physiology.

  12. Two amino acid residues confer type specificity to a neutralizing, conformationally dependent epitope on human papillomavirus type 11.

    Science.gov (United States)

    Ludmerer, S W; Benincasa, D; Mark, G E

    1996-01-01

    Characterization of virus binding by neutralizing antibodies is important both in understanding early events in viral infectivity and in development of vaccines. Neutralizing monoclonal antibodies (MAbs) to human papillomavirus type 11 (HPV11) have been described, but mapping the binding site has been difficult because of the conformational nature of key type-specific neutralization epitopes on the L1 coat protein. We have determined those residues of the L1 protein of HPV11 which confer type specificity to the binding of HPV11-neutralizing MAbs. Binding of three HPV11-specific neutralizing MAbs could be redirected to HPV6 L1 virus-like particles in which as few as two substitutions of corresponding amino acid residues from HPV11 L1 have been made, thus demonstrating the importance of these residues to MAb binding through the transfer of a conformationally dependent epitope. In addition, a fourth neutralizing MAb could be distinguished from the other neutralizing MAbs in terms of the amino acid residues which affect binding, suggesting the possibility that it neutralizes HPV11 through a different mechanism. PMID:8676509

  13. Experimental Investigation on an Absorption Refrigerator Driven by Solar Cells

    Directory of Open Access Journals (Sweden)

    Zi-Jie Chien

    2013-01-01

    Full Text Available This experiment is to study an absorption refrigerator driven by solar cells. Hand-held or carried in vehicle can be powered by solar energy in places without power. In the evenings or rainy days, it is powered by storage battery, and it can be directly powered by alternating current (AC power supply if available, and the storage battery can be charged full as a backup supply. The proposed system was tested by the alternation of solar irradiance 550 to 700 W/m2 as solar energy and 500ml ambient temperature water as cooling load. After 160 minutes, the proposal refrigerator can maintain the temperature at 5–8°C, and the coefficient of performance (COP of NH3-H2O absorption refrigeration system is about 0.25. Therefore, this system can be expected to be used in remote areas for refrigeration of food and beverages in outdoor activities in remote and desert areas or long-distance road transportation of food or low temperature refrigeration of vaccine to avoid the deterioration of the food or the vaccines.

  14. A water framework directive (WFD) compliant determination of eologically acceptable flows in alpine rivers - a river type specific approach

    Science.gov (United States)

    Jäger, Paul; Zitek, Andreas

    2010-05-01

    Currently the EU-Water Framework Directive (WFD) represents the driving force behind the assessment for rehabilitation and conservation of aquatic resources throughout Europe. Hydropower production, often considered as "green energy", in the past has put significant pressures on river systems like fragmentation by weirs, impoundment, hydropeaking and water abstraction. Due to the limited availability of data for determining ecologically acceptable flow for rivers at water abstraction sites, a special monitoring program was conducted in the federal state of Salzburg in Austria from 2006 to 2009. Water abstraction sites at 19 hydropower plants, mostly within the trout region of the River Salzach catchment, were assessed in detail with regard to the effect of water abstraction on fish and macrozoobenthos. Based on a detailed assessment of the specific local hydro-morphological and biological situations, the validity of natural low flow criteria (Absolute Minimum Flow - AMF, the lowest daily average flow ever measured and Mean Annual Daily Low Flow - MADLF) as starting points for the determination of an ecologically acceptable flow was tested. It was assessed, if a good ecological status in accordance with the EU-WFD can be maintained at natural AMF. Additionally it was tested, if important habitat parameters describing connectivity, river type specific flow variability and river type specific habitats are maintained at this discharge. Habitat modelling was applied in some situations. Hydraulic results showed that at AMF the highest flow velocity classes were lost in most situations. When AMF was significantly undercut, flow velocities between 0,0 - 0,4 m/s became dominant, describing the loss of the river type specific flow character, leading to a loss of river type specific flow variability and habitats and increased sedimentation of fines. Furthermore limits for parameters describing connectivity for fish like maximum depth at the pessimum profile and minimum flow

  15. Muscle fiber type specific activation of the slow myosin heavy chain 2 promoter by a non-canonical E-box.

    Science.gov (United States)

    Weimer, Kristina; DiMario, Joseph X

    2016-01-22

    Different mechanisms control skeletal muscle fiber type gene expression at specific times in vertebrate development. Embryonic myogenesis leading to formation of primary muscle fibers in avian species is largely directed by myoblast cell commitment to the formation of diverse fiber types. In contrast, development of different secondary fiber types during fetal myogenesis is partly determined by neural influences. In both primary and secondary chicken muscle fibers, differential expression of the slow myosin heavy chain 2 (MyHC2) gene distinguishes fast from fast/slow muscle fibers. This study focused on the transcriptional regulation of the slow MyHC2 gene in primary myotubes formed from distinct fast/slow and fast myogenic cell lineages. Promoter deletion analyses identified a discrete 86 bp promoter segment that conferred fiber type, lineage-specific gene expression in fast/slow versus fast myoblast derived primary myotubes. Sequence analysis and promoter activity assays determined that this segment contains two functional cis-regulatory elements. One element is a non-canonical E-box, and electromobility shift assays demonstrated that both cis-elements interacted with the E-protein, E47. The results indicate that primary muscle fiber type specific expression of the slow MyHC2 gene is controlled by a novel mechanism involving a transcriptional complex that includes E47 at a non-canonical E-box.

  16. Cell wall modification in grapevine cells in response to UV stress investigated by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lesniewska, E.; Adrian, M.; Klinguer, A.; Pugin, A

    2004-08-15

    Despite cell wall reinforcement being a well-known defence mechanism of plants, it remains poorly characterized from a physical point of view. The objective of this work was to further describe this mechanism. Vitis vinifera cv Gamay cells were treated with UV-light (254 nm), a well-known elicitor of defence mechanisms in grapevines, and physical cell wall modifications were observed using the atomic force microscopy (AFM) under native conditions. The grapevine cell suspensions were continuously observed in their culture medium from 30 min to 24 h after elicitation. In the beginning, cellulose fibrils covered by a matrix surrounded the control and treated cells. After 3 h, the elicited cells displayed sprouted expansions around the cell wall that correspond to pectin chains. These expansions were not observed on untreated grapevine cells. The AFM tip was used to determine the average surface elastic modulus of cell wall that account for cell wall mechanical properties. The elasticity is diminished in UV-treated cells. In a comparative study, grapevine cells showed the same decrease in cell wall elasticity when treated with a fungal biotic elicitor of defence response. These results demonstrate cell wall strengthening by UV stress.

  17. [The interaction between nerve cells and carbon nanotube networks made by CVD process investigation].

    Science.gov (United States)

    Bobrinetskiĭ, I I; Seleznev, A S; Gaĭduchenko, I A; Fedorov, G E; Domantovskiĭ, A G; Presniakov, M Iu; Podcherniaeva, R Ia; Mikhaĭlova, G R; Suetina, I A

    2013-01-01

    In this research we investigate neuroblastoma cells cultivated on single-walled carbon nanotubes networks made by CVD method on silicon substrates. The complex analysis of grown cells made by atomic force, electron microscopy and Raman spectroscopy was carried out and the effect of nanotube growth process on proliferation factor was investigated. It is shown that despite of a weak decrease in proliferation, cell morphology remains unchanged and no physical or chemical interaction between carbon nanotubes and cells is observed. The results of the research can be used to investigate the interaction between conductive nanomaterials and cells for the development of neural replacement implants. Also they can be useful in bio-electronic interface investigation of signal propagation in neurons.

  18. Fiber type specific expression of TNF-alpha, IL-6 and IL-18 in human skeletal muscles

    DEFF Research Database (Denmark)

    Plomgaard, Peter; Penkowa, Milena; Pedersen, Bente K

    2005-01-01

    Skeletal muscle is now recognized as an endocrine organ with the capacity to produce signal peptides in response to muscle contractions. Here we demonstrate that resting healthy human muscles express cytokines in a fiber type specific manner. Human muscle biopsies from seven healthy young males...... were obtained from m. triceps, m. quadriceps vastus lateralis and m. soleus. Type I fibers contributed (mean +/- SE) 24.0 +/- 2.5% in triceps of total fibers, 51.3 +/- 2.4% in vastus and 84.9 +/- 22% in soleus. As expected, differences in the fiber type composition were accompanied by marked...... differences between the three muscles with regard to MHC I and MHC IIa mRNA expression. Immunohistochemistry demonstrated that tumor necrosis factor (TNF)-alpha and interleukin (IL)-18 were solely expressed by type II fibers, whereas the expression of IL-6 was more prominent in type I compared to type II...

  19. Type-specific diagnosis and evaluation of longitudinal tumor extent of Borrmann type IV gastric cancer: CT versus gastroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Im [Dept. of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul (Korea, Republic of); Kim, Young Hoon; Lee, Kyung Ho; Kim, So Yeon; Lee, Yoon Jin; Park, Young Soo; Kim, Na Young; Lee, Dong Ho; Kim, Hyung; Ho; Park, Do Joong; Lee, Hye Seung [Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam (Korea, Republic of)

    2013-08-15

    To compare the accuracy of computed tomography (CT) with that of gastroscopy for the extent of evaluation of longitudinal tumor and type-specific diagnosis of Borrmann type IV gastric cancer. Fifty-nine patients (35 men with mean age of 60 years and 24 women with mean age of 55 years) who underwent surgical resection of Borrmann type IV gastric cancer were included in this study. Histopathological analysis data was used as a reference standard to confirm the clinical interpretations of gastroscopy and CT for the diagnosis of Borrmann type IV and evaluation of longitudinal tumor extent. For the evaluation of longitudinal extent, gastroscopic and CT results were classified as underestimated, accurate, or overestimated. The McNemar test was used to identify statistically significant differences in the accuracy between gastroscopy and CT. For the diagnosis of Borrmann type IV gastric cancer, the accuracy of CT was significantly higher than that of gastroscopy (74.6% [44/59] vs. 44.1% [26/59], p < 0.001). CT was significantly more accurate in assessing the overall tumor extent than gastroscopy (61.4% [35/57] vs. 28.1% [16/57], p < 0.001). The proximal (75.4% [43/57] vs. 50.9% [29/57], p = 0.003) and distal tumor extent (71.9% [41/57] vs. 43.9% [25/57], p < 0.05) were more accurately predicted by CT compared with gastroscopy. The underestimation of tumor extent was a major source of error in both examinations. CT was found to be more predictive than gastroscopy in type-specific diagnosis and the evaluation of longitudinal tumor extent in patients with Borrmann type IV gastric cancer.

  20. Investigation of the Cell Surface Proteome of Human Periodontal Ligament Stem Cells

    Directory of Open Access Journals (Sweden)

    Jimin Xiong

    2016-01-01

    Full Text Available The present study examined the cell surface proteome of human periodontal ligament stem cells (PDLSC compared to human fibroblasts. Cell surface proteins were prelabelled with CyDye before processing to extract the membrane lysates, which were separated using 2D electrophoresis. Selected differentially expressed protein “spots” were identified using Mass spectrometry. Four proteins were selected for validation: CD73, CD90, Annexin A2, and sphingosine kinase 1 previously associated with mesenchymal stem cells. Flow cytometric analysis found that CD73 and CD90 were highly expressed by human PDLSC and gingival fibroblasts but not by keratinocytes, indicating that these antigens could be used as potential markers for distinguishing between mesenchymal cells and epithelial cell populations. Annexin A2 was also found to be expressed at low copy number on the cell surface of human PDLSC and gingival fibroblasts, while human keratinocytes lacked any cell surface expression of Annexin A2. In contrast, sphingosine kinase 1 expression was detected in all the cell types examined using immunocytochemical analysis. These proteomic studies form the foundation to further define the cell surface protein expression profile of PDLSC in order to better characterise this cell population and help develop novel strategies for the purification of this stem cell population.

  1. Comparison between 125IUdR and 51Cr as cell labels in investigations of tumor cell migration

    DEFF Research Database (Denmark)

    Basse, P; Hokland, P; Hokland, M

    1991-01-01

    YAC-1 tumor cells double-labeled with Na2[51Cr]O4 [51Cr] and [125I]iododeoxyuridine [125IUdR] were injected intravenously into Balb/c mice in order to investigate their migration and fate 0-4 h after the injection. Whereas the clearance of tumor cells from the lung tissue was similar as judged...... in overestimation of the number of viable tumor cells in these organs. Moreover, a marked spontaneous release (greater than 10% after 12 h) makes 51Cr less suitable as a cell label than 125IUdR. On the other hand, we found that the release of 125I from dead cells in vivo depends at least partially on host factors...... such as macrophages. Consequently, caution must be exerted when tumor cell migration is investigated in animals treated with drugs that might affect the reticuloendothelial system. We conclude that 125IUdR is superior to 51Cr as a cell label for investigation of tumor cell migration in vivo, even though some doubt...

  2. Sheep primary cells as in vitro models to investigate Mycoplasma agalactiae host cell interactions.

    Science.gov (United States)

    Hegde, Shrilakshmi; Gabriel, Cordula; Kragl, Martin; Chopra-Dewasthaly, Rohini

    2015-10-01

    Appropriate infection models are imperative for the understanding of pathogens like mycoplasmas that are known for their strict host and tissue specificity, and lack of suitable cell and small animal models has hindered pathogenicity studies. This is particularly true for the economically important group of ruminant mycoplasmas whose virulence factors need to be elucidated for designing effective intervention strategies. Mycoplasma agalactiae serves as a useful role model especially because it is phylogenetically very close to M. bovis and causes similar symptoms by as yet unknown mechanisms. Here, we successfully prepared and characterized four different primary sheep cell lines, namely the epithelial and stromal cells from the mammary gland and uterus, respectively. Using immunohistochemistry, we identified vimentin and cytokeratin as specific markers to confirm the typical cell phenotypes of these primary cells. Furthermore, M. agalactiae's consistent adhesion and invasion into these primary cells proves the reliability of these cell models. Mimicking natural infections, mammary epithelial and stromal cells showed higher invasion and adhesion rates compared to the uterine cells as also seen via double immunofluorescence staining. Altogether, we have generated promising in vitro cell models to study host-pathogen interactions of M. agalactiae and related ruminant pathogens in a more authentic manner.

  3. An Investigation of High Performance Heterojunction Silicon Solar Cell Based on n-type Si Substrate

    Directory of Open Access Journals (Sweden)

    N. Memarian

    2016-12-01

    Full Text Available In this study, high efficient heterojunction crystalline silicon solar cells without using an intrinsic layer were systematically investigated. The effect of various parameters such as work function of transparent conductive oxide (ϕTCO, density of interface defects, emitter and crystalline silicon thickness on heterojunction silicon solar cell performance was studied. In addition, the effect of band bending and internal electric field on solar cell performance together with the dependency of cell performance on work function and reflectance of the back contact were investigated in full details. The optimum values of the solar cell properties for the highest efficiency are presented based on the results of the current study. The results represent a complete set of optimum values for a heterojunction solar cell with high efficiency up to the 24.1 % with VOC  0.87 V and JSC  32.69 mAcm – 2.

  4. Genetic strategies to investigate neuronal circuit properties using stem cell-derived neurons

    Directory of Open Access Journals (Sweden)

    Isabella eGarcia

    2012-12-01

    Full Text Available The mammalian brain is anatomically and functionally complex, and prone to diverse forms of injury and neuropathology. Scientists have long strived to develop cell replacement therapies to repair damaged and diseased nervous tissue. However, this goal has remained unrealized for various reasons, including nascent knowledge of neuronal development, the inability to track and manipulate transplanted cells within complex neuronal networks, and host graft rejection. Recent advances in embryonic stem cell (ESC and induced pluripotent stem cell (iPSC technology, alongside novel genetic strategies to mark and manipulate stem cell-derived neurons now provide unprecedented opportunities to investigate complex neuronal circuits in both healthy and diseased brains. Here, we review current technologies aimed at generating and manipulating neurons derived from ESCs and iPSCs towards investigation and manipulation of complex neuronal circuits, ultimately leading to the design and development of novel cell-based therapeutic approaches.

  5. INVESTIGATION ON SILICON SOLAR CELL CAPACITANCE AND ITS DEPENDENCE ON BOTH TEMPERATURE AND INCIDENCE ANGLE

    OpenAIRE

    2014-01-01

    The aim of this work is to investigate a theoretical study of a vertical junction silicon solar cell capacitance under monochromatic illumination. By solving the continuity equation and using a one dimensional model in frequency modulation, we derive the analytical expressions of both excess minority carrier density and photovoltage. Based on these expressions, the solar cell capacitance was calculated; we then exhibited the effects of both temperature and incidence angle on the solar cell ca...

  6. Preface of the "Symposium on Mathematical Models and Methods to investigate Heterogeneity in Cell and Cell Population Biology"

    Science.gov (United States)

    Clairambault, Jean

    2016-06-01

    This session investigates hot topics related to mathematical representations of cell and cell population dynamics in biology and medicine, in particular, but not only, with applications to cancer. Methods in mathematical modelling and analysis, and in statistical inference using single-cell and cell population data, should contribute to focus this session on heterogeneity in cell populations. Among other methods are proposed: a) Intracellular protein dynamics and gene regulatory networks using ordinary/partial/delay differential equations (ODEs, PDEs, DDEs); b) Representation of cell population dynamics using agent-based models (ABMs) and/or PDEs; c) Hybrid models and multiscale models to integrate single-cell dynamics into cell population behaviour; d) Structured cell population dynamics and asymptotic evolution w.r.t. relevant traits; e) Heterogeneity in cancer cell populations: origin, evolution, phylogeny and methods of reconstruction; f) Drug resistance as an evolutionary phenotype: predicting and overcoming it in therapeutics; g) Theoretical therapeutic optimisation of combined drug treatments in cancer cell populations and in populations of other organisms, such as bacteria.

  7. Clustered Regularly Interspaced Short Palindromic Repeats Are emm Type-Specific in Highly Prevalent Group A Streptococci.

    Science.gov (United States)

    Zheng, Po-Xing; Chan, Yuen-Chi; Chiou, Chien-Shun; Chiang-Ni, Chuan; Wang, Shu-Ying; Tsai, Pei-Jane; Chuang, Woei-Jer; Lin, Yee-Shin; Liu, Ching-Chuan; Wu, Jiunn-Jong

    2015-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) are the bacterial adaptive immune system against foreign nucleic acids. Given the variable nature of CRISPR, it could be a good marker for molecular epidemiology. Group A streptococcus is one of the major human pathogens. It has two CRISPR loci, including CRISPR01 and CRISPR02. The aim of this study was to analyze the distribution of CRISPR-associated gene cassettes (cas) and CRISPR arrays in highly prevalent emm types. The cas cassette and CRISPR array in two CRISPR loci were analyzed in a total of 332 strains, including emm1, emm3, emm4, emm12, and emm28 strains. The CRISPR type was defined by the spacer content of each CRISPR array. All strains had at least one cas cassette or CRISPR array. More than 90% of the spacers were found in one emm type, specifically. Comparing the consistency between emm and CRISPR types by Simpson's index of diversity and the adjusted Wallace coefficient, CRISPR01 type was concordant to emm type, and CRISPR02 showed unidirectional congruence to emm type, suggesting that at least for the majority of isolates causing infection in high income countries, the emm type can be inferred from CRISPR analysis, which can further discriminate isolates sharing the same emm type.

  8. Clustered Regularly Interspaced Short Palindromic Repeats Are emm Type-Specific in Highly Prevalent Group A Streptococci.

    Directory of Open Access Journals (Sweden)

    Po-Xing Zheng

    Full Text Available Clustered regularly interspaced short palindromic repeats (CRISPR are the bacterial adaptive immune system against foreign nucleic acids. Given the variable nature of CRISPR, it could be a good marker for molecular epidemiology. Group A streptococcus is one of the major human pathogens. It has two CRISPR loci, including CRISPR01 and CRISPR02. The aim of this study was to analyze the distribution of CRISPR-associated gene cassettes (cas and CRISPR arrays in highly prevalent emm types. The cas cassette and CRISPR array in two CRISPR loci were analyzed in a total of 332 strains, including emm1, emm3, emm4, emm12, and emm28 strains. The CRISPR type was defined by the spacer content of each CRISPR array. All strains had at least one cas cassette or CRISPR array. More than 90% of the spacers were found in one emm type, specifically. Comparing the consistency between emm and CRISPR types by Simpson's index of diversity and the adjusted Wallace coefficient, CRISPR01 type was concordant to emm type, and CRISPR02 showed unidirectional congruence to emm type, suggesting that at least for the majority of isolates causing infection in high income countries, the emm type can be inferred from CRISPR analysis, which can further discriminate isolates sharing the same emm type.

  9. Species-specific and mating type-specific DNA regions adjacent to mating type idiomorphs in the genus Neurospora.

    Science.gov (United States)

    Randall, T A; Metzenberg, R L

    1995-09-01

    Mating type idiomorphs control mating and subsequent sexual development in Neurospora crassa and were previously shown to be well conserved in other Neurospora species. The centromere-proximal flanks of the A and a idiomorphs, but not the distal flanks from representative heterothallic, pseudohomothallic, and homothallic Neurospora species contain apparent species-specific and/or mating type-specific sequences adjacent to the well-conserved idiomorphs. The variable flank is bordered by regions that are highly homologous in all species. The sequence of approximately 1 kb immediately flanking the conserved idiomorphs of each species was determined. Sequence identity between species ranged from 20% (essentially unrelated) to > 90%. By contrast, the mt-A1 gene shows 88-98% identity. Sequence and hybridization data also show that the centromere-proximal flanks are very different between the two mating types for N. intermedia, N. discreta, and N. tetrasperma, but not for N. sitophila and N. crassa. The data suggest a close evolutionary relationship between several of the species; this is suppported by phylogenetic analysis of their respective mt-A1 genes. The origin of the variable regions adjacent to the evolutionarily conserved mating type idiomorphs is unknown.

  10. Dynamics of bacterial communities in two unpolluted soils after spiking with phenanthrene: soil type specific and common responders

    Directory of Open Access Journals (Sweden)

    Guo-Chun eDing

    2012-08-01

    Full Text Available Considering their key role for ecosystem processes, it is important to understand the response of microbial communities in unpolluted soils to pollution with polycyclic aromatic hydrocarbons (PAH. Phenanthrene, a model compound for PAH, was spiked to a Cambisol and a Luvisol soil. Total community DNA from phenanthrene-spiked and control soils collected on days 0, 21 and 63 were analyzed based on PCR-amplified 16S rRNA genefragments. Denaturing gradient gel electrophoresis (DGGE fingerprints of bacterial communities increasingly deviated with time between spiked and control soils. In taxon specific DGGE, significant responses of Alphaproteobacteria and Actinobacteria became only detectable after 63 days, while significant effects on Betaproteobacteria were detectable in both soils after 21 days. Comparison of the taxonomic distribution of bacteria in spiked and control soils on day 63 as revealed by pyrosequencing indicated soil type specific negative effects of phenanthrene on several taxa, many of them belonging to the Gamma-, Beta- or Deltaproteobacteria. Bacterial richness and evenness decreased in spiked soils. Despite the significant differences in the bacterial community structure between both soils on day 0, similar genera increased in relative abundance after PAH spiking, especially Sphingomonas and Polaromonas. However, this did not result in an increased overall similarity of the bacterial communities in both soils.

  11. Comprehensive analysis of ultrasonic vocalizations in a mouse model of fragile X syndrome reveals limited, call type specific deficits.

    Directory of Open Access Journals (Sweden)

    Snigdha Roy

    Full Text Available Fragile X syndrome (FXS is a well-recognized form of inherited mental retardation, caused by a mutation in the fragile X mental retardation 1 (Fmr1 gene. The gene is located on the long arm of the X chromosome and encodes fragile X mental retardation protein (FMRP. Absence of FMRP in fragile X patients as well as in Fmr1 knockout (KO mice results, among other changes, in abnormal dendritic spine formation and altered synaptic plasticity in the neocortex and hippocampus. Clinical features of FXS include cognitive impairment, anxiety, abnormal social interaction, mental retardation, motor coordination and speech articulation deficits. Mouse pups generate ultrasonic vocalizations (USVs when isolated from their mothers. Whether those social ultrasonic vocalizations are deficient in mouse models of FXS is unknown. Here we compared isolation-induced USVs generated by pups of Fmr1-KO mice with those of their wild type (WT littermates. Though the total number of calls was not significantly different between genotypes, a detailed analysis of 10 different categories of calls revealed that loss of Fmr1 expression in mice causes limited and call-type specific deficits in ultrasonic vocalization: the carrier frequency of flat calls was higher, the percentage of downward calls was lower and that the frequency range of complex calls was wider in Fmr1-KO mice compared to their WT littermates.

  12. Detection of FMD virus type specific IgG1, IgG2 and IgA antibodies in milk and serum of buffaloes vaccinated with oil adjuvanted polyvalent FMD vaccine

    Directory of Open Access Journals (Sweden)

    R. Sharma

    2010-02-01

    Full Text Available The present investigation was carried out on 15 randomly selected milch buffaloes divided into three groups on the basis of lactation at an organized farm, to study the foot and mouth disease virus type specific antibodies in milk and serum following FMD vaccination. Milk and serum samples collected before vaccination i.e. 0 day and on 7, 14, 28, 42 and 56 days post vaccination, were analyzed for the detection of FMD virus specific IgG1, IgG2 and IgA antibody response by indirect double antibody sandwich ELISA. Significant FMD virus type specific antibody titres (IgG1, IgG2 and IgA were detected in milk and serum of buffaloes on different days post vaccination, though the levels of antibodies were lower in milk as compared to serum. FMD virus type specific IgG1 was found to be the predominant subclass as compared to IgG2 and IgA both in milk and serum of vaccinated buffaloes. Milk and serum IgG1, IgG2 and IgA antibody titres were positively correlated with values of regression coefficient (R as 0.506, 0.434 and 0.396, respectively.

  13. Atomic force microscopy as a tool for the investigation of living cells.

    Science.gov (United States)

    Morkvėnaitė-Vilkončienė, Inga; Ramanavičienė, Almira; Ramanavičius, Arūnas

    2013-01-01

    Atomic force microscopy is a valuable and useful tool for the imaging and investigation of living cells in their natural environment at high resolution. Procedures applied to living cell preparation before measurements should be adapted individually for different kinds of cells and for the desired measurement technique. Different ways of cell immobilization, such as chemical fixation on the surface, entrapment in the pores of a membrane, or growing them directly on glass cover slips or on plastic substrates, result in the distortion or appearance of artifacts in atomic force microscopy images. Cell fixation allows the multiple use of samples and storage for a prolonged period; it also increases the resolution of imaging. Different atomic force microscopy modes are used for the imaging and analysis of living cells. The contact mode is the best for cell imaging because of high resolution, but it is usually based on the following: (i) image formation at low interaction force, (ii) low scanning speed, and (iii) usage of "soft," low resolution cantilevers. The tapping mode allows a cell to behave like a very solid material, and destructive shear forces are minimized, but imaging in liquid is difficult. The force spectroscopy mode is used for measuring the mechanical properties of cells; however, obtained results strongly depend on the cell fixation method. In this paper, the application of 3 atomic force microscopy modes including (i) contact, (ii) tapping, and (iii) force spectroscopy for the investigation of cells is described. The possibilities of cell preparation for the measurements, imaging, and determination of mechanical properties of cells are provided. The applicability of atomic force microscopy to diagnostics and other biomedical purposes is discussed.

  14. Flow-cytometry and cell sorting: an efficient approach to investigate productivity and cell physiology in mammalian cell factories.

    Science.gov (United States)

    Kumar, Niraj; Borth, Nicole

    2012-03-01

    The performance of cell lines used for the production of biotherapeutic proteins typically depends on the number of cells in culture, their specific growth rate, their viability and the cell specific productivity (qP). Therefore both cell line development and process development are trying to (a) improve cell proliferation to reduce lag-phase and achieve high number of cells; (b) delay cell death to prolong the production phase and improve culture longevity; (c) and finally, increase qP. All of these factors, when combined in an optimised process, concur to increase the final titre and yield of the recombinant protein. As cellular performance is at the centre of any improvement, analysis methods that enable the characterisation of individual cells in their entirety can help in identifying cell types and culture conditions that perform exceptionally well. This observation of cells and their complexity is reflected by the term "cytomics" and flow cytometry is one of the methods used for this purpose. With its ability to analyse the distribution of physiological properties within a population and to isolate rare outliers with exceptional properties, flow cytometry ideally complements other methods used for optimisation, including media design and cell engineering. In the present review we describe approaches that could be used, directly or indirectly, to analyse and sort cellular phenotypes characterised by improved growth behaviour, reduced cell death or high qP and outline their potential use for cell line and process optimisation.

  15. Investigation of interaction between the drug and cell membrane by capillary electrophoresis

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    By introducing cell membrane into electrophoretic buffer as pseudo-stationary phase,a novel capillary electrophoresis method was established to explore the interaction between drugs and cell membrane,where the interaction between citalopram and rabbit red blood cell membrane was used as an example. A series of concentrations of cell membrane were suspended into the running buffer by peak-shift method. The binding constant of citalopram to rabbit red blood cell membrane of 0.977 g-1·L was obtained after treatment of Scatchard plot. This method could provide not only a new way for the investigation on the interactions between drugs and cell membrane,but also a new approach for high throughput screening of the drug membrane permeability,biological activity,and evaluating drugs in vivo.

  16. Investigation of cell morphology for disease diagnostics via high content screening

    Science.gov (United States)

    Khatau, Shyam

    2013-03-01

    Ninety percent of all cancer-related deaths are caused by metastatic disease, i.e. the spreading of a subset of cells from a primary tumor in an organ to distal sites in other organs. Understanding this progression from localized to metastatic disease is essential for further developing effective therapeutic and treatment strategies. However, despite research efforts, no distinct genetic, epigenetic, or proteomic signature of cancer metastasis has been identified so far. Metastasis is a physical event: through invasion and migration through the dense, tortuous stromal matrix, intravasation, shear forces of blood flow, successful re-attachment to blood vessel walls, migration, the colonization of a distal site, and, finally, reactivation following dormancy, metastatic cells may share precise physical properties. Cell morphology is the most direct physical property that can be measured. In this work, we develop a high throughput cell phenotyping process and investigate the morphological signature of primary tumor cells and liver metastatic pancreatic cancer cells.

  17. To investigate the necessity of STRA6 upregulation in T cells during T cell immune responses.

    Directory of Open Access Journals (Sweden)

    Rafik Terra

    Full Text Available Our earlier study revealed that STRA6 (stimulated by retinoic acid gene 6 was up-regulated within 3 h of TCR stimulation. STRA6 is the high-affinity receptor for plasma retinol-binding protein (RBP and mediates cellular vitamin A uptake. We generated STRA6 knockout (KO mice to assess whether such up-regulation was critical for T-cell activation, differentiation and function. STRA6 KO mice under vitamin A sufficient conditions were fertile without apparent anomalies upon visual inspection. The size, cellularity and lymphocyte subpopulations of STRA6 KO thymus and spleen were comparable to those of their wild type (WT controls. KO and WT T cells were similar in terms of TCR-stimulated proliferation in vitro and homeostatic expansion in vivo. Naive KO CD4 cells differentiated in vitro into Th1, Th2, Th17 as well as regulatory T cells in an analogous manner as their WT counterparts. In vivo experiments revealed that anti-viral immune responses to lymphocytic choriomeningitis virus in KO mice were comparable to those of WT controls. We also demonstrated that STRA6 KO and WT mice had similar glucose tolerance. Total vitamin A levels are dramatically lower in the eyes of KO mice as compared to those of WT mice, but the levels in other organs were not significantly affected after STRA6 deletion under vitamin A sufficient conditions, indicating that the eye is the mouse organ most sensitive to the loss of STRA6. Our results demonstrate that 1 in vitamin A sufficiency, the deletion of STRA6 in T cells does no affect the T-cell immune responses so-far tested, including those depend on STAT5 signaling; 2 STRA6-independent vitamin A uptake compensated the lack of STRA6 in lymphoid organs under vitamin A sufficient conditions in mice; 3 STRA6 is critical for vitamin A uptake in the eyes even in vitamin A sufficiency.

  18. Investigating cell sorting and analysis of the proprietary cell-BOCS platform

    DEFF Research Database (Denmark)

    Carrissemoux, Caro; Beunis, Filip; Glückstad, Jesper;

    2016-01-01

    of cells and upgrading the optical manipulation system. Detection is done by bright-field imaging but there is a specific need to expand the detection criteria to other fields, for example fluorescence. Positively identified particles are sorted out by means of “optical catapulting” with a spatially...

  19. Thermal Behaviour Investigation of a Large and High Power Lithium Iron Phosphate Cylindrical Cell

    Directory of Open Access Journals (Sweden)

    Odile Capron

    2015-09-01

    Full Text Available This paper investigates the thermal behaviour of a large lithium iron phosphate (LFP battery cell based on its electrochemical-thermal modelling for the predictions of its temperature evolution and distribution during both charge and discharge processes. The electrochemical-thermal modelling of the cell is performed for two cell geometry approaches: homogeneous (the internal region is considered as a single region and discrete (the internal region is split into smaller regions for each layer inside the cell. The experimental measurements and the predictions of the cell surface temperature achieved with the simulations for both approaches are in good agreement with 1.5 °C maximum root mean square error. From the results, the maximum cell surface temperature and temperature gradient between the internal and the surface regions are around 31.3 °C and 1.6 °C. The temperature gradient in the radial direction is observed to be greater about 1.1 °C compared to the longitudinal direction, which is caused by the lower thermal conductivity of the cell in the radial compared to the longitudinal direction. During its discharge, the reversible, the ohmic and the reaction heat generations inside the cell reach up to 2 W, 7 W and 17 W respectively. From the comparison of the two modelling approaches, this paper establishes that the homogeneous modelling of the cell internal region is suitable for the study of a single cylindrical cell and is appropriate for the two-dimensional thermal behaviour investigation of a battery module made of multiple cells.

  20. [Investigation of permeability of intranasal formulations using Side-Bi-Side horizontal diffusion cell].

    Science.gov (United States)

    Horváth Tamás; Ambrus, Rita; Szabóné, Révész Piroska

    2015-01-01

    Nowadays the nasal route has received a great attention as a reliable administration for the systemic administration. In the Department of Pharmaceutical Technology, University of Szeged, the main research work is the design and development of innovative nasal formulations, which can open new possibilities for some well-known agents and may also help some drug-candidates delivery problems. The aim of this work was to present some reliable models for investigation of permeability, such as Spectra/Por Dialisys Membran, ZelluTrans/Roth Mini Dialyzer, μFLUX diffusion Cell, Navicyte Vertical and Horizontal Diffusion Chamber System and In-line Cell. In addition, the horizontal membrane diffusion model (Side-Bi-Side) was used to investigate in vitro and ex vivo studies of permeability of meloxicam in comparison with the vertical diffusion cell (Franz). The present study investigated the meloxicam in different dosage forms (powder, spray, gel). It was found that the Side-Bi-Side cell is suitable to test the nasal formulations, but the uniform distribution of the active substance cannot be ensured in donor place by increasing the viscosity of the compositions, therefore the Franz cell is recommended for investigation of nasal gel. Previous measurement cannot be found related to this topic.

  1. Chosen Aspects Of Investigations Of Solar Cells With The Laser Beam Induced Current Technique

    Directory of Open Access Journals (Sweden)

    Chrobak Łukasz Bartłomiej

    2015-06-01

    Full Text Available This paper presents maps of spatial distributions of the short circuit current Isc(x,y and the open circuit voltage Uoc(x,y of the investigated low cost solar cells. Visible differences in values of these parameters were explained by differences in the serial and shunt resistances determined for different points of solar cells from measurements of I–V characteristics. The spectral dependence of the photo voltage of solar cell is also shown, discussed and interpreted in the model of amorphous and crystal silicon.

  2. Investigation of the cytotoxic effects of titanate nanotubes on Caco-2 cells.

    Science.gov (United States)

    Fenyvesi, Ferenc; Kónya, Zoltán; Rázga, Zsolt; Vecsernyés, Miklós; Kása, Péter; Pintye-Hódi, Klára; Bácskay, Ildikó

    2014-08-01

    Titanate nanotubes can be used as drug delivery systems, but limited information is available on their interactions with intestinal cells. In this study, we investigated the cytotoxicity and cellular uptake of titanate nanotubes on Caco-2 monolayers and found that up to 5 mg/ml concentration, these nanotubes are not cytotoxic and not able to permeate through the intestinal cell layer. Transmission electron microscopic experiments showed that titanate nanotubes are not taken up by cells, only caused a high-density granulation on the surface of the endoplasmic reticulum. According to these results, titanate nanotubes are suitable systems for intestinal drug delivery.

  3. Some investigations on thickness-dependent electrical behaviour of CdS:As/electrolyte solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Deshmukh, L.P. (Dept. of Applied Electronics, Shivaji Univ., Solapur (India)); Hankare, P.P. (Dept. of Polymer Chemistry, Shivaji Univ., Solapur (India)); Sawant, V.S. (Dept. of Electronics, Y.C. Inst. of Science, Satara (India))

    1991-12-01

    An investigation has been made into the effect of photoelectrode thickness of the photovoltaic properties of cadmium sulphide/electrolyte solar cells. CdS photoelectrodes of various thicknesses doped with 0.25wt.% arsenic were prepared by a chemical deposition process on plane mirror smooth stainless steel substrates. An electrode/electrolyte junction cell was designed for use in a glass cuvette and has been analysed in terms of its electrical parameters. The thickness of the photoelectrode was found to cause significant changes in cell parameters such as short-circuit current, open-circuit voltage, series and shunt resistances, fill factor, junction quality factors and flat band potential. (orig.).

  4. Investigation of the optoelectronic properties of {mu}c-Si:H pin solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Stiebig, H.; Brammer, T.; Zimmer, J.; Vetterl, O.; Wagner, H. [Forschungszentrum Juelich GmbH, ISI-PV, D-52425 Juelich (Germany)

    2000-05-01

    We have investigated microcrystalline silicon ({mu}c-Si:H) pin solar cells deposited at different silane concentrations in the gas phase varying from 2% to 7.2%. For these cells three features were found: the dark current of the cells decreased, the open circuit voltage increased and the blue response reduced with increasing silane concentration during deposition. To study the transport and recombination of these structures we have compared the experimentally determined optoelectronic properties with simulated data. The simulations reveal that the equilibrium carrier concentration of free carriers decreases and the affect of the nucleation region of the i-layer on the blue response increases with increasing silane concentration.

  5. An investigation of arsenic-doped CdS/electrolyte solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Deshmukh, L.P.; Palwe, A.B. (Dept. of Applied Electronics, Shivaji Univ., Centre for Post-Graduate Studies, Solapur (India)); Sawant, V.S. (Dept. of Electronics, Y.C. Inst. of Science, Satara (India))

    1990-01-01

    An investigation of the photovoltaic properties of the cadmium sulphide semiconductor-liquid junction solar cell is presented. A well known chemical bath deposition technique was used for the deposition of thin film cadmium sulphide photoelectrodes. The photoelectrode was doped with trivalent arsenic in the concentration range 0.01-2 wt.%. Current-voltage and capacitance-voltage measurements were performed in a sulphide/polysulphide redox couple using a sensitized carbon counterelectrode. The performance of the electrochemical photovoltaic cell is examined in terms of the cell parameters, namely open-circuit voltage, short-circuit current, series and shunt resistances, efficiency, fill factor, junction ideality factors and flat band potential. An improvement in cell performance has been observed for a cell formed with 0.25 wt.% CdS:As photoelectrode. The results are supported by spectral response and optical absorption studies. (orig.).

  6. Dual Role of miR-21 in CD4+T-Cells : Activation-Induced miR-21 Supports Survival of Memory T-Cells and Regulates CCR7 Expression in Naive T-Cells

    NARCIS (Netherlands)

    Smigielska-Czepiel, Katarzyna; van den Berg, Anke; Jellema, Pytrick; Slezak-Prochazka, Izabella; Maat, Henny; van den Bos, Hilda; van der Lei, Roelof Jan; Kluiver, Joost; Brouwer, Elisabeth; Boots, Anne Mieke H.; Kroesen, Bart-Jan

    2013-01-01

    Immune cell-type specific miRNA expression patterns have been described but the detailed role of single miRNAs in the function of T-cells remains largely unknown. We investigated the role of miR-21 in the function of primary human CD4+ T-cells. MiR-21 is substantially expressed in T-cells with a mem

  7. Investigation of the toxicity of bismuth oxide nanoparticles in various cell lines.

    Science.gov (United States)

    Abudayyak, Mahmoud; Öztaş, Ezgi; Arici, Merve; Özhan, Gül

    2017-02-01

    Nanoparticles have been drawn attention in various fields ranging from medicine to industry because of their physicochemical properties and functions, which lead to extensive human exposure to nanoparticles. Bismuth (Bi)-based compounds have been commonly used in the industrial, cosmetic and medical applications. Although the toxicity of Bi-based compounds was studied for years, there is a serious lack of information concerning their toxicity and effects in the nanoscale on human health and environment. Therefore, we aimed to investigate the toxic effects of Bi (III) oxide (Bi2O3) nanoparticles in liver (HepG2 hepatocarcinoma cell), kidney (NRK-52E kidney epithelial cell), intestine (Caco-2 colorectal adenocarcinoma cell), and lung (A549 lung carcinoma cell) cell cultures. Bi2O3 nanoparticles (∼149.1 nm) were easily taken by all cells and showed cyto- and genotoxic effects. It was observed that the main cell death pathways were apoptosis in HepG2 and NRK-52E cells and necrosis in A549 and Caco-2 cells exposed to Bi2O3 nanoparticles. Also, the glutathione (GSH), malondialdehyde (MDA), and 8-hydroxy deoxyguanine (8-OHdG) levels were significantly changed in HepG2, NRK-52E, and Caco-2 cells, except A549 cell. The present study is the first to evaluate the toxicity of Bi2O3 nanoparticles in mammalian cells. Bi2O3 nanoparticles should be thoroughly assessed for their potential hazardous effects to human health and the results should be supported with in vivo studies to fully understand the mechanism of their toxicity.

  8. INVESTIGATION OF HYPOLIPIDEMIC EFFECT OF SESQUITERPENE Γ-LACTONE AHILLIN IN HEPATOMA TISSUE CULTURE (HTC CELLS

    Directory of Open Access Journals (Sweden)

    V. V. Ivanov

    2014-01-01

    Full Text Available Objective. Investigation of hypolipidemic effect of sesquiterpene γ-lactone ahillin in hepatoma tissue culture (HTC cells.Material and methods. In this study we’ve evaluated the effect of γ-lactone sesquiterpene aсhillin and gemfibrozil (comparator drug on the lipid content in the hepatoma tissue culture (HTC cell which were incubated with a fat emulsion lipofundin by fluorescent method with vital dye Nile Redand staining the cells with the dye Oil Red O. The cell viability was investigated using the MTT-test and staining with Trypan blue.Results. Cultivation cells HTC with aсhillin and gemfibrozilat concentrations ranging from 0.5 to1.5 mM and from0.25 mM to0.5 mM, respectively, resulted in dose-dependent decrease of the fluorescence’s intensity Nile Red. It reflects a decrease in lipid content in the cells. At these concentrations the drugs didn’t have cytotoxic effect and the cell viability didn’t change compared to the control culture.An experimental hyperlipidemia in the hepatoma culture cells was induced by adding to the incubation medium a fat emulsion lipofundin at a final concentration 0.05%. The intensity of fluorescence Nile Red in the cells was increased 4 fold (p < 0.05. This result suggests the significant accumulation of lipids in the cell’s cytosol and confirmed by microscopy after staining neutral lipids with the dye Oil Red O. Under these conditions aсhillin and gemfibrozil reduced lipid content in cells and hadthe effect at concentrations of0.5 mM and0.25 mM respectively.Conclusion. In the lipofundin-mediated model of hyperlipidemia the sesquiterpene lactone aсhillin prevents the lipid accumulation in cells. It confirms by decrease of fluorescence Nile Red and reduction lipid drops which were stained with Oil Red O in cytosol. To establish the molecular targets of aсhillin’saction on lipid metabolism in cell culture HTC we need to investigate a gene expression of key enzymes of lipid metabolism.

  9. Investigation of the strategies for targeting of the afterglow nanoparticles to tumor cells.

    Science.gov (United States)

    Rashidi, Leila Hossein; Homayoni, Homa; Zou, Xiaoju; Liu, Li; Chen, Wei

    2016-03-01

    Afterglow nanoparticles have been widely investigated as new agents for cancer imaging and as a light source for photodynamic activation for cancer treatment. For both applications, the targeting of the afterglow nanoparticles to tumor cells is an important and challenging issue. Here we report the strategies for targeting Sr3MgSi2O8:Eu(2+),Dy(3+) afterglow nanoparticles to tumor cells by conjugating with variety of targeting molecules such as folic acid, RGD peptide, and R-11 peptide. For folic acid targeting, experimental observations were conducted on PC-3 cells (folate receptor negative), MCF-7 (folate receptor positive), and KB cells (folate receptor positive) to compare the cellular uptake and confirm targeted delivery. For the cyclic RGDfK peptide, experiments were carried out on the integrin αvβ3 positive MDA-MB-231 breast cancer cell line and the integrin αvβ3 negative MCF-7 breast cancer cell lines in order to compare the cellular uptakes. As for R11-SH peptide, cellular uptake of the afterglow nanoparticles was observed on LNCaP and PC3 prostate cancer cell lines. All the observations showed that the cellular uptakes of the nanoparticles were enhanced by conjugation to variety of targeting molecules which are specific for breast and prostate cancer cells.

  10. Magnetic stent hyperthermia for esophageal cancer: an in vitro investigation in the ECA-109 cell line.

    Science.gov (United States)

    Liu, Jia-Yi; Zhao, Ling-Yun; Wang, Yu-Ying; Li, Dan-Ye; Tao, Dan; Li, Li-Ya; Tang, Jin-Tian

    2012-03-01

    Magnetic stent hyperthermia (MSH) is a novel approach for targeted thermotherapy for esophageal cancer, which is based on the mechanism that inductive heat can be generated by the esophageal stent upon exposure under an alternative magnetic field (AMF). A positive effect of MSH on esophageal cancer has been demonstrated, however, there is no study on the in vitro effects of heating treatment or of the effects of AMF exposure on human esophageal cancer cells. This study aimed to investigate the effect of MSH and of AMF exposure in esophageal cancer cells. Inductive heating characteristics of esophageal stents were assessed by exposing the stents under AMF. A rather rapid temperature rise of the Ni-Ti stent when subjected to AMF exposure was observed and the desired hyperthermic temperature could be controlled by adjusting the field parameter of the AMF. Human esophageal squamous carcinoma (ESCC) ECA-109 cells were divided into four groups: the control group, the water-bath heating group, the MSH group and the AMF exposure group. Hyperthermic temperatures were 43, 48 and 53˚C and the treatment time was in the range of 5-30 min. The MTT assay, apoptotic analysis and TUNEL staining were applied in the current investigation. Exposure of ECA-109 cells under AMF with a field intensity of 50 to 110 kA/m had negligible effect on cell viability, cell necrosis and apoptosis. Hyperthermia had a remarkable inhibitory effect on the cell viability and the effect was dependent on the thermal dose (temperature and time). The optimal thermal dose of MSH for ECA-109 cells was 48˚C for 20-30 min. The study also elucidated that there was a difference in the effects on cell necrosis and apoptosis between the heating mode of water bath and MSH. The data suggest that MSH may have clinical significance for esophageal cancer treatment.

  11. Investigation of biomaterials by human epithelial gingiva cells: an in vitro study

    Directory of Open Access Journals (Sweden)

    Neunzehn Jörg

    2012-12-01

    Full Text Available Abstract Introduction In modern medicine and dentistry the use of biomaterials is a fast developing field of increasing interest. Especially in dentistry the interaction between biomaterials like implant materials and the soft tissue in the oral cavity is in the focus of daily research. In this context the high importance of testing materials and their surfaces concerning their biocompatibility towards corresponding cells is very likely. For this purpose this study investigates cells derived from human gingival biopsies on different materials and surfaces. Methods Cells in this study were cultivated out of human biopsies by a grow out explant technique and were sub cultivated on titanium, zirconium dioxide and collagen membrane specimens. To characterise the cells on the material surfaces used in this study immunohistochemical and histological staining techniques as well as different methods of microscopy (light microscopy and SEM were applied. Results With the aid of the explant technique and the chosen cell cultivation method it was possible to investigate the human gingiva derived cells on different materials. The data of the present study show that the human gingival cells attach and proliferate on all three tested materials by exhibiting characteristic gingival keratinocyte protein expression even after long periods of culture e.g. up to 70 days. Conclusions It could be shown that the three tested materials titanium, zirconium dioxide and collagen membrane (and their special surfaces are good candidates for the application as materials in the dental gingival environment or, in the case of the collagen membrane as scaffold/cell-carrier for human gingival cells in tissue engineering.

  12. Investigation into local cell mechanics by atomic force microscopy mapping and optical tweezer vertical indentation

    Science.gov (United States)

    Coceano, G.; Yousafzai, M. S.; Ma, W.; Ndoye, F.; Venturelli, L.; Hussain, I.; Bonin, S.; Niemela, J.; Scoles, G.; Cojoc, D.; Ferrari, E.

    2016-02-01

    Investigating the mechanical properties of cells could reveal a potential source of label-free markers of cancer progression, based on measurable viscoelastic parameters. The Young’s modulus has proved to be the most thoroughly studied so far, however, even for the same cell type, the elastic modulus reported in different studies spans a wide range of values, mainly due to the application of different experimental conditions. This complicates the reliable use of elasticity for the mechanical phenotyping of cells. Here we combine two complementary techniques, atomic force microscopy (AFM) and optical tweezer microscopy (OTM), providing a comprehensive mechanical comparison of three human breast cell lines: normal myoepithelial (HBL-100), luminal breast cancer (MCF-7) and basal breast cancer (MDA-MB-231) cells. The elastic modulus was measured locally by AFM and OTM on single cells, using similar indentation approaches but different measurement parameters. Peak force tapping AFM was employed at nanonewton forces and high loading rates to draw a viscoelastic map of each cell and the results indicated that the region on top of the nucleus provided the most meaningful results. OTM was employed at those locations at piconewton forces and low loading rates, to measure the elastic modulus in a real elastic regime and rule out the contribution of viscous forces typical of AFM. When measured by either AFM or OTM, the cell lines’ elasticity trend was similar for the aggressive MDA-MB-231 cells, which were found to be significantly softer than the other two cell types in both measurements. However, when comparing HBL-100 and MCF-7 cells, we found significant differences only when using OTM.

  13. Using a Cell Phone to Investigate the Skin Depth Effect in Salt Water

    Science.gov (United States)

    Rayner, John

    2017-02-01

    This paper describes an experimental investigation of the skin depth effect for electromagnetic waves in salt water using a cell phone that is immersed to a critical depth where it no longer responds when called. We show that this critical depth is directly proportional to the theoretical skin depth for a range of salt concentrations.

  14. An Investigation on Changing Behaviours of University Students Switching from Using Classical Cell Phones to Smartphones

    Science.gov (United States)

    Arslan, Yusuf

    2016-01-01

    In this study, it was tried to comprehend whether there occur any changes in behaviours of university students switching from classical cell phones to smartphones. The investigation was carried out according to quantitative research method. Questionnaire was employed as data collection tool. The datum of the study was limited with the information…

  15. The hot cell laboratories for material investigations of the Institute for Safety Research

    Energy Technology Data Exchange (ETDEWEB)

    Viehrig, H.W.

    1998-10-01

    Special facilities for handling and testing of irradiated specimens are necessary, to perform the investigation of activated material. The Institute for Safety Research has two hot cell laboratories: - the preparation laboratory and - the materials testing laboratory. This report is intended to give an overview of the available facilities and developed techniques in the laboratories. (orig.)

  16. Investigation of Novel Electrocatalysts for Metal Supported Solid Oxide Fuel Cells - Ru:GDC

    DEFF Research Database (Denmark)

    Sudireddy, Bhaskar Reddy; Nielsen, Jimmy; Thydén, Karl Tor Sune;

    2015-01-01

    The electrochemical performance and stability of the planar metal supported solid oxide fuel cells (MS-SOFC) with two different electrocatalytically active materials, namely, Ni:GDC and Ru:GDC were investigated. Ru:GDC with an ASR of 0.322 Ωcm2 performed better than Ni:GDC with an ASR of 0.453 Ωc...

  17. Human papillomavirus infections in Mexican women with normal cytology, precancerous lesions, and cervical cancer: type-specific prevalence and HPV coinfections.

    Science.gov (United States)

    Aguilar-Lemarroy, Adriana; Vallejo-Ruiz, Verónica; Cortés-Gutiérrez, Elva I; Salgado-Bernabé, Manuel Eduardo; Ramos-González, Norma Patricia; Ortega-Cervantes, Laura; Arias-Flores, Rafael; Medina-Díaz, Irma M; Hernández-Garza, Fernando; Santos-López, Gerardo; Piña-Sánchez, Patricia

    2015-05-01

    The prevalence and genotype distribution of human papillomavirus (HPV) provides the basis for designing HPV prevention programs. The prevalence rates of type-specific HPV and coinfections in samples of Mexican women were investigated in 822 women aged 18-87 years. HPV detection was performed using a Linear Array™ genotyping test. HPV infection was found in 12.4% of controls, 46.3% of those with cervical intraepithelial neoplasia 1, and 100% of those with cervical intraepithelial neoplasia 3 or cervical cancer. HPV 16 was the most prevalent type in all diagnosis groups. The HPV types most frequently found in cervical cancers were 16, 18, 45, 52, 58, and 39; HPV types 16, 62, 51, 84, 18, 53, and CP6108 were the most prevalent in control women. Considering HPV-positive samples only, coinfections occurred most often in controls (63%) and were less frequent in those with cervical cancer (26%). The most frequent viral types in coinfections with HPV 16 in control women were HPV 62, 51, and 84; in women with cervical cancers, HPV 18, 39, and 70 were most common. In conclusion, in addition to HPV types 16 and 18, types 45, 39, 58, 52, and 71 were found in cervical cancers in Mexican women (78%); among them, only 65% were attributable to HPV types 16 and 18. Therefore, it is necessary to consider these viral types in the design of new vaccines, and to determine whether certain HPV types coinfecting with HPV 16 in precursor lesions determine tumor progression or regression.

  18. Paper-based microreactor integrating cell culture and subsequent immunoassay for the investigation of cellular phosphorylation.

    Science.gov (United States)

    Lei, Kin Fong; Huang, Chia-Hao

    2014-12-24

    Investigation of cellular phosphorylation and signaling pathway has recently gained much attention for the study of pathogenesis of cancer. Related conventional bioanalytical operations for this study including cell culture and Western blotting are time-consuming and labor-intensive. In this work, a paper-based microreactor has been developed to integrate cell culture and subsequent immunoassay on a single paper. The paper-based microreactor was a filter paper with an array of circular zones for running multiple cell cultures and subsequent immunoassays. Cancer cells were directly seeded in the circular zones without hydrogel encapsulation and cultured for 1 day. Subsequently, protein expressions including structural, functional, and phosphorylated proteins of the cells could be detected by their specific antibodies, respectively. Study of the activation level of phosphorylated Stat3 of liver cancer cells stimulated by IL-6 cytokine was demonstrated by the paper-based microreactor. This technique can highly reduce tedious bioanalytical operation and sample and reagent consumption. Also, the time required by the entire process can be shortened. This work provides a simple and rapid screening tool for the investigation of cellular phosphorylation and signaling pathway for understanding the pathogenesis of cancer. In addition, the operation of the paper-based microreactor is compatible to the molecular biological training, and therefore, it has the potential to be developed for routine protocol for various research areas in conventional bioanalytical laboratories.

  19. Cell Culture Models for the Investigation of Hepatitis B and D Virus Infection

    Science.gov (United States)

    Verrier, Eloi R.; Colpitts, Che C.; Schuster, Catherine; Zeisel, Mirjam B.; Baumert, Thomas F.

    2016-01-01

    Chronic hepatitis B virus (HBV) and hepatitis D virus (HDV) infections are major causes of liver disease and hepatocellular carcinoma worldwide. Despite the presence of an efficient preventive vaccine, more than 250 million patients are chronically infected with HBV. Current antivirals effectively control but only rarely cure chronic infection. While the molecular biology of the two viruses has been characterized in great detail, the absence of robust cell culture models for HBV and/or HDV infection has limited the investigation of virus-host interactions. Native hepatoma cell lines do not allow viral infection, and the culture of primary hepatocytes, the natural host cell for the viruses, implies a series of constraints restricting the possibilities of analyzing virus-host interactions. Recently, the discovery of the sodium taurocholate co-transporting polypeptide (NTCP) as a key HBV/HDV cell entry factor has opened the door to a new era of investigation, as NTCP-overexpressing hepatoma cells acquire susceptibility to HBV and HDV infections. In this review, we summarize the major cell culture models for HBV and HDV infection, discuss their advantages and limitations and highlight perspectives for future developments. PMID:27657111

  20. Numerical investigation of flow field configuration and contact resistance for PEM fuel cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Mohammad Hadi; Rismanchi, Behzad [Department of Mechanical Engineering, Shiraz University, Shiraz 71348-51154 (Iran)

    2008-08-15

    A steady-state three-dimensional non-isothermal computational fluid dynamics (CFD) model of a proton exchange membrane fuel cell is presented. Conservation of mass, momentum, species, energy, and charge, as well as electrochemical kinetics are considered. In this model, the effect of interfacial contact resistance is also included. The numerical solution is based on a finite-volume method. In this study the effects of flow channel dimensions on the cell performance are investigated. Simulation results indicate that increasing the channel width will improve the limiting current density. However, it is observed that an optimum shoulder size of the flow channels exists for which the cell performance is the highest. Polarization curves are obtained for different operating conditions which, in general, compare favorably with the corresponding experimental data. Such a CFD model can be used as a tool in the development and optimization of PEM fuel cells. (author)

  1. Investigation of osteoblast cells behavior in polymeric 3D micropatterned scaffolds using digital holographic microscopy.

    Science.gov (United States)

    Mihailescu, M; Popescu, R C; Matei, A; Acasandrei, A; Paun, I A; Dinescu, M

    2014-08-01

    The effect of micropatterned polymeric scaffolds on the features of the cultured cells at different time intervals after seeding was investigated by digital holographic microscopy. Both parallel and perpendicular walls, with different heights, were fabricated using two-photon lithography on photopolymers. The walls were subsequently coated with polypyrrole-based thin films using the matrix assisted pulsed laser evaporation technique. Osteoblast-like cells, MG-63 line, were cultured on these polymeric 3D micropatterned scaffolds. To analyze these scaffolds with/without cultured cells, an inverted digital holographic microscope, which provides 3D images, was used. Information about the samples' refractive indices and heights was obtained from the phase shift introduced in the optical path. Characteristics of cell adhesion, alignment, orientation, and morphology as a function of the wall heights and time from seeding were highlighted.

  2. Hairy cell leukemia: enzyme-histochemical and ultrastructural investigation of one case.

    Science.gov (United States)

    Pilotti, S; Carbone, A; Lombardi, L; Tavolato, C; Rilke, F

    1978-10-31

    The investigation was carried out on blood smears, bone marrow aspirates, one lymph node biopsy, and the surgically removed spleen of a 53-year-old man with hairy cell leukemia. In the blood smears stained with May-Grünwald-Giemsa, 60 to 70% of the hairy cells contained tubular inclusions that corresponded to the ribosome-lamella complexes demonstrated at electron microscopy. In blood smears, imprints and cryostatic sections of the lymph node and of the spleen, hairy cells revealed tartrate-resistant acid phosphatase, beta-glucuronidase and adenosine-triphosphatase activity. In the spleen neutral esterase and alkaline phosphatase demonstrated the numerical increase of the histiocytes, which ultrastructurally displayed phagocytic activity. The presence in the spleen of pseudosinuses lined by hairy cells was confirmed by electron microscopy as well as by cytoenzymology.

  3. Computational investigations into the orgins of 'short term' biochemical memory in T cell activation

    CERN Document Server

    Locasale, Jason W

    2007-01-01

    Recent studies have reported that T cells can integrate signals between interrupted encounters with Antigen Presenting Cells (APCs) in such a way that the process of signal integration exhibits a form of memory. Here, we carry out a computational study using a simple mathematical model of T cell activation to investigate the ramifications of interrupted T cell-APC contacts on signal integration. We consider several mechanisms of how signal integration at these time scales may be achieved and conclude that feedback control of immediate early gene products (IEGs) appears to be a highly plausible mechanism that allows for effective signal integration and cytokine production from multiple exposures to APCs. Analysis of these computer simulations provides an experimental roadmap involving several testable predictions.

  4. Investigation of engineered bacterial adhesins for opportunity to interface cells with abiotic materials

    Science.gov (United States)

    Terrell, Jessica L.; Dong, Hong; Holthoff, Ellen L.; Small, Meagan C.; Sarkes, Deborah A.; Hurley, Margaret M.; Stratis-Cullum, Dimitra N.

    2016-05-01

    The convenience of cellular genetic engineering has afforded the power to build `smart' synthetic biological tools with novel applications. Here, we have explored opportunities to hybridize engineered cells with inorganic materials toward the development of 'living' device-compatible systems. Cellular structural biology is engineerable based on the ability to rewrite genetic code to generate recombinant, foreign, or even unnatural proteins. With this capability on the biological end, it should be possible to achieve superior abio-compatibility with the inorganic materials that compose current microfabricated technology. This work investigated the hair-like appendages of Escherichia coli known as Type 1 fimbriae that enable natural adhesion to glycosylated substrates. Sequence alterations within the fimbrial gene cluster were found to be well-tolerated, evidenced by tagging the fimbriae with peptide-based probes. As a further development, fimbriae tips could be reconfigured to, in turn, alter cell binding. In particular, the fimbriae were fused with a genetically optimized peptide-for-inorganics to enable metal binding. This work established methodologies to systematically survey cell adhesion properties across a suite of fimbriae-modified cell types as well as to direct patterned cell adhesion. Cell types were further customized for added complexity including turning on secondary gene expression and binding to gold surfaces. The former demonstrates potential for programmable gene switches and the latter for interfacing biology with inorganic materials. In general, the incorporation of 'programmed' cells into devices can be used to provide the feature of dynamic and automated cell response. The outcomes of this study are foundational toward the critical feature of deliberate positioning of cells as configurable biocomponentry. Overall, cellular integration into bioMEMs will yield advanced sensing and actuation.

  5. Investigating Ceria Nanocrystals Uptake by Glioblastoma Multiforme Cells and its Related Effects: An Electron Microscopy Study

    KAUST Repository

    Aloufi, Bader

    2017-01-22

    Cerium oxide nanoparticles have been utilized widely nowadays in cancer research. It has been suggested by many studies that these nanoparticles are capable of having dual antioxidant behavior in healthy and cancer microenvironment; where in physiological condition, they act as antioxidant and do not affect the healthy cells, while in tumor-like condition; they act as an oxidase, and result in a selective killing for the cancer cells. In this experiment, the interaction of nanoceria with glioblastoma and healthy astrocyte cells was examined, and further correlated with the in vitro cytotoxic effects of various nanoceria concentrations (100 and 300 µg/ml) and exposure times (12, 24, and 48 hours). Electron microscopes were used to investigate the cellular-NPs interactions, and to examine the related cytotoxic effects in combination with trypan blue and propidium iodide viability assays. Our data suggest the following results. First, the two cell lines demonstrated capability of taken up the ceria through endocytosis pathway, where the NPs were recognized engulfed by double membrane vesicles at various regions over the cellular cytoplasm. Secondly, cerium oxide nanoparticles were found to affect the glioblastoma cells, but not so severely the corresponding healthy astrocytes at the various concentrations and incubation times, as revealed by the viability assays and the electron microscopy analysis. Thirdly, the viability of the glioblastoma cells after the treatment displayed a declined trend when increasing the ceria concentrations, but did not show such dependency with regard to the different time points. In all cases, the healthy astrocyte cells showed slight alterations in mitochondrial shape which did not influence their viability. Among the various nanoceria concentrations and exposure times, the most efficient dose of treatment was found to be with a concentration of 300 µg/ml at a time point of 24-hour, where higher reduction on the viability of

  6. Microfluidic biofunctionalisation protocols to form multi-valent interactions for cell rolling and phenotype modification investigations

    KAUST Repository

    Perozziello, Gerardo

    2013-07-01

    In this study, we propose a fast, simple method to biofunctionalise microfluidic systems for cellomic investigations based on micro-fluidic protocols. Many available processes either require expensive and time-consuming protocols or are incompatible with the fabrication of microfluidic systems. Our method differs from the existing since it is applicable to an assembled system, uses few microlitres of reagents and it is based on the use of microbeads. The microbeads have specific surface moieties to link the biomolecules and couple cell receptors. Furthermore, the microbeads serve as arm spacer and offer the benefit of the multi-valent interaction. Microfluidics was adapted together with topology and biochemistry surface modifications to offer the microenvironment for cellomic studies. Based on this principle, we exploit the streptavidin-biotin interaction to couple antibodies to the biofunctionalised microfluidic environment within 5 h using 200 μL of reagents and biomolecules. We selected the antibodies able to form complexes with the MHC class I (MHC-I) molecules present on the cell membrane and involved in the immune surveillance. To test the microfluidic system, tumour cell lines (RMA) were rolled across the coupled antibodies to recognise and strip MHC-I molecules. As result, we show that cell rolling performed inside a microfluidic chamber functionalised with beads and the opportune antibody facilitate the removal of MHC class I molecules. We showed that the level of median fluorescent intensity of the MHC-I molecules is 300 for cells treated in a not biofunctionalised surface. It decreased to 275 for cells treated in a flat biofunctionalised surface and to 250 for cells treated on a surface where biofunctionalised microbeads were immobilised. The cells with reduced expression of MHC-I molecules showed, after cytotoxicity tests, susceptibility 3.5 times higher than normal cells. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Investigation of in vitro cytotoxicity of the redox state of ionic iron in neuroblastoma cells

    Directory of Open Access Journals (Sweden)

    Ajay Vikram Singh

    2012-01-01

    Full Text Available Background: there is an intimate relation between transition metals and cell homeostasis due to the physiological necessity of metals in vivo. Particularly, iron (ferrous and ferric state is utilized in many physiological processes of the cell but in excess has been linked with negative role contributing in many neurodegenerative processes. Objective: the aim of this study was to investigate which oxidation state of ionic iron (Ferrous (II versus Ferric (III is more toxic to neuronal cells (SHSY5Y. Materials and Methods: The neuroblastoma (SHSY5Y cells were exposed to varying concentration of ferric and ferrous iron. Morphological studies using immunofluorescence staining and microscopic analysis as confirmed by intracellular glutathione (GSH test demonstrated oxidative stress to cells in iron microenvironment. In addition, MTT assay was performed to evaluate the viability and metabolic state of the cells. Results: the results showed that ferrous form has significantly higher toxicity compared to the ferric ionic state of higher concentration. In addition, microscopic analysis shows cell fenestration at higher concentrations and swelling at intermediate ferric dosages as demonstrated by atomic force microscopy (AFM. Interestingly, the addition of a differentiation inducing factor, trans-retinoic rcid (RA retains significant viability and morphological features of the cells irrespective of the ionic state of the iron. AFM images revealed clustered aggregates arising from iron chelation with RA. Conclusions: the results indicate that Fe (II has more toxic effects on cells. In addition, it could be an interesting finding with respect to the antioxidant properties of RA as a chelating agent for the neurodegenerative therapeutics.

  8. Efficiency Investigation of Dye-Sensitized Solar Cells Based on the Zinc Oxide Nanowires

    Directory of Open Access Journals (Sweden)

    Ahmad Afifi

    2014-03-01

    Full Text Available In this paper, we synthesized ZnO nanowires in dye sensitized solar cells. The nanowires have been fabricated using fast-microwave-hydrothermal process.We verify the effects of different lengths of ZnO nanowires on efficiency and absorptionofdye sensitized solar cells. J–V curves of the fabricated ZnO nanowire-based mercurochrome-sensitized solar cellsindicated that the short-circuit current density wouldincrease with increasing the length of nanowires.We also fabricate more efficient N719-sensitized solar cellsand investigate the effect of different length of Zno nanowires on the efficiency.

  9. Investigation on apoptosis of neuronal cells induced by Amyloid beta-Protein

    Institute of Scientific and Technical Information of China (English)

    罗本燕; 徐增斌; 陈智; 陈峰; 唐敏

    2004-01-01

    Objective: To construct a PC12 cell strain with neuronal differentiation, and observe the apoptosis and pro-liferation activity effects induced these cells by Amyloid beta-Protein (Aβ3-43). Methods: 1) PC12 cells in logarithmic growth phase were subcultured for 24 h. After the culture fluid was changed, the cells were treated with Rat-β-NGF and cultured for 9 days. 2) Neuronal differentiation of PC 12 cells in logarithmic growth phase were divided into four groups:control group (0), experimental group (1), experimental group (2) and experimental group (3). The concentrations of Aβ in the four groups were 0 μmol/L, 1.25 μmol/L, 2.5 μmol/L and 5 μmol/L, respectively. The cells were harvested at 24, 48 and 72 h later and stained with AnnexinV-FITC/PI after centrifugation and washing. Then flow cytometry was conducted to examine the apoptosis percentage. 3) NGF-induced PC12 cells were selected and Aβ with different concentrations was added. The final concentrations of Aβ were 0 μmol/L, 1.25 μmol/L, 2.5 μmol/L and 5 μmol/L, respectively. After the cells were incubated in an atmosphere of 5% CO2 at 37 ℃ in an incubator for 72 h, the OD values were examined. Results: 1)Neuronal differentiated PC12 cell lines were successfully established. 2) Flow cytometric examination indicated that Aβ(1.25, 2.5, and 5.0 μmol/L) could effectively induce apoptosis of neuronal-differented cells at the 24 h, 48 h and 72 h time points. 3) Aβ (0-5.00 μmol/L) had no obvious effect on proliferation or restraining of the neuronal differentiation of the PC 12 cells after a 72 h interacting process. Conclusion: This investigation revealed successful neuronal differentiation of the PC12 cell strain. The induction of apoptosis of the neurocytes by various concentrations of Aβ was observed and the in-fluence of Aβ on induced proliferation of PC 12 cells by Rat-β-NGF was revealed. This study may provide basis for future research on the molecular cure of AD and interdiction of AD

  10. Investigation of cell proliferative activity on the surface of the nanocomposite material produced by laser radiation

    Science.gov (United States)

    Zhurbina, N. N.; Kurilova, U. E.; Ickitidze, L. P.; Podgaetsky, V. M.; Selishchev, S. V.; Suetina, I. A.; Mezentseva, M. V.; Eganova, E. M.; Pavlov, A. A.; Gerasimenko, A. Y.

    2016-04-01

    A new method for the formation of composite nanomaterials based on multi-walled and single-walled carbon nanotubes (CNT) on a silicon substrate has been developed. Formation is carried out by ultrasound coating of a silicon substrate by homogenous dispersion of CNTs in the albumin matrix and further irradiation with the continuous laser beam with a wavelength of 810 nm and power of 5.5 watts. The high electrical conductivity of CNTs provides its structuring under the influence of the laser radiation electric field. The result is a scaffold that provides high mechanical strength of nanocomposite material (250 MPa). For in vitro studies of materials biocompatibility a method of cell growth microscopic analysis was developed. Human embryonic fibroblasts (EPP) were used as biological cells. Investigation of the interaction between nanocomposite material and cells was carried out by optical and atomic force microscopy depending on the time of cells incubation. The study showed that after 3 hours incubation EPP were fixed on the substrate surface, avoiding the surface of the composite material. However, after 24 hours of incubation EPP fix on the sample surface and then begin to grow and divide. After 72 hours of incubation, the cells completely fill the sample surface of nanocomposite material. Thus, a nanocomposite material based on CNTs in albumin matrix does not inhibit cell growth on its surface, and favours their growth. The nanocomposite material can be used for creating soft tissue implants

  11. X-ray radiation-induced effects in human mammary epithelial cells investigated by Raman microspectroscopy

    Science.gov (United States)

    Risi, R.; Manti, L.; Perna, G.; Lasalvia, M.; Capozzi, V.; Delfino, I.; Lepore, M.

    2012-06-01

    Micro-Raman technique can be particularly useful to investigate the chemical changes induced in structure, protein, nucleic acid, lipid, and carbohydrate contents of cells. The aim of this work is to inspect the possibility to employ Raman microspectroscopy to detect biochemical modifications in human mammary epithelial cells after exposure to different Xray doses. The samples consisted of cells cultured on polylysine-coated glass coverslips. After the exposition, control and treated cells were washed in phosphate-buffered saline (PBS) and then fixed in paraformaldehyde 3.7%. They were examined using a confocal micro-Raman system equipped with a He-Ne laser (λ = 632.8 nm; power on the sample= 3.5mW). Differences in the intensity ratio of specific Raman vibrational markers commonly assigned to phenylalanine and tyrosine amino acids (at 1000, 1030, 1618 cm-1), DNA bases (787, 1090, 1305 cm-1), and amide III (1237, and 1265 cm-1) with respect a reference peak (the one of lipids at 1450 cm-1) were evidenced between control and exposed cells. These differences may be indicative of damage in exposed cells as the fragmentation of individual amino acids and DNA bases, crosslink effects in molecular structure of DNA and protein conformational change that especially tend to "unwind" the protein due to the breaking of hydrogen bonds between peptide chains.

  12. Investigation of Cytocidal Activity of Bacillus Thuringiensis Parasporal Toxin on CCRF-CEM Cell Line

    Directory of Open Access Journals (Sweden)

    Elham Moazamian

    2013-03-01

    Full Text Available Background & Objective: Parasporin is a parasporal protein of Bacillus thuringiensis and exhibits special cytocidal activity against human cancer cells. Similar to other insecticidal Bacillus thuringiensis crystal toxins, parasporin shows target specificity and damages the cellular membrane. In this study, different strains of Bacillus thuringiensis isolated from various regions of Iran and their cytocidal activity against CCRF-CEM cell line and human erythrocyte were investigated.   Materials & Methods: Fifty soil samples were collected from different Iranian provinces, and characterization was performed based on protein crystal morphology by phase-contrast microscope and variations of Cry protein toxin using SDS-PAGE. After parasporin was processed with proteinase K, the active form was produced and protein activity on the cell line was evaluated. Results: Parasporal inclusion proteins showed different cytotoxicity against acute lymphoblastic leukemia cells (ALL, but not against normal lymphocyte. Isolated parasporin demonstrated no hemolytic activity against human erythrocyte. It appears that these proteins have the ability to differentiate between normal lymphocytes and leukemia cells and have specific receptors on specific cancer cell lines. Conclusion: Our results provide evidence that the parasporin-producing organism is a common member in Bacillus thuringiensis populations occurring in the natural environments of Iran.

  13. Ceratopteris richardii (C-fern: A model for investigating adaptive modification of vascular plant cell walls

    Directory of Open Access Journals (Sweden)

    Olivier eLeroux

    2013-09-01

    Full Text Available Plant cell walls are essential for most aspects of plant growth, development, and survival, including cell division, expansive cell growth, cell-cell communication, biomechanical properties, and stress responses. Therefore, characterising cell wall diversity contributes to our overall understanding of plant evolution and development. Recent biochemical analyses, concomitantly with whole genome sequencing of plants located at pivotal points in plant phylogeny, have helped distinguish between homologous characters and those which might be more derived. Most plant lineages now have at least one fully sequenced representative and although genome sequences for fern species are in progress they not yet available this group. Ferns offer key advantages for the study of developmental processes leading to vascularisation and complex organs as well as the specific differences between diploid sporophyte tissues and haploid gametophyte tissues and the interplay between them. Ceratopteris richardii has been well investigated building a body of knowledge which combined with the genomic and biochemical information available for other plants will progress our understanding of wall diversity and its impact on evolution and development.

  14. Investigating the establishment of primary cell culture from different abalone (Haliotis midae) tissues.

    Science.gov (United States)

    van der Merwe, Mathilde; Auzoux-Bordenave, Stéphanie; Niesler, Carola; Roodt-Wilding, Rouvay

    2010-07-01

    The abalone, Haliotis midae, is the most valuable commodity in South African aquaculture. The increasing demand for marine shellfish has stimulated research on the biology and physiology of target species in order to improve knowledge on growth, nutritional requirements and pathogen identification. The slow growth rate and long generation time of abalone restrict efficient design of in vivo experiments. Therefore, in vitro systems present an attractive alternative for short term experimentation. The use of marine invertebrate cell cultures as a standardised and controlled system to study growth, endocrinology and disease contributes to the understanding of the biology of economically important molluscs. This paper investigates the suitability of two different H. midae tissues, larval and haemocyte, for establishing primary cell cultures. Cell cultures are assessed in terms of culture initiation, cell yield, longevity and susceptibility to contamination. Haliotis midae haemocytes are shown to be a more feasible tissue for primary cell culture as it could be maintained without contamination more readily than larval cell cultures. The usefulness of short term primary haemocyte cultures is demonstrated here with a growth factor trial. Haemocyte cultures can furthermore be used to relate phenotypic changes at the cellular level to changes in gene expression at the molecular level.

  15. Investigation of Hepatoprotective Activity of Induced Pluripotent Stem Cells in the Mouse Model of Liver Injury

    Directory of Open Access Journals (Sweden)

    Chih-Hung Chiang

    2011-01-01

    Full Text Available To date liver transplantation is the only effective treatment for end-stage liver diseases. Considering the potential of pluripotency and differentiation into tridermal lineages, induced pluripotent stem cells (iPSCs may serve as an alternative of cell-based therapy. Herein, we investigated the effect of iPSC transplantation on thioacetamide- (TAA- induced acute/fulminant hepatic failure (AHF in mice. Firstly, we demonstrated that iPSCs had the capacity to differentiate into hepatocyte-like cells (iPSC-Heps that expressed various hepatic markers, including albumin, α-fetoprotein, and hepatocyte nuclear factor-3β, and exhibited biological functions. Intravenous transplantation of iPSCs effectively reduced the hepatic necrotic area, improved liver functions and motor activity, and rescued TAA-treated mice from lethal AHF. 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate cell labeling revealed that iPSCs potentially mobilized to the damaged liver area. Taken together, iPSCs can effectively rescue experimental AHF and represent a potentially favorable cell source of cell-based therapy.

  16. Investigation of Micro- and Macro-Scale Transport Processes for Improved Fuel Cell Performance

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Wenbin [General Motors LLC, Pontiac, MI (United States)

    2014-08-29

    This report documents the work performed by General Motors (GM) under the Cooperative agreement No. DE-EE0000470, “Investigation of Micro- and Macro-Scale Transport Processes for Improved Fuel Cell Performance,” in collaboration with the Penn State University (PSU), University of Tennessee Knoxville (UTK), Rochester Institute of Technology (RIT), and University of Rochester (UR) via subcontracts. The overall objectives of the project are to investigate and synthesize fundamental understanding of transport phenomena at both the macro- and micro-scales for the development of a down-the-channel model that accounts for all transport domains in a broad operating space. GM as a prime contractor focused on cell level experiments and modeling, and the Universities as subcontractors worked toward fundamental understanding of each component and associated interface.

  17. Investigation of Micro- and Macro-Scale Transport Processes for Improved Fuel Cell Performance

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Wenbin

    2015-02-05

    This report documents the work performed by General Motors (GM) under the Cooperative agreement No. DE-EE0000470, “Investigation of Micro- and Macro-Scale Transport Processes for Improved Fuel Cell Performance,” in collaboration with the Penn State University (PSU), University of Tennessee Knoxville (UTK), Rochester Institute of Technology (RIT), and University of Rochester (UR) via subcontracts. The overall objectives of the project are to investigate and synthesize fundamental understanding of transport phenomena at both the macro- and micro-scales for the development of a down-the-channel model that accounts for all transport domains in a broad operating space. GM as a prime contractor focused on cell level experiments and modeling, and the Universities as subcontractors worked toward fundamental understanding of each component and associated interface.

  18. Investigation the Porous Collagen-Chitosan /Glycosaminoglycans for Corneal Cell Culture as Tissue Engineering Scaffold

    Institute of Scientific and Technical Information of China (English)

    LI Qin-Hua; CHEN Jian-Su

    2005-01-01

    The objective of this study was to produce the porous collagen-chitosan/Glycosanminglycans (GAG) for corneal ceil-seed implant as a three-dimensional tissue engineering scaffold to improve the regeneration corneas. The effect of various content of glycerol as form porous agent to collagen-chitosan/GAG preserved a porous dimensional structure was investigated. The heat-drying was used to prepare porous collagen-chitosan /GAG scaffold. The pore morphology of collagenchitosan/GAG was controlled by changing the concentration of glycerol solution and drying methods. The porous structure morphology was observed by SEM. The diameter of the pores form 10 to 50 μm. The highly porous scaffold had interconnecting pores. The corneal cell morphology was observed under the light microscope. These results suggest that collagen-chitosan/GAG showed that corneal cell have formed confluent layers and resemble the surface of normal corneal cell surface.

  19. Investigation of the apoptotic way induced by digallic acid in human lymphoblastoid TK6 cells

    Directory of Open Access Journals (Sweden)

    Bhouri Wissem

    2012-06-01

    Full Text Available Abstract Background The digallic acid (DGA purified from Pistacia lentiscus. L fruits was investigated for its antiproliferative and apoptotic activities on human lymphoblastoid TK6 cells. Methods We attempt to characterize the apoptotic pathway activated by DGA. Apoptosis was detected by DNA fragmentation, PARP cleavage and by evaluating caspase activities. Results The inhibition of lymphoblastoid cell proliferation was noted from 8.5 μg/ml of DGA. The induction of apoptosis was confirmed by DNA fragmentation and PARP cleavage. We have demonstrated that DGA induces apoptosis by activating the caspase-8 extrinsic pathway. Caspase-3 was also activated in a dose dependent manner. Conclusion In summary, DGA exhibited an apoptosis inductor effect in TK6 cells revealing thus its potential as a cancer-preventive agent.

  20. Investigation of cadmium toxicity on renal epithelial cells using nuclear microprobe analysis

    Energy Technology Data Exchange (ETDEWEB)

    Khodja, Hicham E-mail: khodja@drecam.cea.fr; Avoscan, Laure; Carriere, Marie; Carrot, Francine; Gouget, Barbara

    2003-09-01

    Cadmium is a highly toxic metal that causes well-known severe renal damages. Its toxicity is frequently investigated in vitro using numerous epithelial models. The accumulation and transport of cadmium in cultured renal epithelial cells has been studied by means of nuclear microscopy (micro-PIXE coupled with micro-RBS) for cell monolayer analyses, and by ICP-MS for culture medium analyses. Cell viability, measured by biochemical tests, was used as toxicity indicator. Dependence on cadmium concentration (1-100 {mu}M) and exposure time (1-24 h) was found. Micro-PIXE reveals a strong anti-correlation of intra-cellular cadmium concentration with zinc concentration, a biological metal, suggesting substitution mechanism of both metals.

  1. Obtaining and investigation of C60 semiconductor compounds with a view to create effective solar cells

    Science.gov (United States)

    Elistratova, M. A.; Zakharova, I. B.; Romanov, N. M.

    2015-12-01

    Reproducible vacuum method of thin fullerene films production with Cd impurity on Si, glass and mica surfaces are developed. Thin composite films were obtained by Knudsen cell method. Initial studies of condensation and surface morphology of the films are investigated SEM methods. Optical spectroscopy was used to confirm the obtained results. Results showed the presence of an additional peak associated with the formation of C60-CdTe molecular complexes. SEM results confirm absence of phase separation.

  2. An open source based high content screening method for cell biology laboratories investigating cell spreading and adhesion.

    Directory of Open Access Journals (Sweden)

    Andre Schmandke

    Full Text Available BACKGROUND: Adhesion dependent mechanisms are increasingly recognized to be important for a wide range of biological processes, diseases and therapeutics. This has led to a rising demand of pharmaceutical modulators. However, most currently available adhesion assays are time consuming and/or lack sensitivity and reproducibility or depend on specialized and expensive equipment often only available at screening facilities. Thus, rapid and economical high-content screening approaches are urgently needed. RESULTS: We established a fully open source high-content screening method for identifying modulators of adhesion. We successfully used this method to detect small molecules that are able to influence cell adhesion and cell spreading of Swiss-3T3 fibroblasts in general and/or specifically counteract Nogo-A-Δ20-induced inhibition of adhesion and cell spreading. The tricyclic anti-depressant clomipramine hydrochloride was shown to not only inhibit Nogo-A-Δ20-induced cell spreading inhibition in 3T3 fibroblasts but also to promote growth and counteract neurite outgrowth inhibition in highly purified primary neurons isolated from rat cerebellum. CONCLUSIONS: We have developed and validated a high content screening approach that can be used in any ordinarily equipped cell biology laboratory employing exclusively freely available open-source software in order to find novel modulators of adhesion and cell spreading. The versatility and adjustability of the whole screening method will enable not only centers specialized in high-throughput screens but most importantly also labs not routinely employing screens in their daily work routine to investigate the effects of a wide range of different compounds or siRNAs on adhesion and adhesion-modulating molecules.

  3. Cell Systems to Investigate the Impact of Polyphenols on Cardiovascular Health

    Directory of Open Access Journals (Sweden)

    Charlotte Grootaert

    2015-11-01

    Full Text Available Polyphenols are a diverse group of micronutrients from plant origin that may serve as antioxidants and that contribute to human health in general. More specifically, many research groups have investigated their protective effect against cardiovascular diseases in several animal studies and human trials. Yet, because of the excessive processing of the polyphenol structure by human cells and the residing intestinal microbial community, which results in a large variability between the test subjects, the exact mechanisms of their protective effects are still under investigation. To this end, simplified cell culture systems have been used to decrease the inter-individual variability in mechanistic studies. In this review, we will discuss the different cell culture models that have been used so far for polyphenol research in the context of cardiovascular diseases. We will also review the current trends in cell culture research, including co-culture methodologies. Finally, we will discuss the potential of these advanced models to screen for cardiovascular effects of the large pool of bioactive polyphenols present in foods and their metabolites.

  4. Disruption of steroidogenesis: Cell models for mechanistic investigations and as screening tools.

    Science.gov (United States)

    Odermatt, Alex; Strajhar, Petra; Engeli, Roger T

    2016-04-01

    In the modern world, humans are exposed during their whole life to a large number of synthetic chemicals. Some of these chemicals have the potential to disrupt endocrine functions and contribute to the development and/or progression of major diseases. Every year approximately 1000 novel chemicals, used in industrial production, agriculture, consumer products or as pharmaceuticals, are reaching the market, often with limited safety assessment regarding potential endocrine activities. Steroids are essential endocrine hormones, and the importance of the steroidogenesis pathway as a target for endocrine disrupting chemicals (EDCs) has been recognized by leading scientists and authorities. Cell lines have a prominent role in the initial stages of toxicity assessment, i.e. for mechanistic investigations and for the medium to high throughput analysis of chemicals for potential steroidogenesis disrupting activities. Nevertheless, the users have to be aware of the limitations of the existing cell models in order to apply them properly, and there is a great demand for improved cell-based testing systems and protocols. This review intends to provide an overview of the available cell lines for studying effects of chemicals on gonadal and adrenal steroidogenesis, their use and limitations, as well as the need for future improvements of cell-based testing systems and protocols.

  5. Numerical Investigation of Channel Geometry on the Performance of a Pem Fuel Cell

    Science.gov (United States)

    Khazaee, I.; Mohammadiun, M.

    2013-03-01

    A complete three-dimensional and single phase model for proton exchange membrane (PEM) fuel cells was used to investigate the effect of using different channels geometry on the performances, current density and gas concentration. The proposed model was a full cell model, which includes all the parts of the PEM fuel cell, flow channels, gas diffusion electrodes, catalyst layers and the membrane. Coupled transport and electrochemical kinetics equations were solved in a single domain; therefore no interfacial boundary condition was required at the internal boundaries between cell components. This computational fluid dynamics code was employed as the direct problem solver, which was used to simulate the three-dimensional mass, momentum, energy and species transport phenomena as well as the electron- and proton-transfer process taking place in a PEMFC. The results showed that the predicted polarization curves by using this model were in good agreement with the experimental results and a high performance was observed by using circle geometry for the channels of anode and cathode sides. Also, the results showed that the performance of the fuel cell improved when a rectangular channel was used.

  6. Soft x rays as a tool to investigate radiation-sensitive sites in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Brenner, D.J.; Zaider, M.

    1983-01-01

    It is now clear that the initial geometrical distribution of primary radiation products in irradiated biological matter is fundamental to the observed end point (cell killing, mutation induction, chromosome aberrations, etc.). In recent years much evidence has accumulated indicating that for all radiations, physical quantities averaged over cellular dimensions (micrometers) are not good predictors of biological effect, and that energy-deposition processes at the nanometer level are critical. Thus irradiation of cells with soft x rays whose secondary electrons have ranges of the order of nanometers is a unique tool for investigating different models for predicting the biological effects of radiation. We demonstrate techniques whereby the biological response of the cell and the physical details of the energy deposition processes may be separated or factorized, so that given the response of a cellular system to, say, soft x rays, the response of the cell to any other radiation may be predicted. The special advantages of soft x rays for eliciting this information and also information concerning the geometry of the radiation sensitive structures within the cell are discussed.

  7. Proteomic investigation into betulinic acid-induced apoptosis of human cervical cancer HeLa cells.

    Science.gov (United States)

    Xu, Tao; Pang, Qiuying; Zhou, Dong; Zhang, Aiqin; Luo, Shaman; Wang, Yang; Yan, Xiufeng

    2014-01-01

    Betulinic acid is a pentacyclic triterpenoid that exhibits anticancer functions in human cancer cells. This study provides evidence that betulinic acid is highly effective against the human cervical cancer cell line HeLa by inducing dose- and time-dependent apoptosis. The apoptotic process was further investigated using a proteomics approach to reveal protein expression changes in HeLa cells following betulinic acid treatment. Proteomic analysis revealed that there were six up- and thirty down-regulated proteins in betulinic acid-induced HeLa cells, and these proteins were then subjected to functional pathway analysis using multiple analysis software. UDP-glucose 6-dehydrogenase, 6-phosphogluconate dehydrogenase decarboxylating, chain A Horf6-a novel human peroxidase enzyme that involved in redox process, was found to be down-regulated during the apoptosis process of the oxidative stress response pathway. Consistent with our results at the protein level, an increase in intracellular reactive oxygen species was observed in betulinic acid-treated cells. The proteins glucose-regulated protein and cargo-selection protein TIP47, which are involved in the endoplasmic reticulum pathway, were up-regulated by betulinic acid treatment. Meanwhile, 14-3-3 family proteins, including 14-3-3β and 14-3-3ε, were down-regulated in response to betulinic acid treatment, which is consistent with the decrease in expression of the target genes 14-3-3β and 14-3-3ε. Furthermore, it was found that the antiapoptotic bcl-2 gene was down-regulated while the proapoptotic bax gene was up-regulated after betulinic acid treatment in HeLa cells. These results suggest that betulinic acid induces apoptosis of HeLa cells by triggering both the endoplasmic reticulum pathway and the ROS-mediated mitochondrial pathway.

  8. Investigating the use of in situ liquid cell scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nguy, Amanda [Iowa State Univ., Ames, IA (United States)

    2016-02-19

    Engineering nanoparticles with desired shape-dependent properties is the key to many applications in nanotechnology. Although many synthetic procedures exist to produce anisotropic gold nanoparticles, the dynamics of growth are typically unknown or hypothetical. In the case of seed-mediated growth in the presence of DNA into anisotropic nanoparticles, it is not known exactly how DNA directs growth into specific morphologies. A series of preliminary experiments were carried out to contribute to the investigation of the possible mechanism of DNA-mediated growth of gold nanoprisms into gold nanostars using liquid cell scanning transmission electron microscopy (STEM). Imaging in the liquid phase was achieved through the use of a liquid cell platform and liquid cell holder that allow the sample to be contained within a “chip sandwich” between two electron transparent windows. Ex situ growth experiments were performed using Au-T30 NPrisms (30-base thymine oligonucleotide-coated gold nanoprisms) that are expected to grow into gold nanostars. Growth to form these nanostars were imaged using TEM (transmission electron microscopy) and liquid cell STEM (scanning transmission electron microscopy). An attempt to perform in situ growth experiments with the same Au-T30 nanoprisms revealed challenges in obtaining desired morphology results due to the environmental differences within the liquid cell compared to the ex situ environment. Different parameters in the experimental method were explored including fluid line set up, simultaneous and alternating reagent addition, and the effect of different liquid cell volumes to ensure adequate flow of reagents into the liquid cell. Lastly, the binding affinities were compared for T30 and A30 DNA incubated with gold nanoparticles using zeta potential measurements, absorption spectroscopy, and isothermal titration calorimetry (ITC). It was previously reported thymine bases have a lower binding affinity to gold surfaces than adenine

  9. Type-specific PCR assays for Babesia bovis msa-1 genotypes in Asia: Revisiting the genetic diversity in Sri Lanka, Mongolia, and Vietnam.

    Science.gov (United States)

    Liyanagunawardena, Nilukshi; Sivakumar, Thillaiampalam; Kothalawala, Hemal; Silva, Seekkuge Susil Priyantha; Battsetseg, Badgar; Lan, Dinh Thi Bich; Inoue, Noboru; Igarashi, Ikuo; Yokoyama, Naoaki

    2016-01-01

    Babesia bovis is the most virulent Babesia organism, resulting in a high mortality rate in cattle. The genetic diversity of B. bovis merozoite surface antigens (MSAs), such as MSA-1, MSA-2b, and MSA-2c, might be linked to altered immune profiles in the host animals. The present study aimed to develop type-specific PCR assays for Asian msa-1 genotypes, thereby re-analyzing the genetic diversity of msa-1 in Sri Lanka, Mongolia, and Vietnam. Specific primers were designed for nine Asian msa-1 genotypes, which had been detected based on the phylogeny constructed using msa-1 gene sequences retrieved from the GenBank database. Specificity of the type-specific PCR assays was confirmed using plasmids containing the inserts of msa-1 gene fragments that represent Asian genotypes. Furthermore, no amplicons were observed by these PCR assays when DNA samples of Babesia bigemina, Babesia ovata, Theileria annulata, Theileria orientalis, Trypanosoma evansi, Trypanosoma theileri, Anaplasma marginale, and Anaplasma bovis, and non-infected bovine blood were analyzed. In total, 109 B. bovis-positive blood DNA samples sourced from Sri Lanka (44 cattle), Mongolia (26 cattle), and Vietnam (23 cattle and 16 water buffaloes) were then screened by the type-specific PCR assays. The sequences derived from all of the PCR amplicons were phylogenetically analyzed. Out of 109 DNA samples, 23 (20 from cattle and 3 from water buffaloes) were positive for at least one genotype. In agreement with previous studies, five and four different genotypes were detected among the DNA samples from Sri Lanka and Vietnam, respectively. In contrast, four genotypes, including three novel genotypes, were detected from Mongolia. Five DNA samples were found to be co-infected with multiple genotypes. The sequences of the PCR amplicons clustered phylogenetically within the corresponding clades. These findings indicated that the type-specific PCR assays described herein are useful for the determination of genotypic

  10. Investigation of dental pulp stem cells isolated from discarded human teeth extracted due to aggressive periodontitis.

    Science.gov (United States)

    Sun, Hai-Hua; Chen, Bo; Zhu, Qing-Lin; Kong, Hui; Li, Qi-Hong; Gao, Li-Na; Xiao, Min; Chen, Fa-Ming; Yu, Qing

    2014-11-01

    contain putative stem cells with certain MSC properties, as long as the vitality of the pulp has not been totally damaged. Whether these cells can serve as a source of autologous multipotent MSCs for clinical regenerative therapies warrants further investigation with larger sample sizes and various types of periodontitis.

  11. Investigating the effect of Phlomis lanceolata Boiss and hohen on cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Farnaz Soltani-Nasab

    2014-05-01

    Full Text Available Phlomis lanceolata is a medicinal plant that has long been used to treat various conditions such as diabetes, gastric ulcer, hemorrhoids, inflammation and wounds. As most of Phlomis species have shown cytotoxic activity against proliferation of different cell lines, a biological investigation of P. lanceolata was carried out in this study. The aim of this study was to find out the in vitro cytotoxic activity of total extract and different fractions of Phlomis lanceolata on four cell lines. Cytotoxic activity of the metanolic total extract and partition fractions of chloroform, ethyl acetate and petroleum ether of flowering aerial parts of Phlomis lanceolata on the HT29, Caco2, T47D and NIH3T3 cell lines is examined by MTT. Petroleum ether fraction showed high cytotoxic activity against proliferation of all four cell lines. Presence of heavy triterpens and lipophil compounds recognized by TLC test in Petroleum ether fraction is responsible for high cytotoxic activity. The results emphasize the importance of phytochemical studies which could lead to the discovery of new active compounds.

  12. A numerical investigation of the effects of compression force on PEM fuel cell performance

    Science.gov (United States)

    Su, Z. Y.; Liu, C. T.; Chang, H. P.; Li, C. H.; Huang, K. J.; Sui, P. C.

    In the present study we report on numerical investigations into the effects of compression on the performance of a unit cell. The focus of this study is how the transport properties of the gas diffusion layer (GDL) material, specifically porosity and permeability, affect numerical predictions of cell performance. Experimental data of porosity and permeability of uncompressed and compressed GDLs were obtained using a porometer, and used in numerical simulations. A 3D model with two parallel channels and an membrane electrode assembly (MEA) is constructed for the calculations. Three different configurations of transport properties were tested, i.e. uniform uncompressed GDL properties, uniform compressed GDL properties, and non-homogeneous GDL properties. It is found that the non-homogeneous case shows noticeable differences in predicted cell performance. For the non-homogenous case, simulations with a pressure difference between two cathode channels were carried out to gain insight into the effect of cross-channel flow on the overall prediction of cell performance. We found that the cross-channel flow changes local current density distribution primarily on the high-pressure channel. The present study demonstrates the importance of the proper use of transport properties for the compressed portion of the GDL.

  13. Numerical investigation on detonation cell evolution in a channel with area-changing cross section

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ The two-dimensional cellular detonation propagating in a channel with area- changing cross section was numerically simulated with the dispersion-controlled dissipative scheme and a detailed chemical reaction model. Effects of the flow expansion and compression on the cellular detonation cell were investigated to illustrate the mechanism of the transverse wave development and the cellular detonation cell evolution. By examining gas composition variations behind the leading shock, the chemical reaction rate, the reaction zone length, and thermodynamic parameters, two kinds of the abnormal detonation waves were identified. To explore their development mechanism, chemical reactions, reflected shocks and rarefaction waves were discussed, which interact with each other and affect the cellular detonation in different ways.

  14. Numerical investigation on detonation cell evolution in a channel with area-changing cross section

    Institute of Scientific and Technical Information of China (English)

    DENG; Bo

    2007-01-01

    The two-dimensional cellular detonation propagating in a channel with area- changing cross section was numerically simulated with the dispersion-controlled dissipative scheme and a detailed chemical reaction model. Effects of the flow expansion and compression on the cellular detonation cell were investigated to illustrate the mechanism of the transverse wave development and the cellular detonation cell evolution. By examining gas composition variations behind the leading shock, the chemical reaction rate, the reaction zone length, and thermodynamic parameters, two kinds of the abnormal detonation waves were identified. To explore their development mechanism, chemical reactions, reflected shocks and rarefaction waves were discussed, which interact with each other and affect the cellular detonation in different ways.  ……

  15. Investigating population dynamics of the Kumbh Mela through the lens of cell phone data

    CERN Document Server

    Onnela, Jukka-Pekka

    2015-01-01

    The Kumbh is a religious Hindu festival that has been celebrated for centuries. The 2013 Kumbh Mela, a grander form of the annual Kumbh, was purportedly the largest gathering of people in human history. Many of the participants carried cell phones, making it possible for us to use a data-driven approach to document this magnificent festival. We used Call Detail Records (CDRs) from participants attending the event, a total of 390 million records, to investigate its population dynamics. We report here on some of our preliminary findings.

  16. Investigation of Test Methods, Material Properties, and Processes for Solar Cell Encapsulants

    Science.gov (United States)

    Willis, P. B.; Baum, B.

    1979-01-01

    The reformulation of a commercial grade of ethylene/vinyl acetate copolymer for use as a pottant in solar cell module manufacture was investigated. Potentially successful formulations were prepared by compounding the raw polymer with antioxidants, ultraviolet absorbers and crosslinking agents to yield stabilized and curable compositions. The resulting elastomer was found to offer low cost (approximately $0.80/lb.), low temperature processability, high transparency (91% transmission), and low modulus. Cured specimens of the final formulation endured 4000 hours of fluorescent sunlamp radiation without change which indicates excellent stability.

  17. Thermodynamic Investigation of an Integrated Gasification Plant with Solid Oxide Fuel Cell and Steam Cycles

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2012-01-01

    A gasification plant is integrated on the top of a solid oxide fuel cell (SOFC) cycle, while a steam turbine (ST) cycle is used as a bottoming cycle for the SOFC plant. The gasification plant was fueled by woodchips to produce biogas and the SOFC stacks were fired with biogas. The produced gas...... generator (HRSG). The steam cycle was modeled with a simple single pressure level. In addition, a hybrid recuperator was used to recover more energy from the HRSG and send it back to the SOFC cycle. Thus two different configurations were investigated to study the plants characteristic. Such system...

  18. Type-specific human papillomavirus distribution in invasive cervical carcinomas in Paraguay. A study of 432 cases.

    Science.gov (United States)

    Kasamatsu, Elena; Cubilla, Antonio L; Alemany, Laia; Chaux, Alcides; Tous, Sara; Mendoza, Laura; Paez, Malvina; Klaustermeier, Jo Ellen; Quint, Wim; Lloveras, Belen; de Sanjose, Silvia; Muñoz, Nubia; Bosch, Francisco Xavier

    2012-10-01

    Cervical carcinoma is the most common malignant tumor among woman in Paraguay. Cytological screening programs have not been successful and a plan for human papillomavirus (HPV) based-screening program and/or vaccination is under evaluation. This study aimed to identify the contribution of HPV genotypes in invasive cervical cancer in Paraguay to provide essential background data to guide and assess the introduction and impact of new preventive strategies based on HPV. Four hundred thirty two histologically confirmed cases (1960-2004) were analyzed. HPV detection in paraffin blocks was performed at the Catalan Institute of Oncology using PCR with SPF-10 broad spectrum primers followed by DNA enzyme immunoassay and genotyping with a reverse hybridization line probe analysis. The majority of cases were squamous cell carcinoma (92.8%). Mean patients age was 48 years old. HPV DNA was detected in 73.1% of the cases and single infections were predominant (97.8%). The most common HPV single types were 16, 18, 45, 33, 31, 52, 35, and 39. 73.1% of HPV positive cases had an HPV 16, 18 as single infection. HPV16 was frequent in SCC whereas HPV 18 and 45 were prevalent in glandular tumors. Significant decrease of HPV 16 with age groups (P-trend = 0.022) and increase in other HPV types (P-trend > 0.001) were observed. The potential impact of HPV 16 and 18 for a vaccination program was 73.1%. The study provide a profile of the HPV situation in the country, with robust clinical, pathological and virological data which would permit a better cervical cancer screening and vaccination programs.

  19. In vitro investigation of ultrasound-induced oxidative stress on human lens epithelial cells.

    Science.gov (United States)

    Rwei, Patrick; Alex Gong, Cihun-Siyong; Luo, Li-Jyuan; Lin, Meng-Bo; Lai, Jui-Yang; Liu, Hao-Li

    2017-01-22

    The effect of ultrasound exposure on human lens epithelial cells (HLE-B3) was investigated in vitro, specifically on the generation of oxidative stress upon ultrasound application using various clinically-relevant settings. In addition to ultrasound-induced heat effects, oxidative stress has been recently proposed as one of the main mechanisms for ultrasound-induced effects on human cells. In this work, the levels of biocompatibility and generation of oxidative stress by exposure of ultrasound to HLE-B3 were evaluated quantitatively and qualitatively by the MTT assay, Live/Dead assay, reactive oxygen species (ROS) and intracellular calcium level. Oxidative stress induction is traditionally achieved through administrations of H2O2 and thus the administration of H2O2 was used as the positive control group for comparison herein. Concerning the administrations of H2O2 are considered invasive and may potentially have side effects, ultrasound as physical stimulation could be a safer and non-invasive method to induce similar oxidative stress environments. The effect of ultrasound on cell viability and induction of oxidative stress increases with ultrasound intensity. The result reveals that the continuous ultrasound has a positive impact on the oxidative stress levels but does negatively on the cell viability, as compared to the pulsed ultrasound. Furthermore, our work demonstrates that the exposure of 58 kPa continuous ultrasound without microbubbles can maintain acceptable cell viability and produce oxidative stress effects similar to the traditional administrations of H2O2. In summary, exposure of ultrasound can generate oxidative stress comparable to traditional administrations of H2O2. The effect of generating oxidative stress is adjustable through ultrasound parameters, including the pulsed or continuous wave, the intensity of ultrasound and addition of microbubbles.

  20. Recent progress in histochemistry and cell biology.

    Science.gov (United States)

    Hübner, Stefan; Efthymiadis, Athina

    2012-04-01

    Studies published in Histochemistry and Cell Biology in the year 2011 represent once more a manifest of established and newly sophisticated techniques being exploited to put tissue- and cell type-specific molecules into a functional context. The review is therefore the Histochemistry and Cell Biology's yearly intention to provide interested readers appropriate summaries of investigations touching the areas of tissue biology, developmental biology, the biology of the immune system, stem cell research, the biology of subcellular compartments, in order to put the message of such studies into natural scientific-/human- and also pathological-relevant correlations.

  1. Investigation of Organic Solar Cells Based on Donor——A ccepter Heterojunction%Investigation of Organic Solar Cells Based onDonor——A ccepter Heterojunction

    Institute of Scientific and Technical Information of China (English)

    Gao Yinhao

    2008-01-01

    The single-l ayer structure and heterojunction structure organic solar cells based on copper phthalocyanine (CuPc),3,4,9,10-Perylenetetracarboxylic dianhydride (PTCDA) and fullerene C60 were fabricated to study their photovoltaic (PV) properties. The PV performance of heterojunction structure solar cells was improved compared with the single layer structure cell.This is due to the introduction of donor-acceptor heterojunction that both expands the absorption range and offers efficient excit on dissociation site.In heterojunction structure solar cells,the PV performance of device with C60 as acceptor has highly improved because C60 has longer diffusion length o f excitons.

  2. Establishment of fruit bat cells (Rousettus aegyptiacus as a model system for the investigation of filoviral infection.

    Directory of Open Access Journals (Sweden)

    Verena Krähling

    Full Text Available BACKGROUND: The fruit bat species Rousettus aegyptiacus was identified as a potential reservoir for the highly pathogenic filovirus Marburg virus. To establish a basis for a molecular understanding of the biology of filoviruses in the reservoir host, we have adapted a set of molecular tools for investigation of filovirus replication in a recently developed cell line, R06E, derived from the species Rousettus aegyptiacus. METHODOLOGY/PRINCIPAL FINDINGS: Upon infection with Ebola or Marburg viruses, R06E cells produced viral titers comparable to VeroE6 cells, as shown by TCID(50 analysis. Electron microscopic analysis of infected cells revealed morphological signs of filovirus infection as described for human- and monkey-derived cell lines. Using R06E cells, we detected an unusually high amount of intracellular viral proteins, which correlated with the accumulation of high numbers of filoviral nucleocapsids in the cytoplasm. We established protocols to produce Marburg infectious virus-like particles from R06E cells, which were then used to infect naïve target cells to investigate primary transcription. This was not possible with other cell lines previously tested. Moreover, we established protocols to reliably rescue recombinant Marburg viruses from R06E cells. CONCLUSION/SIGNIFICANCE: These data indicated that R06E cells are highly suitable to investigate the biology of filoviruses in cells derived from their presumed reservoir.

  3. A Novel Semi-Supervised Methodology for Extracting Tumor Type-Specific MRS Sources in Human Brain Data

    Science.gov (United States)

    Ortega-Martorell, Sandra; Ruiz, Héctor; Vellido, Alfredo; Olier, Iván; Romero, Enrique; Julià-Sapé, Margarida; Martín, José D.; Jarman, Ian H.; Arús, Carles; Lisboa, Paulo J. G.

    2013-01-01

    Background The clinical investigation of human brain tumors often starts with a non-invasive imaging study, providing information about the tumor extent and location, but little insight into the biochemistry of the analyzed tissue. Magnetic Resonance Spectroscopy can complement imaging by supplying a metabolic fingerprint of the tissue. This study analyzes single-voxel magnetic resonance spectra, which represent signal information in the frequency domain. Given that a single voxel may contain a heterogeneous mix of tissues, signal source identification is a relevant challenge for the problem of tumor type classification from the spectroscopic signal. Methodology/Principal Findings Non-negative matrix factorization techniques have recently shown their potential for the identification of meaningful sources from brain tissue spectroscopy data. In this study, we use a convex variant of these methods that is capable of handling negatively-valued data and generating sources that can be interpreted as tumor class prototypes. A novel approach to convex non-negative matrix factorization is proposed, in which prior knowledge about class information is utilized in model optimization. Class-specific information is integrated into this semi-supervised process by setting the metric of a latent variable space where the matrix factorization is carried out. The reported experimental study comprises 196 cases from different tumor types drawn from two international, multi-center databases. The results indicate that the proposed approach outperforms a purely unsupervised process by achieving near perfect correlation of the extracted sources with the mean spectra of the tumor types. It also improves tissue type classification. Conclusions/Significance We show that source extraction by unsupervised matrix factorization benefits from the integration of the available class information, so operating in a semi-supervised learning manner, for discriminative source identification and brain

  4. A novel semi-supervised methodology for extracting tumor type-specific MRS sources in human brain data.

    Directory of Open Access Journals (Sweden)

    Sandra Ortega-Martorell

    Full Text Available BACKGROUND: The clinical investigation of human brain tumors often starts with a non-invasive imaging study, providing information about the tumor extent and location, but little insight into the biochemistry of the analyzed tissue. Magnetic Resonance Spectroscopy can complement imaging by supplying a metabolic fingerprint of the tissue. This study analyzes single-voxel magnetic resonance spectra, which represent signal information in the frequency domain. Given that a single voxel may contain a heterogeneous mix of tissues, signal source identification is a relevant challenge for the problem of tumor type classification from the spectroscopic signal. METHODOLOGY/PRINCIPAL FINDINGS: Non-negative matrix factorization techniques have recently shown their potential for the identification of meaningful sources from brain tissue spectroscopy data. In this study, we use a convex variant of these methods that is capable of handling negatively-valued data and generating sources that can be interpreted as tumor class prototypes. A novel approach to convex non-negative matrix factorization is proposed, in which prior knowledge about class information is utilized in model optimization. Class-specific information is integrated into this semi-supervised process by setting the metric of a latent variable space where the matrix factorization is carried out. The reported experimental study comprises 196 cases from different tumor types drawn from two international, multi-center databases. The results indicate that the proposed approach outperforms a purely unsupervised process by achieving near perfect correlation of the extracted sources with the mean spectra of the tumor types. It also improves tissue type classification. CONCLUSIONS/SIGNIFICANCE: We show that source extraction by unsupervised matrix factorization benefits from the integration of the available class information, so operating in a semi-supervised learning manner, for discriminative source

  5. In vitro investigations of Cynara scolymus L. extract on cell physiology of HepG2 liver cells

    Directory of Open Access Journals (Sweden)

    Gesine Löhr

    2009-06-01

    Full Text Available The objective of this study was the investigation of a potential influence of artichoke leaf extract (ALE on the cell physiology and gene expression of phase I/II enzymes of human liver cells HepG2 and investigation on potential cell protective effects against ethanol-induced cell toxicity against HepG2 cells. Cell biological assays under in vitro conditions using HepG2 liver cells and investigation of mitochondrial activity (MTT test, proliferation assay (BrdU incorporation ELISA, LDH as toxicity marker, gene expression analysis by RT-PCR and enzyme activity of glutationtransferase. Artichocke extract, containing 27% caffeoylquinic acids and 7% flavonoids induced mitochondrial activity, proliferation and total protein content under in vitro conditions in human liver cells HepG2. These effects could not be correlated to the well-known artichoke secondary compounds cynarin, caffeic acid, chlorogenic acid, luteolin and luteolin-7-O-glucoside. The flavones luteolin and luteolin-7-O-glucoside had inhibitory effects at 100 µg/mL level on HepG2 cells, with luteolin being a significant stronger inhibitor compared to the respective glucoside. Artichoke leaf extract had minor stimulating effect on gene expression of CYP1A2, while CYP3A4, GGT, GPX2, GSR and GST were slightly inhibited. GST inhibition under in vitro conditions was also shown by quantification of GST enzyme activity. Induction of gene expression of CYP1A2 was shown to be supraadditive after simultaneous application of ethanol plus artichoke extract. Artichoke leaf extract exhibited cell protective effects against ethanol-induced toxicity within cotreatment under in vitro conditions. Also H2O2 damage was significantly inhibited by simultaneous artichoke incubation. Pre- and posttreatments did not exert protective effects. DMSO-induced toxicity was significantly reduced by pre-, post- and cotreatment with artichoke extract and especially with luteolin-7-O-glucoside, indicating a direct

  6. Investigation of flurbiprofen genotoxicity and cytotoxicity in rat bone marrow cells.

    Science.gov (United States)

    Timocin, Taygun; Ila, Hasan B

    2015-01-01

    This study was performed to investigate cytogenetic effects of NSAID flurbiprofen which was used as active ingredient in some analgesic, antipyretic and anti-inflammatory drugs. Genotoxic effect of flurbiprofen was investigated using in vivo chromosome aberration (CA) test and random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) test. Also, oxidative stress potential of flurbiprofen was determined by measuring total oxidant and antioxidant level which occurred with flurbiprofen treatment in rat peripheral blood. For these purposes, rats were treated with three concentrations of flurbiprofen (29.25, 58.50 and 117 mg/kg, body weight) in single dose at two different treatment periods (12 and 24 h). According to the results, flurbiprofen did not affect chromosome aberrations in rat bone marrow cells with CA test. In RAPD-PCR test, polymorphic bands were unaffected. Also, test substance did not change total oxidant and antioxidant status (except for 58.50 and 117 mg/kg, 12 h) and therefore it did not lead to significant increase on oxidative stress (again except 58.50 and 117 mg/kg, 12 h). However, flurbiprofen reduced to mitotic indexes and these reductions were dose-dependent for 12 h treatment. In summary, flurbiprofen did not show significant genotoxic effect. But it caused cytotoxicity in rat bone marrow cells.

  7. Investigation of Rho-Kinase Expressions and Polymorphisms in Mantle Cell Lymphoma Patients

    Directory of Open Access Journals (Sweden)

    Didar Yanardağ Açık

    2016-05-01

    Full Text Available Objective: Mantle cell lymphoma (MCL is a rare but aggressive form of B-cell non-Hodgkin lymphoma characterized by excessive expression of cyclin D1. Intracellular signaling enzyme Rho-kinase (ROCK can contribute to cellular migration, proliferation, and differentiation, as well as tumor development and metastasis. However, ROCK gene and protein expressions or polymorphisms have never been investigated in MCL patients. The purpose of this study was to investigate the role of ROCK gene and protein expressions in MCL patients. We also examined ROCK2 gene polymorphisms in this study. Materials and Methods: A total of 60 patients with MCL and 60 healthy controls were included in this retrospective study. Hematoxylin and eosin-stained lymph node tissue slides in the entire archive were reevaluated and used for immunohistochemistry, gene expression, and polymerase chain reaction studies. Results: In immunohistochemical studies, there were significant increases in ROCK1 (p=0.0009 and ROCK2 (p<0.0001 protein expressions in MCL patients when compared with the control group. Although a marked increase in ROCK1 gene expression (p=0.0215 was noted, no significant change was observed in ROCK2 gene expression in MCL patients. Seven ROCK2 polymorphisms were studied, but the results showed no significant differences between the groups. Conclusion: This is the first study to show that ROCK1 gene and ROCK protein expressions may contribute to the development of MCL.

  8. Investigation of the effect of beta source and phosphors on photovoltaic cells

    Science.gov (United States)

    Yürük, Reyyan Kavak; Tütüncüler, Hayriye

    2017-02-01

    In this study, conversion of kinetic energy from the decay of a radioactive isotope to electricity is investigated by using the direct and the indirect conversion methods. In this context, simple nuclear battery models are designed. Analysis for the effect of low-activity radiation from Pm147 and Sr90 beta sources on photovoltaic Si solar cell is presented. Beta radioluminescence nuclear battery models consist of a beta source, a phosphor layer and a solar cell. Phosphor layers with different mass thicknesses are prepared from ZnS:CuCl and SrAl2O4:Eu2+,Dy3+ phosphors. Both the influence of beta sources and the phosphor layers on battery performance is analyzed separately. Effect of beta sources, phosphors are observed on solar cell by measuring the short circuit current and open circuit voltage. The efficiency of the battery models is determined with the obtained results. Furthermore, short circuit current values are analyzed at various times during the irradiation.

  9. Stiffening hydrogels for investigating the dynamics of hepatic stellate cell mechanotransduction during myofibroblast activation

    Science.gov (United States)

    Caliari, Steven R.; Perepelyuk, Maryna; Cosgrove, Brian D.; Tsai, Shannon J.; Lee, Gi Yun; Mauck, Robert L.; Wells, Rebecca G.; Burdick, Jason A.

    2016-02-01

    Tissue fibrosis contributes to nearly half of all deaths in the developed world and is characterized by progressive matrix stiffening. Despite this, nearly all in vitro disease models are mechanically static. Here, we used visible light-mediated stiffening hydrogels to investigate cell mechanotransduction in a disease-relevant system. Primary hepatic stellate cell-seeded hydrogels stiffened in situ at later time points (following a recovery phase post-isolation) displayed accelerated signaling kinetics of both early (Yes-associated protein/Transcriptional coactivator with PDZ-binding motif, YAP/TAZ) and late (alpha-smooth muscle actin, α-SMA) markers of myofibroblast differentiation, resulting in a time course similar to observed in vivo activation dynamics. We further validated this system by showing that α-SMA inhibition following substrate stiffening resulted in attenuated stellate cell activation, with reduced YAP/TAZ nuclear shuttling and traction force generation. Together, these data suggest that stiffening hydrogels may be more faithful models for studying myofibroblast activation than static substrates and could inform the development of disease therapeutics.

  10. Investigating dynamic structural and mechanical changes of neuroblastoma cells associated with glutamate-mediated neurodegeneration

    Science.gov (United States)

    Fang, Yuqiang; Iu, Catherine Y. Y.; Lui, Cathy N. P.; Zou, Yukai; Fung, Carmen K. M.; Li, Hung Wing; Xi, Ning; Yung, Ken K. L.; Lai, King W. C.

    2014-11-01

    Glutamate-mediated neurodegeneration resulting from excessive activation of glutamate receptors is recognized as one of the major causes of various neurological disorders such as Alzheimer's and Huntington's diseases. However, the underlying mechanisms in the neurodegenerative process remain unidentified. Here, we investigate the real-time dynamic structural and mechanical changes associated with the neurodegeneration induced by the activation of N-methyl-D-aspartate (NMDA) receptors (a subtype of glutamate receptors) at the nanoscale. Atomic force microscopy (AFM) is employed to measure the three-dimensional (3-D) topography and mechanical properties of live SH-SY5Y cells under stimulus of NMDA receptors. A significant increase in surface roughness and stiffness of the cell is observed after NMDA treatment, which indicates the time-dependent neuronal cell behavior under NMDA-mediated neurodegeneration. The present AFM based study further advance our understanding of the neurodegenerative process to elucidate the pathways and mechanisms that govern NMDA induced neurodegeneration, so as to facilitate the development of novel therapeutic strategies for neurodegenerative diseases.

  11. Investigation of Some Transparent Metal Oxides as Damp Heat Protective Coating for CIGS Solar Cells: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Pern, F. J.; Yan, F.; Zaaunbrecher, B.; To, B.; Perkins, J.; Noufi, R.

    2012-10-01

    We investigated the protective effectiveness of some transparent metal oxides (TMO) on CIGS solar cell coupons against damp heat (DH) exposure at 85oC and 85% relative humidity (RH). Sputter-deposited bilayer ZnO (BZO) with up to 0.5-um Al-doped ZnO (AZO) layer and 0.2-um bilayer InZnO were used as 'inherent' part of device structure on CdS/CIGS/Mo/SLG. Sputter-deposited 0.2-um ZnSnO and atomic layer deposited (ALD) 0.1-um Al2O3 were used as overcoat on typical BZO/CdS/CIGS/Mo/SLG solar cells. The results were all negative -- all TMO-coated CIGS cells exhibited substantial degradation in DH. Combining the optical photographs, PL and EL imaging, SEM surface micro-morphology, coupled with XRD, I-V and QE measurements, the causes of the device degradations are attributed to hydrolytic corrosion, flaking, micro-cracking, and delamination induced by the DH moisture. Mechanical stress and decrease in crystallinity (grain size effect) could be additional degrading factors for thicker AZO grown on CdS/CIGS.

  12. An Investigation of Mechanically Tunable and Nanostructured Polymer Scaffolds for Directing Human Mesenchymal Stem Cell Development

    Science.gov (United States)

    Jaafar, Israd Hakim

    This work investigated the use of biomedically relevant, polymer substrates for in vitro human mesenchymal stem cell (hMSC)-substrate surface interaction. Two materials were identified: (i) Poly(glycerol-sebacate) (PGS), a novel biocompatible and biodegradable thermosetting rubber-like elastomer, and (ii) injection molded polystyrene (PS). PGS was selected because it has tunable mechanical properties within the range of biological tissue, and thus provides a useful model to determine the types of substrate mechanical cues that would elicit specific hMSC lineage specification and possible differentiation outcomes. PS is a relevant material for in vitro cell-substrate surface interaction analysis since it is typically the base material of cell culture dishes. Both these materials have also shown micro to nanoscale molding capabilities. Hence these materials would also serve as a model in determining topographical properties (and related mechanical properties) at the dimension-scale of the extracellular environment that modulates hMSC state and fate. The work characterized, designed, and manufactured substrates made of these materials, for in vitro hMSC culture. Micro/nanoscale PGS and PS surface features were manufactured using silicon (Si) based tooling technology. The response of hMSCs to PGS substrates of various Young.s moduli was examined. hMSC response to a nanoscale array of PS pegs was also investigated. PGS was observed to be a semi-crystalline thermosetting elastomer that is fully amorphous above 35°C. The material acquired increasing stiffness and density of photoresist-coated with increasing levels of curing temperature and duration of cure. hMSCs were observed to respond differently on PGS with elastic modulii of 0.11, 1.11, and 2.30 MPa. The cells spread and proliferate more, and develop a stretched cytoskeleton on the stiffer substrates. On the softest substrate (0.11 MPa) the cells developed a branched and filopodia-rich morphology with a diffused

  13. Water transport in gas diffusion media for PEM fuel cells. Experimental and numerical investigation

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Joerg

    2010-08-20

    The water flux in partially saturated hydrophobic carbon fibre paper for polymer electrolyte membrane fuel cell applications is investigated and compared with the frequently used constitutive two-phase flow model based on Darcy's law. Further, the first steps towards a math-based material design for gas diffusion media are explored in this thesis. Two self-developed ex-situ experiments to investigate the liquid water transport are introduced. The first is a newly developed buoyancy-based measurement of the pressuresaturation relationship on thin porous material with an accuracy of 0.5 kPa for the pressure and {+-} 5% for the saturation. The second experiment measures the pressure drop in dependence of flow rates down to magnitudes of {mu}L/s across the partially saturated thin porous material. This flow rate is relevant for the fuel cell application. The liquid water transport through Toray 060 carbon fibre paper, impregnated with 7% and 10% PTFE is investigated at wet and dry boundary conditions. The experiments are also accompanied by analytical and numerical free surface modelling with the consideration of the material morphology and liquid-solid interaction. The imbibing and draining cases of an arrangement of six fibres at varying solid-liquid interaction and boundary conditions are studied with 'Surface Evolver'. In order to evaluate the findings of ex-situ and modelling work for applicability to water transport in fuel cell operation, the technique of nuclear magnetic resonance (NMR) imaging is assessed. The focus is on the visualisation of 2D and 3D water distribution in the operating fuel cell. The compatibility of the NMR experiment with fuel cell operation in relation to material selection, operating temperature, and current density is addressed. NMR imaging is employed for different current densities, stoichiometries, and fuel cell arrangements. The fuel cell arrangements differ by the cathode diffusion medium. Plain, hydrophobic, and

  14. Investigation of test methods, material properties, and processes for solar cell encapsulants. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Willis, P. B.; Baum, B.

    1979-06-01

    The goal of this program is to identify, evaluate, and recommend encapsulant materials and processes for the production of cost-effective, long-life solar cell modules. During the past year, the technical activities emphasized the reformulation of a commercial grade of ethylene/vinyl acetate copolymer for use as a pottant in solar cell module manufacture. After experimenting with a variety of techniques, a vacuum-bag process was developed and found to be an excellent encapsulation method. Adhesive strengths and primers for the bonding of ethylene/vinyl acetate to superstrate and substrate materials was assessed with encouraging results. The weathering effects on ten other polymers exposed to twelve months of weathering in Arizona, Florida, and under EMMAQUA were evaluated by determination of tensile strengths, elongations, optical transmission, etc. As may be expected, the best overall retention of mechanical properties is found for the fluorocarbon polymers, especially FEP. Hard coatings containing ultraviolet absorbers were investigated for the purpose of providing a soil resistant surface and additional weathering stability to the soft EVA pottant. Corrosion studies using a standard salt spray test were used to determine the degree of protection offered to a variety of metals by encapsulation in EVA pottant. A survey of scrim materials was also conducted. These open hole weaves are intended for use as spacers between the cell and substrate to provide a mechanical barrier, improve insulation resistance and prevent migration of the pigmented pottant over the cell surface. A mechanical engineering analysis of composite structural materials for use as substrates was performed. Results are presented in detail. (WHK)

  15. Experimental investigation of solid oxide fuel cells using biomass gasification producer gases

    Energy Technology Data Exchange (ETDEWEB)

    Norheim, Arnstein

    2005-07-01

    The main objective of this thesis is theoretical and experimental investigations related to utilisation of biomass gasification producer gases as fuel for Solid Oxide Fuel Cells (SOFC). Initial fundamental steps towards a future system of combined heat and power production based on biomass gasification and SOFC are performed and include: 1) Theoretical modeling of the composition of biomass gasification producer gases. 2) Experimental investigation of SOFC performance using biomass gasification producer gas as fuel. 3) Experimental investigation of SOFC performance using biomass gasification producer gas containing high sulphur concentration. The modeling of the composition of gasifier producer gas was performed using the program FactSage. The main objective was to investigate the amount and speciation of trace species in the producer gases as several parameters were varied. Thus, the composition at thermodynamic equilibrium of sulphur, chlorine, potassium, sodium and compounds of these were established. This was done for varying content of the trace species in the biomass material at different temperatures and fuel utilisation i.e. varying oxygen content in the producer gas. The temperature interval investigated was in the range of normal SOFC operation. It was found that sulphur is expected to be found as H2S irrespective of temperature and amount of sulphur. Only at very high fuel utilisation some S02 is formed. Important potassium containing compounds in the gas are gaseous KOH and K. When chlorine is present, the amount of KOH and K will decrease due to the formation of KCI. The level of sodium investigated here was low, but some Na, NaOH and NaCl is expected to be formed. Below a certain temperature, condensation of alkali rich carbonates may occur. The temperature at which condensation begins is mainly depending on the amount of potassium present; the condensation temperature increases with increasing potassium content. In the first experimental work

  16. Water transport in gas diffusion media for PEM fuel cells. Experimental and numerical investigation

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Joerg

    2010-08-20

    The water flux in partially saturated hydrophobic carbon fibre paper for polymer electrolyte membrane fuel cell applications is investigated and compared with the frequently used constitutive two-phase flow model based on Darcy's law. Further, the first steps towards a math-based material design for gas diffusion media are explored in this thesis. Two self-developed ex-situ experiments to investigate the liquid water transport are introduced. The first is a newly developed buoyancy-based measurement of the pressuresaturation relationship on thin porous material with an accuracy of 0.5 kPa for the pressure and {+-} 5% for the saturation. The second experiment measures the pressure drop in dependence of flow rates down to magnitudes of {mu}L/s across the partially saturated thin porous material. This flow rate is relevant for the fuel cell application. The liquid water transport through Toray 060 carbon fibre paper, impregnated with 7% and 10% PTFE is investigated at wet and dry boundary conditions. The experiments are also accompanied by analytical and numerical free surface modelling with the consideration of the material morphology and liquid-solid interaction. The imbibing and draining cases of an arrangement of six fibres at varying solid-liquid interaction and boundary conditions are studied with 'Surface Evolver'. In order to evaluate the findings of ex-situ and modelling work for applicability to water transport in fuel cell operation, the technique of nuclear magnetic resonance (NMR) imaging is assessed. The focus is on the visualisation of 2D and 3D water distribution in the operating fuel cell. The compatibility of the NMR experiment with fuel cell operation in relation to material selection, operating temperature, and current density is addressed. NMR imaging is employed for different current densities, stoichiometries, and fuel cell arrangements. The fuel cell arrangements differ by the cathode diffusion medium. Plain, hydrophobic, and

  17. Investigations into the interactions between sulfur and anodes for solid oxide fuel cells

    Science.gov (United States)

    Cheng, Zhe

    Solid oxide fuel cells (SOFCs) are electrochemical devices based on solid oxide electrolytes that convert chemical energy in fuels directly into electricity via electrode reactions. SOFCs have the advantages of high energy efficiency and low emissions and hold the potential to be the power of the future especially for small power generation systems (1-10 kW). Another unique advantage of SOFCs is the potential to directly utilize hydrocarbon fuels such as natural gas through internal reforming. However, all hydrocarbon fuels contain some sulfur compounds, which transform to hydrogen sulfide (H2S) in the reforming process and dramatically degrade the performance of the existing SOFCs. In this study, the interactions between sulfur contaminant (in the form of H2S) and the anodes for SOFCs were systematically investigated in order to gain a fundamental understanding of the mechanism of sulfur poisoning and ultimately to achieve rational design of sulfur-tolerant anodes. The sulfur poisoning behavior of the state-of-the-art Ni-YSZ cermet anodes was characterized using electrochemical measurements performed on button cells (of different structures) under various operating conditions, including H2S concentration, temperature, cell current density/terminal voltage, and cell structure. Also, the mechanisms of interactions between sulfur and the Ni-YSZ cermet anode were investigated using both ex situ and in situ characterization techniques such as Raman spectroscopy. Results suggest that the sulfur poisoning of Ni-YSZ cermet anodes at high temperatures in fuels with ppm-level H2S is due not to the formation of multi-layer conventional nickel sulfides but to the adsorption of sulfur on the nickel surface. In addition, new sulfur-tolerant anode materials were explored in this study. Thermodynamic principles were applied to predict the stability of candidate sulfur-tolerant anode materials and explain complex phenomena concerning the reactivity of candidate materials with

  18. Particle-in-cell investigation on the resonant absorption of a plasma surface wave

    Institute of Scientific and Technical Information of China (English)

    Lan Chao-Hui; Hu Xi-Wei

    2011-01-01

    The resonant absorption of a plasma surface wave is supposed to be an important and efficient mechanism of power deposition for a surface wave plasma source.In this paper,by using the particle-in-cell method and Monte Carlo simulation,the resonance absorption mechanism is investigated.Simulation results demonstrate the existence of surface wave resonance and show the high efficiency of heating electrons.The positions of resonant points,the resonance width and the spatio-temporal evolution of the resonant electric field are presented,which accord well with the theoretical results.The paper also discusses the effect of pressure on the resonance electric field and the plasma density.

  19. Single-cell level based approach to investigate acetate metabolism during batch industrial fermentation

    DEFF Research Database (Denmark)

    Nierychlo, Marta; Larsen, Poul; Eriksen, Niels T.

    and control the overflow metabolism phenomenon in E. coli. Even though acetate formation by E. coli have been studied for more than three decades, the literature published presents the results based on the average measurement of the whole population. The averaged data can mask the distribution of the activity......Acetate is a product of Escherichia coli overflow metabolism when the bacteria are grown under aerobic conditions and glucose is present in excessive amount. It is an undesirable byproduct that affects growth, physiology, and performance of E. coli when used in industrial bioprocesses; its...... on the sub-population level. We hypothesized that during the fermentation process, bacterial subpopulation exist, which exhibit different metabolic strategies towards the acetate. In this study, pure culture of Escherichia coli MG1655 was used to investigate in situ acetate metabolism at single-cell level...

  20. Experimental Investigation of a Direct Methanol Fuel Cell with Hilbert Fractal Current Collectors

    Directory of Open Access Journals (Sweden)

    Jing-Yi Chang

    2014-01-01

    Full Text Available The Hilbert curve is a continuous type of fractal space-filling curve. This fractal curve visits every point in a square grid with a size of 2×2, 4×4, or any other power of two. This paper presents Hilbert fractal curve application to direct methanol fuel cell (DMFC current collectors. The current collectors are carved following first, second, and third order Hilbert fractal curves. These curves give the current collectors different free open ratios and opening perimeters. We conducted an experimental investigation into DMFC performance as a function of the free open ratio and opening perimeter on the bipolar plates. Nyquist plots of the bipolar plates are made and compared using electrochemical impedance spectroscopy (EIS experiments to understand the phenomena in depth. The results obtained in this paper could be a good reference for future current collector design.

  1. An Atomic Force Microscopy based investigation of specific biomechanical properties for various types of neuronal cells

    Science.gov (United States)

    Spedden, Elise; White, James; Kaplan, David; Staii, Cristian

    2012-02-01

    Here we describe the use of Atomic Force Microscope (AFM) based techniques to characterize and explore the influence of biochemical and biomechanical cues on the growth and interaction of neuronal cells with surrounding guidance factors. Specifically, we use AFM topography and AFM force spectroscopy measurements to systematically investigate the morphology, elasticity, and real time growth of neuronal processes in the presence of different types of extracellular matrix proteins and growth factors. We therefore create a series of systems containing specified neuron densities where the type of the underlying growth promoting protein is different from sample to sample. For each system we measure key biomechanical parameters related to neuronal growth such as height and elastic modulus at multiple growth points on several types of neurons. We show that systematic measurements of these parameters yield fundamental information about the role played by substrate-plated guidance factors in determining elastic and morphological properties of neurons during growth.

  2. Investigation of Battery/Ultracapacitor Energy Storage Rating for a Fuel Cell Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Schaltz, Erik; Khaligh, A.; Rasmussen, Peter Omand

    2008-01-01

    Combining high energy density batteries and high power density ultracapacitors in Fuel Cell Hybrid Electric Vehicles (FCHEV) results in a high efficient, high performance, low size, and light system. Often the batteries are rated with respect to their energy requirement in order to reduce...... their volume and mass. This does not prevent deep discharges of the batteries, which is critical to their lifetime. In this paper, the ratings of the batteries and ultracapacitors in a FCHEV are investigated. Comparison of system volume, mass, efficiency, and battery lifetime due to the rating of the energy...... storage devices are presented. It is concluded, that by sufficient rating of the battery or ultracapacitors, an appropriate balance between system volume, mass, efficiency, and battery lifetime is achievable....

  3. Fluorescence fluctuation microscopy: a diversified arsenal of methods to investigate molecular dynamics inside cells.

    Science.gov (United States)

    Weidemann, Thomas; Mücksch, Jonas; Schwille, Petra

    2014-10-01

    Fluorescence microscopy provides insight into the subcellular organization of biological functions. However, images are snap shots averaging over a highly dynamic molecular system. Fluorescence fluctuation microscopy, employing similar detection technology, encompasses a powerful arsenal of analysis tools that investigate the molecular heterogeneity in space and time. Analyzing signal fluctuations from small ensembles (several hundred particles) reveals their concentration, the stoichiometry, the stochastic motion, as well as superimposed signatures of the environment such as spatial confinement and binding events. Thus, fluctuation analysis provides access to dynamic molecular properties that can be used to build physical models of cellular processes. In the last decade these methods experienced a remarkable diversification, which we revisit here with a particular focus on live cell applications.

  4. Investigation of gas generation in regenerative fuel cells by low-energy X-rays

    Science.gov (United States)

    Selamet, Omer Faruk; Deevanhxay, Phengxay; Tsushima, Shohji; Hirai, Shuichiro

    2015-11-01

    Gas generation and discharge behaviors in an operating regenerative fuel cell (RFC) are investigated using low-energy X-ray radiography. In situ visualization at high spatial and temporal resolution reveal dynamic and inhomogeneous behaviors of the gas generation in the membrane electrode assembly (MEA) in the RFC. Temporal and spatial variation of the gas thickness in the MEA is quantitatively discussed and shows an intermittent and periodic discharge processes of the gas generated by electrolysis, suggesting that the reaction sites in the catalyst layer and the discharging path of gas bubbles are well established in the MEA for the electrolysis. Larger gas accumulation and discharge in the gas diffusion layer (GDL) under the ribs are identified in comparison with those under the channels, which is attributed to the relatively longer path for accumulated gas under the ribs to be discharged into the flow channels.

  5. Solution-Processing of Organic Solar Cells: From In Situ Investigation to Scalable Manufacturing

    KAUST Repository

    Abdelsamie, Maged

    2016-12-05

    implementation of organic solar cells with high efficiency and manufacturability. In this dissertation, we investigate the mechanism of the BHJ layer formation during solution processing from common lab-based processes, such as spin-coating, with the aim of understanding the roles of materials, formulations and processing conditions and subsequently using this insight to enable the scalable manufacturing of high efficiency organic solar cells by such methods as wire-bar coating and blade-coating. To do so, we have developed state-of-the-art in situ diagnostics techniques to provide us with insight into the thin film formation process. As a first step, we have developed a modified spin-coater which allows us to perform in situ UV-visible absorption measurements during spin coating and provides key insight into the formation and evolution of polymer aggregates in solution and during the transformation to the solid state. Using this method, we have investigated the formation of organic BHJs made of a blend of poly (3-hexylthiophene) (P3HT) and fullerene, reference materials in the organic solar cell field. We show that process kinetics directly influence the microstructure and morphology of the bulk heterojunction, highlighting the value of in situ measurements. We have investigated the influence of crystallization dynamics of a wide-range of small-molecule donors and their solidification pathways on the processing routes needed for attaining high-performance solar cells. The study revealed the reason behind the need of empirically-adopted processing strategies such as solvent additives or alternatively thermal or solvent vapor annealing for achieving optimal performance. The study has provided a new perspective to materials design linking the need for solvent additives or annealing to the ease of crystallization of small-molecule donors and the presence or absence of transient phases before crystallization. From there, we have extended our investigation to small-molecule (p

  6. Investigation and process optimization of SONOS cell's drain disturb in 2-transistor structure flash arrays

    Science.gov (United States)

    Xu, Zhaozhao; Qian, Wensheng; Chen, Hualun; Xiong, Wei; Hu, Jun; Liu, Donghua; Duan, Wenting; Kong, Weiran; Na, Wei; Zou, Shichang

    2017-03-01

    The mechanism and distribution of drain disturb (DD) are investigated in silicon-oxide-nitride-oxide-silicon (SONOS) flash cells. It is shown that DD is the only concern in this paper. First, the distribution of trapped charge in nitride layer is found to be non-localized (trapped in entire nitride layer along the channel) after programming. Likewise, the erase is also non-localized. Then, the main disturb mechanism: Fowler Nordheim tunneling (FNT) has been confirmed in this paper with negligible disturb effect from hot-hole injection (HHI). And then, distribution of DD is confirmed to be non-localized similarly, which denotes that DD exists in entire tunneling oxide (Oxide for short). Next, four process optimization ways are proposed for minimization of DD, and VTH shift is measured. It reveals that optimized lightly doped drain (LDD), halo, and channel implant are required for the fabrication of a robust SONOS cell. Finally, data retention and endurance of the optimized SONOS are demonstrated.

  7. Tissue-type-specific heat-shock response and immunolocalization of class I low-molecular-weight heat-shock proteins in soybean

    Energy Technology Data Exchange (ETDEWEB)

    Tsung-Luo Jinn; Pi-Fang Linda Chang; Yih-Ming Chen [National Taiwan Univ. (China)] [and others

    1997-06-01

    A monospecific polyclonal antibody was used to study the tissue-type specificity and intracellular localization of class I low-molecular-weight (LMW) heat-shock proteins (HSPs) in soybean (Glycine max) under different heat-shock regimes. In etiolated soy-bean seedlings, the root meristematic regions contained the highest levels of LMW HSP. No tissue-type-specific expression of class I LMW HSP was detected using the tissue-printing method. In immunolocalization studies of seedlings treated with HS (40{degrees}C for 2 h) the class I LMW HSPs were found in the aggregated granular structures, which were distributed randomly in the cytoplasm and in the nucleus. When the heat shock was released, the granular structures disappeared and the class I LMW HSPs became distributed homogeneously in the cytoplasm. When the seedlings were then given a more severe heat shock following the initial 40{degrees}C {yields} 28{degrees}C treatment, a large proportion of the class I LMW HSPs that originally localized in the cytoplasm were translocated into the nucleus and nucleolus. Class I LMW HSPs may assist in the resolubilization of proteins denatured or aggregated by heat and may also participate in the restoration of organellar function after heat shock.

  8. Mouse Skeletal Muscle Fiber-Type-Specific Macroautophagy and Muscle Wasting Are Regulated by a Fyn/STAT3/Vps34 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Eijiro Yamada

    2012-05-01

    Full Text Available Skeletal muscle atrophy induced by aging (sarcopenia, inactivity, and prolonged fasting states (starvation is predominantly restricted to glycolytic type II muscle fibers and typical spares oxidative type I fibers. However, the mechanisms accounting for muscle fiber-type specificity of atrophy have remained enigmatic. In the current study, although the Fyn tyrosine kinase activated the mTORC1 signaling complex, it also induced marked atrophy of glycolytic fibers with relatively less effect on oxidative muscle fibers. This was due to inhibition of macroautophagy via an mTORC1-independent but STAT3-dependent reduction in Vps34 protein levels and decreased Vps34/p150/Beclin1/Atg14 complex 1. Physiologically, in the fed state endogenous Fyn kinase activity was increased in glycolytic but not oxidative skeletal muscle. In parallel, Y705-STAT3 phosphorylation increased with decreased Vps34 protein levels. Moreover, fed/starved regulation of Y705-STAT3 phosphorylation and Vps34 protein levels was prevented in skeletal muscle of Fyn null mice. These data demonstrate a Fyn/STAT3/Vps34 pathway that is responsible for fiber-type-specific regulation of macroautophagy and skeletal muscle atrophy.

  9. Do glial cells exist in the nervous system of parasitic and free-living flatworms? An ultrastructural and immunocytochemical investigation.

    Science.gov (United States)

    Biserova, Natalia M

    2008-01-01

    It is still unclear whether flatworms have specialized glial cells. At present there are no special methods available for the identification of glial cells in flatworms. The aim of this research was to carry out detailed investigations of the CNS in two species ofcestodes, and to get an idea whether these cells may fit into the concept of glia. Three types of glial cells have been found in Grillotia erinaceus: (1) fibroblast-like cells in the cerebral ganglion (CG); (2) glial cells in bulbar nerves with filaments and laminar cytoplasm; (3) a 3rd type of cells forms multilayer envelopes in the main cords (MC); also they make contacts with the excretory epithelium. To demonstrate the existence of glial cells, an immunocytochemical and ultrastructural investigation of Ligula intestinalis was undertaken. Intensive S100b-like immunoreaction (IR) was found in the GG and in the MC. IR-varicosities were mostly located asymmetrically on the MC, and no IR was found in neuropiles. Small glial cells were found on the surface of the MC; they have oval nuclei and dense cytoplasm with slim processes going around the neuropile and enclosing neurons. Long junctions are seen between cell processes but with neurons they usually possess juxtaposition contacts. Glial cells lack vesicles or synapse-like structures. Intensive S100b-like-IR has been shown in the CNS of cestodes for the first time. Results from ultrastructural research support the immunocytochemical date.

  10. Impedance Spectroscopic Investigation of the Degraded Dye-Sensitized Solar Cell due to Ageing

    Directory of Open Access Journals (Sweden)

    Parth Bhatt

    2016-01-01

    Full Text Available This paper investigates the effect of ageing on the performance of dye-sensitized solar cells (DSCs. The electrical characterization of fresh and degraded DSCs is done under AM1.5G spectrum and the current density-voltage (J-V characteristics are analyzed. Short circuit current density (JSC decreases significantly whereas a noticeable increase in open circuit voltage is observed. These results have been further investigated electroanalytically using electrochemical impedance spectroscopy (EIS. An increase in net resistance results in a lower JSC for the degraded DSC. This decrease in current is mainly due to degradation of TiO2-dye interface, which is observed from light and dark J-V characteristics and is further confirmed by EIS measurements. A reduction in the chemical capacitance of the degraded DSC is observed, which is responsible for the shifting of Fermi level with respect to conduction band edge that further results in an increase of open circuit voltage for the degraded DSC. It is also confirmed from EIS that the degradation leads to a better contact formation between the electrolyte and Pt electrode, which improves the fill factor of the DSC. But the recombination throughout the DSC is found to increase along with degradation. This study suggests that the DSC should be used under low illumination conditions and around room temperature for a longer life.

  11. Investigation of test methods, material properties, and processes for solar-cell encapsulants. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Willis, P. B.; Baum, B.

    1982-07-01

    Potentially useful low cost encapsulation materials are evaluated. The goal of the program is to identify, evaluate, test, and recommend encapsulant materials and processes for the production of cost-effective, long life solar cell modules. Technical investigations have concerned the development of advanced cure chemistries for lamination type pottants, the continued evaluation of soil resistant surface treatments, and the results of an accelerated aging test program for the comparison of material stabilities. Experiments are underway to assess the durability and cost effectiveness of coatings for protection of steel. Investigations are continuing with commercial maintenance coatings based on fluorocarbon and silicone-alkyd chemistries. Experiments were conducted to determine the effectiveness of occlusive coatings for wood products such as hard-board. An experimental program continued to determine the usefulness of soil resistant coatings. Primers were evaluated for effectiveness in bonding candidate pottants to outer covers, glass and substate materials. A program of accelerated aging and life predictive strategies is being conducted and data are reported for sunlamp exposure and thermal aging. Supporting activities are also discussed briefly. (LEW)

  12. AN INVESTIGATION TO RESOLVE THE INTERACTION BETWEEN FUEL CELL, POWER CONDITIONING SYSTEM AND APPLICATION LOADS

    Energy Technology Data Exchange (ETDEWEB)

    Sudip K. Mazumder; Chuck McKintyre; Dan Herbison; Doug Nelson; Comas Haynes; Michael von Spakovsky; Joseph Hartvigsen; S. Elangovan

    2003-11-03

    Solid-Oxide Fuel Cell (SOFC) stacks respond quickly to changes in load and exhibit high part- and full-load efficiencies due to its rapid electrochemistry. However, this is not true for the thermal, mechanical, and chemical balance-of-plant subsystem (BOPS), where load-following time constants are, typically, several orders of magnitude higher. This dichotomy diminishes the reliability and performance of the electrode with increasing demand of load. Because these unwanted phenomena are not well understood, the manufacturers of SOFC use conservative schemes (such as, delayed load-following to compensate for slow BOPS response or expensive inductor filtering) to control stack responses to load variations. This limits the applicability of SOFC systems for load-varying stationary and transportation applications from a cost standpoint. Thus, a need exists for the synthesis of component- and system-level models of SOFC power-conditioning systems and the development of methodologies for investigating the system-interaction issues (which reduce the lifetime and efficiency of a SOFC) and optimizing the responses of each subsystem, leading to optimal designs of power-conditioning electronics and optimal control strategies, which mitigate the electrical-feedback effects. Equally important are ''multiresolution'' finite-element modeling and simulation studies, which can predict the impact of changes in system-level variables (e.g., current ripple and load-transients) on the local current densities, voltages, and temperature (these parameters are very difficult or cumbersome, if not impossible to obtain) within a SOFC cell. Towards that end, for phase I of this project, sponsored by the U.S. DOE (NETL), we investigate the interactions among fuel cell, power-conditioning system, and application loads and their effects on SOFC reliability (durability) and performance. A number of methodologies have been used in Phase I to develop the steady-state and transient

  13. Investigation of the hydrodynamic response of cells in drop on demand piezoelectric inkjet nozzles.

    Science.gov (United States)

    Cheng, Eric; Yu, Haoran; Ahmadi, Ali; Cheung, Karen C

    2016-01-29

    Cell motion within a liquid suspension inside a piezoelectrically actuated, cylindrical inkjet printhead was studied using high speed imaging and a low depth of field setup. For each ejected droplet, a cell within the inkjet nozzle was observed to exhibit one of three possible behaviors which are termed: cell travel, cell ejection and cell reflection. Cell reflection is an undesirable phenomenon which may adversely affect an inkjet's capability in dispensing cells and a possible reason why it was previously reported that the rate of cells dispensed did not follow the expected Poisson distribution. Through the study of the cells motions, it was hypothesized that the rheological properties of the media in the cell suspension play an important role in influencing the cell behaviors exhibited. This was experimentally studied with the tracking of cells within the inkjet nozzle in a 10% w/v Ficoll PM400 cell suspension. The effect of cell reflection was eliminated using the higher density and viscosity Ficoll PM400 suspension. The presented work is the first in-depth study of the cell behaviors occurring within a piezoelectric inkjet nozzle during the printing process. The understanding of the hydrodynamics during a droplet ejection and its effect on the suspended cells are imperative towards achieving reliable cell dispensing for biofabrication applications.

  14. Investigation of chemical and physical properties of carbon nanotubes and their effects on cell biomechanics

    Science.gov (United States)

    Dong, Chenbo

    Carbon nanotubes (CNTs) are used for a variety of applications from nanocircuits, to hydrogen storage devices, and from designing optical fibers to forming conductive plastics. Recently, their functionalization with biomolecules led to exciting biological and biomedical applications in drug delivery or bioimaging. However, because of CNTs interactions with biological systems and their ability to translocate and persist into the circulatory and lymphatic systems and biological tissues, concerns about CNTs intrinsic toxicity have risen. It is thus necessary to develop and implement sensitive analysis technologies that allow investigation of CNTs toxicity upon uptake into a biological system. This thesis provides a comprehensive guide of experiments that have been performed during my Ph.D. tenure at West Virginia University in the Department of Chemical Engineering, in the group of Prof. Cerasela Zoica Dinu. Briefly: Chapter one presents a systematic study of the CNTs physical and chemical properties and how these properties are changed upon exposure to chemical agents normally used during their cleaning and purification processes. Also, this chapter shows how acid oxidation treatment leads to improved CNTs biocompatibility. Specifically, by incubating CNTs in a strong acid mixture we created a user-defined library of CNTs samples with different characteristics as recorded using Raman energy dispersive x-ray spectroscopy, atomic force microscopy, or solubility tests. Systematically characterized CNTs were subsequently tested for their biocompatibility in relation to human epithelial cells or enzymes. Such selected examples are building pertinent relationships between CNTs biocompatibility and their intrinsic properties by showing that acid oxidation treatment lowers CNTs toxicity making CNTs feasible platforms to be used for biomedical applications or the next generation of biosensors. (Publication: Chenbo Dong, Alan S Campell, Reem Eldawud, Gabriela Perhinschi, and

  15. Non-Faradaic electrical impedimetric investigation of the interfacial effects of neuronal cell growth and differentiation on silicon nanowire transistors.

    Science.gov (United States)

    Lin, Shu-Ping; Vinzons, Lester U; Kang, Yu-Shan; Lai, Tung-Yen

    2015-05-13

    Silicon nanowire field-effect transistor (SiNW FET) devices have been interfaced with cells; however, their application for noninvasive, real-time monitoring of interfacial effects during cell growth and differentiation on SiNW has not been fully explored. Here, we cultured rat adrenal pheochromocytoma (PC12) cells, a type of neural progenitor cell, directly on SiNW FET devices to monitor cell adhesion during growth and morphological changes during neuronal differentiation for a period of 5-7 d. Monitoring was performed by measuring the non-Faradaic electrical impedance of the cell-SiNW FET system using a precision LCR meter. Our SiNW FET devices exhibited changes in impedance parameters during cell growth and differentiation because of the negatively charged cell membrane, seal resistance, and membrane capacitance at the cell/SiNW interface. It was observed that during both PC12 cell growth and neuronal differentiation, the impedance magnitude increased and the phase shifted to more negative values. However, impedance changes during cell growth already plateaued 3 d after seeding, while impedance changes continued until the last observation day during differentiation. Our results also indicate that the frequency shift to above 40 kHz after growth factor induction resulted from a larger coverage of cell membrane on the SiNWs due to distinctive morphological changes according to vinculin staining. Encapsulation of PC12 cells in a hydrogel scaffold resulted in a lack of trend in impedance parameters and confirmed that impedance changes were due to the cells. Moreover, cytolysis of the differentiated PC12 cells led to significant changes in impedance parameters. Equivalent electrical circuits were used to analyze the changes in impedance values during cell growth and differentiation. The technique employed in this study can provide a platform for performing investigations of growth-factor-induced progenitor cell differentiation.

  16. In Vitro Investigations on the Toxicity and Cell Death Induced by Tamoxifen on Two Non-Breast Cancer Cell Types

    Directory of Open Access Journals (Sweden)

    S. K. Majumdar

    2001-01-01

    protein (EGFP in tamoxifen treated MEL BB-88 cells, a general feature of cells undergoing apoptosis. Tamoxifen treated cells demonstrated internucleosomal damages of the genomic DNA and DNA fragmentations, evidenced by an increase in free nucleosomes, and distinctive DNA smear patterns on the agarose gel.

  17. Investigation of the current break-down phenomena in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, S.K.; Srinivasamurthy, N.; Agrawal, B.L. [Power Systems Group, ISRO Satellite Centre, Bangalore (India)

    1996-08-15

    Observed reverse current-voltage characteristics of the single crystal silicon and gallium arsenide solar cells have been analyzed. Physical mechanisms behind the junction break-down in silicon cells and current break-down in gallium arsenide cells have been identified. Preliminary estimates of the diffusion capacitance in GaAs cells have been presented

  18. Investigating the bona fide differentiation capacity of human pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    Jian-Chien Dominic Heng; Kyle M Loh; Huck-Hui Ng

    2012-01-01

    Human pluripotent stem cells (hPSCs) have been perennially paraded as a source of cells for cell replacement therapies because they can (theoretically) give rise to any single cell type within the human body [1].Hence,they can create in vitro a vast number of any human cell type to replace the diseased cell population that a patient might require — this is a salient goal that regenerative medicine aspires to deliver on [2].However,despite the ever-expanding menagerie of therapeutically relevant differentiated lineages being created from hPSCs,usage of these stem cell-derived progeny for regenerative medicine still remains an uncertainty.

  19. Cell-Type Specific Channelopathies in the Prefrontal Cortex of the fmr1-/y Mouse Model of Fragile X Syndrome 1,2,3

    OpenAIRE

    Kalmbach, Brian E.; Johnston, Daniel; Brager, Darrin H.

    2015-01-01

    Abstract Fragile X syndrome (FXS) is caused by transcriptional silencing of the fmr1 gene resulting in the loss of fragile X mental retardation protein (FMRP) expression. FXS patients display several behavioral phenotypes associated with prefrontal cortex (PFC) dysfunction. Voltage-gated ion channels, some of which are regulated by FMRP, heavily influence PFC neuron function. Although there is evidence for brain region-specific alterations to the function a single type of ion channel in FXS, ...

  20. Expression profiles of long non-coding RNAs located in autoimmune disease-associated regions reveal immune cell-type specificity

    NARCIS (Netherlands)

    Hrdlickova, Barbara; Kumar, Vinod; Kanduri, Kartiek; Zhernakova, Daria V.; Tripathi, Subhash; Karjalainen, Juha; Lund, Riikka J.; Li, Yang; Ullah, Ubaid; Modderman, Rutger; Abdulahad, Wayel; Lahdesmaki, Harri; Franke, Lude; Lahesmaa, Riitta; Wijmenga, Cisca; Withoff, Sebo

    2014-01-01

    Background: Although genome-wide association studies (GWAS) have identified hundreds of variants associated with a risk for autoimmune and immune-related disorders (AID), our understanding of the disease mechanisms is still limited. In particular, more than 90% of the risk variants lie in non-coding

  1. Antiestrogenic activity of flavnoid phytochemicals mediated via c-Jun N-terminal protein kinase pathway. Cell-type specific regulation of estrogen receptor alpha

    Science.gov (United States)

    Flavonoid phytochemicals act as both agonists and antagonists of the human estrogen receptors (ERs). While a number of these compounds act by directly binding to the ER, certain phytochemicals, such as the flavonoid compounds chalcone and flavone, elicit antagonistic effects on estrogen signaling in...

  2. Investigation of the optical properties of novel organic macromolecules for solar cell applications

    Science.gov (United States)

    Adegoke, Oluwasegun Oluwasina

    The search for renewable energy sources to replace fossil fuel has been a major research focus in the energy sector. The sun, with its vast amount of energy, remains the most abundant and ubiquitous energy source that far exceeds the world energy demand. The ability to effectively capture and convert energy from the sun in the form of photons will be the key to its effective utilization. Organic macromolecules have tremendous potentials to replace and out-perform existing materials, due to their low-cost, ease of tunability, high absorption coefficient and "green" nature. In this dissertation, spectroscopic techniques of steady state absorption and time-resolved fluorescence spectroscopy were used to show the improved absorption of the oligothiophene-functionalized ZnPc through ultrafast energy transfer. ZnPc is known for its chemical and thermal stability. The power conversion efficiency (PCE) in ZnPc-based solar devices is however, very low because of the poor absorption of ZnPc in the 300 - 550 nm region of the solar spectrum. Oligothiophenes have good absorption in the spectral region where the absorption of ZnPc is poor. Other groups of organic compounds that have gained prominence in the study for the design of efficient active materials for photovoltaic cells are the polymers. In the dissertation, different factors which can affect the performance of organic polymers in photovoltaics systems were investigated and analyzed. The effects of the alteration of conjugation, donor-acceptor groups, heteroatoms and alkyl side chains on the photophysical properties and ultimately the performance of organic polymers in organic photovoltaics were investigated. The different effects were investigated using ultrafast spectroscopic techniques which are capable of providing insight of fluorescence decay dynamics at very short times in a time scale of femtosecond. The electronic structure calculations of the polymers were carried out to provide further evidence to the

  3. Investigation on Adsorption of Lithospermum erythrorhizon onto Fungal Cell Wall Polysaccharides

    Institute of Scientific and Technical Information of China (English)

    孟琴; 薛莲

    2003-01-01

    A culture of Lithosperrnum erythrorhizon adsorbed on fungal cell wall polysaccharides, a novel bioadsorbent made from fungal cell wall, has been established in this paper. Three steps were involved in this immobilization. The first step was preparation of suspended plant cells from tightly aggregated plant cell clumps. The disassembled ratio of 0.715g·g-1 (the disassembled cells over total cells) was obtained under optimum condition for the enzymatic reaction. Then, the adsorption of plant cells onto fungal cell wall polysaccharides was conducted and the saturated capacity of 12g cell per gram of carrier was obtained in adsorption immobilization. Finally, the culture of cells adsorbed on fungal cell wall polysaccharides was compared with that of cells entrapped in alginate or suspension cell culture. While exposed to in situ liquid paraffin extraction coupled with cell culture, the shikonin productivity of immobilized cells by adsorption was 10.67g·L-1, which was 1.8 times of that in suspension culture and 1.5 times of that entrapped in alginate.

  4. Investigating evolutionary perspective of carcinogenesis with single-cell transcriptome analysis

    Institute of Scientific and Technical Information of China (English)

    Xi Zhang; Cheng Zhang; Zhongjun Li; Jiangjian Zhong; Leslie P. Weiner; Jiang F. Zhong

    2013-01-01

    We developed phase-switch microfluidic devices for molecular profiling of a large number of single cells. Whole genome microarrays and RNA-sequencing are commonly used to determine the expression levels of genes in cell lysates (a physical mix of millions of cells) for inferring gene functions. However, cellular heterogeneity becomes an inherent noise in the measurement of gene expression. The unique molecular characteristics of individual cells, as well as the temporal and quantitative information of gene expression in cells, are lost when averaged among all cells in cell lysates. Our single-cell technology overcomes this limitation and enables us to obtain a large number of single-cell transcriptomes from a population of cells. A collection of single-cell molecular profiles allows us to study carcinogenesis from an evolutionary perspective by treating cancer as a diverse population of cells with abnormal molecular characteristics. Because a cancer cellpopulation contains cells at various stages of development toward drug resistance, clustering similar single-cell molecular profiles could reveal how drug-resistant sub-clones evolve during cancer treatment. Here, we discuss how single-celltranscriptome analysis technology could enable the study of carcinogenesis from an evolutionary perspective and the development of drug-resistance in leukemia. The single-cell transcriptome analysis reported here could have a direct and significant impact on current cancer treatments and future personalized cancer therapies.

  5. Chronic treatment with 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside increases insulin-stimulated glucose uptake and GLUT4 translocation in rat skeletal muscles in a fiber type-specific manner.

    Science.gov (United States)

    Buhl, E S; Jessen, N; Schmitz, O; Pedersen, S B; Pedersen, O; Holman, G D; Lund, S

    2001-01-01

    Recent studies have demonstrated that chronic administration of AICAR (5-aminoimidazole-4-carboxamide- 1-beta-D-ribofuranoside), an activator of the AMP-activated protein kinase, increases hexokinase activity and the contents of total GLUT4 and glycogen in rat skeletal muscles. To explore whether AICAR also affects insulin-stimulated glucose transport and GLUT4 cell surface content, Wistar rats were subcutaneously injected with AICAR for 5 days in succession (1 mg/g body wt). Maximally insulin-stimulated (60 nmol/l) glucose uptake was markedly increased in epitrochlearis (EPI) muscle (average 63%, P fiber type-specific increase in insulin-stimulated glucose uptake and GLUT4 cell surface content in rat skeletal muscle with the greatest effect observed on white fast-twitch glycolytic muscles (EPI). These results are comparable with the effects of chronic exercise training, and it brings the AMP-activated protein kinase into focus as a new interesting target for future pharmacological intervention in insulin-resistant conditions.

  6. Investigating the link between epithelial-mesenchymal transition and the cancer stem cell phenotype: A mathematical approach.

    Science.gov (United States)

    Turner, C; Kohandel, M

    2010-08-07

    Under the cancer stem cell (CSC) hypothesis, sustained metastatic growth requires the dissemination of a CSC from the primary tumour followed by its re-establishment in a secondary site. The epithelial-mesenchymal transition (EMT), a differentiation process crucial to normal development, has been implicated in conferring metastatic ability on carcinomas. Balancing these two concepts has led researchers to investigate a possible link between EMT and the CSC phenotype-indeed, recent evidence indicates that, following induction of EMT in human breast cancer and related cell lines, stem cell activity increased, as judged by the presence of cells displaying the CD44(high)/CD24(low) phenotype and an increase in the ability of cells to form mammospheres. We mathematically investigate the nature of this increase in stem cell activity. A stochastic model is used when small number of cells are under consideration, namely in simulating the mammosphere assay, while a related continuous model is used to probe the dynamics of larger cell populations. Two scenarios of EMT-mediated CSC enrichment are considered. In the first, differentiated cells re-acquire a CSC phenotype-this model implicates fully mature cells as key subjects of de-differentiation and entails a delay period of several days before de-differentiation occurs. In the second, pre-existing CSCs experience accelerated division and increased proportion of self-renewing divisions; a lack of perfect CSC biomarkers and cell sorting techniques requires that this model be considered, further emphasizing the need for better characterization of the mammary (cancer) stem cell hierarchy. Additionally, we suggest the utility of comparing mammosphere data to computational mammosphere simulations in elucidating the growth characteristics of mammary (cancer) stem cells.

  7. Program of scientific investigations and development of solid-oxide fuel cells (SOFC) in VIITF proposals on scientific and technical collaboration and SOFC commercialization

    Energy Technology Data Exchange (ETDEWEB)

    Kleschev, Yu.N.; Chulharev, V.F.

    1996-04-01

    Investigations being performed at VNIITF covers the whole cycle of solid oxide fuel cell manufacturing. This report describes the main directions of investigations in materials, technologies, and commercialization.

  8. Investigation of Apoptosis Induction in Differentiated PC-12 Cells after Exposure to Hydrostatic Pressure

    Directory of Open Access Journals (Sweden)

    S. Sadri

    2008-01-01

    Full Text Available Objective: Hydrostatic pressure is crucial component of cell environment andfundamental physical quantity, also it is the main factor of both cell integrity andfunction. Pressure variation disorder, beyond physiological limits, may lead topathological states. In this study, we examined the effect of hydrostatic pressureon apoptosis induction, viability, morphology, adhesion potency to substrate andmigration of differentiated PC-12 cells.Materials and Methods: PC-12 as a neuronal cell line maintained in RPMI1640 culture medium supplemented with 10% fetal bovine serum. Staurosporinewas used for differentiating of mitotic PC-12 cells to post mitotic anddifferentiated neuronal cells. Exclusion Dye was used for viability assay, totalneurite length of each cell as well as morphometry. TUNEL staining was alsoperformed for apoptosis detection, adhesion potency of cells to substrate andevaluation of cell migration.Results: Hydrostatic pressure, over physiological limits, induced apoptosis indifferentiated PC-12 cells. It changed cell viability gradually and reduction happenedsignificantly after 24 hours (p<0.05. In compare to the control group, hydrostaticpressure reduced total neurite length, adhesion potency to substrate and migrationof cells in the examined group (p<0.05.Conclusion: Hydrostatic pressure induced apoptosis in differentiated PC-12 cellsas a result of inappropriate interaction between cells and substrate. We proposethat apoptosis in differentiated PC-12 cells may be an anoikis causing to lose theattachment to the substrate.

  9. Comparison of instruments for investigation of microcirculatory blood flow and red blood cell concentration

    Science.gov (United States)

    O'Doherty, Jim; McNamara, Paul; Clancy, Neil T.; Enfield, Joey G.; Leahy, Martin J.

    2009-05-01

    The use of laser Doppler perfusion imaging (LDPI) and laser speckle perfusion imaging (LSPI) is well known in the noninvasive investigation of microcirculatory blood flow. This work compares the two techniques with the recently developed tissue viability (TiVi) imaging system, which is proposed as a useful tool to quantify red blood cell concentration in microcirculation. Three systems are evaluated with common skin tests such as the use of vasodilating and vasoconstricting drugs (methlynicotinate and clobetasol, respectively) and a reactive hyperaemia maneuver (using a sphygmomanometer). The devices investigated are the laser Doppler line scanner (LDLS), the laser speckle perfusion imager (FLPI)-both from Moor Instruments (Axminster, United Kingdom)-and the TiVi imaging system (WheelsBridge AB, Linköping, Sweden). Both imaging and point scanning by the devices are used to quantify the provoked reactions. Perfusion images of vasodilatation and vasoconstriction are acquired with both LDLS and FLPI, while TiVi images are acquired with the TiVi imager. Time acquisitions of an averaged region of interest are acquired for temporal studies such as the reactive hyperaemia. In contrast to the change in perfusion over time with pressure, the TiVi imager shows a different response due its measurement of blood concentration rather than perfusion. The responses can be explained by physiological understanding. Although the three devices sample different compartments of tissue, and output essentially different variables, comparisons can be seen between the three systems. The LDLS system proves to be suited to measurement of perfusion in deeper vessels, while FLPI and TiVi showed sensitivity to more superficial nutritional supply. LDLS and FLPI are insensitive to the action of the vasoconstrictor, while TiVi shows the clear boundaries of the reaction. Assessment of the resolution, penetration depth, and acquisition rate of each instrument show complimentary features that should

  10. An Investigation to Resolve the Interaction Between Fuel Cell, Power Conditioning System and Application Loads

    Energy Technology Data Exchange (ETDEWEB)

    Sudip K. Mazumder

    2005-12-31

    Development of high-performance and durable solidoxide fuel cells (SOFCs) and a SOFC power-generating system requires knowledge of the feedback effects from the power-conditioning electronics and from application-electrical-power circuits that may pass through or excite the power-electronics subsystem (PES). Therefore, it is important to develop analytical models and methodologies, which can be used to investigate and mitigate the effects of the electrical feedbacks from the PES and the application loads (ALs) on the reliability and performance of SOFC systems for stationary and non-stationary applications. However, any such attempt to resolve the electrical impacts of the PES on the SOFC would be incomplete unless one utilizes a comprehensive analysis, which takes into account the interactions of SOFC, PES, balance-of-plant system (BOPS), and ALs as a whole. SOFCs respond quickly to changes in load and exhibit high part- and full-load efficiencies due to its rapid electrochemistry, which is not true for the thermal and mechanical time constants of the BOPS, where load-following time constants are, typically, several orders of magnitude higher. This dichotomy can affect the lifetime and durability of the SOFCSs and limit the applicability of SOFC systems for load-varying stationary and transportation applications. Furthermore, without validated analytical models and investigative design and optimization methodologies, realizations of cost-effective, reliable, and optimal PESs (and power-management controls), in particular, and SOFC systems, in general, are difficult. On the whole, the research effort can lead to (a) cost-constrained optimal PES design for high-performance SOFCS and high energy efficiency and power density, (b) effective SOFC power-system design, analyses, and optimization, and (c) controllers and modulation schemes for mitigation of electrical impacts and wider-stability margin and enhanced system efficiency.

  11. An experimental and numerical investigation on the formation of stall-cells on airfoils

    Science.gov (United States)

    Manolesos, M.; Papadakis, G.; Voutsinas, S.

    2014-12-01

    Stall Cells (SCs) are large scale three-dimensional structures of separated flow that have been observed on the suction side of airfoils designed for or used on wind turbine blades. SCs are unstable in nature but can be stabilised by means of a localized disturbance; here in the form of a zigzag tape covering 10% of the wing span. Based on extensive tuft flow visualisations, the resulting flow was found macroscopically similar to the undisturbed flow. Next a combined investigation was carried out including pressure recordings, Stereo-PIV measurements and CFD simulations. The investigation parameters were the aspect ratio, the angle of attack and the Re number. Tuft and pressure data were found in good agreement. The 3D CFD simulations reproduced the structure of the SCs in qualitative agreement with the experimental data but had a delay of ~3deg in capturing the first appearance of a SC. The error in Cl max prediction was 7% compared to 19% for the 2D cases. Tests show that SCs grow with Re number and angle of attack. Also analysis of the time averaged computational results indicated the presence of three types of vortices: (a) the trailing edge line vortex (TELV) in the wake, (b) the separation line vortex (SLV) over the wing and (c) the SC vortices. The TELV and SLV run parallel to the trailing edge and are of opposite sign, while the SC vortices start normal to the wing suction surface, then bend towards the SC centre and later extend downstream, with their vorticity parallel to the free stream.

  12. Investigation of quercetin-induced HepG2 cell apoptosis-associated cellular biophysical alterations by atomic force microscopy.

    Science.gov (United States)

    Pi, Jiang; Li, Baole; Tu, Lvying; Zhu, Haiyan; Jin, Hua; Yang, Fen; Bai, Haihua; Cai, Huaihong; Cai, Jiye

    2016-01-01

    Quercetin, a wildly distributed bioflavonoid, has been proved to possess excellent antitumor activity on hepatocellular carcinoma (HCC). In the present study, the biophysical properties of HepG2 cells were qualitatively and quantitatively determined using high resolution atomic force microscopy (AFM) to understand the anticancer effects of quercetin on HCC cells at nanoscale. The results showed that quercetin could induce severe apoptosis in HepG2 cells through arrest of cell cycle and disruption of mitochondria membrane potential. Additionally, the nuclei and F-actin structures of HepG2 cells were destroyed by quercetin treatment as well. AFM morphological data showed some typical apoptotic characterization of HepG2 cells with increased particle size and roughness in the ultrastructure of cell surface upon quercetin treatment. As an important biophysical property of cells, the membrane stiffness of HepG2 cells was further quantified by AFM force measurements, which indicated that HepG2 cells became much stiffer after quercetin treatment. These results collectively suggest that quercetin can be served as a potential therapeutic agent for HCC, which not only extends our understanding of the anticancer effects of quercetin against HCC cells into nanoscale, but also highlights the applications of AFM for the investigation of anticancer drugs.

  13. DNA-coated AFM cantilevers for the investigation of cell adhesion and the patterning of live cells

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Sonny C.; Crow, Ailey K.; Lam, Wilbur A.; Bertozzi, Carolyn R.; Fletcher, Daniel A.; Francis, Matthew B.

    2008-08-01

    Measurement of receptor adhesion strength requires the precise manipulation of single cells on a contact surface. To attach live cells to a moveable probe, DNA sequences complementary to strands displayed on the plasma membrane are introduced onto AFM cantilevers (see picture, bp=base pairs). The strength of the resulting linkages can be tuned by varying the length of DNA strands, allowing for controlled transport of the cells.

  14. Synchronization of Caulobacter crescentus for investigation of the bacterial cell cycle.

    Science.gov (United States)

    Schrader, Jared M; Shapiro, Lucy

    2015-04-08

    The cell cycle is important for growth, genome replication, and development in all cells. In bacteria, studies of the cell cycle have focused largely on unsynchronized cells making it difficult to order the temporal events required for cell cycle progression, genome replication, and division. Caulobacter crescentus provides an excellent model system for the bacterial cell cycle whereby cells can be rapidly synchronized in a G0 state by density centrifugation. Cell cycle synchronization experiments have been used to establish the molecular events governing chromosome replication and segregation, to map a genetic regulatory network controlling cell cycle progression, and to identify the establishment of polar signaling complexes required for asymmetric cell division. Here we provide a detailed protocol for the rapid synchronization of Caulobacter NA1000 cells. Synchronization can be performed in a large-scale format for gene expression profiling and western blot assays, as well as a small-scale format for microscopy or FACS assays. The rapid synchronizability and high cell yields of Caulobacter make this organism a powerful model system for studies of the bacterial cell cycle.

  15. Investigation the cause of plasma treatment for low temperature annealed dye-sensitized solar cells

    Science.gov (United States)

    Zen, Shungo; Komatsu, Yuta; Ono, Ryo

    2015-09-01

    Dye-sensitized solar cells (DSSCs) require annealing of TiO2photoelectrodes at 450 C to 550 C. However, such high-temperature annealing is unfavorable because it limits the use of materials that cannot withstand high temperatures, such as plastic substrates. In our previous paper, a low temperature annealing technique of TiO2 photoelectrodes using ultraviolet light and dielectric barrier discharge treatments was proposed to reduce the annealing temperature from 450 C to 150 C for a TiO2 paste containing an organic binder. Here, we investigated the cause of plasma treatment via the Nyquist diagram (Cole-Cole plot) of DSSCs. The Nyquist diagram was masured with a frequency response analyzer (NF Corporation, FRA5022) under 100 mW/cm2 illumination of a calibrated xenon lamp (Hamamatsu L2274, 150W). The lifetime of the electrons, the effective electron diffusion coefficient, and the electron diffusion length of TiO2 photoelectrodes were determined by analyzing the Nyquist diagrams. As a result of analyzing the Nyquist diagrams, it was shown that plasma treatment can reduce the electron transport resistance and promote the necking of Hot UV annealed TiO2 nanoparticles. This work was supported by Grant-in-Aid for JSPS Fellows.

  16. Investigation of test methods, material properties, and processes for solar cell encapsulants. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Willis, P. B.; Baum, B.; White, R. A.

    1978-06-01

    Springborn Laboratories is engaged in a study of evaluating potentially useful encapsulating materials for the encapsulation task of the Low-Cost Solar Array project (LSA) funded by the Department of Energy. The goal of this program is to identify, evaluate, and recommend encapsulant materials (other than glass) and processes for the production of cost-effective, long-life photovoltaic solar modules. The results of an investigation of solar module encapsulation systems applicable to the Low-Cost Solar Array project 1986 cost and performance goals are presented. The 1986 cost goal for a 20 year life solar cell module is $0.50 per watt or $5 per square foot (in 1975 dollars). Out of this cost goal, $0.25 per square foot is currently allocated for the encapsulation in terms of raw materials, exclusive of labor. Assuming the flat-plate collector to be the most efficient module design, six basic construction elements were identified and their specific uses in module construction defined. In order to generate a comparative analysis, a uniform costing basis was established for each element. Extensive surveys into commercially available materials were then conducted in order to identify either general classes or specific products suitable for use for each construction element. The survey results were also useful in revealing price ranges for classes of materials and estimating the cost allocation for each element within the encapsulation cost goal.

  17. Investigation of the built-in voltage in organic pin solar cells using electroabsorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Siebert-Henze, Ellen; Tress, Wolfgang; Lyssenko, Vadim G.; Hintschich, Susanne I.; Leo, Karl; Riede, Moritz [Institut fuer Angewandte Photophysik, Dresden (Germany)

    2011-07-01

    The built-in voltage of small molecule organic solar cells based on the pin concept is investigated. We use the method of electroabsorption spectroscopy whose principle is the detection of absorption changes due to electrical excitation (Stark effect). A voltage consisting of a DC and an AC part is applied to the sample and the change in absorption is detected using a lock-in amplifier. The variation of the applied DC voltage modifies the DC field across the sample leading to a linear change of the corresponding Stark signal. This supplies information about the built-in voltage of the device which is determined for different combinations of donor materials and hole transport materials (MeO-TPD, BPAPF, alpha-NPD, and ZnPc). In addition, the doping concentration of the hole transport layer is modified and the influence of the consequential change of the work function on the built-in voltage is examined. It is shown that both the short-circuit current as well as the fill factor increase for larger built-in voltages.

  18. Investigation of penetration force of living cell using an atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Eun Young; Kim, Young Tae; Kim, Dae Eun [Yonsei University, Seoul (Korea, Republic of)

    2009-07-15

    Recently, the manipulation of a single cell has been receiving much attention in transgenesis, in-vitro fertilization, individual cell based diagnosis, and pharmaceutical applications. As these techniques require precise injection and manipulation of cells, issues related to penetration force arise. In this work the penetration force of living cell was studied using an atomic force microscope (AFM). L929, HeLa, 4T1, and TA3 HA II cells were used for the experiments. The results showed that the penetration force was in the range of 2{approx}22 nN. It was also found that location of cell penetration and stiffness of the AFM cantilever affected the penetration force significantly. Furthermore, double penetration events could be detected, due to the multi-membrane layers of the cell. The findings of this work are expected to aid in the development of precision micro-medical instruments for cell manipulation and treatment

  19. Employment of synchronized cells and flow microfluorometry in investigations on the JB-1 ascites tumour chalones.

    Science.gov (United States)

    Bichel, P; Barfod, N M; Jakobsen, A

    1975-11-01

    In most experimental ascites tumours the growth rate decreases with increasing age and cell number. This decrease is caused by a prolongation of the cell cycle and an increasing accumulation of non-cycling cells in resting (or quiescent) G1 and G2 compartments. In cell-free ascitic fluid from the JB-1 ascites tumour in the plateau phase of growth lowmolecular-weight substances have been found which reversibly and specifically arrest JB-1 cells in G1 and G2. The present paper describes an in-vitro model for testing the effect of the humoral growth inhibitors contained in the ascitic fluid. The test system is based on synchronized JB-1 cells analysed by flow-through cytofluorometry. Addition to the synchronous cells of a ultrafiltrate (less than 50000 Daltons) of the JB-1 ascitic fluid was found to induce a complete, but temporary arrest of the cells at the G1-S border.

  20. [Fluorescence polarization used to investigate the cell membrane fluidity of Saccharomyces cerevisiae treated by pulsed electric field].

    Science.gov (United States)

    Zhang, Ying; Zeng, Xin-An; Wen, Qi-Biao; Li, Lin

    2008-01-01

    To know the lethal mechanism of microorganisms under pulsed electric field treatment, the relationship between the inactivation of Saccharomyces cerevisiae (CICC1308) cell and the permeability and fluidity changes of its cell membrane treated by pulsed electric field (0-25 kV x cm(-1), 0-266 ms) was investigated. With 1,6-diphenyl-1,3,5-hexatriene (DPH) used as a probe, the cell membrane fluidity of Saccharomyces cerevisiae treated by pulsed electric field was expressed by fluorescence polarization. Results showed that the cell membrane fluidity decreases when the electric flied strength is up to 5 kV x cm(-1), and decreases with the increase in electric field strength and treatment time. The plate counting method and ultraviolet spectrophotometer were used to determine the cell viability and to investigate the cell membrane permeability, respectively, treated by pulsed electric field. Results showed that the lethal ratio and the content of protein and nucleic acid leaked from intracellular plasma increased with the increase in the electric field strength and the extension of treatment time. Even in a quite lower electric field of 5 kV x cm(-1) with a tiny microorganism lethal level, the increase in UV absorption value and the decrease in fluidity were significant. It was demonstrated that the cell membrane fluidity decreases with the increase in lethal ratio and cell membrane permeability. The viscosity of cell membrane increases with the decrease in fluidity. These phenomena indicated that cell membrane is one of the most key sites during the pulsed electric field treatment, and the increased membrane permeability and the decreased cell membrane fluidity contribute to the cell death.

  1. High throughput screening to investigate the interaction of stem cells with their extracellular microenvironment

    OpenAIRE

    Ankam, Soneela; Teo, Benjamin KK; Kukumberg, Marek; Yim, Evelyn KF

    2013-01-01

    Stem cells in vivo are housed within a functional microenvironment termed the “stem cell niche.” As the niche components can modulate stem cell behaviors like proliferation, migration and differentiation, evaluating these components would be important to determine the most optimal platform for their maintenance or differentiation. In this review, we have discussed methods and technologies that have aided in the development of high throughput screening assays for stem cell research, including ...

  2. Investigation of FGFR2-IIIC signaling via FGF-2 ligand for advancing GCT stromal cell differentiation.

    Directory of Open Access Journals (Sweden)

    Shalini Singh

    Full Text Available Giant cell tumor of bone (GCT is an aggressive bone tumor consisting of multinucleated osteoclast-like giant cells and proliferating osteoblast-like stromal cells. The signaling mechanism involved in GCT stromal cell osteoblastic differentiation is not fully understood. Previous work in our lab reported that GCT stromal cells express high levels of TWIST1, a master transcription factor in skeletal development, which in turn down-regulates Runx2 expression and prevents terminal osteoblastic differentiation in these cells. The purpose of this study was to determine the upstream regulation of TWIST1 in GCT cells. Using GCT stromal cells obtained from patient specimens, we demonstrated that fibroblast growth factor receptor (FGFR-2 signaling plays an essential role in bone development and promotes differentiation of immature osteoblastic cells. Fibroblast growth factor (FGF-2 stimulates FGFR-2 expression, resulting in decreased TWIST1 expression and increased Runx2, alkaline phosphastase (ALP and osteopontin (OPN expression. Inhibition of FGFR-2 through siRNA decreased the expression of ALP, Runx2 and OPN in GCT stromal cells. Our study also confirmed that FGF-2 ligand activates downstream ERK1/2 signaling and pharmacological inhibition of the ERK1/2 signaling pathway suppresses FGF-2 stimulated osteogenic differentiation in these cells. Our results indicate a significant role of FGFR-2 signaling in osteoblastic differentiation in GCT stromal cells.

  3. Investigation of reliability attributes and accelerated stress factors on terrestrial solar cells. Third annual report

    Energy Technology Data Exchange (ETDEWEB)

    Lathrop, J.W.; Hartman, R.A.; Saylor, C.R.

    1981-01-01

    The third year of the accelerated reliability testing program concentrated on electrical measurement instrumentation and in modeling cell behavior in the second quadrant. In addition, some preliminary work was done on correlating cell color changes with electrical degradation. Not reported are results of continuing accelerated stress tests on state of the art cells. A number of new cells were added to the program, but not in time for sufficient data to be obtained, while the older cells are undergoing extended test periods and new data are not yet available on them. The all-digital, microprocessor controlled, short interval tester, which was designed and fabricated, has replaced the manual measurement procedure formerly used. This has improved measurement accuracy and repeatability, reduced measurement time, and through coordinated data management procedures, eliminated data errors. A complete description of the tester including schematics and software is given and its operating procedures described. A computer model, based on the thermal and electrical properties of the cells and encapsulating materials, was developed to relate cell temperature to electrical characteristics in the second quadrant. This model adequately predicted the behavior of both encapsulated and unencapsulated cells, although accurate temperature measurements on encapsulated cells were difficult to obtain. In addition, only cells of one type were used for comparison and other cell types may require different parameter values for fitting. Use of the model should permit the prediction of a cell's sensitivity to degradation in the second quadrant. The computer program is listed together with a description of its operation.

  4. Sf9 cells: a versatile model system to investigate the pharmacological properties of G protein-coupled receptors.

    Science.gov (United States)

    Schneider, Erich H; Seifert, Roland

    2010-12-01

    The Sf9 cell/baculovirus expression system is widely used for high-level protein expression, often with the purpose of purification. However, proteins may also be functionally expressed in the defined Sf9 cell environment. According to the literature, the pharmacology of G-protein-coupled receptors (GPCRs) functionally reconstituted in Sf9 cells is similar to the receptor properties in mammalian cells. Sf9 cells express both recombinant GPCRs and G-proteins at much higher levels than mammalian cells. Sf9 cells can be grown in suspension culture, providing an inexpensive way of obtaining large protein amounts. Co-infection with various baculoviruses allows free combination of GPCRs with different G-proteins. The absence of constitutively active receptors in Sf9 cells provides an excellent signal-to background ratio in functional assays, allowing the detection of agonist-independent receptor activity and of small ligand-induced signals including partial agonistic and inverse agonistic effects. Insect cell Gα(i)-like proteins mostly do not couple productively to mammalian GPCRs. Thus, unlike in mammalian cells, Sf9 cells do not require pertussis toxin treatment to obtain a Gα(i)-free environment. Co-expression of GPCRs with Gα(i1), Gα(i2), Gα(i3) or Gα(o) in Sf9 cells allows the generation of a selectivity profile for these Gα(i/o)-isoforms. Additionally, GPCR-G-protein combinations can be compared with defined 1:1 stoichiometry by expressing GPCR-Gα fusion proteins. Sf9 cells can also be employed for ligand screening in medicinal chemistry programs, using radioligand binding assays or functional assays, like the steady-state GTPase- or [(35)S]GTPγS binding assay. This review shows that Sf9 cells are a versatile model system to investigate the pharmacological properties of GPCRs.

  5. Investigation of selective induction of breast cancer cells to death with treatment of plasma-activated medium

    Science.gov (United States)

    Hashizume, Hiroshi; Tanaka, Hiromasa; Nakamura, Kae; Kano, Hiroyuki; Ishikawa, Kenji; Kikkawa, Fumitaka; Mizuno, Masaaki; Hori, Masaru

    2015-09-01

    The applications of plasma in medicine have much attention. We previously showed that plasma-activated medium (PAM) induced glioblastoma cells to apoptosis. However, it has not been elucidated the selectivity of PAM in detail. In this study, we investigated the selective effect of PAM on the death of human breast normal and cancer cells, MCF10A and MCF7, respectively, and observed the selective death with fluorescent microscopy. For the investigation of cell viability with PAM treatment, we prepared various PAMs according to the strengths, and treated each of cells with PAMs. Week PAM treatment only decreased the viability of MCF7 cells, while strong PAM treatment significantly affected both viabilities of MCF7 and MCF10A cells. For the fluorescent observation, we prepared the mixture of MCF7 and fluorescent-probed MCF10A cells, and seeded them. After the treatment of PAMs, the images showed that only MCF7 cells damaged in the mixture with week PAM treatment. These results suggested that a specific range existed with the selective effect in the strength of PAM. This work was partly supported by a Grant-in-Aid for Scientific Research on Innovative Areas ``Plasma Medical Innovation'' Grant No. 24108002 and 24108008 from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

  6. Experimental investigation and numerical comparison of the performance of a proton exchange membrane fuel cell at different channel geometry

    Science.gov (United States)

    Khazaee, I.

    2015-08-01

    In this study, the performance of a PEM fuel cell is investigated experimentally and numerically by changing the geometry of the channels. At first an experimental setup is used and three different fuel cells with rectangular, elliptical and triangular serpentine channels are constructed. The active area of each cell is 25 cm2 that its weight is 1,300 g. The material of the gas diffusion layer is carbon clothes, the membrane is nafion 117 and the catalyst layer is a plane with 0.004 g cm-2 platinum. Then a complete three-dimensional model for fuel cell is used to investigate the effect of using this channels geometry on the performance. The proposed model is a full cell model, which includes all the parts of the PEM fuel cell, flow channels, gas diffusion electrodes, catalyst layers and the membrane. Coupled transport and electrochemical kinetics equations are solved in a single domain; therefore no interfacial boundary condition is required at the internal boundaries between cell components. The results show that the predicted polarization curves by using this model are in good agreement with the experimental results. Also the results show that when the geometry of channel is rectangular the performance of the cell is better than the triangular and elliptical channel.

  7. Investigation of anticancer mechanism of oleuropein via cell cycle and apoptotic pathways in SH-SY5Y neuroblastoma cells.

    Science.gov (United States)

    Seçme, Mücahit; Eroğlu, Canan; Dodurga, Yavuz; Bağcı, Gülseren

    2016-07-01

    Neuroblastoma is one of the most common types of pediatric tumors that can spread quickly in neuronal tissues. Oleuropein which is active compound of olive leaves, belongs to polyphenols group and has antioxidant, anti-microbial, anti-inflammatory, anti-hypertensive and anti-carcinogenic effects. The aim of the study is to determine the therapeutic effects of oleuropein on cell proliferation, invasion, colony formation, cell cycle and apoptotic mechanisms in SH-SY5Y neuroblastoma cell line under in vitro conditions. The effect of oleuropein on cell viability was determined by XTT method. 84 cell cycle control and 84 apoptosis related genes were evaluated by RT-PCR. Effects of oleuropein on apoptosis were researched by TUNEL assay. Protein expressions were determined by western blot analysis. Effects of oleuropein on cell invasion, colony formation and migration were detected by matrigel-chamber, colony formation assay and wound-healing assay, respectively. IC50 value of oleuropein in SH-SY5Y cells was detected as 350 μM at 48th hours. It is determined that oleuropein causes cell cycle arrest by down-regulating of CylinD1,CylinD2,CyclinD3,CDK4,CDK6 and up-regulating of p53 and CDKN2A, CDKN2B, CDKN1A gene expressions. Oleuropein also induces apoptosis by inhibiting of Bcl-2 and activating of Bax,caspase-9 and caspase-3 gene expressions. Apoptotic cell ratio was found 36.4 ± 3.27% in oleuropein dose group. Oleuropein decreased invasion in SH-SY5Y cells and suppressed colony numbers in ratio of 53.6 ± 4.71%.Our results demonstrated that oleuropein can be a therapeutic agent in the treatment of neuroblastoma.

  8. Investigation of In Vitro Bone Cell Adhesion and Proliferation on Ti Using Direct Current Stimulation.

    Science.gov (United States)

    Bodhak, Subhadip; Bose, Susmita; Kinsel, William C; Bandyopadhyay, Amit

    2012-12-01

    Our objective was to establish an in vitro cell culture protocol to improve bone cell attachment and proliferation on Ti substrate using direct current stimulation. For this purpose, a custom made electrical stimulator was developed and a varying range of direct currents, from 5 to 25 µA, were used to study the current stimulation effect on bone cells cultured on conducting Ti samples in vitro. Cell-materials interaction was studied for a maximum of 5 days by culturing with human fetal osteoblast cells (hFOB). The direct current was applied in every 8 h time interval and the duration of electrical stimulation was kept constant at 15 min for all cases. In vitro results showed that direct current stimulation significantly favored bone cell attachment and proliferation in comparison to nonstimulated Ti surface. Immunochemistry and confocal microscopy results confirmed that the cell adhesion was most pronounced on 25 µA direct current stimulated Ti surfaces as hFOB cells expressed higher vinculin protein with increasing amount of direct current. Furthermore, MTT assay results established that cells grew 30% higher in number under 25 µA electrical stimulation as compared to nonstimulated Ti surface after 5 days of culture period. In this work we have successfully established a simple and cost effective in vitro protocol offering easy and rapid analysis of bone cell-materials interaction which can be used in promotion of bone cell attachment and growth on Ti substrate using direct current electrical stimulation in an in vitro model.

  9. Using human neural crest-derived progenitor cells to investigate osteogenesis: an in vitro study.

    Science.gov (United States)

    Degistirici, Ozer; Grabellus, Florian; Irsen, Stephan; Schmid, Kurt Werner; Thie, Michael

    2010-04-01

    Human tooth contains a distinct population of neural crest-derived progenitor cells (dNC-PCs) which are known to give rise to specialized daughter cells of an osteogenic lineage. We hypothesised that dNC-PCs could develop into neural crest-derived bone in a self-propagating and extracorporal culture system. Thus, we examined the three-dimensional structure obtained from osteogenic-stimulated dNC-PCs by morphological, biochemical and spectroscopic methods. After the onset of stimulation, cells formed a multilayer with outer cells covering the surface and inner cells secreting a hyaline matrix. With prolonged culture, multilayers contracted and formed a three-dimensional construct which subsequently converted to a calcified mass. Differentiation of progenitor cells was associated with apoptosis. Cell types which survived were smooth muscle actin-positive cells and bone-like cells. The expression of osteoblastic markers and the secretion of a collagenous matrix indicate that the bone cells had acquired their functional phenotype. Furthermore, these cells produced and secreted membrane-bound vesicles into the newly forming matrix. Consequently, an early biomineralized extracellular matrix was found with calcium phosphate deposits being associated with the newly formed collagen matrix framework. The molar calcium-phosphorus-ratio of the mineralized collagen indicated that amorphous calcium phosphate was present within this matrix. The data suggest that stimulated cultures of dNC-PCs are able to recapitulate some processes of the early phase of osteogenesis.

  10. Investigation of IrO2/Pt Electrocatalysts in Unitized Regenerative Fuel Cells

    Directory of Open Access Journals (Sweden)

    V. Baglio

    2011-01-01

    Full Text Available IrO2/Pt catalysts (at different concentrations were synthesized by incipient wetness technique and characterized by XRD, XRF, and SEM. Water electrolysis/fuel cell performances were evaluated in a 5 cm2 single cell under Unitized Regenerative Fuel Cell (URFC configuration. The IrO2/Pt composition of 14/86 showed the highest performance for water electrolysis and the lowest one as fuel cell. It is derived that for fuel cell operation an excess of Pt favours the oxygen reduction process whereas IrO2 promotes oxygen evolution. From the present results, it appears that the diffusion characteristics and the reaction rate in fuel cell mode are significantly lower than in the electrolyser mode. This requires the enhancement of the gas diffusion properties of the electrodes and the catalytic properties for cathode operation in fuel cells.

  11. Detection of PIGO-deficient cells using proaerolysin: a valuable tool to investigate mechanisms of mutagenesis in the DT40 cell system.

    Directory of Open Access Journals (Sweden)

    Jun Nakamura

    Full Text Available While isogenic DT40 cell lines deficient in DNA repair pathways are a great tool to understand the DNA damage response to genotoxic agents by a comparison of cell toxicity in mutants and parental DT40 cells, no convenient mutation assay for mutagens currently exists for this reverse-genetic system. Here we establish a proaerolysin (PA selection-based mutation assay in DT40 cells to identify glycosylphosphatidylinositol (GPI-anchor deficient cells. Using PA, we detected an increase in the number of PA-resistant DT40 cells exposed to MMS for 24 hours followed by a 5-day period of phenotype expression. GPI anchor synthesis is catalyzed by a series of phosphatidylinositol glycan complementation groups (PIGs. The PIG-O gene is on the sex chromosome (Chromosome Z in chicken cells and is critical for GPI anchor synthesis at the intermediate step. Among all the mutations detected in the sequence levels observed in DT40 cells exposed to MMS at 100 µM, we identified that ∼55% of the mutations are located at A:T sites with a high frequency of A to T transversion mutations. In contrast, we observed no transition mutations out of 18 mutations. This novel assay for DT40 cells provides a valuable tool to investigate the mode of action of mutations caused by reactive agents using a series of isogenic mutant DT40 cells.

  12. Investigation of gas concentration cell based on LiSiPO electrolyte and Li2CO3, Au electrode

    Institute of Scientific and Technical Information of China (English)

    ZHU YongMing; CHU WingFong; WEPPNER Werner

    2009-01-01

    Solid lithium ion conducting electrochemical cells using LiSiPO as solid electrolyte and Li2CO3 mixed with Au as electrodes were prepared and employed as chemical sensors for the detection of CO2 gas.The EMF of the cell depends on the concentration of CO2 in air according to the partial pressure de-pendence of Nernst's law in the investigated range from 100 to 2000 ppm over the temperature range from 473 K to 673 K.

  13. Investigation of biophysical mechanisms in gold nanoparticle mediated laser manipulation of cells using a multimodal holographic and fluorescence imaging setup.

    Directory of Open Access Journals (Sweden)

    Stefan Kalies

    Full Text Available Laser based cell manipulation has proven to be a versatile tool in biomedical applications. In this context, combining weakly focused laser pulses and nanostructures, e.g. gold nanoparticles, promises to be useful for high throughput cell manipulation, such as transfection and photothermal therapy. Interactions between laser pulses and gold nanoparticles are well understood. However, it is still necessary to study cell behavior in gold nanoparticle mediated laser manipulation. While parameters like cell viability or perforation efficiency are commonly addressed, the influence of the manipulation process on other essential cell parameters is not sufficiently investigated yet. Thus, we set out to study four relevant cell properties: cell volume and area, ion exchange and cytoskeleton structure after gold nanoparticle based laser manipulation. For this, we designed a multimodal imaging and manipulation setup. 200 nm gold nanoparticles were attached unspecifically to canine cells and irradiated by weakly focused 850 ps laser pulses. Volume and area change in the first minute post laser manipulation was monitored using digital holography. Calcium imaging and cells expressing a marker for filamentous actin (F-actin served to analyze the ion exchange and the cytoskeleton, respectively. High radiant exposures led to cells exhibiting a tendency to shrink in volume and area, possibly due to outflow of cytoplasm. An intracellular raise in calcium was observed and accompanied by an intercellular calcium wave. This multimodal approach enabled for the first time a comprehensive analysis of the cell behavior in gold nanoparticle mediated cell manipulation. Additionally, this work can pave the way for a better understanding and the evaluation of new applications in the context of cell transfection or photothermal therapy.

  14. A methodology for investigating new nonprecious metal catalysts for PEM fuel cells.

    Science.gov (United States)

    Susac, D; Sode, A; Zhu, L; Wong, P C; Teo, M; Bizzotto, D; Mitchell, K A R; Parsons, R R; Campbell, S A

    2006-06-08

    This paper reports an approach to investigate metal-chalcogen materials as catalysts for the oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells. The methodology is illustrated with reference to Co-Se thin films prepared by magnetron sputtering onto a glassy-carbon substrate. Scanning Auger microscopy (SAM), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) have been used, in parallel with electrochemical activity and stability measurements, to assess how the electrochemical performance relates to chemical composition. It is shown that Co-Se thin films with varying Se are active for oxygen reduction, although the open circuit potential (OCP) is lower than for Pt. A kinetically controlled process is observed in the potential range 0.5-0.7 V (vs reversible hydrogen electrode) for the thin-film catalysts studied. An initial exposure of the thin-film samples to an acid environment served as a pretreatment, which modified surface composition prior to activity measurements with the rotating disk electrode (RDE) method. Based on the SAM characterization before and after electrochemical tests, all surfaces demonstrating activity are dominated by chalcogen. XRD shows that the thin films have nanocrystalline character that is based on a Co(1-x)Se phase. Parallel studies on Co-Se powder supported on XC72R carbon show comparable OCP, Tafel region, and structural phase as for the thin-film model catalysts. A comparison for ORR activity has also been made between this Co-Se powder and a commercial Pt catalyst.

  15. Third Harmonic Generation microscopy as a diagnostic tool for the investigation of microglia BV-2 and breast cancer cells activation

    Science.gov (United States)

    Gavgiotaki, E.; Filippidis, G.; Psilodimitrakopoulos, S.; Markomanolaki, H.; Kalognomou, M.; Agelaki, S.; Georgoulias, V.; Athanassakis, I.

    2015-07-01

    Nonlinear optical imaging techniques have created new opportunities of research in the biomedical field. Specifically, Third Harmonic Generation (THG) seems to be a suitable noninvasive imaging tool for the delineation and quantification of biological structures at the microscopic level. The aim of this study was to extract information as to the activation state of different cell types by using the THG imaging microscopy as a diagnostic tool. BV-2 microglia cell line was used as a representative biological model enabling the study of resting and activated state of the cells linked to various pathological conditions. Third Harmonic Generation (THG) and Two Photon Excitation Fluorescence (TPEF) measurements were simultaneously collected from stained breast cancer cells, by employing a single homemade experimental apparatus and it was shown that high THG signals mostly arise from lipid bodies. Continuously, BV-2 microglia cells were examined with or without activation by lipopolysaccharide (LPS) in order to discriminate between control and activated cells based on the quantification of THG signals. Statistically quantification was accomplished in both mean area and mean intensity values of THG. The values for mean total area and mean THG intensity values have been increased in activated versus the non-activated cells. Similar studies of quantification are underway in breast cancer cells for the exact discrimination on different cell lines. Furthermore, laser polarization dependence of SHG and THG signal in unstained biological samples is investigated.

  16. Opto-electro-modulated transient photovoltage and photocurrent system for investigation of charge transport and recombination in solar cells

    Science.gov (United States)

    Shi, Jiangjian; Li, Dongmei; Luo, Yanhong; Wu, Huijue; Meng, Qingbo

    2016-12-01

    An opto-electro-modulated transient photovoltage/photocurrent system has been developed to probe microscopic charge processes of a solar cell in its adjustable operating conditions. The reliability of this system is carefully determined by electric circuit simulations and experimental measurements. Using this system, the charge transport, recombination and storage properties of a conventional multicrystalline silicon solar cell under different steady-state bias voltages, and light illumination intensities are investigated. This system has also been applied to study the influence of the hole transport material layer on charge extraction and the microscopic charge processes behind the widely considered photoelectric hysteresis in perovskite solar cells.

  17. Opto-electro-modulated transient photovoltage and photocurrent system for investigation of charge transport and recombination in solar cells.

    Science.gov (United States)

    Shi, Jiangjian; Li, Dongmei; Luo, Yanhong; Wu, Huijue; Meng, Qingbo

    2016-12-01

    An opto-electro-modulated transient photovoltage/photocurrent system has been developed to probe microscopic charge processes of a solar cell in its adjustable operating conditions. The reliability of this system is carefully determined by electric circuit simulations and experimental measurements. Using this system, the charge transport, recombination and storage properties of a conventional multicrystalline silicon solar cell under different steady-state bias voltages, and light illumination intensities are investigated. This system has also been applied to study the influence of the hole transport material layer on charge extraction and the microscopic charge processes behind the widely considered photoelectric hysteresis in perovskite solar cells.

  18. Investigations on the change of texture of plant cells due to preservative treatments by digital holographic microscopy

    Science.gov (United States)

    Vora, Priyanka; Anand, Arun

    2014-10-01

    Texture change is observed in preserved fruits and vegetables. Responsible factors for texture change during preservative treatments are cell morphology, cell wall structure, cell turger, water content and some biochemical components, and also the environmental conditions. Digital Holographic microscopy (DHM) is a quantitative phase contrast imaging technique, which provides three dimensional optical thickness profiles of transparent specimen. Using DHM the morphology of plant cells preserved by refrigeration or stored in vinegar or in sodium chloride can be obtained. This information about the spatio-temporal evolution of optical volume and thickness can be an important tool in area of food processing. Also from the three dimensional images, the texture of the cell can be retrieved and can be investigated under varying conditions.

  19. Investigation of extracellular microRNAs in oral squamous cell carcinoma, rheumatoid arthritis and mesenchymal stem cell differentiation

    DEFF Research Database (Denmark)

    Yan, Yan

    Extracellular microRNAs (miRNAs) refer to cell-free miRNAs that are protected by extracellular vesicles (EVs) and protein complexes from degradation. Extracellular miRNAs are also known as circulating miRNAs that can circulate in bodily fluids. Studies have reported that extracellular miRNAs can...... serve as biomarkers for human diseases and can also act as mediators in cell-cell communication. In cancer, the abnormal expression of miRNAs in plasma has been observed. However, there is no report on the association of plasma miRNA expression with oral squamous cell carcinoma (OSCC) recurrence after...... surgery to date. In the first project, miR-486-5p, miR-375 and miR-92b-3p were validated to be highly associated with OSCC recurrence using next generation sequencing (NGS) and qRT-PCR. In cell-cell communication, bioactive information, including miRNAs, can be transferred by EVs. Studies have shown...

  20. Investigation of membrane electrode assemblies (MEAs) for efficient and optimum performance of polymer electrolyte membrane (PEM) fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Okafor, A.C.; Mogbo, H.M.C. [Missouri Univ. of Science and Technology, Rolla, MO (United States). Dept. of Mechanical and Aerospace Engineering

    2009-07-01

    The core component of a proton exchange membrane (PEM) fuel cell is the membrane electrode assembly (MEA) which includes an assembled stack of ion exchange membrane reaction catalysts, and the electrodes that converts hydrogen ions into electricity. This study investigated various MEAs in an effort to improve fuel cell performance and durability. First, a literature review of different commercially available and innovative PEM fuel cell MEAs was conducted. The best performing MEAs were then investigated in terms of fuel cell output voltage, operating temperature, thermal and chemical stability, methanol permeability, proton conductivity, and hydrogen crossover. The selected MEAs based on their high output voltage, ability to withstand chemical/radical attacks, overall fuel cell performance, and other excellent physical properties were identified as phosphoric acid-doped polybenzimidazole (PBI/H{sub 3}PO{sub 4}), disulfonated poly(sulfide sulfone)s (SPSSF), and Nafion 212. Finally, in-house designed and manufactured bipolar plates of different materials and flow field configurations are being used to validate these 3 identified MEAs in a single fuel cell and 3 fuel cell stacks.

  1. Investigating the regulation of stem and progenitor cell mitotic progression by in situ imaging.

    Science.gov (United States)

    Gerhold, Abigail R; Ryan, Joël; Vallée-Trudeau, Julie-Nathalie; Dorn, Jonas F; Labbé, Jean-Claude; Maddox, Paul S

    2015-05-01

    Genome stability relies upon efficacious chromosome congression and regulation by the spindle assembly checkpoint (SAC). The study of these fundamental mitotic processes in adult stem and progenitor cells has been limited by the technical challenge of imaging mitosis in these cells in situ. Notably, how broader physiological changes, such as dietary intake or age, affect mitotic progression in stem and/or progenitor cells is largely unknown. Using in situ imaging of C. elegans adult germlines, we describe the mitotic parameters of an adult stem and progenitor cell population in an intact animal. We find that SAC regulation in germline stem and progenitor cells is distinct from that found in early embryonic divisions and is more similar to that of classical tissue culture models. We further show that changes in organismal physiology affect mitotic progression in germline stem and progenitor cells. Reducing dietary intake produces a checkpoint-dependent delay in anaphase onset, and inducing dietary restriction when the checkpoint is impaired increases the incidence of segregation errors in mitotic and meiotic cells. Similarly, developmental aging of the germline stem and progenitor cell population correlates with a decline in the rate of several mitotic processes. These results provide the first in vivo validation of models for SAC regulation developed in tissue culture systems and demonstrate that several fundamental features of mitotic progression in adult stem and progenitor cells are highly sensitive to organismal physiological changes.

  2. Investigation into the Implications of Fuel Cell Shipboard Integration into the T-AGOS 19 Class

    Science.gov (United States)

    2012-02-01

    Fuel Cells (MCFC) v. Solid Oxide Fuel Cells ( SOFC ) The characteristics of these technologies and those of two sub-types...best mix of characteristics in the sub 250°C ‘low-temperature’ technologies. Of the high temperature fuel cell technologies (600-1,000°C), SOFC ...Storage (ES) – 250kWe flywheel module (Ref. 3); Fuel Cells (FC) – 250kWe SOFC /HTPEM modules Each of the systems had a broad design intent associated

  3. Structural and Optical Investigations of GaN-Si Interface for a Heterojunction Solar Cell

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Joshua J.; Jeffries, April M.; Bertoni, Mariana I.; Williamson, Todd L.; Bowden, Stuart G.; Honsberg, Christiana B.

    2014-06-08

    In recent years the development of heterojunction silicon based solar cells has gained much attention, lea largely by the efforts of Panasonic’s HIT cell. The success of the HIT cell prompts the scientific exploration of other thin film layers, besides the industrially accepted amorphous silicon. In this paper we report upon the use of gallium nitride, grown by MBE at “low temperatures” (~200°C), on silicon wafers as one possible candidate for making a heterojunction solar cell; the first approximation of band alignments between GaN and Si; and the material quality as determined by X-ray diffraction.

  4. Type-specific HPV prevalence in cervical cancer and high-grade lesions in Latin America and the Caribbean: systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Agustín Ciapponi

    Full Text Available BACKGROUND: Cervical cancer is a major public health problem in Latin America and the Caribbean (LA&C, showing some of the highest incidence and mortality rates worldwide. Information on HPV type distribution in high-grade cervical lesions (HSIL and invasive cervical cancer (ICC is crucial to predict the future impact of HPV16/18 vaccines and screening programmes, and to establish an appropriate post-vaccinal virologic surveillance. The aim was to assess the prevalence of HPV types in HSIL and ICC in studies in LA&C. METHODS AND FINDINGS: We performed a systematic review, following the MOOSE guidelines for systematic reviews of observational studies, and the PRISMA statement for reporting systematic reviews and meta-analyses. Inclusion criteria were at least ten cases of HSIL/ICC, and HPV-type elicitation. The search, without language restrictions, was performed in MEDLINE, Cochrane Library, EMBASE, LILACS from inception date to December 2009, proceedings, reference lists and consulting experts. A meta-analysis was performed using arc-sine transformations to stabilize the variance of simple proportions. Seventy-nine studies from 18 countries were identified, including 2446 cases of HSIL and 5540 of ICC. Overall, 46.5% of HSIL cases harbored HPV 16 and 8.9% HPV18; in ICC, 53.2% of cases harbored HPV 16 and 13.2% HPV 18. The next five most common types, in decreasing frequency, were HPV 31, 58, 33, 45, and 52. Study's limitations comprise the cross-sectional design of most included studies and their inherent risk of bias, the lack of representativeness, and variations in the HPV type-specific sensitivity of different PCR protocols. CONCLUSIONS: This study is the broadest summary of HPV type distribution in HSIL and ICC in LA&C to date. These data are essential for local decision makers regarding HPV screening and vaccination policies. Continued HPV surveillance would be useful, to assess the potential for changing type-specific HPV prevalence in

  5. Single-tube multiplex PCR using type-specific E6/E7 primers and capillary electrophoresis genotypes 21 human papillomaviruses in neoplasia

    Directory of Open Access Journals (Sweden)

    Warenholt Janina

    2011-01-01

    Full Text Available Abstract Background Human papillomavirus (HPV E6/E7 type-specific oncogenes are required for cervical carcinogenesis. Current PCR protocols for genotyping high-risk HPV in cervical screening are not standardized and usually use consensus primers targeting HPV capsid genes, which are often deleted in neoplasia. PCR fragments are detected using specialized equipment and extra steps, including probe hybridization or primer extension. In published papers, analytical sensitivity is typically compared with a different protocol on the same sample set. A single-tube multiplex PCR containing type-specific primers was developed to target the E6/E7 genes of two low-risk and 19 high-risk genotypes (HPV6, 11 and 16, 18, 26, 31, 33, 35, 39, 45, 51, 52, 53, 56, 58, 59, 66, 68, 70, 73 and 82 and the resulting short fragments were directly genotyped by high-resolution fluorescence capillary electrophoresis. Results The method was validated using long oligonucleotide templates, plasmid clones and 207 clinical samples of DNA from liquid-based cytology, fresh and formalin-fixed specimens and FTA Microcards® imprinted with cut tumor surfaces, swabbed cervical cancers or ejected aspirates from nodal metastases of head and neck carcinomas. Between one and five long oligonucleotide targets per sample were detected without false calls. Each of the 21 genotypes was detected in the clinical sample set with up to five types simultaneously detected in individual specimens. All 101 significant cervical neoplasias (CIN 2 and above, except one adenocarcinoma, contained E6/E7 genes. The resulting genotype distribution accorded with the national pattern with HPV16 and 18 accounting for 69% of tumors. Rare HPV types 70 and 73 were present as the sole genotype in one carcinoma each. One cervical SCC contained DNA from HPV6 and 11 only. Six of twelve oropharyngeal cancer metastases and three neck metastases of unknown origin bore E6/E7 DNA; all but one were HPV16. One neck

  6. SINGLE-CELL LEVEL INVESTIGATION OF CYTOSKELETAL/CELLULAR RESPONSE TO EXTERNAL STIMULI

    Energy Technology Data Exchange (ETDEWEB)

    Hiddessen, A L

    2007-02-26

    A detailed understanding of the molecular mechanisms by which chemical signals control cell behavior is needed if the complex biological processes of embryogenesis, development, health and disease are to be completely understood. Yet, if we are to fully understand the molecular mechanisms controlling cell behavior, measurements at the single cell level are needed to supplement information gained from population level studies. One of the major challenges to accomplishing studies at the single cell level has been a lack of physical tools to complement the powerful molecular biological assays which have provided much of what we currently know about cell behavior. The goal of this exploratory project is the development of an experimental platform that facilitates integrated observation, tracking and analysis of the responses of many individual cells to controlled environmental factors (e.g. extracellular signals). Toward this goal, we developed chemically-patterned microarrays of both adherent and suspension mammalian cell types. A novel chemical patterning methodology, based on photocatalytic lithography, was developed to construct biomolecule and cell arrays that facilitate analysis of biological function. Our patterning techniques rely on inexpensive stamp materials and visible light, and do not necessitate mass transport or specified substrates. Patterned silicon and glass substrates are modified such that there is a non-biofouling polymer matrix surrounding the adhesive regions that target biomolecules and cells. Fluorescence and reflectance microscopy reveal successful patterning of proteins and single to small clusters of mammalian cells. In vitro assays conducted upon cells on the patterned arrays demonstrate the viability of cells interfacing with this synthetic system. Hence, we have successfully established a versatile cell measurement platform which can be used to characterize the molecular regulators of cellular behavior in a variety of important

  7. Raman spectroscopic investigations on the interactions of gastric cancer cells with 5-fluorouracil

    Institute of Scientific and Technical Information of China (English)

    Jianyu Guo; Weiying Cai; Jipeng Yang; Zhenrong Sun

    2008-01-01

    To study the efficacy and side effects of antitumor drug by the method of Raman spectroscopy, the cancerous (SGC-7901) and normal (GES-1) gastric cells were treated with 0, 25-, 100-, and 200-mg/L 5-fluorouracil (5-Fu) for 24 h, respectively, then Raman spectra of cells were recorded. The excitation wavelength was 514.5 nm and the Raman spectra in the region of 500 - 1800 cm-1 were recorded. For the gastric cancer cells, as the concentration of 5-Fu increases, the band at 1094 cm-1 attributed to the symmetric stretching vibration mode of PO2- in the DNA backbone gradually decreases, and the intensity ratio of the band at 1315 cm-1 to that at 1340 cm-1 (I1315/I1340) shows the ascending trend, and the ratio of the band area at 1655 cm-1 to that at 1450 cm-1 (A1655/A1450) shows the slight ascending trend. For the normal gastric cells, these peaks also appear changes, however, the changes are weaker than those for the cancer cells. In SGC-7901 cells, 5-Fu can interfere with the DNA synthesis and result in the reduction of the DNA content. Besides, it can affect the unsaturation degree of the hydrocarbon chains and alter the external environment of guanine and adenine residues in cancer cells. The changes of Raman spectra for normal gastric cells reveal the side effect of 5-Fu.

  8. Numerical investigations on two-phase flow in polymer electrolyte fuel cells

    NARCIS (Netherlands)

    Qin, C.Z.

    2012-01-01

    Numerical modeling plays an important role in understanding various transport processes in polymer electrolyte fuel cells (PEFCs). It can not only provide insights into the development of new PEFC architectures, but also optimize operating conditions for better cell performance. Water balance is cri

  9. Cell-collagen interactions : the use of peptide Toolkits to investigate collagen-receptor interactions

    NARCIS (Netherlands)

    Farndale, Richard W.; Lisman, Ton; Bihan, Dominique; Hamaia, Samir; Smerling, Christiane S.; Pugh, Nicholas; Konitsiotis, Antonios; Leitinger, Birgit; de Groot, Philip G.; Jarvis, Gavin E.; Raynal, Nicolas

    2008-01-01

    Fibrillar collagens provide the most fundamental platform in the vertebrate organism for the attachment of cells and matrix molecules. we have identified specific sites in collagens to which cells can attach, either directly or through protein intermediaries. Using Toolkits of triple-helical peptide

  10. Dye-sensitized solar cells and solar module using polymer electrolytes: Stability and performance investigations

    Directory of Open Access Journals (Sweden)

    Jilian Nei de Freitas

    2006-01-01

    Full Text Available We present recent results on solid-state dye-sensitized solar cell research using a polymer electrolyte based on a poly(ethylene oxide derivative. The stability and performance of the devices have been improved by a modification in the method of assembly of the cells and by the addition of plasticizers in the electrolyte. After 30 days of solar irradiation (100 mW cm-2 no changes in the cell's efficiency were observed using this new method. The effect of the active area size on cell performance and the first results obtained for the first solar module composed of 4.5 cm2 solid-state solar cells are also presented.

  11. Investigating Effects of Proteasome Inhibitor on Multiple Myeloma Cells Using Confocal Raman Microscopy

    Directory of Open Access Journals (Sweden)

    Jeon Woong Kang

    2016-12-01

    Full Text Available Due to its label-free and non-destructive nature, applications of Raman spectroscopic imaging in monitoring therapeutic responses at the cellular level are growing. We have recently developed a high-speed confocal Raman microscopy system to image living biological specimens with high spatial resolution and sensitivity. In the present study, we have applied this system to monitor the effects of Bortezomib, a proteasome inhibitor drug, on multiple myeloma cells. Cluster imaging followed by spectral profiling suggest major differences in the nuclear and cytoplasmic contents of cells due to drug treatment that can be monitored with Raman spectroscopy. Spectra were also acquired from group of cells and feasibility of discrimination among treated and untreated cells using principal component analysis (PCA was accessed. Findings support the feasibility of Raman technologies as an alternate, novel method for monitoring live cell dynamics with minimal external perturbation.

  12. Humidity-Dependent Bacterial Cells Functional Morphometry Investigations Using Atomic Force Microscope

    Directory of Open Access Journals (Sweden)

    Hike Nikiyan

    2010-01-01

    Full Text Available The effect of a relative humidity (RH in a range of 93–65% on morphological and elastic properties of Bacillus cereus and Escherichia coli cells was evaluated using atomic force microscopy. It is shown that gradual dehumidification of bacteria environment has no significant effect on cell dimensional features and considerably decreases them only at 65% RH. The increasing of the bacteria cell wall roughness and elasticity occurs at the same time. Observed changes indicate that morphological properties of B. cereus are rather stable in wide range of relative humidity, whereas E. coli are more sensitive to drying, significantly increasing roughness and stiffness parameters at RH ≤ 84% RH. It is discussed the dependence of the response features on differences in cell wall structure of gram-positive and gram-negative bacterial cells.

  13. Spectroscopic investigation of herpes simplex viruses infected cells and their response to antiviral therapy

    Science.gov (United States)

    Erukhimovitch, Vitaly; Talyshinsky, Marina; Souprun, Yelena; Huleihel, Mahmoud

    2006-07-01

    In the present study, we used microscopic Fourier transform infrared spectroscopy (FTIR) to evaluate the antiviral activity of known antiviral agents against herpes viruses. The antiviral activity of Caffeic acid phenethyl ester (CAPE) (which is an active compound of propolis) against herpes simplex type 1 and 2 was examined in cell culture. The advantage of microscopic FTIR spectroscopy over conventional FTIR spectroscopy is that it facilitates inspection of restricted regions of cell culture or tissue. Our results showed significant spectral differences at early stages of infection between infected and non-infected cells, and between infected cells treated with the used antiviral agent and those not treated. In infected cells, there was a considerable increase in phosphate levels. Our results show that treatment with used antiviral agent considerably abolish the spectral changes induced by the viral infection. In addition, it is possible to track by FTIR microscopy method the deferential effect of various doses of the drug.

  14. Fabrication of silk mesh with enhanced cytocompatibility: preliminary in vitro investigation toward cell-based therapy for hernia repair.

    Science.gov (United States)

    Guillaume, O; Park, J; Monforte, X; Gruber-Blum, S; Redl, H; Petter-Puchner, A; Teuschl, A H

    2016-02-01

    Recent studies have demonstrated that combining cells with meshes prior to implantation successfully enhanced hernia repair. The idea is to create a biologic coating surrounding the mesh with autologous cells, before transplantation into the patient. However, due to the lack of a prompt and robust cell adhesion to the meshes, extensive in vitro cultivation is required to obtain a homogenous cell layer covering the mesh. In this context, the objective of this publication is to manufacture meshes made of silk fibres and to enhance the cytoadhesion and cytocompatibility of the biomaterial by surface immobilization of a pro-adhesive wheat germ agglutinin (lectin WGA). We first investigated the affinity between the glycoprotein WGA and cells, in solution and then after covalent immobilization of WGA on silk films. Then, we manufactured meshes made of silk fibres, tailored them with WGA grafting and finally evaluated the cytocompatibility and the inflammatory response of silk and silk-lectin meshes compared to common polypropylene mesh, using fibroblasts and peripheral blood mononuclear cells, respectively. The in vitro experiments revealed that the cytocompatibility of silk can be enhanced by surface immobilization with lectin WGA without exhibiting negative response in terms of pro-inflammatory reaction. Grafting lectin to silk meshes could bring advantages to facilitate cell-coating of meshes prior to implantation, which is an imperative prerequisite for abdominal wall tissue regeneration using cell-based therapy.

  15. Skin Slice as a Model for the Investigation of the Role of Mast Cells in Acupuncture Effects

    Institute of Scientific and Technical Information of China (English)

    汪丽娜; DING Guang-hong; 顾全保; Wolfgang SCHWARZ

    2008-01-01

    Obiective:To establish a new and better model to investigate the properties of mast cells that couldbe involved in acupuncture process mechanisms.Methods:Connective tissue under the conum at the area of acupuncture point Zusanli(ST 36)from rat was acutely bluntly separated with forceps and scissors。And incubated in bath solution up to several hours.Mast cells in slices of that tissue were irradiated with laser light of 650 mn,and changes in the appearance were observed under mlcroscope. In addition.patch.clamp technique in whole-cell configuration was employed to induce mechano-sensitive currents by pressure applied through the patch pipette.Results:1)A high density of mast cells embedded in the extracellular matrix was detected in the tissue slices using toluidine blue staining.The mast cells survived for up to several hours;2)Laser irradiation for 10 min(40 mW) resulted in fusion of intracellular vesicles with the plasma membrane of the mast-cell surface;3)Whole.cell currents increased when pressure gradients of-30 cm,-60 cm or-90 cm H20 were applied,the response was attenuated in the presence of 1 0 u M Ruthenium Red(a common blocker of channels 0f the vallinoid.sensitive transient receptor potential family TRPV).Conclusion:The skin tissue slice of rat Zusanli(ST 36)may be used as a model to investigate the role of mast cells in acupuncture.t he results obtained in this model support the suggestion that skin mast cells play a role In laser as well as mechanical acupuncture and TRPV channels may be involved in acupuncture effects.

  16. Strategy for selecting disposable bags for cell culture media applications based on a root-cause investigation.

    Science.gov (United States)

    Wood, Joseph; Mahajan, Ekta; Shiratori, Masaru

    2013-01-01

    The use of disposable bags for cell culture media storage has grown significantly in the past decade. Some of the key advantages of using disposable bags relative to non-disposable containers include increased product throughput, decreased cleaning validation costs, reduced risk of cross contamination and lower facility costs. As the scope of use of disposable bags for cell culture applications increases, problematic bags and scenarios should be identified and addressed to continue improving disposables technologies and meet the biotech industry's needs. In this article, we examine a cell culture application wherein media stored in disposable bags is warmed at 37°C before use for cell culture operations. A problematic bag film was identified through a prospective and retrospective cell culture investigation. The investigation provided information on the scope and variation of the issue with respect to different Chinese hamster ovary (CHO) cell lines, cell culture media, and application-specific parameters. It also led to the development of application-specific test methods and enabled a strategy for disposable bag film testing. The strategy was implemented for qualifying an alternative bag film for use in our processes. In this test strategy, multiple lots of 13 bag film types, encompassing eight vendors were evaluated using a three round, cell culture-based test strategy. The test strategy resulted in the determination of four viable bag film options based on the technical data. The results of this evaluation were used to conclude that a volatile or air-quenched compound, likely generated by gamma irradiation of the problematic bag film, negatively impacted cell culture performance.

  17. A planning study investigating dual-gated volumetric arc stereotactic treatment of primary renal cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Devereux, Thomas, E-mail: thomas.devereux@petermac.org [Radiation Therapy Services, Peter MacCallum Cancer Centre, Melbourne (Australia); Pham, Daniel [Radiation Therapy Services, Peter MacCallum Cancer Centre, Melbourne (Australia); Kron, Tomas [Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne (Australia); Sir Peter MacCallum Department of Oncology, Melbourne University, Melbourne (Australia); Foroudi, Farshad [Sir Peter MacCallum Department of Oncology, Melbourne University, Melbourne (Australia); Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne (Australia); Supple, Jeremy [School of Applied Sciences, Royal Melbourne Institute of Technology, Melbourne (Australia); Siva, Shankar [Sir Peter MacCallum Department of Oncology, Melbourne University, Melbourne (Australia); Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne (Australia)

    2015-04-01

    This is a planning study investigating the dosimetric advantages of gated volumetric-modulated arc therapy (VMAT) to the end-exhale and end-inhale breathing phases for patients undergoing stereotactic treatment of primary renal cell carcinoma. VMAT plans were developed from the end-inhale (VMATinh) and the end-exhale (VMATexh) phases of the breathing cycle as well as a VMAT plan and 3-dimensional conformal radiation therapy plan based on an internal target volume (ITV) (VMATitv). An additional VMAT plan was created by giving the respective gated VMAT plan a 50% weighting and summing the inhale and exhale plans together to create a summed gated plan. Dose to organs at risk (OARs) as well as comparison of intermediate and low-dose conformity was evaluated. There was no difference in the volume of healthy tissue receiving the prescribed dose for the planned target volume (PTV) (CI100%) for all the VMAT plans; however, the mean volume of healthy tissue receiving 50% of the prescribed dose for the PTV (CI50%) values were 4.7 (± 0.2), 4.6 (± 0.2), and 4.7 (± 0.6) for the VMATitv, VMATinh, and VMATexh plans, respectively. The VMAT plans based on the exhale and inhale breathing phases showed a 4.8% and 2.4% reduction in dose to 30 cm{sup 3} of the small bowel, respectively, compared with that of the ITV-based VMAT plan. The summed gated VMAT plans showed a 6.2% reduction in dose to 30 cm{sup 3} of the small bowel compared with that of the VMAT plans based on the ITV. Additionally, when compared with the inhale and the exhale VMAT plans, a 4% and 1.5%, respectively, reduction was observed. Gating VMAT was able to reduce the amount of prescribed, intermediate, and integral dose to healthy tissue when compared with VMAT plans based on an ITV. When summing the inhale and exhale plans together, dose to healthy tissue and OARs was optimized. However, gating VMAT plans would take longer to treat and is a factor that needs to be considered.

  18. Macronutrient intake and risk of urothelial cell carcinoma in the European prospective investigation into cancer and nutrition

    NARCIS (Netherlands)

    Allen, N.E.; Appleby, P.N.; Key, T.J.; Bueno-De-Mesquita, H.B.; Ros, M.M.; Kiemeney, L.A.L.M.; Tjonneland, A.; Roswall, N.; Overvad, K.; Weikert, S.; Boeing, H.; Chang-Claude, J.; Teucher, B.; Panico, S.; Sacerdote, C.; Tumino, R.; Palli, D.; Sieri, S.; Peeters, P.; Quiros, J.R.; Jakszyn, P.; Molina-Montes, E.; Chirlaque, M.D.; Ardanaz, E.; Dorronsoro, M.; Khaw, K.T.; Wareham, N.; Ljungberg, B.; Hallmans, G.; Ehrnstrom, R.; Ericson, U.; Gram, I.T.; Parr, C.L.; Trichopoulou, A.; Karapetyan, T.; Dilis, V.; Clavel-Chapelon, F.; Boutron-Ruault, M.C.; Fagherrazzi, G.; Romieu, I.; Gunter, M.J.; Riboli, E.

    2013-01-01

    Previous studies have suggested that dietary factors may be important in the development of bladder cancer. We examined macronutrient intake in relation to risk of urothelial cell carcinoma among 469,339 men and women in the European Prospective Investigation into Cancer and Nutrition. Associations

  19. Investigations of Protein Structure and Function Using the Scientific Literature: An Assignment for an Undergraduate Cell Physiology Course

    Science.gov (United States)

    Mulnix, Amy B.

    2003-01-01

    Undergraduate biology curricula are being modified to model and teach the activities of scientists better. The assignment described here, one that investigates protein structure and function, was designed for use in a sophomore-level cell physiology course at Earlham College. Students work in small groups to read and present in poster format on…

  20. Meat and fish consumption and the risk of renal cell carcinoma in the European prospective investigation into cancer and nutrition

    NARCIS (Netherlands)

    Rohrmann, Sabine; Linseisen, Jakob; Overvad, Kim; Wurtz, Anne Mette Lund; Roswall, Nina; Tjonneland, Anne; Boutron-Ruault, Marie-Christine; Racine, Antoine; Bastide, Nadia; Palli, Domenico; Agnoli, Claudia; Panico, Salvatore; Tumino, Rosario; Sacerdote, Carlotta; Weikert, Steffen; Steffen, Annika; Kuehn, Tilman; Li, Kuanrong; Khaw, Kay-Tee; Wareham, Nicholas J.; Bradbury, Kathryn E.; Peppa, Eleni; Trichopoulou, Antonia; Trichopoulos, Dimitrios; Bueno-de-Mesquita, H. Bas; Peeters, Petra H. M.; Hjartaker, Anette; Skeie, Guri; Weiderpass, Elisabete; Jakszyn, Paula; Dorronsoro, Miren; Barricarte, Aurelio; Santiuste de Pablos, Carmen; Molina-Montes, Esther; Alonso de la Torre, Ramon; Ericson, Ulrika; Sonestedt, Emily; Johansson, Mattias; Ljungberg, Borje; Freisling, Heinz; Romieu, Isabelle; Cross, Amanda J.; Vergnaud, Anne-Claire; Riboli, Elio; Boeing, Heiner

    2015-01-01

    Renal cell cancer (RCC) incidence varies worldwide with a higher incidence in developed countries and lifestyle is likely to contribute to the development of this disease. We examined whether meat and fish consumption were related to the risk of RCC in the European Prospective Investigation into Can

  1. Investigating the role of islet cytoarchitecture in its oscillation using a new beta-cell cluster model.

    Directory of Open Access Journals (Sweden)

    Aparna Nittala

    Full Text Available The oscillatory insulin release is fundamental to normal glycemic control. The basis of the oscillation is the intercellular coupling and bursting synchronization of beta cells in each islet. The functional role of islet beta cell mass organization with respect to its oscillatory bursting is not well understood. This is of special interest in view of the recent finding of islet cytoarchitectural differences between human and animal models. In this study we developed a new hexagonal closest packing (HCP cell cluster model. The model captures more accurately the real islet cell organization than the simple cubic packing (SCP cluster that is conventionally used. Using our new model we investigated the functional characteristics of beta-cell clusters, including the fraction of cells able to burst f(b, the synchronization index lambda of the bursting beta cells, the bursting period T(b, the plateau fraction p(f, and the amplitude of intracellular calcium oscillation [Ca]. We determined their dependence on cluster architectural parameters including number of cells n(beta, number of inter-beta cell couplings of each beta cell n(c, and the coupling strength g(c. We found that at low values of n(beta, n(c and g(c, the oscillation regularity improves with their increasing values. This functional gain plateaus around their physiological values in real islets, at n(beta approximately 100, n(c approximately 6 and g(c approximately 200 pS. In addition, normal beta-cell clusters are robust against significant perturbation to their architecture, including the presence of non-beta cells or dead beta cells. In clusters with n(beta> approximately 100, coordinated beta-cell bursting can be maintained at up to 70% of beta-cell loss, which is consistent with laboratory and clinical findings of islets. Our results suggest that the bursting characteristics of a beta-cell cluster depend quantitatively on its architecture in a non-linear fashion. These findings are

  2. Electrical properties of the red blood cell membrane and immunohematological investigation

    Directory of Open Access Journals (Sweden)

    Heloise Pöckel Fernandes

    2011-01-01

    Full Text Available Hemagglutination is widely used in transfusion medicine and depends on several factors including antigens, antibodies, electrical properties of red blood cells and the environment of the reaction. Intermolecular forces are involved in agglutination with cell clumping occurring when the aggregation force is greater than the force of repulsion. Repulsive force is generated by negative charges on the red blood cell surface that occur due to the presence of the carboxyl group of sialic acids in the cell membrane; these charges create a repulsive electric zeta potential between cells. In transfusion services, specific solutions are used to improve hemagglutination, including enzymes that reduce the negative charge of red blood cells, LISS which improves the binding of antibodies to antigens and macromolecules that decrease the distance between erythrocytes. The specificity and sensitivity of immunohematological reactions depend directly on the appropriate use of these solutions. Knowledge of the electrical properties of red blood cells and of the action of enhancement solutions can contribute to the immunohematology practice in transfusion services.

  3. A micro-Raman spectroscopic investigation of leukemic U-937 cells in aged cultures

    Science.gov (United States)

    Fazio, Enza; Trusso, Sebastiano; Franco, Domenico; Nicolò, Marco Sebastiano; Allegra, Alessandro; Neri, Fortunato; Musolino, Caterina; Guglielmino, Salvatore P. P.

    2016-04-01

    Recently it has been shown that micro-Raman spectroscopy combined with multivariate analysis is able to discriminate among different types of tissues and tumoral cells by the detection of significant alterations and/or reorganizations of complex biological molecules, such as nucleic acids, lipids and proteins. Moreover, its use, being in principle a non-invasive technique, appears an interesting clinical tool for the evaluation of the therapeutical effects and of the disease progression. In this work we analyzed molecular changes in aged cultures of leukemia model U937 cells with respect to fresh cultures of the same cell line. In fact, structural variations of individual neoplastic cells on aging may lead to a heterogeneous data set, therefore falsifying confidence intervals, increasing error levels of analysis and consequently limiting the use of Raman spectroscopy analysis. We found that the observed morphological changes of U937 cells corresponded to well defined modifications of the Raman contributions in selected spectral regions, where markers of specific functional groups, useful to characterize the cell state, are present. A detailed subcellular analysis showed a change in cellular organization as a function of time, and correlated to a significant increase of apoptosis levels. Besides the aforementioned study, Raman spectra were used as input for principal component analysis (PCA) in order to detect and classify spectral changes among U937 cells.

  4. Investigation on the temperature-dependence of absorption properties of solar cells with micro-structured surfaces

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The temperature of a solar cell will increase when it is exposed to the sunlight,which results in variations of optical parameters and thermal expansion coefficient of the cell,thus affecting its spectral absorption feature.This paper is aimed to investigate the effects of temperature on the absorption property of solar cells with micro-structured surfaces.By taking hemispherical, cylindrical and spherical surfaces as models,numerical computation is conducted to obtain spectral distribution of absorptance of such surfaces with different structural parameters by means of the finite difference time domain(FDTD)method.Furthermore,the effects of material properties and structural period on the absorption property are also investigated.

  5. Functional investigations on embryonic stem cells labeled with clinically translatable iron oxide nanoparticles

    Science.gov (United States)

    Liu, Jing; Wang, Liqin; Cao, Jianbo; Huang, Yue; Lin, Yu; Wu, Xiaoyun; Wang, Zhiyong; Zhang, Fan; Xu, Xiuqin; Liu, Gang

    2014-07-01

    Stem cell based therapies offer significant potential in the field of regenerative medicine. The development of superparamagnetic iron oxide (SPIO) nanoparticle labeling and magnetic resonance imaging (MRI) have been increasingly used to track the transplanted cells, enabling in vivo determination of cell fate. However, the impact of SPIO-labeling on the cell phenotype and differentiation capacity of embryonic stem cells (ESCs) remains unclear. In this study, we wrapped SPIO nanoparticles with stearic acid grafted PEI600, termed as Stearic-LWPEI-SPIO, to generate efficient and non-toxic ESC labeling tools. Our results showed that efficient labeling of ESCs at an optimized low dosage of Stearic-LWPEI-SPIO nanoparticles did not alter the differentiation and self-renewal properties of ESCs. The localization of the transplanted ESCs observed by MRI correlated well with histological studies. These findings demonstrate that Stearic-LWPEI-SPIO nanoparticles have potential to be clinically translatable MRI probes and may enable non-invasive in vivo tracking of ESCs in experimental and clinical settings during cell-based therapies.Stem cell based therapies offer significant potential in the field of regenerative medicine. The development of superparamagnetic iron oxide (SPIO) nanoparticle labeling and magnetic resonance imaging (MRI) have been increasingly used to track the transplanted cells, enabling in vivo determination of cell fate. However, the impact of SPIO-labeling on the cell phenotype and differentiation capacity of embryonic stem cells (ESCs) remains unclear. In this study, we wrapped SPIO nanoparticles with stearic acid grafted PEI600, termed as Stearic-LWPEI-SPIO, to generate efficient and non-toxic ESC labeling tools. Our results showed that efficient labeling of ESCs at an optimized low dosage of Stearic-LWPEI-SPIO nanoparticles did not alter the differentiation and self-renewal properties of ESCs. The localization of the transplanted ESCs observed by MRI

  6. Dynamic Investigation on Chromosome Aberration of a Human Retinoblastoma Cell Line SO-Rb_(50)

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    G-banding and karyotype analyses of cells in seventeen passages of SO-Rb_(50) during a long period of culture for about four years were performed. Three chromosome markers 13q14~-, 1p36~+ and 12p13~+ were found. Cells possessed 13q14~- reduced to zero after the 200th passage while 1p~+ and 12p~+ cells increased to 100% after 30 and 200 passages respectively. Abnormal chromosomes, ring chromosomes, chromosome radiuses and double minutes were also observed. These chromosomal changes were more often seen b...

  7. Theoretical Investigation of Laser-Radiation Effects on Satellite Solar Cells

    Science.gov (United States)

    Abdel-Hadi, Yasser; El-Hameed, Afaf; Hamdy, Ola

    This research concerns with the studying of laser-powered solar panels for space applications. A model describing the laser effects on satellite solar cell has been developed. These effects are studied theoretically in order to determine the performance limits of the solar cells when they are powered by laser radiation during the satellite eclipse. A comparison between some different common types of the solar cells used for these purpose is considered in this study. The obtained results are reported to optimize the use of laser-powered satellites.

  8. Investigation of Temperature and Aging Effects in Nanostructured Dye Solar Cells Studied by Electrochemical Impedance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Minna Toivola

    2009-01-01

    Full Text Available Effects of aging and cyclically varying temperature on the electrical parameters of dye solar cells were analyzed with electrochemical impedance spectroscopy. Photoelectrode total resistance increased as a function of time due to increasing electron transport resistance in the TiO2 film. On the other hand, photoelectrode recombination resistance was generally larger, electron lifetimes in the TiO2 were film longer, and charge transfer resistance on the counter electrode was smaller after the temperature treatments than before them. These effects correlated with the slower deterioration rate of the temperature-treated cells, in comparison to the reference cells.

  9. Investigations on the electrochemical decomposition of the electrolyte additive vinylene carbonate in Li metal half cells and lithium ion full cells

    Science.gov (United States)

    Qian, Yunxian; Schultz, Carola; Niehoff, Philip; Schwieters, Timo; Nowak, Sascha; Schappacher, Falko M.; Winter, Martin

    2016-11-01

    In this study, the decomposition of vinylene carbonate (VC) additive and its effect on the aging behavior is investigated in Li metal half cells and lithium ion full cells. Four electrolyte systems, the reference electrolyte with three VC additive amounts, i.e., 1, 5 and 10 vol% are examined with commercial LiNi1/3Mn1/3Co1/3O2 (NMC 111) cathode material and mesophase carbon microbeads (MCMB) anode material. The thickness changes of the cathode electrolyte interphase (CEI) and of the solid electrolyte interphase (SEI) after 5 constant current cycles at 0.1C and 200 constant current/constant voltage (potential) cycles at 1C are investigated for cells containing different amounts of VC. With the help of X-ray photoelectron spectroscopy (XPS) and high-performance liquid chromatography (HPLC), a correlation between CEI thickness change and electrolyte decomposition is figured out. The addition of VC leads to a thin CEI layer and a high capacity retention in a lithium metal half cell. A strong dependence of the performance on the VC concentration is found for half cells that results from the continuous consumption of electrolyte and the electrolyte additive at the Li metal counter electrode. In contrast, for full cells, even 1 vol% of VC helps to form both a stable CEI and SEI, while a larger amount of VC increases the CEI thickness, electric contact loss and the internal resistance.

  10. Investigating Effects of Gelatin-Chitosan Film on Culture of Bone Marrow Stromal Cells in Rat

    Directory of Open Access Journals (Sweden)

    A Karami joyani

    2015-02-01

    Conclusion: Results of proliferation,differentiation and apoptosis cultured BMSCs on a gelatin-chitosan film showed that gelatin-chitosan film can be used as a good model of a biodegradable scaffold in tissue engineering and cell therapy.

  11. COMPARE: a web accessible tool for investigating mechanisms of cell growth inhibition.

    Science.gov (United States)

    Zaharevitz, Daniel W; Holbeck, Susan L; Bowerman, Christopher; Svetlik, Penny A

    2002-01-01

    For more than 10 years the National Cancer Institute (NCI) has tested compounds for their ability to inhibit the growth of human tumor cell lines in culture (NCI screen). Work of Ken Paull [J. Natl. Cancer Inst. 81 (1989) 1088] demonstrated that compounds with similar mechanism of cell growth inhibition show similar patterns of activity in the NCI screen. This observation was developed into an algorithm called COMPARE and has been successfully used to predict mechanisms for a wide variety of compounds. More recently, this method has been extended to associate patterns of cell growth inhibition by compounds with measurements of molecular entities (such as gene expression) in the cell lines in the NCI screen. The COMPARE method and associated data are freely available on the Developmental Therapeutics Program (DTP) web site (http://dtp.nci.nih.gov/). Examples of the use of COMPARE on these web pages will be explained and demonstrated. Published by Elsevier Science Inc.

  12. Investigations of Biofilm-Forming Bacterial Cells by Atomic Force Microscopy Prior to and Following Treatment from Gas Discharge Plasmas

    Science.gov (United States)

    Vandervoort, K. G.; Joaquin, J. C.; Kwan, C.; Bray, J. D.; Torrico, R.; Abramzon, N.; Brelles-Marino, G.

    2007-03-01

    We present investigations of biofilm-forming bacteria before and after treatment from gas discharge plasmas. Gas discharge plasmas represent a way to inactivate bacteria under conditions where conventional disinfection methods are often ineffective. These conditions involve bacteria in biofilm communities, where cooperative interactions between cells make organisms less susceptible to standard killing methods. Rhizobium gallicum and Chromobacterium violaceum were imaged before and after plasma treatment using an atomic force microscope (AFM). In addition, cell wall elasticity was studied by measuring force distance curves as the AFM tip was pressed into the cell surface. Results for cell surface morphology and micromechanical properties for plasma treatments lasting from 5 to 60 minutes were obtained and will be presented.

  13. Investigation of the effects of rear surface recombination on the Cu(In,Ga)Se2 solar cell performances

    Science.gov (United States)

    Umehara, Takeshi; Iinuma, Shohei; Yamada, Akira

    2016-07-01

    This study investigated the band profile design of Cu(In,Ga)Se2 (CIGS) solar cells by considering the rear surface recombination. We compared the structures assuming the back surface field (BSF), passivation and graded band profile by using device simulator. As a result, it was found that the band structure of a combination of a flat-band and a single-graded profile is the suitable structure for CIGS solar cells with the absorber thickness of around 1.0 μm. In addition, the back passivation technique is unnecessary in the case of CIGS solar cells with a band profiling technique. We proposed that the band structure of a combination of a flat-band and a single-graded profile is the most practical and effective way for CIGS solar cells. [Figure not available: see fulltext.

  14. Microspectroscopic investigation of the membrane clogging during the sterile filtration of the growth media for mammalian cell culture.

    Science.gov (United States)

    Cao, Xiaolin; Loussaert, James A; Wen, Zai-qing

    2016-02-01

    Growth media for mammalian cell culture are very complex mixtures of several dozens of ingredients, and thus the preparation of qualified media is critical to viable cell density and final product titers. For liquid media prepared from powdered ingredients, sterile filtration is required prior to use to safeguard the cell culture process. Recently one batch of our prepared media failed to pass through the sterile filtration due to the membrane clogging. In this study, we report the root cause analysis of the failed sterile filtration based on the investigations of both the fouling media and the clogged membranes with multiple microspectroscopic techniques. Cellular particles or fragments were identified in the fouling media and on the surfaces of the clogged membranes, which were presumably introduced to the media from the bacterial contamination. This study demonstrated that microspectroscopic techniques may be used to rapidly identify both microbial particles and inorganic precipitates in the cell culture media.

  15. Investigation of multi-junction solar cells using electrostatic force microscopy methods

    Energy Technology Data Exchange (ETDEWEB)

    Moczała, M., E-mail: magdalena.moczala@pwr.wroc.pl [Wrocław University of Technology, Faculty of Microsystem Electronics and Photonics, Division of Metrology of Micro- and Nanostructures, ul. Z. Janiszewskiego 11/17, 50-372 Wrocław (Poland); Sosa, N.; Topol, A. [IBM Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598 (United States); Gotszalk, T. [Wrocław University of Technology, Faculty of Microsystem Electronics and Photonics, Division of Metrology of Micro- and Nanostructures, ul. Z. Janiszewskiego 11/17, 50-372 Wrocław (Poland)

    2014-06-01

    Multi-junction III–V solar cells are designed to have a much broader absorption of the solar spectrum than Si-based or single junctions, thus yield the highest conversion. The conversion efficiency can be further scaled with sun concentration. The ability of high conversion efficiencies makes multi-junction prime candidates for fine-tuning explorations aimed at getting closer to the theoretical efficiencies. In this paper, we report on electrostatic force microscopy (EFM) measurements of the built-in potential of multi-junction III–V semiconductor-based solar cells. Kelvin probe force microscopy (KPFM) was employed to qualitatively study the width and electrical properties of individual junctions, i.e., built-in potential, activity, and thickness of the p–n junctions. In addition, the voltage drops across individual solar cell p–n junctions were measured using Kelvin probe microscopy under various operation conditions: dark; illuminated; short-circuit; and biased. We present a method which enables the measurement of a working structure, while focusing on the electrical characteristics of an individual junction by virtue of selecting the spectral range of the illumination used. We show that these pragmatic studies can provide a feedback to improve photovoltaic device design, particularly of operation under a current mismatched situation. This new analysis technique offers additional insights into behavior of the multi-junction solar cell and shows promise for further progress in this field. - Highlights: • We explore the electronic structure of III–V based high efficiency solar cells. • Qualitative study of the solar cell operation characteristics is presented. • Quantitative study of the electrostatic landscape of operational high efficiency devices is presented. • Precise identification of the epitaxially grown p–n and tunnel junctions in the multi-junction solar cell. • Influence of illumination conditions and cell biasing on each p

  16. Numerical investigations on two-phase flow in polymer electrolyte fuel cells

    OpenAIRE

    2012-01-01

    Numerical modeling plays an important role in understanding various transport processes in polymer electrolyte fuel cells (PEFCs). It can not only provide insights into the development of new PEFC architectures, but also optimize operating conditions for better cell performance. Water balance is critical to the operation of PEFCs, since the membrane needs to attain sufficient water for effective ionic conduction. On the other hand, too much water accumulating in PEFCs would result in mass tra...

  17. A time course investigation of the statin paradox among valvular interstitial cell phenotypes

    OpenAIRE

    Monzack, Elyssa L.; Masters, Kristyn S.

    2012-01-01

    Statin drugs are prescribed primarily for their ability to lower cholesterol, but may also exert beneficial side effects unrelated to cholesterol metabolism. Previous work has described a “statin paradox,” where statin treatment decreased osteoblastic markers in valve myofibroblasts while increasing those same markers in preosteoblasts. However, valvular interstitial cells (VICs) themselves are a multipotent cell type, capable of differentiating into activated, myofibroblastic VICs (aVICs) an...

  18. An Investigation of Equine Mesenchymal Stem Cell Characteristics from Different Harvest Sites: More Similar Than Not

    Directory of Open Access Journals (Sweden)

    Karla eLombana

    2015-12-01

    Full Text Available Diseases of the musculoskeletal system are a major cause of loss of use and retirement in sport horses. The use of bone marrow derived mesenchymal stem cells (BMDMSCs for healing of traumatized tissue has gained substantial favor in clinical settings and can assist healing and tissue regeneration in orthopaedic injuries. There are two common sites of harvest of BMDMSCs, the sternum and ilium. Our objective was to determine if any differences exist in BMDMSCs acquired from the sternum and the ilium. We compared the two harvest sites in their propensity to undergo multilineage differentiation, differences in cell surface markers or gene transduction efficiencies.BMDMSCs were isolated and culture-expanded from five mL aspirates of bone marrow from sternum and ilium. The cells were then plated and cultured with appropriate differentiation medium to result in multi-lineage differentiation and cell characteristics were compared between sternal and ilial samples. Cell surface antibody expression of CD11a/18, CD34, CD44 and CD90 were evaluated using flow cytometry and gene transduction efficiencies were evaluated using GFP scAAV. There were no statistically significant differences in cell characteristics between MSCs cultured from sternum and ilium under any circumstances.

  19. Preliminary investigations of Spirulina effect on cancer cells: interest for long-term manned space missions

    Science.gov (United States)

    Baatout, S.; Bekaert, S.; Hendrickx, L.; Derradji, H.; Mergeay, M.

    Background In view of long haul space exploration missions the development of regenerative life support systems is of crucial importance to increase the crew autonomy and decrease the cost associated to the mass embarked Therefore in the late 80 s the European Space Agency initiated the MELiSSA project Micro-Ecological Life Support System Alternative MELiSSA has been conceived as a micro-organisms and higher plant process enabling high recycling efficiency The cyanobacteria Arthrospira sp is occupying one of the MELiSSA compartments Its genome is now being sequenced and this will help to better understand or improve its food value as well as to have a look at its putative toxic potential Aim In this study we were interested in studying the threshold of intrinsic cytotoxic effects of Spirulina dry extract from Sigma containing washed and lyophilized mixed Arthrospira strains on human cancer cells and its cell type dependency Method For that purpose we used flow cytometry to estimate cell death apoptosis and necrosis in three human leukaemic cell lines HELA cervix carcinoma IM-9 multiple myeloma K562 chronic myelogenous leukaemia Cells were cultured in the presence of an aqueous extract of Spirulina concentrations ranging from 0 to 500 mu g ml for 15 to 40 hours Apoptosis and necrosis were evaluated by annexin-V-PI staining cell size and granularity Early apoptosis was monitored by analysing the maintenance of mitochondrial membrane potential DioC 6 3 and the

  20. Investigation of role of aspartame on apoptosis process in HeLa cells

    Directory of Open Access Journals (Sweden)

    Muthuraman Pandurangan

    2016-07-01

    Full Text Available Aspartame is an artificial sweetener used as an alternate for sugar in several foods and beverages. The study reports that consumption of aspartame containing product could lead to cancer. However, the effect of aspartame on apoptosis process in cancer is not yet understood clearly. HeLa cells were exposed to different concentrations (0.01–0.05 mg/ml of aspartame for 48 h. Cytotoxicity of aspartame on cancer cells was determined by SRB assay. The result indicates no significant changes on cell viability. Aspartame suppresses apoptosis process in cancer cells by down-regulation of mRNA expression of tumor suppressor gene p53, and pro-apoptotic gene bax. It up-regulates anti-apoptotic gene bcl-2 mRNA expression. In addition, Ki 67 and PCNA mRNA, and protein expressions were determined. Taking all these together, we conclude that aspartame may be a potent substance to slow-down the apoptosis process in HeLa cells. Further works are ongoing to understand the biochemical and molecular mechanism of aspartame in cancer cells.

  1. Statistical investigation of Kluyveromyces lactis cells permeabilization with ethanol by response surface methodology

    Directory of Open Access Journals (Sweden)

    Janaína T. de Faria

    2013-12-01

    Full Text Available The aim of our study was to select the optimal operating conditions to permeabilize Kluyveromyces lactis cells using ethanol as a solvent as an alternative to cell disruption and extraction. Cell permeabilization was carried out by a non-mechanical method consisting of chemical treatment with ethanol, and the results were expressed as β-galactosidase activity. Experiments were conducted under different conditions of ethanol concentration, treatment time and temperature according to a central composite rotatable design (CCRD, and the collected results were then worked out by response surface methodology (RSM. Cell permeabilization was improved by an increase in ethanol concentration and simultaneous decreases in the incubation temperature and treatment time. Such an approach allowed us to identify an optimal range of the independent variables within which the β-galactosidase activity was optimized. A maximum permeabilization of 2,816 mmol L-1 oNP min-1 g-1 was obtained by treating cells with 75.0% v/v of ethanol at 20.0 °C for 15.0 min. The proposed methodology resulted to be effective and suited for K. lactis cells permeabilization at a lab-scale and promises to be of possible interest for future applications mainly in the food industry.

  2. Statistical investigation of Kluyveromyces lactis cells permeabilization with ethanol by response surface methodology

    Science.gov (United States)

    de Faria, Janaína T.; Rocha, Pollyana F.; Converti, Attilio; Passos, Flávia M.L.; Minim, Luis A.; Sampaio, Fábio C.

    2013-01-01

    The aim of our study was to select the optimal operating conditions to permeabilize Kluyveromyces lactis cells using ethanol as a solvent as an alternative to cell disruption and extraction. Cell permeabilization was carried out by a non-mechanical method consisting of chemical treatment with ethanol, and the results were expressed as β-galactosidase activity. Experiments were conducted under different conditions of ethanol concentration, treatment time and temperature according to a central composite rotatable design (CCRD), and the collected results were then worked out by response surface methodology (RSM). Cell permeabilization was improved by an increase in ethanol concentration and simultaneous decreases in the incubation temperature and treatment time. Such an approach allowed us to identify an optimal range of the independent variables within which the β-galactosidase activity was optimized. A maximum permeabilization of 2,816 mmol L−1 oNP min−1 g−1 was obtained by treating cells with 75.0% v/v of ethanol at 20.0 °C for 15.0 min. The proposed methodology resulted to be effective and suited for K. lactis cells permeabilization at a lab-scale and promises to be of possible interest for future applications mainly in the food industry. PMID:24688494

  3. Investigation of role of aspartame on apoptosis process in HeLa cells -->.

    Science.gov (United States)

    Pandurangan, Muthuraman; Enkhtaivan, Gansukh; Mistry, Bhupendra; Chandrasekaran, Murugesan; Noorzai, Rafi; Kim, Doo Hwan

    2016-07-01

    Aspartame is an artificial sweetener used as an alternate for sugar in several foods and beverages. The study reports that consumption of aspartame containing product could lead to cancer. However, the effect of aspartame on apoptosis process in cancer is not yet understood clearly. HeLa cells were exposed to different concentrations (0.01-0.05 mg/ml) of aspartame for 48 h. Cytotoxicity of aspartame on cancer cells was determined by SRB assay. The result indicates no significant changes on cell viability. Aspartame suppresses apoptosis process in cancer cells by down-regulation of mRNA expression of tumor suppressor gene p53, and pro-apoptotic gene bax. It up-regulates anti-apoptotic gene bcl-2 mRNA expression. In addition, Ki 67 and PCNA mRNA, and protein expressions were determined. Taking all these together, we conclude that aspartame may be a potent substance to slow-down the apoptosis process in HeLa cells. Further works are ongoing to understand the biochemical and molecular mechanism of aspartame in cancer cells.

  4. Aleurone Cell Walls of Wheat Grain: High Spatial Resolution Investigation Using Synchrotron Infrared Microspectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jamme, F.; Robert, R; Bouchet, B; Saulnier, L; Dumas, P; Guillon, F

    2008-01-01

    Infrared microspectroscopy and immunolabeling techniques were employed in order to obtain deeper insight into the biochemical nature of aleurone cell walls of wheat grain. The use of a synchrotron source, thanks to its intrinsic brightness, has provided unprecedented information at the level of a few micrometers and has allowed the discrimination of various polysaccharides in cell walls. The high spectral quality obtained in the small analyzed domain has been beneficial in estimating the relative proportions of {Beta}-glucan and arabinoxylan, through the use of principal component analysis (PCA). The highest amount of {Beta}-glucan is found in periclinal cell walls close to the starchy endosperm. The junction regions between aleurone cells are enriched in arabinoxylan. At the early stage of wheat grain development (271 degrees D), the chemical composition along the cell walls is more heterogeneous than at the mature stage. Both synchrotron infrared microspectroscopy and immunolabeling experiments made it possible to reveal the spatial heterogeneity of the various chemical compositions of aleurone cell walls.

  5. [An initial investigation on the in vitro culture system of primordial germ cells in golden hamsters].

    Science.gov (United States)

    Li, Hong; Zhang, Hao; Liang, Ying; Zhan, Li; Wu, Desheng

    2006-06-01

    To establish the in vitro culture system of primordial germ cells (PGCs) of golden hamsters, PGCs of hamster were isolated from genital ridge of embryos at 10. 5th dpc (day post coitum), obtained by enzyme-mechanical method, and cultured on feeder cells