WorldWideScience

Sample records for cell transduction channel

  1. Transient receptor potential melastatin 1: a hair cell transduction channel candidate.

    Directory of Open Access Journals (Sweden)

    John Gerka-Stuyt

    Full Text Available Sound and head movements are perceived through sensory hair cells in the inner ear. Mounting evidence indicates that this process is initiated by the opening of mechanically sensitive calcium-permeable channels, also referred to as the mechanoelectrical transducer (MET channels, reported to be around the tips of all but the tallest stereocilia. However, the identity of MET channel remains elusive. Literature suggests that the MET channel is a non-selective cation channel with a high Ca(2+ permeability and ~100 picosiemens conductance. These characteristics make members of the transient receptor potential (TRP superfamily likely candidates for this role. One of these candidates is the transient receptor potential melastatin 1 protein (TRPM1, which is expressed in various cells types within the cochlea of the mouse including the hair cells. Recent studies demonstrate that mutations in the TRPM1 gene underlie the inherited retinal disease complete congenital stationary night blindness in humans and depolarizing bipolar cell dysfunction in the mouse retina, but auditory function was not assessed. Here we investigate the role of Trpm1 in hearing and as a possible hair cell MET channel using mice homozygous for the null allele of Trpm1 (Trpm1(-/- or a missense mutation in the pore domain of TRPM1 (Trpm1(tvrm27/tvrm27. Hearing thresholds were evaluated in adult (4-5 months old mice with auditory-evoked brain stem responses. Our data shows no statistically significant difference in hearing thresholds in Trpm1(-/- or Trpm1(tvrm27/tvrm27 mutants compared to littermate controls. Further, none of the mutant mice showed any sign of balance disorder, such as head bobbing or circling. These data suggest that TRPM1 is not essential for development of hearing or balance and it is unlikely that TRPM1 is a component of the hair cell MET channel.

  2. A PKD Channel-based Biosensor for Taste Transduction

    Science.gov (United States)

    Wu, Chunsheng; Du, Liping; Hu, Liang; Zhang, Wei; Zhao, Luhang; Wang, Ping

    2011-09-01

    This study describes a micro electrode array (MEA)-based biosensor for taste transduction using heterologous expressed taste polycystic kidney disease-like (PKD) channels as molecular sensors. Taste PKD1L3/2L1 channels were expressed on the plasma membrane of human embryo kidney (HEK)-293 cells [1]. Then the cells were cultured on the surface of MEA chip [2] to record the responses of PKD channels to sour stimulations by monitoring membrane potential. The results indicate this MEA-based biosensor can record the special off-responses of PKD channels to sour stimulation in a non-invasive manner for a long term. It may provide an alternative tool for the research of taste transduction, especially for the characterization of taste ion channels.

  3. Effects of potassium channel on shear stress - induced signal transduction in vascular endothelial cells%K离子通道在剪切力诱导血管内皮细胞信号转导中的作用

    Institute of Scientific and Technical Information of China (English)

    胡金麟

    1999-01-01

    Fluid shear stress play an important role in many physiological and pathophysiological processes of cardiovascular system. Shear stress - induced signal transduction throughout the vascular endothelial cell includes ion channels,G- protein linked receptors, tyrosine kinase receptors and integrins. The one impossible pathway of shear stress - induced signal transduction was biochemical reaction through second messenger, activating protein kinases and cytosolic transcription factors, and then regulating gene transcription . The other pathway was cytoskeletal system. This article reviewed the cellular and molecular mechanism of potassium channel signal transduction resulting from shear stress.

  4. Human hematopoietic cell culture, transduction, and analyses

    DEFF Research Database (Denmark)

    Bonde, Jesper; Wirthlin, Louisa; Kohn, Donald B;

    2008-01-01

    This unit provides methods for introducing genes into human hematopoietic progenitor cells. The Basic Protocol describes isolation of CD34(+) cells, transduction of these cells with a retroviral vector on fibronectin-coated plates, assaying the efficiency of transduction, and establishing long...

  5. Hair cell mechano-transduction : Its influence on the gross mechanical characteristics of a hair cell sense organ

    NARCIS (Netherlands)

    vanNetten, SM

    1997-01-01

    The complex mechanical behaviour of a hair cell bundle appears to be a direct consequence of the gating forces on the individual transduction channels. The mechanical molecular interactions involved in transduction channel gating, therefore, also bear a reciprocal influence, via the hair bundles; on

  6. Central functions of bicarbonate in S-type anion channel activation and OST1 protein kinase in CO 2 signal transduction in guard cell

    KAUST Repository

    Xue, Shaowu

    2011-03-18

    Plants respond to elevated CO(2) via carbonic anhydrases that mediate stomatal closing, but little is known about the early signalling mechanisms following the initial CO(2) response. It remains unclear whether CO(2), HCO(3)(-) or a combination activates downstream signalling. Here, we demonstrate that bicarbonate functions as a small-molecule activator of SLAC1 anion channels in guard cells. Elevated intracellular [HCO(3)(-)](i) with low [CO(2)] and [H(+)] activated S-type anion currents, whereas low [HCO(3)(-)](i) at high [CO(2)] and [H(+)] did not. Bicarbonate enhanced the intracellular Ca(2+) sensitivity of S-type anion channel activation in wild-type and ht1-2 kinase mutant guard cells. ht1-2 mutant guard cells exhibited enhanced bicarbonate sensitivity of S-type anion channel activation. The OST1 protein kinase has been reported not to affect CO(2) signalling. Unexpectedly, OST1 loss-of-function alleles showed strongly impaired CO(2)-induced stomatal closing and HCO(3)(-) activation of anion channels. Moreover, PYR/RCAR abscisic acid (ABA) receptor mutants slowed but did not abolish CO(2)/HCO(3)(-) signalling, redefining the convergence point of CO(2) and ABA signalling. A new working model of the sequence of CO(2) signalling events in gas exchange regulation is presented.

  7. Cell cycle and cell signal transduction in marine phytoplankton

    Institute of Scientific and Technical Information of China (English)

    LIU Jingwen; JIAO Nianzhi; CAI Huinong

    2006-01-01

    As unicellular phytoplankton, the growth of a marine phytoplankton population results directly from the completion of a cell cycle, therefore, cell-environment communication is an important way which involves signal transduction pathways to regulate cell cycle progression and contribute to growth, metabolism and primary production and respond to their surrounding environment in marine phytoplankton. Cyclin-CDK and CaM/Ca2+ are essentially key regulators in control of cell cycle and signal transduction pathway, which has important values on both basic research and applied biotechnology. This paper reviews progress made in this research field, which involves the identification and characterization of cyclins and cell signal transduction system, cell cycle control mechanisms in marine phytoplankton cells, cell cycle proteins as a marker of a terminal event to estimate the growth rate of phytoplankton at the species level, cell cycle-dependent toxin production of toxic algae and cell cycle progression regulated by environmental factors.

  8. Sensory transduction channel subunits, tax-4 and tax-2, modify presynaptic molecular architecture in C. elegans.

    Directory of Open Access Journals (Sweden)

    Andrew B Hellman

    Full Text Available During development, neural activity is important for forming proper connections in neural networks. The effect of activity on the gross morphology and synaptic strength of neurons has been well documented, but little is known about how activity affects different molecular components during development. Here, we examine the localization of four fluorescently-tagged presynaptic proteins, RAB-3, SNG-1/synaptogyrin, SYD-2/Liprin-α, and SAD-1/SAD kinase, in the C. elegans thermosensory neuron AFD. We show that tax-4 and tax-2, two genes that encode the cyclic nucleotide-gated channel necessary for sensory transduction in AFD, disrupt the localization of all four proteins. In wild-type animals, the synaptic vesicle (SV markers RAB-3 and SNG-1 and the active zone markers SYD-2 and SAD-1 localize in a stereotyped, punctate pattern in the AFD axon. In tax-4 and tax-2 mutants, SV and SYD-2 puncta are more numerous and less intense. Interestingly, SAD-1 puncta are also less intense but do not increase in number. The change in puncta number can be rescued cell-autonomously in AFD. These results suggest that sensory transduction genes tax-4 and tax-2 are necessary for the proper assembly of presynapses.

  9. Modeling Signal Transduction and Lipid Rafts in Immune Cells

    Science.gov (United States)

    Prasad, Ashok

    2011-03-01

    Experimental evidence increasingly suggests that lipid rafts are nanometer sized cholesterol dependent dynamic assemblies enriched in sphingolipids and associated proteins. Lipid rafts are dynamic structures that break-up and reform on a relatively short time-scale, and are believed to facilitate the interactions of raft-associated proteins. The role of these rafts in signaling has been controversial, partly due to controversies regarding the existence and nature of the rafts themselves. Experimental evidence has indicated that in several cell types, especially T cells, rafts do influence signal transduction and T cell activation. Given the emerging consensus on the biophysical character of lipid rafts, the question can be asked as to what roles they possibly play in signal transduction. Here we carry out simulations of minimal models of the signal transduction network that regulates Src-family kinase dynamics in T cells and other cell types. By separately treating raft-based biochemical interactions, we find that rafts can indeed putatively play an important role in signal transduction, and in particular may affect the sensitivity of signal transduction. This illuminates possible functional consequences of membrane heterogeneities on signal transduction and points towards mechanisms for spatial control of signaling by cells.

  10. Diffusion wave and signal transduction in biological live cells

    CERN Document Server

    Fan, Tian You

    2012-01-01

    Transduction of mechanical stimuli into biochemical signals is a fundamental subject for cell physics. In the experiments of FRET signal in cells a wave propagation in nanoscope was observed. We here develop a diffusion wave concept and try to give an explanation to the experimental observation. The theoretical prediction is in good agreement to result of the experiment.

  11. Differential effects of bitter compounds on the taste transduction channels TRPM5 and IP3 receptor type 3.

    Science.gov (United States)

    Gees, Maarten; Alpizar, Yeranddy A; Luyten, Tomas; Parys, Jan B; Nilius, Bernd; Bultynck, Geert; Voets, Thomas; Talavera, Karel

    2014-05-01

    Transient receptor potential cation channel subfamily M member 5 (TRPM5) is a Ca(2+)-activated nonselective cation channel involved in the transduction of sweet, bitter, and umami tastes. We previously showed that TRPM5 is a locus for the modulation of taste perception by temperature changes, and by quinine and quinidine, 2 bitter compounds that suppress gustatory responses. Here, we determined whether other bitter compounds known to modulate taste perception also affect TRPM5. We found that nicotine inhibits TRPM5 currents with an effective inhibitory concentration of ~1.3mM at -50 mV. This effect may contribute to the inhibitory effect of nicotine on gustatory responses in therapeutic and experimental settings, where nicotine is often employed at millimolar concentrations. In addition, it implies the existence of a TRPM5-independent pathway for the detection of nicotine bitterness. Nicotine seems to act from the extracellular side of the channel, reducing the maximal whole-cell conductance and inducing an acceleration of channel closure that leads to a negative shift of the activation curve. TRPM5 currents were unaffected by nicotine's metabolite cotinine, the intensive sweetener saccharin or by the bitter xanthines caffeine, theobromine, and theophylline. We also tested the effects of bitter compounds on another essential element of the sweet taste transduction pathway, the type 3 IP3 receptor (IP3R3). We found that IP3R3-mediated Ca(2+) flux is slightly enhanced by nicotine, not affected by saccharin, modestly inhibited by caffeine, theobromine, and theophylline, and strongly inhibited by quinine. Our results demonstrate that bitter compounds have differential effects on key elements of the sweet taste transduction pathway, suggesting for heterogeneous mechanisms of bitter-sweet taste interactions.

  12. Signal Transduction Involved in Cell Volume Regulation

    NARCIS (Netherlands)

    Th. van der Wijk (Thea)

    2001-01-01

    textabstract1.fammalian cells are surrounded by a selective permeable plasma membrane that allmvs the interior of the cell to differ in composition from the surrounding solution. The plasma membrane is formed by a bilayer of (phospho-) lipids and contains many different proteins. Hydrophobic molecul

  13. Molecular signal transduction in vascular cell apoptosis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Apoptosis is a form of genetically programmed cell death, which plays a key role in regulation of cellularity in a variety of tissue and cell types including the cardiovascular tissues. Under both physiological and pathophysiological conditions, various biophysiological and biochemical factors, including mechanical forces, reactive oxygen and nitrogen species, cytokines, growth factors, oxidized lipoproteins, etc., may influence apoptosis of vascular cells. The Fas/Fas ligand/caspase death-signaling pathway, Bcl-2 protein family/mitochondria, the tumor suppressive gene p53, and the proto-oncogene c-myc may be activated in atherosclerotic lesions, and mediates vascular apoptosis during the development of atherosclerosis. Abnormal expression and dysfunction of these apoptosis-regulating genes may attenuate or accelerate vascular cell apoptosis and affect the integrity and stability of atherosclerotic plaques. Clarification of the molecular mechanism that regulates apoptosis may help design a new strategy for treatment of atherosclerosis and its major complication, the acute vascular syndromes.

  14. Multidrug resistance and retroviral transduction potential in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Theilade, M D; Gram, G J; Jensen, P B

    1999-01-01

    for the gibbon ape leukemia virus (GALV-1) receptor or had specificity for the amphotropic murine leukemia virus (MLV-A) receptor were used for transduction of five SCLC cell lines differing by a range of MDR mechanisms. Transduction efficiencies in these cell lines were compared by calculating the percentage...... of blue colonies after X-Gal staining of the cells grown in soft agar. All examined SCLC cell lines were transducible with either vector. Transduction efficiencies varied from 5.7% to 33.5% independent of the presence of MDR. These results indicate that MDR does not severely impair transduction of SCLC...

  15. MAPK Cascades in Guard Cell Signal Transduction

    Science.gov (United States)

    Lee, Yuree; Kim, Yun Ju; Kim, Myung-Hee; Kwak, June M.

    2016-01-01

    Guard cells form stomata on the epidermis and continuously respond to endogenous and environmental stimuli to fine-tune the gas exchange and transpirational water loss, processes which involve mitogen-activated protein kinase (MAPK) cascades. MAPKs form three-tiered kinase cascades with MAPK kinases and MAPK kinase kinases, by which signals are transduced to the target proteins. MAPK cascade genes are highly conserved in all eukaryotes, and they play crucial roles in myriad developmental and physiological processes. MAPK cascades function during biotic and abiotic stress responses by linking extracellular signals received by receptors to cytosolic events and gene expression. In this review, we highlight recent findings and insights into MAPK-mediated guard cell signaling, including the specificity of MAPK cascades and the remaining questions. PMID:26904052

  16. MAPK cascades in guard cell signal transduction

    Directory of Open Access Journals (Sweden)

    Yuree eLee

    2016-02-01

    Full Text Available Guard cells form stomata on the epidermis and continuously respond to endogenous and environmental stimuli to fine-tune the gas exchange and transpirational water loss, processes which involve mitogen-activated protein kinase (MAPK cascades. MAPKs form three-tiered kinase cascades with MAPK kinases and MAPK kinase kinases, by which signals are transduced to the target proteins. MAPK cascade genes are highly conserved in all eukaryotes, and they play crucial roles in myriad developmental and physiological processes. MAPK cascades function during biotic and abiotic stress responses by linking extracellular signals received by receptors to cytosolic events and gene expression. In this review, we highlight recent findings and insights into MAPK-mediated guard cell signaling, including the specificity of MAPK cascades and the remaining questions.

  17. Key cancer cell signal transduction pathways as therapeutic targets.

    Science.gov (United States)

    Bianco, Roberto; Melisi, Davide; Ciardiello, Fortunato; Tortora, Giampaolo

    2006-02-01

    Growth factor signals are propagated from the cell surface, through the action of transmembrane receptors, to intracellular effectors that control critical functions in human cancer cells, such as differentiation, growth, angiogenesis, and inhibition of cell death and apoptosis. Several kinases are involved in transduction pathways via sequential signalling activation. These kinases include transmembrane receptor kinases (e.g., epidermal growth factor receptor EGFR); or cytoplasmic kinases (e.g., PI3 kinase). In cancer cells, these signalling pathways are often altered and results in a phenotype characterized by uncontrolled growth and increased capability to invade surrounding tissue. Therefore, these crucial transduction molecules represent attractive targets for cancer therapy. This review will summarize current knowledge of key signal transduction pathways, that are altered in cancer cells, as therapeutic targets for novel selective inhibitors. The most advanced targeted agents currently under development interfere with function and expression of several signalling molecules, including the EGFR family; the vascular endothelial growth factor and its receptors; and cytoplasmic kinases such as Ras, PI3K and mTOR.

  18. Polylysine modification of adenoviral fiber protein enhances muscle cell transduction.

    Science.gov (United States)

    Bouri, K; Feero, W G; Myerburg, M M; Wickham, T J; Kovesdi, I; Hoffman, E P; Clemens, P R

    1999-07-01

    Adenoviral vectors (ADVs) are used widely for gene delivery to different tissues including muscle. One particularly promising use for ADVs is in the transfer of the dystrophin gene to the muscle of patients with Duchenne muscular dystrophy (DMD). However, studies in different animal models of DMD suggest that ADVs inefficiently transduce mature skeletal muscle. In this article we test whether AdZ.F(pK7), a genetically modified ADV that expresses a polylysine moiety on the end of the fiber protein, could enhance transduction of muscle cells and circumvent the maturation-dependent loss of muscle infectivity by ADVs. The efficiency of transduction was tested at different levels of muscle maturation. In vitro, AdZ.F(pK7) showed a higher level of transduction at all stages of differentiation including myoblasts, myotubes, and single muscle fibers. In vivo, mature skeletal muscle was transduced fourfold better by AdZ.F(pK7) than by the unmodifled vector (AdZ.F). Together, these observations demonstrate improved ADV transduction of skeletal muscle by modifying ADV tropism, and provide a proof-of-principle that modification of ADVs to target muscle-specific molecules could result in tissue-specific transfer of skeletal muscle tissue as well.

  19. Sensory Transduction of the CO2 Response of Guard Cells

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Eduardo Zeiger

    2003-06-30

    Stomata have a key role in the regulation of gas exchange and intercellular CO2 concentrations of leaves. Guard cells sense internal and external signals in the leaf environment and transduce these signals into osmoregulatory processes that control stomatal apertures. This research proposal addresses the characterization of the sensory transduction of the CO2 signal in guard cells. Recent studies have shown that in Vicia leaves kept at constant light and temperature in a growth chamber, changes in ambient CO2 concentrations cause large changes in guard cell zeaxanthin that are linear with CO2-dependent changes in stomatal apertures. Research proposed here will test the hypothesis that zeaxanthin function as a transducer of CO2 signals in guard cells. Three central aspects of this hypothesis will be investigated: CO2 sensing by the carboxylation reaction of Rubisco in the guard cell chloroplast, which would modulate zeaxanthin concentrations via changes in lumen pH; transduction of the CO2 signal by zeaxanthin via a transducing cascade that controls guard cell osmoregulation; and blue light dependence of the CO2 signal transduction by zeaxanthin, required for the formation of an isomeric form of zeaxanthin that is physiologically active as a transducer. The role of Rubisco in CO2 sensing will be investigated in experiments characterizing the stomatal response to CO2 in the Arabidopsis mutants R100 and rca-, which have reduced rates of Rubisco-dependent carboxylation. The role of zeaxanthin as a CO2 transducer will be studied in npq1, a zeaxanthin-less mutant. The blue light-dependence of CO2 sensing will be studied in experiments characterizing the stomatal response to CO2 under red light. Arabidopsis mutants will also be used in further studies of an acclimation of the stomatal response to CO2, and a possible role of the xanthophyll cycle of the guard cell chloroplast in acclimations of the stomatal response to CO2. Studies on the osmoregulatory role of sucrose in

  20. Aptamer modification improves the adenoviral transduction of malignant glioma cells.

    Science.gov (United States)

    Chen, Hao; Zheng, Xiaojing; Di, BingYan; Wang, Dongyang; Zhang, Yaling; Xia, Haibin; Mao, Qinwen

    2013-12-01

    Adenovirus has shown increasing promise in the gene-viral therapy for glioblastoma, a treatment strategy that relies on the delivery of viruses or transgenes into tumor cells. However, targeting of adenovirus to human glioblastoma remains a challenge due to the low expression level of coxsackie and adenovirus receptor (CAR) in glioma cells. Aptamers are small and highly structured single-stranded oligonucleotides that bind at high affinity to a target molecule, and are good candidates for targeted imaging and therapy. In this study, to construct an aptamer-modified Ad5, we first genetically modified the HVR5 of Ad hexon by biotin acceptor peptide (BAP), which would be metabolically biotinylated during production in HEK293 cells, and then attached the biotin labeled aptamer to the modified Ad through avidin–biotin binding. The aptamers used in this study includes AS1411 and GBI-10. The former is a DNA aptamer that can bind to nucleolin, a nuclear matrix protein found on the surface of cancer cells. The latter is a DNA aptamer that can recognize the extracellular matrix protein tenascin-C on the surface of human glioblastoma cells. To examine if aptamer-modification of the hexon protein could improve the adenoviral transduction efficiency, a glioblastoma cell line, U251, was transduced with aptamer-modified Ads. The transduction efficiency of AS1411- or GBI-10-modified Ad was approximately 4.1-fold or 5.2-fold higher than that of the control. The data indicated that aptamer modified adenovirus would be a useful tool for cancer gene therapy.

  1. Signal transduction events in aluminum-induced cell death in tomato suspension cells

    NARCIS (Netherlands)

    Iakimova, E.T.; Kapchina-Toteva, V.M.; Woltering, E.J.

    2007-01-01

    In this study, some of the signal transduction events involved in AlCl3-induced cell death in tomato (Lycopersicon esculentum Mill.) suspension cells were elucidated. Cells treated with 100 ¿M AlCl3 showed typical features of programmed cell death (PCD) such as nuclear and cytoplasmic condensation.

  2. Enrichment of human hematopoietic stem/progenitor cells facilitates transduction for stem cell gene therapy.

    Science.gov (United States)

    Baldwin, Kismet; Urbinati, Fabrizia; Romero, Zulema; Campo-Fernandez, Beatriz; Kaufman, Michael L; Cooper, Aaron R; Masiuk, Katelyn; Hollis, Roger P; Kohn, Donald B

    2015-05-01

    Autologous hematopoietic stem cell (HSC) gene therapy for sickle cell disease has the potential to treat this illness without the major immunological complications associated with allogeneic transplantation. However, transduction efficiency by β-globin lentiviral vectors using CD34-enriched cell populations is suboptimal and large vector production batches may be needed for clinical trials. Transducing a cell population more enriched for HSC could greatly reduce vector needs and, potentially, increase transduction efficiency. CD34(+) /CD38(-) cells, comprising ∼1%-3% of all CD34(+) cells, were isolated from healthy cord blood CD34(+) cells by fluorescence-activated cell sorting and transduced with a lentiviral vector expressing an antisickling form of beta-globin (CCL-β(AS3) -FB). Isolated CD34(+) /CD38(-) cells were able to generate progeny over an extended period of long-term culture (LTC) compared to the CD34(+) cells and required up to 40-fold less vector for transduction compared to bulk CD34(+) preparations containing an equivalent number of CD34(+) /CD38(-) cells. Transduction of isolated CD34(+) /CD38(-) cells was comparable to CD34(+) cells measured by quantitative PCR at day 14 with reduced vector needs, and average vector copy/cell remained higher over time for LTC initiated from CD34(+) /38(-) cells. Following in vitro erythroid differentiation, HBBAS3 mRNA expression was similar in cultures derived from CD34(+) /CD38(-) cells or unfractionated CD34(+) cells. In vivo studies showed equivalent engraftment of transduced CD34(+) /CD38(-) cells when transplanted in competition with 100-fold more CD34(+) /CD38(+) cells. This work provides initial evidence for the beneficial effects from isolating human CD34(+) /CD38(-) cells to use significantly less vector and potentially improve transduction for HSC gene therapy.

  3. Signal transduction in cells of the immune system in microgravity

    Directory of Open Access Journals (Sweden)

    Huber Kathrin

    2008-10-01

    Full Text Available Abstract Life on Earth developed in the presence and under the constant influence of gravity. Gravity has been present during the entire evolution, from the first organic molecule to mammals and humans. Modern research revealed clearly that gravity is important, probably indispensable for the function of living systems, from unicellular organisms to men. Thus, gravity research is no more or less a fundamental question about the conditions of life on Earth. Since the first space missions and supported thereafter by a multitude of space and ground-based experiments, it is well known that immune cell function is severely suppressed in microgravity, which renders the cells of the immune system an ideal model organism to investigate the influence of gravity on the cellular and molecular level. Here we review the current knowledge about the question, if and how cellular signal transduction depends on the existence of gravity, with special focus on cells of the immune system. Since immune cell function is fundamental to keep the organism under imnological surveillance during the defence against pathogens, to investigate the effects and possible molecular mechanisms of altered gravity is indispensable for long-term space flights to Earth Moon or Mars. Thus, understanding the impact of gravity on cellular functions on Earth will provide not only important informations about the development of life on Earth, but also for therapeutic and preventive strategies to cope successfully with medical problems during space exploration.

  4. Efficient lentiviral gene transfer to canine repopulating cells using an overnight transduction protocol.

    Science.gov (United States)

    Horn, Peter A; Keyser, Kirsten A; Peterson, Laura J; Neff, Tobias; Thomasson, Bobbie M; Thompson, Jesse; Kiem, Hans-Peter

    2004-05-15

    The use of lentiviral vectors for the transduction of hematopoietic stem cells has evoked much interest owing to their ability to stably integrate into the genome of nondividing cells. However, published large animal studies have reported highly variable gene transfer rates of typically less than 1%. Here we report the use of lentiviral vectors for the transduction of canine CD34(+) hematopoietic repopulating cells using a very short, 18-hour transduction protocol. We compared lentiviral transduction of hematopoietic repopulating cells from either stem cell factor (SCF)- and granulocyte-colony stimulating factor (G-CSF)-primed marrow or mobilized peripheral blood in a competitive repopulation assay in 3 dogs. All dogs engrafted rapidly within 9 days. Transgene expression was detected in all lineages (B cells, T cells, granulocytes, and red blood cells as well as platelets) indicating multilineage engraftment of transduced cells, with overall long-term marking levels of up to 12%. Gene transfer levels in mobilized peripheral blood cells were slightly higher than in primed marrow cells. In conclusion, we show efficient lentiviral transduction of canine repopulating cells using an overnight transduction protocol. These results have important implications for the design of stem cell gene therapy protocols, especially for those diseases in which the maintenance of stem cells in culture is a major limitation.

  5. HCN channels are not required for mechanotransduction in sensory hair cells of the mouse inner ear.

    Directory of Open Access Journals (Sweden)

    Geoffrey C Horwitz

    Full Text Available The molecular composition of the hair cell transduction channel has not been identified. Here we explore the novel hypothesis that hair cell transduction channels include HCN subunits. The HCN family of ion channels includes four members, HCN1-4. They were originally identified as the molecular correlates of the hyperpolarization-activated, cyclic nucleotide gated ion channels that carry currents known as If, IQ or Ih. However, based on recent evidence it has been suggested that HCN subunits may also be components of the elusive hair cell transduction channel. To investigate this hypothesis we examined expression of mRNA that encodes HCN1-4 in sensory epithelia of the mouse inner ear, immunolocalization of HCN subunits 1, 2 and 4, uptake of the transduction channel permeable dye, FM1-43 and electrophysiological measurement of mechanotransduction current. Dye uptake and transduction current were assayed in cochlear and vestibular hair cells of wildtype mice exposed to HCN channel blockers or a dominant-negative form of HCN2 that contained a pore mutation and in mutant mice that lacked HCN1, HCN2 or both. We found robust expression of HCNs 1, 2 and 4 but little evidence that localized HCN subunits in hair bundles, the site of mechanotransduction. Although high concentrations of the HCN antagonist, ZD7288, blocked 50-70% of the transduction current, we found no reduction of transduction current in either cochlear or vestibular hair cells of HCN1- or HCN2- deficient mice relative to wild-type mice. Furthermore, mice that lacked both HCN1 and HCN2 also had normal transduction currents. Lastly, we found that mice exposed to the dominant-negative mutant form of HCN2 had normal transduction currents as well. Taken together, the evidence suggests that HCN subunits are not required for mechanotransduction in hair cells of the mouse inner ear.

  6. Molecular analysis of the graviperception signal transduction in the flagellate Euglena gracilis: Involvement of a transient receptor potential-like channel and a calmodulin

    Science.gov (United States)

    Häder, Donat-Peter; Richter, Peter R.; Schuster, Martin; Daiker, Viktor; Lebert, Michael

    2009-04-01

    Euglena gracilis, a unicellular, photosynthetic flagellate is a model system for environmentally controlled behavior responses. The organism shows pronounced negative gravitaxis. This movement is based on physiological mechanisms, which in the past had been only indirectly assessed. It was shown that mechano-sensitive calcium channels are involved in the gravitaxis response. Recent studies have demonstrated that members of the transient receptor potential (TRP) family function as mechano-sensitive channels in several different cell types. We have sequenced part of a TRP gene in Euglena and applied RNA interference (RNAi) to confirm that these channels are involved in graviperception. It was found that RNAi against the putative TRP channel abolished gravitaxis. The genes of three calmodulins were sequences in Euglena, one of which was previously known in its protein structure (cal 1). The other two were unknown (cal 2 and cal 3). Cal 2 has been analyzed in detail. The biosynthesis of the corresponding proteins of cal 1 and cal 2 was inhibited by means of RNA interference to see whether this blockage impairs gravitaxis. RNAi of cal 1 leads to a long-term loss of free swimming in the cells (while euglenoid movement persists). It induced pronounced cell form aberrations and the division of cells was hampered. After recovery from RNAi the cell showed precise negative gravitaxis again. Thus cal 1 does not seem to be involved in gravitaxis. In contrast, the blockage of cal 2 has no pronounced influence on motility and cell form but leads to a complete loss of gravitactic orientation for more than 30 days showing that this calmodulin is an element in the signal transduction chain. The data are discussed in the context of the current model of the gravitaxis signal transduction chain in Euglena gracilis.

  7. Touch, Tension, and Transduction - The Function and Regulation of Piezo Ion Channels.

    Science.gov (United States)

    Wu, Jason; Lewis, Amanda H; Grandl, Jörg

    2017-01-01

    In 2010, two proteins, Piezo1 and Piezo2, were identified as the long-sought molecular carriers of an excitatory mechanically activated current found in many cells. This discovery has opened the floodgates for studying a vast number of mechanotransduction processes. Over the past 6 years, groundbreaking research has identified Piezos as ion channels that sense light touch, proprioception, and vascular blood flow, ruled out roles for Piezos in several other mechanotransduction processes, and revealed the basic structural and functional properties of the channel. Here, we review these findings and discuss the many aspects of Piezo function that remain mysterious, including how Piezos convert a variety of mechanical stimuli into channel activation and subsequent inactivation, and what molecules and mechanisms modulate Piezo function.

  8. Physiology and Regulation of Calcium Channels in Stomatal Guard Cells

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Julian I.

    2007-05-02

    Stomatal pores in the epidermis of leaves regulate the diffusion of CO2 into leaves for photosynthetic carbon fixation and control water loss of plants during drought periods. Guard cells sense CO2, water status, light and other environmental conditions to regulate stomatal apertures for optimization of CO2 intake and plant growth under drought stress. The cytosolic second messenger calcium contributes to stomatal movements by transducing signals and regulating ion channels in guard cells. Studies suggest that both plasma membrane Ca2+ influx channels and vacuolar/organellar Ca2+ release channels contribute to ABA-induced Ca2+ elevations in guard cells. Recent research in the P.I.'s laboratory has led to identification of a novel major cation-selective Ca2+-permeable influx channel (Ica) in the plasma membrane of Arabidopsis guard cells. These advances will allow detailed characterization of Ica plasma membrane Ca2+ influx channels in guard cells. The long term goal of this research project is to gain a first detailed characterization of these novel plasma membrane Ca2+-permeable channel currents in Arabidopsis guard cells. The proposed research will investigate the hypothesis that Ica represents an important Ca2+ influx pathway for ABA and CO2 signal transduction in Arabidopsis guard cells. These studies will lead to elucidation of key signal transduction mechanisms by which plants balance CO2 influx into leaves and transpirational water loss and may contribute to future strategies for manipulating gas exchange for improved growth of crop plants and for biomass production.

  9. Suppression of tumorigenicity and metastatic potential of melanoma cells by transduction of interferon gene

    Directory of Open Access Journals (Sweden)

    Lykhova A. A.

    2014-01-01

    Full Text Available The aim of this study was to investigate an inhibitory effect of baculovirus-mediated transduction of the murine interferon-beta gene on mouse melanoma in vitro and in vivo. Methods. Studies were performed on B16 mouse melanoma (MM-4 cell line. Transduction, immunocytochemical and tumor cell biology approaches have been used in this study. Results. Transduction of MM-4 cells by the recombinant baculovirus with IFN-beta gene is accompanied by morphological changes of tumor cells, suppression of cell proliferation, significant inhibition of platting efficiency of cells and their colonies formation in semisolid agar. Moreover, transduction of melanoma MM-4 cells by the baculovirus IFN-transgene leads to inhibition of tumorigenicity and metastatic ability of the cells in vivo. The intravenous administration of recombinant baculovirus vector with IFN gene inhibits growth of metastases induced in the lungs of mice by intravenously injected tumor cells. Conclusions. Transduction of mouse melanoma cells by the recombinant baculovirus with murine IFN-beta gene inhibits their proliferative potential, tumorigenicity and metastatic activity.

  10. Transduction for pheromones in the main olfactory epithelium is mediated by the Ca2+ -activated channel TRPM5.

    Science.gov (United States)

    López, Fabián; Delgado, Ricardo; López, Roberto; Bacigalupo, Juan; Restrepo, Diego

    2014-02-26

    Growing evidence suggests that the main olfactory epithelium contains a subset of olfactory sensory neurons (OSNs) responding to pheromones. One candidate subpopulation expresses the calcium activated cation channel TRPM5 (transient receptor potential channel M5). Using GFP driven by the TRPM5 promoter in mice, we show that this subpopulation responds to putative pheromones, urine, and major histocompatibility complex peptides, but not to regular odors or a pheromone detected by other species. In addition, this subpopulation of TRPM5-GFP+ OSNs uses novel transduction. In regular OSNs, odorants elicit activation of the cyclic nucleotide-gated (CNG) channel, leading to Ca2+ gating of Cl- channels; in TRPM5-GFP+ OSNs, the Ca2+ -activated Cl- ANO2 (anoctamin 2) channel is not expressed, and pheromones elicit activation of the CNG channel leading to Ca2+ gating of TRPM5. In conclusion, we show that OSNs expressing TRPM5 respond to pheromones, but not to regular odors through the opening of CNG channels leading to Ca2+ gating of TRPM5.

  11. Inhibition of T cell proliferation by selective block of Ca(2+)-activated K(+) channels

    DEFF Research Database (Denmark)

    Jensen, B S; Odum, Niels; Jorgensen, N K;

    1999-01-01

    T lymphocytes express a plethora of distinct ion channels that participate in the control of calcium homeostasis and signal transduction. Potassium channels play a critical role in the modulation of T cell calcium signaling, and the significance of the voltage-dependent K channel, Kv1.3, is well...... established. The recent cloning of the Ca(2+)-activated, intermediate-conductance K(+) channel (IK channel) has enabled a detailed investigation of the role of this highly Ca(2+)-sensitive K(+) channel in the calcium signaling and subsequent regulation of T cell proliferation. The role IK channels play in T...

  12. Decitabine suspends human CD34+ cell differentiation and proliferation during lentiviral transduction.

    Science.gov (United States)

    Uchida, Naoya; Hsieh, Matthew M; Platner, Charlotte; Saunthararajah, Yogen; Tisdale, John F

    2014-01-01

    Efficient ex vivo transduction of hematopoietic stem cells (HSCs) is encumbered by differentiation which reduces engraftment. We hypothesized that inhibiting DNA methyltransferase with decitabine would block differentiation of transduced CD34+ cells under cytokine stimulation and thus improve transduction efficiency for engrafting HSCs. Human CD34+ cells in cytokine-containing media were treated with or without decitabine for 24 or 48 hours, and then these cells were transduced with a GFP-expressing lentiviral vector. Utilizing decitabine pre-treatment for 48 hours, we observed an equivalent percentage of successfully transduced cells (GFP-positivity) and a higher percentage of cells that retained CD34 positivity, compared to no decitabine exposure. Cell proliferation was inhibited after decitabine exposure. Similar results were observed among CD34+ cells from six different donors. Repopulating activity was evaluated by transplantation into NOD/SCID/IL2Rγnull mice and demonstrated an equivalent percentage of GFP-positivity in human cells from decitabine-treated samples and a trend for higher human cell engraftment (measured 20-24 weeks after transplantation), compared to no decitabine exposure. In conclusion, ex vivo decitabine exposure inhibits both differentiation and proliferation in transduced human CD34+ cells and modestly increases the engraftment ability in xenograft mice, while the transduction efficiency is equivalent in decitabine exposure, suggesting improvement of lentiviral transduction for HSCs.

  13. Decitabine suspends human CD34+ cell differentiation and proliferation during lentiviral transduction.

    Directory of Open Access Journals (Sweden)

    Naoya Uchida

    Full Text Available Efficient ex vivo transduction of hematopoietic stem cells (HSCs is encumbered by differentiation which reduces engraftment. We hypothesized that inhibiting DNA methyltransferase with decitabine would block differentiation of transduced CD34+ cells under cytokine stimulation and thus improve transduction efficiency for engrafting HSCs. Human CD34+ cells in cytokine-containing media were treated with or without decitabine for 24 or 48 hours, and then these cells were transduced with a GFP-expressing lentiviral vector. Utilizing decitabine pre-treatment for 48 hours, we observed an equivalent percentage of successfully transduced cells (GFP-positivity and a higher percentage of cells that retained CD34 positivity, compared to no decitabine exposure. Cell proliferation was inhibited after decitabine exposure. Similar results were observed among CD34+ cells from six different donors. Repopulating activity was evaluated by transplantation into NOD/SCID/IL2Rγnull mice and demonstrated an equivalent percentage of GFP-positivity in human cells from decitabine-treated samples and a trend for higher human cell engraftment (measured 20-24 weeks after transplantation, compared to no decitabine exposure. In conclusion, ex vivo decitabine exposure inhibits both differentiation and proliferation in transduced human CD34+ cells and modestly increases the engraftment ability in xenograft mice, while the transduction efficiency is equivalent in decitabine exposure, suggesting improvement of lentiviral transduction for HSCs.

  14. Signal transduction in Plasmodium-Red Blood Cells interactions and in cytoadherence

    Directory of Open Access Journals (Sweden)

    Laura N. Cruz

    2012-06-01

    Full Text Available Malaria is responsible for more than 1.5 million deaths each year, especially among children (Snow et al. 2005. Despite of the severity of malaria situation and great effort to the development of new drug targets (Yuan et al. 2011 there is still a relative low investment toward antimalarial drugs. Briefly there are targets classes of antimalarial drugs currently being tested including: kinases, proteases, ion channel of GPCR, nuclear receptor, among others (Gamo et al. 2010. Here we review malaria signal transduction pathways in Red Blood Cells (RBC as well as infected RBCs and endothelial cells interactions, namely cytoadherence. The last process is thought to play an important role in the pathogenesis of severe malaria. The molecules displayed on the surface of both infected erythrocytes (IE and vascular endothelial cells (EC exert themselves as important mediators in cytoadherence, in that they not only induce structural and metabolic changes on both sides, but also trigger multiple signal transduction processes, leading to alteration of gene expression, with the balance between positive and negative regulation determining endothelial pathology during a malaria infection.A Malária é responsavel por mais de 1.5 milhões de mortes anualmente, especialmente entre crianças (Snow et al. 2005. Apesar da gravidade da situação e grande esforço para o desenvolvimento de novas drogas (Yuan et al. 2011, os investimentos em drogas antimaláricas ainda é relativamente baixo. Brevemente, os alvos antimaláricos atualmente testados incluem: quinases, proteases, canais iônicos para GPCR, receptores nucleares entre outros (Gamo et al. 2010. No presente trabalho nós revisamos as vias de transdução de sinal em eritrócitos assim como eritrócitos infectados e interações com células endoteliais, denominada citoaderência. Este processo é conhecido por sua importante função na patogenicidade da malária severa. As moléculas expressas na superf

  15. Efficiency of retroviral transduction into hematopoietic cells by cocultivation procedure does not correlate with viral titer.

    Science.gov (United States)

    Bagnis, C; Chischportich, C; Imbert, A M; Van den Broeke, A; Cornet, V; Mannoni, P

    1997-01-01

    Relative transduction efficiency with retroviral vector-producing clones was assayed by cocultivating TF-1, a human CD34+ hematopoietic cell line and YR-2, a sheep B-lymphoid cell line, with LacZ containing vector-producing cells, and then by scoring the percentage of X-Gal+ cells. At the same time, viral titer was estimated by titration assay with murine fibroblasts. Results clearly demonstrated a lack of correlation between viral titer and efficiency of transduction into hematopoietic cells, which depends neither on the type of packaging cell line, PG-13 and GP-envAM12 in this study, nor on the type of LacZ containing retroviral vector. These results strongly favor consideration of interactions between producers and target cells of the study for the screening of producing cell lines.

  16. Oxysterols stimulate Sonic hedgehog signal transduction and proliferation of medulloblastoma cells.

    Science.gov (United States)

    Corcoran, Ryan B; Scott, Matthew P

    2006-05-30

    Sterol synthesis is required for Sonic hedgehog (Shh) signal transduction. Errors in Shh signal transduction play important roles in the formation of human tumors, including medulloblastoma (MB). It is not clear which products of sterol synthesis are necessary for Shh signal transduction or how they act. Here we show that cholesterol or specific oxysterols are the critical products of sterol synthesis required for Shh pathway signal transduction in MB cells. In MB cells, sterol synthesis inhibitors reduce Shh target gene transcription and block Shh pathway-dependent proliferation. These effects of sterol synthesis inhibitors can be reversed by exogenous cholesterol or specific oxysterols. We also show that certain oxysterols can maximally activate Shh target gene transcription through the Smoothened (Smo) protein as effectively as the known Smo full agonist, SAG. Thus, sterols are required and sufficient for Shh pathway activation. These results suggest that oxysterols may be critical regulators of Smo, and thereby Shh signal transduction. Inhibition of Shh signaling by sterol synthesis inhibitors may offer a novel approach to the treatment of MB and other Shh pathway-dependent human tumors.

  17. Vectofusin-1, a new viral entry enhancer, strongly promotes lentiviral transduction of human hematopoietic stem cells.

    Science.gov (United States)

    Fenard, David; Ingrao, Dina; Seye, Ababacar; Buisset, Julien; Genries, Sandrine; Martin, Samia; Kichler, Antoine; Galy, Anne

    2013-05-07

    Gene transfer into hCD34(+) hematopoietic stem/progenitor cells (HSCs) using human immunodeficiency virus type 1 (HIV-1)-based lentiviral vectors (LVs) has several promising therapeutic applications. Yet, efficiency, safety, and cost of LV gene therapy could be ameliorated by enhancing target cell transduction levels and reducing the amount of LV used on the cells. Several transduction enhancers already exist such as fibronectin fragments and cationic compounds, but all present limitations. In this study, we describe a new transduction enhancer called Vectofusin-1, which is a short cationic peptide, active on several LV pseudotypes. Vectofusin-1 is used as a soluble additive to safely increase the frequency of transduced HSCs and to augment the level of transduction to one or two copies of vector per cell in a vector dose-dependent manner. Vectofusin-1 acts at the entry step by promoting the adhesion and the fusion between viral and cellular membranes. Vectofusin-1 is therefore a promising additive that could significantly ameliorate hCD34(+) cell-based gene therapy.Molecular Therapy-Nucleic Acids (2013) 2, e90; doi:10.1038/mtna.2013.17; published online 7 May 2013.

  18. Targeted Lymphoma Cell Death by Novel Signal Transduction Modifications

    Science.gov (United States)

    2011-07-01

    binding via direct visualization . negative #41 HB22.7 Figure 11. Ramos B cells were either incubated with anti-mouse FITC (negative), HB22.7 + anti...plemented with 10% FCS and incubated with AET - activated sheep red blood cells (SRBC) for 1 h. B-cells were collected at the interface after centrifugation...prepared and incubated with cells (4 9 104 cells/ml) for 4 days. Percent cell killing was quan- tified by visual examination using trypan blue dye exclusion

  19. The efficiency of expressing human neprilysin by using lentiviral vector transduction in neural stem cells

    Institute of Scientific and Technical Information of China (English)

    黄文

    2013-01-01

    Objective To study the transduction efficiency of expressing human neprilysin by using lentiviral(Lenti-NEP) in mouse embryonic neural stem cells(NSC) in vitro. Methods Primary NSC were harvested from C57BL/6J pregnant mouse at embryonic day

  20. The shear stress of it all: the cell membrane and mechanochemical transduction

    OpenAIRE

    White, Charles R; Frangos, John A.

    2007-01-01

    As the inner lining of the vessel wall, vascular endothelial cells are poised to act as a signal transduction interface between haemodynamic forces and the underlying vascular smooth-muscle cells. Detailed analyses of fluid mechanics in atherosclerosis-susceptible regions of the vasculature reveal a strong correlation between endothelial cell dysfunction and areas of low mean shear stress and oscillatory flow with flow recirculation. Conversely, steady shear stress stimulates cellular respons...

  1. Novel aspects on pancreatic beta-cell signal-transduction.

    Science.gov (United States)

    Leibiger, Ingo B; Brismar, Kerstin; Berggren, Per-Olof

    2010-05-21

    Pancreatic beta-cells release insulin in appropriate amounts in order to keep blood glucose levels within physiological limits. Failure to do so leads to the most common metabolic disorder in man, diabetes mellitus. The glucose-stimulus/insulin-secretion coupling represents a sophisticated interplay between glucose and a variety of modulatory factors. These factors are provided by the blood supply (such as nutrients, vitamins, incretins etc.), the nerval innervations, cell-cell contacts as well as by paracrine and autocrine feedback loops within the pancreatic islet of Langerhans. However, the underlying mechanisms of their action remain poorly understood. In the present mini-review we discuss novel aspects of selective insulin signaling in the beta-cell and novel insights into the role of higher inositol phosphates in insulin secretion. Finally we present a newly developed experimental platform that allows non-invasive and longitudinal in vivo imaging of pancreatic islet/beta-cell biology at single-cell resolution.

  2. Signal transduction pathways in the pentameric ligand-gated ion channels.

    Directory of Open Access Journals (Sweden)

    David Mowrey

    Full Text Available The mechanisms of allosteric action within pentameric ligand-gated ion channels (pLGICs remain to be determined. Using crystallography, site-directed mutagenesis, and two-electrode voltage clamp measurements, we identified two functionally relevant sites in the extracellular (EC domain of the bacterial pLGIC from Gloeobacter violaceus (GLIC. One site is at the C-loop region, where the NQN mutation (D91N, E177Q, and D178N eliminated inter-subunit salt bridges in the open-channel GLIC structure and thereby shifted the channel activation to a higher agonist concentration. The other site is below the C-loop, where binding of the anesthetic ketamine inhibited GLIC currents in a concentration dependent manner. To understand how a perturbation signal in the EC domain, either resulting from the NQN mutation or ketamine binding, is transduced to the channel gate, we have used the Perturbation-based Markovian Transmission (PMT model to determine dynamic responses of the GLIC channel and signaling pathways upon initial perturbations in the EC domain of GLIC. Despite the existence of many possible routes for the initial perturbation signal to reach the channel gate, the PMT model in combination with Yen's algorithm revealed that perturbation signals with the highest probability flow travel either via the β1-β2 loop or through pre-TM1. The β1-β2 loop occurs in either intra- or inter-subunit pathways, while pre-TM1 occurs exclusively in inter-subunit pathways. Residues involved in both types of pathways are well supported by previous experimental data on nAChR. The direct coupling between pre-TM1 and TM2 of the adjacent subunit adds new insight into the allosteric signaling mechanism in pLGICs.

  3. Transduction of human primitive repopulating hematopoietic cells with lentiviral vectors pseudotyped with various envelope proteins.

    Science.gov (United States)

    Kim, Yoon-Sang; Wielgosz, Matthew M; Hargrove, Phillip; Kepes, Steven; Gray, John; Persons, Derek A; Nienhuis, Arthur W

    2010-07-01

    Lentiviral vectors are useful for transducing primitive hematopoietic cells. We examined four envelope proteins for their ability to mediate lentiviral transduction of mobilized human CD34(+) peripheral blood cells. Lentiviral particles encoding green fluorescent protein (GFP) were pseudotyped with the vesicular stomatitis virus envelope glycoprotein (VSV-G), the amphotropic (AMPHO) murine leukemia virus envelope protein, the endogenous feline leukemia viral envelope protein or the feline leukemia virus type C envelope protein. Because the relative amount of genome RNA per ml was similar for each pseudotype, we transduced CD34(+) cells with a fixed volume of each vector preparation. Following an overnight transduction, CD34(+) cells were transplanted into immunodeficient mice which were sacrificed 12 weeks later. The average percentages of engrafted human CD45(+) cells in total bone marrow were comparable to that of the control, mock-transduced group (37-45%). Lenti-particles pseudotyped with the VSV-G envelope protein transduced engrafting cells two- to tenfold better than particles pseudotyped with any of the gamma-retroviral envelope proteins. There was no correlation between receptor mRNA levels for the gamma-retroviral vectors and transduction efficiency of primitive hematopoietic cells. These results support the use of the VSV-G envelope protein for the development of lentiviral producer cell lines for manufacture of clinical-grade vector.

  4. Sensors and signal transduction pathways in vertebrate cell volume regulation

    DEFF Research Database (Denmark)

    Hoffmann, Else K; Pedersen, Stine F

    2006-01-01

    will be discussed. In contrast to the simple pathway of osmosensing in yeast, cells from vertebrate organisms appear to exhibit multiple volume sensing systems, the specific mechanism(s) activated being cell type- and stimulus-dependent. Candidate sensors include integrins and growth factor receptors, while other...

  5. Signal Transduction at the Domain Interface of Prokaryotic Pentameric Ligand-Gated Ion Channels

    Science.gov (United States)

    Bertozzi, Carlo; Zimmermann, Iwan; Engeler, Sibylle; Hilf, Ricarda J. C.; Dutzler, Raimund

    2016-01-01

    Pentameric ligand-gated ion channels are activated by the binding of agonists to a site distant from the ion conduction path. These membrane proteins consist of distinct ligand-binding and pore domains that interact via an extended interface. Here, we have investigated the role of residues at this interface for channel activation to define critical interactions that couple conformational changes between the two structural units. By characterizing point mutants of the prokaryotic channels ELIC and GLIC by electrophysiology, X-ray crystallography and isothermal titration calorimetry, we have identified conserved residues that, upon mutation, apparently prevent activation but not ligand binding. The positions of nonactivating mutants cluster at a loop within the extracellular domain connecting β-strands 6 and 7 and at a loop joining the pore-forming helix M2 with M3 where they contribute to a densely packed core of the protein. An ionic interaction in the extracellular domain between the turn connecting β-strands 1 and 2 and a residue at the end of β-strand 10 stabilizes a state of the receptor with high affinity for agonists, whereas contacts of this turn to a conserved proline residue in the M2-M3 loop appear to be less important than previously anticipated. When mapping residues with strong functional phenotype on different channel structures, mutual distances are closer in conducting than in nonconducting conformations, consistent with a potential role of contacts in the stabilization of the open state. Our study has revealed a pattern of interactions that are crucial for the relay of conformational changes from the extracellular domain to the pore region of prokaryotic pentameric ligand-gated ion channels. Due to the strong conservation of the interface, these results are relevant for the entire family. PMID:26943937

  6. Signal Transduction at the Domain Interface of Prokaryotic Pentameric Ligand-Gated Ion Channels.

    Directory of Open Access Journals (Sweden)

    Carlo Bertozzi

    2016-03-01

    Full Text Available Pentameric ligand-gated ion channels are activated by the binding of agonists to a site distant from the ion conduction path. These membrane proteins consist of distinct ligand-binding and pore domains that interact via an extended interface. Here, we have investigated the role of residues at this interface for channel activation to define critical interactions that couple conformational changes between the two structural units. By characterizing point mutants of the prokaryotic channels ELIC and GLIC by electrophysiology, X-ray crystallography and isothermal titration calorimetry, we have identified conserved residues that, upon mutation, apparently prevent activation but not ligand binding. The positions of nonactivating mutants cluster at a loop within the extracellular domain connecting β-strands 6 and 7 and at a loop joining the pore-forming helix M2 with M3 where they contribute to a densely packed core of the protein. An ionic interaction in the extracellular domain between the turn connecting β-strands 1 and 2 and a residue at the end of β-strand 10 stabilizes a state of the receptor with high affinity for agonists, whereas contacts of this turn to a conserved proline residue in the M2-M3 loop appear to be less important than previously anticipated. When mapping residues with strong functional phenotype on different channel structures, mutual distances are closer in conducting than in nonconducting conformations, consistent with a potential role of contacts in the stabilization of the open state. Our study has revealed a pattern of interactions that are crucial for the relay of conformational changes from the extracellular domain to the pore region of prokaryotic pentameric ligand-gated ion channels. Due to the strong conservation of the interface, these results are relevant for the entire family.

  7. Adeno-associated viral vector transduction of human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Stender, Stefan; Murphy, Mary; O'Brien, Tim

    2007-01-01

    Mesenchymal stem cells (MSCs) have received considerable attention in the emerging field of regenerative medicine. One aspect of MSC research focuses on genetically modifying the cells with the aim of enhancing their regenerative potential. Adeno-associated virus (AAV) holds promise as a vector...... in human MSCs and to assess whether AAV transduction affects MSC multipotentiality. The results indicated that human MSCs could indeed be transiently transduced in vitro by the AAV2 vector with efficiencies of up to 65%. The percentage of GFP-positive cells peaked at 4 days post-transduction and declined...... rapidly towards 0% after day 8. The level of transgene expression in the GFP-positive population increased 4-fold over a 10,000 fold viral dose increase. This dose-response contrasted with the 200-fold increase observed in similarly transduced 293-cells, indicating a relatively restricted transgene...

  8. Signal Transduction in T Cell Activation and Tolerance

    Science.gov (United States)

    1993-01-01

    nMunnol, 7, 175-207 26. Allison, J.P and Raulet, D.H (1990) The immunobiology of gamma delta+ T cells Seinin. InitunoI.f, 2, 59-65. 27. Blumberg, R S ... Janeway , C.A., Jr and Swain, S L. (1987) Coclustering of CD4 (L3T4) molecule with the T-cell receptor is induced by specific direct interaction of...rl ease; distribution is unl imi ted 4. PERFORMING ORGANIZATION REPORT NUMBER( S ) S . MONITORING ORGANIZATION REPORT NUMBER( S ) NMRI 93-49 6a. NAME OF

  9. Image informatics for studying signal transduction in cells interacting with 3D matrices

    Science.gov (United States)

    Tzeranis, Dimitrios S.; Guo, Jin; Chen, Chengpin; Yannas, Ioannis V.; Wei, Xunbin; So, Peter T. C.

    2014-03-01

    Cells sense and respond to chemical stimuli on their environment via signal transduction pathways, complex networks of proteins whose interactions transmit chemical information. This work describes an implementation of image informatics, imaging-based methodologies for studying signal transduction networks. The methodology developed focuses on studying signal transduction networks in cells that interact with 3D matrices. It utilizes shRNA-based knock down of network components, 3D high-content imaging of cells inside the matrix by spectral multi-photon microscopy, and single-cell quantification using features that describe both cell morphology and cell-matrix adhesion pattern. The methodology is applied in a pilot study of TGFβ signaling via the SMAD pathway in fibroblasts cultured inside porous collagen-GAG scaffolds, biomaterials similar to the ones used clinically to induce skin regeneration. Preliminary results suggest that knocking down all rSMAD components affects fibroblast response to TGFβ1 and TGFβ3 isoforms in different ways, and suggest a potential role for SMAD1 and SMAD5 in regulating TGFβ isoform response. These preliminary results need to be verified with proteomic results that can provide solid evidence about the particular role of individual components of the SMAD pathway.

  10. Coating with spermine-pullulan polymer enhances adenoviral transduction of mesenchymal stem cells

    Science.gov (United States)

    Wan, Li; Yao, Xinglei; Faiola, Francesco; Liu, Bojun; Zhang, Tianyuan; Tabata, Yasuhiko; Mizuguchi, Hiroyuki; Nakagawa, Shinsaku; Gao, Jian-Qing; Zhao, Robert Chunhua

    2016-01-01

    Mesenchymal stem cells (MSCs) are adult stem cells with multilineage potential, which makes them attractive tools for regenerative medicine applications. Efficient gene transfer into MSCs is essential not only for basic research in developmental biology but also for therapeutic applications involving gene-modification in regenerative medicine. Adenovirus vectors (Advs) can efficiently and transiently introduce an exogenous gene into many cell types via their primary receptors, the coxsackievirus and adenovirus receptors, but not into MSCs, which are deficient in coxsackievirus and adenovirus receptors expression. To overcome this problem, we developed an Adv coated with a spermine-pullulan (SP) cationic polymer and investigated its physicochemical properties and internalization mechanisms. We demonstrated that the SP coating could enhance adenoviral transduction of MSCs without detectable cytotoxicity or effects on differentiation. Our results argue in favor of the potentiality of the SP-coated Adv as a prototype vector for efficient and safe transduction of MSCs. PMID:28008251

  11. Signal Transduction at the Single-Cell Level: Approaches to Study the Dynamic Nature of Signaling Networks.

    Science.gov (United States)

    Handly, L Naomi; Yao, Jason; Wollman, Roy

    2016-09-25

    Signal transduction, or how cells interpret and react to external events, is a fundamental aspect of cellular function. Traditional study of signal transduction pathways involves mapping cellular signaling pathways at the population level. However, population-averaged readouts do not adequately illuminate the complex dynamics and heterogeneous responses found at the single-cell level. Recent technological advances that observe cellular response, computationally model signaling pathways, and experimentally manipulate cells now enable studying signal transduction at the single-cell level. These studies will enable deeper insights into the dynamic nature of signaling networks.

  12. STAT1 is involved in signal transduction in the EPO induced HEL cells

    Institute of Scientific and Technical Information of China (English)

    JIANGCHU; CHANGYUNGUI; 等

    1998-01-01

    Erythropoietin(EPO) is the major regulator of mamalian erythropoisis,which stimulates the growth and differentiation of hematopoietic cells through interaction with its receptor(EPO-R),Here we use HEL cells (a human erythro-leukemia cell line) as a model to elucidate the pathway of signal transduction in the EPO-induced HEL cells.Our data show that the EPOR (EPO receptor) on the surface of HEL cells interacts with the Janus tyrosine protein kinase(Jak2) to transduce intracellular signals through phosphorylation of cytoplasmic proteins in EPO-treated HEL cells.Both STAT1 and STAT5 in this cell line are tyrosine-phosphorylated and translocated to nucleus following the dinding of EPO to HEL cells.Furthermore,the dinding of both STAT1 and STAT5 proteins to specific DNA elements(SIE and PIE elements) is revealed in an EPO-dependent manner,Our data demonstrate that the pathway of signal transduction following the binding of EPO to HEL cells is similar to immature eryhroid cell from the spleen of mice infected with anemia strain of Friend virus.

  13. Mirrored serpentine flow channels for fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Rock, Jeffrey Allan (Rochester, NY)

    2000-08-08

    A PEM fuel cell having serpentine flow field channels wherein the input/inlet legs of each channel border the input/inlet legs of the next adjacent channels in the same flow field, and the output/exit legs of each channel border the output/exit legs of the next adjacent channels in the same flow field. The serpentine fuel flow channels may be longer, and may contain more medial legs, than the serpentine oxidant flow channels.

  14. THE ENHANCED GREEN FLUORESCENT PROTEIN AS A MARKER FOR HUMAN TUMOR CELLS LABELLED BY RETROVIRAL TRANSDUCTION

    Institute of Scientific and Technical Information of China (English)

    傅建新; 王玮; 白霞; 卢大儒; 阮长耿; 陈子兴

    2002-01-01

    Objective: To investigate the feasibility of marking the human tumor cells with enhanced green fluorescent protein (EGFP) in vitro. Methods: The retroviral vector LGSN encoding EGFP was constructed and three human tumor cell lines were infected with LGSN amphotropic virus. Tumor cell lines that stably express EGFP were selected with G418. The integration and expression of EGFP gene were analyzed by polymerase chain reaction, and flow cytometry (FCM). Results: After gene transfection and ping-pong transduction, amphotropic producer line Am12/LGSN was generated with a stable green fluorescence signal readily detectable by FCM in up to 97% of examined cells. The viral titer in the supernatants was up to 8.2×105CFU/ml. After transduction and selection, G418-resistant leukemia K562, mammary carcinoma MCF-7, and bladder cancer 5637 cells were developed, in which the integration of both EGFP and neomycin resistance gene was confirmed by DNA amplification. In comparison with uninfected cells, FCM analysis revealed EGFP expression in up to 90% (range 85.5%~90.0%) of tumor cells containing LGSN provirus. Conclusion: The retroviral vector LGSN can effectively mark the human tumor cells with a stably EGFP expression which may be in studying tumor growth, metastasis and angiogenesis.

  15. The shear stress of it all: the cell membrane and mechanochemical transduction.

    Science.gov (United States)

    White, Charles R; Frangos, John A

    2007-08-29

    As the inner lining of the vessel wall, vascular endothelial cells are poised to act as a signal transduction interface between haemodynamic forces and the underlying vascular smooth-muscle cells. Detailed analyses of fluid mechanics in atherosclerosis-susceptible regions of the vasculature reveal a strong correlation between endothelial cell dysfunction and areas of low mean shear stress and oscillatory flow with flow recirculation. Conversely, steady shear stress stimulates cellular responses that are essential for endothelial cell function and are atheroprotective. The molecular basis of shear-induced mechanochemical signal transduction and the endothelium's ability to discriminate between flow profiles remains largely unclear. Given that fluid shear stress does not involve a traditional receptor/ligand interaction, identification of the molecule(s) responsible for sensing fluid flow and mechanical force discrimination has been difficult. This review will provide an overview of the haemodynamic forces experienced by the vascular endothelium and its role in localizing atherosclerotic lesions within specific regions of the vasculature. Also reviewed are several recent lines of evidence suggesting that both changes in membrane microviscosity linked to heterotrimeric G proteins, and the transmission of tension across the cell membrane to the cell-cell junction where known shear-sensitive proteins are localized, may serve as the primary force-sensing elements of the cell.

  16. The signal transduction pathway in the proliferation of airway smooth muscle cells induced by urotensin Ⅱ

    Institute of Scientific and Technical Information of China (English)

    陈亚红; 赵鸣武; 姚婉贞; 庞永政; 唐朝枢

    2004-01-01

    Background Human urotensin Ⅱ (UⅡ) is the most potent mammalian vasoconstrictor identified so far. Our previous study showed that UⅡ is a potent mitogen of airway smooth muscle cells (ASMC) inducing ASMC proliferation in a dose-dependent manner. The signal transduction pathway of UⅡ mitogenic effect remains to be clarified. This study was conducted to investigate the signal transduction pathway in the proliferation of ASMC induced by UⅡ.Methods In primary cultures of rat ASMCs, activities of protein kinase C (PKC), mitogen-activated protein kinase (MAPK) and calcineurin (CaN) induced by UⅡ were measured. The effect of CaN on PKC and MAPK was studied by adding cyclosporin A (CsA), a specific inhibitor of CaN. Using H7 and PD98059, inhibitors of PKC and MAPK, respectively, to study the effect of PKC and MAPK on CaN. The cytosolic free calcium concentration induced by UⅡ was measured using Fura-2/AM. Results UⅡ 10-7 mol/L stimulated ASMC PKC and MAPK activities by 44% and 24% (P0.05). CsA 10-6 mol/L inhibited UⅡ-stimulated PKC activity by 14% (P0.05).Conclusions UⅡ increases cytosolic free calcium concentration and activates PKC, MAPK and CaN. The signal transduction pathway between PKC and CaN has cross-talk.

  17. Signal transduction pathway of nitric oxide inducing PC12 cell death

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To study signal transduction pathway of nitric oxideinducing death of PC12 cells.Methods: Cell survival rate was measured with MTT assay, and caspase-3 activity with caspase-3 assay kits after PC12 cells were incubated with sodium nitroprusside (SNP), caspase-3 inhibitor Ⅱ plus SNP or p38 inhibitor-SB203580 plus SNP.Results: SNP induced death of PC12 cells in dose- and time-dependent manner and enhanced caspase-3 activity gradually. Both caspase-3 inhibitor Ⅱ and SB203580 reduced cell death, but SB203580 reduced caspase-3 activity significantly.Conclusions: NO may induce death of PC12 cells through activation of p38 and caspase-3.

  18. Gene transfer and genome-wide insertional mutagenesis by retroviral transduction in fish stem cells.

    Directory of Open Access Journals (Sweden)

    Qizhi Liu

    Full Text Available Retrovirus (RV is efficient for gene transfer and integration in dividing cells of diverse organisms. RV provides a powerful tool for insertional mutagenesis (IM to identify and functionally analyze genes essential for normal and pathological processes. Here we report RV-mediated gene transfer and genome-wide IM in fish stem cells from medaka and zebrafish. Three RVs were produced for fish cell transduction: rvLegfp and rvLcherry produce green fluorescent protein (GFP and mCherry fluorescent protein respectively under control of human cytomegalovirus immediate early promoter upon any chromosomal integration, whereas rvGTgfp contains a splicing acceptor and expresses GFP only upon gene trapping (GT via intronic in-frame integration and spliced to endogenous active genes. We show that rvLegfp and rvLcherry produce a transduction efficiency of 11~23% in medaka and zebrafish stem cell lines, which is as 30~67% efficient as the positive control in NIH/3T3. Upon co-infection with rvGTgfp and rvLcherry, GFP-positive cells were much fewer than Cherry-positive cells, consistent with rareness of productive gene trapping events versus random integration. Importantly, rvGTgfp infection in the medaka haploid embryonic stem (ES cell line HX1 generated GTgfp insertion on all 24 chromosomes of the haploid genome. Similar to the mammalian haploid cells, these insertion events were presented predominantly in intergenic regions and introns but rarely in exons. RV-transduced HX1 retained the ES cell properties such as stable growth, embryoid body formation and pluripotency gene expression. Therefore, RV is proficient for gene transfer and IM in fish stem cells. Our results open new avenue for genome-wide IM in medaka haploid ES cells in culture.

  19. Lentiviral Transduction of Mammary Stem Cells for Analysis of Gene Function during Development and Cancer

    Science.gov (United States)

    Welm, Bryan E.; Dijkgraaf, Gerrit J. P.; Bledau, Anita S.; Welm, Alana L.; Werb, Zena

    2008-01-01

    SUMMARY The mouse mammary gland is the only epithelial organ capable of complete regeneration upon orthotopic transplantation, making it ideally suited for in vivo gene function studies through viral mediated gene delivery. A hurdle that has challenged the widespread adoption of this technique has been the inability to transduce mammary stem cells effectively. We have overcome this limitation by infecting total primary mammary epithelial cells in suspension with high titer lentiviruses. Transduced cells gave rise to all major cell types of the mammary gland, and were capable of clonal outgrowth and functional differentiation in serial transplants. To demonstrate that this method is a valuable alternative to developing transgenic animals, we used lentiviral-mediated Wnt-1 overexpression to replicate MMTV-Wnt-1 mammary phenotypes and used a dominant-negative Xenopus Suppressor of Hairless to reveal a requirement for Notch signaling during ductal morphogenesis. Importantly, this method is also applicable to transduction of cells from other tissues. PMID:18371425

  20. Comprehensive analysis of signal transduction in three-dimensional ECM-based tumor cell cultures

    Directory of Open Access Journals (Sweden)

    Iris Eke

    2015-11-01

    Full Text Available Analysis of signal transduction and protein phosphorylation is fundamental to understand physiological and pathological cell behavior as well as identification of novel therapeutic targets. Despite the fact that more physiological three-dimensional cell culture assays are increasingly used, particularly proteomics and phosphoproteomics remain challenging due to easy, robust and reproducible sample preparation. Here, we present an easy-to-perform, reliable and time-efficient method for the production of 3D cell lysates without compromising cell adhesion before cell lysis. The samples can be used for Western blotting as well as phosphoproteome array technology. This technique would be of interest for researchers working in all fields of biology and drug development.

  1. A CRISPR-Based Toolbox for Studying T Cell Signal Transduction

    Science.gov (United States)

    Chi, Shen; Weiss, Arthur; Wang, Haopeng

    2016-01-01

    CRISPR/Cas9 system is a powerful technology to perform genome editing in a variety of cell types. To facilitate the application of Cas9 in mapping T cell signaling pathways, we generated a toolbox for large-scale genetic screens in human Jurkat T cells. The toolbox has three different Jurkat cell lines expressing distinct Cas9 variants, including wild-type Cas9, dCas9-KRAB, and sunCas9. We demonstrated that the toolbox allows us to rapidly disrupt endogenous gene expression at the DNA level and to efficiently repress or activate gene expression at the transcriptional level. The toolbox, in combination with multiple currently existing genome-wide sgRNA libraries, will be useful to systematically investigate T cell signal transduction using both loss-of-function and gain-of-function genetic screens. PMID:27057542

  2. A CRISPR-Based Toolbox for Studying T Cell Signal Transduction

    Directory of Open Access Journals (Sweden)

    Shen Chi

    2016-01-01

    Full Text Available CRISPR/Cas9 system is a powerful technology to perform genome editing in a variety of cell types. To facilitate the application of Cas9 in mapping T cell signaling pathways, we generated a toolbox for large-scale genetic screens in human Jurkat T cells. The toolbox has three different Jurkat cell lines expressing distinct Cas9 variants, including wild-type Cas9, dCas9-KRAB, and sunCas9. We demonstrated that the toolbox allows us to rapidly disrupt endogenous gene expression at the DNA level and to efficiently repress or activate gene expression at the transcriptional level. The toolbox, in combination with multiple currently existing genome-wide sgRNA libraries, will be useful to systematically investigate T cell signal transduction using both loss-of-function and gain-of-function genetic screens.

  3. Novel aspects on signal-transduction in the pancreatic beta-cell.

    Science.gov (United States)

    Berggren, Per-Olof; Leibiger, Ingo B

    2006-03-01

    The glucose-stimulus/insulin-secretion-coupling by the pancreatic beta-cell, which guarantees the maintenance of glucose homeostasis in man, is regulated by a sophisticated interplay between glucose and a plethora of additional factors. Besides other nutrients, incretins, nerval innervation, systemic growth factors as well as autocrine and paracrine regulatory loops within the islet of Langerhans modulate the function of the insulin-producing beta-cell. Although the modulatory role of these factors is well appreciated, the underlying molecular mechanisms involved remain poorly understood. However, in most cases beta-cell membrane receptors coupled primarily to either G-proteins or tyrosine kinases, which subsequently activate respective second messenger cascades, are involved. In the present mini-review we will discuss the role of signaling through some of these receptor-operated effector systems in the light of pancreatic beta-cell signal-transduction.

  4. MAPKs and Signal Transduction in the Control of Gastrointestinal Epithelial Cell Proliferation and Differentiation

    Directory of Open Access Journals (Sweden)

    Luciana H. Osaki

    2013-05-01

    Full Text Available Mitogen-activated protein kinase (MAPK pathways are activated by several stimuli and transduce the signal inside cells, generating diverse responses including cell proliferation, differentiation, migration and apoptosis. Each MAPK cascade comprises a series of molecules, and regulation takes place at different levels. They communicate with each other and with additional pathways, creating a signaling network that is important for cell fate determination. In this review, we focus on ERK, JNK, p38 and ERK5, the major MAPKs, and their interactions with PI3K-Akt, TGFβ/Smad and Wnt/β-catenin pathways. More importantly, we describe how MAPKs regulate cell proliferation and differentiation in the rapidly renewing epithelia that lines the gastrointestinal tract and, finally, we highlight the recent findings on nutritional aspects that affect MAPK transduction cascades.

  5. Hepatocyte growth factor improves direct reprogramming of fibroblasts towards endothelial progenitor cells via ETV2 transduction

    Directory of Open Access Journals (Sweden)

    Phuc Van Pham

    2016-09-01

    Full Text Available Human fibroblasts can be differentiated into endothelial progenitor cells by direct reprogramming via ETV-2 transfection. Previously, we have shown that the efficacy of direct reprogramming can be enhanced by hypoxia treatment. In this study, we aim to investigate whether the efficacy of direct reprogramming of fibroblasts into EPCs via Ets variant gene 2 (ETV2 transfection can be increased with hepatocyte growth factor (HGF treatment. Foreskin-derived fibroblasts were cultured in standard medium (DMEM/F12 supplemented with fetal bovine serum. They were then transduced with a viral vector expressing ETV2 in culture medium supplemented with HGF. The transduced fibroblasts were cultured in endothelial cell medium supplemented with HGF for 28 days. The efficacy of direct reprogramming was evaluated based on expression of CD31 and VEGFR2 markers by transduced cells. Phenotypic and functional characterization of induced EPCs were also confirmed by expression of particular genes and in vitro angiogenesis assays. Our results showed that HGF significantly increased the efficacy of direct reprogramming of fibroblasts towards EPCs via ETV2 transcription factors; efficiency increased from 5.41+/-1.51% for ETV2 transduction alone to 12.31+/-2.15% for ETV2 transduction combined with HGF treatment. These findings suggest the rationale for combined use of ETV2 and HGF in direct in vitro reprogramming of fibroblasts into EPCs. [Biomed Res Ther 2016; 3(9.000: 836-843

  6. THE TRANSMEMBRANE SIGNAL TRANSDUCTION IN HEp-2 CELLS INDUCED BY BACTERIAL ADHERENCE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@ In order to understand the role of transmembrane signal transduction of host cells in the early steps of infection,the adherence of E. coli to HEp-2 cells and the change of activity of phospholipase C-γ (PLC-γ) induced by the adherence were investigated.The adherence of enteropathogenic E.coli (EPEC), strain E.7, induced a significant increase of inositol-triphosphat (IP-3) level in HEp-2 cells. The adherence of the bacteria and the increase of IP-3 was kinetically correlated. Whereas the increase of IP3 level induced by the adherence of the control strain EPEC (H511), a non-piliated strain, was much meager than that by E7, a piliated strain. The results highlighted an important role of transmembrane signals like IP-3 in the pathogenesis of EPEC.

  7. Real-time monitoring of intracellular signal transduction in PC12 cells by non-adiabatic tapered optical fiber biosensor

    Science.gov (United States)

    Zibaii, M. I.; Latifi, H.; Asadollahi, A.; Noraeipoor, Z.; Dargahi, L.

    2014-05-01

    Real-time observation of intracellular process of signal transduction is very useful for biomedical and pharmaceutical applications as well as for basic research work of cell biology. For feasible and reagentless observation of intracellular alterations in real time, we examined the use of a nonadiabatic tapered optical fiber (NATOF) biosensor for monitoring of intracellular signal transduction that was mainly translocation of protein kinase C via refractive index change in PC12 cells adhered on tapered fiber sensor without any indicator reagent. PC12 cells were stimulated with KCl . Our results suggest that complex intracellular reactions could be real-time monitored and characterized by NATOF biosensor.

  8. Broad-minded links cell cycle-related kinase to cilia assembly and hedgehog signal transduction.

    Science.gov (United States)

    Ko, Hyuk Wan; Norman, Ryan X; Tran, John; Fuller, Kimberly P; Fukuda, Mitsunori; Eggenschwiler, Jonathan T

    2010-02-16

    Recent findings indicate that mammalian Sonic hedgehog (Shh) signal transduction occurs within primary cilia, although the cell biological mechanisms underlying both Shh signaling and ciliogenesis have not been fully elucidated. We show that an uncharacterized TBC domain-containing protein, Broad-minded (Bromi), is required for high-level Shh responses in the mouse neural tube. We find that Bromi controls ciliary morphology and proper Gli2 localization within the cilium. By use of a zebrafish model, we further show that Bromi is required for proper association between the ciliary membrane and axoneme. Bromi physically interacts with cell cycle-related kinase (CCRK), whose Chlamydomonas homolog regulates flagellar length. Biochemical and genetic interaction data indicate that Bromi promotes CCRK stability and function. We propose that Bromi and CCRK control the structure of the primary cilium by coordinating assembly of the axoneme and ciliary membrane, allowing Gli proteins to be properly activated in response to Shh signaling.

  9. Coating with spermine-pullulan polymer enhances adenoviral transduction of mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Wan L

    2016-12-01

    coating could enhance adenoviral transduction of MSCs without detectable cytotoxicity or effects on differentiation. Our results argue in favor of the potentiality of the SP-coated Adv as a prototype vector for efficient and safe transduction of MSCs. Keywords: mesenchymal stem cells, adenovirus vectors, spermine-pullulan, polymer, gene transduction

  10. Adenoviral transduction of mesenchymal stem cells: in vitro responses and in vivo immune responses after cell transplantation.

    Directory of Open Access Journals (Sweden)

    Oliver Treacy

    Full Text Available Adult mesenchymal stem cells (MSCs are non-hematopoietic cells with multi-lineage potential which makes them attractive targets for regenerative medicine applications. However, to date, therapeutic success of MSC-therapy is limited and the genetic modification of MSCs using viral vectors is one option to improve their therapeutic potential. Ex-vivo genetic modification of MSCs using recombinant adenovirus (Ad could be promising to reduce undesired immune responses as Ad will be removed before cell/tissue transplantation. In this regard, we investigated whether Ad-modification of MSCs alters their immunological properties in vitro and in vivo. We found that Ad-transduction of MSCs does not lead to up-regulation of major histocompatibility complex class I and II and co-stimulatory molecules CD80 and CD86. Moreover, Ad-transduction caused no significant changes in terms of pro-inflammatory cytokine expression, chemokine and chemokine receptor and Toll-like receptor expression. In addition, Ad-modification of MSCs had no affect on their ability to suppress T cell proliferation in vitro. In vivo injection of Ad-transduced MSCs did not change the frequency of various immune cell populations (antigen presenting cells, T helper and cytotoxic T cells, natural killer and natural killer T cells neither in the blood nor in tissues. Our results indicate that Ad-modification has no major influence on the immunological properties of MSCs and therefore can be considered as a suitable gene vector for therapeutic applications of MSCs.

  11. Enhanced lentiviral transduction of monocyte-derived dendritic cells in the presence of conditioned medium from dying monocytes.

    Science.gov (United States)

    Masurier, C; Boutin, S; Veron, P; Bernard, J; Danos, O; Davoust, J

    2007-02-01

    Lentiviral vectors (LVs) are attractive vehicles for the transduction of human dendritic cells (DCs) in order to mobilize their endogenous antigen presentation pathways. We analyzed here how to improve the efficiency of LV transduction, which we performed at the initial stages of the differentiation of purified monocytes into dendritic cells (Mo-DCs). Using LVs pseudotyped with the vesicular stomatitis virus envelope G glycoprotein (VSV-G), we found that a conditioned medium derived from dying monocytes (MCM) improved by 2- to 10- fold the proportion of transduced Mo-DCs. This enhanced transduction efficiency requires the presence of MCM during the initial stage of LV transduction and does not affect the phenotype and antigen presentation function of terminally differentiated Mo-DCs. Importantly, we found that MCM derived from a human acute monocytic leukemia cell line, THP-1, was equally effective. The MCM activity was heat stable (56 degrees C) and was present in the soluble fraction after high-speed centrifugation. Altogether our results show that a soluble factor present in dying monocyte cultures can replace advantageously facilitating agents such as Polybrene, to achieve high LV transductions levels. This protocol can be performed with autologous monocytes and is therefore applicable in clinical settings.

  12. Microgravity-induced alterations in signal transduction in cells of the immune system

    Science.gov (United States)

    Paulsen, Katrin; Thiel, Cora; Timm, Johanna; Schmidt, Peter M.; Huber, Kathrin; Tauber, Svantje; Hemmersbach, Ruth; Seibt, Dieter; Kroll, Hartmut; Grote, Karl-Heinrich; Zipp, Frauke; Schneider-Stock, Regine; Cogoli, Augusto; Hilliger, Andre; Engelmann, Frank; Ullrich, Oliver

    2010-11-01

    Since decades it is known that the activity of cells of the immune system is severely dysregulated in microgravity, however, the underlying molecular aspects have not been elucidated yet. The identification of gravity-sensitive molecular mechanisms in cells of the immune system is an important and indispensable prerequisite for the development of counteractive measures to prevent or treat disturbed immune cell function of astronauts during long-term space missions. Moreover, their sensitivity to altered gravity renders immune cells an ideal model system to understand if and how gravity on Earth is required for normal mammalian cell function and signal transduction. We investigated the effect of simulated weightlessness (2D clinostat) and of real microgravity (parabolic flights) on key signal pathways in a human monocytic and a T lymphocyte cell line. We found that cellular responses to microgravity strongly depend on the cell-type and the conditions in which the cells are subjected to microgravity. In Jurkat T cells, enhanced phosphorylation of the MAP kinases ERK-1/2, MEK and p38 and inhibition of nuclear translocation of NF-kB were the predominant responses to simulated weightlessness, in either stimulated or non-stimulated cells. In contrast, non-stimulated monocytic U937 cells responded to simulated weightlessness with enhanced overall tyrosine-phosphorylation and activation of c-jun, whereas PMA-stimulated U937 cells responded the opposite way with reduced tyrosine-phosphorylation and reduced activation of c-jun, compared with PMA-stimulated 1 g controls. P53 protein was phosphorylated rapidly in microgravity. The identification of gravi-sensitive mechanisms in cells of the immune system will not only enable us to understand and prevent the negative effects of long time exposure to microgravity on Astronauts, but could also lead to novel therapeutic targets in general.

  13. Isolation, culture and adenoviral transduction of parietal cells from mouse gastric mucosa

    Energy Technology Data Exchange (ETDEWEB)

    Gliddon, Briony L; Nguyen, Nhung V; Gunn, Priscilla A; Gleeson, Paul A; Driel, Ian R van [The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Melbourne, Victoria 3010 (Australia)], E-mail: i.vandriel@unimelb.edu.au

    2008-09-01

    Here we describe a method for the isolation of intact gastric glands from mice and primary culture and transfection of mouse gastric epithelial cells. Collagenase digestion of PBS-perfused mouse stomachs released large intact gastric glands that were plated on a basement membrane matrix. The heterogeneous gland cell cultures typically contain {approx}60% parietal cells. Isolated mouse parietal cells remain viable in culture for up to 5 days and react strongly with an antibody specific to the gastric H{sup +}/K{sup +} ATPase. Isolated intact mouse gastric glands and primary cultures of mouse parietal cells respond to the secretagogue, histamine. Typical morphological changes from a resting to an acid-secreting active parietal cell were observed. In resting cultures of mouse parietal cells, the H{sup +}/K{sup +} ATPase displayed a cytoplasmic punctate staining pattern consistent with tubulovesicle element structures. Following histamine stimulation, an expansion of internal apical vacuole structures was observed together with a pronounced redistribution of the H{sup +}/K{sup +} ATPase from the cytoplasm to the apical vacuoles. A reproducible procedure to express genes of interest exogenously in these cultures of mouse parietal cells was also established. This method combines recombinant adenoviral transduction with magnetic field-assisted transfection resulting in {approx}30% transduced parietal cells. Adenoviral-transduced parietal cells maintain their ability to undergo agonist-induced activation. This protocol will be useful for the isolation, culture and expression of genes in parietal cells from genetically modified mice and as such will be an invaluable tool for studying the complex exocytic and endocytic trafficking events of the H{sup +}/K{sup +} ATPase which underpin the regulation of acid secretion.

  14. The merged basins of signal transduction pathways in spatiotemporal cell biology.

    Science.gov (United States)

    Hou, Yingchun; Hou, Yang; He, Siyu; Ma, Caixia; Sun, Mengyao; He, Huimin; Gao, Ning

    2014-03-01

    Numerous evidences have indicated that a signal system is composed by signal pathways, each pathway is composed by sub-pathways, and the sub-pathway is composed by the original signal terminals initiated with a protein/gene. We infer the terminal signals merged signal transduction system as "signal basin". In this article, we discussed the composition and regulation of signal basins, and the relationship between the signal basin control and triple W of spatiotemporal cell biology. Finally, we evaluated the importance of the systemic regulation to gene expression by signal basins under triple W. We hope our discussion will be the beginning to cause the attention for this area from the scientists of life science.

  15. Ion channels regulating mast cell biology.

    Science.gov (United States)

    Ashmole, I; Bradding, P

    2013-05-01

    Mast cells play a central role in the pathophysiology of asthma and related allergic conditions. Mast cell activation leads to the degranulation of preformed mediators such as histamine and the secretion of newly synthesised proinflammatory mediators such as leukotrienes and cytokines. Excess release of these mediators contributes to allergic disease states. An influx of extracellular Ca2+ is essential for mast cell mediator release. From the Ca2+ channels that mediate this influx, to the K+ , Cl- and transient receptor potential channels that set the cell membrane potential and regulate Ca2+ influx, ion channels play a critical role in mast cell biology. In this review we provide an overview of our current knowledge of ion channel expression and function in mast cells with an emphasis on how channels interact to regulate Ca2+ signalling.

  16. Comparative mechanisms of protein transduction mediated by cell-penetrating peptides in prokaryotes.

    Science.gov (United States)

    Liu, Betty Revon; Huang, Yue-Wern; Aronstam, Robert S; Lee, Han-Jung

    2015-04-01

    Bacterial and archaeal cell envelopes are complex multilayered barriers that serve to protect these microorganisms from their extremely harsh and often hostile environments. Import of exogenous proteins and nanoparticles into cells is important for biotechnological applications in prokaryotes. In this report, we demonstrate that cell-penetrating peptides (CPPs), both bacteria-expressed nona-arginine peptide (R9) and synthetic R9 (SR9), are able to deliver noncovalently associated proteins or quantum dots into four representative species of prokaryotes: cyanobacteria (Synechocystis sp. PCC 6803), bacteria (Escherichia coli DH5α and Arthrobacter ilicis D-50), and archaea (Thermus aquaticus). Although energy-dependent endocytosis is generally accepted as a hallmark that distinguishes eukaryotes from prokaryotes, cellular uptake of uncomplexed green fluorescent protein (GFP) by cyanobacteria was mediated by classical endocytosis. Mechanistic studies revealed that macropinocytosis plays a critical and major role in CPP-mediated protein transduction in all four prokaryotes. Membrane damage was not observed when cyanobacterial cells were treated with R9/GFP complexes, nor was cytotoxicity detected when bacteria or archaea were treated with SR9/QD complexes in the presence of macropinocytic inhibitors. These results indicate that the uptake of protein is not due to a compromise of membrane integrity in cyanobacteria, and that CPP can be an effective and safe carrier for membrane trafficking in prokaryotic cells. Our investigation provides important new insights into the transport of exogenous proteins and nanoparticles across the complex membrane systems of prokaryotes.

  17. The sulfiredoxin-peroxiredoxin (Srx-Prx) axis in cell signal transduction and cancer development.

    Science.gov (United States)

    Mishra, Murli; Jiang, Hong; Wu, Lisha; Chawsheen, Hedy A; Wei, Qiou

    2015-10-01

    Redox signaling is a critical component of cell signaling pathways that are involved in the regulation of cell growth, metabolism, hormone signaling, immune regulation and variety of other physiological functions. Peroxiredoxin (Prx) is a family of thiol-based peroxidase that acts as a regulator of redox signaling. Members of Prx family can act as antioxidants and chaperones. Sulfiredoxin (Srx) is an antioxidant protein that exclusively reduces over-oxidized typical 2-Cys Prx. Srx has different affinities for individual Prx and it also catalyzes the deglutathionylation of variety of substrates. Individual component of the Srx-Prx system plays critical role in carcinogenesis by modulating cell signaling pathways involved in cell proliferation, migration and metastasis. Expression levels of individual component of the Srx-Prx axis have been correlated with patient survival outcome in multiple cancer types. This review will summarize the molecular basis of differences in the affinity of Srx for individual Prx and the role of individual component of the Srx-Prx system in tumor progression and metastasis. This enhanced understanding of molecular aspects of Srx-Prx interaction and its role in cell signal transduction will help define the Srx-Prx system as a future therapeutic target in human cancer.

  18. Signal transduction induced in Trypanosoma cruzi metacyclic trypomastigotes during the invasion of mammalian cells

    Directory of Open Access Journals (Sweden)

    N. Yoshida

    2000-03-01

    Full Text Available Penetration of Trypanosoma cruzi into mammalian cells depends on the activation of the parasite's protein tyrosine kinase and on the increase in cytosolic Ca2+ concentration. We used metacyclic trypomastigotes, the T. cruzi developmental forms that initiate infection in mammalian hosts, to investigate the association of these two events and to identify the various components of the parasite signal transduction pathway involved in host cell invasion. We have found that i both the protein tyrosine kinase activation, as measured by phosphorylation of a 175-kDa protein (p175, and Ca2+ mobilization were induced in the metacyclic forms by the HeLa cell extract but not by the extract of T. cruzi-resistant K562 cells; ii treatment of parasites with the tyrosine kinase inhibitor genistein blocked both p175 phosphorylation and the increase in cytosolic Ca2+ concentration; iii the recombinant protein J18, which contains the full-length sequence of gp82, a metacyclic stage surface glycoprotein involved in target cell invasion, interfered with tyrosine kinase and Ca2+ responses, whereas the monoclonal antibody 3F6 directed at gp82 induced parasite p175 phosphorylation and Ca2+ mobilization; iv treatment of metacyclic forms with phospholipase C inhibitor U73122 blocked Ca2+ signaling and impaired the ability of the parasites to enter HeLa cells, and v drugs such as heparin, a competitive IP3-receptor blocker, caffeine, which affects Ca2+ release from IP3-sensitive stores, in addition to thapsigargin, which depletes intracellular Ca2+ compartments and lithium ion, reduced the parasite infectivity. Taken together, these data suggest that protein tyrosine kinase, phospholipase C and IP3 are involved in the signaling cascade that is initiated on the parasite cell surface by gp82 and leads to Ca2+ mobilization required for target cell invasion.

  19. MMP-1/PAR-1 signal transduction axis and its prognostic impact in esophageal squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Hong-hua; Zhang, Xi; Cao, Pei-guo [Department of Oncology, the Third Xiangya Hospital, Central South University, Changsha, Hunan Province (China)

    2011-11-18

    The matrix metalloprotease-1 (MMP-1)/protease-activated receptor-1 (PAR-1) signal transduction axis plays an important role in tumorigenesis. To explore the expression and prognostic value of MMP-1 and PAR-1 in esophageal squamous cell carcinoma (ESCC), we evaluated the expression of two proteins in resected specimens from 85 patients with ESCC by immunohistochemistry. Sixty-two (72.9%) and 58 (68.2%) tumors were MMP-1- and PAR-1-positive, respectively, while no significant staining was observed in normal esophageal squamous epithelium. MMP-1 and PAR-1 overexpression was significantly associated with tumor node metastasis (TNM) stage and regional lymph node involvement. Patients with MMP-1- and PAR-1-positive tumors, respectively, had poorer disease-free survival (DFS) than those with negative ESCC (P = 0.002 and 0.003, respectively). Univariate analysis showed a significant relationship between TNM stage [hazard ratio (HR) = 2.836, 95% confidence interval (CI) = 1.866-4.308], regional lymph node involvement (HR = 2.955, 95%CI = 1.713-5.068), MMP-1 expression (HR = 2.669, 95%CI = 1.229-6.127), and PAR-1 expression (HR = 1.762, 95%CI = 1.156-2.883) and DFS. Multivariate analysis including the above four parameters identified TNM stage (HR = 2.035, 95%CI = 1.167-3.681), MMP-1 expression (HR = 2.109, 95%CI = 1.293-3.279), and PAR-1 expression (HR = 1.967, 95%CI = 1.256-2.881) as independent and significant prognostic factors for DFS. Our data suggest for the first time that MMP-1 and PAR-1 were both overexpressed in ESCC and are novel predictors of poor patient prognosis after curative resection. The MMP-1/PAR-1 signal transduction axis might be a new therapeutic target for future therapies tailored against ESCC.

  20. MMP-1/PAR-1 signal transduction axis and its prognostic impact in esophageal squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Hong-hua Peng

    2012-01-01

    Full Text Available The matrix metalloprotease-1 (MMP-1/protease-activated receptor-1 (PAR-1 signal transduction axis plays an important role in tumorigenesis. To explore the expression and prognostic value of MMP-1 and PAR-1 in esophageal squamous cell carcinoma (ESCC, we evaluated the expression of two proteins in resected specimens from 85 patients with ESCC by immunohistochemistry. Sixty-two (72.9% and 58 (68.2% tumors were MMP-1- and PAR-1-positive, respectively, while no significant staining was observed in normal esophageal squamous epithelium. MMP-1 and PAR-1 overexpression was significantly associated with tumor node metastasis (TNM stage and regional lymph node involvement. Patients with MMP-1- and PAR-1-positive tumors, respectively, had poorer disease-free survival (DFS than those with negative ESCC (P = 0.002 and 0.003, respectively. Univariate analysis showed a significant relationship between TNM stage [hazard ratio (HR = 2.836, 95% confidence interval (CI = 1.866-4.308], regional lymph node involvement (HR = 2.955, 95%CI = 1.713-5.068, MMP-1 expression (HR = 2.669, 95%CI = 1.229-6.127, and PAR-1 expression (HR = 1.762, 95%CI = 1.156-2.883 and DFS. Multivariate analysis including the above four parameters identified TNM stage (HR = 2.035, 95%CI = 1.167-3.681, MMP-1 expression (HR = 2.109, 95%CI = 1.293-3.279, and PAR-1 expression (HR = 1.967, 95%CI = 1.256-2.881 as independent and significant prognostic factors for DFS. Our data suggest for the first time that MMP-1 and PAR-1 were both overexpressed in ESCC and are novel predictors of poor patient prognosis after curative resection. The MMP-1/PAR-1 signal transduction axis might be a new therapeutic target for future therapies tailored against ESCC.

  1. Cell volume-regulated cation channels.

    Science.gov (United States)

    Wehner, Frank

    2006-01-01

    Considering the enormous turnover rates of ion channels when compared to carriers it is quite obvious that channel-mediated ion transport may serve as a rapid and efficient mechanism of cell volume regulation. Whenever studied in a quantitative fashion the hypertonic activation of non-selective cation channels is found to be the main mechanism of regulatory volume increase (RVI). Some channels are inhibited by amiloride (and may be related to the ENaC), others are blocked by Gd(3) and flufenamate (and possibly linked to the group of transient receptor potential (TRP) channels). Nevertheless, the actual architecture of hypertonicity-induced cation channels remains to be defined. In some preparations, hypertonic stress decreases K(+) channel activity so reducing the continuous K(+) leak out of the cell; this is equivalent to a net gain of cell osmolytes facilitating RVI. The hypotonic activation of K(+) selective channels appears to be one of the most common principles of regulatory volume decrease (RVD) and, in most instances, the actual channels involved could be identified on the molecular level. These are BKCa (or maxi K(+)) channels, IK(Ca) and SK(Ca) channels (of intermediate and small conductance, respectively), the group of voltage-gated (Kv) channels including their Beta (or Kv ancilliary) subunits, two-pore K(2P) channels, as well as inwardly rectifying K(+) (Kir) channels (also contributing to K(ATP) channels). In some cells, hypotonicity activates non-selective cation channels. This is surprising, at first sight, because of the inside negative membrane voltage and the sum of driving forces for Na(+) and K(+) diffusion across the cell membrane rather favouring net cation uptake. Some of these channels, however, exhibit a P(K)/P(Na) significantly higher than 1, whereas others are Ca(++) permeable linking hypotonic stress to the activation of Ca(++) dependent ion channels. In particular, the latter holds for the group of TRPs which are specialised in the

  2. Dental enamel cells express functional SOCE channels.

    Science.gov (United States)

    Nurbaeva, Meerim K; Eckstein, Miriam; Concepcion, Axel R; Smith, Charles E; Srikanth, Sonal; Paine, Michael L; Gwack, Yousang; Hubbard, Michael J; Feske, Stefan; Lacruz, Rodrigo S

    2015-10-30

    Dental enamel formation requires large quantities of Ca(2+) yet the mechanisms mediating Ca(2+) dynamics in enamel cells are unclear. Store-operated Ca(2+) entry (SOCE) channels are important Ca(2+) influx mechanisms in many cells. SOCE involves release of Ca(2+) from intracellular pools followed by Ca(2+) entry. The best-characterized SOCE channels are the Ca(2+) release-activated Ca(2+) (CRAC) channels. As patients with mutations in the CRAC channel genes STIM1 and ORAI1 show abnormal enamel mineralization, we hypothesized that CRAC channels might be an important Ca(2+) uptake mechanism in enamel cells. Investigating primary murine enamel cells, we found that key components of CRAC channels (ORAI1, ORAI2, ORAI3, STIM1, STIM2) were expressed and most abundant during the maturation stage of enamel development. Furthermore, inositol 1,4,5-trisphosphate receptor (IP3R) but not ryanodine receptor (RyR) expression was high in enamel cells suggesting that IP3Rs are the main ER Ca(2+) release mechanism. Passive depletion of ER Ca(2+) stores with thapsigargin resulted in a significant raise in [Ca(2+)]i consistent with SOCE. In cells pre-treated with the CRAC channel blocker Synta-66 Ca(2+) entry was significantly inhibited. These data demonstrate that enamel cells have SOCE mediated by CRAC channels and implicate them as a mechanism for Ca(2+) uptake in enamel formation.

  3. Inquiry into Chemotherapy-Induced P53 Activation in Cancer Cells as a Model for Teaching Signal Transduction

    Science.gov (United States)

    Srougi, Melissa C.; Carson, Susan

    2013-01-01

    Intracellular and extracellular communication is conducted through an intricate and interwoven network of signal transduction pathways. The mechanisms for how cells speak with one another are of significant biological importance to both basic and industrial scientists from a number of different disciplines. We have therefore developed and…

  4. HLA-DR molecules enhance signal transduction through the CD3/Ti complex in activated T cells

    DEFF Research Database (Denmark)

    Odum, Niels; Martin, P J; Schieven, G L;

    1991-01-01

    Crosslinking HLA-DR molecules by monoclonal antibodies (mAb) induces protein tyrosine phosphorylation and results in a secondary elevation of free cytoplasmic Ca2+ concentration ([Ca2+]i) in activated human T cells. Here we have studied the effect of DR on CD3-induced signal transduction...

  5. Lipid Rafts and Signal Transduction of Cell%脂筏与细胞信号转导

    Institute of Scientific and Technical Information of China (English)

    范玉贞

    2011-01-01

    论述了脂筏的组成、结构与功能,脂筏在细胞信号转导正负调控、T细胞的信号转导、精子膜的信号转导过程中的作用及其机制.小窝蛋白及其参与的信号转导过程与葡萄糖运输、糖尿病及其并发症有密切关系.%This article discusses the composition,structure and function of lipid rafts and the mechanism of lipid rafts in signal transduction plus or minus regulation,T cell signal transduction,signal transduction process of sperm membrane.Caveolins and its partic

  6. Transduction of anti-cell death protein FNK suppresses graft degeneration after autologous cylindrical osteochondral transplantation.

    Science.gov (United States)

    Nakachi, Noriki; Asoh, Sadamitsu; Watanabe, Nobuyoshi; Mori, Takashi; Matsushita, Takashi; Takai, Shinro; Ohta, Shigeo

    2009-03-01

    This study shows that artificial super antiapoptotic FNK protein fused with a protein transduction domain (PTD-FNK) maintains the quality of osteochondral transplant by preventing chondrocyte death. Cylindrical osteochondral grafts were obtained from enhanced green fluorescent protein (EGFP)-expressing transgenic rats, in which living chondrocytes express green fluorescence, and submerged into medium containing PTD-FNK, followed by transplantation into cartilage defects of wild-type rats by impact insertion simulating autologous transplantation. The tissues were histologically evaluated by hematoxylin-eosin and Safranin-O staining. At 1 week, chondrocyte alignment was normal in the PTD-FNK treatment group, whereas all grafts without PTD-FNK treatment showed mixed cluster cell distribution. At 4 weeks, all grafts with PTD-FNK treatment showed almost normal matrix, whereas two grafts without PTD-FNK treatment showed fibrocartilage. Notably, all grafts with PTD-FNK retained high intensity of Safranin-O staining, but all grafts without PTD-FNK largely lost Safranin-O staining. PTD-FNK significantly suppressed a decrease in the survival rate and the density of EGFP-positive cells at 1 and 2 weeks, and this tendency continued at 4 weeks. The results of terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate (dUTP)-nick end-labeling staining showed that PTD-FNK inhibited cell death, indicating that PTD-FNK protects chondrocyte death and suppresses graft degeneration.

  7. SLAM-enriched hematopoietic stem cells maintain long-term repopulating capacity after lentiviral transduction using an abbreviated protocol.

    Science.gov (United States)

    Laje, P; Zoltick, P W; Flake, A W

    2010-03-01

    Gene transfer to long-term repopulating hematopoietic stem cells (HSCs) using integrating viral vectors is an important goal in gene therapy. The SLAM (signaling lymphocyte activation molecule)-family receptors have recently been used for the isolation of highly enriched murine HSCs. This HSC enrichment protocol is relatively simple, and results in an HSC population with comparable repopulating capacity to c-kit(+)lin(-)Sca-1(+) (KSL) HSCs. The capacity to withstand genetic manipulation and, most importantly, to maintain long-term repopulating capacity of SLAM-enriched HSC populations has not been reported. In this study, SLAM-enriched HSCs were assessed for transduction efficiency and in vivo long-term repopulating capacity after lentiviral transduction using an abbreviated transduction protocol and KSL-enriched HSCs as a reference population. SLAM- and KSL-enriched HSCs were efficiently transduced by lentiviral vector using a simple protocol that involves minimal in vitro manipulation and no pre-stimulation. SLAM-HSCs are at least equal to KSL-HSCs with respect to efficiency of transduction and maintenance of long-term repopulating capacity. Although there was a reduction in repopulating capacity related to enrichment and culture manipulations relative to freshly isolated bone marrow (BM) cells, no detrimental effects were identified on long-term competitive capacity related to transduction, as transduced cells maintained stable levels of chimerism in competition with non-transduced cells and freshly isolated BM cells. These results support the SLAM-HSC enrichment protocol as a simple and efficient method for HSC enrichment for gene transfer studies.

  8. ISL1 protein transduction promotes cardiomyocyte differentiation from human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Hananeh Fonoudi

    Full Text Available BACKGROUND: Human embryonic stem cells (hESCs have the potential to provide an unlimited source of cardiomyocytes, which are invaluable resources for drug or toxicology screening, medical research, and cell therapy. Currently a number of obstacles exist such as the insufficient efficiency of differentiation protocols, which should be overcome before hESC-derived cardiomyocytes can be used for clinical applications. Although the differentiation efficiency can be improved by the genetic manipulation of hESCs to over-express cardiac-specific transcription factors, these differentiated cells are not safe enough to be applied in cell therapy. Protein transduction has been demonstrated as an alternative approach for increasing the efficiency of hESCs differentiation toward cardiomyocytes. METHODS: We present an efficient protocol for the differentiation of hESCs in suspension by direct introduction of a LIM homeodomain transcription factor, Islet1 (ISL1 recombinant protein into the cells. RESULTS: We found that the highest beating clusters were derived by continuous treatment of hESCs with 40 µg/ml recombinant ISL1 protein during days 1-8 after the initiation of differentiation. The treatment resulted in up to a 3-fold increase in the number of beating areas. In addition, the number of cells that expressed cardiac specific markers (cTnT, CONNEXIN 43, ACTININ, and GATA4 doubled. This protocol was also reproducible for another hESC line. CONCLUSIONS: This study has presented a new, efficient, and reproducible procedure for cardiomyocytes differentiation. Our results will pave the way for scaled up and controlled differentiation of hESCs to be used for biomedical applications in a bioreactor culture system.

  9. A TRPV2–PKA Signaling Module for Transduction of Physical Stimuli in Mast Cells

    Science.gov (United States)

    Stokes, Alexander J.; Shimoda, Lori M.N.; Koblan-Huberson, Murielle; Adra, Chaker N.; Turner, Helen

    2004-01-01

    Cutaneous mast cell responses to physical (thermal, mechanical, or osmotic) stimuli underlie the pathology of physical urticarias. In vitro experiments suggest that mast cells respond directly to these stimuli, implying that a signaling mechanism couples functional responses to physical inputs in mast cells. We asked whether transient receptor potential (vanilloid) (TRPV) cation channels were present and functionally coupled to signaling pathways in mast cells, since expression of this channel subfamily confers sensitivity to thermal, osmotic, and pressure inputs. Transcripts for a range of TRPVs were detected in mast cells, and we report the expression, surface localization, and oligomerization of TRPV2 protein subunits in these cells. We describe the functional coupling of TRPV2 protein to calcium fluxes and proinflammatory degranulation events in mast cells. In addition, we describe a novel protein kinase A (PKA)–dependent signaling module, containing PKA and a putative A kinase adapter protein, Acyl CoA binding domain protein (ACBD)3, that interacts with TRPV2 in mast cells. We propose that regulated phosphorylation by PKA may be a common pathway for TRPV modulation. PMID:15249591

  10. Optimization of lentiviral vector transduction into peripheral blood mononuclear cells in combination with the fibronectin fragment CH-296 stimulation.

    Science.gov (United States)

    Chono, Hideto; Goto, Yumi; Yamakawa, Satoko; Tanaka, Shinya; Tosaka, Yasuhiro; Nukaya, Ikuei; Mineno, Junichi

    2011-03-01

    Large scale T-cell expansion and efficient gene transduction are required for adoptive T-cell gene therapy. Based on our previous observations, human peripheral blood mononuclear cells (PBMCs) can be expanded efficiently while conserving a naïve phenotype by stimulating with both recombinant human fibronectin fragment (CH-296) and anti-CD3 monoclonal antibodies. In this article, we explored the possibility of using this co-stimulation method to generate engineered T cells using lentiviral vector. Human PBMCs were stimulated with anti-CD3 together with immobilized CH-296 or anti-CD28 antibody as well as anti-CD3/anti-CD28 conjugated beads and transduced with lentiviral vector simultaneously. Co-stimulation with CH-296 gave superior transduction efficiency than with anti-CD28. Next, PBMCs were stimulated and transduced with anti-CD3/CH-296 or with anti-CD3/CD28 beads. T-cell expansion, gene transfer efficiencies and immunophenotypes were analysed. Stimulation with anti-CD3/CH-296 resulted in more than 10-times higher cell expansion and higher gene transfer efficiency with conservation of the naïve phenotype compared with anti-CD3/CD28 stimulation method. Thus, lentiviral transduction with anti-CD3/CH-296 co-stimulation is an efficient way to generate large numbers of genetically modified T cells and may be suitable for many gene therapy protocols that use adoptive T-cell transfer therapy.

  11. Molecular hydrogen suppresses FcepsilonRI-mediated signal transduction and prevents degranulation of mast cells.

    Science.gov (United States)

    Itoh, Tomohiro; Fujita, Yasunori; Ito, Mikako; Masuda, Akio; Ohno, Kinji; Ichihara, Masatoshi; Kojima, Toshio; Nozawa, Yoshinori; Ito, Masafumi

    2009-11-27

    Molecular hydrogen ameliorates oxidative stress-associated diseases in animal models. We found that oral intake of hydrogen-rich water abolishes an immediate-type allergic reaction in mice. Using rat RBL-2H3 mast cells, we demonstrated that hydrogen attenuates phosphorylation of the FcepsilonRI-associated Lyn and its downstream signal transduction, which subsequently inhibits the NADPH oxidase activity and reduces the generation of hydrogen peroxide. We also found that inhibition of NADPH oxidase attenuates phosphorylation of Lyn in mast cells, indicating the presence of a feed-forward loop that potentiates the allergic responses. Hydrogen accordingly inhibits all tested signaling molecule(s) in the loop. Hydrogen effects have been solely ascribed to exclusive removal of hydroxyl radical. In the immediate-type allergic reaction, hydrogen exerts its beneficial effect not by its radical scavenging activity but by modulating a specific signaling pathway. Effects of hydrogen in other diseases are possibly mediated by modulation of yet unidentified signaling pathways. Our studies also suggest that hydrogen is a gaseous signaling molecule like nitric oxide.

  12. Cell cycle requirements for transduction by foamy virus vectors compared to those of oncovirus and lentivirus vectors.

    Science.gov (United States)

    Trobridge, Grant; Russell, David W

    2004-03-01

    Retroviral vectors based on foamy viruses (FV) are efficient gene delivery vehicles for therapeutic and research applications. While previous studies have shown that FV vectors transduce quiescent cell cultures more efficiently than oncoviral vectors, their specific cell cycle requirements have not been determined. Here we compare the transduction frequencies of FV vectors with those of onco- and lentiviral vectors in nondividing and dividing normal human fibroblasts by several methods. FV vectors transduced serum-deprived fibroblast cultures more efficiently than oncoretroviral vectors and at rates comparable to those of lentiviral vectors. However, in these cultures FV vectors only transduced a subpopulation of proliferating cells, as determined by bromodeoxyuridine staining for DNA synthesis. In contrast to lentiviral vectors, FV vectors were unable to transduce human fibroblasts arrested by aphidicolin (G(1)/S phase) or gamma-irradiation (G(2) phase), and a partial cell cycle that included mitosis but not DNA synthesis was required. We could not determine if mitosis facilitated nuclear entry of FV vectors, since cell-free vector preparations contained long terminal repeat circles, precluding their use as nuclear markers. In contrast to oncoviral vectors, both FV and lentiviral vectors efficiently transduced G(0) fibroblasts that were later stimulated to divide. In the case of FV vectors, this was due to the persistence of a stable transduction intermediate in quiescent cells. Our findings support the use of FV vectors as a safe and effective alternative to lentiviral vectors for ex vivo transduction of stem cells that are quiescent during culture but divide following transplantation.

  13. Effect of proline rich domain of an RNA-binding protein Sam68 in cell growth process, death and B cell signal transduction

    Institute of Scientific and Technical Information of China (English)

    LI Qing-hua; FAN Tian-xue; PANG Tian-xiang; YUAN Wen-su; HAN Zhong-chao

    2006-01-01

    Background Sam68 plays an important role as a multiple functional RNA binding nuclear protein in cell cycle progress, RNA usage, signal transduction, and tyrosine phosphorylation by Src during mitosis. However, its precise impact on these essential cellular functions remains unclear. The purpose of this study is to further elucidate Sam68 functions in RNA metabolism, signal transduction regulation of cell growth and cell proliferation in DT40 cell line.Methods By using gene targeting method, we isolated a mutation form of Sam68 in DT40 cells and described its effect on cell growth process and signal transduction. Southern, Northern, and Western blot, phosphorylation and flow-cytometfic analyses were performed to investigate the Sam68 functions.Results A slower growth rate (2.1 hours growth elongation) and longer S phase (1.7 hours elongation) was observed in the Sam68 mutant cells. Serum depletion resulted in increased amounts of dead cells, and expansion of S phase in mutant cells. Upon B cell cross-linking, the maximal level of tyrosine phosphorylation on BLNK was observed to be significantly lower in mutant cells.Conclusions The proline rich domain of Sam68 is involved in cell growth control by modulating the function of mRNAs in S phase or earlier and the functions as an adaptor molecule in B cell signal transduction pathways.

  14. Signal transduction factors on the modulation of radiosusceptibility in K562 cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Kwang Mo; Jeong, Soo Jin [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Youn, Seon Min [College of Medicine, Eulji Univ., Daejeon (Korea, Republic of)

    2003-09-01

    The human chronic myelogenous leukemia cell line, K562, expresses the chimeric bcr-abl oncoprotein, whose deregulated protein tyrosine kinase activity antagonizes the induction of apoptosis via DNA damaging agents. Previous experiments have shown that nanomolar concentrations of herbimycin A [HMA] coupled with X-irradiation have a synergistic effect in inducing apoptosis in the Ph-positive K562 leukemia cell line, but genistein, a PTK inhibitor, is non selective for the radiation-induced apoptosis of p210{sup bcr}/{sup abl} protected K562 cells. In these experiments, the cytoplasmic signal transduction pathways, the induction of a number of transcription factors and the differential gene expression in this model were investigated. K562 cells in the exponential growth phase were used in this study. The cells were irradiated with 0.5-12 Gy, using a 6 MeV Linac (Clinac 1800, Varian, USA). Immediately after irradiation, the cells were treated with 0.25{mu}M of HMA and 25{mu}M of genistein, and the expressions and the activities of ablkinase, MAPK family, NF-KB, c-fos, c-myc, and thymidine kinase1 (TK1) were examined. The differential gene expressions induced by PTK inhibitors were also investigated. The modulating effects of herbimycin A and genistein on the radiosensitivity of K562 cells were not related to the bcr-abl kinase activity. The signaling responses through the MAPK family of proteins, were not involved either. In association with the radiation-induced apoptosis, which is accelerated by HMA, the expression of c-myc was increased. The combined treatment of genistein, with irradiation, enhanced NF-KB activity and the TK 1 expression and activity. The effects of HMA and genistein on the radiosensitivity of the K562 cells were not related to the bcr-abl kinase activity. In this study, another signaling pathway, besides the MAPK family responses to radiation to K562 cells, was found. Further evaluation using this model will provide valuable information for the

  15. Effect of hydroxyurea and etoposide on transduction of human bone marrow mesenchymal stem and progenitor cell by adeno-associated virus vectors

    Institute of Scientific and Technical Information of China (English)

    Xiao-dong JU; Si-quan LOU; Wei-guo WANG; Jian-qiang PENG; Hua TIAN

    2004-01-01

    AIM: To study the effect of hydroxyurea and etoposide on transduction of human marrow mesenchymal and progenitor stem cells by adeno-associated virus (AAV). METHODS: Isolated human bone marrow mesenchymal stem and progenitor cells (hMSCs) were cultured in DMEM containing 10 % FBS or 5 % FBS and dexamethasone 1 μmol/L respectively. After being treated with hydroxyurea and etoposide, hMSCs were transduced by AAV-LUC.After two days luciferase activity (relative light unites per second or RLU/s) were tested, which indirectly reflected the relative transduction efficiency of different groups, and virus DNA was isolated by Hirt extraction for Southern hybridization. RESULTS: Transduction luciferase activity and transduction efficiency in cultures treated with hydroxyurea and etoposide were significantly higher than that in control cultures. Dividing cells had about 20-fold higher transduction efficiency compared with control cells. Transduction efficiency in stationary cells was about 50 times higher than that in control cells. Southern analysis showed that hydroxyurea and etoposide enhanced second-strand DNA synthesis by rAAV. CONCLUSION: Hydroxyurea and etoposide could increase transduction efficiency of hMSCs by AAV vectors, and stationary cells were more sensitive to these drugs than dividing cells.

  16. Highly efficient transduction of human plasmacytoid dendritic cells without phenotypic and functional maturation

    Directory of Open Access Journals (Sweden)

    Plumas Joel

    2009-01-01

    Full Text Available Abstract Background Gene modified dendritic cells (DC are able to modulate DC functions and induce therapeutic immunity or tolerance in an antigen-specific manner. Among the different DC subsets, plasmacytoid DC (pDC are well known for their ability to recognize and respond to a variety of viruses by secreting high levels of type I interferon. Methods We analyzed here, the transduction efficiency of a pDC cell line, GEN2.2, and of pDC derived from CD34+ progenitors, using lentiviral vectors (LV pseudotyped with different envelope glycoproteins such as the vesicular stomatitis virus envelope (VSVG, the gibbon ape leukaemia virus envelope (GaLV or the feline endogenous virus envelope (RD114. At the same time, we evaluated transgene expression (E-GFP reporter gene under the control of different promoters. Results We found that efficient gene transfer into pDC can be achieved with VSVG-pseudotyped lentiviral vectors (LV under the control of phoshoglycerate kinase (PGK and elongation factor-1 (EF1α promoters (28% to 90% of E-GFP+ cells, respectively in the absence of phenotypic and functional maturation. Surprisingly, promoters (desmin or synthetic C5–12 described as muscle-specific and which drive gene expression in single strand AAV vectors in gene therapy protocols were very highly active in pDC using VSVG-LV. Conclusion Taken together, our results indicate that LV vectors can serve to design pDC-based vaccines in humans, and they are also useful in vitro to evaluate the immunogenicity of the vector preparations, and the specificity and safety of given promoters used in gene therapy protocols.

  17. Aluminium-induced phospholipid signal transduction pathway in Coffea arabica suspension cells and its amelioration by silicic acid.

    Science.gov (United States)

    Quintal-Tun, Fausto; Muñoz-Sánchez, J Armando; Ramos-Díaz, Ana; Escamilla-Bencomo, Armando; Martínez-Estévez, Manuel; Exley, Christopher; Hernández-Sotomayor, S M Teresa

    2007-02-01

    Coffee (Coffea arabica L.) is of economic importance worldwide. Its growth in organic-rich acidic soils is influenced by aluminium such that coffee yield may be impaired. Herein we have used the Al-sensitive C. arabica suspension cell line L2 to analyse the effect of two different Al species on the phosphoinositide signal transduction pathway. Our results have shown that the association of Al with coffee cells was affected by the pH and the form of Al in media. More Al was associated with cells at pH 4.3 than 5.8, whereas when Al was present as hydroxyaluminosilicates (HAS) the association was halved at pH 4.3 and unchanged at pH 5.8. Two signal transduction elements were also evaluated; phospholipase C (PLC) activity and phosphatidic acid (PA) formation. PLC was inhibited ( approximately 50%) when cells were incubated for 2 h in the presence of either AlCl(3) or Al in the form of HAS. PA formation was tested as a short-term response to Al. By way of contrast to what was found for PLC, incubation of cells for 15 min in the presence of AlCl(3) decreased the formation of PA whereas the same concentration of Al as HAS produced no effect upon its formation. These results suggest that Al is capable to exert its effects upon signal transduction as Al((aq))(3+) acting upon a mechanism linked to the phosphoinositide signal transduction pathway.

  18. Co-localisation of K(ir)4.1 and AQP4 in rat and human cochleae reveals a gap in water channel expression at the transduction sites of endocochlear K(+) recycling routes.

    Science.gov (United States)

    Eckhard, Andreas; Gleiser, Corinna; Rask-Andersen, Helge; Arnold, Heinz; Liu, Wei; Mack, Andreas; Müller, Marcus; Löwenheim, Hubert; Hirt, Bernhard

    2012-10-01

    Sensory transduction in the cochlea depends on perilymphatic-endolymphatic potassium (K(+)) recycling. It has been suggested that the epithelial supporting cells (SCs) of the cochlear duct may form the intracellular K(+) recycling pathway. Thus, they must be endowed with molecular mechanisms that facilitate K(+) uptake and release, along with concomitant osmotically driven water movements. As yet, no molecules have been described that would allow for volume-equilibrated transepithelial K(+) fluxes across the SCs. This study describes the subcellular co-localisation of the K(ir)4.1 K(+) channel (K(ir)4.1) and the aquaporin-4 water channel (AQP4) in SCs, on the basis of immunohistochemical double-labelling experiments in rat and human cochleae. The results of this study reveal the expression of K(ir)4.1 in the basal or basolateral membranes of the SCs in the sensory domain of the organ of Corti that are adjacent to hair cells and in the non-sensory domains of the inner and outer sulci that abut large extracellular fluid spaces. The SCs of the inner sulcus (interdental cells, inner sulcus cells) and the outer sulcus (Hensen's cells, outer sulcus cells) display the co-localisation of K(ir)4.1 and AQP4 expression. However, the SCs in the sensory domain of the organ of Corti reveal a gap in the expression of AQP4. The outer pillar cell is devoid of both K(ir)4.1 and AQP4. The subcellular co-localisation of K(ir)4.1 and AQP4 in the SCs of the cochlea described in this study resembles that of the astroglia of the central nervous system and the glial Mueller cells in the retina.

  19. Forward Programming of Cardiac Stem Cells by Homogeneous Transduction with MYOCD plus TBX5.

    Directory of Open Access Journals (Sweden)

    Elisa Belian

    Full Text Available Adult cardiac stem cells (CSCs express many endogenous cardiogenic transcription factors including members of the Gata, Hand, Mef2, and T-box family. Unlike its DNA-binding targets, Myocardin (Myocd-a co-activator not only for serum response factor, but also for Gata4 and Tbx5-is not expressed in CSCs. We hypothesised that its absence was a limiting factor for reprogramming. Here, we sought to investigate the susceptibility of adult mouse Sca1+ side population CSCs to reprogramming by supplementing the triad of GATA4, MEF2C, and TBX5 (GMT, and more specifically by testing the effect of the missing co-activator, Myocd. Exogenous factors were expressed via doxycycline-inducible lentiviral vectors in various combinations. High throughput quantitative RT-PCR was used to test expression of 29 cardiac lineage markers two weeks post-induction. GMT induced more than half the analysed cardiac transcripts. However, no protein was detected for the induced sarcomeric genes Actc1, Myh6, and Myl2. Adding MYOCD to GMT affected only slightly the breadth and level of gene induction, but, importantly, triggered expression of all three proteins examined (α-cardiac actin, atrial natriuretic peptide, sarcomeric myosin heavy chains. MYOCD + TBX was the most effective pairwise combination in this system. In clonal derivatives homogenously expressing MYOCD + TBX at high levels, 93% of cardiac transcripts were up-regulated and all five proteins tested were visualized.(1 GMT induced cardiac genes in CSCs, but not cardiac proteins under the conditions used. (2 Complementing GMT with MYOCD induced cardiac protein expression, indicating a more complete cardiac differentiation program. (3 Homogeneous transduction with MYOCD + TBX5 facilitated the identification of differentiating cells and the validation of this combinatorial reprogramming strategy. Together, these results highlight the pivotal importance of MYOCD in driving CSCs toward a cardiac muscle fate.

  20. Estrogen Stimulates Proliferation and Differentiation of Neural Stem/Progenitor Cells through Different Signal Transduction Pathways

    Directory of Open Access Journals (Sweden)

    Makiko Okada

    2010-10-01

    Full Text Available Our previous study indicated that both 17β-estradiol (E2, known to be an endogenous estrogen, and bisphenol A (BPA, known to be a xenoestrogen, could positively influence the proliferation or differentiation of neural stem/progenitor cells (NS/PCs. The aim of the present study was to identify the signal transduction pathways for estrogenic activities promoting proliferation and differentiation of NS/PCs via well known nuclear estrogen receptors (ERs or putative membrane-associated ERs. NS/PCs were cultured from the telencephalon of 15-day-old rat embryos. In order to confirm the involvement of nuclear ERs for estrogenic activities, their specific antagonist, ICI-182,780, was used. The presence of putative membrane-associated ER was functionally examined as to whether E2 can activate rapid intracellular signaling mechanism. In order to confirm the involvement of membrane-associated ERs for estrogenic activities, a cell-impermeable E2, bovine serum albumin-conjugated E2 (E2-BSA was used. We showed that E2 could rapidly activate extracellular signal-regulated kinases 1/2 (ERK 1/2, which was not inhibited by ICI-182,780. ICI-182,780 abrogated the stimulatory effect of these estrogens (E2 and BPA on the proliferation of NS/PCs, but not their effect on the differentiation of the NS/PCs into oligodendroglia. Furthermore, E2-BSA mimicked the activity of differentiation from NS/PCs into oligodendroglia, but not the activity of proliferation. Our study suggests that (1 the estrogen induced proliferation of NS/PCs is mediated via nuclear ERs; (2 the oligodendroglial generation from NS/PCs is likely to be stimulated via putative membrane‑associated ERs.

  1. Cell surface receptors for signal transduction and ligand transport: a design principles study.

    Directory of Open Access Journals (Sweden)

    Harish Shankaran

    2007-06-01

    Full Text Available Receptors constitute the interface of cells to their external environment. These molecules bind specific ligands involved in multiple processes, such as signal transduction and nutrient transport. Although a variety of cell surface receptors undergo endocytosis, the systems-level design principles that govern the evolution of receptor trafficking dynamics are far from fully understood. We have constructed a generalized mathematical model of receptor-ligand binding and internalization to understand how receptor internalization dynamics encodes receptor function and regulation. A given signaling or transport receptor system represents a particular implementation of this module with a specific set of kinetic parameters. Parametric analysis of the response of receptor systems to ligand inputs reveals that receptor systems can be characterized as being: i avidity-controlled where the response control depends primarily on the extracellular ligand capture efficiency, ii consumption-controlled where the ability to internalize surface-bound ligand is the primary control parameter, and iii dual-sensitivity where both the avidity and consumption parameters are important. We show that the transferrin and low-density lipoprotein receptors are avidity-controlled, the vitellogenin receptor is consumption-controlled, and the epidermal growth factor receptor is a dual-sensitivity receptor. Significantly, we show that ligand-induced endocytosis is a mechanism to enhance the accuracy of signaling receptors rather than merely serving to attenuate signaling. Our analysis reveals that the location of a receptor system in the avidity-consumption parameter space can be used to understand both its function and its regulation.

  2. Signal transduction pathways in mast cell granule-mediated endothelial cell activation

    Directory of Open Access Journals (Sweden)

    Luqi Chi

    2003-01-01

    Full Text Available Background: We have previously shown that incubation of human endothelial cells with mast cell granules results in potentiation of lipopolysaccharide-induced production of interleukin-6 and interleukin-8.

  3. Cochlear gene therapy with ancestral AAV in adult mice: complete transduction of inner hair cells without cochlear dysfunction

    Science.gov (United States)

    Suzuki, Jun; Hashimoto, Ken; Xiao, Ru; Vandenberghe, Luk H.; Liberman, M. Charles

    2017-01-01

    The use of viral vectors for inner ear gene therapy is receiving increased attention for treatment of genetic hearing disorders. Most animal studies to date have injected viral suspensions into neonatal ears, via the round window membrane. Achieving transduction of hair cells, or sensory neurons, throughout the cochlea has proven difficult, and no studies have been able to efficiently transduce sensory cells in adult ears while maintaining normal cochlear function. Here, we show, for the first time, successful transduction of all inner hair cells and the majority of outer hair cells in an adult cochlea via virus injection into the posterior semicircular canal. We used a “designer” AAV, AAV2/Anc80L65, in which the main capsid proteins approximate the ancestral sequence state of AAV1, 2, 8, and 9. Our injections also transduced ~10% of spiral ganglion cells and a much larger fraction of their satellite cells. In the vestibular sensory epithelia, the virus transduced large numbers of hair cells and virtually all the supporting cells, along with close to half of the vestibular ganglion cells. We conclude that this viral vector and this delivery route hold great promise for gene therapy applications in both cochlear and vestibular sense organs. PMID:28367981

  4. Study of cell migration in microfabricated channels.

    Science.gov (United States)

    Vargas, Pablo; Terriac, Emmanuel; Lennon-Duménil, Ana-Maria; Piel, Matthieu

    2014-02-21

    The method described here allows the study of cell migration under confinement in one dimension. It is based on the use of microfabricated channels, which impose a polarized phenotype to cells by physical constraints. Once inside channels, cells have only two possibilities: move forward or backward. This simplified migration in which directionality is restricted facilitates the automatic tracking of cells and the extraction of quantitative parameters to describe cell movement. These parameters include cell velocity, changes in direction, and pauses during motion. Microchannels are also compatible with the use of fluorescent markers and are therefore suitable to study localization of intracellular organelles and structures during cell migration at high resolution. Finally, the surface of the channels can be functionalized with different substrates, allowing the control of the adhesive properties of the channels or the study of haptotaxis. In summary, the system here described is intended to analyze the migration of large cell numbers in conditions in which both the geometry and the biochemical nature of the environment are controlled, facilitating the normalization and reproducibility of independent experiments.

  5. Multidrug resistance and retroviral transduction potential in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Theilade, M D; Gram, G J; Jensen, P B;

    1999-01-01

    Multidrug resistance (MDR) remains a major problem in the successful treatment of small cell lung cancer (SCLC). New treatment strategies are needed, such as gene therapy specifically targeting the MDR cells in the tumor. Retroviral LacZ gene-containing vectors that were either pseudotyped...... cells, and that MLV-A as well as GALV-1 retroviral vectors are suitable for further development of gene therapy in SCLC....

  6. Molecular purging of multiple myeloma cells by ex-vivo culture and retroviral transduction of mobilized-blood CD34+ cells

    Directory of Open Access Journals (Sweden)

    Corneo Gianmarco

    2007-07-01

    Full Text Available Abstract Background Tumor cell contamination of the apheresis in multiple myeloma is likely to affect disease-free and overall survival after autografting. Objective To purge myeloma aphereses from tumor contaminants with a novel culture-based purging method. Methods We cultured myeloma-positive CD34+ PB samples in conditions that retained multipotency of hematopoietic stem cells, but were unfavourable to survival of plasma cells. Moreover, we exploited the resistance of myeloma plasma cells to retroviral transduction by targeting the hematopoietic CD34+ cell population with a retroviral vector carrying a selectable marker (the truncated form of the human receptor for nerve growth factor, ΔNGFR. We performed therefore a further myeloma purging step by selecting the transduced cells at the end of the culture. Results Overall recovery of CD34+ cells after culture was 128.5%; ΔNGFR transduction rate was 28.8% for CD34+ cells and 0% for CD138-selected primary myeloma cells, respectively. Recovery of CD34+ cells after ΔNGFR selection was 22.3%. By patient-specific Ig-gene rearrangements, we assessed a decrease of 0.7–1.4 logs in tumor load after the CD34+ cell selection, and up to 2.3 logs after culture and ΔNGFR selection. Conclusion We conclude that ex-vivo culture and retroviral-mediated transduction of myeloma leukaphereses provide an efficient tumor cell purging.

  7. Sensory cilia and integration of signal transduction in human health and disease

    DEFF Research Database (Denmark)

    Christensen, Søren T; Pedersen, Lotte B; Schneider, Linda

    2007-01-01

    The primary cilium is a hallmark of mammalian tissue cells. Recent research has shown that these organelles display unique sets of selected signal transduction modules including receptors, ion channels, effector proteins and transcription factors that relay chemical and physical stimuli from the ...... in vertebrate cells, including platelet-derived growth factor receptor-alpha (PDGFRalpha), hedgehog and Wnt signaling pathways. Finally, we discuss the functions of these cilia-associated signal transduction pathways and their role in human health and development....

  8. K+ channels and cell cycle progression in tumor cells

    Directory of Open Access Journals (Sweden)

    HALIMA eOUADID-AHIDOUCH

    2013-08-01

    Full Text Available K+ ions play a major role in many cellular processes. The deregulation of K+ signaling is associated with a variety of diseases such as hypertension, atherosclerosis, or diabetes. K+ ions are important for setting the membrane potential, the driving force for Ca2+ influx, and regulate volume of growing cells. Moreover, it is increasingly recognized that K+ channels control cell proliferation through a novel signaling mechanisms triggered and modulated independently of ion fluxes. In cancer, aberrant expression, regulation and/or sublocalization of K+ channels can alter the downstream signals that converge on the cell cycle machinery. Various K+ channels are involved in cell cycle progression and are needed only at particular stages of the cell cycle. Consistent with this idea, the expression of Eag1 and HERG channels fluctuate along the cell cycle. Despite of acquired knowledge, our understanding of K+ channels functioning in cancer cells requires further studies. These include identifying the molecular mechanisms controling the cell cycle machinery. By understanding how K+ channels regulate cell cycle progression in cancer cells, we will gain insights into how cancer cells subvert the need for K+ signal and its downstream targets to proliferate.

  9. Accelerated generation of human induced pluripotent stem cells with retroviral transduction and chemical inhibitors under physiological hypoxia.

    Science.gov (United States)

    Shimada, Hidenori; Hashimoto, Yoshiya; Nakada, Akira; Shigeno, Keiji; Nakamura, Tatsuo

    2012-01-13

    Induced pluripotent stem (iPS) cells are generated from somatic cells by the forced expression of a defined set of pluripotency-associated transcription factors. Human iPS cells can be propagated indefinitely, while maintaining the capacity to differentiate into all cell types in the body except for extra-embryonic tissues. This technology not only represents a new way to use individual-specific stem cells for regenerative medicine but also constitutes a novel method to obtain large amounts of disease-specific cells for biomedical research. Despite their great potential, the long reprogramming process (up to 1month) remains one of the most significant challenges facing standard virus-mediated methodology. In this study, we report the accelerated generation of human iPS cells from adipose-derived stem (ADS) cells, using a new combination of chemical inhibitors under a setting of physiological hypoxia in conjunction with retroviral transduction of Oct4, Sox2, Klf4, and L-Myc. Under optimized conditions, we observed human embryonic stem (ES)-like cells as early as 6 days after the initial retroviral transduction. This was followed by the emergence of fully reprogrammed cells bearing Tra-1-81-positive and DsRed transgene-silencing properties on day 10. The resulting cell lines resembled human ES cells in many respects including proliferation rate, morphology, pluripotency-associated markers, global gene expression patterns, genome-wide DNA methylation states, and the ability to differentiate into all three of the germ layers, both in vitro and in vivo. Our method, when combined with chemical inhibitors under conditions of physiological hypoxia, offers a powerful tool for rapidly generating bona fide human iPS cells and facilitates the application of iPS cell technology to biomedical research.

  10. Retroviral Transduction of Helper T Cells as a Genetic Approach to Study Mechanisms Controlling their Differentiation and Function

    Science.gov (United States)

    Singh, Yogesh; Garden, Oliver A.; Lang, Florian; Cobb, Bradley S.

    2016-01-01

    Helper T cell development and function must be tightly regulated to induce an appropriate immune response that eliminates specific pathogens yet prevents autoimmunity. Many approaches involving different model organisms have been utilized to understand the mechanisms controlling helper T cell development and function. However, studies using mouse models have proven to be highly informative due to the availability of genetic, cellular, and biochemical systems. One genetic approach in mice used by many labs involves retroviral transduction of primary helper T cells. This is a powerful approach due to its relative ease, making it accessible to almost any laboratory with basic skills in molecular biology and immunology. Therefore, multiple genes in wild type or mutant forms can readily be tested for function in helper T cells to understand their importance and mechanisms of action. We have optimized this approach and describe here the protocols for production of high titer retroviruses, isolation of primary murine helper T cells, and their transduction by retroviruses and differentiation toward the different helper subsets. Finally, the use of this approach is described in uncovering mechanisms utilized by microRNAs (miRNAs) to regulate pathways controlling helper T cell development and function. PMID:27842353

  11. Transduction of interleukin-10 through renal artery attenuates vascular neointimal proliferation and infiltration of immune cells in rat renal allograft.

    Science.gov (United States)

    Xie, Jingxin; Li, Xueyi; Meng, Dan; Liang, Qiujuan; Wang, Xinhong; Wang, Li; Wang, Rui; Xiang, Meng; Chen, Sifeng

    2016-08-01

    Renal transplantation is the treatment of choice for end-stage renal failure. Although acute rejection is not a major issue anymore, chronic rejection, especially vascular rejection, is still a major factor that might lead to allograft dysfunction on the long term. The role of the local immune-regulating cytokine interleukin-10 (IL-10) in chronic renal allograft is unclear. Many clinical observations showed that local IL-10 level was negatively related to kidney allograft function. It is unknown this negative relationship was the result of immunostimulatory property or insufficient immunosuppression property of local IL-10. We performed ex vivo transduction before transplantation through artery of the renal allograft using adeno-associated viral vectors carrying IL-10 gene. Twelve weeks after transplantation, we found intrarenal IL-10 gene transduction significantly inhibited arterial neointimal proliferation, the number of occluded intrarenal artery, interstitial fibrosis, peritubular capillary congestion and glomerular inflammation in renal allografts compared to control allografts receiving PBS or vectors carrying YFP. IL-10 transduction increased serum IL-10 level at 4 weeks but not at 8 and 12 weeks. Renal IL-10 level increased while serum creatinine decreased significantly in IL-10 group at 12 weeks compared to PBS or YFP controls. Immunohistochemical staining showed unchanged total T cells (CD3) and B cells (CD45R/B220), decreased cytotoxic T cells (CD8), macrophages (CD68) and increased CD4+ and FoxP3+ cells in IL-10 group. In summary, intrarenal IL-10 inhibited the allograft rejection while modulated immune response.

  12. Single molecule narrowfield microscopy of protein-DNA binding dynamics in glucose signal transduction of live yeast cells

    CERN Document Server

    Wollman, Adam J M

    2016-01-01

    Single-molecule narrowfield microscopy is a versatile tool to investigate a diverse range of protein dynamics in live cells and has been extensively used in bacteria. Here, we describe how these methods can be extended to larger eukaryotic, yeast cells, which contain sub-cellular compartments. We describe how to obtain single-molecule microscopy data but also how to analyse these data to track and obtain the stoichiometry of molecular complexes diffusing in the cell. We chose glucose mediated signal transduction of live yeast cells as the system to demonstrate these single-molecule techniques as transcriptional regulation is fundamentally a single molecule problem - a single repressor protein binding a single binding site in the genome can dramatically alter behaviour at the whole cell and population level.

  13. TRP channels, omega-3 fatty acids, and oxidative stress in neurodegeneration: from the cell membrane to intracellular cross-links

    Directory of Open Access Journals (Sweden)

    M. Leonelli

    2011-11-01

    Full Text Available The transient receptor potential channels family (TRP channels is a relatively new group of cation channels that modulate a large range of physiological mechanisms. In the nervous system, the functions of TRP channels have been associated with thermosensation, pain transduction, neurotransmitter release, and redox signaling, among others. However, they have also been extensively correlated with the pathogenesis of several innate and acquired diseases. On the other hand, the omega-3 polyunsaturated fatty acids (n-3 fatty acids have also been associated with several processes that seem to counterbalance or to contribute to the function of several TRPs. In this short review, we discuss some of the remarkable new findings in this field. We also review the possible roles played by n-3 fatty acids in cell signaling that can both control or be controlled by TRP channels in neurodegenerative processes, as well as both the direct and indirect actions of n-3 fatty acids on TRP channels.

  14. Regulation of promyogenic signal transduction by cell-cell contact and adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Robert S., E-mail: Robert.Krauss@mssm.edu [Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029 (United States)

    2010-11-01

    Skeletal myoblast differentiation involves acquisition of the muscle-specific transcriptional program and morphological changes, including fusion into multinucleated myofibers. Differentiation is regulated by extracellular signaling cues, including cell-cell contact and adhesion. Cadherin and Ig adhesion receptors have been implicated in distinct but overlapping stages of myogenesis. N-cadherin signals through the Ig receptor Cdo to activate p38 MAP kinase, while the Ig receptor neogenin signals to activate FAK; both processes promote muscle-specific gene expression and myoblast fusion. M-cadherin activates Rac1 to enhance fusion. Specific Ig receptors (Kirre and Sns) are essential for myoblast fusion in Drosophila, also signaling through Rac, and vertebrate orthologs of Kirre and Sns have partially conserved function. Mice lacking specific cytoplasmic signaling factors activated by multiple receptors (e.g., Rac1) have strong muscle phenotypes in vivo. In contrast, mice lacking individual adhesion receptors that lie upstream of these factors have modest phenotypes. Redundancy among receptors may account for this. Many of the mammalian Ig receptors and cadherins associate with each other, and multivalent interactions within these complexes may require removal of multiple components to reveal dramatic defects in vivo. Nevertheless, it is possible that the murine adhesion receptors rate-limiting in vivo have not yet been identified or fully assessed.

  15. Small-Molecule Inhibitors of Cytokine-Mediated STAT1 Signal Transduction In ß-Cells With Improved Aqueous Solubility

    DEFF Research Database (Denmark)

    Scully, Stephen Shane; Tang, Alicia J; Lundh, Morten;

    2013-01-01

    We previously reported the discovery of BRD0476 (1), a small molecule generated by diversity-oriented synthesis that suppresses cytokine-induced ß-cell apoptosis. Herein, we report the synthesis and biological evaluation of 1 and analogs with improved aqueous solubility. By replacing naphthyl wit...... with quinoline moieties, we prepared active analogs with up to a 1400-fold increase in solubility from 1. In addition, we demonstrated that compound 1 and analogs inhibit STAT1 signal transduction induced by IFN-¿....

  16. Expression of calcium-activated chloride channels Ano1 and Ano2 in mouse taste cells.

    Science.gov (United States)

    Cherkashin, Alexander P; Kolesnikova, Alisa S; Tarasov, Michail V; Romanov, Roman A; Rogachevskaja, Olga A; Bystrova, Marina F; Kolesnikov, Stanislav S

    2016-02-01

    Specialized Ca(2+)-dependent ion channels ubiquitously couple intracellular Ca(2+) signals to a change in cell polarization. The existing physiological evidence suggests that Ca(2+)-activated Cl(-) channels (CaCCs) are functional in taste cells. Because Ano1 and Ano2 encode channel proteins that form CaCCs in a variety of cells, we analyzed their expression in mouse taste cells. Transcripts for Ano1 and Ano2 were detected in circumvallate (CV) papillae, and their expression in taste cells was confirmed using immunohistochemistry. When dialyzed with CsCl, taste cells of the type III exhibited no ion currents dependent on cytosolic Ca(2+). Large Ca(2+)-gated currents mediated by TRPM5 were elicited in type II cells by Ca(2+) uncaging. When TRPM5 was inhibited by triphenylphosphine oxide (TPPO), ionomycin stimulated a small but resolvable inward current that was eliminated by anion channel blockers, including T16Ainh-A01 (T16), a specific Ano1 antagonist. This suggests that CaCCs, including Ano1-like channels, are functional in type II cells. In type I cells, CaCCs were prominently active, blockable with the CaCC antagonist CaCCinh-A01 but insensitive to T16. By profiling Ano1 and Ano2 expressions in individual taste cells, we revealed Ano1 transcripts in type II cells only, while Ano2 transcripts were detected in both type I and type II cells. P2Y agonists stimulated Ca(2+)-gated Cl(-) currents in type I cells. Thus, CaCCs, possibly formed by Ano2, serve as effectors downstream of P2Y receptors in type I cells. While the role for TRPM5 in taste transduction is well established, the physiological significance of expression of CaCCs in type II cells remains to be elucidated.

  17. Amiloride-sensitive channels in type I fungiform taste cells in mouse

    Directory of Open Access Journals (Sweden)

    Clapp Tod R

    2008-01-01

    Full Text Available Abstract Background Taste buds are the sensory organs of taste perception. Three types of taste cells have been described. Type I cells have voltage-gated outward currents, but lack voltage-gated inward currents. These cells have been presumed to play only a support role in the taste bud. Type II cells have voltage-gated Na+ and K+ current, and the receptors and transduction machinery for bitter, sweet, and umami taste stimuli. Type III cells have voltage-gated Na+, K+, and Ca2+ currents, and make prominent synapses with afferent nerve fibers. Na+ salt transduction in part involves amiloride-sensitive epithelial sodium channels (ENaCs. In rodents, these channels are located in taste cells of fungiform papillae on the anterior part of the tongue innervated by the chorda tympani nerve. However, the taste cell type that expresses ENaCs is not known. This study used whole cell recordings of single fungiform taste cells of transgenic mice expressing GFP in Type II taste cells to identify the taste cells responding to amiloride. We also used immunocytochemistry to further define and compare cell types in fungiform and circumvallate taste buds of these mice. Results Taste cell types were identified by their response to depolarizing voltage steps and their presence or absence of GFP fluorescence. TRPM5-GFP taste cells expressed large voltage-gated Na+ and K+ currents, but lacked voltage-gated Ca2+ currents, as expected from previous studies. Approximately half of the unlabeled cells had similar membrane properties, suggesting they comprise a separate population of Type II cells. The other half expressed voltage-gated outward currents only, typical of Type I cells. A single taste cell had voltage-gated Ca2+ current characteristic of Type III cells. Responses to amiloride occurred only in cells that lacked voltage-gated inward currents. Immunocytochemistry showed that fungiform taste buds have significantly fewer Type II cells expressing PLC signalling

  18. Participation of IAA in transduction of gravistimulus in apical cells of moss protonema

    Science.gov (United States)

    Oksyniuk, U. A.; Khorkavtsiv, O. Y.; Lesniak, Y. I.

    carried out experiments it can be suggested that high concentrations of IAA and 1-NAA result in surplus of IAA cells led, probably, to a destruction of the apical-basal gradient in cells. Our results testify that NPA inhibits the gravitropism stronger than the growth of protonema. The peculiarity of moss protonema is that the growth orientation change is a result of a transference of growth zone in the apical cell dome caused by amyloplasts sedimentation inducing lateral asymmetry of Ca2+ and apical-basal IAA flow what in its turn manifests itself in distribution of IAA and/or Ca2+ channels in apical cell dome plasma membrane ( Schwuchow et al., 2001). The transport of IAA in apical cells, probably, functionally polarizes it and just that polarizing function is dominant in cells with tip growth.

  19. Accelerated generation of human induced pluripotent stem cells with retroviral transduction and chemical inhibitors under physiological hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Hidenori [Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507 (Japan); Hashimoto, Yoshiya [Department of Biomaterials, Osaka Dental University, 8-1, Hanazonocho, Kuzuha, Hirakatashi, Osaka 573-1121 (Japan); Nakada, Akira; Shigeno, Keiji [Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507 (Japan); Nakamura, Tatsuo, E-mail: nakamura@frontier.kyoto-u.ac.jp [Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507 (Japan)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Very rapid generation of human iPS cells under optimized conditions. Black-Right-Pointing-Pointer Five chemical inhibitors under hypoxia boosted reprogramming. Black-Right-Pointing-Pointer We performed genome-wide DNA methylation analysis. -- Abstract: Induced pluripotent stem (iPS) cells are generated from somatic cells by the forced expression of a defined set of pluripotency-associated transcription factors. Human iPS cells can be propagated indefinitely, while maintaining the capacity to differentiate into all cell types in the body except for extra-embryonic tissues. This technology not only represents a new way to use individual-specific stem cells for regenerative medicine but also constitutes a novel method to obtain large amounts of disease-specific cells for biomedical research. Despite their great potential, the long reprogramming process (up to 1 month) remains one of the most significant challenges facing standard virus-mediated methodology. In this study, we report the accelerated generation of human iPS cells from adipose-derived stem (ADS) cells, using a new combination of chemical inhibitors under a setting of physiological hypoxia in conjunction with retroviral transduction of Oct4, Sox2, Klf4, and L-Myc. Under optimized conditions, we observed human embryonic stem (ES)-like cells as early as 6 days after the initial retroviral transduction. This was followed by the emergence of fully reprogrammed cells bearing Tra-1-81-positive and DsRed transgene-silencing properties on day 10. The resulting cell lines resembled human ES cells in many respects including proliferation rate, morphology, pluripotency-associated markers, global gene expression patterns, genome-wide DNA methylation states, and the ability to differentiate into all three of the germ layers, both in vitro and in vivo. Our method, when combined with chemical inhibitors under conditions of physiological hypoxia, offers a powerful tool for rapidly

  20. Effects of Inhibiting JAK on Invasion and Metastasis of the Human Breast Cancer Cells through ERK Signaling Transduction Pathway

    Institute of Scientific and Technical Information of China (English)

    Jing Zhao; Hong-fang Chen; Hua-yu Deng

    2009-01-01

    Objective: To explore the effects of Janus activated kinase (JAK) inhibitor AG490 on the phosphorylation of extracellular signal regulated protein kinase (ERK) in human breast cancer cells MDA-MB-231 and the roles of JAK in the invasion and metastasis of the human breast cancer cells through ERK signaling transduction pathways.Methods: MDA-MB-231 cells were treated with 20 (mol/L, 40 (mol/L, 80 (mol/L Janus kinase inhibitor AG490 for 24, 48 and 72 h. Proliferation and adhesion of MDA-MB-231 cells to matrigel were measured with MTT assay. When treated with 40 (mol/L AG490 for 24 h, the expressions of P-ERK and MMP-9 of cells were detected by Western-blot and invasion and metastasis of MDA-MB-231 cells were evaluated with transwell chamber.Results: After being treated with 20 (mol/L, 40 (mol/L, 80 (mol/L AG490 for 24, 48 and 72 h, the proliferation of MDA-MB-231 cells was inhibited in a dose-and time-dependent manner. MDA-MB-231 cells treated with 40 (mol/L AG490 for 30, 60, 90 and 120 min resulted in the increasing adhesion of cells to Matrigel in a time-dependent manner. However, capacity of adhesion in the group treated with AG490 was significantly decreased in comparison with the control group (P<0.01). The expression level of P-ERK and MMP-9 were decreased when treated with AG490. After treatment with 40 (mol/L AG490, in invasion assay, the number of cells in AG490 treated group to migrate to filter coated with Matrigel was reduced compared with control group (P<0.05). Meanwhile, in migration assay, the number of cells in AG490 treated group to migrate to filter was also decreased compared with control group (P<0.05).Conclusion: Our study indicates that JAK kinase could affect the activity of ERK signal transduction pathway through the phosphorylation of ERK. The inhibitory effects of JAK kinase on MMP-9 expression and invasion of breast cancer cells were associated with the down-regulation of the ERK signaling pathway.

  1. Transduction of bone marrow cells by the AdZ.F(pK7) modified adenovirus demonstrates preferential gene transfer in myeloma cells.

    Science.gov (United States)

    Gonzalez, R; Vereecque, R; Wickham, T J; Facon, T; Hetuin, D; Kovesdi, I; Bauters, F; Fenaux, P; Quesnel, B

    1999-11-01

    Adenoviral vectors can efficiently infect myeloma cell lines, but transduction of fresh myeloma cells performed at low multiplicity of infections (MOIs) showed only partial efficacy. The modified adenoviral vector AdZ.F(pK7), through binding of polylysines to heparan sulfate-containing receptors, could increase virus adsorption and gene transfer efficiency in myeloma cells, which express heparan sulfate-containing receptors. Thus, we investigated the ability of AdZ.F(pK7) vector to achieve efficient gene transfer in primary cultured fresh myeloma cells. Transduction of 16 primary cultured myeloma samples showed that gene transfer was much more efficient with AdZ.F(pK7) than with control AdZ.F. Both addition of soluble heparin and cell treatment with heparinase I dramatically inhibited gene transfer in myeloma cells by AdZ.F(pK7) but had no effect with AdZ.F, while addition of recombinant fiber protein inhibited AdZ.F but not AdZ.F(pK7), confirming that AdZ.F(pK7) gene transfer in myeloma cells is mediated by the targeting of heparan sulfates. AdZ.F(pK7) transduction of bone marrow cells showed that myeloma cells and hematopoietic progenitor AC133-, CD34-, and CD33-positive cells were efficiently transduced at an MOI of 100, but that only myeloma cells were significantly transduced at an MOI of 12. Thus, AdZ.F(pK7) vector seems to be well suited for immunological approaches of gene therapy or bone marrow-purging applications in multiple myeloma.

  2. Pharmacology of the human red cell voltage-dependent cation channel Part I. Activation by clotrimazole and analogues

    DEFF Research Database (Denmark)

    Barksmann, Trine Lyberth; Kristensen, Berit I.; Christophersen, Palle.

    2004-01-01

    Human red cells, Nonselective voltage dependent cation channel, NSVDC channel, Gárdos channel blockers, NSVDC channel activators......Human red cells, Nonselective voltage dependent cation channel, NSVDC channel, Gárdos channel blockers, NSVDC channel activators...

  3. Prolonged maturation and enhanced transduction of dendritic cells migrated from human skin explants after in situ delivery of CD40-targeted adenoviral vectors

    NARCIS (Netherlands)

    de Gruijl, TD; Luykx-de Bakker, SA; Tillman, BW; van den Eertwegh, AJM; Buter, J; Lougheed, SM; van der Bij, GJ; Safer, AM; Haisma, HJ; Curiel, DT; Scheper, RJ; Pinedo, HM; Gerritsen, WR

    2002-01-01

    Therapeutic tumor vaccination with viral vectors or naked DNA, carrying the genetic code for tumor-associated Ags, critically depends on the in vivo transduction of dendritic cells (DC). Transfection of predominantly nonprofessional APC and only small numbers of DC may hamper proper T cell activatio

  4. Lentiviral-mediated gene delivery in human monocyte-derived dendritic cells: optimized design and procedures for highly efficient transduction compatible with clinical constraints.

    Science.gov (United States)

    Rouas, Redouane; Uch, Rathviro; Cleuter, Yvette; Jordier, François; Bagnis, Claude; Mannoni, Patrice; Lewalle, Philippe; Martiat, Philippe; Van den Broeke, Anne

    2002-09-01

    Gene delivery to dendritic cells (DCs) could represent a powerful method of inducing potent, long-lasting immunity. Although recent studies underline the intense interest in lentiviral vector-mediated monocyte-derived DC transduction, efficient gene transfer methods currently require high multiplicities of infection and are not compatible with clinical constraints. We have designed a strategy to optimize the efficiency and clinical relevance of this approach. Initially, using a third generation lentiviral vector expressing green fluorescent protein, we found that modifying the vector design, the DC precursor cell type, and the DC differentiation stage for transduction results in sustained transgene expression in 75-85% of immature DCs (transduction at a multiplicity of infection of 8). This high efficiency was reproducible among different donors irrespective of whether DCs were expanded from fresh or cryopreserved CD14(+) precursors. We then developed procedures that bypass the need for highly concentrated lentiviral preparations and the addition of polybrene to achieve efficient transduction. DCs transduced under these conditions retain their immature phenotype and immunostimulatory potential in both autologous and allogeneic settings. Furthermore, genetically modified DCs maintain their ability to respond to maturation signals and secrete bioactive IL-12, indicating that they are fully functional. Finally, the level of transgene expression is preserved in the therapeutically relevant mature DCs, demonstrating that there is neither promoter-silencing nor loss of transduced cells during maturation. The novel approach described should advance lentiviral-mediated monocyte-derived DC transduction towards a clinical reality.

  5. Hepatic maturation of human iPS cell-derived hepatocyte-like cells by ATF5, c/EBPα, and PROX1 transduction.

    Science.gov (United States)

    Nakamori, Daiki; Takayama, Kazuo; Nagamoto, Yasuhito; Mitani, Seiji; Sakurai, Fuminori; Tachibana, Masashi; Mizuguchi, Hiroyuki

    2016-01-15

    Hepatocyte-like cells differentiated from human iPS cells (human iPS-HLCs) are expected to be utilized in drug development and research. However, recent hepatic characterization of human iPS-HLCs showed that these cells resemble fetal hepatocytes rather than adult hepatocytes. Therefore, in this study, we aimed to develop a method to enhance the hepatic function of human iPS-HLCs. Because the gene expression levels of the hepatic transcription factors (activating transcription factor 5 (ATF5), CCAAT/enhancer-binding protein alpha (c/EBPα), and prospero homeobox protein 1 (PROX1)) in adult liver were significantly higher than those in human iPS-HLCs and fetal liver, we expected that the hepatic functions of human iPS-HLCs could be enhanced by adenovirus (Ad) vector-mediated ATF5, c/EBPα, and PROX1 transduction. The gene expression levels of cytochrome P450 (CYP) 2C9, 2E1, alpha-1 antitrypsin, transthyretin, Na+/taurocholate cotransporting polypeptide, and uridine diphosphate glucuronosyl transferase 1A1 and protein expression levels of CYP2C9 and CYP2E1 were upregulated by ATF5, c/EBPα, and PROX1 transduction. These results suggest that the hepatic functions of the human iPS-HLCs could be enhanced by ATF5, c/EBPα, and PROX1 transduction. Our findings would be useful for the hepatic maturation of human iPS-HLCs.

  6. Quantitative characterization of cell transduction by HSV-1 amplicons using flow cytometry and real-time PCR.

    Science.gov (United States)

    El-Sherbini, Yasser M; Stevenson, Mark M; Seymour, Leonard W; Wade-Martins, Richard

    2009-08-01

    Herpes simplex virus type 1 (HSV-1) amplicon preparations are usually quantified as transducing units/ml (TU/ml), with little information on genomic copy/TU ratios. In the present study, two HSV-1 amplicons expressing enhanced green fluorescent protein (EGFP) were analysed by quantitative PCR (qPCR) and transducing activity to obtain genomic copy/TU ratios. One vector (pHSV-GL) contains the HSV-1 packaging signal (pac) and origin of replication (oriS) and the other (pHSV/EBV-GL) includes Epstein-Barr virus (EBV) episomal maintenance elements. The pHSV-GL and pHSV/EBV-GL amplicons were prepared at titres of 7.55x10(7) and 7.24x10(7)TU/ml, containing 2.56x10(9) and 1.33x10(9) genomic copies/ml respectively. This produced preliminary estimates of genomic copy/TU ratios of 34:1 and 18:1. However standard transduction conditions did not deplete fully the supernatant of transducing particles since the same supernatant was subsequently able to achieve 25% the initial transduction efficiency, although centrifugation of amplicon particles onto cells improved infectivity by 1.8-fold. Finally, qPCR analysis of FACS-purified EGFP-expressing cells showed the presence of approximately 3 amplicon genomes/transduced cell, independent of the infection dose. Accordingly, the initial estimated genomic copy/TU ratio for pHSV-GL was revised to 6.3:1. Measuring the genomic copy/TU ratios is an important parameter for comparing the quality of amplicon preparations and standardizing experimental conditions.

  7. Integrins mediating bone signal transduction

    Institute of Scientific and Technical Information of China (English)

    HE Chuanglong; WANG Yuanliang; YANG Lihua; ZHANG Jun

    2004-01-01

    Integrin-mediated adhesions play critical roles in diverse cell functions. Integrins offers a platform on which mechanical stimuli, cytoskeletal organization, biochemical signals can concentrate. Mechanical stimuli transmitted by integrins influence the cytoskeleton, in turn, the cytoskeleton influences cell adhesion via integrins, then cell adhesion results in a series of signal transduction cascades. In skeleton, integrins also have a key role for bone resoption by osteoclasts and reformation by osteoblasts. In present review, the proteins involved in integrin signal transduction and integrin signal transduction pathways were discussed, mainly on the basic mechanisms of integrin signaling and the roles of integrins in bone signal transduction, which may give insight into new therapeutic agents to all kinds of skeletal diseases and new strategies for bone tissue engineering.

  8. Human sperm cells swimming in micro-channels

    CERN Document Server

    Denissenko, Petr; Smith, David; Kirkman-Brown, Jackson

    2012-01-01

    The migratory abilities of motile human spermatozoa in vivo are essential for natural fertility, but it remains a mystery what properties distinguish the tens of cells which find an egg from the millions of cells ejaculated. To reach the site of fertilization, sperm must traverse narrow and convoluted channels, filled with viscous fluids. To elucidate individual and group behaviors that may occur in the complex three-dimensional female tract environment, we examine the behavior of migrating sperm in assorted micro-channel geometries. Cells rarely swim in the central part of the channel cross-section, instead traveling along the intersection of the channel walls (`channel corners'). When the channel turns sharply, cells leave the corner, continuing ahead until hitting the opposite wall of the channel, with a distribution of departure angles, the latter being modulated by fluid viscosity. If the channel bend is smooth, cells depart from the inner wall when the curvature radius is less than a threshold value clo...

  9. Mechanisms underlying KCNQ1channel cell volume sensitivity

    DEFF Research Database (Denmark)

    Hammami, Sofia

    Cells are constantly exposed to changes in cell volume during cell metabolism, nutrient uptake, cell proliferation, cell migration and salt and water transport. In order to cope with these perturbations, potassium channels in line with chloride channels have been shown to be likely contributors...... to the process of cell volume adjustments. A great diversity of potassium channels being members of either the 6TM, 4 TM or 2 TM K+ channel gene family have been shown to be strictly regulated by small, fast changes in cell volume. However, the precise mechanism underlying the K+ channel sensitivity to cell...... mechanism of regulation. Besides being regulated by cell volume, KCNQ1 is also modulated by the interaction of the ß subunit KCNE1 giving rise to the cardiac IKs delayed rectifier potassium current. Apart from altering the kinetic characteristics of the KCNQ1 channel current, KCNE1 also augments the KCNQ1...

  10. The targeted transduction of MMP-overexpressing tumor cells by ACPP-HPMA copolymer-coated adenovirus conjugates.

    Directory of Open Access Journals (Sweden)

    Shuhua Li

    Full Text Available We have designed and tested a new way to selectively deliver HPMA polymer-coated adenovirus type 5 (Ad5 particles into matrix metalloproteinase (MMP-overexpressing tumor cells. An activatable cell penetrating peptide (ACPP was designed and attached to the reactive 4-nitrophenoxy groups of HPMA polymers by the C-terminal amino acid (asparagine, N. ACPPs are activatable cell penetrating peptides (CPPs with a linker between polycationic and polyanionic domains, and MMP-mediated cleavage releases the CPP portion and its attached cargo to enable cell entry. Our data indicate that the transport of these HPMA polymer conjugates by a single ACPP molecule to the cytoplasm occurs via a nonendocytotic and concentration-independent process. The uptake was observed to finish within 20 minutes by inverted fluorescence microscopy. In contrast, HPMA polymer-coated Ad5 without ACPPs was internalized solely by endocytosis. The optimal formulation was not affected by the presence of Ad5 neutralizing antibodies during transduction, and ACPP/polymer-coated Ad5 also retained high targeting capability to several MMP-overexpressing tumor cell types. For the first time, ACPP-mediated cytoplasmic delivery of polymer-bound Ad5 to MMP-overexpressing tumor cells was demonstrated. These findings are significant, as they demonstrate the use of a polymer-based system for the targeted delivery into MMP-overexpressing solid tumors and highlight how to overcome major cellular obstacles to achieve intracellular macromolecular delivery.

  11. Lipid rafts are required for signal transduction by angiotensin II receptor type 1 in neonatal glomerular mesangial cells

    Energy Technology Data Exchange (ETDEWEB)

    Adebiyi, Adebowale, E-mail: aadebiyi@uthsc.edu; Soni, Hitesh; John, Theresa A.; Yang, Fen

    2014-05-15

    Angiotensin II (ANG-II) receptors (AGTRs) contribute to renal physiology and pathophysiology, but the underlying mechanisms that regulate AGTR function in glomerular mesangium are poorly understood. Here, we show that AGTR1 is the functional AGTR subtype expressed in neonatal pig glomerular mesangial cells (GMCs). Cyclodextrin (CDX)-mediated cholesterol depletion attenuated cell surface AGTR1 protein expression and ANG-II-induced intracellular Ca{sup 2+} ([Ca{sup 2+}]{sub i}) elevation in the cells. The COOH-terminus of porcine AGTR1 contains a caveolin (CAV)-binding motif. However, neonatal GMCs express CAV-1, but not CAV-2 and CAV-3. Colocalization and in situ proximity ligation assay detected an association between endogenous AGTR1 and CAV-1 in the cells. A synthetic peptide corresponding to the CAV-1 scaffolding domain (CSD) sequence also reduced ANG-II-induced [Ca{sup 2+}]{sub i} elevation in the cells. Real-time imaging of cell growth revealed that ANG-II stimulates neonatal GMC proliferation. ANG-II-induced GMC growth was attenuated by EMD 66684, an AGTR1 antagonist; BAPTA, a [Ca{sup 2+}]{sub i} chelator; KN-93, a Ca{sup 2+}/calmodulin-dependent protein kinase II inhibitor; CDX; and a CSD peptide, but not PD 123319, a selective AGTR2 antagonist. Collectively, our data demonstrate [Ca{sup 2+}]{sub i}-dependent proliferative effect of ANG-II and highlight a critical role for lipid raft microdomains in AGTR1-mediated signal transduction in neonatal GMCs. - Highlights: • AGTR1 is the functional AGTR subtype expressed in neonatal mesangial cells. • Endogenous AGTR1 associates with CAV-1 in neonatal mesangial cells. • Lipid raft disruption attenuates cell surface AGTR1 protein expression. • Lipid raft disruption reduces ANG-II-induced [Ca{sup 2+}]{sub i} elevation in neonatal mesangial cells. • Lipid raft disruption inhibits ANG-II-induced neonatal mesangial cell growth.

  12. MAPK Signal Transduction Pathway Regulation: A Novel Mechanism of Rat HSC-T6 Cell Apoptosis Induced by FUZHENGHUAYU Tablet

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2013-01-01

    Full Text Available FUZHENGHUAYU Tablets have been widely used in the treatment of liver fibrosis in China. Here, we investigate the apoptotic effect of FUZHENGHUAYU Tablet in rat liver stellate cell line HSC-T6. HSC-T6 cells were incubated with control serum or drug serum from rats fed with 0.9% NaCl or FUZHENGHUAYU Tablet, respectively. Cells exposed to drug serum showed higher proportions of early and late apoptotic cells than controls. The mRNA levels of collagens I and III, TGF-β1 and α-SMA were reduced by drug serum compared to control serum. Differentially expressed mRNAs and miRNAs were analyzed by microarray and sequencing, respectively. We identified 334 differentially expressed mRNAs and also 60 GOs and two pathways related to the mRNAs. Seventy-five differentially expressed miRNAs were down-regulated by drug serum and 1963 target genes were predicted. 134 GOs up-regulated in drug serum group were linked to miRNA targets, and drug serum also regulated 43 miRNA signal transduction pathways. Protein levels were evaluated by Western blot. Drug serum down-regulated (phospho-SAPK/JNK/(SAPK/JNK and up-regulated phospho-p38/p38 ratios. The study showed that FUZHENGHUAYU Tablet induced apoptosis in rat HSC-T6 cells possibly in part by activating p38 and inhibiting SAPK/JNK.

  13. Distinct abscisic acid signaling pathways for modulation of guard cell versus mesophyll cell potassium channels revealed by expression studies in Xenopus laevis oocytes

    Science.gov (United States)

    Sutton, F.; Paul, S. S.; Wang, X. Q.; Assmann, S. M.; Evans, M. L. (Principal Investigator)

    2000-01-01

    Regulation of guard cell ion transport by abscisic acid (ABA) and in particular ABA inhibition of a guard cell inward K(+) current (I(Kin)) is well documented. However, little is known concerning ABA effects on ion transport in other plant cell types. Here we applied patch clamp techniques to mesophyll cell protoplasts of fava bean (Vicia faba cv Long Pod) plants and demonstrated ABA inhibition of an outward K(+) current (I(Kout)). When mesophyll cell protoplast mRNA (mesophyll mRNA) was expressed in Xenopus laevis oocytes, I(Kout) was generated that displayed similar properties to I(Kout) observed from direct analysis of mesophyll cell protoplasts. I(Kout) expressed by mesophyll mRNA-injected oocytes was inhibited by ABA, indicating that the ABA signal transduction pathway observed in mesophyll cells was preserved in the frog oocytes. Co-injection of oocytes with guard cell protoplast mRNA and cRNA for KAT1, an inward K(+) channel expressed in guard cells, resulted in I(Kin) that was similarly inhibited by ABA. However, oocytes co-injected with mesophyll mRNA and KAT1 cRNA produced I(Kin) that was not inhibited by ABA. These results demonstrate that the mesophyll-encoded signaling mechanism could not substitute for the guard cell pathway. These findings indicate that mesophyll cells and guard cells use distinct and different receptor types and/or signal transduction pathways in ABA regulation of K(+) channels.

  14. Forward and reverse transduction at the limit of sensitivity studied by correlating electrical and mechanical fluctuations in frog saccular hair cells.

    Science.gov (United States)

    Denk, W; Webb, W W

    1992-06-01

    The spontaneous fluctuations of the intracellular voltage and the position of the sensory hairbundle were measured concurrently using intracellular microelectrodes and an optical differential micro interferometer. Magnitude and frequency distribution of the hair bundles' spontaneous motion suggest that it consists mostly of Brownian motion. The electrical noise, however, exceeds the value expected for thermal Johnson noise by several orders of magnitude, and its frequency distribution reflects the transduction tuning properties of the hair cells. Frequently, a strong correlation was observed between the fluctuations of the hair bundle position and the intracellular electrical noise. From the properties of the correlation and from experiments involving mechanical stimulation we conclude that in most cases mechano-electrical transduction of the bundles' Brownian motion causes this correlation. Small signal transduction sensitivities ranged from 18 to 500 microV/nm. Bundle motion that was observed in response to current injection in more than half of the cells suggests the existence of a fast reverse (electro-mechanical) transduction mechanism to be common in these cells. The sensitivities could be as high as 600 pm of bundle deflection per millivolt of membrane potential change. In a significant minority (4 in 44) of cells, all showing excess electrical noise, we found 'non-causal' components of the electro-mechanical correlation, and in two of those cells narrow-band bundle motion in excess of their thermal motion at frequencies coincident with peaks in the intracellular noise was observed.

  15. Ca2+ is involved in muscarine-acetylcholine-receptor-mediated acetylcholine signal transduction in guard cells of Vicia faba L.

    Institute of Scientific and Technical Information of China (English)

    MENG Fanxia; MIAO Long; ZHANG Shuqiu; LOU Chenghou

    2004-01-01

    Acetylcholine (ACh) is an important neurochemical transmitter in animals; it also exists in plants and plays a significant role in various kinds of physiological functions in plants. ACh has been known to induce the stomatal opening. By monitoring the changes of cytosolic Ca2+ with fluorescent probe Fluo-3 AM under the confocal microscopy,we found that exogenous ACh increased cytosolic Ca2+ concentration of guard cells of Vicia faba L. Muscarine, an agonist of muscarine acetylcholine receptor (mAChR), could do so as well. In contrast, atropine, the antagonist of mAChR abolished the ability of ACh to increase Ca2+ in guard cells.This mechanism is similar to mAChR in animals. When EGTA was used to chelate Ca2+ or ruthenium red to block Ca2+ released from vacuole respectively, the results showed that the increased cytosolic Ca2+ mainly come from intracellular Ca2+ store. The evidence supports that Ca2+ is involved in guard-cell response to ACh and that Ca2+ signal is coupled to mAChRs in ACh signal transduction in guard cells.

  16. Hair cell specific NTPDase6 immunolocalisation in vestibular end organs: potential role of purinergic signaling in vestibular sensory transduction.

    Science.gov (United States)

    O'Keeffe, Mary G; Thorne, Peter R; Housley, Gary D; Robson, Simon C; Vlajkovic, Srdjan M

    2012-01-01

    A complex extracellular nucleotide signalling system acting on P2 receptors is involved in regulation of cochlear function in the mammalian inner ear. Ectonucleoside triphosphate diphosphohydrolases (E-NTPDases) are ectonucleotidases that regulate P2 receptor signalling pathways in mammalian tissues by hydrolysing extracellular nucleotides to the respective nucleosides. All enzymes from the CD39/ENTPD family (NTPDase1-8) are expressed in the adult rat cochlea, but their expression and distribution in the vestibular end organ is unknown. This report demonstrates selective expression of NTPDase6 by rat vestibular hair cells. Hair cells transducing both angular acceleration (crista ampullaris) and static head position (maculae of the utricle and saccule) exhibited strong immunolabelling with a bias towards the sensory pole and in particular, the hair cell bundle. NTPDase6 is an intracellular enzyme that can be released in a soluble form from cell cultures and shows an enzymatic preference for nucleoside 5'-diphosphates, such as guanosine 5'-diphosphate (GDP) and uridine 5'-diphosphate (UDP). The main function of NTPDase6 may be the regulation of nucleotide levels in cellular organelles by regulating the conversion of nucleotides to nucleosides. NTPDase6 immunolocalisation in the vestibular end organ could be linked to the regulation of P2 receptor signalling and sensory transduction, including maintenance of vestibular hair bundles.

  17. Opposing effects of bile acids deoxycholic acid and ursodeoxycholic acid on signal transduction pathways in oesophageal cancer cells.

    Science.gov (United States)

    Abdel-Latif, Mohamed M; Inoue, Hiroyasu; Reynolds, John V

    2016-09-01

    Ursodeoxycholic acid (UDCA) was reported to reduce bile acid toxicity, but the mechanisms underlying its cytoprotective effects are not fully understood. The aim of the present study was to examine the effects of UDCA on the modulation of deoxycholic acid (DCA)-induced signal transduction in oesophageal cancer cells. Nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) activity was assessed using a gel shift assay. NF-κB activation and translocation was performed using an ELISA-based assay and immunofluorescence analysis. COX-2 expression was analysed by western blotting and COX-2 promoter activity was assessed by luciferase assay. DCA induced NF-κB and AP-1 DNA-binding activities in SKGT-4 and OE33 cells. UDCA pretreatment inhibited DCA-induced NF-κB and AP-1 activation and NF-κB translocation. This inhibitory effect was coupled with a blockade of IκB-α degradation and inhibition of phosphorylation of IKK-α/β and ERK1/2. Moreover, UDCA pretreatment inhibited COX-2 upregulation. Using transient transfection of the COX-2 promoter, UDCA pretreatment abrogated DCA-induced COX-2 promoter activation. In addition, UDCA protected oesophageal cells from the apoptotic effects of deoxycholate. Our findings indicate that UDCA inhibits DCA-induced signalling pathways in oesophageal cancer cells. These data indicate a possible mechanistic role for the chemopreventive actions of UDCA in oesophageal carcinogenesis.

  18. Two-component signal transduction pathways regulating growth and cell cycle progression in a bacterium: a system-level analysis.

    Directory of Open Access Journals (Sweden)

    Jeffrey M Skerker

    2005-10-01

    Full Text Available Two-component signal transduction systems, comprised of histidine kinases and their response regulator substrates, are the predominant means by which bacteria sense and respond to extracellular signals. These systems allow cells to adapt to prevailing conditions by modifying cellular physiology, including initiating programs of gene expression, catalyzing reactions, or modifying protein-protein interactions. These signaling pathways have also been demonstrated to play a role in coordinating bacterial cell cycle progression and development. Here we report a system-level investigation of two-component pathways in the model organism Caulobacter crescentus. First, by a comprehensive deletion analysis we show that at least 39 of the 106 two-component genes are required for cell cycle progression, growth, or morphogenesis. These include nine genes essential for growth or viability of the organism. We then use a systematic biochemical approach, called phosphotransfer profiling, to map the connectivity of histidine kinases and response regulators. Combining these genetic and biochemical approaches, we identify a new, highly conserved essential signaling pathway from the histidine kinase CenK to the response regulator CenR, which plays a critical role in controlling cell envelope biogenesis and structure. Depletion of either cenK or cenR leads to an unusual, severe blebbing of cell envelope material, whereas constitutive activation of the pathway compromises cell envelope integrity, resulting in cell lysis and death. We propose that the CenK-CenR pathway may be a suitable target for new antibiotic development, given previous successes in targeting the bacterial cell wall. Finally, the ability of our in vitro phosphotransfer profiling method to identify signaling pathways that operate in vivo takes advantage of an observation that histidine kinases are endowed with a global kinetic preference for their cognate response regulators. We propose that this

  19. Signal transduction and metabolic changes during tumor cell apoptosis following phthalocyanine-sensitized photodynamic therapy

    Science.gov (United States)

    Oleinick, Nancy L.; Agarwal, Munna L.; Berger, Nathan A.; Cheng, Ming-Feng; Chatterjee, Satadel; He, Jin; Kenney, Malcolm E.; Larkin, Hedy E.; Mukhter, Hasan; Rihter, Boris D.; Zaidi, Syed I. A.

    1993-06-01

    Mechanisms of cell death have been explored in cells and tumors treated with photodynamic therapy (PDT). Photosensitizers used for these studies were Photofrin, tetrasulfonated and nonsulfonated aluminum phthalocyanine, and a new silicon phthalocyanine [SiPc(OH)OSi(CH3)2(CH2)3N(CH3)2], referred to as PcIV. In mouse lymphoma L5178Y cells, a dose of PDT sensitized by PcIV which causes a 90% loss of cell survival induces apoptosis (programmed cell death) over a several-hour time course, beginning within 10 minutes of irradiation. Apoptosis is a metabolic process initiated by PDT-induced damage to membranes and triggered by the activation of phospholipases A2 and C and the release of Ca++ from intracellular stores. An endogenous endonuclease is activated and cleaves nuclear DNA in the internucleosomal region of chromatin. Subsequent metabolic events now appear to cause the loss of cellular NAD and ATP, the former a result of the activation of a second nuclear enzyme, poly(ADP-ribose) polymerase, by the endonucleolytically generated DNA strand breaks. Loss of ATP follows upon the loss of NAD needed for energy metabolism. Although the induction of apoptosis is efficiently produced by direct PDT damage to L5178Y cells, we now find that apoptosis is also produced by treatment of certain other lymphoid-derived cells and cells of epithelial origin. Under the limited set of conditions tested, there was no evidence for PDT-induced apoptosis in a fibroblast cell line, in mouse fibrosarcoma RIF-1 and L929 cells, in human adenocarcinoma A549 cells, or in human squamous cell carcinoma cells in culture. The evidence suggests that apoptosis, a form of metabolic cell death, is an important mechanism of tumor ablation in PDT-treated tumors, and that the induction of apoptosis may involve the interaction of direct PDT damage to malignant cells with factors produced by PDT action on vascular and other host cells.

  20. Signal transduction by HLA class II antigens expressed on activated T cells

    DEFF Research Database (Denmark)

    Ødum, Niels; Martin, P J; Schieven, G L;

    1991-01-01

    Human T cells express HLA class II antigens upon activation. Although activated, class II+ T cells can present alloantigens under certain circumstances, the functional role of class II antigens on activated T cells remains largely unknown. Here, we report that cross-linking of HLA-DR molecules ex...

  1. Pancreatic acinar cells: molecular insight from studies of signal-transduction using transgenic animals.

    Science.gov (United States)

    Yule, David I

    2010-11-01

    Pancreatic acinar cells are classical exocrine gland cells. The apical regions of clusters of coupled acinar cells collectively form a lumen which constitutes the blind end of a tube created by ductal cells - a structure reminiscent of a "bunch of grapes". When activated by neural or hormonal secretagogues, pancreatic acinar cells are stimulated to secrete a variety of proteins. These proteins are predominately inactive digestive enzyme precursors called "zymogens". Acinar cell secretion is absolutely dependent on secretagogue-induced increases in intracellular free Ca(2+). The increase in [Ca(2+)](i) has precise temporal and spatial characteristics as a result of the exquisite regulation of the proteins responsible for Ca(2+) release, Ca(2+) influx and Ca(2+) clearance in the acinar cell. This brief review discusses recent studies in which transgenic animal models have been utilized to define in molecular detail the components of the Ca(2+) signaling machinery which contribute to these characteristics.

  2. Pluripotency transcription factor Sox2 is strongly adsorbed by heparin but requires a protein transduction domain for cell internalization

    Energy Technology Data Exchange (ETDEWEB)

    Albayrak, Cem [Department of Chemical Engineering, Stanford University, 381 North-South Mall, Stanford, CA 94305 (United States); Yang, William C. [Department of Bioengineering, Stanford University, 318 Campus Drive, Stanford, CA 94305 (United States); Swartz, James R., E-mail: jswartz@stanford.edu [Department of Chemical Engineering, Stanford University, 381 North-South Mall, Stanford, CA 94305 (United States); Department of Bioengineering, Stanford University, 318 Campus Drive, Stanford, CA 94305 (United States)

    2013-02-15

    Highlights: ► Both R9Sox2 and Sox2 bind heparin with comparable affinity. ► Both R9Sox2 and Sox2 bind to fibroblasts, but only R9Sox2 is internalized. ► Internalization efficiency of R9Sox2 is 0.3% of the administered protein. ► Heparan sulfate adsorption may be part of a mechanism for managing cell death. -- Abstract: The binding of protein transduction domain (PTD)-conjugated proteins to heparan sulfate is an important step in cellular internalization of macromolecules. Here, we studied the pluripotency transcription factor Sox2, with or without the nonaarginine (R9) PTD. Unexpectedly, we observed that Sox2 is strongly adsorbed by heparin and by the fibroblasts without the R9 PTD. However, only the R9Sox2 fusion protein is internalized by the cells. These results collectively show that binding to heparan sulfate is not sufficient for cellular uptake, thereby supporting a recent hypothesis that other proteins play a role in cell internalization of PTD-conjugated proteins.

  3. Molecular basis of mechanosensory transduction

    Science.gov (United States)

    Gillespie, Peter G.; Walker, Richard G.

    2001-09-01

    Mechanotransduction - a cell's conversion of a mechanical stimulus into an electrical signal - reveals vital features of an organism's environment. From hair cells and skin mechanoreceptors in vertebrates, to bristle receptors in flies and touch receptors in worms, mechanically sensitive cells are essential in the life of an organism. The scarcity of these cells and the uniqueness of their transduction mechanisms have conspired to slow molecular characterization of the ensembles that carry out mechanotransduction. But recent progress in both invertebrates and vertebrates is beginning to reveal the identities of proteins essential for transduction.

  4. Methoxychlor enhances degranulation of murine mast cells by regulating FcεRI-mediated signal transduction.

    Science.gov (United States)

    Yasunaga, Sho; Nishi, Kosuke; Nishimoto, Sogo; Sugahara, Takuya

    2015-01-01

    Methoxychlor, an organochlorine insecticide developed to replace DDT (dichlorodiphenyltrichloroethane), has been reported to induce mast cell degranulation and to enhance IgE-mediated allergic responses. However, the mechanisms underlying these effects are not clear. To clarify potential mechanisms, the effects of methoxychlor on degranulation of mast cells were examined. Degranulation responses were evaluated using RBL-2H3 cells and mouse bone marrow-derived mast cells with either the antigen-induced or calcium ionophore-induced stimulation. Phosphorylation of enzymes related to signaling events associated with mast cell degranulation was analyzed by immunoblotting. Effects on vascular permeability in the passive cutaneous anaphylaxis reaction were evaluated following oral administration of methoxychlor to BALB/c mice. The results indicated that methoxychlor caused increased mast cell degranulation in the presence of antigen, whereas it had no effect on calcium ionophore-induced degranulation of RBL-2H3 cells. Immunoblot analyses demonstrated that the phosphorylation level of phosphoinositide 3-kinase (which plays a central role in mast cell signaling) was increased by methoxychlor during antigen-induced degranulation. In addition, methoxychlor activated the signaling pathway via the high-affinity IgE receptor by inducing phosphorylation of Syk and PLCγ1/2, which transfer the signal for degranulation downstream. Lastly, oral administration of methoxychlor exhibited a tendency to promote vascular permeability in passive cutaneous anaphylaxis model mice. Taken together, the results here suggested that methoxychlor enhanced degranulation through FcεRI-mediated signaling and promoted allergenic symptoms involved in mast cell degranulation.

  5. Single-cell census of mechanosensitive channels in living bacteria.

    Directory of Open Access Journals (Sweden)

    Maja Bialecka-Fornal

    Full Text Available Bacteria are subjected to a host of different environmental stresses. One such insult occurs when cells encounter changes in the osmolarity of the surrounding media resulting in an osmotic shock. In recent years, a great deal has been learned about mechanosensitive (MS channels which are thought to provide osmoprotection in these circumstances by opening emergency release valves in response to membrane tension. However, even the most elementary physiological parameters such as the number of MS channels per cell, how MS channel expression levels influence the physiological response of the cells, and how this mean number of channels varies from cell to cell remain unanswered. In this paper, we make a detailed quantitative study of the expression of the mechanosensitive channel of large conductance (MscL in different media and at various stages in the growth history of bacterial cultures. Using both quantitative fluorescence microscopy and quantitative Western blots our study complements earlier electrophysiology-based estimates and results in the following key insights: i the mean number of channels per cell is much higher than previously estimated, ii measurement of the single-cell distributions of such channels reveals marked variability from cell to cell and iii the mean number of channels varies under different environmental conditions. The regulation of MscL expression displays rich behaviors that depend strongly on culturing conditions and stress factors, which may give clues to the physiological role of MscL. The number of stress-induced MscL channels and the associated variability have far reaching implications for the in vivo response of the channels and for modeling of this response. As shown by numerous biophysical models, both the number of such channels and their variability can impact many physiological processes including osmoprotection, channel gating probability, and channel clustering.

  6. DC-ATLAS : a systems biology resource to dissect receptor specific signal transduction in dendritic cells

    NARCIS (Netherlands)

    Cavalieri, D.; Rivero, D.; Beltrame, L.; Buschow, S.I.; Calura, E.; Rizzetto, L.; Gessani, S.; Gauzzi, M.C.; Reith, W.; Baur, A.; Bonaiuti, R.; Brandizi, M.; Filippo, C. De; D'Oro, U.; Draghici, S.; Dunand-Sauthier, I.; Gatti, E.; Granucci, F.; Gundel, M.; Kramer, M.; Kuka, M.; Lanyi, A.; Melief, C.J.; Montfoort, N. van; Ostuni, R.; Pierre, P.; Popovici, R.; Rajnavolgyi, E.; Schierer, S.; Schuler, G.; Soumelis, V.; Splendiani, A.; Stefanini, I.; Torcia, M.G.; Zanoni, I.; Zollinger, R.; Figdor, C.G.; Austyn, J.M.

    2010-01-01

    BACKGROUND: The advent of Systems Biology has been accompanied by the blooming of pathway databases. Currently pathways are defined generically with respect to the organ or cell type where a reaction takes place. The cell type specificity of the reactions is the foundation of immunological research,

  7. Sensory transduction in eukaryotes : A comparison between Dictyosteliurn and vertebrate cells

    NARCIS (Netherlands)

    Haastert, Peter J.M. van; Janssens, Pim M.W.; Erneux, Christophe

    1991-01-01

    The organization of multicellular organisms depends on cell-cell communication. The signal molecules are often soluble components in the extracellular fluid, but also include odors and light. A large array of surface receptors is involved in the detection of these signals. Signals are then transduce

  8. Efficient Transduction of Feline Neural Progenitor Cells for Delivery of Glial Cell Line-Derived Neurotrophic Factor Using a Feline Immunodeficiency Virus-Based Lentiviral Construct

    Directory of Open Access Journals (Sweden)

    X. Joann You

    2011-01-01

    Full Text Available Work has shown that stem cell transplantation can rescue or replace neurons in models of retinal degenerative disease. Neural progenitor cells (NPCs modified to overexpress neurotrophic factors are one means of providing sustained delivery of therapeutic gene products in vivo. To develop a nonrodent animal model of this therapeutic strategy, we previously derived NPCs from the fetal cat brain (cNPCs. Here we use bicistronic feline lentiviral vectors to transduce cNPCs with glial cell-derived neurotrophic factor (GDNF together with a GFP reporter gene. Transduction efficacy is assessed, together with transgene expression level and stability during induction of cellular differentiation, together with the influence of GDNF transduction on growth and gene expression profile. We show that GDNF overexpressing cNPCs expand in vitro, coexpress GFP, and secrete high levels of GDNF protein—before and after differentiation—all qualities advantageous for use as a cell-based approach in feline models of neural degenerative disease.

  9. Macula densa cell signaling involves ATP release through a maxi anion channel.

    Science.gov (United States)

    Bell, Phillip Darwin; Lapointe, Jean-Yves; Sabirov, Ravshan; Hayashi, Seiji; Peti-Peterdi, Janos; Manabe, Ken-Ichi; Kovacs, Gergely; Okada, Yasunobu

    2003-04-01

    Macula densa cells are unique renal biosensor cells that detect changes in luminal NaCl concentration ([NaCl](L)) and transmit signals to the mesangial cellafferent arteriolar complex. They are the critical link between renal salt and water excretion and glomerular hemodynamics, thus playing a key role in regulation of body fluid volume. Since identification of these cells in the early 1900s, the nature of the signaling process from macula densa cells to the glomerular contractile elements has remained unknown. In patch-clamp studies of macula densa cells, we identified an [NaCl](L)-sensitive ATP-permeable large-conductance (380 pS) anion channel. Also, we directly demonstrated the release of ATP (up to 10 microM) at the basolateral membrane of macula densa cells, in a manner dependent on [NaCl](L), by using an ATP bioassay technique. Furthermore, we found that glomerular mesangial cells respond with elevations in cytosolic Ca(2+) concentration to extracellular application of ATP (EC(50) 0.8 microM). Importantly, we also found increases in cytosolic Ca(2+) concentration with elevations in [NaCl](L), when fura-2-loaded mesangial cells were placed close to the basolateral membrane of macula densa cells. Thus, cell-to-cell communication between macula densa cells and mesangial cells, which express P2Y(2) receptors, involves the release of ATP from macula densa cells via maxi anion channels at the basolateral membrane. This mechanism may represent a new paradigm in cell-to-cell signal transduction mediated by ATP.

  10. Quantitative phosphoproteomics of murine Fmr1-KO cell lines provides new insights into FMRP-dependent signal transduction mechanisms.

    Science.gov (United States)

    Matic, Katarina; Eninger, Timo; Bardoni, Barbara; Davidovic, Laetitia; Macek, Boris

    2014-10-03

    Fragile X mental retardation protein (FMRP) is an RNA-binding protein that has a major effect on neuronal protein synthesis. Transcriptional silencing of the FMR1 gene leads to loss of FMRP and development of Fragile X syndrome (FXS), the most common known hereditary cause of intellectual impairment and autism. Here we utilize SILAC-based quantitative phosphoproteomics to analyze murine FMR1(-) and FMR1(+) fibroblastic cell lines derived from FMR1-KO embryos to identify proteins and phosphorylation sites dysregulated as a consequence of FMRP loss. We quantify FMRP-related changes in the levels of 5,023 proteins and 6,133 phosphorylation events and map them onto major signal transduction pathways. Our study confirms global downregulation of the MAPK/ERK pathway and decrease in phosphorylation level of ERK1/2 in the absence of FMRP, which is connected to attenuation of long-term potentiation. We detect differential expression of several key proteins from the p53 pathway, pointing to the involvement of p53 signaling in dysregulated cell cycle control in FXS. Finally, we detect differential expression and phosphorylation of proteins involved in pre-mRNA processing and nuclear transport, as well as Wnt and calcium signaling, such as PLC, PKC, NFAT, and cPLA2. We postulate that calcium homeostasis is likely affected in molecular pathogenesis of FXS.

  11. The Role of Intrinsic Flexibility in Signal Transduction Mediated by the Cell Cycle Regulator, p27Kip1

    Energy Technology Data Exchange (ETDEWEB)

    Galea, Charles A. [St. Jude Children' s Research Hospital; Nourse, Amanda [St. Jude Children' s Research Hospital; Wang, Yuefeng [St. Jude Children' s Research Hospital; Sivakolundu, Sivashankar G. [St. Jude Children' s Research Hospital; Heller, William T [ORNL; Kriwacki, Richard W [University of Tennessee (UT) Health Science Center, Memphis

    2008-02-01

    p27{sup Kip1} (p27), which controls eukaryotic cell division through interactions with cyclin-dependent kinases (Cdks), integrates and transduces promitogenic signals from various nonreceptor tyrosine kinases by orchestrating its own phosphorylation, ubiquitination and degradation. Intrinsic flexibility allows p27 to act as a 'conduit' for sequential signaling mediated by tyrosine and threonine phosphorylation and ubiquitination. While the structural features of the Cdk/cyclin-binding domain of p27 are understood, how the C-terminal regulatory domain coordinates multistep signaling leading to p27 degradation is poorly understood. We show that the 100-residue p27 C-terminal domain is extended and flexible when p27 is bound to Cdk2/cyclin A. We propose that the intrinsic flexibility of p27 provides a molecular basis for the sequential signal transduction conduit that regulates p27 degradation and cell division. Other intrinsically unstructured proteins possessing multiple sites of posttranslational modification may participate in similar signaling conduits.

  12. Lentiviral transduction of Tar Decoy and CCR5 ribozyme into CD34+ progenitor cells and derivation of HIV-1 resistant T cells and macrophages

    Directory of Open Access Journals (Sweden)

    Rossi John

    2004-12-01

    Full Text Available Abstract Background RNA based antiviral approaches against HIV-1 are among the most promising for long-term gene therapy. These include ribozymes, aptamers (decoys, and small interfering RNAs (siRNAs. Lentiviral vectors are ideal for transduction of such inhibitory RNAs into hematopoietic stem cells due to their ability to transduce non-dividing cells and their relative refractiveness to gene silencing. The objective of this study is to introduce an HIV-1 Tar aptamer either alone or in combination with an anti-CCR5 ribozyme into CD34+ hematopoietic progenitor cells via an HIV-based lentiviral vector to derive viral resistant progeny T cells and macrophages. Results High efficiency and sustained gene transfer into CD34+ cells were achieved with lentiviral vector constructs harboring either Tar decoy or Tar decoy in combination with CCR5 ribozyme. Cells transduced with these constructs differentiated normally into T-lymphocytes in vivo in thy/liv grafts of SCID-hu mice, and into macrophages in vitro in the presence of appropriate growth factors. When challenged in vitro, the differentiated T lymphocytes and macrophages showed marked resistance against HIV-1 infection. Conclusions Viral resistant transgenic T cells and macrophages that express HIV-1 Tar aptamer either alone or in combination with an anti-CCR5 ribozyme could be obtained by lentiviral gene transduction of CD34+ progenitor cells. These results showed for the first time that expression of these anti-HIV-1 transgenes in combination do not interfere with normal thymopoiesis and thus have set the stage for their application in stem cell based gene therapy for HIV/AIDS.

  13. An integrated image analysis platform to quantify signal transduction in single cells

    OpenAIRE

    Pelet, Serge; Dechant, Reinhard; Lee, Sung Sik; van Drogen, Frank; Peter, Matthias

    2012-01-01

    Microscopy can provide invaluable information about biological processes at the single cell level. It remains a challenge, however, to extract quantitative information from these types of datasets. We have developed an image analysis platform named YeastQuant to simplify data extraction by offering an integrated method to turn time-lapse movies into single cell measurements. This platform is based on a database with a graphical user interface where the users can describe their experiments....

  14. Signal transduction of bombesin-induced circular smooth muscle cell contraction in cat esophagus

    Institute of Scientific and Technical Information of China (English)

    Sung-Uk Park; Chang-Yell Shin; Jung-Su Ryu; Hyen-O La; Sun-Young Park; Hyun-Ju Song; Young-Sil Min; Dong-Seok Kim; Uy-Dong Sohn

    2006-01-01

    AIM: To investigate the mechanism of bombesin-induced circular smooth muscle cell contraction in cat esophagus.METHODS: Specific G protein or phospholipase C involved in cat esophagus contraction was identified,muscle cells were permeabilized with saponin. After permeabilization of muscle cells, the Gi3 antibody inhibited bombesin-induced smooth muscle cell contraction.RESULTS: Incubation of permeabilized circular muscle cells with PLC-β3 antibody could inhibit bombesin-induced contraction. H-7, chelerythrine (PKC inhibitor)and genistein (protein tyrosine kinase inhibitor) inhibited bombesin-induced contraction, but DAG kinase inhibitor,R59949, could not inhibit it. To examine which mitogenactivated protein kinase (MAPK) was involved in bombesin-induced contraction, the specific MAPK inhibitors (MEK inhibitor, PD98059 and p38 MAPK inhibitor, SB202190)were used. Preincubation of PD98059 blocked the contraction induced by bombesin in a concentration-dependent manner. However, SB202190 had no effects on contraction.CONCLUSION: Bombesin-induced circular muscle cell contraction in cat esophagus is madiated via a PKC or a PTK-dependent pathway or p44/p42 MAPK pathway.

  15. THE INFLUENCE OF HUMAN SINGLE CHAIN INTELEUKIN-12 GENE TRANSDUCTION ON THE BIOLOGICAL BEHAVIOR OF HEPATOMA 7721 CELLS

    Institute of Scientific and Technical Information of China (English)

    金莉; 来保长; 耿宜萍; 王一理; 司履生

    2001-01-01

    Objective. To investigate the anti-tumor effects of human single chain interleukin-12 (hscIL-12). Method. pcDNA/hscIL-12 recombinant was transfected into human hepatic carcinoma cells (7721 cells) by lipofectin method. The 7721/hscIL-12 cells which secrete hscIL-12 stably, were obtained via G418 selection, and in vitro the influence of hscIL-12 gene transduction on the growth of tumor cells was evaluated by cellcycle analysis. In vivo, genetically engineered 7721 cells (7721/hscIL-12, 7721/pcDNA) and parental cells were implanted into BALB/c nude mice, respectively. 7721/pcDNA and 7721/hscIL-12 groups were divided into two sub-groups on day 8: one was administered with hPBL twice, 6 days at interval; the other was given equalvolume of PBS. Mice were sacrificed on day 26, and spleens and tumors were taken out for histologic assay. Results. hscIL-12 produced stably by 7721/hscIL-12 cells had bioactivity, and it was proved by Western blot, immunocytochemistry, and in situ hybridization. In vitro, compared with 7721 and 7721/pcDNA, the7721/hscIL-12 grew much more slowly. FACS assay showed apparent G1 arrest of 7721/hscIL-12 cells. In ani-mal experiment, on day 8 after inoculation, the tumors of 7721 and 7721/pcDNA group were up to 5 -7mm,while those of 7721/hscIL-12 group were 2 -4mm. When treated with hPBL, the tumor of 7721/hscIL-12 groupdisappeared completely. Histologically, the tumors from 7721/hscIL-12 without hPBL treatment had numerouslymphocyte infiltration, the tumor cells displayed depression looking, atrophy, focal necrosis and apoptosis, whereas the tumors of 7721 and 772l/pcDNA groups grew thrivingly.Conclusion. hsclL-12 transduced 7721 cells could induced significant antitumor immune response which resulted in tumor regression totally when the hPBL was inoculated, and also hscIL-12 has certain effects on mice immune system. These findings suggest that hscIL-12 and hscIL-12 gene therapy might have promising prospects in clinical application.

  16. Neuroprotective effects of ClC-3 chloride channel in glutamate-induced retinal ganglion cell RGC-5 apoptosis

    Institute of Scientific and Technical Information of China (English)

    Li Yu; Ning Han; Ligang Jiang; Yajuan Zheng; Lifeng Liu

    2011-01-01

    Transforming growth factor β plays a role in regulation of apoptosis in ClC-3 and the Smads signaling pathway, although the underlying mechanisms remain unclear. The present study determined possible signal transduction mechanisms based on CIC-3 expression, which accordingly affected apoptosis of retinal ganglion cells in a glutamate-induced retinal ganglion cell RGC-5 apoptosis model. Results revealed significantly increased cell survival rate and significantly decreased apoptosis rate following apoptosis of ClC-3 cDNA-transfected glutamate-induced retinal ganglion cells. Following inhibition of the ClC-3 chloride channel using RNAi technology, cell survival and apoptosis rates were reversed. In addition, expression of transforming growth factor β2, Smads2, Smads3, Smads4, and Smads7 increased to varying degrees. These results suggest that ClC-3 chloride channel plays a protective role in glutamate-induced apoptosis of retinal ganglion cells, and transforming growth factor β/Smads signal transduction pathways are involved in this process.

  17. Low concentration of ethanol induce apoptosis in HepG2 cells: role of various signal transduction pathways

    Directory of Open Access Journals (Sweden)

    Francisco Castaneda, Sigrid Rosin-Steiner

    2006-01-01

    Full Text Available As we previously demonstrated in human hepatocellular carcinoma (HepG2 cells, ethanol at low concentration triggers the Fas apoptotic pathway. However, its role in other intracellular signaling pathways remains unknown. Therefore, the aim of the present study was to evaluate the role of low concentration of ethanol on different intracellular signaling pathways. For this purpose, HepG2 cells were treated with 1 mM ethanol for 10 min and the phosphorylation state of protein kinases was determined. In addition, the mRNA levels of transcription factors and genes associated with the Fas apoptotic pathway were determined. Our data demonstrated that ethanol-induced phosphorylation of protein kinases modulates both anti-apoptotic and pro-apoptotic mechanisms in HepG2 cells. Pro-apoptosis resulted mainly from the strong inhibition of the G-protein couple receptor signaling pathway. Moreover, the signal transduction initiated by ethanol-induced protein kinases phosphorylation lead to increased expression of the transcription factors with subsequent expression of genes associated with the Fas apoptotic pathway (Fas receptor, Fas ligand, FADD and caspase 8. These results indicate that low concentration of ethanol exert their effect by predominant activation of pro-apoptotic events that can be divided in two phases. An early phase characterized by a rapid transient effect on protein kinases phosphorylation, after 10 min exposure, with subsequent increased expression of transcription factors for up to 6 hr. This early phase is followed by a second phase associated with increased gene expression that began after 6 hr and persisted for more than 24 hr. This information provided a novel insight into the mechanisms of action of ethanol (1mM in human hepatocellular carcinoma cells.

  18. Signal transduction of the physical environment in the neural differentiation of stem cells

    Science.gov (United States)

    Thompson, Ryan; Chan, Christina

    2016-01-01

    Neural differentiation is largely dependent on extracellular signals within the cell microenvironment. These extracellular signals are mainly in the form of soluble factors that activate intracellular signaling cascades that drive changes in the cell nucleus. However, it is becoming increasingly apparent that the physical microenvironment provides signals that can also influence lineage commitment and very low modulus surfaces has been repeatedly demonstrated to promote neurogenesis. The molecular mechanisms governing mechano-induced neural differentiation are still largely uncharacterized; however, a growing body of evidence indicates that physical stimuli can regulate known signaling cascades and transcription factors involved in neural differentiation. Understanding how the physical environment affects neural differentiation at the molecular level will enable research and design of materials that will eventually enhance neural stem cell (NSC) differentiation, homogeneity and specificity.

  19. Endoglin promotes endothelial cell proliferation and TGF-beta/ALK1 signal transduction

    NARCIS (Netherlands)

    Lebrin, F; Goumans, MJ; Jonker, L; Carvalho, RLC; Valdimarsdottir, G; Thorikay, M; Mummery, C; Arthur, HM; ten Dijke, P

    2004-01-01

    Endoglin is a transmembrane accessory receptor for transforming growth factor-beta (TGF-beta) that is predominantly expressed on proliferating endothelial cells in culture and on angiogenic blood vessels in vivo. Endoglin, as well as other TGF-beta signalling components, is essential during angiogen

  20. The Mammary Epithelial Cell Secretome and its Regulation by Signal Transduction Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Jon M.; Waters, Katrina M.; Kathmann, Loel E.; Camp, David G.; Wiley, H. S.; Smith, Richard D.; Thrall, Brian D.

    2008-02-01

    Extracellular proteins released by mammary epithelial cells are critical mediators of cell communication, proliferation and organization, yet the actual spectrum of proteins released by any given cell (the secretome) is poorly characterized. To define the set of proteins secreted by human mammary epithelial cells (HMEC), we combined analytical and computational approaches to define a secretome protein set based upon probable biological significance. Analysis of HMEC-conditioned medium by liquid chromatography-mass spectrometry resulted in identification of 889 unique proteins, of which 151 were found to be specifically enriched in the extracellular compartment when compared with a database of proteins expressed in whole HMEC lysates. Additional high mass accuracy analysis revealed 36 proteins whose extracellular abundance increased after treatment with phorbol ester (PMA), a protein kinase C agonist and general secretagogue. Many of the PMA stimulated proteins have been reported to be aberrantly expressed in human cancers and appear to be co-regulated as multigene clusters. By inhibiting PMA-mediated transactivation of the epidermal growth factor receptor (EGFR), a pathway critically required for normal HMEC function, we found that the secretion of specific matrix metalloproteases were also coordinately regulated through EGFR transactivation. This study demonstrates a tiered strategy by which extracellular proteins can be identified and progressively assigned to classes of increasing confidence and regulatory importance.

  1. A Case Study of Representing Signal Transduction in Liver Cells as a Feedback Control Problem

    Science.gov (United States)

    Singh, Abhay; Jayaraman, Arul; Hahn, Juergen

    2007-01-01

    Cell signaling pathways often contain feedback loops where proteins are produced that regulate signaling. While feedback regulatory mechanisms are commonly found in signaling pathways, there is no example available in the literature that is simple enough to be presented in an undergraduate control class. This paper presents a simulation study of…

  2. A comprehensive, multi-scale dynamical model of ErbB receptor signal transduction in human mammary epithelial cells.

    Directory of Open Access Journals (Sweden)

    Tomáš Helikar

    Full Text Available The non-receptor tyrosine kinase Src and receptor tyrosine kinase epidermal growth factor receptor (EGFR/ErbB1 have been established as collaborators in cellular signaling and their combined dysregulation plays key roles in human cancers, including breast cancer. In part due to the complexity of the biochemical network associated with the regulation of these proteins as well as their cellular functions, the role of Src in EGFR regulation remains unclear. Herein we present a new comprehensive, multi-scale dynamical model of ErbB receptor signal transduction in human mammary epithelial cells. This model, constructed manually from published biochemical literature, consists of 245 nodes representing proteins and their post-translational modifications sites, and over 1,000 biochemical interactions. Using computer simulations of the model, we find it is able to reproduce a number of cellular phenomena. Furthermore, the model predicts that overexpression of Src results in increased endocytosis of EGFR in the absence/low amount of the epidermal growth factor (EGF. Our subsequent laboratory experiments also suggest increased internalization of EGFR upon Src overexpression under EGF-deprived conditions, further supporting this model-generated hypothesis.

  3. Leptin differentially regulates NPY secretion in hypothalamic cell lines through distinct intracellular signal transduction pathways.

    Science.gov (United States)

    Dhillon, Sandeep S; Belsham, Denise D

    2011-04-11

    Leptin acts as a key peripheral hormone in distinct neurons in the hypothalamus to modulate both reproductive function and energy homeostasis. The control of neuropeptide Y (NPY) secretion is an example of a process that can be differentially regulated by leptin. In order to further understand these distinct modulatory effects, we have used immortalized, neuronal hypothalamic cell lines expressing NPY, mHypoE-38 and mHypoE-46. We found that these cell lines express the endogenous leptin receptor, ObRb, and secrete detectable levels of NPY. We exposed the neurons to 100nM leptin for 1h and determined that the basal levels of NPY in the cell lines were differentially regulated: NPY secretion was inhibited in mHypoE-46 neurons, whereas NPY secretion was induced in the mHypoE-38 neurons. In order to determine the mechanisms involved in the divergent regulation of NPY release, we analyzed the activity of a number of signaling components using phospho-specific antibodies directed towards specific proteins in the MAP kinase, PI3K, and AMPK pathways, among others. We found that leptin activated a different combination of second messengers in each cell line. Importantly, we could link the regulation of NPY secretion to different signaling pathways, AMPK in the mHypoE-46 and both MAPK and PI3K in the mHypoE-38 neurons. This is the first demonstration that leptin can specifically regulate individual NPY neuron secretory responses through distinct signaling pathways.

  4. Altered Signal Transduction in Renal Cell Injury Following Hemorrhagic Shock or Anoxia

    Science.gov (United States)

    1989-07-01

    ionophorous compounds can be generated during the course of cell injury from endogenous substrates. Phosphatidic acid , formed during the hydrolysis of...in which a 14 mm hole was drilled and covered by a 22 mm glass cover-slip (Tucker et al., 1989). The acid -washed coverslip was attached to the plastic...ion regulation and disease. A hypothesis. In: Shamoo, A.E., editor. Regulation of Calcium Transport in Muscle . Vol. 25. New York: Academic Press, pp

  5. Sorbitol induces apoptosis of human colorectal cancer cells via p38 MAPK signal transduction.

    Science.gov (United States)

    Lu, Xue; Li, Chun; Wang, Yong-Kun; Jiang, Kun; Gai, Xiao-Dong

    2014-06-01

    Sorbitol has been reported to have anticancer effects in several tumor models, however its effects on colorectal cancer remain elusive. In the present study, the effects of sorbitol on growth inhibition and apoptosis in the colorectal cancer HCT116 cell line were evaluated and its mechanism of action was examined. An MTT assay was utilized to determine the effect of sorbitol on HCT116 cell proliferation at different time points and variable doses. Western blot analysis was used to examine the effect of sorbitol on apoptosis-related protein expression and the p38 MAPK signaling pathway. The results revealed that sorbitol may inhibit the growth of HCT116 cells in a time- and dose-dependent manner. Following treatment with sorbitol for 3 h, western blotting demonstrated cleavage of the caspase-3 zymogen protein and a cleavage product of poly (ADP-ribose) polymerase (PARP), a known substrate of caspase-3, was also evident. During sorbitol-induced apoptosis, the mitochondrial pathway was activated by a dose-dependent increase in Bax expression and cytochrome c release, while the expression of anti-apoptotic protein Bcl-2 was significantly decreased in a dose-dependent manner. The investigation for the downstream signal pathway revealed that sorbitol-induced apoptosis was mediated by an increase in phosphorylated p38 MAPK expression. Overall, the observations from the present study imply that sorbitol causes increased levels of Bax in response to p38 MAPK signaling, which results in the initiation of the mitochondrial death cascade. Therefore, sorbitol is a promising candidate as a potential chemotherapeutic agent for the treatment of colorectal cancer HCT116 cells.

  6. Action of luteinizing hormone-releasing hormone in rat ovarian cells: Hormone production and signal transduction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian.

    1989-01-01

    The present study was conducted to investigate the hypothesis that the breakdown of membrane phosphoinositides may participate in the actions of luteinizing hormone-releasing hormone (LHRH) on hormone production in rat granulosa cells. In cells prelabeled with ({sup 3}H)inositol or ({sup 3}H)arachidonic acid (AA), treatment with LHRH increased the formation of radiolabeled inositol 1,4,5-trisphosphate (IP{sub 3}) and diacylglycerol (DG), and the release of radiolabeled AA. Since IP{sub 3} induces intracellular Ca{sup 2+} mobilization, changes in the cytosolic free calcium ion concentrations ((Ca{sup 2+})i) induced by LHRH were studied in individual cells using fura-2 microspectrofluorimetry. Alterations in (Ca{sup 2+})i induced by LHRH were rapid and transient, and could be completely blocked by a LHRH antagonist. Sustained perifusion of LHRH resulted in a desensitization of the (Ca{sup 2+})i response to LHRH. LHRH treatment accelerated (Ca{sup 2+})i depletion in the cells perifused with Ca{sup 2+} free medium, indicating the involvement of intracellular Ca{sup 2+} pool(s) in (Ca{sup 2+})i changes. The actions of LHRH on the regulation of progesterone (P{sub 4}) and prostaglandin E{sub 2} (PGE{sub 2}) production were also examined. LHRH increased basal P{sub 4} production and attenuated FSH induced P{sub 4} production. Both basal and FSH stimulated PGE{sub 2} formation were increased by LHRH. Since LHRH also increased the formation of DG that stimulates the activity of protein kinase C, an activator of protein kinase C (12-0-tetradecanolyphorbol-13-acetate: TPA) was used with the Ca{sup 2+} ionophore A23187 and melittin (an activator of phospholipase A{sub 2}) to examine the roles of protein kinase C, Ca{sup 2+} and free AA, respectively, in LHRH action.

  7. Signal transduction and metabolic flux of beta-thujaplicin and monoterpene biosynthesis in elicited Cupressus lusitanica cell cultures.

    Science.gov (United States)

    Zhao, Jian; Matsunaga, Yoko; Fujita, Koki; Sakai, Kokki

    2006-01-01

    beta-Thujaplicin is an antimicrobial tropolone derived from geranyl pyrophosphate(GPP) and monoterpene intermediate. Yeast elicitor-treated Cupressus lusitanica cell cultures accumulate high levels of beta-thujaplicin at early stages and other monoterpenes at later stages post-elicitation. The different regulation of beta-thujaplicin and monoterpene biosynthesis and signal transduction directing metabolic flux to beta-thujaplicin firstly and then shifting metabolic flow from beta-thujaplicin to other monoterpene biosynthesis were investigated. The earlier rapid induction of beta-thujaplicin accumulation and a later stimulation of monoterpene biosynthesis by yeast elicitor are in well agreement with elicitor-induced changes in activity of three monoterpene biosynthetic enzymes including isopentenyl pyrophosphate isomerase, GPP synthase, and monoterpene synthase. Yeast elicitor induces an earlier and stronger beta-thujaplicin production and monoterpene biosynthetic enzyme activity than methyl jasmonate (MeJA) does. Profiling all monoterpenes produced by C. lusitanica cell cultures under different conditions reveals that beta-thujaplicin biosynthesis parallels with other monoterpenes and competes for common precursor pools. Yet beta-thujaplicin is produced pre-dominantly at early stage of elicitation whereas other monoterpenes are mainly accumulated at late stage while beta-thujaplicin is metabolized. It is suggested that yeast elicitor-treated C. lusitanica cells preferentially accumulate beta-thujaplicin as a primary defense and other monoterpenes as a secondary defense. Inhibitor treatments suggest that immediate production of beta-thujaplicin post-elicitation largely depends on pre-existing enzymes and translation of pre-existing transcripts as well as recruitment of precursor pools from both the cytosol and plastids. The later beta-thujaplicin and other monoterpene accumulation strictly depends on active transcription and translation. Induction of beta

  8. Chronic Hyperinsulinism Induced Down-regulation of Insulin Post-Recentor Signaling Transduction in Hep G2 Cells

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Summary: To study the regulatory effect of acute and chronic insulin treatment on insulin post-re-ceptor signaling transduction pathway in a human hepatoma cell line (Hep G2), Hep G2 cells wereincubated in the presence or absence of insulin with different concentrations in serum free mediafor 16 h and then stimulated with 100 nmol/L insulin for 1 min. Protein levels of insulin receptorβ-subunit (IRβ), insulin receptor substrate-1 (IRS-1) and p85 subunit of phosphatidylinositol 3-kinase (PI 3-kinase) were determined in total cell lysates by Western-immunoblot. Phosphorylat-ed proteins IRβ, IRS-1 and interaction of PI 3-kinase with IRS-1 were determined by immunopre-cipitation. Results showed that 1-min insulin stimulation rapidly induced tyrosine phosphorylationof IRβ and IRS-l, which in turn, resulting in association of PI 3-kinase with IRS-1. 1-100 nmol/L chronic insulin treatment induced a dose-dependent decrease in the protein level of IRβ and aslight decrease in the protein level of IRS-1. There wass more marked reduction in the phospho-rylation of IRβ, IRS-1, reaching a nadir of 22 % (P<0. 01) and 15 % (P<0. 01) of control lev-els, respectively, after 16 h treatment with 100 nmol/L insulin. The association between IRS-1and PI 3-kinase was decreased by 66 % (P<0. 01). There was no significant change in PI 3-ki-nase protein levels. These data suggest that chronic insulin treatment can induce alterations ofIRβ, IRS-1 and PI 3-kinase three early steps in insulin action, which contributes significantly toinsulin resistance, and may account for desensitization of insulin action.

  9. Pharmacology of the human cell voltage-dependent cation channel. Part II: inactivation and blocking

    DEFF Research Database (Denmark)

    Bennekou, Poul; Barksmann, Trine L.; Kristensen, Berit I.

    2004-01-01

    Human red cells; Nonselective voltage-dependent cation channel; NSVDC channel; Thiol group reagents......Human red cells; Nonselective voltage-dependent cation channel; NSVDC channel; Thiol group reagents...

  10. Cell volume and membrane stretch independently control K+ channel activity

    DEFF Research Database (Denmark)

    Bomholtz, Sofia Hammami; Willumsen, Niels J; Olsen, Hervør L;

    2009-01-01

    A number of potassium channels including members of the KCNQ family and the Ca(2+) activated IK and SK, but not BK, are strongly and reversibly regulated by small changes in cell volume. It has been argued that this general regulation is mediated through sensitivity to changes in membrane stretch....... To test this hypothesis we have studied the regulation of KCNQ1 and BK channels after expression in Xenopus oocytes. Results from cell-attached patch clamp studies (approximately 50 microm(2) macropatches) in oocytes expressing BK channels demonstrate that the macroscopic volume-insensitive BK current...... was not affected by membrane stretch. The results indicate that (1) activation of BK channels by local membrane stretch is not mimicked by membrane stress induced by cell swelling, and (2) activation of KCNQ1 channels by cell volume increase is not mediated by local tension in the cell membrane. We conclude...

  11. Transduction of PEP-1-heme oxygenase-1 into insulin-producing INS-1 cells protects them against cytokine-induced cell death

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Su Jin; Kang, Hyung Kyung [Department of Physiology, College of Medicine, Hallym University, Chunchon 200-702 (Korea, Republic of); Song, Dong Keun [Department of Pharmacology, College of Medicine, Hallym University, Chunchon 200-702 (Korea, Republic of); Eum, Won Sik; Park, Jinseu [Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Choi, Soo Young, E-mail: sychoi@hallym.ac.kr [Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Kwon, Hyeok Yil, E-mail: hykwon@hallym.ac.kr [Department of Physiology, College of Medicine, Hallym University, Chunchon 200-702 (Korea, Republic of)

    2015-06-05

    Pro-inflammatory cytokines play a crucial role in the destruction of pancreatic β-cells, thereby triggering the development of autoimmune diabetes mellitus. We recently developed a cell-permeable fusion protein, PEP-1-heme oxygenase-1 (PEP-1-HO-1) and investigated the anti-inflammatory effects in macrophage cells. In this study, we transduced PEP-1-HO-1 into INS-1 insulinoma cells and examined its protective effect against cytokine-induced cell death. PEP-1-HO-1 was successfully delivered into INS-1 cells in time- and dose-dependent manner and was maintained within the cells for at least 48 h. Pre-treatment with PEP-1-HO-1 increased the survival of INS-1 cells exposed to cytokine mixture (IL-1β, IFN-γ, and TNF-α) in a dose-dependent manner. PEP-1-HO-1 markedly decreased cytokine-induced production of reactive oxygen species (ROS), nitric oxide (NO), and malondialdehyde (MDA). These protective effects of PEP-1-HO-1 against cytokines were correlated with the changes in the levels of signaling mediators of inflammation (iNOS and COX-2) and cell apoptosis/survival (Bcl-2, Bax, caspase-3, PARP, JNK, and Akt). These results showed that the transduced PEP-1-HO-1 efficiently prevented cytokine-induced cell death of INS-1 cells by alleviating oxidative/nitrosative stresses and inflammation. Further, these results suggested that PEP-1-mediated HO-1 transduction may be a potential therapeutic strategy to prevent β-cell destruction in patients with autoimmune diabetes mellitus. - Highlights: • We showed that PEP-1-HO-1 was efficiently delivered into INS-1 cells. • Transduced PEP-1-HO-1 exerted a protective effect against cytokine-induced cell death. • Transduced PEP-1-HO-1 inhibited cytokine-induced ROS and NO accumulation. • PEP-1-HO-1 suppressed cytokine-induced expression of iNOS, COX-2, and Bax. • PEP-1-HO-1 transduction may be an efficient tool to prevent β-cell destruction.

  12. Molecular Basis of Mechano-Signal Transduction in Vascular Endothelial Cells

    Science.gov (United States)

    Jo, Hanjoong

    2004-01-01

    Simulated microgravity studies using a random positioning machine (RPM). One RPM machine has been built for us by Fokker Science in Netherland. Using the device, we have developed an in vitro system to examine the effect of simulated microgravity on osteoblastic bone cells. Using this system, we have carried out gene chip studies to determine the gene expression profiles of osteoblasts cultured under simulated microgravity conditions in comparison to static controls. From this study, we have identified numerous genes, some of which are expected ones inducing bone loss, but many of which are unexpected and unknown. These findings are being prepared for publications.

  13. The chemopreventive bioflavonoid apigenin modulates signal transduction pathways in keratinocyte and colon carcinoma cell lines.

    Science.gov (United States)

    Van Dross, Rukiyah; Xue, Yue; Knudson, Alexandra; Pelling, Jill C

    2003-11-01

    Apigenin is a nonmutagenic chemopreventive agent found in fruits and green vegetables. In this study, we used two different epithelial cell lines (308 mouse keratinocytes and HCT116 colon carcinoma cells) to determine the effect of apigenin on the mitogen-activated protein kinase (MAPK) cascade. Apigenin induced a dose-dependent phosphorylation of both extracellular signal-regulated protein kinase (ERK) and p38 kinase but had little effect on the phosphorylation of c-jun amino terminal kinase (JNK). We used immunoprecipitation-coupled kinase assays to show that apigenin increased the kinase activity of ERK and p38 but not JNK. Consistent with these results, we found that apigenin induced a 7.4-fold induction in the phosphorylation of Elk, the downstream phosphorylation target of ERK kinase. Similarly, apigenin induced a 3.2-fold induction in the phosphorylation of activating transcription factor-2, the downstream phosphorylation target of p38 kinase. Little change was observed in the phosphorylation of c-jun, the phosphorylation target of JNK. These data suggest that part of the chemopreventive activity of apigenin may be mediated by its ability to modulate the MAPK cascade.

  14. Automated Enrichment, Transduction, and Expansion of Clinical-Scale CD62L+ T Cells for Manufacturing of Gene Therapy Medicinal Products

    Science.gov (United States)

    Priesner, Christoph; Aleksandrova, Krasimira; Esser, Ruth; Mockel-Tenbrinck, Nadine; Leise, Jana; Drechsel, Katharina; Marburger, Michael; Quaiser, Andrea; Goudeva, Lilia; Arseniev, Lubomir; Kaiser, Andrew D.; Glienke, Wolfgang; Koehl, Ulrike

    2016-01-01

    Multiple clinical studies have demonstrated that adaptive immunotherapy using redirected T cells against advanced cancer has led to promising results with improved patient survival. The continuously increasing interest in those advanced gene therapy medicinal products (GTMPs) leads to a manufacturing challenge regarding automation, process robustness, and cell storage. Therefore, this study addresses the proof of principle in clinical-scale selection, stimulation, transduction, and expansion of T cells using the automated closed CliniMACS® Prodigy system. Naïve and central memory T cells from apheresis products were first immunomagnetically enriched using anti-CD62L magnetic beads and further processed freshly (n = 3) or split for cryopreservation and processed after thawing (n = 1). Starting with 0.5 × 108 purified CD3+ T cells, three mock runs and one run including transduction with green fluorescent protein (GFP)-containing vector resulted in a median final cell product of 16 × 108 T cells (32-fold expansion) up to harvesting after 2 weeks. Expression of CD62L was downregulated on T cells after thawing, which led to the decision to purify CD62L+CD3+ T cells freshly with cryopreservation thereafter. Most important in the split product, a very similar expansion curve was reached comparing the overall freshly CD62L selected cells with those after thawing, which could be demonstrated in the T cell subpopulations as well by showing a nearly identical conversion of the CD4/CD8 ratio. In the GFP run, the transduction efficacy was 83%. In-process control also demonstrated sufficient glucose levels during automated feeding and medium removal. The robustness of the process and the constant quality of the final product in a closed and automated system give rise to improve harmonized manufacturing protocols for engineered T cells in future gene therapy studies. PMID:27562135

  15. Thyroxine signal transduction in liver cells involves phospholipase C and phospholipase D activation. Genomic independent action of thyroid hormone

    Directory of Open Access Journals (Sweden)

    Krasilnikova Oksana A

    2001-04-01

    Full Text Available Abstract Background Numerous investigations demonstrate a novel role of thyroid hormone as a modulator of signal transduction. Protein kinase C (PKC is critical to the mechanism by which thyroid hormones potentiate both the antiviral and immunomodulatory actions of IFNγ in different cells and regulate the exchange of signalling phospholipids in hepatocytes. Because nothing is known about accumulation of PKC modulator - diacylglycerol in cells treated with T4, we examined the nongenomic effect of thyroid hormones on DAG formation and phospholipase activation in liver cells. Results The results obtained provide the first demonstration of phospholipase C, phospholipase D and protein kinase C nongenomic activation and diacylglycerol (DAG accumulation by L-T4 in liver cells. The experiments were performed in either the [14C]CH3COOH-labeled rat liver slices or isolated hepatocytes pre-labeled by [14C]oleic acid. L-T4 activates the DAG production in a concentration- and time-dependent manner. DAG formation in stimulated cells is biphasic and short-lived event: there is an initial, rapid rise in DAG concentration and then a slower accumulation that can be sustained for a few minutes. The early phase of L-T4 generated DAG only is accompanied by phosphatidylinositol 4,5-bisphosphate level decrease and inositol 1,4,5-trisphosphate formation while the second phase is abolished by PKC inhibitor l,(5-isoquinolinesulphonyl2methylpiperasine dihydrochloride (H7 and propranolol. The second phase of DAG production is accompanied by free choline release, phosphatidylcholine content drop and phosphatidylethanol (Peth formation. Inhibitor of phospholipase-C-dependent phosphoinositide hydrolysis, neomycin sulfate, reduced the Peth as well as the DAG response to L-T4. Conclusions The present data have indicated the DAG signaling in thyroid hormone-stimulated liver cells. L-thyroxine activates a dual phospholipase pathway in a sequential and synchronized manner

  16. Sensory Transduction in Caenorhabditis elegans

    Science.gov (United States)

    Brown, Austin L.; Ramot, Daniel; Goodman, Miriam B.

    The roundworm Caenorhabditis elegans has a well-defined and comparatively simple repertoire of sensory-guided behaviors, all of which rely on its ability to detect chemical, mechanical or thermal stimuli. In this chapter, we review what is known about the ion channels that mediate sensation in this remarkable model organism. Genetic screens for mutants defective in sensory-guided behaviors have identified genes encoding channel proteins, which are likely transducers of chemical, thermal, and mechanical stimuli. Such classical genetic approaches are now being coupled with molecular genetics and in vivo cellular physiology to elucidate how these channels are activated in specific sensory neurons. The ion channel superfamilies implicated in sensory transduction in C. elegans - CNG, TRP, and DEG/ENaC - are conserved across phyla and also appear to contribute to sensory transduction in other organisms, including vertebrates. What we learn about the role of these ion channels in C. elegans sensation is likely to illuminate analogous processes in other animals, including humans.

  17. Whole Cell Biosensor Using Anabaena torulosa with Optical Transduction for Environmental Toxicity Evaluation

    Directory of Open Access Journals (Sweden)

    Ling Shing Wong

    2013-01-01

    Full Text Available A whole cell-based biosensor using Anabaena torulosa for the detection of heavy metals (Cu, Pb, and Cd, 2,4-dichlorophenoxyacetate (2,4-D, and chlorpyrifos was constructed. The cyanobacteria were entrapped on a cellulose membrane through filtration. Then, the membrane was dried and fixed into a cylindrical well, which was designed to be attached to an optical probe. The probe was connected to fluorescence spectrometer with optical fibre. The presence of the toxicants was indicated by the change of fluorescence emission, before and after the exposure. The linear detection ranges for Cu, Pb, and Cd were 2.5–10.0 µg/L, 0.5–5.0 µg/L, and 0.5–10.0 µg/L, respectively, while 2,4-D and chlorpyrifos shared similar linear ranges of 0.05–0.75 µg/L. The biosensor showed good sensitivity with the lowest limits of detection (LLD for Cu, Pb, Cd, 2,4-D and chlorpyrifos determined at 1.195 µg/L, 0.100 µg/L, 0.027 µg/L, 0.025 µg/L, and 0.025 µg/L, respectively. The overall reproducibility of the biosensor (n=3 was <±6.35%. The biosensor had been tested with different combinations of toxicants, with the results showing predominantly antagonistic responses. The results confirmed that the biosensor constructed in this report is suitable to be used in quantitative and qualitative detections of heavy metals and pesticides.

  18. Hypergravity signal transduction in HeLa cells with concomitant phosphorylation of proteins immunoprecipitated with anti-microtubule-associated protein antibodies

    Science.gov (United States)

    Kumei, Yasuhiro; Whitson, Peggy A.; Sato, Atsushige; Cintron, Nitza M.

    1991-01-01

    It is shown that hypergravity (35g) stimulates the production of inositol 1,4,5-trisphosphate (IP3) and decreases adenosine 3-prime,5-prime-cyclic monophosphate (cAMP) levels in HeLa cells. It is proposed that IP3 and cAMP may act as second messengers in hypergravity signal transduction. Phosphorylation of microtubule-associated proteins in both the detergent-soluble and -insoluble fractions suggests that cytoskeletal structures may be influenced by gravity.

  19. Molecular cell biology of KATP channels: implications for neonatal diabetes.

    Science.gov (United States)

    Smith, Andrew J; Taneja, Tarvinder K; Mankouri, Jamel; Sivaprasadarao, Asipu

    2007-08-01

    ATP-sensitive potassium (KATP) channels play a key role in the regulation of insulin secretion by coupling glucose metabolism to the electrical activity of pancreatic beta-cells. To generate an electric signal of suitable magnitude, the plasma membrane of the beta-cell must contain an appropriate number of channels. An inadequate number of channels can lead to congenital hyperinsulinism, whereas an excess of channels can result in the opposite condition, neonatal diabetes. KATP channels are made up of four subunits each of Kir6.2 and the sulphonylurea receptor (SUR1), encoded by the genes KCNJ11 and ABCC8, respectively. Following synthesis, the subunits must assemble into an octameric complex to be able to exit the endoplasmic reticulum and reach the plasma membrane. While this biosynthetic pathway ensures supply of channels to the cell surface, an opposite pathway, involving clathrin-mediated endocytosis, removes channels back into the cell. The balance between these two processes, perhaps in conjunction with endocytic recycling, would dictate the channel density at the cell membrane. In this review, we discuss the molecular signals that contribute to this balance, and how an imbalance could lead to a disease state such as neonatal diabetes.

  20. Molecular basis of potassium channels in pancreatic duct epithelial cells

    DEFF Research Database (Denmark)

    Hayashi, M.; Novak, Ivana

    2013-01-01

    Potassium channels regulate excitability, epithelial ion transport, proliferation, and apoptosis. In pancreatic ducts, K channels hyperpolarize the membrane potential and provide the driving force for anion secretion. This review focuses on the molecular candidates of functional K channels...... in pancreatic duct cells, including KCNN4 (K 3.1), KCNMA1 (K1.1), KCNQ1 (K7.1), KCNH2 (K11.1), KCNH5 (K10.2), KCNT1 (K4.1), KCNT2 (K4.2), and KCNK5 (K5.1). We will give an overview of K channels with respect to their electrophysiological and pharmacological characteristics and regulation, which we know from...... other cell types, preferably in epithelia, and, where known, their identification and functions in pancreatic ducts and in adenocarcinoma cells. We conclude by pointing out some outstanding questions and future directions in pancreatic K channel research with respect to the physiology of secretion...

  1. Technology channel fuel cells; Reseau technologique piles a combustible

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This document presents the PACo channel, its research and development program and the calendar of the first year. The PACo channel aims at stimulate the technology innovation in the domain of the fuel cells and organize collaborations between enterprises and research laboratories. (A.L.B.)

  2. Macrophage colony-stimulating factor gene transduction into human lung cancer cells differentially regulates metastasis formations in various organ microenvironments of natural killer cell-depleted SCID mice.

    Science.gov (United States)

    Yano, S; Nishioka, Y; Nokihara, H; Sone, S

    1997-02-15

    We investigated whether local production of macrophage colony-stimulating factor (M-CSF), responsible for migration and activation of monocytes/macrophages at a tumor growth site, affected the metastatic pattern of lung cancer. For this, highly metastatic human squamous (RERF-LC-AI) or small (H69/VP) cell lung carcinoma cells were transduced with the human M-CSF gene inserted into pRc/CMV-MCSF to establish M-CSF-producing clones (MCSF-AI-9-18, MCSF-AI-9-24, and MCSF-VP-5). M-CSF gene transduction had no effect on the expression of surface antigen or on in vitro proliferation. After s.c. injection into SCID mice, the growth rates of M-CSF-producing cells were slower than those of parent or mock-transduced cells. In the metastatic model in SCID mice depleted of natural killer cells, RERF-LC-AI cells formed metastases mainly in the liver and kidneys, whereas H69/VP cells metastasized mainly to the liver and systemic lymph nodes. The numbers of metastatic colonies of MCSF-AI-9-18 and MCSF-AI-9-24 cells in the liver but not the kidneys were significantly reduced. The development of lymph node metastases of MCSF-VP-5 cells was also less than that of parent or mock-transduced cells. Treatment of SCID mice with anti-human M-CSF antibody resulted in a significant increase in liver metastases of their M-CSF gene transfectants. No significant differences were observed in the distributions in mice or in the in vitro invasive potentials of MCSF-AI-9-18 cells and Neo-AI-3 cells. These findings indicate that the antimetastatic effect of M-CSF may be specific to particular organs, suggesting the influence of heterogeneity of organ microenvironments on the metastasis of lung cancer.

  3. Microfluidic channel for characterizing normal and breast cancer cells

    Science.gov (United States)

    TruongVo, T. N.; Kennedy, R. M.; Chen, H.; Chen, A.; Berndt, A.; Agarwal, M.; Zhu, L.; Nakshatri, H.; Wallace, J.; Na, S.; Yokota, H.; Ryu, J. E.

    2017-03-01

    A microfluidic channel was designed and fabricated for the investigation of behaviors of normal and cancer cells in a narrow channel. A specific question addressed in this study was whether it is possible to distinguish normal versus cancer cells by detecting their stationary and passing behaviors through a narrow channel. We hypothesized that due to higher deformability, softer cancer cells will pass through the channel further and quicker than normal cells. Two cell lines, employed herein, were non-tumor breast epithelial cells (MCF-10A; 11.2  ±  2.4 µm in diameter) and triple negative breast cancer cells (MDA-MB-231; 12.4  ±  2.1 µm in diameter). The microfluidic channel was 300 µm long and linearly tapered with a width of 30 µm at an inlet to 5 µm at an outlet. The result revealed that MDA-MB-231 cells entered and stuck further toward the outlet than MCF-10A cells in response to a slow flow (2 µl min‑1). Further, in response to a fast flow (5 µl min‑1), the passage time (mean  ±  s.d.) was 26.6  ±  43.9 s for normal cells (N  =  158), and 1.9  ±  1.4 s for cancer cells (N  =  128). The measurement of stiffness by atomic force microscopy as well as model-based predictions pointed out that MDA-MB-231 cells are significantly softer than MCF-10A cells. Collectively, the result in this study suggests that analysis of an individual cell’s behavior through a narrow channel can characterize deformable cancer cells from normal ones, supporting the possibility of enriching circulating tumor cells using novel microfluidics-based analysis.

  4. [6]-Gingerol Prevents Disassembly of Cell Junctions and Activities of MMPs in Invasive Human Pancreas Cancer Cells through ERK/NF-κB/Snail Signal Transduction Pathway

    Directory of Open Access Journals (Sweden)

    Sung Ok Kim

    2013-01-01

    Full Text Available To study the effects of [6]-gingerol, a ginger phytochemical, on tight junction (TJ molecules, we investigated TJ tightening and signal transduction pathways in human pancreatic duct cell-derived cancer cell line PANC-1. The following methods were utilized: MTT assay to determine cytotoxicity; zymography to examine matrix metalloproteinase (MMP activities; transepithelial electrical resistance (TER and paracellular flux for TJ measurement; RT-PCR and immunoblotting for proteins related to TJ and invasion; and EMSA for NF-κB activity in PANC-1 cells. Results revealed that TER significantly increased and claudin 4 and MMP-9 decreased compared to those of the control. TJ protein levels, including zonula occludens (ZO- 1, occludin, and E-cadherin, increased in [6]-gingerol-treated cells, which correlated with a decrease in paracellular flux and MMP activity. Furthermore, NF-κB/Snail nuclear translocation was suppressed via downregulation of the extracellular signal-regulated kinase (ERK pathway in response to [6]-gingerol treatment. Moreover, treatment with U0126, an ERK inhibitor, completely blocked NF-κB activity. In conclusion, these findings demonstrate that [6]-gingerol regulates TJ-related proteins and suppresses invasion and metastasis through NF-κB/Snail inhibition via inhibition of the ERK pathway. Therefore, [6]-gingerol may suppress the invasive activity of PANC-1 cells.

  5. Ultrastructural observations reveal the presence of channels between cork cells.

    Science.gov (United States)

    Teixeira, Rita Teresa; Pereira, Helena

    2009-12-01

    The ultrastructure of phellem cells of Quercus suber L. (cork oak) and Calotropis procera (Ait) R. Br. were analyzed using electron transmission microscopy to determine the presence or absence of plasmodesmata (PD). Different types of Q. suber cork samples were studied: one year shoots; virgin cork (first periderm), reproduction cork (traumatic periderm), and wet cork. The channel structures of PD were found in all the samples crossing adjacent cell walls through the suberin layer of the secondary wall. Calotropis phellem also showed PD crossing the cell walls of adjacent cells but in fewer numbers compared to Q. suber. In one year stems of cork oak, it was possible to follow the physiologically active PD with ribosomic accumulation next to the aperture of the channel seen in the phellogen cells to the completely obstructed channels in the dead cells that characterize the phellem tissue.

  6. Antitumor Activity of Tenacissoside H on Esophageal Cancer through Arresting Cell Cycle and Regulating PI3K/Akt-NF-κB Transduction Cascade

    Directory of Open Access Journals (Sweden)

    Yong-sen Jia

    2015-01-01

    Full Text Available Objective. The purpose of the study was to elucidate the molecular mechanism of tenacissoside H (TDH inhibiting esophageal carcinoma infiltration and proliferation. Methods. In vitro, EC9706 cells were treated with TDH. Cells proliferation and cell cycle were assayed. PI3K and NF-κB mRNAs expression were determined by real time PCR. In vivo, model of nude mice with tumor was established. Mice were treated with TDH. Inhibition ratio of tumor volume was calculated. PCNA expression was examined. Protein expression in PI3K/Akt-NF-κB signaling pathway was determined. Results. In vitro, TDH significantly inhibited cells proliferation in a time-and-dose-dependent manner. TDH arrested the cell cycle in S phase and significantly inhibited PI3K and NF-κB mRNA expression, compared with blank controlled group (P<0.05. In vivo, TDH strongly inhibits tumor growth and volume. PCNA expression was significantly decreased after treatment of TDH. TDH downregulated proteins expression in PI3K/Akt-NF-κB transduction cascade (P<0.05. Conclusion. TDH inhibited esophageal carcinoma infiltration and proliferation both in vitro and in vivo. The anticancer activity has relation to arresting the cell cycle at the S phase, inhibited the PCNA expression of transplanted tumors in nude mice, and regulated the protein expression in the PI3K/Akt-NF-κB transduction cascade.

  7. Antitumor Activity of Tenacissoside H on Esophageal Cancer through Arresting Cell Cycle and Regulating PI3K/Akt-NF-κB Transduction Cascade.

    Science.gov (United States)

    Jia, Yong-Sen; Hu, Xue-Qin; Gabriella, Hegyi; Qin, Li-Juan; Meggyeshazi, Nora

    2015-01-01

    Objective. The purpose of the study was to elucidate the molecular mechanism of tenacissoside H (TDH) inhibiting esophageal carcinoma infiltration and proliferation. Methods. In vitro, EC9706 cells were treated with TDH. Cells proliferation and cell cycle were assayed. PI3K and NF-κB mRNAs expression were determined by real time PCR. In vivo, model of nude mice with tumor was established. Mice were treated with TDH. Inhibition ratio of tumor volume was calculated. PCNA expression was examined. Protein expression in PI3K/Akt-NF-κB signaling pathway was determined. Results. In vitro, TDH significantly inhibited cells proliferation in a time-and-dose-dependent manner. TDH arrested the cell cycle in S phase and significantly inhibited PI3K and NF-κB mRNA expression, compared with blank controlled group (P TDH strongly inhibits tumor growth and volume. PCNA expression was significantly decreased after treatment of TDH. TDH downregulated proteins expression in PI3K/Akt-NF-κB transduction cascade (P TDH inhibited esophageal carcinoma infiltration and proliferation both in vitro and in vivo. The anticancer activity has relation to arresting the cell cycle at the S phase, inhibited the PCNA expression of transplanted tumors in nude mice, and regulated the protein expression in the PI3K/Akt-NF-κB transduction cascade.

  8. Ion Channels Involved in Cell Volume Regulation

    DEFF Research Database (Denmark)

    Hoffmann, Else Kay

    2011-01-01

    This mini review outlines studies of cell volume regulation in two closely related mammalian cell lines: nonadherent Ehrlich ascites tumour cells (EATC) and adherent Ehrlich Lettre ascites (ELA) cells. Focus is on the regulatory volume decrease (RVD) that occurs after cell swelling, the volume...

  9. Downregulation of steroid hormone receptor expression and activation of cell signal transduction pathways induced by a chiral nonylphenol isomer in mouse sertoli TM4 cells.

    Science.gov (United States)

    Liu, Xiaozhen; Nie, Shaoping; Yu, Qiang; Wang, Xiaoyin; Huang, Danfei; Xie, Mingyong

    2017-02-01

    Nonylphenols (NPs) are considered as important environmental toxicants and potential endocrine disrupting compounds which can disrupt male reproductive system. 4-[1-Ethyl-1-methylhexy] phenol (4-NP65 ) is one of the main isomers of technical nonylphenol mixtures. In the present study, effect of NPs was evaluated from an isomer-specific viewpoint using 4-NP65 . Decreased mRNA expression levels of estrogen receptor (ER)-α, ER-β, androgen receptor (AR) and progesterone receptor (PR) were observed in the cells exposed to 4-NP65 for 24 h. Furthermore, 4-NP65 treatment evoked significant decrease in protein expression levels of ER-α and ER-β. Levels of mullerian inhibiting substance and transferrin were found to change significantly in 4-NP65 challenged cells. Additionally, JNK1/2-MAPK pathway was activated due to 4-NP65 exposure, but not ERK1/2 and p38-MAPK pathways. Meanwhile, 4-NP65 increased the p-Akt level and showed no effects on the Akt level which indicated that Akt pathway was activated by 4-NP65 . In conclusion, these findings have shown that 4-NP65 exposure affected expression of cell receptors and cell signaling pathways in Sertoli TM4 cells. We proposed that molecular mechanism of reproductive damage in Sertoli cells induced by NPs may be mediated by cell receptors and/or cell signal transduction pathways, and that the effects were dependent on the side chain of NP isomers. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 469-476, 2017.

  10. Transduction and oncolytic profile of a potent replication-competent adenovirus 11p vector (RCAd11pGFP in colon carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Jim Silver

    Full Text Available Replication-competent adenovirus type 5 (Ad5 vectors promise to be more efficient gene delivery vehicles than their replication-deficient counterparts, and chimeric Ad5 vectors that are capable of targeting CD46 are more effective than Ad5 vectors with native fibers. Although several strategies have been used to improve gene transduction and oncolysis, either by modifying their tropism or enhancing their replication capacity, some tumor cells are still relatively refractory to infection by chimeric Ad5. The oncolytic effects of the vectors are apparent in certain tumors but not in others. Here, we report the biological and oncolytic profiles of a replication-competent adenovirus 11p vector (RCAd11pGFP in colon carcinoma cells. CD46 was abundantly expressed in all cells studied; however, the transduction efficiency of RCAd11pGFP varied. RCAd11pGFP efficiently transduced HT-29, HCT-8, and LS174T cells, but it transduced T84 cells, derived from a colon cancer metastasis in the lung, less efficiently. Interestingly, RCAd11p replicated more rapidly in the T84 cells than in HCT-8 and LS174T cells and as rapidly as in HT-29 cells. Cell toxicity and proliferation assays indicated that RCAd11pGFP had the highest cell-killing activities in HT29 and T84 cells, the latter of which also expressed the highest levels of glycoproteins of the carcinoma embryonic antigen (CEA family. In vivo experiments showed significant growth inhibition of T84 and HT-29 tumors in xenograft mice treated with either RCAd11pGFP or Ad11pwt compared to untreated controls. Thus, RCAd11pGFP has a potent cytotoxic effect on colon carcinoma cells.

  11. Enhancement of cytotoxic T lymphocyte activity by dendritic cells loaded with Tat-protein transduction domain-fused hepatitis B virus core antigen

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The protein transduction domain (PTD) of human immuno-deficiency virus-1-Tat protein has a unique potency to pen-etrate the cellular membranes. To synthesize the sequence of Tat-PTD and hepatitis B virus core antigen (HBcAg), we spliced these sequences and linked a fusion gene into the pMAL-c2x vector. The fusion proteins were purified by affin-ity chromatography and pulsed with bone marrow -derived den-dritic cells (DCs), and the transduction of recombinant pro-tein was detected by immunofluorescence antibody assay.Results showed that recombinant PTD-HBcAg could pen-etrate into DC cytoplasm while recombinant HBcAg was de-tected on the surface of cells. The percentage of DC surface molecules, such as CD80, CD86 and major histocompatibii-ity complex Ⅱ, and production of cytokine (IL-12pT0) induced by recombinant PTD-HBcAg were significantly higher than those induced by recombinant HBcAg or tumor necrosis fac-tor-α. DCs treated with PTD-HBcAg induced T cells to dif-ferentiate into specific cytotoxic T lymphocytes (CTLs) and enhanced the CTL killing response. In conclusion, the ex-pressed and purified PTD-HBcAg fusion protein could pen-etrate into cells through the plasma membrane, promote DC maturation, and enhance T cells response to generate HBcAg-specific CTLs efficiently.

  12. Baculoviral transduction facilitates TALEN-mediated targeted transgene integration and Cre/LoxP cassette exchange in human-induced pluripotent stem cells.

    Science.gov (United States)

    Zhu, Haibao; Lau, Cia-Hin; Goh, Sal-Lee; Liang, Qingle; Chen, Can; Du, Shouhui; Phang, Rui-Zhe; Tay, Felix Chang; Tan, Wee-Kiat; Li, Zhendong; Tay, Johan Chin-Kang; Fan, Weimin; Wang, Shu

    2013-10-01

    Safety and reliability of transgene integration in human genome continue to pose challenges for stem cell-based gene therapy. Here, we report a baculovirus-transcription activator-like effector nuclease system for AAVS1 locus-directed homologous recombination in human induced pluripotent stem cells (iPSCs). This viral system, when optimized in human U87 cells, provided a targeted integration efficiency of 95.21% in incorporating a Neo-eGFP cassette and was able to mediate integration of DNA insert up to 13.5 kb. In iPSCs, targeted integration with persistent transgene expression was achieved without compromising genomic stability. The modified iPSCs continued to express stem cell pluripotency markers and maintained the ability to differentiate into three germ lineages in derived embryoid bodies. Using a baculovirus-Cre/LoxP system in the iPSCs, the Neo-eGFP cassette at the AAVS1 locus could be replaced by a Hygro-mCherry cassette, demonstrating the feasibility of cassette exchange. Moreover, as assessed by measuring γ-H2AX expression levels, genome toxicity associated with chromosomal double-strand breaks was not detectable after transduction with moderate doses of baculoviral vectors expressing transcription activator-like effector nucleases. Given high targeted integration efficiency, flexibility in transgene exchange and low genome toxicity, our baculoviral transduction-based approach offers great potential and attractive option for precise genetic manipulation in human pluripotent stem cells.

  13. Methylmercury, an environmental electrophile capable of activation and disruption of the Akt/CREB/Bcl-2 signal transduction pathway in SH-SY5Y cells

    Science.gov (United States)

    Unoki, Takamitsu; Abiko, Yumi; Toyama, Takashi; Uehara, Takashi; Tsuboi, Koji; Nishida, Motohiro; Kaji, Toshiyuki; Kumagai, Yoshito

    2016-01-01

    Methylmercury (MeHg) modifies cellular proteins via their thiol groups in a process referred to as “S-mercuration”, potentially resulting in modulation of the cellular signal transduction pathway. We examined whether low-dose MeHg could affect Akt signaling involved in cell survival. Exposure of human neuroblastoma SH-SY5Y cells of up to 2 μM MeHg phosphorylated Akt and its downstream signal molecule CREB, presumably due to inactivation of PTEN through S-mercuration. As a result, the anti-apoptotic protein Bcl-2 was up-regulated by MeHg. The activation of Akt/CREB/Bcl-2 signaling mediated by MeHg was, at least in part, linked to cellular defence because either pretreatment with wortmannin to block PI3K/Akt signaling or knockdown of Bcl-2 enhanced MeHg-mediated cytotoxicity. In contrast, increasing concentrations of MeHg disrupted Akt/CREB/Bcl-2 signaling. This phenomenon was attributed to S-mercuration of CREB through Cys286 rather than Akt. These results suggest that although MeHg is an apoptosis-inducing toxicant, this environmental electrophile is able to activate the cell survival signal transduction pathway at lower concentrations prior to apoptotic cell death. PMID:27357941

  14. Controlling Cell Functions and Fate with Surfaces and Hydrogels: The Role of Material Features in Cell Adhesion and Signal Transduction

    Directory of Open Access Journals (Sweden)

    Maurizio Ventre

    2016-03-01

    Full Text Available In their natural environment, cells are constantly exposed to a cohort of biochemical and biophysical signals that govern their functions and fate. Therefore, materials for biomedical applications, either in vivo or in vitro, should provide a replica of the complex patterns of biological signals. Thus, the development of a novel class of biomaterials requires, on the one side, the understanding of the dynamic interactions occurring at the interface of cells and materials; on the other, it requires the development of technologies able to integrate multiple signals precisely organized in time and space. A large body of studies aimed at investigating the mechanisms underpinning cell-material interactions is mostly based on 2D systems. While these have been instrumental in shaping our understanding of the recognition of and reaction to material stimuli, they lack the ability to capture central features of the natural cellular environment, such as dimensionality, remodelling and degradability. In this work, we review the fundamental traits of material signal sensing and cell response. We then present relevant technologies and materials that enable fabricating systems able to control various aspects of cell behavior, and we highlight potential differences that arise from 2D and 3D settings.

  15. K-channels inhibited by hydrogen peroxide mediate abscisic acid signaling in Vicia guard cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A number of studies show that environmental stress conditions increase abscisic acid (ABA) and hydrogen peroxide (H2O2) levels in plant cells. Despite this central role of ABA in altering stomatal aperture by regulating guard cell ion transport, little is known concerning the relationship between ABA and H2O2 in signal transduction leading to stomatal movement. Epidermal strip bioassay illustrated that ABA-inhibited stomatal opening and ABA-induced stomatal closure were abolished partly by externally added catalase (CAT) or diphenylene iodonium (DPI), which are a H2O2 scavenger and a NADPH oxidase inhibitor respectively. In contrast, internally added CAT or DPI nearly completely or partly reversed ABA-induced closure in half-stoma. Consistent with these results, whole-cell patch-clamp analysis showed that intracellular application of CAT or DPI partly abolished ABA-inhibited inward K+ current across the plasma membrane of guard cells. H2O2 mimicked ABA to inhibit inward K+ current, an effect which was reversed by the addition of ascorbic acid (Vc) in patch clamping micropipettes. These results suggested that H2O2 mediated ABA-induced stomatal movement by targeting inward K+ channels at plasma membrane.

  16. Effect of NK4 Transduction in Bone Marrow-Derived Mesenchymal Stem Cells on Biological Characteristics of Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yun-Peng Sun

    2014-03-01

    Full Text Available Pancreatic cancer usually has a poor prognosis, and no gene therapy has yet been developed that is effective to treat it. Since a unique characteristic of bone marrow-derived mesenchymal stem cells (MSCs is that they migrate to tumor tissues, we wanted to determine whether MSCs could serve as a vehicle of gene therapy for targeting pancreatic cancer. First, we successfully extracted MSCs from SD rats. Next, MSCs were efficiently transduced with NK4, an antagonist of hepatocyte growth factor (HGF which comprising the N-terminal and the subsequent four kringle domains of HGF, by an adenoviral vector. Then, we confirmed that rat MSCs preferentially migrate to pancreatic cancer cells. Last, MSCs expressing NK4 (NK4-MSCs strongly inhibited proliferation and migration of the pancreatic cancer cell line SW1990 after co-culture. These results indicate that MSCs can serve as a vehicle of gene therapy for targeting pancreatic cancer.

  17. The Na+/H+ exchanger NHE1 in stress-induced signal transduction: implications for cell proliferation and cell death

    DEFF Research Database (Denmark)

    Pedersen, Stine Falsig

    2006-01-01

    The ubiquitous plasma membrane Na+/H+ exchanger NHE1 is highly conserved across vertebrate species and is extensively characterized as a major membrane transport mechanism in the regulation of cellular pH and volume. In recent years, the understanding of the role of NHE1 in regulating cell functi...

  18. Effects of CS-1 on A431 cell proliferation, cell cycle, and epidermal growth factor receptor signal transduction

    Institute of Scientific and Technical Information of China (English)

    Haiyan Du; Bo Xu; Caixia Wu; Min Li; Fuxiang Ran; Shaoqing Cai; Jingrong Cui

    2012-01-01

    CS-1,a new alkaloid with a molecular formula of C21H20O8N2S,is extracted from traditional Chinese medicine.Previous studies have shown that CS-1 can inhibit the proliferation of several human carcinoma cells in vivo and in vitro.The aims of this study are to investigate the anti-tumor effect and mechanism of CS-1 in epidermal growth factor receptor (EGFR) signaling pathway in human A431 cell line.Through the sulforhodamine B assay,we found that CS-1 inhibited A431 cell proliferation in the concentration- and time-dependent manners.The inhibitory rate ranged from 14.5% to 87.8% after 24 h of incubation.High content screening (HCS) multiparameters cytotoxicity analysis showed that CS-1 at high concentration had slight cytotoxicity that resulted from the cell permeabilization and slight reduction in total mitochondrial mass,whereas no change in nucleus size/morphology and lysosomal mass-pH was found.The cytotoxicity of CS-1 was not a major reason for its antiproliferative effect.Cell cycle analysis indicated that CS-1 induced G1-phase arrest in A431 cells in a timedependent manner at high concentration (2.5 μM),and S-phase arrest at low concentration (0.625 μM).The HCS assay also showed that CS-1 could inhibit the EGFR internalization,extracellular-signal-regulated kinase (Erk)/ mitogen-activated protein kinase translocation to nucleus,the accumulation of phosphorylated protein kinase B (Akt),signal transducer and activator of transcription 3 (STAT3),and cyclin D1 in the nucleus.These results were confirmed by the western blot analysis.CS-1 might inhibit the epidermal growth factor binding to its receptor,resulting in the inhibition of the accumulation of phosphorylated Erk and Akt,and STAT3 in the nucleus,and affecting the transcription of cyclin D1 and cell cycle arrest in G1/S phase.

  19. Participation of intracellular signal transduction in the radio-adaptive response induced by low-dose X-irradiation in human embryonic cells

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Keiichiro; Hoshi, Yuko; Iwasaki, Toshiyasu [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.; Watanabe, Masami

    1996-11-01

    To elucidate the induction mechanism of radio-adaptive response in normal cells, we searched the literatures of the intracellular signal transduction. Furthermore, we examined the induction of radio-adaptive response with or without inhibitors of several kinds of protein kinase. The major results obtained were as follows; (1) According to the literature survey it is revealed that there are 4 intracellular signal transduction pathways which are possibly involved in the induction of radio-adaptive response: pathways depending on cAMP, calcium, cGMP, or protein-tyrosine kinase. (2) Addition of either inhibitor of protein-tyrosine kinase or protein kinase C to the cell culture medium during the low-dose X-irradiation inhibited the induction of radio-adaptive response. However, the addition of inhibitor of cAMP-dependent protein kinase, cGMP-dependent protein kinase, or Ca{sup 2+}-calmodulin kinase II failed to inhibit the induction of radio-adaptive response. (3) These results suggest that the signal induced in cells by low-dose X-irradiation was transduced from protein-tyrosine kinase to protein kinase C via either pathway of phosphatidylinositol 3-kinase or splitting of profilin binding phosphatidylinositol 4,5-bisphosphate. (author)

  20. β3GnT8 plays an important role in CD147 signal transduction as an upstream modulator of MMP production in tumor cells.

    Science.gov (United States)

    Jiang, Zhi; Hu, Shuijun; Hua, Dong; Ni, Jianlong; Xu, Lan; Ge, Yan; Zhou, Yinghui; Cheng, Zhihong; Wu, Shiliang

    2014-09-01

    Aberrant carbohydration by related glycosyl-transferases plays an important role in the progression of cancer. This study focused on the ablity of β-1,3-N-acetyl-glucosaminyltransferase-8 (β3GnT8) to regulate MMP-2 expression through regulation of the CD147 signal transduction pathway in cancer cells. β3GnT8 catalyzes and then extends a polylactosamine chain specifically on β1-6-branched tetraantennary N-glycans. CD147 is a major carrier of β1-6-branched polylactosamine sugars on tumor cells, and the high glycoform of CD147 (HG-CD147) induces matrix metalloproteinase (MMP) production. In the present study, we analyzed β3GnT8 mRNA expression in 6 cancer cell lines (MCF-7, M231, LN229, U87, SGC-7901 and U251). We found that β3GnT8 expression in the LN229, SGC-7901 and U251 cell lines was higher than that in the other cell lines. Therefore, we established β3GnT8-knockdown cell lines derived from the LN229 and SGC-7901 cell lines to examine the level of polylactosamine and CD147 N-glycosylation. In addition, tunicamycin is widely used as an inhibitor of N-linked glycosylation. Hence, various concentrations of tunicamycin were used to treat the cells in order to study its influence on CD147 N-glycosylation and MMP-2 expression. In conclusion, we found that β3GnT8 regulated the level of N-glycans on CD147 and that N-glycosylation of CD147 has an important effect on MMP-2 expression. Our findings suggest that β3GnT8 affects the signal transduction pathway of MMP-2 by altering the N-glycan structure of CD147.

  1. CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca(2+-permeable channels and stomatal closure.

    Directory of Open Access Journals (Sweden)

    Izumi C Mori

    2006-10-01

    Full Text Available Abscisic acid (ABA signal transduction has been proposed to utilize cytosolic Ca(2+ in guard cell ion channel regulation. However, genetic mutants in Ca(2+ sensors that impair guard cell or plant ion channel signaling responses have not been identified, and whether Ca(2+-independent ABA signaling mechanisms suffice for a full response remains unclear. Calcium-dependent protein kinases (CDPKs have been proposed to contribute to central signal transduction responses in plants. However, no Arabidopsis CDPK gene disruption mutant phenotype has been reported to date, likely due to overlapping redundancies in CDPKs. Two Arabidopsis guard cell-expressed CDPK genes, CPK3 and CPK6, showed gene disruption phenotypes. ABA and Ca(2+ activation of slow-type anion channels and, interestingly, ABA activation of plasma membrane Ca(2+-permeable channels were impaired in independent alleles of single and double cpk3cpk6 mutant guard cells. Furthermore, ABA- and Ca(2+-induced stomatal closing were partially impaired in these cpk3cpk6 mutant alleles. However, rapid-type anion channel current activity was not affected, consistent with the partial stomatal closing response in double mutants via a proposed branched signaling network. Imposed Ca(2+ oscillation experiments revealed that Ca(2+-reactive stomatal closure was reduced in CDPK double mutant plants. However, long-lasting Ca(2+-programmed stomatal closure was not impaired, providing genetic evidence for a functional separation of these two modes of Ca(2+-induced stomatal closing. Our findings show important functions of the CPK6 and CPK3 CDPKs in guard cell ion channel regulation and provide genetic evidence for calcium sensors that transduce stomatal ABA signaling.

  2. Performance enhancement of PV cells through micro-channel cooling

    Directory of Open Access Journals (Sweden)

    Muzaffar Ali

    2015-11-01

    Full Text Available Efficiency of a PV cell is strongly dependent on its surface temperature. The current study is focused to achieve maximum efficiency of PV cells even in scorching temperatures in hot climates like Pakistan where the cell surface temperatures can even rise up to around 80 ℃. The study includes both the CFD and real time experimental investigations of a solar panel using micro channel cooling. Initially, CFD analysis is performed by developing a 3D model of a Mono-Crystalline cell with micro-channels to analyze cell surface temperature distribution at different irradiance and water flow rates. Afterwards, an experimental setup is developed for performance investigations under the real conditions of an open climate of a Pakistan's city, Taxila. Two 35W panels are manufactured for the experiments; one is based on the standard manufacturing procedure while other cell is developed with 4mm thick aluminum sheet having micro-channels of cross-section of 1mm by 1mm. The whole setup also includes different sensors for the measurement of solar irradiance, cell power, surface temperature and water flow rates. The experimental results show that PV cell surface temperature drop of around 15 ℃ is achieved with power increment of around 14% at maximum applied water flow rate of 3 LPM. Additionally, a good agreement is also found between CFD and experimental results. Therefore, that study clearly shows that a significant performance improvement of PV cells can be achieved through the proposed cell cooling technique.

  3. Adaptation Independent Modulation of Auditory Hair Cell Mechanotransduction Channel Open Probability Implicates a Role for the Lipid Bilayer.

    Science.gov (United States)

    Peng, Anthony W; Gnanasambandam, Radhakrishnan; Sachs, Frederick; Ricci, Anthony J

    2016-03-09

    The auditory system is able to detect movement down to atomic dimensions. This sensitivity comes in part from mechanisms associated with gating of hair cell mechanoelectric transduction (MET) channels. MET channels, located at the tops of stereocilia, are poised to detect tension induced by hair bundle deflection. Hair bundle deflection generates a force by pulling on tip-link proteins connecting adjacent stereocilia. The resting open probability (P(open)) of MET channels determines the linearity and sensitivity to mechanical stimulation. Classically, P(open) is regulated by a calcium-sensitive adaptation mechanism in which lowering extracellular calcium or depolarization increases P(open). Recent data demonstrated that the fast component of adaptation is independent of both calcium and voltage, thus requiring an alternative explanation for the sensitivity of P(open) to calcium and voltage. Using rat auditory hair cells, we characterize a mechanism, separate from fast adaptation, whereby divalent ions interacting with the local lipid environment modulate resting P(open). The specificity of this effect for different divalent ions suggests binding sites that are not an EF-hand or calmodulin model. GsMTx4, a lipid-mediated modifier of cationic stretch-activated channels, eliminated the voltage and divalent sensitivity with minimal effects on adaptation. We hypothesize that the dual mechanisms (lipid modulation and adaptation) extend the dynamic range of the system while maintaining adaptation kinetics at their maximal rates.

  4. Cytokine-independent growth and clonal expansion of a primary human CD8+ T-cell clone following retroviral transduction with the IL-15 gene.

    Science.gov (United States)

    Hsu, Cary; Jones, Stephanie A; Cohen, Cyrille J; Zheng, Zhili; Kerstann, Keith; Zhou, Juhua; Robbins, Paul F; Peng, Peter D; Shen, Xinglei; Gomes, Theotonius J; Dunbar, Cynthia E; Munroe, David J; Stewart, Claudia; Cornetta, Kenneth; Wangsa, Danny; Ried, Thomas; Rosenberg, Steven A; Morgan, Richard A

    2007-06-15

    Malignancies arising from retrovirally transduced hematopoietic stem cells have been reported in animal models and human gene therapy trials. Whether mature lymphocytes are susceptible to insertional mutagenesis is unknown. We have characterized a primary human CD8(+) T-cell clone, which exhibited logarithmic ex vivo growth in the absence of exogenous cytokine support for more than 1 year after transduction with a murine leukemia virus-based vector encoding the T-cell growth factor IL-15. Phenotypically, the clone was CD28(-), CD45RA(-), CD45RO(+), and CD62L(-), a profile consistent with effector memory T lymphocytes. After gene transfer with tumor-antigen-specific T-cell receptors, the clone secreted IFN-gamma upon encountering tumor targets, providing further evidence that they derived from mature lymphocytes. Gene-expression analyses revealed no evidence of insertional activation of genes flanking the retroviral insertion sites. The clone exhibited constitutive telomerase activity, and the presence of autocrine loop was suggested by impaired cell proliferation following knockdown of IL-15R alpha expression. The generation of this cell line suggests that nonphysiologic expression of IL-15 can result in the long-term in vitro growth of mature human T lymphocytes. The cytokine-independent growth of this line was a rare event that has not been observed in other IL-15 vector transduction experiments or with any other integrating vector system. It does not appear that the retroviral vector integration sites played a role in the continuous growth of this cell clone, but this remains under investigation.

  5. Honing in on the ATP Release Channel in Taste Cells.

    Science.gov (United States)

    Medler, Kathryn F

    2015-09-01

    Studies over the last 8 years have identified 3 potential channels that appear to release ATP from Type II cells in response to taste stimuli. These studies have taken different methodological approaches but have all provided data supporting their candidate channel as the ATP release channel. These potential channels include Pannexin 1, Connexins (30 and/or 43), and most recently, the Calhm1 channel. Two papers in this issue of Chemical Senses provide compelling new evidence that Pannexin 1 is not the ATP release channel. Tordoff et al. did a thorough behavioral analysis of the Pannexin1 knock out mouse and found that these animals have the same behavioral responses as wild type mice for 7 different taste stimuli that were tested. Vandenbeuch et al. presented an equally thorough analysis of the gustatory nerve responses in the Pannexin1 knock out mouse and found no differences compared with controls. Thus when the role of Pannexin 1 is analyzed at the systems level, it is not required for normal taste perception. Further studies are needed to determine the role of this hemichannel in taste cells.

  6. Cellular Prion Protein and Caveolin-1 Interaction in a Neuronal Cell Line Precedes Fyn/Erk 1/2 Signal Transduction

    Directory of Open Access Journals (Sweden)

    Mattia Toni

    2006-01-01

    Full Text Available It has been reported that cellular prion protein (PrPc is enriched in caveolae or caveolae-like domains with caveolin-1 (Cav-1 participating to signal transduction events by Fyn kinase recruitment. By using the Glutathione-S-transferase (GST-fusion proteins assay, we observed that PrPc strongly interacts in vitro with Cav-1. Thus, we ascertained the PrPc caveolar localization in a hypothalamic neuronal cell line (GN11, by confocal microscopy analysis, flotation on density gradient, and coimmunoprecipitation experiments. Following the anti-PrPc antibody-mediated stimulation of live GN11 cells, we observed that PrPc clustered on plasma membrane domains rich in Cav-1 in which Fyn kinase converged to be activated. After these events, a signaling cascade through p42/44 MAP kinase (Erk 1/2 was triggered, suggesting that following translocations from rafts to caveolae or caveolae-like domains PrPc could interact with Cav-1 and induce signal transduction events.

  7. Expression and Fuactional Role of HERG1, K+ Channels in Leukemic Cells and Leukemic Stem Cells

    Institute of Scientific and Technical Information of China (English)

    LI Huiyu; LIU Liqiong; GUO Tiannan; ZHANG Jiahua; LI Xiaoqing; DU Wen; LIU Wei; CHEN Xiangjun; HUANG Shi'ang

    2007-01-01

    In order to investigate the expression and functional role of HERG1 K+ channels in leukemic cells and leukemic stem cells (LSCs), RT-PCR was used to detect the HERG1 K+ channels expression in leukemic cells and LSCs. The functional role of HERG1 K+ channels in leukemic cell proliferation was measured by MTT assay, and cell cycle and apoptosis were analyzed by flow cytometry. The results showed that herg mRNA was expressed in CD34+/CD38-, CD123+ LSCs but not in circulating CD34+ cells. Herg mRNA was also up-regulated in leukemia cell lines K562 and HL60 as well as almost all the primary leukemic cells while not in normal peripheral blood mononuclear cells (PBMNCs) and the expression of herg mRNA was not associated with the clinical and cytogenetic features of leukemia. In addition, leukemic cell proliferation was dramatically inhibited by HERG K+ channel special inhibitor E-4031. Moreover, E-4031 suppressed the cell growth by inducing a specific block at the G1/S transition phase of the cell cycle but had no effect on apoptosis in leukemic cells. The results suggested that HERG1 K+ channels could regulate leukemic cells proliferation and were necessary for leukemic cells to proceed with the cell cycle. HERG1 K+ channels may also have oncogenic potential and may be a biomarker for diagnosis of leukemia and a novel potential pharmacological target for leukemia therapy.

  8. Voltage-gated sodium channels in taste bud cells

    Directory of Open Access Journals (Sweden)

    Williams Mark E

    2009-03-01

    Full Text Available Abstract Background Taste bud cells transmit information regarding the contents of food from taste receptors embedded in apical microvilli to gustatory nerve fibers innervating basolateral membranes. In particular, taste cells depolarize, activate voltage-gated sodium channels, and fire action potentials in response to tastants. Initial cell depolarization is attributable to sodium influx through TRPM5 in sweet, bitter, and umami cells and an undetermined cation influx through an ion channel in sour cells expressing PKD2L1, a candidate sour taste receptor. The molecular identity of the voltage-gated sodium channels that sense depolarizing signals and subsequently initiate action potentials coding taste information to gustatory nerve fibers is unknown. Results We describe the molecular and histological expression profiles of cation channels involved in electrical signal transmission from apical to basolateral membrane domains. TRPM5 was positioned immediately beneath tight junctions to receive calcium signals originating from sweet, bitter, and umami receptor activation, while PKD2L1 was positioned at the taste pore. Using mouse taste bud and lingual epithelial cells collected by laser capture microdissection, SCN2A, SCN3A, and SCN9A voltage-gated sodium channel transcripts were expressed in taste tissue. SCN2A, SCN3A, and SCN9A were expressed beneath tight junctions in subsets of taste cells. SCN3A and SCN9A were expressed in TRPM5 cells, while SCN2A was expressed in TRPM5 and PKD2L1 cells. HCN4, a gene previously implicated in sour taste, was expressed in PKD2L1 cells and localized to cell processes beneath the taste pore. Conclusion SCN2A, SCN3A and SCN9A voltage-gated sodium channels are positioned to sense initial depolarizing signals stemming from taste receptor activation and initiate taste cell action potentials. SCN2A, SCN3A and SCN9A gene products likely account for the tetrodotoxin-sensitive sodium currents in taste receptor cells.

  9. Drosophila TRPN(=NOMPC channel localizes to the distal end of mechanosensory cilia.

    Directory of Open Access Journals (Sweden)

    Jeongmi Lee

    Full Text Available BACKGROUND: A TRPN channel protein is essential for sensory transduction in insect mechanosensory neurons and in vertebrate hair cells. The Drosophila TRPN homolog, NOMPC, is required to generate mechanoreceptor potentials and currents in tactile bristles. NOMPC is also required, together with a TRPV channel, for transduction by chordotonal neurons of the fly's antennal ear, but the TRPN or TRPV channels have distinct roles in transduction and in regulating active antennal mechanics. The evidence suggests that NOMPC is a primary mechanotransducer channel, but its subcellular location-key for understanding its exact role in transduction-has not yet been established. METHODOLOGY/PRINCIPAL FINDINGS: Here, by immunostaining, we locate NOMPC at the tips of mechanosensory cilia in both external and chordotonal sensory neurons, as predicted for a mechanotransducer channel. In chordotonal neurons, the TRPN and TRPV channels are respectively segregated into distal and proximal ciliary zones. This zonal separation is demarcated by and requires the ciliary dilation, an intraciliary assembly of intraflagellar transport (IFT proteins. CONCLUSIONS: Our results provide a strong evidence for NOMPC as a primary transduction channel in Drosophila mechansensory organs. The data also reveals a structural basis for the model of auditory chordotonal transduction in which the TRPN and TRPV channels play sequential roles in generating and amplifying the receptor potential, but have opposing roles in regulating active ciliary motility.

  10. Effects of TNF-α on the expression of monocyte chemoattractant protein-1 and the corresponding signal transduction pathway in dental follicle cells

    Directory of Open Access Journals (Sweden)

    Ying-chun BI

    2011-02-01

    Full Text Available Objective To study the effect of different concentration of tumor necrosis factor-α(TNF-α on the expression of monocyte chemoattractant protein-1(MCP-1 and the corresponding signal transduction pathway in human dental follicle cells.Methods The 5th passage of human dental follicle cells were co-incubated with 0(control group,5,10,25,50 and 100 ng/ml TNF-α,respectively,for 6 hours.The contents of MCP-1 in the supernatant were measured by using sandwich ELISA,and the expression of MCP-1 mRNA was determined by reverses transcription polymerase chain reaction(RT-PCR.Furthermore,to determine the corresponding signal transduction pathway,the 5th passage of human dental follicle cells were incubated with 25 μmol/L SB203580 to inhibit p38 mitogen-activated protein kinase(p38MARK,with 50 μmol/L PD98059 to inhibit extracellular signal-regulated kinases(ERK,and with 15 μmol/L SP600125 to inhibit c-Jun N-terminal kinases(JNK for 30min,then incubated with TNF-α(10ng/ml for 6h.MCP-1 mRNA was detected by RT-PCR.Results The results of ELISA revealed that 10-100 ng/ml of TNF-α enhanced MCP-1 secretion(P < 0.05 compared to that in human dental follicle cells without TNF-α treatment.Cells treated with 10-50 ng/ml of TNF-α showed a significant increase of MCP-1 mRNA expression(P < 0.05,and the action was inhibited by SP600125,which was the special inhibitor of c-Jun N-terminal kinase(JNK.Conclusion TNF-α may enhance MCP-1 gene expression and secretion in human dental follicle cells,and the activation of JNK signal transduction pathway is required in this process.

  11. Involvement of M3 Cholinergic Receptor Signal Transduction Pathway in Regulation of the Expression of Chemokine MOB-1, MCP-1 Genes in Pancreatic Acinar Cells

    Institute of Scientific and Technical Information of China (English)

    郑海; 陈道达; 张景輝; 田原

    2004-01-01

    Whether M3 cholinergic receptor signal transduction pathway is involved in regulation of the activation of NF-κB and the expression of chemokine MOB-1, MCP-1genes in pancreatic acinar cells was investigated. Rat pancreatic acinar cells were isolated, cultured and treated with carbachol, atropine and PDTC in vitro. The MOB-1 and MCP-1 mRNA expression was detected by using RT-PCR. The activation of NF-κB was monitored by using electrophoretic mobility shift assay.The results showed that as compared with control group, M3 cholinergic receptor agonist (103mol/L, 104-4ol/L carbachol) could induce a concentration-dependent and time-dependent increase in the expression of MOB-1, MCP-1 mRNA in pancreatic acinar cells. After treatment with 10 -3mol/L carbachol for 2 h, the expression of MOB-1, MCP-1 mRNA was strongest. The activity of NF-κB in pancreatic acinar cells was significantly increased (P<0.01) after treated with M3 cholinergic receptor agonist (10-3 mol/L carbachol) in vitro for 30 min. Either M3 cholinergic receptor antagonist (10-5 mol/L atropine) or NF-κB inhibitor (10-2 mol/L PDTC) could obviously inhibit the activation of NF-κB and the chemokine MOB-1, MCP-1 mRNA expression induced by carbachol (P <0.05). This inhibitory effect was significantly increased by atropine plus PDTC (P<0.01). The results of these studies indicated that M3 cholinergic receptor signal transduction pathway was likely involved in regulation of the expression of chemokine MOB-1 and MCP-1genes in pancreatic acinar cells in vitro through the activation of NF-κB.

  12. Erythropoietin suppresses epithelial to mesenchymal transition and intercepts Smad signal transduction through a MEK-dependent mechanism in pig kidney (LLC-PK1) cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chien-Liang; Chou, Kang-Ju; Lee, Po-Tsang [Division of Nephrology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan (China); Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan (China); Chen, Ying-Shou; Chang, Tsu-Yuan; Hsu, Chih-Yang; Huang, Wei-Chieh [Division of Nephrology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan (China); Chung, Hsiao-Min [Division of Nephrology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan (China); Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan (China); Fang, Hua-Chang, E-mail: hcfang@isca.vghks.gov.tw [Division of Nephrology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan (China); Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan (China)

    2010-04-15

    Purpose: Tumor growth factor-{beta}1 (TGF-{beta}1) plays a pivotal role in processes like kidney epithelial-mesenchymal transition (EMT) and interstitial fibrosis, which correlate well with progression of renal disease. Little is known about underlying mechanisms that regulate EMT. Based on the anatomical relationship between erythropoietin (EPO)-producing interstitial fibroblasts and adjacent tubular cells, we investigated the role of EPO in TGF-{beta}1-mediated EMT and fibrosis in kidney injury. Methods: We examined apoptosis and EMT in TGF-{beta}1-treated LLC-PK1 cells in the presence or absence of EPO. We examined the effect of EPO on TGF-{beta}1-mediated Smad signaling. Apoptosis and cell proliferation were assessed with flow cytometry and hemocytometry. We used Western blotting and indirect immunofluorescence to evaluate expression levels of TGF-{beta}1 signal pathway proteins and EMT markers. Results: We demonstrated that ZVAD-FMK (a caspase inhibitor) inhibited TGF-{beta}1-induced apoptosis but did not inhibit EMT. In contrast, EPO reversed TGF-{beta}1-mediated apoptosis and also partially inhibited TGF-{beta}1-mediated EMT. We showed that EPO treatment suppressed TGF-{beta}1-mediated signaling by inhibiting the phosphorylation and nuclear translocation of Smad 3. Inhibition of mitogen-activated protein kinase kinase 1 (MEK 1) either directly with PD98059 or with MEK 1 siRNA resulted in inhibition of EPO-mediated suppression of EMT and Smad signal transduction in TGF-{beta}1-treated cells. Conclusions: EPO inhibited apoptosis and EMT in TGF-{beta}1-treated LLC-PK1 cells. This effect of EPO was partially mediated by a mitogen-activated protein kinase-dependent inhibition of Smad signal transduction.

  13. An S-type anion channel SLAC1 is involved in cryptogein-induced ion fluxes and modulates hypersensitive responses in tobacco BY-2 cells.

    Directory of Open Access Journals (Sweden)

    Takamitsu Kurusu

    Full Text Available Pharmacological evidence suggests that anion channel-mediated plasma membrane anion effluxes are crucial in early defense signaling to induce immune responses and hypersensitive cell death in plants. However, their molecular bases and regulation remain largely unknown. We overexpressed Arabidopsis SLAC1, an S-type anion channel involved in stomatal closure, in cultured tobacco BY-2 cells and analyzed the effect on cryptogein-induced defense responses including fluxes of Cl(- and other ions, production of reactive oxygen species (ROS, gene expression and hypersensitive responses. The SLAC1-GFP fusion protein was localized at the plasma membrane in BY-2 cells. Overexpression of SLAC1 enhanced cryptogein-induced Cl(- efflux and extracellular alkalinization as well as rapid/transient and slow/prolonged phases of NADPH oxidase-mediated ROS production, which was suppressed by an anion channel inhibitor, DIDS. The overexpressor also showed enhanced sensitivity to cryptogein to induce downstream immune responses, including the induction of defense marker genes and the hypersensitive cell death. These results suggest that SLAC1 expressed in BY-2 cells mediates cryptogein-induced plasma membrane Cl(- efflux to positively modulate the elicitor-triggered activation of other ion fluxes, ROS as well as a wide range of defense signaling pathways. These findings shed light on the possible involvement of the SLAC/SLAH family anion channels in cryptogein signaling to trigger the plasma membrane ion channel cascade in the plant defense signal transduction network.

  14. Hyperinsulinism induced by targeted suppression of beta cell KATP channels.

    Science.gov (United States)

    Koster, J C; Remedi, M S; Flagg, T P; Johnson, J D; Markova, K P; Marshall, B A; Nichols, C G

    2002-12-24

    ATP-sensitive K+ (K(ATP)) channels couple cell metabolism to electrical activity. To probe the role of K(ATP) in glucose-induced insulin secretion, we have generated transgenic mice expressing a dominant-negative, GFP-tagged K(ATP) channel subunit in which residues 132-134 (Gly-Tyr-Gly) in the selectivity filter were replaced by Ala-Ala-Ala, under control of the insulin promoter. Transgene expression was confirmed by both beta cell-specific green fluorescence and complete suppression of channel activity in those cells ( approximately 70%) that did fluoresce. Transgenic mice developed normally with no increased mortality and displayed normal body weight, blood glucose levels, and islet architecture. However, hyperinsulinism was evident in adult mice as (i) a disproportionately high level of circulating serum insulin for a given glucose concentration ( approximately 2-fold increase in blood insulin), (ii) enhanced glucose-induced insulin release from isolated islets, and (iii) mild yet significant enhancement in glucose tolerance. Enhanced glucose-induced insulin secretion results from both increased glucose sensitivity and increased release at saturating glucose concentration. The results suggest that incomplete suppression of K(ATP) channel activity can give rise to a maintained hyperinsulinism.

  15. Modeling thalamocortical cell: impact of Ca2+ channel distribution and cell geometry on firing pattern

    Directory of Open Access Journals (Sweden)

    Reza Zomorrodi

    2008-12-01

    Full Text Available The influence of calcium channel distribution and geometry of the thalamocortical cell upon its tonic firing and the low threshold spike (LTS generation was studied in a 3-compartment model, which represents soma, proximal and distal dendrites as well as in multi-compartment model using the morphology of a real reconstructed neuron. Using an uniform distribution of Ca2+ channels, we determined the minimal number of low threshold voltage-activated calcium channels and their permeability required for the onset of LTS in response to a hyperpolarizing current pulse. In the 3-compartment model, we found that the channel distribution influences the firing pattern only in the range of 3% below the threshold value of total T-channel density. In the multi-compartmental model, the LTS could be generated by only 64% of unequally distributed T-channels compared to the minimal number of equally distributed T-channels. For a given channel density and injected current, the tonic firing frequency was found to be inversely proportional to the size of the cell. However, when the Ca2+ channel density was elevated in soma or proximal dendrites, then the amplitude of LTS response and burst spike frequencies were determined by the ratio of total to threshold number of T-channels in the cell for a specific geometry.

  16. Modeling Thalamocortical Cell: Impact of Ca2+ Channel Distribution and Cell Geometry on Firing Pattern

    Science.gov (United States)

    Zomorrodi, Reza; Kröger, Helmut; Timofeev, Igor

    2008-01-01

    The influence of calcium channel distribution and geometry of the thalamocortical cell upon its tonic firing and the low threshold spike (LTS) generation was studied in a 3-compartment model, which represents soma, proximal and distal dendrites as well as in multi-compartment model using the morphology of a real reconstructed neuron. Using an uniform distribution of Ca2+ channels, we determined the minimal number of low threshold voltage-activated calcium channels and their permeability required for the onset of LTS in response to a hyperpolarizing current pulse. In the 3-compartment model, we found that the channel distribution influences the firing pattern only in the range of 3% below the threshold value of total T-channel density. In the multi-compartmental model, the LTS could be generated by only 64% of unequally distributed T-channels compared to the minimal number of equally distributed T-channels. For a given channel density and injected current, the tonic firing frequency was found to be inversely proportional to the size of the cell. However, when the Ca2+ channel density was elevated in soma or proximal dendrites, then the amplitude of LTS response and burst spike frequencies were determined by the ratio of total to threshold number of T-channels in the cell for a specific geometry. PMID:19129908

  17. Mouse taste cells with G protein-coupled taste receptors lack voltage-gated calcium channels and SNAP-25

    Directory of Open Access Journals (Sweden)

    Medler Kathryn F

    2006-03-01

    Full Text Available Abstract Background Taste receptor cells are responsible for transducing chemical stimuli from the environment and relaying information to the nervous system. Bitter, sweet and umami stimuli utilize G-protein coupled receptors which activate the phospholipase C (PLC signaling pathway in Type II taste cells. However, it is not known how these cells communicate with the nervous system. Previous studies have shown that the subset of taste cells that expresses the T2R bitter receptors lack voltage-gated Ca2+ channels, which are normally required for synaptic transmission at conventional synapses. Here we use two lines of transgenic mice expressing green fluorescent protein (GFP from two taste-specific promoters to examine Ca2+ signaling in subsets of Type II cells: T1R3-GFP mice were used to identify sweet- and umami-sensitive taste cells, while TRPM5-GFP mice were used to identify all cells that utilize the PLC signaling pathway for transduction. Voltage-gated Ca2+ currents were assessed with Ca2+ imaging and whole cell recording, while immunocytochemistry was used to detect expression of SNAP-25, a presynaptic SNARE protein that is associated with conventional synapses in taste cells. Results Depolarization with high K+ resulted in an increase in intracellular Ca2+ in a small subset of non-GFP labeled cells of both transgenic mouse lines. In contrast, no depolarization-evoked Ca2+ responses were observed in GFP-expressing taste cells of either genotype, but GFP-labeled cells responded to the PLC activator m-3M3FBS, suggesting that these cells were viable. Whole cell recording indicated that the GFP-labeled cells of both genotypes had small voltage-dependent Na+ and K+ currents, but no evidence of Ca2+ currents. A subset of non-GFP labeled taste cells exhibited large voltage-dependent Na+ and K+ currents and a high threshold voltage-gated Ca2+ current. Immunocytochemistry indicated that SNAP-25 was expressed in a separate population of taste cells

  18. Quantitation of signal transduction.

    Science.gov (United States)

    Krauss, S; Brand, M D

    2000-12-01

    Conventional qualitative approaches to signal transduction provide powerful ways to explore the architecture and function of signaling pathways. However, at the level of the complete system, they do not fully depict the interactions between signaling and metabolic pathways and fail to give a manageable overview of the complexity that is often a feature of cellular signal transduction. Here, we introduce a quantitative experimental approach to signal transduction that helps to overcome these difficulties. We present a quantitative analysis of signal transduction during early mitogen stimulation of lymphocytes, with steady-state respiration rate as a convenient marker of metabolic stimulation. First, by inhibiting various key signaling pathways, we measure their relative importance in regulating respiration. About 80% of the input signal is conveyed via identifiable routes: 50% through pathways sensitive to inhibitors of protein kinase C and MAP kinase and 30% through pathways sensitive to an inhibitor of calcineurin. Second, we quantify how each of these pathways differentially stimulates functional units of reactions that produce and consume a key intermediate in respiration: the mitochondrial membrane potential. Both the PKC and calcineurin routes stimulate consumption more strongly than production, whereas the unidentified signaling routes stimulate production more than consumption, leading to no change in membrane potential despite increased respiration rate. The approach allows a quantitative description of the relative importance of signal transduction pathways and the routes by which they activate a specific cellular process. It should be widely applicable.

  19. Voltage-Gated Ion Channels in Cancer Cell Proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Vidhya R.; Perez-Neut, Mathew [Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago 2160 S. 1st Ave, Maywood, IL 60153 (United States); Kaja, Simon [Department of Ophthalmology and Vision Research Center, School of Medicine, University of Missouri-Kansas City, 2411 Holmes St., Kansas City, MO 64108 (United States); Gentile, Saverio, E-mail: sagentile@luc.edu [Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago 2160 S. 1st Ave, Maywood, IL 60153 (United States)

    2015-05-22

    Changes of the electrical charges across the surface cell membrane are absolutely necessary to maintain cellular homeostasis in physiological as well as in pathological conditions. The opening of ion channels alter the charge distribution across the surface membrane as they allow the diffusion of ions such as K{sup +}, Ca{sup ++}, Cl{sup −}, Na{sup +}. Traditionally, voltage-gated ion channels (VGIC) are known to play fundamental roles in controlling rapid bioelectrical signaling including action potential and/or contraction. However, several investigations have revealed that these classes of proteins can also contribute significantly to cell mitotic biochemical signaling, cell cycle progression, as well as cell volume regulation. All these functions are critically important for cancer cell proliferation. Interestingly, a variety of distinct VGICs are expressed in different cancer cell types, including metastasis but not in the tissues from which these tumors were generated. Given the increasing evidence suggesting that VGIC play a major role in cancer cell biology, in this review we discuss the role of distinct VGIC in cancer cell proliferation and possible therapeutic potential of VIGC pharmacological manipulation.

  20. Selective in vitro expansion and efficient retroviral transduction of human CD34(+) CD38(-) haematopoietic stem cells

    NARCIS (Netherlands)

    Ng, YY; Bloem, AC; van Kessel, B; Lokhorst, H; Logtenberg, T; Staal, FJT

    2002-01-01

    Ex vivo expansion of primitive human haematopoietic stem cells (HSC) is clinically relevant for stem cell transplantation and gene therapy. Here, we demonstrate the selective expansion of CD34(+) CD38(-) cells from purified CD34(+) cells upon stimulation with Flt3-ligand, stem cell factor and thromb

  1. The effects of inorganic lead on voltage-sensitive calcium channels differ among cell types and among channel subtypes.

    Science.gov (United States)

    Audesirk, G; Audesirk, T

    1993-01-01

    The whole-cell version of patch clamping was used to compare the effects of acute in vitro exposure to inorganic lead (Pb2+) on voltage-sensitive calcium channels in cultured N1E-115 mouse neuroblastoma cells and E18 rat hippocampal neurons. Free Pb2+ concentrations in salines with a high lead-buffering capacity were measured with a calibrated Pb(2+)-selective electrode. Previously, we found that N1E-115 neurons contain low voltage activated, rapidly inactivating (T) channels and high voltage activated, slowly inactivating (L) channels. Pb2+ inhibits both channel subtypes in N1E-115 cells, with some selectivity against L-type channels (IC50 approximately 700 nM free Pb2+ for L-type channels, 1300 nM free Pb2+ for T-type channels; Audesirk and Audesirk, 1991). In addition to T-type and L-type channels, cultured E18 rat hippocampal neurons have been reported to contain high voltage-activated, rapidly inactivating (N) channels. In our experiments with 5 to 20 day old cultures, almost all neurons showed substantial L-type current, approximately half showed significant N-type current, and fewer than 5% showed significant T-type current. We found that Pb2+ is somewhat selective against L-type channels (IC50 approximately 30 nM free Pb2+ in 10 mM Ba2+ as the charge carrier, 55 nM in 50 mM Ba2+) compared to N-channels (IC50 approximately 80 nM free Pb2+ in 10 mM Ba2+, 200 nM in 50 mM Ba2+). These results suggest that the effects of Pb2+ on calcium channels of vertebrate neurons vary both among cell types and among channel subtypes.

  2. Transductive Ordinal Regression

    CERN Document Server

    Seah, Chun-Wei; Ong, Yew-Soon

    2011-01-01

    Ordinal regression is commonly formulated as a multi-class problem with ordinal constraints. The challenge of designing accurate classifiers for ordinal regression generally increases with the number of classes involved, due to the large number of labeled patterns that are needed. The availability of ordinal class labels, however, are often costly to calibrate or difficult to obtain. Unlabeled patterns, on the other hand, often exist in much greater abundance and are freely available. To take benefits from the abundance of unlabeled patterns, we present a novel transductive learning paradigm for ordinal regression in this paper, namely Transductive Ordinal Regression (TOR). The key challenge of the present study lies in the precise estimation of both the ordinal class label of the unlabeled data and the decision functions of the ordinal classes, simultaneously. The core elements of the proposed TOR include an objective function that caters to several commonly used loss functions casted in transductive setting...

  3. Study of orexins signal transduction pathways in rat olfactory mucosa and in olfactory sensory neurons-derived cell line Odora: multiple orexin signalling pathways.

    Science.gov (United States)

    Gorojankina, Tatiana; Grébert, Denise; Salesse, Roland; Tanfin, Zahra; Caillol, Monique

    2007-06-07

    Orexins A and B (OxA and OxB) are multifunctional neuropeptides implicated in the regulation of energy metabolism, wakefulness but also in a broad range of motivated behaviours. They signal through two G-protein-coupled receptors: orexin receptor 1 and 2 (Ox1R and Ox2R). The orexins and their receptors are present at all levels of the rat olfactory system: epithelium, bulb, piriform cortex but their signalling mechanisms remain unknown. We have studied orexins signal transduction pathways in the rat olfactory mucosa (OM) and in the Odora cell line derived from olfactory sensory neurons and heterologously expressing Ox1R or Ox2R. We have demonstrated by western blot and RT-PCR that multiple components of adenylyl cyclase (AC) and phospholipase C (PLC) signalling pathways were identical in OM and Odora cells. OxA and OxB induced a weak increase in IP3 in OM; they induced a significant rise in cAMP and IP3 in Odora transfected cells, suggesting the activation of AC and PLC pathways. Both OxA and OxB induced intracellular calcium elevation and transient activation of MAP kinases (ERK42/44) in Odora/Ox1R and Odora/Ox2R cells. These results suggest the existence of multiple orexins signalling pathways in Odora cells and probably in OM, corresponding to different possible roles of these peptides.

  4. Chloride channels in the plasma membrane of a foetal Drosophila cell line, S2

    DEFF Research Database (Denmark)

    Asmild, Margit; Willumsen, Niels J.

    2000-01-01

    S2 cells, Cl- Channels, Expression system, Drosophila, Inward rectifier, Outward rectifier, Patch clamp......S2 cells, Cl- Channels, Expression system, Drosophila, Inward rectifier, Outward rectifier, Patch clamp...

  5. Modulation of KCNQ4 channel activity by changes in cell volume

    DEFF Research Database (Denmark)

    Hougaard, Charlotte; Klaerke, Dan A; Hoffmann, Else K;

    2004-01-01

    KCNQ4 channels expressed in HEK 293 cells are sensitive to cell volume changes, being activated by swelling and inhibited by shrinkage, respectively. The KCNQ4 channels contribute significantly to the regulatory volume decrease (RVD) process following cell swelling. Under isoosmotic conditions......, the KCNQ4 channel activity is modulated by protein kinases A and C, G protein activation, and a reduction in the intracellular Ca2+ concentration, but these signalling pathways are not responsible for the increased channel activity during cell swelling....

  6. One-way calcium spill-over during signal transduction in Paramecium cells: from the cell cortex into cilia, but not in the reverse direction.

    Science.gov (United States)

    Husser, Marc R; Hardt, Martin; Blanchard, Marie-Pierre; Hentschel, Joachim; Klauke, Norbert; Plattner, Helmut

    2004-11-01

    We asked to what extent Ca(2+) signals in two different domains of Paramecium cells remain separated during different stimulations. Wild-type (7S) and pawn cells (strain d4-500r, without ciliary voltage-dependent Ca(2+)-channels) were stimulated for trichocyst exocytosis within 80 ms by quenched-flow preparation and analysed by energy-dispersive X-ray microanalysis (EDX), paralleled by fast confocal fluorochrome analysis. We also analysed depolarisation-dependent calcium signalling during ciliary beat rerversal, also by EDX, after 80-ms stimulation in the quenched-flow mode. EDX and fluorochrome analysis enable to register total and free intracellular calcium concentrations, [Ca] and [Ca(2+)], respectively. After exocytosis stimulation we find by both methods that the calcium signal sweeps into the basis of cilia, not only in 7S but also in pawn cells which then also perform ciliary reversal. After depolarisation we see an increase of [Ca] along cilia selectively in 7S, but not in pawn cells. Opposite to exocytosis stimulation, during depolarisation no calcium spill-over into the nearby cytosol and no exocytosis occurs. In sum, we conclude that cilia must contain a very potent Ca(2+) buffering system and that ciliary reversal induction, much more than exocytosis stimulation, involves strict microdomain regulation of Ca(2+) signals.

  7. Characterization of cell surface and extracellular matrix remodeling of Azospirillum brasilense chemotaxis-like 1 signal transduction pathway mutants by atomic force microscopy.

    Science.gov (United States)

    Edwards, Amanda Nicole; Siuti, Piro; Bible, Amber N; Alexandre, Gladys; Retterer, Scott T; Doktycz, Mitchel J; Morrell-Falvey, Jennifer L

    2011-01-01

    To compete in complex microbial communities, bacteria must sense environmental changes and adjust cellular functions for optimal growth. Chemotaxis-like signal transduction pathways are implicated in the regulation of multiple behaviors in response to changes in the environment, including motility patterns, exopolysaccharide production, and cell-to-cell interactions. In Azospirillum brasilense, cell surface properties, including exopolysaccharide production, are thought to play a direct role in promoting flocculation. Recently, the Che1 chemotaxis-like pathway from A. brasilense was shown to modulate flocculation, suggesting an associated modulation of cell surface properties. Using atomic force microscopy, distinct changes in the surface morphology of flocculating A. brasilense Che1 mutant strains were detected. Whereas the wild-type strain produces a smooth mucosal extracellular matrix after 24 h, the flocculating Che1 mutant strains produce distinctive extracellular fibril structures. Further analyses using flocculation inhibition, lectin-binding assays, and comparison of lipopolysaccharides profiles suggest that the extracellular matrix differs between the cheA1 and the cheY1 mutants, despite an apparent similarity in the macroscopic floc structures. Collectively, these data indicate that disruption of the Che1 pathway is correlated with distinctive changes in the extracellular matrix, which likely result from changes in surface polysaccharides structure and/or composition.

  8. Characterization of cell surface and extracellular matrix remodeling of Azospirillum brasilense chemotaxis-like 1 signal transduction pathway mutants by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Doktycz, Mitchel John [ORNL; Morrell-Falvey, Jennifer L [ORNL

    2011-01-01

    To compete in complex microbial communities, bacteria must sense environmental changes and adjust cellular functions for optimal growth. Chemotaxis-like signal transduction pathways are implicated in the regulation of multiple behaviors in response to changes in the environment, including motility patterns, exopolysaccharide production, and cell-to-cell interactions. In Azospirillum brasilense, cell surface properties, including exopolysaccharide production, are thought to play a direct role in promoting flocculation. Recently, the Che1 chemotaxis-like pathway from A. brasilense was shown to modulate flocculation, suggesting an associated modulation of cell surface properties. Using atomic force microscopy, distinct changes in the surface morphology of flocculating A. brasilense Che1 mutant strains were detected. Whereas the wild-type strain produces a smooth mucosal extracellular matrix after 24 h, the flocculating Che1 mutant strains produce distinctive extracellular fibril structures. Further analyses using flocculation inhibition, lectin-binding assays, and comparison of lipopolysaccharides profiles suggest that the extracellular matrix differs between the cheA1 and the cheY1 mutants, despite an apparent similarity in the macroscopic floc structures. Collectively, these data indicate that disruption of the Che1 pathway is correlated with distinctive changes in the extracellular matrix, which likely result from changes in surface polysaccharides structure and/or composition.

  9. Quantifying efficient information transduction of biochemical signaling cascades

    CERN Document Server

    Tsuruyama, Tatsuaki

    2016-01-01

    Cells can be considered as systems that utilize changes in thermodynamic entropy as information. Therefore, they serve as useful models for investigating the relationships between entropy production and information transmission, i.e., signal transduction. Based on the hypothesis that cells apply a chemical reaction cascade for the most efficient transduction of information, we adopted a coding design that minimizes the number of bits per concentration of molecules that are employed for information transduction. As a result, the average rate of entropy production is uniform across all cycles in a cascade reaction. Thus, the entropy production rate can be a valuable measure for the quantification of intracellular signal transduction.

  10. Stable EGFP Gene Expression in C6 Glioma Cell Line after Transduction with HIV-1-based Lentiviral Vector

    Institute of Scientific and Technical Information of China (English)

    JIN Gui-shan; LIU Fu-sheng; CHAI Qi; WANG Jian-jao; LI Jun-hua

    2008-01-01

    Objective:To establish a stable C6/EGFP glioma cell line for studies on glioma. Methods:The C6 glioma cell line was transfected with the human immunodeficiency virus type Ⅰ(HIV-1)based lentivirus vector containing two enhancer-promoters CMV and EF1α.Enhanced green fluorescent protein(EGFP)-positive C6 cells were sorted out by fluorescence-activated cell sort.Expression of EGFP was observed by fluorescent microscopy.EGFP gene in C6 genome was assessed by Polymerase chain reaction(PCR)and DNA sequencing.Original and transfected cells were compared biologically and cytomorphologically. Results:Lentivirus vector transfection produced up to 40% EGFP-positive cells.After fluorescence-activated cell sort selection,a pure cell line C6/EGFP was established.PCR and DNA sequencing revealed integration of EGFP gene in C6 cell genome.Analysis of cell characteristics revealed no difference between transfected and original cells. Conclusion:A C6/EGFP cell line expressing EGFP as a marker is established,in which the EGFP gene is integrated into the genome.This cell line can be served as a promising tool for further basic research and gene therapy studies.

  11. Cell mechanics through analysis of cell trajectories in microfluidic channel

    Science.gov (United States)

    Bowie, Samuel; Alexeev, Alexander; Sulchek, Todd

    The understanding of dynamic cell behavior can aid in research ranging from the mechanistic causes of diseases to the development of microfluidic devices for cancer detection. Through analysis of trajectories captured from video of the cells moving in a specially designed microfluidic device, insight into the dynamic viscoelastic nature of cells can be found. The microfluidic device distinguishes cells viscoelastic properties through the use of angled ridges causing a series of compressions, resulting in differences in trajectories based on cell stiffness. Trajectories of cell passing through the device are collected using image processing methods and data mining techniques are used to relate the trajectories to cell properties obtained from experiments. Furthermore, numerical simulation of the cell and microfluidic device are used to match the experimental results from the trajectory analysis. Combination of the modeling and experimental data help to uncover how changes in cellular structures result in changes in mechanical properties.

  12. High glucose inhibits ClC-2 chloride channels and attenuates cell migration of rat keratinocytes

    Directory of Open Access Journals (Sweden)

    Pan F

    2015-08-01

    Full Text Available Fuqiang Pan, Rui Guo, Wenguang Cheng, Linlin Chai, Wenping Wang, Chuan Cao, Shirong LiDepartment of Plastic and Reconstructive Surgery, Southwestern Hospital, Third Military Medical University, Chongqing, People’s Republic of China Background: Accumulating evidence has demonstrated that migration of keratinocytes is critical to wound epithelialization, and defects of this function result in chronic delayed-healing wounds in diabetes mellitus patients, and the migration has been proved to be associated with volume-activated chloride channels. The aim of the study is to investigate the effects of high glucose (HG, 25 mM on ClC-2 chloride channels and cell migration of keratinocytes.Methods: Newborn Sprague Dawley rats were used to isolate and culture the keratinocyte in this study. Immunofluorescence assay, real-time polymerase chain reaction, and Western blot assay were used to examine the expression of ClC-2 protein or mRNA. Scratch wound assay was used to measure the migratory ability of keratinocytes. Transwell cell migration assay was used to measure the invasion and migration of keratinocytes. Recombinant lentivirus vectors were established and transducted to keratinocytes. Whole-cell patch clamp was used to perform the electrophysiological studies.Results: We found that the expression of ClC-2 was significantly inhibited when keratinocytes were exposed to a HG (25 mM medium, accompanied by the decline of volume-activated Cl- current (ICl,vol, migration potential, and phosphorylated PI3K as compared to control group. When knockdown of ClC-2 by RNAi or pretreatment with wortmannin, similar results were observed, including ICl,vol and migration keratinocytes were inhibited.Conclusion: Our study proved that HG inhibited ClC-2 chloride channels and attenuated cell migration of rat keratinocytes via inhibiting PI3K signaling.Keywords: high glucose, keratinocytes, ClC-2, cell migration, PI3K

  13. Involvement of formyl peptide receptors in receptor for advanced glycation end products (RAGE - and amyloid beta 1-42-induced signal transduction in glial cells

    Directory of Open Access Journals (Sweden)

    Slowik Alexander

    2012-11-01

    Full Text Available Abstract Background Recent studies suggest that the chemotactic G-protein-coupled-receptor (GPCR formyl-peptide-receptor-like-1 (FPRL1 and the receptor-for-advanced-glycation-end-products (RAGE play an important role in the inflammatory response involved in neurodegenerative disorders such as Alzheimer’s disease (AD. Therefore, the expression and co-localisation of mouse formyl peptide receptor (mFPR 1 and 2 as well as RAGE in an APP/PS1 transgenic mouse model using immunofluorescence and real-time RT-PCR were analysed. The involvement of rat or human FPR1/FPRL1 (corresponds to mFPR1/2 and RAGE in amyloid-β 1–42 (Aβ1-42-induced signalling were investigated by extracellular signal regulated kinase 1/2 (ERK1/2 phosphorylation. Furthermore, the cAMP level in primary rat glial cells (microglia and astrocytes and transfected HEK 293 cells was measured. Formyl peptide receptors and RAGE were inhibited by a small synthetic antagonist WRW4 and an inactive receptor variant delta-RAGE, lacking the intracytoplasmatic domains. Results We demonstrated a strong increase of mFPR1/2 and RAGE expression in the cortex and hippocampus of APP/PS1 transgenic mice co-localised to the glial cells. In addition, the Aβ1-42-induced signal transduction is dependant on FPRL1, but also on FPR1. For the first time, we have shown a functional interaction between FPRL1/FPR1 and RAGE in RAGE ligands S100B- or AGE-mediated signalling by ERK1/2 phosphorylation and cAMP level measurement. In addition a possible physical interaction between FPRL1 as well as FPR1 and RAGE was shown with co-immunoprecipitation and fluorescence microscopy. Conclusions The results suggest that both formyl peptide receptors play an essential role in Aβ1-42-induced signal transduction in glial cells. The interaction with RAGE could explain the broad ligand spectrum of formyl peptide receptors and their important role for inflammation and the host defence against infections.

  14. Characterization of Cell Surface and EPS Remodeling of Azospirillum brasilense Chemotaxis-like 1 Signal Transduction Pathway mutants by Atomic Force Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Billings, Amanda N [ORNL; Siuti, Piro [ORNL; Bible, Amber [University of Tennessee, Knoxville (UTK); Alexandre, Gladys [University of Tennessee, Knoxville (UTK); Retterer, Scott T [ORNL; Doktycz, Mitchel John [ORNL; Morrell-Falvey, Jennifer L [ORNL

    2011-01-01

    To compete in complex microbial communities, bacteria must quickly sense environmental changes and adjust cellular functions for optimal growth. Chemotaxis-like signal transduction pathways are implicated in the modulation of multiple cellular responses, including motility, EPS production, and cell-to-cell interactions. Recently, the Che1 chemotaxis-like pathway from Azospirillum brasilense was shown to modulate flocculation. In A. brasilense, cell surface properties, including EPS production, are thought to play a direct role in promoting flocculation. Using atomic force microscopy (AFM), we have detected distinct changes in the surface morphology of flocculating A. brasilense Che1 mutant strains that are absent in the wild type strain. Whereas the wild type strain produces a smooth mucosal extracellular matrix, the flocculating Che1 mutant strains produce distinctive extracellular fibril structures. Further analyses using flocculation inhibition and lectin-binding assays suggest that the composition of EPS components in the extracellular matrix differs between the cheA1 and cheY1 mutants, despite an apparent similarity in the macroscopic floc structures. Collectively, these data indicate that mutations in the Che1 pathway that result in increased flocculation are correlated with distinctive changes in the extracellular matrix structure produced by the mutants, including likely changes in the EPS structure and/or composition.

  15. Growth inhibition and apoptosis in cancer cells induced by polyphenolic compounds of Acacia hydaspica: Involvement of multiple signal transduction pathways

    Science.gov (United States)

    Afsar, Tayyaba; Trembley, Janeen H.; Salomon, Christine E.; Razak, Suhail; Khan, Muhammad Rashid; Ahmed, Khalil

    2016-01-01

    Acacia hydaspica R. Parker is known for its medicinal uses in multiple ailments. In this study, we performed bioassay-guided fractionation of cytotoxic compounds from A. hydaspica and investigated their effects on growth and signaling activity in prostate and breast cancer cell lines. Four active polyphenolic compounds were identified as 7-O-galloyl catechin (GC), catechin (C), methyl gallate (MG), and catechin-3-O-gallate (CG). The four compounds inhibited prostate cancer PC-3 cell growth in a dose-dependent manner, whereas CG and MG inhibited breast cancer MDA-MB-231 cell growth. All tested compounds inhibited cell survival and colony growth in both cell lines, and there was evidence of chromatin condensation, cell shrinkage and apoptotic bodies. Further, acridine orange, ethidium bromide, propidium iodide and DAPI staining demonstrated that cell death occurred partly via apoptosis in both PC-3 and MDA-MB-231 cells. In PC-3 cells treatment repressed the expression of anti-apoptotic molecules Bcl-2, Bcl-xL and survivin, coupled with down-regulation of signaling pathways AKT, NFκB, ERK1/2 and JAK/STAT. In MDA-MB-231 cells, treatment induced reduction of CK2α, Bcl-xL, survivin and xIAP protein expression along with suppression of NFκB, JAK/STAT and PI3K pathways. Our findings suggest that certain polyphenolic compounds derived from A. hydaspica may be promising chemopreventive/therapeutic candidates against cancer. PMID:26975752

  16. Efficient induction of cross-presentating human B cell by transduction with human adenovirus type 7 vector.

    Science.gov (United States)

    Peng, Ying; Lai, Meimei; Lou, Yunyan; Liu, Yanqing; Wang, Huiyan; Zheng, Xiaoqun

    2016-01-01

    Although human autologous B cells represent a promising alternative to dendritic cells (DCs) for easy large-scale preparation, the naive human B cells are always poor at antigen presentation. The safe and effective usage record of human adenovirus type 7 (HAdV7) live vaccines makes it attractive as a promising vaccine vector candidate. To investigate whether HAdV7 vector could be used to induce the human B cells cross-presentation, in the present study, we constructed the E3-defective recombinant HAdV7 vector encoding green fluorescent protein (GFP) and carcinoembryonic antigen (CEA). We demonstrated that naive human B cells can efficiently be transduced, and that the MAPKs/NF-κB pathway can be activated by recombinant HAdV7. We proved that cytokine TNF-α, IL-6 and IL-10, surface molecule MHC class I and the CD86, antigen-processing machinery (APM) compounds ERp57, TAP-1, and TAP-2. were upregulated in HAdV7 transduced human B cells. We also found that CEA-specific IFNγ expression, degranulation, and in vitro and ex vivo cytotoxicities are induced in autologous CD8(+) T cells presensitized by HAd7CEA modified human B cells. Meanwhile, our evidences clearly show that Toll-like receptors 9 (TLR9) antagonist IRS 869 significantly eliminated most of the HAdV7 initiated B cell activation and CD8(+) T cells response, supporting the role and contribution of TLR9 signaling in HAdV7 induced human B cell cross-presentation. Besides a better understanding of the interactions between recombinant HAdV7 and human naive B cells, to our knowledge, the present study provides the first evidence to support the use of HAdV7-modified B cells as a vehicle for vaccines and immunotherapy.

  17. Quantitative analysis of signal transduction in motile and phototactic cells by computerized light stimulation and model based tracking.

    Science.gov (United States)

    Streif, Stefan; Staudinger, Wilfried Franz; Oesterhelt, Dieter; Marwan, Wolfgang

    2009-02-01

    To investigate the responses of Halobacterium salinarum to stimulation with light (phototaxis and photokinesis), we designed an experimental setup consisting of optical devices for automatic video image acquisition and computer-controlled light stimulation, and developed algorithms to analyze physiological responses of the cells. Cells are categorized as motile and nonmotile by a classification scheme based on the square displacement of cell positions. Computerized tracking based on a dynamic model of the stochastic cell movement and a Kalman filter-based algorithm allows smoothed estimates of the cell tracks and the detection of physiological responses to complex stimulus patterns. The setup and algorithms were calibrated which allows quantitative measurements and systematic analysis of cellular sensing and response. Overall, the setup is flexible, extensible, and consists mainly of commercially available products. This facilitates modifications of the setup and algorithms for physiological studies of the motility of cells or microorganisms.

  18. Quantitative analysis of signal transduction in motile and phototactic cells by computerized light stimulation and model based tracking

    Science.gov (United States)

    Streif, Stefan; Staudinger, Wilfried Franz; Oesterhelt, Dieter; Marwan, Wolfgang

    2009-02-01

    To investigate the responses of Halobacterium salinarum to stimulation with light (phototaxis and photokinesis), we designed an experimental setup consisting of optical devices for automatic video image acquisition and computer-controlled light stimulation, and developed algorithms to analyze physiological responses of the cells. Cells are categorized as motile and nonmotile by a classification scheme based on the square displacement of cell positions. Computerized tracking based on a dynamic model of the stochastic cell movement and a Kalman filter-based algorithm allows smoothed estimates of the cell tracks and the detection of physiological responses to complex stimulus patterns. The setup and algorithms were calibrated which allows quantitative measurements and systematic analysis of cellular sensing and response. Overall, the setup is flexible, extensible, and consists mainly of commercially available products. This facilitates modifications of the setup and algorithms for physiological studies of the motility of cells or microorganisms.

  19. Transduction of proteins into leishmania tarentolae by formation of non-covalent complexes with cell-penetrating peptides.

    Science.gov (United States)

    Keller, Andrea-Anneliese; Breitling, Reinhard; Hemmerich, Peter; Kappe, Katarina; Braun, Maria; Wittig, Berith; Schaefer, Buerk; Lorkowski, Stefan; Reissmann, Siegmund

    2014-02-01

    Cell-penetrating peptides (CPPs) are used to transport peptides, proteins, different types of ribonucleic acids (or mimics of these molecules), and DNA into live cells, both plant and mammalian. Leishmania belongs to the class of protozoa having, in comparison to mammalian cells, a different lipid composition of the membrane, proteoglycans on the surface, and signal pathways. We investigated the uptake of two different and easily detectable proteins into the non-pathogenic strain Leishmania tarentolae. From the large number of CPPs available, six and a histone were chosen specifically for their ability to form non-covalent complexes. For Leishmania we used the enzyme β-galactosidase and fluorescent labeled bovine serum albumin as cargoes. The results are compared to similar internalization studies using mammalian cells [Mussbach et al., ]. Leishmania cells can degrade CPPs by a secreted and membrane-bound chymotrypsin-like protease. Both cargo proteins were internalized with sufficient efficiency and achieved intramolecular concentrations similar to mammalian cells. The transport efficiencies of the CPPs differed from each other, and showed a different rank order for both cargoes. The intracellular distribution of fluorescent-labeled bovine serum albumin showed highest concentrations in the nucleus and kinetoplast. Leishmania are susceptible to high concentrations of some CPPs, although comparably dissimilar to mammalian cells. MPG-peptides are more cytotoxic in Leishmania than in mammalian cells, acting as antimicrobial peptides. Our results contribute to a better understanding of molecular interactions in Leishmania cells and possibly to new treatments of leishmaniasis.

  20. Anion-Channel Blockers Inhibit S-Type Anion Channels and Abscisic Acid Responses in Guard Cells.

    Science.gov (United States)

    Schwartz, A.; Ilan, N.; Schwarz, M.; Scheaffer, J.; Assmann, S. M.; Schroeder, J. I.

    1995-10-01

    The effects of anion-channel blockers on light-mediated stomatal opening, on the potassium dependence of stomatal opening, on stomatal responses to abscisic acid (ABA), and on current through slow anion channels in the plasma membrane of guard cells were investigated. The anion-channel blockers anthracene-9-carboxylic acid (9-AC) and niflumic acid blocked current through slow anion channels of Vicia faba L. guard cells. Both 9-AC and niflumic acid reversed ABA inhibition of stomatal opening in V. faba L. and Commelina communis L. The anion-channel blocker probenecid also abolished ABA inhibition of stomatal opening in both species. Additional tests of 9-AC effects on stomatal aperture in Commelina revealed that application of this anion-channel blocker allowed wide stomatal opening under low (1 mM) KCI conditions and increased the rate of stomatal opening under both low and high (100 mM) KCI conditions. These results indicate that anion channels can function as a negative regulator of stomatal opening, presumably by allowing anion efflux and depolarization, which prohibits ion up-take in guard cells. Furthermore, 9-AC prevented ABA induction of stomatal closure. A model in which ABA activation of anion channels contributes a rate-limiting mechanism during ABA-induced stomatal closure and inhibition of stomatal opening is discussed.

  1. Development of a novel adenovirus-alphavirus hybrid vector with RNA replicon features for malignant hematopoietic cell transduction.

    Science.gov (United States)

    Yang, Y; Xiao, F; Lu, Z; Li, Z; Zuo, H; Zhang, Q; Li, Q; Wang, H; Wang, L-S

    2013-08-01

    To improve the expression levels of transgenes in malignant hematopoietic cells, we developed a novel adenoviral-alphavirus hybrid vector Ad5/F11p-SFV-GFP that contains a Semliki Forest Virus (SFV) replicon and chimeric fibers of Ad5 and Ad11p. Ad5/F11p-SFV-GFP infected >95% of K562, U937 or Jurkat cells and 23.65% of HL-60 cells, and led to moderate Enhanced Green Fluorescent Protein (EGFP) transgene expression intensity. The infection efficiency of Ad5/F11p-SFV-GFP in primary human leukemia cells ranged from 9.34-89.63% (median, 28.58%) at a multiplicity of infection (MOI) of 100, compared with only 3.37-44.54% (median, 10.42%) in cells infected by Ad5/F11p-GFP. Importantly, Ad5/F11p-SFV-GFP led to a significantly higher transgene expression level in primary leukemia cells, as indicated by the relative fluorescence intensity, compared to cells infected with Ad5/F11p-GFP. The increased expression of EGFP in Ad5/F11p-SFV-GFP-infected cells was associated with the accumulation of abundant subgenomic mRNA. Additionally, infection of K562, U937 or Jurkat cells by Ad5/F11p-SFV-GFP was significantly inhibited by blocking CD46 receptor; however, other factors may affect the gene-transfer efficiency of Ad5/F11p-SFV-GFP in primary leukemia cells. In conclusion, we successfully developed a novel adenoviral-alphavirus hybrid vector with RNA replicon features, which represents a promising vector for gene modifications during the production of cell-based vaccines for leukemia patients.

  2. Ion channels and transporters [corrected] in cancer. 2. Ion channels and the control of cancer cell migration.

    Science.gov (United States)

    Cuddapah, Vishnu Anand; Sontheimer, Harald

    2011-09-01

    A hallmark of high-grade cancers is the ability of malignant cells to invade unaffected tissue and spread disease. This is particularly apparent in gliomas, the most common and lethal type of primary brain cancer affecting adults. Migrating cells encounter restricted spaces and appear able to adjust their shape to accommodate to narrow extracellular spaces. A growing body of work suggests that cell migration/invasion is facilitated by ion channels and transporters. The emerging concept is that K(+) and Cl(-) function as osmotically active ions, which cross the plasma membrane in concert with obligated water thereby adjusting a cell's shape and volume. In glioma cells Na(+)-K(+)-Cl(-) cotransporters (NKCC1) actively accumulate K(+) and Cl(-), establishing a gradient for KCl efflux. Ca(2+)-activated K(+) channels and voltage-gated Cl(-) channels are largely responsible for effluxing KCl promoting hydrodynamic volume changes. In other cancers, different K(+) or even Na(+) channels may function in concert with a variety of Cl(-) channels to support similar volume changes. Channels involved in migration are frequently regulated by Ca(2+) signaling, most likely coupling extracellular stimuli to cell migration. Importantly, the inhibition of ion channels and transporters appears to be clinically relevant for the treatment of cancer. Recent preclinical data indicates that inhibition of NKCC1 with an FDA-approved drug decreases neoplastic migration. Additionally, ongoing clinical trials demonstrate that an inhibitor of chloride channels may be a therapy for the treatment of gliomas. Data reviewed here strongly indicate that ion channels are a promising target for the development of novel therapeutics to combat cancer.

  3. Sensitive Tumorigenic Potential Evaluation of Adult Human Multipotent Neural Cells Immortalized by hTERT Gene Transduction.

    Directory of Open Access Journals (Sweden)

    Kee Hang Lee

    Full Text Available Stem cells and therapeutic genes are emerging as a new therapeutic approach to treat various neurodegenerative diseases with few effective treatment options. However, potential formation of tumors by stem cells has hampered their clinical application. Moreover, adequate preclinical platforms to precisely test tumorigenic potential of stem cells are controversial. In this study, we compared the sensitivity of various animal models for in vivo stem cell tumorigenicity testing to identify the most sensitive platform. Then, tumorigenic potential of adult human multipotent neural cells (ahMNCs immortalized by the human telomerase reverse transcriptase (hTERT gene was examined as a stem cell model with therapeutic genes. When human glioblastoma (GBM cells were injected into adult (4-6-week-old Balb/c-nu, adult NOD/SCID, adult NOG, or neonate (1-2-week-old NOG mice, the neonate NOG mice showed significantly faster tumorigenesis than that of the other groups regardless of intracranial or subcutaneous injection route. Two kinds of ahMNCs (682TL and 779TL were primary cultured from surgical samples of patients with temporal lobe epilepsy. Although the ahMNCs were immortalized by lentiviral hTERT gene delivery (hTERT-682TL and hTERT-779TL, they did not form any detectable masses, even in the most sensitive neonate NOG mouse platform. Moreover, the hTERT-ahMNCs had no gross chromosomal abnormalities on a karyotype analysis. Taken together, our data suggest that neonate NOG mice could be a sensitive animal platform to test tumorigenic potential of stem cell therapeutics and that ahMNCs could be a genetically stable stem cell source with little tumorigenic activity to develop regenerative treatments for neurodegenerative diseases.

  4. Signal transduction and downregulation of C-MET in HGF stimulated low and highly metastatic human osteosarcoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Husmann, Knut, E-mail: khusmann@research.balgrist.ch [Laboratory for Orthopedic Research, Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich (Switzerland); Ducommun, Pascal [Laboratory for Orthopedic Research, Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich (Switzerland); Division of Plastic Surgery and Hand Surgery, Department of Surgery, University Hospital Zurich, Zurich (Switzerland); Sabile, Adam A.; Pedersen, Else-Marie; Born, Walter; Fuchs, Bruno [Laboratory for Orthopedic Research, Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich (Switzerland)

    2015-09-04

    The poor outcome of osteosarcoma (OS), particularly in patients with metastatic disease and a five-year survival rate of only 20%, asks for more effective therapeutic strategies targeting malignancy-promoting mechanisms. Dysregulation of C-MET, its ligand hepatocyte growth factor (HGF) and the fusion oncogene product TPR-MET, first identified in human MNNG-HOS OS cells, have been described as cancer-causing factors in human cancers. Here, the expression of these molecules at the mRNA and the protein level and of HGF-stimulated signaling and downregulation of C-MET was compared in the parental low metastatic HOS and MG63 cell lines and the respective highly metastatic MNNG-HOS and 143B and the MG63-M6 and MG63-M8 sublines. Interestingly, expression of TPR-MET was only observed in MNNG-HOS cells. HGF stimulated the phosphorylation of Akt and Erk1/2 in all cell lines investigated, but phospho-Stat3 remained at basal levels. Downregulation of HGF-stimulated Akt and Erk1/2 phosphorylation was much faster in the HGF expressing MG63-M8 cells than in HOS cells. Degradation of HGF-activated C-MET occurred predominantly through the proteasomal and to a lesser extent the lysosomal pathway in the cell lines investigated. Thus, HGF-stimulated Akt and Erk1/2 signaling as well as proteasomal degradation of HGF activated C-MET are potential therapeutic targets in OS. - Highlights: • Expression of TPR-MET was only observed in MNNG-HOS cells. • HGF stimulated the phosphorylation of Akt and Erk1/2 but not of Stat3 in osteosarcoma cell lines. • Degradation of HGF-activated C-MET occurred predominantly through the proteasomal pathway.

  5. Model of the initiation of signal transduction by ligands in a cell culture: Simulation of molecules near a plane membrane comprising receptors

    Science.gov (United States)

    Plante, Ianik; Cucinotta, Francis A.

    2011-11-01

    Cell communication is a key mechanism in tissue responses to radiation. Several molecules are implicated in radiation-induced signaling between cells, but their contributions to radiation risk are poorly understood. Meanwhile, Green's functions for diffusion-influenced reactions have appeared in the literature, which are applied to describe the diffusion of molecules near a plane membrane comprising bound receptors with the possibility of reversible binding of a ligand and activation of signal transduction proteins by the ligand-receptor complex. We have developed Brownian dynamics algorithms to simulate particle histories in this system which can accurately reproduce the theoretical distribution of distances of a ligand from the membrane, the number of reversibly bound particles, and the number of receptor complexes activating signaling proteins as a function of time, regardless of the number of time steps used for the simulation. These simulations will be of great importance to model interactions at low doses where stochastic effects induced by a small number of molecules or interactions come into play.

  6. Yeast Ca(2+)-signal transduction inhibitors isolated from Dominican amber prevent the degranulation of RBL-2H3 cells through the inhibition of Ca(2+)-influx.

    Science.gov (United States)

    Abe, Tomomi; Kobayashi, Miki; Okawa, Yusuke; Inui, Tomoki; Yoshida, Jun; Higashio, Hironori; Shinden, Hisao; Uesugi, Shota; Koshino, Hiroyuki; Kimura, Ken-Ichi

    2016-09-01

    A new norlabdane compound, named kujigamberol has previously been isolated from Kuji amber (but not from Baltic amber) by activity guided fractionation. However, there has been no study of biological compounds in Dominican amber. Biological activities were examined using the hypersensitive mutant yeast (zds1Δ erg3Δ pdr1Δ pdr3Δ) with respect to Ca(2+)-signal transduction, enzymes and rat basophilic leukemia (RBL)-2H3 cells. The structures were elucidated on the basis of spectral analysis including high resolution (HR)-EI-MS, 1D NMR and 2D NMR. Three diterpenoid compounds, 5(10)-halimen-15-oic acid (1), 3-cleroden-15-oic acid (2) and 8-labden-15-oic acid (3), which are different from the bioactive compounds in Kuji and Baltic ambers, were isolated from Dominican amber. They inhibited both calcineurin (CN) (IC50=40.0, 21.2 and 34.2μM) and glycogen synthase kinase-3β (GSK-3β) (IC50=48.9, 43.8 and 41.1μM) which are involved in the growth restored activity against the mutant yeast. The most abundant compound 2 showed inhibitory activity against both degranulation and Ca(2+)-influx in RBL-2H3 cells. The compounds having the growth restoring activity against the mutant yeast have potential as anti-allergic compounds.

  7. Importin β1 mediates nuclear factor-κB signal transduction into the nuclei of myeloma cells and affects their proliferation and apoptosis.

    Science.gov (United States)

    Yan, Wenqing; Li, Rong; He, Jie; Du, Juan; Hou, Jian

    2015-04-01

    Multiple myeloma (MM) is a plasma cell neoplasm that is currently incurable. The activation of nuclear factor-κB (NF-κB) signalling plays a crucial role in the immortalisation of MM cells. As the most important transcription factor of the canonical NF-κB pathway, the p50/p65 heterodimer requires transportation into the nucleus for its successful signal transduction. Importin β1 is the key transport receptor that mediates p50/p65 nuclear import. Currently, it remains unclear whether the regulation of importin β1 function affects the biological behaviour of MM cells. In the present study, we investigated the changes in p65 translocation and the proliferation and apoptosis of MM cells after treatment with small interfering RNA (siRNA) or an importin β1 inhibitor. The underlying mechanisms were also investigated. We found importin β1 over-expression and the excessive nuclear transport of p65 in myeloma cells. Confocal laser scanning microscopy and Western blot analysis results indicated that p65 nuclear transport was blocked after inhibiting importin β1 expression with siRNA and the importin β1-specific inhibitor importazole (IPZ). Importantly, electronic mobility shift assay results also verified that p65 nuclear transport was dramatically reduced. Moreover, the expression of the NF-κB signalling target genes involved in MM cell apoptosis, such as BCL-2, c-IAP1 and XIAP, were markedly reduced, as demonstrated by the RT-PCR results. Furthermore, the proliferation of MM cells was inhibited, as demonstrated by MTT assay results, and the MM cell apoptosis rate was higher, as demonstrated by the annexin V/propidium iodide (PI) double-staining assay results. Additionally, the percentage of S phase cells in the myeloma cell lines treated with IPZ was dramatically reduced. In conclusion, our results clearly show that importin β1 mediates the translocation of NF-κB into the nuclei of myeloma cells, thereby regulating proliferation and blocking apoptosis, which

  8. Modeling magnetosensitive ion channels in viscoelastic environment of living cells

    CERN Document Server

    Goychuk, Igor

    2015-01-01

    We propose and study a model of hypothetical magnetosensitive ionic channels which are long thought to be a possible candidate to explain the influence of weak magnetic fields on living organisms ranging from magnetotactic bacteria to fishes, birds, rats, bats and other mammals including humans. The core of the model is provided by a short chain of magnetosomes serving as a sensor which is coupled by elastic linkers to the gating elements of ion channels forming a small cluster in the cell membrane. The magnetic sensor is fixed by one end on cytoskeleton elements attached to the membrane and is exposed to viscoelastic cytosol. Its free end can reorient stochastically and subdiffusively in viscoelastic cytosol responding to external magnetic field changes and open the gates of coupled ion channels. The sensor dynamics is generally bistable due to bistability of the gates which can be in two states with probabilities which depend on the sensor orientation. For realistic parameters, it is shown that this model c...

  9. The Effects of the PEM Fuel Cell Performance with the Waved Flow Channels

    OpenAIRE

    Yue-Tzu Yang; Kuo-Teng Tsai; Cha’o-Kuang Chen

    2013-01-01

    The objective of this study is to use a new style of waved flow channel instead of the plane surface channel in the proton exchange membrane fuel cell (PEMFC). The velocity, concentration, and electrical performance with the waved flow channel in PEMFC are investigated by numerical simulations. The results show that the waved channel arises when the transport benefits through the porous layer and improves the performance of the PEMFC. This is because the waved flow channel enhances the forced...

  10. Tamarind Seed Xyloglucans Promote Proliferation and Migration of Human Skin Cells through Internalization via Stimulation of Proproliferative Signal Transduction Pathways.

    Science.gov (United States)

    Nie, W; Deters, A M

    2013-01-01

    Xyloglucans (XGs) of Tamarindus indica L. Fabaceae are used as drug vehicles or as ingredients of cosmetics. Two xyloglucans were extracted from T. indica seed with cold water (TSw) and copper complex precipitation (TSc). Both were analyzed in regard to composition and influence on cell viability, proliferation, cell cycle progression, migration, MAPK phosphorylation, and gene expression of human skin keratinocytes (NHEK and HaCaT) and fibroblasts (NHDF) in vitro. TSw and TSc differed in molecular weight, rhamnose content, and ratios of xylose, arabinose, galactose, and glucose. Both XGs improved keratinocytes and fibroblast proliferation, promoted the cell cycle, and stimulated migration and intracellular enzyme activity of NHDF after endosomal uptake. Only TSw significantly enhanced HaCaT migration and extracellular enzyme activity of NHDF and HaCaT. TSw and TSc predominantly enhanced the phosphorylation of molecules that referred to Erk signaling in NHEK. In NHDF parts of the integrin signaling and SAPK/JNK pathway were affected. Independent of cell type TSw marginally regulated the expression of genes, which referred to membrane proteins, cytoskeleton, cytokine signaling, and ECM as well as to processes of metabolism and transcription. Results show that T. indica xyloglucans promote skin regeneration by a direct influence on cell proliferation and migration.

  11. Tamarind Seed Xyloglucans Promote Proliferation and Migration of Human Skin Cells through Internalization via Stimulation of Proproliferative Signal Transduction Pathways

    Directory of Open Access Journals (Sweden)

    W. Nie

    2013-01-01

    Full Text Available Xyloglucans (XGs of Tamarindus indica L. Fabaceae are used as drug vehicles or as ingredients of cosmetics. Two xyloglucans were extracted from T. indica seed with cold water (TSw and copper complex precipitation (TSc. Both were analyzed in regard to composition and influence on cell viability, proliferation, cell cycle progression, migration, MAPK phosphorylation, and gene expression of human skin keratinocytes (NHEK and HaCaT and fibroblasts (NHDF in vitro. TSw and TSc differed in molecular weight, rhamnose content, and ratios of xylose, arabinose, galactose, and glucose. Both XGs improved keratinocytes and fibroblast proliferation, promoted the cell cycle, and stimulated migration and intracellular enzyme activity of NHDF after endosomal uptake. Only TSw significantly enhanced HaCaT migration and extracellular enzyme activity of NHDF and HaCaT. TSw and TSc predominantly enhanced the phosphorylation of molecules that referred to Erk signaling in NHEK. In NHDF parts of the integrin signaling and SAPK/JNK pathway were affected. Independent of cell type TSw marginally regulated the expression of genes, which referred to membrane proteins, cytoskeleton, cytokine signaling, and ECM as well as to processes of metabolism and transcription. Results show that T. indica xyloglucans promote skin regeneration by a direct influence on cell proliferation and migration.

  12. Molecular basis of potassium channels in pancreatic duct epithelial cells

    DEFF Research Database (Denmark)

    Hayashi, M.; Novak, Ivana

    2013-01-01

    Potassium channels regulate excitability, epithelial ion transport, proliferation, and apoptosis. In pancreatic ducts, K channels hyperpolarize the membrane potential and provide the driving force for anion secretion. This review focuses on the molecular candidates of functional K channels...

  13. Effects of toluene exposure on signal transduction: toluene reduced the signaling via stimulation of human muscarinic acetylcholine receptor m2 subtypes in CHO cells.

    Science.gov (United States)

    Tsuga, Hirofumi; Haga, Tatsuya; Honma, Takeshi

    2002-07-01

    The organic solvent toluene is used widely in industry and is toxic to the central nervous system (CNS). To clarify the mechanisms of CNS toxicity following toluene exposure, especially with respect to the G protein-coupling of receptors, we determined the effects of toluene on the activation of Gi by stimulating human muscarinic acetylcholine receptor m2 subtypes (hm2 receptors) expressed in Chinese hamster ovary (CHO) cells. We first examined whether toluene affects the inhibition of adenylyl cyclase by Gi. The attenuation of forskolin-stimulated cAMP formation by the stimulation of hm2 receptors was reduced in a medium containing toluene. Next, we determined the effects of toluene on carbamylcholine-stimulated [35S]GTPgammaS binding using membrane fractions of CHO cell expressing hm2 receptors. Carbamylcholine-stimulated [35S]GTPgammaS binding activity was markedly reduced when assayed using reaction buffers containing toluene. However, carbamylcholine-stimulated [35S]GTPgammaS binding activity was essentially unchanged following pretreatment of the cells with a toluene-saturated medium prior to membrane isolation. Toluene pretreatment and the toluene itself did not alter the characteristics of the binding of carbamylcholine and [3H]N-methylscopolamine to hm2 receptors. On the contrary of the effect of toluene for [35S]GTPgammaS binding, the effect of toluene for attenuation of forskolin-stimulated cAMP formation by the stimulation of hm2 receptors was irreversible. These observations indicate that toluene acts as an inhibitor of the signal transduction via hm2 receptor stimulation in CHO cells, and at least two mechanisms exist in the inhibition mechanisms by toluene.

  14. Development and validation of a high-throughput cell-based screen to identify activators of a bacterial two-component signal transduction system.

    Science.gov (United States)

    van Rensburg, Julia J; Fortney, Kate R; Chen, Lan; Krieger, Andrew J; Lima, Bruno P; Wolfe, Alan J; Katz, Barry P; Zhang, Zhong-Yin; Spinola, Stanley M

    2015-07-01

    CpxRA is a two-component signal transduction system (2CSTS) found in many drug-resistant Gram-negative bacteria. In response to periplasmic stress, CpxA autophosphorylates and donates a phosphoryl group to its cognate response regulator, CpxR. Phosphorylated CpxR (CpxR-P) upregulates genes involved in membrane repair and downregulates multiple genes that encode virulence factors, which are trafficked across the cell membrane. Mutants that constitutively activate CpxRA in Salmonella enterica serovar Typhimurium and Haemophilus ducreyi are avirulent in mice and humans, respectively. Thus, the activation of CpxRA has high potential as a novel antimicrobial/antivirulence strategy. Using a series of Escherichia coli strains containing a CpxR-P-responsive lacZ reporter and deletions in genes encoding CpxRA system components, we developed and validated a novel cell-based high-throughput screen (HTS) for CpxRA activators. A screen of 36,000 compounds yielded one hit compound that increased reporter activity in wild-type cells. This is the first report of a compound that activates, rather than inhibits, a 2CSTS. The activity profile of the compound against CpxRA pathway mutants in the presence of glucose suggested that the compound inhibits CpxA phosphatase activity. We confirmed that the compound induced the accumulation of CpxR-P in treated cells. Although the hit compound contained a nitro group, a derivative lacking this group retained activity in serum and had lower cytotoxicity than that of the initial hit. This HTS is amenable for the screening of larger libraries to find compounds that activate CpxRA by other mechanisms, and it could be adapted to find activators of other two-component systems.

  15. Resistance of SKW6 cell to apoptosis induction with anti-Fas antibody upon transduction of a reverse fragment to a cDNA encoding human 6A8 α-mannosidase

    Institute of Scientific and Technical Information of China (English)

    史耕先; 靳玉兰; 王壮志; 崔巍; 刘音; 王讯; 朱立平

    2001-01-01

    The effect of transduction with a reverse fragment to a cDNA encoding human 6A8 a-mannosidase on apoptosis induction of human B cell line SKW6 by anti-Fas antibody was tested. Apoptosis-inducer of anti-Fas monoclonal antibody was used to induce apoptosis in SKW6 cells. Giemsa's staining, Annexin-V-FLUOS staining and DNA ladder test were used to determine the events of apoptosis. Indirect immunofluorescent staining with anti-Fas antibody was performed to detect the surface Fas expression. In a time-course test of 12, 24 and 36 h for apoptosis induction by anti-Fas antibody, DNA ladder was observed in the wild-type SKW6 cells in a time-dependent fashion. Mock transduction had no effect on DNA ladder production. However, no DNA ladder was detected in the rAAV-antisense 6A8 cDNA-transduced SKW6. Results from Annexin-V-FLUOS staining on anti-Fas antibody-treated cells revealed that the staining-positive rate in the rAAV-antisense 6A8 cDNA-transduced SKW6 cells was decreased in comparison to that in the wild-type and the mock-transduced cells. Giemsa's staining observation showed that the number of dying (with apoptotic bodies) and dead cells was reduced in the rAAV-antisense 6A8 cDNA-transduced SKW6 cells in comparison with that in the wild-type and the mock-transduced cells upon anti-Fas antibody induction. The transduction did not affect the expression of Fas molecular on cell surface. 100% cells in all the groups showed Fas expression. The SKW6 cells became resistant to apoptosis induction by anti-Fas antibody upon transduction with a reverse fragment to a cDNA encoding human 6A8 a-mannosidase. The transduction did not affect the expression of Fas molecule on cells.

  16. Epidermal growth factor and ras regulate gene expression in GH4 pituitary cells by separate, antagonistic signal transduction pathways

    Energy Technology Data Exchange (ETDEWEB)

    Pickett, C.A.; Gutierrez-Hartmann, A. [Univ. of Colorado Health Sciences Center, Denver, CO (United States)

    1995-12-01

    This report discusses the role of the epidermal growth factor (EGF) in promoting activation of the rat prolactin promoter in neuroendocrine cells via a Ras-independent mechanism. It also discusses the role of phosphotransferases in mediating EGF response. 32 refs., 8 figs., 1 tab.

  17. FLT3 ligand preserves the uncommitted CD34+CD38- progenitor cells during cytokine prestimulation for retroviral transduction

    DEFF Research Database (Denmark)

    Nielsen, S D; Husemoen, L L; Sørensen, T U;

    2000-01-01

    Before stem cell gene therapy can be considered for clinical applications, problems regarding cytokine prestimulation remain to be solved. In this study, a retroviral vector carrying the genes for the enhanced version of green fluorescent protein (EGFP) and neomycin resistance (neo(r)) was used...

  18. Staphylococcal enterotoxin-A directly stimulates signal transduction and interferon-gamma production in psoriatic T-cell lines

    DEFF Research Database (Denmark)

    Nielsen, M B; Odum, N; Gerwien, J;

    1998-01-01

    Bacterial superantigens such as staphylococcal enterotoxin-A (SEA) have been implicated in the pathogenesis of psoriasis vulgaris. Major histocompatibility complex (MHC) class II molecules are high affinity receptors for SEA, and T cells found in psoriatic skin lesions express high levels of MHC...

  19. The cornucopia of intestinal chemosensory transduction

    Directory of Open Access Journals (Sweden)

    Paul P Bertrand

    2009-12-01

    Full Text Available The chemosensory transduction mechanisms that the gastrointestinal (GI tract uses to detect chemical and nutrient stimuli are poorly understood. The GI tract is presented with a wide variety of stimuli including potentially harmful chemicals or toxins as well as 'normal' stimuli including nutrients, bacteria and mechanical forces. Sensory transduction is at its simplest the conversion of these stimuli into a neural code in afferent nerves. Much of the information encoded is used by the enteric nervous system (ENS to generate local reflexes while complementary information is sent to the central nervous system (CNS via afferents or by release of hormones to affect behaviour. This review focuses on the chemosensory transduction mechanisms present in the GI tract. It examines the expression and localisation of the machinery for chemosensory transduction. It summarises the types of cells which might be involved in detecting stimuli and releasing neuroactive transmitters. Finally, it highlights the idea that chemosensory transduction mechanisms in the GI tract utilise many overlapping and complementary mechanisms for detecting and transducing stimuli into reflex action.

  20. Piperine blocks interleukin-2-driven cell cycle progression in CTLL-2 T lymphocytes by inhibiting multiple signal transduction pathways.

    Science.gov (United States)

    Doucette, Carolyn D; Greenshields, Anna L; Liwski, Robert S; Hoskin, David W

    2015-04-02

    Piperine, a pungent alkaloid found in the fruits of black pepper plants, has diverse physiological effects, including the ability to inhibit immune cell-mediated inflammation. Since the cytokine interleukin-2 (IL-2) is essential for the clonal expansion and differentiation of T lymphocytes, we investigated the effect of piperine on IL-2 signaling in IL-2-dependent mouse CTLL-2 T lymphocytes. Tritiated-thymidine incorporation assays and flow cytometric analysis of Oregon Green 488-stained cells showed that piperine inhibited IL-2-driven T lymphocyte proliferation; however, piperine did not cause T lymphocytes to die or decrease their expression of the high affinity IL-2 receptor, as determined by flow cytometry. Western blot analysis showed that piperine blocked the IL-2-induced phosphorylation of signal transducer and activator of transcription (STAT) 3 and STAT5 without affecting the upstream phosphorylation of Janus kinase (JAK) 1 and JAK3. In addition, piperine inhibited the IL-2-induced phosphorylation of extracellular signal-regulated kinase 1/2 and Akt, which are signaling molecules that regulate cell cycle progression. Piperine also suppressed the expression of cyclin-dependent kinase (Cdk) 1, Cdk4, Cdk6, cyclin B, cyclin D2, and Cdc25c protein phosphatase by IL-2-stimulated T lymphocytes, indicating G0/G1 and G2/M cell cycle arrest. Piperine-mediated inhibition of IL-2 signaling and cell cycle progression in CTLL-2 T lymphocytes suggests that piperine should be further investigated in animal models as a possible natural source treatment for T lymphocyte-mediated transplant rejection and autoimmune disease.

  1. Arginine, leucine, and glutamine stimulate proliferation of porcine trophectoderm cells through the MTOR-RPS6K-RPS6-EIF4EBP1 signal transduction pathway.

    Science.gov (United States)

    Kim, Jinyoung; Song, Gwonhwa; Wu, Guoyao; Gao, Haijun; Johnson, Gregory A; Bazer, Fuller W

    2013-05-01

    During the peri-implantation and early placentation periods in pigs, conceptuses (embryo and its extra-embryonic membranes) undergo dramatic morphological changes and differentiation that require the exchange of nutrients (histotroph) and gasses across the trophectoderm and a true epitheliochorial placenta. Of these nutrients, arginine (Arg), leucine (Leu), and glutamine (Gln) are essential components of histotroph; however, little is known about changes in their total amounts in the uterine lumen of cyclic and pregnant gilts and their effects on cell signaling cascades. Therefore, we determined quantities of Arg, Leu, and Gln in uterine luminal fluids and found that total recoverable amounts of these amino acids increased in pregnant but not cyclic gilts between Days 12 and 15 after onset of estrus. We hypothesized that Arg, Leu, and Gln have differential effects on hypertrophy, hyperplasia, and differentiated functions of trophectoderm cells that are critical to conceptus development. Primary porcine trophectoderm (pTr) cells treated with either Arg, Leu, or Gln had increased abundance of phosphorylated RPS6K, RPS6, and EIF4EBP1 compared to basal levels, and this effect was maintained for up to 120 min. When pTr cells were treated with Arg, Leu, and Gln, low levels of pRPS6K and pEIF4EBP1 were detected in the cytosol, but the abundance of nuclear pRPS6K increased. Immunofluorescence analyses revealed abundant amounts of pRPS6 protein in the cytoplasm of pTr cells treated with Arg, Leu, and Gln. These amino acids also increased proliferation of pTr cells. Furthermore, when Arg, Leu, and Gln were combined with siRNAs for either MTOR, RPTOR, or RICTOR, effects of those amino acids on proliferation of pTr cells were significantly inhibited. Collectively, these results indicate that Arg, Leu, and Gln act coordinately to stimulate proliferation of pTr cells through activation of the MTOR-RPS6K-RPS6-EIF4EBP1 signal transduction pathway.

  2. Hair cell BK channels interact with RACK1, and PKC increases its expression on the cell surface by indirect phosphorylation

    OpenAIRE

    Surguchev, Alexei; Bai, Jun-Ping; Joshi, Powrnima; Navaratnam, Dhasakumar

    2012-01-01

    Large conductance (BK) calcium activated potassium channels (Slo) are ubiquitous and implicated in a number of human diseases including hypertension and epilepsy. BK channels consist of a pore forming α-subunit (Slo) and a number of accessory subunits. In hair cells of nonmammalian vertebrates these channels play a critical role in electrical resonance, a mechanism of frequency selectivity. Hair cell BK channel clusters on the surface and currents increase along the tonotopic axis and contrib...

  3. Archaeal signal transduction: impact of protein phosphatase deletions on cell size, motility, and energy metabolism in Sulfolobus acidocaldarius.

    Science.gov (United States)

    Reimann, Julia; Esser, Dominik; Orell, Alvaro; Amman, Fabian; Pham, Trong Khoa; Noirel, Josselin; Lindås, Ann-Christin; Bernander, Rolf; Wright, Phillip C; Siebers, Bettina; Albers, Sonja-Verena

    2013-12-01

    In this study, the in vitro and in vivo functions of the only two identified protein phosphatases, Saci-PTP and Saci-PP2A, in the crenarchaeal model organism Sulfolobus acidocaldarius were investigated. Biochemical characterization revealed that Saci-PTP is a dual-specific phosphatase (against pSer/pThr and pTyr), whereas Saci-PP2A exhibited specific pSer/pThr activity and inhibition by okadaic acid. Deletion of saci_pp2a resulted in pronounced alterations in growth, cell shape and cell size, which could be partially complemented. Transcriptome analysis of the three strains (Δsaci_ptp, Δsaci_pp2a and the MW001 parental strain) revealed 155 genes that were differentially expressed in the deletion mutants, and showed significant changes in expression of genes encoding the archaella (archaeal motility structure), components of the respiratory chain and transcriptional regulators. Phosphoproteome studies revealed 801 unique phosphoproteins in total, with an increase in identified phosphopeptides in the deletion mutants. Proteins from most functional categories were affected by phosphorylation, including components of the motility system, the respiratory chain, and regulatory proteins. In the saci_pp2a deletion mutant the up-regulation at the transcript level, as well as the observed phosphorylation pattern, resembled starvation stress responses. Hypermotility was also observed in the saci_pp2a deletion mutant. The results highlight the importance of protein phosphorylation in regulating essential cellular processes in the crenarchaeon S. acidocaldarius.

  4. Effective suppression of Dengue fever virus in mosquito cell cultures using retroviral transduction of hammerhead ribozymes targeting the viral genome.

    Science.gov (United States)

    Nawtaisong, Pruksa; Keith, James; Fraser, Tresa; Balaraman, Velmurugan; Kolokoltsov, Andrey; Davey, Robert A; Higgs, Stephen; Mohammed, Ahmed; Rongsriyam, Yupha; Komalamisra, Narumon; Fraser, Malcolm J

    2009-06-04

    Outbreaks of Dengue impose a heavy economic burden on developing countries in terms of vector control and human morbidity. Effective vaccines against all four serotypes of Dengue are in development, but population replacement with transgenic vectors unable to transmit the virus might ultimately prove to be an effective approach to disease suppression, or even eradication. A key element of the refractory transgenic vector approach is the development of transgenes that effectively prohibit viral transmission. In this report we test the effectiveness of several hammerhead ribozymes for suppressing DENV in lentivirus-transduced mosquito cells in an attempt to mimic the transgenic use of these effector molecules in mosquitoes. A lentivirus vector that expresses these ribozymes as a fusion RNA molecule using an Ae. aegypti tRNA(val) promoter and terminating with a 60A tail insures optimal expression, localization, and activity of the hammerhead ribozyme against the DENV genome. Among the 14 hammerhead ribozymes we designed to attack the DENV-2 NGC genome, several appear to be relatively effective in reducing virus production from transduced cells by as much as 2 logs. Among the sequences targeted are 10 that are conserved among all DENV serotype 2 strains. Our results confirm that hammerhead ribozymes can be effective in suppressing DENV in a transgenic approach, and provide an alternative or supplementary approach to proposed siRNA strategies for DENV suppression in transgenic mosquitoes.

  5. Effective suppression of Dengue fever virus in mosquito cell cultures using retroviral transduction of hammerhead ribozymes targeting the viral genome

    Directory of Open Access Journals (Sweden)

    Mohammed Ahmed

    2009-06-01

    Full Text Available Abstract Outbreaks of Dengue impose a heavy economic burden on developing countries in terms of vector control and human morbidity. Effective vaccines against all four serotypes of Dengue are in development, but population replacement with transgenic vectors unable to transmit the virus might ultimately prove to be an effective approach to disease suppression, or even eradication. A key element of the refractory transgenic vector approach is the development of transgenes that effectively prohibit viral transmission. In this report we test the effectiveness of several hammerhead ribozymes for suppressing DENV in lentivirus-transduced mosquito cells in an attempt to mimic the transgenic use of these effector molecules in mosquitoes. A lentivirus vector that expresses these ribozymes as a fusion RNA molecule using an Ae. aegypti tRNAval promoter and terminating with a 60A tail insures optimal expression, localization, and activity of the hammerhead ribozyme against the DENV genome. Among the 14 hammerhead ribozymes we designed to attack the DENV-2 NGC genome, several appear to be relatively effective in reducing virus production from transduced cells by as much as 2 logs. Among the sequences targeted are 10 that are conserved among all DENV serotype 2 strains. Our results confirm that hammerhead ribozymes can be effective in suppressing DENV in a transgenic approach, and provide an alternative or supplementary approach to proposed siRNA strategies for DENV suppression in transgenic mosquitoes.

  6. Function of chloride intracellular channel 1 in gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    Peng-Fei Ma; Jun-Qiang Chen; Zhen Wang; Jin-Lu Liu; Bo-Pei Li

    2012-01-01

    AIM:To investigate the effect of chloride intracellular channel 1 (CLIC1) on the cell proliferation,apoptosis,migration and invasion of gastric cancer cells.METHODS:CLIC1 expression was evaluated in human gastric cancer cell lines SGC-7901 and MGC-803 by real time polymerase chain reaction (RT-PCR).Four segments of small interference RNA (siRNA) targeting CLIC1 mRNA and a no-sense control segment were designed by bioinformatics technology.CLIC1 siRNA was selected using Lipofectamine 2000 and transfected transiently into human gastric cancer SGC-7901 and MGC-803 cells.The transfected efficiency was observed under fluorescence microscope.After transfection,mRNA expression of CLIC1 was detected with RT-PCR and Western blotting was used to detect the protein expression.Proliferation was examined by methyl thiazolyl tetrazolium and apoptosis was detected with flow cytometry.Polycarbonate membrane transwell chamber and Matrigel were used for the detection of the changes of invasion and migration of the two cell lines.RESULTS:In gastric cancer cell lines SGC-7901 and MGC-803,CLIC1 was obviously expressed and CLIC1 siRNA could effectively suppress the expression of CLIC1 protein and mRNA.Proliferation of cells transfected with CLIC1 siRNA3 was enhanced notably,and the highest proliferation rate was 23.3% (P =0.002) in SGC-7901 and 35.55% (P =0.001) in MGC-803 cells at 48 h.The G2/M phase proportion increased,while G0/G1 and S phase proportions decreased.The apoptotic rate of the CLIC1 siRNA3 group obviously decreased in both SGC-7901 cells (62.24%,P =0.000) and MGC-803 cells (52.67%,P =0.004).Down-regulation of CLIC1 led to the inhibition of invasion and migration by 54.31% (P =0.000) and 33.62% (P =0.001) in SGC-7901 and 40.74% (P =0.000) and 29.26% (P =0.002) in MGC-803.However,there was no significant difference between the mock group cells and the negative control group cells.CONCLUSION:High CLIC1 expression can efficiently inhibit proliferation and

  7. HRas signal transduction promotes hepatitis C virus cell entry by triggering assembly of the host tetraspanin receptor complex.

    Science.gov (United States)

    Zona, Laetitia; Lupberger, Joachim; Sidahmed-Adrar, Nazha; Thumann, Christine; Harris, Helen J; Barnes, Amy; Florentin, Jonathan; Tawar, Rajiv G; Xiao, Fei; Turek, Marine; Durand, Sarah C; Duong, François H T; Heim, Markus H; Cosset, François-Loïc; Hirsch, Ivan; Samuel, Didier; Brino, Laurent; Zeisel, Mirjam B; Le Naour, François; McKeating, Jane A; Baumert, Thomas F

    2013-03-13

    Hepatitis C virus (HCV) entry is dependent on coreceptor complex formation between the tetraspanin superfamily member CD81 and the tight junction protein claudin-1 (CLDN1) on the host cell membrane. The receptor tyrosine kinase EGFR acts as a cofactor for HCV entry by promoting CD81-CLDN1 complex formation via unknown mechanisms. We identify the GTPase HRas, activated downstream of EGFR signaling, as a key host signal transducer for EGFR-mediated HCV entry. Proteomic analysis revealed that HRas associates with tetraspanin CD81, CLDN1, and the previously unrecognized HCV entry cofactors integrin β1 and Ras-related protein Rap2B in hepatocyte membranes. HRas signaling is required for lateral membrane diffusion of CD81, which enables tetraspanin receptor complex assembly. HRas was also found to be relevant for entry of other viruses, including influenza. Our data demonstrate that viruses exploit HRas signaling for cellular entry by compartmentalization of entry factors and receptor trafficking.

  8. Involvement of Ca2+/CaM in the signal transduction of acetylcholine regulating stomatal movement

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    It has been known that the neurotransmitter acetylcholine (ACh) also exists in plants and is able to regulate the movement of stomata. In another aspect, Ca2+/CaM as the second messengers have a critical role of signal transduction in stomatal guard-cell. Here we showed that Ca2+/CaM were also involved in theACh regulated stomatal movement. In the medium containing Ca2+, the Ca2+ channel blockers (NIF and Ver) and CaM inhibitors (TFP and W7) could neutralize the ACh induced stomatal opening, however, they are ineffective in the medium containing K+. Those results indicated that Ca2+/CaM were involved in the signal transduction pathway of ACh regulating stomatal movement.

  9. Signal transduction in Dictyostelium fgd A mutants with a defective interaction between surface cAMP receptors and a GTP-binding regulatory protein [published erratum appears in J Cell Biol 1988 Dec;107(6 Pt 1):following 2463

    OpenAIRE

    1988-01-01

    Transmembrane signal transduction was investigated in four Dictyostelium discoideum mutants that belong to the fgd A complementation group. The results show the following. (a) Cell surface cAMP receptors are present in fgd A mutants, but cAMP does not induce any of the intracellular responses, including the activation of adenylate or guanylate cyclase and chemotaxis. (b) cAMP induces down- regulation and the covalent modification (presumably phosphorylation) of the cAMP receptor. (c) The inhi...

  10. Ion channels generating complex spikes in cartwheel cells of the dorsal cochlear nucleus.

    Science.gov (United States)

    Kim, Yuil; Trussell, Laurence O

    2007-02-01

    Cartwheel cells are glycinergic interneurons that modify somatosensory input to the dorsal cochlear nucleus. They are characterized by firing of mixtures of both simple and complex action potentials. To understand what ion channels determine the generation of these two types of spike waveforms, we recorded from cartwheel cells using the gramicidin perforated-patch technique in brain slices of mouse dorsal cochlear nucleus and applied channel-selective blockers. Complex spikes were distinguished by whether they arose directly from a negative membrane potential or later during a long depolarization. Ca(2+) channels and Ca(2+)-dependent K(+) channels were major determinants of complex spikes. Onset complex spikes required T-type and possibly R-type Ca(2+) channels and were shaped by BK and SK K(+) channels. Complex spikes arising later in a depolarization were dependent on P/Q- and L-type Ca(2+) channels as well as BK and SK channels. BK channels also contributed to fast repolarization of simple spikes. Simple spikes featured an afterdepolarization that is probably the trigger for complex spiking and is shaped by T/R-type Ca(2+) and SK channels. Fast spikes were dependent on Na(+) channels; a large persistent Na(+) current may provide a depolarizing drive for spontaneous activity in cartwheel cells. Thus the diverse electrical behavior of cartwheel cells is determined by the interaction of a wide variety of ion channels with a prominent role played by Ca(2+).

  11. Regulation of Kv2.1 K+ conductance by cell surface channel density

    OpenAIRE

    Fox, Philip D.; Loftus, Rob J.; Tamkun, Michael M.

    2013-01-01

    The Kv2.1 voltage-gated K+ channel is found both freely diffusing over the plasma membrane and concentrated in micron-sized clusters localized to the soma, proximal dendrites and axon initial segment of hippocampal neurons. In transfected HEK cells, Kv2.1 channels within cluster microdomains are non-conducting. Using TIRF microscopy the number of GFP-tagged Kv2.1 channels on the HEK cell surface was compared to K+ channel conductance measured by whole-cell voltage-clamp of the same cell. This...

  12. Activation of stretch-activated channels and maxi-K+ channels by membrane stress of human lamina cribrosa cells.

    LENUS (Irish Health Repository)

    Irnaten, Mustapha

    2009-01-01

    The lamina cribrosa (LC) region of the optic nerve head is considered the primary site of damage in glaucomatous optic neuropathy. Resident LC cells have a profibrotic potential when exposed to cyclical stretch. However, the mechanosensitive mechanisms of these cells remain unknown. Here the authors investigated the effects of membrane stretch on cell volume change and ion channel activity and examined the associated changes in intracellular calcium ([Ca(2+)](i)).

  13. Analysis of the gravitaxis signal transduction chain in Euglena gracilis

    Science.gov (United States)

    Nasir, Adeel

    Abstract Euglena gracilis is a photosynthetic, eukaryotic flagellate. It can adapt autotrophic and heterotrophic mode of growth and respond to different stimuli, this makes it an organism of choice for different research disciplines. It swims to reach a suitable niche by employing different stimuli such as oxygen, light, gravity and different chemicals. Among these stimuli light and gravity are the most important. Phototaxis (locomotion under light stimulus) and gravitaxis (locomotion under gravity stimulus) synergistically help cells to attain an optimal niche in the environment. However, in the complete absence of light or under scarcity of detectable light, cells can totally depend on gravity to find its swimming path. Therefore gravity has certain advantages over other stimuli.Unlike phototatic signal transduction chain of Euglena gracilis no clear primary gravity receptor has been identified in Euglena cells so far. However, there are some convincing evidence that TRP like channels act as a primary gravity receptor in Euglena gracilis.Use of different inhibitors gave rise to the involvement of protein kinase and calmodulin proteins in signal transduction chain of Euglena gracilis. Recently, specific calmodulin (Calmodulin 2) and protein kinase (PKA) have been identified as potential candidates of gravitactic signal transduction chain. Further characterization and investigation of these candidates was required. Therefore a combination of biochemical and genetic techniques was employed to localize proteins in cells and also to find interacting partners. For localization studies, specific antibodies were raised and characterized. Specificity of antibodies was validated by knockdown mutants, Invitro-translated proteins and heterologously expressed proteins. Cell fractionation studies, involving separation of the cell body and flagella for western blot analysis and confocal immunofluorescence studies were performed for subcellular localization. In order to find

  14. Calcium signaling and T-type calcium channels in cancer cell cycling

    Institute of Scientific and Technical Information of China (English)

    James T Taylor; Xiang-Bin Zeng; Jonathan E Pottle; Kevin Lee; Alun R Wang; Stephenie G Yi; Jennifer A S Scruggs; Suresh S Sikka; Ming Li

    2008-01-01

    Regulation of intracellular calcium is an important signaling mechanism for cell proliferation in both normal and cancerous cells. In normal epithelial cells,free calcium concentration is essential for cells to enter and accomplish the S phase and the M phase of the cell cycle. In contrast, cancerous cells can pass these phases of the cell cycle with much lower cytoplasmic free calcium concentrations, indicating an alternative mechanism has developed for fulfilling the intracellular calcium requirement for an increased rate of DNA synthesis and mitosis of fast replicating cancerous cells. The detailed mechanism underlying the altered calcium loading pathway remains unclear;however, there is a growing body of evidence that suggests the T-type Ca2+ channel is abnormally expressed in cancerous cells and that blockade of these channels may reduce cell proliferation in addition to inducing apoptosis. Recent studies also show that the expression of T-type Ca2+ channels in breast cancer cells is proliferation state dependent, i.e. the channels are expressed at higher levels during the fast-replication period, and once the cells are in a non-proliferation state, expression of this channel isminimal. Therefore, selectively blocking calcium entry into cancerous cells may be a valuable approach for preventing tumor growth. Since T-type Ca2+ channels are not expressed in epithelial cells, selective T-type Ca2+ channel blockers may be useful in the treatment of certain types of cancers.

  15. The combined transduction of copper, zinc-superoxide dismutase and catalase mediated by cell-penetrating peptide, PEP-1, to protect myocardium from ischemia-reperfusion injury

    Directory of Open Access Journals (Sweden)

    Guo Ling-Yun

    2011-05-01

    Full Text Available Abstract Background Our previous studies indicate that either PEP-1-superoxide dismutase 1 (SOD1 or PEP-1-catalase (CAT fusion proteins protects myocardium from ischemia-reperfusion-induced injury in rats. The aim of this study is to explore whether combined use of PEP-1-SOD1 and PEP-1-CAT enhances their protective effects. Methods SOD1, PEP-1-SOD1, CAT or PEP-1-CAT fusion proteins were prepared and purified by genetic engineering. In vitro and in vivo effects of these proteins on cell apoptosis and the protection of myocardium after ischemia-reperfusion injury were measured. Embryo cardiac myocyte H9c2 cells were used for the in vitro studies. In vitro cellular injury was determined by the expression of lactate dehydrogenase (LDH. Cell apoptosis was quantitatively assessed with Annexin V and PI double staining by Flow cytometry. In vivo, rat left anterior descending coronary artery (LAD was ligated for one hour followed by two hours of reperfusion. Hemodynamics was then measured. Myocardial infarct size was evaluated by TTC staining. Serum levels of myocardial markers, creatine kinase-MB (CK-MB and cTnT were quantified by ELISA. Bcl-2 and Bax expression in left ventricle myocardium were analyzed by western blot. Results In vitro, PEP-1-SOD1 or PEP-1-CAT inhibited LDH release and apoptosis rate of H9c2 cells. Combined transduction of PEP-1-SOD1 and PEP-1-CAT, however, further reduced the LDH level and apoptosis rate. In vivo, combined usage of PEP-1-SOD1 and PEP-1-CAT produced a greater effect than individual proteins on the reduction of CK-MB, cTnT, apoptosis rate, lipoxidation end product malondialdehyde, and the infarct size of myocardium. Functionally, the combination of these two proteins further increased left ventricle systolic pressure, but decreased left ventricle end-diastolic pressure. Conclusion This study provided a basis for the treatment or prevention of myocardial ischemia-reperfusion injury with the combined usage of PEP-1-SOD1

  16. Removal of inhibitory substances with recombinant fibronectin-CH-296 plates enhances the retroviral transduction efficiency of CD34(+)CD38(-) bone marrow cells.

    Science.gov (United States)

    Chono, H; Yoshioka, H; Ueno, M; Kato, I

    2001-09-01

    In retroviral gene transduction, the efficiency of viral infection was reduced by the proteoglycans and some other materials secreted by the producer lines. In order to remove these inhibitors we have developed the rFN-CH-296-facilitated protocol. Because the rFN-CH-296 molecule has strong ability to bind a retroviral vector, rFN-CH-296 bound plates are utilized to wash out the unbound putative inhibitors present in a virus supernatant. The gene transduction efficiencies of human CD34(+)CD38(-) BMCs with a GALV-pseudotyped vector and the rFN-CH-296-facilitated protocol were compared with the protocol without a coating plate with CH-296, the mean gene transduction efficiencies being found to be 95.5 and 71.1%, respectively.

  17. Extract from Buthus martensii Karsch is associated with potassium channels on glioma cells

    Institute of Scientific and Technical Information of China (English)

    Mingxian Li; Hongmei Meng; Shao Wang; Min Huang; Li Cui; Weihong Lin

    2011-01-01

    Catilan extracted from Leiurus quinquestriatus is a specific ion channel blocker.It can specifically bind chloride channels of glioma cells and kill these tumor cells.The questions remain as to whether antigliomatin,the extract from scorpion venom of Buthus martensii Karsch in China,can inhibit glioma growth,and whether this inhibition is correlated with ion channels of tumor cells.The present study treated rat C6 glioma cells with 0.8,1.2,and 1.6 μg/mL antigliomatin for 20 hours.Whole-cell patch clamp technique showed that antigliomatin delayed rectifier potassium channels of C6 glioma cells.Antigliomatin inhibited tumor growth,which could potentially involve potassium channels of tumor cells.

  18. The Role of Matrine and Mitogen-Ativated Protein Kinase/Extracellular Signal-Regulated Kinase Signal Transduction in the Inhibition of the Proliferation and Migration of Human Umbilical Veins Endothelial Cells Induced by Lung Cancer cells

    Directory of Open Access Journals (Sweden)

    Ming BAI

    2009-07-01

    Full Text Available Background and objective Matrine, one of the major alkaloid components of the traditional Chinese medicine Sophora roots, has a wide range of pharmacological effects including anti-inflammatory activities, growth inhibition and induction of cell differentiation and apoptosis. Motigen-activated protein kinase (MAPK/extracellular signal-regulated kinase (ERK has found to be a crucial signaling pathway in endothelial cells. The aim of this study is to investigate the role of Matrine and MAPK/ERK signal transduction in the inhibition of the proliferation and migration of human umbilical veins endothelial cells (HUVECs induced by lung cancer cells. Methods HUVECs were cultured with A549CM. Mat or PD98059 (i.e PD, specific inhibitor of MAPK/ERK, was added into the A549CM. The proliferation of the HUVECs was measured by cell counting. The migration of the HUVECs was observed by wound healing assay. The expression levels of ERK and p-ERK protein were detected by Western Blot analysis. Results On 24 hours after intervention, the A549CM significantly stimulated the proliferation, migration and expression of p-ERK of HUVECs. Compared with the A549CM group, Mat significantly inhibited the proliferation, migration and p-ERK expression of HUVECs induced by A549CM. While PD only decreased the proliferation and p-ERK expression of HUVECs induced by A549CM. PD had no effect in the migration of HUVECs. Conclusion The results demonstrated that Mat and PD98059 can effectively decrease proliferation and expression of p-ERK of HUVECs induced by A549CM. Furthermore Mat can also inhibit migration of HUVECs induced by A549CM that did not changed by PD98059. These data implied that suppressing MAPK/ERK signal transduction may play the crucial role in resisting lung cacinoma angiogenesis with Mat.

  19. Cell swelling activates K+ and Cl- channels as well as nonselective, stretch-activated cation channels in ehrlich ascites tumor cells

    DEFF Research Database (Denmark)

    Christensen, Ove; Hoffmann, Else Kay

    1992-01-01

    not occur instantaneously but within a time delay of 1/2 to 1 min. The channel is permeable to Ba2+ and hence presumably to Ca2+. It seems likely that the function of the nonselective, stretch-activated channels is correlated with their inferred Ca2+ permeability, as part of the volume-activated signal...... external K+ is estimated at about 7 pS. A K+ channel with similar properties can be activated in the cellattached mode by addition of Ca2+ plus ionophore A23187. The channel is also activated by cell swelling, within 1 min following hypotonic exposure. No evidence was found of channel activation...... types of Cl– channels were regularly recorded in excised inside-out patches: a voltage-activated 400-pS channel and a 34-pS Cl– channel which show properties similar to the Cl– channel in the apical membrane in human airway epithelial cells. There is no evidence for a role in RVD for either of these two...

  20. Numerical study of cell performance and local transport phenomena in PEM fuel cells with various flow channel area ratios

    Science.gov (United States)

    Wang, Xiao-Dong; Duan, Yuan-Yuan; Yan, Wei-Mon

    Three-dimensional models of proton exchange membrane fuel cells (PEMFCs) with parallel and interdigitated flow channel designs were developed including the effects of liquid water formation on the reactant gas transport. The models were used to investigate the effects of the flow channel area ratio and the cathode flow rate on the cell performance and local transport characteristics. The results reveal that at high operating voltages, the cell performance is independent of the flow channel designs and operating parameters, while at low operating voltages, both significantly affect cell performance. For the parallel flow channel design, as the flow channel area ratio increases the cell performance improves because fuel is transported into the diffusion layer and the catalyst layer mainly by diffusion. A larger flow channel area ratio increases the contact area between the fuel and the diffusion layer, which allows more fuel to directly diffuse into the porous layers to participate in the electrochemical reaction which enhances the reaction rates. For the interdigitated flow channel design, the baffle forces more fuel to enter the cell and participate in the electrochemical reaction, so the flow channel area ratio has less effect. Forced convection not only increases the fuel transport rates but also enhances the liquid water removal, thus interdigitated flow channel design has higher performance than the parallel flow channel design. The optimal performance for the interdigitated flow channel design occurs for a flow channel area ratio of 0.4. The cell performance also improves as the cathode flow rate increases. The effects of the flow channel area ratio and the cathode flow rate on cell performance are analyzed based on the local current densities, oxygen flow rates and liquid water concentrations inside the cell.

  1. Numerical study of cell performance and local transport phenomena in PEM fuel cells with various flow channel area ratios

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiao-Dong [Department of Thermal Engineering, School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Duan, Yuan-Yuan [Key Laboratory of Thermal Science and Power Engineering of MOE, Tsinghua University, Beijing 100084 (China); Yan, Wei-Mon [Department of Mechatronic Engineering, Huafan University, Shih-Ting 22305 (China)

    2007-10-11

    Three-dimensional models of proton exchange membrane fuel cells (PEMFCs) with parallel and interdigitated flow channel designs were developed including the effects of liquid water formation on the reactant gas transport. The models were used to investigate the effects of the flow channel area ratio and the cathode flow rate on the cell performance and local transport characteristics. The results reveal that at high operating voltages, the cell performance is independent of the flow channel designs and operating parameters, while at low operating voltages, both significantly affect cell performance. For the parallel flow channel design, as the flow channel area ratio increases the cell performance improves because fuel is transported into the diffusion layer and the catalyst layer mainly by diffusion. A larger flow channel area ratio increases the contact area between the fuel and the diffusion layer, which allows more fuel to directly diffuse into the porous layers to participate in the electrochemical reaction which enhances the reaction rates. For the interdigitated flow channel design, the baffle forces more fuel to enter the cell and participate in the electrochemical reaction, so the flow channel area ratio has less effect. Forced convection not only increases the fuel transport rates but also enhances the liquid water removal, thus interdigitated flow channel design has higher performance than the parallel flow channel design. The optimal performance for the interdigitated flow channel design occurs for a flow channel area ratio of 0.4. The cell performance also improves as the cathode flow rate increases. The effects of the flow channel area ratio and the cathode flow rate on cell performance are analyzed based on the local current densities, oxygen flow rates and liquid water concentrations inside the cell. (author)

  2. The mucolipin-2 (TRPML2) ion channel: a tissue-specific protein crucial to normal cell function.

    Science.gov (United States)

    Cuajungco, Math P; Silva, Joshua; Habibi, Ania; Valadez, Jessica A

    2016-02-01

    The discovery of the TRPML subfamily of ion channels has created an exciting niche in the fields of membrane trafficking, signal transduction, autophagy, and metal homeostasis. The TRPML protein subfamily consists of three members, TRPML1, TRPML2, and TRPML3, which are encoded by MCOLN1, MCOLN2, and MCOLN3 genes, respectively. They are non-selective cation channels with six predicted transmembrane domains and intracellular amino- and carboxyl-terminus regions. They localize to the plasma membrane, endosomes, and lysosomes of cells. TRPML1 is associated with the human lysosomal storage disease known as mucolipidosis type IV (MLIV), but TRPML2 and TRPML3 have not been linked with a human disease. Although TRPML1 is expressed in many tissues, TRPML3 is expressed in a varied but limited set of tissues, while TRPML2 has a more limited expression pattern where it is mostly detected in lymphoid and myeloid tissues. This review focuses on TRPML2 because it appears to play an important, yet unrecognized role in the immune system. While the evidence has been mostly indirect, we present and discuss relevant data that strengthen the connection of TRPML2 with cellular immunity. We also discuss the functional redundancy between the TRPML proteins, and how such features could be exploited as a potential therapeutic strategy for MLIV disease. We present evidence that TRPML2 expression may complement certain phenotypic alterations in MLIV cells and briefly examine the challenges of functional complementation. In conclusion, the function of TRPML2 still remains obscure, but emerging data show that it may serve a critical role in immune cell development and inflammatory responses.

  3. A cell sorting and trapping microfluidic device with an interdigital channel

    Science.gov (United States)

    Tu, Jing; Qiao, Yi; Xu, Minghua; Li, Junji; Liang, Fupeng; Duan, Mengqin; Ju, An; Lu, Zuhong

    2016-12-01

    The growing interest in cell sorting and trapping is driving the demand for high performance technologies. Using labeling techniques or external forces, cells can be identified by a series of methods. However, all of these methods require complicated systems with expensive devices. Based on inherent differences in cellular morphology, cells can be sorted by specific structures in microfluidic devices. The weir filter is a basic and efficient cell sorting and trapping structure. However, in some existing weir devices, because of cell deformability and high flow velocity in gaps, trapped cells may become stuck or even pass through the gaps. Here, we designed and fabricated a microfluidic device with interdigital channels for cell sorting and trapping. The chip consisted of a sheet of silicone elastomer polydimethylsiloxane and a sheet of glass. A square-wave-like weir was designed in the middle of the channel, comprising the interdigital channels. The square-wave pattern extended the weir length by three times with the channel width remaining constant. Compared with a straight weir, this structure exhibited a notably higher trapping capacity. Interdigital channels provided more space to slow down the rate of the pressure decrease, which prevented the cells from becoming stuck in the gaps. Sorting a mixture K562 and blood cells to trap cells demonstrated the efficiency of the chip with the interdigital channel to sort and trap large and less deformable cells. With stable and efficient cell sorting and trapping abilities, the chip with an interdigital channel may be widely applied in scientific research fields.

  4. Amplitude death of coupled hair bundles with stochastic channel noise

    CERN Document Server

    Kim, Kyung-Joong

    2014-01-01

    Hair cells conduct auditory transduction in vertebrates. In lower vertebrates such as frogs and turtles, due to the active mechanism in hair cells, hair bundles(stereocilia) can be spontaneously oscillating or quiescent. Recently, the amplitude death phenomenon has been proposed [K.-H. Ahn, J. R. Soc. Interface, {\\bf 10}, 20130525 (2013)] as a mechanism for auditory transduction in frog hair-cell bundles, where sudden cessation of the oscillations arises due to the coupling between non-identical hair bundles. The gating of the ion channel is intrinsically stochastic due to the stochastic nature of the configuration change of the channel. The strength of the noise due to the channel gating can be comparable to the thermal Brownian noise of hair bundles. Thus, we perform stochastic simulations of the elastically coupled hair bundles. In spite of stray noisy fluctuations due to its stochastic dynamics, our simulation shows the transition from collective oscillation to amplitude death as inter-bundle coupling str...

  5. Evaluation of cell viability and functionality in vessel-like bioprintable cell-laden tubular channels.

    Science.gov (United States)

    Yu, Yin; Zhang, Yahui; Martin, James A; Ozbolat, Ibrahim T

    2013-09-01

    Organ printing is a novel concept recently introduced in developing artificial three-dimensional organs to bridge the gap between transplantation needs and organ shortage. One of the major challenges is inclusion of blood-vessellike channels between layers to support cell viability, postprinting functionality in terms of nutrient transport, and waste removal. In this research, we developed a novel and effective method to print tubular channels encapsulating cells in alginate to mimic the natural vascular system. An experimental investigation into the influence on cartilage progenitor cell (CPCs) survival, and the function of printing parameters during and after the printing process were presented. CPC functionality was evaluated by checking tissue-specific genetic marker expression and extracellular matrix production. Our results demonstrated the capability of direct fabrication of cell-laden tubular channels by our newly designed coaxial nozzle assembly and revealed that the bioprinting process could induce quantifiable cell death due to changes in dispensing pressure, coaxial nozzle geometry, and biomaterial concentration. Cells were able to recover during incubation, as well as to undergo differentiation with high-level cartilage-associated gene expression. These findings may not only help optimize our system but also can be applied to biomanufacturing of 3D functional cellular tissue engineering constructs for various organ systems.

  6. Trafficking of adeno-associated virus vectors across a model of the blood-brain barrier; a comparative study of transcytosis and transduction using primary human brain endothelial cells.

    Science.gov (United States)

    Merkel, Steven F; Andrews, Allison M; Lutton, Evan M; Mu, Dakai; Hudry, Eloise; Hyman, Bradley T; Maguire, Casey A; Ramirez, Servio H

    2017-01-01

    Developing therapies for central nervous system (CNS) diseases is exceedingly difficult because of the blood-brain barrier (BBB). Notably, emerging technologies may provide promising new options for the treatment of CNS disorders. Adeno-associated virus serotype 9 (AAV9) has been shown to transduce cells in the CNS following intravascular administration in rodents, cats, pigs, and non-human primates. These results suggest that AAV9 is capable of crossing the BBB. However, mechanisms that govern AAV9 transendothelial trafficking at the BBB remain unknown. Furthermore, possibilities that AAV9 may transduce brain endothelial cells or affect BBB integrity still require investigation. Using primary human brain microvascular endothelial cells as a model of the human BBB, we performed transduction and transendothelial trafficking assays comparing AAV9 to AAV2, a serotype that does not cross the BBB or transduce endothelial cells effectively in vivo. Results of our in vitro studies indicate that AAV9 penetrates brain microvascular endothelial cells barriers more effectively than AAV2, but has reduced transduction efficiency. In addition, our data suggest that (i) AAV9 penetrates endothelial barriers through an active, cell-mediated process, and (ii) AAV9 fails to disrupt indicators of BBB integrity such as transendothelial electrical resistance, tight junction protein expression/localization, and inflammatory activation status. Overall, this report shows how human brain endothelial cells configured in BBB models can be utilized for evaluating transendothelial movement and transduction kinetics of various AAV capsids. Importantly, the use of a human in vitro BBB model can provide import insight into the possible effects that candidate AVV gene therapy vectors may have on the status of BBB integrity. Read the Editorial Highlight for this article on page 192.

  7. Piracy of decay-accelerating factor (CD55) signal transduction by the diffusely adhering strain Escherichia coli C1845 promotes cytoskeletal F-actin rearrangements in cultured human intestinal INT407 cells.

    Science.gov (United States)

    Peiffer, I; Servin, A L; Bernet-Camard, M F

    1998-09-01

    Diffusely adhering Escherichia coli (DAEC) C1845 (clinical isolate) harboring the fimbrial adhesin F1845 can infect cultured human differentiated intestinal epithelial cells; this process is followed by the disassembly of the actin network in the apical domain. The aim of this study was to examine the mechanism by which DAEC C1845 promotes F-actin rearrangements. For this purpose, we used a human embryonic intestinal cell line (INT407) expressing the membrane-associated glycosylphosphatidylinositol (GPI) protein-anchored decay-accelerating factor (DAF), the receptor of the F1845 adhesin. We show here that infection of INT407 cells by DAEC C1845 can provoke dramatic F-actin rearrangements without cell entry. Clustering of phosphotyrosines was observed, revealing that the DAEC C1845-DAF interaction involves the recruitment of signal transduction molecules. A pharmacological approach with a subset of inhibitors of signal transduction molecules was used to identify the cascade of signal transduction molecules that are coupled to the DAF, that are activated upon infection, and that promote the F-actin rearrangements. DAEC C1845-induced F-actin rearrangements can be blocked dose dependently by protein tyrosine kinase, phospholipase Cgamma, phosphatidylinositol 3-kinase, protein kinase C, and Ca2+ inhibitors. F-actin rearrangements and blocking by inhibitors were observed after infection of the cells with two E. coli recombinants carrying the plasmids containing the fimbrial adhesin F1845 or the fimbrial hemagglutinin Dr, belonging to the same family of adhesins. These findings show that the DAEC Dr family of pathogens promotes alterations in the intestinal cell cytoskeleton by piracy of the DAF-GPI signal cascade without bacterial cell entry.

  8. Ion channels involved in cell volume regulation: effects on migration, proliferation, and programmed cell death in non adherent EAT cells and adherent ELA cells.

    Science.gov (United States)

    Hoffmann, Else Kay

    2011-01-01

    This mini review outlines studies of cell volume regulation in two closely related mammalian cell lines: nonadherent Ehrlich ascites tumour cells (EATC) and adherent Ehrlich Lettre ascites (ELA) cells. Focus is on the regulatory volume decrease (RVD) that occurs after cell swelling, the volume regulatory ion channels involved, and the mechanisms (cellular signalling pathways) that regulate these channels. Finally, I shall also briefly review current investigations in these two cell lines that focuses on how changes in cell volume can regulate cell functions such as cell migration, proliferation, and programmed cell death.

  9. Characterisation of K+ Channels in Human Fetoplacental Vascular Smooth Muscle Cells

    OpenAIRE

    Brereton, Melissa F.; Mark Wareing; Rebecca L Jones; Greenwood, Susan L.

    2013-01-01

    Adequate blood flow through placental chorionic plate resistance arteries (CPAs) is necessary for oxygen and nutrient transfer to the fetus and a successful pregnancy. In non-placental vascular smooth muscle cells (SMCs), K(+) channels regulate contraction, vascular tone and blood flow. Previous studies showed that K(+) channel modulators alter CPA tone, but did not distinguish between effects on K(+) channels in endothelial cells and SMCs. In this study, we developed a preparation of freshly...

  10. Signal transduction by HLA-DR is mediated by tyrosine kinase(s) and regulated by CD45 in activated T cells

    DEFF Research Database (Denmark)

    Odum, Niels; Martin, P J; Schieven, G L;

    1991-01-01

    , but the inhibitory effect of CD45 dominated over the enhancing effect of CD4. These data indicate that PTK activation is obligatory for DR-induced (Ca2+)i responses, suggesting a linkage between these pathways in class II signal transduction. This conclusion is consistent with our observation that in activated human...

  11. Mechanotransduction in mouse inner ear hair cells requires transmembrane channel-like genes

    NARCIS (Netherlands)

    Kawashima, Yoshiyuki; Geleoc, Gwenaelle S. G.; Kurima, Kiyoto; Labay, Valentina; Lelli, Andrea; Asai, Yukako; Makishima, Tomoko; Wu, Doris K.; Della Santina, Charles C.; Holt, Jeffrey R.; Griffith, Andrew J.

    2011-01-01

    Inner ear hair cells convert the mechanical stimuli of sound, gravity, and head movement into electrical signals. This mechanotransduction process is initiated by opening of cation channels near the tips of hair cell stereocilia. Since the identity of these ion channels is unknown, and mutations in

  12. Spatial DCT-Based Channel Estimation in Multi-Antenna Multi-Cell Interference Channels

    Science.gov (United States)

    Alodeh, Maha; Chatzinotas, Symeon; Ottersten, Bjorn

    2015-03-01

    This work addresses channel estimation in multiple antenna multicell interference-limited networks. Channel state information (CSI) acquisition is vital for interference mitigation. Wireless networks often suffer from multicell interference, which can be mitigated by deploying beamforming to spatially direct the transmissions. The accuracy of the estimated CSI plays an important role in designing accurate beamformers that can control the amount of interference created from simultaneous spatial transmissions to mobile users. Therefore, a new technique based on the structure of the spatial covariance matrix and the discrete cosine transform (DCT) is proposed to enhance channel estimation in the presence of interference. Bayesian estimation and Least Squares estimation frameworks are introduced by utilizing the DCT to separate the overlapping spatial paths that create the interference. The spatial domain is thus exploited to mitigate the contamination which is able to discriminate across interfering users. Gains over conventional channel estimation techniques are presented in our simulations which are also valid for a small number of antennas.

  13. Effects of arsenic trioxide on voltage-dependent potassium channels and on cell proliferation of human multiple myeloma cells

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jin; WANG Wei; WEI Qing-fang; FENG Tie-ming; TAN Li-jun; YANG Bao-feng

    2007-01-01

    @@ Arsenic trioxide (ATO) can induce cellular apoptosis and inhibit the activities of multiple myeloma (MM)cells in vitro,1 but how it works is not very clear. Recent studies showed that ATO worked on the voltagedependent potassium channel and L-type calcium channel in myocardial cells,2-5 but the effect of ATO on ion channels of tumor cells was rarely reported. As the potassium channel plays an important role in controlling cell proliferation,6 we studied the effects of ATO on the voltage-dependent potassium current (Ikv) of the voltage-dependent potassium channel in an MM cell line,and probed into the relationship between changes of the Ikv caused by ATO and cell proliferation.

  14. A cell model study of calcium influx mechanism regulated by calcium-dependent potassium channels in Purkinje cell dendrites.

    Science.gov (United States)

    Chono, Koji; Takagi, Hiroshi; Koyama, Shozo; Suzuki, Hideo; Ito, Etsuro

    2003-10-30

    The present study was designed to elucidate the roles of dendritic voltage-gated K+ channels in Ca2+ influx mechanism of a rat Purkinje cell using a computer simulation program. First, we improved the channel descriptions and the maximum conductance in the Purkinje cell model to mimic both the kinetics of ion channels and the Ca2+ spikes, which had failed in previous studies. Our cell model is, therefore, much more authentic than those in previous studies. Second, synaptic inputs that mimic stimulation of parallel fibers and induce sub-threshold excitability were simultaneously applied to the spiny dendrites. As a result, transient Ca2+ responses were observed in the stimulation points and they decreased with the faster decay rate in the cell model including high-threshold Ca2+-dependent K+ channels than in those excluding these channels. Third, when a single synaptic input was applied into a spiny dendrite, Ca2+-dependent K+ channels suppressed Ca2+ increases at stimulation and recording points. Finally, Ca2+-dependent K+ channels were also found to suppress the time to peak Ca2+ values in the recording points. These results suggest that the opening of Ca2+-dependent K+ channels by Ca2+ influx through voltage-gated Ca2+ channels hyperpolarizes the membrane potentials and deactivates these Ca2+ channels in a negative feedback manner, resulting in local, weak Ca2+ responses in spiny dendrites of Purkinje cells.

  15. Voltage-dependent metabolic regulation of Kv2.1 channels in pancreatic beta-cells.

    Science.gov (United States)

    Yoshida, Masashi; Nakata, Masanori; Yamato, Shiho; Dezaki, Katsuya; Sugawara, Hitoshi; Ishikawa, San-e; Kawakami, Masanobu; Yada, Toshihiko; Kakei, Masafumi

    2010-05-28

    Voltage-gated potassium channels (Kv channels) play a crucial role in formation of action potentials in response to glucose stimulation in pancreatic beta-ells. We previously reported that the Kv channel is regulated by glucose metabolism, particularly by MgATP. We examined whether the regulation of Kv channels is voltage-dependent and mechanistically related with phosphorylation of the channels. In rat pancreatic beta-cells, suppression of glucose metabolism with low glucose concentrations of 2.8mM or less or by metabolic inhibitors decreased the Kv2.1-channel activity at positive membrane potentials, while increased it at potentials negative to -10 mV, suggesting that modulation of Kv channels by glucose metabolism is voltage-dependent. Similarly, in HEK293 cells expressing the recombinant Kv2.1 channels, 0mM but not 10mM MgATP modulated the channel activity in a manner similar to that in beta-cells. Both steady-state activation and inactivation kinetics of the channel were shifted toward the negative potential in association with the voltage-dependent modulation of the channels by cytosolic dialysis of alkaline phosphatase in beta-cells. The modulation of Kv-channel current-voltage relations were also observed during and after glucose-stimulated electrical excitation. These results suggest that the cellular metabolism including MgATP production and/or channel phosphorylation/dephosphorylation underlie the physiological modulation of Kv2.1 channels during glucose-induced insulin secretion.

  16. Signal transduction pathways in liver and the influence of hepatitis C virus infection on their activities

    Institute of Scientific and Technical Information of China (English)

    Magdalena M Dabrowska; Anatol Panasiuk; Robert Flisiak

    2009-01-01

    In liver, the most intensively studied transmembrane and intracellular signal transduction pathways are the Janus kinase signal transduction pathway, the mitogen-activated protein kinases signal transduction pathway, the transforming growth factor b signal transduction pathway, the tumor necrosis factor a signal transduction pathway and the recently discovered sphingolipid signal transduction pathway. All of them are activated by many different cytokines and growth factors. They regulate specific cell mechanisms such as hepatocytes proliferation, growth, differentiation, adhesion, apoptosis, and synthesis and degradation of the extracellular matrix. The replication cycle of hepatitis C virus (HCV) is intracellular and requires signal transduction to the nucleus to regulate transcription of its genes. Moreover, HCV itself, by its structural and nonstructural proteins, could influence the activity of the second signal messengers. Thus, the inhibition of the transmembrane and intracellular signal transduction pathways could be a new therapeutic target in chronic hepatitis C treatment.

  17. Genetic Analysis of Gravity Signal Transduction in Arabidopsis Roots

    Science.gov (United States)

    Masson, Patrick; Strohm, Allison; Barker, Richard; Su, Shih-Heng

    Like most other plant organs, roots use gravity as a directional guide for growth. Specialized cells within the columella region of the root cap (the statocytes) sense the direction of gravity through the sedimentation of starch-filled plastids (amyloplasts). Amyloplast movement and/or pressure on sensitive membranes triggers a gravity signal transduction pathway within these cells, which leads to a fast transcytotic relocalization of plasma-membrane associated auxin-efflux carrier proteins of the PIN family (PIN3 and PIN7) toward the bottom membrane. This leads to a polar transport of auxin toward the bottom flank of the cap. The resulting lateral auxin gradient is then transmitted toward the elongation zones where it triggers a curvature that ultimately leads to a restoration of vertical downward growth. Our laboratory is using strategies derived from genetics and systems biology to elucidate the molecular mechanisms that modulate gravity sensing and signal transduction in the columella cells of the root cap. Our previous research uncovered two J-domain-containing proteins, ARG1 and ARL2, as contributing to this process. Mutations in the corresponding paralogous genes led to alterations of root and hypocotyl gravitropism accompanied by an inability for the statocytes to develop a cytoplasmic alkalinization, relocalize PIN3, and transport auxin laterally, in response to gravistimulation. Both proteins are associated peripherally to membranes belonging to various compartments of the vesicular trafficking pathway, potentially modulating the trafficking of defined proteins between plasma membrane and endosomes. MAR1 and MAR2, on the other end, are distinct proteins of the plastidic outer envelope protein import TOC complex (the transmembrane channel TOC75 and the receptor TOC132, respectively). Mutations in the corresponding genes enhance the gravitropic defects of arg1. Using transformation-rescue experiments with truncated versions of TOC132 (MAR2), we have shown

  18. The Brain-Specific Beta4 Subunit Downregulates BK Channel Cell Surface Expression

    OpenAIRE

    Sonal Shruti; Joanna Urban-Ciecko; Fitzpatrick, James A.; Robert Brenner; Bruchez, Marcel P.; Alison L Barth

    2012-01-01

    The large-conductance K(+) channel (BK channel) can control neural excitability, and enhanced channel currents facilitate high firing rates in cortical neurons. The brain-specific auxiliary subunit β4 alters channel Ca(++)- and voltage-sensitivity, and β4 knock-out animals exhibit spontaneous seizures. Here we investigate β4's effect on BK channel trafficking to the plasma membrane. Using a novel genetic tag to track the cellular location of the pore-forming BKα subunit in living cells, we fi...

  19. H+ channels in embryonic Biomphalaria glabrata cell membranes: Putative roles in snail host-schistosome interactions

    Science.gov (United States)

    Wright, Brandon J.; Bickham-Wright, Utibe; Yoshino, Timothy P.; Jackson, Meyer B.

    2017-01-01

    The human blood fluke Schistosoma mansoni causes intestinal schistosomiasis, a widespread neglected tropical disease. Infection of freshwater snails Biomphalaria spp. is an essential step in the transmission of S. mansoni to humans, although the physiological interactions between the parasite and its obligate snail host that determine success or failure are still poorly understood. In the present study, the B. glabrata embryonic (Bge) cell line, a widely used in vitro model for hemocyte-like activity, was used to investigate membrane properties, and assess the impact of larval transformation proteins (LTP) on identified ion channels. Whole-cell patch clamp recordings from Bge cells demonstrated that a Zn2+-sensitive H+ channel serves as the dominant plasma membrane conductance. Moreover, treatment of Bge cells with Zn2+ significantly inhibited an otherwise robust production of reactive oxygen species (ROS), thus implicating H+ channels in the regulation of this immune function. A heat-sensitive component of LTP appears to target H+ channels, enhancing Bge cell H+ current over 2-fold. Both Bge cells and B. glabrata hemocytes express mRNA encoding a hydrogen voltage-gated channel 1 (HVCN1)-like protein, although its function in hemocytes remains to be determined. This study is the first to identify and characterize an H+ channel in non-neuronal cells of freshwater molluscs. Importantly, the involvement of these channels in ROS production and their modulation by LTP suggest that these channels may function in immune defense responses against larval S. mansoni. PMID:28319196

  20. Effects of Voltage-Gated K+ Channel on Cell Proliferation in Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2014-01-01

    Full Text Available Objective. To study the effects and underlying mechanisms of voltage-gated K+ channels on the proliferation of multiple myeloma cells. Methods. RPMI-8226 MM cell line was used for the experiments. Voltage-gated K+ currents and the resting potential were recorded by whole-cell patch-clamp technique. RT-PCR detected Kv channel mRNA expression. Cell viability was analyzed with MTT assay. Cell counting system was employed to monitor cell proliferation. DNA contents and cell volume were analyzed by flow cytometry. Results. Currents recorded in RPMI-8226 cells were confirmed to be voltage-gated K+ channels. A high level of Kv1.3 mRNA was detected but no Kv3.1 mRNA was detected in RPMI-8226 cells. Voltage-gated K+ channel blocker 4-aminopyridine (4-AP (2 mM depolarized the resting potential from −42 ± 1.7 mV to −31.8 ± 2.8 mV (P0.05. Conclusions. In RPMI-8226, voltage-gated K+ channels are involved in proliferation and cell cycle progression its influence on the resting potential and cell volume may be responsible for this process; the inhibitory effect of the voltage-gated K+ channel blocker on RPMI-8226 cell proliferation is a phase-specific event.

  1. Carbon monoxide stimulates the Ca2(+)-activated big conductance k channels in cultured human endothelial cells.

    Science.gov (United States)

    Dong, De-Li; Zhang, Yan; Lin, Dao-Hong; Chen, Jun; Patschan, Susann; Goligorsky, Michael S; Nasjletti, Alberto; Yang, Bao-Feng; Wang, Wen-Hui

    2007-10-01

    We used the whole-cell patch-clamp technique to study K channels in the human umbilical vein endothelial cells and identified a 201 pS K channel, which was blocked by tetraethylammonium and iberiotoxin but not by TRAM34 and apamin. This suggests that the Ca(2+)-activated big-conductance K channel (BK) is expressed in endothelial cells. Application of carbon monoxide (CO) or tricarbonylchloro(glycinato)ruthenium(II), a water soluble CO donor, stimulated the BK channels. Moreover, application of hemin, a substrate of heme oxygenase, mimicked the effect of CO and increased the BK channel activity. The stimulatory effect of hemin was significantly diminished by tin mesoporphyrin, an inhibitor of heme oxygenase. To determine whether the stimulatory effect of CO on the BK channel was mediated by NO and the cGMP-dependent pathway, we examined the effect of CO on BK channels in cells treated with, N(G)-nitro-l-arginine methyl ester, 1H(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one, an inhibitor of soluble guanylate cyclase, or KT5823, an inhibitor of protein kinase G. Addition of either diethylamine NONOate or sodium nitroprusside significantly increased BK channel activity. Inhibition of endogenous NO synthesis with N(G)-nitro-l-arginine methyl ester, blocking soluble guanylate cyclase or protein kinase G, delayed but did not prevent the CO-induced activation of BK channels. Finally, application of an antioxidant agent, ebselen, had no effect on CO-mediated stimulation of BK channels in human umbilical vein endothelial cells. We conclude that BK channels are expressed in human umbilical vein endothelial cells and that they are activated by both CO and NO. CO activates BK channels directly, as well as via a mechanism involving NO or the cGMP-dependent pathway.

  2. 中药对肝癌细胞信号转导通路影响的研究进展%Advances in research on Chinese medicines that can induce apoptosis of hepatocellular carcinoma cells by the signal transduction pathway

    Institute of Scientific and Technical Information of China (English)

    濮忠建; 华海清

    2011-01-01

    As the research on the signal transduction pathway of tumor is developing, people has become more aware of the confusion of the signal transduction mechanisms on the tumor cells and their effects on tumor growth, apoptosis, and metastasis. Currently, the research that Chinese medicine and its extract inducing apoptosis and angiogenesis of hepatocellular carcinoma by acting on the signal transduction pathway has made gratifying progress. In this article, we will provide an overview of recent literature about this.%随着对肿瘤信号转导通路研究的不断深入,人们对肿瘤细胞内部复杂的信号转导机制以及它们对肿瘤生长、凋亡和转移等的影响越来越了解.目前,中药及其提取物通过作用于信号转导通路诱导肝癌细胞凋亡、影响肝癌血管生成的研究已取得可喜进步.现对近年来有关文献进行回顾,就此进展作一综述.

  3. A flow channel design procedure for PEM fuel cells with effective water removal

    Science.gov (United States)

    Li, Xianguo; Sabir, Imran; Park, Jaewan

    Proper water management in polymer electrolyte membrane (PEM) fuel cells is critical to achieve the potential of PEM fuel cells. Membrane electrolyte requires full hydration in order to function as proton conductor, often achieved by fully humidifying the anode and cathode reactant gas streams. On the other hand, water is also produced in the cell due to electrochemical reaction. The combined effect is that liquid water forms in the cell structure and water flooding deteriorates the cell performance significantly. In the present study, a design procedure has been developed for flow channels on bipolar plates that can effectively remove water from the PEM fuel cells. The main design philosophy is based on the determination of an appropriate pressure drop along the flow channel so that all the liquid water in the cell is evaporated and removed from, or carried out of, the cell by the gas stream in the flow channel. At the same time, the gas stream in the flow channel is maintained fully saturated in order to prevent membrane electrolyte dehydration. Sample flow channels have been designed, manufactured and tested for five different cell sizes of 50, 100, 200, 300 and 441 cm 2. Similar cell performance has been measured for these five significantly different cell sizes, indicating that scaling of the PEM fuel cells is possible if liquid water flooding or membrane dehydration can be avoided during the cell operation. It is observed that no liquid water flows out of the cell at the anode and cathode channel exits for the present designed cells during the performance tests, and virtually no liquid water content in the cell structure has been measured by the neutron imaging technique. These measurements indicate that the present design procedure can provide flow channels that can effectively remove water in the PEM fuel cell structure.

  4. A flow channel design procedure for PEM fuel cells with effective water removal

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xianguo; Sabir, Imran; Park, Jaewan [Department of Mechanical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)

    2007-01-01

    Proper water management in polymer electrolyte membrane (PEM) fuel cells is critical to achieve the potential of PEM fuel cells. Membrane electrolyte requires full hydration in order to function as proton conductor, often achieved by fully humidifying the anode and cathode reactant gas streams. On the other hand, water is also produced in the cell due to electrochemical reaction. The combined effect is that liquid water forms in the cell structure and water flooding deteriorates the cell performance significantly. In the present study, a design procedure has been developed for flow channels on bipolar plates that can effectively remove water from the PEM fuel cells. The main design philosophy is based on the determination of an appropriate pressure drop along the flow channel so that all the liquid water in the cell is evaporated and removed from, or carried out of, the cell by the gas stream in the flow channel. At the same time, the gas stream in the flow channel is maintained fully saturated in order to prevent membrane electrolyte dehydration. Sample flow channels have been designed, manufactured and tested for five different cell sizes of 50, 100, 200, 300 and 441cm{sup 2}. Similar cell performance has been measured for these five significantly different cell sizes, indicating that scaling of the PEM fuel cells is possible if liquid water flooding or membrane dehydration can be avoided during the cell operation. It is observed that no liquid water flows out of the cell at the anode and cathode channel exits for the present designed cells during the performance tests, and virtually no liquid water content in the cell structure has been measured by the neutron imaging technique. These measurements indicate that the present design procedure can provide flow channels that can effectively remove water in the PEM fuel cell structure. (author)

  5. 结肠癌干细胞表面标志的研究和信号传导%Colon cancer stem cell surface markers and signal transduction research

    Institute of Scientific and Technical Information of China (English)

    陈远崇

    2011-01-01

    背景:近年来研究表明,结肠癌干细胞参与肿瘤的复发和转移,为恶性肿瘤靶向治疗带来新的希望.目的:探讨结肠癌干细胞特异表面标志的分离和鉴定方法,以及与结肠癌干细胞研究紧密相关的信号通路.方法:以"结肠癌干细胞,肿瘤干细胞,细胞表面标志,信号传导"为中文关键词,以"colon cancer stem cell,cancer stem cell,cell surface sign,signal transduction"为英文关键词,采用计算机检索Medline和CNKI数据库2000-01/2011-06有关结肠癌干细胞表面标志和信号传导的相关文章,排除重复研究或Meta分析类文章,筛选纳入40篇文献进行评价.结果与结论:CD133+与CD44+可作结肠癌干细胞的表面标志.与结肠癌干细胞紧密相关的信号通路有Wnt和Notch等,Wnt信号通路在干细胞内环境稳定中起重要作用,Notch信号通路是干细胞信号网络的重要通路.通过研究结肠癌干细胞的表面标志,可以及早地检测出肿瘤的存在;掌握结肠癌干细胞的生物学特性和信号转导路径,可减少肿瘤的复发,为结肠癌的诊断和治疗降低难度.%BACKGROUND: In recent years, studies have shown that colon cancer stem cells are involved in tumor recurrence andmetastasis, which have brought a new hope for cancer targeted therapy.OBJECTIVE: To investigate the isolation and identification method of colon cancer stem cell surface markers as well as relevantsignal transduction pathways.METHODS: A computer-based search of Medline and CNKI databases (2000-01/2011-06) was performed to retrieve coloncancer stem cell surface markers and signal transduction using the keywords of "colon cancer stem cell, cancer stem cell, cellsurface sign, signal transduction" in English and Chinese, respectively. Repetitive articles or Meta analyses were excluded, andfinally 40 articles were included in result analysis.RESULTS AND CONCLUSION: CD133+ and CD44+ are used as colon cancer stem cell surface markers. Closely related

  6. Transient receptor potential channels in mechanosensing and cell volume regulation

    DEFF Research Database (Denmark)

    Pedersen, Stine Falsig; Nilius, Bernd

    2007-01-01

    Transient receptor potential (TRP) channels are unique cellular sensors responding to a wide variety of extra- and intracellular signals, including mechanical and osmotic stress. In recent years, TRP channels from multiple subfamilies have been added to the list of mechano- and/or osmosensitive c...

  7. Identification and characterization of inward K ~+-channels in plasma membranes of Arabidopsis root cortex cells

    Institute of Scientific and Technical Information of China (English)

    于川江; 武维华

    1999-01-01

    Patch clamping whole-cell reeording techniques were apphed to study the inward K+ channels in Arabidopsis root cortex cells. The inward K+-channels in the plasma membranes of the root cortex cell protoplasts were activated by hyperpolarized membrane potentials. The channels were highly selective tor K+ ions over Na+ ions. The channel activity was significantly inbibited by the external TEA(?) or Ba(?) The changes in cytoplasmic Ca2+ concentrations did not affect the whole-cell inward K+-currents. The possible asso(?)ation betw(?)en the channel selectivity to K+ and Na(?) ions and plant salt-tolerance was also discussed.

  8. Stimulation of protein kinase C recruits covert calcium channels in Aplysia bag cell neurons.

    Science.gov (United States)

    Strong, J A; Fox, A P; Tsien, R W; Kaczmarek, L K

    The modulation of voltage-activated calcium currents by protein kinases provides excitable cells with a mechanism for regulating their electrical behaviour. At the single channel level, modulation of calcium current has, to date, been characterized only in cardiac muscle, where beta-adrenergic agonists, acting through cyclic AMP-dependent protein kinase, enhance the calcium current by increasing channel availability and opening. We now report that enhancement of calcium current in the peptidergic bag cell neurons of Aplysia by protein kinase C occurs through a different mechanism, the recruitment of a previously covert class of calcium channel. Under control conditions, bag cell neurons contain only one class of voltage-activated calcium channel with a conductance of approximately 12 pS. After exposure to agents that activate protein kinase C, these neurons also express a second class of calcium channel with a different unitary conductance (approximately 24 pS) that is never seen in untreated cells.

  9. Ion channel expression patterns in glioblastoma stem cells with functional and therapeutic implications for malignancy

    Science.gov (United States)

    Pollak, Julia; Rai, Karan G.; Funk, Cory C.; Arora, Sonali; Lee, Eunjee; Zhu, Jun; Price, Nathan D.; Paddison, Patrick J.; Ramirez, Jan-Marino; Rostomily, Robert C.

    2017-01-01

    Ion channels and transporters have increasingly recognized roles in cancer progression through the regulation of cell proliferation, migration, and death. Glioblastoma stem-like cells (GSCs) are a source of tumor formation and recurrence in glioblastoma multiforme, a highly aggressive brain cancer, suggesting that ion channel expression may be perturbed in this population. However, little is known about the expression and functional relevance of ion channels that may contribute to GSC malignancy. Using RNA sequencing, we assessed the enrichment of ion channels in GSC isolates and non-tumor neural cell types. We identified a unique set of GSC-enriched ion channels using differential expression analysis that is also associated with distinct gene mutation signatures. In support of potential clinical relevance, expression of selected GSC-enriched ion channels evaluated in human glioblastoma databases of The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project correlated with patient survival times. Finally, genetic knockdown as well as pharmacological inhibition of individual or classes of GSC-enriched ion channels constrained growth of GSCs compared to normal neural stem cells. This first-in-kind global examination characterizes ion channels enriched in GSCs and explores their potential clinical relevance to glioblastoma molecular subtypes, gene mutations, survival outcomes, regional tumor expression, and experimental responses to loss-of-function. Together, the data support the potential biological and therapeutic impact of ion channels on GSC malignancy and provide strong rationale for further examination of their mechanistic and therapeutic importance. PMID:28264064

  10. The brain-specific Beta4 subunit downregulates BK channel cell surface expression.

    Science.gov (United States)

    Shruti, Sonal; Urban-Ciecko, Joanna; Fitzpatrick, James A; Brenner, Robert; Bruchez, Marcel P; Barth, Alison L

    2012-01-01

    The large-conductance K(+) channel (BK channel) can control neural excitability, and enhanced channel currents facilitate high firing rates in cortical neurons. The brain-specific auxiliary subunit β4 alters channel Ca(++)- and voltage-sensitivity, and β4 knock-out animals exhibit spontaneous seizures. Here we investigate β4's effect on BK channel trafficking to the plasma membrane. Using a novel genetic tag to track the cellular location of the pore-forming BKα subunit in living cells, we find that β4 expression profoundly reduces surface localization of BK channels via a C-terminal ER retention sequence. In hippocampal CA3 neurons from C57BL/6 mice with endogenously high β4 expression, whole-cell BK channel currents display none of the characteristic properties of BKα+β4 channels observed in heterologous cells. Finally, β4 knock-out animals exhibit a 2.5-fold increase in whole-cell BK channel current, indicating that β4 also regulates current magnitude in vivo. Thus, we propose that a major function of the brain-specific β4 subunit in CA3 neurons is control of surface trafficking.

  11. The brain-specific Beta4 subunit downregulates BK channel cell surface expression.

    Directory of Open Access Journals (Sweden)

    Sonal Shruti

    Full Text Available The large-conductance K(+ channel (BK channel can control neural excitability, and enhanced channel currents facilitate high firing rates in cortical neurons. The brain-specific auxiliary subunit β4 alters channel Ca(++- and voltage-sensitivity, and β4 knock-out animals exhibit spontaneous seizures. Here we investigate β4's effect on BK channel trafficking to the plasma membrane. Using a novel genetic tag to track the cellular location of the pore-forming BKα subunit in living cells, we find that β4 expression profoundly reduces surface localization of BK channels via a C-terminal ER retention sequence. In hippocampal CA3 neurons from C57BL/6 mice with endogenously high β4 expression, whole-cell BK channel currents display none of the characteristic properties of BKα+β4 channels observed in heterologous cells. Finally, β4 knock-out animals exhibit a 2.5-fold increase in whole-cell BK channel current, indicating that β4 also regulates current magnitude in vivo. Thus, we propose that a major function of the brain-specific β4 subunit in CA3 neurons is control of surface trafficking.

  12. Effect of calcitonin gene related peptide regulated nuclear factor kappa B signal transduction on c-kit+ cardiac stem cells in hypoxia state

    Directory of Open Access Journals (Sweden)

    Xian-ping LONG

    2015-11-01

    Full Text Available Objective To investigate the effects of calcitonin gene-related peptide (CGRP on the apoptosis of c-kit+ cardiac stem cells in hypoxia. Methods Ischemia and hypoxia models of c-kit+ cardiac stem cells were reproduced in vitro. The models were divided into hypoxia+CGRP group, hypoxia+CGRP8-37 (antagonist of CGRP group, hypoxia control group, normal oxygen group, and hypoxia+BAY11-7082 [antagonist of nuclear factor kappa B (NF-κB] group. NF-κB translocation after hypoxia was detected by immunofluorescence, and NF-κB channel proteins were determined with Western blotting. The NF-κB translocation and the expression of NF-κB channel proteins after CGRP intervention were detected, and the cell apoptosis rate after intervention was determined with flow cytometry in each group. Results Under hypoxia the NF-κB signal pathway was activated, and nuclear translocation occurred in NF-κBP65 (red fluorescence. Compared with hypoxia control group, the expressions of NF-κB related proteins such as P-I-κB, NF-κBP65 and NF-κBP50 decreased obviously (P<0.05. Compared with the hypoxia+CGRP group, the expressions of NF-κB related proteins increased significantly (P<0.05 as mentioned above in hypoxia+CGRP8-37 group. Both the early and late apoptotic rates declined in hypoxia+CGRP group compared with that of hypoxia control group (P<0.05, however, the early apoptotic rate increased markedly in hypoxia+CGRP8-37 group as compared with that of hypoxia+CGRP group (P<0.05. Conclusion Under hypoxia, CGRP may regulate the NF-κB signal pathway, and at the same time suppress the apoptosis of c-kit+ cardiac stem cells. DOI: 10.11855/j.issn.0577-7402.2015.10.03

  13. The coupling of acetylcholine-induced BK channel and calcium channel in guinea pig saccular type II vestibular hair cells.

    Science.gov (United States)

    Kong, Wei-Jia; Guo, Chang-Kai; Zhang, Xiao-Wen; Chen, Xiong; Zhang, Song; Li, Guan-Qiao; Li, Zhi-Wang; Van Cauwenberge, Paul

    2007-01-19

    Molecular biological studies and electrophysiological data have demonstrated that acetylcholine (ACh) is the principal cochlear and vestibular efferent neurotransmitter among mammalians. However, the functional roles of ACh in type II vestibular hair cells (VHCs II) among mammalians are still unclear, with the exception of the well-known alpha9-containing nicotinic ACh receptor (alpha9-containing nAChR)-activated small conductance, calcium-dependent potassium current (SK) in cochlear hair cells and frog saccular hair cells. The activation of SK current was necessary for the calcium influx through the alpha9-containing nAChR. Recently, we have demonstrated that ACh-induced big conductance, calcium-dependent potassium current (BK) was present in VHCs II of the vestibular end-organ of guinea pig. In this study, the nature of calcium influx for the activation of ACh-induced BK current in saccular VHCs II of guinea pig was investigated. Following extracellular perfusion of ACh, saccular VHCs II displayed a sustained outward current, which was sensitive to iberiotoxin (IBTX). High concentration of apamin failed to inhibit the current amplitude of ACh-induced outward current. Intracellular application of Cs(+) completely abolished the current evoked by ACh. ACh-induced current was potently inhibited by nifedipine, nimodipine, Cd(2+) and Ni(2+), respectively. The inhibition potency of these four calcium channel antagonists was nimodipine>nifedipine>cadmium>nickel. The L-type Ca(2+) channels agonist, (-)-Bay-K 8644 mimicked the effect of ACh and activated an IBTX-sensitive current. In addition, partial VHCs II displayed a biphasic waveform. In conclusion, the present data showed that in the guinea pig saccular VHCs II, ACh-induced BK channel was coupled with the calcium channel, but not the receptor. The perfusion of ACh will drive the opening of calcium channels; the influx of calcium ions will then activate the BK current.

  14. Comparing ion conductance recordings of synthetic lipid bilayers with cell membranes containing TRP channels

    CERN Document Server

    Laub, Katrine R; Blicher, Andreas; Madsen, Soren B; Luckhoff, Andreas; Heimburg, Thomas

    2011-01-01

    In this article we compare electrical conductance events from single channel recordings of three TRP channel proteins (TRPA1, TRPM2 and TRPM8) expressed in human embryonic kidney cells with channel events recorded on synthetic lipid membranes close to melting transitions. Ion channels from the TRP family are involved in a variety of sensory processes including thermo- and mechano-reception. Synthetic lipid membranes close to phase transitions display channel-like events that respond to stimuli related to changes in intensive thermodynamic variables such as pressure and temperature. TRP channel activity is characterized by typical patterns of current events dependent on the type of protein expressed. Synthetic lipid bilayers show a wide spectrum of electrical phenomena that are considered typical for the activity of protein ion channels. We find unitary currents, burst behavior, flickering, multistep-conductances, and spikes behavior in both preparations. Moreover, we report conductances and lifetimes for lipi...

  15. Detection of Liquid Water in PEM Fuel Cells' Channels: Design and Validation of a Microsensor.

    OpenAIRE

    Conteau, Delphine; Bonnet, Caroline; Funfschilling, Denis; Weber, Mathieu; Didierjean, Sophie; Lapicque, François

    2010-01-01

    Abstract Suitable water management is a critical issue to reach the full potential of PEM fuel cells: whereas the membrane must be hydrated enough, liquid droplets formed by water in excess can block the flow in the gas distribution channels and hinder the fuel cell performance. In order to detect the presence of droplets in cathode flow channel, an electrochemical sensor has been developed and tested in a dedicated emulation cell. It is based on the widely used principle of two-el...

  16. Serotonin Signal Transduction in Two Groups of Autistic Patients

    Science.gov (United States)

    2013-12-01

    AD_________________ Award Number: W81XWH-11-1-0820 TITLE: Serotonin Signal Transduction in Two...Report 3. DATES COVERED 15 September 2011-14 September 2013 4. TITLE AND SUBTITLE Serotonin Signal Transduction in Two Groups of Autistic Patients...the arena of serotonin sensitivity, from those cells obtained from autistic subjects with normal serum serotonin . This was not the case, as the

  17. T-type calcium channel expression in cultured human neuroblastoma cells

    Institute of Scientific and Technical Information of China (English)

    Xianjie Wen; Shiyuan Xu; Lingling Wang; Hua Liang; Chengxiang Yang; Hanbing Wang; Hongzhen Liu

    2011-01-01

    Human neuroblastoma cells (SH-SY5Y) have similar structures and functions as neural cells and have been frequently used for cell culture studies of neural cell functions. Previous studies have revealed Land N-type calcium channels in SH-SY5Y cells. However, the distribution of the low -voltage activated calcium channel (namely called T-type calcium channel, including Cav3.1, Cav3.2, and Cav3.3) in SH-SY5Y cells remains poorly understood. The present study detected mRNA and protein expression of the T-type calcium channel (Cav3.1, Cav3.2, and Cav3.3) in cultured SH-SY5Y cells using real-time polymerase chain reaction (PCR) and western blot analysis. Results revealed mRNA and protein expression from all three T-type calcium channel subtypes in SH-SY5Y cells. Moreover,Cav3.1 was the predominant T-type calcium channel subtype in SH-SY5Y cells.

  18. Ion channels in human red blood cell membrane: actors or relics?

    Science.gov (United States)

    Thomas, Serge L Y; Bouyer, Guillaume; Cueff, Anne; Egée, Stéphane; Glogowska, Edyta; Ollivaux, Céline

    2011-04-15

    During the past three decades, electrophysiological studies revealed that human red blood cell membrane is endowed with a large variety of ion channels. The physiological role of these channels, if any, remains unclear; they do not participate in red cell homeostasis which is rather based on the almost total absence of cationic permeability and minute anionic conductance. They seem to be inactive in the "resting cell." However, when activated experimentally, ion channels can lead to a very high single cell conductance and potentially induce disorders, with the major risks of fast dehydration and dissipation of gradients. Could there be physiological conditions under which the red cell needs to activate these high conductances, or are ion channels relics of a function lost in anucleated cells? It has been demonstrated that they play a key role in diseases such as sickle cell anemia or malaria. This short overview of ion channels identified to-date in the human red cell membrane is an attempt to propose a dynamic role for these channels in circulating cells in health and disease.

  19. Effects of antigliomatin from the scorpion venom of Buthus martensii Karsch on chloride channels on C6 glioma cells

    Institute of Scientific and Technical Information of China (English)

    Zan Wang; Mingxian Li; Hongmei Meng; Min Huang; Weihong Lin; Li Cui; Shao Wang

    2011-01-01

    Using whole-cell patch-clamp recordings, the effects of antigliomatin were observed on chloride channels on C6 glioma cells cultured in vitro. Antigliomatin was extracted from the venom of the scorpion Buthus martensii Karsch. Chloride channels are closed under normal osmotic pressure. When osmotic pressure was reduced to 120, 110 and 100 mV, the cell volume enlarged, chloride channels opened, and the chloride channel current increased. Three minutes after antigliomatin treatment, the chloride channel current decreased in a dose-dependent manner. These results show that antigliomatin extracted from the venom of the scorpion Buthus martensii Karsch diminishes chloride channel currents on C6 glioma cells.

  20. Constitutive activity of the human TRPML2 channel induces cell degeneration.

    Science.gov (United States)

    Lev, Shaya; Zeevi, David A; Frumkin, Ayala; Offen-Glasner, Vered; Bach, Gideon; Minke, Baruch

    2010-01-22

    The mucolipin (TRPML) ion channel proteins represent a distinct subfamily of channel proteins within the transient receptor potential (TRP) superfamily of cation channels. Mucolipin 1, 2, and 3 (TRPML1, -2, and -3, respectively) are channel proteins that share high sequence homology with each other and homology in the transmembrane domain with other TRPs. Mutations in the TRPML1 protein are implicated in mucolipidosis type IV, whereas mutations in TRPML3 are found in the varitint-waddler mouse. The properties of the wild type TRPML2 channel are not well known. Here we show functional expression of the wild type human TRPML2 channel (h-TRPML2). The channel is functional at the plasma membrane and characterized by a significant inward rectification similar to other constitutively active TRPML mutant isoforms. The h-TRPML2 channel displays nonselective cation permeability, which is Ca(2+)-permeable and inhibited by low extracytosolic pH but not Ca(2+) regulated. In addition, constitutively active h-TRPML2 leads to cell death by causing Ca(2+) overload. Furthermore, we demonstrate by functional mutation analysis that h-TRPML2 shares similar characteristics and structural similarities with other TRPML channels that regulate the channel in a similar manner. Hence, in addition to overall structure, all three TRPML channels also share common modes of regulation.

  1. Photobiomodulation on KATP Channels of Kir6.2-Transfected HEK-293 Cells

    Directory of Open Access Journals (Sweden)

    Fu-qing Zhong

    2014-01-01

    Full Text Available Background and Objective. ATP-sensitive potassium (KATP channel couples cell metabolism to excitability. To explore role of KATP channels in cellular photobiomodulation, we designed experiment to study effect of low intensity 808 nm laser irradiation on the activity of membrane KATP channel. Study Design/Materials and Methods. Plasmids encoding Kir6.2 was constructed and heterologously expressed in cultured mammalian HEK-293 cells. The patch-clamp and data acquisition systems were used to record KATP channel current before and after irradiation. A laser beam of Ga-As 808 nm at 5 mW/cm2 was used in experiments. A one-way ANOVA test followed by a post hoc Student-Newman-Keuls test was used to assess the statistical differences between data groups. Results. Obvious openings of KATP channels of Kir6.2-transfected HEK-293 cells and excised patches were recorded during and after low intensity 808 nm laser irradiation. Compared with the channels that did not undergo irradiation, open probability, current amplitude, and dwell time of KATP channels after irradiation improved. Conclusions. Low intensity 808 nm laser irradiation may activate membrane KATP channels of Kir6.2-transfected HEK-293 cells and in excised patches.

  2. Extracellular pH dynamically controls cell surface delivery of functional TRPV5 channels.

    NARCIS (Netherlands)

    Lambers, T.T.; Oancea, E.; Groot, T. de; Topala, C.N.; Hoenderop, J.G.J.; Bindels, R.J.M.

    2007-01-01

    Extracellular pH has long been known to affect the rate and magnitude of ion transport processes among others via regulation of ion channel activity. The Ca(2+)-selective transient receptor potential vanilloid 5 (TRPV5) channel constitutes the apical entry gate in Ca(2+)-transporting cells, contribu

  3. Role of BK channels in the apoptotic volume decrease in native eel intestinal cells

    DEFF Research Database (Denmark)

    Lionetto, Maria Giulia; Giordano, Maria Elena; Calisi, Antonio

    2010-01-01

    of these channels in the Apoptotic Volume Decrease (AVD) of isolated eel enterocytes, and the possible interaction between BK channels and the progression of apoptosis. The detection of apoptosis was performed by confocal microscopy and annexin V and propidium iodide labelling; cell volume changes were monitored...

  4. The Flatworm Macrostomum lignano Is a Powerful Model Organism for Ion Channel and Stem Cell Research

    NARCIS (Netherlands)

    Simanov, Daniil; Mellaart-Straver, Imre; Sormacheva, Irina; Berezikov, Eugene

    2012-01-01

    Bioelectrical signals generated by ion channels play crucial roles in many cellular processes in both excitable and nonexcitable cells. Some ion channels are directly implemented in chemical signaling pathways, the others are involved in regulation of cytoplasmic or vesicular ion concentrations, pH,

  5. Comparative identification of Ca2+ channel expression in INS-1 and rat pancreatic β cells

    Institute of Scientific and Technical Information of China (English)

    Fei Li; Zong-Ming Zhang

    2009-01-01

    AIM: To identify and compare the profile of Ca2+ channel subunit expression in INS-1 and rat pancreatic β cells. METHODS: The rat insulin-secreting INS-1 cell line was cultured in RPMI-1640 with Wistar rats employed as islet donors. Ca2+ channel subunit expression in INS-1 and isolated rat β cells were examined by reverse transcription polymerase chain reaction (RT-PCR). Absolute real-time quantitative PCR was performed in a Bio-Rad iQ5 Gradient Real Time PCR system and the data analyzed using an iQ5 system to identify the expression level of the Ca2+ channel subunits. RESULTS: In INS-1 cells, the L-type Ca2+ channel 1C subunit had the highest expression level and the TPRM2 subunit had the second highest expression. In rat β cells, the TPRC4β subunit expression was dominant and the expression of the L-type 1C subunit exceeded the 1D subunit expression about two-fold. This result agreed with other studies, confirming the important role of the L-type 1C subunit in insulinsecreting cells, and suggested that non-voltageoperated Ca2+ channels may have an important role in biphasic insulin secretion. CONCLUSION: Twelve major Ca2+ channel subunit types were identified in INS-1 and rat β cells and significant differences were observed in the expression of certain subunits between these cells.

  6. A cell sorting and trapping microfluidic device with an interdigital channel

    Directory of Open Access Journals (Sweden)

    Jing Tu

    2016-12-01

    Full Text Available The growing interest in cell sorting and trapping is driving the demand for high performance technologies. Using labeling techniques or external forces, cells can be identified by a series of methods. However, all of these methods require complicated systems with expensive devices. Based on inherent differences in cellular morphology, cells can be sorted by specific structures in microfluidic devices. The weir filter is a basic and efficient cell sorting and trapping structure. However, in some existing weir devices, because of cell deformability and high flow velocity in gaps, trapped cells may become stuck or even pass through the gaps. Here, we designed and fabricated a microfluidic device with interdigital channels for cell sorting and trapping. The chip consisted of a sheet of silicone elastomer polydimethylsiloxane and a sheet of glass. A square-wave-like weir was designed in the middle of the channel, comprising the interdigital channels. The square-wave pattern extended the weir length by three times with the channel width remaining constant. Compared with a straight weir, this structure exhibited a notably higher trapping capacity. Interdigital channels provided more space to slow down the rate of the pressure decrease, which prevented the cells from becoming stuck in the gaps. Sorting a mixture K562 and blood cells to trap cells demonstrated the efficiency of the chip with the interdigital channel to sort and trap large and less deformable cells. With stable and efficient cell sorting and trapping abilities, the chip with an interdigital channel may be widely applied in scientific research fields.

  7. Development of bipolar plates with different flow channel configurations for fuel cells

    Science.gov (United States)

    Boddu, Rajesh; Marupakula, Uday Kumar; Summers, Benjamin; Majumdar, Pradip

    Bipolar plates include separate gas flow channels for anode and cathode electrodes of a fuel cell. These gases flow channels supply reactant gasses as well as remove products from the cathode side of the fuel cell. Fluid flow, heat and mass transport processes in these channels have significant effect on fuel cell performance, particularly to the mass transport losses. The design of the bipolar plates should minimize plate thickness for low volume and mass. Additionally, contact faces should provide a high degree of surface uniformity for low thermal and electrical contact resistances. Finally, the flow fields should provide for efficient heat and mass transport processes with reduced pressure drops. In this study, bipolar plates with different serpentine flow channel configurations are analyzed using computational fluid dynamics modeling. Flow characteristics including variation of pressure in the flow channel across the bipolar plate are presented. Pressure drop characteristics for different flow channel designs are compared. Results show that with increased number of parallel channels and smaller sizes, a more effective contact surface area along with decreased pressured drop can be achieved. Correlations of such entrance region coefficients will be useful for the PEM fuel cell simulation model to evaluate the affects of the bipolar plate design on mass transfer loss and hence on the total current and power density of the fuel cell.

  8. Signal transduction by the major histocompatibility complex class I molecule

    DEFF Research Database (Denmark)

    Pedersen, Anders Elm; Skov, S; Bregenholt, S;

    1999-01-01

    Ligation of cell surface major histocompatibility class I (MHC-I) proteins by antibodies, or by their native counter receptor, the CD8 molecule, mediates transduction of signals into the cells. MHC-I-mediated signaling can lead to both increased and decreased activity of the MHC-I-expressing cell...

  9. Analysis of signal transduction in brain cells using molecular signal microscope; Bunshi jiho kenbikyo wo mochiita nousaibou no joho henkan kiko no kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Kawato, Suguru [The University of Tokyo, Tokyo (Japan). Dept. of Biophysics and Life Sciences

    1999-12-16

    We analyzed the signal transduction in brain neurons by real-time imaging of Ca/NO signals using the Molecular Signal Microscope. We also analyzed synthesis and action of neurosteroids in the hippocampus. We discovered steroid synthesis machinery containing cytochrome P 450 scc in hippocampal neurons. We found that pregnenolone sulfate acutely potentiated NMDA receptor-mediated Ca conductivity in hippocampal neurons. We also found that stress steroid corticosterone acutely prolonged NMDA receptor-mediated Ca{sup 2+} influx, resulting in Ca-induced neuro-toxicity. (author)

  10. Bidirectional effects of hydrogen sulfide via ATP-sensitive K(+) channels and transient receptor potential A1 channels in RIN14B cells.

    Science.gov (United States)

    Ujike, Ayako; Otsuguro, Ken-ichi; Miyamoto, Ryo; Yamaguchi, Soichiro; Ito, Shigeo

    2015-10-05

    Hydrogen sulfide (H2S) reportedly acts as a gasotransmitter because it mediates various cellular responses through several ion channels including ATP-sensitive K(+) (KATP) channels and transient receptor potential (TRP) A1 channels. H2S can activate both KATP and TRPA1 channels at a similar concentration range. In a single cell expressing both channels, however, it remains unknown what happens when both channels are simultaneously activated by H2S. In this study, we examined the effects of H2S on RIN14B cells that express both KATP and TRPA1 channels. RIN14B cells showed several intracellular Ca(2+) concentration ([Ca(2+)]i) responses to NaHS (300 µM), an H2S donor, i.e., inhibition of spontaneous Ca(2+) oscillations (37%), inhibition followed by [Ca(2+)]i increase (24%), and a rapid increase in [Ca(2+)]i (25%). KATP channel blockers, glibenclamide or tolbutamide, abolished any inhibitory effects of NaHS and enhanced NaHS-mediated [Ca(2+)]i increases, which were inhibited by extracellular Ca(2+) removal, HC030031 (a TRPA1 antagonist), and disulfide bond-reducing agents. NaHS induced 5-hydroxytryptamine (5-HT) release from RIN14B cells, which was also inhibited by TRPA1 antagonists. These results indicate that H2S has both inhibitory and excitatory effects by opening KATP and TRPA1 channels, respectively, in RIN14B cells, suggesting potential bidirectional modulation of secretory functions.

  11. Insulin activates single amiloride-blockable Na channels in a distal nephron cell line (A6).

    Science.gov (United States)

    Marunaka, Y; Hagiwara, N; Tohda, H

    1992-09-01

    Using the patch-clamp technique, we studied the effect of insulin on an amiloride-blockable Na channel in the apical membrane of a distal nephron cell line (A6) cultured on permeable collagen films for 10-14 days. NPo (N, number of channels per patch membrane; Po, average value of open probability of individual channels in the patch) under baseline conditions was 0.88 +/- 0.12 (SE)(n = 17). After making cell-attached patches on the apical membrane which contained Na channels, insulin (1 mU/ml) was applied to the serosal bath. While maintaining the cell-attached patch, NPo significantly increased to 1.48 +/- 0.19 (n = 17; P less than 0.001) after 5-10 min of insulin application. The open probability of Na channels was 0.39 +/- 0.01 (n = 38) under baseline condition, and increased to 0.66 +/- 0.03 (n = 38, P less than 0.001) after addition of insulin. The baseline single-channel conductance was 4pS, and neither the single-channel conductance nor the current-voltage relationship was significantly changed by insulin. These results indicate that insulin increases Na absorption in the distal nephron by increasing the open probability of the amiloride-blockable Na channel.

  12. Water behavior in a u-shaped flow channel of PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Quan, P.; Zhou, B.; Sobiesiak, A. [Windsor Univ., ON (Canada). Dept. of Mechanical, Automotive and Materials Engineering; Liu, Z.S. [National Research Council of Canada, Vancouver, BC (Canada). Inst. for Fuel Cell Innovation

    2005-07-01

    A study was conducted to find a practical approach for predicting liquid water distribution in the U-shaped flow channels of a proton exchange membrane (PEM) fuel cell. Computational fluid dynamics modeling with the FLUENT software package was used to demonstrate the two-phase flow of the air-water transport process inside the channel. It was noted that no chemical reaction occurs inside the flow channels and the liquid water is formed either on the surfaces of the flow channels or inside the flow channels. The problem can therefore be simplified as a fluid mechanics problem with water sources inside its physical domain or on its boundaries. The volume-of-fluid (VOF) model was used to track dynamic air-water interactions. Three cases with a range of initial water phase distributions corresponding to different fuel cell operating conditions were simulated numerically to gain a better understanding of water behaviour inside the serpentine channel. It was concluded that the bend area in the serpentine flow field affects the fuel cell performance. This is because it influences the flow field which in turn influences the air-water flow and water liquid distribution inside the channel or along the inside channel surfaces. 15 refs., 1 tab., 11 figs.

  13. Purinergic signalling - a possible mechanism for KCNQ1 channel response to cell volume challenges

    DEFF Research Database (Denmark)

    Bomholtz, Sofia Hammami; Willumsen, Niels J.; Meinild, A.-K.

    2013-01-01

    to ion channel stimulation and cell volume back-regulation. Our aim was to investigate whether volume sensitivity of the voltage-gated K(+) channel, KCNQ1, is dependent on ATP release and regulation by purinergic signalling. METHODS: We used Xenopus oocytes heterologously expressing human KCNQ1, KCNE1......, water channels (AQP1) and P2Y2 receptors. ATP release was monitored by a luciferin-luciferase assay and ion channel conductance was recorded by two-electrode voltage clamp. RESULTS: The luminescence assay showed that oocytes released ATP in response to mechanical, hypoosmotic stimuli and hyperosmotic...... to mechanical stimuli and cell volume changes. Purinergic P2 and P1 receptors confer some of the KCNQ1 channel volume sensitivity, although endogenous adenosine receptors and expressed P2Y2 receptors do so in the negative direction....

  14. Identification of TRPM7 channels in human intestinal interstitial cells of Cajal

    Institute of Scientific and Technical Information of China (English)

    Byung Joo Kim; Kyu Joo Park; Hyung Woo Kim; Seok Choi; Jae Yeoul Jun; In Youb Chang; Ju-Hong Jeon; Insuk So; Seon Jeong Kim

    2009-01-01

    AIM: To investigate the characteristics of slow electrical waves and the presence of transient receptor potential melastatin-type 7 (TRPM7) in the human gastrointestinal (GI) tract. METHODS: Conventional microelectrode techniques were used to record intracellular electrical responses from human GI smooth muscle tissue. Immunohistochemistry was used to identify TRPM7 channels in interstitial cells of Cajal (ICCs). RESULTS: The human GI tract generated slow electrical waves and had ICCs which functioned as pacemaker cells. Flufenamic acid, a nonselective cation channel blocker, and 2-APB (2-aminoethoxydiphenyl borate) and La3~+, TRPM7 channel blockers, inhibited the slow waves. Also, TRPM7 channels were expressed in ICCs in human tissue. CONCLUSION: These results suggest that the human GI tract generates slow waves and that TRPM7 channels expressed in the ICCs may be involved in the generation of the slow waves.

  15. Relative Roles of Gap Junction Channels and Cytoplasm in Cell-to-Cell Diffusion of Fluorescent Tracers

    Science.gov (United States)

    Safranyos, Richard G. A.; Caveney, Stanley; Miller, James G.; Petersen, Nils O.

    1987-04-01

    Intercellular (tissue) diffusion of molecules requires cytoplasmic diffusion and diffusion through gap junctional (or cell-to-cell) channels. The rates of tissue and cytoplasmic diffusion of fluorescent tracers, expressed as an effective diffusion coefficient, De, and a cytoplasmic diffusion coefficient, Dcyt, have been measured among the developing epidermal cells of a larval beetle, Tenebrio molitor L., to determine the contribution of the junctional channels to intercellular diffusion. Tracer diffusion was measured by injecting fluorescent tracers into cells and quantitating the rate of subsequent spread into adjacent cells. Cytoplasmic diffusion was determined by fluorescence photobleaching. These experiments show that gap junctional channels constitute approximately 70-80% of the total cell-to-cell resistance to the diffusion of organic tracers at high concentrations in this tissue. At low concentrations, however, the binding of tracer to cytoplasm slows down the cytoplasmic diffusion, which may limit intercellular diffusion.

  16. Kv3.4 potassium channel-mediated electrosignaling controls cell cycle and survival of irradiated leukemia cells.

    Science.gov (United States)

    Palme, Daniela; Misovic, Milan; Schmid, Evi; Klumpp, Dominik; Salih, Helmut R; Rudner, Justine; Huber, Stephan M

    2013-08-01

    Aberrant ion channel expression in the plasma membrane is characteristic for many tumor entities and has been attributed to neoplastic transformation, tumor progression, metastasis, and therapy resistance. The present study aimed to define the function of these "oncogenic" channels for radioresistance of leukemia cells. Chronic myeloid leukemia cells were irradiated (0-6 Gy X ray), ion channel expression and activity, Ca(2+)- and protein signaling, cell cycle progression, and cell survival were assessed by quantitative reverse transcriptase-polymerase chain reaction, patch-clamp recording, fura-2 Ca(2+)-imaging, immunoblotting, flow cytometry, and clonogenic survival assays, respectively. Ionizing radiation-induced G2/M arrest was preceded by activation of Kv3.4-like voltage-gated potassium channels. Channel activation in turn resulted in enhanced Ca(2+) entry and subsequent activation of Ca(2+)/calmodulin-dependent kinase-II, and inactivation of the phosphatase cdc25B and the cyclin-dependent kinase cdc2. Accordingly, channel inhibition by tetraethylammonium and blood-depressing substance-1 and substance-2 or downregulation by RNA interference led to release from radiation-induced G2/M arrest, increased apoptosis, and decreased clonogenic survival. Together, these findings indicate the functional significance of voltage-gated K(+) channels for the radioresistance of myeloid leukemia cells.

  17. T Cell Receptor Mediated Calcium Entry Requires Alternatively Spliced Cav1.1 Channels.

    Directory of Open Access Journals (Sweden)

    Didi Matza

    Full Text Available The process of calcium entry in T cells is a multichannel and multi-step process. We have studied the requirement for L-type calcium channels (Cav1.1 α1S subunits during calcium entry after TCR stimulation. High expression levels of Cav1.1 channels were detected in activated T cells. Sequencing and cloning of Cav1.1 channel cDNA from T cells revealed that a single splice variant is expressed. This variant lacks exon 29, which encodes the linker region adjacent to the voltage sensor, but contains five new N-terminal exons that substitute for exons 1 and 2, which are found in the Cav1.1 muscle counterpart. Overexpression studies using cloned T cell Cav1.1 in 293HEK cells (that lack TCR suggest that the gating of these channels was altered. Knockdown of Cav1.1 channels in T cells abrogated calcium entry after TCR stimulation, suggesting that Cav1.1 channels are controlled by TCR signaling.

  18. Fluid and cell behaviors along a 3D printed alginate/gelatin/fibrin channel.

    Science.gov (United States)

    Xu, Yufan; Wang, Xiaohong

    2015-08-01

    Three-dimensional (3D) cell manipulation is available with the integration of microfluidic technology and rapid prototyping techniques. High-Fidelity (Hi-Fi) constructs hold enormous therapeutic potential for organ manufacturing and regenerative medicine. In the present paper we introduced a quasi-three-dimensional (Q3D) model with parallel biocompatible alginate/gelatin/fibrin hurdles. The behaviors of fluids and cells along the microfluidic channels with various widths were studied. Cells inside the newly designed microfluidic channels attached and grew well. Morphological changes of adipose-derived stem cells (ADSCs) in both two-dimensional (2D) and 3D milieu were found on the printed constructs. Endothelialization occurred with the co-cultures of ADSCs and hepatocytes. This study provides insights into the interactions among fluids, cells and biomaterials, the behaviors of fluids and cells along the microfluidic channels, and the applications of Q3D techniques.

  19. Inhibition of Kv1.3 Channels in Human Jurkat T Cells by Xanthohumol and Isoxanthohumol.

    Science.gov (United States)

    Gąsiorowska, Justyna; Teisseyre, Andrzej; Uryga, Anna; Michalak, Krystyna

    2015-08-01

    Using whole-cell patch-clamp technique, we investigated influence of selected compounds from groups of prenylated chalcones and flavonoids: xanthohumol and isoxanthohumol on the activity of Kv1.3 channels in human leukemic Jurkat T cells. Obtained results provide evidence that both examined compounds were inhibitors of Kv1.3 channels in these cells. The inhibitory effects occurred in a concentration-dependent manner. The estimated value of the half-blocking concentration (EC50) was about 3 μM for xanthohumol and about 7.8 μM for isoxanthohumol. The inhibition of Kv1.3 channels by examined compounds was not complete. Upon an application of the compounds at the maximal concentrations equal to 30 μM, the activity of Kv1.3 channels was inhibited to about 0.13 of the control value. The inhibitory effect was reversible. The application of xanthohumol and isoxanthohumol did not change the currents' activation and inactivation rate. These results may confirm our earlier hypothesis that the presence of a prenyl group in a molecule is a factor that facilitates the inhibition of Kv1.3 channels by compounds from the groups of flavonoids and chalcones. The inhibition of Kv1.3 channels might be involved in antiproliferative and proapoptotic effects of the compounds observed in cancer cell lines expressing these channels.

  20. Expression of transient receptor potential (TRP) channel mRNAs in the mouse olfactory bulb.

    Science.gov (United States)

    Dong, Hong-Wei; Davis, James C; Ding, ShengYuan; Nai, Qiang; Zhou, Fu-Ming; Ennis, Matthew

    2012-08-22

    Transient receptor potential (TRP) channels are a large family of cation channels. The 28 TRP channel subtypes in rodent are divided into 6 subfamilies: TRPC1-7, TRPV1-6, TRPM1-8, TRPP2/3/5, TRPML1-3 and TRPA1. TRP channels are involved in peripheral olfactory transduction. Several TRPC channels are expressed in unidentified neurons in the main olfactory bulb (OB), but the expression of most TRP channels in the OB has not been investigated. The present study employed RT-PCR as an initial survey of the expression of TRP channel mRNAs in the mouse OB and in 3 cell types: external tufted, mitral and granule cells. All TRP channel mRNAs except TRPV5 were detected in OB tissue. Single cell RT-PCR revealed that external tufted, mitral and granule cell populations expressed in aggregate 14 TRP channel mRNAs encompassing members of all 6 subfamilies. These different OB neuron populations expressed 7-12 channel mRNAs. Common channel expression was more similar among external tufted and mitral cells than among these cells and granule cells. These results indicate that a large number of TRP channel subtypes are expressed in OB neurons, providing the molecular bases for these channels to regulate OB neuron activity and central olfactory processing.

  1. The development of taste transduction and taste chip technology

    Institute of Scientific and Technical Information of China (English)

    LI Yan; LIU Qingjun; XU Ying; CAI Hua; QIN Lifeng; WANG Lijiang; WANG Ping

    2005-01-01

    The intrinsic perception process of taste is obviously far less known than those of vision, audition, touch and olfaction. Despite that taste cells utilize a variety of sensory mechanisms to translate plenty of gustatory sensations such as sour, sweet, bitter, salty and umami into cellular signals, gustatory perception mechanisms are still under exploration due to the lack of effective methods on cellular and molecular level. Recently the development of molecular biological and electrophysiological studies has promoted exploration of olfactory and gustatory transduction and coding mechanisms dramatically. Based on the studies of artificial olfaction, artificial taste and cell-based biosensor in our laboratory, this paper reviews the current research on taste transduction mechanism. We introduce the recent advances in cell chip that combined biology with microelectronics, discuss taste cell chip as well as its potential of prospective application in taste transduction mechanism in detail and propose the research trends of taste chip in future.

  2. The effects of Tmc1 Beethoven mutation on mechanotransducer channel function in cochlear hair cells.

    Science.gov (United States)

    Beurg, Maryline; Goldring, Adam C; Fettiplace, Robert

    2015-09-01

    Sound stimuli are converted into electrical signals via gating of mechano-electrical transducer (MT) channels in the hair cell stereociliary bundle. The molecular composition of the MT channel is still not fully established, although transmembrane channel-like protein isoform 1 (TMC1) may be one component. We found that in outer hair cells of Beethoven mice containing a M412K point mutation in TMC1, MT channels had a similar unitary conductance to that of wild-type channels but a reduced selectivity for Ca(2+). The Ca(2+)-dependent adaptation that adjusts the operating range of the channel was also impaired in Beethoven mutants, with reduced shifts in the relationship between MT current and hair bundle displacement for adapting steps or after lowering extracellular Ca(2+); these effects may be attributed to the channel's reduced Ca(2+) permeability. Moreover, the density of stereociliary CaATPase pumps for Ca(2+) extrusion was decreased in the mutant. The results suggest that a major component of channel adaptation is regulated by changes in intracellular Ca(2+). Consistent with this idea, the adaptive shift in the current-displacement relationship when hair bundles were bathed in endolymph-like Ca(2+) saline was usually abolished by raising the intracellular Ca(2+) concentration.

  3. Morphogenesis of the epithelial cell transporting phenotype: synthesis and distribution of ion channels.

    Science.gov (United States)

    García-Villegas, M R; Valdés, J; Reyes, G; Moreno, J; Cortes, N; Contreras, R G; Cereijido, M

    1996-05-01

    The exchange of substances between higher organisms and the environment takes place across epithelia consisting of one or more cell layers. To perform this function, epithelial cells have two basic differentiated properties: 1) they form tight junctions (TJs) that seal the extracellular space, and 2) they are polarized into an apical and a basolateral domain, with entirely different structural, biochemical and physiological properties. Our understanding of the mechanisms involved in the expression of these properties has been greatly enhanced by the availability of epithelial cell lines that form TJs and polarize in vitro under conditions suitable for experimental control. In this article we summarize our studies on the synthesis and polarized expression of ion channels in epithelial cells. MDCK cells have four types of K+ channels in the apical domain, and a fifth one in the basolateral domain. The basolateral side also has a population of CI- channels. Each type of channel is absolutely polarized. Harvesting with trypsin-EDTA reduces the area of the plasma membrane by 50% and the channel population by 90%. Upon plating, these channels are recovered within a few hours. We describe here the main extracellular and intracellular mechanisms involved in these phenomena.

  4. Optimization of polymer electrolyte membrane fuel cell flow channels using a genetic algorithm

    Science.gov (United States)

    Catlin, Glenn; Advani, Suresh G.; Prasad, Ajay K.

    The design of the flow channels in PEM fuel cells directly impacts the transport of reactant gases to the electrodes and affects cell performance. This paper presents results from a study to optimize the geometry of the flow channels in a PEM fuel cell. The optimization process implements a genetic algorithm to rapidly converge on the channel geometry that provides the highest net power output from the cell. In addition, this work implements a method for the automatic generation of parameterized channel domains that are evaluated for performance using a commercial computational fluid dynamics package from ANSYS. The software package includes GAMBIT as the solid modeling and meshing software, the solver FLUENT, and a PEMFC Add-on Module capable of modeling the relevant physical and electrochemical mechanisms that describe PEM fuel cell operation. The result of the optimization process is a set of optimal channel geometry values for the single-serpentine channel configuration. The performance of the optimal geometry is contrasted with a sub-optimal one by comparing contour plots of current density, oxygen and hydrogen concentration. In addition, the role of convective bypass in bringing fresh reactant to the catalyst layer is examined in detail. The convergence to the optimal geometry is confirmed by a bracketing study which compares the performance of the best individual to those of its neighbors with adjacent parameter values.

  5. Numerical study of water management in the air flow channel of a PEM fuel cell cathode

    Energy Technology Data Exchange (ETDEWEB)

    Quan, Peng; Lai, Ming-Chia [Department of Mechanical Engineering, Wayne State University, Detroit, MI 48202 (United States)

    2007-01-10

    The water management in the air flow channel of a proton exchange membrane (PEM) fuel cell cathode is numerically investigated using the FLUENT software package. By enabling the volume of fraction (VOF) model, the air-water two-phase flow can be simulated under different operating conditions. The effects of channel surface hydrophilicity, channel geometry, and air inlet velocity on water behavior, water content inside the channel, and two-phase pressure drop are discussed in detail. The results of the quasi-steady-state simulations show that: (1) the hydrophilicity of reactant flow channel surface is critical for water management in order to facilitate water transport along channel surfaces or edges; (2) hydrophilic surfaces also increase pressure drop due to liquid water spreading; (3) a sharp corner channel design could benefit water management because it facilitates water accumulation and provides paths for water transport along channel surface opposite to gas diffusion layer; (4) the two-phase pressure drop inside the air flow channel increases almost linearly with increasing air inlet velocity. (author)

  6. Roles of CRAC and Cav-like channels in T cells: more than one gatekeeper?

    Science.gov (United States)

    Kotturi, Maya F; Hunt, Simon V; Jefferies, Wilfred A

    2006-07-01

    Ca2+ channels in the plasma membrane of T cells vitally influence Ca2+-dependent signals that lead ultimately to cytokine secretion, cellular proliferation and apoptosis. Conventional models depict the Ca2+ inrush across the T-cell membrane following T-cell receptor engagement as being due to Ca2+-release-activated Ca2+ (CRAC) channels. A poorly understood mechanism detects the lowered Ca2+ concentrations within intracellular stores that open CRAC channels. Mammalian homologs of the Drosophila transient receptor potential Ca2+ channels possibly help to gate the store-operated, Ca2+-borne CRAC current. In this article, we review evidence of a supplementary involvement of other Ca2+ channels, the opening of which does not necessarily reflect intracellular Ca2+-store depletion. We highlight a role for variants of L-type voltage-dependent Ca2+ channels in increasing intracellular Ca2+ concentrations during activation. For more-accurate modeling of lymphocyte activation and possible pharmacological interventions, future research should aim to identify physiologically relevant situations in which such channels help to shape the Ca2+ signal.

  7. Pannexin 1 channels: new actors in the regulation of catecholamine release from adrenal chromaffin cells

    Science.gov (United States)

    Momboisse, Fanny; Olivares, María José; Báez-Matus, Ximena; Guerra, María José; Flores-Muñoz, Carolina; Sáez, Juan C.; Martínez, Agustín D.; Cárdenas, Ana M.

    2014-01-01

    Chromaffin cells of the adrenal gland medulla synthesize and store hormones and peptides, which are released into the blood circulation in response to stress. Among them, adrenaline is critical for the fight-or-flight response. This neurosecretory process is highly regulated and depends on cytosolic [Ca2+]. By forming channels at the plasma membrane, pannexin-1 (Panx1) is a protein involved in many physiological and pathological processes amplifying ATP release and/or Ca2+ signals. Here, we show that Panx1 is expressed in the adrenal gland where it plays a role by regulating the release of catecholamines. In fact, inhibitors of Panx1 channels, such as carbenoxolone (Cbx) and probenecid, reduced the secretory activity induced with the nicotinic agonist 1,1-dimethyl-4-phenyl-piperazinium (DMPP, 50 μM) in whole adrenal glands. A similar inhibitory effect was observed in single chromaffin cells using Cbx or 10Panx1 peptide, another Panx1 channel inhibitors. Given that the secretory response depends on cytosolic [Ca2+] and Panx1 channels are permeable to Ca2+, we studied the possible implication of Panx1 channels in the Ca2+ signaling occurring during the secretory process. In support of this possibility, Panx1 channel inhibitors significantly reduced the Ca2+ signals evoked by DMPP in single chromaffin cells. However, the Ca2+ signals induced by caffeine in the absence of extracellular Ca2+ was not affected by Panx1 channel inhibitors, suggesting that this mechanism does not involve Ca2+ release from the endoplasmic reticulum. Conversely, Panx1 inhibitors significantly blocked the DMPP-induce dye uptake, supporting the idea that Panx1 forms functional channels at the plasma membrane. These findings indicate that Panx1 channels participate in the control the Ca2+ signal that triggers the secretory response of adrenal chromaffin cells. This mechanism could have physiological implications during the response to stress. PMID:25237296

  8. Pannexin 1 channels: new actors in the regulation of catecholamine release from adrenal chromaffin cells

    Directory of Open Access Journals (Sweden)

    Fanny eMomboisse

    2014-09-01

    Full Text Available Chromaffin cells of the adrenal gland medulla synthesize and store hormones and peptides, which are released into the blood circulation in response to stress. Among them, adrenaline is critical for the fight-or-flight response. This neurosecretory process is highly regulated and depends on cytosolic [Ca2+]. By forming channels at the plasma membrane, pannexin-1 (Panx1 is a protein involved in many physiological and pathological processes amplifying ATP release and/or Ca2+ signals. Here, we show that Panx1 is expressed in the adrenal gland where it plays a role by regulating the release of catecholamines. In fact, inhibitors of Panx1 channels, such as carbenoxolone (Cbx and probenecid, reduced the secretory activity induced with the nicotinic agonist 1,1-dimethyl-4-phenyl-piperazinium (DMPP, 50 µM in whole adrenal glands. A similar inhibitory effect was observed in single chromaffin cells using Cbx or 10Panx1 peptide, another Panx1 channel inhibitors. Given that the secretory response depends on cytosolic [Ca2+] and Panx1 channels are permeable to Ca2+, we studied the possible implication of Panx1 channels in the Ca2+ signaling occurring during the secretory process. In support of this possibility, Panx1 channel inhibitors significantly reduced the Ca2+ signals evoked by DMPP in single chromaffin cells. However, the Ca2+ signals induced by caffeine in the absence of extracellular Ca2+ was not affected by Panx1 channel inhibitors, suggesting that this mechanism does not involve Ca2+ release from the endoplasmic reticulum. Conversely, Panx1 inhibitors significantly blocked the DMPP-induce dye uptake, supporting the idea that Panx1 forms functional channels at the plasma membrane. These findings indicate that Panx1 channels participate in the control the Ca2+ signal that triggers the secretory response of adrenal chromaffin cells. This mechanism could have physiological implications during the response to stress.

  9. Reliable Signal Transduction

    Science.gov (United States)

    Wollman, Roy

    Stochasticity inherent to biochemical reactions (intrinsic noise) and variability in cellular states (extrinsic noise) degrade information transmitted through signaling networks. We analyzed the ability of temporal signal modulation - that is dynamics - to reduce noise-induced information loss. In the extracellular signal-regulated kinase (ERK), calcium (Ca(2 +)) , and nuclear factor kappa-B (NF- κB) pathways, response dynamics resulted in significantly greater information transmission capacities compared to nondynamic responses. Theoretical analysis demonstrated that signaling dynamics has a key role in overcoming extrinsic noise. Experimental measurements of information transmission in the ERK network under varying signal-to-noise levels confirmed our predictions and showed that signaling dynamics mitigate, and can potentially eliminate, extrinsic noise-induced information loss. By curbing the information-degrading effects of cell-to-cell variability, dynamic responses substantially increase the accuracy of biochemical signaling networks.

  10. Brassinosteroid signal transduction: An emerging picture

    Institute of Scientific and Technical Information of China (English)

    WANG Qiaomei; MA Ligeng

    2003-01-01

    Steroid hormones play essential roles in animal growth and development. Steroid signaling in animal system is focused on the direct gene regulation response mediated by its nuclear receptors. Recently, steroid hormones are also found in plants. Identification of BRI1 - a critical component of the plasma-membrane steroid receptor complex, and the related signal transduction pathway mediated by the membrane receptor have revealed an elementary picture of BR signaling from the cell surface perception to the activation of BR-responsive nuclear genes.

  11. Effects of K+ channel agonists cromakalim and pinacidil on rat basilar artery smooth muscle cells are mediated by Ca(++)-activated K+ channels.

    Science.gov (United States)

    Stockbridge, N; Zhang, H; Weir, B

    1991-11-27

    Whole-cell and cell-free inside-out patch-clamp recording techniques were used to examine the actions of potassium channel openers pinacidil and cromakalim in enzymatically isolated smooth muscle cells of rat basilar artery. Delayed rectifier and calcium-dependent potassium currents were identified from the whole-cell recordings. Only the calcium-dependent potassium current was increased by cromakalim and pinacidil. Recordings from inside-out membrane patches revealed a large conductance voltage- and calcium-dependent potassium channel, which was blocked by charybdotoxin but unaffected by ATP less than 10 mM. Cromakalim and pinacidil increased the open probability of this channel. On the basis of these results, we suggest that such drugs, acting on cerebral arterial smooth muscle cell potassium channels, may be of some benefit in the treatment of cerebral vasospasm following subarachnoid hemorrhage.

  12. Incorporating protein transduction domains (PTD) within intracellular proteins associated with the 'stemness' phenotype. Novel use of such recombinant 'fusion' proteins to overcome current limitations of applying autologous adult stem cells in regenerative medicine?

    Science.gov (United States)

    Heng, Boon Chin; Cao, Tong

    2005-01-01

    Adult stem cells originating from post-natal tissues hold tremendous promise in regenerative medicine. Nevertheless, there are several deficiencies of adult stem cells that would limit their application in transplantation therapy, in particular their relative scarcity, restricted multi-potency and limited proliferative capacity in vitro. A possible approach to overcome these limitations would be to genetically modulate adult stem cells to strongly express genes that are closely associated with the 'stemness' phenotype. Overwhelming safety concerns would preclude the direct application of recombinant DNA technology in genetic modulation. Moreover, constitutive expression of 'stemness' genes would prevent adult stem cells from participating in tissue/organ regeneration upon transplantation. A novel alternative would be to incorporate protein transduction domains within intracellular proteins (i.e. transcription factors) that are associated with the 'stemness' phenotype. Such recombinant fusion proteins would then have the ability to translocate across the cell membrane and be internalized within the cytosol, thereby enabling them to exert a gene-modulatory effect on the cell, without any permanent genetic alteration. This would be particularly useful for maintaining the 'stemness' of adult stem cell populations during extensive ex vivo proliferation, to generate adequate cell numbers for transplantation therapy.

  13. Meeting Report: Teaching Signal Transduction

    Science.gov (United States)

    Kramer, IJsbrand; Thomas, Geraint

    2006-01-01

    In July, 2005, the European Institute of Chemistry and Biology at the campus of the University of Bordeaux, France, hosted a focused week of seminars, workshops, and discussions around the theme of "teaching signal transduction." The purpose of the summer school was to offer both junior and senior university instructors a chance to reflect on the…

  14. Promoter Methylation Analysis Reveals that KCNA5 Ion Channel Silencing Supports Ewing Sarcoma Cell Proliferation

    Science.gov (United States)

    Ryland, Katherine E; Hawkins, Allegra G.; Weisenberger, Daniel J.; Punj, Vasu; Borinstein, Scott C.; Laird, Peter W.; Martens, Jeffrey R.; Lawlor, Elizabeth R.

    2015-01-01

    Polycomb proteins are essential regulators of gene expression in stem cells and development. They function to reversibly repress gene transcription via post-translational modification of histones and chromatin compaction. In many human cancers, genes that are repressed by polycomb in stem cells are subject to more stable silencing via DNA methylation of promoter CpG islands. Ewing sarcoma is an aggressive bone and soft tissue tumor that is characterized by over-expression of polycomb proteins. This study investigates the DNA methylation status of polycomb target gene promoters in Ewing sarcoma tumors and cell lines and observes that the promoters of differentiation genes are frequent targets of CpG-island DNA methylation. In addition, the promoters of ion channel genes are highly differentially methylated in Ewing sarcoma compared to non-malignant adult tissues. Ion channels regulate a variety of biological processes, including proliferation, and dysfunction of these channels contributes to tumor pathogenesis. In particular, reduced expression of the voltage-gated Kv1.5 channel has been implicated in tumor progression. These data show that DNA methylation of the KCNA5 promoter contributes to stable epigenetic silencing of Kv1.5 channel. This epigenetic repression is reversed by exposure to the DNA methylation inhibitor decitabine, which inhibits Ewing sarcoma cell proliferation through mechanisms that include restoration of Kv1.5 channel function. Implications This study demonstrates that promoters of ion channels are aberrantly methylated in Ewing sarcoma and that epigenetic silencing of KCNA5 contributes to tumor cell proliferation, thus providing further evidence of the importance of ion channel dyregulation to tumorigenesis. PMID:26573141

  15. Development of New Openers of ATP-Sensitive Potassium Channels of the Cell Membranes

    Directory of Open Access Journals (Sweden)

    Strutynskyi, R.B.

    2016-07-01

    Full Text Available Two innovative libraries (413 cyclosulfamides and 709 orthopyridine sulfamides of potential new openers of ATP-sensitive potassium channels of cell membranes were developed. It is shown experimentally that at least ten new original compounds have properties of pharmacological openers of the channels. Seven compounds, namely Z851154982, Z56762024, Z1269122570, Z31153162, Z45679561, Z756371174 and Z649723638, open channels of both types — sarcoplasmic as well as mitochondrial membranes: Simultaneously, Z734043408 compound is a potent activator of aforementioned channels of sarcolemmal membrane only. Z31197374 and Z666664306 compounds show the affinity onlyto КATP-channels of mitochondrial type. The results of the work can be used by pharmaceutical companies and scientific research institutes.

  16. The Mechanosensory Ca2+ Channel as a Central Regulator of Prostate Tumor Cell Migration and Invasiveness

    Science.gov (United States)

    2008-01-01

    hamster ovary (CHO) and sf9 cells enhanced SOC currents (Zitt et al., 1996). However, a subsequent study indicated hTRPC1 expression in sf9 cells induced...Zhu et al. 1995); initial heterologous expression of human TRPC1 in CHO and sf9 cells showed enhanced SOC currents (Zitt et al. 1996). However, a...subsequent study indicated that hTRPC1 expression in sf9 cells induced a constitutively active nonselective cation channel that was not sensitive to

  17. TRPM8 ion channels differentially modulate proliferation and cell cycle distribution of normal and cancer prostate cells.

    Science.gov (United States)

    Valero, María Ll; Mello de Queiroz, Fernanda; Stühmer, Walter; Viana, Félix; Pardo, Luis A

    2012-01-01

    Overexpression of the cation-permeable channel TRPM8 in prostate cancers might represent a novel opportunity for their treatment. Inhibitors of TRPM8 reduce the growth of prostate cancer cells. We have used two recently described and highly specific blockers, AMTB and JNJ41876666, and RNAi to determine the relevance of TRPM8 expression in the proliferation of non-tumor and tumor cells. Inhibition of the expression or function of the channel reduces proliferation rates and proliferative fraction in all tumor cells tested, but not of non-tumor prostate cells. We observed no consistent acceleration of growth after stimulation of the channel with menthol or icilin, indicating that basal TRPM8 expression is enough to sustain growth of prostate cancer cells.

  18. TRPM8 ion channels differentially modulate proliferation and cell cycle distribution of normal and cancer prostate cells.

    Directory of Open Access Journals (Sweden)

    María Ll Valero

    Full Text Available Overexpression of the cation-permeable channel TRPM8 in prostate cancers might represent a novel opportunity for their treatment. Inhibitors of TRPM8 reduce the growth of prostate cancer cells. We have used two recently described and highly specific blockers, AMTB and JNJ41876666, and RNAi to determine the relevance of TRPM8 expression in the proliferation of non-tumor and tumor cells. Inhibition of the expression or function of the channel reduces proliferation rates and proliferative fraction in all tumor cells tested, but not of non-tumor prostate cells. We observed no consistent acceleration of growth after stimulation of the channel with menthol or icilin, indicating that basal TRPM8 expression is enough to sustain growth of prostate cancer cells.

  19. Increased anion channel activity is an unavoidable event in ozone-induced programmed cell death.

    Directory of Open Access Journals (Sweden)

    Takashi Kadono

    Full Text Available BACKGROUND: Ozone is a major secondary air pollutant often reaching high concentrations in urban areas under strong daylight, high temperature and stagnant high-pressure systems. Ozone in the troposphere is a pollutant that is harmful to the plant. PRINCIPAL FINDINGS: By exposing cells to a strong pulse of ozonized air, an acute cell death was observed in suspension cells of Arabidopsis thaliana used as a model. We demonstrated that O(3 treatment induced the activation of a plasma membrane anion channel that is an early prerequisite of O(3-induced cell death in A. thaliana. Our data further suggest interplay of anion channel activation with well known plant responses to O(3, Ca(2+ influx and NADPH-oxidase generated reactive oxygen species (ROS in mediating the oxidative cell death. This interplay might be fuelled by several mechanisms in addition to the direct ROS generation by O(3; namely, H(2O(2 generation by salicylic and abscisic acids. Anion channel activation was also shown to promote the accumulation of transcripts encoding vacuolar processing enzymes, a family of proteases previously reported to contribute to the disruption of vacuole integrity observed during programmed cell death. SIGNIFICANCE: Collectively, our data indicate that anion efflux is an early key component of morphological and biochemical events leading to O(3-induced programmed cell death. Because ion channels and more specifically anion channels assume a crucial position in cells, an understanding about the underlying role(s for ion channels in the signalling pathway leading to programmed cell death is a subject that warrants future investigation.

  20. K channel kinetics during the spontaneous heart beat in embryonic chick ventricle cells.

    OpenAIRE

    Mazzanti, M.; DeFelice, L J

    1988-01-01

    By averaging the current that passes through cell-attached patches on beating heart cells, while measuring action potentials with a whole-cell electrode, we were able to study K channels during beating. In 7-d chick ventricle in 1.3 mM K physiological solutions at room temperature, delayed-rectifier channels have three linear conductance states: 60, 30, and 15 pS. The 60 and 15 pS conductances can exist alone, but all three states may appear in the same patch as interconverting conductance le...

  1. Notch信号通路在肺癌干细胞中的表达及其对增殖的影响%Expression of Notch signaling transduction pathway in lung cancer stem cells

    Institute of Scientific and Technical Information of China (English)

    刘天舒; 毛志福; 刘军韬; 汪巍; 毛张凡; 黄杰; 耿庆

    2015-01-01

    目的 观察Notch信号通路在肺癌干细胞中的表达及阻断Notch信号通路对肺癌干细胞增殖的影响.方法 以CD133作为肿瘤干细胞表面标志,采用流式细胞仪高速分选技术从人肺腺癌细胞株A549中分离肺癌干细胞及普通肿瘤细胞,实时荧光定量聚合酶链反应(FQ-PCR)及Western blot检测肺癌干细胞和普通肿瘤细胞内的Notch信号通路的表达水平;细胞计数试剂盒(CCK-8)检测肺癌干细胞和普通肿瘤细胞的体外增殖能力,并绘制生长曲线;使用γ-分泌酶抑制剂(DAPT)阻断Notch信号通路传导,观察肺癌干细胞和普通肿瘤细胞的体外生长差异.结果 流式分选前检测CD133阳性细胞(肺癌干细胞)占所有A549细胞的百分比为(0.40±0.11)%,而流式分选后所得细胞中,CD133阳性细胞占百分比为(95.00±0.63)%,两者差异有统计学意义(P<0.01).Notch通路在肺癌干细胞及普通肿瘤细胞中均表达,Notch1及Notch2在肺癌干细胞中的表达显著低于在普通肿瘤细胞内的表达,差异有统计学意义(P <0.05);Hes1仅在普通肿瘤细胞中表达,在肺癌干细胞中未检测到表达.肺癌干细胞与普通肿瘤细胞的增殖能力差异无统计学意义(P>0.05),而在DAPT干预48 h后,肺癌干细胞和普通肿瘤细胞的体外增殖均受到了抑制,肺癌干细胞的生长抑制率[(33.7±1.9)%]显著高于普通肿瘤细胞的生长抑制率[(21.5±3.4)%],差异有统计学意义(P<0.05).结论 较之普通肿瘤细胞,阻断Notch通路传导对肺癌干细胞的生长抑制效果更强,这可能与DAPT抑制了Notch的过高表达对肺癌细胞的负反馈作用有关.%Objective To explore the expression of Notch transduction signaling pathway in lung cancer stem cells and the effect on the cellular growth in vitro after blocking Notch signaling pathway.Methods Lung cancer stem cells and general tumor cells were isolated from human lung adenocarcinoma cell line A549 by the high

  2. Identification and characterization of Ca2+-activated K+ channels in granulosa cells of the human ovary

    Directory of Open Access Journals (Sweden)

    Berg Ulrike

    2009-04-01

    Full Text Available Abstract Background Granulosa cells (GCs represent a major endocrine compartment of the ovary producing sex steroid hormones. Recently, we identified in human GCs a Ca2+-activated K+ channel (KCa of big conductance (BKCa, which is involved in steroidogenesis. This channel is activated by intraovarian signalling molecules (e.g. acetylcholine via raised intracellular Ca2+ levels. In this study, we aimed at characterizing 1. expression and functions of KCa channels (including BKCa beta-subunits, and 2. biophysical properties of BKCa channels. Methods GCs were obtained from in vitro-fertilization patients and cultured. Expression of mRNA was determined by standard RT-PCR and protein expression in human ovarian slices was detected by immunohistochemistry. Progesterone production was measured in cell culture supernatants using ELISAs. Single channels were recorded in the inside-out configuration of the patch-clamp technique. Results We identified two KCa types in human GCs, the intermediate- (IK and the small-conductance KCa (SK. Their functionality was concluded from attenuation of human chorionic gonadotropin-stimulated progesterone production by KCa blockers (TRAM-34, apamin. Functional IK channels were also demonstrated by electrophysiological recording of single KCa channels with distinctive features. Both, IK and BKCa channels were found to be simultaneously active in individual GCs. In agreement with functional data, we identified mRNAs encoding IK, SK1, SK2 and SK3 in human GCs and proteins of IK and SK2 in corresponding human ovarian cells. Molecular characterization of the BKCa channel revealed the presence of mRNAs encoding several BKCa beta-subunits (beta2, beta3, beta4 in human GCs. The multitude of beta-subunits detected might contribute to variations in Ca2+ dependence of individual BKCa channels which we observed in electrophysiological recordings. Conclusion Functional and molecular studies indicate the presence of active IK and SK

  3. Kv3.1 channels stimulate adult neural precursor cell proliferation and neuronal differentiation.

    Science.gov (United States)

    Yasuda, Takahiro; Cuny, Hartmut; Adams, David J

    2013-05-15

    Adult neural stem/precursor cells (NPCs) play a pivotal role in neuronal plasticity throughout life. Among ion channels identified in adult NPCs, voltage-gated delayed rectifier K(+) (KDR) channels are dominantly expressed. However, the KDR channel subtype and its physiological role are still undefined. We used real-time quantitative RT-PCR and gene knockdown techniques to identify a major functional KDR channel subtype in adult NPCs. Dominant mRNA expression of Kv3.1, a high voltage-gated KDR channel, was quantitatively confirmed. Kv3.1 gene knockdown with specific small interfering RNAs (siRNA) for Kv3.1 significantly inhibited Kv3.1 mRNA expression by 63.9% (P Kv3.1 is the subtype responsible for producing KDR channel outward currents. Resting membrane properties, such as resting membrane potential, of NPCs were not affected by Kv3.1 expression. Kv3.1 knockdown with 300 nm siRNA inhibited NPC growth (increase in cell numbers) by 52.9% (P Kv3.1 knockdown also significantly reduced neuronal differentiation by 31.4% (P Kv3.1 is a dominant functional KDR channel subtype expressed in adult NPCs and plays key roles in NPC proliferation and neuronal lineage commitment during differentiation.

  4. Detection and Protection of Macro-Users in Dominant Area of Co-channel CSG Cells

    DEFF Research Database (Denmark)

    Wang, Yuanye; Pedersen, Klaus; Frederiksen, Frank

    2012-01-01

    Co-channel deployment of Closed Subscriber Group (CSG) home-cells or Home E-UTRAN NodeBs (HeNBs) will create coverage holes for macro connected user that is not part of the CSG. In this paper, we address the problem of detecting the macro-cell coverage hole and protecting the macro-users that are...

  5. The Mechanosensitive Ca2+ Channel as a Central Regular of Prostate Tumor Cell Migration and Invasiveness

    Science.gov (United States)

    2011-04-01

    et al. 1995); initial heterologous expression of human TRPC1 in CHO and sf9 cells showed enhanced SOC currents (Zitt et al. 1996). However, a...subsequent study indicated that hTRPC1 expression in sf9 cells induced a constitutively active nonselective cation channel that was not sensitive to

  6. Cx36 makes channels coupling human pancreatic beta-cells, and correlates with insulin expression

    NARCIS (Netherlands)

    Serre-Beinier, Veronique; Bosco, Domenico; Zulianello, Laurence; Charollais, Anne; Caille, Dorothee; Charpantier, Eric; Gauthier, Benoit R.; Diaferia, Giuseppe R.; Giepmans, Ben N.; Lupi, Roberto; Marchetti, Piero; Deng, Shaoping; Buhler, Leo; Berney, Thierry; Cirulli, Vincenzo; Meda, Paolo

    2009-01-01

    Previous studies have documented that the insulin-producing beta-cells of laboratory rodents are coupled by gap junction channels made solely of the connexin36 (Cx36) protein, and have shown that loss of this protein desynchronizes beta-cells, leading to secretory defects reminiscent of those observ

  7. K(+)-induced stimulation of K+ secretion involves activation of the IsK channel in vestibular dark cells.

    Science.gov (United States)

    Wangemann, P; Shen, Z; Liu, J

    1996-10-01

    Vestibular dark cells in the inner ear secrete K+ from perilymph containing 4 mM K+ to endolymph containing 145 mM K+. Sensory transduction causes K+ to flow from endolymph to perilymph, thus threatening the homeostasis of the perilymphatic K+ concentration which is crucial for maintaining sensory transduction since the basolateral membranes of the sensory cells and adjacent neuronal elements need to be protected from K(+)-induced depolarization. The present study addresses the questions (1) whether increases in the perilymphatic K+ concentration by as little as 1 mM are sufficient to stimulate KCl uptake across the basolateral membrane of vestibular dark cells, (2) whether K(+)-induced stimulation of KCl uptake causes stimulation of the IsK channel in the apical membrane, and (3) whether the rate of transepithelial K+ secretion depends on the perilymphatic (basolateral) K+ concentration when the apical side of the epithelium is bathed with a solution containing 145 mM K+, as in vivo. Uptake of KCl was monitored by measuring cell height as an indicator for cell volume. The current (IIsK), conductance (gIsK) and inactivation time constant (tau IsK) of the IsK channel as well as the apparent reversal potential of the apical membrane (Vr) were obtained with the cell-attached macro-patch technique. Vr was corrected for the membrane voltage previously measured with microelectrodes. The rate of transepithelial K+ secretion JK was obtained as equivalent short circuit current from measurements of the transepithelial voltage (Vt) and resistance (Rt) measured in the micro-Ussing chamber. Cell height of vestibular dark cells was 7.2 microns (average). Elevations of the extracellular K+ concentration from 3.5 to 4.5 mM caused cell swelling with an initial rate of cell height change of 11 nm/s. With 3.6 mM K+ in the pipette IIsK was outwardly directed and elevation of the extracellular K+ concentration from 3.6 to 25 mM caused an increase of IIsK from 12 to 65 pA, gIsK from 152

  8. Physiological role of Kv1.3 channel in T lymphocyte cell investigated quantitatively by kinetic modeling.

    Directory of Open Access Journals (Sweden)

    Panpan Hou

    Full Text Available Kv1.3 channel is a delayed rectifier channel abundant in human T lymphocytes. Chronic inflammatory and autoimmune disorders lead to the over-expression of Kv1.3 in T cells. To quantitatively study the regulatory mechanism and physiological function of Kv1.3 in T cells, it is necessary to have a precise kinetic model of Kv1.3. In this study, we firstly established a kinetic model capable to precisely replicate all the kinetic features for Kv1.3 channels, and then constructed a T-cell model composed of ion channels including Ca2+-release activated calcium (CRAC channel, intermediate K+ (IK channel, TASK channel and Kv1.3 channel for quantitatively simulating the changes in membrane potentials and local Ca2+ signaling messengers during activation of T cells. Based on the experimental data from current-clamp recordings, we successfully demonstrated that Kv1.3 dominated the membrane potential of T cells to manipulate the Ca2+ influx via CRAC channel. Our results revealed that the deficient expression of Kv1.3 channel would cause the less Ca2+ signal, leading to the less efficiency in secretion. This was the first successful attempt to simulate membrane potential in non-excitable cells, which laid a solid basis for quantitatively studying the regulatory mechanism and physiological role of channels in non-excitable cells.

  9. On the nanotoxicity of PAMAM dendrimers: Superfect® stimulates the EGFR-ERK1/2 signal transduction pathway via an oxidative stress-dependent mechanism in HEK 293 cells.

    Science.gov (United States)

    Akhtar, Saghir; Chandrasekhar, Bindu; Attur, Sreeja; Yousif, Mariam H M; Benter, Ibrahim F

    2013-05-01

    Polyamidoamine (PAMAM) dendrimers are cationic branch-like macromolecules that may serve as drug delivery systems for gene-based therapies such as RNA interference. For their safe use in the clinic, they should ideally only enhance drug delivery to target tissues and exhibit no adverse effects. However, little is known about their toxicological profiles in terms of their interactions with cellular signal transduction pathways such as the epidermal growth factor receptor (EGFR). The EGFR is an important signaling cascade that regulates cell growth, differentiation, migration, survival and apoptosis. Here, we investigated the impact of naked, unmodified Superfect (SF), a commercially available generation 6 PAMAM dendrimer, on the epidermal growth factor receptor (EGFR) tyrosine kinase-extracellular-regulated kinase 1/2 (ERK1/2) signaling pathway in human embryonic kidney (HEK 293) cells. At concentrations routinely used for transfection, SF exhibited time and dose-dependent stimulation of EGFR and ERK1/2 phosphorylation whereas AG1478, a selective EGFR tyrosine kinase antagonist, inhibited EGFR-ERK1/2 signaling. SF-induced phosphorylation of EGFR for 1h was partly reversible upon removal of the dendrimer and examination of cells 24 later. Co-treatment of SF with epidermal growth factor (EGF) ligand resulted in greater EGFR stimulation than either agent alone implying that the stimulatory effects of SF and the ligand are synergistic. Dendrimer-induced stimulation of EGFR-ERK1/2 signaling could be attenuated by the antioxidants apocynin, catalase and tempol implying that an oxidative stress dependent mechanism was involved. These results show for the first time that PAMAM dendrimers, aside from their ability to improve drug delivery, can modulate the important EGFR-ERK1/2 cellular signal transduction pathway - a novel finding that may have a bearing on their safe application as drug delivery systems.

  10. Hair cell BK channels interact with RACK1, and PKC increases its expression on the cell surface by indirect phosphorylation.

    Science.gov (United States)

    Surguchev, Alexei; Bai, Jun-Ping; Joshi, Powrnima; Navaratnam, Dhasakumar

    2012-07-15

    Large conductance (BK) calcium activated potassium channels (Slo) are ubiquitous and implicated in a number of human diseases including hypertension and epilepsy. BK channels consist of a pore forming α-subunit (Slo) and a number of accessory subunits. In hair cells of nonmammalian vertebrates these channels play a critical role in electrical resonance, a mechanism of frequency selectivity. Hair cell BK channel clusters on the surface and currents increase along the tonotopic axis and contribute significantly to the responsiveness of these hair cells to sounds of high frequency. In contrast, messenger RNA levels encoding the Slo gene show an opposite decrease in high frequency hair cells. To understand the molecular events underlying this paradox, we used a yeast two-hybrid screen to isolate binding partners of Slo. We identified Rack1 as a Slo binding partner and demonstrate that PKC activation increases Slo surface expression. We also establish that increased Slo recycling of endocytosed Slo is at least partially responsible for the increased surface expression of Slo. Moreover, analysis of several PKC phosphorylation site mutants confirms that the effects of PKC on Slo surface expression are likely indirect. Finally, we show that Slo clusters on the surface of hair cells are also increased by increased PKC activity and may contribute to the increasing amounts of channel clusters on the surface of high-frequency hair cells.

  11. Heart failure drug digitoxin induces calcium uptake into cells by forming transmembrane calcium channels.

    Science.gov (United States)

    Arispe, Nelson; Diaz, Juan Carlos; Simakova, Olga; Pollard, Harvey B

    2008-02-19

    Digitoxin and other cardiac glycosides are important, centuries-old drugs for treating congestive heart failure. However, the mechanism of action of these compounds is still being elucidated. Calcium is known to potentiate the toxicity of these drugs, and we have hypothesized that digitoxin might mediate calcium entry into cells. We report here that digitoxin molecules mediate calcium entry into intact cells. Multimers of digitoxin molecules also are able to form calcium channels in pure planar phospholipid bilayers. These digitoxin channels are blocked by Al(3+) and La(3+) but not by Mg(2+) or the classical l-type calcium channel blocker, nitrendipine. In bilayers, we find that the chemistry of the lipid affects the kinetics of the digitoxin channel activity, but not the cation selectivity. Antibodies against digitoxin promptly neutralize digitoxin channels in both cells and bilayers. We propose that these digitoxin calcium channels may be part of the mechanism by which digitoxin and other active cardiac glycosides, such as digoxin, exert system-wide actions at and above the therapeutic concentration range.

  12. On channel quantization for multi-cell cooperative systems with limited feedback

    Institute of Scientific and Technical Information of China (English)

    HOU XueYing; YANG ChenYang; LAU Buon Kiong

    2013-01-01

    Coherent multi-cell cooperative transmission, also referred to as coordinated multi-point transmission (CoMP), is a promising strategy to provide high spectral efficiency for universal frequency reuse cellular systems. To report the required channel information to the transmitter in frequency division duplexing systems, limited feedback techniques are often applied. Considering that the average channel gains from multiple base stations (BSs) to one mobile station are different and the number of cooperative BSs may be dynamic, it is neither flexible nor compatible to employ a large codebook to directly quantize the CoMP channel. In this paper, we employ per-cell codebooks for quantizing local and cross channels. We first propose a codeword selection criterion, aiming at maximizing an estimated data rate for each user. The proposed criterion can be applied for an arbitrary number of receive antennas at each user and also for an arbitrary number of data streams transmitted to each user. Considering that the resulting optimal per-cell codeword selection for CoMP channel is of high complexity, we propose a serial codeword selection method that has low complexity but yields comparable performance to that of the optimal codeword selection. We evaluate the proposed codeword selection criterion and method using measured CoMP channels from an urban environment as well as simulations. The results demonstrate significant performance gain as compared to an existing low-complexity method.

  13. Evaluation of a 32-channel versus a 12-channel head coil for high-resolution post-contrast MRI in giant cell arteritis (GCA) at 3T.

    Science.gov (United States)

    Franke, Philipp; Markl, Michael; Heinzelmann, Sonja; Vaith, Peter; Bürk, Jonas; Langer, Mathias; Geiger, J

    2014-10-01

    The aim of this study was to evaluate the diagnostic value of a 32-channel head coil for the characterization of mural inflammation patterns in the superficial cranial arteries in patients with giant cell arteritis (GCA) compared to a standard 12-channel coil at 3T MRI. 55 patients with suspected GCA underwent high resolution T1-weighted post-contrast MRI at 3T to detect inflammation related vessel wall enhancement using both coils. To account for different time delays between contrast agent injection and sequence acquisition, the patients were divided into two cohorts: 27 patients were examined with the 32-channel coil first and 28 patients with the 12-channel coil first. Images were evaluated by two blinded readers with regard to image quality, artifact level and arteries' inflammation according to a standardized ranking scale; furthermore signal-to-noise ratio (SNR) measurements were performed at three locations. Identification of arteries' inflammation was achieved with both coils with excellent inter-observer agreement (κ=0.89 for 12-channel and κ=0.96 for 32-channel coil). Regarding image grading, the inter-observer variability was moderate for the 12-channel (κ=0.5) and substantial for the 32-channel coil (κ=0.63). Significantly higher SNR and improved image quality (pcoil in either coil order. Image quality for depiction of the superficial cranial arteries was superior for the 32-channel coil. For standardized GCA diagnosis, the 12-channel coil was sufficient.

  14. Englerin A Agonizes the TRPC4/C5 Cation Channels to Inhibit Tumor Cell Line Proliferation.

    Directory of Open Access Journals (Sweden)

    Cheryl Carson

    Full Text Available Englerin A is a structurally unique natural product reported to selectively inhibit growth of renal cell carcinoma cell lines. A large scale phenotypic cell profiling experiment (CLiP of englerin A on ¬over 500 well characterized cancer cell lines showed that englerin A inhibits growth of a subset of tumor cell lines from many lineages, not just renal cell carcinomas. Expression of the TRPC4 cation channel was the cell line feature that best correlated with sensitivity to englerin A, suggesting the hypothesis that TRPC4 is the efficacy target for englerin A. Genetic experiments demonstrate that TRPC4 expression is both necessary and sufficient for englerin A induced growth inhibition. Englerin A induces calcium influx and membrane depolarization in cells expressing high levels of TRPC4 or its close ortholog TRPC5. Electrophysiology experiments confirmed that englerin A is a TRPC4 agonist. Both the englerin A induced current and the englerin A induced growth inhibition can be blocked by the TRPC4/C5 inhibitor ML204. These experiments confirm that activation of TRPC4/C5 channels inhibits tumor cell line proliferation and confirms the TRPC4 target hypothesis generated by the cell line profiling. In selectivity assays englerin A weakly inhibits TRPA1, TRPV3/V4, and TRPM8 which suggests that englerin A may bind a common feature of TRP ion channels. In vivo experiments show that englerin A is lethal in rodents near doses needed to activate the TRPC4 channel. This toxicity suggests that englerin A itself is probably unsuitable for further drug development. However, since englerin A can be synthesized in the laboratory, it may be a useful chemical starting point to identify novel modulators of other TRP family channels.

  15. Kv3 K+ channels enable burst output in rat cerebellar Purkinje cells.

    Science.gov (United States)

    McKay, B E; Turner, R W

    2004-08-01

    The ability of cells to generate an appropriate spike output depends on a balance between membrane depolarizations and the repolarizing actions of K(+) currents. The high-voltage-activated Kv3 class of K(+) channels repolarizes Na(+) spikes to maintain high frequencies of discharge. However, little is known of the ability for these K(+) channels to shape Ca(2+) spike discharge or their ability to regulate Ca(2+) spike-dependent burst output. Here we identify the role of Kv3 K(+) channels in the regulation of Na(+) and Ca(2+) spike discharge, as well as burst output, using somatic and dendritic recordings in rat cerebellar Purkinje cells. Kv3 currents pharmacologically isolated in outside-out somatic membrane patches accounted for approximately 40% of the total K(+) current, were very fast and high voltage activating, and required more than 1 s to fully inactivate. Kv3 currents were differentiated from other tetraethylammonium-sensitive currents to establish their role in Purkinje cells under physiological conditions with current-clamp recordings. Dual somatic-dendritic recordings indicated that Kv3 channels repolarize Na(+) and Ca(2+) spikes, enabling high-frequency discharge for both types of cell output. We further show that during burst output Kv3 channels act together with large-conductance Ca(2+)-activated K(+) channels to ensure an effective coupling between Ca(2+) and Na(+) spike discharge by preventing Na(+) spike inactivation. By contributing significantly to the repolarization of Na(+) and especially Ca(2+) spikes, our data reveal a novel function for Kv3 K(+) channels in the maintenance of high-frequency burst output for cerebellar Purkinje cells.

  16. Automated modelling of signal transduction networks

    Directory of Open Access Journals (Sweden)

    Aach John

    2002-11-01

    Full Text Available Abstract Background Intracellular signal transduction is achieved by networks of proteins and small molecules that transmit information from the cell surface to the nucleus, where they ultimately effect transcriptional changes. Understanding the mechanisms cells use to accomplish this important process requires a detailed molecular description of the networks involved. Results We have developed a computational approach for generating static models of signal transduction networks which utilizes protein-interaction maps generated from large-scale two-hybrid screens and expression profiles from DNA microarrays. Networks are determined entirely by integrating protein-protein interaction data with microarray expression data, without prior knowledge of any pathway intermediates. In effect, this is equivalent to extracting subnetworks of the protein interaction dataset whose members have the most correlated expression profiles. Conclusion We show that our technique accurately reconstructs MAP Kinase signaling networks in Saccharomyces cerevisiae. This approach should enhance our ability to model signaling networks and to discover new components of known networks. More generally, it provides a method for synthesizing molecular data, either individual transcript abundance measurements or pairwise protein interactions, into higher level structures, such as pathways and networks.

  17. Apical Ca2+-activated potassium channels in mouse parotid acinar cells.

    Science.gov (United States)

    Almassy, Janos; Won, Jong Hak; Begenisich, Ted B; Yule, David I

    2012-02-01

    Ca(2+) activation of Cl and K channels is a key event underlying stimulated fluid secretion from parotid salivary glands. Cl channels are exclusively present on the apical plasma membrane (PM), whereas the localization of K channels has not been established. Mathematical models have suggested that localization of some K channels to the apical PM is optimum for fluid secretion. A combination of whole cell electrophysiology and temporally resolved digital imaging with local manipulation of intracellular [Ca(2+)] was used to investigate if Ca(2+)-activated K channels are present in the apical PM of parotid acinar cells. Initial experiments established Ca(2+)-buffering conditions that produced brief, localized increases in [Ca(2+)] after focal laser photolysis of caged Ca(2+). Conditions were used to isolate K(+) and Cl(-) conductances. Photolysis at the apical PM resulted in a robust increase in K(+) and Cl(-) currents. A localized reduction in [Ca(2+)] at the apical PM after photolysis of Diazo-2, a caged Ca(2+) chelator, resulted in a decrease in both K(+) and Cl(-) currents. The K(+) currents evoked by apical photolysis were partially blocked by both paxilline and TRAM-34, specific blockers of large-conductance "maxi-K" (BK) and intermediate K (IK), respectively, and almost abolished by incubation with both antagonists. Apical TRAM-34-sensitive K(+) currents were also observed in BK-null parotid acini. In contrast, when the [Ca(2+)] was increased at the basal or lateral PM, no increase in either K(+) or Cl(-) currents was evoked. These data provide strong evidence that K and Cl channels are similarly distributed in the apical PM. Furthermore, both IK and BK channels are present in this domain, and the density of these channels appears higher in the apical versus basolateral PM. Collectively, this study provides support for a model in which fluid secretion is optimized after expression of K channels specifically in the apical PM.

  18. Effects of Ginsenoside Rg1 on the Expression of Toll-Like Receptor 3, 4 and Their Signalling Transduction Factors in the NG108-15 Murine Neuroglial Cell Line

    Directory of Open Access Journals (Sweden)

    Bao-Sheng Zhao

    2014-10-01

    Full Text Available As one of the most important components of Panax ginseng, ginsenoside Rg1 has certain anti-aging effects, improving the activity of learning and memory. Studies have showed that ginsenoside Rg1 improves the memory impairment associated with Alzheimer’s disease (AD. In this study, the effects of ginsenoside Rg1 were investigated through the activity of toll-like receptor (TLR 3, TLR4 and their signaling transduction pathways in amyloid β peptide 25–35 (Aβ25–35 induced AD cell model. Thus we investigated several critical components of the TLR pathway. The neuroglial cell line NG108-15 was stimulated with or without Aβ25–35, while different concentrations of ginsenoside Rg1 were administered. After 24 h, tumor necrosis factor-α (TNF-α, interferon-β (IFN-β in cell supernatant and inducible nitric oxide synthase (iNOS in cell lysate supernatant were measured with enzyme-linked immunosorbent assays (ELISAs. The mRNA and protein expression of TLR3, TLR4, nuclear factor kappa B (NF-κB and tumor necrosis factor receptor-associated factor-6 (TRAF-6 were detected by real-time PCR and western blot methods, respectively. The experimental results showed that Aβ25–35 could markedly raise the level of TNF-α, IFN-β and iNOS, and increase the expressions of mRNA and TLR3, TLR4, NF-κB and TRAF-6 protein in the NG108-15 cells. At the same time, the ginsenoside Rg1 significantly reduced the expressions of proteins and mRNA of TLR3, TLR4, NF-κB and TRAF-6, and down-regulated the levels of TNF-α, IFN-β of cell supernatant and iNOS of cell lysate supernatant in a concentration-dependent manner. In conclusion, ginsenoside Rg1 has good activity for suppressing the signaling transduction pathway of TLR3 and TLR4, and decreasing the inflammation factors induced by Aβ25–35 in NG108-15 cells, and this may be the mechanism of ginsenoside Rg1 action in AD treatment, but more studies are needed to identify its specificity.

  19. Activation of Na+ channels in cell membrane by capacitive stimulation with silicon chip

    Science.gov (United States)

    Schoen, Ingmar; Fromherz, Peter

    2005-11-01

    Sodium channels are the crucial electrical elements of neuronal excitation. As a step toward hybrid neuron-semiconductor devices, we studied the activation of recombinant NaV1.4 sodium channels in human embryonic kidney (HEK293) cells by stimulation from an electrolyte/oxide/silicon (EOS) capacitor. HfO2 was used as an insulator to attain a high capacitance. An effective activation was achieved by decaying voltage ramps at constant intracellular voltage at a depleted NaCl concentration in the bath to enhance the resistance of the cell-chip contact. We were also able to open sodium channels at a NaCl concentration close to physiological conditions. This experiment provides a basis for noninvasive capacitive stimulation of nerve cells with semiconductor chips.

  20. Two phase flow simulation in a channel of a polymer electrolyte membrane fuel cell using the lattice Boltzmann method

    OpenAIRE

    Ben Salah, Yasser; Tabe, Yutaka; Chikahisa, Takemi

    2012-01-01

    Water management in polymer electrolyte (PEM) fuel cells is important for fuel cell performance and durability. Numerical simulations using the lattice Boltzmann method (LBM) are developed to elucidate the dynamic behavior of condensed water and gas flows in a polymer electrolyte membrane (PEM) fuel cell gas channel. A scheme for two-phase flow with large density differences was applied to establish the optimum gas channel design for different gas channel heights, droplet positions, and gas c...

  1. Numerical Investigation of the Water Droplet Transport in a PEM Fuel Cell with Serpentine Flow Channel

    Directory of Open Access Journals (Sweden)

    Bittagopal Mondal

    2016-01-01

    Full Text Available The serpentine flow channel can be considered as one of the most common and practical channel layouts for a polymer electrolyte membrane fuel cell (PEMFC since it ensures an effective and efficient removal of water produced in a cell with acceptable parasitic load. Water management is one of the key issues to improve the cell performance since at low operating temperatures in PEMFC, water vapor condensation starts easily and accumulates the liquid water droplet within the flow channels, thus affecting the chemical reactions and reducing the fuel cell performance. In this article, a comprehensive three dimensional numerical simulation is carried out to understand the water droplet mobility in a serpentine gas flow channel for a wide range of surface properties, inlet air velocities, droplet positions (center or off-center, bottom or top and droplet sizes by deploying a finite volume based methodology. The liquid-gas interface is tracked following the volume-of-fluid (VOF method. The droplet transport is found to be greatly influenced by the surface wettability properties, inlet velocities, number of droplets emerged and initial droplet positions. Super hydrophobic surface property is not always preferable for designing the gas flow channels. It depends upon the inlet velocity conditions, droplet positions, number of droplets and surface properties.

  2. Mechanosensitive channel activity and F-actin organization in cholesterol-depleted human leukaemia cells.

    Science.gov (United States)

    Morachevskaya, Elena; Sudarikova, Anastasiya; Negulyaev, Yuri

    2007-04-01

    This study focuses on the functional role of cellular cholesterol in the regulation of mechanosensitive cation channels activated by stretch in human leukaemia K562 cells. The patch-clamp method was employed to examine the effect of methyl-beta-cyclodextrin (MbetaCD), a synthetic cholesterol-sequestering agent, on stretch-activated single currents. We found that cholesterol-depleting treatment with MbetaCD resulted in a suppression of the activity of mechanosensitive channels without a change in the unitary conductance. The probability that the channel was open significantly decreased after treatment with MbetaCD. Fluorescent microscopy revealed F-actin reorganization, possibly involving actin assembly, after incubation of the cells with MbetaCD. We suggest that suppression of mechanosensitive channel activation in cholesterol-depleted leukaemia cells is due to F-actin rearrangement, presumably induced by lipid raft destruction. Our observations are consistent with the notion that stretch-activated cation channels in eukaryotic cells are regulated by the membrane-cytoskeleton complex rather than by tension developed purely in the lipid bilayer.

  3. Cell swelling activates cloned Ca(2+)-activated K(+) channels: a role for the F-actin cytoskeleton

    DEFF Research Database (Denmark)

    Jorgensen, Nanna K; Pedersen, Stine F; Rasmussen, Hanne B;

    2003-01-01

    Cloned Ca(2+)-activated K(+) channels of intermediate (hIK) or small (rSK3) conductance were expressed in HEK 293 cells, and channel activity was monitored using whole-cell patch clamp. hIK and rSK3 currents already activated by intracellular calcium were further increased by 95% and 125......%, respectively, upon exposure of the cells to a 33% decrease in extracellular osmolarity. hIK and rSK3 currents were inhibited by 46% and 32%, respectively, by a 50% increase in extracellular osmolarity. Cell swelling and channel activation were not associated with detectable increases in [Ca(2+)](i), evidenced...... by population and single-cell measurements. In addition, inhibitors of IK and SK channels significantly reduced the rate of regulatory volume decrease (RVD) in cells expressing these channels. Cell swelling induced a decrease, and cell shrinkage an increase, in net cellular F-actin content. The swelling...

  4. Gibberellin Signal Transduction in Rice

    Institute of Scientific and Technical Information of China (English)

    Liu-Min Fan; Xiaoyan Feng; Yu Wang; Xing Wang Deng

    2007-01-01

    In the past decade, significant knowledge has accumulated regarding gibberellin (GA) signal transduction in rice as a result of studies using multiple approaches, particularly molecular genetics. The present review highlights the recent developments in the identification of GA signaling pathway components, the discovery of GA-induced destruction of GA signaling represser (DELLA protein), and the possible mechanism underlying the regulation of GA-responsive gene expression in rice.

  5. Emerging role of TRP channels in cell migration: from tumor vascularization to metastasis

    Directory of Open Access Journals (Sweden)

    Alessandra eFioro Pla

    2013-11-01

    Full Text Available Transient Receptor Potential (TRP channels modulate intracellular Ca2+ concentrations, controlling critical cytosolic and nuclear events that are involved in the initiation and progression of cancer. It is not, therefore, surprising that the expression of some TRP channels is altered during tumor growth and metastasis. Cell migration of both epithelial and endothelial cells is an essential step of the so-called metastatic cascade that leads to the spread of the disease within the body. It is in fact required for both tumor vascularization as well as for tumor cell invasion into adjacent tissues and intravasation into blood/lymphatic vessels. Studies from the last 15 years have unequivocally shown that the ion channles and the transport proteins also play important roles in cell migration. On the other hand, recent literature underlies a critical role for TRP channels in the migration process both in cancer cells as well as in tumor vascularization. This will be the main focus of our review. We will provide an overview of recent advances in this field describing TRP channels contribution to the process vascular and cancer cell migration, and we will systematically discuss relevant molecular mechanism involved.

  6. Cloning and characterization of SK2 channel from chicken short hair cells.

    Science.gov (United States)

    Matthews, T M; Duncan, R K; Zidanic, M; Michael, T H; Fuchs, P A

    2005-06-01

    In the inner ear of birds, as in mammals, reptiles and amphibians, acetylcholine released from efferent neurons inhibits hair cells via activation of an apamin-sensitive, calcium-dependent potassium current. The particular potassium channel involved in avian hair cell inhibition is unknown. In this study, we cloned a small-conductance, calcium-sensitive potassium channel (gSK2) from a chicken cochlear library. Using RT-PCR, we demonstrated the presence of gSK2 mRNA in cochlear hair cells. Electrophysiological studies on transfected HEK293 cells showed that gSK2 channels have a conductance of approximately 16 pS and a half-maximal calcium activation concentration of 0.74+/-0.17 microM. The expressed channels were blocked by apamin (IC(50)=73.3+/-5.0 pM) and d-tubocurarine (IC(50)=7.6+/-1.0 microM), but were insensitive to charybdotoxin. These characteristics are consistent with those reported for acetylcholine-induced potassium currents of isolated chicken hair cells, suggesting that gSK2 is involved in efferent inhibition of chicken inner ear. These findings imply that the molecular mechanisms of inhibition are conserved in hair cells of all vertebrates.

  7. Insulin-secreting INS-1E cells express functional TRPV1 channels.

    Science.gov (United States)

    Fågelskiöld, Amanda Jabin; Kannisto, Kristina; Boström, Anna; Hadrovic, Banina; Farre, Cecilia; Eweida, Mohamed; Wester, Kenneth; Islam, Md Shahidul

    2012-01-01

    We have studied whether functional TRPV1 channels exist in the INS-1E cells, a cell type used as a model for β-cells, and in primary β-cells from rat and human. The effects of the TRPV1 agonists capsaicin and AM404 on the intracellular free Ca (2+) concentration ([Ca (2+)]i) in the INS-1E cells were studied by fura-2 based microfluorometry. Capsaicin increased [Ca (2+)]i in a concentration-dependent manner, and the [Ca (2+)]i increase was dependent on extracellular Ca (2+). AM404 also increased [Ca (2+)]i in the INS-1E cells. Capsazepine, a specific antagonist of TRPV1, completely blocked the capsaicin- and AM404-induced [Ca (2+)]i increases. Capsaicin did not increase [Ca (2+)]i in the primary β-cells from rat and human. Whole cell patch clamp configuration was used to record currents across the plasma membrane in the INS-1E cells. Capsaicin elicited inward currents that were inhibited by capsazepine. Western blot analysis detected TRPV1 proteins in the INS-1E cells and the human islets. Immunohistochemistry was used to study the expression of TRPV1, but no TRPV1 protein immunoreactivity was detected in the human islet cells and the human insulinoma cells. We conclude that the INS-1E cells, but not the primary β-cells, express functional TRPV1 channels.

  8. Basolateral localisation of KCNQ1 potassium channels in MDCK cells: molecular identification of an N-terminal targeting motif

    DEFF Research Database (Denmark)

    Jespersen, Thomas; Rasmussen, Hanne B; Grunnet, Morten;

    2004-01-01

    KCNQ1 potassium channels are expressed in many epithelial tissues as well as in the heart. In epithelia KCNQ1 channels play an important role in salt and water transport and the channel has been reported to be located apically in some cell types and basolaterally in others. Here we show that KCNQ...

  9. Cell-penetrating Peptide YARA-mediated Transduction of Enhanced Green Fluorescent Protein into Human Vascular Smooth Muscle Cells%YARA介导增强型绿色荧光蛋白穿透人血管平滑肌细胞

    Institute of Scientific and Technical Information of China (English)

    陈思思; 王家宁; 黄永章; 郭凌郧; 孔霞

    2012-01-01

    Objective To investigate the penetrating ability of fusion protein YARA-EGFP with human vascular smooth muscle cells (HVSMC). Methods The prokaryotic expression plastnids YARA-EGFP was constructed and transformed into E. coli BL21 (DE3) to express fusion protein YARA-EGFP. The fusion protein YARA-EGFP was purified with Ni2 + -resin affinity chromatography and transduced into HVSMC. Results YARA-EGFP fusion protein could transduce into HVSMC and distribute in cytoplasm and nucleus after 6 h incubation. Conclusion The successful expression and purification of YARA-EGFP fusion protein can transduce into human vascular smooth muscle cells. This study provides a basis for the research on transduction of antiproliferative proteins such as p27 and p21 mediated by the cell-penetrating peptide, YARA,in protein therapy for the diabetic vascular diseases.%目的:研究细胞穿透肽YARA介导大分子蛋白穿透人血管平滑肌细施(human vascular smooth musle cells,HVSMC)细胞膜的能力.方法:用基因工程的方法制备并纯化YARA-EGFP融合蛋白,将其和培养的人平滑肌细胞共同孵育,在荧光显微镜下直接观察YARA介导目的蛋白EGFP转导入人平滑肌细胞的能力.结果:荧光显微镜下观察到,荧光蛋白穿透细胞膜进入并分布在入血管平滑肌细胞内.结论:YARA能有效携带目的蛋白进入人血管平滑肌细胞,这为将来用细胞穿透肽YARA介导有生物活性的大分子抗血管平滑肌细胞增殖,进行糖尿病血管病变的蛋白治疗奠定了基础.

  10. Intermediate-Conductance-Ca2-Activated K Channel Intermediate-Conductance Calcium-Activated Potassium Channel (IKCa1) is Upregulated and Promotes Cell Proliferation in Cervical Cancer

    Science.gov (United States)

    Liu, Ling; Zhan, Ping; Nie, Dan; Fan, Lingye; Lin, Hairui; Gao, Lanyang; Mao, Xiguang

    2017-01-01

    Background Accumulating data point to intermediate-conductance calcium-activated potassium channel (IKCa1) as a key player in controlling cell cycle progression and proliferation of human cancer cells. However, the role that IKCa1 plays in the growth of human cervical cancer cells is largely unexplored. Material/Methods In this study, Western blot analysis, immunohistochemical staining, and RT-PCR were first used for IKCa1protein and gene expression assays in cervical cancer tissues and HeLa cells. Then, IKCa1 channel blocker and siRNA were employed to inhibit the functionality of IKCa1 and downregulate gene expression in HeLa cells, respectively. After these treatments, we examined the level of cell proliferation by MTT method and measured IKCa1 currents by conventional whole-cell patch clamp technique. Cell apoptosis was assessed using the Annexin V-FITC/Propidium Iodide (PI) double-staining apoptosis detection kit. Results We demonstrated that IKCa1 mRNA and protein are preferentially expressed in cervical cancer tissues and HeLa cells. We also showed that the IKCa1 channel blocker, clotrimazole, and IKCa1 channel siRNA can be used to suppress cervical cancer cell proliferation and decrease IKCa1 channel current. IKCa1 downregulation by specific siRNAs induced a significant increase in the proportion of apoptotic cells in HeLa cells. Conclusions IKCa1 is overexpressed in cervical cancer tissues, and IKCa1 upregulation in cervical cancer cell linea enhances cell proliferation, partly by reducing the proportion of apoptotic cells. PMID:28280257

  11. Enhancing the biocompatibility of microfluidics-assisted fabrication of cell-laden microgels with channel geometry.

    Science.gov (United States)

    Kim, Suntae; Oh, Jonghyun; Cha, Chaenyung

    2016-11-01

    Microfluidic flow-focusing devices (FFD) are widely used to generate monodisperse droplets and microgels with controllable size, shape and composition for various biomedical applications. However, highly inconsistent and often low viability of cells encapsulated within the microgels prepared via microfluidic FFD has been a major concern, and yet this aspect has not been systematically explored. In this study, we demonstrate that the biocompatibility of microfluidic FFD to fabricate cell-laden microgels can be significantly enhanced by controlling the channel geometry. When a single emulsion ("single") microfluidic FFD is used to fabricate cell-laden microgels, there is a significant decrease and batch-to-batch variability in the cell viability, regardless of their size and composition. It is determined that during droplet generation, some of the cells are exposed to the oil phase which is shown to have a cytotoxic effect. Therefore, a microfluidic device with a sequential ('double') flow-focusing channels is employed instead, in which a secondary aqueous phase containing cells enters the primary aqueous phase, so the cells' exposure to the oil phase is minimized by directing them to the center of droplets. This microfluidic channel geometry significantly enhances the biocompatibility of cell-laden microgels, while maintaining the benefits of a typical microfluidic process. This study therefore provides a simple and yet highly effective strategy to improve the biocompatibility of microfluidic fabrication of cell-laden microgels.

  12. Technique for internal channelling of hydroentangled nonwoven scaffolds to enhance cell penetration.

    Science.gov (United States)

    Durham, Elaine R; Ingham, Eileen; Russell, Stephen J

    2013-08-01

    An important requirement in thick, high-porosity scaffolds is to maximise cellular penetration into the interior and avoid necrosis during culture in vitro. Hitherto, reproducible control of the pore structure in nonwoven scaffolds has proved challenging. A new, channelled scaffold manufacturing process is reported based on water jet entanglement of fibres (hydroentangling) around filamentous template to form a coherent scaffold that is subsequently removed. Longitudinally-oriented channels were introduced within the scaffold in controlled proximity using 220 µm diameter cylindrical templates. In this case study, channelled scaffolds composed of poly(l-lactic acid) were manufactured and evaluated in vitro. Environmental scanning electron microscope and µCT (X-ray microtomography) confirmed channel openings in the scaffold cross-section before and after cell culture with human dermal fibroblasts up to 14 weeks. Histology at week 11 indicated that the channels promoted cell penetration and distribution within the scaffold interior. At week 14, cellular matrix deposition was evident in the internal channel walls and the entrances remained unoccluded by cellular matrix suggesting that diffusion conduits for mass transfer of nutrient to the scaffold interior could be maintained.

  13. Phentolamine and yohimbine inhibit ATP-sensitive K+ channels in mouse pancreatic beta-cells.

    OpenAIRE

    Plant, T D; Henquin, J C

    1990-01-01

    1. The effects of phentolamine and yohimbine on adenosine 5'-triphosphate (ATP)-sensitive K+ channels were studied in normal mouse beta-cells. 2. In the presence of 3 mM glucose, many ATP-sensitive K+ channels are open in the beta-cell membrane. Under these conditions, phentolamine inhibited 86Rb efflux from the islets. This inhibition was faster with 100 than with 20 microM phentolamine but its steady-state magnitude was similar with both concentrations. Yohimbine (20-100 microM) also inhibi...

  14. Functional diversity and evolutionary dynamics of thermoTRP channels.

    Science.gov (United States)

    Saito, Shigeru; Tominaga, Makoto

    2015-03-01

    Animals have evolved sophisticated physiological systems for sensing ambient temperature since changes in environmental temperatures affect various biological processes. Thermosensitive transient receptor potential (thermoTRP) channels serve as thermal sensors in diverse animal species. They are multimodal receptors that are activated by temperature as well as other physical and chemical stimuli. Since thermoTRP channels are calcium permeable non-selective cation channels, their activation leads to an influx of calcium and sodium ions into the cell and triggers downstream signal transduction. ThermoTRP channels have been characterized in diverse animal species over the past several years, illuminating the diversification of thermoTRP channels in the course of evolution. The gene repertoires of thermoTRP channels differ among animal species. Additionally, in some cases, the temperature and chemical sensitivities among orthologous thermoTRP channels vary among species. The evolutionary flexibility of thermoTRP channels enabled them to contribute to unique physiological systems such as infrared sensation in snakes and bats and seasonal adaptation in silk moth. On the other hand, the functional differences of thermoTRP channels among species have been utilized for understanding the molecular basis for their activation (or inhibition) mechanisms, and amino acid residues (or domains) responsible for the respective channel properties have been identified in various thermoTRP channels. Here we summarize the current understanding of the functional diversity and evolutionary dynamics of thermoTRP channels.

  15. Multiparameter cell affinity chromatography: separation and analysis in a single microfluidic channel.

    Science.gov (United States)

    Li, Peng; Gao, Yan; Pappas, Dimitri

    2012-10-02

    The ability to sort and capture more than one cell type from a complex sample will enable a wide variety of studies of cell proliferation and death and the analysis of disease states. In this work, we integrated a pneumatic actuated control layer to an affinity separation layer to create different antibody-coating regions on the same fluidic channel. The comparison of different antibody capture capabilities to the same cell line was demonstrated by flowing Ramos cells through anti-CD19- and anti-CD71-coated regions in the same channel. It was determined that the cell capture density on the anti-CD19 region was 2.44 ± 0.13 times higher than that on the anti-CD71-coated region. This approach can be used to test different affinity molecules for selectivity and capture efficiency using a single cell line in one separation. Selective capture of Ramos and HuT 78 cells from a mixture was also demonstrated using two antibody regions in the same channel. Greater than 90% purity was obtained on both capture areas in both continuous flow and stop flow separation modes. A four-region antibody-coated device was then fabricated to study the simultaneous, serial capture of three different cell lines. In this case the device showed effective capture of cells in a single separation channel, opening up the possibility of multiple cell sorting. Multiparameter sequential blood sample analysis was also demonstrated with high capture specificity (>97% for both CD19+ and CD4+ leukocytes). The chip can also be used to selectively treat cells after affinity separation.

  16. Postaggregative Differentiation Induction by Cyclic AMP in Dictyostelium : Intracellular Transduction Pathway and Requirement for Additional Stimuli

    NARCIS (Netherlands)

    Schaap, Pauline; Lookeren Campagne, Michiel M. van; Driel, Roel van; Spek, Wouter; Haastert, Peter J.M. van; Pinas, Johan

    1986-01-01

    Cyclic AMP induces postaggregative differentiation in aggregation competent cells of Dictyostelium by interacting with cell surface cAMP receptors. We investigated the transduction pathway of this response and additional requirements for the induction of postaggregative differentiation. Optimal indu

  17. Genetics of auditory mechano-electrical transduction.

    Science.gov (United States)

    Michalski, Nicolas; Petit, Christine

    2015-01-01

    The hair bundles of cochlear hair cells play a central role in the auditory mechano-electrical transduction (MET) process. The identification of MET components and of associated molecular complexes by biochemical approaches is impeded by the very small number of hair cells within the cochlea. In contrast, human and mouse genetics have proven to be particularly powerful. The study of inherited forms of deafness led to the discovery of several essential proteins of the MET machinery, which are currently used as entry points to decipher the associated molecular networks. Notably, MET relies not only on the MET machinery but also on several elements ensuring the proper sound-induced oscillation of the hair bundle or the ionic environment necessary to drive the MET current. Here, we review the most significant advances in the molecular bases of the MET process that emerged from the genetics of hearing.

  18. The effect of cell size and channel density on neuronal information encoding and energy efficiency.

    Science.gov (United States)

    Sengupta, Biswa; Faisal, A Aldo; Laughlin, Simon B; Niven, Jeremy E

    2013-09-01

    Identifying the determinants of neuronal energy consumption and their relationship to information coding is critical to understanding neuronal function and evolution. Three of the main determinants are cell size, ion channel density, and stimulus statistics. Here we investigate their impact on neuronal energy consumption and information coding by comparing single-compartment spiking neuron models of different sizes with different densities of stochastic voltage-gated Na(+) and K(+) channels and different statistics of synaptic inputs. The largest compartments have the highest information rates but the lowest energy efficiency for a given voltage-gated ion channel density, and the highest signaling efficiency (bits spike(-1)) for a given firing rate. For a given cell size, our models revealed that the ion channel density that maximizes energy efficiency is lower than that maximizing information rate. Low rates of small synaptic inputs improve energy efficiency but the highest information rates occur with higher rates and larger inputs. These relationships produce a Law of Diminishing Returns that penalizes costly excess information coding capacity, promoting the reduction of cell size, channel density, and input stimuli to the minimum possible, suggesting that the trade-off between energy and information has influenced all aspects of neuronal anatomy and physiology.

  19. Plant adaptation to fluctuating environment and biomass production are strongly dependent on guard cell potassium channels

    Science.gov (United States)

    Lebaudy, Anne; Vavasseur, Alain; Hosy, Eric; Dreyer, Ingo; Leonhardt, Nathalie; Thibaud, Jean-Baptiste; Véry, Anne-Aliénor; Simonneau, Thierry; Sentenac, Hervé

    2008-01-01

    At least four genes encoding plasma membrane inward K+ channels (Kin channels) are expressed in Arabidopsis guard cells. A double mutant plant was engineered by disruption of a major Kin channel gene and expression of a dominant negative channel construct. Using the patch-clamp technique revealed that this mutant was totally deprived of guard cell Kin channel (GCKin) activity, providing a model to investigate the roles of this activity in the plant. GCKin activity was found to be an essential effector of stomatal opening triggered by membrane hyperpolarization and thereby of blue light-induced stomatal opening at dawn. It improved stomatal reactivity to external or internal signals (light, CO2 availability, and evaporative demand). It protected stomatal function against detrimental effects of Na+ when plants were grown in the presence of physiological concentrations of this cation, probably by enabling guard cells to selectively and rapidly take up K+ instead of Na+ during stomatal opening, thereby preventing deleterious effects of Na+ on stomatal closure. It was also shown to be a key component of the mechanisms that underlie the circadian rhythm of stomatal opening, which is known to gate stomatal responses to extracellular and intracellular signals. Finally, in a meteorological scenario with higher light intensity during the first hours of the photophase, GCKin activity was found to allow a strong increase (35%) in plant biomass production. Thus, a large diversity of approaches indicates that GCKin activity plays pleiotropic roles that crucially contribute to plant adaptation to fluctuating and stressing natural environments. PMID:18367672

  20. Ryanodine Receptors Selectively Interact with L Type Calcium Channels in Mouse Taste Cells.

    Directory of Open Access Journals (Sweden)

    Michelle R Rebello

    Full Text Available WE REPORTED THAT RYANODINE RECEPTORS ARE EXPRESSED IN TWO DIFFERENT TYPES OF MAMMALIAN PERIPHERAL TASTE RECEPTOR CELLS: Type II and Type III cells. Type II cells lack voltage-gated calcium channels (VGCCs and chemical synapses. In these cells, ryanodine receptors contribute to the taste-evoked calcium signals that are initiated by opening inositol trisphosphate receptors located on internal calcium stores. In Type III cells that do have VGCCs and chemical synapses, ryanodine receptors contribute to the depolarization-dependent calcium influx.The goal of this study was to establish if there was selectivity in the type of VGCC that is associated with the ryanodine receptor in the Type III taste cells or if the ryanodine receptor opens irrespective of the calcium channels involved. We also wished to determine if the ryanodine receptors and VGCCs require a physical linkage to interact or are simply functionally associated with each other. Using calcium imaging and pharmacological inhibitors, we found that ryanodine receptors are selectively associated with L type VGCCs but likely not through a physical linkage.Taste cells are able to undergo calcium induced calcium release through ryanodine receptors to increase the initial calcium influx signal and provide a larger calcium response than would otherwise occur when L type channels are activated in Type III taste cells.

  1. Blockade of microglial KATP -channel abrogates suppression of inflammatory-mediated inhibition of neural precursor cells.

    Science.gov (United States)

    Ortega, Francisco J; Vukovic, Jana; Rodríguez, Manuel J; Bartlett, Perry F

    2014-02-01

    Microglia positively affect neural progenitor cell physiology through the release of inflammatory mediators or trophic factors. We demonstrated previously that reactive microglia foster K(ATP) -channel expression and that blocking this channel using glibenclamide administration enhances striatal neurogenesis after stroke. In this study, we investigated whether the microglial K(ATP) -channel directly influences the activation of neural precursor cells (NPCs) from the subventricular zone using transgenic Csf1r-GFP mice. In vitro exposure of NPCs to lipopolysaccharide and interferon-gamma resulted in a significant decrease in precursor cell number. The complete removal of microglia from the culture or exposure to enriched microglia culture also decreased the precursor cell number. The addition of glibenclamide rescued the negative effects of enriched microglia on neurosphere formation and promoted a ∼20% improvement in precursor cell number. Similar results were found using microglial-conditioned media from isolated microglia. Using primary mixed glial and pure microglial cultures, glibenclamide specifically targeted reactive microglia to restore neurogenesis and increased the microglial production of the chemokine monocyte chemoattractant protein-1 (MCP-1). These findings provide the first direct evidence that the microglial K(ATP) -channel is a regulator of the proliferation of NPCs under inflammatory conditions.

  2. Numerical Investigation of Channel Geometry on the Performance of a Pem Fuel Cell

    Science.gov (United States)

    Khazaee, I.; Mohammadiun, M.

    2013-03-01

    A complete three-dimensional and single phase model for proton exchange membrane (PEM) fuel cells was used to investigate the effect of using different channels geometry on the performances, current density and gas concentration. The proposed model was a full cell model, which includes all the parts of the PEM fuel cell, flow channels, gas diffusion electrodes, catalyst layers and the membrane. Coupled transport and electrochemical kinetics equations were solved in a single domain; therefore no interfacial boundary condition was required at the internal boundaries between cell components. This computational fluid dynamics code was employed as the direct problem solver, which was used to simulate the three-dimensional mass, momentum, energy and species transport phenomena as well as the electron- and proton-transfer process taking place in a PEMFC. The results showed that the predicted polarization curves by using this model were in good agreement with the experimental results and a high performance was observed by using circle geometry for the channels of anode and cathode sides. Also, the results showed that the performance of the fuel cell improved when a rectangular channel was used.

  3. TRPV3 Channel Negatively Regulates Cell Cycle Progression and Safeguards the Pluripotency of Embryonic Stem Cells.

    Science.gov (United States)

    Lo, Iek Chi; Chan, Hing Chung; Qi, Zenghua; Ng, Kwun Lam; So, Chun; Tsang, Suk Ying

    2016-02-01

    Embryonic stem cells (ESCs) have tremendous potential for research and future therapeutic purposes. However, the calcium handling mechanism in ESCs is not fully elucidated. Aims of this study are (1) to investigate if transient receptor potential vanilloid-3 (TRPV3) channels are present in mouse ESCs (mESCs) and their subcellular localization; (2) to investigate the role of TRPV3 in maintaining the characteristics of mESCs. Western blot and immunocytochemistry showed that TRPV3 was present at the endoplasmic reticulum (ER) of mESCs. Calcium imaging showed that, in the absence of extracellular calcium, TRPV3 activators camphor and 6-tert-butyl-m-cresol increased the cytosolic calcium. However, depleting the ER store in advance of activator addition abolished the calcium increase, suggesting that TRPV3 released calcium from the ER. To dissect the functional role of TRPV3, TRPV3 was activated and mESC proliferation was measured by trypan blue exclusion and MTT assays. The results showed that TRPV3 activation led to a decrease in mESC proliferation. Cell cycle analysis revealed that TRPV3 activation increased the percentage of cells in G2 /M phase; consistently, Western blot also revealed a concomitant increase in the expression of inactive form of cyclin-dependent kinase 1, suggesting that TRPV3 activation arrested mESCs at G2 /M phase. TRPV3 activation did not alter the expression of pluripotency markers Oct-4, Klf4 and c-Myc, suggesting that the pluripotency was preserved. Our study is the first study to show the presence of TRPV3 at ER. Our study also reveals the novel role of TRPV3 in controlling the cell cycle and preserving the pluripotency of ESCs.

  4. Expression of G-protein inwardly rectifying potassium channels (GIRKs in lung cancer cell lines

    Directory of Open Access Journals (Sweden)

    Schuller Hildegard M

    2005-08-01

    Full Text Available Abstract Background Previous data from our laboratory has indicated that there is a functional link between the β-adrenergic receptor signaling pathway and the G-protein inwardly rectifying potassium channel (GIRK1 in human breast cancer cell lines. We wanted to determine if GIRK channels were expressed in lung cancers and if a similar link exists in lung cancer. Methods GIRK1-4 expression and levels were determined by reverse transcription polymerase chain reaction (RT-PCR and real-time PCR. GIRK protein levels were determined by western blots and cell proliferation was determined by a 5-bromo-2'-deoxyuridine (BrdU assay. Results GIRK1 mRNA was expressed in three of six small cell lung cancer (SCLC cell lines, and either GIRK2, 3 or 4 mRNA expression was detected in all six SCLC cell lines. Treatment of NCI-H69 with β2-adrenergic antagonist ICI 118,551 (100 μM daily for seven days led to slight decreases of GIRK1 mRNA expression levels. Treatment of NCI-H69 with the β-adrenergic agonist isoproterenol (10 μM decreased growth rates in these cells. The GIRK inhibitor U50488H (2 μM also inhibited proliferation, and this decrease was potentiated by isoproterenol. In the SCLC cell lines that demonstrated GIRK1 mRNA expression, we also saw GIRK1 protein expression. We feel these may be important regulatory pathways since no expression of mRNA of the GIRK channels (1 & 2 was found in hamster pulmonary neuroendocrine cells, a suggested cell of origin for SCLC, nor was GIRK1 or 2 expression found in human small airway epithelial cells. GIRK (1,2,3,4 mRNA expression was also seen in A549 adenocarcinoma and NCI-H727 carcinoid cell lines. GIRK1 mRNA expression was not found in tissue samples from adenocarcinoma or squamous cancer patients, nor was it found in NCI-H322 or NCI-H441 adenocarcinoma cell lines. GIRK (1,3,4 mRNA expression was seen in three squamous cell lines, GIRK2 was only expressed in one squamous cell line. However, GIRK1 protein

  5. Expression of SMAD signal transduction molecules in the pancreas

    DEFF Research Database (Denmark)

    Brorson, Michael; Hougaard, D.; Nielsen, Jens Høiriis;

    2001-01-01

    Members of the TGF-beta superfamily of cytokines have been implicated in pancreatic cancer, pancreatitis and in regulation and differentiation of pancreatic endocrine and exocrine cells. Different TGF-beta members signal through phosphorylation of different signal transduction proteins, which eve...

  6. Interference Alignment Through User Cooperation for Two-cell MIMO Interfering Broadcast Channels

    CERN Document Server

    Shin, Wonjae; Lim, Jong-Bu; Shin, Changyong; Jang, Kyunghun

    2010-01-01

    This paper focuses on two-cell multiple-input multiple-output (MIMO) Gaussian interfering broadcast channels (MIMO-IFBC) with $K$ cooperating users on the cell-boundary of each BS. It corresponds to a downlink scenario for cellular networks with two base stations (BSs), and $K$ users equipped with Wi-Fi interfaces enabling to cooperate among users on a peer-to-peer basis. In this scenario, we propose a novel interference alignment (IA) technique exploiting user cooperation. Our proposed algorithm obtains the achievable degrees of freedom (DoF) of 2K when each BS and user have $M=K+1$ transmit antennas and $N=K$ receive antennas, respectively. Furthermore, the algorithm requires only a small amount of channel feedback information with the aid of the user cooperation channels. The simulations demonstrate that not only are the analytical results valid, but the achievable DoF of our proposed algorithm also outperforms those of conventional techniques.

  7. Acid-sensitive channel inhibition prevents fetal alcohol spectrum disorders cerebellar Purkinje cell loss.

    Science.gov (United States)

    Ramadoss, Jayanth; Lunde, Emilie R; Ouyang, Nengtai; Chen, Wei-Jung A; Cudd, Timothy A

    2008-08-01

    Ethanol is now considered the most common human teratogen. Educational campaigns have not reduced the incidence of ethanol-mediated teratogenesis, leading to a growing interest in the development of therapeutic prevention or mitigation strategies. On the basis of the observation that maternal ethanol consumption reduces maternal and fetal pH, we hypothesized that a pH-sensitive pathway involving the TWIK-related acid-sensitive potassium channels (TASKs) is implicated in ethanol-induced injury to the fetal cerebellum, one of the most sensitive targets of prenatal ethanol exposure. Pregnant ewes were intravenously infused with ethanol (258+/-10 mg/dl peak blood ethanol concentration) or saline in a "3 days/wk binge" pattern throughout the third trimester. Quantitative stereological analysis demonstrated that ethanol resulted in a 45% reduction in the total number of fetal cerebellar Purkinje cells, the cell type most sensitive to developmental ethanol exposure. Extracellular pH manipulation to create the same degree and pattern of pH fall caused by ethanol (manipulations large enough to inhibit TASK 1 channels), resulted in a 24% decrease in Purkinje cell number. We determined immunohistochemically that TASK 1 channels are expressed in Purkinje cells and that the TASK 3 isoform is expressed in granule cells of the ovine fetal cerebellum. Pharmacological blockade of both TASK 1 and TASK 3 channels simultaneous with ethanol effectively prevented any reduction in fetal cerebellar Purkinje cell number. These results demonstrate for the first time functional significance of fetal cerebellar two-pore domain pH-sensitive channels and establishes them as a potential therapeutic target for prevention of ethanol teratogenesis.

  8. Actin Dynamics Regulates Voltage-Dependent Calcium-Permeable Channels of the Vicia faba Guard Cell Plasma Membrane

    Institute of Scientific and Technical Information of China (English)

    Wei Zhang; Liu-Min Fan

    2009-01-01

    Free cytosolic Ca~(2+) ([Ca~(2+)]_(cyt)) is an ubiquitous second messenger in plant cell signaling, and [Ca~(2+)]_(cyt) elevation is associated with Ca~(2+)-permeable channels in the plasma membrane and endomembranes regulated by a wide range of stimuli. However, knowledge regarding Ca~(2+) channels and their regulation remains limited in planta. A type of voltage-dependent Ca~(2+)-permeable channel was identified and characterized for the Vicia faba L. guard cell plasma membrane by using patch-clamp techniques. These channels are permeable to both Ba~(2+) and Ca~(2+), and their activities can be inhibited by micromolar Gd~(3+). The unitary conductance and the reversal potential of the channels depend on the Ca~(2+) or Ba~(2+) gradients across the plasma membrane. The inward whole-cell Ca~(2+) (Ba~(2+)) current, as well as the unitary current amplitude and NP. of the single Ca~(2+) channel, increase along with the membrane hyperpolarization. Pharmacological experiments suggest that actin dynamics may serve as an upstream regulator of this type of calcium channel of the guard cell plasma membrane. Cytochalasin D, an actin polymerization blocker, activated the NP_o of these channels at the single channel level and increased the current amplitude at the whole-cell level. But these channel activations and current increments could be restrained by pretreatment with an F-actin stabilizer, phalloidin. The potential physiological significance of this regulatory mechanism is also discussed.

  9. Evaluation of a 32-channel versus a 12-channel head coil for high-resolution post-contrast MRI in giant cell arteritis (GCA) at 3 T

    Energy Technology Data Exchange (ETDEWEB)

    Franke, Philipp, E-mail: philipp.franke@uniklinik-freiburg.de [Institut für Diagnostische Radiologie, Gartenstr. 28, 79098 Freiburg (Germany); Markl, Michael, E-mail: mmarkl@northwestern.edu [Departments of Radiology and Biomedical Engineering, Northwestern University Chicago, 737 North Michigan Avenue, Suite 1600, Chicago, IL 60611 (United States); Heinzelmann, Sonja, E-mail: sonja.heinzelmann@uniklinik-freiburg.de [Department of Ophthalmology, University Hospital Freiburg, Killianstr. 5, 79106 Freiburg (Germany); Vaith, Peter, E-mail: peter.vaith@uniklinik-freiburg.de [Department of Rheumatology and Immunology, University Hospital Freiburg, Hugstetter Str. 55, 79106 Freiburg (Germany); Bürk, Jonas, E-mail: jonas.buerk@uniklinik-freiburg.de [Department of Diagnostic Radiology, University Hospital Freiburg, Hugstetter Str. 55, 79106 Freiburg (Germany); Langer, Mathias, E-mail: mathias.langer@uniklinik-freiburg.de [Department of Diagnostic Radiology, University Hospital Freiburg, Hugstetter Str. 55, 79106 Freiburg (Germany); Geiger, J., E-mail: julia.geiger@uniklinik-freiburg.de [Department of Diagnostic Radiology, University Hospital Freiburg, Hugstetter Str. 55, 79106 Freiburg (Germany); Department of Radiology, University Children‘s Hospital Zurich, Steinwiesstr. 75, 8032 Zurich (Switzerland)

    2014-10-15

    The aim of this study was to evaluate the diagnostic value of a 32-channel head coil for the characterization of mural inflammation patterns in the superficial cranial arteries in patients with giant cell arteritis (GCA) compared to a standard 12-channel coil at 3 T MRI. 55 patients with suspected GCA underwent high resolution T1-weighted post-contrast MRI at 3 T to detect inflammation related vessel wall enhancement using both coils. To account for different time delays between contrast agent injection and sequence acquisition, the patients were divided into two cohorts: 27 patients were examined with the 32-channel coil first and 28 patients with the 12-channel coil first. Images were evaluated by two blinded readers with regard to image quality, artifact level and arteries’ inflammation according to a standardized ranking scale; furthermore signal-to-noise ratio (SNR) measurements were performed at three locations. Identification of arteries’ inflammation was achieved with both coils with excellent inter-observer agreement (κ = 0.89 for 12-channel and κ = 0.96 for 32-channel coil). Regarding image grading, the inter-observer variability was moderate for the 12-channel (κ = 0.5) and substantial for the 32-channel coil (κ = 0.63). Significantly higher SNR and improved image quality (p < 0.01) were obtained with the 32-channel coil in either coil order. Image quality for depiction of the superficial cranial arteries was superior for the 32-channel coil. For standardized GCA diagnosis, the 12-channel coil was sufficient.

  10. Paramagnetic Structures within a Microfluidic Channel for Enhanced Immunomagnetic Isolation and Surface Patterning of Cells

    Science.gov (United States)

    Sun, Chen; Hassanisaber, Hamid; Yu, Richard; Ma, Sai; Verbridge, Scott S.; Lu, Chang

    2016-07-01

    In this report, we demonstrate a unique method for embedding magnetic structures inside a microfluidic channel for cell isolation. We used a molding process to fabricate these structures out of a ferrofluid of cobalt ferrite nanoparticles. We show that the embedded magnetic structures significantly increased the magnetic field in the channel, resulting in up to 4-fold enhancement in immunomagnetic capture as compared with a channel without these embedded magnetic structures. We also studied the spatial distribution of trapped cells both experimentally and computationally. We determined that the surface pattern of these trapped cells was determined by both location of the magnet and layout of the in-channel magnetic structures. Our magnetic structure embedded microfluidic device achieved over 90% capture efficiency at a flow velocity of 4 mm/s, a speed that was roughly two orders of magnitude faster than previous microfluidic systems used for a similar purpose. We envision that our technology will provide a powerful tool for detection and enrichment of rare cells from biological samples.

  11. Rate-dependent activation failure in isolated cardiac cells and tissue due to Na+ channel block.

    Science.gov (United States)

    Varghese, Anthony; Spindler, Anthony J; Paterson, David; Noble, Denis

    2015-11-15

    While it is well established that class-I antiarrhythmics block cardiac sodium channels, the mechanism of action of therapeutic levels of these drugs is not well understood. Using a combination of mathematical modeling and in vitro experiments, we studied the failure of activation of action potentials in single ventricular cells and in tissue caused by Na(+) channel block. Our computations of block and unblock of sodium channels by a theoretical class-Ib antiarrhythmic agent predict differences in the concentrations required to cause activation failure in single cells as opposed to multicellular preparations. We tested and confirmed these in silico predictions with in vitro experiments on isolated guinea-pig ventricular cells and papillary muscles stimulated at various rates (2-6.67 Hz) and exposed to various concentrations (5 × 10(-6) to 500 × 10(-6) mol/l) of lidocaine. The most salient result was that whereas large doses (5 × 10(-4) mol/l or higher) of lidocaine were required to inhibit action potentials temporarily in single cells, much lower doses (5 × 10(-6) mol/l), i.e., therapeutic levels, were sufficient to have the same effect in papillary muscles: a hundredfold difference. Our experimental results and mathematical analysis indicate that the syncytial nature of cardiac tissue explains the effects of clinically relevant doses of Na(+) channel blockers.

  12. Numerical studies on liquid water flooding in gas channels used inpolymer electrolyte fuel cells

    NARCIS (Netherlands)

    Qin, CZ.; Hassanizadeh, S.M.; Rensink, D.

    2012-01-01

    Water management plays an important role in the development of low-temperature polymer electrolyte fuel cells (PEFCs). The lack of a macroscopic gas channel (GC) flooding model constrains the current predictions of PEFC modeling under severe flooding situations. In this work, we have extended our pr

  13. Improvement of performance of gas flow channel in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Jenn-Kun [Graduate Institute of Greenergy Technology, National University of Tainan, 700 Taiwan (China); Yen, Tzu-Shuang; Chen, Cha' o-Kuang [Department of Mechanical Engineering, National Cheng Kung University, Tainan, 70101 Taiwan (China)

    2008-10-15

    This study performs numerical simulations to evaluate the convective heat transfer performance and velocity flow characteristics of the gas flow channel design to enhance the performance of proton exchange membrane fuel cells (PEMFCs). To restrict the current simulations to two-dimensional incompressible flows, the flow regime is assumed to be laminar with a low Reynolds number of approximately 200. In addition, the field synergy principle is applied to demonstrate that an increased interruption within the fluid flow reduces the intersection angle between the velocity vector and the temperature gradient. The interruption within the fluid flow is induced by different type of obstacles: wave like, trapezoid like and ladder like forms and the straight form of the gas flow channel. The numerical results show that, compared to a conventional straight gas flow channel, the wave like, trapezoid like and ladder like geometry of the proposed gas flow channel increases the mean Nusselt number by a factor of approximately two. Furthermore, the periodic three patterns (wave like, trapezoid like and ladder like) structure increases the gas flow velocity in the channel and, hence, improves the catalysis reaction performance in the catalyst layer. Finally, the results show that the three patterns geometry of the gas flow channel reduces the included angle between the velocity vector and the temperature gradient. Hence, the present numerical results are consistent with the field synergy principle, which states that the convective heat transfer is enhanced when the velocity vector and temperature gradient are closely aligned with one another. (author)

  14. Blood pressure and amiloride-sensitive sodium channels in vascular and renal cells.

    Science.gov (United States)

    Warnock, David G; Kusche-Vihrog, Kristina; Tarjus, Antoine; Sheng, Shaohu; Oberleithner, Hans; Kleyman, Thomas R; Jaisser, Frederic

    2014-03-01

    Sodium transport in the distal nephron is mediated by epithelial sodium channel activity. Proteolytic processing of external domains and inhibition with increased sodium concentrations are important regulatory features of epithelial sodium channel complexes expressed in the distal nephron. By contrast, sodium channels expressed in the vascular system are activated by increased external sodium concentrations, which results in changes in the mechanical properties and function of endothelial cells. Mechanosensitivity and shear stress affect both epithelial and vascular sodium channel activity. Guyton's hypothesis stated that blood pressure control is critically dependent on vascular tone and fluid handling by the kidney. The synergistic effects, and complementary regulation, of the epithelial and vascular systems are consistent with the Guytonian model of volume and blood pressure regulation, and probably reflect sequential evolution of the two systems. The integration of vascular tone, renal perfusion and regulation of renal sodium reabsorption is the central underpinning of the Guytonian model. In this Review, we focus on the expression and regulation of sodium channels, and we outline the emerging evidence that describes the central role of amiloride-sensitive sodium channels in the efferent (vascular) and afferent (epithelial) arms of this homeostatic system.

  15. Use of recombinant lentivirus pseudotyped with vesicular stomatitis virus glycoprotein G for efficient generation of human anti-cancer chimeric T cells by transduction of human peripheral blood lymphocytes in vitro

    Directory of Open Access Journals (Sweden)

    Kolokoltsov Andrey A

    2006-02-01

    Full Text Available Abstract Background Genetic redirection of lymphocytes that have been genetically engineered to recognize antigens other than those originally programmed in their germlines is a potentially powerful tool for immunotherapy of cancers and potentially also of persistent viral infections. The basis for this procedure is that both cancers and some viruses have developed strikingly similar mechanisms of evading attacks by host immune mechanisms. To redirect human peripheral blood lymphocytes (PBLs with a chimeric T cell receptor (chTCR so that they recognize a new target requires a high degree of transfection efficiency, a process that is regarded as technically demanding. Results Infection with a retroviral vector carrying a chTCR cassette was shown to transduce 100% of rapidly dividing murine T cells but typically, only ~10% of PBLs could be infected with the same vector. In contrast with other retroviruses, lentiviruses integrate their genomes into non-dividing cells. To increase host cell range, vesicular stomatitis virus G protein was pseudotyped with a lentivirus vector, which resulted in ~100% PBL transduction efficiency. Signaling of PBLs bearing chimeric receptors was shown by specific proliferation on exposure to cells expressing cognate ligand. Further, T-bodies against CEA showed a startling abilty to cause regression of maligant colon tumors in a nude mouse model of human cancer. Conclusion A lentivirus/VSV pseudotyped virus, which does not require replicating cells for integration of its genome, efficiently transduced a high proportion of human PBLs with chTCRs against CEA. PBLs transduced by infection with a lentivirus/VSV pseudotyped vector were able to proliferate specifically in vitro on exposure to CEA-expressing cells and further they had a startling therapeutic effect in a mouse model of human colon cancer.

  16. Mechanosensor Channels in Mammalian Somatosensory Neurons

    Directory of Open Access Journals (Sweden)

    Patrick Delmas

    2007-09-01

    Full Text Available Mechanoreceptive sensory neurons innervating the skin, skeletal muscles andviscera signal both innocuous and noxious information necessary for proprioception, touchand pain. These neurons are responsible for the transduction of mechanical stimuli intoaction potentials that propagate to the central nervous system. The ability of these cells todetect mechanical stimuli impinging on them relies on the presence of mechanosensitivechannels that transduce the external mechanical forces into electrical and chemical signals.Although a great deal of information regarding the molecular and biophysical properties ofmechanosensitive channels in prokaryotes has been accumulated over the past two decades,less is known about the mechanosensitive channels necessary for proprioception and thesenses of touch and pain. This review summarizes the most pertinent data onmechanosensitive channels of mammalian somatosensory neurons, focusing on theirproperties, pharmacology and putative identity.

  17. Computerized image analysis of cell-cell interactions in human renal tissue by using multi-channel immunoflourescent confocal microscopy

    Science.gov (United States)

    Peng, Yahui; Jiang, Yulei; Liarski, Vladimir M.; Kaverina, Natalya; Clark, Marcus R.; Giger, Maryellen L.

    2012-03-01

    Analysis of interactions between B and T cells in tubulointerstitial inflammation is important for understanding human lupus nephritis. We developed a computer technique to perform this analysis, and compared it with manual analysis. Multi-channel immunoflourescent-microscopy images were acquired from 207 regions of interest in 40 renal tissue sections of 19 patients diagnosed with lupus nephritis. Fresh-frozen renal tissue sections were stained with combinations of immunoflourescent antibodies to membrane proteins and counter-stained with a cell nuclear marker. Manual delineation of the antibodies was considered as the reference standard. We first segmented cell nuclei and cell membrane markers, and then determined corresponding cell types based on the distances between cell nuclei and specific cell-membrane marker combinations. Subsequently, the distribution of the shortest distance from T cell nuclei to B cell nuclei was obtained and used as a surrogate indicator of cell-cell interactions. The computer and manual analyses results were concordant. The average absolute difference was 1.1+/-1.2% between the computer and manual analysis results in the number of cell-cell distances of 3 μm or less as a percentage of the total number of cell-cell distances. Our computerized analysis of cell-cell distances could be used as a surrogate for quantifying cell-cell interactions as either an automated and quantitative analysis or for independent confirmation of manual analysis.

  18. The ion channels to cytoskeleton connection as potential mechanism of mechanosensitivity.

    Science.gov (United States)

    Martinac, Boris

    2014-02-01

    As biological force-sensing systems mechanosensitive (MS) ion channels present the best example of coupling molecular dynamics of membrane proteins to the mechanics of the surrounding cell membrane. In animal cells MS channels have over the past two decades been very much in focus of mechanotransduction research. In recent years this helped to raise awareness of basic and medical researchers about the role that abnormal MS channels may play in the pathophysiology of diseases, such as cardiac hypertrophy, atrial fibrillation, muscular dystrophy or polycystic kidney disease. To date a large number of MS channels from organisms of diverse phylogenetic origins have been identified at the molecular level; however, the structure of only few of them has been determined. Although their function has extensively been studied in a great variety of cells and tissues by different experimental approaches it is, with exception of bacterial MS channels, very little known about how these channels sense mechanical force and which cellular components may contribute to their function. By focusing on MS channels found in animal cells this article discusses the ways in which the connections between cytoskeleton and ion channels may contribute to mechanosensory transduction in these cells. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.

  19. Heart failure drug digitoxin induces calcium uptake into cells by forming transmembrane calcium channels

    OpenAIRE

    2008-01-01

    Digitoxin and other cardiac glycosides are important, centuries-old drugs for treating congestive heart failure. However, the mechanism of action of these compounds is still being elucidated. Calcium is known to potentiate the toxicity of these drugs, and we have hypothesized that digitoxin might mediate calcium entry into cells. We report here that digitoxin molecules mediate calcium entry into intact cells. Multimers of digitoxin molecules also are able to form calcium channels in pure plan...

  20. P2X7 on Mouse T Cells: One Channel, Many Functions

    OpenAIRE

    Rissiek, Björn; Haag, Friedrich; Boyer, Olivier; Koch-Nolte, Friedrich; Adriouch, Sahil

    2015-01-01

    The P2X7 receptor is an adenosine triphosphate (ATP)-gated cation channel that is expressed by several cells of the immune system. P2X7 is best known for its proinflammatory role in promoting inflammasome formation and release of mature interleukin (IL)-1β by innate immune cells. Mounting evidence indicates that P2X7 is also an important regulatory receptor of murine and human T cell functions. Murine T cells express a sensitive splice variant of P2X7 that can be activated either by non-coval...

  1. Transient Receptor Potential Melastatin 4 channel controls calcium signals and dental follicle stem cell differentiation

    OpenAIRE

    2013-01-01

    Elevations in the intracellular Ca2+ concentration are a phenomena commonly observed during stem cell differentiation but cease after the process is complete. The Transient Receptor Potential Melastatin 4 (TRPM4) is an ion channel that controls Ca2+ signals in excitable and non-excitable cells. However, its role in stem cells remains unknown. The aim of this study was to characterize TRPM4 in rat dental follicle stem cells (DFSCs) and to determine its impact on Ca2+ signaling and the differen...

  2. Mitochondria-Rich Cells as Experimental Model in Studies of Epithelial Chloride Channels

    DEFF Research Database (Denmark)

    Willumsen, Niels J.; Amstrup, Jan; Møbjerg, Nadja

    2002-01-01

    -actin localised in the submembrane domain in the neck region of the flask-shaped mr cell. (ii) The other identified Cl- pathway of mr cells is mediated by small-conductance apical CFTR chloride channels as concluded from its activation via ß-adrenergic receptors, ion selectivity, genistein stimulation...... and inhibition by glibenclamide. bbCFTR has been cloned, and immunostaining has shown that the gene product is selectively expressed in mr cells. There is cross-talk between the two pathways in the sense that activation of the conductance of the mr cell by voltage clamping excludes activation via receptor...

  3. Mucolipins: Intracellular TRPML1-3 channels.

    Science.gov (United States)

    Cheng, Xiping; Shen, Dongbiao; Samie, Mohammad; Xu, Haoxing

    2010-05-17

    The mucolipin family of Transient Receptor Potential (TRPML) proteins is predicted to encode ion channels expressed in intracellular endosomes and lysosomes. Loss-of-function mutations of human TRPML1 cause type IV mucolipidosis (ML4), a childhood neurodegenerative disease. Meanwhile, gain-of-function mutations in the mouse TRPML3 result in the varitint-waddler (Va) phenotype with hearing and pigmentation defects. The broad spectrum phenotypes of ML4 and Va appear to result from certain aspects of endosomal/lysosomal dysfunction. Lysosomes, traditionally believed to be the terminal "recycling center" for biological "garbage", are now known to play indispensable roles in intracellular signal transduction and membrane trafficking. Studies employing animal models and cell lines in which TRPML genes have been genetically disrupted or depleted have uncovered roles of TRPMLs in multiple cellular functions including membrane trafficking, signal transduction, and organellar ion homeostasis. Physiological assays of mammalian cell lines in which TRPMLs are heterologously overexpressed have revealed the channel properties of TRPMLs in mediating cation (Ca(2+)/Fe(2+)) efflux from endosomes and lysosomes in response to unidentified cellular cues. This review aims to summarize these recent advances in the TRPML field and to correlate the channel properties of endolysosomal TRPMLs with their biological functions. We will also discuss the potential cellular mechanisms by which TRPML deficiency leads to neurodegeneration.

  4. Optical propulsion of mammalian eukaryotic cells on an integrated channel waveguide

    Science.gov (United States)

    Shahimin, M. Mohamad; Perney, N. M. B.; Brooks, S.; Hanley, N.; Wright, K. L.; Wilkinson, J. S.; Melvin, T.

    2011-02-01

    The optical propulsion of mammalian eukaryotic cells along the surface of an integrated channel waveguide is demonstrated. 10μm diameter polymethylmethacrylate (PMMA) spherical particles and similarly sized mammalian eukaryotic cells in aqueous medium are deposited in a reservoir over a caesium ion-exchanged channel waveguide. Light from a fibre laser at 1064nm was coupled into the waveguide, causing the polymer particles or cells to be propelled along the waveguide at a velocity which is dependent upon the laser power. A theoretical model was used to predict the propulsion velocity as a function of the refractive index of the particle. The experimental results obtained for the PMMA particles and the mammalian cells show that for input powers greater than 50mW the propulsion velocity is approximately that obtained by the theoretical model. For input powers of less than ~50mW neither particles nor cells were propelled; this is considered to be a result of surface forces (which are not considered in the theoretical model). The results are discussed in light of the potential application of optical channel waveguides for bioanalytical applications, namely in the identification and sorting of mammalian cells from mixed populations without the need for fluorescence or antibody labels.

  5. Emerging roles of calcium-activated K channels and TRPV4 channels in lung oedema and pulmonary circulatory collapse

    DEFF Research Database (Denmark)

    Simonsen, Ulf; Wandall-Frostholm, Christine; Oliván-Viguera, Aida;

    2016-01-01

    endothelial/epithelial barrier functions and vascular integrity, while KCa3.1 channels provide the driving force required for Cl(-) and water transport in some cells and most secretory epithelia. The three conditions, increased pulmonary venous pressure caused by left heart disease, high inflation pressure......, fluid extravasation, hemorrhage, pulmonary circulatory collapse, and cardiac arrest in vivo. These data identify KCa3.1 channels as crucial molecular components in downstream TRPV4-signal transduction and as a potential target for the prevention of undesired fluid extravasation, vasodilatation...

  6. Antitumor Activity of Tenacissoside H on Esophageal Cancer through Arresting Cell Cycle and Regulating PI3K/Akt-NF-κB Transduction Cascade

    OpenAIRE

    Yong-sen Jia; Xue-qin Hu; Hegyi Gabriella; Li-juan Qin; Nora Meggyeshazi

    2015-01-01

    Objective. The purpose of the study was to elucidate the molecular mechanism of tenacissoside H (TDH) inhibiting esophageal carcinoma infiltration and proliferation. Methods. In vitro, EC9706 cells were treated with TDH. Cells proliferation and cell cycle were assayed. PI3K and NF-κB mRNAs expression were determined by real time PCR. In vivo, model of nude mice with tumor was established. Mice were treated with TDH. Inhibition ratio of tumor volume was calculated. PCNA expression was examined...

  7. Highly active microbial phosphoantigen induces rapid yet sustained MEK/Erk- and PI-3K/Akt-mediated signal transduction in anti-tumor human gammadelta T-cells.

    Directory of Open Access Journals (Sweden)

    Daniel V Correia

    Full Text Available BACKGROUND: The unique responsiveness of Vgamma9Vdelta2 T-cells, the major gammadelta subset of human peripheral blood, to non-peptidic prenyl pyrophosphate antigens constitutes the basis of current gammadelta T-cell-based cancer immunotherapy strategies. However, the molecular mechanisms responsible for phosphoantigen-mediated activation of human gammadelta T-cells remain unclear. In particular, previous reports have described a very slow kinetics of activation of T-cell receptor (TCR-associated signal transduction pathways by isopentenyl pyrophosphate and bromohydrin pyrophosphate, seemingly incompatible with direct binding of these antigens to the Vgamma9Vdelta2 TCR. Here we have studied the most potent natural phosphoantigen yet identified, (E-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP, produced by Eubacteria and Protozoa, and examined its gammadelta T-cell activation and anti-tumor properties. METHODOLOGY/PRINCIPAL FINDINGS: We have performed a comparative study between HMB-PP and the anti-CD3epsilon monoclonal antibody OKT3, used as a reference inducer of bona fide TCR signaling, and followed multiple cellular and molecular gammadelta T-cell activation events. We show that HMB-PP activates MEK/Erk and PI-3K/Akt pathways as rapidly as OKT3, and induces an almost identical transcriptional profile in Vgamma9(+ T-cells. Moreover, MEK/Erk and PI-3K/Akt activities are indispensable for the cellular effects of HMB-PP, including gammadelta T-cell activation, proliferation and anti-tumor cytotoxicity, which are also abolished upon antibody blockade of the Vgamma9(+ TCR Surprisingly, HMB-PP treatment does not induce down-modulation of surface TCR levels, and thereby sustains gammadelta T-cell activation upon re-stimulation. This ultimately translates in potent human gammadelta T-cell anti-tumor function both in vitro and in vivo upon transplantation of human leukemia cells into lymphopenic mice, CONCLUSIONS/SIGNIFICANCE: The development of

  8. The Role of Cgrp-Receptor Component Protein (Rcp in Cgrp-Mediated Signal Transduction

    Directory of Open Access Journals (Sweden)

    M. A. Prado

    2001-01-01

    Full Text Available The calcitonin gene-related peptide (CGRP-receptor component protein (RCP is a 17-kDa intracellular peripheral membrane protein required for signal transduction at CGRP receptors. To determine the role of RCP in CGRP-mediated signal transduction, RCP was depleted from NIH3T3 cells using antisense strategy. Loss of RCP protein correlated with loss of cAMP production by CGRP in the antisense cells. In contrast, loss of RCP had no effect on CGRP-mediated binding; therefore RCP is not acting as a chaperone for the CGRP receptor. Instead, RCP is a novel signal transduction molecule that couples the CGRP receptor to the cellular signal transduction machinery. RCP thus represents a prototype for a new class of signal transduction proteins that are required for regulation of G protein-coupled receptors.

  9. Transient receptor potential melastatin 4 channel controls calcium signals and dental follicle stem cell differentiation.

    Science.gov (United States)

    Nelson, Piper; Ngoc Tran, Tran Doan; Zhang, Hanjie; Zolochevska, Olga; Figueiredo, Marxa; Feng, Ji-Ming; Gutierrez, Dina L; Xiao, Rui; Yao, Shaomian; Penn, Arthur; Yang, Li-Jun; Cheng, Henrique

    2013-01-01

    Elevations in the intracellular Ca(2+) concentration are a phenomena commonly observed during stem cell differentiation but cease after the process is complete. The transient receptor potential melastatin 4 (TRPM4) is an ion channel that controls Ca(2+) signals in excitable and nonexcitable cells. However, its role in stem cells remains unknown. The aim of this study was to characterize TRPM4 in rat dental follicle stem cells (DFSCs) and to determine its impact on Ca(2+) signaling and the differentiation process. We identified TRPM4 gene expression in DFSCs, but not TRPM5, a closely related channel with similar function. Perfusion of cells with increasing buffered Ca(2+) resulted in a concentration-dependent activation of currents typical for TRPM4, which were also voltage-dependent and had Na(+) conductivity. Molecular suppression with shRNA decreased channel activity and cell proliferation during osteogenesis but not adipogenesis. As a result, enhanced mineralization and phosphatase enzyme activity were observed during osteoblast formation, although DFSCs failed to differentiate into adipocytes. Furthermore, the normal agonist-induced first and secondary phases of Ca(2+) signals were transformed into a gradual and sustained increase which confirmed the channels' ability to control Ca(2+) signaling. Using whole genome microarray analysis, we identified several genes impacted by TRPM4 during DFSC differentiation. These findings suggest an inhibitory role for TRPM4 on osteogenesis while it appears to be required for adipogenesis. The data also provide a potential link between the Ca(2+) signaling pattern and gene expression during stem cell differentiation.

  10. Effects of adenoviral-mediated gene transduction of NK4 on proliferation, movement, and invasion of human colonic LS174T cancer cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Jian-Zheng Jie; Jian-Wei Wang; Jian-Guo Qu; Wei Wang; Tao Hung

    2006-01-01

    AIM: To investigate the inhibitory effects of a recombinant adenovirus vector that expresses NK4,a truncated form of human hepatocyte growth factor (HGF), on human colonic adenocarcinoma cells in vitro to establish a basis for future NK4 gene cancer therapy.METHODS: Cells from the LS174T human colonic adenocarcinoma cell line were infected with recombinant adenovirus rvAdCMV/NK4 and the effects of the manipulation on tumor cell proliferation, scatter,migration, and basement membrane invasion were assessed. Cells infected with a recombinant adenovirus vector (Ad-LacZ) expressing β-galactosidase served as the controls.RESULTS: We found that rvAdCMV/NK4 expression attenuated HGF-induced tumor cell scatter, migration,and basement membrane invasion (P < 0.05), but did not inhibit tumor cell proliferation.CONCLUSION: HGF-induced LS174T tumor cell scatter,migration, and invasion can be antagonized by the recombinant NK4-expressing adenovirus.

  11. Mathematical modeling of channel-porous layer interfaces in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ehrhardt, M.; Fuhrmann, J.; Holzbecher, E.; Linke, A.

    2008-07-01

    In proton exchange membrane (PEM) fuel cells, the transport of the fuel to the active zones, and the removal of the reaction products are realized using a combination of channels and porous diffusion layers. In order to improve existing mathematical and numerical models of PEM fuel cells, a deeper understanding of the coupling of the flow processes in the channels and diffusion layers is necessary. After discussing different mathematical models for PEM fuel cells, the work focuses on the description of the coupling of the free flow in the channel region with the filtration velocity in the porous diffusion layer as well as interface conditions between them. The difficulty in finding effective coupling conditions at the interface between the channel flow and the membrane lies in the fact that often the orders of the corresponding differential operators are different, e.g., when using stationary (Navier-)Stokes and Darcy's equation. Alternatively, using the Brinkman model for the porous media this difficulty does not occur. We review different interface conditions, including the well-known Beavers-Joseph-Saffman boundary condition and its recent improvement by Le Bars and Worster. (orig.)

  12. Resveratrol inhibits phosphorylation within the signal transduction and activator of transcription 3 signaling pathway by activating sirtuin 1 in SW1353 chondrosarcoma cells.

    Science.gov (United States)

    Jin, Haidong; Chen, Hui; Yu, Kehe; Zhang, Jingdong; Li, Bin; Cai, Ningyu; Pan, Jun

    2016-09-01

    The present study assessed the mechanism by which resveratrol (Res) inhibits the growth of SW1353 chondrosarcoma cells and examined whether sirtuin 1 (Sirt1) activation affects phosphorylation within the signal transduction and activator of transcription 3 (STAT3) signaling pathway. The present study used SW1353 chondrosarcoma cells in the logarithmic phase of growth (control and treatment groups). The latter group was treated with Res at 25 and 50 µmol/l for 24 h, and cell viability, proliferation and apoptosis were analyzed using the cell counting kit‑8 assay, colony counting and Hoechst staining, respectively. The expression levels of caspase‑3, cleaved caspase‑3, B‑cell lymphoma‑2 (BCL‑2), BCL-2 associated X protein (Bax), STAT3 and phosphorylated (p‑)STAT3) were measured by Western blotting. SW1353 cells were transfected with small interfering (si)RNA targeting Sirt1 and the expression levels of Sirt1, STAT3 and p-STAT3 were assessed. Exposure of SW1353 cells to Res reduced cell viability in a dose‑dependent manner (P<0.01). Additionally, cell proliferation was significantly inhibited and the cell nuclei exhibited apoptotic characteristics. Cleaved caspase‑3, Sirt1 and Bax levels were upregulated. The expression levels of BCL‑2 and p‑STAT3 were downregulated. Additionally, the BCL‑2/Bax ratio was reduced compared with the control group. The total STAT3 level was unaffected. Res treatment activated Sirt1, however, in cells transfected with Sirt1‑siRNA, the ability of resveratrol to suppress p‑STAT3 expression was compromised. Overall, it was revealed that Res treatment induced apoptosis, inhibited proliferation and affected phosphorylation within the STAT3 signaling pathway by activating Sirt1 in SW1353 chondrosarcoma cells.

  13. Modulation by K+ channels of action potential-evoked intracellular Ca2+ concentration rises in rat cerebellar basket cell axons.

    Science.gov (United States)

    Tan, Y P; Llano, I

    1999-10-01

    1. Action potential-evoked [Ca2+]i rises in basket cell axons of rat cerebellar slices were studied using two-photon laser scanning microscopy and whole-cell recording, to identify the K+ channels controlling the shape of the axonal action potential. 2. Whole-cell recordings of Purkinje cell IPSCs were used to screen K+ channel subtypes which could contribute to axonal repolarization. alpha-Dendrotoxin, 4-aminopyridine, charybdotoxin and tetraethylammonium chloride increased IPSC rate and/or amplitude, whereas iberiotoxin and apamin failed to affect the IPSCs. 3. The effects of those K+ channel blockers that enhanced transmitter release on the [Ca2+]i rises elicited in basket cell axons by action potentials fell into three groups: 4-aminopyridine strongly increased action potential-evoked [Ca2+]i; tetraethylammonium and charybdotoxin were ineffective alone but augmented the effects of 4-aminopyridine; alpha-dendrotoxin had no effect. 4. We conclude that cerebellar basket cells contain at least three pharmacologically distinct K+ channels, which regulate transmitter release through different mechanisms. 4-Aminopyridine-sensitive, alpha-dendrotoxin-insensitive K+ channels are mainly responsible for repolarization in basket cell presynaptic terminals. K+ channels blocked by charybdotoxin and tetraethylammonium have a minor role in repolarization. alpha-Dendrotoxin-sensitive channels are not involved in shaping the axonal action potential waveform. The two last types of channels must therefore exert control of synaptic activity through a pathway unrelated to axonal action potential broadening.

  14. TRPC1 regulates calcium-activated chloride channels in salivary gland cells.

    Science.gov (United States)

    Sun, Yuyang; Birnbaumer, Lutz; Singh, Brij B

    2015-11-01

    Calcium-activated chloride channel (CaCC) plays an important role in modulating epithelial secretion. It has been suggested that in salivary tissues, sustained fluid secretion is dependent on Ca(2+) influx that activates ion channels such as CaCC to initiate Cl(-) efflux. However direct evidence as well as the molecular identity of the Ca(2+) channel responsible for activating CaCC in salivary tissues is not yet identified. Here we provide evidence that in human salivary cells, an outward rectifying Cl(-) current was activated by increasing [Ca(2+)]i, which was inhibited by the addition of pharmacological agents niflumic acid (NFA), an antagonist of CaCC, or T16Ainh-A01, a specific TMEM16a inhibitor. Addition of thapsigargin (Tg), that induces store-depletion and activates TRPC1-mediated Ca(2+) entry, potentiated the Cl(-) current, which was inhibited by the addition of a non-specific TRPC channel blocker SKF96365 or removal of external Ca(2+). Stimulation with Tg also increased plasma membrane expression of TMEM16a protein, which was also dependent on Ca(2+) entry. Importantly, in salivary cells, TRPC1 silencing, but not that of TRPC3, inhibited CaCC especially upon store depletion. Moreover, primary acinar cells isolated from submandibular gland also showed outward rectifying Cl(-) currents upon increasing [Ca(2+)]i. These Cl(-) currents were again potentiated with the addition of Tg, but inhibited in the presence of T16Ainh-A01. Finally, acinar cells isolated from the submandibular glands of TRPC1 knockout mice showed significant inhibition of the outward Cl(-) currents without decreasing TMEM16a expression. Together the data suggests that Ca(2+) entry via the TRPC1 channels is essential for the activation of CaCC.

  15. Myricetin inhibits Kv1.5 channels in HEK293 cells.

    Science.gov (United States)

    Ou, Xianhong; Bin, Xiaohong; Wang, Luzhen; Li, Miaoling; Yang, Yan; Fan, Xinrong; Zeng, Xiaorong

    2016-02-01

    Myricetin (Myr) is a flavonoid that exerts anti-arrhythmic effects. However, its potential effects on ion channels have remained elusive. The aim of the present study was to investigate the effects of Myr on Kv1.5 channels in HEK293 cells. The current of Kv1.5 channels (Ikur) in HEK293 cells was recorded using the whole-cell patch-clamp technique and the expression of the Kv1.5 protein was measured using western blot analysis 24 h after treatment with Myr. The results showed that 5 µM Myr significantly reduced Ikur from 215.04 ± 40.59 to 77.72 ± 17.94 pA/pF (PHEK293 cells treated with 10 µM Myr for 5 min. Furthermore, Myr reduced hKv1.5 protein expression in a dose-dependent manner. These results demonstrated that Myr inhibited Ikur and the expression of hKv1.5 in HEK293 cells in a dose-, time- and frequency-dependent manner. These observations partly explained the mechanisms by which Myr exerts anti-arrhythmic effect.

  16. Slanted channel microfluidic chip for 3D fluorescence imaging of cells in flow.

    Science.gov (United States)

    Jagannadh, Veerendra Kalyan; Mackenzie, Mark D; Pal, Parama; Kar, Ajoy K; Gorthi, Sai Siva

    2016-09-19

    Three-dimensional cellular imaging techniques have become indispensable tools in biological research and medical diagnostics. Conventional 3D imaging approaches employ focal stack collection to image different planes of the cell. In this work, we present the design and fabrication of a slanted channel microfluidic chip for 3D fluorescence imaging of cells in flow. The approach employs slanted microfluidic channels fabricated in glass using ultrafast laser inscription. The slanted nature of the microfluidic channels ensures that samples come into and go out of focus, as they pass through the microscope imaging field of view. This novel approach enables the collection of focal stacks in a straight-forward and automated manner, even with off-the-shelf microscopes that are not equipped with any motorized translation/rotation sample stages. The presented approach not only simplifies conventional focal stack collection, but also enhances the capabilities of a regular widefield fluorescence microscope to match the features of a sophisticated confocal microscope. We demonstrate the retrieval of sectioned slices of microspheres and cells, with the use of computational algorithms to enhance the signal-to-noise ratio (SNR) in the collected raw images. The retrieved sectioned images have been used to visualize fluorescent microspheres and bovine sperm cell nucleus in 3D while using a regular widefield fluorescence microscope. We have been able to achieve sectioning of approximately 200 slices per cell, which corresponds to a spatial translation of ∼ 15 nm per slice along the optical axis of the microscope.

  17. 乳腺癌干细胞信号转导通路的研究进展%The Research Progress of Signal Transduction Pathway in Breast Cancer Stem Cells

    Institute of Scientific and Technical Information of China (English)

    马文浩

    2011-01-01

    随着乳腺癌干细胞的发现,人们对于乳腺癌的发生、发展、转移等机制有了进一步的了解.Wnt/β-catenin、Notch、Hedgehog 3条信号通路对乳腺干细胞的自我更新与分化起着重要的作用,一旦信号通路发生异常,乳腺干细胞就会异常分化,无限增殖形成乳腺癌干细胞,进而形成乳腺癌.为了更好地了解Wnt/β-catenin、Notch、Hedgehog 3条信号通路在乳腺癌干细胞中的调控机制,以及信号通路关键分子的表达情况,现结合信号通路的研究进展予以简要综述.%With the discovery of breast cancer stem cells,we have further understood complicated mechanisms of the occurrence, development and metastasis of breast cancer. Wnt/β-catenin, Notch, and Hedgehog, the 3 signaling pathways play an important role in self-renewal and differentiation of breast stem cells. Once this mechanism is destroyed, breast stem cells can present abnormal differentiation, proliferate unlimitedly forming breast cancer stem cells,then develop into breast cancer. Here is to make a brief summary on relevant signal transduction pathway in the occurrence and development of breast cancer and key molecules of self-renewal of breast cancer stem cells.

  18. Nitric oxide suppresses stomatal opening by inhibiting inward-rectifying Kin channels in Arabidopsis guard cells

    Institute of Scientific and Technical Information of China (English)

    XUE ShaoWu; YANG Pin; HE YiKun

    2008-01-01

    We explore nitric oxide (NO) effect on K+in channels in Arabidopsis guard cells. We observed NO inhib-ited K+in currents when Ca2+ chelator EGTA (Ethylene glycol-bis(2-aminoethylether)-N,N,N',N'tetraacetic acid) was not added in the pipette solution; K+in currents were not sensitive to NO when cytosolic Ca2+ was chelated by EGTA. NO inhibited the Arabidopsis stomatal opening, but when EGTA was added in the bath solution, inhibition effect of NO on stomatal opening vanished. Thus, it implies that NO ele-vates cytosolic Ca2+ by activating plasma membrane Ca2+ channels firstly, then inactivates K+in chan-nels, resulting in stomatal opening suppressed subsequently.

  19. Anion conductance of the human red cell is carried by a maxi-anion channel

    DEFF Research Database (Denmark)

    Glogowska, Edyta; Dyrda, Agnieszka; Cueff, Anne

    2010-01-01

    Historically, the anion transport through the human red cell membrane has been perceived to be mediated by Band 3, in the two-component concept with the large electroneutral anion exchange accompanied by the conductance proper, which dominated the total membrane conductance. The status of anion...... that the diversity of anionic channel activities recorded in human erythrocytes corresponds to different kinetic modalities of a unique type of maxi-anion channel with multiple conductance levels and probably multiple gating properties and pharmacology, depending on conditions. It demonstrates the role of activator...... played by serum in the recruitment of multiple new conductance levels showing very complex kinetics and gating properties upon serum addition. These channels, which seem to be dormant under normal physiological conditions, are potentially activable and could confer a far higher anion conductance...

  20. The effect of protein kinase C on voltage-gated potassium channel in pulmonary artery smooth muscle cells from rats exposed to chronic hypoxia

    Institute of Scientific and Technical Information of China (English)

    张永昶; 倪望; 张珍祥; 徐永健

    2004-01-01

    Background Chronic hypoxia can cause pulmonary hypertension and pulmonary heart disease with high mortality.The signal transduction pathway of protein kinase C (PKC) plays an important role in chronic pulmonary hypertension. So it is necessary to investigate the effect of PKC on voltage-gated potassium (K+) channels in pulmonary artery smooth muscle cells of rats exposed to chronic hypoxia.Methods Male Wistar rats were randomly divided into a control group (group A) and a chronic hypoxia group (group B). Group B received hypoxia [oxygen concentration (10±1)%] eight hours per day for four consecutive weeks. Single pulmonary artery smooth muscle cells were obtained using an acute enzyme separation method. Conventional whole cell patch clamp technique was used to record resting membrane potential, membrane capacitance and voltage-gated K+ currents. The changes in voltage-gated K+ currents before and after applying paramethoxyamphetamine (PMA) (500 nmol/L), an agonist of PKC, and PMA plus carbohydrate mixture of glucose, fructose and xylitol (GFX) (30 nmol/L), an inhibitor of PKC, were compared between the two groups. Results The resting membrane potential in group B was significantly lower than that of group A: -(29.0±4.8) mV (n=18) vs -(42.5±4.6) mV (n=35) (P0.05). The voltage-gated K+ currents were significantly inhibited by PMA in group A, and this effect was reversed by GFX. However, the voltage-gated K+ currents in group B were not affected by PMA.Conclusions The resting membrane potential and voltage-gated K+ currents in pulmonary artery smooth muscle cells from rats exposed to chronic hypoxia decreased significantly. It seems that PKC has different effects on the voltage-gated K+ currents of pulmonary artery smooth muscle cells under different conditions.

  1. Protein tyrosine kinases p53/56lyn and p72syk in MHC class I-mediated signal transduction in B lymphoma cells

    DEFF Research Database (Denmark)

    Pedersen, Anders Elm; Bregenholt, S; Skov, S;

    1998-01-01

    Crosslinking of major histocompatibility complex class I (MHC-I) molecules on the surface of human B lymphoma cells was shown to induce protein tyrosine phosphorylation and mobilization of intracellular free calcium. Immunoprecipitations indicated that the protein tyrosine kinases p53/56lyn and p72......syk are among the tyrosine-phosphorylated proteins. The kinetics of phosphorylation of these kinases after MHC-I crosslinking differ from the kinetics observed after crosslinking of the B cell antigen receptor (BCR). Additional experiments were performed with chicken lyn- and syk-negative DT40 B cells...... and the results indicate that these two kinases have different substrate specificity and regulate intracellular free calcium differently in response to MHC-I crosslinking. In addition MHC-I crosslinking of a sIgM-negative DT40 chicken B cell variant results in less activity of tyrosine kinases and less...

  2. TRPC1 protein forms only one type of native store-operated channels in HEK293 cells.

    Science.gov (United States)

    Skopin, Anton; Shalygin, Alexey; Vigont, Vladimir; Zimina, Olga; Glushankova, Lyubov; Mozhayeva, Galina N; Kaznacheyeva, Elena

    2013-02-01

    TRPC1 is a major component of store-operated calcium entry in many cell types. In our previous studies, three types of endogenous store-operated calcium channels have been described in HEK293 cells, but it remained unknown which of these channels are composed of TRPC1 proteins. Here, this issue has been addressed by performing single-channel analysis in HEK293 cells transfected with anti-TRPC1 siRNA (siTPRC1) or a TPRC1-encoding plasmid. The results show that thapsigargin-or agonist-induced calcium influx is significantly attenuated in siTRPC1-transfected HEK293 cells. TRPC1 knockdown by siRNA results in the disappearance of store-operated I(max) channels, while the properties of I(min) and I(NS) channels are unaffected. In HEK293 cells with overexpressed TRPC1 protein, the unitary current-voltage relationship of exogenous TRPC1 channels is almost linear, with a slope conductance of about 17 pS. The extrapolated reversal potential of expressed TRPC1 channels is +30 mV. Therefore, the main electrophysiological and regulatory properties of expressed TRPC1 and native I(max) channels are identical. Moreover, TRPC1 overexpression in HEK293 cells results in an increased number of store-operated I(max) channels. All these data allow us to conclude that TRPC1 protein forms native store-operated I(max) channels but is not an essential subunit for other store-operated channel types in HEK293 cells.

  3. TRPV Channels in Mast Cells as a Target for Low-Level-Laser Therapy

    Directory of Open Access Journals (Sweden)

    Lina Wang

    2014-06-01

    Full Text Available Low-level laser irradiation in the visible as well as infrared range is applied to skin for treatment of various diseases. Here we summarize and discuss effects of laser irradiation on mast cells that leads to degranulation of the cells. This process may contribute to initial steps in the final medical effects. We suggest that activation of TRPV channels in the mast cells forms a basis for the underlying mechanisms and that released ATP and histamine may be putative mediators for therapeutic effects.

  4. Secretory TAT-peptide-mediated protein transduction of LIF receptor α-chain distal cytoplasmic motifs into human myeloid HL-60 cells

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Q. [Department of Hyperbaric Medicine, No. 401 Hospital of PLA, Qingdao (China); Department of Histology and Embryology, Faculty of Basic Medical Sciences, Second Military Medical University, Shanghai (China); Xiong, J. [Department of Histology and Embryology, Faculty of Basic Medical Sciences, Second Military Medical University, Shanghai (China); Lu, J. [Office of Medical Education, Training Department, Second Military Medical University, Shanghai (China); Xu, S. [Department of Histology and Embryology, Faculty of Basic Medical Sciences, Second Military Medical University, Shanghai (China); Li, Y. [State Food and Drug Administration of China,Huangdao Branch, Qingdao (China); Zhong, X.P.; Gao, G.K. [Department of Hyperbaric Medicine, No. 401 Hospital of PLA, Qingdao (China); Liu, H.Q. [2Department of Histology and Embryology, Faculty of Basic Medical Sciences, Second Military Medical University, Shanghai (China)

    2012-06-22

    The distal cytoplasmic motifs of leukemia inhibitory factor receptor α-chain (LIFRα-CT3) can independently induce intracellular myeloid differentiation in acute myeloid leukemia (AML) cells by gene transfection; however, there are significant limitations in the potential clinical use of these motifs due to liposome-derived genetic modifications. To produce a potentially therapeutic LIFRα-CT3 with cell-permeable activity, we constructed a eukaryotic expression pcDNA3.0-TAT-CT3-cMyc plasmid with a signal peptide (ss) inserted into the N-terminal that codes for an ss-TAT-CT3-cMyc fusion protein. The stable transfection of Chinese hamster ovary (CHO) cells via this vector and subsequent selection by Geneticin resulted in cell lines that express and secrete TAT-CT3-cMyc. The spent medium of pcDNA3.0-TAT-CT3-cMyc-transfected CHO cells could be purified using a cMyc-epitope-tag agarose affinity chromatography column and could be detected via SDS-PAGE, with antibodies against cMyc-tag. The direct administration of TAT-CT3-cMyc to HL-60 cell culture media caused the enrichment of CT3-cMyc in the cytoplasm and nucleus within 30 min and led to a significant reduction of viable cells (P < 0.05) 8 h after exposure. The advantages of using this mammalian expression system include the ease of generating TAT fusion proteins that are adequately transcripted and the potential for a sustained production of such proteins in vitro for future AML therapy.

  5. IN VITRO STUDY ON THE CLONING AND TRANSDUCTION OF HUMAN O6-METHYLGUANINE-DNA-METHYLTRANSFERASE CDNA INTO HUMAN UMBILICAL CORD BLOOD CD34+ CELLS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: To explore whether human umbilical cord blood hematopoietic progenitor cells transduced with human O6-methylguanine-DNA-methyltransferase (MGMT) gene could increase resistance to 1,3-Bis(2-Chloroethyl)-1-Nitrosourea (BCNU). Methods: The cDNA encoding the MGMT was isolated by using RT-PCR method from total RNA of fresh human liver, the fragment was cloned into pGEM-T vector and further subcloned into G1Na retrovirus vector. Then the G1Na-MGMT was transduced into the packaging cell lines GP+E86 and PA317 by LipofectAMINE. By using the medium containing BCNU for cloning selection and ping-ponging supernatant infection between ecotropic producer clone and amphotropic producer clone, high titer amphotropic PA317 producer clone with the highest titer up to 5.8′ 105 CFU/ml was obtained. Cord blood CD34+ cells were transfected repeatedly with supernatant of retrovirus containing human MGMT-cDNA under stimulation of hemopoietic growth factors. Results: The retrovirus vector construction was verified by restriction endonuclease analysis and DNA sequencing. PCR, RT-PCR, Southern Blot, Western Blot and MTT analyses showed that MGMT drug resistance gene has been integrated into the genomic DNA of cord blood CD34+ cells and expressed efficiently. The transgene cord blood CD34+ cells conferred 4-folds stronger resistance to BCNU than untransduced cells. Conclusion: The retrovirus vector-mediated transfer of MGMT drug resistance gene into human cord blood CD34+ cells and its expression provided an experimental foundation for gene therapy in clinical trial.

  6. Potassium channel currents in intact stomatal guard cells: rapid enhancement by abscisic acid.

    Science.gov (United States)

    Blatt, M R

    1990-02-01

    Evidence of a role for abscisic acid (ABA) in signalling conditions of water stress and promoting stomatal closure is convincing, but past studies have left few clues as to its molecular mechanism(s) of action; arguments centred on changes in H(+)-pump activity and membrane potential, especially, remain ambiguous without the fundamental support of a rigorous electrophysiological analysis. The present study explores the response to ABA of K(+) channels at the membrane of intact guard cells of Vicia faba L. Membrane potentials were recorded before and during exposures to ABA, and whole-cell currents were measured at intervals throughout to quantitate the steady-state and time-dependent characteristics of the K(+) channels. On adding 10 μM ABA in the presence of 0.1, 3 or 10 mM extracellular K(+), the free-running membrane potential (V m) shifted negative-going (-)4-7 mV in the first 5 min of exposure, with no consistent effect thereafter. Voltage-clamp measurements, however, revealed that the K(+)-channel current rose to between 1.84- and 3.41-fold of the controls in the steady-state with a mean halftime of 1.1 ± 0.1 min. Comparable changes in current return via the leak were also evident and accounted for the minimal response in V m. Calculated at V m, the K(+) currents translated to an average 2.65-fold rise in K(+) efflux with ABA. Abscisic acid was not observed to alter either K(+)-current activation or deactivation.These results are consistent with an ABA-evoked mobilization of K(+) channels or channel conductance, rather than a direct effect of the phytohormone on K(+)-channel gating. The data discount notions that large swings in membrane voltage are a prerequisite to controlling guard-cell K(+) flux. Instead, thev highlight a rise in membrane capacity for K(+) flux, dependent on concerted modulations of K(+)-channel and leak currents, and sufficiently rapid to account generally for the onset of K(+) loss from guard cells and stomatal closure in ABA.

  7. An increase in galectin-3 causes cellular unresponsiveness to IFN-γ-induced signal transduction and growth inhibition in gastric cancer cells

    Science.gov (United States)

    Tseng, Po-Chun; Chen, Chia-Ling; Shan, Yan-Shen; Lin, Chiou-Feng

    2016-01-01

    Glycogen synthase kinase (GSK)-3β facilitates interferon (IFN)-γ signaling by inhibiting Src homology-2 domain-containing phosphatase (SHP) 2. Mutated phosphoinositide 3-kinase (PI3K) and phosphatase and tensin homolog (PTEN) cause AKT activation and GSK-3β inactivation to induce SHP2-activated cellular unresponsiveness to IFN-γ in human gastric cancer AGS cells. This study investigated the potential role of galectin-3, which acts upstream of AKT/GSK-3β/SHP2, in gastric cancer cells. Increasing or decreasing galectin-3 altered IFN-γ signaling. Following cisplatin-induced galectin-3 upregulation, surviving cells showed cellular unresponsiveness to IFN-γ. Galectin-3 induced IFN-γ resistance independent of its extracellular β-galactoside-binding activity. Galectin-3 expression was not regulated by PI3K activation or by a decrease in PTEN. Increased galectin-3 may cause GSK-3β inactivation and SHP2 activation by promoting PDK1-induced AKT phosphorylation at a threonine residue. Overexpression of AKT, inactive GSK-3βR96A, SHP2, or active SHP2D61A caused cellular unresponsiveness to IFN-γ in IFN-γ-sensitive MKN45 cells. IFN-γ-induced growth inhibition and apoptosis in AGS cells were observed until galectin-3 expression was downregulated. These results demonstrate that an increase in galectin-3 facilitates AKT/GSK-3β/SHP2 signaling, causing cellular unresponsiveness to IFN-γ. PMID:26934444

  8. Girdin/GIV is upregulated by cyclic tension, propagates mechanical signal transduction, and is required for the cellular proliferation and migration of MG-63 cells

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jiang-Tian; Li, Yan; Yu, Bing; Gao, Guo-Jie; Zhou, Ting; Li, Song, E-mail: song_li59@126.com

    2015-08-21

    To explore how Girdin/GIV is regulated by cyclic tension and propagates downstream signals to affect cell proliferation and migration. Human osteoblast-like MG-63 cells were exposed to cyclic tension force at 4000 μstrain and 0.5 Hz for 6 h, produced by a four-point bending system. Cyclic tension force upregulated Girdin and Akt expression and phosphorylation in cultured MG-63 cells. Girdin and Akt each promoted the phosphorylation of the other under stimulated tension. In vitro MTT and transwell assays showed that Girdin and Akt are required for cell proliferation and migration during cellular quiescence. Moreover, STAT3 was determined to be essential for Girdin expression under stimulated tension force in the physiological condition, as well as for osteoblast proliferation and migration during quiescence. These findings suggest that the STAT3/Girdin/Akt pathway activates in osteoblasts in response to mechanical stimulation and may play a significant role in triggering osteoblast proliferation and migration during orthodontic treatment. - Highlights: • Tension force upregulates Girdin and Akt expression and phosphorylation. • Girdin and Akt promotes the phosphorylation of each other under tension stimulation. • Girdin and Akt are required for MG-63 cell proliferation and migration. • STAT3 is essential for Girdin expression after application of the tension forces.

  9. The sorting receptor Rer1 controls Purkinje cell function via voltage gated sodium channels

    Science.gov (United States)

    Valkova, Christina; Liebmann, Lutz; Krämer, Andreas; Hübner, Christian A.; Kaether, Christoph

    2017-01-01

    Rer1 is a sorting receptor in the early secretory pathway that controls the assembly and the cell surface transport of selected multimeric membrane protein complexes. Mice with a Purkinje cell (PC) specific deletion of Rer1 showed normal polarization and differentiation of PCs and normal development of the cerebellum. However, PC-specific loss of Rer1 led to age-dependent motor deficits in beam walk, ladder climbing and gait. Analysis of brain sections revealed a specific degeneration of PCs in the anterior cerebellar lobe in old animals. Electrophysiological recordings demonstrated severe deficits in spontaneous action potential generation. Measurements of resurgent currents indicated decreased surface densities of voltage-gated sodium channels (Nav), but not changes in individual channels. Analysis of mice with a whole brain Rer1-deletion demonstrated a strong down-regulation of Nav1.6 and 1.1 in the absence of Rer1, whereas protein levels of the related Cav2.1 and of Kv3.3 and 7.2 channels were not affected. The data suggest that Rer1 controls the assembly and transport of Nav1.1 and 1.6, the principal sodium channels responsible for recurrent firing, in PCs. PMID:28117367

  10. Immature human dendritic cells enhance their migration through KCa3.1 channel activation.

    Science.gov (United States)

    Crottès, David; Félix, Romain; Meley, Daniel; Chadet, Stéphanie; Herr, Florence; Audiger, Cindy; Soriani, Olivier; Vandier, Christophe; Roger, Sébastien; Angoulvant, Denis; Velge-Roussel, Florence

    2016-04-01

    Migration capacity is essential for dendritic cells (DCs) to present antigen to T cells for the induction of immune response. The DC migration is supposed to be a calcium-dependent process, while not fully understood. Here, we report a role of the KCa3.1/IK1/SK4 channels in the migration capacity of both immature (iDC) and mature (mDC) human CD14(+)-derived DCs. KCa3.1 channels were shown to control the membrane potential of human DC and the Ca(2+) entry, which is directly related to migration capacities. The expression of migration marker such as CCR5 and CCR7 was modified in both types of DCs by TRAM-34 (100nM). But, only the migration of iDC was decreased by use of both TRAM-34 and KCa3.1 siRNA. Confocal analyses showed a close localization of CCR5 with KCa3.1 in the steady state of iDC. Finally, the implication of KCa3.1 seems to be limited to the migration capacities as T cell activation of DCs appeared unchanged. Altogether, these results demonstrated that KCa3.1 channels have a pro-migratory effect on iDC migration. Our findings suggest that KCa3.1 in human iDC play a major role in their migration and constitute an attractive target for the cell therapy optimization.

  11. Modeling and simulation of ion channels and action potentials in taste receptor cells

    Institute of Scientific and Technical Information of China (English)

    CHEN PeiHua; LIU Xiaodong; ZHANG Wei; ZHOU Jun; WANG Ping; YANG Wei; LUO JianHong

    2009-01-01

    Based on patch clamp data on the ionic currents of rat taste receptor cells,a mathematical model of mammalian taste receptor cells was constructed to simulate the action potentials of taste receptor cells and their corresponding ionic components,including voltage-gated Na~+ currents and outward delayed rectifier K~+ currents.Our simulations reproduced the action potentials of taste receptor cells in response to electrical stimuli or sour tastants.The kinetics of ion channels and their roles in action potentials of taste receptor cells were also analyzed.Our prototype model of single taste receptor cell and simulation results presented in this paper provide the basis for the further study of taste information processing in the gustatory system.

  12. Modeling and simulation of ion channels and action potentials in taste receptor cells

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Based on patch clamp data on the ionic currents of rat taste receptor cells, a mathematical model of mammalian taste receptor cells was constructed to simulate the action potentials of taste receptor cells and their corresponding ionic components, including voltage-gated Na+ currents and outward delayed rectifier K+ currents. Our simulations reproduced the action potentials of taste receptor cells in response to electrical stimuli or sour tastants. The kinetics of ion channels and their roles in action potentials of taste receptor cells were also analyzed. Our prototype model of single taste receptor cell and simulation results presented in this paper provide the basis for the further study of taste information processing in the gustatory system.

  13. TRPM7 channels regulate glioma stem cell through STAT3 and Notch signaling pathways.

    Science.gov (United States)

    Liu, Mingli; Inoue, Koichi; Leng, Tiandong; Guo, Shanchun; Xiong, Zhi-gang

    2014-12-01

    Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults with median survival time of 14.6 months. A small fraction of cancer stem cells (CSC) initiate and maintain tumors thus driving glioma tumorigenesis and being responsible for resistance to classical chemo- and radio-therapies. It is desirable to identify signaling pathways related to CSC to develop novel therapies to selectively target them. Transient receptor potential cation channel, subfamily M, member 7, also known as TRPM7 is a ubiquitous, Ca(2+) and Mg(2+) permeable ion channels that are special in being both an ion channel and a serine/threonine kinase. In studies of glioma cells silenced for TRPM7, we demonstrated that Notch (Notch1, JAG1, Hey2, and Survivin) and STAT3 pathways are down regulated in glioma cells grown in monolayer. Furthermore, phospho-STAT3, Notch target genes and CSC markers (ALDH1 and CD133) were significantly higher in spheroid glioma CSCs when compared with monolayer cultures. The results further show that tyrosine-phosphorylated STAT3 binds and activates the ALDH1 promoters in glioma cells. We found that TRMP7-induced upregulation of ALDH1 expression is associated with increases in ALDH1 activity and is detectable in stem-like cells when expanded as spheroid CSCs. Finally, TRPM7 promotes proliferation, migration and invasion of glioma cells. These demonstrate that TRPM7 activates JAK2/STAT3 and/or Notch signaling pathways and leads to increased cell proliferation and migration. These findings for the first time demonstrates that TRPM7 (1) activates a previously unrecognized STAT3→ALDH1 pathway, and (2) promotes the induction of ALDH1 activity in glioma cells.

  14. Drosophila mushroom body Kenyon cells generate spontaneous calcium transients mediated by PLTX-sensitive calcium channels.

    Science.gov (United States)

    Jiang, Shaojuan Amy; Campusano, Jorge M; Su, Hailing; O'Dowd, Diane K

    2005-07-01

    Spontaneous calcium oscillations in mushroom bodies of late stage pupal and adult Drosophila brains have been implicated in memory consolidation during olfactory associative learning. This study explores the cellular mechanisms regulating calcium dynamics in Kenyon cells, principal neurons in mushroom bodies. Fura-2 imaging shows that Kenyon cells cultured from late stage Drosophila pupae generate spontaneous calcium transients in a cell autonomous fashion, at a frequency similar to calcium oscillations in vivo (10-20/h). The expression of calcium transients is up regulated during pupal development. Although the ability to generate transients is a property intrinsic to Kenyon cells, transients can be modulated by bath application of nicotine and GABA. Calcium transients are blocked, and baseline calcium levels reduced, by removal of external calcium, addition of cobalt, or addition of Plectreurys toxin (PLTX), an insect-specific calcium channel antagonist. Transients do not require calcium release from intracellular stores. Whole cell recordings reveal that the majority of voltage-gated calcium channels in Kenyon cells are PLTX-sensitive. Together these data show that influx of calcium through PLTX-sensitive voltage-gated calcium channels mediates spontaneous calcium transients and regulates basal calcium levels in cultured Kenyon cells. The data also suggest that these calcium transients represent cellular events underlying calcium oscillations in the intact mushroom bodies. However, spontaneous calcium transients are not unique to Kenyon cells as they are present in approximately 60% of all cultured central brain neurons. This suggests the calcium transients play a more general role in maturation or function of adult brain neurons.

  15. Expression and pharmacology of endogenous Cav channels in SH-SY5Y human neuroblastoma cells.

    Directory of Open Access Journals (Sweden)

    Silmara R Sousa

    Full Text Available SH-SY5Y human neuroblastoma cells provide a useful in vitro model to study the mechanisms underlying neurotransmission and nociception. These cells are derived from human sympathetic neuronal tissue and thus, express a number of the Cav channel subtypes essential for regulation of important physiological functions, such as heart contraction and nociception, including the clinically validated pain target Cav2.2. We have detected mRNA transcripts for a range of endogenous expressed subtypes Cav1.3, Cav2.2 (including two Cav1.3, and three Cav2.2 splice variant isoforms and Cav3.1 in SH-SY5Y cells; as well as Cav auxiliary subunits α2δ1-3, β1, β3, β4, γ1, γ4-5, and γ7. Both high- and low-voltage activated Cav channels generated calcium signals in SH-SY5Y cells. Pharmacological characterisation using ω-conotoxins CVID and MVIIA revealed significantly (∼ 10-fold higher affinity at human versus rat Cav2.2, while GVIA, which interacts with Cav2.2 through a distinct pharmacophore had similar affinity for both species. CVID, GVIA and MVIIA affinity was higher for SH-SY5Y membranes vs whole cells in the binding assays and functional assays, suggesting auxiliary subunits expressed endogenously in native systems can strongly influence Cav2.2 channels pharmacology. These results may have implications for strategies used to identify therapeutic leads at Cav2.2 channels.

  16. Construction Of An Optimized Lentiviral Vector Containing Pdx-1 Gene For Transduction Of Stem Cells Towards Gene Therapy Diabetes Type 1

    Directory of Open Access Journals (Sweden)

    S Rahmati

    2013-02-01

    Full Text Available Abstract Background & aim: Nowadays, most of gene therapy protocols are performed by lentiviral vectors. One of the most important factors which is involved in pancreas development and transcription of insulin gene is pancreatic & duodenal homeobox 1 (PDX-1 transcription factor. The goal of this study was to optimize a lentiviral construct, containing pdx-1 gene, to transfect stem cells towards gene therapy of type-1 diabetes. Methods: In this experimental study, first, the pdx-1 gene was multiplied by PCR from pcDNA3.1-pdx-1 and cloned into pTG19-T vector. Then, pdx-1 was subcloned on upstream of IRES-EGFP gene into IRES2-EGFP vector. At the next step, the cloned parts of IRES-EGFP and pdx-1 were isolated and cloned into the lentiviral expression vector pSINTREM in upstream of TRE-CMV gene. After sequencing, final construct was transfected into HEK 293 cells and gene expression of pdx-1 was evaluated using flow cytometry analysis and reverse fluorescent microscopy. Results: Flow cytometry results and inverted fluorescent microscopy observing showed that pdx-1 and GFP genes are expressed in cells transfected with final recombinant construct. Conclusion: Regarding the design of this construct, to ensure long time expression with higher in vivo and in vitro expression efficiency for stem cells and also use of Tet on induced optimized system, it seems that the current construct can be among the best ones to transfect stem cells. Key words: Gene therapy, Diabetes, Stem cells

  17. Phenotype variation and newcomers in ion channel disorders.

    Science.gov (United States)

    Bulman, D E

    1997-01-01

    Ion channels are part of a large family of macromolecules whose functions include the control and maintenance of electrical potential across cell membranes, secretion and signal transduction. Close inspection of the physiological processes involved in channel function and the secondary structure of various ion channels has served as a basis for subdividing ion channels into a number of superfamilies. The voltage-gated ion channels are one of these superfamilies. Recent work has shown that mutations in various ion channel genes are responsible for a number of neuromuscular and neurological disorders. Correlation of the various mutations with the clinical phenotype is providing us with insight into the pathophysiology of these channel proteins. Interestingly, different mutations within the same gene may cause quite distinct clinical disorders, while mutations in different channel genes may result in very similar phenotypes (genetic heterogeneity). Examples of phenotypic variation and genetic heterogeneity are presented in the context of the periodic paralytic disorders of skeletal muscle, episodic ataxia, migraine, long QT syndrome and paroxysmal dyskinesia. Some of these disorders are known to be caused by mutations in ion channel genes, while in the episodic movement disorders, ion channel genes are considered excellent candidate genes.

  18. Effects of inorganic lead on voltage-sensitive calcium channels in N1E-115 neuroblastoma cells.

    Science.gov (United States)

    Audesirk, G; Audesirk, T

    1991-01-01

    N1E-115 mouse neuroblastoma cells have been reported to possess two types of voltage-sensitive calcium channels: Low voltage activated, rapidly inactivating T-type (type I) and high voltage activated, slowly inactivating L-type (type II). We studied the effects of acute in vitro exposure to inorganic lead on these calcium channels, using the whole-cell variant of patch clamping. Using salines with a high lead-buffering capacity, we found that both T-type and L-type channels are reversibly inhibited in a dose-dependent manner at free Pb2+ concentrations ranging from 20 nM to 14 microM. L-type channels are somewhat more sensitive to Pb2+ than T-type channels are (L-type: IC50 approx. 0.7 microM; T-type: IC50 approx. 1.3 microM). Both channels show small but significant inhibition (approx. 10%) at 20 nM free Pb2+. Pb2+ affects neither activation nor inactivation of T-type channels, but enhances inactivation of L-type channels at holding potentials around -60 to -40 mV. A peculiar phenomenon was observed in cells exposed to 2.3 microM free Pb2+. T-type channels were inhibited in all 20 cells studied. In 15 cells, L-type channels were also inhibited, but in the remaining 5 cells, current flow through L-type channels was enhanced by Pb2+ exposure.

  19. K+ Channels and Their Effects on Membrane Potential in Rat Bronchial Smooth Muscle Cells

    Institute of Scientific and Technical Information of China (English)

    刘先胜; 徐永健; 张珍祥; 倪望

    2003-01-01

    Summary: In order to investigate the K+ channels and their effects on resting membrane potential(Em) and excitability in rat bronchial smooth muscle cells (BSMCs), the components of outward K+channel currents and the effects of K+ channels on Em and tension in rat bronchial smooth musclewere observed by using standard whole-cell recording of patch clamp and isometric tension recordingtechniques. The results showed that under resting conditions, total outward K+ channel currents infreshly isolated BSMCs were unaffected by ATP-sensitive K+ channel blocker. There were two typesof K+ currents: voltage-dependent delayed rectifier K+ channel (Ky) and large conductance calcium-activated K+ channel (BKca) currents. 1 mmol/L 4-aminopyridine (4-AP, an inhibitor of Ky)caused a significant depolarization (from - 8.7 ± 5.9 mV to - 25. 4± 3.1 mV, n = 18, P<0. 001 ).In contrast, 1 mmol/L tetraethylammonium (TEA, an inhibitor of BKca) had no significant effect onEm (from -37. 6±4.8 mV to -36. 8±4.1 mV, n=12, P>0. 05). 4-AP caused a concentration-dependent contraction in resting bronchial strips. TEA had no effect on resting tension, but applica-tion of 5 mmol/L TEA resulted in a left shift with bigger pD2(the negative logarithm of the drug con-centration causing 50 % of maximal effect) (from 6. 27±0. 38 to 6.89±0. 54, n=10, P<0. 05) inthe concentration-effect curve of endothine-1, and a right shift with smaller pD2 (from 8. 10± 0. 23 to7. 69±0. 08, n= 10, P<0. 05) in the concentration-effect curve of isoprenaline. It was suggestedthat in rat BSMCs t