WorldWideScience

Sample records for cell transduction channel

  1. Separate TRP channels mediate amplification and transduction in drosophila

    Science.gov (United States)

    Lehnert, Brendan P.; Baker, Allison E.; Wilson, Rachel I.

    2015-12-01

    Auditory receptor cells rely on mechanically-gated channels to transform sound stimuli into neural activity. Several TRP channels have been implicated in Drosophila auditory transduction, but mechanistic studies have been hampered by the inability to record subthreshold signals from receptor neurons. We developed a non-invasive method for measuring these signals by recording from a central neuron that is electrically coupled to a genetically-defined population of auditory receptors. We find that the TRPN family member NompC, which is necessary for the active amplification of motion by the auditory organ, is not required for transduction. Instead, NompC sensitizes the transduction complex to movement and precisely regulates the static forces on the complex. In contrast, the TRPV channels Nanchung and Inactive are required for responses to sound, suggesting they are components of the transduction complex. Thus, transduction and active amplification are genetically separable processes in Drosophila hearing.

  2. Hair-bundle friction from transduction channels' gating forces

    Science.gov (United States)

    Bormuth, Volker; Barral, Jérémie; Joanny, Jean-François; Jülicher, Frank; Martin, Pascal

    2015-12-01

    Hearing starts when sound-evoked mechanical vibrations of the hair-cell bundle activate mechanosensitive ion channels, giving birth to an electrical signal. As for any mechanical system, friction impedes movements of the hair bundle and thus constrains the sensitivity and frequency selectivity of auditory transduction. We have shown recently that the opening and closing of the transduction channels produce internal frictional forces that can dominate viscous drag on the micrometer-sized hair bundle and thus provide a major source of damping [2]. We develop here a physical theory of passive hair-bundle mechanics that explains the origin of channel friction. We show that channel friction can be understood quantitatively by coupling the dynamics of the conformational change associated with channel gating to tip-link tension. As a result, varying channel properties affects friction, with faster channels producing smaller friction. The analysis emphasizes the dual role of transduction channels' gating forces, which affect both hair-bundle stiffness and drag. Friction originating from gating of ion channels is a general concept that is relevant to all mechanosensitive channels.

  3. Effects of potassium channel on shear stress - induced signal transduction in vascular endothelial cells%K离子通道在剪切力诱导血管内皮细胞信号转导中的作用

    Institute of Scientific and Technical Information of China (English)

    胡金麟

    1999-01-01

    Fluid shear stress play an important role in many physiological and pathophysiological processes of cardiovascular system. Shear stress - induced signal transduction throughout the vascular endothelial cell includes ion channels,G- protein linked receptors, tyrosine kinase receptors and integrins. The one impossible pathway of shear stress - induced signal transduction was biochemical reaction through second messenger, activating protein kinases and cytosolic transcription factors, and then regulating gene transcription . The other pathway was cytoskeletal system. This article reviewed the cellular and molecular mechanism of potassium channel signal transduction resulting from shear stress.

  4. Kv7 potassium channels in airway smooth muscle cells: signal transduction intermediates and pharmacological targets for bronchodilator therapy

    OpenAIRE

    Brueggemann, Lioubov I.; Kakad, Priyanka P.; Robert B Love; Solway, Julian; Dowell, Maria L.; Cribbs, Leanne L.; Byron, Kenneth L.

    2011-01-01

    Expression and function of Kv7 (KCNQ) voltage-activated potassium channels in guinea pig and human airway smooth muscle cells (ASMCs) were investigated by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), patch-clamp electrophysiology, and precision-cut lung slices. qRT-PCR revealed expression of multiple KCNQ genes in both guinea pig and human ASMCs. Currents with electrophysiological and pharmacological characteristics of Kv7 currents were measured in freshly isolated ...

  5. Kv7 potassium channels in airway smooth muscle cells: signal transduction intermediates and pharmacological targets for bronchodilator therapy.

    Science.gov (United States)

    Brueggemann, Lioubov I; Kakad, Priyanka P; Love, Robert B; Solway, Julian; Dowell, Maria L; Cribbs, Leanne L; Byron, Kenneth L

    2012-01-01

    Expression and function of Kv7 (KCNQ) voltage-activated potassium channels in guinea pig and human airway smooth muscle cells (ASMCs) were investigated by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), patch-clamp electrophysiology, and precision-cut lung slices. qRT-PCR revealed expression of multiple KCNQ genes in both guinea pig and human ASMCs. Currents with electrophysiological and pharmacological characteristics of Kv7 currents were measured in freshly isolated guinea pig and human ASMCs. In guinea pig ASMCs, Kv7 currents were significantly suppressed by application of the bronchoconstrictor agonists methacholine (100 nM) or histamine (30 μM), but current amplitudes were restored by addition of a Kv7 channel activator, flupirtine (10 μM). Kv7 currents in guinea pig ASMCs were also significantly enhanced by another Kv7.2-7.5 channel activator, retigabine, and by celecoxib and 2,5-dimethyl celecoxib. In precision-cut human lung slices, constriction of airways by histamine was significantly reduced in the presence of flupirtine. Kv7 currents in both guinea pig and human ASMCs were inhibited by the Kv7 channel blocker XE991. In human lung slices, XE991 induced robust airway constriction, which was completely reversed by addition of the calcium channel blocker verapamil. These findings suggest that Kv7 channels in ASMCs play an essential role in the regulation of airway diameter and may be targeted pharmacologically to relieve airway hyperconstriction induced by elevated concentrations of bronchoconstrictor agonists. PMID:21964407

  6. Human hematopoietic cell culture, transduction, and analyses

    DEFF Research Database (Denmark)

    Bonde, Jesper; Wirthlin, Louisa; Kohn, Donald B;

    2008-01-01

    This unit provides methods for introducing genes into human hematopoietic progenitor cells. The Basic Protocol describes isolation of CD34(+) cells, transduction of these cells with a retroviral vector on fibronectin-coated plates, assaying the efficiency of transduction, and establishing long......-term cultures. Support protocols describe methods for maintenance of vector-producing fibroblasts (VPF) and supernatant collection from these cells, screening medium components for the ability to support hematopoietic cell growth, and establishing colonies from long-term cultures. Other protocols provide PCR...

  7. Ion channels and the transduction of light signals

    Science.gov (United States)

    Spalding, E. P.; Evans, M. L. (Principal Investigator)

    2000-01-01

    Studies of biological light-sensing mechanisms are revealing important roles for ion channels. Photosensory transduction in plants is no exception. In this article, the evidence that ion channels perform such signal-transducing functions in the complex array of mechanisms that bring about plant photomorphogenesis will be reviewed and discussed. The examples selected for discussion range from light-gradient detection in unicellular algae to the photocontrol of stem growth in Arabidopsis. Also included is some discussion of the technical aspects of studies that combine electrophysiology and photobiology.

  8. Hair cell mechano-transduction : Its influence on the gross mechanical characteristics of a hair cell sense organ

    NARCIS (Netherlands)

    vanNetten, SM

    1997-01-01

    The complex mechanical behaviour of a hair cell bundle appears to be a direct consequence of the gating forces on the individual transduction channels. The mechanical molecular interactions involved in transduction channel gating, therefore, also bear a reciprocal influence, via the hair bundles; on

  9. Nonselective block by La3+ of Arabidopsis ion channels involved in signal transduction

    Science.gov (United States)

    Lewis, B. D.; Spalding, E. P.; Evans, M. L. (Principal Investigator)

    1998-01-01

    Lanthanide ions such as La3+ are frequently used as blockers to test the involvement of calcium channels in plant and animal signal transduction pathways. For example, the large rise in cytoplasmic Ca2+ concentration triggered by cold shock in Arabidopsis seedlings is effectively blocked by 10 mM La3+ and we show here that the simultaneous large membrane depolarization is similarly blocked. However, a pharmacological tool is only as useful as it is selective and the specificity of La3+ for calcium channels was brought into question by our finding that it also blocked a blue light (BL)-induced depolarization that results from anion channel activation and believed not to involve calcium channels. This unexpected inhibitory effect of La3+ on the BL-induced depolarization is explained by our finding that 10 mM La3+ directly and completely blocked the BL-activated anion channel when applied to excised patches. We have investigated the ability of La3+ to block noncalcium channels in Arabidopsis. In addition to the BL-activated anion channel, 10 mM La3+ blocked a cation channel and a stretch-activated channel in patches of plasma membrane excised from hypocotyl cells. In root cells, 10 mM La3+ inhibited the activity of an outward-rectifying potassium channel at the whole cell and single-channel level by 47% and 58%, respectively. We conclude that La3+ is a nonspecific blocker of multiple ionic conductances in Arabidopsis and may disrupt signal transduction processes independently of any effect on Ca2+ channels.

  10. Central functions of bicarbonate in S-type anion channel activation and OST1 protein kinase in CO 2 signal transduction in guard cell

    KAUST Repository

    Xue, Shaowu

    2011-03-18

    Plants respond to elevated CO(2) via carbonic anhydrases that mediate stomatal closing, but little is known about the early signalling mechanisms following the initial CO(2) response. It remains unclear whether CO(2), HCO(3)(-) or a combination activates downstream signalling. Here, we demonstrate that bicarbonate functions as a small-molecule activator of SLAC1 anion channels in guard cells. Elevated intracellular [HCO(3)(-)](i) with low [CO(2)] and [H(+)] activated S-type anion currents, whereas low [HCO(3)(-)](i) at high [CO(2)] and [H(+)] did not. Bicarbonate enhanced the intracellular Ca(2+) sensitivity of S-type anion channel activation in wild-type and ht1-2 kinase mutant guard cells. ht1-2 mutant guard cells exhibited enhanced bicarbonate sensitivity of S-type anion channel activation. The OST1 protein kinase has been reported not to affect CO(2) signalling. Unexpectedly, OST1 loss-of-function alleles showed strongly impaired CO(2)-induced stomatal closing and HCO(3)(-) activation of anion channels. Moreover, PYR/RCAR abscisic acid (ABA) receptor mutants slowed but did not abolish CO(2)/HCO(3)(-) signalling, redefining the convergence point of CO(2) and ABA signalling. A new working model of the sequence of CO(2) signalling events in gas exchange regulation is presented.

  11. Cell cycle and cell signal transduction in marine phytoplankton

    Institute of Scientific and Technical Information of China (English)

    LIU Jingwen; JIAO Nianzhi; CAI Huinong

    2006-01-01

    As unicellular phytoplankton, the growth of a marine phytoplankton population results directly from the completion of a cell cycle, therefore, cell-environment communication is an important way which involves signal transduction pathways to regulate cell cycle progression and contribute to growth, metabolism and primary production and respond to their surrounding environment in marine phytoplankton. Cyclin-CDK and CaM/Ca2+ are essentially key regulators in control of cell cycle and signal transduction pathway, which has important values on both basic research and applied biotechnology. This paper reviews progress made in this research field, which involves the identification and characterization of cyclins and cell signal transduction system, cell cycle control mechanisms in marine phytoplankton cells, cell cycle proteins as a marker of a terminal event to estimate the growth rate of phytoplankton at the species level, cell cycle-dependent toxin production of toxic algae and cell cycle progression regulated by environmental factors.

  12. TRPV Ion Channels and Sensory Transduction of Osmotic and Mechanical Stimuli in Mammals

    Science.gov (United States)

    Liedtke, Wolfgang

    In signal transduction in metazoan cells, ion channels of the transient receptor potential (TRP) family have been identified as responding to diverse external and internal stimuli, amongst them osmotic stimuli. This chapter will highlight findings on the TRP vanilloid (TRPV) subfamily - both vertebrate and invertebrate members. Of the six mammalian TRPV channels, TRPV1, 2 and 4 have been demonstrated to function in transduction of osmotic stimuli. TRPV channels have been found to function in cellular as well as systemic osmotic homeostasis in vertebrates. Invertebrate TRPV channels - five in Caenorhabditis elegans and two in Drosophila - have been shown to play a role in mechanosensation such as hearing and proprioception in Drosophila and nose touch in C. elegans, and in the response to osmotic stimuli in C. elegans. In a striking example of evolutionary conservation of function, mammalian TRPV4 has been found to rescue osmo- and mechano-sensory deficits of the TRPV mutant strain osm-9 in C. elegans, despite the fact that the respective proteins share not more than 26% orthology.

  13. Modeling Signal Transduction and Lipid Rafts in Immune Cells

    Science.gov (United States)

    Prasad, Ashok

    2011-03-01

    Experimental evidence increasingly suggests that lipid rafts are nanometer sized cholesterol dependent dynamic assemblies enriched in sphingolipids and associated proteins. Lipid rafts are dynamic structures that break-up and reform on a relatively short time-scale, and are believed to facilitate the interactions of raft-associated proteins. The role of these rafts in signaling has been controversial, partly due to controversies regarding the existence and nature of the rafts themselves. Experimental evidence has indicated that in several cell types, especially T cells, rafts do influence signal transduction and T cell activation. Given the emerging consensus on the biophysical character of lipid rafts, the question can be asked as to what roles they possibly play in signal transduction. Here we carry out simulations of minimal models of the signal transduction network that regulates Src-family kinase dynamics in T cells and other cell types. By separately treating raft-based biochemical interactions, we find that rafts can indeed putatively play an important role in signal transduction, and in particular may affect the sensitivity of signal transduction. This illuminates possible functional consequences of membrane heterogeneities on signal transduction and points towards mechanisms for spatial control of signaling by cells.

  14. Diffusion wave and signal transduction in biological live cells

    CERN Document Server

    Fan, Tian You

    2012-01-01

    Transduction of mechanical stimuli into biochemical signals is a fundamental subject for cell physics. In the experiments of FRET signal in cells a wave propagation in nanoscope was observed. We here develop a diffusion wave concept and try to give an explanation to the experimental observation. The theoretical prediction is in good agreement to result of the experiment.

  15. Hypergravity signal transduction and gene expression in cultured mammalian cells

    Science.gov (United States)

    Kumei, Y.; Whitson, P. A.

    1994-01-01

    A number of studies have been conducted during space flight and with clinostats and centrifuges, suggesting that gravity effects the proliferation and differentiation of mammalian cells in vitro. However, little is known about the mechanisms by which mammalian cells respond to changes in gravitational stress. This paper summarizes studies designed to clarify the effects of hypergravity on the cultured human HeLa cells and to investigate the mechanism of hypergravity signal transduction in these cells.

  16. In search of the cochlear amplifier: New mechanical and molecular tools to probe transduction channel function

    Science.gov (United States)

    Karavitaki, K. Domenica; Indzhykulian, Artur A.; Zhang, Duan-Sun; Corey, David P.

    2015-12-01

    The study of mechanotransduction in cochlear hair cells requires stimulus methods that mimic the in-vivo stimulation. We have developed a new mechanical probe to better mimic the physiological stimulus delivered to cochlear hair cells through the overlying tectorial membrane. We combine these new probes with electroporation to study the contribution of different components of the transduction apparatus.

  17. Molecular signal transduction in vascular cell apoptosis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Apoptosis is a form of genetically programmed cell death, which plays a key role in regulation of cellularity in a variety of tissue and cell types including the cardiovascular tissues. Under both physiological and pathophysiological conditions, various biophysiological and biochemical factors, including mechanical forces, reactive oxygen and nitrogen species, cytokines, growth factors, oxidized lipoproteins, etc., may influence apoptosis of vascular cells. The Fas/Fas ligand/caspase death-signaling pathway, Bcl-2 protein family/mitochondria, the tumor suppressive gene p53, and the proto-oncogene c-myc may be activated in atherosclerotic lesions, and mediates vascular apoptosis during the development of atherosclerosis. Abnormal expression and dysfunction of these apoptosis-regulating genes may attenuate or accelerate vascular cell apoptosis and affect the integrity and stability of atherosclerotic plaques. Clarification of the molecular mechanism that regulates apoptosis may help design a new strategy for treatment of atherosclerosis and its major complication, the acute vascular syndromes.

  18. Key cancer cell signal transduction pathways as therapeutic targets.

    Science.gov (United States)

    Bianco, Roberto; Melisi, Davide; Ciardiello, Fortunato; Tortora, Giampaolo

    2006-02-01

    Growth factor signals are propagated from the cell surface, through the action of transmembrane receptors, to intracellular effectors that control critical functions in human cancer cells, such as differentiation, growth, angiogenesis, and inhibition of cell death and apoptosis. Several kinases are involved in transduction pathways via sequential signalling activation. These kinases include transmembrane receptor kinases (e.g., epidermal growth factor receptor EGFR); or cytoplasmic kinases (e.g., PI3 kinase). In cancer cells, these signalling pathways are often altered and results in a phenotype characterized by uncontrolled growth and increased capability to invade surrounding tissue. Therefore, these crucial transduction molecules represent attractive targets for cancer therapy. This review will summarize current knowledge of key signal transduction pathways, that are altered in cancer cells, as therapeutic targets for novel selective inhibitors. The most advanced targeted agents currently under development interfere with function and expression of several signalling molecules, including the EGFR family; the vascular endothelial growth factor and its receptors; and cytoplasmic kinases such as Ras, PI3K and mTOR.

  19. MAPK Cascades in Guard Cell Signal Transduction

    Science.gov (United States)

    Lee, Yuree; Kim, Yun Ju; Kim, Myung-Hee; Kwak, June M.

    2016-01-01

    Guard cells form stomata on the epidermis and continuously respond to endogenous and environmental stimuli to fine-tune the gas exchange and transpirational water loss, processes which involve mitogen-activated protein kinase (MAPK) cascades. MAPKs form three-tiered kinase cascades with MAPK kinases and MAPK kinase kinases, by which signals are transduced to the target proteins. MAPK cascade genes are highly conserved in all eukaryotes, and they play crucial roles in myriad developmental and physiological processes. MAPK cascades function during biotic and abiotic stress responses by linking extracellular signals received by receptors to cytosolic events and gene expression. In this review, we highlight recent findings and insights into MAPK-mediated guard cell signaling, including the specificity of MAPK cascades and the remaining questions. PMID:26904052

  20. MAPK cascades in guard cell signal transduction

    Directory of Open Access Journals (Sweden)

    Yuree eLee

    2016-02-01

    Full Text Available Guard cells form stomata on the epidermis and continuously respond to endogenous and environmental stimuli to fine-tune the gas exchange and transpirational water loss, processes which involve mitogen-activated protein kinase (MAPK cascades. MAPKs form three-tiered kinase cascades with MAPK kinases and MAPK kinase kinases, by which signals are transduced to the target proteins. MAPK cascade genes are highly conserved in all eukaryotes, and they play crucial roles in myriad developmental and physiological processes. MAPK cascades function during biotic and abiotic stress responses by linking extracellular signals received by receptors to cytosolic events and gene expression. In this review, we highlight recent findings and insights into MAPK-mediated guard cell signaling, including the specificity of MAPK cascades and the remaining questions.

  1. Sensory Transduction of the CO2 Response of Guard Cells

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Eduardo Zeiger

    2003-06-30

    Stomata have a key role in the regulation of gas exchange and intercellular CO2 concentrations of leaves. Guard cells sense internal and external signals in the leaf environment and transduce these signals into osmoregulatory processes that control stomatal apertures. This research proposal addresses the characterization of the sensory transduction of the CO2 signal in guard cells. Recent studies have shown that in Vicia leaves kept at constant light and temperature in a growth chamber, changes in ambient CO2 concentrations cause large changes in guard cell zeaxanthin that are linear with CO2-dependent changes in stomatal apertures. Research proposed here will test the hypothesis that zeaxanthin function as a transducer of CO2 signals in guard cells. Three central aspects of this hypothesis will be investigated: CO2 sensing by the carboxylation reaction of Rubisco in the guard cell chloroplast, which would modulate zeaxanthin concentrations via changes in lumen pH; transduction of the CO2 signal by zeaxanthin via a transducing cascade that controls guard cell osmoregulation; and blue light dependence of the CO2 signal transduction by zeaxanthin, required for the formation of an isomeric form of zeaxanthin that is physiologically active as a transducer. The role of Rubisco in CO2 sensing will be investigated in experiments characterizing the stomatal response to CO2 in the Arabidopsis mutants R100 and rca-, which have reduced rates of Rubisco-dependent carboxylation. The role of zeaxanthin as a CO2 transducer will be studied in npq1, a zeaxanthin-less mutant. The blue light-dependence of CO2 sensing will be studied in experiments characterizing the stomatal response to CO2 under red light. Arabidopsis mutants will also be used in further studies of an acclimation of the stomatal response to CO2, and a possible role of the xanthophyll cycle of the guard cell chloroplast in acclimations of the stomatal response to CO2. Studies on the osmoregulatory role of sucrose in

  2. Multidrug resistance and retroviral transduction potential in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Theilade, M D; Gram, G J; Jensen, P B;

    1999-01-01

    blue colonies after X-Gal staining of the cells grown in soft agar. All examined SCLC cell lines were transducible with either vector. Transduction efficiencies varied from 5.7% to 33.5% independent of the presence of MDR. These results indicate that MDR does not severely impair transduction of SCLC......Multidrug resistance (MDR) remains a major problem in the successful treatment of small cell lung cancer (SCLC). New treatment strategies are needed, such as gene therapy specifically targeting the MDR cells in the tumor. Retroviral LacZ gene-containing vectors that were either pseudotyped for the...... gibbon ape leukemia virus (GALV-1) receptor or had specificity for the amphotropic murine leukemia virus (MLV-A) receptor were used for transduction of five SCLC cell lines differing by a range of MDR mechanisms. Transduction efficiencies in these cell lines were compared by calculating the percentage of...

  3. Multidrug resistance and retroviral transduction potential in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Theilade, M D; Gram, G J; Jensen, P B;

    1999-01-01

    Multidrug resistance (MDR) remains a major problem in the successful treatment of small cell lung cancer (SCLC). New treatment strategies are needed, such as gene therapy specifically targeting the MDR cells in the tumor. Retroviral LacZ gene-containing vectors that were either pseudotyped...... for the gibbon ape leukemia virus (GALV-1) receptor or had specificity for the amphotropic murine leukemia virus (MLV-A) receptor were used for transduction of five SCLC cell lines differing by a range of MDR mechanisms. Transduction efficiencies in these cell lines were compared by calculating the percentage...... of blue colonies after X-Gal staining of the cells grown in soft agar. All examined SCLC cell lines were transducible with either vector. Transduction efficiencies varied from 5.7% to 33.5% independent of the presence of MDR. These results indicate that MDR does not severely impair transduction of SCLC...

  4. Gravity perception and signal transduction in single cells

    Science.gov (United States)

    Block, I.; Wolke, A.; Briegleb, W.; Ivanova, K.

    Cellular signal processing in multi-, as well as in unicellular organisms, has to rely on fundamentally similar mechanisms. Free-living single cells often use the gravity vector for their spatial orientation (gravitaxis) and show distinct gravisensitivities. In this investigation the gravisensitive giant ameboid cell Physarum polycephalum (Myxomycetes, acellular slime molds) is used. Its gravitaxis and the modulation of its intrinsic rhythmic contraction activity by gravity was demonstrated in 180 °turn experiments and in simulated, as well as in actual, near-weightlessness studies (fast-rotating clinostat; Spacelab D1, IML-1). The stimulus perception was addressed in an IML-2 experiment, which provided information on the gravireceptor itself by the determination of the cell's acceleration-sensitivity threshold. Ground-based experiments designed to elucidate the subsequent steps in signal transduction leading to a motor response, suggest that an acceleration stimulus induces changes in the level of second messenger, adenosine 3',5'-cyclic monophosphate (cAMP), indicating also that the acceleration-stimulus signal transduction chain of Physarum uses an ubiquitous second messenger pathway.

  5. Signal transduction events in aluminum-induced cell death in tomato suspension cells

    NARCIS (Netherlands)

    Iakimova, E.T.; Kapchina-Toteva, V.M.; Woltering, E.J.

    2007-01-01

    In this study, some of the signal transduction events involved in AlCl3-induced cell death in tomato (Lycopersicon esculentum Mill.) suspension cells were elucidated. Cells treated with 100 ¿M AlCl3 showed typical features of programmed cell death (PCD) such as nuclear and cytoplasmic condensation.

  6. Solar ultraviolet radiation as a trigger of cell signal transduction

    International Nuclear Information System (INIS)

    Ultraviolet light radiation in sunlight is known to cause major alterations in growth and differentiation patterns of exposed human tissues. The specific effects depend on the wavelengths and doses of the light, and the nature of the exposed tissue. Both growth inhibition and proliferation are observed, as well as inflammation and immune suppression. Whereas in the clinical setting, these responses may be beneficial, for example, in the treatment of psoriasis and atopic dermatitis, as an environmental toxicant, ultraviolet light can induce significant tissue damage. Thus, in the eye, ultraviolet light causes cataracts, while in the skin, it induces premature aging and the development of cancer. Although ultraviolet light can damage many tissue components including membrane phospholipids, proteins, and nucleic acids, it is now recognized that many of its cellular effects are due to alterations in growth factor- and cytokine-mediated signal transduction pathways leading to aberrant gene expression. It is generally thought that reactive oxygen intermediates are mediators of some of the damage induced by ultraviolet light. Generated when ultraviolet light is absorbed by endogenous photosensitizers in the presence of molecular oxygen, reactive oxygen intermediates and their metabolites induce damage by reacting with cellular electrophiles, some of which can directly initiate cell signaling processes. In an additional layer of complexity, ultraviolet light-damaged nucleic acids initiate signaling during the activation of repair processes. Thus, mechanisms by which solar ultraviolet radiation triggers cell signal transduction are multifactorial. The present review summarizes some of the mechanisms by which ultraviolet light alters signaling pathways as well as the genes important in the beneficial and toxic effects of ultraviolet light

  7. Enrichment of human hematopoietic stem/progenitor cells facilitates transduction for stem cell gene therapy.

    Science.gov (United States)

    Baldwin, Kismet; Urbinati, Fabrizia; Romero, Zulema; Campo-Fernandez, Beatriz; Kaufman, Michael L; Cooper, Aaron R; Masiuk, Katelyn; Hollis, Roger P; Kohn, Donald B

    2015-05-01

    Autologous hematopoietic stem cell (HSC) gene therapy for sickle cell disease has the potential to treat this illness without the major immunological complications associated with allogeneic transplantation. However, transduction efficiency by β-globin lentiviral vectors using CD34-enriched cell populations is suboptimal and large vector production batches may be needed for clinical trials. Transducing a cell population more enriched for HSC could greatly reduce vector needs and, potentially, increase transduction efficiency. CD34(+) /CD38(-) cells, comprising ∼1%-3% of all CD34(+) cells, were isolated from healthy cord blood CD34(+) cells by fluorescence-activated cell sorting and transduced with a lentiviral vector expressing an antisickling form of beta-globin (CCL-β(AS3) -FB). Isolated CD34(+) /CD38(-) cells were able to generate progeny over an extended period of long-term culture (LTC) compared to the CD34(+) cells and required up to 40-fold less vector for transduction compared to bulk CD34(+) preparations containing an equivalent number of CD34(+) /CD38(-) cells. Transduction of isolated CD34(+) /CD38(-) cells was comparable to CD34(+) cells measured by quantitative PCR at day 14 with reduced vector needs, and average vector copy/cell remained higher over time for LTC initiated from CD34(+) /38(-) cells. Following in vitro erythroid differentiation, HBBAS3 mRNA expression was similar in cultures derived from CD34(+) /CD38(-) cells or unfractionated CD34(+) cells. In vivo studies showed equivalent engraftment of transduced CD34(+) /CD38(-) cells when transplanted in competition with 100-fold more CD34(+) /CD38(+) cells. This work provides initial evidence for the beneficial effects from isolating human CD34(+) /CD38(-) cells to use significantly less vector and potentially improve transduction for HSC gene therapy.

  8. Signal transduction in cells of the immune system in microgravity

    Directory of Open Access Journals (Sweden)

    Huber Kathrin

    2008-10-01

    Full Text Available Abstract Life on Earth developed in the presence and under the constant influence of gravity. Gravity has been present during the entire evolution, from the first organic molecule to mammals and humans. Modern research revealed clearly that gravity is important, probably indispensable for the function of living systems, from unicellular organisms to men. Thus, gravity research is no more or less a fundamental question about the conditions of life on Earth. Since the first space missions and supported thereafter by a multitude of space and ground-based experiments, it is well known that immune cell function is severely suppressed in microgravity, which renders the cells of the immune system an ideal model organism to investigate the influence of gravity on the cellular and molecular level. Here we review the current knowledge about the question, if and how cellular signal transduction depends on the existence of gravity, with special focus on cells of the immune system. Since immune cell function is fundamental to keep the organism under imnological surveillance during the defence against pathogens, to investigate the effects and possible molecular mechanisms of altered gravity is indispensable for long-term space flights to Earth Moon or Mars. Thus, understanding the impact of gravity on cellular functions on Earth will provide not only important informations about the development of life on Earth, but also for therapeutic and preventive strategies to cope successfully with medical problems during space exploration.

  9. HCN channels are not required for mechanotransduction in sensory hair cells of the mouse inner ear.

    Directory of Open Access Journals (Sweden)

    Geoffrey C Horwitz

    Full Text Available The molecular composition of the hair cell transduction channel has not been identified. Here we explore the novel hypothesis that hair cell transduction channels include HCN subunits. The HCN family of ion channels includes four members, HCN1-4. They were originally identified as the molecular correlates of the hyperpolarization-activated, cyclic nucleotide gated ion channels that carry currents known as If, IQ or Ih. However, based on recent evidence it has been suggested that HCN subunits may also be components of the elusive hair cell transduction channel. To investigate this hypothesis we examined expression of mRNA that encodes HCN1-4 in sensory epithelia of the mouse inner ear, immunolocalization of HCN subunits 1, 2 and 4, uptake of the transduction channel permeable dye, FM1-43 and electrophysiological measurement of mechanotransduction current. Dye uptake and transduction current were assayed in cochlear and vestibular hair cells of wildtype mice exposed to HCN channel blockers or a dominant-negative form of HCN2 that contained a pore mutation and in mutant mice that lacked HCN1, HCN2 or both. We found robust expression of HCNs 1, 2 and 4 but little evidence that localized HCN subunits in hair bundles, the site of mechanotransduction. Although high concentrations of the HCN antagonist, ZD7288, blocked 50-70% of the transduction current, we found no reduction of transduction current in either cochlear or vestibular hair cells of HCN1- or HCN2- deficient mice relative to wild-type mice. Furthermore, mice that lacked both HCN1 and HCN2 also had normal transduction currents. Lastly, we found that mice exposed to the dominant-negative mutant form of HCN2 had normal transduction currents as well. Taken together, the evidence suggests that HCN subunits are not required for mechanotransduction in hair cells of the mouse inner ear.

  10. Molecular analysis of the graviperception signal transduction in the flagellate Euglena gracilis: Involvement of a transient receptor potential-like channel and a calmodulin

    Science.gov (United States)

    Häder, Donat-Peter; Richter, Peter R.; Schuster, Martin; Daiker, Viktor; Lebert, Michael

    2009-04-01

    Euglena gracilis, a unicellular, photosynthetic flagellate is a model system for environmentally controlled behavior responses. The organism shows pronounced negative gravitaxis. This movement is based on physiological mechanisms, which in the past had been only indirectly assessed. It was shown that mechano-sensitive calcium channels are involved in the gravitaxis response. Recent studies have demonstrated that members of the transient receptor potential (TRP) family function as mechano-sensitive channels in several different cell types. We have sequenced part of a TRP gene in Euglena and applied RNA interference (RNAi) to confirm that these channels are involved in graviperception. It was found that RNAi against the putative TRP channel abolished gravitaxis. The genes of three calmodulins were sequences in Euglena, one of which was previously known in its protein structure (cal 1). The other two were unknown (cal 2 and cal 3). Cal 2 has been analyzed in detail. The biosynthesis of the corresponding proteins of cal 1 and cal 2 was inhibited by means of RNA interference to see whether this blockage impairs gravitaxis. RNAi of cal 1 leads to a long-term loss of free swimming in the cells (while euglenoid movement persists). It induced pronounced cell form aberrations and the division of cells was hampered. After recovery from RNAi the cell showed precise negative gravitaxis again. Thus cal 1 does not seem to be involved in gravitaxis. In contrast, the blockage of cal 2 has no pronounced influence on motility and cell form but leads to a complete loss of gravitactic orientation for more than 30 days showing that this calmodulin is an element in the signal transduction chain. The data are discussed in the context of the current model of the gravitaxis signal transduction chain in Euglena gracilis.

  11. Physiology and Regulation of Calcium Channels in Stomatal Guard Cells

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Julian I.

    2007-05-02

    Stomatal pores in the epidermis of leaves regulate the diffusion of CO2 into leaves for photosynthetic carbon fixation and control water loss of plants during drought periods. Guard cells sense CO2, water status, light and other environmental conditions to regulate stomatal apertures for optimization of CO2 intake and plant growth under drought stress. The cytosolic second messenger calcium contributes to stomatal movements by transducing signals and regulating ion channels in guard cells. Studies suggest that both plasma membrane Ca2+ influx channels and vacuolar/organellar Ca2+ release channels contribute to ABA-induced Ca2+ elevations in guard cells. Recent research in the P.I.'s laboratory has led to identification of a novel major cation-selective Ca2+-permeable influx channel (Ica) in the plasma membrane of Arabidopsis guard cells. These advances will allow detailed characterization of Ica plasma membrane Ca2+ influx channels in guard cells. The long term goal of this research project is to gain a first detailed characterization of these novel plasma membrane Ca2+-permeable channel currents in Arabidopsis guard cells. The proposed research will investigate the hypothesis that Ica represents an important Ca2+ influx pathway for ABA and CO2 signal transduction in Arabidopsis guard cells. These studies will lead to elucidation of key signal transduction mechanisms by which plants balance CO2 influx into leaves and transpirational water loss and may contribute to future strategies for manipulating gas exchange for improved growth of crop plants and for biomass production.

  12. TRP2: A candidate transduction channel for mammalian pheromone sensory signaling

    OpenAIRE

    Liman, Emily R.; David P Corey; Dulac, Catherine

    1999-01-01

    The vomeronasal organ (VNO) of terrestrial vertebrates plays a key role in the detection of pheromones, chemicals released by animals that elicit stereotyped sexual and aggressive behaviors among conspecifics. Sensory transduction in the VNO appears unrelated to that in the vertebrate olfactory and visual systems: the putative pheromone receptors of the VNO are evolutionarily independent from the odorant receptors and, in contrast to vertebrate visual and olfactory transduction, vomeronasal t...

  13. Sensors and signal transduction pathways in vertebrate cell volume regulation

    DEFF Research Database (Denmark)

    Hoffmann, Else K; Pedersen, Stine F

    2006-01-01

    to the identification of transporter binding partners such as protein kinases and phosphatases, cytoskeletal elements and lipids. Considerable progress has also been made recently in understanding the upstream elements in volume sensing and volume-sensitive signal transduction, and salient features of these systems...

  14. Adeno-associated viral vector transduction of human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Stender, Stefan; Murphy, Mary; O'Brien, Tim;

    2007-01-01

    Mesenchymal stem cells (MSCs) have received considerable attention in the emerging field of regenerative medicine. One aspect of MSC research focuses on genetically modifying the cells with the aim of enhancing their regenerative potential. Adeno-associated virus (AAV) holds promise as a vector...... for human gene therapy, primarily due to its lack of pathogenicity and low risk of insertional mutagenesis. However, the existing data pertaining to AAV transduction of MSCs is limited. The objective of this work was to examine the efficiency and kinetics of in vitro transduction using AAV serotype 2...... in human MSCs and to assess whether AAV transduction affects MSC multipotentiality. The results indicated that human MSCs could indeed be transiently transduced in vitro by the AAV2 vector with efficiencies of up to 65%. The percentage of GFP-positive cells peaked at 4 days post-transduction and declined...

  15. Inhibition of T cell proliferation by selective block of Ca(2+)-activated K(+) channels

    DEFF Research Database (Denmark)

    Jensen, B S; Odum, Niels; Jorgensen, N K;

    1999-01-01

    T lymphocytes express a plethora of distinct ion channels that participate in the control of calcium homeostasis and signal transduction. Potassium channels play a critical role in the modulation of T cell calcium signaling, and the significance of the voltage-dependent K channel, Kv1.3, is well...... established. The recent cloning of the Ca(2+)-activated, intermediate-conductance K(+) channel (IK channel) has enabled a detailed investigation of the role of this highly Ca(2+)-sensitive K(+) channel in the calcium signaling and subsequent regulation of T cell proliferation. The role IK channels play in T...

  16. Suppression of tumorigenicity and metastatic potential of melanoma cells by transduction of interferon gene

    Directory of Open Access Journals (Sweden)

    Lykhova A. A.

    2014-01-01

    Full Text Available The aim of this study was to investigate an inhibitory effect of baculovirus-mediated transduction of the murine interferon-beta gene on mouse melanoma in vitro and in vivo. Methods. Studies were performed on B16 mouse melanoma (MM-4 cell line. Transduction, immunocytochemical and tumor cell biology approaches have been used in this study. Results. Transduction of MM-4 cells by the recombinant baculovirus with IFN-beta gene is accompanied by morphological changes of tumor cells, suppression of cell proliferation, significant inhibition of platting efficiency of cells and their colonies formation in semisolid agar. Moreover, transduction of melanoma MM-4 cells by the baculovirus IFN-transgene leads to inhibition of tumorigenicity and metastatic ability of the cells in vivo. The intravenous administration of recombinant baculovirus vector with IFN gene inhibits growth of metastases induced in the lungs of mice by intravenously injected tumor cells. Conclusions. Transduction of mouse melanoma cells by the recombinant baculovirus with murine IFN-beta gene inhibits their proliferative potential, tumorigenicity and metastatic activity.

  17. Analysis of 4070A envelope levels in retroviral preparations and effect on target cell transduction efficiency.

    Science.gov (United States)

    Slingsby, J H; Baban, D; Sutton, J; Esapa, M; Price, T; Kingsman, S M; Kingsman, A J; Slade, A

    2000-07-01

    A number of stable producer cell lines for high-titer Mo-MuLV vectors have been constructed. Development has previously centered on increasing end-point titers by producing maximal levels of Mo-MuLV Gag/Pol, envelope glycoproteins, and retroviral RNA genomes. We describe the production yields and transduction efficiency characteristics of two Mo-MuLV packaging cell lines, FLYA13 and TEFLYA. Although they both produce 4070A-pseudotyped retroviral vectors reproducibly at >1 x 10(6) LFU ml(-1), the transduction efficiency of unconcentrated and concentrated virus from FLYA13 lines is poor compared with vector preparations from TEFLYA lines. A powerful inhibitor of retroviral transduction is secreted by FLYA13 packaging cells. We show that the inhibitory factor does not affect transduction of target cells by RD114-pseudotyped vectors. This suggests that the inhibitory factor functions at the level of envelope-receptor interactions. Phosphate starvation of target cells shows a two-fold increase in Pit2 receptor mRNA and causes some improvement in FLYA13 virus transduction efficiency. Western blots show that FLYA13 viral samples contain an eight-fold higher ratio of 4070A envelope to p30gag than that of virus produced by TEFLYA producer cell lines. This study correlates overexpression of 4070A envelope glycoprotein in retroviral preparations with a reduction of transduction efficiency at high multiplicities of infection. We suggest that TEFLYA packaging cells express preferable levels of 4070A compared with FLYA13, which not only enables high-titer stocks to be generated, but also facilitates a high efficiency of transduction of target cells. PMID:10910141

  18. Decitabine suspends human CD34+ cell differentiation and proliferation during lentiviral transduction.

    Science.gov (United States)

    Uchida, Naoya; Hsieh, Matthew M; Platner, Charlotte; Saunthararajah, Yogen; Tisdale, John F

    2014-01-01

    Efficient ex vivo transduction of hematopoietic stem cells (HSCs) is encumbered by differentiation which reduces engraftment. We hypothesized that inhibiting DNA methyltransferase with decitabine would block differentiation of transduced CD34+ cells under cytokine stimulation and thus improve transduction efficiency for engrafting HSCs. Human CD34+ cells in cytokine-containing media were treated with or without decitabine for 24 or 48 hours, and then these cells were transduced with a GFP-expressing lentiviral vector. Utilizing decitabine pre-treatment for 48 hours, we observed an equivalent percentage of successfully transduced cells (GFP-positivity) and a higher percentage of cells that retained CD34 positivity, compared to no decitabine exposure. Cell proliferation was inhibited after decitabine exposure. Similar results were observed among CD34+ cells from six different donors. Repopulating activity was evaluated by transplantation into NOD/SCID/IL2Rγnull mice and demonstrated an equivalent percentage of GFP-positivity in human cells from decitabine-treated samples and a trend for higher human cell engraftment (measured 20-24 weeks after transplantation), compared to no decitabine exposure. In conclusion, ex vivo decitabine exposure inhibits both differentiation and proliferation in transduced human CD34+ cells and modestly increases the engraftment ability in xenograft mice, while the transduction efficiency is equivalent in decitabine exposure, suggesting improvement of lentiviral transduction for HSCs.

  19. Decitabine suspends human CD34+ cell differentiation and proliferation during lentiviral transduction.

    Directory of Open Access Journals (Sweden)

    Naoya Uchida

    Full Text Available Efficient ex vivo transduction of hematopoietic stem cells (HSCs is encumbered by differentiation which reduces engraftment. We hypothesized that inhibiting DNA methyltransferase with decitabine would block differentiation of transduced CD34+ cells under cytokine stimulation and thus improve transduction efficiency for engrafting HSCs. Human CD34+ cells in cytokine-containing media were treated with or without decitabine for 24 or 48 hours, and then these cells were transduced with a GFP-expressing lentiviral vector. Utilizing decitabine pre-treatment for 48 hours, we observed an equivalent percentage of successfully transduced cells (GFP-positivity and a higher percentage of cells that retained CD34 positivity, compared to no decitabine exposure. Cell proliferation was inhibited after decitabine exposure. Similar results were observed among CD34+ cells from six different donors. Repopulating activity was evaluated by transplantation into NOD/SCID/IL2Rγnull mice and demonstrated an equivalent percentage of GFP-positivity in human cells from decitabine-treated samples and a trend for higher human cell engraftment (measured 20-24 weeks after transplantation, compared to no decitabine exposure. In conclusion, ex vivo decitabine exposure inhibits both differentiation and proliferation in transduced human CD34+ cells and modestly increases the engraftment ability in xenograft mice, while the transduction efficiency is equivalent in decitabine exposure, suggesting improvement of lentiviral transduction for HSCs.

  20. Signal transduction in Plasmodium-Red Blood Cells interactions and in cytoadherence

    Directory of Open Access Journals (Sweden)

    Laura N. Cruz

    2012-06-01

    Full Text Available Malaria is responsible for more than 1.5 million deaths each year, especially among children (Snow et al. 2005. Despite of the severity of malaria situation and great effort to the development of new drug targets (Yuan et al. 2011 there is still a relative low investment toward antimalarial drugs. Briefly there are targets classes of antimalarial drugs currently being tested including: kinases, proteases, ion channel of GPCR, nuclear receptor, among others (Gamo et al. 2010. Here we review malaria signal transduction pathways in Red Blood Cells (RBC as well as infected RBCs and endothelial cells interactions, namely cytoadherence. The last process is thought to play an important role in the pathogenesis of severe malaria. The molecules displayed on the surface of both infected erythrocytes (IE and vascular endothelial cells (EC exert themselves as important mediators in cytoadherence, in that they not only induce structural and metabolic changes on both sides, but also trigger multiple signal transduction processes, leading to alteration of gene expression, with the balance between positive and negative regulation determining endothelial pathology during a malaria infection.A Malária é responsavel por mais de 1.5 milhões de mortes anualmente, especialmente entre crianças (Snow et al. 2005. Apesar da gravidade da situação e grande esforço para o desenvolvimento de novas drogas (Yuan et al. 2011, os investimentos em drogas antimaláricas ainda é relativamente baixo. Brevemente, os alvos antimaláricos atualmente testados incluem: quinases, proteases, canais iônicos para GPCR, receptores nucleares entre outros (Gamo et al. 2010. No presente trabalho nós revisamos as vias de transdução de sinal em eritrócitos assim como eritrócitos infectados e interações com células endoteliais, denominada citoaderência. Este processo é conhecido por sua importante função na patogenicidade da malária severa. As moléculas expressas na superf

  1. Predicting essential components of signal transduction networks: a dynamic model of guard cell abscisic acid signaling.

    Directory of Open Access Journals (Sweden)

    Song Li

    2006-10-01

    Full Text Available Plants both lose water and take in carbon dioxide through microscopic stomatal pores, each of which is regulated by a surrounding pair of guard cells. During drought, the plant hormone abscisic acid (ABA inhibits stomatal opening and promotes stomatal closure, thereby promoting water conservation. Dozens of cellular components have been identified to function in ABA regulation of guard cell volume and thus of stomatal aperture, but a dynamic description is still not available for this complex process. Here we synthesize experimental results into a consistent guard cell signal transduction network for ABA-induced stomatal closure, and develop a dynamic model of this process. Our model captures the regulation of more than 40 identified network components, and accords well with previous experimental results at both the pathway and whole-cell physiological level. By simulating gene disruptions and pharmacological interventions we find that the network is robust against a significant fraction of possible perturbations. Our analysis reveals the novel predictions that the disruption of membrane depolarizability, anion efflux, actin cytoskeleton reorganization, cytosolic pH increase, the phosphatidic acid pathway, or K(+ efflux through slowly activating K(+ channels at the plasma membrane lead to the strongest reduction in ABA responsiveness. Initial experimental analysis assessing ABA-induced stomatal closure in the presence of cytosolic pH clamp imposed by the weak acid butyrate is consistent with model prediction. Simulations of stomatal response as derived from our model provide an efficient tool for the identification of candidate manipulations that have the best chance of conferring increased drought stress tolerance and for the prioritization of future wet bench analyses. Our method can be readily applied to other biological signaling networks to identify key regulatory components in systems where quantitative information is limited.

  2. Comparative Transduction Mechanisms of Vestibular Otolith Hair Cells

    Science.gov (United States)

    Baird, Richard A.

    1994-01-01

    Hair cells in the bullfrog vestibular otolith organs regenerate following aminoglycoside ototoxicity. Hair cells in these organs are differentially sensitive to gentamicin, with saccular hair cells and hair cells in the utricular striola being damaged at lower gentamicin concentrations than hair cells in the utricular extrastriola. Regenerating hair cells in these organs have short hair bundles and can be classified into a number of phenotypes using the same morphological criteria used to identify their mature counterparts. Our studies suggest that some supporting cells can convert, or transdifferentiate,into hair cells without an intervening cell division. By stimulating these processes in humans, clinicians may be able to alleviate human deafness and peripheral vestibular disorders by regenerating and replacing lost hair cells. In vivo and in vitro studies were done on cell proliferation and hair cell regeneration.

  3. Vectofusin-1, a new viral entry enhancer, strongly promotes lentiviral transduction of human hematopoietic stem cells.

    Science.gov (United States)

    Fenard, David; Ingrao, Dina; Seye, Ababacar; Buisset, Julien; Genries, Sandrine; Martin, Samia; Kichler, Antoine; Galy, Anne

    2013-05-07

    Gene transfer into hCD34(+) hematopoietic stem/progenitor cells (HSCs) using human immunodeficiency virus type 1 (HIV-1)-based lentiviral vectors (LVs) has several promising therapeutic applications. Yet, efficiency, safety, and cost of LV gene therapy could be ameliorated by enhancing target cell transduction levels and reducing the amount of LV used on the cells. Several transduction enhancers already exist such as fibronectin fragments and cationic compounds, but all present limitations. In this study, we describe a new transduction enhancer called Vectofusin-1, which is a short cationic peptide, active on several LV pseudotypes. Vectofusin-1 is used as a soluble additive to safely increase the frequency of transduced HSCs and to augment the level of transduction to one or two copies of vector per cell in a vector dose-dependent manner. Vectofusin-1 acts at the entry step by promoting the adhesion and the fusion between viral and cellular membranes. Vectofusin-1 is therefore a promising additive that could significantly ameliorate hCD34(+) cell-based gene therapy.Molecular Therapy-Nucleic Acids (2013) 2, e90; doi:10.1038/mtna.2013.17; published online 7 May 2013.

  4. Syntrophin proteins as Santa Claus: role(s) in cell signal transduction.

    Science.gov (United States)

    Bhat, Hina F; Adams, Marvin E; Khanday, Firdous A

    2013-07-01

    Syntrophins are a family of cytoplasmic membrane-associated adaptor proteins, characterized by the presence of a unique domain organization comprised of a C-terminal syntrophin unique (SU) domain and an N-terminal pleckstrin homology (PH) domain that is split by insertion of a PDZ domain. Syntrophins have been recognized as an important component of many signaling events, and they seem to function more like the cell's own personal 'Santa Claus' that serves to 'gift' various signaling complexes with precise proteins that they 'wish for', and at the same time care enough for the spatial, temporal control of these signaling events, maintaining overall smooth functioning and general happiness of the cell. Syntrophins not only associate various ion channels and signaling proteins to the dystrophin-associated protein complex (DAPC), via a direct interaction with dystrophin protein but also serve as a link between the extracellular matrix and the intracellular downstream targets and cell cytoskeleton by interacting with F-actin. They play an important role in regulating the postsynaptic signal transduction, sarcolemmal localization of nNOS, EphA4 signaling at the neuromuscular junction, and G-protein mediated signaling. In our previous work, we reported a differential expression pattern of alpha-1-syntrophin (SNTA1) protein in esophageal and breast carcinomas. Implicated in several other pathologies, like cardiac dys-functioning, muscular dystrophies, diabetes, etc., these proteins provide a lot of scope for further studies. The present review focuses on the role of syntrophins in membrane targeting and regulation of cellular proteins, while highlighting their relevance in possible development and/or progression of pathologies including cancer which we have recently demonstrated. PMID:23263165

  5. Ex Vivo and In Vivo Lentivirus-Mediated Transduction of Airway Epithelial Progenitor Cells.

    Science.gov (United States)

    Leoni, Giulia; Wasowicz, Marguerite Y; Chan, Mario; Meng, Cuixiang; Farley, Raymond; Brody, Steven L; Inoue, Makoto; Hasegawa, Mamoru; Alton, Eric W F W; Griesenbach, Uta

    2015-01-01

    A key challenge in pulmonary gene therapy for cystic fibrosis is to provide long-term correction of the genetic defect. This may be achievable by targeting airway epithelial stem/progenitor cells with an integrating vector. Here, we evaluated the ability of a lentiviral vector, derived from the simian immunodeficiency virus and pseudotyped with F and HN envelope proteins from Sendai virus, to transduce progenitor basal cells of the mouse nasal airways. We first transduced basal cell-enriched cultures ex vivo and confirmed efficient transduction of cytokeratin-5 positive cells. We next asked whether progenitor cells could be transduced in vivo. We evaluated the transduction efficiency in mice pretreated by intranasal administration of polidocanol to expose the progenitor cell layer. Compared to control mice, polidocanol treated mice demonstrated a significant increase in the number of transduced basal cells at 3 and 14 days post vector administration. At 14 days, the epithelium of treated mice contained clusters (4 to 8 adjacent cells) of well differentiated ciliated, as well as basal cells suggesting a clonal expansion. These results indicate that our lentiviral vector can transduce progenitor basal cells in vivo, although transduction required denudation of the surface epithelium prior to vector administration. PMID:26471068

  6. The efficiency of expressing human neprilysin by using lentiviral vector transduction in neural stem cells

    Institute of Scientific and Technical Information of China (English)

    黄文

    2013-01-01

    Objective To study the transduction efficiency of expressing human neprilysin by using lentiviral(Lenti-NEP) in mouse embryonic neural stem cells(NSC) in vitro. Methods Primary NSC were harvested from C57BL/6J pregnant mouse at embryonic day

  7. Enhancement of gene transduction efficiency in cancer cells using cationic liposome with hyperthermia.

    Directory of Open Access Journals (Sweden)

    Mushiake H

    2002-02-01

    Full Text Available We evaluated the effects of hyperthermia on the efficiency of gene transduction by using a cationic liposome to develop an efficient method for lipofection. We used Lewis lung carcinoma (LLC, NIH3T3, and A549 cell lines, with Lipofectamine reagent as the cationic liposome and the LacZ gene as the reporter gene. In LLC, co-incubation of the cationic liposome and plasmid DNA complex (lipoplex with the cells for 2 h at 41 degrees C enhanced the efficiency of gene transduction approximately 1.4-fold compared to incubation for 2 h at 37 degrees C, as measured by X-gal staining and beta-galactosidase activity. In cell lines NIH3T3 and A549, the efficiency of gene transduction showed a tendency toward enhancement after 2 h co-incubation with lipoplex at 41 degrees C compared to that at 37 degrees C, as measured by X-gal staining. This is the first study to demonstrate the enhancement of gene transduction efficiency achieved by using a cationic liposome under conditions of hyperthermia. This method should prove useful for lipofection in other cancer cells.

  8. Signal transduction pathways in the pentameric ligand-gated ion channels.

    Directory of Open Access Journals (Sweden)

    David Mowrey

    Full Text Available The mechanisms of allosteric action within pentameric ligand-gated ion channels (pLGICs remain to be determined. Using crystallography, site-directed mutagenesis, and two-electrode voltage clamp measurements, we identified two functionally relevant sites in the extracellular (EC domain of the bacterial pLGIC from Gloeobacter violaceus (GLIC. One site is at the C-loop region, where the NQN mutation (D91N, E177Q, and D178N eliminated inter-subunit salt bridges in the open-channel GLIC structure and thereby shifted the channel activation to a higher agonist concentration. The other site is below the C-loop, where binding of the anesthetic ketamine inhibited GLIC currents in a concentration dependent manner. To understand how a perturbation signal in the EC domain, either resulting from the NQN mutation or ketamine binding, is transduced to the channel gate, we have used the Perturbation-based Markovian Transmission (PMT model to determine dynamic responses of the GLIC channel and signaling pathways upon initial perturbations in the EC domain of GLIC. Despite the existence of many possible routes for the initial perturbation signal to reach the channel gate, the PMT model in combination with Yen's algorithm revealed that perturbation signals with the highest probability flow travel either via the β1-β2 loop or through pre-TM1. The β1-β2 loop occurs in either intra- or inter-subunit pathways, while pre-TM1 occurs exclusively in inter-subunit pathways. Residues involved in both types of pathways are well supported by previous experimental data on nAChR. The direct coupling between pre-TM1 and TM2 of the adjacent subunit adds new insight into the allosteric signaling mechanism in pLGICs.

  9. Hair-Cell Mechanotransduction Persists in TRP Channel Knockout Mice.

    Science.gov (United States)

    Wu, Xudong; Indzhykulian, Artur A; Niksch, Paul D; Webber, Roxanna M; Garcia-Gonzalez, Miguel; Watnick, Terry; Zhou, Jing; Vollrath, Melissa A; Corey, David P

    2016-01-01

    Members of the TRP superfamily of ion channels mediate mechanosensation in some organisms, and have been suggested as candidates for the mechanotransduction channel in vertebrate hair cells. Some TRP channels can be ruled out based on lack of an inner ear phenotype in knockout animals or pore properties not similar to the hair-cell channel. Such studies have excluded Trpv4, Trpa1, Trpml3, Trpm1, Trpm3, Trpc1, Trpc3, Trpc5, and Trpc6. However, others remain reasonable candidates. We used data from an RNA-seq analysis of gene expression in hair cells as well as data on TRP channel conductance to narrow the candidate group. We then characterized mice lacking functional Trpm2, Pkd2, Pkd2l1, Pkd2l2 and Pkd1l3, using scanning electron microscopy, auditory brainstem response, permeant dye accumulation, and single-cell electrophysiology. In all of these TRP-deficient mice, and in double and triple knockouts, mechanotransduction persisted. Together with published studies, these results argue against the participation of any of the 33 mouse TRP channels in hair cell transduction. PMID:27196058

  10. Hair-Cell Mechanotransduction Persists in TRP Channel Knockout Mice.

    Directory of Open Access Journals (Sweden)

    Xudong Wu

    Full Text Available Members of the TRP superfamily of ion channels mediate mechanosensation in some organisms, and have been suggested as candidates for the mechanotransduction channel in vertebrate hair cells. Some TRP channels can be ruled out based on lack of an inner ear phenotype in knockout animals or pore properties not similar to the hair-cell channel. Such studies have excluded Trpv4, Trpa1, Trpml3, Trpm1, Trpm3, Trpc1, Trpc3, Trpc5, and Trpc6. However, others remain reasonable candidates. We used data from an RNA-seq analysis of gene expression in hair cells as well as data on TRP channel conductance to narrow the candidate group. We then characterized mice lacking functional Trpm2, Pkd2, Pkd2l1, Pkd2l2 and Pkd1l3, using scanning electron microscopy, auditory brainstem response, permeant dye accumulation, and single-cell electrophysiology. In all of these TRP-deficient mice, and in double and triple knockouts, mechanotransduction persisted. Together with published studies, these results argue against the participation of any of the 33 mouse TRP channels in hair cell transduction.

  11. Signal Transduction at the Domain Interface of Prokaryotic Pentameric Ligand-Gated Ion Channels

    Science.gov (United States)

    Bertozzi, Carlo; Zimmermann, Iwan; Engeler, Sibylle; Hilf, Ricarda J. C.; Dutzler, Raimund

    2016-01-01

    Pentameric ligand-gated ion channels are activated by the binding of agonists to a site distant from the ion conduction path. These membrane proteins consist of distinct ligand-binding and pore domains that interact via an extended interface. Here, we have investigated the role of residues at this interface for channel activation to define critical interactions that couple conformational changes between the two structural units. By characterizing point mutants of the prokaryotic channels ELIC and GLIC by electrophysiology, X-ray crystallography and isothermal titration calorimetry, we have identified conserved residues that, upon mutation, apparently prevent activation but not ligand binding. The positions of nonactivating mutants cluster at a loop within the extracellular domain connecting β-strands 6 and 7 and at a loop joining the pore-forming helix M2 with M3 where they contribute to a densely packed core of the protein. An ionic interaction in the extracellular domain between the turn connecting β-strands 1 and 2 and a residue at the end of β-strand 10 stabilizes a state of the receptor with high affinity for agonists, whereas contacts of this turn to a conserved proline residue in the M2-M3 loop appear to be less important than previously anticipated. When mapping residues with strong functional phenotype on different channel structures, mutual distances are closer in conducting than in nonconducting conformations, consistent with a potential role of contacts in the stabilization of the open state. Our study has revealed a pattern of interactions that are crucial for the relay of conformational changes from the extracellular domain to the pore region of prokaryotic pentameric ligand-gated ion channels. Due to the strong conservation of the interface, these results are relevant for the entire family. PMID:26943937

  12. Osmotin, a plant antifungal protein, subverts signal transduction to enhance fungal cell susceptibility.

    Science.gov (United States)

    Yun, D J; Ibeas, J I; Lee, H; Coca, M A; Narasimhan, M L; Uesono, Y; Hasegawa, P M; Pardo, J M; Bressan, R A

    1998-05-01

    The plant pathogenesis-related protein osmotin is an antifungal cytotoxic agent that causes rapid cell death in the yeast S. cerevisiae. We show here that osmotin uses a signal transduction pathway to weaken defensive cell wall barriers and increase its cytotoxic efficacy. The pathway activated by osmotin includes the regulatory elements of the mating pheromone response STE4, STE18, STE20, STE5, STE11, STE7, FUS3, KSS1, and STE12. Neither the pheromone receptor nor its associated G protein alpha subunit GPA1 are required for osmotin action. However, mutation of SST2, a negative regulator of G alpha proteins, resulted in supersensitivity to osmotin. Phosphorylation of STE7 was rapidly stimulated by osmotin preceding any changes in cell vitality or morphology. These results demonstrate that osmotin subverts target cell signal transduction as part of its mechanism of action. PMID:9660964

  13. Harmonin-b, an actin-binding scaffold protein, is involved in the adaptation of mechanoelectrical transduction by sensory hair cells

    OpenAIRE

    Michalski, Nicolas; Michel, Vincent; Caberlotto, Elisa; Lefèvre, Gaelle M.; Van Aken, Alexander F J; Tinevez, Jean-Yves; Bizard, Emilie; Houbron, Christophe; Weil, Dominique; Hardelin, Jean-Pierre; Richardson, Guy P.; Kros, Corné J.; Martin, Pascal; Petit, Christine

    2009-01-01

    We assessed the involvement of harmonin-b, a submembranous protein containing PDZ domains, in the mechanoelectrical transduction machinery of inner ear hair cells. Harmonin-b is located in the region of the upper insertion point of the tip link that joins adjacent stereocilia from different rows and that is believed to gate transducer channel(s) located in the region of the tip link's lower insertion point. In Ush1c dfcr-2J/dfcr-2J mutant mice defective for harmonin-b, step deflections of the...

  14. Transduction of the MPG-tagged fusion protein into mammalian cells and oocytes depends on amiloride-sensitive endocytic pathway

    Directory of Open Access Journals (Sweden)

    Cheon Yong-Pil

    2009-08-01

    Full Text Available Abstract Background MPG is a cell-permeable peptide with proven efficiency to deliver macromolecular cargoes into cells. In this work, we examined the efficacy of MPG as an N-terminal tag in a fusion protein to deliver a protein cargo and its mechanism of transduction. Results We examined transduction of MPG-EGFP fusion protein by live imaging, flow cytometry, along with combination of cell biological and pharmacological methods. We show that MPG-EGFP fusion proteins efficiently enter various mammalian cells within a few minutes and are co-localized with FM4-64, a general marker of endosomes. The transduction of MPG-EGFP occurs rapidly and is inhibited at a low temperature. The entry of MPG-EGFP is inhibited by amiloride, but cytochalasin D and methyl-β-cyclodextrin did not inhibit the entry, suggesting that macropinocytosis is not involved in the transduction. Overexpression of a mutant form of dynamin partially reduced the transduction of MPG-EGFP. The partial blockade of MPG-EGFP transduction by a dynamin mutant is abolished by the treatment of amiloride. MPG-EGFP transduction is also observed in the mammalian oocytes. Conclusion The results show that the transduction of MPG fusion protein utilizes endocytic pathway(s which is amiloride-sensitive and partially dynamin-dependent. Collectively, the MPG fusion protein could be further developed as a novel tool of "protein therapeutics", with potentials to be used in various cell systems including mammalian oocytes.

  15. Image informatics for studying signal transduction in cells interacting with 3D matrices

    Science.gov (United States)

    Tzeranis, Dimitrios S.; Guo, Jin; Chen, Chengpin; Yannas, Ioannis V.; Wei, Xunbin; So, Peter T. C.

    2014-03-01

    Cells sense and respond to chemical stimuli on their environment via signal transduction pathways, complex networks of proteins whose interactions transmit chemical information. This work describes an implementation of image informatics, imaging-based methodologies for studying signal transduction networks. The methodology developed focuses on studying signal transduction networks in cells that interact with 3D matrices. It utilizes shRNA-based knock down of network components, 3D high-content imaging of cells inside the matrix by spectral multi-photon microscopy, and single-cell quantification using features that describe both cell morphology and cell-matrix adhesion pattern. The methodology is applied in a pilot study of TGFβ signaling via the SMAD pathway in fibroblasts cultured inside porous collagen-GAG scaffolds, biomaterials similar to the ones used clinically to induce skin regeneration. Preliminary results suggest that knocking down all rSMAD components affects fibroblast response to TGFβ1 and TGFβ3 isoforms in different ways, and suggest a potential role for SMAD1 and SMAD5 in regulating TGFβ isoform response. These preliminary results need to be verified with proteomic results that can provide solid evidence about the particular role of individual components of the SMAD pathway.

  16. Signal Transduction at the Single-Cell Level: Approaches to Study the Dynamic Nature of Signaling Networks.

    Science.gov (United States)

    Handly, L Naomi; Yao, Jason; Wollman, Roy

    2016-09-25

    Signal transduction, or how cells interpret and react to external events, is a fundamental aspect of cellular function. Traditional study of signal transduction pathways involves mapping cellular signaling pathways at the population level. However, population-averaged readouts do not adequately illuminate the complex dynamics and heterogeneous responses found at the single-cell level. Recent technological advances that observe cellular response, computationally model signaling pathways, and experimentally manipulate cells now enable studying signal transduction at the single-cell level. These studies will enable deeper insights into the dynamic nature of signaling networks.

  17. Method for Efficient Transduction of Cancer Stem Cells

    Science.gov (United States)

    Walker, Kiera; Hjelmeland, Anita

    2016-01-01

    Ectopic gene expression through introduction of cDNA and gene silencing by RNA interference each facilitate the elucidation of molecular pathways in both normal and pathologic states. As transfection efficiency in some primary and established cells is low, lentivirus based expression systems with high infection rates can improve experimental design. For example, glioblastoma cells and particularly the cancer stem cell (CSC) fraction can be difficult to transfect but are amenable to viral infection. Greater utilization of lentivirus for expression of cDNA and shRNA in CSCs may be limited due to technical challenges, including elimination of pro-differentiating fetal bovine serum (FBS). We therefore generated a subline of 293Ts that can proliferate and efficiently produce virus in CSC media, designated CSC293Ts. We provide detailed protocols for the generation of CSC293Ts and for the production of lentivirus for CSC infection using glioblastoma as a model. Our data demonstrate that serum free media from CSC293Ts consistently produces greater than 80% infection rates without virus concentration. We believe that the detailed protocols provided here can be adapted for multiple cell types for broad utility.

  18. CD28 and T cell antigen receptor signal transduction coordinately regulate interleukin 2 gene expression in response to superantigen stimulation

    OpenAIRE

    1992-01-01

    Activation of an immune response requires intercellular contact between T lymphocytes and antigen-presenting cells (APC). Interaction of the T cell antigen receptor (TCR) with antigen in the context of major histocompatibility molecules mediates signal transduction, but T cell activation appears to require the induction of a second costimulatory signal transduction pathway. Recent studies suggest that interaction of CD28 with B7 on APC might deliver such a costimulatory signal. To investigate...

  19. STAT1 is involved in signal transduction in the EPO induced HEL cells

    Institute of Scientific and Technical Information of China (English)

    JIANGCHU; CHANGYUNGUI; 等

    1998-01-01

    Erythropoietin(EPO) is the major regulator of mamalian erythropoisis,which stimulates the growth and differentiation of hematopoietic cells through interaction with its receptor(EPO-R),Here we use HEL cells (a human erythro-leukemia cell line) as a model to elucidate the pathway of signal transduction in the EPO-induced HEL cells.Our data show that the EPOR (EPO receptor) on the surface of HEL cells interacts with the Janus tyrosine protein kinase(Jak2) to transduce intracellular signals through phosphorylation of cytoplasmic proteins in EPO-treated HEL cells.Both STAT1 and STAT5 in this cell line are tyrosine-phosphorylated and translocated to nucleus following the dinding of EPO to HEL cells.Furthermore,the dinding of both STAT1 and STAT5 proteins to specific DNA elements(SIE and PIE elements) is revealed in an EPO-dependent manner,Our data demonstrate that the pathway of signal transduction following the binding of EPO to HEL cells is similar to immature eryhroid cell from the spleen of mice infected with anemia strain of Friend virus.

  20. Mitochondria-derived hydrogen peroxide selectively enhances T cell receptor-initiated signal transduction.

    Science.gov (United States)

    Gill, Tejpal; Levine, Alan D

    2013-09-01

    T cell receptor (TCR)-initiated signal transduction is reported to increase production of intracellular reactive oxygen species, such as superoxide (O2˙(-)) and hydrogen peroxide (H2O2), as second messengers. Although H2O2 can modulate signal transduction by inactivating protein phosphatases, the mechanism and the subcellular localization of intracellular H2O2 as a second messenger of the TCR are not known. The antioxidant enzyme superoxide dismutase (SOD) catalyzes the dismutation of highly reactive O2˙(-) into H2O2 and thus acts as an intracellular generator of H2O2. As charged O2˙(-) is unable to diffuse through intracellular membranes, cells express distinct SOD isoforms in the cytosol (Cu,Zn-SOD) and mitochondria (Mn-SOD), where they locally scavenge O2˙(-) leading to production of H2O2. A 2-fold organelle-specific overexpression of either SOD in Jurkat T cell lines increases intracellular production of H2O2 but does not alter the levels of intracellular H2O2 scavenging enzymes such as catalase, membrane-bound peroxiredoxin1 (Prx1), and cytosolic Prx2. We report that overexpression of Mn-SOD enhances tyrosine phosphorylation of TCR-associated membrane proximal signal transduction molecules Lck, LAT, ZAP70, PLCγ1, and SLP76 within 1 min of TCR cross-linking. This increase in mitochondrial H2O2 specifically modulates MAPK signaling through the JNK/cJun pathway, whereas overexpressing Cu,Zn-SOD had no effect on any of these TCR-mediated signaling molecules. As mitochondria translocate to the immunological synapse during TCR activation, we hypothesize this translocation provides the effective concentration of H2O2 required to selectively modulate downstream signal transduction pathways.

  1. THE ENHANCED GREEN FLUORESCENT PROTEIN AS A MARKER FOR HUMAN TUMOR CELLS LABELLED BY RETROVIRAL TRANSDUCTION

    Institute of Scientific and Technical Information of China (English)

    傅建新; 王玮; 白霞; 卢大儒; 阮长耿; 陈子兴

    2002-01-01

    Objective: To investigate the feasibility of marking the human tumor cells with enhanced green fluorescent protein (EGFP) in vitro. Methods: The retroviral vector LGSN encoding EGFP was constructed and three human tumor cell lines were infected with LGSN amphotropic virus. Tumor cell lines that stably express EGFP were selected with G418. The integration and expression of EGFP gene were analyzed by polymerase chain reaction, and flow cytometry (FCM). Results: After gene transfection and ping-pong transduction, amphotropic producer line Am12/LGSN was generated with a stable green fluorescence signal readily detectable by FCM in up to 97% of examined cells. The viral titer in the supernatants was up to 8.2×105CFU/ml. After transduction and selection, G418-resistant leukemia K562, mammary carcinoma MCF-7, and bladder cancer 5637 cells were developed, in which the integration of both EGFP and neomycin resistance gene was confirmed by DNA amplification. In comparison with uninfected cells, FCM analysis revealed EGFP expression in up to 90% (range 85.5%~90.0%) of tumor cells containing LGSN provirus. Conclusion: The retroviral vector LGSN can effectively mark the human tumor cells with a stably EGFP expression which may be in studying tumor growth, metastasis and angiogenesis.

  2. Synaptic-like vesicles and candidate transduction channels in mechanosensory terminals.

    Science.gov (United States)

    Bewick, Guy S

    2015-08-01

    This article summarises progress to date over an exciting and very enjoyable first 15 years of collaboration with Bob Banks. Our collaboration began when I contacted him with (to me) an unexpected observation that a dye used to mark recycling synaptic vesicle membrane at efferent terminals also labelled muscle spindle afferent terminals. This observation led to the re-discovery of a system of small clear vesicles present in all vertebrate primary mechanosensory nerve terminals. These synaptic-like vesicles (SLVs) have been, and continue to be, the major focus of our work. This article describes our characterisation of the properties and functional significance of these SLVs, combining our complementary skills: Bob's technical expertise and encyclopaedic knowledge of mechanosensation with my experience of synaptic vesicles and the development of the styryl pyridinium dyes, of which the most widely used is FM1-43. On the way we have found that SLVs seem to be part of a constitutive glutamate secretory system necessary to maintain the stretch-sensitivity of spindle endings. The glutamate activates a highly unusual glutamate receptor linked to phospholipase D activation, which we have termed the PLD-mGluR. It has a totally distinct pharmacology first described in the hippocampus nearly 20 years ago but, like the SLVs that were first described over 50 years ago, has since been little researched. Yet, our evidence and literature searches suggest this glutamate/SLV/PLD-mGluR system is a ubiquitous feature of mechanosensory endings and, at least for spindles, is essential for maintaining mechanosensory function. This article summarises how this system integrates with the classical model of mechanosensitive channels in spindles and other mechanosensory nerve terminals, including hair follicle afferents and baroreceptors controlling blood pressure. Finally, in this time when there is an imperative to show translational relevance, I describe how this fascinating system might

  3. Comparative transduction mechanisms of hair cells in the bullfrog utriculus. 1: Responses to intracellular current

    Science.gov (United States)

    Baird, Richard A.

    1994-01-01

    Hair cells in the bullfrog sacculus are specifically adapted to sense small-amplitude, high-frequency linear accelerations. These hair cells display many properties that are undesirable or inappropriate for hair cells that must provide static gravity sensitivity. This study resulted in part due to an interest in seeing how the transduction mechanisms of hair cells in a gravity-sensing otolith endorgan would differ from those in the bullfrog sacculus. The bullfrog utriculus is an appropriate model for these studies, because its structure is representative of higher vertebrates in general and its function as a sensor of static gravity and dynamic linear acceleration is well known. Hair cells in the bullfrog utriculus, classifiable as Type 2 by cell body and synapse morphology, differ markedly in hair bundle morphology from those in the bullfrog sacculus. Moreover, the hair bundle morphologies of utricular hair cells, unlike those in the sacculus, differ in different membrane regions.

  4. VRACs and other ion channels and transporters in the regulation of cell volume and beyond.

    Science.gov (United States)

    Jentsch, Thomas J

    2016-05-01

    Cells need to regulate their volume to counteract osmotic swelling or shrinkage, as well as during cell division, growth, migration and cell death. Mammalian cells adjust their volume by transporting potassium, sodium, chloride and small organic osmolytes using plasma membrane channels and transporters. This generates osmotic gradients, which drive water in and out of cells. Key players in this process are volume-regulated anion channels (VRACs), the composition of which has recently been identified and shown to encompass LRRC8 heteromers. VRACs also transport metabolites and drugs and function in extracellular signal transduction, apoptosis and anticancer drug resistance. PMID:27033257

  5. The signal transduction pathway in the proliferation of airway smooth muscle cells induced by urotensin Ⅱ

    Institute of Scientific and Technical Information of China (English)

    陈亚红; 赵鸣武; 姚婉贞; 庞永政; 唐朝枢

    2004-01-01

    Background Human urotensin Ⅱ (UⅡ) is the most potent mammalian vasoconstrictor identified so far. Our previous study showed that UⅡ is a potent mitogen of airway smooth muscle cells (ASMC) inducing ASMC proliferation in a dose-dependent manner. The signal transduction pathway of UⅡ mitogenic effect remains to be clarified. This study was conducted to investigate the signal transduction pathway in the proliferation of ASMC induced by UⅡ.Methods In primary cultures of rat ASMCs, activities of protein kinase C (PKC), mitogen-activated protein kinase (MAPK) and calcineurin (CaN) induced by UⅡ were measured. The effect of CaN on PKC and MAPK was studied by adding cyclosporin A (CsA), a specific inhibitor of CaN. Using H7 and PD98059, inhibitors of PKC and MAPK, respectively, to study the effect of PKC and MAPK on CaN. The cytosolic free calcium concentration induced by UⅡ was measured using Fura-2/AM. Results UⅡ 10-7 mol/L stimulated ASMC PKC and MAPK activities by 44% and 24% (P0.05). CsA 10-6 mol/L inhibited UⅡ-stimulated PKC activity by 14% (P0.05).Conclusions UⅡ increases cytosolic free calcium concentration and activates PKC, MAPK and CaN. The signal transduction pathway between PKC and CaN has cross-talk.

  6. Transduction of Murine Hematopoietic Stem Cells with Tetracycline-regulated Lentiviral Vectors.

    Science.gov (United States)

    Stahlhut, Maike; Schambach, Axel; Kustikova, Olga S

    2016-01-01

    Tetracycline-regulated integrating vectors allow pharmacologically controlled genetic modification of murine and human hematopoietic stem cells (HSCs). This approach combines the stable transgene insertion into a host genome with the opportunity for time- and dose-controlled reversible transgene expression in HSCs. Here, we describe the step-by-step protocol for transduction of murine stem-cell enriched populations of bone marrow cells, such as lineage negative cells (Lin(-)), with a lentiviral vector expressing the enhanced green fluorescent protein (EGFP) under the control of the tetracycline-regulated promoter. This chapter explains how to establish in vitro and in vivo systems to study transgene dose-dependent mechanisms affecting cell fate decisions of genetically modified hematopoietic cells. PMID:27317173

  7. Signal transduction pathway of nitric oxide inducing PC12 cell death

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To study signal transduction pathway of nitric oxideinducing death of PC12 cells.Methods: Cell survival rate was measured with MTT assay, and caspase-3 activity with caspase-3 assay kits after PC12 cells were incubated with sodium nitroprusside (SNP), caspase-3 inhibitor Ⅱ plus SNP or p38 inhibitor-SB203580 plus SNP.Results: SNP induced death of PC12 cells in dose- and time-dependent manner and enhanced caspase-3 activity gradually. Both caspase-3 inhibitor Ⅱ and SB203580 reduced cell death, but SB203580 reduced caspase-3 activity significantly.Conclusions: NO may induce death of PC12 cells through activation of p38 and caspase-3.

  8. Ion Channels Involved in Cell Volume Regulation

    DEFF Research Database (Denmark)

    Hoffmann, Else Kay

    2011-01-01

    regulatory ion channels involved, and the mechanisms (cellular signalling pathways) that regulate these channels. Finally, I shall also briefly review current investigations in these two cell lines that focuses on how changes in cell volume can regulate cell functions such as cell migration, proliferation...

  9. Gene transfer and genome-wide insertional mutagenesis by retroviral transduction in fish stem cells.

    Directory of Open Access Journals (Sweden)

    Qizhi Liu

    Full Text Available Retrovirus (RV is efficient for gene transfer and integration in dividing cells of diverse organisms. RV provides a powerful tool for insertional mutagenesis (IM to identify and functionally analyze genes essential for normal and pathological processes. Here we report RV-mediated gene transfer and genome-wide IM in fish stem cells from medaka and zebrafish. Three RVs were produced for fish cell transduction: rvLegfp and rvLcherry produce green fluorescent protein (GFP and mCherry fluorescent protein respectively under control of human cytomegalovirus immediate early promoter upon any chromosomal integration, whereas rvGTgfp contains a splicing acceptor and expresses GFP only upon gene trapping (GT via intronic in-frame integration and spliced to endogenous active genes. We show that rvLegfp and rvLcherry produce a transduction efficiency of 11~23% in medaka and zebrafish stem cell lines, which is as 30~67% efficient as the positive control in NIH/3T3. Upon co-infection with rvGTgfp and rvLcherry, GFP-positive cells were much fewer than Cherry-positive cells, consistent with rareness of productive gene trapping events versus random integration. Importantly, rvGTgfp infection in the medaka haploid embryonic stem (ES cell line HX1 generated GTgfp insertion on all 24 chromosomes of the haploid genome. Similar to the mammalian haploid cells, these insertion events were presented predominantly in intergenic regions and introns but rarely in exons. RV-transduced HX1 retained the ES cell properties such as stable growth, embryoid body formation and pluripotency gene expression. Therefore, RV is proficient for gene transfer and IM in fish stem cells. Our results open new avenue for genome-wide IM in medaka haploid ES cells in culture.

  10. A CRISPR-Based Toolbox for Studying T Cell Signal Transduction

    Science.gov (United States)

    Chi, Shen; Weiss, Arthur; Wang, Haopeng

    2016-01-01

    CRISPR/Cas9 system is a powerful technology to perform genome editing in a variety of cell types. To facilitate the application of Cas9 in mapping T cell signaling pathways, we generated a toolbox for large-scale genetic screens in human Jurkat T cells. The toolbox has three different Jurkat cell lines expressing distinct Cas9 variants, including wild-type Cas9, dCas9-KRAB, and sunCas9. We demonstrated that the toolbox allows us to rapidly disrupt endogenous gene expression at the DNA level and to efficiently repress or activate gene expression at the transcriptional level. The toolbox, in combination with multiple currently existing genome-wide sgRNA libraries, will be useful to systematically investigate T cell signal transduction using both loss-of-function and gain-of-function genetic screens. PMID:27057542

  11. Comprehensive analysis of signal transduction in three-dimensional ECM-based tumor cell cultures

    Directory of Open Access Journals (Sweden)

    Iris Eke

    2015-11-01

    Full Text Available Analysis of signal transduction and protein phosphorylation is fundamental to understand physiological and pathological cell behavior as well as identification of novel therapeutic targets. Despite the fact that more physiological three-dimensional cell culture assays are increasingly used, particularly proteomics and phosphoproteomics remain challenging due to easy, robust and reproducible sample preparation. Here, we present an easy-to-perform, reliable and time-efficient method for the production of 3D cell lysates without compromising cell adhesion before cell lysis. The samples can be used for Western blotting as well as phosphoproteome array technology. This technique would be of interest for researchers working in all fields of biology and drug development.

  12. A CRISPR-Based Toolbox for Studying T Cell Signal Transduction

    Directory of Open Access Journals (Sweden)

    Shen Chi

    2016-01-01

    Full Text Available CRISPR/Cas9 system is a powerful technology to perform genome editing in a variety of cell types. To facilitate the application of Cas9 in mapping T cell signaling pathways, we generated a toolbox for large-scale genetic screens in human Jurkat T cells. The toolbox has three different Jurkat cell lines expressing distinct Cas9 variants, including wild-type Cas9, dCas9-KRAB, and sunCas9. We demonstrated that the toolbox allows us to rapidly disrupt endogenous gene expression at the DNA level and to efficiently repress or activate gene expression at the transcriptional level. The toolbox, in combination with multiple currently existing genome-wide sgRNA libraries, will be useful to systematically investigate T cell signal transduction using both loss-of-function and gain-of-function genetic screens.

  13. MAPKs and Signal Transduction in the Control of Gastrointestinal Epithelial Cell Proliferation and Differentiation

    Directory of Open Access Journals (Sweden)

    Luciana H. Osaki

    2013-05-01

    Full Text Available Mitogen-activated protein kinase (MAPK pathways are activated by several stimuli and transduce the signal inside cells, generating diverse responses including cell proliferation, differentiation, migration and apoptosis. Each MAPK cascade comprises a series of molecules, and regulation takes place at different levels. They communicate with each other and with additional pathways, creating a signaling network that is important for cell fate determination. In this review, we focus on ERK, JNK, p38 and ERK5, the major MAPKs, and their interactions with PI3K-Akt, TGFβ/Smad and Wnt/β-catenin pathways. More importantly, we describe how MAPKs regulate cell proliferation and differentiation in the rapidly renewing epithelia that lines the gastrointestinal tract and, finally, we highlight the recent findings on nutritional aspects that affect MAPK transduction cascades.

  14. Novel optical methodologies in studying mechanical signal transduction in mammalian cells

    Science.gov (United States)

    Stamatas, G. N.; McIntire, L. V.

    1999-01-01

    For the last 3 decades evidence has been accumulating that some types of mammalian cells respond to their mechanically active environment by altering their morphology, growth rate, and metabolism. The study of such responses is very important in understanding, physiological and pathological conditions ranging from bone formation to atherosclerosis. Obtaining this knowledge has been the goal for an active research area in bioengineering termed cell mechanotransduction. The advancement of optical methodologies used in cell biology research has given the tools to elucidate cellular mechanisms that would otherwise be impossible to visualize. Combined with molecular biology techniques, they give engineers invaluable tools in understanding the chemical pathways involved in mechanotransduction. Herein we briefly review the current knowledge on mechanical signal transduction in mammalian cells, focusing on the application of novel optical techniques in the ongoing research.

  15. THE TRANSMEMBRANE SIGNAL TRANSDUCTION IN HEp-2 CELLS INDUCED BY BACTERIAL ADHERENCE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@ In order to understand the role of transmembrane signal transduction of host cells in the early steps of infection,the adherence of E. coli to HEp-2 cells and the change of activity of phospholipase C-γ (PLC-γ) induced by the adherence were investigated.The adherence of enteropathogenic E.coli (EPEC), strain E.7, induced a significant increase of inositol-triphosphat (IP-3) level in HEp-2 cells. The adherence of the bacteria and the increase of IP-3 was kinetically correlated. Whereas the increase of IP3 level induced by the adherence of the control strain EPEC (H511), a non-piliated strain, was much meager than that by E7, a piliated strain. The results highlighted an important role of transmembrane signals like IP-3 in the pathogenesis of EPEC.

  16. Investigation of the Mechanoelectrical Transduction at Single Stereocilia by Afm

    Science.gov (United States)

    Langer, M. G.; Fink, S.; Löffler, K.; Koitschev, A.; Zenner, H.-P.

    2003-02-01

    The transduction of sound into an electrical signal in the inner ear is closely related to the mechanical properties of the hair bundles cytoskeleton and cross-linkage. In this study the effect of lateral cross-links on hair bundle mechanics and the transduction current response is demonstrated on the level of individual stereocilia. For experiments stereocilia of outer hair cells of postnatal rats (P3 - P8) were scanned with a sharp AFM tip at nanometerscale. Transduction currents were simultaneously recorded in the whole-cell-recording mode with patch clamp. AFM was used as a nanotool for local mechanical stimulation and force measurement at stereocilia whereas patch clamp serves as a detector for the electrical response of the cell. In a first experiment force transmission between adjacent stereocilia of the V- and W- shaped hair bundles of outer hair cells was investigated. Results showed that a force exerted to a single stereocilium declined to 36 % at the nearest adjacent stereocilium of the same row. This result supposes AFM to be convenient for local displacement of single stereocilia. For control, the local response of transduction channels was measured at single stereocilia of the same hair bundle. Measured transduction current amplitudes ranged from 9 to 49 pA supposing an opening of one to five transduction channels. Both, weak force transmission by lateral cross-links and small transduction current amplitudes indicate a weak mechanical interaction between individual stereocilia of the tallest row of stereocilia of outer hair cells from postnatal rats.

  17. Real-time monitoring of intracellular signal transduction in PC12 cells by non-adiabatic tapered optical fiber biosensor

    Science.gov (United States)

    Zibaii, M. I.; Latifi, H.; Asadollahi, A.; Noraeipoor, Z.; Dargahi, L.

    2014-05-01

    Real-time observation of intracellular process of signal transduction is very useful for biomedical and pharmaceutical applications as well as for basic research work of cell biology. For feasible and reagentless observation of intracellular alterations in real time, we examined the use of a nonadiabatic tapered optical fiber (NATOF) biosensor for monitoring of intracellular signal transduction that was mainly translocation of protein kinase C via refractive index change in PC12 cells adhered on tapered fiber sensor without any indicator reagent. PC12 cells were stimulated with KCl . Our results suggest that complex intracellular reactions could be real-time monitored and characterized by NATOF biosensor.

  18. Adenoviral transduction of mesenchymal stem cells: in vitro responses and in vivo immune responses after cell transplantation.

    Directory of Open Access Journals (Sweden)

    Oliver Treacy

    Full Text Available Adult mesenchymal stem cells (MSCs are non-hematopoietic cells with multi-lineage potential which makes them attractive targets for regenerative medicine applications. However, to date, therapeutic success of MSC-therapy is limited and the genetic modification of MSCs using viral vectors is one option to improve their therapeutic potential. Ex-vivo genetic modification of MSCs using recombinant adenovirus (Ad could be promising to reduce undesired immune responses as Ad will be removed before cell/tissue transplantation. In this regard, we investigated whether Ad-modification of MSCs alters their immunological properties in vitro and in vivo. We found that Ad-transduction of MSCs does not lead to up-regulation of major histocompatibility complex class I and II and co-stimulatory molecules CD80 and CD86. Moreover, Ad-transduction caused no significant changes in terms of pro-inflammatory cytokine expression, chemokine and chemokine receptor and Toll-like receptor expression. In addition, Ad-modification of MSCs had no affect on their ability to suppress T cell proliferation in vitro. In vivo injection of Ad-transduced MSCs did not change the frequency of various immune cell populations (antigen presenting cells, T helper and cytotoxic T cells, natural killer and natural killer T cells neither in the blood nor in tissues. Our results indicate that Ad-modification has no major influence on the immunological properties of MSCs and therefore can be considered as a suitable gene vector for therapeutic applications of MSCs.

  19. Mechanosensory calcium-selective cation channels in epidermal cells

    Science.gov (United States)

    Ding, J. P.; Pickard, B. G.

    1993-01-01

    This paper explores the properties and likely functions of an epidermal Ca(2+)-selective cation channel complex activated by tension. As many as eight or nine linked or linkable equivalent conductance units or co-channels can open together. Open time for co-channel quadruplets and quintuplets tends to be relatively long with millimolar Mg2+ (but not millimolar Ca2+) at the cytosolic face of excised plasma membrane. Sensitivity to tension is regulated by transmembrane voltage and temperature. Under some circumstances channel activity is sychronized in rhythmic pulses. Certain lanthanides and a cytoskeleton-disturbing herbicide that inhibit gravitropic reception act on the channel system at low concentrations. Specifically, ethyl-N-phenylcarbamate promotes tension-dependent activity at micromolar levels. With moderate suction, Gd3+ provided at about 0.5 micromole at the extracellular face of the membrane promotes for several seconds but may then become inhibitory. Provision at 1-2 micromoles promotes and subsequently inhibits more vigorously (often abruptly and totally), and at high levels inhibits immediately. La3+, a poor gravitropic inhibitor, acts similarly but much more gradually and only at much higher concentrations. These properties, particularly these susceptibilities to modulation, indicate that in vivo the mechanosensitive channel must be mechanosensory and mechanoregulatory. It could serve to transduce the shear forces generated in the integrated wall-membrane-cytoskeleton system during turgor changes and cell expansion as well as transducing the stresses induced by gravity, touch and flexure. In so far as such transduction is modulated by voltage and temperature, the channels would also be sensors for these modalities as long as the wall-membrane-cytoskeleton system experiences mechanical stress.

  20. The signal transduction pathways and molecules for ES cells self-renewal

    Institute of Scientific and Technical Information of China (English)

    LIU Na; LU Min

    2005-01-01

    Embryonic stem cells (ES cells) are derived from the inner cell mass (ICM) of blastocysts. ES cells can divide and produce identical copies of them over and over again (self-renewal) in vitro for a long time, and retain the capability of differentiating into all cell types when induced by appropriate signals. Their capability of multilineage differentiation might be exploited for cell-based therapies. Therefore, ES cells have a broad prospect in many clinical applications. To achieve success in the clinical applications, we have to understand how ES cells propagate and differentiate into specific cell types. The cytokine LIF can sustain the self-renewal of certain mouse ES cells (mES cells) through activation of the signal transduction pathway LIF/gp130/ STAT3. In this pathway the transcription factor STAT3 is a crucial factor. Furthermore, Oct-3/4 plays a very important role in maintaining the ES cell pluripotency. Oct-3/4 regulates embryo development through its co-factor Sox2 and Rox-1. Recently nanog, a new homeodomain gene, was found and it has been shown to be crucial for the renewal and pluripotency of ES cells. Three other signals BMP, Wnt and ERK also can influence differentiation and propagation of ES cells. This review article summarizes recent progress in this area, mainly focusing on the LIF signaling pathway and the transcription factors Oct-3/4 and Nanog. Although it is still unclear how these components cooperate, a model is presented here to provide a design for solving this problem.

  1. Effect of fragile histidine triad gene transduction on proliferation and apoptosis of human hepatocellular carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Rong-Hua Xu; Ji-Lin Yi; Liang-Yan Zheng; Dong-Lei He; Jian Tong; Li-Ping Zheng; Wu-Ping Zheng; Jin Meng; Li-Ping Xia; Cong-Jun Wang

    2008-01-01

    AIM: To evaluate the inhibitory effects of human fragile histidine triad (FHIT) gene on cell proliferation and apoptosis in human hepatocellular carcinoma line Hep3B in vitro.METHODS: A recombinant pcDNA3.1 (+)/FHIT including the functional region of FHIT gene was constructed and transferred into human hepatocellular carcinoma cells in vitro, mRNA and protein expression of the FHIT gene in the transfected cells was detected by RT-PCR and Western blot, respectively. The effect of FHIT on proliferation was detected by MTT assay. Changes in cell cycle and apoptosis were assayed by flow cytometry. Five mice received subcutaneous transplantation of Hep3B-FHIT; 5 mice received subcutaneous transplantation of normal Hep3B and Hep3B-C as controls. The body weight of nude mice and tumor growth were measured.RESULTS: RT-PCR and Western blot analysis showed that the expression level of FHIT-mRNA and FHIT protein was higher in Hep3B cells alter infection with pcDNA3.1 (+)/FHIT. The growth of Hep3B cells treated with pcDNA3.1 (+)/FHIT was significantly inhibited. The pcDNA3.1 (+)/FHIT-transfected Hep3B cells showed a significantly higher cell rate at G>0-G1 phase and increased apoptosis in comparison with controls (P<0.05). The growth of transplanted tumor was inhibited markedly by FHIT. Tumors arising from the Hep3B-FHIT cells occurred much later than those arising from the Hep3B and Hep3B-C cells. The growth of Hep3B-FHIT cells was slow and the tumor volume was low.CONCLUSION: Transduction of FHIT gene inhibits the growth of human hepatocellular carcinoma cells and induces cell apoptosis in vivo and in vitro.

  2. Microgravity-induced alterations in signal transduction in cells of the immune system

    Science.gov (United States)

    Paulsen, Katrin; Thiel, Cora; Timm, Johanna; Schmidt, Peter M.; Huber, Kathrin; Tauber, Svantje; Hemmersbach, Ruth; Seibt, Dieter; Kroll, Hartmut; Grote, Karl-Heinrich; Zipp, Frauke; Schneider-Stock, Regine; Cogoli, Augusto; Hilliger, Andre; Engelmann, Frank; Ullrich, Oliver

    2010-11-01

    Since decades it is known that the activity of cells of the immune system is severely dysregulated in microgravity, however, the underlying molecular aspects have not been elucidated yet. The identification of gravity-sensitive molecular mechanisms in cells of the immune system is an important and indispensable prerequisite for the development of counteractive measures to prevent or treat disturbed immune cell function of astronauts during long-term space missions. Moreover, their sensitivity to altered gravity renders immune cells an ideal model system to understand if and how gravity on Earth is required for normal mammalian cell function and signal transduction. We investigated the effect of simulated weightlessness (2D clinostat) and of real microgravity (parabolic flights) on key signal pathways in a human monocytic and a T lymphocyte cell line. We found that cellular responses to microgravity strongly depend on the cell-type and the conditions in which the cells are subjected to microgravity. In Jurkat T cells, enhanced phosphorylation of the MAP kinases ERK-1/2, MEK and p38 and inhibition of nuclear translocation of NF-kB were the predominant responses to simulated weightlessness, in either stimulated or non-stimulated cells. In contrast, non-stimulated monocytic U937 cells responded to simulated weightlessness with enhanced overall tyrosine-phosphorylation and activation of c-jun, whereas PMA-stimulated U937 cells responded the opposite way with reduced tyrosine-phosphorylation and reduced activation of c-jun, compared with PMA-stimulated 1 g controls. P53 protein was phosphorylated rapidly in microgravity. The identification of gravi-sensitive mechanisms in cells of the immune system will not only enable us to understand and prevent the negative effects of long time exposure to microgravity on Astronauts, but could also lead to novel therapeutic targets in general.

  3. Dental enamel cells express functional SOCE channels.

    Science.gov (United States)

    Nurbaeva, Meerim K; Eckstein, Miriam; Concepcion, Axel R; Smith, Charles E; Srikanth, Sonal; Paine, Michael L; Gwack, Yousang; Hubbard, Michael J; Feske, Stefan; Lacruz, Rodrigo S

    2015-10-30

    Dental enamel formation requires large quantities of Ca(2+) yet the mechanisms mediating Ca(2+) dynamics in enamel cells are unclear. Store-operated Ca(2+) entry (SOCE) channels are important Ca(2+) influx mechanisms in many cells. SOCE involves release of Ca(2+) from intracellular pools followed by Ca(2+) entry. The best-characterized SOCE channels are the Ca(2+) release-activated Ca(2+) (CRAC) channels. As patients with mutations in the CRAC channel genes STIM1 and ORAI1 show abnormal enamel mineralization, we hypothesized that CRAC channels might be an important Ca(2+) uptake mechanism in enamel cells. Investigating primary murine enamel cells, we found that key components of CRAC channels (ORAI1, ORAI2, ORAI3, STIM1, STIM2) were expressed and most abundant during the maturation stage of enamel development. Furthermore, inositol 1,4,5-trisphosphate receptor (IP3R) but not ryanodine receptor (RyR) expression was high in enamel cells suggesting that IP3Rs are the main ER Ca(2+) release mechanism. Passive depletion of ER Ca(2+) stores with thapsigargin resulted in a significant raise in [Ca(2+)]i consistent with SOCE. In cells pre-treated with the CRAC channel blocker Synta-66 Ca(2+) entry was significantly inhibited. These data demonstrate that enamel cells have SOCE mediated by CRAC channels and implicate them as a mechanism for Ca(2+) uptake in enamel formation.

  4. TMC1 and TMC2 are components of the mechanotransduction channel in hair cells of the mammalian inner ear

    OpenAIRE

    Pan, Bifeng; Géléoc, Gwenaelle S.; Asai, Yukako; Horwitz, Geoffrey C.; Kurima, Kiyoto; Ishikawa, Kotaro; Kawashima, Yoshiyuki; Griffith, Andrew J; Holt, Jeffrey R.

    2013-01-01

    Sensory transduction in auditory and vestibular hair cells requires expression of transmembrane channel-like (Tmc) 1 and 2 genes, but the function of these genes is unknown. To investigate the hypothesis that TMC1 and TMC2 proteins are components of the mechanosensitive ion channels that convert mechanical information into electrical signals, we recorded whole-cell and single-channel currents from mouse hair cells that expressed Tmc1, Tmc2 or mutant Tmc1. Cells that expressed mutant Tmc1 had ...

  5. The merged basins of signal transduction pathways in spatiotemporal cell biology.

    Science.gov (United States)

    Hou, Yingchun; Hou, Yang; He, Siyu; Ma, Caixia; Sun, Mengyao; He, Huimin; Gao, Ning

    2014-03-01

    Numerous evidences have indicated that a signal system is composed by signal pathways, each pathway is composed by sub-pathways, and the sub-pathway is composed by the original signal terminals initiated with a protein/gene. We infer the terminal signals merged signal transduction system as "signal basin". In this article, we discussed the composition and regulation of signal basins, and the relationship between the signal basin control and triple W of spatiotemporal cell biology. Finally, we evaluated the importance of the systemic regulation to gene expression by signal basins under triple W. We hope our discussion will be the beginning to cause the attention for this area from the scientists of life science.

  6. Comparative mechanisms of protein transduction mediated by cell-penetrating peptides in prokaryotes.

    Science.gov (United States)

    Liu, Betty Revon; Huang, Yue-Wern; Aronstam, Robert S; Lee, Han-Jung

    2015-04-01

    Bacterial and archaeal cell envelopes are complex multilayered barriers that serve to protect these microorganisms from their extremely harsh and often hostile environments. Import of exogenous proteins and nanoparticles into cells is important for biotechnological applications in prokaryotes. In this report, we demonstrate that cell-penetrating peptides (CPPs), both bacteria-expressed nona-arginine peptide (R9) and synthetic R9 (SR9), are able to deliver noncovalently associated proteins or quantum dots into four representative species of prokaryotes: cyanobacteria (Synechocystis sp. PCC 6803), bacteria (Escherichia coli DH5α and Arthrobacter ilicis D-50), and archaea (Thermus aquaticus). Although energy-dependent endocytosis is generally accepted as a hallmark that distinguishes eukaryotes from prokaryotes, cellular uptake of uncomplexed green fluorescent protein (GFP) by cyanobacteria was mediated by classical endocytosis. Mechanistic studies revealed that macropinocytosis plays a critical and major role in CPP-mediated protein transduction in all four prokaryotes. Membrane damage was not observed when cyanobacterial cells were treated with R9/GFP complexes, nor was cytotoxicity detected when bacteria or archaea were treated with SR9/QD complexes in the presence of macropinocytic inhibitors. These results indicate that the uptake of protein is not due to a compromise of membrane integrity in cyanobacteria, and that CPP can be an effective and safe carrier for membrane trafficking in prokaryotic cells. Our investigation provides important new insights into the transport of exogenous proteins and nanoparticles across the complex membrane systems of prokaryotes.

  7. Comparative transduction mechanisms of hair cells in the bullfrog utriculus. II. Sensitivity and response dynamics to hair bundle displacement

    Science.gov (United States)

    Baird, R. A.

    1994-01-01

    1. Hair cells in whole-mount in vitro preparations of the utricular macula of the bullfrog (Rana catesbeiana) were selected according to their macular location and hair bundle morphology. The sensitivity and response dynamics of selected hair cells to natural stimulation were examined by recording their voltage responses to step and sinusoidal hair bundle displacements applied to their longest stereocilia. 2. The voltage responses of 31 hair cells to sinusoidal hair bundle displacements were characterized by their gains and phases, taken with respect to peak hair bundle displacement. The gains of Type B and Type C cells at both 0.5 and 5.0 Hz were markedly lower than those of Type F and Type E cells. Phases, with the exception of Type C cells, lagged hair bundle displacement at 0.5 Hz. Type C cells had phase leads of 25-40 degrees. At 5.0 Hz, response phases in all cells were phase lagged with respect to those at 0.5 Hz. Type C cells had larger gains and smaller phase leads at 5.0 Hz than at 0.5 Hz, suggesting the presence of low-frequency adaptation. 3. Displacement-response curves, derived from the voltage responses to 5.0-Hz sinusoids, were sigmoidal in shape and asymmetrical, with the depolarizing response having a greater magnitude and saturating less abruptly than the hyperpolarizing response. When normalized to their largest displacement the linear ranges of these curves varied from hair bundle to linear range and sensitivity were predicted from realistic models of utricular hair bundles created using morphological data obtained from light and electron microscopy. Three factors, including 1) the inverse ratio of the lengths of the kinocilium and longest stereocilia, representing the lever arm between kinociliary and stereociliary displacement; 2) tip link extension/linear displacement, largely a function of stereociliary height and separation; and 3) stereociliary number, an estimate of the number of transduction channels, were considered in this analysis

  8. Signal transduction induced in Trypanosoma cruzi metacyclic trypomastigotes during the invasion of mammalian cells

    Directory of Open Access Journals (Sweden)

    N. Yoshida

    2000-03-01

    Full Text Available Penetration of Trypanosoma cruzi into mammalian cells depends on the activation of the parasite's protein tyrosine kinase and on the increase in cytosolic Ca2+ concentration. We used metacyclic trypomastigotes, the T. cruzi developmental forms that initiate infection in mammalian hosts, to investigate the association of these two events and to identify the various components of the parasite signal transduction pathway involved in host cell invasion. We have found that i both the protein tyrosine kinase activation, as measured by phosphorylation of a 175-kDa protein (p175, and Ca2+ mobilization were induced in the metacyclic forms by the HeLa cell extract but not by the extract of T. cruzi-resistant K562 cells; ii treatment of parasites with the tyrosine kinase inhibitor genistein blocked both p175 phosphorylation and the increase in cytosolic Ca2+ concentration; iii the recombinant protein J18, which contains the full-length sequence of gp82, a metacyclic stage surface glycoprotein involved in target cell invasion, interfered with tyrosine kinase and Ca2+ responses, whereas the monoclonal antibody 3F6 directed at gp82 induced parasite p175 phosphorylation and Ca2+ mobilization; iv treatment of metacyclic forms with phospholipase C inhibitor U73122 blocked Ca2+ signaling and impaired the ability of the parasites to enter HeLa cells, and v drugs such as heparin, a competitive IP3-receptor blocker, caffeine, which affects Ca2+ release from IP3-sensitive stores, in addition to thapsigargin, which depletes intracellular Ca2+ compartments and lithium ion, reduced the parasite infectivity. Taken together, these data suggest that protein tyrosine kinase, phospholipase C and IP3 are involved in the signaling cascade that is initiated on the parasite cell surface by gp82 and leads to Ca2+ mobilization required for target cell invasion.

  9. Inquiry into Chemotherapy-Induced P53 Activation in Cancer Cells as a Model for Teaching Signal Transduction

    Science.gov (United States)

    Srougi, Melissa C.; Carson, Susan

    2013-01-01

    Intracellular and extracellular communication is conducted through an intricate and interwoven network of signal transduction pathways. The mechanisms for how cells speak with one another are of significant biological importance to both basic and industrial scientists from a number of different disciplines. We have therefore developed and…

  10. HLA-DR molecules enhance signal transduction through the CD3/Ti complex in activated T cells

    DEFF Research Database (Denmark)

    Odum, Niels; Martin, P J; Schieven, G L;

    1991-01-01

    Crosslinking HLA-DR molecules by monoclonal antibodies (mAb) induces protein tyrosine phosphorylation and results in a secondary elevation of free cytoplasmic Ca2+ concentration ([Ca2+]i) in activated human T cells. Here we have studied the effect of DR on CD3-induced signal transduction...

  11. MMP-1/PAR-1 signal transduction axis and its prognostic impact in esophageal squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Hong-hua Peng

    2012-01-01

    Full Text Available The matrix metalloprotease-1 (MMP-1/protease-activated receptor-1 (PAR-1 signal transduction axis plays an important role in tumorigenesis. To explore the expression and prognostic value of MMP-1 and PAR-1 in esophageal squamous cell carcinoma (ESCC, we evaluated the expression of two proteins in resected specimens from 85 patients with ESCC by immunohistochemistry. Sixty-two (72.9% and 58 (68.2% tumors were MMP-1- and PAR-1-positive, respectively, while no significant staining was observed in normal esophageal squamous epithelium. MMP-1 and PAR-1 overexpression was significantly associated with tumor node metastasis (TNM stage and regional lymph node involvement. Patients with MMP-1- and PAR-1-positive tumors, respectively, had poorer disease-free survival (DFS than those with negative ESCC (P = 0.002 and 0.003, respectively. Univariate analysis showed a significant relationship between TNM stage [hazard ratio (HR = 2.836, 95% confidence interval (CI = 1.866-4.308], regional lymph node involvement (HR = 2.955, 95%CI = 1.713-5.068, MMP-1 expression (HR = 2.669, 95%CI = 1.229-6.127, and PAR-1 expression (HR = 1.762, 95%CI = 1.156-2.883 and DFS. Multivariate analysis including the above four parameters identified TNM stage (HR = 2.035, 95%CI = 1.167-3.681, MMP-1 expression (HR = 2.109, 95%CI = 1.293-3.279, and PAR-1 expression (HR = 1.967, 95%CI = 1.256-2.881 as independent and significant prognostic factors for DFS. Our data suggest for the first time that MMP-1 and PAR-1 were both overexpressed in ESCC and are novel predictors of poor patient prognosis after curative resection. The MMP-1/PAR-1 signal transduction axis might be a new therapeutic target for future therapies tailored against ESCC.

  12. MMP-1/PAR-1 signal transduction axis and its prognostic impact in esophageal squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Hong-hua; Zhang, Xi; Cao, Pei-guo [Department of Oncology, the Third Xiangya Hospital, Central South University, Changsha, Hunan Province (China)

    2011-11-18

    The matrix metalloprotease-1 (MMP-1)/protease-activated receptor-1 (PAR-1) signal transduction axis plays an important role in tumorigenesis. To explore the expression and prognostic value of MMP-1 and PAR-1 in esophageal squamous cell carcinoma (ESCC), we evaluated the expression of two proteins in resected specimens from 85 patients with ESCC by immunohistochemistry. Sixty-two (72.9%) and 58 (68.2%) tumors were MMP-1- and PAR-1-positive, respectively, while no significant staining was observed in normal esophageal squamous epithelium. MMP-1 and PAR-1 overexpression was significantly associated with tumor node metastasis (TNM) stage and regional lymph node involvement. Patients with MMP-1- and PAR-1-positive tumors, respectively, had poorer disease-free survival (DFS) than those with negative ESCC (P = 0.002 and 0.003, respectively). Univariate analysis showed a significant relationship between TNM stage [hazard ratio (HR) = 2.836, 95% confidence interval (CI) = 1.866-4.308], regional lymph node involvement (HR = 2.955, 95%CI = 1.713-5.068), MMP-1 expression (HR = 2.669, 95%CI = 1.229-6.127), and PAR-1 expression (HR = 1.762, 95%CI = 1.156-2.883) and DFS. Multivariate analysis including the above four parameters identified TNM stage (HR = 2.035, 95%CI = 1.167-3.681), MMP-1 expression (HR = 2.109, 95%CI = 1.293-3.279), and PAR-1 expression (HR = 1.967, 95%CI = 1.256-2.881) as independent and significant prognostic factors for DFS. Our data suggest for the first time that MMP-1 and PAR-1 were both overexpressed in ESCC and are novel predictors of poor patient prognosis after curative resection. The MMP-1/PAR-1 signal transduction axis might be a new therapeutic target for future therapies tailored against ESCC.

  13. Lipid Rafts and Signal Transduction of Cell%脂筏与细胞信号转导

    Institute of Scientific and Technical Information of China (English)

    范玉贞

    2011-01-01

    论述了脂筏的组成、结构与功能,脂筏在细胞信号转导正负调控、T细胞的信号转导、精子膜的信号转导过程中的作用及其机制.小窝蛋白及其参与的信号转导过程与葡萄糖运输、糖尿病及其并发症有密切关系.%This article discusses the composition,structure and function of lipid rafts and the mechanism of lipid rafts in signal transduction plus or minus regulation,T cell signal transduction,signal transduction process of sperm membrane.Caveolins and its partic

  14. ISL1 protein transduction promotes cardiomyocyte differentiation from human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Hananeh Fonoudi

    Full Text Available BACKGROUND: Human embryonic stem cells (hESCs have the potential to provide an unlimited source of cardiomyocytes, which are invaluable resources for drug or toxicology screening, medical research, and cell therapy. Currently a number of obstacles exist such as the insufficient efficiency of differentiation protocols, which should be overcome before hESC-derived cardiomyocytes can be used for clinical applications. Although the differentiation efficiency can be improved by the genetic manipulation of hESCs to over-express cardiac-specific transcription factors, these differentiated cells are not safe enough to be applied in cell therapy. Protein transduction has been demonstrated as an alternative approach for increasing the efficiency of hESCs differentiation toward cardiomyocytes. METHODS: We present an efficient protocol for the differentiation of hESCs in suspension by direct introduction of a LIM homeodomain transcription factor, Islet1 (ISL1 recombinant protein into the cells. RESULTS: We found that the highest beating clusters were derived by continuous treatment of hESCs with 40 µg/ml recombinant ISL1 protein during days 1-8 after the initiation of differentiation. The treatment resulted in up to a 3-fold increase in the number of beating areas. In addition, the number of cells that expressed cardiac specific markers (cTnT, CONNEXIN 43, ACTININ, and GATA4 doubled. This protocol was also reproducible for another hESC line. CONCLUSIONS: This study has presented a new, efficient, and reproducible procedure for cardiomyocytes differentiation. Our results will pave the way for scaled up and controlled differentiation of hESCs to be used for biomedical applications in a bioreactor culture system.

  15. Optimization of lentiviral vector transduction into peripheral blood mononuclear cells in combination with the fibronectin fragment CH-296 stimulation.

    Science.gov (United States)

    Chono, Hideto; Goto, Yumi; Yamakawa, Satoko; Tanaka, Shinya; Tosaka, Yasuhiro; Nukaya, Ikuei; Mineno, Junichi

    2011-03-01

    Large scale T-cell expansion and efficient gene transduction are required for adoptive T-cell gene therapy. Based on our previous observations, human peripheral blood mononuclear cells (PBMCs) can be expanded efficiently while conserving a naïve phenotype by stimulating with both recombinant human fibronectin fragment (CH-296) and anti-CD3 monoclonal antibodies. In this article, we explored the possibility of using this co-stimulation method to generate engineered T cells using lentiviral vector. Human PBMCs were stimulated with anti-CD3 together with immobilized CH-296 or anti-CD28 antibody as well as anti-CD3/anti-CD28 conjugated beads and transduced with lentiviral vector simultaneously. Co-stimulation with CH-296 gave superior transduction efficiency than with anti-CD28. Next, PBMCs were stimulated and transduced with anti-CD3/CH-296 or with anti-CD3/CD28 beads. T-cell expansion, gene transfer efficiencies and immunophenotypes were analysed. Stimulation with anti-CD3/CH-296 resulted in more than 10-times higher cell expansion and higher gene transfer efficiency with conservation of the naïve phenotype compared with anti-CD3/CD28 stimulation method. Thus, lentiviral transduction with anti-CD3/CH-296 co-stimulation is an efficient way to generate large numbers of genetically modified T cells and may be suitable for many gene therapy protocols that use adoptive T-cell transfer therapy.

  16. A TRPV2–PKA Signaling Module for Transduction of Physical Stimuli in Mast Cells

    Science.gov (United States)

    Stokes, Alexander J.; Shimoda, Lori M.N.; Koblan-Huberson, Murielle; Adra, Chaker N.; Turner, Helen

    2004-01-01

    Cutaneous mast cell responses to physical (thermal, mechanical, or osmotic) stimuli underlie the pathology of physical urticarias. In vitro experiments suggest that mast cells respond directly to these stimuli, implying that a signaling mechanism couples functional responses to physical inputs in mast cells. We asked whether transient receptor potential (vanilloid) (TRPV) cation channels were present and functionally coupled to signaling pathways in mast cells, since expression of this channel subfamily confers sensitivity to thermal, osmotic, and pressure inputs. Transcripts for a range of TRPVs were detected in mast cells, and we report the expression, surface localization, and oligomerization of TRPV2 protein subunits in these cells. We describe the functional coupling of TRPV2 protein to calcium fluxes and proinflammatory degranulation events in mast cells. In addition, we describe a novel protein kinase A (PKA)–dependent signaling module, containing PKA and a putative A kinase adapter protein, Acyl CoA binding domain protein (ACBD)3, that interacts with TRPV2 in mast cells. We propose that regulated phosphorylation by PKA may be a common pathway for TRPV modulation. PMID:15249591

  17. Cell cycle requirements for transduction by foamy virus vectors compared to those of oncovirus and lentivirus vectors.

    Science.gov (United States)

    Trobridge, Grant; Russell, David W

    2004-03-01

    Retroviral vectors based on foamy viruses (FV) are efficient gene delivery vehicles for therapeutic and research applications. While previous studies have shown that FV vectors transduce quiescent cell cultures more efficiently than oncoviral vectors, their specific cell cycle requirements have not been determined. Here we compare the transduction frequencies of FV vectors with those of onco- and lentiviral vectors in nondividing and dividing normal human fibroblasts by several methods. FV vectors transduced serum-deprived fibroblast cultures more efficiently than oncoretroviral vectors and at rates comparable to those of lentiviral vectors. However, in these cultures FV vectors only transduced a subpopulation of proliferating cells, as determined by bromodeoxyuridine staining for DNA synthesis. In contrast to lentiviral vectors, FV vectors were unable to transduce human fibroblasts arrested by aphidicolin (G(1)/S phase) or gamma-irradiation (G(2) phase), and a partial cell cycle that included mitosis but not DNA synthesis was required. We could not determine if mitosis facilitated nuclear entry of FV vectors, since cell-free vector preparations contained long terminal repeat circles, precluding their use as nuclear markers. In contrast to oncoviral vectors, both FV and lentiviral vectors efficiently transduced G(0) fibroblasts that were later stimulated to divide. In the case of FV vectors, this was due to the persistence of a stable transduction intermediate in quiescent cells. Our findings support the use of FV vectors as a safe and effective alternative to lentiviral vectors for ex vivo transduction of stem cells that are quiescent during culture but divide following transplantation.

  18. Vpx-Independent Lentiviral Transduction and shRNA-Mediated Protein Knock-Down in Monocyte-Derived Dendritic Cells.

    Directory of Open Access Journals (Sweden)

    Wojciech Witkowski

    Full Text Available The function of dendritic cells (DCs in the immune system is based on their ability to sense and present foreign antigens. Powerful tools to research DC function and to apply in cell-based immunotherapy are either silencing or overexpression of genes achieved by lentiviral transduction. To date, efficient lentiviral transduction of DCs or their monocyte derived counterparts (MDDCs required high multiplicity of infection (MOI or the exposure to the HIV-2/SIV protein Vpx to degrade viral restriction factor SAM domain and HD domain-containing protein 1 (SAMHD1. Here we present a Vpx-independent method for efficient (>95% transduction of MDDCs at lower MOI. The protocol can be used both for ectopic gene expression and knock-down. Introducing shRNA targeting viral entry receptor CD4 and restriction factor SAMHD1 into MDDCs resulted in down-regulation of targeted proteins and, consequently, expected impact on HIV infection. This protocol for MDDCs transduction is robust and free of the potential risk arising from the use of Vpx which creates a virus infection-prone environment, potentially dangerous in clinical setting.

  19. Effect of proline rich domain of an RNA-binding protein Sam68 in cell growth process, death and B cell signal transduction

    Institute of Scientific and Technical Information of China (English)

    LI Qing-hua; FAN Tian-xue; PANG Tian-xiang; YUAN Wen-su; HAN Zhong-chao

    2006-01-01

    Background Sam68 plays an important role as a multiple functional RNA binding nuclear protein in cell cycle progress, RNA usage, signal transduction, and tyrosine phosphorylation by Src during mitosis. However, its precise impact on these essential cellular functions remains unclear. The purpose of this study is to further elucidate Sam68 functions in RNA metabolism, signal transduction regulation of cell growth and cell proliferation in DT40 cell line.Methods By using gene targeting method, we isolated a mutation form of Sam68 in DT40 cells and described its effect on cell growth process and signal transduction. Southern, Northern, and Western blot, phosphorylation and flow-cytometfic analyses were performed to investigate the Sam68 functions.Results A slower growth rate (2.1 hours growth elongation) and longer S phase (1.7 hours elongation) was observed in the Sam68 mutant cells. Serum depletion resulted in increased amounts of dead cells, and expansion of S phase in mutant cells. Upon B cell cross-linking, the maximal level of tyrosine phosphorylation on BLNK was observed to be significantly lower in mutant cells.Conclusions The proline rich domain of Sam68 is involved in cell growth control by modulating the function of mRNAs in S phase or earlier and the functions as an adaptor molecule in B cell signal transduction pathways.

  20. Creation and validation of a ligation-independent cloning (LIC retroviral vector for stable gene transduction in mammalian cells

    Directory of Open Access Journals (Sweden)

    Patel Asmita

    2012-01-01

    Full Text Available Abstract Background Cloning vectors capable of retroviral transduction have enabled stable gene overexpression in numerous mitotic cell lines. However, the relatively small number of feasible restriction enzyme sequences in their cloning sites can hinder successful generation of overexpression constructs if these sequences are also present in the target cDNA insert. Results Utilizing ligation-independent cloning (LIC technology, we have modified the highly efficient retroviral transduction vector, pBABE, to eliminate reliance on restriction enzymes for cloning. Instead, the modified plasmid, pBLIC, utilizes random 12/13-base overhangs generated by T4 DNA polymerase 3' exonuclease activity. PCR-based introduction of the complementary sequence into any cDNA of interest enables universal cloning into pBLIC. Here we describe creation of the pBLIC plasmid, and demonstrate successful cloning and protein overexpression from three different cDNAs, Bax, catalase, and p53 through transduction into the human prostate cancer cell line, LNCaP or the human lung cancer line, H358. Conclusions Our results show that pBLIC vector retains the high transduction efficiency of the original pBABE while eliminating the requirement for checking individual cDNA inserts for internal restriction sites. Thus it comprises an effective retroviral cloning system for laboratory-scale stable gene overexpression or for high-throughput applications such as creation of retroviral cDNA libraries. To our knowledge, pBLIC is the first LIC vector for retroviral transduction-mediated stable gene expression in mammalian cells.

  1. Signal transduction factors on the modulation of radiosusceptibility in K562 cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Kwang Mo; Jeong, Soo Jin [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Youn, Seon Min [College of Medicine, Eulji Univ., Daejeon (Korea, Republic of)

    2003-09-01

    The human chronic myelogenous leukemia cell line, K562, expresses the chimeric bcr-abl oncoprotein, whose deregulated protein tyrosine kinase activity antagonizes the induction of apoptosis via DNA damaging agents. Previous experiments have shown that nanomolar concentrations of herbimycin A [HMA] coupled with X-irradiation have a synergistic effect in inducing apoptosis in the Ph-positive K562 leukemia cell line, but genistein, a PTK inhibitor, is non selective for the radiation-induced apoptosis of p210{sup bcr}/{sup abl} protected K562 cells. In these experiments, the cytoplasmic signal transduction pathways, the induction of a number of transcription factors and the differential gene expression in this model were investigated. K562 cells in the exponential growth phase were used in this study. The cells were irradiated with 0.5-12 Gy, using a 6 MeV Linac (Clinac 1800, Varian, USA). Immediately after irradiation, the cells were treated with 0.25{mu}M of HMA and 25{mu}M of genistein, and the expressions and the activities of ablkinase, MAPK family, NF-KB, c-fos, c-myc, and thymidine kinase1 (TK1) were examined. The differential gene expressions induced by PTK inhibitors were also investigated. The modulating effects of herbimycin A and genistein on the radiosensitivity of K562 cells were not related to the bcr-abl kinase activity. The signaling responses through the MAPK family of proteins, were not involved either. In association with the radiation-induced apoptosis, which is accelerated by HMA, the expression of c-myc was increased. The combined treatment of genistein, with irradiation, enhanced NF-KB activity and the TK 1 expression and activity. The effects of HMA and genistein on the radiosensitivity of the K562 cells were not related to the bcr-abl kinase activity. In this study, another signaling pathway, besides the MAPK family responses to radiation to K562 cells, was found. Further evaluation using this model will provide valuable information for the

  2. Effect of hydroxyurea and etoposide on transduction of human bone marrow mesenchymal stem and progenitor cell by adeno-associated virus vectors

    Institute of Scientific and Technical Information of China (English)

    Xiao-dong JU; Si-quan LOU; Wei-guo WANG; Jian-qiang PENG; Hua TIAN

    2004-01-01

    AIM: To study the effect of hydroxyurea and etoposide on transduction of human marrow mesenchymal and progenitor stem cells by adeno-associated virus (AAV). METHODS: Isolated human bone marrow mesenchymal stem and progenitor cells (hMSCs) were cultured in DMEM containing 10 % FBS or 5 % FBS and dexamethasone 1 μmol/L respectively. After being treated with hydroxyurea and etoposide, hMSCs were transduced by AAV-LUC.After two days luciferase activity (relative light unites per second or RLU/s) were tested, which indirectly reflected the relative transduction efficiency of different groups, and virus DNA was isolated by Hirt extraction for Southern hybridization. RESULTS: Transduction luciferase activity and transduction efficiency in cultures treated with hydroxyurea and etoposide were significantly higher than that in control cultures. Dividing cells had about 20-fold higher transduction efficiency compared with control cells. Transduction efficiency in stationary cells was about 50 times higher than that in control cells. Southern analysis showed that hydroxyurea and etoposide enhanced second-strand DNA synthesis by rAAV. CONCLUSION: Hydroxyurea and etoposide could increase transduction efficiency of hMSCs by AAV vectors, and stationary cells were more sensitive to these drugs than dividing cells.

  3. Nomenclature for Ion channel Subunits

    OpenAIRE

    Bradley, Jonathan; Frings, Stephan; Yau, King-Wai; Reed, Randall

    2001-01-01

    Presents the nomenclature for ion channel subunits. Role of ion channels in the mediation of visual and olfactory signal transduction; Expression of ion channels in cell types and tissues; Assessment on the nucleotide sensitivity, ion conductance and calcium modulation in heteromers.

  4. Understanding cell passage through constricted microfluidic channels

    Science.gov (United States)

    Cartas-Ayala, Marco A.; Karnik, Rohit

    2012-11-01

    Recently, several microfluidic platforms have been proposed to characterize cells based on their behaviour during cell passage through constricted channels. Variables like transit time have been analyzed in disease states like sickle cell anemia, malaria and sepsis. Nevertheless, it is hard to make direct comparisons between different platforms and cell types. We present experimental results of the relationship between solid deformable particle properties, i.e. stiffness and relative particle size, and flow properties, i.e. particle's velocity. We measured the hydrodynamic variables during the flow of HL-60 cells, a white myeloid cell type, in narrow microfluidic square channels using a microfluidic differential manometer. We measured the flow force required to move cells of different sizes through microchannels and quantified friction forces opposing cell passage. We determined the non-dimensional parameters that influence the flow of cells and we used them to obtain a non dimensional expression that can be used to predict the forces needed to drive cells through microchannels. We found that the friction force needed to flow HL-60 through a microfluidic channel is the sum of two parts. The first part is a static friction force that is proportional to the force needed to keep the force compressed. The second part is a factor that is proportional to the cell velocity, hence a dynamic term, and slightly sensitive to the compressive force. We thank CONACYT (Mexican Science and Technology Council) for supporting this project, grant 205899.

  5. Forward Programming of Cardiac Stem Cells by Homogeneous Transduction with MYOCD plus TBX5.

    Directory of Open Access Journals (Sweden)

    Elisa Belian

    Full Text Available Adult cardiac stem cells (CSCs express many endogenous cardiogenic transcription factors including members of the Gata, Hand, Mef2, and T-box family. Unlike its DNA-binding targets, Myocardin (Myocd-a co-activator not only for serum response factor, but also for Gata4 and Tbx5-is not expressed in CSCs. We hypothesised that its absence was a limiting factor for reprogramming. Here, we sought to investigate the susceptibility of adult mouse Sca1+ side population CSCs to reprogramming by supplementing the triad of GATA4, MEF2C, and TBX5 (GMT, and more specifically by testing the effect of the missing co-activator, Myocd. Exogenous factors were expressed via doxycycline-inducible lentiviral vectors in various combinations. High throughput quantitative RT-PCR was used to test expression of 29 cardiac lineage markers two weeks post-induction. GMT induced more than half the analysed cardiac transcripts. However, no protein was detected for the induced sarcomeric genes Actc1, Myh6, and Myl2. Adding MYOCD to GMT affected only slightly the breadth and level of gene induction, but, importantly, triggered expression of all three proteins examined (α-cardiac actin, atrial natriuretic peptide, sarcomeric myosin heavy chains. MYOCD + TBX was the most effective pairwise combination in this system. In clonal derivatives homogenously expressing MYOCD + TBX at high levels, 93% of cardiac transcripts were up-regulated and all five proteins tested were visualized.(1 GMT induced cardiac genes in CSCs, but not cardiac proteins under the conditions used. (2 Complementing GMT with MYOCD induced cardiac protein expression, indicating a more complete cardiac differentiation program. (3 Homogeneous transduction with MYOCD + TBX5 facilitated the identification of differentiating cells and the validation of this combinatorial reprogramming strategy. Together, these results highlight the pivotal importance of MYOCD in driving CSCs toward a cardiac muscle fate.

  6. Cell surface receptors for signal transduction and ligand transport: a design principles study.

    Directory of Open Access Journals (Sweden)

    Harish Shankaran

    2007-06-01

    Full Text Available Receptors constitute the interface of cells to their external environment. These molecules bind specific ligands involved in multiple processes, such as signal transduction and nutrient transport. Although a variety of cell surface receptors undergo endocytosis, the systems-level design principles that govern the evolution of receptor trafficking dynamics are far from fully understood. We have constructed a generalized mathematical model of receptor-ligand binding and internalization to understand how receptor internalization dynamics encodes receptor function and regulation. A given signaling or transport receptor system represents a particular implementation of this module with a specific set of kinetic parameters. Parametric analysis of the response of receptor systems to ligand inputs reveals that receptor systems can be characterized as being: i avidity-controlled where the response control depends primarily on the extracellular ligand capture efficiency, ii consumption-controlled where the ability to internalize surface-bound ligand is the primary control parameter, and iii dual-sensitivity where both the avidity and consumption parameters are important. We show that the transferrin and low-density lipoprotein receptors are avidity-controlled, the vitellogenin receptor is consumption-controlled, and the epidermal growth factor receptor is a dual-sensitivity receptor. Significantly, we show that ligand-induced endocytosis is a mechanism to enhance the accuracy of signaling receptors rather than merely serving to attenuate signaling. Our analysis reveals that the location of a receptor system in the avidity-consumption parameter space can be used to understand both its function and its regulation.

  7. The biological networks in studying cell signal transduction complexity: The examples of sperm capacitation and of endocannabinoid system

    OpenAIRE

    Nicola Bernabò; Barbara Barboni; Mauro Maccarrone

    2014-01-01

    Cellular signal transduction is a complex phenomenon, which plays a central role in cell surviving and adaptation. The great amount of molecular data to date present in literature, together with the adoption of high throughput technologies, on the one hand, made available to scientists an enormous quantity of information, on the other hand, failed to provide a parallel increase in the understanding of biological events. In this context, a new discipline arose, the systems biology, aimed to ma...

  8. K+ channels and cell cycle progression in tumor cells

    Directory of Open Access Journals (Sweden)

    HALIMA eOUADID-AHIDOUCH

    2013-08-01

    Full Text Available K+ ions play a major role in many cellular processes. The deregulation of K+ signaling is associated with a variety of diseases such as hypertension, atherosclerosis, or diabetes. K+ ions are important for setting the membrane potential, the driving force for Ca2+ influx, and regulate volume of growing cells. Moreover, it is increasingly recognized that K+ channels control cell proliferation through a novel signaling mechanisms triggered and modulated independently of ion fluxes. In cancer, aberrant expression, regulation and/or sublocalization of K+ channels can alter the downstream signals that converge on the cell cycle machinery. Various K+ channels are involved in cell cycle progression and are needed only at particular stages of the cell cycle. Consistent with this idea, the expression of Eag1 and HERG channels fluctuate along the cell cycle. Despite of acquired knowledge, our understanding of K+ channels functioning in cancer cells requires further studies. These include identifying the molecular mechanisms controling the cell cycle machinery. By understanding how K+ channels regulate cell cycle progression in cancer cells, we will gain insights into how cancer cells subvert the need for K+ signal and its downstream targets to proliferate.

  9. Information flow during gene activation by signaling molecules: ethylene transduction in Arabidopsis cells as a study system

    Directory of Open Access Journals (Sweden)

    Díaz José

    2009-05-01

    Full Text Available Abstract Background We study root cells from the model plant Arabidopsis thaliana and the communication channel conformed by the ethylene signal transduction pathway. A basic equation taken from our previous work relates the probability of expression of the gene ERF1 to the concentration of ethylene. Results The above equation is used to compute the Shannon entropy (H or degree of uncertainty that the genetic machinery has during the decoding of the message encoded by the ethylene specific receptors embedded in the endoplasmic reticulum membrane and transmitted into the nucleus by the ethylene signaling pathway. We show that the amount of information associated with the expression of the master gene ERF1 (Ethylene Response Factor 1 can be computed. Then we examine the system response to sinusoidal input signals with varying frequencies to determine if the cell can distinguish between different regimes of information flow from the environment. Our results demonstrate that the amount of information managed by the root cell can be correlated with the frequency of the input signal. Conclusion The ethylene signaling pathway cuts off very low and very high frequencies, allowing a window of frequency response in which the nucleus reads the incoming message as a sinusoidal input. Out of this window the nucleus reads the input message as an approximately non-varying one. From this frequency response analysis we estimate: a the gain of the system during the synthesis of the protein ERF1 (~-5.6 dB; b the rate of information transfer (0.003 bits during the transport of each new ERF1 molecule into the nucleus and c the time of synthesis of each new ERF1 molecule (~21.3 s. Finally, we demonstrate that in the case of the system of a single master gene (ERF1 and a single slave gene (HLS1, the total Shannon entropy is completely determined by the uncertainty associated with the expression of the master gene. A second proposition shows that the Shannon entropy

  10. Signal transduction pathways in mast cell granule-mediated endothelial cell activation

    Directory of Open Access Journals (Sweden)

    Luqi Chi

    2003-01-01

    Full Text Available Background: We have previously shown that incubation of human endothelial cells with mast cell granules results in potentiation of lipopolysaccharide-induced production of interleukin-6 and interleukin-8.

  11. Molecular purging of multiple myeloma cells by ex-vivo culture and retroviral transduction of mobilized-blood CD34+ cells

    Directory of Open Access Journals (Sweden)

    Corneo Gianmarco

    2007-07-01

    Full Text Available Abstract Background Tumor cell contamination of the apheresis in multiple myeloma is likely to affect disease-free and overall survival after autografting. Objective To purge myeloma aphereses from tumor contaminants with a novel culture-based purging method. Methods We cultured myeloma-positive CD34+ PB samples in conditions that retained multipotency of hematopoietic stem cells, but were unfavourable to survival of plasma cells. Moreover, we exploited the resistance of myeloma plasma cells to retroviral transduction by targeting the hematopoietic CD34+ cell population with a retroviral vector carrying a selectable marker (the truncated form of the human receptor for nerve growth factor, ΔNGFR. We performed therefore a further myeloma purging step by selecting the transduced cells at the end of the culture. Results Overall recovery of CD34+ cells after culture was 128.5%; ΔNGFR transduction rate was 28.8% for CD34+ cells and 0% for CD138-selected primary myeloma cells, respectively. Recovery of CD34+ cells after ΔNGFR selection was 22.3%. By patient-specific Ig-gene rearrangements, we assessed a decrease of 0.7–1.4 logs in tumor load after the CD34+ cell selection, and up to 2.3 logs after culture and ΔNGFR selection. Conclusion We conclude that ex-vivo culture and retroviral-mediated transduction of myeloma leukaphereses provide an efficient tumor cell purging.

  12. Pdx-1 or Pdx-1-VP16 protein transduction induces β-cell gene expression in liver-stem WB cells

    Directory of Open Access Journals (Sweden)

    Dubreil Laurence

    2009-01-01

    Full Text Available Abstract Background Pancreatic duodenal homeobox-1 (Pdx-1 or Pdx-1-VP16 gene transfer has been shown to induce in vitro rat liver-stem WB cell conversion into pancreatic endocrine precursor cells. High glucose conditions were necessary for further differentiation into functional insulin-producing cells. Pdx-1 has the ability to permeate different cell types due to an inherent protein transduction domain (PTD. In this study, we evaluated liver-to-pancreas conversion of WB cells following Pdx-1 or Pdx-1-VP16 protein transduction. Findings WB cells were grown in high glucose medium containing Pdx-1 or Pdx-1-VP16 recombinant proteins for two weeks. β-like cell commitment was analysed by RT-PCR of pancreatic endocrine genes. We found that WB cells in high glucose culture spontaneously express pancreatic endocrine genes (Pdx-1, Ngn3, Nkx2.2, Kir6.2. Their further differentiation into β-like cells expressing genes related to endocrine pancreas development (Ngn3, NeuroD, Pax4, Nkx2.2, Nkx6.1, Pdx-1 and β-cell function (Glut-2, Kir6.2, insulin was achieved only in the presence of Pdx-1(-VP16 protein. Conclusion These results demonstrate that Pdx-1(-VP16 protein transduction is instrumental for in vitro liver-to-pancreas conversion and is an alternative to gene therapy for β-cell engineering for diabetes cell therapy.

  13. TRP channels, omega-3 fatty acids, and oxidative stress in neurodegeneration: from the cell membrane to intracellular cross-links

    Directory of Open Access Journals (Sweden)

    M. Leonelli

    2011-11-01

    Full Text Available The transient receptor potential channels family (TRP channels is a relatively new group of cation channels that modulate a large range of physiological mechanisms. In the nervous system, the functions of TRP channels have been associated with thermosensation, pain transduction, neurotransmitter release, and redox signaling, among others. However, they have also been extensively correlated with the pathogenesis of several innate and acquired diseases. On the other hand, the omega-3 polyunsaturated fatty acids (n-3 fatty acids have also been associated with several processes that seem to counterbalance or to contribute to the function of several TRPs. In this short review, we discuss some of the remarkable new findings in this field. We also review the possible roles played by n-3 fatty acids in cell signaling that can both control or be controlled by TRP channels in neurodegenerative processes, as well as both the direct and indirect actions of n-3 fatty acids on TRP channels.

  14. Live cell imaging of primary rat neonatal cardiomyocytes following adenoviral and lentiviral transduction using confocal spinning disk microscopy.

    Science.gov (United States)

    Sakurai, Takashi; Lanahan, Anthony; Woolls, Melissa J; Li, Na; Tirziu, Daniela; Murakami, Masahiro

    2014-01-01

    Primary rat neonatal cardiomyocytes are useful in basic in vitro cardiovascular research because they can be easily isolated in large numbers in a single procedure. Due to advances in microscope technology it is relatively easy to capture live cell images for the purpose of investigating cellular events in real time with minimal concern regarding phototoxicity to the cells. This protocol describes how to take live cell timelapse images of primary rat neonatal cardiomyocytes using a confocal spinning disk microscope following lentiviral and adenoviral transduction to modulate properties of the cell. The application of two different types of viruses makes it easier to achieve an appropriate transduction rate and expression levels for two different genes. Well focused live cell images can be obtained using the microscope's autofocus system, which maintains stable focus for long time periods. Applying this method, the functions of exogenously engineered proteins expressed in cultured primary cells can be analyzed. Additionally, this system can be used to examine the functions of genes through the use of siRNAs as well as of chemical modulators. PMID:24998400

  15. Expression of calcium-activated chloride channels Ano1 and Ano2 in mouse taste cells.

    Science.gov (United States)

    Cherkashin, Alexander P; Kolesnikova, Alisa S; Tarasov, Michail V; Romanov, Roman A; Rogachevskaja, Olga A; Bystrova, Marina F; Kolesnikov, Stanislav S

    2016-02-01

    Specialized Ca(2+)-dependent ion channels ubiquitously couple intracellular Ca(2+) signals to a change in cell polarization. The existing physiological evidence suggests that Ca(2+)-activated Cl(-) channels (CaCCs) are functional in taste cells. Because Ano1 and Ano2 encode channel proteins that form CaCCs in a variety of cells, we analyzed their expression in mouse taste cells. Transcripts for Ano1 and Ano2 were detected in circumvallate (CV) papillae, and their expression in taste cells was confirmed using immunohistochemistry. When dialyzed with CsCl, taste cells of the type III exhibited no ion currents dependent on cytosolic Ca(2+). Large Ca(2+)-gated currents mediated by TRPM5 were elicited in type II cells by Ca(2+) uncaging. When TRPM5 was inhibited by triphenylphosphine oxide (TPPO), ionomycin stimulated a small but resolvable inward current that was eliminated by anion channel blockers, including T16Ainh-A01 (T16), a specific Ano1 antagonist. This suggests that CaCCs, including Ano1-like channels, are functional in type II cells. In type I cells, CaCCs were prominently active, blockable with the CaCC antagonist CaCCinh-A01 but insensitive to T16. By profiling Ano1 and Ano2 expressions in individual taste cells, we revealed Ano1 transcripts in type II cells only, while Ano2 transcripts were detected in both type I and type II cells. P2Y agonists stimulated Ca(2+)-gated Cl(-) currents in type I cells. Thus, CaCCs, possibly formed by Ano2, serve as effectors downstream of P2Y receptors in type I cells. While the role for TRPM5 in taste transduction is well established, the physiological significance of expression of CaCCs in type II cells remains to be elucidated.

  16. Expression of calcium-activated chloride channels Ano1 and Ano2 in mouse taste cells.

    Science.gov (United States)

    Cherkashin, Alexander P; Kolesnikova, Alisa S; Tarasov, Michail V; Romanov, Roman A; Rogachevskaja, Olga A; Bystrova, Marina F; Kolesnikov, Stanislav S

    2016-02-01

    Specialized Ca(2+)-dependent ion channels ubiquitously couple intracellular Ca(2+) signals to a change in cell polarization. The existing physiological evidence suggests that Ca(2+)-activated Cl(-) channels (CaCCs) are functional in taste cells. Because Ano1 and Ano2 encode channel proteins that form CaCCs in a variety of cells, we analyzed their expression in mouse taste cells. Transcripts for Ano1 and Ano2 were detected in circumvallate (CV) papillae, and their expression in taste cells was confirmed using immunohistochemistry. When dialyzed with CsCl, taste cells of the type III exhibited no ion currents dependent on cytosolic Ca(2+). Large Ca(2+)-gated currents mediated by TRPM5 were elicited in type II cells by Ca(2+) uncaging. When TRPM5 was inhibited by triphenylphosphine oxide (TPPO), ionomycin stimulated a small but resolvable inward current that was eliminated by anion channel blockers, including T16Ainh-A01 (T16), a specific Ano1 antagonist. This suggests that CaCCs, including Ano1-like channels, are functional in type II cells. In type I cells, CaCCs were prominently active, blockable with the CaCC antagonist CaCCinh-A01 but insensitive to T16. By profiling Ano1 and Ano2 expressions in individual taste cells, we revealed Ano1 transcripts in type II cells only, while Ano2 transcripts were detected in both type I and type II cells. P2Y agonists stimulated Ca(2+)-gated Cl(-) currents in type I cells. Thus, CaCCs, possibly formed by Ano2, serve as effectors downstream of P2Y receptors in type I cells. While the role for TRPM5 in taste transduction is well established, the physiological significance of expression of CaCCs in type II cells remains to be elucidated. PMID:26530828

  17. Transduction of interleukin-10 through renal artery attenuates vascular neointimal proliferation and infiltration of immune cells in rat renal allograft.

    Science.gov (United States)

    Xie, Jingxin; Li, Xueyi; Meng, Dan; Liang, Qiujuan; Wang, Xinhong; Wang, Li; Wang, Rui; Xiang, Meng; Chen, Sifeng

    2016-08-01

    Renal transplantation is the treatment of choice for end-stage renal failure. Although acute rejection is not a major issue anymore, chronic rejection, especially vascular rejection, is still a major factor that might lead to allograft dysfunction on the long term. The role of the local immune-regulating cytokine interleukin-10 (IL-10) in chronic renal allograft is unclear. Many clinical observations showed that local IL-10 level was negatively related to kidney allograft function. It is unknown this negative relationship was the result of immunostimulatory property or insufficient immunosuppression property of local IL-10. We performed ex vivo transduction before transplantation through artery of the renal allograft using adeno-associated viral vectors carrying IL-10 gene. Twelve weeks after transplantation, we found intrarenal IL-10 gene transduction significantly inhibited arterial neointimal proliferation, the number of occluded intrarenal artery, interstitial fibrosis, peritubular capillary congestion and glomerular inflammation in renal allografts compared to control allografts receiving PBS or vectors carrying YFP. IL-10 transduction increased serum IL-10 level at 4 weeks but not at 8 and 12 weeks. Renal IL-10 level increased while serum creatinine decreased significantly in IL-10 group at 12 weeks compared to PBS or YFP controls. Immunohistochemical staining showed unchanged total T cells (CD3) and B cells (CD45R/B220), decreased cytotoxic T cells (CD8), macrophages (CD68) and increased CD4+ and FoxP3+ cells in IL-10 group. In summary, intrarenal IL-10 inhibited the allograft rejection while modulated immune response.

  18. Single molecule narrowfield microscopy of protein-DNA binding dynamics in glucose signal transduction of live yeast cells

    CERN Document Server

    Wollman, Adam J M

    2016-01-01

    Single-molecule narrowfield microscopy is a versatile tool to investigate a diverse range of protein dynamics in live cells and has been extensively used in bacteria. Here, we describe how these methods can be extended to larger eukaryotic, yeast cells, which contain sub-cellular compartments. We describe how to obtain single-molecule microscopy data but also how to analyse these data to track and obtain the stoichiometry of molecular complexes diffusing in the cell. We chose glucose mediated signal transduction of live yeast cells as the system to demonstrate these single-molecule techniques as transcriptional regulation is fundamentally a single molecule problem - a single repressor protein binding a single binding site in the genome can dramatically alter behaviour at the whole cell and population level.

  19. Amiloride-sensitive channels in type I fungiform taste cells in mouse

    Directory of Open Access Journals (Sweden)

    Clapp Tod R

    2008-01-01

    Full Text Available Abstract Background Taste buds are the sensory organs of taste perception. Three types of taste cells have been described. Type I cells have voltage-gated outward currents, but lack voltage-gated inward currents. These cells have been presumed to play only a support role in the taste bud. Type II cells have voltage-gated Na+ and K+ current, and the receptors and transduction machinery for bitter, sweet, and umami taste stimuli. Type III cells have voltage-gated Na+, K+, and Ca2+ currents, and make prominent synapses with afferent nerve fibers. Na+ salt transduction in part involves amiloride-sensitive epithelial sodium channels (ENaCs. In rodents, these channels are located in taste cells of fungiform papillae on the anterior part of the tongue innervated by the chorda tympani nerve. However, the taste cell type that expresses ENaCs is not known. This study used whole cell recordings of single fungiform taste cells of transgenic mice expressing GFP in Type II taste cells to identify the taste cells responding to amiloride. We also used immunocytochemistry to further define and compare cell types in fungiform and circumvallate taste buds of these mice. Results Taste cell types were identified by their response to depolarizing voltage steps and their presence or absence of GFP fluorescence. TRPM5-GFP taste cells expressed large voltage-gated Na+ and K+ currents, but lacked voltage-gated Ca2+ currents, as expected from previous studies. Approximately half of the unlabeled cells had similar membrane properties, suggesting they comprise a separate population of Type II cells. The other half expressed voltage-gated outward currents only, typical of Type I cells. A single taste cell had voltage-gated Ca2+ current characteristic of Type III cells. Responses to amiloride occurred only in cells that lacked voltage-gated inward currents. Immunocytochemistry showed that fungiform taste buds have significantly fewer Type II cells expressing PLC signalling

  20. Regulation of promyogenic signal transduction by cell-cell contact and adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Robert S., E-mail: Robert.Krauss@mssm.edu [Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029 (United States)

    2010-11-01

    Skeletal myoblast differentiation involves acquisition of the muscle-specific transcriptional program and morphological changes, including fusion into multinucleated myofibers. Differentiation is regulated by extracellular signaling cues, including cell-cell contact and adhesion. Cadherin and Ig adhesion receptors have been implicated in distinct but overlapping stages of myogenesis. N-cadherin signals through the Ig receptor Cdo to activate p38 MAP kinase, while the Ig receptor neogenin signals to activate FAK; both processes promote muscle-specific gene expression and myoblast fusion. M-cadherin activates Rac1 to enhance fusion. Specific Ig receptors (Kirre and Sns) are essential for myoblast fusion in Drosophila, also signaling through Rac, and vertebrate orthologs of Kirre and Sns have partially conserved function. Mice lacking specific cytoplasmic signaling factors activated by multiple receptors (e.g., Rac1) have strong muscle phenotypes in vivo. In contrast, mice lacking individual adhesion receptors that lie upstream of these factors have modest phenotypes. Redundancy among receptors may account for this. Many of the mammalian Ig receptors and cadherins associate with each other, and multivalent interactions within these complexes may require removal of multiple components to reveal dramatic defects in vivo. Nevertheless, it is possible that the murine adhesion receptors rate-limiting in vivo have not yet been identified or fully assessed.

  1. Small-Molecule Inhibitors of Cytokine-Mediated STAT1 Signal Transduction In ß-Cells With Improved Aqueous Solubility

    DEFF Research Database (Denmark)

    Scully, Stephen Shane; Tang, Alicia J; Lundh, Morten;

    2013-01-01

    We previously reported the discovery of BRD0476 (1), a small molecule generated by diversity-oriented synthesis that suppresses cytokine-induced ß-cell apoptosis. Herein, we report the synthesis and biological evaluation of 1 and analogs with improved aqueous solubility. By replacing naphthyl wit...... with quinoline moieties, we prepared active analogs with up to a 1400-fold increase in solubility from 1. In addition, we demonstrated that compound 1 and analogs inhibit STAT1 signal transduction induced by IFN-¿....

  2. FLT3 ligand preserves the uncommitted CD34+CD38- progenitor cells during cytokine prestimulation for retroviral transduction

    DEFF Research Database (Denmark)

    Nielsen, S D; Husemoen, L L; Sørensen, T U;

    2000-01-01

    Before stem cell gene therapy can be considered for clinical applications, problems regarding cytokine prestimulation remain to be solved. In this study, a retroviral vector carrying the genes for the enhanced version of green fluorescent protein (EGFP) and neomycin resistance (neo(r)) was used...... (SCF), FLT3 ligand, interleukin-3 (IL-3), IL-6, and IL-7 prior to transduction. Expression of the two genes was assessed by flow cytometry and determination of neomycin-resistant colonies in a selective colony-forming unit (CFU) assay, respectively. The neomycin resistance gene was expressed...

  3. Signal transduction in cells induced by endotoxin%内毒素诱导的细胞内信息转导

    Institute of Scientific and Technical Information of China (English)

    单于; 陆大祥

    2001-01-01

    Depending on LBP/CD14 systems, LPS activates a series ofsignal-transducing systems in cells. Protein tyrosin kinase(PTK)system,ceramide activated kinase(CAK)system might play an important role in cells signal-transducing.This article give a summary about signal transduction in cells induced by endotoxin.

  4. Pharmacology of the human red cell voltage-dependent cation channel Part I. Activation by clotrimazole and analogues

    DEFF Research Database (Denmark)

    Barksmann, Trine Lyberth; Kristensen, Berit I.; Christophersen, Palle.;

    2004-01-01

    Human red cells, Nonselective voltage dependent cation channel, NSVDC channel, Gárdos channel blockers, NSVDC channel activators......Human red cells, Nonselective voltage dependent cation channel, NSVDC channel, Gárdos channel blockers, NSVDC channel activators...

  5. Accelerated generation of human induced pluripotent stem cells with retroviral transduction and chemical inhibitors under physiological hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Hidenori [Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507 (Japan); Hashimoto, Yoshiya [Department of Biomaterials, Osaka Dental University, 8-1, Hanazonocho, Kuzuha, Hirakatashi, Osaka 573-1121 (Japan); Nakada, Akira; Shigeno, Keiji [Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507 (Japan); Nakamura, Tatsuo, E-mail: nakamura@frontier.kyoto-u.ac.jp [Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507 (Japan)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Very rapid generation of human iPS cells under optimized conditions. Black-Right-Pointing-Pointer Five chemical inhibitors under hypoxia boosted reprogramming. Black-Right-Pointing-Pointer We performed genome-wide DNA methylation analysis. -- Abstract: Induced pluripotent stem (iPS) cells are generated from somatic cells by the forced expression of a defined set of pluripotency-associated transcription factors. Human iPS cells can be propagated indefinitely, while maintaining the capacity to differentiate into all cell types in the body except for extra-embryonic tissues. This technology not only represents a new way to use individual-specific stem cells for regenerative medicine but also constitutes a novel method to obtain large amounts of disease-specific cells for biomedical research. Despite their great potential, the long reprogramming process (up to 1 month) remains one of the most significant challenges facing standard virus-mediated methodology. In this study, we report the accelerated generation of human iPS cells from adipose-derived stem (ADS) cells, using a new combination of chemical inhibitors under a setting of physiological hypoxia in conjunction with retroviral transduction of Oct4, Sox2, Klf4, and L-Myc. Under optimized conditions, we observed human embryonic stem (ES)-like cells as early as 6 days after the initial retroviral transduction. This was followed by the emergence of fully reprogrammed cells bearing Tra-1-81-positive and DsRed transgene-silencing properties on day 10. The resulting cell lines resembled human ES cells in many respects including proliferation rate, morphology, pluripotency-associated markers, global gene expression patterns, genome-wide DNA methylation states, and the ability to differentiate into all three of the germ layers, both in vitro and in vivo. Our method, when combined with chemical inhibitors under conditions of physiological hypoxia, offers a powerful tool for rapidly

  6. Human sperm cells swimming in micro-channels

    CERN Document Server

    Denissenko, Petr; Smith, David; Kirkman-Brown, Jackson

    2012-01-01

    The migratory abilities of motile human spermatozoa in vivo are essential for natural fertility, but it remains a mystery what properties distinguish the tens of cells which find an egg from the millions of cells ejaculated. To reach the site of fertilization, sperm must traverse narrow and convoluted channels, filled with viscous fluids. To elucidate individual and group behaviors that may occur in the complex three-dimensional female tract environment, we examine the behavior of migrating sperm in assorted micro-channel geometries. Cells rarely swim in the central part of the channel cross-section, instead traveling along the intersection of the channel walls (`channel corners'). When the channel turns sharply, cells leave the corner, continuing ahead until hitting the opposite wall of the channel, with a distribution of departure angles, the latter being modulated by fluid viscosity. If the channel bend is smooth, cells depart from the inner wall when the curvature radius is less than a threshold value clo...

  7. Prolonged maturation and enhanced transduction of dendritic cells migrated from human skin explants after in situ delivery of CD40-targeted adenoviral vectors

    NARCIS (Netherlands)

    de Gruijl, TD; Luykx-de Bakker, SA; Tillman, BW; van den Eertwegh, AJM; Buter, J; Lougheed, SM; van der Bij, GJ; Safer, AM; Haisma, HJ; Curiel, DT; Scheper, RJ; Pinedo, HM; Gerritsen, WR

    2002-01-01

    Therapeutic tumor vaccination with viral vectors or naked DNA, carrying the genetic code for tumor-associated Ags, critically depends on the in vivo transduction of dendritic cells (DC). Transfection of predominantly nonprofessional APC and only small numbers of DC may hamper proper T cell activatio

  8. Distinct abscisic acid signaling pathways for modulation of guard cell versus mesophyll cell potassium channels revealed by expression studies in Xenopus laevis oocytes

    Science.gov (United States)

    Sutton, F.; Paul, S. S.; Wang, X. Q.; Assmann, S. M.; Evans, M. L. (Principal Investigator)

    2000-01-01

    Regulation of guard cell ion transport by abscisic acid (ABA) and in particular ABA inhibition of a guard cell inward K(+) current (I(Kin)) is well documented. However, little is known concerning ABA effects on ion transport in other plant cell types. Here we applied patch clamp techniques to mesophyll cell protoplasts of fava bean (Vicia faba cv Long Pod) plants and demonstrated ABA inhibition of an outward K(+) current (I(Kout)). When mesophyll cell protoplast mRNA (mesophyll mRNA) was expressed in Xenopus laevis oocytes, I(Kout) was generated that displayed similar properties to I(Kout) observed from direct analysis of mesophyll cell protoplasts. I(Kout) expressed by mesophyll mRNA-injected oocytes was inhibited by ABA, indicating that the ABA signal transduction pathway observed in mesophyll cells was preserved in the frog oocytes. Co-injection of oocytes with guard cell protoplast mRNA and cRNA for KAT1, an inward K(+) channel expressed in guard cells, resulted in I(Kin) that was similarly inhibited by ABA. However, oocytes co-injected with mesophyll mRNA and KAT1 cRNA produced I(Kin) that was not inhibited by ABA. These results demonstrate that the mesophyll-encoded signaling mechanism could not substitute for the guard cell pathway. These findings indicate that mesophyll cells and guard cells use distinct and different receptor types and/or signal transduction pathways in ABA regulation of K(+) channels.

  9. Comparative transduction mechanisms of hair cells in the bullfrog uticulus. 2: Sensitivity and response dynamics to hair bundle displacement

    Science.gov (United States)

    Baird, Richard A.

    1994-01-01

    The present study was motivated by an interest in seeing whether hair cell types in the bullfrog utriculus might differ in their voltage responses to hair bundle displacement. Particular interest was in assessing the contributions of two factors to the responses of utricular hair cells. First, interest in examining the effect of hair bundle morphology on the sensitivity of hair cells to natural stimulation was motivated by the observation that vestibular hair cells, unlike many auditory hair cells, are not free-standing but rather linked to an accessory cupular or otolithic membrane via the tip of their kinocilium. Interest also laid in examining the contribution, if any, of adaptation to the response properties of utricular hair cells. Hair cells in auditory and vibratory inner ear endorgans adapt to maintained displacements of their hair bundles, sharply limiting their low frequency sensitivity. This adaptation is mediated by a shift in the displacement-response curve (DRC) of the hair cell along the displacement axis. Observations suggest that the adaptation process occurs within the hair bundle and precedes mechanoelectric transduction. Recent observations of time-dependent changes in hair bundle stiffness are consistent with this conclusion. Adaptation would be expected to be most useful in inner ear endorgans in which hair cells are subject to large static displacements that could potentially saturate their instantaneous response and compromise their sensitivity to high frequency stimulation. The adaptation process also permits hair cells to maintain their sensory hair bundle in the most sensitive portion of their DRC. In vestibular otolith organs in which static sensitivity is desirable, any adaptation process in the hair cells may be undesirable. The rate and extent of the decline of the voltage responses was measured of utricular hair cells to step and sinusoidal hair bundle displacements. Then for similar resting potentials and response amplitudes, the

  10. K+ channels and cell cycle progression in tumor cells

    OpenAIRE

    HALIMA eOUADID-AHIDOUCH; Ahmed eAHIDOUCH

    2013-01-01

    K+ ions play a major role in many cellular processes. The deregulation of K+ signaling is associated with a variety of diseases such as hypertension, atherosclerosis, or diabetes. K+ ions are important for setting the membrane potential, the driving force for Ca2+ influx, and regulate volume of growing cells. Moreover, it is increasingly recognized that K+ channels control cell proliferation through a novel signaling mechanisms triggered and modulated independently of ion fluxes. In cancer, a...

  11. The targeted transduction of MMP-overexpressing tumor cells by ACPP-HPMA copolymer-coated adenovirus conjugates.

    Directory of Open Access Journals (Sweden)

    Shuhua Li

    Full Text Available We have designed and tested a new way to selectively deliver HPMA polymer-coated adenovirus type 5 (Ad5 particles into matrix metalloproteinase (MMP-overexpressing tumor cells. An activatable cell penetrating peptide (ACPP was designed and attached to the reactive 4-nitrophenoxy groups of HPMA polymers by the C-terminal amino acid (asparagine, N. ACPPs are activatable cell penetrating peptides (CPPs with a linker between polycationic and polyanionic domains, and MMP-mediated cleavage releases the CPP portion and its attached cargo to enable cell entry. Our data indicate that the transport of these HPMA polymer conjugates by a single ACPP molecule to the cytoplasm occurs via a nonendocytotic and concentration-independent process. The uptake was observed to finish within 20 minutes by inverted fluorescence microscopy. In contrast, HPMA polymer-coated Ad5 without ACPPs was internalized solely by endocytosis. The optimal formulation was not affected by the presence of Ad5 neutralizing antibodies during transduction, and ACPP/polymer-coated Ad5 also retained high targeting capability to several MMP-overexpressing tumor cell types. For the first time, ACPP-mediated cytoplasmic delivery of polymer-bound Ad5 to MMP-overexpressing tumor cells was demonstrated. These findings are significant, as they demonstrate the use of a polymer-based system for the targeted delivery into MMP-overexpressing solid tumors and highlight how to overcome major cellular obstacles to achieve intracellular macromolecular delivery.

  12. Integrins mediating bone signal transduction

    Institute of Scientific and Technical Information of China (English)

    HE Chuanglong; WANG Yuanliang; YANG Lihua; ZHANG Jun

    2004-01-01

    Integrin-mediated adhesions play critical roles in diverse cell functions. Integrins offers a platform on which mechanical stimuli, cytoskeletal organization, biochemical signals can concentrate. Mechanical stimuli transmitted by integrins influence the cytoskeleton, in turn, the cytoskeleton influences cell adhesion via integrins, then cell adhesion results in a series of signal transduction cascades. In skeleton, integrins also have a key role for bone resoption by osteoclasts and reformation by osteoblasts. In present review, the proteins involved in integrin signal transduction and integrin signal transduction pathways were discussed, mainly on the basic mechanisms of integrin signaling and the roles of integrins in bone signal transduction, which may give insight into new therapeutic agents to all kinds of skeletal diseases and new strategies for bone tissue engineering.

  13. Lipid rafts are required for signal transduction by angiotensin II receptor type 1 in neonatal glomerular mesangial cells

    Energy Technology Data Exchange (ETDEWEB)

    Adebiyi, Adebowale, E-mail: aadebiyi@uthsc.edu; Soni, Hitesh; John, Theresa A.; Yang, Fen

    2014-05-15

    Angiotensin II (ANG-II) receptors (AGTRs) contribute to renal physiology and pathophysiology, but the underlying mechanisms that regulate AGTR function in glomerular mesangium are poorly understood. Here, we show that AGTR1 is the functional AGTR subtype expressed in neonatal pig glomerular mesangial cells (GMCs). Cyclodextrin (CDX)-mediated cholesterol depletion attenuated cell surface AGTR1 protein expression and ANG-II-induced intracellular Ca{sup 2+} ([Ca{sup 2+}]{sub i}) elevation in the cells. The COOH-terminus of porcine AGTR1 contains a caveolin (CAV)-binding motif. However, neonatal GMCs express CAV-1, but not CAV-2 and CAV-3. Colocalization and in situ proximity ligation assay detected an association between endogenous AGTR1 and CAV-1 in the cells. A synthetic peptide corresponding to the CAV-1 scaffolding domain (CSD) sequence also reduced ANG-II-induced [Ca{sup 2+}]{sub i} elevation in the cells. Real-time imaging of cell growth revealed that ANG-II stimulates neonatal GMC proliferation. ANG-II-induced GMC growth was attenuated by EMD 66684, an AGTR1 antagonist; BAPTA, a [Ca{sup 2+}]{sub i} chelator; KN-93, a Ca{sup 2+}/calmodulin-dependent protein kinase II inhibitor; CDX; and a CSD peptide, but not PD 123319, a selective AGTR2 antagonist. Collectively, our data demonstrate [Ca{sup 2+}]{sub i}-dependent proliferative effect of ANG-II and highlight a critical role for lipid raft microdomains in AGTR1-mediated signal transduction in neonatal GMCs. - Highlights: • AGTR1 is the functional AGTR subtype expressed in neonatal mesangial cells. • Endogenous AGTR1 associates with CAV-1 in neonatal mesangial cells. • Lipid raft disruption attenuates cell surface AGTR1 protein expression. • Lipid raft disruption reduces ANG-II-induced [Ca{sup 2+}]{sub i} elevation in neonatal mesangial cells. • Lipid raft disruption inhibits ANG-II-induced neonatal mesangial cell growth.

  14. MAPK Signal Transduction Pathway Regulation: A Novel Mechanism of Rat HSC-T6 Cell Apoptosis Induced by FUZHENGHUAYU Tablet

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2013-01-01

    Full Text Available FUZHENGHUAYU Tablets have been widely used in the treatment of liver fibrosis in China. Here, we investigate the apoptotic effect of FUZHENGHUAYU Tablet in rat liver stellate cell line HSC-T6. HSC-T6 cells were incubated with control serum or drug serum from rats fed with 0.9% NaCl or FUZHENGHUAYU Tablet, respectively. Cells exposed to drug serum showed higher proportions of early and late apoptotic cells than controls. The mRNA levels of collagens I and III, TGF-β1 and α-SMA were reduced by drug serum compared to control serum. Differentially expressed mRNAs and miRNAs were analyzed by microarray and sequencing, respectively. We identified 334 differentially expressed mRNAs and also 60 GOs and two pathways related to the mRNAs. Seventy-five differentially expressed miRNAs were down-regulated by drug serum and 1963 target genes were predicted. 134 GOs up-regulated in drug serum group were linked to miRNA targets, and drug serum also regulated 43 miRNA signal transduction pathways. Protein levels were evaluated by Western blot. Drug serum down-regulated (phospho-SAPK/JNK/(SAPK/JNK and up-regulated phospho-p38/p38 ratios. The study showed that FUZHENGHUAYU Tablet induced apoptosis in rat HSC-T6 cells possibly in part by activating p38 and inhibiting SAPK/JNK.

  15. Opposing effects of bile acids deoxycholic acid and ursodeoxycholic acid on signal transduction pathways in oesophageal cancer cells.

    Science.gov (United States)

    Abdel-Latif, Mohamed M; Inoue, Hiroyasu; Reynolds, John V

    2016-09-01

    Ursodeoxycholic acid (UDCA) was reported to reduce bile acid toxicity, but the mechanisms underlying its cytoprotective effects are not fully understood. The aim of the present study was to examine the effects of UDCA on the modulation of deoxycholic acid (DCA)-induced signal transduction in oesophageal cancer cells. Nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) activity was assessed using a gel shift assay. NF-κB activation and translocation was performed using an ELISA-based assay and immunofluorescence analysis. COX-2 expression was analysed by western blotting and COX-2 promoter activity was assessed by luciferase assay. DCA induced NF-κB and AP-1 DNA-binding activities in SKGT-4 and OE33 cells. UDCA pretreatment inhibited DCA-induced NF-κB and AP-1 activation and NF-κB translocation. This inhibitory effect was coupled with a blockade of IκB-α degradation and inhibition of phosphorylation of IKK-α/β and ERK1/2. Moreover, UDCA pretreatment inhibited COX-2 upregulation. Using transient transfection of the COX-2 promoter, UDCA pretreatment abrogated DCA-induced COX-2 promoter activation. In addition, UDCA protected oesophageal cells from the apoptotic effects of deoxycholate. Our findings indicate that UDCA inhibits DCA-induced signalling pathways in oesophageal cancer cells. These data indicate a possible mechanistic role for the chemopreventive actions of UDCA in oesophageal carcinogenesis.

  16. Ca2+ is involved in muscarine-acetylcholine-receptor-mediated acetylcholine signal transduction in guard cells of Vicia faba L.

    Institute of Scientific and Technical Information of China (English)

    MENG Fanxia; MIAO Long; ZHANG Shuqiu; LOU Chenghou

    2004-01-01

    Acetylcholine (ACh) is an important neurochemical transmitter in animals; it also exists in plants and plays a significant role in various kinds of physiological functions in plants. ACh has been known to induce the stomatal opening. By monitoring the changes of cytosolic Ca2+ with fluorescent probe Fluo-3 AM under the confocal microscopy,we found that exogenous ACh increased cytosolic Ca2+ concentration of guard cells of Vicia faba L. Muscarine, an agonist of muscarine acetylcholine receptor (mAChR), could do so as well. In contrast, atropine, the antagonist of mAChR abolished the ability of ACh to increase Ca2+ in guard cells.This mechanism is similar to mAChR in animals. When EGTA was used to chelate Ca2+ or ruthenium red to block Ca2+ released from vacuole respectively, the results showed that the increased cytosolic Ca2+ mainly come from intracellular Ca2+ store. The evidence supports that Ca2+ is involved in guard-cell response to ACh and that Ca2+ signal is coupled to mAChRs in ACh signal transduction in guard cells.

  17. Two-component signal transduction pathways regulating growth and cell cycle progression in a bacterium: a system-level analysis.

    Directory of Open Access Journals (Sweden)

    Jeffrey M Skerker

    2005-10-01

    Full Text Available Two-component signal transduction systems, comprised of histidine kinases and their response regulator substrates, are the predominant means by which bacteria sense and respond to extracellular signals. These systems allow cells to adapt to prevailing conditions by modifying cellular physiology, including initiating programs of gene expression, catalyzing reactions, or modifying protein-protein interactions. These signaling pathways have also been demonstrated to play a role in coordinating bacterial cell cycle progression and development. Here we report a system-level investigation of two-component pathways in the model organism Caulobacter crescentus. First, by a comprehensive deletion analysis we show that at least 39 of the 106 two-component genes are required for cell cycle progression, growth, or morphogenesis. These include nine genes essential for growth or viability of the organism. We then use a systematic biochemical approach, called phosphotransfer profiling, to map the connectivity of histidine kinases and response regulators. Combining these genetic and biochemical approaches, we identify a new, highly conserved essential signaling pathway from the histidine kinase CenK to the response regulator CenR, which plays a critical role in controlling cell envelope biogenesis and structure. Depletion of either cenK or cenR leads to an unusual, severe blebbing of cell envelope material, whereas constitutive activation of the pathway compromises cell envelope integrity, resulting in cell lysis and death. We propose that the CenK-CenR pathway may be a suitable target for new antibiotic development, given previous successes in targeting the bacterial cell wall. Finally, the ability of our in vitro phosphotransfer profiling method to identify signaling pathways that operate in vivo takes advantage of an observation that histidine kinases are endowed with a global kinetic preference for their cognate response regulators. We propose that this

  18. STANDARDIZATION AND VALIDATION OF ADENOVIRAL TRANSDUCTION OF AN ANDROGEN RECEPTOR POSITIVE CELL LINE WITH AN MMTV-LUC REPORTER FOR ENDOCRINE SCREENING

    Science.gov (United States)

    Standardization and Validation of Adenoviral Transduction of an Androgen Receptor Positive Cell Line with an MMTV-Luc Reporter for Endocrine Screening P. Hartig, K . Bobseine, M. Cardon, C. Lambright and L. E. Gray, Jr. USEPA, Reproductive Toxicology Division, NHEERL, RTP, NC...

  19. Signal transduction and metabolic changes during tumor cell apoptosis following phthalocyanine-sensitized photodynamic therapy

    Science.gov (United States)

    Oleinick, Nancy L.; Agarwal, Munna L.; Berger, Nathan A.; Cheng, Ming-Feng; Chatterjee, Satadel; He, Jin; Kenney, Malcolm E.; Larkin, Hedy E.; Mukhter, Hasan; Rihter, Boris D.; Zaidi, Syed I. A.

    1993-06-01

    Mechanisms of cell death have been explored in cells and tumors treated with photodynamic therapy (PDT). Photosensitizers used for these studies were Photofrin, tetrasulfonated and nonsulfonated aluminum phthalocyanine, and a new silicon phthalocyanine [SiPc(OH)OSi(CH3)2(CH2)3N(CH3)2], referred to as PcIV. In mouse lymphoma L5178Y cells, a dose of PDT sensitized by PcIV which causes a 90% loss of cell survival induces apoptosis (programmed cell death) over a several-hour time course, beginning within 10 minutes of irradiation. Apoptosis is a metabolic process initiated by PDT-induced damage to membranes and triggered by the activation of phospholipases A2 and C and the release of Ca++ from intracellular stores. An endogenous endonuclease is activated and cleaves nuclear DNA in the internucleosomal region of chromatin. Subsequent metabolic events now appear to cause the loss of cellular NAD and ATP, the former a result of the activation of a second nuclear enzyme, poly(ADP-ribose) polymerase, by the endonucleolytically generated DNA strand breaks. Loss of ATP follows upon the loss of NAD needed for energy metabolism. Although the induction of apoptosis is efficiently produced by direct PDT damage to L5178Y cells, we now find that apoptosis is also produced by treatment of certain other lymphoid-derived cells and cells of epithelial origin. Under the limited set of conditions tested, there was no evidence for PDT-induced apoptosis in a fibroblast cell line, in mouse fibrosarcoma RIF-1 and L929 cells, in human adenocarcinoma A549 cells, or in human squamous cell carcinoma cells in culture. The evidence suggests that apoptosis, a form of metabolic cell death, is an important mechanism of tumor ablation in PDT-treated tumors, and that the induction of apoptosis may involve the interaction of direct PDT damage to malignant cells with factors produced by PDT action on vascular and other host cells.

  20. Signal transduction by HLA class II antigens expressed on activated T cells

    DEFF Research Database (Denmark)

    Ødum, Niels; Martin, P J; Schieven, G L;

    1991-01-01

    Human T cells express HLA class II antigens upon activation. Although activated, class II+ T cells can present alloantigens under certain circumstances, the functional role of class II antigens on activated T cells remains largely unknown. Here, we report that cross-linking of HLA-DR molecules ex...

  1. Mechanisms underlying KCNQ1channel cell volume sensitivity

    DEFF Research Database (Denmark)

    Hammami, Sofia

    to the process of cell volume adjustments. A great diversity of potassium channels being members of either the 6TM, 4 TM or 2 TM K+ channel gene family have been shown to be strictly regulated by small, fast changes in cell volume. However, the precise mechanism underlying the K+ channel sensitivity to cell...... volume alterations is not yet fully understood. The KCNQ1 channel belonging to the voltage gated KCNQ family is considered a precise sensor of volume changes. The goal of this thesis was to elucidate the mechanism that induces cell volume sensitivity. Until now, a number of investigators have implicitly...... current. It is debated whether this increase in macroscopic current upon expression of KCNQ1 with KCNE1 is due to an increase in ion channel conductance (¿), the open state probability (Po) or an increase in the number of channels in the plasma membrane (N). The latter was quantified by measuring...

  2. Neuroprotective effects of ClC-3 chloride channel in glutamate-induced retinal ganglion cell RGC-5 apoptosis

    Institute of Scientific and Technical Information of China (English)

    Li Yu; Ning Han; Ligang Jiang; Yajuan Zheng; Lifeng Liu

    2011-01-01

    Transforming growth factor β plays a role in regulation of apoptosis in ClC-3 and the Smads signaling pathway, although the underlying mechanisms remain unclear. The present study determined possible signal transduction mechanisms based on CIC-3 expression, which accordingly affected apoptosis of retinal ganglion cells in a glutamate-induced retinal ganglion cell RGC-5 apoptosis model. Results revealed significantly increased cell survival rate and significantly decreased apoptosis rate following apoptosis of ClC-3 cDNA-transfected glutamate-induced retinal ganglion cells. Following inhibition of the ClC-3 chloride channel using RNAi technology, cell survival and apoptosis rates were reversed. In addition, expression of transforming growth factor β2, Smads2, Smads3, Smads4, and Smads7 increased to varying degrees. These results suggest that ClC-3 chloride channel plays a protective role in glutamate-induced apoptosis of retinal ganglion cells, and transforming growth factor β/Smads signal transduction pathways are involved in this process.

  3. Pancreatic acinar cells: molecular insight from studies of signal-transduction using transgenic animals.

    Science.gov (United States)

    Yule, David I

    2010-11-01

    Pancreatic acinar cells are classical exocrine gland cells. The apical regions of clusters of coupled acinar cells collectively form a lumen which constitutes the blind end of a tube created by ductal cells - a structure reminiscent of a "bunch of grapes". When activated by neural or hormonal secretagogues, pancreatic acinar cells are stimulated to secrete a variety of proteins. These proteins are predominately inactive digestive enzyme precursors called "zymogens". Acinar cell secretion is absolutely dependent on secretagogue-induced increases in intracellular free Ca(2+). The increase in [Ca(2+)](i) has precise temporal and spatial characteristics as a result of the exquisite regulation of the proteins responsible for Ca(2+) release, Ca(2+) influx and Ca(2+) clearance in the acinar cell. This brief review discusses recent studies in which transgenic animal models have been utilized to define in molecular detail the components of the Ca(2+) signaling machinery which contribute to these characteristics.

  4. Pluripotency transcription factor Sox2 is strongly adsorbed by heparin but requires a protein transduction domain for cell internalization

    Energy Technology Data Exchange (ETDEWEB)

    Albayrak, Cem [Department of Chemical Engineering, Stanford University, 381 North-South Mall, Stanford, CA 94305 (United States); Yang, William C. [Department of Bioengineering, Stanford University, 318 Campus Drive, Stanford, CA 94305 (United States); Swartz, James R., E-mail: jswartz@stanford.edu [Department of Chemical Engineering, Stanford University, 381 North-South Mall, Stanford, CA 94305 (United States); Department of Bioengineering, Stanford University, 318 Campus Drive, Stanford, CA 94305 (United States)

    2013-02-15

    Highlights: ► Both R9Sox2 and Sox2 bind heparin with comparable affinity. ► Both R9Sox2 and Sox2 bind to fibroblasts, but only R9Sox2 is internalized. ► Internalization efficiency of R9Sox2 is 0.3% of the administered protein. ► Heparan sulfate adsorption may be part of a mechanism for managing cell death. -- Abstract: The binding of protein transduction domain (PTD)-conjugated proteins to heparan sulfate is an important step in cellular internalization of macromolecules. Here, we studied the pluripotency transcription factor Sox2, with or without the nonaarginine (R9) PTD. Unexpectedly, we observed that Sox2 is strongly adsorbed by heparin and by the fibroblasts without the R9 PTD. However, only the R9Sox2 fusion protein is internalized by the cells. These results collectively show that binding to heparan sulfate is not sufficient for cellular uptake, thereby supporting a recent hypothesis that other proteins play a role in cell internalization of PTD-conjugated proteins.

  5. The biological networks in studying cell signal transduction complexity: The examples of sperm capacitation and of endocannabinoid system

    Science.gov (United States)

    Bernabò, Nicola; Barboni, Barbara; Maccarrone, Mauro

    2014-01-01

    Cellular signal transduction is a complex phenomenon, which plays a central role in cell surviving and adaptation. The great amount of molecular data to date present in literature, together with the adoption of high throughput technologies, on the one hand, made available to scientists an enormous quantity of information, on the other hand, failed to provide a parallel increase in the understanding of biological events. In this context, a new discipline arose, the systems biology, aimed to manage the information with a computational modeling-based approach. In particular, the use of biological networks has allowed the making of huge progress in this field. Here we discuss two possible application of the use of biological networks to explore cell signaling: the study of the architecture of signaling systems that cooperate in determining the acquisition of a complex cellular function (as it is the case of the process of activation of spermatozoa) and the organization of a single specific signaling systems expressed by different cells in different tissues (i.e. the endocannabinoid system). In both the cases we have found that the networks follow a scale free and small world topology, likely due to the evolutionary advantage of robustness against random damages, fastness and specific of information processing, and easy navigability. PMID:25379139

  6. Molecular basis of mechanosensory transduction

    Science.gov (United States)

    Gillespie, Peter G.; Walker, Richard G.

    2001-09-01

    Mechanotransduction - a cell's conversion of a mechanical stimulus into an electrical signal - reveals vital features of an organism's environment. From hair cells and skin mechanoreceptors in vertebrates, to bristle receptors in flies and touch receptors in worms, mechanically sensitive cells are essential in the life of an organism. The scarcity of these cells and the uniqueness of their transduction mechanisms have conspired to slow molecular characterization of the ensembles that carry out mechanotransduction. But recent progress in both invertebrates and vertebrates is beginning to reveal the identities of proteins essential for transduction.

  7. Modeling two-phase flow in PEM fuel cell channels

    Science.gov (United States)

    Wang, Yun; Basu, Suman; Wang, Chao-Yang

    2008-05-01

    This paper is concerned with the simultaneous flow of liquid water and gaseous reactants in mini-channels of a proton exchange membrane (PEM) fuel cell. Envisaging the mini-channels as structured and ordered porous media, we develop a continuum model of two-phase channel flow based on two-phase Darcy's law and the M2 formalism, which allow estimate of the parameters key to fuel cell operation such as overall pressure drop and liquid saturation profiles along the axial flow direction. Analytical solutions of liquid water saturation and species concentrations along the channel are derived to explore the dependences of these physical variables vital to cell performance on operating parameters such as flow stoichiometric ratio and relative humility. The two-phase channel model is further implemented for three-dimensional numerical simulations of two-phase, multi-component transport in a single fuel-cell channel. Three issues critical to optimizing channel design and mitigating channel flooding in PEM fuel cells are fully discussed: liquid water buildup towards the fuel cell outlet, saturation spike in the vicinity of flow cross-sectional heterogeneity, and two-phase pressure drop. Both the two-phase model and analytical solutions presented in this paper may be applicable to more general two-phase flow phenomena through mini- and micro-channels.

  8. Modeling two-phase flow in PEM fuel cell channels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yun; Basu, Suman; Wang, Chao-Yang [Electrochemical Engine Center (ECEC), and Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States)

    2008-05-01

    This paper is concerned with the simultaneous flow of liquid water and gaseous reactants in mini-channels of a proton exchange membrane (PEM) fuel cell. Envisaging the mini-channels as structured and ordered porous media, we develop a continuum model of two-phase channel flow based on two-phase Darcy's law and the M{sup 2} formalism, which allow estimate of the parameters key to fuel cell operation such as overall pressure drop and liquid saturation profiles along the axial flow direction. Analytical solutions of liquid water saturation and species concentrations along the channel are derived to explore the dependences of these physical variables vital to cell performance on operating parameters such as flow stoichiometric ratio and relative humility. The two-phase channel model is further implemented for three-dimensional numerical simulations of two-phase, multi-component transport in a single fuel-cell channel. Three issues critical to optimizing channel design and mitigating channel flooding in PEM fuel cells are fully discussed: liquid water buildup towards the fuel cell outlet, saturation spike in the vicinity of flow cross-sectional heterogeneity, and two-phase pressure drop. Both the two-phase model and analytical solutions presented in this paper may be applicable to more general two-phase flow phenomena through mini- and micro-channels. (author)

  9. Methoxychlor enhances degranulation of murine mast cells by regulating FcεRI-mediated signal transduction.

    Science.gov (United States)

    Yasunaga, Sho; Nishi, Kosuke; Nishimoto, Sogo; Sugahara, Takuya

    2015-01-01

    Methoxychlor, an organochlorine insecticide developed to replace DDT (dichlorodiphenyltrichloroethane), has been reported to induce mast cell degranulation and to enhance IgE-mediated allergic responses. However, the mechanisms underlying these effects are not clear. To clarify potential mechanisms, the effects of methoxychlor on degranulation of mast cells were examined. Degranulation responses were evaluated using RBL-2H3 cells and mouse bone marrow-derived mast cells with either the antigen-induced or calcium ionophore-induced stimulation. Phosphorylation of enzymes related to signaling events associated with mast cell degranulation was analyzed by immunoblotting. Effects on vascular permeability in the passive cutaneous anaphylaxis reaction were evaluated following oral administration of methoxychlor to BALB/c mice. The results indicated that methoxychlor caused increased mast cell degranulation in the presence of antigen, whereas it had no effect on calcium ionophore-induced degranulation of RBL-2H3 cells. Immunoblot analyses demonstrated that the phosphorylation level of phosphoinositide 3-kinase (which plays a central role in mast cell signaling) was increased by methoxychlor during antigen-induced degranulation. In addition, methoxychlor activated the signaling pathway via the high-affinity IgE receptor by inducing phosphorylation of Syk and PLCγ1/2, which transfer the signal for degranulation downstream. Lastly, oral administration of methoxychlor exhibited a tendency to promote vascular permeability in passive cutaneous anaphylaxis model mice. Taken together, the results here suggested that methoxychlor enhanced degranulation through FcεRI-mediated signaling and promoted allergenic symptoms involved in mast cell degranulation.

  10. Efficient Transduction of Feline Neural Progenitor Cells for Delivery of Glial Cell Line-Derived Neurotrophic Factor Using a Feline Immunodeficiency Virus-Based Lentiviral Construct

    Directory of Open Access Journals (Sweden)

    X. Joann You

    2011-01-01

    Full Text Available Work has shown that stem cell transplantation can rescue or replace neurons in models of retinal degenerative disease. Neural progenitor cells (NPCs modified to overexpress neurotrophic factors are one means of providing sustained delivery of therapeutic gene products in vivo. To develop a nonrodent animal model of this therapeutic strategy, we previously derived NPCs from the fetal cat brain (cNPCs. Here we use bicistronic feline lentiviral vectors to transduce cNPCs with glial cell-derived neurotrophic factor (GDNF together with a GFP reporter gene. Transduction efficacy is assessed, together with transgene expression level and stability during induction of cellular differentiation, together with the influence of GDNF transduction on growth and gene expression profile. We show that GDNF overexpressing cNPCs expand in vitro, coexpress GFP, and secrete high levels of GDNF protein—before and after differentiation—all qualities advantageous for use as a cell-based approach in feline models of neural degenerative disease.

  11. Cell volume and membrane stretch independently control K+ channel activity

    DEFF Research Database (Denmark)

    Bomholtz, Sofia Hammami; Willumsen, Niels J; Olsen, Hervør L;

    2009-01-01

    A number of potassium channels including members of the KCNQ family and the Ca(2+) activated IK and SK, but not BK, are strongly and reversibly regulated by small changes in cell volume. It has been argued that this general regulation is mediated through sensitivity to changes in membrane stretch....... To test this hypothesis we have studied the regulation of KCNQ1 and BK channels after expression in Xenopus oocytes. Results from cell-attached patch clamp studies (approximately 50 microm(2) macropatches) in oocytes expressing BK channels demonstrate that the macroscopic volume-insensitive BK current...... was not affected by membrane stretch. The results indicate that (1) activation of BK channels by local membrane stretch is not mimicked by membrane stress induced by cell swelling, and (2) activation of KCNQ1 channels by cell volume increase is not mediated by local tension in the cell membrane. We conclude...

  12. Sensory transduction in eukaryotes : A comparison between Dictyosteliurn and vertebrate cells

    NARCIS (Netherlands)

    Haastert, Peter J.M. van; Janssens, Pim M.W.; Erneux, Christophe

    1991-01-01

    The organization of multicellular organisms depends on cell-cell communication. The signal molecules are often soluble components in the extracellular fluid, but also include odors and light. A large array of surface receptors is involved in the detection of these signals. Signals are then transduce

  13. DC-ATLAS : a systems biology resource to dissect receptor specific signal transduction in dendritic cells

    NARCIS (Netherlands)

    Cavalieri, D.; Rivero, D.; Beltrame, L.; Buschow, S.I.; Calura, E.; Rizzetto, L.; Gessani, S.; Gauzzi, M.C.; Reith, W.; Baur, A.; Bonaiuti, R.; Brandizi, M.; Filippo, C. De; D'Oro, U.; Draghici, S.; Dunand-Sauthier, I.; Gatti, E.; Granucci, F.; Gundel, M.; Kramer, M.; Kuka, M.; Lanyi, A.; Melief, C.J.; Montfoort, N. van; Ostuni, R.; Pierre, P.; Popovici, R.; Rajnavolgyi, E.; Schierer, S.; Schuler, G.; Soumelis, V.; Splendiani, A.; Stefanini, I.; Torcia, M.G.; Zanoni, I.; Zollinger, R.; Figdor, C.G.; Austyn, J.M.

    2010-01-01

    BACKGROUND: The advent of Systems Biology has been accompanied by the blooming of pathway databases. Currently pathways are defined generically with respect to the organ or cell type where a reaction takes place. The cell type specificity of the reactions is the foundation of immunological research,

  14. Pharmacology of the human cell voltage-dependent cation channel. Part II: inactivation and blocking

    DEFF Research Database (Denmark)

    Bennekou, Poul; Barksmann, Trine L.; Kristensen, Berit I.;

    2004-01-01

    Human red cells; Nonselective voltage-dependent cation channel; NSVDC channel; Thiol group reagents......Human red cells; Nonselective voltage-dependent cation channel; NSVDC channel; Thiol group reagents...

  15. Lentiviral transduction of Tar Decoy and CCR5 ribozyme into CD34+ progenitor cells and derivation of HIV-1 resistant T cells and macrophages

    Directory of Open Access Journals (Sweden)

    Rossi John

    2004-12-01

    Full Text Available Abstract Background RNA based antiviral approaches against HIV-1 are among the most promising for long-term gene therapy. These include ribozymes, aptamers (decoys, and small interfering RNAs (siRNAs. Lentiviral vectors are ideal for transduction of such inhibitory RNAs into hematopoietic stem cells due to their ability to transduce non-dividing cells and their relative refractiveness to gene silencing. The objective of this study is to introduce an HIV-1 Tar aptamer either alone or in combination with an anti-CCR5 ribozyme into CD34+ hematopoietic progenitor cells via an HIV-based lentiviral vector to derive viral resistant progeny T cells and macrophages. Results High efficiency and sustained gene transfer into CD34+ cells were achieved with lentiviral vector constructs harboring either Tar decoy or Tar decoy in combination with CCR5 ribozyme. Cells transduced with these constructs differentiated normally into T-lymphocytes in vivo in thy/liv grafts of SCID-hu mice, and into macrophages in vitro in the presence of appropriate growth factors. When challenged in vitro, the differentiated T lymphocytes and macrophages showed marked resistance against HIV-1 infection. Conclusions Viral resistant transgenic T cells and macrophages that express HIV-1 Tar aptamer either alone or in combination with an anti-CCR5 ribozyme could be obtained by lentiviral gene transduction of CD34+ progenitor cells. These results showed for the first time that expression of these anti-HIV-1 transgenes in combination do not interfere with normal thymopoiesis and thus have set the stage for their application in stem cell based gene therapy for HIV/AIDS.

  16. The Role of Intrinsic Flexibility in Signal Transduction Mediated by the Cell Cycle Regulator, p27Kip1

    Energy Technology Data Exchange (ETDEWEB)

    Galea, Charles A. [St. Jude Children' s Research Hospital; Nourse, Amanda [St. Jude Children' s Research Hospital; Wang, Yuefeng [St. Jude Children' s Research Hospital; Sivakolundu, Sivashankar G. [St. Jude Children' s Research Hospital; Heller, William T [ORNL; Kriwacki, Richard W [University of Tennessee (UT) Health Science Center, Memphis

    2008-02-01

    p27{sup Kip1} (p27), which controls eukaryotic cell division through interactions with cyclin-dependent kinases (Cdks), integrates and transduces promitogenic signals from various nonreceptor tyrosine kinases by orchestrating its own phosphorylation, ubiquitination and degradation. Intrinsic flexibility allows p27 to act as a 'conduit' for sequential signaling mediated by tyrosine and threonine phosphorylation and ubiquitination. While the structural features of the Cdk/cyclin-binding domain of p27 are understood, how the C-terminal regulatory domain coordinates multistep signaling leading to p27 degradation is poorly understood. We show that the 100-residue p27 C-terminal domain is extended and flexible when p27 is bound to Cdk2/cyclin A. We propose that the intrinsic flexibility of p27 provides a molecular basis for the sequential signal transduction conduit that regulates p27 degradation and cell division. Other intrinsically unstructured proteins possessing multiple sites of posttranslational modification may participate in similar signaling conduits.

  17. Quantitative phosphoproteomics of murine Fmr1-KO cell lines provides new insights into FMRP-dependent signal transduction mechanisms.

    Science.gov (United States)

    Matic, Katarina; Eninger, Timo; Bardoni, Barbara; Davidovic, Laetitia; Macek, Boris

    2014-10-01

    Fragile X mental retardation protein (FMRP) is an RNA-binding protein that has a major effect on neuronal protein synthesis. Transcriptional silencing of the FMR1 gene leads to loss of FMRP and development of Fragile X syndrome (FXS), the most common known hereditary cause of intellectual impairment and autism. Here we utilize SILAC-based quantitative phosphoproteomics to analyze murine FMR1(-) and FMR1(+) fibroblastic cell lines derived from FMR1-KO embryos to identify proteins and phosphorylation sites dysregulated as a consequence of FMRP loss. We quantify FMRP-related changes in the levels of 5,023 proteins and 6,133 phosphorylation events and map them onto major signal transduction pathways. Our study confirms global downregulation of the MAPK/ERK pathway and decrease in phosphorylation level of ERK1/2 in the absence of FMRP, which is connected to attenuation of long-term potentiation. We detect differential expression of several key proteins from the p53 pathway, pointing to the involvement of p53 signaling in dysregulated cell cycle control in FXS. Finally, we detect differential expression and phosphorylation of proteins involved in pre-mRNA processing and nuclear transport, as well as Wnt and calcium signaling, such as PLC, PKC, NFAT, and cPLA2. We postulate that calcium homeostasis is likely affected in molecular pathogenesis of FXS.

  18. Quantitative phosphoproteomics of murine Fmr1-KO cell lines provides new insights into FMRP-dependent signal transduction mechanisms.

    Science.gov (United States)

    Matic, Katarina; Eninger, Timo; Bardoni, Barbara; Davidovic, Laetitia; Macek, Boris

    2014-10-01

    Fragile X mental retardation protein (FMRP) is an RNA-binding protein that has a major effect on neuronal protein synthesis. Transcriptional silencing of the FMR1 gene leads to loss of FMRP and development of Fragile X syndrome (FXS), the most common known hereditary cause of intellectual impairment and autism. Here we utilize SILAC-based quantitative phosphoproteomics to analyze murine FMR1(-) and FMR1(+) fibroblastic cell lines derived from FMR1-KO embryos to identify proteins and phosphorylation sites dysregulated as a consequence of FMRP loss. We quantify FMRP-related changes in the levels of 5,023 proteins and 6,133 phosphorylation events and map them onto major signal transduction pathways. Our study confirms global downregulation of the MAPK/ERK pathway and decrease in phosphorylation level of ERK1/2 in the absence of FMRP, which is connected to attenuation of long-term potentiation. We detect differential expression of several key proteins from the p53 pathway, pointing to the involvement of p53 signaling in dysregulated cell cycle control in FXS. Finally, we detect differential expression and phosphorylation of proteins involved in pre-mRNA processing and nuclear transport, as well as Wnt and calcium signaling, such as PLC, PKC, NFAT, and cPLA2. We postulate that calcium homeostasis is likely affected in molecular pathogenesis of FXS. PMID:25168779

  19. In situ transduction of stromal cells and thymocytes upon intrathymic injection of lentiviral vectors

    Directory of Open Access Journals (Sweden)

    Klatzmann David

    2004-08-01

    Full Text Available Abstract Background The thymus is the primary site for T-cell development and induction of self-tolerance. Previous approaches towards manipulation of T-cell differentiation have used intrathymic injection of antigens, as proteins, cells or adenoviruses, leading to transient expression of the foreign protein. Lentiviral vectors, due to their unique ability to integrate into the genome of quiescent cells, may be best suited for long-term expression of a transgene in the thymus. Results Young adult mice were injected in the thymus with lentiviral vectors expressing eGFP or the hemaglutinin of the Influenza virus under the control of the ubiquitous phospho glycerate kinase promoter. Thymi were examined 5 to 90 days thereafter directly under a UV-light microscope and by flow cytometry. Intrathymic injection of lentiviral vectors predominantly results in infection of stromal cells that could be detected for at least 3 months. Importantly, hemaglutinin expression by thymic stromal cells mediated negative selection of thymocytes expressing the cognate T-cell receptor. In addition and despite the low multiplicity of infection, transduced thymocytes were also detected, even 30 days after injection. Conclusions Our results demonstrate that intrathymic delivery of a lentiviral vector is an efficient means for stable expression of a foreign gene in the thymus. This new method of gene delivery may prove useful for induction of tolerance to a specific antigen and for gene therapy of severe combined immunodeficiencies.

  20. Sensory cilia and integration of signal transduction in human health and disease

    DEFF Research Database (Denmark)

    Christensen, Søren T; Pedersen, Lotte B; Schneider, Linda;

    2007-01-01

    The primary cilium is a hallmark of mammalian tissue cells. Recent research has shown that these organelles display unique sets of selected signal transduction modules including receptors, ion channels, effector proteins and transcription factors that relay chemical and physical stimuli from the ...

  1. 3D-dynamic visualization of complex molecular cell biology processes : 1-year university students' understanding of visualizations of signal transduction

    OpenAIRE

    Jacobsson, Johan Lars Henrik

    2008-01-01

    This study deals with the use of 3D-dynamic visualizations for teaching complex molecular cell biology concepts. The focus is on signal transduction, which is a concept that constitutes an important part of biological systems. 3D-dynamic visualizations (animations) were produced and shown for a total of 24 students attending a course in molecular cell biology at Karlstad University, Sweden. Data were collected by questionnaires and interviews which were structured around the understandability...

  2. THE INFLUENCE OF HUMAN SINGLE CHAIN INTELEUKIN-12 GENE TRANSDUCTION ON THE BIOLOGICAL BEHAVIOR OF HEPATOMA 7721 CELLS

    Institute of Scientific and Technical Information of China (English)

    金莉; 来保长; 耿宜萍; 王一理; 司履生

    2001-01-01

    Objective. To investigate the anti-tumor effects of human single chain interleukin-12 (hscIL-12). Method. pcDNA/hscIL-12 recombinant was transfected into human hepatic carcinoma cells (7721 cells) by lipofectin method. The 7721/hscIL-12 cells which secrete hscIL-12 stably, were obtained via G418 selection, and in vitro the influence of hscIL-12 gene transduction on the growth of tumor cells was evaluated by cellcycle analysis. In vivo, genetically engineered 7721 cells (7721/hscIL-12, 7721/pcDNA) and parental cells were implanted into BALB/c nude mice, respectively. 7721/pcDNA and 7721/hscIL-12 groups were divided into two sub-groups on day 8: one was administered with hPBL twice, 6 days at interval; the other was given equalvolume of PBS. Mice were sacrificed on day 26, and spleens and tumors were taken out for histologic assay. Results. hscIL-12 produced stably by 7721/hscIL-12 cells had bioactivity, and it was proved by Western blot, immunocytochemistry, and in situ hybridization. In vitro, compared with 7721 and 7721/pcDNA, the7721/hscIL-12 grew much more slowly. FACS assay showed apparent G1 arrest of 7721/hscIL-12 cells. In ani-mal experiment, on day 8 after inoculation, the tumors of 7721 and 7721/pcDNA group were up to 5 -7mm,while those of 7721/hscIL-12 group were 2 -4mm. When treated with hPBL, the tumor of 7721/hscIL-12 groupdisappeared completely. Histologically, the tumors from 7721/hscIL-12 without hPBL treatment had numerouslymphocyte infiltration, the tumor cells displayed depression looking, atrophy, focal necrosis and apoptosis, whereas the tumors of 7721 and 772l/pcDNA groups grew thrivingly.Conclusion. hsclL-12 transduced 7721 cells could induced significant antitumor immune response which resulted in tumor regression totally when the hPBL was inoculated, and also hscIL-12 has certain effects on mice immune system. These findings suggest that hscIL-12 and hscIL-12 gene therapy might have promising prospects in clinical application.

  3. Low concentration of ethanol induce apoptosis in HepG2 cells: role of various signal transduction pathways

    Directory of Open Access Journals (Sweden)

    Francisco Castaneda, Sigrid Rosin-Steiner

    2006-01-01

    Full Text Available As we previously demonstrated in human hepatocellular carcinoma (HepG2 cells, ethanol at low concentration triggers the Fas apoptotic pathway. However, its role in other intracellular signaling pathways remains unknown. Therefore, the aim of the present study was to evaluate the role of low concentration of ethanol on different intracellular signaling pathways. For this purpose, HepG2 cells were treated with 1 mM ethanol for 10 min and the phosphorylation state of protein kinases was determined. In addition, the mRNA levels of transcription factors and genes associated with the Fas apoptotic pathway were determined. Our data demonstrated that ethanol-induced phosphorylation of protein kinases modulates both anti-apoptotic and pro-apoptotic mechanisms in HepG2 cells. Pro-apoptosis resulted mainly from the strong inhibition of the G-protein couple receptor signaling pathway. Moreover, the signal transduction initiated by ethanol-induced protein kinases phosphorylation lead to increased expression of the transcription factors with subsequent expression of genes associated with the Fas apoptotic pathway (Fas receptor, Fas ligand, FADD and caspase 8. These results indicate that low concentration of ethanol exert their effect by predominant activation of pro-apoptotic events that can be divided in two phases. An early phase characterized by a rapid transient effect on protein kinases phosphorylation, after 10 min exposure, with subsequent increased expression of transcription factors for up to 6 hr. This early phase is followed by a second phase associated with increased gene expression that began after 6 hr and persisted for more than 24 hr. This information provided a novel insight into the mechanisms of action of ethanol (1mM in human hepatocellular carcinoma cells.

  4. Development Of PIXE Measurement Of Ca Changes Resulting From Viral Transduction In Cells

    Science.gov (United States)

    Whitlow, Harry J.; Chienthavorn, Orapin; Eronen, Hannele; Sajavaara, Timo; Laitinen, Mikko; Norarat, Rattanaporn; Gilbert, Leona K.

    2011-06-01

    Ca is a life-element of particular interest because it is both bound to proteins, and as Ca2+ which functions as a signal molecule in apoptosis. Here we report development of chemical-matrix blind assaying the Ca fluxes from transduced HepG2 cells using particle induced X-ray emission. The cells were transduced with recombinant baculoviruses hosting the DNA for non-structural protein 1 (NS1) of the human pavovirus B19. Different recombinant baculoviruses were used that carried different DNA payloads of this NS1. Two different approaches have been developed to assay Ca in cells. The first is where the cells were directly cultured using a self-supporting pioloform as a substrate. In the second approach the cells are permeabilized, and bound-Ca content in the debris, and unbound-Ca in the wash solutions were measured using an internal V reference standard. The results support a difference in the Ca contents depending on the payload of the infecting virus, however the PIXE signals were too close to the minimum detection limit to draw reliable conclusions.

  5. A therapeutic anti-CD4 monoclonal antibody inhibits T cell receptor signal transduction in mouse autoimmune cardiomyopathy

    Institute of Scientific and Technical Information of China (English)

    WANG Zhao-hui; LIAO Yu-hua; YUAN Jing; ZHANG Li; WANG Min; ZHANG Jing-hui; LIU Zhong-ping; DONG Ji-hua

    2007-01-01

    Background T cell immune abnormalities in patients with dilated cardiomyopathy (DCM) has been intensively studied over the past 10 years. Our previous study has suggested that immunization of mice with the peptides derived from human adenine nucleotide translocator (ANT) result in the production of autoantibodies against the ANT and histopathological changes similar to those in human DCM. The ANT peptides can induce autoimmune cardiomyopathy like DCM in Balb/c mice. In this study we aimed to focus on the molecular mechanism of T cells in the autoimmune cardiomyopathy mouse model by detecting the expression of the two T cell signaling molecules.Methods The ANT peptides were used to cause autoimmune cardiomyopathy in Balb/c mice. Anti-L3T4 or rat anti-mouse IgG was administered to the mice (n=6 in each group) simultaneously immunized with ANT. ELISA analysis was used to detect autoantibodies against the ANT peptides and the percentages of interferon-Y and interleukin-4 producing cells among splenic CD4+ lymphocytes was determined by using flow cytometry analysis. The expression of CD45 in spleen T cells was determined by immunohistochemistry and the mRNAs of T cell signaling molecules were detected by real-time PCR.Results Treatment of ANT immunized Balb/c mice with anti-CD4 mAb caused a reduction in the gene expression of P56lck and Zap-70 and a lower level of CD45 expression by spleen T cells. Aiso, a reverse of the Th1/Th2 ratio that results in the reduced production of antibodies against ANT was found in the anti-CD4 monoclonal antibodies (mAb)group. Whereas irrelevant antibody (rat anti-mouse IgG) did not suppress T cell signaling molecules nor inhibit CD45 expression, and control-antibody mice did not show any significant differences compared with the DCM group.Conclusion The results show that anti-CD4 mAb is a powerful inhibitor of the early initiating events of T cell receptor(TCR) signal transduction in mouse autoimmune dilated cardiomyopathy.

  6. Signal transduction of the physical environment in the neural differentiation of stem cells

    Science.gov (United States)

    Thompson, Ryan; Chan, Christina

    2016-01-01

    Neural differentiation is largely dependent on extracellular signals within the cell microenvironment. These extracellular signals are mainly in the form of soluble factors that activate intracellular signaling cascades that drive changes in the cell nucleus. However, it is becoming increasingly apparent that the physical microenvironment provides signals that can also influence lineage commitment and very low modulus surfaces has been repeatedly demonstrated to promote neurogenesis. The molecular mechanisms governing mechano-induced neural differentiation are still largely uncharacterized; however, a growing body of evidence indicates that physical stimuli can regulate known signaling cascades and transcription factors involved in neural differentiation. Understanding how the physical environment affects neural differentiation at the molecular level will enable research and design of materials that will eventually enhance neural stem cell (NSC) differentiation, homogeneity and specificity.

  7. The Mammary Epithelial Cell Secretome and its Regulation by Signal Transduction Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Jon M.; Waters, Katrina M.; Kathmann, Loel E.; Camp, David G.; Wiley, H. S.; Smith, Richard D.; Thrall, Brian D.

    2008-02-01

    Extracellular proteins released by mammary epithelial cells are critical mediators of cell communication, proliferation and organization, yet the actual spectrum of proteins released by any given cell (the secretome) is poorly characterized. To define the set of proteins secreted by human mammary epithelial cells (HMEC), we combined analytical and computational approaches to define a secretome protein set based upon probable biological significance. Analysis of HMEC-conditioned medium by liquid chromatography-mass spectrometry resulted in identification of 889 unique proteins, of which 151 were found to be specifically enriched in the extracellular compartment when compared with a database of proteins expressed in whole HMEC lysates. Additional high mass accuracy analysis revealed 36 proteins whose extracellular abundance increased after treatment with phorbol ester (PMA), a protein kinase C agonist and general secretagogue. Many of the PMA stimulated proteins have been reported to be aberrantly expressed in human cancers and appear to be co-regulated as multigene clusters. By inhibiting PMA-mediated transactivation of the epidermal growth factor receptor (EGFR), a pathway critically required for normal HMEC function, we found that the secretion of specific matrix metalloproteases were also coordinately regulated through EGFR transactivation. This study demonstrates a tiered strategy by which extracellular proteins can be identified and progressively assigned to classes of increasing confidence and regulatory importance.

  8. A Case Study of Representing Signal Transduction in Liver Cells as a Feedback Control Problem

    Science.gov (United States)

    Singh, Abhay; Jayaraman, Arul; Hahn, Juergen

    2007-01-01

    Cell signaling pathways often contain feedback loops where proteins are produced that regulate signaling. While feedback regulatory mechanisms are commonly found in signaling pathways, there is no example available in the literature that is simple enough to be presented in an undergraduate control class. This paper presents a simulation study of…

  9. Endoglin promotes endothelial cell proliferation and TGF-beta/ALK1 signal transduction

    NARCIS (Netherlands)

    Lebrin, F; Goumans, MJ; Jonker, L; Carvalho, RLC; Valdimarsdottir, G; Thorikay, M; Mummery, C; Arthur, HM; ten Dijke, P

    2004-01-01

    Endoglin is a transmembrane accessory receptor for transforming growth factor-beta (TGF-beta) that is predominantly expressed on proliferating endothelial cells in culture and on angiogenic blood vessels in vivo. Endoglin, as well as other TGF-beta signalling components, is essential during angiogen

  10. Signal transduction profile of chemical sensitisers in dendritic cells: An endpoint to be included in a cell-based in vitro alternative approach to hazard identification?

    International Nuclear Information System (INIS)

    The development of non-animal testing methods for the assessment of skin sensitisation potential is an urgent challenge within the framework of existing and forthcoming legislation. Efforts have been made to replace current animal tests, but so far no alternative methods have been developed. It is widely recognised that alternatives to animal testing cannot be accomplished with a single approach, but rather will require the integration of results obtained from different in vitro and in silico assays. The argument subjacent to the development of in vitro dendritic cell (DC)-based assays is that sensitiser-induced changes in the DC phenotype can be differentiated from those induced by irritants. This assumption is derived from the unique capacity of DC to convert environmental signals encountered at the skin into a receptor expression pattern (MHC class II molecules, co-stimulatory molecules, chemokine receptors) and a soluble mediator release profile that will stimulate T lymphocytes. Since signal transduction cascades precede changes in surface marker expression and cytokine/chemokine secretion, these phenotypic modifications are a consequence of a signal transduction profile that is specifically triggered by sensitisers and not by irritants. A limited number of studies have addressed this subject and the present review attempts to summarise and highlight all of the signalling pathways modulated by skin sensitisers and irritants. Furthermore, we conclude this review by focusing on the most promising strategies suitable for inclusion into a cell-based in vitro alternative approach to hazard identification.

  11. Chronic Hyperinsulinism Induced Down-regulation of Insulin Post-Recentor Signaling Transduction in Hep G2 Cells

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Summary: To study the regulatory effect of acute and chronic insulin treatment on insulin post-re-ceptor signaling transduction pathway in a human hepatoma cell line (Hep G2), Hep G2 cells wereincubated in the presence or absence of insulin with different concentrations in serum free mediafor 16 h and then stimulated with 100 nmol/L insulin for 1 min. Protein levels of insulin receptorβ-subunit (IRβ), insulin receptor substrate-1 (IRS-1) and p85 subunit of phosphatidylinositol 3-kinase (PI 3-kinase) were determined in total cell lysates by Western-immunoblot. Phosphorylat-ed proteins IRβ, IRS-1 and interaction of PI 3-kinase with IRS-1 were determined by immunopre-cipitation. Results showed that 1-min insulin stimulation rapidly induced tyrosine phosphorylationof IRβ and IRS-l, which in turn, resulting in association of PI 3-kinase with IRS-1. 1-100 nmol/L chronic insulin treatment induced a dose-dependent decrease in the protein level of IRβ and aslight decrease in the protein level of IRS-1. There wass more marked reduction in the phospho-rylation of IRβ, IRS-1, reaching a nadir of 22 % (P<0. 01) and 15 % (P<0. 01) of control lev-els, respectively, after 16 h treatment with 100 nmol/L insulin. The association between IRS-1and PI 3-kinase was decreased by 66 % (P<0. 01). There was no significant change in PI 3-ki-nase protein levels. These data suggest that chronic insulin treatment can induce alterations ofIRβ, IRS-1 and PI 3-kinase three early steps in insulin action, which contributes significantly toinsulin resistance, and may account for desensitization of insulin action.

  12. Action of luteinizing hormone-releasing hormone in rat ovarian cells: Hormone production and signal transduction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian.

    1989-01-01

    The present study was conducted to investigate the hypothesis that the breakdown of membrane phosphoinositides may participate in the actions of luteinizing hormone-releasing hormone (LHRH) on hormone production in rat granulosa cells. In cells prelabeled with ({sup 3}H)inositol or ({sup 3}H)arachidonic acid (AA), treatment with LHRH increased the formation of radiolabeled inositol 1,4,5-trisphosphate (IP{sub 3}) and diacylglycerol (DG), and the release of radiolabeled AA. Since IP{sub 3} induces intracellular Ca{sup 2+} mobilization, changes in the cytosolic free calcium ion concentrations ((Ca{sup 2+})i) induced by LHRH were studied in individual cells using fura-2 microspectrofluorimetry. Alterations in (Ca{sup 2+})i induced by LHRH were rapid and transient, and could be completely blocked by a LHRH antagonist. Sustained perifusion of LHRH resulted in a desensitization of the (Ca{sup 2+})i response to LHRH. LHRH treatment accelerated (Ca{sup 2+})i depletion in the cells perifused with Ca{sup 2+} free medium, indicating the involvement of intracellular Ca{sup 2+} pool(s) in (Ca{sup 2+})i changes. The actions of LHRH on the regulation of progesterone (P{sub 4}) and prostaglandin E{sub 2} (PGE{sub 2}) production were also examined. LHRH increased basal P{sub 4} production and attenuated FSH induced P{sub 4} production. Both basal and FSH stimulated PGE{sub 2} formation were increased by LHRH. Since LHRH also increased the formation of DG that stimulates the activity of protein kinase C, an activator of protein kinase C (12-0-tetradecanolyphorbol-13-acetate: TPA) was used with the Ca{sup 2+} ionophore A23187 and melittin (an activator of phospholipase A{sub 2}) to examine the roles of protein kinase C, Ca{sup 2+} and free AA, respectively, in LHRH action.

  13. Sorbitol induces apoptosis of human colorectal cancer cells via p38 MAPK signal transduction.

    Science.gov (United States)

    Lu, Xue; Li, Chun; Wang, Yong-Kun; Jiang, Kun; Gai, Xiao-Dong

    2014-06-01

    Sorbitol has been reported to have anticancer effects in several tumor models, however its effects on colorectal cancer remain elusive. In the present study, the effects of sorbitol on growth inhibition and apoptosis in the colorectal cancer HCT116 cell line were evaluated and its mechanism of action was examined. An MTT assay was utilized to determine the effect of sorbitol on HCT116 cell proliferation at different time points and variable doses. Western blot analysis was used to examine the effect of sorbitol on apoptosis-related protein expression and the p38 MAPK signaling pathway. The results revealed that sorbitol may inhibit the growth of HCT116 cells in a time- and dose-dependent manner. Following treatment with sorbitol for 3 h, western blotting demonstrated cleavage of the caspase-3 zymogen protein and a cleavage product of poly (ADP-ribose) polymerase (PARP), a known substrate of caspase-3, was also evident. During sorbitol-induced apoptosis, the mitochondrial pathway was activated by a dose-dependent increase in Bax expression and cytochrome c release, while the expression of anti-apoptotic protein Bcl-2 was significantly decreased in a dose-dependent manner. The investigation for the downstream signal pathway revealed that sorbitol-induced apoptosis was mediated by an increase in phosphorylated p38 MAPK expression. Overall, the observations from the present study imply that sorbitol causes increased levels of Bax in response to p38 MAPK signaling, which results in the initiation of the mitochondrial death cascade. Therefore, sorbitol is a promising candidate as a potential chemotherapeutic agent for the treatment of colorectal cancer HCT116 cells.

  14. Whole Cell Biosensor Using Anabaena torulosa with Optical Transduction for Environmental Toxicity Evaluation

    OpenAIRE

    Ling Shing Wong; Yook Heng Lee; Salmijah Surif

    2013-01-01

    A whole cell-based biosensor using Anabaena torulosa for the detection of heavy metals (Cu, Pb, and Cd), 2,4-dichlorophenoxyacetate (2,4-D), and chlorpyrifos was constructed. The cyanobacteria were entrapped on a cellulose membrane through filtration. Then, the membrane was dried and fixed into a cylindrical well, which was designed to be attached to an optical probe. The probe was connected to fluorescence spectrometer with optical fibre. The presence of the toxicants was indicated by the ch...

  15. Leptin differentially regulates NPY secretion in hypothalamic cell lines through distinct intracellular signal transduction pathways.

    Science.gov (United States)

    Dhillon, Sandeep S; Belsham, Denise D

    2011-04-11

    Leptin acts as a key peripheral hormone in distinct neurons in the hypothalamus to modulate both reproductive function and energy homeostasis. The control of neuropeptide Y (NPY) secretion is an example of a process that can be differentially regulated by leptin. In order to further understand these distinct modulatory effects, we have used immortalized, neuronal hypothalamic cell lines expressing NPY, mHypoE-38 and mHypoE-46. We found that these cell lines express the endogenous leptin receptor, ObRb, and secrete detectable levels of NPY. We exposed the neurons to 100nM leptin for 1h and determined that the basal levels of NPY in the cell lines were differentially regulated: NPY secretion was inhibited in mHypoE-46 neurons, whereas NPY secretion was induced in the mHypoE-38 neurons. In order to determine the mechanisms involved in the divergent regulation of NPY release, we analyzed the activity of a number of signaling components using phospho-specific antibodies directed towards specific proteins in the MAP kinase, PI3K, and AMPK pathways, among others. We found that leptin activated a different combination of second messengers in each cell line. Importantly, we could link the regulation of NPY secretion to different signaling pathways, AMPK in the mHypoE-46 and both MAPK and PI3K in the mHypoE-38 neurons. This is the first demonstration that leptin can specifically regulate individual NPY neuron secretory responses through distinct signaling pathways.

  16. Transduction of PEP-1-heme oxygenase-1 into insulin-producing INS-1 cells protects them against cytokine-induced cell death

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Su Jin; Kang, Hyung Kyung [Department of Physiology, College of Medicine, Hallym University, Chunchon 200-702 (Korea, Republic of); Song, Dong Keun [Department of Pharmacology, College of Medicine, Hallym University, Chunchon 200-702 (Korea, Republic of); Eum, Won Sik; Park, Jinseu [Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Choi, Soo Young, E-mail: sychoi@hallym.ac.kr [Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Kwon, Hyeok Yil, E-mail: hykwon@hallym.ac.kr [Department of Physiology, College of Medicine, Hallym University, Chunchon 200-702 (Korea, Republic of)

    2015-06-05

    Pro-inflammatory cytokines play a crucial role in the destruction of pancreatic β-cells, thereby triggering the development of autoimmune diabetes mellitus. We recently developed a cell-permeable fusion protein, PEP-1-heme oxygenase-1 (PEP-1-HO-1) and investigated the anti-inflammatory effects in macrophage cells. In this study, we transduced PEP-1-HO-1 into INS-1 insulinoma cells and examined its protective effect against cytokine-induced cell death. PEP-1-HO-1 was successfully delivered into INS-1 cells in time- and dose-dependent manner and was maintained within the cells for at least 48 h. Pre-treatment with PEP-1-HO-1 increased the survival of INS-1 cells exposed to cytokine mixture (IL-1β, IFN-γ, and TNF-α) in a dose-dependent manner. PEP-1-HO-1 markedly decreased cytokine-induced production of reactive oxygen species (ROS), nitric oxide (NO), and malondialdehyde (MDA). These protective effects of PEP-1-HO-1 against cytokines were correlated with the changes in the levels of signaling mediators of inflammation (iNOS and COX-2) and cell apoptosis/survival (Bcl-2, Bax, caspase-3, PARP, JNK, and Akt). These results showed that the transduced PEP-1-HO-1 efficiently prevented cytokine-induced cell death of INS-1 cells by alleviating oxidative/nitrosative stresses and inflammation. Further, these results suggested that PEP-1-mediated HO-1 transduction may be a potential therapeutic strategy to prevent β-cell destruction in patients with autoimmune diabetes mellitus. - Highlights: • We showed that PEP-1-HO-1 was efficiently delivered into INS-1 cells. • Transduced PEP-1-HO-1 exerted a protective effect against cytokine-induced cell death. • Transduced PEP-1-HO-1 inhibited cytokine-induced ROS and NO accumulation. • PEP-1-HO-1 suppressed cytokine-induced expression of iNOS, COX-2, and Bax. • PEP-1-HO-1 transduction may be an efficient tool to prevent β-cell destruction.

  17. Signal transduction in red blood cells of the lizards Ameiva ameiva and Tupinambis merianae (Squamata, Teiidae).

    Science.gov (United States)

    Beraldo, F H; Sartorello, R; Lanari, R D; Garcia, C R

    2001-06-01

    The fluorescent calcium probe, Fluo-3, AM was used to measure the intracellular calcium concentration in red blood cells (RBCs) of the teiid lizards Ameiva ameiva and Tupinambis merianae. The cytosolic [Ca2+] is maintained around 20 nM and the cells contain membrane-bound Ca2+ pools. One pool appears to be identifiable with the endoplasmic reticulum (ER) inasmuch as addition of the sarco-endoplasmic reticulum Ca2+ ATPase, SERCA, inhibitor thapsigargin induces an increase in cytosolic [Ca2+ both in the presence and in the absence of extracellular Ca2+. In addition to the ER, an acidic compartment appears to be involved in Ca2+ storage, as collapse of intracellular pHgradients by monensin, a Na+ -H+ exchanger, and nigericin, a K+ -H+ exchanger, induce the release of Ca2+ from internal pools. A vacuolar H+ pump, sensitive to NBD-Cl and bafilomycin appears to be necessary to load the acidic Ca2+ pools. Finally, the purinergic agonist ATP triggers a rapid and transient increase of [Ca2+]c in the cells from both lizard species, mostly by mobilization of the cation from internal stores. PMID:11352509

  18. Automated Enrichment, Transduction, and Expansion of Clinical-Scale CD62L+ T Cells for Manufacturing of Gene Therapy Medicinal Products

    Science.gov (United States)

    Priesner, Christoph; Aleksandrova, Krasimira; Esser, Ruth; Mockel-Tenbrinck, Nadine; Leise, Jana; Drechsel, Katharina; Marburger, Michael; Quaiser, Andrea; Goudeva, Lilia; Arseniev, Lubomir; Kaiser, Andrew D.; Glienke, Wolfgang; Koehl, Ulrike

    2016-01-01

    Multiple clinical studies have demonstrated that adaptive immunotherapy using redirected T cells against advanced cancer has led to promising results with improved patient survival. The continuously increasing interest in those advanced gene therapy medicinal products (GTMPs) leads to a manufacturing challenge regarding automation, process robustness, and cell storage. Therefore, this study addresses the proof of principle in clinical-scale selection, stimulation, transduction, and expansion of T cells using the automated closed CliniMACS® Prodigy system. Naïve and central memory T cells from apheresis products were first immunomagnetically enriched using anti-CD62L magnetic beads and further processed freshly (n = 3) or split for cryopreservation and processed after thawing (n = 1). Starting with 0.5 × 108 purified CD3+ T cells, three mock runs and one run including transduction with green fluorescent protein (GFP)-containing vector resulted in a median final cell product of 16 × 108 T cells (32-fold expansion) up to harvesting after 2 weeks. Expression of CD62L was downregulated on T cells after thawing, which led to the decision to purify CD62L+CD3+ T cells freshly with cryopreservation thereafter. Most important in the split product, a very similar expansion curve was reached comparing the overall freshly CD62L selected cells with those after thawing, which could be demonstrated in the T cell subpopulations as well by showing a nearly identical conversion of the CD4/CD8 ratio. In the GFP run, the transduction efficacy was 83%. In-process control also demonstrated sufficient glucose levels during automated feeding and medium removal. The robustness of the process and the constant quality of the final product in a closed and automated system give rise to improve harmonized manufacturing protocols for engineered T cells in future gene therapy studies. PMID:27562135

  19. Molecular Basis of Mechano-Signal Transduction in Vascular Endothelial Cells

    Science.gov (United States)

    Jo, Hanjoong

    2004-01-01

    Simulated microgravity studies using a random positioning machine (RPM). One RPM machine has been built for us by Fokker Science in Netherland. Using the device, we have developed an in vitro system to examine the effect of simulated microgravity on osteoblastic bone cells. Using this system, we have carried out gene chip studies to determine the gene expression profiles of osteoblasts cultured under simulated microgravity conditions in comparison to static controls. From this study, we have identified numerous genes, some of which are expected ones inducing bone loss, but many of which are unexpected and unknown. These findings are being prepared for publications.

  20. Corrective transduction of human epidermal stem cells in laminin-5-dependent junctional epidermolysis bullosa.

    Science.gov (United States)

    Dellambra, E; Vailly, J; Pellegrini, G; Bondanza, S; Golisano, O; Macchia, C; Zambruno, G; Meneguzzi, G; De Luca, M

    1998-06-10

    Laminin-5 is composed of three distinct polypeptides, alpha3, beta3, and gamma2, which are encoded by three different genes, LAMA3, LAMB3, and LAMC2, respectively. We have isolated epidermal keratinocytes from a patient presenting with a lethal form of junctional epidermolysis bullosa characterized by a homozygous mutation of the LAMB3 gene, which led to complete absence of the beta3 polypeptide. In vitro, beta3-null keratinocytes were unable to synthesize laminin-5 and to assemble hemidesmosomes, maintained the impairment of their adhesive properties, and displayed a decrease of their colony-forming ability. A retroviral construct expressing a human beta3 cDNA was used to transduce primary beta3-null keratinocytes. Clonogenic beta3-null keratinocytes were transduced with an efficiency of 100%. Beta3-transduced keratinocytes were able to synthesize and secrete mature heterotrimeric laminin-5. Gene correction fully restored the keratinocyte adhesion machinery, including the capacity of proper hemidesmosomal assembly, and prevented the loss of the colony-forming ability, suggesting a direct link between adhesion to laminin-5 and keratinocyte proliferative capacity. Clonal analysis demonstrated that holoclones expressed the transgene permanently, suggesting stable correction of epidermal stem cells. Because cultured keratinocytes are used routinely to make autologous grafts for patients suffering from large skin or mucosal defects, the full phenotypic reversion of primary human epidermal stem cells defective for a structural protein opens new perspectives in the long-term treatment of genodermatoses. PMID:9650620

  1. Thyroxine signal transduction in liver cells involves phospholipase C and phospholipase D activation. Genomic independent action of thyroid hormone

    Directory of Open Access Journals (Sweden)

    Krasilnikova Oksana A

    2001-04-01

    Full Text Available Abstract Background Numerous investigations demonstrate a novel role of thyroid hormone as a modulator of signal transduction. Protein kinase C (PKC is critical to the mechanism by which thyroid hormones potentiate both the antiviral and immunomodulatory actions of IFNγ in different cells and regulate the exchange of signalling phospholipids in hepatocytes. Because nothing is known about accumulation of PKC modulator - diacylglycerol in cells treated with T4, we examined the nongenomic effect of thyroid hormones on DAG formation and phospholipase activation in liver cells. Results The results obtained provide the first demonstration of phospholipase C, phospholipase D and protein kinase C nongenomic activation and diacylglycerol (DAG accumulation by L-T4 in liver cells. The experiments were performed in either the [14C]CH3COOH-labeled rat liver slices or isolated hepatocytes pre-labeled by [14C]oleic acid. L-T4 activates the DAG production in a concentration- and time-dependent manner. DAG formation in stimulated cells is biphasic and short-lived event: there is an initial, rapid rise in DAG concentration and then a slower accumulation that can be sustained for a few minutes. The early phase of L-T4 generated DAG only is accompanied by phosphatidylinositol 4,5-bisphosphate level decrease and inositol 1,4,5-trisphosphate formation while the second phase is abolished by PKC inhibitor l,(5-isoquinolinesulphonyl2methylpiperasine dihydrochloride (H7 and propranolol. The second phase of DAG production is accompanied by free choline release, phosphatidylcholine content drop and phosphatidylethanol (Peth formation. Inhibitor of phospholipase-C-dependent phosphoinositide hydrolysis, neomycin sulfate, reduced the Peth as well as the DAG response to L-T4. Conclusions The present data have indicated the DAG signaling in thyroid hormone-stimulated liver cells. L-thyroxine activates a dual phospholipase pathway in a sequential and synchronized manner

  2. Calcium signals and calcium channels in osteoblastic cells

    Science.gov (United States)

    Duncan, R. L.; Akanbi, K. A.; Farach-Carson, M. C.

    1998-01-01

    Calcium (Ca2+) channels are present in non-excitable as well as in excitable cells. In bone cells of the osteoblast lineage, Ca2+ channels play fundamental roles in cellular responses to external stimuli including both mechanical forces and hormonal signals. They are also proposed to modulate paracrine signaling between bone-forming osteoblasts and bone-resorbing osteoclasts at local sites of bone remodeling. Calcium signals are characterized by transient increases in intracellular Ca2+ levels that are associated with activation of intracellular signaling pathways that control cell behavior and phenotype, including patterns of gene expression. Development of Ca2+ signals is a tightly regulated cellular process that involves the concerted actions of plasma membrane and intracellular Ca2+ channels, along with Ca2+ pumps and exchangers. This review summarizes the current state of knowledge concerning the structure, function, and role of Ca2+ channels and Ca2+ signals in bone cells, focusing on the osteoblast.

  3. Hypergravity signal transduction in HeLa cells with concomitant phosphorylation of proteins immunoprecipitated with anti-microtubule-associated protein antibodies

    Science.gov (United States)

    Kumei, Yasuhiro; Whitson, Peggy A.; Sato, Atsushige; Cintron, Nitza M.

    1991-01-01

    It is shown that hypergravity (35g) stimulates the production of inositol 1,4,5-trisphosphate (IP3) and decreases adenosine 3-prime,5-prime-cyclic monophosphate (cAMP) levels in HeLa cells. It is proposed that IP3 and cAMP may act as second messengers in hypergravity signal transduction. Phosphorylation of microtubule-associated proteins in both the detergent-soluble and -insoluble fractions suggests that cytoskeletal structures may be influenced by gravity.

  4. Whole Cell Biosensor Using Anabaena torulosa with Optical Transduction for Environmental Toxicity Evaluation

    Directory of Open Access Journals (Sweden)

    Ling Shing Wong

    2013-01-01

    Full Text Available A whole cell-based biosensor using Anabaena torulosa for the detection of heavy metals (Cu, Pb, and Cd, 2,4-dichlorophenoxyacetate (2,4-D, and chlorpyrifos was constructed. The cyanobacteria were entrapped on a cellulose membrane through filtration. Then, the membrane was dried and fixed into a cylindrical well, which was designed to be attached to an optical probe. The probe was connected to fluorescence spectrometer with optical fibre. The presence of the toxicants was indicated by the change of fluorescence emission, before and after the exposure. The linear detection ranges for Cu, Pb, and Cd were 2.5–10.0 µg/L, 0.5–5.0 µg/L, and 0.5–10.0 µg/L, respectively, while 2,4-D and chlorpyrifos shared similar linear ranges of 0.05–0.75 µg/L. The biosensor showed good sensitivity with the lowest limits of detection (LLD for Cu, Pb, Cd, 2,4-D and chlorpyrifos determined at 1.195 µg/L, 0.100 µg/L, 0.027 µg/L, 0.025 µg/L, and 0.025 µg/L, respectively. The overall reproducibility of the biosensor (n=3 was <±6.35%. The biosensor had been tested with different combinations of toxicants, with the results showing predominantly antagonistic responses. The results confirmed that the biosensor constructed in this report is suitable to be used in quantitative and qualitative detections of heavy metals and pesticides.

  5. Physical aspects of sensory transduction on seeing, hearing and smelling

    Science.gov (United States)

    Yoshioka, Tohru; Sakakibara, Manabu

    2013-01-01

    What is the general principle of sensory transduction? Sensory transduction is defined as energy transformation from the external world to the internal world. The energy of the external world, such as thermal energy (heat), electro-magnetic energy (light), mechanical energy (sound) and the energy from molecules (chemicals), is converted into electrochemical events in the animal nervous system. The following five classes of special sense receptors are utilized for energy conversion: vision (photo); audition (sound); taste and smell (chemo); and tactile (mechano). There are also other special sense receptors, including thermo and noxious receptors. The focus of this study is on photoreceptors, sound-receptors and odorant-receptors because the transduction mechanisms of these receptors are explained biochemically and understood by a common physical principle; these biochemical models are well known in neuroscience. The following notable problems are inherent in these biochemical models: the cGMP ionophore model of the vertebrate photoreceptor cannot explain the fast photo-response (∼msec); the tip links connection model of stereocilia in the basilar membrane for opening the K+ channel on the tip of a hair has difficulty explaining the high frequency vibration of hair cells without a damping of the oscillation, and the odorant shape-specific receptor model for olfactory transduction has difficulty in discriminating the minute differences among similar fragrant smells of essential oils with different molecular shapes. These difficulties might arise from a lack of the physical sense when the transduction models were proposed. This article will reconsider these problems and propose rational models for visual, olfactory and auditory transduction. PMID:27493557

  6. Sensory Transduction in Caenorhabditis elegans

    Science.gov (United States)

    Brown, Austin L.; Ramot, Daniel; Goodman, Miriam B.

    The roundworm Caenorhabditis elegans has a well-defined and comparatively simple repertoire of sensory-guided behaviors, all of which rely on its ability to detect chemical, mechanical or thermal stimuli. In this chapter, we review what is known about the ion channels that mediate sensation in this remarkable model organism. Genetic screens for mutants defective in sensory-guided behaviors have identified genes encoding channel proteins, which are likely transducers of chemical, thermal, and mechanical stimuli. Such classical genetic approaches are now being coupled with molecular genetics and in vivo cellular physiology to elucidate how these channels are activated in specific sensory neurons. The ion channel superfamilies implicated in sensory transduction in C. elegans - CNG, TRP, and DEG/ENaC - are conserved across phyla and also appear to contribute to sensory transduction in other organisms, including vertebrates. What we learn about the role of these ion channels in C. elegans sensation is likely to illuminate analogous processes in other animals, including humans.

  7. Ultrastructural observations reveal the presence of channels between cork cells.

    Science.gov (United States)

    Teixeira, Rita Teresa; Pereira, Helena

    2009-12-01

    The ultrastructure of phellem cells of Quercus suber L. (cork oak) and Calotropis procera (Ait) R. Br. were analyzed using electron transmission microscopy to determine the presence or absence of plasmodesmata (PD). Different types of Q. suber cork samples were studied: one year shoots; virgin cork (first periderm), reproduction cork (traumatic periderm), and wet cork. The channel structures of PD were found in all the samples crossing adjacent cell walls through the suberin layer of the secondary wall. Calotropis phellem also showed PD crossing the cell walls of adjacent cells but in fewer numbers compared to Q. suber. In one year stems of cork oak, it was possible to follow the physiologically active PD with ribosomic accumulation next to the aperture of the channel seen in the phellogen cells to the completely obstructed channels in the dead cells that characterize the phellem tissue.

  8. KCNQ1 channels sense small changes in cell volume

    DEFF Research Database (Denmark)

    Grunnet, Morten; Jespersen, Thomas; MacAulay, Nanna;

    2003-01-01

    Many important physiological processes involve changes in cell volume, e.g. the transport of salt and water in epithelial cells and the contraction of cardiomyocytes. In this study, we show that voltage-gated KCNQ1 channels, which are strongly expressed in epithelial cells or cardiomyocytes...... role in cell volume control, e.g. during transepithelial transport of salt and water. Udgivelsesdato: 2003-Jun-1......, and KCNQ4 channels, expressed in hair cells and the auditory tract, are tightly regulated by small cell volume changes when co-expressed with aquaporin 1 water-channels (AQP1) in Xenopus oocytes. The KCNQ1 and KCNQ4 current amplitudes precisely reflect the volume of the oocytes. By contrast, the related...

  9. Calcium-mediated transductive systems and functionally active gap junctions in astrocyte-like GL15 cells

    Directory of Open Access Journals (Sweden)

    Steimberg Nathalie

    2001-05-01

    Full Text Available Abstract Background It has been proposed that GL15, a human cell line derived from glioblastoma multiforme, is a possible astroglial-like cell model, based on the presence of cytoplasmic glial fibrillary acidic protein. Results The aim of this work was to delineate the functional characteristics of GL15 cells using various experimental approaches, including the study of morphology, mechanism of induction of intracellular Ca2+ increase by different physiological agonists, and the presence and permeability of the gap-junction system during cell differentiation. Immunostaining experiments showed the presence and localization of specific glial markers, such as glial fibrillary acidic protein and S100B, and the lack of the neuronal marker S100A. Notably, all the Ca2+ pathways present in astrocytes were detected in GL15 cells. In particular, oscillations in intracellular Ca2+ levels were recorded either spontaneously, or in the presence of ATP or glutamate (but not KCl. Immunolabelling assays and confocal microscopy, substantiated by Western blot analyses, revealed the presence of connexin43, a subunit of astrocyte gap-junction channels. The protein is organised in characteristic spots on the plasma membrane at cell-cell contact regions, and its presence and distribution depends on the differentiative status of the cell. Finally, a microinjection/dye-transfer assay, employed to determine gap-junction functionality, clearly demonstrated that the cells were functionally coupled, albeit to varying degrees, in differentiated and undifferentiated phenotypes. Conclusions In conclusion, results from this study support the use of the GL15 cell line as a suitable in vitro astrocyte model, which provides a valuable guide for studying glial physiological features at various differentiation phases.

  10. HIV-TAT mediated protein transduction of Cu/Zn-superoxide dismutase-1 (SOD1) protects skin cells from ionizing radiation

    International Nuclear Information System (INIS)

    Radiation-induced skin injury remains a serious concern during radiotherapy. Cu/Zn-superoxide dismutase (Cu/Zn-SOD, SOD1) is a conserved enzyme for scavenging superoxide radical in cells. Because of the integrity of cell membranes, exogenous molecule is not able to be incorporated into cells, which limited the application of natural SOD1. The aim of this study was to evaluate the protective role of HIV-TAT protein transduction domain mediated protein transduction of SOD1 (TAT-SOD1) against ionizing radiation. The recombinant TAT-SOD1 and SOD1 were obtained by prokaryotic–based protein expression system. The transduction effect and biological activity of TAT-SOD1 was measured by immunofluorescence and antioxidant capability assays in human keratinocyte HaCaT cells. Mito-Tracker staining, reactive oxygen species (ROS) generation assay, cell apoptosis analysis and malondialdehyde (MDA) assay were used to access the protective effect of TAT- SOD1. Uptake of TAT-SOD1 by HaCaT cells retained its biological activity. Compared with natural SOD1, the application of TAT-SOD1 significantly enhanced the viability and decreased the apoptosis induced by X-ray irradiation. Moreover, TAT-SOD1 reduced ROS and preserved mitochondrial integrity after radiation exposure in HaCaT cells. Radiation-induced γH2AX foci, which are representative of DNA double strand breaks, were decreased by pretreatment with TAT-SOD1. Furthermore, subcutaneous application of TAT-SOD1 resulted in a significant decrease in 45 Gy electron beam-induced ROS and MDA concentration in the skins of rats. This study provides evidences for the protective role of TAT-SOD1 in alleviating radiation-induced damage in HaCaT cells and rat skins, which suggests a new therapeutic strategy for radiation-induced skin injury

  11. [6]-Gingerol Prevents Disassembly of Cell Junctions and Activities of MMPs in Invasive Human Pancreas Cancer Cells through ERK/NF-κB/Snail Signal Transduction Pathway

    Directory of Open Access Journals (Sweden)

    Sung Ok Kim

    2013-01-01

    Full Text Available To study the effects of [6]-gingerol, a ginger phytochemical, on tight junction (TJ molecules, we investigated TJ tightening and signal transduction pathways in human pancreatic duct cell-derived cancer cell line PANC-1. The following methods were utilized: MTT assay to determine cytotoxicity; zymography to examine matrix metalloproteinase (MMP activities; transepithelial electrical resistance (TER and paracellular flux for TJ measurement; RT-PCR and immunoblotting for proteins related to TJ and invasion; and EMSA for NF-κB activity in PANC-1 cells. Results revealed that TER significantly increased and claudin 4 and MMP-9 decreased compared to those of the control. TJ protein levels, including zonula occludens (ZO- 1, occludin, and E-cadherin, increased in [6]-gingerol-treated cells, which correlated with a decrease in paracellular flux and MMP activity. Furthermore, NF-κB/Snail nuclear translocation was suppressed via downregulation of the extracellular signal-regulated kinase (ERK pathway in response to [6]-gingerol treatment. Moreover, treatment with U0126, an ERK inhibitor, completely blocked NF-κB activity. In conclusion, these findings demonstrate that [6]-gingerol regulates TJ-related proteins and suppresses invasion and metastasis through NF-κB/Snail inhibition via inhibition of the ERK pathway. Therefore, [6]-gingerol may suppress the invasive activity of PANC-1 cells.

  12. Hetero-oligomeric cell wall channels (porins) of Nocardia farcinica.

    Science.gov (United States)

    Kläckta, Christian; Knörzer, Philipp; Riess, Franziska; Benz, Roland

    2011-06-01

    The cell wall of Nocardia farcinica contains a cation-selective cell wall channel, which may be responsible for the limited permeability of the cell wall of N. farcinica for negatively charged antibiotics. Based on partial sequencing of the protein responsible for channel formation derived from N. farcinica ATTC 3318 we were able to identify the corresponding genes (nfa15890 and nfa15900) within the known genome of N. farcinica IFM 10152. The corresponding genes of N. farcinica ATTC 3318 were separately expressed in the Escherichia coli BL21DE3Omp8 strain and the N-terminal His10-tagged proteins were purified to homogeneity using immobilized metal affinity chromatography. The pure proteins were designated NfpANHis and NfpBNHis, for N. farcinica porin A and N. farcinica porin B. The two proteins were checked separately for channel formation in lipid bilayers. Our results clearly indicate that the proteins NfpANHis and NfpBNHis expressed in E. coli could only together form a channel in lipid bilayer membranes. This means that the cell wall channel of N. farcinica is formed by a heterooligomer. NfpA and NfpB form together a channel that may structurally be related to MspA of Mycobacterium smegmatis based on amino acid comparison and renaturation procedure. PMID:21092733

  13. The role of a cell surface inhibitor in early signal transduction associated with the regulation of cell division and differentiation

    Science.gov (United States)

    Johnson, T. C.; Enebo, D. J.; Moos, P. J.; Fattaey, H. K.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    Serum stimulation of quiescent human fibroblast cultures resulted in a hyperphosphorylation of the nuclear retinoblastoma gene susceptibility product (RB). However, serum stimulation in the presence of 9 x 10(-8) M of a purified bovine sialoglycopeptide (SGP) cell surface inhibitor abrogated the hyperphosphorylation of the RB protein and the subsequent progression of cells through the mitotic cycle. The experimental results suggest that the SGP mediated its cell cycle arrest at a site in the cell cycle that was at the time of RB phosphorylation or somewhat upstream of the modification of this regulatory protein of cell division. Both cells serum-deprived and serum stimulated in the presence of the SGP displayed only a hypophosphorylated RB protein, consistent with the SGP-mediated cell cycle arrest point being near the G1/S interface.

  14. The calcium-activated potassium channels of turtle hair cells

    OpenAIRE

    1995-01-01

    A major factor determining the electrical resonant frequency of turtle cochlear hair cells is the time course of the Ca-activated K current (Art, J. J., and R. Fettiplace. 1987. Journal of Physiology. 385:207- 242). We have examined the notion that this time course is dictated by the K channel kinetics by recording single Ca-activated K channels in inside-out patches from isolated cells. A hair cell's resonant frequency was estimated from its known correlation with the dimensions of the hair ...

  15. K-channels inhibited by hydrogen peroxide mediate abscisic acid signaling in Vicia guard cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A number of studies show that environmental stress conditions increase abscisic acid (ABA) and hydrogen peroxide (H2O2) levels in plant cells. Despite this central role of ABA in altering stomatal aperture by regulating guard cell ion transport, little is known concerning the relationship between ABA and H2O2 in signal transduction leading to stomatal movement. Epidermal strip bioassay illustrated that ABA-inhibited stomatal opening and ABA-induced stomatal closure were abolished partly by externally added catalase (CAT) or diphenylene iodonium (DPI), which are a H2O2 scavenger and a NADPH oxidase inhibitor respectively. In contrast, internally added CAT or DPI nearly completely or partly reversed ABA-induced closure in half-stoma. Consistent with these results, whole-cell patch-clamp analysis showed that intracellular application of CAT or DPI partly abolished ABA-inhibited inward K+ current across the plasma membrane of guard cells. H2O2 mimicked ABA to inhibit inward K+ current, an effect which was reversed by the addition of ascorbic acid (Vc) in patch clamping micropipettes. These results suggested that H2O2 mediated ABA-induced stomatal movement by targeting inward K+ channels at plasma membrane.

  16. Chloride channels and the reactions of cells to topography

    Directory of Open Access Journals (Sweden)

    Tobasnick G.

    2001-12-01

    Full Text Available The reactions of rat epitenon cells to substratum topography on the micrometric and nanometric scale such as groove-ridge structures include cell extension, elongation and orientation reactions. In this paper we report that stretch-sensitive chloride channels may be involved in the earliest stages of these reactions in epitenon fibroblast-like cells. We report that rat epitenon-cells can develop appreciable lateral mechanical tension that could stretch both the force generating cells themselves and those nearby. We show that cells in medium in which more than 80% of the chloride has been replaced by nitrate show little reaction to topography. Spreading of the cells takes place but is much reduced along the direction of the groove-ridge topography but enhanced across the topography. The chloride channel inhibitors NPPB (5-Nitro-2- (3phenylpropylamino benzoicacid 4,4'-disothiocyanostilbene-2, 2' sulphonic acid (DIDS and Chlorotoxin produce similar results which are further accentuated when these inhibitors are presented in low chloride medium. An antibody against ClC3, which has close homology to ClC5/6 also, blocked reaction to topography. These treatments have no significant effect on cell spreading on planar surfaces nor do they lead to changes in internal pH in the cells. There is a slight inhibition of rates of cell movement . Experiments using antisense oligoribonucleotides to ClC-5 or ClC-6 channel m-RNA also inhibit topographic reactions, which provides further confirmation of the hypothesis. Since the ClC-3,4 and 5 share considerable sequence similarities in the genes and in their proteins it has not been possible to make an unambigous determination of which precise chloride channel(s is (are involved.

  17. Transduction and oncolytic profile of a potent replication-competent adenovirus 11p vector (RCAd11pGFP in colon carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Jim Silver

    Full Text Available Replication-competent adenovirus type 5 (Ad5 vectors promise to be more efficient gene delivery vehicles than their replication-deficient counterparts, and chimeric Ad5 vectors that are capable of targeting CD46 are more effective than Ad5 vectors with native fibers. Although several strategies have been used to improve gene transduction and oncolysis, either by modifying their tropism or enhancing their replication capacity, some tumor cells are still relatively refractory to infection by chimeric Ad5. The oncolytic effects of the vectors are apparent in certain tumors but not in others. Here, we report the biological and oncolytic profiles of a replication-competent adenovirus 11p vector (RCAd11pGFP in colon carcinoma cells. CD46 was abundantly expressed in all cells studied; however, the transduction efficiency of RCAd11pGFP varied. RCAd11pGFP efficiently transduced HT-29, HCT-8, and LS174T cells, but it transduced T84 cells, derived from a colon cancer metastasis in the lung, less efficiently. Interestingly, RCAd11p replicated more rapidly in the T84 cells than in HCT-8 and LS174T cells and as rapidly as in HT-29 cells. Cell toxicity and proliferation assays indicated that RCAd11pGFP had the highest cell-killing activities in HT29 and T84 cells, the latter of which also expressed the highest levels of glycoproteins of the carcinoma embryonic antigen (CEA family. In vivo experiments showed significant growth inhibition of T84 and HT-29 tumors in xenograft mice treated with either RCAd11pGFP or Ad11pwt compared to untreated controls. Thus, RCAd11pGFP has a potent cytotoxic effect on colon carcinoma cells.

  18. Enhancement of cytotoxic T lymphocyte activity by dendritic cells loaded with Tat-protein transduction domain-fused hepatitis B virus core antigen

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The protein transduction domain (PTD) of human immuno-deficiency virus-1-Tat protein has a unique potency to pen-etrate the cellular membranes. To synthesize the sequence of Tat-PTD and hepatitis B virus core antigen (HBcAg), we spliced these sequences and linked a fusion gene into the pMAL-c2x vector. The fusion proteins were purified by affin-ity chromatography and pulsed with bone marrow -derived den-dritic cells (DCs), and the transduction of recombinant pro-tein was detected by immunofluorescence antibody assay.Results showed that recombinant PTD-HBcAg could pen-etrate into DC cytoplasm while recombinant HBcAg was de-tected on the surface of cells. The percentage of DC surface molecules, such as CD80, CD86 and major histocompatibii-ity complex Ⅱ, and production of cytokine (IL-12pT0) induced by recombinant PTD-HBcAg were significantly higher than those induced by recombinant HBcAg or tumor necrosis fac-tor-α. DCs treated with PTD-HBcAg induced T cells to dif-ferentiate into specific cytotoxic T lymphocytes (CTLs) and enhanced the CTL killing response. In conclusion, the ex-pressed and purified PTD-HBcAg fusion protein could pen-etrate into cells through the plasma membrane, promote DC maturation, and enhance T cells response to generate HBcAg-specific CTLs efficiently.

  19. Channeling your inner ear potassium: K(+) channels in vestibular hair cells.

    Science.gov (United States)

    Meredith, Frances L; Rennie, Katherine J

    2016-08-01

    During development of vestibular hair cells, K(+) conductances are acquired in a specific pattern. Functionally mature vestibular hair cells express different complements of K(+) channels which uniquely shape the hair cell receptor potential and filtering properties. In amniote species, type I hair cells (HCI) have a large input conductance due to a ubiquitous low-voltage-activated K(+) current that activates with slow sigmoidal kinetics at voltages negative to the membrane resting potential. In contrast type II hair cells (HCII) from mammalian and non-mammalian species have voltage-dependent outward K(+) currents that activate rapidly at or above the resting membrane potential and show significant inactivation. A-type, delayed rectifier and calcium-activated K(+) channels contribute to the outward K(+) conductance and are present in varying proportions in HCII. In many species, K(+) currents in HCII in peripheral locations of vestibular epithelia inactivate more than HCII in more central locations. Two types of inward rectifier currents have been described in both HCI and HCII. A rapidly activating K(+)-selective inward rectifier current (IK1, mediated by Kir2.1 channels) predominates in HCII in peripheral zones, whereas a slower mixed cation inward rectifier current (Ih), shows greater expression in HCII in central zones of vestibular epithelia. The implications for sensory coding of vestibular signals by different types of hair cells are discussed. This article is part of a Special Issue entitled . PMID:26836968

  20. Performance enhancement of PV cells through micro-channel cooling

    Directory of Open Access Journals (Sweden)

    Muzaffar Ali

    2015-11-01

    Full Text Available Efficiency of a PV cell is strongly dependent on its surface temperature. The current study is focused to achieve maximum efficiency of PV cells even in scorching temperatures in hot climates like Pakistan where the cell surface temperatures can even rise up to around 80 ℃. The study includes both the CFD and real time experimental investigations of a solar panel using micro channel cooling. Initially, CFD analysis is performed by developing a 3D model of a Mono-Crystalline cell with micro-channels to analyze cell surface temperature distribution at different irradiance and water flow rates. Afterwards, an experimental setup is developed for performance investigations under the real conditions of an open climate of a Pakistan's city, Taxila. Two 35W panels are manufactured for the experiments; one is based on the standard manufacturing procedure while other cell is developed with 4mm thick aluminum sheet having micro-channels of cross-section of 1mm by 1mm. The whole setup also includes different sensors for the measurement of solar irradiance, cell power, surface temperature and water flow rates. The experimental results show that PV cell surface temperature drop of around 15 ℃ is achieved with power increment of around 14% at maximum applied water flow rate of 3 LPM. Additionally, a good agreement is also found between CFD and experimental results. Therefore, that study clearly shows that a significant performance improvement of PV cells can be achieved through the proposed cell cooling technique.

  1. Radiosensitizing Effect of TRPV1 Channel Inhibitors in Cancer Cells.

    Science.gov (United States)

    Nishino, Keisuke; Tanamachi, Keisuke; Nakanishi, Yuto; Ide, Shunta; Kojima, Shuji; Tanuma, Sei-Ichi; Tsukimoto, Mitsutoshi

    2016-07-01

    Radiosensitizers are used in cancer therapy to increase the γ-irradiation susceptibility of cancer cells, including radioresistant hypoxic cancer cells within solid tumors, so that radiotherapy can be applied at doses sufficiently low to minimize damage to adjacent normal tissues. Radiation-induced DNA damage is repaired by multiple repair systems, and therefore these systems are potential targets for radiosensitizers. We recently reported that the transient receptor potential vanilloid type 1 (TRPV1) channel is involved in early responses to DNA damage after γ-irradiation of human lung adenocarcinoma A549 cells. Therefore, we hypothesized that TRPV1 channel inhibitors would have a radiosensitizing effect by blocking repair of radiation-induced cell damage. Here, we show that pretreatment of A549 cells with the TRPV1 channel inhibitors capsazepine, AMG9810, SB366791 and BCTC suppressed the γ-ray-induced activation of early DNA damage responses, i.e., activation of the protein kinase ataxia-telangiectasia mutated (ATM) and accumulation of p53-binding protein 1 (53BP1). Further, the decrease of survival fraction at one week after γ-irradiation (2.0 Gy) was enhanced by pretreatment of cells with these inhibitors. On the other hand, inhibitor pretreatment did not affect cell viability, the number of apoptotic or necrotic cells, or DNA synthesis at 24 h after irradiation. These results suggest that inhibition of DNA repair by TRPV1 channel inhibitors in irradiated A549 cells caused gradual loss of proliferative ability, rather than acute facilitation of apoptosis or necrosis. TRPV1 channel inhibitors could be novel candidates for radiosensitizers to improve the efficacy of radiation therapy, either alone or in combination with other types of radiosensitizers. PMID:27150432

  2. Pheromone transduction in moths

    Directory of Open Access Journals (Sweden)

    Monika Stengl

    2010-12-01

    Full Text Available Calling female moths attract their mates late at night with intermittent release of a species-specific sex-pheromone blend. Mean frequency of pheromone filaments encodes distance to the calling female. In their zig-zagging upwind search male moths encounter turbulent pheromone blend filaments at highly variable concentrations and frequencies. The male moth antennae are delicately designed to detect and distinguish even traces of these sex pheromones amongst the abundance of other odors. Its olfactory receptor neurons sense even single pheromone molecules and track intermittent pheromone filaments of highly variable frequencies up to about 30 Hz over a wide concentration range. In the hawkmoth Manduca sexta brief, weak pheromone stimuli as encountered during flight are detected via a metabotropic PLCβ-dependent signal transduction cascade which leads to transient changes in intracellular Ca2+ concentrations. Strong or long pheromone stimuli, which are possibly perceived in direct contact with the female, activate receptor-guanylyl cyclases causing long-term adaptation. In addition, depending on endogenous rhythms of the moth´s physiological state, hormones such as the stress hormone octopamine modulate second messenger levels in sensory neurons. High octopamine levels during the activity phase maximize temporal resolution cAMP-dependently as a prerequisite to mate location. Thus, I suggest that sliding adjustment of odor response threshold and kinetics is based upon relative concentration ratios of intracellular Ca2+ and cyclic nucleotide levels which gate different ion channels synergistically. In addition, I propose a new hypothesis for the cyclic nucleotide-dependent ion channel formed by insect olfactory receptor/coreceptor complexes. Instead of being employed for an ionotropic mechanism of odor detection it is proposed to control subthreshold membrane potential oscillation of sensory neurons, as a basis for temporal encoding of odors.

  3. Adaptation Independent Modulation of Auditory Hair Cell Mechanotransduction Channel Open Probability Implicates a Role for the Lipid Bilayer.

    Science.gov (United States)

    Peng, Anthony W; Gnanasambandam, Radhakrishnan; Sachs, Frederick; Ricci, Anthony J

    2016-03-01

    The auditory system is able to detect movement down to atomic dimensions. This sensitivity comes in part from mechanisms associated with gating of hair cell mechanoelectric transduction (MET) channels. MET channels, located at the tops of stereocilia, are poised to detect tension induced by hair bundle deflection. Hair bundle deflection generates a force by pulling on tip-link proteins connecting adjacent stereocilia. The resting open probability (P(open)) of MET channels determines the linearity and sensitivity to mechanical stimulation. Classically, P(open) is regulated by a calcium-sensitive adaptation mechanism in which lowering extracellular calcium or depolarization increases P(open). Recent data demonstrated that the fast component of adaptation is independent of both calcium and voltage, thus requiring an alternative explanation for the sensitivity of P(open) to calcium and voltage. Using rat auditory hair cells, we characterize a mechanism, separate from fast adaptation, whereby divalent ions interacting with the local lipid environment modulate resting P(open). The specificity of this effect for different divalent ions suggests binding sites that are not an EF-hand or calmodulin model. GsMTx4, a lipid-mediated modifier of cationic stretch-activated channels, eliminated the voltage and divalent sensitivity with minimal effects on adaptation. We hypothesize that the dual mechanisms (lipid modulation and adaptation) extend the dynamic range of the system while maintaining adaptation kinetics at their maximal rates.

  4. Effect of cigarette smoke extract on lipopolysaccha-ride-activated mitogen-activated protein kinase signal transduction pathway in cultured cells

    Institute of Scientific and Technical Information of China (English)

    LI Wen; XU Yong-jian; SHEN Hua-hao

    2007-01-01

    Background Lipopolysaccharide (LPS) forms outer membrane of the wall of Gram-negative cells. LPS can directly cause damage to epithelia of respiratory tract and is the major factor responsible for the chronic inflammation of respiratory passage. The mitogen-activated protein kinase (MAPK) signal transduction pathway of the airway epithelia is intimately associated with the action of LPS. The chronic inflammation of respiratory tract and smoking are interrelated and entwined in the development and progression of chronic lung diseases. This study was designed to examine the effects of cigarette smoke extract (CSE) and LPS on MAPK signal transduction pathway in order to further understand the roles CSE and LPS play in chronic lung inflammation.Methods Cultured primary human epithelial cells of airway were divided into four groups according to the stimulants used: blank control group, LPS-stimulation group, CSE-stimulation group and CSE plus LPS group. Western blotting was employed for the detection of phosphorylation level of extracellular-signal-regulated-kinase (ERK1/2), p38 MAPK and c-Jun N-terminal kinase (JNK). The expression of cytokines of MAPK transduction pathway (granulocyte-macrophage colony stimulating factor (GM-CSF) and mRNA of IL-8) in the primary epithelial cells of respiratory tract was also determined.Results Western blotting revealed that the phosphorylation levels of ERK1/2, p38 MAPK and JNK were low and 2 hours after the LPS stimulation, the phosphorylation of ERK1/2, p38 MAPK and JNK were all increased. There was a significant difference in the phosphorylation between the LPS-stimulation group and blank control group (P<0.05); no significant difference was found between CSE-stimulation group and blank control group (P>0.05); there was a significant difference between CSE + LPS group and blank control group and between CSE + LPS group and LPS group (P<0.05). The phosphorylation of CSE-LPS group was higher than that of blank control group but

  5. Honing in on the ATP Release Channel in Taste Cells.

    Science.gov (United States)

    Medler, Kathryn F

    2015-09-01

    Studies over the last 8 years have identified 3 potential channels that appear to release ATP from Type II cells in response to taste stimuli. These studies have taken different methodological approaches but have all provided data supporting their candidate channel as the ATP release channel. These potential channels include Pannexin 1, Connexins (30 and/or 43), and most recently, the Calhm1 channel. Two papers in this issue of Chemical Senses provide compelling new evidence that Pannexin 1 is not the ATP release channel. Tordoff et al. did a thorough behavioral analysis of the Pannexin1 knock out mouse and found that these animals have the same behavioral responses as wild type mice for 7 different taste stimuli that were tested. Vandenbeuch et al. presented an equally thorough analysis of the gustatory nerve responses in the Pannexin1 knock out mouse and found no differences compared with controls. Thus when the role of Pannexin 1 is analyzed at the systems level, it is not required for normal taste perception. Further studies are needed to determine the role of this hemichannel in taste cells.

  6. Methylmercury, an environmental electrophile capable of activation and disruption of the Akt/CREB/Bcl-2 signal transduction pathway in SH-SY5Y cells

    Science.gov (United States)

    Unoki, Takamitsu; Abiko, Yumi; Toyama, Takashi; Uehara, Takashi; Tsuboi, Koji; Nishida, Motohiro; Kaji, Toshiyuki; Kumagai, Yoshito

    2016-01-01

    Methylmercury (MeHg) modifies cellular proteins via their thiol groups in a process referred to as “S-mercuration”, potentially resulting in modulation of the cellular signal transduction pathway. We examined whether low-dose MeHg could affect Akt signaling involved in cell survival. Exposure of human neuroblastoma SH-SY5Y cells of up to 2 μM MeHg phosphorylated Akt and its downstream signal molecule CREB, presumably due to inactivation of PTEN through S-mercuration. As a result, the anti-apoptotic protein Bcl-2 was up-regulated by MeHg. The activation of Akt/CREB/Bcl-2 signaling mediated by MeHg was, at least in part, linked to cellular defence because either pretreatment with wortmannin to block PI3K/Akt signaling or knockdown of Bcl-2 enhanced MeHg-mediated cytotoxicity. In contrast, increasing concentrations of MeHg disrupted Akt/CREB/Bcl-2 signaling. This phenomenon was attributed to S-mercuration of CREB through Cys286 rather than Akt. These results suggest that although MeHg is an apoptosis-inducing toxicant, this environmental electrophile is able to activate the cell survival signal transduction pathway at lower concentrations prior to apoptotic cell death. PMID:27357941

  7. Voltage-gated sodium channels in taste bud cells

    Directory of Open Access Journals (Sweden)

    Williams Mark E

    2009-03-01

    Full Text Available Abstract Background Taste bud cells transmit information regarding the contents of food from taste receptors embedded in apical microvilli to gustatory nerve fibers innervating basolateral membranes. In particular, taste cells depolarize, activate voltage-gated sodium channels, and fire action potentials in response to tastants. Initial cell depolarization is attributable to sodium influx through TRPM5 in sweet, bitter, and umami cells and an undetermined cation influx through an ion channel in sour cells expressing PKD2L1, a candidate sour taste receptor. The molecular identity of the voltage-gated sodium channels that sense depolarizing signals and subsequently initiate action potentials coding taste information to gustatory nerve fibers is unknown. Results We describe the molecular and histological expression profiles of cation channels involved in electrical signal transmission from apical to basolateral membrane domains. TRPM5 was positioned immediately beneath tight junctions to receive calcium signals originating from sweet, bitter, and umami receptor activation, while PKD2L1 was positioned at the taste pore. Using mouse taste bud and lingual epithelial cells collected by laser capture microdissection, SCN2A, SCN3A, and SCN9A voltage-gated sodium channel transcripts were expressed in taste tissue. SCN2A, SCN3A, and SCN9A were expressed beneath tight junctions in subsets of taste cells. SCN3A and SCN9A were expressed in TRPM5 cells, while SCN2A was expressed in TRPM5 and PKD2L1 cells. HCN4, a gene previously implicated in sour taste, was expressed in PKD2L1 cells and localized to cell processes beneath the taste pore. Conclusion SCN2A, SCN3A and SCN9A voltage-gated sodium channels are positioned to sense initial depolarizing signals stemming from taste receptor activation and initiate taste cell action potentials. SCN2A, SCN3A and SCN9A gene products likely account for the tetrodotoxin-sensitive sodium currents in taste receptor cells.

  8. Expression and Fuactional Role of HERG1, K+ Channels in Leukemic Cells and Leukemic Stem Cells

    Institute of Scientific and Technical Information of China (English)

    LI Huiyu; LIU Liqiong; GUO Tiannan; ZHANG Jiahua; LI Xiaoqing; DU Wen; LIU Wei; CHEN Xiangjun; HUANG Shi'ang

    2007-01-01

    In order to investigate the expression and functional role of HERG1 K+ channels in leukemic cells and leukemic stem cells (LSCs), RT-PCR was used to detect the HERG1 K+ channels expression in leukemic cells and LSCs. The functional role of HERG1 K+ channels in leukemic cell proliferation was measured by MTT assay, and cell cycle and apoptosis were analyzed by flow cytometry. The results showed that herg mRNA was expressed in CD34+/CD38-, CD123+ LSCs but not in circulating CD34+ cells. Herg mRNA was also up-regulated in leukemia cell lines K562 and HL60 as well as almost all the primary leukemic cells while not in normal peripheral blood mononuclear cells (PBMNCs) and the expression of herg mRNA was not associated with the clinical and cytogenetic features of leukemia. In addition, leukemic cell proliferation was dramatically inhibited by HERG K+ channel special inhibitor E-4031. Moreover, E-4031 suppressed the cell growth by inducing a specific block at the G1/S transition phase of the cell cycle but had no effect on apoptosis in leukemic cells. The results suggested that HERG1 K+ channels could regulate leukemic cells proliferation and were necessary for leukemic cells to proceed with the cell cycle. HERG1 K+ channels may also have oncogenic potential and may be a biomarker for diagnosis of leukemia and a novel potential pharmacological target for leukemia therapy.

  9. Effect of NK4 Transduction in Bone Marrow-Derived Mesenchymal Stem Cells on Biological Characteristics of Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yun-Peng Sun

    2014-03-01

    Full Text Available Pancreatic cancer usually has a poor prognosis, and no gene therapy has yet been developed that is effective to treat it. Since a unique characteristic of bone marrow-derived mesenchymal stem cells (MSCs is that they migrate to tumor tissues, we wanted to determine whether MSCs could serve as a vehicle of gene therapy for targeting pancreatic cancer. First, we successfully extracted MSCs from SD rats. Next, MSCs were efficiently transduced with NK4, an antagonist of hepatocyte growth factor (HGF which comprising the N-terminal and the subsequent four kringle domains of HGF, by an adenoviral vector. Then, we confirmed that rat MSCs preferentially migrate to pancreatic cancer cells. Last, MSCs expressing NK4 (NK4-MSCs strongly inhibited proliferation and migration of the pancreatic cancer cell line SW1990 after co-culture. These results indicate that MSCs can serve as a vehicle of gene therapy for targeting pancreatic cancer.

  10. Signal transduction and information processing in mammalian taste buds

    OpenAIRE

    Roper, Stephen D.

    2007-01-01

    The molecular machinery for chemosensory transduction in taste buds has received considerable attention within the last decade. Consequently, we now know a great deal about sweet, bitter, and umami taste mechanisms and are gaining ground rapidly on salty and sour transduction. Sweet, bitter, and umami tastes are transduced by G-protein-coupled receptors. Salty taste may be transduced by epithelial Na channels similar to those found in renal tissues. Sour transduction appears to be initiated b...

  11. The Na+/H+ exchanger NHE1 in stress-induced signal transduction: implications for cell proliferation and cell death

    DEFF Research Database (Denmark)

    Pedersen, Stine Falsig

    2006-01-01

    The ubiquitous plasma membrane Na+/H+ exchanger NHE1 is highly conserved across vertebrate species and is extensively characterized as a major membrane transport mechanism in the regulation of cellular pH and volume. In recent years, the understanding of the role of NHE1 in regulating cell functi...

  12. Involvement of phospholipase D-related signal transduction in chemical-induced programmed cell death in tomato cell cultures

    NARCIS (Netherlands)

    Iakimova, E.T.; Michaeli, R.; Woltering, E.J.

    2013-01-01

    Phospholipase D (PLD) and its product phosphatidic acid (PA) are incorporated in a complex metabolic network in which the individual PLD isoforms are suggested to regulate specific developmental and stress responses, including plant programmed cell death (PCD). Despite the accumulating knowledge, th

  13. Effect of mitogen-activated protein kinase signal transduction pathway on multidrug resistance induced by vincristine in gastric cancer cell line MGC803

    Institute of Scientific and Technical Information of China (English)

    Bo Chen; Feng Jin; Ping Lu; Xiang-Lan Lu; Ping-Ping Wang; Yun-Peng Liu; Fan Yao; Shu-Bao Wang

    2004-01-01

    AIM: To investigate the correlation between mitogenactivated protein kinase (MAPK) signal transduction pathway and multidrug resistance (MDR) in MGC803 cells. METHODS: Western blot was used to analyze the expression of MDR associated gene in transient vincristine (VCR) induced MGC803 cells, which were treated with or without the specific inhibitor of MAPK, PD098059. Morphologic analysis of the cells treated by VCR with or without PD098059 was determined by Wright-Giemsa staining. The cell cycle analysis was performed by using flow cytometric assay and the drug sensitivity of MGC803 cells which were exposed to VCR with or without PD098059 was tested by using MTT assay. RESULTS: Transient exposure to VCR induced P-gp but not MRP1 or GST-π expression in MGC803 cells and the expression of P-gp was inhibited by PD098059. Apoptotic bodies were found in the cells treated with VCR or VCR+PD098059. FCM results indicated that more MGC803 cells showed apoptotic phenotype when treated by VCR and PD098059 (rate: 3L.23%) than treated by VCR only (rate:18.42%) (P<0.05). The ICs0 (284±13.2 μg/L) of MGC803 cells pretreated with VCR was 2.24-fold as that of negative control group (127±17.6 μg/L) and 1.48-fold as that of the group treated with PD098059 (191±27.9 μg/L). CONCLUSION: This study shows that the expression of P-gp can be induced by transient exposure to VCR and this induction can be prevented by PD098059, which can block the activity of MAPK. MAPK signal transduction pathway may play some roles in modulating MDR1 expression in gastric cancer.

  14. Participation of intracellular signal transduction in the radio-adaptive response induced by low-dose X-irradiation in human embryonic cells

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Keiichiro; Hoshi, Yuko; Iwasaki, Toshiyasu [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.; Watanabe, Masami

    1996-11-01

    To elucidate the induction mechanism of radio-adaptive response in normal cells, we searched the literatures of the intracellular signal transduction. Furthermore, we examined the induction of radio-adaptive response with or without inhibitors of several kinds of protein kinase. The major results obtained were as follows; (1) According to the literature survey it is revealed that there are 4 intracellular signal transduction pathways which are possibly involved in the induction of radio-adaptive response: pathways depending on cAMP, calcium, cGMP, or protein-tyrosine kinase. (2) Addition of either inhibitor of protein-tyrosine kinase or protein kinase C to the cell culture medium during the low-dose X-irradiation inhibited the induction of radio-adaptive response. However, the addition of inhibitor of cAMP-dependent protein kinase, cGMP-dependent protein kinase, or Ca{sup 2+}-calmodulin kinase II failed to inhibit the induction of radio-adaptive response. (3) These results suggest that the signal induced in cells by low-dose X-irradiation was transduced from protein-tyrosine kinase to protein kinase C via either pathway of phosphatidylinositol 3-kinase or splitting of profilin binding phosphatidylinositol 4,5-bisphosphate. (author)

  15. Cell swelling activates separate taurine and chloride channels in Ehrlich mouse ascites tumor cells

    DEFF Research Database (Denmark)

    Lambert, Ian Henry; Hoffmann, Else Kay

    1994-01-01

    The taurine efflux from Ehrlich ascites tumor cells is stimulated by hypotonic cell swelling. The swelling-activated taurine efflux is unaffected by substitution of gluconate for extracellular Cl– but inhibited by addition of MK196 (anion channel blocker) and 4,4 -diisothiocyanostilbene-2......,2 -disulfonic acid (DIDS; anion channel and anion exchange blocker) and by depolarization of the cell membrane. This is taken to indicate that taurine does not leave the osmotically swollen Ehrlich cells in exchange for extracellular Cl–, i.e., via the anion exchanger but via a MK196- and DIDS-sensitive channel...... that is potential dependent. An additional stimulation of the swelling-activated taurine efflux is seen after addition of arachidonic acid and oleic acid. Cell swelling also activates a Mini Cl– channel. The Cl– efflux via this Cl– channel, in contrast to the swelling-activated taurine efflux, is...

  16. Cellular Prion Protein and Caveolin-1 Interaction in a Neuronal Cell Line Precedes Fyn/Erk 1/2 Signal Transduction

    Directory of Open Access Journals (Sweden)

    Mattia Toni

    2006-01-01

    Full Text Available It has been reported that cellular prion protein (PrPc is enriched in caveolae or caveolae-like domains with caveolin-1 (Cav-1 participating to signal transduction events by Fyn kinase recruitment. By using the Glutathione-S-transferase (GST-fusion proteins assay, we observed that PrPc strongly interacts in vitro with Cav-1. Thus, we ascertained the PrPc caveolar localization in a hypothalamic neuronal cell line (GN11, by confocal microscopy analysis, flotation on density gradient, and coimmunoprecipitation experiments. Following the anti-PrPc antibody-mediated stimulation of live GN11 cells, we observed that PrPc clustered on plasma membrane domains rich in Cav-1 in which Fyn kinase converged to be activated. After these events, a signaling cascade through p42/44 MAP kinase (Erk 1/2 was triggered, suggesting that following translocations from rafts to caveolae or caveolae-like domains PrPc could interact with Cav-1 and induce signal transduction events.

  17. Effects of TNF-α on the expression of monocyte chemoattractant protein-1 and the corresponding signal transduction pathway in dental follicle cells

    Directory of Open Access Journals (Sweden)

    Ying-chun BI

    2011-02-01

    Full Text Available Objective To study the effect of different concentration of tumor necrosis factor-α(TNF-α on the expression of monocyte chemoattractant protein-1(MCP-1 and the corresponding signal transduction pathway in human dental follicle cells.Methods The 5th passage of human dental follicle cells were co-incubated with 0(control group,5,10,25,50 and 100 ng/ml TNF-α,respectively,for 6 hours.The contents of MCP-1 in the supernatant were measured by using sandwich ELISA,and the expression of MCP-1 mRNA was determined by reverses transcription polymerase chain reaction(RT-PCR.Furthermore,to determine the corresponding signal transduction pathway,the 5th passage of human dental follicle cells were incubated with 25 μmol/L SB203580 to inhibit p38 mitogen-activated protein kinase(p38MARK,with 50 μmol/L PD98059 to inhibit extracellular signal-regulated kinases(ERK,and with 15 μmol/L SP600125 to inhibit c-Jun N-terminal kinases(JNK for 30min,then incubated with TNF-α(10ng/ml for 6h.MCP-1 mRNA was detected by RT-PCR.Results The results of ELISA revealed that 10-100 ng/ml of TNF-α enhanced MCP-1 secretion(P < 0.05 compared to that in human dental follicle cells without TNF-α treatment.Cells treated with 10-50 ng/ml of TNF-α showed a significant increase of MCP-1 mRNA expression(P < 0.05,and the action was inhibited by SP600125,which was the special inhibitor of c-Jun N-terminal kinase(JNK.Conclusion TNF-α may enhance MCP-1 gene expression and secretion in human dental follicle cells,and the activation of JNK signal transduction pathway is required in this process.

  18. Chloride channels in the small intestinal cell line IEC-18.

    Science.gov (United States)

    Basavappa, Srisaila; Vulapalli, Sreesatya Raju; Zhang, Hui; Yule, David; Coon, Steven; Sundaram, Uma

    2005-01-01

    Small intestinal crypt cells play a critical role in modulating Cl- secretion during digestion. The types of Cl- channels mediating Cl- secretion in the small intestine was investigated using the intestinal epithelial cell line, IEC-18, which was derived from rat small intestine crypt cells. In initial radioisotope efflux studies, exposure to forskolin, ionomycin or a decrease in extracellular osmolarity significantly increased 36Cl efflux as compared to control cells. Whole cell patch clamp techniques were subsequently used to examine in more detail the swelling-, Ca2+-, and cAMP-activated Cl- conductance. Decreasing the extracellular osmolarity from 290 to 200 mOsm activated a large outwardly rectifying Cl- current that was voltage-independent and had an anion selectivity of I- > Cl-. Increasing cytosolic Ca2+ by ionomycin activated whole cell Cl- currents, which were also outwardly rectifying but were voltage-dependent. The increase in intracellular Ca2+ levels with ionomycin was confirmed with fura-2 loaded IEC-18 cells. A third type of whole cell Cl- current was observed after increases in intracellular cAMP induced by forskolin. These cAMP-activated Cl- currents have properties consistent with cystic fibrosis transmembrane regulator (CFTR) Cl- channels, as the currents were blocked by glibenclamide or NPPB but insensitive to DIDS. In addition, the current-voltage relationship was linear and had an anion selectivity of Cl- > I-. Confocal immunofluorescence studies and Western blots with two different anti-CFTR antibodies confirmed the expression of CFTR. These results suggest that small intestinal crypt cells express multiple types of Cl- channels, which may all contribute to net Cl- secretion. PMID:15389550

  19. Erythropoietin suppresses epithelial to mesenchymal transition and intercepts Smad signal transduction through a MEK-dependent mechanism in pig kidney (LLC-PK1) cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chien-Liang; Chou, Kang-Ju; Lee, Po-Tsang [Division of Nephrology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan (China); Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan (China); Chen, Ying-Shou; Chang, Tsu-Yuan; Hsu, Chih-Yang; Huang, Wei-Chieh [Division of Nephrology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan (China); Chung, Hsiao-Min [Division of Nephrology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan (China); Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan (China); Fang, Hua-Chang, E-mail: hcfang@isca.vghks.gov.tw [Division of Nephrology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan (China); Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan (China)

    2010-04-15

    Purpose: Tumor growth factor-{beta}1 (TGF-{beta}1) plays a pivotal role in processes like kidney epithelial-mesenchymal transition (EMT) and interstitial fibrosis, which correlate well with progression of renal disease. Little is known about underlying mechanisms that regulate EMT. Based on the anatomical relationship between erythropoietin (EPO)-producing interstitial fibroblasts and adjacent tubular cells, we investigated the role of EPO in TGF-{beta}1-mediated EMT and fibrosis in kidney injury. Methods: We examined apoptosis and EMT in TGF-{beta}1-treated LLC-PK1 cells in the presence or absence of EPO. We examined the effect of EPO on TGF-{beta}1-mediated Smad signaling. Apoptosis and cell proliferation were assessed with flow cytometry and hemocytometry. We used Western blotting and indirect immunofluorescence to evaluate expression levels of TGF-{beta}1 signal pathway proteins and EMT markers. Results: We demonstrated that ZVAD-FMK (a caspase inhibitor) inhibited TGF-{beta}1-induced apoptosis but did not inhibit EMT. In contrast, EPO reversed TGF-{beta}1-mediated apoptosis and also partially inhibited TGF-{beta}1-mediated EMT. We showed that EPO treatment suppressed TGF-{beta}1-mediated signaling by inhibiting the phosphorylation and nuclear translocation of Smad 3. Inhibition of mitogen-activated protein kinase kinase 1 (MEK 1) either directly with PD98059 or with MEK 1 siRNA resulted in inhibition of EPO-mediated suppression of EMT and Smad signal transduction in TGF-{beta}1-treated cells. Conclusions: EPO inhibited apoptosis and EMT in TGF-{beta}1-treated LLC-PK1 cells. This effect of EPO was partially mediated by a mitogen-activated protein kinase-dependent inhibition of Smad signal transduction.

  20. Involvement of M3 Cholinergic Receptor Signal Transduction Pathway in Regulation of the Expression of Chemokine MOB-1, MCP-1 Genes in Pancreatic Acinar Cells

    Institute of Scientific and Technical Information of China (English)

    郑海; 陈道达; 张景輝; 田原

    2004-01-01

    Whether M3 cholinergic receptor signal transduction pathway is involved in regulation of the activation of NF-κB and the expression of chemokine MOB-1, MCP-1genes in pancreatic acinar cells was investigated. Rat pancreatic acinar cells were isolated, cultured and treated with carbachol, atropine and PDTC in vitro. The MOB-1 and MCP-1 mRNA expression was detected by using RT-PCR. The activation of NF-κB was monitored by using electrophoretic mobility shift assay.The results showed that as compared with control group, M3 cholinergic receptor agonist (103mol/L, 104-4ol/L carbachol) could induce a concentration-dependent and time-dependent increase in the expression of MOB-1, MCP-1 mRNA in pancreatic acinar cells. After treatment with 10 -3mol/L carbachol for 2 h, the expression of MOB-1, MCP-1 mRNA was strongest. The activity of NF-κB in pancreatic acinar cells was significantly increased (P<0.01) after treated with M3 cholinergic receptor agonist (10-3 mol/L carbachol) in vitro for 30 min. Either M3 cholinergic receptor antagonist (10-5 mol/L atropine) or NF-κB inhibitor (10-2 mol/L PDTC) could obviously inhibit the activation of NF-κB and the chemokine MOB-1, MCP-1 mRNA expression induced by carbachol (P <0.05). This inhibitory effect was significantly increased by atropine plus PDTC (P<0.01). The results of these studies indicated that M3 cholinergic receptor signal transduction pathway was likely involved in regulation of the expression of chemokine MOB-1 and MCP-1genes in pancreatic acinar cells in vitro through the activation of NF-κB.

  1. Voltage-Gated Ion Channels in Cancer Cell Proliferation

    Science.gov (United States)

    Rao, Vidhya R.; Perez-Neut, Mathew; Kaja, Simon; Gentile, Saverio

    2015-01-01

    Changes of the electrical charges across the surface cell membrane are absolutely necessary to maintain cellular homeostasis in physiological as well as in pathological conditions. The opening of ion channels alter the charge distribution across the surface membrane as they allow the diffusion of ions such as K+, Ca++, Cl−, Na+. Traditionally, voltage-gated ion channels (VGIC) are known to play fundamental roles in controlling rapid bioelectrical signaling including action potential and/or contraction. However, several investigations have revealed that these classes of proteins can also contribute significantly to cell mitotic biochemical signaling, cell cycle progression, as well as cell volume regulation. All these functions are critically important for cancer cell proliferation. Interestingly, a variety of distinct VGICs are expressed in different cancer cell types, including metastasis but not in the tissues from which these tumors were generated. Given the increasing evidence suggesting that VGIC play a major role in cancer cell biology, in this review we discuss the role of distinct VGIC in cancer cell proliferation and possible therapeutic potential of VIGC pharmacological manipulation. PMID:26010603

  2. Voltage-Gated Ion Channels in Cancer Cell Proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Vidhya R.; Perez-Neut, Mathew [Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago 2160 S. 1st Ave, Maywood, IL 60153 (United States); Kaja, Simon [Department of Ophthalmology and Vision Research Center, School of Medicine, University of Missouri-Kansas City, 2411 Holmes St., Kansas City, MO 64108 (United States); Gentile, Saverio, E-mail: sagentile@luc.edu [Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago 2160 S. 1st Ave, Maywood, IL 60153 (United States)

    2015-05-22

    Changes of the electrical charges across the surface cell membrane are absolutely necessary to maintain cellular homeostasis in physiological as well as in pathological conditions. The opening of ion channels alter the charge distribution across the surface membrane as they allow the diffusion of ions such as K{sup +}, Ca{sup ++}, Cl{sup −}, Na{sup +}. Traditionally, voltage-gated ion channels (VGIC) are known to play fundamental roles in controlling rapid bioelectrical signaling including action potential and/or contraction. However, several investigations have revealed that these classes of proteins can also contribute significantly to cell mitotic biochemical signaling, cell cycle progression, as well as cell volume regulation. All these functions are critically important for cancer cell proliferation. Interestingly, a variety of distinct VGICs are expressed in different cancer cell types, including metastasis but not in the tissues from which these tumors were generated. Given the increasing evidence suggesting that VGIC play a major role in cancer cell biology, in this review we discuss the role of distinct VGIC in cancer cell proliferation and possible therapeutic potential of VIGC pharmacological manipulation.

  3. Regulation of Shaker-type potassium channels by hypoxia. Oxygen-sensitive K+ channels in PC12 cells.

    Science.gov (United States)

    Conforti, L; Millhorn, D E

    2000-01-01

    Little is known about the molecular composition of the O2-sensitive K+ (Ko2) channels. The possibility that these channels belong to the Shaker subfamily (Kv1) of voltage-dependent K+ (Kv) channels has been raised in pulmonary artery (PA) smooth muscle cells. Numerous findings suggest that the Ko2 channel in PC12 cells is a Kv1 channel, formed by the Kv1.2 alpha subunit. The Ko2 channel in PC12 cells is a slow-inactivating voltage-dependent K+ channel of 20 pS conductance. Other Kv channels, also expressed in PC12 cells, are not inhibited by hypoxia. Selective up-regulation by chronic hypoxia of the Kv1.2 alpha subunit expression correlates with an increase O2-sensitivity of the K+ current. Other Kv1 alpha subunit genes encoding slow-inactivating Kv channels, such as Kv1.3, Kv2.1, Kv3.1 and Kv3.2 are not modulated by chronic hypoxia. The Ko2 current in PC12 cells is blocked by 5 mM externally applied tetraethylammonium chloride (TEA) and by charydbotoxin (CTX). The responses of the Kv1.2 K+ channel to hypoxia have been studied in the Xenopus oocytes and compared to those of Kv2.1, also proposed as Ko2 channel in PA smooth muscle cells. Two-electrode voltage clamp experiments show that hypoxia induces inhibition of K+ current amplitude only in oocytes injected with Kv1.2 cRNA. These data indicate that Kv1.2 K+ channels are inhibited by hypoxia. PMID:10849667

  4. Mouse taste cells with G protein-coupled taste receptors lack voltage-gated calcium channels and SNAP-25

    Directory of Open Access Journals (Sweden)

    Medler Kathryn F

    2006-03-01

    Full Text Available Abstract Background Taste receptor cells are responsible for transducing chemical stimuli from the environment and relaying information to the nervous system. Bitter, sweet and umami stimuli utilize G-protein coupled receptors which activate the phospholipase C (PLC signaling pathway in Type II taste cells. However, it is not known how these cells communicate with the nervous system. Previous studies have shown that the subset of taste cells that expresses the T2R bitter receptors lack voltage-gated Ca2+ channels, which are normally required for synaptic transmission at conventional synapses. Here we use two lines of transgenic mice expressing green fluorescent protein (GFP from two taste-specific promoters to examine Ca2+ signaling in subsets of Type II cells: T1R3-GFP mice were used to identify sweet- and umami-sensitive taste cells, while TRPM5-GFP mice were used to identify all cells that utilize the PLC signaling pathway for transduction. Voltage-gated Ca2+ currents were assessed with Ca2+ imaging and whole cell recording, while immunocytochemistry was used to detect expression of SNAP-25, a presynaptic SNARE protein that is associated with conventional synapses in taste cells. Results Depolarization with high K+ resulted in an increase in intracellular Ca2+ in a small subset of non-GFP labeled cells of both transgenic mouse lines. In contrast, no depolarization-evoked Ca2+ responses were observed in GFP-expressing taste cells of either genotype, but GFP-labeled cells responded to the PLC activator m-3M3FBS, suggesting that these cells were viable. Whole cell recording indicated that the GFP-labeled cells of both genotypes had small voltage-dependent Na+ and K+ currents, but no evidence of Ca2+ currents. A subset of non-GFP labeled taste cells exhibited large voltage-dependent Na+ and K+ currents and a high threshold voltage-gated Ca2+ current. Immunocytochemistry indicated that SNAP-25 was expressed in a separate population of taste cells

  5. Expression of inwardly rectifying potassium channels (GIRKs and beta-adrenergic regulation of breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Cakir Yavuz

    2004-12-01

    Full Text Available Abstract Background Previous research has indicated that at various organ sites there is a subset of adenocarcinomas that is regulated by beta-adrenergic and arachidonic acid-mediated signal transduction pathways. We wished to determine if this regulation exists in breast adenocarcinomas. Expression of mRNA that encodes a G-protein coupled inwardly rectifying potassium channel (GIRK1 has been shown in tissue samples from approximately 40% of primary human breast cancers. Previously, GIRK channels have been associated with beta-adrenergic signaling. Methods Breast cancer cell lines were screened for GIRK channels by RT-PCR. Cell cultures of breast cancer cells were treated with beta-adrenergic agonists and antagonists, and changes in gene expression were determined by both relative competitive and real time PCR. Potassium flux was determined by flow cytometry and cell signaling was determined by western blotting. Results Breast cancer cell lines MCF-7, MDA-MB-361 MDA-MB 453, and ZR-75-1 expressed mRNA for the GIRK1 channel, while MDA-MB-468 and MDA-MB-435S did not. GIRK4 was expressed in all six breast cancer cell lines, and GIRK2 was expressed in all but ZR-75-1 and MDA-MB-435. Exposure of MDA-MB-453 cells for 6 days to the beta-blocker propranolol (1 μM increased the GIRK1 mRNA levels and decreased beta2-adrenergic mRNA levels, while treatment for 30 minutes daily for 7 days had no effect. Exposure to a beta-adrenergic agonist and antagonist for 24 hours had no effect on gene expression. The beta adrenergic agonist, formoterol hemifumarate, led to increases in K+ flux into MDA-MB-453 cells, and this increase was inhibited by the GIRK channel inhibitor clozapine. The tobacco carcinogen 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK, a high affinity agonist for beta-adrenergic receptors stimulated activation of Erk 1/2 in MDA-MB-453 cells. Conclusions Our data suggests β-adrenergic receptors and GIRK channels may play a role in breast cancer.

  6. Chloride channels in the plasma membrane of a foetal Drosophila cell line, S2

    DEFF Research Database (Denmark)

    Asmild, Margit; Willumsen, Niels J.

    2000-01-01

    S2 cells, Cl- Channels, Expression system, Drosophila, Inward rectifier, Outward rectifier, Patch clamp......S2 cells, Cl- Channels, Expression system, Drosophila, Inward rectifier, Outward rectifier, Patch clamp...

  7. Modulation of KCNQ4 channel activity by changes in cell volume

    DEFF Research Database (Denmark)

    Hougaard, Charlotte; Klaerke, Dan A; Hoffmann, Else K;

    2004-01-01

    KCNQ4 channels expressed in HEK 293 cells are sensitive to cell volume changes, being activated by swelling and inhibited by shrinkage, respectively. The KCNQ4 channels contribute significantly to the regulatory volume decrease (RVD) process following cell swelling. Under isoosmotic conditions......, the KCNQ4 channel activity is modulated by protein kinases A and C, G protein activation, and a reduction in the intracellular Ca2+ concentration, but these signalling pathways are not responsible for the increased channel activity during cell swelling....

  8. Calcium and signal transduction in plants

    Science.gov (United States)

    Poovaiah, B. W.; Reddy, A. S.

    1993-01-01

    Environmental and hormonal signals control diverse physiological processes in plants. The mechanisms by which plant cells perceive and transduce these signals are poorly understood. Understanding biochemical and molecular events involved in signal transduction pathways has become one of the most active areas of plant research. Research during the last 15 years has established that Ca2+ acts as a messenger in transducing external signals. The evidence in support of Ca2+ as a messenger is unequivocal and fulfills all the requirements of a messenger. The role of Ca2+ becomes even more important because it is the only messenger known so far in plants. Since our last review on the Ca2+ messenger system in 1987, there has been tremendous progress in elucidating various aspects of Ca(2+) -signaling pathways in plants. These include demonstration of signal-induced changes in cytosolic Ca2+, calmodulin and calmodulin-like proteins, identification of different Ca2+ channels, characterization of Ca(2+) -dependent protein kinases (CDPKs) both at the biochemical and molecular levels, evidence for the presence of calmodulin-dependent protein kinases, and increased evidence in support of the role of inositol phospholipids in the Ca(2+) -signaling system. Despite the progress in Ca2+ research in plants, it is still in its infancy and much more needs to be done to understand the precise mechanisms by which Ca2+ regulates a wide variety of physiological processes. The purpose of this review is to summarize some of these recent developments in Ca2+ research as it relates to signal transduction in plants.

  9. Endogenous chloride channels of insect sf9 cells. Evidence for coordinated activity of small elementary channel units

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Gabriel, S. E.; Stutts, M. J.;

    1996-01-01

    -cell current fluctuations. Chloride channels exhibited multiple conductance states with similar Goldman-Hodgkin-Katz-type rectification. Single-channel permeabilities covered the range from approximately 0.6.10(-14) cm5/s to approximately 6.10(-14) cm3/s, corresponding to a limiting conductance (gamma 150...

  10. Selective in vitro expansion and efficient retroviral transduction of human CD34(+) CD38(-) haematopoietic stem cells

    NARCIS (Netherlands)

    Ng, YY; Bloem, AC; van Kessel, B; Lokhorst, H; Logtenberg, T; Staal, FJT

    2002-01-01

    Ex vivo expansion of primitive human haematopoietic stem cells (HSC) is clinically relevant for stem cell transplantation and gene therapy. Here, we demonstrate the selective expansion of CD34(+) CD38(-) cells from purified CD34(+) cells upon stimulation with Flt3-ligand, stem cell factor and thromb

  11. High glucose inhibits ClC-2 chloride channels and attenuates cell migration of rat keratinocytes

    Directory of Open Access Journals (Sweden)

    Pan F

    2015-08-01

    Full Text Available Fuqiang Pan, Rui Guo, Wenguang Cheng, Linlin Chai, Wenping Wang, Chuan Cao, Shirong LiDepartment of Plastic and Reconstructive Surgery, Southwestern Hospital, Third Military Medical University, Chongqing, People’s Republic of China Background: Accumulating evidence has demonstrated that migration of keratinocytes is critical to wound epithelialization, and defects of this function result in chronic delayed-healing wounds in diabetes mellitus patients, and the migration has been proved to be associated with volume-activated chloride channels. The aim of the study is to investigate the effects of high glucose (HG, 25 mM on ClC-2 chloride channels and cell migration of keratinocytes.Methods: Newborn Sprague Dawley rats were used to isolate and culture the keratinocyte in this study. Immunofluorescence assay, real-time polymerase chain reaction, and Western blot assay were used to examine the expression of ClC-2 protein or mRNA. Scratch wound assay was used to measure the migratory ability of keratinocytes. Transwell cell migration assay was used to measure the invasion and migration of keratinocytes. Recombinant lentivirus vectors were established and transducted to keratinocytes. Whole-cell patch clamp was used to perform the electrophysiological studies.Results: We found that the expression of ClC-2 was significantly inhibited when keratinocytes were exposed to a HG (25 mM medium, accompanied by the decline of volume-activated Cl- current (ICl,vol, migration potential, and phosphorylated PI3K as compared to control group. When knockdown of ClC-2 by RNAi or pretreatment with wortmannin, similar results were observed, including ICl,vol and migration keratinocytes were inhibited.Conclusion: Our study proved that HG inhibited ClC-2 chloride channels and attenuated cell migration of rat keratinocytes via inhibiting PI3K signaling.Keywords: high glucose, keratinocytes, ClC-2, cell migration, PI3K

  12. Inhibition of Grb2-mediated activation of MAPK signal transduction suppresses NOR1/CB1954-induced cytotoxicity in the HepG2 cell line.

    Science.gov (United States)

    Gui, Rong; Li, Dengqing; Qi, Guannan; Suhad, Ali; Nie, Xinmin

    2012-09-01

    The nitroreductase oxidored-nitro domain containing protein 1 (NOR1) gene may be involved in the chemical carcinogenesis of hepatic cancer and nasopharyngeal carcinoma (NPC). We have previously demonstrated that NOR1 overexpression is capable of converting the monofunctional alkylating agent 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB1954) into a toxic form by reducing the 4-nitro group of CB1954. Toxic CB1954 is able to enhance cell killing in the NPC cell line CNE1; however, the underlying mechanisms remain unknown. Using cDNA microarrays and quantitative real-time PCR, we previously discovered that NOR1 increases the expression of growth factor receptor-bound protein 2 (Grb2) mRNA by 4.8-fold in the human hepatocellular carcinoma cell line HepG2. In the present study, we revealed that NOR1 increased Grb2 protein expression by 3-fold in HepG2 cells. Additionally, we demonstrated that NOR1 enhanced CB1954-induced cell killing in HepG2 cells, and cell cytotoxicity was inhibited with the tyrosine kinase inhibitor genistein, or by stable transfection of Grb2 small hairpin RNA (shRNA) pU6(+27)-shGrb2 to silence the expression of Grb2. Western blot analysis revealed that Grb2 downregulation may reduce the activity of the mitogen-activated protein kinase (MAPK). Inhibiting the activation of MAPK using the methyl ethyl ketone (MEK) inhibtor PD98059 suppressed CB1954-induced cell killing. These results suggested that the NOR1 gene enhances CB1954-mediated cell cytotoxicity through the upregulation of Grb2 expression and the activation of MAPK signal transduction in the HepG2 cell line. PMID:23741254

  13. One-way calcium spill-over during signal transduction in Paramecium cells: from the cell cortex into cilia, but not in the reverse direction.

    Science.gov (United States)

    Husser, Marc R; Hardt, Martin; Blanchard, Marie-Pierre; Hentschel, Joachim; Klauke, Norbert; Plattner, Helmut

    2004-11-01

    We asked to what extent Ca(2+) signals in two different domains of Paramecium cells remain separated during different stimulations. Wild-type (7S) and pawn cells (strain d4-500r, without ciliary voltage-dependent Ca(2+)-channels) were stimulated for trichocyst exocytosis within 80 ms by quenched-flow preparation and analysed by energy-dispersive X-ray microanalysis (EDX), paralleled by fast confocal fluorochrome analysis. We also analysed depolarisation-dependent calcium signalling during ciliary beat rerversal, also by EDX, after 80-ms stimulation in the quenched-flow mode. EDX and fluorochrome analysis enable to register total and free intracellular calcium concentrations, [Ca] and [Ca(2+)], respectively. After exocytosis stimulation we find by both methods that the calcium signal sweeps into the basis of cilia, not only in 7S but also in pawn cells which then also perform ciliary reversal. After depolarisation we see an increase of [Ca] along cilia selectively in 7S, but not in pawn cells. Opposite to exocytosis stimulation, during depolarisation no calcium spill-over into the nearby cytosol and no exocytosis occurs. In sum, we conclude that cilia must contain a very potent Ca(2+) buffering system and that ciliary reversal induction, much more than exocytosis stimulation, involves strict microdomain regulation of Ca(2+) signals.

  14. Characterization of cell surface and extracellular matrix remodeling of Azospirillum brasilense chemotaxis-like 1 signal transduction pathway mutants by atomic force microscopy.

    Science.gov (United States)

    Edwards, Amanda Nicole; Siuti, Piro; Bible, Amber N; Alexandre, Gladys; Retterer, Scott T; Doktycz, Mitchel J; Morrell-Falvey, Jennifer L

    2011-01-01

    To compete in complex microbial communities, bacteria must sense environmental changes and adjust cellular functions for optimal growth. Chemotaxis-like signal transduction pathways are implicated in the regulation of multiple behaviors in response to changes in the environment, including motility patterns, exopolysaccharide production, and cell-to-cell interactions. In Azospirillum brasilense, cell surface properties, including exopolysaccharide production, are thought to play a direct role in promoting flocculation. Recently, the Che1 chemotaxis-like pathway from A. brasilense was shown to modulate flocculation, suggesting an associated modulation of cell surface properties. Using atomic force microscopy, distinct changes in the surface morphology of flocculating A. brasilense Che1 mutant strains were detected. Whereas the wild-type strain produces a smooth mucosal extracellular matrix after 24 h, the flocculating Che1 mutant strains produce distinctive extracellular fibril structures. Further analyses using flocculation inhibition, lectin-binding assays, and comparison of lipopolysaccharides profiles suggest that the extracellular matrix differs between the cheA1 and the cheY1 mutants, despite an apparent similarity in the macroscopic floc structures. Collectively, these data indicate that disruption of the Che1 pathway is correlated with distinctive changes in the extracellular matrix, which likely result from changes in surface polysaccharides structure and/or composition.

  15. Characterization of cell surface and extracellular matrix remodeling of Azospirillum brasilense chemotaxis-like 1 signal transduction pathway mutants by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Doktycz, Mitchel John [ORNL; Morrell-Falvey, Jennifer L [ORNL

    2011-01-01

    To compete in complex microbial communities, bacteria must sense environmental changes and adjust cellular functions for optimal growth. Chemotaxis-like signal transduction pathways are implicated in the regulation of multiple behaviors in response to changes in the environment, including motility patterns, exopolysaccharide production, and cell-to-cell interactions. In Azospirillum brasilense, cell surface properties, including exopolysaccharide production, are thought to play a direct role in promoting flocculation. Recently, the Che1 chemotaxis-like pathway from A. brasilense was shown to modulate flocculation, suggesting an associated modulation of cell surface properties. Using atomic force microscopy, distinct changes in the surface morphology of flocculating A. brasilense Che1 mutant strains were detected. Whereas the wild-type strain produces a smooth mucosal extracellular matrix after 24 h, the flocculating Che1 mutant strains produce distinctive extracellular fibril structures. Further analyses using flocculation inhibition, lectin-binding assays, and comparison of lipopolysaccharides profiles suggest that the extracellular matrix differs between the cheA1 and the cheY1 mutants, despite an apparent similarity in the macroscopic floc structures. Collectively, these data indicate that disruption of the Che1 pathway is correlated with distinctive changes in the extracellular matrix, which likely result from changes in surface polysaccharides structure and/or composition.

  16. Quantifying efficient information transduction of biochemical signaling cascades

    CERN Document Server

    Tsuruyama, Tatsuaki

    2016-01-01

    Cells can be considered as systems that utilize changes in thermodynamic entropy as information. Therefore, they serve as useful models for investigating the relationships between entropy production and information transmission, i.e., signal transduction. Based on the hypothesis that cells apply a chemical reaction cascade for the most efficient transduction of information, we adopted a coding design that minimizes the number of bits per concentration of molecules that are employed for information transduction. As a result, the average rate of entropy production is uniform across all cycles in a cascade reaction. Thus, the entropy production rate can be a valuable measure for the quantification of intracellular signal transduction.

  17. Stable EGFP Gene Expression in C6 Glioma Cell Line after Transduction with HIV-1-based Lentiviral Vector

    Institute of Scientific and Technical Information of China (English)

    JIN Gui-shan; LIU Fu-sheng; CHAI Qi; WANG Jian-jao; LI Jun-hua

    2008-01-01

    Objective:To establish a stable C6/EGFP glioma cell line for studies on glioma. Methods:The C6 glioma cell line was transfected with the human immunodeficiency virus type Ⅰ(HIV-1)based lentivirus vector containing two enhancer-promoters CMV and EF1α.Enhanced green fluorescent protein(EGFP)-positive C6 cells were sorted out by fluorescence-activated cell sort.Expression of EGFP was observed by fluorescent microscopy.EGFP gene in C6 genome was assessed by Polymerase chain reaction(PCR)and DNA sequencing.Original and transfected cells were compared biologically and cytomorphologically. Results:Lentivirus vector transfection produced up to 40% EGFP-positive cells.After fluorescence-activated cell sort selection,a pure cell line C6/EGFP was established.PCR and DNA sequencing revealed integration of EGFP gene in C6 cell genome.Analysis of cell characteristics revealed no difference between transfected and original cells. Conclusion:A C6/EGFP cell line expressing EGFP as a marker is established,in which the EGFP gene is integrated into the genome.This cell line can be served as a promising tool for further basic research and gene therapy studies.

  18. Modeling magnetosensitive ion channels in viscoelastic environment of living cells

    CERN Document Server

    Goychuk, Igor

    2015-01-01

    We propose and study a model of hypothetical magnetosensitive ionic channels which are long thought to be a possible candidate to explain the influence of weak magnetic fields on living organisms ranging from magnetotactic bacteria to fishes, birds, rats, bats and other mammals including humans. The core of the model is provided by a short chain of magnetosomes serving as a sensor which is coupled by elastic linkers to the gating elements of ion channels forming a small cluster in the cell membrane. The magnetic sensor is fixed by one end on cytoskeleton elements attached to the membrane and is exposed to viscoelastic cytosol. Its free end can reorient stochastically and subdiffusively in viscoelastic cytosol responding to external magnetic field changes and open the gates of coupled ion channels. The sensor dynamics is generally bistable due to bistability of the gates which can be in two states with probabilities which depend on the sensor orientation. For realistic parameters, it is shown that this model c...

  19. Physalis peruviana extract induces apoptosis in human Hep G2 cells through CD95/CD95L system and the mitochondrial signaling transduction pathway.

    Science.gov (United States)

    Wu, Shu-Jing; Ng, Lean-Teik; Lin, Doung-Liang; Huang, Shan-Ney; Wang, Shyh-Shyan; Lin, Chun-Ching

    2004-11-25

    Physalis species is a popular folk medicine used for treating cancer, leukemia, hepatitis and other diseases. Studies have shown that the ethanol extract of Physalis peruviana (EEPP) inhibits growth and induces apoptotic death of human Hep G2 cells in culture, whereas proliferation of the mouse BALB/C normal liver cells was not affected. In this study, we performed detailed studies to define the molecular mechanism of EEPP-induced apoptosis in Hep G2 cells. The results further confirmed that EEPP inhibited cell proliferation in a dose- and time-dependent manner. At 50 microg/ml, EEPP significantly increased the accumulation of the sub-G1 peak (hypoploid) and the portion of apoptotic annexin V positive cells. EEPP was found to trigger apoptosis through the release of cytochrome c, Smac/DIABLO and Omi/HtrA2 from mitochondria to cytosol and consequently resulted in caspase-3 activation. Pre-treatment with a general caspase inhibitor (z-VAD-fmk) prevented cytochrome c release. After 48 h of EEPP treatment, the apoptosis of Hep G2 cells was found to associate with an elevated p53, and CD95 and CD95L proteins expression. Furthermore, a marked down-regulation of the expression of the Bcl-2, Bcl-XL and XIAP, and up-regulation of the Bax and Bad proteins were noted. Taken together, the present results suggest that EEPP-induced Hep G2 cell apoptosis was possibly mediated through the CD95/CD95L system and the mitochondrial signaling transduction pathway. PMID:15488639

  20. Molecular basis of potassium channels in pancreatic duct epithelial cells

    DEFF Research Database (Denmark)

    Hayashi, M.; Novak, Ivana

    2013-01-01

    Potassium channels regulate excitability, epithelial ion transport, proliferation, and apoptosis. In pancreatic ducts, K channels hyperpolarize the membrane potential and provide the driving force for anion secretion. This review focuses on the molecular candidates of functional K channels...

  1. Involvement of formyl peptide receptors in receptor for advanced glycation end products (RAGE - and amyloid beta 1-42-induced signal transduction in glial cells

    Directory of Open Access Journals (Sweden)

    Slowik Alexander

    2012-11-01

    Full Text Available Abstract Background Recent studies suggest that the chemotactic G-protein-coupled-receptor (GPCR formyl-peptide-receptor-like-1 (FPRL1 and the receptor-for-advanced-glycation-end-products (RAGE play an important role in the inflammatory response involved in neurodegenerative disorders such as Alzheimer’s disease (AD. Therefore, the expression and co-localisation of mouse formyl peptide receptor (mFPR 1 and 2 as well as RAGE in an APP/PS1 transgenic mouse model using immunofluorescence and real-time RT-PCR were analysed. The involvement of rat or human FPR1/FPRL1 (corresponds to mFPR1/2 and RAGE in amyloid-β 1–42 (Aβ1-42-induced signalling were investigated by extracellular signal regulated kinase 1/2 (ERK1/2 phosphorylation. Furthermore, the cAMP level in primary rat glial cells (microglia and astrocytes and transfected HEK 293 cells was measured. Formyl peptide receptors and RAGE were inhibited by a small synthetic antagonist WRW4 and an inactive receptor variant delta-RAGE, lacking the intracytoplasmatic domains. Results We demonstrated a strong increase of mFPR1/2 and RAGE expression in the cortex and hippocampus of APP/PS1 transgenic mice co-localised to the glial cells. In addition, the Aβ1-42-induced signal transduction is dependant on FPRL1, but also on FPR1. For the first time, we have shown a functional interaction between FPRL1/FPR1 and RAGE in RAGE ligands S100B- or AGE-mediated signalling by ERK1/2 phosphorylation and cAMP level measurement. In addition a possible physical interaction between FPRL1 as well as FPR1 and RAGE was shown with co-immunoprecipitation and fluorescence microscopy. Conclusions The results suggest that both formyl peptide receptors play an essential role in Aβ1-42-induced signal transduction in glial cells. The interaction with RAGE could explain the broad ligand spectrum of formyl peptide receptors and their important role for inflammation and the host defence against infections.

  2. Characterization of Cell Surface and EPS Remodeling of Azospirillum brasilense Chemotaxis-like 1 Signal Transduction Pathway mutants by Atomic Force Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Billings, Amanda N [ORNL; Siuti, Piro [ORNL; Bible, Amber [University of Tennessee, Knoxville (UTK); Alexandre, Gladys [University of Tennessee, Knoxville (UTK); Retterer, Scott T [ORNL; Doktycz, Mitchel John [ORNL; Morrell-Falvey, Jennifer L [ORNL

    2011-01-01

    To compete in complex microbial communities, bacteria must quickly sense environmental changes and adjust cellular functions for optimal growth. Chemotaxis-like signal transduction pathways are implicated in the modulation of multiple cellular responses, including motility, EPS production, and cell-to-cell interactions. Recently, the Che1 chemotaxis-like pathway from Azospirillum brasilense was shown to modulate flocculation. In A. brasilense, cell surface properties, including EPS production, are thought to play a direct role in promoting flocculation. Using atomic force microscopy (AFM), we have detected distinct changes in the surface morphology of flocculating A. brasilense Che1 mutant strains that are absent in the wild type strain. Whereas the wild type strain produces a smooth mucosal extracellular matrix, the flocculating Che1 mutant strains produce distinctive extracellular fibril structures. Further analyses using flocculation inhibition and lectin-binding assays suggest that the composition of EPS components in the extracellular matrix differs between the cheA1 and cheY1 mutants, despite an apparent similarity in the macroscopic floc structures. Collectively, these data indicate that mutations in the Che1 pathway that result in increased flocculation are correlated with distinctive changes in the extracellular matrix structure produced by the mutants, including likely changes in the EPS structure and/or composition.

  3. Growth inhibition and apoptosis in cancer cells induced by polyphenolic compounds of Acacia hydaspica: Involvement of multiple signal transduction pathways

    Science.gov (United States)

    Afsar, Tayyaba; Trembley, Janeen H.; Salomon, Christine E.; Razak, Suhail; Khan, Muhammad Rashid; Ahmed, Khalil

    2016-01-01

    Acacia hydaspica R. Parker is known for its medicinal uses in multiple ailments. In this study, we performed bioassay-guided fractionation of cytotoxic compounds from A. hydaspica and investigated their effects on growth and signaling activity in prostate and breast cancer cell lines. Four active polyphenolic compounds were identified as 7-O-galloyl catechin (GC), catechin (C), methyl gallate (MG), and catechin-3-O-gallate (CG). The four compounds inhibited prostate cancer PC-3 cell growth in a dose-dependent manner, whereas CG and MG inhibited breast cancer MDA-MB-231 cell growth. All tested compounds inhibited cell survival and colony growth in both cell lines, and there was evidence of chromatin condensation, cell shrinkage and apoptotic bodies. Further, acridine orange, ethidium bromide, propidium iodide and DAPI staining demonstrated that cell death occurred partly via apoptosis in both PC-3 and MDA-MB-231 cells. In PC-3 cells treatment repressed the expression of anti-apoptotic molecules Bcl-2, Bcl-xL and survivin, coupled with down-regulation of signaling pathways AKT, NFκB, ERK1/2 and JAK/STAT. In MDA-MB-231 cells, treatment induced reduction of CK2α, Bcl-xL, survivin and xIAP protein expression along with suppression of NFκB, JAK/STAT and PI3K pathways. Our findings suggest that certain polyphenolic compounds derived from A. hydaspica may be promising chemopreventive/therapeutic candidates against cancer. PMID:26975752

  4. Efficient induction of cross-presentating human B cell by transduction with human adenovirus type 7 vector.

    Science.gov (United States)

    Peng, Ying; Lai, Meimei; Lou, Yunyan; Liu, Yanqing; Wang, Huiyan; Zheng, Xiaoqun

    2016-01-01

    Although human autologous B cells represent a promising alternative to dendritic cells (DCs) for easy large-scale preparation, the naive human B cells are always poor at antigen presentation. The safe and effective usage record of human adenovirus type 7 (HAdV7) live vaccines makes it attractive as a promising vaccine vector candidate. To investigate whether HAdV7 vector could be used to induce the human B cells cross-presentation, in the present study, we constructed the E3-defective recombinant HAdV7 vector encoding green fluorescent protein (GFP) and carcinoembryonic antigen (CEA). We demonstrated that naive human B cells can efficiently be transduced, and that the MAPKs/NF-κB pathway can be activated by recombinant HAdV7. We proved that cytokine TNF-α, IL-6 and IL-10, surface molecule MHC class I and the CD86, antigen-processing machinery (APM) compounds ERp57, TAP-1, and TAP-2. were upregulated in HAdV7 transduced human B cells. We also found that CEA-specific IFNγ expression, degranulation, and in vitro and ex vivo cytotoxicities are induced in autologous CD8(+) T cells presensitized by HAd7CEA modified human B cells. Meanwhile, our evidences clearly show that Toll-like receptors 9 (TLR9) antagonist IRS 869 significantly eliminated most of the HAdV7 initiated B cell activation and CD8(+) T cells response, supporting the role and contribution of TLR9 signaling in HAdV7 induced human B cell cross-presentation. Besides a better understanding of the interactions between recombinant HAdV7 and human naive B cells, to our knowledge, the present study provides the first evidence to support the use of HAdV7-modified B cells as a vehicle for vaccines and immunotherapy.

  5. Quantitative analysis of signal transduction in motile and phototactic cells by computerized light stimulation and model based tracking

    Science.gov (United States)

    Streif, Stefan; Staudinger, Wilfried Franz; Oesterhelt, Dieter; Marwan, Wolfgang

    2009-02-01

    To investigate the responses of Halobacterium salinarum to stimulation with light (phototaxis and photokinesis), we designed an experimental setup consisting of optical devices for automatic video image acquisition and computer-controlled light stimulation, and developed algorithms to analyze physiological responses of the cells. Cells are categorized as motile and nonmotile by a classification scheme based on the square displacement of cell positions. Computerized tracking based on a dynamic model of the stochastic cell movement and a Kalman filter-based algorithm allows smoothed estimates of the cell tracks and the detection of physiological responses to complex stimulus patterns. The setup and algorithms were calibrated which allows quantitative measurements and systematic analysis of cellular sensing and response. Overall, the setup is flexible, extensible, and consists mainly of commercially available products. This facilitates modifications of the setup and algorithms for physiological studies of the motility of cells or microorganisms.

  6. Transduction of proteins into leishmania tarentolae by formation of non-covalent complexes with cell-penetrating peptides.

    Science.gov (United States)

    Keller, Andrea-Anneliese; Breitling, Reinhard; Hemmerich, Peter; Kappe, Katarina; Braun, Maria; Wittig, Berith; Schaefer, Buerk; Lorkowski, Stefan; Reissmann, Siegmund

    2014-02-01

    Cell-penetrating peptides (CPPs) are used to transport peptides, proteins, different types of ribonucleic acids (or mimics of these molecules), and DNA into live cells, both plant and mammalian. Leishmania belongs to the class of protozoa having, in comparison to mammalian cells, a different lipid composition of the membrane, proteoglycans on the surface, and signal pathways. We investigated the uptake of two different and easily detectable proteins into the non-pathogenic strain Leishmania tarentolae. From the large number of CPPs available, six and a histone were chosen specifically for their ability to form non-covalent complexes. For Leishmania we used the enzyme β-galactosidase and fluorescent labeled bovine serum albumin as cargoes. The results are compared to similar internalization studies using mammalian cells [Mussbach et al., ]. Leishmania cells can degrade CPPs by a secreted and membrane-bound chymotrypsin-like protease. Both cargo proteins were internalized with sufficient efficiency and achieved intramolecular concentrations similar to mammalian cells. The transport efficiencies of the CPPs differed from each other, and showed a different rank order for both cargoes. The intracellular distribution of fluorescent-labeled bovine serum albumin showed highest concentrations in the nucleus and kinetoplast. Leishmania are susceptible to high concentrations of some CPPs, although comparably dissimilar to mammalian cells. MPG-peptides are more cytotoxic in Leishmania than in mammalian cells, acting as antimicrobial peptides. Our results contribute to a better understanding of molecular interactions in Leishmania cells and possibly to new treatments of leishmaniasis.

  7. Experimental and numerical study of proton exchange membrane fuel cell with spiral flow channels

    International Nuclear Information System (INIS)

    Highlights: ► Numerical and experimental study of the fuel cell with spiral channels is performed. ► Secondary vortices in cross section of the spiral channels are found. ► Enhancement in the performance of the fuel cell by the secondary vortices is discussed. ► The spiral channels also lead to a reduction in the pressure drop of the gas flow. -- Abstract: Numerical simulation of the performance of a proton exchange membrane fuel cell (PEMFC) with spiral channels is performed in this study. Experiments are also conducted to verify the numerical predictions. The spiral channel pattern produces secondary vortices which lead to enhancement in heat and mass transfer in the curved channels and appreciably improves the performance of the fuel cell. In addition, the spiral channels may also lead to a reduction in the pressure drop of the gas flow through the fuel cell. When the sizes of the outlet channels are designed to be smaller than those of the inlet channels, water flooding in the catalyst layers can be further improved. In the present study, the spiral channel pattern consists of five inlet channels and five outlet channels. Radius and area of the active zone are 28.2 mm and 2500 mm2, respectively. A comparison between the spiral and the serpentine channels shows that the average current density with the former is higher than that with the latter by 11.9%. It is found that numerical predictions are in close agreement with the experimental results.

  8. Developmental expression of BK channels in chick cochlear hair cells

    Directory of Open Access Journals (Sweden)

    Tong Mingjie

    2009-12-01

    Full Text Available Abstract Background Cochlear hair cells are high-frequency sensory receptors. At the onset of hearing, hair cells acquire fast, calcium-activated potassium (BK currents, turning immature spiking cells into functional receptors. In non-mammalian vertebrates, the number and kinetics of BK channels are varied systematically along the frequency-axis of the cochlea giving rise to an intrinsic electrical tuning mechanism. The processes that control the appearance and heterogeneity of hair cell BK currents remain unclear. Results Quantitative PCR results showed a non-monotonic increase in BK α subunit expression throughout embryonic development of the chick auditory organ (i.e. basilar papilla. Expression peaked near embryonic day (E 19 with six times the transcript level of E11 sensory epithelia. The steady increase in gene expression from E11 to E19 could not explain the sudden acquisition of currents at E18-19, implicating post-transcriptional mechanisms. Protein expression also preceded function but progressed in a sequence from diffuse cytoplasmic staining at early ages to punctate membrane-bound clusters at E18. Electrophysiology data confirmed a continued refinement of BK trafficking from E18 to E20, indicating a translocation of BK clusters from supranuclear to subnuclear domains over this critical developmental age. Conclusions Gene products encoding BK α subunits are detected up to 8 days before the acquisition of anti-BK clusters and functional BK currents. Therefore, post-transcriptional mechanisms seem to play a key role in the delayed emergence of calcium-sensitive currents. We suggest that regulation of translation and trafficking of functional α subunits, near voltage-gated calcium channels, leads to functional BK currents at the onset of hearing.

  9. Signal transduction by HLA class II molecules in human T cells: induction of LFA-1-dependent and independent adhesion

    DEFF Research Database (Denmark)

    Odum, Niels; Yoshizumi, H; Okamoto, Y;

    1992-01-01

    Crosslinking HLA-DR molecules by monoclonal antibodies (moAbs) induces protein tyrosine phosphorylation and results in a secondary elevation of free cytoplasmic calcium concentrations in activated human T cells. Binding of bacterial superantigens or moAbs to DR molecules on activated T cells was ...

  10. Cell swelling activates K+ and Cl- channels as well as nonselective, stretch-activated cation channels in ehrlich ascites tumor cells

    DEFF Research Database (Denmark)

    Christensen, Ove; Hoffmann, Else Kay

    1992-01-01

    external K+ is estimated at about 7 pS. A K+ channel with similar properties can be activated in the cellattached mode by addition of Ca2+ plus ionophore A23187. The channel is also activated by cell swelling, within 1 min following hypotonic exposure. No evidence was found of channel activation...... by membrane stretch (suction). The time-averaged number of open K+ channels during regulatory volume decrease (RVD) can be estimated at 40 per cell. The number of open K+ channels following addition of Ca2+ plus ionophore A23187 was estimated at 250 per cell. Concurrent activation in cell-attached patches...... in the cell-attached mode could be activated by addition of Ca2+ plus ionophore A23187. The channel is also activated by hypotonic exposure with a single-channel conductance at 7 pS (or less) and with a time delay at about 1 min. The number of open channels during RVD is estimated at 80 per cell. Two other...

  11. Model of the initiation of signal transduction by ligands in a cell culture: Simulation of molecules near a plane membrane comprising receptors

    Science.gov (United States)

    Plante, Ianik; Cucinotta, Francis A.

    2011-11-01

    Cell communication is a key mechanism in tissue responses to radiation. Several molecules are implicated in radiation-induced signaling between cells, but their contributions to radiation risk are poorly understood. Meanwhile, Green's functions for diffusion-influenced reactions have appeared in the literature, which are applied to describe the diffusion of molecules near a plane membrane comprising bound receptors with the possibility of reversible binding of a ligand and activation of signal transduction proteins by the ligand-receptor complex. We have developed Brownian dynamics algorithms to simulate particle histories in this system which can accurately reproduce the theoretical distribution of distances of a ligand from the membrane, the number of reversibly bound particles, and the number of receptor complexes activating signaling proteins as a function of time, regardless of the number of time steps used for the simulation. These simulations will be of great importance to model interactions at low doses where stochastic effects induced by a small number of molecules or interactions come into play.

  12. Yeast Ca(2+)-signal transduction inhibitors isolated from Dominican amber prevent the degranulation of RBL-2H3 cells through the inhibition of Ca(2+)-influx.

    Science.gov (United States)

    Abe, Tomomi; Kobayashi, Miki; Okawa, Yusuke; Inui, Tomoki; Yoshida, Jun; Higashio, Hironori; Shinden, Hisao; Uesugi, Shota; Koshino, Hiroyuki; Kimura, Ken-Ichi

    2016-09-01

    A new norlabdane compound, named kujigamberol has previously been isolated from Kuji amber (but not from Baltic amber) by activity guided fractionation. However, there has been no study of biological compounds in Dominican amber. Biological activities were examined using the hypersensitive mutant yeast (zds1Δ erg3Δ pdr1Δ pdr3Δ) with respect to Ca(2+)-signal transduction, enzymes and rat basophilic leukemia (RBL)-2H3 cells. The structures were elucidated on the basis of spectral analysis including high resolution (HR)-EI-MS, 1D NMR and 2D NMR. Three diterpenoid compounds, 5(10)-halimen-15-oic acid (1), 3-cleroden-15-oic acid (2) and 8-labden-15-oic acid (3), which are different from the bioactive compounds in Kuji and Baltic ambers, were isolated from Dominican amber. They inhibited both calcineurin (CN) (IC50=40.0, 21.2 and 34.2μM) and glycogen synthase kinase-3β (GSK-3β) (IC50=48.9, 43.8 and 41.1μM) which are involved in the growth restored activity against the mutant yeast. The most abundant compound 2 showed inhibitory activity against both degranulation and Ca(2+)-influx in RBL-2H3 cells. The compounds having the growth restoring activity against the mutant yeast have potential as anti-allergic compounds.

  13. Yeast Ca(2+)-signal transduction inhibitors isolated from Dominican amber prevent the degranulation of RBL-2H3 cells through the inhibition of Ca(2+)-influx.

    Science.gov (United States)

    Abe, Tomomi; Kobayashi, Miki; Okawa, Yusuke; Inui, Tomoki; Yoshida, Jun; Higashio, Hironori; Shinden, Hisao; Uesugi, Shota; Koshino, Hiroyuki; Kimura, Ken-Ichi

    2016-09-01

    A new norlabdane compound, named kujigamberol has previously been isolated from Kuji amber (but not from Baltic amber) by activity guided fractionation. However, there has been no study of biological compounds in Dominican amber. Biological activities were examined using the hypersensitive mutant yeast (zds1Δ erg3Δ pdr1Δ pdr3Δ) with respect to Ca(2+)-signal transduction, enzymes and rat basophilic leukemia (RBL)-2H3 cells. The structures were elucidated on the basis of spectral analysis including high resolution (HR)-EI-MS, 1D NMR and 2D NMR. Three diterpenoid compounds, 5(10)-halimen-15-oic acid (1), 3-cleroden-15-oic acid (2) and 8-labden-15-oic acid (3), which are different from the bioactive compounds in Kuji and Baltic ambers, were isolated from Dominican amber. They inhibited both calcineurin (CN) (IC50=40.0, 21.2 and 34.2μM) and glycogen synthase kinase-3β (GSK-3β) (IC50=48.9, 43.8 and 41.1μM) which are involved in the growth restored activity against the mutant yeast. The most abundant compound 2 showed inhibitory activity against both degranulation and Ca(2+)-influx in RBL-2H3 cells. The compounds having the growth restoring activity against the mutant yeast have potential as anti-allergic compounds. PMID:27491756

  14. Function of chloride intracellular channel 1 in gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    Peng-Fei Ma; Jun-Qiang Chen; Zhen Wang; Jin-Lu Liu; Bo-Pei Li

    2012-01-01

    AIM:To investigate the effect of chloride intracellular channel 1 (CLIC1) on the cell proliferation,apoptosis,migration and invasion of gastric cancer cells.METHODS:CLIC1 expression was evaluated in human gastric cancer cell lines SGC-7901 and MGC-803 by real time polymerase chain reaction (RT-PCR).Four segments of small interference RNA (siRNA) targeting CLIC1 mRNA and a no-sense control segment were designed by bioinformatics technology.CLIC1 siRNA was selected using Lipofectamine 2000 and transfected transiently into human gastric cancer SGC-7901 and MGC-803 cells.The transfected efficiency was observed under fluorescence microscope.After transfection,mRNA expression of CLIC1 was detected with RT-PCR and Western blotting was used to detect the protein expression.Proliferation was examined by methyl thiazolyl tetrazolium and apoptosis was detected with flow cytometry.Polycarbonate membrane transwell chamber and Matrigel were used for the detection of the changes of invasion and migration of the two cell lines.RESULTS:In gastric cancer cell lines SGC-7901 and MGC-803,CLIC1 was obviously expressed and CLIC1 siRNA could effectively suppress the expression of CLIC1 protein and mRNA.Proliferation of cells transfected with CLIC1 siRNA3 was enhanced notably,and the highest proliferation rate was 23.3% (P =0.002) in SGC-7901 and 35.55% (P =0.001) in MGC-803 cells at 48 h.The G2/M phase proportion increased,while G0/G1 and S phase proportions decreased.The apoptotic rate of the CLIC1 siRNA3 group obviously decreased in both SGC-7901 cells (62.24%,P =0.000) and MGC-803 cells (52.67%,P =0.004).Down-regulation of CLIC1 led to the inhibition of invasion and migration by 54.31% (P =0.000) and 33.62% (P =0.001) in SGC-7901 and 40.74% (P =0.000) and 29.26% (P =0.002) in MGC-803.However,there was no significant difference between the mock group cells and the negative control group cells.CONCLUSION:High CLIC1 expression can efficiently inhibit proliferation and

  15. Importin β1 mediates nuclear factor-κB signal transduction into the nuclei of myeloma cells and affects their proliferation and apoptosis.

    Science.gov (United States)

    Yan, Wenqing; Li, Rong; He, Jie; Du, Juan; Hou, Jian

    2015-04-01

    Multiple myeloma (MM) is a plasma cell neoplasm that is currently incurable. The activation of nuclear factor-κB (NF-κB) signalling plays a crucial role in the immortalisation of MM cells. As the most important transcription factor of the canonical NF-κB pathway, the p50/p65 heterodimer requires transportation into the nucleus for its successful signal transduction. Importin β1 is the key transport receptor that mediates p50/p65 nuclear import. Currently, it remains unclear whether the regulation of importin β1 function affects the biological behaviour of MM cells. In the present study, we investigated the changes in p65 translocation and the proliferation and apoptosis of MM cells after treatment with small interfering RNA (siRNA) or an importin β1 inhibitor. The underlying mechanisms were also investigated. We found importin β1 over-expression and the excessive nuclear transport of p65 in myeloma cells. Confocal laser scanning microscopy and Western blot analysis results indicated that p65 nuclear transport was blocked after inhibiting importin β1 expression with siRNA and the importin β1-specific inhibitor importazole (IPZ). Importantly, electronic mobility shift assay results also verified that p65 nuclear transport was dramatically reduced. Moreover, the expression of the NF-κB signalling target genes involved in MM cell apoptosis, such as BCL-2, c-IAP1 and XIAP, were markedly reduced, as demonstrated by the RT-PCR results. Furthermore, the proliferation of MM cells was inhibited, as demonstrated by MTT assay results, and the MM cell apoptosis rate was higher, as demonstrated by the annexin V/propidium iodide (PI) double-staining assay results. Additionally, the percentage of S phase cells in the myeloma cell lines treated with IPZ was dramatically reduced. In conclusion, our results clearly show that importin β1 mediates the translocation of NF-κB into the nuclei of myeloma cells, thereby regulating proliferation and blocking apoptosis, which

  16. Sensitive Tumorigenic Potential Evaluation of Adult Human Multipotent Neural Cells Immortalized by hTERT Gene Transduction

    Science.gov (United States)

    Jeong, Da Eun; Kim, Sung Soo; Song, Hye Jin; Pyeon, Hee Jang; Kang, Kyeongjin; Hong, Seung-Cheol; Nam, Do-Hyun; Joo, Kyeung Min

    2016-01-01

    Stem cells and therapeutic genes are emerging as a new therapeutic approach to treat various neurodegenerative diseases with few effective treatment options. However, potential formation of tumors by stem cells has hampered their clinical application. Moreover, adequate preclinical platforms to precisely test tumorigenic potential of stem cells are controversial. In this study, we compared the sensitivity of various animal models for in vivo stem cell tumorigenicity testing to identify the most sensitive platform. Then, tumorigenic potential of adult human multipotent neural cells (ahMNCs) immortalized by the human telomerase reverse transcriptase (hTERT) gene was examined as a stem cell model with therapeutic genes. When human glioblastoma (GBM) cells were injected into adult (4–6-week-old) Balb/c-nu, adult NOD/SCID, adult NOG, or neonate (1–2-week-old) NOG mice, the neonate NOG mice showed significantly faster tumorigenesis than that of the other groups regardless of intracranial or subcutaneous injection route. Two kinds of ahMNCs (682TL and 779TL) were primary cultured from surgical samples of patients with temporal lobe epilepsy. Although the ahMNCs were immortalized by lentiviral hTERT gene delivery (hTERT-682TL and hTERT-779TL), they did not form any detectable masses, even in the most sensitive neonate NOG mouse platform. Moreover, the hTERT-ahMNCs had no gross chromosomal abnormalities on a karyotype analysis. Taken together, our data suggest that neonate NOG mice could be a sensitive animal platform to test tumorigenic potential of stem cell therapeutics and that ahMNCs could be a genetically stable stem cell source with little tumorigenic activity to develop regenerative treatments for neurodegenerative diseases. PMID:27391353

  17. Sensitive Tumorigenic Potential Evaluation of Adult Human Multipotent Neural Cells Immortalized by hTERT Gene Transduction.

    Directory of Open Access Journals (Sweden)

    Kee Hang Lee

    Full Text Available Stem cells and therapeutic genes are emerging as a new therapeutic approach to treat various neurodegenerative diseases with few effective treatment options. However, potential formation of tumors by stem cells has hampered their clinical application. Moreover, adequate preclinical platforms to precisely test tumorigenic potential of stem cells are controversial. In this study, we compared the sensitivity of various animal models for in vivo stem cell tumorigenicity testing to identify the most sensitive platform. Then, tumorigenic potential of adult human multipotent neural cells (ahMNCs immortalized by the human telomerase reverse transcriptase (hTERT gene was examined as a stem cell model with therapeutic genes. When human glioblastoma (GBM cells were injected into adult (4-6-week-old Balb/c-nu, adult NOD/SCID, adult NOG, or neonate (1-2-week-old NOG mice, the neonate NOG mice showed significantly faster tumorigenesis than that of the other groups regardless of intracranial or subcutaneous injection route. Two kinds of ahMNCs (682TL and 779TL were primary cultured from surgical samples of patients with temporal lobe epilepsy. Although the ahMNCs were immortalized by lentiviral hTERT gene delivery (hTERT-682TL and hTERT-779TL, they did not form any detectable masses, even in the most sensitive neonate NOG mouse platform. Moreover, the hTERT-ahMNCs had no gross chromosomal abnormalities on a karyotype analysis. Taken together, our data suggest that neonate NOG mice could be a sensitive animal platform to test tumorigenic potential of stem cell therapeutics and that ahMNCs could be a genetically stable stem cell source with little tumorigenic activity to develop regenerative treatments for neurodegenerative diseases.

  18. Signal transduction and downregulation of C-MET in HGF stimulated low and highly metastatic human osteosarcoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Husmann, Knut, E-mail: khusmann@research.balgrist.ch [Laboratory for Orthopedic Research, Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich (Switzerland); Ducommun, Pascal [Laboratory for Orthopedic Research, Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich (Switzerland); Division of Plastic Surgery and Hand Surgery, Department of Surgery, University Hospital Zurich, Zurich (Switzerland); Sabile, Adam A.; Pedersen, Else-Marie; Born, Walter; Fuchs, Bruno [Laboratory for Orthopedic Research, Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich (Switzerland)

    2015-09-04

    The poor outcome of osteosarcoma (OS), particularly in patients with metastatic disease and a five-year survival rate of only 20%, asks for more effective therapeutic strategies targeting malignancy-promoting mechanisms. Dysregulation of C-MET, its ligand hepatocyte growth factor (HGF) and the fusion oncogene product TPR-MET, first identified in human MNNG-HOS OS cells, have been described as cancer-causing factors in human cancers. Here, the expression of these molecules at the mRNA and the protein level and of HGF-stimulated signaling and downregulation of C-MET was compared in the parental low metastatic HOS and MG63 cell lines and the respective highly metastatic MNNG-HOS and 143B and the MG63-M6 and MG63-M8 sublines. Interestingly, expression of TPR-MET was only observed in MNNG-HOS cells. HGF stimulated the phosphorylation of Akt and Erk1/2 in all cell lines investigated, but phospho-Stat3 remained at basal levels. Downregulation of HGF-stimulated Akt and Erk1/2 phosphorylation was much faster in the HGF expressing MG63-M8 cells than in HOS cells. Degradation of HGF-activated C-MET occurred predominantly through the proteasomal and to a lesser extent the lysosomal pathway in the cell lines investigated. Thus, HGF-stimulated Akt and Erk1/2 signaling as well as proteasomal degradation of HGF activated C-MET are potential therapeutic targets in OS. - Highlights: • Expression of TPR-MET was only observed in MNNG-HOS cells. • HGF stimulated the phosphorylation of Akt and Erk1/2 but not of Stat3 in osteosarcoma cell lines. • Degradation of HGF-activated C-MET occurred predominantly through the proteasomal pathway.

  19. In situ tip-recordings found no evidence for an Orco-based ionotropic mechanism of pheromone-transduction in Manduca sexta.

    Directory of Open Access Journals (Sweden)

    Andreas Nolte

    Full Text Available The mechanisms of insect odor transduction are still controversial. Insect odorant receptors (ORs are 7TM receptors with inverted membrane topology. They colocalize with a conserved coreceptor (Orco with chaperone and ion channel function. Some studies suggest that insects employ exclusively ionotropic odor transduction via OR-Orco heteromers. Other studies provide evidence for different metabotropic odor transduction cascades, which employ second messenger-gated ion channel families for odor transduction. The hawkmoth Manduca sexta is an established model organism for studies of insect olfaction, also due to the availability of the hawkmoth-specific pheromone blend with its main component bombykal. Previous patch-clamp studies on primary cell cultures of M. sexta olfactory receptor neurons provided evidence for a pheromone-dependent activation of a phospholipase Cβ. Pheromone application elicited a sequence of one rapid, apparently IP3-dependent, transient and two slower Ca(2+-dependent inward currents. It remains unknown whether additionally an ionotropic pheromone-transduction mechanism is employed. If indeed an OR-Orco ion channel complex underlies an ionotropic mechanism, then Orco agonist-dependent opening of the OR-Orco channel pore should add up to pheromone-dependent opening of the pore. Here, in tip-recordings from intact pheromone-sensitive sensilla, perfusion with the Orco agonist VUAA1 did not increase pheromone-responses within the first 1000 ms. However, VUAA1 increased spontaneous activity of olfactory receptor neurons Zeitgebertime- and dose-dependently. We conclude that we find no evidence for an Orco-dependent ionotropic pheromone transduction cascade in M. sexta. Instead, in M. sexta Orco appears to be a slower, second messenger-dependent pacemaker channel which affects kinetics and threshold of pheromone-detection via changes of intracellular Ca(2+ baseline concentrations.

  20. In situ tip-recordings found no evidence for an Orco-based ionotropic mechanism of pheromone-transduction in Manduca sexta.

    Science.gov (United States)

    Nolte, Andreas; Funk, Nico W; Mukunda, Latha; Gawalek, Petra; Werckenthin, Achim; Hansson, Bill S; Wicher, Dieter; Stengl, Monika

    2013-01-01

    The mechanisms of insect odor transduction are still controversial. Insect odorant receptors (ORs) are 7TM receptors with inverted membrane topology. They colocalize with a conserved coreceptor (Orco) with chaperone and ion channel function. Some studies suggest that insects employ exclusively ionotropic odor transduction via OR-Orco heteromers. Other studies provide evidence for different metabotropic odor transduction cascades, which employ second messenger-gated ion channel families for odor transduction. The hawkmoth Manduca sexta is an established model organism for studies of insect olfaction, also due to the availability of the hawkmoth-specific pheromone blend with its main component bombykal. Previous patch-clamp studies on primary cell cultures of M. sexta olfactory receptor neurons provided evidence for a pheromone-dependent activation of a phospholipase Cβ. Pheromone application elicited a sequence of one rapid, apparently IP3-dependent, transient and two slower Ca(2+)-dependent inward currents. It remains unknown whether additionally an ionotropic pheromone-transduction mechanism is employed. If indeed an OR-Orco ion channel complex underlies an ionotropic mechanism, then Orco agonist-dependent opening of the OR-Orco channel pore should add up to pheromone-dependent opening of the pore. Here, in tip-recordings from intact pheromone-sensitive sensilla, perfusion with the Orco agonist VUAA1 did not increase pheromone-responses within the first 1000 ms. However, VUAA1 increased spontaneous activity of olfactory receptor neurons Zeitgebertime- and dose-dependently. We conclude that we find no evidence for an Orco-dependent ionotropic pheromone transduction cascade in M. sexta. Instead, in M. sexta Orco appears to be a slower, second messenger-dependent pacemaker channel which affects kinetics and threshold of pheromone-detection via changes of intracellular Ca(2+) baseline concentrations. PMID:23671617

  1. Staphylococcal enterotoxin-A directly stimulates signal transduction and interferon-gamma production in psoriatic T-cell lines

    DEFF Research Database (Denmark)

    Nielsen, M B; Odum, N; Gerwien, J;

    1998-01-01

    Bacterial superantigens such as staphylococcal enterotoxin-A (SEA) have been implicated in the pathogenesis of psoriasis vulgaris. Major histocompatibility complex (MHC) class II molecules are high affinity receptors for SEA, and T cells found in psoriatic skin lesions express high levels of MHC...... are involved in the autopresentation of SEA by psoriatic T cells. In conclusion, we provide evidence that SEA directly activates MVHC class H-positive psoriatic T-cell lines to produce IFN-gamma, a key cytokine in the pathogenesis of psoriasis vulgaris....... of interferon-gamma (IFN-gamma), but not autocrine mitogenesis in CD8-positive T clones obtained from skin lesions of a patient with psoriasis vulgaris. Psoriatic T cells do not respond to SEA molecules if mutations are introduced in the TCRbeta- or in both the two MHC class II alpha- and beta-binding sites...

  2. Association of reactive oxygen species-mediated signal transduction with in vitro apoptosis sensitivity in chronic lymphocytic leukemia B cells.

    Directory of Open Access Journals (Sweden)

    Adam L Palazzo

    Full Text Available BACKGROUND: Chronic lymphocytic leukemia (CLL is a B cell malignancy with a variable clinical course and unpredictable response to therapeutic agents. Single cell network profiling (SCNP utilizing flow cytometry measures alterations in signaling biology in the context of molecular changes occurring in malignancies. In this study SCNP was used to identify proteomic profiles associated with in vitro apoptotic responsiveness of CLL B cells to fludarabine, as a basis for ultimately linking these with clinical outcome. METHODOLOGY/PRINCIPAL FINDING: SCNP was used to quantify modulated-signaling of B cell receptor (BCR network proteins and in vitro F-ara-A mediated apoptosis in 23 CLL samples. Of the modulators studied the reactive oxygen species, hydrogen peroxide (H₂O₂, a known intracellular second messenger and a general tyrosine phosphatase inhibitor stratified CLL samples into two sub-groups based on the percentage of B cells in a CLL sample with increased phosphorylation of BCR network proteins. Separately, in the same patient samples, in vitro exposure to F-ara-A also identified two sub-groups with B cells showing competence or refractoriness to apoptotic induction. Statistical analysis showed that in vitro F-ara-A apoptotic proficiency was highly associated with the proficiency of CLL B cells to undergo H₂O₂-augmented signaling. CONCLUSIONS/SIGNIFICANCE: This linkage in CLL B cells among the mechanisms governing chemotherapy-induced apoptosis increased signaling of BCR network proteins and a likely role of phosphatase activity suggests a means of stratifying patients for their response to F-ara-A based regimens. Future studies will examine the clinical applicability of these findings and also the utility of this approach in relating mechanism to function of therapeutic agents.

  3. Signal transduction in T lymphocytes in microgravity

    Science.gov (United States)

    Cogoli, A.

    1997-01-01

    More than 120 experiments conducted in space in the last 15 years have shown that dramatic changes are occurring in several types of single cells during their exposure to microgravity. One focus of today's research on cells in space is on signal transduction, especially those steps involving the cytoskeleton and cell-cell interactions. Signal transduction is often altered in microgravity as well as in hypergravity. This leads to changes in cell proliferation, genetic expression and differentiation. Interesting examples are leukocytes, HeLa cells, epidermoid cells and osteoblastic cells. Signalling pathways were studied in T lymphocytes in microgravity by several investigators after the discovery that mitogenic activation in vitro is virtually nil at 0g. T cells are a good model to study signal transduction because three extracellular signals (mitogen, IL-1 and IL-2) are required for full activation, and two classical pathways (via proteins G and PKC) are activated within the cell. In addition, low molecular weight GTP-binding proteins (Ras and Rap) are interacting with the cytoskeleton. The data at 0g support the notion that the expression of IL-2 receptor is inhibited at 0g, while mitogen binding and the transmission of IL-1 by accessory cells occur normally. In addition, alterations of the cytoskeleton suggest that the interaction with Rap proteins is disturbed. Data obtained with phorbol esters indicate that the function of PKC is changed in microgravity. Similar conclusions are drawn from the results with epidermoid cells A431.

  4. Resistance of SKW6 cell to apoptosis induction with anti-Fas antibody upon transduction of a reverse fragment to a cDNA encoding human 6A8 α-mannosidase

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effect of transduction with a reverse fragment to a cDNA encoding human 6A8 a-mannosidase on apoptosis induction of human B cell line SKW6 by anti-Fas antibody was tested. Apoptosis-inducer of anti-Fas monoclonal antibody was used to induce apoptosis in SKW6 cells. Giemsa's staining, Annexin-V-FLUOS staining and DNA ladder test were used to determine the events of apoptosis. Indirect immunofluorescent staining with anti-Fas antibody was performed to detect the surface Fas expression. In a time-course test of 12, 24 and 36 h for apoptosis induction by anti-Fas antibody, DNA ladder was observed in the wild-type SKW6 cells in a time-dependent fashion. Mock transduction had no effect on DNA ladder production. However, no DNA ladder was detected in the rAAV-antisense 6A8 cDNA-transduced SKW6. Results from Annexin-V-FLUOS staining on anti-Fas antibody-treated cells revealed that the staining-positive rate in the rAAV-antisense 6A8 cDNA-transduced SKW6 cells was decreased in comparison to that in the wild-type and the mock-transduced cells. Giemsa's staining observation showed that the number of dying (with apoptotic bodies) and dead cells was reduced in the rAAV-antisense 6A8 cDNA-transduced SKW6 cells in comparison with that in the wild-type and the mock-transduced cells upon anti-Fas antibody induction. The transduction did not affect the expression of Fas molecular on cell surface. 100% cells in all the groups showed Fas expression. The SKW6 cells became resistant to apoptosis induction by anti-Fas antibody upon transduction with a reverse fragment to a cDNA encoding human 6A8 a-mannosidase. The transduction did not affect the expression of Fas molecule on cells.

  5. Tamarind Seed Xyloglucans Promote Proliferation and Migration of Human Skin Cells through Internalization via Stimulation of Proproliferative Signal Transduction Pathways

    Directory of Open Access Journals (Sweden)

    W. Nie

    2013-01-01

    Full Text Available Xyloglucans (XGs of Tamarindus indica L. Fabaceae are used as drug vehicles or as ingredients of cosmetics. Two xyloglucans were extracted from T. indica seed with cold water (TSw and copper complex precipitation (TSc. Both were analyzed in regard to composition and influence on cell viability, proliferation, cell cycle progression, migration, MAPK phosphorylation, and gene expression of human skin keratinocytes (NHEK and HaCaT and fibroblasts (NHDF in vitro. TSw and TSc differed in molecular weight, rhamnose content, and ratios of xylose, arabinose, galactose, and glucose. Both XGs improved keratinocytes and fibroblast proliferation, promoted the cell cycle, and stimulated migration and intracellular enzyme activity of NHDF after endosomal uptake. Only TSw significantly enhanced HaCaT migration and extracellular enzyme activity of NHDF and HaCaT. TSw and TSc predominantly enhanced the phosphorylation of molecules that referred to Erk signaling in NHEK. In NHDF parts of the integrin signaling and SAPK/JNK pathway were affected. Independent of cell type TSw marginally regulated the expression of genes, which referred to membrane proteins, cytoskeleton, cytokine signaling, and ECM as well as to processes of metabolism and transcription. Results show that T. indica xyloglucans promote skin regeneration by a direct influence on cell proliferation and migration.

  6. Tamarind Seed Xyloglucans Promote Proliferation and Migration of Human Skin Cells through Internalization via Stimulation of Proproliferative Signal Transduction Pathways.

    Science.gov (United States)

    Nie, W; Deters, A M

    2013-01-01

    Xyloglucans (XGs) of Tamarindus indica L. Fabaceae are used as drug vehicles or as ingredients of cosmetics. Two xyloglucans were extracted from T. indica seed with cold water (TSw) and copper complex precipitation (TSc). Both were analyzed in regard to composition and influence on cell viability, proliferation, cell cycle progression, migration, MAPK phosphorylation, and gene expression of human skin keratinocytes (NHEK and HaCaT) and fibroblasts (NHDF) in vitro. TSw and TSc differed in molecular weight, rhamnose content, and ratios of xylose, arabinose, galactose, and glucose. Both XGs improved keratinocytes and fibroblast proliferation, promoted the cell cycle, and stimulated migration and intracellular enzyme activity of NHDF after endosomal uptake. Only TSw significantly enhanced HaCaT migration and extracellular enzyme activity of NHDF and HaCaT. TSw and TSc predominantly enhanced the phosphorylation of molecules that referred to Erk signaling in NHEK. In NHDF parts of the integrin signaling and SAPK/JNK pathway were affected. Independent of cell type TSw marginally regulated the expression of genes, which referred to membrane proteins, cytoskeleton, cytokine signaling, and ECM as well as to processes of metabolism and transcription. Results show that T. indica xyloglucans promote skin regeneration by a direct influence on cell proliferation and migration.

  7. Tamarind Seed Xyloglucans Promote Proliferation and Migration of Human Skin Cells through Internalization via Stimulation of Proproliferative Signal Transduction Pathways.

    Science.gov (United States)

    Nie, W; Deters, A M

    2013-01-01

    Xyloglucans (XGs) of Tamarindus indica L. Fabaceae are used as drug vehicles or as ingredients of cosmetics. Two xyloglucans were extracted from T. indica seed with cold water (TSw) and copper complex precipitation (TSc). Both were analyzed in regard to composition and influence on cell viability, proliferation, cell cycle progression, migration, MAPK phosphorylation, and gene expression of human skin keratinocytes (NHEK and HaCaT) and fibroblasts (NHDF) in vitro. TSw and TSc differed in molecular weight, rhamnose content, and ratios of xylose, arabinose, galactose, and glucose. Both XGs improved keratinocytes and fibroblast proliferation, promoted the cell cycle, and stimulated migration and intracellular enzyme activity of NHDF after endosomal uptake. Only TSw significantly enhanced HaCaT migration and extracellular enzyme activity of NHDF and HaCaT. TSw and TSc predominantly enhanced the phosphorylation of molecules that referred to Erk signaling in NHEK. In NHDF parts of the integrin signaling and SAPK/JNK pathway were affected. Independent of cell type TSw marginally regulated the expression of genes, which referred to membrane proteins, cytoskeleton, cytokine signaling, and ECM as well as to processes of metabolism and transcription. Results show that T. indica xyloglucans promote skin regeneration by a direct influence on cell proliferation and migration. PMID:24106497

  8. Numerical Investigation of the Water Droplet Transport in a PEM Fuel Cell with Serpentine Flow Channel

    OpenAIRE

    Bittagopal Mondal; Dipankar Chatterjee

    2016-01-01

    The serpentine flow channel can be considered as one of the most common and practical channel layouts for a polymer electrolyte membrane fuel cell (PEMFC) since it ensures an effective and efficient removal of water produced in a cell with acceptable parasitic load. Water management is one of the key issues to improve the cell performance since at low operating temperatures in PEMFC, water vapor condensation starts easily and accumulates the liquid water droplet within the flow channels, thus...

  9. Epidermal growth factor and ras regulate gene expression in GH4 pituitary cells by separate, antagonistic signal transduction pathways

    Energy Technology Data Exchange (ETDEWEB)

    Pickett, C.A.; Gutierrez-Hartmann, A. [Univ. of Colorado Health Sciences Center, Denver, CO (United States)

    1995-12-01

    This report discusses the role of the epidermal growth factor (EGF) in promoting activation of the rat prolactin promoter in neuroendocrine cells via a Ras-independent mechanism. It also discusses the role of phosphotransferases in mediating EGF response. 32 refs., 8 figs., 1 tab.

  10. Activation of stretch-activated channels and maxi-K+ channels by membrane stress of human lamina cribrosa cells.

    LENUS (Irish Health Repository)

    Irnaten, Mustapha

    2009-01-01

    The lamina cribrosa (LC) region of the optic nerve head is considered the primary site of damage in glaucomatous optic neuropathy. Resident LC cells have a profibrotic potential when exposed to cyclical stretch. However, the mechanosensitive mechanisms of these cells remain unknown. Here the authors investigated the effects of membrane stretch on cell volume change and ion channel activity and examined the associated changes in intracellular calcium ([Ca(2+)](i)).

  11. Arginine, leucine, and glutamine stimulate proliferation of porcine trophectoderm cells through the MTOR-RPS6K-RPS6-EIF4EBP1 signal transduction pathway.

    Science.gov (United States)

    Kim, Jinyoung; Song, Gwonhwa; Wu, Guoyao; Gao, Haijun; Johnson, Gregory A; Bazer, Fuller W

    2013-05-01

    During the peri-implantation and early placentation periods in pigs, conceptuses (embryo and its extra-embryonic membranes) undergo dramatic morphological changes and differentiation that require the exchange of nutrients (histotroph) and gasses across the trophectoderm and a true epitheliochorial placenta. Of these nutrients, arginine (Arg), leucine (Leu), and glutamine (Gln) are essential components of histotroph; however, little is known about changes in their total amounts in the uterine lumen of cyclic and pregnant gilts and their effects on cell signaling cascades. Therefore, we determined quantities of Arg, Leu, and Gln in uterine luminal fluids and found that total recoverable amounts of these amino acids increased in pregnant but not cyclic gilts between Days 12 and 15 after onset of estrus. We hypothesized that Arg, Leu, and Gln have differential effects on hypertrophy, hyperplasia, and differentiated functions of trophectoderm cells that are critical to conceptus development. Primary porcine trophectoderm (pTr) cells treated with either Arg, Leu, or Gln had increased abundance of phosphorylated RPS6K, RPS6, and EIF4EBP1 compared to basal levels, and this effect was maintained for up to 120 min. When pTr cells were treated with Arg, Leu, and Gln, low levels of pRPS6K and pEIF4EBP1 were detected in the cytosol, but the abundance of nuclear pRPS6K increased. Immunofluorescence analyses revealed abundant amounts of pRPS6 protein in the cytoplasm of pTr cells treated with Arg, Leu, and Gln. These amino acids also increased proliferation of pTr cells. Furthermore, when Arg, Leu, and Gln were combined with siRNAs for either MTOR, RPTOR, or RICTOR, effects of those amino acids on proliferation of pTr cells were significantly inhibited. Collectively, these results indicate that Arg, Leu, and Gln act coordinately to stimulate proliferation of pTr cells through activation of the MTOR-RPS6K-RPS6-EIF4EBP1 signal transduction pathway.

  12. The cornucopia of intestinal chemosensory transduction

    Directory of Open Access Journals (Sweden)

    Paul P Bertrand

    2009-12-01

    Full Text Available The chemosensory transduction mechanisms that the gastrointestinal (GI tract uses to detect chemical and nutrient stimuli are poorly understood. The GI tract is presented with a wide variety of stimuli including potentially harmful chemicals or toxins as well as 'normal' stimuli including nutrients, bacteria and mechanical forces. Sensory transduction is at its simplest the conversion of these stimuli into a neural code in afferent nerves. Much of the information encoded is used by the enteric nervous system (ENS to generate local reflexes while complementary information is sent to the central nervous system (CNS via afferents or by release of hormones to affect behaviour. This review focuses on the chemosensory transduction mechanisms present in the GI tract. It examines the expression and localisation of the machinery for chemosensory transduction. It summarises the types of cells which might be involved in detecting stimuli and releasing neuroactive transmitters. Finally, it highlights the idea that chemosensory transduction mechanisms in the GI tract utilise many overlapping and complementary mechanisms for detecting and transducing stimuli into reflex action.

  13. Calcium signaling and T-type calcium channels in cancer cell cycling

    Institute of Scientific and Technical Information of China (English)

    James T Taylor; Xiang-Bin Zeng; Jonathan E Pottle; Kevin Lee; Alun R Wang; Stephenie G Yi; Jennifer A S Scruggs; Suresh S Sikka; Ming Li

    2008-01-01

    Regulation of intracellular calcium is an important signaling mechanism for cell proliferation in both normal and cancerous cells. In normal epithelial cells,free calcium concentration is essential for cells to enter and accomplish the S phase and the M phase of the cell cycle. In contrast, cancerous cells can pass these phases of the cell cycle with much lower cytoplasmic free calcium concentrations, indicating an alternative mechanism has developed for fulfilling the intracellular calcium requirement for an increased rate of DNA synthesis and mitosis of fast replicating cancerous cells. The detailed mechanism underlying the altered calcium loading pathway remains unclear;however, there is a growing body of evidence that suggests the T-type Ca2+ channel is abnormally expressed in cancerous cells and that blockade of these channels may reduce cell proliferation in addition to inducing apoptosis. Recent studies also show that the expression of T-type Ca2+ channels in breast cancer cells is proliferation state dependent, i.e. the channels are expressed at higher levels during the fast-replication period, and once the cells are in a non-proliferation state, expression of this channel isminimal. Therefore, selectively blocking calcium entry into cancerous cells may be a valuable approach for preventing tumor growth. Since T-type Ca2+ channels are not expressed in epithelial cells, selective T-type Ca2+ channel blockers may be useful in the treatment of certain types of cancers.

  14. Micromachined Si channel width and tortuosity on human osteoblast cell attachment and proliferation

    International Nuclear Information System (INIS)

    In this study, influence of coating chemistry, channel width and tortuosity of various two-dimensional micro-channels were explored on micromachined Si using osteoblast precursor cells line 1 (OPC1). The rationale for our study is to delineate the influence of different porosity parameters on bone cell attachment and proliferation in vitro. Channel widths of 100, 200, 300, 400, and 600 μm; channel bends of 0, 1, and 2 right angles; and gold and silicon dioxide coatings on single-crystal Si were studied. Experiments were conducted with channel tops under glass covered and uncovered conditions keeping the channel depth at 220 μm. Independent samples were evaluated using SEM imaging and MTT assay to measure bone cell morphology and quantity. Images were taken of micro-channels and exterior chambers at 50x, 500x, 1000x, and 5000x magnifications. Channel and chamber cell densities were scored as follows: bare (score = 0), scattered (1), limited (2), abundant (3), and overflowing (4). Samples were then scored and statistically analyzed for major differences. In general, OPC1 cells proliferated at least 5% or better based on cell numbers under uncovered conditions than glass covered. Channel widths of 100 μm largely prohibited cell proliferation and diffusion by narrow path inhibition with the lowest average score of 1.17. Among channel bends of 0, 1, and 2 right angles, an increase in micro-channel tortuosity from 0-2 bends amplified OPC1 cell growth upwards of ∼ 6.6%. A one-way ANOVA showed significant differences in cell quantity for alternating channel tortuosity at a significance level of p < 0.05. No preference was found for gold or silicon dioxide coatings on Si for bone cell proliferation.

  15. Highly efficient adenoviral transduction of pancreatic islets using a microfluidic device.

    Science.gov (United States)

    Silva, Pamuditha N; Atto, Zaid; Regeenes, Romario; Tufa, Uilki; Chen, Yih Yang; Chan, Warren C W; Volchuk, Allen; Kilkenny, Dawn M; Rocheleau, Jonathan V

    2016-08-01

    Tissues are challenging to genetically manipulate due to limited penetration of viral particles resulting in low transduction efficiency. We are particularly interested in expressing genetically-encoded sensors in ex vivo pancreatic islets to measure glucose-stimulated metabolism, however poor viral penetration biases these measurements to only a subset of cells at the periphery. To increase mass transfer of viral particles, we designed a microfluidic device that holds islets in parallel hydrodynamic traps connected by an expanding by-pass channel. We modeled viral particle flow into the tissue using fluorescently-labelled gold nanoparticles of varying sizes and showed a penetration threshold of only ∼5 nm. To increase this threshold, we used EDTA to transiently reduce cell-cell adhesion and expand intercellular space. Ultimately, a combination of media flow and ETDA treatment significantly increased adenoviral transduction to the core of the islet. As proof-of-principle, we used this protocol to transduce an ER-targeted redox sensitive sensor (eroGFP), and revealed significantly greater ER redox capacity at core islet cells. Overall, these data demonstrate a robust method to enhance transduction efficiency of islets, and potentially other tissues, by using a combination of microfluidic flow and transient tissue expansion. PMID:27378588

  16. Involvement of Ca2+/CaM in the signal transduction of acetylcholine regulating stomatal movement

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    It has been known that the neurotransmitter acetylcholine (ACh) also exists in plants and is able to regulate the movement of stomata. In another aspect, Ca2+/CaM as the second messengers have a critical role of signal transduction in stomatal guard-cell. Here we showed that Ca2+/CaM were also involved in theACh regulated stomatal movement. In the medium containing Ca2+, the Ca2+ channel blockers (NIF and Ver) and CaM inhibitors (TFP and W7) could neutralize the ACh induced stomatal opening, however, they are ineffective in the medium containing K+. Those results indicated that Ca2+/CaM were involved in the signal transduction pathway of ACh regulating stomatal movement.

  17. Gravitational Effects on Signal Transduction

    Science.gov (United States)

    Sytkowski, Arthur J.

    1999-01-01

    An understanding of the mechanisms by which individual cells perceive gravity and how these cells transduce and respond to gravitational stimuli is critical for the development of long-term manned space flight experiments. We now propose to use a well-characterized model erythroid cell system and to investigate gravitational perturbations of its erythropoietin (Epo) signaling pathway and gene regulation. Cells will be grown at 1-G and in simulated microgravity in the NASA Rotating Wall Vessel bioreactor (RWV). Cell growth and differentiation, the Epo-receptor, the protein kinase C pathway to the c-myc gene, and the protein phosphatase pathway to the c-myb gene will be studied and evaluated as reporters of gravitational stimuli. The results of these experiments will have impact on the problems of 1) gravitational sensing by individual cells, and 2) the anemia of space flight. This ground-based study also will serve as a Space Station Development Study in gravitational effects on intracellular signal transduction.

  18. Ion channels involved in cell volume regulation: effects on migration, proliferation, and programmed cell death in non adherent EAT cells and adherent ELA cells.

    Science.gov (United States)

    Hoffmann, Else Kay

    2011-01-01

    This mini review outlines studies of cell volume regulation in two closely related mammalian cell lines: nonadherent Ehrlich ascites tumour cells (EATC) and adherent Ehrlich Lettre ascites (ELA) cells. Focus is on the regulatory volume decrease (RVD) that occurs after cell swelling, the volume regulatory ion channels involved, and the mechanisms (cellular signalling pathways) that regulate these channels. Finally, I shall also briefly review current investigations in these two cell lines that focuses on how changes in cell volume can regulate cell functions such as cell migration, proliferation, and programmed cell death.

  19. Chemoselective tarantula toxins report voltage activation of wild-type ion channels in live cells

    OpenAIRE

    Tilleya, DC; Euma, KS; Fletcher-Taylor, S; Austina, DC; Dupré, C; Patrón, LA; Garcia, RL; Lam, K; Yarov-Yarovoy, V; Cohenc, BE; Sack, JT

    2014-01-01

    Electrically excitable cells, such as neurons, exhibit tremendous diversity in their firing patterns, a consequence of the complex collection of ion channels present in any specific cell. Although numerous methods are capable of measuring cellular electrical signals, understanding which types of ion channels give rise to these signals remains a significant challenge. Here, we describe exogenous probes which use a novel mechanism to report activity of voltage-gated channels. We have synthesize...

  20. Cellular semiotics and signal transduction

    DEFF Research Database (Denmark)

    Bruni, Luis Emilio

    2007-01-01

    to the processes of sign interpretation and transmission between organisms of the same or different species). In Biosemiotics it is customary to recognise the cell as the most elementary integration unit for semiosis. Therefore intra and intercellular communication constitute the departure point for the study......Semiosis, the processes of production, communication and interpretation of signs - coding and de-coding - takes place within and between organisms. The term "endosemiosis" refers to the processes of interpretation and sign transmission inside an organism (as opposed to "exosemiosis", which refers...... considering semiotic logic in order to construct our understanding of living phenomena. Given the central integrating role of signal transduction in physiological and ecological studies, this chapter outlines its semiotic implications. The multi-modality and modularity of signal molecules and relative...

  1. Spatial DCT-Based Channel Estimation in Multi-Antenna Multi-Cell Interference Channels

    Science.gov (United States)

    Alodeh, Maha; Chatzinotas, Symeon; Ottersten, Bjorn

    2015-03-01

    This work addresses channel estimation in multiple antenna multicell interference-limited networks. Channel state information (CSI) acquisition is vital for interference mitigation. Wireless networks often suffer from multicell interference, which can be mitigated by deploying beamforming to spatially direct the transmissions. The accuracy of the estimated CSI plays an important role in designing accurate beamformers that can control the amount of interference created from simultaneous spatial transmissions to mobile users. Therefore, a new technique based on the structure of the spatial covariance matrix and the discrete cosine transform (DCT) is proposed to enhance channel estimation in the presence of interference. Bayesian estimation and Least Squares estimation frameworks are introduced by utilizing the DCT to separate the overlapping spatial paths that create the interference. The spatial domain is thus exploited to mitigate the contamination which is able to discriminate across interfering users. Gains over conventional channel estimation techniques are presented in our simulations which are also valid for a small number of antennas.

  2. Amplitude death of coupled hair bundles with stochastic channel noise

    CERN Document Server

    Kim, Kyung-Joong

    2014-01-01

    Hair cells conduct auditory transduction in vertebrates. In lower vertebrates such as frogs and turtles, due to the active mechanism in hair cells, hair bundles(stereocilia) can be spontaneously oscillating or quiescent. Recently, the amplitude death phenomenon has been proposed [K.-H. Ahn, J. R. Soc. Interface, {\\bf 10}, 20130525 (2013)] as a mechanism for auditory transduction in frog hair-cell bundles, where sudden cessation of the oscillations arises due to the coupling between non-identical hair bundles. The gating of the ion channel is intrinsically stochastic due to the stochastic nature of the configuration change of the channel. The strength of the noise due to the channel gating can be comparable to the thermal Brownian noise of hair bundles. Thus, we perform stochastic simulations of the elastically coupled hair bundles. In spite of stray noisy fluctuations due to its stochastic dynamics, our simulation shows the transition from collective oscillation to amplitude death as inter-bundle coupling str...

  3. Mechanotransduction in mouse inner ear hair cells requires transmembrane channel-like genes

    NARCIS (Netherlands)

    Kawashima, Yoshiyuki; Geleoc, Gwenaelle S. G.; Kurima, Kiyoto; Labay, Valentina; Lelli, Andrea; Asai, Yukako; Makishima, Tomoko; Wu, Doris K.; Della Santina, Charles C.; Holt, Jeffrey R.; Griffith, Andrew J.

    2011-01-01

    Inner ear hair cells convert the mechanical stimuli of sound, gravity, and head movement into electrical signals. This mechanotransduction process is initiated by opening of cation channels near the tips of hair cell stereocilia. Since the identity of these ion channels is unknown, and mutations in

  4. An adenylate kinase is involved in KATP channel regulation of mouse pancreatic beta cells.

    NARCIS (Netherlands)

    Schulze, D.U.; Dufer, M.; Wieringa, B.; Krippeit-Drews, P.; Drews, G.

    2007-01-01

    AIMS/HYPOTHESIS: In a previous study, we demonstrated that a creatine kinase (CK) modulates K(ATP) channel activity in pancreatic beta cells. To explore phosphotransfer signalling pathways in more detail, we examined whether K(ATP) channel regulation in beta cells is determined by a metabolic intera

  5. Analysis of the gravitaxis signal transduction chain in Euglena gracilis

    Science.gov (United States)

    Nasir, Adeel

    Abstract Euglena gracilis is a photosynthetic, eukaryotic flagellate. It can adapt autotrophic and heterotrophic mode of growth and respond to different stimuli, this makes it an organism of choice for different research disciplines. It swims to reach a suitable niche by employing different stimuli such as oxygen, light, gravity and different chemicals. Among these stimuli light and gravity are the most important. Phototaxis (locomotion under light stimulus) and gravitaxis (locomotion under gravity stimulus) synergistically help cells to attain an optimal niche in the environment. However, in the complete absence of light or under scarcity of detectable light, cells can totally depend on gravity to find its swimming path. Therefore gravity has certain advantages over other stimuli.Unlike phototatic signal transduction chain of Euglena gracilis no clear primary gravity receptor has been identified in Euglena cells so far. However, there are some convincing evidence that TRP like channels act as a primary gravity receptor in Euglena gracilis.Use of different inhibitors gave rise to the involvement of protein kinase and calmodulin proteins in signal transduction chain of Euglena gracilis. Recently, specific calmodulin (Calmodulin 2) and protein kinase (PKA) have been identified as potential candidates of gravitactic signal transduction chain. Further characterization and investigation of these candidates was required. Therefore a combination of biochemical and genetic techniques was employed to localize proteins in cells and also to find interacting partners. For localization studies, specific antibodies were raised and characterized. Specificity of antibodies was validated by knockdown mutants, Invitro-translated proteins and heterologously expressed proteins. Cell fractionation studies, involving separation of the cell body and flagella for western blot analysis and confocal immunofluorescence studies were performed for subcellular localization. In order to find

  6. Effects of arsenic trioxide on voltage-dependent potassium channels and on cell proliferation of human multiple myeloma cells

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jin; WANG Wei; WEI Qing-fang; FENG Tie-ming; TAN Li-jun; YANG Bao-feng

    2007-01-01

    @@ Arsenic trioxide (ATO) can induce cellular apoptosis and inhibit the activities of multiple myeloma (MM)cells in vitro,1 but how it works is not very clear. Recent studies showed that ATO worked on the voltagedependent potassium channel and L-type calcium channel in myocardial cells,2-5 but the effect of ATO on ion channels of tumor cells was rarely reported. As the potassium channel plays an important role in controlling cell proliferation,6 we studied the effects of ATO on the voltage-dependent potassium current (Ikv) of the voltage-dependent potassium channel in an MM cell line,and probed into the relationship between changes of the Ikv caused by ATO and cell proliferation.

  7. The Role of Matrine and Mitogen-Ativated Protein Kinase/Extracellular Signal-Regulated Kinase Signal Transduction in the Inhibition of the Proliferation and Migration of Human Umbilical Veins Endothelial Cells Induced by Lung Cancer cells

    Directory of Open Access Journals (Sweden)

    Ming BAI

    2009-07-01

    Full Text Available Background and objective Matrine, one of the major alkaloid components of the traditional Chinese medicine Sophora roots, has a wide range of pharmacological effects including anti-inflammatory activities, growth inhibition and induction of cell differentiation and apoptosis. Motigen-activated protein kinase (MAPK/extracellular signal-regulated kinase (ERK has found to be a crucial signaling pathway in endothelial cells. The aim of this study is to investigate the role of Matrine and MAPK/ERK signal transduction in the inhibition of the proliferation and migration of human umbilical veins endothelial cells (HUVECs induced by lung cancer cells. Methods HUVECs were cultured with A549CM. Mat or PD98059 (i.e PD, specific inhibitor of MAPK/ERK, was added into the A549CM. The proliferation of the HUVECs was measured by cell counting. The migration of the HUVECs was observed by wound healing assay. The expression levels of ERK and p-ERK protein were detected by Western Blot analysis. Results On 24 hours after intervention, the A549CM significantly stimulated the proliferation, migration and expression of p-ERK of HUVECs. Compared with the A549CM group, Mat significantly inhibited the proliferation, migration and p-ERK expression of HUVECs induced by A549CM. While PD only decreased the proliferation and p-ERK expression of HUVECs induced by A549CM. PD had no effect in the migration of HUVECs. Conclusion The results demonstrated that Mat and PD98059 can effectively decrease proliferation and expression of p-ERK of HUVECs induced by A549CM. Furthermore Mat can also inhibit migration of HUVECs induced by A549CM that did not changed by PD98059. These data implied that suppressing MAPK/ERK signal transduction may play the crucial role in resisting lung cacinoma angiogenesis with Mat.

  8. A cell model study of calcium influx mechanism regulated by calcium-dependent potassium channels in Purkinje cell dendrites.

    Science.gov (United States)

    Chono, Koji; Takagi, Hiroshi; Koyama, Shozo; Suzuki, Hideo; Ito, Etsuro

    2003-10-30

    The present study was designed to elucidate the roles of dendritic voltage-gated K+ channels in Ca2+ influx mechanism of a rat Purkinje cell using a computer simulation program. First, we improved the channel descriptions and the maximum conductance in the Purkinje cell model to mimic both the kinetics of ion channels and the Ca2+ spikes, which had failed in previous studies. Our cell model is, therefore, much more authentic than those in previous studies. Second, synaptic inputs that mimic stimulation of parallel fibers and induce sub-threshold excitability were simultaneously applied to the spiny dendrites. As a result, transient Ca2+ responses were observed in the stimulation points and they decreased with the faster decay rate in the cell model including high-threshold Ca2+-dependent K+ channels than in those excluding these channels. Third, when a single synaptic input was applied into a spiny dendrite, Ca2+-dependent K+ channels suppressed Ca2+ increases at stimulation and recording points. Finally, Ca2+-dependent K+ channels were also found to suppress the time to peak Ca2+ values in the recording points. These results suggest that the opening of Ca2+-dependent K+ channels by Ca2+ influx through voltage-gated Ca2+ channels hyperpolarizes the membrane potentials and deactivates these Ca2+ channels in a negative feedback manner, resulting in local, weak Ca2+ responses in spiny dendrites of Purkinje cells.

  9. Removal of inhibitory substances with recombinant fibronectin-CH-296 plates enhances the retroviral transduction efficiency of CD34(+)CD38(-) bone marrow cells.

    Science.gov (United States)

    Chono, H; Yoshioka, H; Ueno, M; Kato, I

    2001-09-01

    In retroviral gene transduction, the efficiency of viral infection was reduced by the proteoglycans and some other materials secreted by the producer lines. In order to remove these inhibitors we have developed the rFN-CH-296-facilitated protocol. Because the rFN-CH-296 molecule has strong ability to bind a retroviral vector, rFN-CH-296 bound plates are utilized to wash out the unbound putative inhibitors present in a virus supernatant. The gene transduction efficiencies of human CD34(+)CD38(-) BMCs with a GALV-pseudotyped vector and the rFN-CH-296-facilitated protocol were compared with the protocol without a coating plate with CH-296, the mean gene transduction efficiencies being found to be 95.5 and 71.1%, respectively.

  10. Mitochondrial Ion Channels

    Science.gov (United States)

    O’Rourke, Brian

    2009-01-01

    In work spanning more than a century, mitochondria have been recognized for their multifunctional roles in metabolism, energy transduction, ion transport, inheritance, signaling, and cell death. Foremost among these tasks is the continuous production of ATP through oxidative phosphorylation, which requires a large electrochemical driving force for protons across the mitochondrial inner membrane. This process requires a membrane with relatively low permeability to ions to minimize energy dissipation. However, a wealth of evidence now indicates that both selective and nonselective ion channels are present in the mitochondrial inner membrane, along with several known channels on the outer membrane. Some of these channels are active under physiological conditions, and others may be activated under pathophysiological conditions to act as the major determinants of cell life and death. This review summarizes research on mitochondrial ion channels and efforts to identify their molecular correlates. Except in a few cases, our understanding of the structure of mitochondrial ion channels is limited, indicating the need for focused discovery in this area. PMID:17059356

  11. Low-dose photon irradiation alters cell differentiation via activation of hIK channels.

    Science.gov (United States)

    Roth, Bastian; Gibhardt, Christine S; Becker, Patrick; Gebhardt, Manuela; Knoop, Jan; Fournier, Claudia; Moroni, Anna; Thiel, Gerhard

    2015-08-01

    To understand the impact of ionizing irradiation from diagnostics and radiotherapy on cells, we examined K(+) channel activity before and immediately after exposing cells to X-rays. Already, low dose in the cGy range caused in adenocarcinoma A549 cells within minutes a hyperpolarization following activation of the human intermediate-conductance Ca(2+)-activated K(+) channel (hIK). The response was specific for cells, which functionally expressed hIK channels and in which hIK activity was low before irradiation. HEK293 cells, which do not respond to X-ray irradiation, accordingly develop a sensitivity to this stress after heterologous expression of hIK channels. The data suggest that hIK activation involves a Ca(2+)-mediated signaling cascade because channel activation is suppressed by a strong cytosolic Ca(2+) buffer. The finding that an elevation of H2O2 causes an increase in the concentration of cytosolic Ca(2+) suggests that radicals, which emerge early in response to irradiation, trigger this Ca(2+) signaling cascade. Inhibition of hIK channels by specific blockers clotrimazole and TRAM-34 slowed cell proliferation and migration in "wound" scratch assays; ionizing irradiation, in turn, stimulated the latter process presumably via its activation of the hIK channels. These data stress an indirect radiosensitivity of hIK channels with an impact on cell differentiation. PMID:25277267

  12. The polymodal ion channel TRPV4 modulates calcium flux, spiking rate and apoptosis of mouse retinal ganglion cells

    Science.gov (United States)

    Ryskamp, Daniel A.; Witkovsky, Paul; Barabas, Peter; Huang, Wei; Koehler, Christopher; Akimov, Nikolay P.; Lee, Suk Hee; Chauhan, Shiwani; Xing, Wei; Rentería, René C.; Liedtke, Wolfgang; Krizaj, David

    2011-01-01

    Sustained increase in intraocular pressure represents a major risk factor for eye disease yet the cellular mechanisms of pressure transduction in the posterior eye are essentially unknown. Here we show that the mouse retina expresses mRNA and protein for the polymodal TRPV4 cation channel known to mediate osmo- and mechanotransduction. TRPV4 antibodies labeled perikarya, axons and dendrites of retinal ganglion cells (RGCs) and intensely immunostained the optic nerve head. Müller glial cells, but not retinal astrocytes or microglia, also expressed TRPV4 immunoreactivity. The selective TRPV4 agonists 4α-PDD and GSK1016790A elevated [Ca2+]i in dissociated RGCs in a dose-dependent manner whereas the TRPV1 agonist capsaicin had no effect on [Ca2+]RGC. Exposure to hypotonic stimulation evoked robust increases in [Ca2+]RGC. RGC responses to TRPV4-selective agonists and hypotonic stimulation were absent in Ca2+-free saline and were antagonized by the nonselective TRP channel antagonists Ruthenium Red and gadolinium, but were unaffected by the TRPV1 antagonist capsazepine. TRPV4-selective agonists increased the spiking frequency recorded from intact retinas recorded with multielectrode arrays. Sustained exposure to TRPV4 agonists evoked dose-dependent apoptosis of RGCs. Our results demonstrate functional TRPV4 expression in RGCs and suggest that its activation mediates response to membrane stretch leading to elevated [Ca2+]i and augmented excitability. Excessive Ca2+ influx through TRPV4 predisposes RGCs to activation of Ca2+-dependent pro-apoptotic signaling pathways, indicating that TRPV4 is a component of the response mechanism to pathological elevations of intraocular pressure. PMID:21562271

  13. Transient receptor potential channels in mechanosensing and cell volume regulation

    DEFF Research Database (Denmark)

    Pedersen, Stine Falsig; Nilius, Bernd

    2007-01-01

    Transient receptor potential (TRP) channels are unique cellular sensors responding to a wide variety of extra- and intracellular signals, including mechanical and osmotic stress. In recent years, TRP channels from multiple subfamilies have been added to the list of mechano- and/or osmosensitive c...

  14. Magnesium Sensitizes Slow Vacuolar Channels to Physiological Cytosolic Calcium and Inhibits Fast Vacuolar Channels in Fava Bean Guard Cell Vacuoles.

    Science.gov (United States)

    Pei; Ward; Schroeder

    1999-11-01

    Vacuolar ion channels in guard cells play important roles during stomatal movement and are regulated by many factors including Ca(2+), calmodulin, protein kinases, and phosphatases. We report that physiological cytosolic and luminal Mg(2+) levels strongly regulate vacuolar ion channels in fava bean (Vicia faba) guard cells. Luminal Mg(2+) inhibited fast vacuolar (FV) currents with a K(i) of approximately 0.23 mM in a voltage-dependent manner at positive potentials on the cytoplasmic side. Cytosolic Mg(2+) at 1 mM also inhibited FV currents. Furthermore, in the absence of cytosolic Mg(2+), cytosolic Ca(2+) at less than 10 µM did not activate slow vacuolar (SV) currents. However, when cytosolic Mg(2+) was present, submicromolar concentrations of cytosolic Ca(2+) activated SV currents with a K(d) of approximately 227 nM, suggesting a synergistic Mg(2+)-Ca(2+) effect. The activation potential of SV currents was shifted toward physiological potentials in the presence of cytosolic Mg(2+) concentrations. The direction of SV currents could also be changed from outward to both outward and inward currents. Our data predict a model for SV channel regulation, including a cytosolic binding site for Ca(2+) with an affinity in the submicromolar range and a cytosolic low-affinity Mg(2+)-Ca(2+) binding site. SV channels are predicted to contain a third binding site on the vacuolar luminal side, which binds Ca(2+) and is inhibitory. In conclusion, cytosolic Mg(2+) sensitizes SV channels to physiological cytosolic Ca(2+) elevations. Furthermore, we propose that cytosolic and vacuolar Mg(2+) concentrations ensure that FV channels do not function as a continuous vacuolar K(+) leak, which would prohibit stomatal opening. PMID:10557247

  15. Selective inhibition of a slow-inactivating voltage-dependent K+ channel in rat PC12 cells by hypoxia.

    Science.gov (United States)

    Conforti, L; Millhorn, D E

    1997-07-15

    1. Electrophysiological (single-channel patch clamp) and molecular biological experiments (reverse transcriptase-polymerase chain reaction) were performed to attempt to identify the O2-sensitive K+ channel in rat phaeochromocytoma (PC12) cells. 2. Four types of K+ channels were recorded in PC12 cells: a small-conductance K+ channel (14 pS), a calcium-activated K+ channel (KCa; 102 pS) and two K+ channels with similar conductance (20 pS). These last two channels differed in their time-dependent inactivation: one was a slow-inactivating channel, while the other belonged to the family of fast transient K+ channels. 3. The slow-inactivating 20 pS K+ channel was inhibited by hypoxia. Exposure to hypoxia produced a 50% reduction in channel activity (number of active channels in the patch x open probability). Hypoxia had no effect on the 20 pS transient K+ channels, whereas reduced O2 stimulated the KCa channels. 4. The genes encoding the alpha-subunits of slow-inactivating K+ channels for two members of the Shaker subfamily of K+ channels (Kv1.2 and Kv1.3) together with the Kv2.1, Kv3.1 and Kv3.2 channel genes were identified in PC12 cells. 5. The expression of the Shaker Kv1.2, but none of the other K+ channel genes, increased in cells exposed to prolonged hypoxia (18 h). The same cells were more responsive to a subsequent exposure to hypoxia (35% inhibition of K+ current measured in whole-cell voltage clamp) compared with the cells maintained in normoxia (19% inhibition). 6. These results indicate that the O2-sensitive K+ channel in PC12 cells is a 20 pS slow-inactivating K+ channel that is upregulated by hypoxia. This channel appears to belong to the Shaker subfamily of voltage-gated K+ channels. PMID:9263911

  16. Identification and characterization of inward K ~+-channels in plasma membranes of Arabidopsis root cortex cells

    Institute of Scientific and Technical Information of China (English)

    于川江; 武维华

    1999-01-01

    Patch clamping whole-cell reeording techniques were apphed to study the inward K+ channels in Arabidopsis root cortex cells. The inward K+-channels in the plasma membranes of the root cortex cell protoplasts were activated by hyperpolarized membrane potentials. The channels were highly selective tor K+ ions over Na+ ions. The channel activity was significantly inbibited by the external TEA(?) or Ba(?) The changes in cytoplasmic Ca2+ concentrations did not affect the whole-cell inward K+-currents. The possible asso(?)ation betw(?)en the channel selectivity to K+ and Na(?) ions and plant salt-tolerance was also discussed.

  17. Signal transduction by HLA-DR is mediated by tyrosine kinase(s) and regulated by CD45 in activated T cells

    DEFF Research Database (Denmark)

    Odum, Niels; Martin, P J; Schieven, G L;

    1991-01-01

    , but the inhibitory effect of CD45 dominated over the enhancing effect of CD4. These data indicate that PTK activation is obligatory for DR-induced (Ca2+)i responses, suggesting a linkage between these pathways in class II signal transduction. This conclusion is consistent with our observation that in activated human...

  18. Comparing ion conductance recordings of synthetic lipid bilayers with cell membranes containing TRP channels

    CERN Document Server

    Laub, Katrine R; Blicher, Andreas; Madsen, Soren B; Luckhoff, Andreas; Heimburg, Thomas

    2011-01-01

    In this article we compare electrical conductance events from single channel recordings of three TRP channel proteins (TRPA1, TRPM2 and TRPM8) expressed in human embryonic kidney cells with channel events recorded on synthetic lipid membranes close to melting transitions. Ion channels from the TRP family are involved in a variety of sensory processes including thermo- and mechano-reception. Synthetic lipid membranes close to phase transitions display channel-like events that respond to stimuli related to changes in intensive thermodynamic variables such as pressure and temperature. TRP channel activity is characterized by typical patterns of current events dependent on the type of protein expressed. Synthetic lipid bilayers show a wide spectrum of electrical phenomena that are considered typical for the activity of protein ion channels. We find unitary currents, burst behavior, flickering, multistep-conductances, and spikes behavior in both preparations. Moreover, we report conductances and lifetimes for lipi...

  19. Signal transduction pathways in liver and the influence of hepatitis C virus infection on their activities

    Institute of Scientific and Technical Information of China (English)

    Magdalena M Dabrowska; Anatol Panasiuk; Robert Flisiak

    2009-01-01

    In liver, the most intensively studied transmembrane and intracellular signal transduction pathways are the Janus kinase signal transduction pathway, the mitogen-activated protein kinases signal transduction pathway, the transforming growth factor b signal transduction pathway, the tumor necrosis factor a signal transduction pathway and the recently discovered sphingolipid signal transduction pathway. All of them are activated by many different cytokines and growth factors. They regulate specific cell mechanisms such as hepatocytes proliferation, growth, differentiation, adhesion, apoptosis, and synthesis and degradation of the extracellular matrix. The replication cycle of hepatitis C virus (HCV) is intracellular and requires signal transduction to the nucleus to regulate transcription of its genes. Moreover, HCV itself, by its structural and nonstructural proteins, could influence the activity of the second signal messengers. Thus, the inhibition of the transmembrane and intracellular signal transduction pathways could be a new therapeutic target in chronic hepatitis C treatment.

  20. T-type calcium channel expression in cultured human neuroblastoma cells

    Institute of Scientific and Technical Information of China (English)

    Xianjie Wen; Shiyuan Xu; Lingling Wang; Hua Liang; Chengxiang Yang; Hanbing Wang; Hongzhen Liu

    2011-01-01

    Human neuroblastoma cells (SH-SY5Y) have similar structures and functions as neural cells and have been frequently used for cell culture studies of neural cell functions. Previous studies have revealed Land N-type calcium channels in SH-SY5Y cells. However, the distribution of the low -voltage activated calcium channel (namely called T-type calcium channel, including Cav3.1, Cav3.2, and Cav3.3) in SH-SY5Y cells remains poorly understood. The present study detected mRNA and protein expression of the T-type calcium channel (Cav3.1, Cav3.2, and Cav3.3) in cultured SH-SY5Y cells using real-time polymerase chain reaction (PCR) and western blot analysis. Results revealed mRNA and protein expression from all three T-type calcium channel subtypes in SH-SY5Y cells. Moreover,Cav3.1 was the predominant T-type calcium channel subtype in SH-SY5Y cells.

  1. Genetic Analysis of Gravity Signal Transduction in Arabidopsis Roots

    Science.gov (United States)

    Masson, Patrick; Strohm, Allison; Barker, Richard; Su, Shih-Heng

    Like most other plant organs, roots use gravity as a directional guide for growth. Specialized cells within the columella region of the root cap (the statocytes) sense the direction of gravity through the sedimentation of starch-filled plastids (amyloplasts). Amyloplast movement and/or pressure on sensitive membranes triggers a gravity signal transduction pathway within these cells, which leads to a fast transcytotic relocalization of plasma-membrane associated auxin-efflux carrier proteins of the PIN family (PIN3 and PIN7) toward the bottom membrane. This leads to a polar transport of auxin toward the bottom flank of the cap. The resulting lateral auxin gradient is then transmitted toward the elongation zones where it triggers a curvature that ultimately leads to a restoration of vertical downward growth. Our laboratory is using strategies derived from genetics and systems biology to elucidate the molecular mechanisms that modulate gravity sensing and signal transduction in the columella cells of the root cap. Our previous research uncovered two J-domain-containing proteins, ARG1 and ARL2, as contributing to this process. Mutations in the corresponding paralogous genes led to alterations of root and hypocotyl gravitropism accompanied by an inability for the statocytes to develop a cytoplasmic alkalinization, relocalize PIN3, and transport auxin laterally, in response to gravistimulation. Both proteins are associated peripherally to membranes belonging to various compartments of the vesicular trafficking pathway, potentially modulating the trafficking of defined proteins between plasma membrane and endosomes. MAR1 and MAR2, on the other end, are distinct proteins of the plastidic outer envelope protein import TOC complex (the transmembrane channel TOC75 and the receptor TOC132, respectively). Mutations in the corresponding genes enhance the gravitropic defects of arg1. Using transformation-rescue experiments with truncated versions of TOC132 (MAR2), we have shown

  2. 中药对肝癌细胞信号转导通路影响的研究进展%Advances in research on Chinese medicines that can induce apoptosis of hepatocellular carcinoma cells by the signal transduction pathway

    Institute of Scientific and Technical Information of China (English)

    濮忠建; 华海清

    2011-01-01

    As the research on the signal transduction pathway of tumor is developing, people has become more aware of the confusion of the signal transduction mechanisms on the tumor cells and their effects on tumor growth, apoptosis, and metastasis. Currently, the research that Chinese medicine and its extract inducing apoptosis and angiogenesis of hepatocellular carcinoma by acting on the signal transduction pathway has made gratifying progress. In this article, we will provide an overview of recent literature about this.%随着对肿瘤信号转导通路研究的不断深入,人们对肿瘤细胞内部复杂的信号转导机制以及它们对肿瘤生长、凋亡和转移等的影响越来越了解.目前,中药及其提取物通过作用于信号转导通路诱导肝癌细胞凋亡、影响肝癌血管生成的研究已取得可喜进步.现对近年来有关文献进行回顾,就此进展作一综述.

  3. An inhibitor of K+ channels modulates human endometrial tumor-initiating cells

    Directory of Open Access Journals (Sweden)

    Leslie Kimberly K

    2011-08-01

    Full Text Available Abstract Background Many potassium ion (K+ channels function as oncogenes to sustain growth of solid tumors, but their role in cancer progression is not well understood. Emerging evidence suggests that the early progenitor cancer cell subpopulation, termed tumor initiating cells (TIC, are critical to cancer progression. Results A non-selective antagonist of multiple types of K+ channels, tetraethylammonium (TEA, was found to suppress colony formation in endometrial cancer cells via inhibition of putative TIC. The data also indicated that withdrawal of TEA results in a significant enhancement of tumorigenesis. When the TIC-enriched subpopulation was isolated from the endometrial cancer cells, TEA was also found to inhibit growth in vitro. Conclusions These studies suggest that the activity of potassium channels significantly contributes to the progression of endometrial tumors, and the antagonists of potassium channels are candidate anti-cancer drugs to specifically target tumor initiating cells in endometrial cancer therapy.

  4. Effects of antigliomatin from the scorpion venom of Buthus martensii Karsch on chloride channels on C6 glioma cells

    Institute of Scientific and Technical Information of China (English)

    Zan Wang; Mingxian Li; Hongmei Meng; Min Huang; Weihong Lin; Li Cui; Shao Wang

    2011-01-01

    Using whole-cell patch-clamp recordings, the effects of antigliomatin were observed on chloride channels on C6 glioma cells cultured in vitro. Antigliomatin was extracted from the venom of the scorpion Buthus martensii Karsch. Chloride channels are closed under normal osmotic pressure. When osmotic pressure was reduced to 120, 110 and 100 mV, the cell volume enlarged, chloride channels opened, and the chloride channel current increased. Three minutes after antigliomatin treatment, the chloride channel current decreased in a dose-dependent manner. These results show that antigliomatin extracted from the venom of the scorpion Buthus martensii Karsch diminishes chloride channel currents on C6 glioma cells.

  5. Signal transduction by the Fat cytoplasmic domain

    OpenAIRE

    Pan, Guohui; Feng, Yongqiang; Ambegaonkar, Abhijit A.; Sun, Gongping; Huff, Matthew; Rauskolb, Cordelia; Irvine, Kenneth D.

    2013-01-01

    The large atypical cadherin Fat is a receptor for both Hippo and planar cell polarity (PCP) pathways. Here we investigate the molecular basis for signal transduction downstream of Fat by creating targeted alterations within a genomic construct that contains the entire fat locus, and by monitoring and manipulating the membrane localization of the Fat pathway component Dachs. We establish that the human Fat homolog FAT4 lacks the ability to transduce Hippo signaling in Drosophila, but can trans...

  6. Heme oxygenase-1 in cholecystokinin-octapeptipe attenuated injury of pulmonary artery smooth muscle cells induced by lipopolysaccharide and its signal transduction mechanism

    Institute of Scientific and Technical Information of China (English)

    Xin-Li Huang; Yi-Ling Ling; Yi-Qun Ling; Jun-Lin Zhou; Yah Liu; Qiu-Hong Wang

    2004-01-01

    AIM: To study the effect of cholecystokinin-octapeptide (CCK-8) on lipopolysaccharide (LPS) -induced pulmonary artery smooth muscle cell (PASMCs) injury and the role of heme oxygenase-1 (HO-1), and to explore the regulation mechanism of c-Jun N-terminal kinase (JNK) and activator protein-L (AP-1) signal transduction pathway in inducing HO-1 expression further.METHODS: Cultured PASMCs were randomly divided into 4 or 6 groups: normal culture group, LPS (10 mg/L), CCK-8(10-6 mol/L) plus LPS (10 mg/L) group, CCK-8 (10-6 mol/L)group, zinc protoporphyrin 9 (ZnPPIX) (10-6 mol/L) plus LPS (10 mg/L) group, CCK-8 (10-6 mol/L) plus ZnPPIX and LPS (10 mg/L) group. Seven hours after LPS administration,ulterstructrual changes and content of malondialdehyde (MDA) of PASMCs in each group were investigated by electron microscopy and biochemical assay respectively.HO-1 mRNA and protein of PASMCs in the former4 groups were examined by reverse transcriptase polymerase chain reaction (RT-PCR) and immunocytochemistry staining.Changes of c-fos expression and activation of JNK of PASMCs in the former 4 groups were detected with immunocytochemistry staining and Western blot 30 min after LPS administration.RESULTS: The injuries of PASMCs and the increases of MDA content induced by LPS were alleviated and significantly reduced by CCK-8 (P<0.05). The specific HO-1 inhibitorZnPPIX could worsen LPS-induced injuries and weaken the protective effect of CCK-8. The expressions of c-fos,p-JNK protein and HO-1 mRNA and protein were all slightly increased in LPS group, and significantly enhanced by CCK-8 further (P<0.05).CONCLUSION: HO-1 may be a key factor in CCK-8attenuated injuries of PASMCs induced by LPS, and HO-1expression may be related to the activation of JNK and activator protein (AP-1).

  7. Comparative identification of Ca2+ channel expression in INS-1 and rat pancreatic β cells

    Institute of Scientific and Technical Information of China (English)

    Fei Li; Zong-Ming Zhang

    2009-01-01

    AIM: To identify and compare the profile of Ca2+ channel subunit expression in INS-1 and rat pancreatic β cells. METHODS: The rat insulin-secreting INS-1 cell line was cultured in RPMI-1640 with Wistar rats employed as islet donors. Ca2+ channel subunit expression in INS-1 and isolated rat β cells were examined by reverse transcription polymerase chain reaction (RT-PCR). Absolute real-time quantitative PCR was performed in a Bio-Rad iQ5 Gradient Real Time PCR system and the data analyzed using an iQ5 system to identify the expression level of the Ca2+ channel subunits. RESULTS: In INS-1 cells, the L-type Ca2+ channel 1C subunit had the highest expression level and the TPRM2 subunit had the second highest expression. In rat β cells, the TPRC4β subunit expression was dominant and the expression of the L-type 1C subunit exceeded the 1D subunit expression about two-fold. This result agreed with other studies, confirming the important role of the L-type 1C subunit in insulinsecreting cells, and suggested that non-voltageoperated Ca2+ channels may have an important role in biphasic insulin secretion. CONCLUSION: Twelve major Ca2+ channel subunit types were identified in INS-1 and rat β cells and significant differences were observed in the expression of certain subunits between these cells.

  8. 结肠癌干细胞表面标志的研究和信号传导%Colon cancer stem cell surface markers and signal transduction research

    Institute of Scientific and Technical Information of China (English)

    陈远崇

    2011-01-01

    背景:近年来研究表明,结肠癌干细胞参与肿瘤的复发和转移,为恶性肿瘤靶向治疗带来新的希望.目的:探讨结肠癌干细胞特异表面标志的分离和鉴定方法,以及与结肠癌干细胞研究紧密相关的信号通路.方法:以"结肠癌干细胞,肿瘤干细胞,细胞表面标志,信号传导"为中文关键词,以"colon cancer stem cell,cancer stem cell,cell surface sign,signal transduction"为英文关键词,采用计算机检索Medline和CNKI数据库2000-01/2011-06有关结肠癌干细胞表面标志和信号传导的相关文章,排除重复研究或Meta分析类文章,筛选纳入40篇文献进行评价.结果与结论:CD133+与CD44+可作结肠癌干细胞的表面标志.与结肠癌干细胞紧密相关的信号通路有Wnt和Notch等,Wnt信号通路在干细胞内环境稳定中起重要作用,Notch信号通路是干细胞信号网络的重要通路.通过研究结肠癌干细胞的表面标志,可以及早地检测出肿瘤的存在;掌握结肠癌干细胞的生物学特性和信号转导路径,可减少肿瘤的复发,为结肠癌的诊断和治疗降低难度.%BACKGROUND: In recent years, studies have shown that colon cancer stem cells are involved in tumor recurrence andmetastasis, which have brought a new hope for cancer targeted therapy.OBJECTIVE: To investigate the isolation and identification method of colon cancer stem cell surface markers as well as relevantsignal transduction pathways.METHODS: A computer-based search of Medline and CNKI databases (2000-01/2011-06) was performed to retrieve coloncancer stem cell surface markers and signal transduction using the keywords of "colon cancer stem cell, cancer stem cell, cellsurface sign, signal transduction" in English and Chinese, respectively. Repetitive articles or Meta analyses were excluded, andfinally 40 articles were included in result analysis.RESULTS AND CONCLUSION: CD133+ and CD44+ are used as colon cancer stem cell surface markers. Closely related

  9. The Flatworm Macrostomum lignano Is a Powerful Model Organism for Ion Channel and Stem Cell Research

    NARCIS (Netherlands)

    Simanov, Daniil; Mellaart-Straver, Imre; Sormacheva, Irina; Berezikov, Eugene

    2012-01-01

    Bioelectrical signals generated by ion channels play crucial roles in many cellular processes in both excitable and nonexcitable cells. Some ion channels are directly implemented in chemical signaling pathways, the others are involved in regulation of cytoplasmic or vesicular ion concentrations, pH,

  10. Extracellular pH dynamically controls cell surface delivery of functional TRPV5 channels.

    NARCIS (Netherlands)

    Lambers, T.T.; Oancea, E.; Groot, T. de; Topala, C.N.; Hoenderop, J.G.J.; Bindels, R.J.M.

    2007-01-01

    Extracellular pH has long been known to affect the rate and magnitude of ion transport processes among others via regulation of ion channel activity. The Ca(2+)-selective transient receptor potential vanilloid 5 (TRPV5) channel constitutes the apical entry gate in Ca(2+)-transporting cells, contribu

  11. Chemoselective tarantula toxins report voltage activation of wild-type ion channels in live cells.

    Science.gov (United States)

    Tilley, Drew C; Eum, Kenneth S; Fletcher-Taylor, Sebastian; Austin, Daniel C; Dupré, Christophe; Patrón, Lilian A; Garcia, Rita L; Lam, Kit; Yarov-Yarovoy, Vladimir; Cohen, Bruce E; Sack, Jon T

    2014-11-01

    Electrically excitable cells, such as neurons, exhibit tremendous diversity in their firing patterns, a consequence of the complex collection of ion channels present in any specific cell. Although numerous methods are capable of measuring cellular electrical signals, understanding which types of ion channels give rise to these signals remains a significant challenge. Here, we describe exogenous probes which use a novel mechanism to report activity of voltage-gated channels. We have synthesized chemoselective derivatives of the tarantula toxin guangxitoxin-1E (GxTX), an inhibitory cystine knot peptide that binds selectively to Kv2-type voltage gated potassium channels. We find that voltage activation of Kv2.1 channels triggers GxTX dissociation, and thus GxTX binding dynamically marks Kv2 activation. We identify GxTX residues that can be replaced by thiol- or alkyne-bearing amino acids, without disrupting toxin folding or activity, and chemoselectively ligate fluorophores or affinity probes to these sites. We find that GxTX-fluorophore conjugates colocalize with Kv2.1 clusters in live cells and are released from channels activated by voltage stimuli. Kv2.1 activation can be detected with concentrations of probe that have a trivial impact on cellular currents. Chemoselective GxTX mutants conjugated to dendrimeric beads likewise bind live cells expressing Kv2.1, and the beads are released by channel activation. These optical sensors of conformational change are prototype probes that can indicate when ion channels contribute to electrical signaling. PMID:25331865

  12. Photobiomodulation on KATP Channels of Kir6.2-Transfected HEK-293 Cells

    Directory of Open Access Journals (Sweden)

    Fu-qing Zhong

    2014-01-01

    Full Text Available Background and Objective. ATP-sensitive potassium (KATP channel couples cell metabolism to excitability. To explore role of KATP channels in cellular photobiomodulation, we designed experiment to study effect of low intensity 808 nm laser irradiation on the activity of membrane KATP channel. Study Design/Materials and Methods. Plasmids encoding Kir6.2 was constructed and heterologously expressed in cultured mammalian HEK-293 cells. The patch-clamp and data acquisition systems were used to record KATP channel current before and after irradiation. A laser beam of Ga-As 808 nm at 5 mW/cm2 was used in experiments. A one-way ANOVA test followed by a post hoc Student-Newman-Keuls test was used to assess the statistical differences between data groups. Results. Obvious openings of KATP channels of Kir6.2-transfected HEK-293 cells and excised patches were recorded during and after low intensity 808 nm laser irradiation. Compared with the channels that did not undergo irradiation, open probability, current amplitude, and dwell time of KATP channels after irradiation improved. Conclusions. Low intensity 808 nm laser irradiation may activate membrane KATP channels of Kir6.2-transfected HEK-293 cells and in excised patches.

  13. Molecular purging of multiple myeloma cells by ex-vivo culture and retroviral transduction of mobilized-blood CD34+ cells

    OpenAIRE

    Corneo Gianmarco; Pogliani Enrico; Monari Marta; Vai Sergio; Voena Claudia; Dando Jonathan; Ficara Francesca; Cergnul Massimiliano; Birolo Roberto; Scaramuzza Samantha; Deola Sara; Peccatori Jacopo; Selleri Silvia; Bordignon Claudio; Roncarolo Maria

    2007-01-01

    Abstract Background Tumor cell contamination of the apheresis in multiple myeloma is likely to affect disease-free and overall survival after autografting. Objective To purge myeloma aphereses from tumor contaminants with a novel culture-based purging method. Methods We cultured myeloma-positive CD34+ PB samples in conditions that retained multipotency of hematopoietic stem cells, but were unfavourable to survival of plasma cells. Moreover, we exploited the resistance of myeloma plasma cells ...

  14. Cell volume changes regulate slick (Slo2.1, but not slack (Slo2.2 K+ channels.

    Directory of Open Access Journals (Sweden)

    Maria A Tejada

    Full Text Available Slick (Slo2.1 and Slack (Slo2.2 channels belong to the family of high-conductance K+ channels and have been found widely distributed in the CNS. Both channels are activated by Na+ and Cl- and, in addition, Slick channels are regulated by ATP. Therefore, the roles of these channels in regulation of cell excitability as well as ion transport processes, like regulation of cell volume, have been hypothesized. It is the aim of this work to evaluate the sensitivity of Slick and Slack channels to small, fast changes in cell volume and to explore mechanisms, which may explain this type of regulation. For this purpose Slick and Slack channels were co-expressed with aquaporin 1 in Xenopus laevis oocytes and cell volume changes of around 5% were induced by exposure to hypotonic or hypertonic media. Whole-cell currents were measured by two electrode voltage clamp. Our results show that Slick channels are dramatically stimulated (196% of control by cell swelling and inhibited (57% of control by a decrease in cell volume. In contrast, Slack channels are totally insensitive to similar cell volume changes. The mechanism underlining the strong volume sensitivity of Slick channels needs to be further explored, however we were able to show that it does not depend on an intact actin cytoskeleton, ATP release or vesicle fusion. In conclusion, Slick channels, in contrast to the similar Slack channels, are the only high-conductance K+ channels strongly sensitive to small changes in cell volume.

  15. Effect of calcitonin gene related peptide regulated nuclear factor kappa B signal transduction on c-kit+ cardiac stem cells in hypoxia state

    Directory of Open Access Journals (Sweden)

    Xian-ping LONG

    2015-11-01

    Full Text Available Objective To investigate the effects of calcitonin gene-related peptide (CGRP on the apoptosis of c-kit+ cardiac stem cells in hypoxia. Methods Ischemia and hypoxia models of c-kit+ cardiac stem cells were reproduced in vitro. The models were divided into hypoxia+CGRP group, hypoxia+CGRP8-37 (antagonist of CGRP group, hypoxia control group, normal oxygen group, and hypoxia+BAY11-7082 [antagonist of nuclear factor kappa B (NF-κB] group. NF-κB translocation after hypoxia was detected by immunofluorescence, and NF-κB channel proteins were determined with Western blotting. The NF-κB translocation and the expression of NF-κB channel proteins after CGRP intervention were detected, and the cell apoptosis rate after intervention was determined with flow cytometry in each group. Results Under hypoxia the NF-κB signal pathway was activated, and nuclear translocation occurred in NF-κBP65 (red fluorescence. Compared with hypoxia control group, the expressions of NF-κB related proteins such as P-I-κB, NF-κBP65 and NF-κBP50 decreased obviously (P<0.05. Compared with the hypoxia+CGRP group, the expressions of NF-κB related proteins increased significantly (P<0.05 as mentioned above in hypoxia+CGRP8-37 group. Both the early and late apoptotic rates declined in hypoxia+CGRP group compared with that of hypoxia control group (P<0.05, however, the early apoptotic rate increased markedly in hypoxia+CGRP8-37 group as compared with that of hypoxia+CGRP group (P<0.05. Conclusion Under hypoxia, CGRP may regulate the NF-κB signal pathway, and at the same time suppress the apoptosis of c-kit+ cardiac stem cells. DOI: 10.11855/j.issn.0577-7402.2015.10.03

  16. Suppression of KV7/KCNQ potassium channel enhances neuronal differentiation of PC12 cells.

    Science.gov (United States)

    Zhou, Najing; Huang, Sha; Li, Li; Huang, Dongyang; Yan, Yunli; Du, Xiaona; Zhang, Hailin

    2016-10-01

    Membrane potential shift driven by electrical activity is critical in determining the cell fate of proliferation or differentiation. As such, the ion channels that underlie the membrane electrical activity play an important role in cell proliferation/differentiation. KV7/KCNQ potassium channels are critical in determining the resting membrane potentials in many neuronal cells. However, the role of these channels in cell differentiation is not well studied. In the present study, we used PC12 cells as well as primary cultured rat cortical neurons to study the role and mechanism of KV7/KCNQ in neuronal differentiation. NGF induced PC12 cell differentiation into neuron-like cells with growth of neurites showing typical growth cone-like extensions. The Kv7/KCNQ blocker XE991 promoted NGF-induced neurite outgrowth, whereas Kv7/KCNQ opener retigabine (RTG) inhibited outgrowth. M-type Kv7 channels are likely involved in regulating neurite growth because overexpression of KCNQ2/Q3 inhibited neurite growth whereas suppression of KCNQ2/Q3 with shRNA promoted neurite growth. Membrane depolarization possibly underpins enhanced neurite growth induced by the suppression of Kv7/KCNQ. Additionally, high extracellular K(+) likely induced membrane depolarization and also promoted neurite growth. Finally, T-type Ca(2+) channels may be involved in membrane-depolarization-induced neurite growth. This study provides a new perspective for understanding neuronal differentiation as well as KV7/KCNQ channel function. PMID:27450567

  17. Novel role of KCNQ2/3 channels in regulating neuronal cell viability.

    Science.gov (United States)

    Zhou, X; Wei, J; Song, M; Francis, K; Yu, S P

    2011-03-01

    Overactivation of certain K(+) channels can mediate excessive K(+) efflux and intracellular K(+) depletion, which are early ionic events in apoptotic cascade. The present investigation examined a possible role of the KCNQ2/3 channel or M-channel (also named Kv7.2/7.3 channels) in the pro-apoptotic process. Whole-cell recordings detected much larger M-currents (212 ± 31 pA or 10.5 ± 1.5 pA/pF) in cultured hippocampal neurons than that in cultured cortical neurons (47 ± 21 pA or 2.4 ± 0.8 pA/pF). KCNQ2/3 channel openers N-ethylmaleimide (NEM) and flupirtine caused dose-dependent K(+) efflux, intracellular K(+) depletion, and cell death in hippocampal cultures, whereas little cell death was induced by NEM in cortical cultures. The NEM-induced cell death was antagonized by co-applied KCNQ channel inhibitor XE991 (10 μM), or by elevated extracellular K(+) concentration. Supporting a mediating role of KCNQ2/3 channels in apoptosis, expression of KCNQ2 or KCNQ2/3 channels in Chinese hamster ovary (CHO) cells initiated caspase-3 activation. Consistently, application of NEM (20 μM, 8 h) in hippocampal cultures similarly caused caspase-3 activation assessed by immunocytochemical staining and western blotting. NEM increased the expression of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), induced mitochondria membrane depolarization, cytochrome c release, formation of apoptosome complex, and apoptosis-inducing factor (AIF) translocation into nuclear. All these events were attenuated by blocking KCNQ2/3 channels. These findings provide novel evidence that KCNQ2/3 channels could be an important regulator in neuronal apoptosis. PMID:20885443

  18. Effects of monoterpenes on ion channels of excitable cells.

    Science.gov (United States)

    Oz, Murat; Lozon, Yosra; Sultan, Ahmed; Yang, Keun-Hang Susan; Galadari, Sehamuddin

    2015-08-01

    Monoterpenes are a structurally diverse group of phytochemicals and a major constituent of plant-derived 'essential oils'. Monoterpenes such as menthol, carvacrol, and eugenol have been utilized for therapeutical purposes and food additives for centuries and have been reported to have anti-inflammatory, antioxidant and analgesic actions. In recent years there has been increasing interest in understanding the pharmacological actions of these molecules. There is evidence indicating that monoterpenes can modulate the functional properties of several types of voltage and ligand-gated ion channels, suggesting that some of their pharmacological actions may be mediated by modulations of ion channel function. In this report, we review the literature concerning the interaction of monoterpenes with various ion channels. PMID:25956464

  19. Insulin activates single amiloride-blockable Na channels in a distal nephron cell line (A6).

    Science.gov (United States)

    Marunaka, Y; Hagiwara, N; Tohda, H

    1992-09-01

    Using the patch-clamp technique, we studied the effect of insulin on an amiloride-blockable Na channel in the apical membrane of a distal nephron cell line (A6) cultured on permeable collagen films for 10-14 days. NPo (N, number of channels per patch membrane; Po, average value of open probability of individual channels in the patch) under baseline conditions was 0.88 +/- 0.12 (SE)(n = 17). After making cell-attached patches on the apical membrane which contained Na channels, insulin (1 mU/ml) was applied to the serosal bath. While maintaining the cell-attached patch, NPo significantly increased to 1.48 +/- 0.19 (n = 17; P less than 0.001) after 5-10 min of insulin application. The open probability of Na channels was 0.39 +/- 0.01 (n = 38) under baseline condition, and increased to 0.66 +/- 0.03 (n = 38, P less than 0.001) after addition of insulin. The baseline single-channel conductance was 4pS, and neither the single-channel conductance nor the current-voltage relationship was significantly changed by insulin. These results indicate that insulin increases Na absorption in the distal nephron by increasing the open probability of the amiloride-blockable Na channel.

  20. Identification of TRPM7 channels in human intestinal interstitial cells of Cajal

    Institute of Scientific and Technical Information of China (English)

    Byung Joo Kim; Kyu Joo Park; Hyung Woo Kim; Seok Choi; Jae Yeoul Jun; In Youb Chang; Ju-Hong Jeon; Insuk So; Seon Jeong Kim

    2009-01-01

    AIM: To investigate the characteristics of slow electrical waves and the presence of transient receptor potential melastatin-type 7 (TRPM7) in the human gastrointestinal (GI) tract. METHODS: Conventional microelectrode techniques were used to record intracellular electrical responses from human GI smooth muscle tissue. Immunohistochemistry was used to identify TRPM7 channels in interstitial cells of Cajal (ICCs). RESULTS: The human GI tract generated slow electrical waves and had ICCs which functioned as pacemaker cells. Flufenamic acid, a nonselective cation channel blocker, and 2-APB (2-aminoethoxydiphenyl borate) and La3~+, TRPM7 channel blockers, inhibited the slow waves. Also, TRPM7 channels were expressed in ICCs in human tissue. CONCLUSION: These results suggest that the human GI tract generates slow waves and that TRPM7 channels expressed in the ICCs may be involved in the generation of the slow waves.

  1. Calcium-mediated agonists activate an inwardly rectified K+ channel in colonic secretory cells.

    Science.gov (United States)

    Devor, D C; Frizzell, R A

    1993-11-01

    Single-channel recording techniques were used to identify and characterize the K+ channel activated by Ca(2+)-mediated secretory agonists in T84 cells. Carbachol (CCh; 100 microM) and taurodeoxycholate (TDC; 0.75 mM) stimulated oscillatory outward K+ currents. With K gluconate in bath and pipette, cell-attached single-channel K+ currents stimulated by CCh and ionomycin (2 microM) were inwardly rectified and reversed at 0 mV. The single-channel chord conductance was 32 pS at -90 mV and 14 pS at +90 mV. Similar properties were observed in excised inside-out patches in symmetric K+, permitting further characterization of channel properties. Partial substitution of bath or pipette K+ with Na+ gave a K(+)-to-Na+ selectivity ratio of 5.5:1. Channel activity increased with increasing bath Ca2+ concentration in the physiological range of 50-800 nM. Maximal channel activity occurred at intracellular pH 7.2 and decreased at more acidic or alkaline pH values. Extracellular charybdotoxin (CTX; 50 nM) blocked inward but not outward currents. Extracellular tetraethylammonium (TEA; 10 mM) reduced single-channel amplitude at all voltages. No apparent block of the channel was observed with extracellular Ba2+ (1 mM), apamin (1 microM), 4-aminopyridine (4-AP; 4 mM), quinine (500 microM), or glyburide (10 microM). Cytosolic quinine and 4-AP blocked both inward and outward currents, whereas Ba2+ blocked only outward currents. Apamin, CTX, TEA, and glyburide did not affect channel activity. The agonist activation and pharmacological profile of this inwardly rectified K+ channel indicate that it is responsible for the increase in basolateral K+ conductance stimulated by Ca(2+)-mediated agonists in T84 cells. PMID:7694492

  2. Electrophysiological Characterization of the Rat Epithelial Na+ Channel (rENaC) Expressed in MDCK Cells

    OpenAIRE

    ISHIKAWA, TORU; Marunaka, Yoshinori; Rotin, Daniela

    1998-01-01

    The epithelial Na+ channel (ENaC), composed of three subunits (α, β, and γ), is expressed in several epithelia and plays a critical role in salt and water balance and in the regulation of blood pressure. Little is known, however, about the electrophysiological properties of this cloned channel when expressed in epithelial cells. Using whole-cell and single channel current recording techniques, we have now characterized the rat αβγENaC (rENaC) stably transfected and expressed in Madin-Darby ca...

  3. The ethylene signal transduction pathway in Arabidopsis

    Science.gov (United States)

    Kieber, J. J.; Evans, M. L. (Principal Investigator)

    1997-01-01

    The gaseous hormone ethylene is an important regulator of plant growth and development. Using a simple response of etiolated seedlings to ethylene as a genetic screen, genes involved in ethylene signal transduction have been identified in Arabidopsis. Analysis of two of these genes that have been cloned reveals that ethylene signalling involves a combination of a protein (ETR1) with similarity to bacterial histidine kinases and a protein (CTR1) with similarity to Raf-1, a protein kinase involved in multiple signalling cascades in eukaryotic cells. Several lines of investigation provide compelling evidence that ETR1 encodes an ethylene receptor. For the first time there is a glimpse of the molecular circuitry underlying the signal transduction pathway for a plant hormone.

  4. Swelling-activated Ca2+ channels trigger Ca2+ signals in Merkel cells.

    Directory of Open Access Journals (Sweden)

    Henry Haeberle

    Full Text Available Merkel cell-neurite complexes are highly sensitive touch receptors comprising epidermal Merkel cells and sensory afferents. Based on morphological and molecular studies, Merkel cells are proposed to be mechanosensory cells that signal afferents via neurotransmission; however, functional studies testing this hypothesis in intact skin have produced conflicting results. To test this model in a simplified system, we asked whether purified Merkel cells are directly activated by mechanical stimulation. Cell shape was manipulated with anisotonic solution changes and responses were monitored by Ca2+ imaging with fura-2. We found that hypotonic-induced cell swelling, but not hypertonic solutions, triggered cytoplasmic Ca2+ transients. Several lines of evidence indicate that these signals arise from swelling-activated Ca2+-permeable ion channels. First, transients were reversibly abolished by chelating extracellular Ca2+, demonstrating a requirement for Ca2+ influx across the plasma membrane. Second, Ca2+ transients were initially observed near the plasma membrane in cytoplasmic processes. Third, voltage-activated Ca2+ channel (VACC antagonists reduced transients by half, suggesting that swelling-activated channels depolarize plasma membranes to activate VACCs. Finally, emptying internal Ca2+ stores attenuated transients by 80%, suggesting Ca2+ release from stores augments swelling-activated Ca2+ signals. To identify candidate mechanotransduction channels, we used RT-PCR to amplify ion-channel transcripts whose pharmacological profiles matched those of hypotonic-evoked Ca2+ signals in Merkel cells. We found 11 amplicons, including PKD1, PKD2, and TRPC1, channels previously implicated in mechanotransduction in other cells. Collectively, these results directly demonstrate that Merkel cells are activated by hypotonic-evoked swelling, identify cellular signaling mechanisms that mediate these responses, and support the hypothesis that Merkel cells contribute

  5. Flow maldistribution in the anode of a polymer electrolyte membrane electrolysis cell employing interdigitated channels

    DEFF Research Database (Denmark)

    Olesen, Anders Christian; Kær, Søren Knudsen

    2014-01-01

    of liquid water towards the catalytic layer of the electrode. As opposed to the more common serpentine and parallel channels, interdigitated channels force liquid water through the porous gas diffusion layer (GDL) of the electrode. This improves the supply of water, however it increases pressure losses......-circular cell design on the distribution of water in the anode. In the electrolysis of water using PEMEC the anode is fed by demineralized water. Throughout the anode, oxygen is produced and a two-phase flow develops. Interdigitated channels assist in avoiding that gaseous oxygen obstructs the transport....... While interdigitated channels have been examined for planar-square cells in detail, less is known for planar-circular cells. To examine the extent of flow maldistribution, a base case is defined and a parameter variation is conducted relative to it. In the study, the following parameters are examined...

  6. Voltage-dependent ion channels in small-cell lung cancer cells.

    Science.gov (United States)

    Pancrazio, J J; Viglione, M P; Tabbara, I A; Kim, Y I

    1989-11-01

    Small-cell carcinoma of the lung is a highly lethal form of cancer associated with a wide variety of paraneoplastic syndromes. Using the patch-clamp technique, we have directly demonstrated the presence of voltage-gated K+, Na+, and Ca2+ channels in three cell lines of human small-cell carcinoma, NCI-H128, NCI-H69, and NCI-H146. Whole-cell currents were measured from the tumor cells held at -80 mV and depolarized to -60 to +120 mV. Outward K+ current (IK), which was found in every cell tested, reached 1.58 +/- 0.12 nA (mean +/- SE, n = 24 cells) for H128 cells and 2.14 +/- 0.18 nA (n = 41) for H69 cells in response to a test potential of +80 mV. Unlike H69 and H128 tumor cells, IK from H146 cells occasionally exhibited partial inactivation during the 60-ms pulse length and reached 0.94 +/- 0.15 nA (n = 18) in response to a +80 mV test potential. IK from each of the cell lines was significantly reduced by 4-aminopyridine and tetraethylammonium. The rapidly inactivating inward Na+ current (INa), recorded in H146 cells and about 30% of the H69 and H128 cells tested, demonstrated a peak amplitude of 58 +/- 6 pA (n = 11) at 0 mV and a reversal potential of 47 +/- 2 mV (n = 11). Externally applied tetrodotoxin quickly suppressed INa. For the H128 and H69 tumor cells, inward Ca2+ current (ICa), observed in about 25% of the cells exposed to 10 mM [Ca2+]o, peaked at 5.1 +/- 0.4 ms (n = 5) with an amplitude of 46 +/- 14 pA (n = 5) at +20 mV and partially inactivated over the 40-ms depolarization. In H128 cells exposed to isotonic Ba2+ (110 mM), inward currents with time courses similar to those of ICa were recorded. Nearly all H146 tumor cells demonstrated a significant inward Ca2+ current which peaked with an amplitude of 93 +/- 16 pA (n = 26) at +30 to +40 mV in the presence of 10 mM [Ca2+]o. Application of test potentials 2 s in duration revealed that H146 ICa inactivated in a voltage-dependent manner with a time constant on the order of seconds. Adjustment of the holding

  7. Channels and Volume Changes in the Life and Death of the Cell.

    Science.gov (United States)

    Pasantes-Morales, Herminia

    2016-09-01

    Volume changes deviating from original cell volume represent a major challenge for cellular homeostasis. Cell volume may be altered either by variations in the external osmolarity or by disturbances in the transmembrane ion gradients that generate an osmotic imbalance. Cells respond to anisotonicity-induced volume changes by active regulatory mechanisms that modify the intracellular/extracellular concentrations of K(+), Cl(-), Na(+), and organic osmolytes in the direction necessary to reestablish the osmotic equilibrium. Corrective osmolyte fluxes permeate across channels that have a relevant role in cell volume regulation. Channels also participate as causal actors in necrotic swelling and apoptotic volume decrease. This is an overview of the types of channels involved in either corrective or pathologic changes in cell volume. The review also underlines the contribution of transient receptor potential (TRP) channels, notably TRPV4, in volume regulation after swelling and describes the role of other TRPs in volume changes linked to apoptosis and necrosis. Lastly we discuss findings showing that multimers derived from LRRC8A (leucine-rich repeat containing 8A) gene are structural components of the volume-regulated Cl(-) channel (VRAC), and we underline the intriguing possibility that different heteromer combinations comprise channels with different intrinsic properties that allow permeation of the heterogenous group of molecules acting as organic osmolytes. PMID:27358231

  8. Morphogenesis of the epithelial cell transporting phenotype: synthesis and distribution of ion channels.

    Science.gov (United States)

    García-Villegas, M R; Valdés, J; Reyes, G; Moreno, J; Cortes, N; Contreras, R G; Cereijido, M

    1996-05-01

    The exchange of substances between higher organisms and the environment takes place across epithelia consisting of one or more cell layers. To perform this function, epithelial cells have two basic differentiated properties: 1) they form tight junctions (TJs) that seal the extracellular space, and 2) they are polarized into an apical and a basolateral domain, with entirely different structural, biochemical and physiological properties. Our understanding of the mechanisms involved in the expression of these properties has been greatly enhanced by the availability of epithelial cell lines that form TJs and polarize in vitro under conditions suitable for experimental control. In this article we summarize our studies on the synthesis and polarized expression of ion channels in epithelial cells. MDCK cells have four types of K+ channels in the apical domain, and a fifth one in the basolateral domain. The basolateral side also has a population of CI- channels. Each type of channel is absolutely polarized. Harvesting with trypsin-EDTA reduces the area of the plasma membrane by 50% and the channel population by 90%. Upon plating, these channels are recovered within a few hours. We describe here the main extracellular and intracellular mechanisms involved in these phenomena.

  9. Inhibitory effect of calcium channel blockers on proliferation of human glioma cells in vitro

    International Nuclear Information System (INIS)

    The effects of 2 specific calcium channel blockers, verapamil and nimodipine, on the proliferation of human glioma tumour cells were investigated in vitro. Tumour tissues for primary cell cultures were obtained bioptically from 3 patients with the histopathological diagnosis of glioblastoma. The [3H]-thymidine incorporation into glioma tumour cells DNA was used as a sensitive index of the cell proliferation. It was found that varapamil (104-105M) and nimodipine (104-106M) significantly inhibited the [3H]-thymidine uptake in a dose-related manner. The inhibitory effect of both calcium channel antagonists was reversed by stimultancous addition of calcium chloride (5x103M). These results indicate that verapamil and nimodipine may exert an antiproliferative effect on glioma cells growth acting through a blokade of specific voltage-dependent calcium channels. (author)

  10. Roles of CRAC and Cav-like channels in T cells: more than one gatekeeper?

    Science.gov (United States)

    Kotturi, Maya F; Hunt, Simon V; Jefferies, Wilfred A

    2006-07-01

    Ca2+ channels in the plasma membrane of T cells vitally influence Ca2+-dependent signals that lead ultimately to cytokine secretion, cellular proliferation and apoptosis. Conventional models depict the Ca2+ inrush across the T-cell membrane following T-cell receptor engagement as being due to Ca2+-release-activated Ca2+ (CRAC) channels. A poorly understood mechanism detects the lowered Ca2+ concentrations within intracellular stores that open CRAC channels. Mammalian homologs of the Drosophila transient receptor potential Ca2+ channels possibly help to gate the store-operated, Ca2+-borne CRAC current. In this article, we review evidence of a supplementary involvement of other Ca2+ channels, the opening of which does not necessarily reflect intracellular Ca2+-store depletion. We highlight a role for variants of L-type voltage-dependent Ca2+ channels in increasing intracellular Ca2+ concentrations during activation. For more-accurate modeling of lymphocyte activation and possible pharmacological interventions, future research should aim to identify physiologically relevant situations in which such channels help to shape the Ca2+ signal.

  11. Signal transduction by the major histocompatibility complex class I molecule

    DEFF Research Database (Denmark)

    Pedersen, Anders Elm; Skov, S; Bregenholt, S;

    1999-01-01

    Ligation of cell surface major histocompatibility class I (MHC-I) proteins by antibodies, or by their native counter receptor, the CD8 molecule, mediates transduction of signals into the cells. MHC-I-mediated signaling can lead to both increased and decreased activity of the MHC-I-expressing cell...

  12. Analysis of signal transduction in brain cells using molecular signal microscope; Bunshi jiho kenbikyo wo mochiita nousaibou no joho henkan kiko no kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Kawato, Suguru [The University of Tokyo, Tokyo (Japan). Dept. of Biophysics and Life Sciences

    1999-12-16

    We analyzed the signal transduction in brain neurons by real-time imaging of Ca/NO signals using the Molecular Signal Microscope. We also analyzed synthesis and action of neurosteroids in the hippocampus. We discovered steroid synthesis machinery containing cytochrome P 450 scc in hippocampal neurons. We found that pregnenolone sulfate acutely potentiated NMDA receptor-mediated Ca conductivity in hippocampal neurons. We also found that stress steroid corticosterone acutely prolonged NMDA receptor-mediated Ca{sup 2+} influx, resulting in Ca-induced neuro-toxicity. (author)

  13. Liquid Water Transport in the Reactant Channels of Proton Exchange Membrane Fuel Cells

    Science.gov (United States)

    Banerjee, Rupak

    Water management has been identified as a critical issue in the development of PEM fuel cells for automotive applications. Water is present inside the PEM fuel cell in three phases, i.e. liquid phase, vapor phase and mist phase. Liquid water in the reactant channels causes flooding of the cell and blocks the transport of reactants to the reaction sites at the catalyst layer. Understanding the behavior of liquid water in the reactant channels would allow us to devise improved strategies for removing liquid water from the reactant channels. In situ fuel cell tests have been performed to identify and diagnose operating conditions which result in the flooding of the fuel cell. A relationship has been identified between the liquid water present in the reactant channels and the cell performance. A novel diagnostic technique has been established which utilizes the pressure drop multiplier in the reactant channels to predict the flooding of the cell or the drying-out of the membrane. An ex-situ study has been undertaken to quantify the liquid water present in the reactant channels. A new parameter, the Area Coverage Ratio (ACR), has been defined to identify the interfacial area of the reactant channel which is blocked for reactant transport by the presence of liquid water. A parametric study has been conducted to study the effect of changing temperature and the inlet relative humidity on the ACR. The ACR decreases with increase in current density as the gas flow rates increase, removing water more efficiently. With increase in temperature, the ACR decreases rapidly, such that by 60°C, there is no significant ACR to be reported. Inlet relative humidity of the gases does change the saturation of the gases in the channel, but did not show any significant effect on the ACR. Automotive powertrains, which is the target for this work, are continuously faced with transient changes. Water management under transient operating conditions is significantly more challenging and has not

  14. Importance of glycosylation on function of a potassium channel in neuroblastoma cells.

    Directory of Open Access Journals (Sweden)

    M K Hall

    Full Text Available The Kv3.1 glycoprotein, a voltage-gated potassium channel, is expressed throughout the central nervous system. The role of N-glycans attached to the Kv3.1 glycoprotein on conducting and non-conducting functions of the Kv3.1 channel are quite limiting. Glycosylated (wild type, partially glycosylated (N220Q and N229Q, and unglycosylated (N220Q/N229Q Kv3.1 proteins were expressed and characterized in a cultured neuronal-derived cell model, B35 neuroblastoma cells. Western blots, whole cell current recordings, and wound healing assays were employed to provide evidence that the conducting and non-conducting properties of the Kv3.1 channel were modified by N-glycans of the Kv3.1 glycoprotein. Electrophoretic migration of the various Kv3.1 proteins treated with PNGase F and neuraminidase verified that the glycosylation sites were occupied and that the N-glycans could be sialylated, respectively. The unglycosylated channel favored a different whole cell current pattern than the glycoform. Further the outward ionic currents of the unglycosylated channel had slower activation and deactivation rates than those of the glycosylated Kv3.1 channel. These kinetic parameters of the partially glycosylated Kv3.1 channels were also slowed. B35 cells expressing glycosylated Kv3.1 protein migrated faster than those expressing partially glycosylated and much faster than those expressing the unglycosylated Kv3.1 protein. These results have demonstrated that N-glycans of the Kv3.1 glycoprotein enhance outward ionic current kinetics, and neuronal migration. It is speculated that physiological changes which lead to a reduction in N-glycan attachment to proteins will alter the functions of the Kv3.1 channel.

  15. Increased anion channel activity is an unavoidable event in ozone-induced programmed cell death.

    Directory of Open Access Journals (Sweden)

    Takashi Kadono

    Full Text Available BACKGROUND: Ozone is a major secondary air pollutant often reaching high concentrations in urban areas under strong daylight, high temperature and stagnant high-pressure systems. Ozone in the troposphere is a pollutant that is harmful to the plant. PRINCIPAL FINDINGS: By exposing cells to a strong pulse of ozonized air, an acute cell death was observed in suspension cells of Arabidopsis thaliana used as a model. We demonstrated that O(3 treatment induced the activation of a plasma membrane anion channel that is an early prerequisite of O(3-induced cell death in A. thaliana. Our data further suggest interplay of anion channel activation with well known plant responses to O(3, Ca(2+ influx and NADPH-oxidase generated reactive oxygen species (ROS in mediating the oxidative cell death. This interplay might be fuelled by several mechanisms in addition to the direct ROS generation by O(3; namely, H(2O(2 generation by salicylic and abscisic acids. Anion channel activation was also shown to promote the accumulation of transcripts encoding vacuolar processing enzymes, a family of proteases previously reported to contribute to the disruption of vacuole integrity observed during programmed cell death. SIGNIFICANCE: Collectively, our data indicate that anion efflux is an early key component of morphological and biochemical events leading to O(3-induced programmed cell death. Because ion channels and more specifically anion channels assume a crucial position in cells, an understanding about the underlying role(s for ion channels in the signalling pathway leading to programmed cell death is a subject that warrants future investigation.

  16. How do taste cells lacking synapses mediate neurotransmission? CALHM1, a voltage-gated ATP channel

    OpenAIRE

    Taruno, Akiyuki; Matsumoto, Ichiro; Ma, Zhongming; Marambaud, Philippe; Foskett, J. Kevin

    2013-01-01

    CALHM1 was recently demonstrated to be a voltage-gated ATP-permeable ion channel and to serve as a bona fide conduit for ATP release from sweet-, umami-, and bitter-sensing type II taste cells. Calhm1 is expressed in taste buds exclusively in type II cells and its product has structural and functional similarities with connexins and pannexins, two families of channel protein candidates for ATP release by type II cells. Calhm1 knockout in mice leads to loss of perception of sweet, umami, and b...

  17. The development of taste transduction and taste chip technology

    Institute of Scientific and Technical Information of China (English)

    LI Yan; LIU Qingjun; XU Ying; CAI Hua; QIN Lifeng; WANG Lijiang; WANG Ping

    2005-01-01

    The intrinsic perception process of taste is obviously far less known than those of vision, audition, touch and olfaction. Despite that taste cells utilize a variety of sensory mechanisms to translate plenty of gustatory sensations such as sour, sweet, bitter, salty and umami into cellular signals, gustatory perception mechanisms are still under exploration due to the lack of effective methods on cellular and molecular level. Recently the development of molecular biological and electrophysiological studies has promoted exploration of olfactory and gustatory transduction and coding mechanisms dramatically. Based on the studies of artificial olfaction, artificial taste and cell-based biosensor in our laboratory, this paper reviews the current research on taste transduction mechanism. We introduce the recent advances in cell chip that combined biology with microelectronics, discuss taste cell chip as well as its potential of prospective application in taste transduction mechanism in detail and propose the research trends of taste chip in future.

  18. Blockers of Ca2+ channels in the plasmalemma of perfused Characeae cells.

    Science.gov (United States)

    Zherelova, O M; Grishchenko, V M; Chaylakhyan, L M

    1994-03-01

    Ionic currents in the plasmalemma of perfused Nitella syncarpa cells identified as currents through Ca2+ channels were registered for the first time. The effect of 1,4-dihydropyridine derivatives (nifedipine, nitrendipine, riodipine) and phenylalkylamines (verapamil, D600) as well as the agonist CGP-28392 on the Ca2+ channels in the plasmalemma of perfused cells of Nitellopsis obtusa and Nitella syncarpa have been studied. A blocking effect of 1,4-dihydropyridine derivatives and phenylalkylamines on the plasmalemma Ca2+ channels has been detected. Phenylalkylamines have been found to block both inward and outward Ca2+ currents. The activating effect of the agonist CGP-28392 on the Ca2+ channels of plasmalemma has been shown. PMID:8061954

  19. Mitochondria-Rich Cells as Experimental Model in Studies of Epithelial Chloride Channels

    DEFF Research Database (Denmark)

    Willumsen, Niels J.; Amstrup, Jan; Møbjerg, Nadja;

    2002-01-01

    The mitochondria-rich (mr) cell of amphibian skin epithelium is differentiated as a highly specialised pathway for passive transepithelial transport of chloride. The apical membrane of mr cells expresses several types of Cl- channels, of which the function of only two types has been studied...

  20. Identification and characterization of Ca2+-activated K+ channels in granulosa cells of the human ovary

    Directory of Open Access Journals (Sweden)

    Berg Ulrike

    2009-04-01

    Full Text Available Abstract Background Granulosa cells (GCs represent a major endocrine compartment of the ovary producing sex steroid hormones. Recently, we identified in human GCs a Ca2+-activated K+ channel (KCa of big conductance (BKCa, which is involved in steroidogenesis. This channel is activated by intraovarian signalling molecules (e.g. acetylcholine via raised intracellular Ca2+ levels. In this study, we aimed at characterizing 1. expression and functions of KCa channels (including BKCa beta-subunits, and 2. biophysical properties of BKCa channels. Methods GCs were obtained from in vitro-fertilization patients and cultured. Expression of mRNA was determined by standard RT-PCR and protein expression in human ovarian slices was detected by immunohistochemistry. Progesterone production was measured in cell culture supernatants using ELISAs. Single channels were recorded in the inside-out configuration of the patch-clamp technique. Results We identified two KCa types in human GCs, the intermediate- (IK and the small-conductance KCa (SK. Their functionality was concluded from attenuation of human chorionic gonadotropin-stimulated progesterone production by KCa blockers (TRAM-34, apamin. Functional IK channels were also demonstrated by electrophysiological recording of single KCa channels with distinctive features. Both, IK and BKCa channels were found to be simultaneously active in individual GCs. In agreement with functional data, we identified mRNAs encoding IK, SK1, SK2 and SK3 in human GCs and proteins of IK and SK2 in corresponding human ovarian cells. Molecular characterization of the BKCa channel revealed the presence of mRNAs encoding several BKCa beta-subunits (beta2, beta3, beta4 in human GCs. The multitude of beta-subunits detected might contribute to variations in Ca2+ dependence of individual BKCa channels which we observed in electrophysiological recordings. Conclusion Functional and molecular studies indicate the presence of active IK and SK

  1. Direct mechanical stimulation of tip links in hair cells through DNA tethers

    Science.gov (United States)

    Basu, Aakash; Lagier, Samuel; Vologodskaia, Maria; Fabella, Brian A; Hudspeth, AJ

    2016-01-01

    Mechanoelectrical transduction by hair cells commences with hair-bundle deflection, which is postulated to tense filamentous tip links connected to transduction channels. Because direct mechanical stimulation of tip links has not been experimentally possible, this hypothesis has not been tested. We have engineered DNA tethers that link superparamagnetic beads to tip links and exert mechanical forces on the links when exposed to a magnetic-field gradient. By pulling directly on tip links of the bullfrog's sacculus we have evoked transduction currents from hair cells, confirming the hypothesis that tension in the tip links opens transduction channels. This demonstration of direct mechanical access to tip links additionally lays a foundation for experiments probing the mechanics of individual channels. DOI: http://dx.doi.org/10.7554/eLife.16041.001 PMID:27331611

  2. Voltage-dependent Ca2+ channels, not ryanodine receptors, activate Ca2+-dependent BK potassium channels in human retinal pigment epithelial cells

    OpenAIRE

    Wimmers, Sönke; Halsband, Claire; Seyler, Sebastian; Milenkovic, Vladimir; Strauß, Olaf

    2008-01-01

    Purpose In different tissues the activation of large conductance Ca2+-activated (BK) potassium channels has been shown to be coupled to voltage-gated Ca2+ channels as well as ryanodine receptors. As activation of BK channels leads to hyperpolarization of the cell, these channels provide a negative feedback mechanism for Ca2+-induced functions. Many cellular functions of the retinal pigment epithelium (RPE) are coupled to changes in [Ca2+]i. The aim of this study was to identify which Ca2+-ent...

  3. Experimental analysis of the flow structure in the laboratory model of SOFC fuel cell channels

    International Nuclear Information System (INIS)

    In the presented paper a flow structure in the gas channel of planar SOFC fuel cell is presented. The model taken for analysis was constructed based on the channel geometry manufactured by SOFC Power company. The shape of a channel was rectangular filled with large number of obstacles which role is to divide the flow into segments with possibly homogenous velocity distribution. The model itself was constructed from Plexiglas and the reactant gases flow was modelled by water motion. To investigate and visualize the flow structures a PIV technique was applied. Three different flow rates were taken for investigations and the flow uniformity and time dependence was studied.

  4. Plant guard cell anion channel SLAC1 regulates stomatal closure

    OpenAIRE

    Vahisalu, Triin

    2010-01-01

    Plants are rooted to their growth place; therefore it is important that they react adequately to changes in environmental conditions. Stomatal pores, which are formed of a pair of guard cells in leaf epidermis, regulate plant gas-exchange. Importantly, guard cells protect the plant from desiccation in drought conditions by reducing the aperture of the stomatal pore. They serve also as the first barrier against the major air pollutant ozone, but the behaviour of guard cells during ozone expo...

  5. Physiological role of Kv1.3 channel in T lymphocyte cell investigated quantitatively by kinetic modeling.

    Directory of Open Access Journals (Sweden)

    Panpan Hou

    Full Text Available Kv1.3 channel is a delayed rectifier channel abundant in human T lymphocytes. Chronic inflammatory and autoimmune disorders lead to the over-expression of Kv1.3 in T cells. To quantitatively study the regulatory mechanism and physiological function of Kv1.3 in T cells, it is necessary to have a precise kinetic model of Kv1.3. In this study, we firstly established a kinetic model capable to precisely replicate all the kinetic features for Kv1.3 channels, and then constructed a T-cell model composed of ion channels including Ca2+-release activated calcium (CRAC channel, intermediate K+ (IK channel, TASK channel and Kv1.3 channel for quantitatively simulating the changes in membrane potentials and local Ca2+ signaling messengers during activation of T cells. Based on the experimental data from current-clamp recordings, we successfully demonstrated that Kv1.3 dominated the membrane potential of T cells to manipulate the Ca2+ influx via CRAC channel. Our results revealed that the deficient expression of Kv1.3 channel would cause the less Ca2+ signal, leading to the less efficiency in secretion. This was the first successful attempt to simulate membrane potential in non-excitable cells, which laid a solid basis for quantitatively studying the regulatory mechanism and physiological role of channels in non-excitable cells.

  6. On channel quantization for multi-cell cooperative systems with limited feedback

    Institute of Scientific and Technical Information of China (English)

    HOU XueYing; YANG ChenYang; LAU Buon Kiong

    2013-01-01

    Coherent multi-cell cooperative transmission, also referred to as coordinated multi-point transmission (CoMP), is a promising strategy to provide high spectral efficiency for universal frequency reuse cellular systems. To report the required channel information to the transmitter in frequency division duplexing systems, limited feedback techniques are often applied. Considering that the average channel gains from multiple base stations (BSs) to one mobile station are different and the number of cooperative BSs may be dynamic, it is neither flexible nor compatible to employ a large codebook to directly quantize the CoMP channel. In this paper, we employ per-cell codebooks for quantizing local and cross channels. We first propose a codeword selection criterion, aiming at maximizing an estimated data rate for each user. The proposed criterion can be applied for an arbitrary number of receive antennas at each user and also for an arbitrary number of data streams transmitted to each user. Considering that the resulting optimal per-cell codeword selection for CoMP channel is of high complexity, we propose a serial codeword selection method that has low complexity but yields comparable performance to that of the optimal codeword selection. We evaluate the proposed codeword selection criterion and method using measured CoMP channels from an urban environment as well as simulations. The results demonstrate significant performance gain as compared to an existing low-complexity method.

  7. Englerin A Agonizes the TRPC4/C5 Cation Channels to Inhibit Tumor Cell Line Proliferation.

    Directory of Open Access Journals (Sweden)

    Cheryl Carson

    Full Text Available Englerin A is a structurally unique natural product reported to selectively inhibit growth of renal cell carcinoma cell lines. A large scale phenotypic cell profiling experiment (CLiP of englerin A on ¬over 500 well characterized cancer cell lines showed that englerin A inhibits growth of a subset of tumor cell lines from many lineages, not just renal cell carcinomas. Expression of the TRPC4 cation channel was the cell line feature that best correlated with sensitivity to englerin A, suggesting the hypothesis that TRPC4 is the efficacy target for englerin A. Genetic experiments demonstrate that TRPC4 expression is both necessary and sufficient for englerin A induced growth inhibition. Englerin A induces calcium influx and membrane depolarization in cells expressing high levels of TRPC4 or its close ortholog TRPC5. Electrophysiology experiments confirmed that englerin A is a TRPC4 agonist. Both the englerin A induced current and the englerin A induced growth inhibition can be blocked by the TRPC4/C5 inhibitor ML204. These experiments confirm that activation of TRPC4/C5 channels inhibits tumor cell line proliferation and confirms the TRPC4 target hypothesis generated by the cell line profiling. In selectivity assays englerin A weakly inhibits TRPA1, TRPV3/V4, and TRPM8 which suggests that englerin A may bind a common feature of TRP ion channels. In vivo experiments show that englerin A is lethal in rodents near doses needed to activate the TRPC4 channel. This toxicity suggests that englerin A itself is probably unsuitable for further drug development. However, since englerin A can be synthesized in the laboratory, it may be a useful chemical starting point to identify novel modulators of other TRP family channels.

  8. The Flatworm Macrostomum lignano Is a Powerful Model Organism for Ion Channel and Stem Cell Research

    Directory of Open Access Journals (Sweden)

    Daniil Simanov

    2012-01-01

    Full Text Available Bioelectrical signals generated by ion channels play crucial roles in many cellular processes in both excitable and nonexcitable cells. Some ion channels are directly implemented in chemical signaling pathways, the others are involved in regulation of cytoplasmic or vesicular ion concentrations, pH, cell volume, and membrane potentials. Together with ion transporters and gap junction complexes, ion channels form steady-state voltage gradients across the cell membranes in nonexcitable cells. These membrane potentials are involved in regulation of such processes as migration guidance, cell proliferation, and body axis patterning during development and regeneration. While the importance of membrane potential in stem cell maintenance, proliferation, and differentiation is evident, the mechanisms of this bioelectric control of stem cell activity are still not well understood, and the role of specific ion channels in these processes remains unclear. Here we introduce the flatworm Macrostomum lignano as a versatile model organism for addressing these topics. We discuss biological and experimental properties of M. lignano, provide an overview of the recently developed experimental tools for this animal model, and demonstrate how manipulation of membrane potential influences regeneration in M. lignano.

  9. Apical Ca2+-activated potassium channels in mouse parotid acinar cells.

    Science.gov (United States)

    Almassy, Janos; Won, Jong Hak; Begenisich, Ted B; Yule, David I

    2012-02-01

    Ca(2+) activation of Cl and K channels is a key event underlying stimulated fluid secretion from parotid salivary glands. Cl channels are exclusively present on the apical plasma membrane (PM), whereas the localization of K channels has not been established. Mathematical models have suggested that localization of some K channels to the apical PM is optimum for fluid secretion. A combination of whole cell electrophysiology and temporally resolved digital imaging with local manipulation of intracellular [Ca(2+)] was used to investigate if Ca(2+)-activated K channels are present in the apical PM of parotid acinar cells. Initial experiments established Ca(2+)-buffering conditions that produced brief, localized increases in [Ca(2+)] after focal laser photolysis of caged Ca(2+). Conditions were used to isolate K(+) and Cl(-) conductances. Photolysis at the apical PM resulted in a robust increase in K(+) and Cl(-) currents. A localized reduction in [Ca(2+)] at the apical PM after photolysis of Diazo-2, a caged Ca(2+) chelator, resulted in a decrease in both K(+) and Cl(-) currents. The K(+) currents evoked by apical photolysis were partially blocked by both paxilline and TRAM-34, specific blockers of large-conductance "maxi-K" (BK) and intermediate K (IK), respectively, and almost abolished by incubation with both antagonists. Apical TRAM-34-sensitive K(+) currents were also observed in BK-null parotid acini. In contrast, when the [Ca(2+)] was increased at the basal or lateral PM, no increase in either K(+) or Cl(-) currents was evoked. These data provide strong evidence that K and Cl channels are similarly distributed in the apical PM. Furthermore, both IK and BK channels are present in this domain, and the density of these channels appears higher in the apical versus basolateral PM. Collectively, this study provides support for a model in which fluid secretion is optimized after expression of K channels specifically in the apical PM.

  10. ON and OFF channels in human retinal ganglion cells.

    Science.gov (United States)

    Hashimoto, Takao; Katai, Satoshi; Saito, Yasunori; Kobayashi, Fumitoshi; Goto, Tetsuya

    2013-01-01

    The ON and OFF channels are basic functional elements in parallel processing in the visual system in vertebrates including primates. We analysed the responses of the optic tract fibre activity in response to switching a flashlight on or off in 25 awake patients with Parkinson's disease who underwent stereotactic surgery targeting the internal globus pallidus. The responses were evoked in a darkened room by a light with a luminance of approximately 4 × 10(4) cd m(-2) at the eye and a wide-spectrum wavelength. Most of the responses at the light on event were excitatory (38 out of 41 sites, 93%). Thirty-five sites with increase in activity at the light on event showed reciprocal responses or no responses to light off, and these sites were classified as containing ON fibres. In single-fibre analysis, all of 14 ON fibres were recorded at the sites of multi-fibre excitatory responses. Six sites showed multi-fibre excitatory responses at the light off event; three sites showed sustained reduction in activity at the light on event, and these three sites were classified as containing OFF fibres. In single-fibre analysis, two OFF fibres were recorded at the sites of multi-fibre suppressive responses at the light on event, and the other two OFF fibres were recorded at the sites of multi-fibre excitatory responses at the light on event. We found that all excitatory responses to light on were transient, while all but one excitatory responses to light off were sustained. Reduction in activity tended to be smaller than increase in activity at the light on event. These results demonstrate that the ON and OFF channels, and their transient and sustained features function in visual processing in humans. PMID:23070704

  11. Recovery of mechano-electrical transduction in rat cochlear hair bundles after postnatal destruction of the stereociliar cross-links

    OpenAIRE

    Ebert, J.; Fink, S.; Koitschev, A; P. Walther; Langer, M G; Lehmann-Horn, F.

    2010-01-01

    Mechano-electrical transduction (MET) in the stereocilia of outer hair cells (OHCs) was studied in newborn Wistar rats using scanning electron microscopy to investigate the stereociliar cross-links, Nomarski laser differential interferometry to investigate stereociliar stiffness and by testing the functionality of the MET channels by recording the entry of fluorescent dye, FM1-43, into stereocilia. Preparations were taken from rats on their day of birth (P0) or 1–4 days later (P1–P4). Hair bu...

  12. Activation of Na+ channels in cell membrane by capacitive stimulation with silicon chip

    Science.gov (United States)

    Schoen, Ingmar; Fromherz, Peter

    2005-11-01

    Sodium channels are the crucial electrical elements of neuronal excitation. As a step toward hybrid neuron-semiconductor devices, we studied the activation of recombinant NaV1.4 sodium channels in human embryonic kidney (HEK293) cells by stimulation from an electrolyte/oxide/silicon (EOS) capacitor. HfO2 was used as an insulator to attain a high capacitance. An effective activation was achieved by decaying voltage ramps at constant intracellular voltage at a depleted NaCl concentration in the bath to enhance the resistance of the cell-chip contact. We were also able to open sodium channels at a NaCl concentration close to physiological conditions. This experiment provides a basis for noninvasive capacitive stimulation of nerve cells with semiconductor chips.

  13. Numerical Investigation of the Water Droplet Transport in a PEM Fuel Cell with Serpentine Flow Channel

    Directory of Open Access Journals (Sweden)

    Bittagopal Mondal

    2016-01-01

    Full Text Available The serpentine flow channel can be considered as one of the most common and practical channel layouts for a polymer electrolyte membrane fuel cell (PEMFC since it ensures an effective and efficient removal of water produced in a cell with acceptable parasitic load. Water management is one of the key issues to improve the cell performance since at low operating temperatures in PEMFC, water vapor condensation starts easily and accumulates the liquid water droplet within the flow channels, thus affecting the chemical reactions and reducing the fuel cell performance. In this article, a comprehensive three dimensional numerical simulation is carried out to understand the water droplet mobility in a serpentine gas flow channel for a wide range of surface properties, inlet air velocities, droplet positions (center or off-center, bottom or top and droplet sizes by deploying a finite volume based methodology. The liquid-gas interface is tracked following the volume-of-fluid (VOF method. The droplet transport is found to be greatly influenced by the surface wettability properties, inlet velocities, number of droplets emerged and initial droplet positions. Super hydrophobic surface property is not always preferable for designing the gas flow channels. It depends upon the inlet velocity conditions, droplet positions, number of droplets and surface properties.

  14. Brassinosteroid signal transduction: An emerging picture

    Institute of Scientific and Technical Information of China (English)

    WANG Qiaomei; MA Ligeng

    2003-01-01

    Steroid hormones play essential roles in animal growth and development. Steroid signaling in animal system is focused on the direct gene regulation response mediated by its nuclear receptors. Recently, steroid hormones are also found in plants. Identification of BRI1 - a critical component of the plasma-membrane steroid receptor complex, and the related signal transduction pathway mediated by the membrane receptor have revealed an elementary picture of BR signaling from the cell surface perception to the activation of BR-responsive nuclear genes.

  15. HERG K+ channels expression in gastric cancers and analysis of its regulation in tumor cell proliferation and apoptosis

    Institute of Scientific and Technical Information of China (English)

    Qing Lü; Huiyu Li; Xiaoming Lu; Guobin Wang

    2009-01-01

    Objective: To investigate the expression of herg 1 gene in tumor tissues from gastric carcinomas and gastric carcinoma cell lines, and study the relationship between HERG K+ channel expressions and tumor cell proliferation and apoptosis. Methods: RT-PCR and PCR assays were used to detect the expression of herg 1 gene in 64 gastric carcinomas and the gastric cancer cell line SGC-7901. Blocking the HERG K+ channels was used to evaluate their effects on tumor cell proliferation and apoptosis. Results:The statistically significant expression of herg 1 gene was detected in all the gastric cancers and SGC-7901 cells, but not in normal tissues. The HERG K+ channel blocker, E-4031, increased the cell population in G0/G1 (P<0.05) and the number of apoptotic tumor cells(P<0.05). Conclusion: HERG K+ channels were expressed in all gastric carcinomas tested and these channels appear to modulate tumor cell proliferation and apoptosis.

  16. Cell swelling activates cloned Ca(2+)-activated K(+) channels: a role for the F-actin cytoskeleton

    DEFF Research Database (Denmark)

    Jorgensen, Nanna K; Pedersen, Stine F; Rasmussen, Hanne B;

    2003-01-01

    Cloned Ca(2+)-activated K(+) channels of intermediate (hIK) or small (rSK3) conductance were expressed in HEK 293 cells, and channel activity was monitored using whole-cell patch clamp. hIK and rSK3 currents already activated by intracellular calcium were further increased by 95% and 125......%, respectively, upon exposure of the cells to a 33% decrease in extracellular osmolarity. hIK and rSK3 currents were inhibited by 46% and 32%, respectively, by a 50% increase in extracellular osmolarity. Cell swelling and channel activation were not associated with detectable increases in [Ca(2+)](i), evidenced...... by population and single-cell measurements. In addition, inhibitors of IK and SK channels significantly reduced the rate of regulatory volume decrease (RVD) in cells expressing these channels. Cell swelling induced a decrease, and cell shrinkage an increase, in net cellular F-actin content. The swelling...

  17. Reliable Signal Transduction

    Science.gov (United States)

    Wollman, Roy

    Stochasticity inherent to biochemical reactions (intrinsic noise) and variability in cellular states (extrinsic noise) degrade information transmitted through signaling networks. We analyzed the ability of temporal signal modulation - that is dynamics - to reduce noise-induced information loss. In the extracellular signal-regulated kinase (ERK), calcium (Ca(2 +)) , and nuclear factor kappa-B (NF- κB) pathways, response dynamics resulted in significantly greater information transmission capacities compared to nondynamic responses. Theoretical analysis demonstrated that signaling dynamics has a key role in overcoming extrinsic noise. Experimental measurements of information transmission in the ERK network under varying signal-to-noise levels confirmed our predictions and showed that signaling dynamics mitigate, and can potentially eliminate, extrinsic noise-induced information loss. By curbing the information-degrading effects of cell-to-cell variability, dynamic responses substantially increase the accuracy of biochemical signaling networks.

  18. Enhancing the biocompatibility of microfluidics-assisted fabrication of cell-laden microgels with channel geometry.

    Science.gov (United States)

    Kim, Suntae; Oh, Jonghyun; Cha, Chaenyung

    2016-11-01

    Microfluidic flow-focusing devices (FFD) are widely used to generate monodisperse droplets and microgels with controllable size, shape and composition for various biomedical applications. However, highly inconsistent and often low viability of cells encapsulated within the microgels prepared via microfluidic FFD has been a major concern, and yet this aspect has not been systematically explored. In this study, we demonstrate that the biocompatibility of microfluidic FFD to fabricate cell-laden microgels can be significantly enhanced by controlling the channel geometry. When a single emulsion ("single") microfluidic FFD is used to fabricate cell-laden microgels, there is a significant decrease and batch-to-batch variability in the cell viability, regardless of their size and composition. It is determined that during droplet generation, some of the cells are exposed to the oil phase which is shown to have a cytotoxic effect. Therefore, a microfluidic device with a sequential ('double') flow-focusing channels is employed instead, in which a secondary aqueous phase containing cells enters the primary aqueous phase, so the cells' exposure to the oil phase is minimized by directing them to the center of droplets. This microfluidic channel geometry significantly enhances the biocompatibility of cell-laden microgels, while maintaining the benefits of a typical microfluidic process. This study therefore provides a simple and yet highly effective strategy to improve the biocompatibility of microfluidic fabrication of cell-laden microgels.

  19. Meeting Report: Teaching Signal Transduction

    Science.gov (United States)

    Kramer, IJsbrand; Thomas, Geraint

    2006-01-01

    In July, 2005, the European Institute of Chemistry and Biology at the campus of the University of Bordeaux, France, hosted a focused week of seminars, workshops, and discussions around the theme of "teaching signal transduction." The purpose of the summer school was to offer both junior and senior university instructors a chance to reflect on the…

  20. SPP1-mediated plasmid transduction.

    OpenAIRE

    Canosi, U; Lüder, G; Trautner, T A

    1982-01-01

    The virulent Bacillus subtilis phage SPP1 transduces plasmid DNA. Plasmid-transducing phages contain only plasmid DNA. Such DNA represents a concatemer of monomeric plasmid molecules with the molecular weight of mature SPP1 DNA. Biological parameters of plasmid transduction are described.

  1. Novel role of KCNQ2/3 channels in regulating neuronal cell viability

    OpenAIRE

    Zhou, X.; Wei, J; Song, M; Francis, K.; Yu, S. P.

    2010-01-01

    Overactivation of certain K+ channels can mediate excessive K+ efflux and intracellular K+ depletion, which are early ionic events in apoptotic cascade. The present investigation examined a possible role of the KCNQ2/3 channel or M-channel (also named Kv7.2/7.3 channels) in the pro-apoptotic process. Whole-cell recordings detected much larger M-currents (212±31 pA or 10.5±1.5 pA/pF) in cultured hippocampal neurons than that in cultured cortical neurons (47±21 pA or 2.4±0.8 pA/pF). KCNQ2/3 cha...

  2. On the nanotoxicity of PAMAM dendrimers: Superfect® stimulates the EGFR-ERK1/2 signal transduction pathway via an oxidative stress-dependent mechanism in HEK 293 cells.

    Science.gov (United States)

    Akhtar, Saghir; Chandrasekhar, Bindu; Attur, Sreeja; Yousif, Mariam H M; Benter, Ibrahim F

    2013-05-01

    Polyamidoamine (PAMAM) dendrimers are cationic branch-like macromolecules that may serve as drug delivery systems for gene-based therapies such as RNA interference. For their safe use in the clinic, they should ideally only enhance drug delivery to target tissues and exhibit no adverse effects. However, little is known about their toxicological profiles in terms of their interactions with cellular signal transduction pathways such as the epidermal growth factor receptor (EGFR). The EGFR is an important signaling cascade that regulates cell growth, differentiation, migration, survival and apoptosis. Here, we investigated the impact of naked, unmodified Superfect (SF), a commercially available generation 6 PAMAM dendrimer, on the epidermal growth factor receptor (EGFR) tyrosine kinase-extracellular-regulated kinase 1/2 (ERK1/2) signaling pathway in human embryonic kidney (HEK 293) cells. At concentrations routinely used for transfection, SF exhibited time and dose-dependent stimulation of EGFR and ERK1/2 phosphorylation whereas AG1478, a selective EGFR tyrosine kinase antagonist, inhibited EGFR-ERK1/2 signaling. SF-induced phosphorylation of EGFR for 1h was partly reversible upon removal of the dendrimer and examination of cells 24 later. Co-treatment of SF with epidermal growth factor (EGF) ligand resulted in greater EGFR stimulation than either agent alone implying that the stimulatory effects of SF and the ligand are synergistic. Dendrimer-induced stimulation of EGFR-ERK1/2 signaling could be attenuated by the antioxidants apocynin, catalase and tempol implying that an oxidative stress dependent mechanism was involved. These results show for the first time that PAMAM dendrimers, aside from their ability to improve drug delivery, can modulate the important EGFR-ERK1/2 cellular signal transduction pathway - a novel finding that may have a bearing on their safe application as drug delivery systems.

  3. Plant Ion Channels: Gene Families, Physiology, and Functional Genomics Analyses

    Science.gov (United States)

    Ward, John M.; Mäser, Pascal; Schroeder, Julian I.

    2016-01-01

    Distinct potassium, anion, and calcium channels in the plasma membrane and vacuolar membrane of plant cells have been identified and characterized by patch clamping. Primarily owing to advances in Arabidopsis genetics and genomics, and yeast functional complementation, many of the corresponding genes have been identified. Recent advances in our understanding of ion channel genes that mediate signal transduction and ion transport are discussed here. Some plant ion channels, for example, ALMT and SLAC anion channel subunits, are unique. The majority of plant ion channel families exhibit homology to animal genes; such families include both hyperpolarization-and depolarization-activated Shaker-type potassium channels, CLC chloride transporters/channels, cyclic nucleotide–gated channels, and ionotropic glutamate receptor homologs. These plant ion channels offer unique opportunities to analyze the structural mechanisms and functions of ion channels. Here we review gene families of selected plant ion channel classes and discuss unique structure-function aspects and their physiological roles in plant cell signaling and transport. PMID:18842100

  4. IL-2基因转导CD3AK细胞免疫学功能的研究%Research on Immunologic Functions of Interleukin-2 Gene Transducted CD3AK Cells by Retroviral Vector PLIL-2SN

    Institute of Scientific and Technical Information of China (English)

    王立新; 夏圣; 许靖霞; 蔡仙德

    2000-01-01

    目的:观察白细胞介素-2(IL-2)基因转导后CD3AK细胞免疫学功能的变化。方法:应用逆转录病毒载体将IL2基因转导入CD3AK细胞。检测转导细胞中特异性NeoR基因、培养上清IL2的表达水平及转导CD3AK细胞的体外增殖活性、细胞毒活性和细胞表型。结果:从转导细胞mRNA中扩增出长度为347bp的特异性NeoR基因片段,转导细胞培养上清的IL2表达水平显著增高,体外增殖活性和细胞毒活性均强于未转导组细胞,CD4+/CD2+值升高。结论:PLIL2SN逆转录病毒转导CD3AK细胞后,IL-2基因得到表达并增强CD3AK细胞的免疫学功能。%Objective This experiment was designed to observe the immunologic functions of CD3AK cells into which interleukin-2(IL-2) gene had been transducted. Methods The post-transfer CD3AK cells' special NeoR gene and cell immunologic functions including IL-2 expression, proliferation, cytotoxicity and cell phonetype were detected. R~ults The specific 347 bp NeoR gene was amplfiied in post-transfer cells. The post-transfer cells expressed higher IL-2, proliferation and cytotoxicity ability. It was also found that the ratio of CD4 + T cell to CDa + T cell increased in post-transfer group. Conclusion Transducting IL-2 gene into CD3AK cells could enhance their immunologic functions.

  5. TRPV3 Channel Negatively Regulates Cell Cycle Progression and Safeguards the Pluripotency of Embryonic Stem Cells.

    Science.gov (United States)

    Lo, Iek Chi; Chan, Hing Chung; Qi, Zenghua; Ng, Kwun Lam; So, Chun; Tsang, Suk Ying

    2016-02-01

    Embryonic stem cells (ESCs) have tremendous potential for research and future therapeutic purposes. However, the calcium handling mechanism in ESCs is not fully elucidated. Aims of this study are (1) to investigate if transient receptor potential vanilloid-3 (TRPV3) channels are present in mouse ESCs (mESCs) and their subcellular localization; (2) to investigate the role of TRPV3 in maintaining the characteristics of mESCs. Western blot and immunocytochemistry showed that TRPV3 was present at the endoplasmic reticulum (ER) of mESCs. Calcium imaging showed that, in the absence of extracellular calcium, TRPV3 activators camphor and 6-tert-butyl-m-cresol increased the cytosolic calcium. However, depleting the ER store in advance of activator addition abolished the calcium increase, suggesting that TRPV3 released calcium from the ER. To dissect the functional role of TRPV3, TRPV3 was activated and mESC proliferation was measured by trypan blue exclusion and MTT assays. The results showed that TRPV3 activation led to a decrease in mESC proliferation. Cell cycle analysis revealed that TRPV3 activation increased the percentage of cells in G2 /M phase; consistently, Western blot also revealed a concomitant increase in the expression of inactive form of cyclin-dependent kinase 1, suggesting that TRPV3 activation arrested mESCs at G2 /M phase. TRPV3 activation did not alter the expression of pluripotency markers Oct-4, Klf4 and c-Myc, suggesting that the pluripotency was preserved. Our study is the first study to show the presence of TRPV3 at ER. Our study also reveals the novel role of TRPV3 in controlling the cell cycle and preserving the pluripotency of ESCs.

  6. Plant adaptation to fluctuating environment and biomass production are strongly dependent on guard cell potassium channels

    Science.gov (United States)

    Lebaudy, Anne; Vavasseur, Alain; Hosy, Eric; Dreyer, Ingo; Leonhardt, Nathalie; Thibaud, Jean-Baptiste; Véry, Anne-Aliénor; Simonneau, Thierry; Sentenac, Hervé

    2008-01-01

    At least four genes encoding plasma membrane inward K+ channels (Kin channels) are expressed in Arabidopsis guard cells. A double mutant plant was engineered by disruption of a major Kin channel gene and expression of a dominant negative channel construct. Using the patch-clamp technique revealed that this mutant was totally deprived of guard cell Kin channel (GCKin) activity, providing a model to investigate the roles of this activity in the plant. GCKin activity was found to be an essential effector of stomatal opening triggered by membrane hyperpolarization and thereby of blue light-induced stomatal opening at dawn. It improved stomatal reactivity to external or internal signals (light, CO2 availability, and evaporative demand). It protected stomatal function against detrimental effects of Na+ when plants were grown in the presence of physiological concentrations of this cation, probably by enabling guard cells to selectively and rapidly take up K+ instead of Na+ during stomatal opening, thereby preventing deleterious effects of Na+ on stomatal closure. It was also shown to be a key component of the mechanisms that underlie the circadian rhythm of stomatal opening, which is known to gate stomatal responses to extracellular and intracellular signals. Finally, in a meteorological scenario with higher light intensity during the first hours of the photophase, GCKin activity was found to allow a strong increase (35%) in plant biomass production. Thus, a large diversity of approaches indicates that GCKin activity plays pleiotropic roles that crucially contribute to plant adaptation to fluctuating and stressing natural environments. PMID:18367672

  7. The effect of cell size and channel density on neuronal information encoding and energy efficiency.

    Science.gov (United States)

    Sengupta, Biswa; Faisal, A Aldo; Laughlin, Simon B; Niven, Jeremy E

    2013-09-01

    Identifying the determinants of neuronal energy consumption and their relationship to information coding is critical to understanding neuronal function and evolution. Three of the main determinants are cell size, ion channel density, and stimulus statistics. Here we investigate their impact on neuronal energy consumption and information coding by comparing single-compartment spiking neuron models of different sizes with different densities of stochastic voltage-gated Na(+) and K(+) channels and different statistics of synaptic inputs. The largest compartments have the highest information rates but the lowest energy efficiency for a given voltage-gated ion channel density, and the highest signaling efficiency (bits spike(-1)) for a given firing rate. For a given cell size, our models revealed that the ion channel density that maximizes energy efficiency is lower than that maximizing information rate. Low rates of small synaptic inputs improve energy efficiency but the highest information rates occur with higher rates and larger inputs. These relationships produce a Law of Diminishing Returns that penalizes costly excess information coding capacity, promoting the reduction of cell size, channel density, and input stimuli to the minimum possible, suggesting that the trade-off between energy and information has influenced all aspects of neuronal anatomy and physiology.

  8. Blockade of microglial KATP -channel abrogates suppression of inflammatory-mediated inhibition of neural precursor cells.

    Science.gov (United States)

    Ortega, Francisco J; Vukovic, Jana; Rodríguez, Manuel J; Bartlett, Perry F

    2014-02-01

    Microglia positively affect neural progenitor cell physiology through the release of inflammatory mediators or trophic factors. We demonstrated previously that reactive microglia foster K(ATP) -channel expression and that blocking this channel using glibenclamide administration enhances striatal neurogenesis after stroke. In this study, we investigated whether the microglial K(ATP) -channel directly influences the activation of neural precursor cells (NPCs) from the subventricular zone using transgenic Csf1r-GFP mice. In vitro exposure of NPCs to lipopolysaccharide and interferon-gamma resulted in a significant decrease in precursor cell number. The complete removal of microglia from the culture or exposure to enriched microglia culture also decreased the precursor cell number. The addition of glibenclamide rescued the negative effects of enriched microglia on neurosphere formation and promoted a ∼20% improvement in precursor cell number. Similar results were found using microglial-conditioned media from isolated microglia. Using primary mixed glial and pure microglial cultures, glibenclamide specifically targeted reactive microglia to restore neurogenesis and increased the microglial production of the chemokine monocyte chemoattractant protein-1 (MCP-1). These findings provide the first direct evidence that the microglial K(ATP) -channel is a regulator of the proliferation of NPCs under inflammatory conditions.

  9. Examination of laser microbeam cell lysis in a PDMS microfluidic channel using time-resolved imaging.

    Science.gov (United States)

    Quinto-Su, Pedro A; Lai, Hsuan-Hong; Yoon, Helen H; Sims, Christopher E; Allbritton, Nancy L; Venugopalan, Vasan

    2008-03-01

    We use time-resolved imaging to examine the lysis dynamics of non-adherent BAF-3 cells within a microfluidic channel produced by the delivery of single highly-focused 540 ps duration laser pulses at lambda = 532 nm. Time-resolved bright-field images reveal that the delivery of the pulsed laser microbeam results in the formation of a laser-induced plasma followed by shock wave emission and cavitation bubble formation. The confinement offered by the microfluidic channel constrains substantially the cavitation bubble expansion and results in significant deformation of the PDMS channel walls. To examine the cell lysis and dispersal of the cellular contents, we acquire time-resolved fluorescence images of the process in which the cells were loaded with a fluorescent dye. These fluorescence images reveal cell lysis to occur on the nanosecond to microsecond time scale by the plasma formation and cavitation bubble dynamics. Moreover, the time-resolved fluorescence images show that while the cellular contents are dispersed by the expansion of the laser-induced cavitation bubble, the flow associated with the bubble collapse subsequently re-localizes the cellular contents to a small region. This capacity of pulsed laser microbeam irradiation to achieve rapid cell lysis in microfluidic channels with minimal dilution of the cellular contents has important implications for their use in lab-on-a-chip applications. PMID:18305858

  10. Piezo1 forms mechanosensitive ion channels in the human MCF-7 breast cancer cell line

    Science.gov (United States)

    Li, Chouyang; Rezania, Simin; Kammerer, Sarah; Sokolowski, Armin; Devaney, Trevor; Gorischek, Astrid; Jahn, Stephan; Hackl, Hubert; Groschner, Klaus; Windpassinger, Christian; Malle, Ernst; Bauernhofer, Thomas; Schreibmayer, Wolfgang

    2015-02-01

    Mechanical interaction between cells - specifically distortion of tensional homeostasis-emerged as an important aspect of breast cancer genesis and progression. We investigated the biophysical characteristics of mechanosensitive ion channels (MSCs) in the malignant MCF-7 breast cancer cell line. MSCs turned out to be the most abundant ion channel species and could be activated by negative pressure at the outer side of the cell membrane in a saturable manner. Assessing single channel conductance (GΛ) for different monovalent cations revealed an increase in the succession: Li+ < Na+ < K+ ~Rb+ ~ Cs+. Divalent cations permeated also with the order: Ca2+ < Ba2+. Comparison of biophysical properties enabled us to identify MSCs in MCF-7 as ion channels formed by the Piezo1 protein. Using patch clamp technique no functional MSCs were observed in the benign MCF-10A mammary epithelial cell line. Blocking of MSCs by GsMTx-4 resulted in decreased motility of MCF-7, but not of MCF-10A cells, underscoring a possible role of Piezo1 in invasion and metastatic propagation. The role of Piezo1 in biology and progression of breast cancer is further substantiated by markedly reduced overall survival in patients with increased Piezo1 mRNA levels in the primary tumor.

  11. Expression of G-protein inwardly rectifying potassium channels (GIRKs in lung cancer cell lines

    Directory of Open Access Journals (Sweden)

    Schuller Hildegard M

    2005-08-01

    Full Text Available Abstract Background Previous data from our laboratory has indicated that there is a functional link between the β-adrenergic receptor signaling pathway and the G-protein inwardly rectifying potassium channel (GIRK1 in human breast cancer cell lines. We wanted to determine if GIRK channels were expressed in lung cancers and if a similar link exists in lung cancer. Methods GIRK1-4 expression and levels were determined by reverse transcription polymerase chain reaction (RT-PCR and real-time PCR. GIRK protein levels were determined by western blots and cell proliferation was determined by a 5-bromo-2'-deoxyuridine (BrdU assay. Results GIRK1 mRNA was expressed in three of six small cell lung cancer (SCLC cell lines, and either GIRK2, 3 or 4 mRNA expression was detected in all six SCLC cell lines. Treatment of NCI-H69 with β2-adrenergic antagonist ICI 118,551 (100 μM daily for seven days led to slight decreases of GIRK1 mRNA expression levels. Treatment of NCI-H69 with the β-adrenergic agonist isoproterenol (10 μM decreased growth rates in these cells. The GIRK inhibitor U50488H (2 μM also inhibited proliferation, and this decrease was potentiated by isoproterenol. In the SCLC cell lines that demonstrated GIRK1 mRNA expression, we also saw GIRK1 protein expression. We feel these may be important regulatory pathways since no expression of mRNA of the GIRK channels (1 & 2 was found in hamster pulmonary neuroendocrine cells, a suggested cell of origin for SCLC, nor was GIRK1 or 2 expression found in human small airway epithelial cells. GIRK (1,2,3,4 mRNA expression was also seen in A549 adenocarcinoma and NCI-H727 carcinoid cell lines. GIRK1 mRNA expression was not found in tissue samples from adenocarcinoma or squamous cancer patients, nor was it found in NCI-H322 or NCI-H441 adenocarcinoma cell lines. GIRK (1,3,4 mRNA expression was seen in three squamous cell lines, GIRK2 was only expressed in one squamous cell line. However, GIRK1 protein

  12. Expression of G-protein inwardly rectifying potassium channels (GIRKs) in lung cancer cell lines

    International Nuclear Information System (INIS)

    Previous data from our laboratory has indicated that there is a functional link between the β-adrenergic receptor signaling pathway and the G-protein inwardly rectifying potassium channel (GIRK1) in human breast cancer cell lines. We wanted to determine if GIRK channels were expressed in lung cancers and if a similar link exists in lung cancer. GIRK1-4 expression and levels were determined by reverse transcription polymerase chain reaction (RT-PCR) and real-time PCR. GIRK protein levels were determined by western blots and cell proliferation was determined by a 5-bromo-2'-deoxyuridine (BrdU) assay. GIRK1 mRNA was expressed in three of six small cell lung cancer (SCLC) cell lines, and either GIRK2, 3 or 4 mRNA expression was detected in all six SCLC cell lines. Treatment of NCI-H69 with β2-adrenergic antagonist ICI 118,551 (100 μM) daily for seven days led to slight decreases of GIRK1 mRNA expression levels. Treatment of NCI-H69 with the β-adrenergic agonist isoproterenol (10 μM) decreased growth rates in these cells. The GIRK inhibitor U50488H (2 μM) also inhibited proliferation, and this decrease was potentiated by isoproterenol. In the SCLC cell lines that demonstrated GIRK1 mRNA expression, we also saw GIRK1 protein expression. We feel these may be important regulatory pathways since no expression of mRNA of the GIRK channels (1 & 2) was found in hamster pulmonary neuroendocrine cells, a suggested cell of origin for SCLC, nor was GIRK1 or 2 expression found in human small airway epithelial cells. GIRK (1,2,3,4) mRNA expression was also seen in A549 adenocarcinoma and NCI-H727 carcinoid cell lines. GIRK1 mRNA expression was not found in tissue samples from adenocarcinoma or squamous cancer patients, nor was it found in NCI-H322 or NCI-H441 adenocarcinoma cell lines. GIRK (1,3,4) mRNA expression was seen in three squamous cell lines, GIRK2 was only expressed in one squamous cell line. However, GIRK1 protein expression was not seen in any non-SCLC cells

  13. Hair cell ribbon synapses

    OpenAIRE

    Moser, Tobias; Brandt, Andreas; Lysakowski, Anna

    2006-01-01

    Hearing and balance rely on the faithful synaptic coding of mechanical input by the auditory and vestibular hair cells of the inner ear. Mechanical deflection of their stereocilia causes the opening of mechanosensitive channels, resulting in hair cell depolarization, which controls the release of glutamate at ribbon-type synapses. Hair cells have a compact shape with strong polarity. Mechanoelectrical transduction and active membrane turnover associated with stereociliar renewal dominate the ...

  14. Improved Conversion Rates in Drug Screening Applications sing Miniaturized Electrochemical Cells with Frit Channels

    NARCIS (Netherlands)

    Odijk, M.; Olthuis, W.; Berg, van den A.; Qiao, L.; Girault, H.

    2012-01-01

    This paper reports a novel design of a miniaturized three-electrode electrochemical cell, the purpose of which is aimed at generating drug metabolites with a high conversion efficiency. The working electrode and the counter electrode are placed in two separate channels to isolate the reaction produc

  15. Paramagnetic Structures within a Microfluidic Channel for Enhanced Immunomagnetic Isolation and Surface Patterning of Cells

    Science.gov (United States)

    Sun, Chen; Hassanisaber, Hamid; Yu, Richard; Ma, Sai; Verbridge, Scott S.; Lu, Chang

    2016-01-01

    In this report, we demonstrate a unique method for embedding magnetic structures inside a microfluidic channel for cell isolation. We used a molding process to fabricate these structures out of a ferrofluid of cobalt ferrite nanoparticles. We show that the embedded magnetic structures significantly increased the magnetic field in the channel, resulting in up to 4-fold enhancement in immunomagnetic capture as compared with a channel without these embedded magnetic structures. We also studied the spatial distribution of trapped cells both experimentally and computationally. We determined that the surface pattern of these trapped cells was determined by both location of the magnet and layout of the in-channel magnetic structures. Our magnetic structure embedded microfluidic device achieved over 90% capture efficiency at a flow velocity of 4 mm/s, a speed that was roughly two orders of magnitude faster than previous microfluidic systems used for a similar purpose. We envision that our technology will provide a powerful tool for detection and enrichment of rare cells from biological samples. PMID:27388549

  16. Paramagnetic Structures within a Microfluidic Channel for Enhanced Immunomagnetic Isolation and Surface Patterning of Cells

    Science.gov (United States)

    Sun, Chen; Hassanisaber, Hamid; Yu, Richard; Ma, Sai; Verbridge, Scott S.; Lu, Chang

    2016-07-01

    In this report, we demonstrate a unique method for embedding magnetic structures inside a microfluidic channel for cell isolation. We used a molding process to fabricate these structures out of a ferrofluid of cobalt ferrite nanoparticles. We show that the embedded magnetic structures significantly increased the magnetic field in the channel, resulting in up to 4-fold enhancement in immunomagnetic capture as compared with a channel without these embedded magnetic structures. We also studied the spatial distribution of trapped cells both experimentally and computationally. We determined that the surface pattern of these trapped cells was determined by both location of the magnet and layout of the in-channel magnetic structures. Our magnetic structure embedded microfluidic device achieved over 90% capture efficiency at a flow velocity of 4 mm/s, a speed that was roughly two orders of magnitude faster than previous microfluidic systems used for a similar purpose. We envision that our technology will provide a powerful tool for detection and enrichment of rare cells from biological samples.

  17. Evaluation of a 32-channel versus a 12-channel head coil for high-resolution post-contrast MRI in giant cell arteritis (GCA) at 3 T

    Energy Technology Data Exchange (ETDEWEB)

    Franke, Philipp, E-mail: philipp.franke@uniklinik-freiburg.de [Institut für Diagnostische Radiologie, Gartenstr. 28, 79098 Freiburg (Germany); Markl, Michael, E-mail: mmarkl@northwestern.edu [Departments of Radiology and Biomedical Engineering, Northwestern University Chicago, 737 North Michigan Avenue, Suite 1600, Chicago, IL 60611 (United States); Heinzelmann, Sonja, E-mail: sonja.heinzelmann@uniklinik-freiburg.de [Department of Ophthalmology, University Hospital Freiburg, Killianstr. 5, 79106 Freiburg (Germany); Vaith, Peter, E-mail: peter.vaith@uniklinik-freiburg.de [Department of Rheumatology and Immunology, University Hospital Freiburg, Hugstetter Str. 55, 79106 Freiburg (Germany); Bürk, Jonas, E-mail: jonas.buerk@uniklinik-freiburg.de [Department of Diagnostic Radiology, University Hospital Freiburg, Hugstetter Str. 55, 79106 Freiburg (Germany); Langer, Mathias, E-mail: mathias.langer@uniklinik-freiburg.de [Department of Diagnostic Radiology, University Hospital Freiburg, Hugstetter Str. 55, 79106 Freiburg (Germany); Geiger, J., E-mail: julia.geiger@uniklinik-freiburg.de [Department of Diagnostic Radiology, University Hospital Freiburg, Hugstetter Str. 55, 79106 Freiburg (Germany); Department of Radiology, University Children‘s Hospital Zurich, Steinwiesstr. 75, 8032 Zurich (Switzerland)

    2014-10-15

    The aim of this study was to evaluate the diagnostic value of a 32-channel head coil for the characterization of mural inflammation patterns in the superficial cranial arteries in patients with giant cell arteritis (GCA) compared to a standard 12-channel coil at 3 T MRI. 55 patients with suspected GCA underwent high resolution T1-weighted post-contrast MRI at 3 T to detect inflammation related vessel wall enhancement using both coils. To account for different time delays between contrast agent injection and sequence acquisition, the patients were divided into two cohorts: 27 patients were examined with the 32-channel coil first and 28 patients with the 12-channel coil first. Images were evaluated by two blinded readers with regard to image quality, artifact level and arteries’ inflammation according to a standardized ranking scale; furthermore signal-to-noise ratio (SNR) measurements were performed at three locations. Identification of arteries’ inflammation was achieved with both coils with excellent inter-observer agreement (κ = 0.89 for 12-channel and κ = 0.96 for 32-channel coil). Regarding image grading, the inter-observer variability was moderate for the 12-channel (κ = 0.5) and substantial for the 32-channel coil (κ = 0.63). Significantly higher SNR and improved image quality (p < 0.01) were obtained with the 32-channel coil in either coil order. Image quality for depiction of the superficial cranial arteries was superior for the 32-channel coil. For standardized GCA diagnosis, the 12-channel coil was sufficient.

  18. Computerized image analysis of cell-cell interactions in human renal tissue by using multi-channel immunoflourescent confocal microscopy

    Science.gov (United States)

    Peng, Yahui; Jiang, Yulei; Liarski, Vladimir M.; Kaverina, Natalya; Clark, Marcus R.; Giger, Maryellen L.

    2012-03-01

    Analysis of interactions between B and T cells in tubulointerstitial inflammation is important for understanding human lupus nephritis. We developed a computer technique to perform this analysis, and compared it with manual analysis. Multi-channel immunoflourescent-microscopy images were acquired from 207 regions of interest in 40 renal tissue sections of 19 patients diagnosed with lupus nephritis. Fresh-frozen renal tissue sections were stained with combinations of immunoflourescent antibodies to membrane proteins and counter-stained with a cell nuclear marker. Manual delineation of the antibodies was considered as the reference standard. We first segmented cell nuclei and cell membrane markers, and then determined corresponding cell types based on the distances between cell nuclei and specific cell-membrane marker combinations. Subsequently, the distribution of the shortest distance from T cell nuclei to B cell nuclei was obtained and used as a surrogate indicator of cell-cell interactions. The computer and manual analyses results were concordant. The average absolute difference was 1.1+/-1.2% between the computer and manual analysis results in the number of cell-cell distances of 3 μm or less as a percentage of the total number of cell-cell distances. Our computerized analysis of cell-cell distances could be used as a surrogate for quantifying cell-cell interactions as either an automated and quantitative analysis or for independent confirmation of manual analysis.

  19. Blood pressure and amiloride-sensitive sodium channels in vascular and renal cells.

    Science.gov (United States)

    Warnock, David G; Kusche-Vihrog, Kristina; Tarjus, Antoine; Sheng, Shaohu; Oberleithner, Hans; Kleyman, Thomas R; Jaisser, Frederic

    2014-03-01

    Sodium transport in the distal nephron is mediated by epithelial sodium channel activity. Proteolytic processing of external domains and inhibition with increased sodium concentrations are important regulatory features of epithelial sodium channel complexes expressed in the distal nephron. By contrast, sodium channels expressed in the vascular system are activated by increased external sodium concentrations, which results in changes in the mechanical properties and function of endothelial cells. Mechanosensitivity and shear stress affect both epithelial and vascular sodium channel activity. Guyton's hypothesis stated that blood pressure control is critically dependent on vascular tone and fluid handling by the kidney. The synergistic effects, and complementary regulation, of the epithelial and vascular systems are consistent with the Guytonian model of volume and blood pressure regulation, and probably reflect sequential evolution of the two systems. The integration of vascular tone, renal perfusion and regulation of renal sodium reabsorption is the central underpinning of the Guytonian model. In this Review, we focus on the expression and regulation of sodium channels, and we outline the emerging evidence that describes the central role of amiloride-sensitive sodium channels in the efferent (vascular) and afferent (epithelial) arms of this homeostatic system.

  20. Actin Dynamics Regulates Voltage-Dependent Calcium-Permeable Channels of the Vicia faba Guard Cell Plasma Membrane

    Institute of Scientific and Technical Information of China (English)

    Wei Zhang; Liu-Min Fan

    2009-01-01

    Free cytosolic Ca~(2+) ([Ca~(2+)]_(cyt)) is an ubiquitous second messenger in plant cell signaling, and [Ca~(2+)]_(cyt) elevation is associated with Ca~(2+)-permeable channels in the plasma membrane and endomembranes regulated by a wide range of stimuli. However, knowledge regarding Ca~(2+) channels and their regulation remains limited in planta. A type of voltage-dependent Ca~(2+)-permeable channel was identified and characterized for the Vicia faba L. guard cell plasma membrane by using patch-clamp techniques. These channels are permeable to both Ba~(2+) and Ca~(2+), and their activities can be inhibited by micromolar Gd~(3+). The unitary conductance and the reversal potential of the channels depend on the Ca~(2+) or Ba~(2+) gradients across the plasma membrane. The inward whole-cell Ca~(2+) (Ba~(2+)) current, as well as the unitary current amplitude and NP. of the single Ca~(2+) channel, increase along with the membrane hyperpolarization. Pharmacological experiments suggest that actin dynamics may serve as an upstream regulator of this type of calcium channel of the guard cell plasma membrane. Cytochalasin D, an actin polymerization blocker, activated the NP_o of these channels at the single channel level and increased the current amplitude at the whole-cell level. But these channel activations and current increments could be restrained by pretreatment with an F-actin stabilizer, phalloidin. The potential physiological significance of this regulatory mechanism is also discussed.

  1. Basolateral K channel activated by carbachol in the epithelial cell line T84.

    Science.gov (United States)

    Tabcharani, J A; Harris, R A; Boucher, A; Eng, J W; Hanrahan, J W

    1994-11-01

    Cholinergic stimulation of chloride secretion involves the activation of a basolateral membrane potassium conductance, which maintains the electrical gradient favoring apical Cl efflux and allows K to recycle at the basolateral membrane. We have used transepithelial short-circuit current (Isc), fluorescence imaging, and patch clamp studies to identify and characterize the K channel that mediates this response in T84 cells. Carbachol had little effect on Isc when added alone but produced large, transient currents if added to monolayers prestimulated with cAMP. cAMP also enhanced the subsequent Isc response to calcium ionophores. Carbachol (100 microM) transiently elevated intracellular free calcium ([Ca2+]i) by approximately 3-fold in confluent cells cultured on glass coverslips with a time course resembling the Isc response of confluent monolayers that had been grown on porous supports. In parallel patch clamp experiments, carbachol activated an inwardly rectifying potassium channel on the basolateral aspect of polarized monolayers which had been dissected from porous culture supports. The same channel was transiently activated on the surface of subconfluent monolayers during stimulation by carbachol. Activation was more prolonged when cells were exposed to calcium ionophores. The conductance of the inward rectifier in cell-attached patches was 55 pS near the resting membrane potential (-54 mV) with pipette solution containing 150 mM KCl (37 degrees C). This rectification persisted when patches were bathed in symmetrical 150 mM KCl solutions. The selectivity sequence was 1 K > 0.88 Rb > 0.18 Na > Cs based on permeability ratios under bi-ionic conditions. The channel exhibited fast block by external sodium ions, was weakly inhibited by external TEA, was relatively insensitive to charybdotoxin, kaliotoxin, 4-aminopyridine and quinidine, and was unaffected by external 10 mM barium. It is referred to as the KBIC channel based on its most distinctive properties (Ba

  2. Voltage-gated sodium channel expression and action potential generation in differentiated NG108-15 cells

    OpenAIRE

    Liu Jinxu; Tu Huiyin; Zhang Dongze; Zheng Hong; Li Yu-Long

    2012-01-01

    Abstract Background The generation of action potential is required for stimulus-evoked neurotransmitter release in most neurons. Although various voltage-gated ion channels are involved in action potential production, the initiation of the action potential is mainly mediated by voltage-gated Na+ channels. In the present study, differentiation-induced changes of mRNA and protein expression of Na+ channels, Na+ currents, and cell membrane excitability were investigated in NG108-15 cells. Result...

  3. Coregulation of calcium channels and beta-adrenergic receptors in cultured chick embryo ventricular cells

    International Nuclear Information System (INIS)

    To examine mechanisms whereby the abundance of functional Ca channels may be regulated in excitable tissue, Ca channel number was estimated by binding of the dihydropyridine (DHP) antagonist 3H (+)PN200-110 to monolayers of intact myocytes from chick embryo ventricle. Beta adrenergic receptor properties were studied in cultured myocytes using [3H]CGP12177, an antagonist ligand. Physiological correlates for alterations in DHP binding site number included 45Ca uptake and contractile response to (+)BAYk 8644, a specific L-type Ca channel activator. All binding and physiological determinations were performed in similar intact cell preparations under identical conditions. 4-h exposure to 1 microM isoproterenol reduced cell surface beta-adrenergic receptor number from 44 +/- 3 to 17 +/- 2 fmol/mg (P less than 0.05); DHP binding sites declined in number from 113 +/- 25 to 73 +/- 30 fmol/mg (P less than 0.03). When protein kinase A was activated by a non-receptor-dependent mechanism, DHP binding declined similarly to 68% of control. Exposure to diltiazem, a Ca channel antagonist, for 18-24 h had no effect on number of DHP binding sites. After 4-h isoproterenol exposure, 45Ca uptake stimulated by BAYk 8644 declined from 3.3 +/- 0.2 nmol/mg to 2.9 +/- 0.3 nmol/mg (P less than 0.01) and BAYk 8644-stimulated increase in amplitude of contraction declined from 168 +/- 7 to 134 +/- 11% (P = 0.02). Thus, elevation of [cAMP] in myocytes is associated with a time-dependent decline in Ca channel abundance as estimated by DHP binding and a decline in physiological responses that are in part dependent on abundance of Ca channels. Binding of a directly acting Ca channel antagonist for 18-24 h does not modulate the number of DHP binding sites

  4. Protein expression of G-protein inwardly rectifying potassium channels (GIRK in breast cancer cells

    Directory of Open Access Journals (Sweden)

    Plummer Howard K

    2006-08-01

    Full Text Available Abstract Background Previous data from our laboratory has indicated that a functional link exists between the G-protein-coupled inwardly rectifying potassium (GIRK channel and the beta-adrenergic receptor pathway in breast cancer cell lines, and these pathways were involved in growth regulation of these cells. Alcohol is an established risk factor for breast cancer and has been found to open GIRK. In order to further investigate GIRK channels in breast cancer and possible alteration by ethanol, we identified GIRK channel protein expression in breast cancer cells. Results Cell pellets were collected and membrane protein was isolated to determine GIRK protein expression. GIRK protein was also analyzed by immuno-precipitation. GIRK protein was over-expressed in cells by transfection of GIRK plasmids. Gene expression studies were done by real-time RT-PCR. GIRK protein expression was identified in breast cancer cell lines. Expression of GIRK1 at the indicated molecular weight (MW (62 kDa was seen in cell lines MDA-MB-453 and ZR-75-1. In addition, GIRK1 expression was seen at a lower MW (40–42 kDa in MDA-MB-361, MDA-MB-468, MCF-7, ZR-75-1, and MDA-MB-453 cell lines. To prove the lower MW protein was GIRK1, MDA-MB-453 cells were immuno-precipitated. GIRK2 expression was seen in MDA-MB-468, MCF-7, and ZR-75-1 and was variable in MDA-MB-453, while GIRK4 protein expression was seen in all six cell lines tested. This is the first report indicating GIRK protein expression in breast cancer cells. To determine functionality, MDA-MB-453 cells were stimulated with ethanol. Decreased GIRK1 protein expression levels were seen after treatment with 0.12% ethanol in MDA-MB-453 breast cancer cells. Serum-free media decreased GIRK protein expression, possibly due to lack of estrogen in the media. Transfection of GIRK1 or GIRK4 plasmids increased GIRK1 protein expression and decreased gene expression in MDA-MB-453 breast cancer cells. Conclusion Our data indicates

  5. Gibberellin Signal Transduction in Rice

    Institute of Scientific and Technical Information of China (English)

    Liu-Min Fan; Xiaoyan Feng; Yu Wang; Xing Wang Deng

    2007-01-01

    In the past decade, significant knowledge has accumulated regarding gibberellin (GA) signal transduction in rice as a result of studies using multiple approaches, particularly molecular genetics. The present review highlights the recent developments in the identification of GA signaling pathway components, the discovery of GA-induced destruction of GA signaling represser (DELLA protein), and the possible mechanism underlying the regulation of GA-responsive gene expression in rice.

  6. Mechanosensor Channels in Mammalian Somatosensory Neurons

    Directory of Open Access Journals (Sweden)

    Patrick Delmas

    2007-09-01

    Full Text Available Mechanoreceptive sensory neurons innervating the skin, skeletal muscles andviscera signal both innocuous and noxious information necessary for proprioception, touchand pain. These neurons are responsible for the transduction of mechanical stimuli intoaction potentials that propagate to the central nervous system. The ability of these cells todetect mechanical stimuli impinging on them relies on the presence of mechanosensitivechannels that transduce the external mechanical forces into electrical and chemical signals.Although a great deal of information regarding the molecular and biophysical properties ofmechanosensitive channels in prokaryotes has been accumulated over the past two decades,less is known about the mechanosensitive channels necessary for proprioception and thesenses of touch and pain. This review summarizes the most pertinent data onmechanosensitive channels of mammalian somatosensory neurons, focusing on theirproperties, pharmacology and putative identity.

  7. Emerging roles of calcium-activated K channels and TRPV4 channels in lung oedema and pulmonary circulatory collapse

    DEFF Research Database (Denmark)

    Simonsen, Ulf; Wandall-Frostholm, Christine; Oliván-Viguera, Aida;

    2016-01-01

    endothelial/epithelial barrier functions and vascular integrity, while KCa3.1 channels provide the driving force required for Cl(-) and water transport in some cells and most secretory epithelia. The three conditions, increased pulmonary venous pressure caused by left heart disease, high inflation pressure......, fluid extravasation, hemorrhage, pulmonary circulatory collapse, and cardiac arrest in vivo. These data identify KCa3.1 channels as crucial molecular components in downstream TRPV4-signal transduction and as a potential target for the prevention of undesired fluid extravasation, vasodilatation...

  8. Myricetin inhibits Kv1.5 channels in HEK293 cells.

    Science.gov (United States)

    Ou, Xianhong; Bin, Xiaohong; Wang, Luzhen; Li, Miaoling; Yang, Yan; Fan, Xinrong; Zeng, Xiaorong

    2016-02-01

    Myricetin (Myr) is a flavonoid that exerts anti-arrhythmic effects. However, its potential effects on ion channels have remained elusive. The aim of the present study was to investigate the effects of Myr on Kv1.5 channels in HEK293 cells. The current of Kv1.5 channels (Ikur) in HEK293 cells was recorded using the whole-cell patch-clamp technique and the expression of the Kv1.5 protein was measured using western blot analysis 24 h after treatment with Myr. The results showed that 5 µM Myr significantly reduced Ikur from 215.04 ± 40.59 to 77.72 ± 17.94 pA/pF (PHEK293 cells treated with 10 µM Myr for 5 min. Furthermore, Myr reduced hKv1.5 protein expression in a dose-dependent manner. These results demonstrated that Myr inhibited Ikur and the expression of hKv1.5 in HEK293 cells in a dose-, time- and frequency-dependent manner. These observations partly explained the mechanisms by which Myr exerts anti-arrhythmic effect.

  9. Slanted channel microfluidic chip for 3D fluorescence imaging of cells in flow.

    Science.gov (United States)

    Jagannadh, Veerendra Kalyan; Mackenzie, Mark D; Pal, Parama; Kar, Ajoy K; Gorthi, Sai Siva

    2016-09-19

    Three-dimensional cellular imaging techniques have become indispensable tools in biological research and medical diagnostics. Conventional 3D imaging approaches employ focal stack collection to image different planes of the cell. In this work, we present the design and fabrication of a slanted channel microfluidic chip for 3D fluorescence imaging of cells in flow. The approach employs slanted microfluidic channels fabricated in glass using ultrafast laser inscription. The slanted nature of the microfluidic channels ensures that samples come into and go out of focus, as they pass through the microscope imaging field of view. This novel approach enables the collection of focal stacks in a straight-forward and automated manner, even with off-the-shelf microscopes that are not equipped with any motorized translation/rotation sample stages. The presented approach not only simplifies conventional focal stack collection, but also enhances the capabilities of a regular widefield fluorescence microscope to match the features of a sophisticated confocal microscope. We demonstrate the retrieval of sectioned slices of microspheres and cells, with the use of computational algorithms to enhance the signal-to-noise ratio (SNR) in the collected raw images. The retrieved sectioned images have been used to visualize fluorescent microspheres and bovine sperm cell nucleus in 3D while using a regular widefield fluorescence microscope. We have been able to achieve sectioning of approximately 200 slices per cell, which corresponds to a spatial translation of ∼ 15 nm per slice along the optical axis of the microscope.

  10. TRPC1 regulates calcium-activated chloride channels in salivary gland cells.

    Science.gov (United States)

    Sun, Yuyang; Birnbaumer, Lutz; Singh, Brij B

    2015-11-01

    Calcium-activated chloride channel (CaCC) plays an important role in modulating epithelial secretion. It has been suggested that in salivary tissues, sustained fluid secretion is dependent on Ca(2+) influx that activates ion channels such as CaCC to initiate Cl(-) efflux. However direct evidence as well as the molecular identity of the Ca(2+) channel responsible for activating CaCC in salivary tissues is not yet identified. Here we provide evidence that in human salivary cells, an outward rectifying Cl(-) current was activated by increasing [Ca(2+)]i, which was inhibited by the addition of pharmacological agents niflumic acid (NFA), an antagonist of CaCC, or T16Ainh-A01, a specific TMEM16a inhibitor. Addition of thapsigargin (Tg), that induces store-depletion and activates TRPC1-mediated Ca(2+) entry, potentiated the Cl(-) current, which was inhibited by the addition of a non-specific TRPC channel blocker SKF96365 or removal of external Ca(2+). Stimulation with Tg also increased plasma membrane expression of TMEM16a protein, which was also dependent on Ca(2+) entry. Importantly, in salivary cells, TRPC1 silencing, but not that of TRPC3, inhibited CaCC especially upon store depletion. Moreover, primary acinar cells isolated from submandibular gland also showed outward rectifying Cl(-) currents upon increasing [Ca(2+)]i. These Cl(-) currents were again potentiated with the addition of Tg, but inhibited in the presence of T16Ainh-A01. Finally, acinar cells isolated from the submandibular glands of TRPC1 knockout mice showed significant inhibition of the outward Cl(-) currents without decreasing TMEM16a expression. Together the data suggests that Ca(2+) entry via the TRPC1 channels is essential for the activation of CaCC.

  11. Expression of SMAD signal transduction molecules in the pancreas

    DEFF Research Database (Denmark)

    Brorson, Michael; Hougaard, D.; Nielsen, Jens Høiriis;

    2001-01-01

    Members of the TGF-beta superfamily of cytokines have been implicated in pancreatic cancer, pancreatitis and in regulation and differentiation of pancreatic endocrine and exocrine cells. Different TGF-beta members signal through phosphorylation of different signal transduction proteins, which...

  12. Activity Dependent Signal Transduction in Skeletal Muscle

    Science.gov (United States)

    Hamilton, Susan L.

    1999-01-01

    The overall goals of this project are: 1) to define the initial signal transduction events whereby the removal of gravitational load from antigravity muscles, such as the soleus, triggers muscle atrophy, and 2) to develop countermeasures to prevent this from happening. Our rationale for this approach is that, if countermeasures can be developed to regulate these early events, we could avoid having to deal with the multiple cascades of events that occur downstream from the initial event. One of our major findings is that hind limb suspension causes an early and sustained increase in intracellular Ca(2+) concentration ([Ca (2+)](sub i)). In most cells the consequences of changes in ([Ca (2+)](sub i))depend on the amplitude, frequency and duration of the Ca(2+) signal and on other factors in the intracellular environment. We propose that muscle remodeling in microgravity represents a change in the balance among several CA(2+) regulated signal transduction pathways, in particular those involving the transcription factors NFAT and NFkB and the pro-apoptotic protein BAD. Other Ca(2+) sensitive pathways involving PKC, ras, rac, and CaM kinase II may also contribute to muscle remodeling.

  13. Binding of [125I]iodipine to parathyroid cell membranes: Evidence of a dihydropyridine-sensitive calcium channel

    International Nuclear Information System (INIS)

    The parathyroid cell is unusual, in that an increase in extracellular calcium concentrations inhibits PTH release. Calcium channels are glycoproteins that span cell membranes and allow entry of extracellular calcium into cells. We have demonstrated that the calcium channel agonist (+)202-791, which opens calcium channels, inhibits PTH release and that the antagonist (-)202-791, which closes calcium channels, stimulates PTH release. To identify the calcium channels responsible for these effects, we used a radioligand that specifically binds to calcium channels. Bovine parathyroid cell membranes were prepared and incubated under reduced lighting with [125I] iodipine (SA, 2000 Ci/mmol), which recognizes 1,4-dihydropyridine-sensitive calcium channels. Bound ligand was separated from free ligand by rapid filtration through Whatman GF/B filters. Nonspecific binding was measured by the inclusion of nifedipine at 10 microM. Specific binding represented approximately 40% of the total binding. The optimal temperature for [125I] iodipine binding was 4 C, and binding reached equilibrium by 30 min. The equilibrium dissociation constant (Kd) was approximately 550 pM, and the maximum number of binding sites was 780 fmol/mg protein. Both the calcium channel agonist (+)202-791 and antagonist (-)202-791 competitively inhibited [125I] iodipine binding, with 50% inhibition concentrations of 20 and 300 nM, respectively. These data indicate the presence of dihydropyridine-sensitive calcium channels on parathyroid cell membranes

  14. Nitric oxide suppresses stomatal opening by inhibiting inward-rectifying Kin channels in Arabidopsis guard cells

    Institute of Scientific and Technical Information of China (English)

    XUE ShaoWu; YANG Pin; HE YiKun

    2008-01-01

    We explore nitric oxide (NO) effect on K+in channels in Arabidopsis guard cells. We observed NO inhib-ited K+in currents when Ca2+ chelator EGTA (Ethylene glycol-bis(2-aminoethylether)-N,N,N',N'tetraacetic acid) was not added in the pipette solution; K+in currents were not sensitive to NO when cytosolic Ca2+ was chelated by EGTA. NO inhibited the Arabidopsis stomatal opening, but when EGTA was added in the bath solution, inhibition effect of NO on stomatal opening vanished. Thus, it implies that NO ele-vates cytosolic Ca2+ by activating plasma membrane Ca2+ channels firstly, then inactivates K+in chan-nels, resulting in stomatal opening suppressed subsequently.

  15. Modeling magnetosensitive ion channels in the viscoelastic environment of living cells.

    Science.gov (United States)

    Goychuk, Igor

    2015-10-01

    We propose and study a model of hypothetical magnetosensitive ionic channels which are long thought to be a possible candidate to explain the influence of weak magnetic fields on living organisms ranging from magnetotactic bacteria to fishes, birds, rats, bats, and other mammals including humans. The core of the model is provided by a short chain of magnetosomes serving as a sensor, which is coupled by elastic linkers to the gating elements of ion channels forming a small cluster in the cell membrane. The magnetic sensor is fixed by one end on cytoskeleton elements attached to the membrane and is exposed to viscoelastic cytosol. Its free end can reorient stochastically and subdiffusively in viscoelastic cytosol responding to external magnetic field changes and can open the gates of coupled ion channels. The sensor dynamics is generally bistable due to bistability of the gates which can be in two states with probabilities which depend on the sensor orientation. For realistic parameters, it is shown that this model channel can operate in the magnetic field of Earth for a small number (five to seven) of single-domain magnetosomes constituting the sensor rod, each of which has a typical size found in magnetotactic bacteria and other organisms or even just one sufficiently large nanoparticle of a characteristic size also found in nature. It is shown that, due to the viscoelasticity of the medium, the bistable gating dynamics generally exhibits power law and stretched exponential distributions of the residence times of the channels in their open and closed states. This provides a generic physical mechanism for the explanation of the origin of such anomalous kinetics for other ionic channels whose sensors move in a viscoelastic environment provided by either cytosol or biological membrane, in a quite general context, beyond the fascinating hypothesis of magnetosensitive ionic channels we explore. PMID:26565276

  16. Modeling magnetosensitive ion channels in the viscoelastic environment of living cells

    Science.gov (United States)

    Goychuk, Igor

    2015-10-01

    We propose and study a model of hypothetical magnetosensitive ionic channels which are long thought to be a possible candidate to explain the influence of weak magnetic fields on living organisms ranging from magnetotactic bacteria to fishes, birds, rats, bats, and other mammals including humans. The core of the model is provided by a short chain of magnetosomes serving as a sensor, which is coupled by elastic linkers to the gating elements of ion channels forming a small cluster in the cell membrane. The magnetic sensor is fixed by one end on cytoskeleton elements attached to the membrane and is exposed to viscoelastic cytosol. Its free end can reorient stochastically and subdiffusively in viscoelastic cytosol responding to external magnetic field changes and can open the gates of coupled ion channels. The sensor dynamics is generally bistable due to bistability of the gates which can be in two states with probabilities which depend on the sensor orientation. For realistic parameters, it is shown that this model channel can operate in the magnetic field of Earth for a small number (five to seven) of single-domain magnetosomes constituting the sensor rod, each of which has a typical size found in magnetotactic bacteria and other organisms or even just one sufficiently large nanoparticle of a characteristic size also found in nature. It is shown that, due to the viscoelasticity of the medium, the bistable gating dynamics generally exhibits power law and stretched exponential distributions of the residence times of the channels in their open and closed states. This provides a generic physical mechanism for the explanation of the origin of such anomalous kinetics for other ionic channels whose sensors move in a viscoelastic environment provided by either cytosol or biological membrane, in a quite general context, beyond the fascinating hypothesis of magnetosensitive ionic channels we explore.

  17. Cell swelling activates ATP-dependent voltage-gated chloride channels in M-1 mouse cortical collecting duct cells.

    Science.gov (United States)

    Meyer, K; Korbmacher, C

    1996-09-01

    In the present study we used whole-cell patch clamp recordings to investigate swelling-activated Cl-currents (ICl-swell) in M-1 mouse cortical collecting duct (CCD) cells. Hypotonic cell swelling reversibly increased the whole-cell Cl- conductance by about 30-fold. The I-V relationship was outwardly-rectifying and ICl-swell displayed a characteristic voltage-dependence with relatively fast inactivation upon large depolarizing and slow activation upon hyperpolarizing voltage steps. Reversal potential measurements revealed a selectivity sequence SCN- > I- > Br- > Cl- > > gluconate. ICl-swell was inhibited by tamoxifen, NPPB (5-nitro-2(3-phenylpropylamino)-benzoate), DIDS (4,4'-diisothiocyanostilbene-2,2'-disulphonic acid), flufenamic acid, niflumic acid, and glibenclamide, in descending order of potency. Extracellular cAMP had no significant effect. ICl-swell was Ca2+ independent, but current activation depended on the presence of a high-energy gamma-phosphate group from intracellular ATP or ATP gamma S. Moreover, it depended on the presence of intracellular Mg2+ and was inhibited by staurosporine, which indicates that a phosphorylation step is involved in channel activation. Increasing the cytosolic Ca2+ concentration by using ionomycin stimulated Cl- currents with a voltage dependence different from that of ICl-swell. Analysis of whole-cell current records during early onset of ICl-swell and during final recovery revealed discontinuous step-like changes of the whole-cell current level which were not observed under nonswelling conditions. A single-channel I-V curve constructed using the smallest resolvable current transitions detected at various holding potentials and revealed a slope conductance of 55, 15, and 8 pS at +120, 0, and -120 mV, respectively. The larger current steps observed in these recordings had about 2, 3, or 4 times the size of the putative single-channel current amplitude, suggesting a coordinated gating of several individual channels or channel

  18. The effect of protein kinase C on voltage-gated potassium channel in pulmonary artery smooth muscle cells from rats exposed to chronic hypoxia

    Institute of Scientific and Technical Information of China (English)

    张永昶; 倪望; 张珍祥; 徐永健

    2004-01-01

    Background Chronic hypoxia can cause pulmonary hypertension and pulmonary heart disease with high mortality.The signal transduction pathway of protein kinase C (PKC) plays an important role in chronic pulmonary hypertension. So it is necessary to investigate the effect of PKC on voltage-gated potassium (K+) channels in pulmonary artery smooth muscle cells of rats exposed to chronic hypoxia.Methods Male Wistar rats were randomly divided into a control group (group A) and a chronic hypoxia group (group B). Group B received hypoxia [oxygen concentration (10±1)%] eight hours per day for four consecutive weeks. Single pulmonary artery smooth muscle cells were obtained using an acute enzyme separation method. Conventional whole cell patch clamp technique was used to record resting membrane potential, membrane capacitance and voltage-gated K+ currents. The changes in voltage-gated K+ currents before and after applying paramethoxyamphetamine (PMA) (500 nmol/L), an agonist of PKC, and PMA plus carbohydrate mixture of glucose, fructose and xylitol (GFX) (30 nmol/L), an inhibitor of PKC, were compared between the two groups. Results The resting membrane potential in group B was significantly lower than that of group A: -(29.0±4.8) mV (n=18) vs -(42.5±4.6) mV (n=35) (P0.05). The voltage-gated K+ currents were significantly inhibited by PMA in group A, and this effect was reversed by GFX. However, the voltage-gated K+ currents in group B were not affected by PMA.Conclusions The resting membrane potential and voltage-gated K+ currents in pulmonary artery smooth muscle cells from rats exposed to chronic hypoxia decreased significantly. It seems that PKC has different effects on the voltage-gated K+ currents of pulmonary artery smooth muscle cells under different conditions.

  19. TRPV Channels in Mast Cells as a Target for Low-Level-Laser Therapy

    Directory of Open Access Journals (Sweden)

    Lina Wang

    2014-06-01

    Full Text Available Low-level laser irradiation in the visible as well as infrared range is applied to skin for treatment of various diseases. Here we summarize and discuss effects of laser irradiation on mast cells that leads to degranulation of the cells. This process may contribute to initial steps in the final medical effects. We suggest that activation of TRPV channels in the mast cells forms a basis for the underlying mechanisms and that released ATP and histamine may be putative mediators for therapeutic effects.

  20. Sodium channel gating in clonal pituitary cells. The inactivation step is not voltage dependent

    OpenAIRE

    1989-01-01

    We have determined the time course of Na channel inactivation in clonal pituitary (GH3) cells by comparing records before and after the enzymatic removal of inactivation. The cells were subjected to whole- cell patch clamp, with papain included in the internal medium. Inactivation was slowly removed over the course of 10 min, making it possible to obtain control records before the enzyme acted. Papain caused a large (4-100x) increase in current magnitude for small depolarizations (near -40 mV...

  1. The influence on performance of co-flow and counter-flow PEM fuel cell channels

    International Nuclear Information System (INIS)

    Full text: A three-dimensional computational fluid dynamics model of a PEM fuel cell with serpentine flow field channels that combines co-flow and counter-flow configurations is presented in this paper. The PEM fuel cell performance is significantly influenced by the direction of fuel and oxidant flow. Therefore, the CFD model used in this paper accounts for the major transport phenomena that occur in PEM fuel cells with co-flow and counter-flow configuration. The results will highlight the convective and diffusive heat and mass transfer, the electrode kinetics, and the potential fields. (authors)

  2. Basolateral localisation of KCNQ1 potassium channels in MDCK cells: molecular identification of an N-terminal targeting motif

    DEFF Research Database (Denmark)

    Jespersen, Thomas; Rasmussen, Hanne B; Grunnet, Morten;

    2004-01-01

    KCNQ1 potassium channels are expressed in many epithelial tissues as well as in the heart. In epithelia KCNQ1 channels play an important role in salt and water transport and the channel has been reported to be located apically in some cell types and basolaterally in others. Here we show that KCNQ1...... channels are located basolaterally when expressed in polarised MDCK cells. The basolateral localisation of KCNQ1 is not affected by co-expression of any of the five KCNE beta-subunits. We characterise two independent basolateral sorting signals present in the N-terminal tail of KCNQ1. Mutation...

  3. TRPC1 protein forms only one type of native store-operated channels in HEK293 cells.

    Science.gov (United States)

    Skopin, Anton; Shalygin, Alexey; Vigont, Vladimir; Zimina, Olga; Glushankova, Lyubov; Mozhayeva, Galina N; Kaznacheyeva, Elena

    2013-02-01

    TRPC1 is a major component of store-operated calcium entry in many cell types. In our previous studies, three types of endogenous store-operated calcium channels have been described in HEK293 cells, but it remained unknown which of these channels are composed of TRPC1 proteins. Here, this issue has been addressed by performing single-channel analysis in HEK293 cells transfected with anti-TRPC1 siRNA (siTPRC1) or a TPRC1-encoding plasmid. The results show that thapsigargin-or agonist-induced calcium influx is significantly attenuated in siTRPC1-transfected HEK293 cells. TRPC1 knockdown by siRNA results in the disappearance of store-operated I(max) channels, while the properties of I(min) and I(NS) channels are unaffected. In HEK293 cells with overexpressed TRPC1 protein, the unitary current-voltage relationship of exogenous TRPC1 channels is almost linear, with a slope conductance of about 17 pS. The extrapolated reversal potential of expressed TRPC1 channels is +30 mV. Therefore, the main electrophysiological and regulatory properties of expressed TRPC1 and native I(max) channels are identical. Moreover, TRPC1 overexpression in HEK293 cells results in an increased number of store-operated I(max) channels. All these data allow us to conclude that TRPC1 protein forms native store-operated I(max) channels but is not an essential subunit for other store-operated channel types in HEK293 cells.

  4. Modeling and simulation of ion channels and action potentials in taste receptor cells

    Institute of Scientific and Technical Information of China (English)

    CHEN PeiHua; LIU Xiaodong; ZHANG Wei; ZHOU Jun; WANG Ping; YANG Wei; LUO JianHong

    2009-01-01

    Based on patch clamp data on the ionic currents of rat taste receptor cells,a mathematical model of mammalian taste receptor cells was constructed to simulate the action potentials of taste receptor cells and their corresponding ionic components,including voltage-gated Na~+ currents and outward delayed rectifier K~+ currents.Our simulations reproduced the action potentials of taste receptor cells in response to electrical stimuli or sour tastants.The kinetics of ion channels and their roles in action potentials of taste receptor cells were also analyzed.Our prototype model of single taste receptor cell and simulation results presented in this paper provide the basis for the further study of taste information processing in the gustatory system.

  5. Modeling and simulation of ion channels and action potentials in taste receptor cells

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Based on patch clamp data on the ionic currents of rat taste receptor cells, a mathematical model of mammalian taste receptor cells was constructed to simulate the action potentials of taste receptor cells and their corresponding ionic components, including voltage-gated Na+ currents and outward delayed rectifier K+ currents. Our simulations reproduced the action potentials of taste receptor cells in response to electrical stimuli or sour tastants. The kinetics of ion channels and their roles in action potentials of taste receptor cells were also analyzed. Our prototype model of single taste receptor cell and simulation results presented in this paper provide the basis for the further study of taste information processing in the gustatory system.

  6. Suppression of the Eag1 potassium channel sensitizes glioblastoma cells to injury caused by temozolomide

    Science.gov (United States)

    Sales, Thais Torquato; Resende, Fernando Francisco Borges; Chaves, Natália Lemos; Titze-De-Almeida, Simoneide Souza; Báo, Sônia Nair; Brettas, Marcella Lemos; Titze-De-Almeida, Ricardo

    2016-01-01

    Glioblastoma multiforme (GBM) is the most aggressive type of human primary brain tumor. The standard treatment protocol includes radiotherapy in combination with temozolomide (TMZ). Despite advances in GBM treatment, the survival time of patients diagnosed with glioma is 14.5 months. Regarding tumor biology, various types of cancer cell overexpress the ether à go-go 1 (Eag1) potassium channel. Therefore, the present study examined the role of Eag1 in the cell damage caused by TMZ on the U87MG glioblastoma cell line. Eag1 was inhibited using a channel blocker (astemizole) or silenced by a short-hairpin RNA expression vector (pKv10.1-3). pKv10.1-3 (0.2 µg) improved the Eag1 silencing caused by 250 µM TMZ, as determined by reverse transcription-quantitative polymerase chain reaction and immunocytochemistry. Additionally, inhibiting Eag1 with the vector or astemizole (5 µM) reduced glioblastoma cell viability and sensitized cells to TMZ. Cell viability decreased by 63% for pKv10.1-3 + TMZ compared with 34% for TMZ alone, and by 77% for astemizole + TMZ compared with 46% for TMZ alone, as determined by MTT assay. In addition, both the vector and astemizole increased the apoptosis rate of glioblastoma cells triggered by TMZ, as determined by an Annexin V apoptosis assay. Collectively, the current data reveal that Eag1 has a role in the damage caused to glioblastoma by TMZ. Furthermore, suppression of this channel can improve the action of TMZ on U87MG glioblastoma cells. Thus, silencing Eag1 is a promising strategy to improve GBM treatment and merits additional studies in animal models of glioma.

  7. Diversity of ion channels in human bone marrow mesenchymal stem cells from amyotrophic lateral sclerosis patients.

    Science.gov (United States)

    Park, Kyoung Sun; Choi, Mi Ran; Jung, Kyoung Hwa; Kim, Seunghyun; Kim, Hyun Young; Kim, Kyung Suk; Cha, Eun-Jong; Kim, Yangmi; Chai, Young Gyu

    2008-12-01

    Human bone marrow mesenchymal stem cells (hBM-MSCs) represent a potentially valuable cell type for clinical therapeutic applications. The present study was designed to evaluate the effect of long-term culturing (up to 10(th) passages) of hBM-MSCs from eight individual amyotrophic lateral sclerosis (ALS) patients, focusing on functional ion channels. All hBM-MSCs contain several MSCs markers with no significant differences, whereas the distribution of functional ion channels was shown to be different between cells. Four types of K(+) currents, including noise-like Ca(+2)-activated K(+) current (IK(Ca)), a transient outward K(+) current (I(to)), a delayed rectifier K(+) current (IK(DR)), and an inward-rectifier K(+) current (K(ir)) were heterogeneously present in these cells, and a TTX-sensitive Na(+) current (I(Na,TTX)) was also recorded. In the RT-PCR analysis, Kv1.1, heag1, Kv4.2, Kir2.1, MaxiK, and hNE-Na were detected. In particular, I(Na,TTX) showed a significant passage-dependent increase. This is the first report showing that functional ion channel profiling depend on the cellular passage of hBM-MSCs. PMID:19967076

  8. Improved conversion rates in drug screening applications using miniaturized electrochemical cells with frit channels.

    Science.gov (United States)

    Odijk, Mathieu; Olthuis, Wouter; van den Berg, A; Qiao, Liang; Girault, Hubert

    2012-11-01

    This paper reports a novel design of a miniaturized three-electrode electrochemical cell, the purpose of which is aimed at generating drug metabolites with a high conversion efficiency. The working electrode and the counter electrode are placed in two separate channels to isolate the reaction products generated at both electrodes. The novel design includes connecting channels between these two electrode channels to provide a uniform distribution of the current density over the entire working electrode. In addition, the effect of ohmic drop is decreased. Moreover, two flow resistors are included to ensure an equal flow of analyte through both electrode channels. Total conversion of fast reacting ions is achieved at flow rates up to at least 8 μL/min, while the internal chip volume is only 175 nL. Using this electrochemical chip, the metabolism of mitoxantrone is studied by microchip electrospray ionization-mass spectrometry. At an oxidation potential of 700 mV, all known metabolites from direct oxidation are observed. The electrochemical chip performs equally well, compared to a commercially available cell, but at a 30-fold lower flow of reagents. PMID:23020795

  9. Chloride channel protein 2 prevents glutamate-induced apoptosis in retinal ganglion cells

    Science.gov (United States)

    Bi, Miao-Miao; Hong, Sen; Ma, Ling-Jun; Zhou, Hong-Yan; Lu, Jia; Zhao, Jing; Zheng, Ya-Juan

    2016-01-01

    Objective(s): The purpose of this study was to investigate the role of chloride channel protein 2 (ClC-2) in glutamate-induced apoptosis in the retinal ganglion cell line (RGC-5). Materials and Methods: RGC-5 cells were treated with 1 mM glutamate for 24 hr. The expression of ClC-2, Bax, and Bcl-2 was detected by western blot analysis. Cell survival and apoptosis were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry assays, respectively. Caspase-3 and -9 activities were determined by a colorimetric assay. The roles of ClC-2 in glutamate-induced apoptosis were examined by using ClC-2 complementary deoxyribonucleic acid (cDNA) and small inference ribonucleic acid (RNA) transfection technology. Results: Overexpression of ClC-2 in RGC-5 cells significantly decreased glutamate-induced apoptosis and increased cell viability, whereas silencing of ClC-2 with short hairpin (sh) RNA produced opposite effects. ClC-2 overexpression increased the expression of Bcl-2, decreased the expression of Bax, and decreased caspase-3 and -9 activation in RGC-5 cells treated with glutamate, but silencing of ClC-2 produced opposite effects. Conclusion: Our data suggest that ClC-2 chloride channels might play a protective role in glutamate-induced apoptosis in retinal ganglion cells via the mitochondria-dependent apoptosis pathway. PMID:27635193

  10. Highly active microbial phosphoantigen induces rapid yet sustained MEK/Erk- and PI-3K/Akt-mediated signal transduction in anti-tumor human gammadelta T-cells.

    Directory of Open Access Journals (Sweden)

    Daniel V Correia

    Full Text Available BACKGROUND: The unique responsiveness of Vgamma9Vdelta2 T-cells, the major gammadelta subset of human peripheral blood, to non-peptidic prenyl pyrophosphate antigens constitutes the basis of current gammadelta T-cell-based cancer immunotherapy strategies. However, the molecular mechanisms responsible for phosphoantigen-mediated activation of human gammadelta T-cells remain unclear. In particular, previous reports have described a very slow kinetics of activation of T-cell receptor (TCR-associated signal transduction pathways by isopentenyl pyrophosphate and bromohydrin pyrophosphate, seemingly incompatible with direct binding of these antigens to the Vgamma9Vdelta2 TCR. Here we have studied the most potent natural phosphoantigen yet identified, (E-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP, produced by Eubacteria and Protozoa, and examined its gammadelta T-cell activation and anti-tumor properties. METHODOLOGY/PRINCIPAL FINDINGS: We have performed a comparative study between HMB-PP and the anti-CD3epsilon monoclonal antibody OKT3, used as a reference inducer of bona fide TCR signaling, and followed multiple cellular and molecular gammadelta T-cell activation events. We show that HMB-PP activates MEK/Erk and PI-3K/Akt pathways as rapidly as OKT3, and induces an almost identical transcriptional profile in Vgamma9(+ T-cells. Moreover, MEK/Erk and PI-3K/Akt activities are indispensable for the cellular effects of HMB-PP, including gammadelta T-cell activation, proliferation and anti-tumor cytotoxicity, which are also abolished upon antibody blockade of the Vgamma9(+ TCR Surprisingly, HMB-PP treatment does not induce down-modulation of surface TCR levels, and thereby sustains gammadelta T-cell activation upon re-stimulation. This ultimately translates in potent human gammadelta T-cell anti-tumor function both in vitro and in vivo upon transplantation of human leukemia cells into lymphopenic mice, CONCLUSIONS/SIGNIFICANCE: The development of

  11. K+ Channels and Their Effects on Membrane Potential in Rat Bronchial Smooth Muscle Cells

    Institute of Scientific and Technical Information of China (English)

    刘先胜; 徐永健; 张珍祥; 倪望

    2003-01-01

    Summary: In order to investigate the K+ channels and their effects on resting membrane potential(Em) and excitability in rat bronchial smooth muscle cells (BSMCs), the components of outward K+channel currents and the effects of K+ channels on Em and tension in rat bronchial smooth musclewere observed by using standard whole-cell recording of patch clamp and isometric tension recordingtechniques. The results showed that under resting conditions, total outward K+ channel currents infreshly isolated BSMCs were unaffected by ATP-sensitive K+ channel blocker. There were two typesof K+ currents: voltage-dependent delayed rectifier K+ channel (Ky) and large conductance calcium-activated K+ channel (BKca) currents. 1 mmol/L 4-aminopyridine (4-AP, an inhibitor of Ky)caused a significant depolarization (from - 8.7 ± 5.9 mV to - 25. 4± 3.1 mV, n = 18, P<0. 001 ).In contrast, 1 mmol/L tetraethylammonium (TEA, an inhibitor of BKca) had no significant effect onEm (from -37. 6±4.8 mV to -36. 8±4.1 mV, n=12, P>0. 05). 4-AP caused a concentration-dependent contraction in resting bronchial strips. TEA had no effect on resting tension, but applica-tion of 5 mmol/L TEA resulted in a left shift with bigger pD2(the negative logarithm of the drug con-centration causing 50 % of maximal effect) (from 6. 27±0. 38 to 6.89±0. 54, n=10, P<0. 05) inthe concentration-effect curve of endothine-1, and a right shift with smaller pD2 (from 8. 10± 0. 23 to7. 69±0. 08, n= 10, P<0. 05) in the concentration-effect curve of isoprenaline. It was suggestedthat in rat BSMCs there may be two types of K+ channels, Kv and BKca, which serve distinct roles.Kv participates in the control of resting Em and tension. BKca is involved in the regulation of relax-ation or contraction associated with excitation.

  12. Activation of K(+) channel by 1-EBIO rescues the head and neck squamous cell carcinoma cells from Ca(2+) ionophore-induced cell death.

    Science.gov (United States)

    Yin, Ming Zhe; Park, Seok-Woo; Kang, Tae Wook; Kim, Kyung Soo; Yoo, Hae Young; Lee, Junho; Hah, J Hun; Sung, Myung Hun; Kim, Sung Joon

    2016-01-01

    Ion channels in carcinoma and their roles in cell proliferation are drawing attention. Intracellular Ca(2+) ([Ca(2+)]i)-dependent signaling affects the fate of cancer cells. Here we investigate the role of Ca(2+)-activated K(+) channel (SK4) in head and neck squamous cell carcinoma cells (HNSCCs) of different cell lines; SNU-1076, OSC-19 and HN5. Treatment with 1 µM ionomycin induced cell death in all the three cell lines. Whole-cell patch clamp study suggested common expressions of Ca(2+)-activated Cl(-) channels (Ano-1) and Ca(2+)-activated nonselective cation channels (CAN). 1-EBIO, an activator of SK4, induced outward K(+) current (ISK4) in SNU-1076 and OSC-19. In HN5, ISK4 was not observed or negligible. The 1-EBIO-induced current was abolished by TRAM-34, a selective SK4 blocker. Interestingly, the ionomycin-induced cell death was effectively prevented by 1-EBIO in SNU-1076 and OSC-19, and the rescue effect was annihilated by combined TRAM-34. Consistent with the lower level of ISK4, the rescue by 1-EBIO was least effective in HN5. The results newly demonstrate the role of SK4 in the fate of HNSCCs under the Ca(2+) overloaded condition. Pharmacological modulation of SK4 might provide an intriguing novel tool for the anti-cancer strategy in HNSCC. PMID:26807020

  13. The Role of Cgrp-Receptor Component Protein (Rcp in Cgrp-Mediated Signal Transduction

    Directory of Open Access Journals (Sweden)

    M. A. Prado

    2001-01-01

    Full Text Available The calcitonin gene-related peptide (CGRP-receptor component protein (RCP is a 17-kDa intracellular peripheral membrane protein required for signal transduction at CGRP receptors. To determine the role of RCP in CGRP-mediated signal transduction, RCP was depleted from NIH3T3 cells using antisense strategy. Loss of RCP protein correlated with loss of cAMP production by CGRP in the antisense cells. In contrast, loss of RCP had no effect on CGRP-mediated binding; therefore RCP is not acting as a chaperone for the CGRP receptor. Instead, RCP is a novel signal transduction molecule that couples the CGRP receptor to the cellular signal transduction machinery. RCP thus represents a prototype for a new class of signal transduction proteins that are required for regulation of G protein-coupled receptors.

  14. Functional ion channels in pulmonary alveolar type I cells support a role for type I cells in lung ion transport

    OpenAIRE

    Johnson, Meshell D.; Bao, Hui-Fang; Helms, My N.; Chen, Xi-Juan; Tigue, Zac; Jain, Lucky; Dobbs, Leland G.; Eaton, Douglas C.

    2006-01-01

    Efficient gas exchange in the lungs depends on regulation of the amount of fluid in the thin (average 0.2 μm) liquid layer lining the alveolar epithelium. Fluid fluxes are regulated by ion transport across the alveolar epithelium, which is composed of alveolar type I (TI) and type II (TII) cells. The accepted paradigm has been that TII cells, which cover 95% of the surface area, provide a route for water absorption. Here we present data that TI cells contain functional epithelial Na+ channels...

  15. Resveratrol inhibits phosphorylation within the signal transduction and activator of transcription 3 signaling pathway by activating sirtuin 1 in SW1353 chondrosarcoma cells.

    Science.gov (United States)

    Jin, Haidong; Chen, Hui; Yu, Kehe; Zhang, Jingdong; Li, Bin; Cai, Ningyu; Pan, Jun

    2016-09-01

    The present study assessed the mechanism by which resveratrol (Res) inhibits the growth of SW1353 chondrosarcoma cells and examined whether sirtuin 1 (Sirt1) activation affects phosphorylation within the signal transduction and activator of transcription 3 (STAT3) signaling pathway. The present study used SW1353 chondrosarcoma cells in the logarithmic phase of growth (control and treatment groups). The latter group was treated with Res at 25 and 50 µmol/l for 24 h, and cell viability, proliferation and apoptosis were analyzed using the cell counting kit‑8 assay, colony counting and Hoechst staining, respectively. The expression levels of caspase‑3, cleaved caspase‑3, B‑cell lymphoma‑2 (BCL‑2), BCL-2 associated X protein (Bax), STAT3 and phosphorylated (p‑)STAT3) were measured by Western blotting. SW1353 cells were transfected with small interfering (si)RNA targeting Sirt1 and the expression levels of Sirt1, STAT3 and p-STAT3 were assessed. Exposure of SW1353 cells to Res reduced cell viability in a dose‑dependent manner (P<0.01). Additionally, cell proliferation was significantly inhibited and the cell nuclei exhibited apoptotic characteristics. Cleaved caspase‑3, Sirt1 and Bax levels were upregulated. The expression levels of BCL‑2 and p‑STAT3 were downregulated. Additionally, the BCL‑2/Bax ratio was reduced compared with the control group. The total STAT3 level was unaffected. Res treatment activated Sirt1, however, in cells transfected with Sirt1‑siRNA, the ability of resveratrol to suppress p‑STAT3 expression was compromised. Overall, it was revealed that Res treatment induced apoptosis, inhibited proliferation and affected phosphorylation within the STAT3 signaling pathway by activating Sirt1 in SW1353 chondrosarcoma cells.

  16. Store-operated Ca2+ channels in airway epithelial cell function and implications for asthma.

    Science.gov (United States)

    Samanta, Krishna; Parekh, Anant B

    2016-08-01

    The epithelial cells of the lung are at the interface of a host and its environment and are therefore directly exposed to the inhaled air-borne particles. Rather than serving as a simple physical barrier, airway epithelia detect allergens and other irritants and then help organize the subsequent immune response through release of a plethora of secreted signals. Many of these signals are generated in response to opening of store-operated Ca(2+) channels in the plasma membrane. In this review, we describe the properties of airway store-operated channels and their role in regulating airway epithelial cell function.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'. PMID:27377718

  17. Effects of adenoviral-mediated gene transduction of NK4 on proliferation, movement, and invasion of human colonic LS174T cancer cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Jian-Zheng Jie; Jian-Wei Wang; Jian-Guo Qu; Wei Wang; Tao Hung

    2006-01-01

    AIM: To investigate the inhibitory effects of a recombinant adenovirus vector that expresses NK4,a truncated form of human hepatocyte growth factor (HGF), on human colonic adenocarcinoma cells in vitro to establish a basis for future NK4 gene cancer therapy.METHODS: Cells from the LS174T human colonic adenocarcinoma cell line were infected with recombinant adenovirus rvAdCMV/NK4 and the effects of the manipulation on tumor cell proliferation, scatter,migration, and basement membrane invasion were assessed. Cells infected with a recombinant adenovirus vector (Ad-LacZ) expressing β-galactosidase served as the controls.RESULTS: We found that rvAdCMV/NK4 expression attenuated HGF-induced tumor cell scatter, migration,and basement membrane invasion (P < 0.05), but did not inhibit tumor cell proliferation.CONCLUSION: HGF-induced LS174T tumor cell scatter,migration, and invasion can be antagonized by the recombinant NK4-expressing adenovirus.

  18. STIM1 and STIM2 proteins differently regulate endogenous store-operated channels in HEK293 cells.

    Science.gov (United States)

    Shalygin, Alexey; Skopin, Anton; Kalinina, Vera; Zimina, Olga; Glushankova, Lyuba; Mozhayeva, Galina N; Kaznacheyeva, Elena

    2015-02-20

    The endoplasmic reticulum calcium sensors stromal interaction molecules 1 and 2 (STIM1 and STIM2) are key modulators of store-operated calcium entry. Both these sensors play a major role in physiological functions in normal tissue and in pathology, but available data on native STIM2-regulated plasma membrane channels are scarce. Only a few studies have recorded STIM2-induced CRAC (calcium release-activated calcium) currents. On the other hand, many cell types display store-operated currents different from CRAC. The STIM1 protein regulates not only CRAC but also transient receptor potential canonical (TRPC) channels, but it has remained unclear whether STIM2 is capable of regulating store-operated non-CRAC channels. Here we present for the first time experimental evidence for the existence of endogenous non-CRAC STIM2-regulated channels. As shown in single-channel patch clamp experiments on HEK293 cells, selective activation of native STIM2 proteins or STIM2 overexpression results in store-operated activation of Imin channels, whereas STIM1 activation blocks this process. Changes in the ratio between active STIM2 and STIM1 proteins can switch the regulation of Imin channels between store-operated and store-independent modes. We have previously characterized electrophysiological properties of different Ca(2+) influx channels coexisting in HEK293 cells. The results of this study show that STIM1 and STIM2 differ in the ability to activate these store-operated channels; Imin channels are regulated by STIM2, TRPC3-containing INS channels are induced by STIM1, and TRPC1-composed Imax channels are activated by both STIM1 and STIM2. These new data about cross-talk between STIM1 and STIM2 and their different roles in store-operated channel activation are indicative of an additional level in the regulation of store-operated calcium entry pathways.

  19. RF to microwave interferometer for cell detection in a microfluidic channel

    OpenAIRE

    Jiménez de la Cruz, Daniel

    2015-01-01

    Estudio de un interferómetro para detectar diferente tipo de células. This thesis presents a two port connectorized RF to microwave interferometer for single cell detection and characterization in a microfluidic channel. To allow setting the operational frequency within a broad bandwidth (4-18 GHz), mechanically precision tuneable components are used. The interferometer behaviour is characterized by measuring its scattering parameters (S-parameters) with a vector network analyser (VNA). Th...

  20. Fabrication of versatile channel flow cells for quantitative electroanalysis using prototyping.

    Science.gov (United States)

    Snowden, Michael E; King, Philip H; Covington, James A; Macpherson, Julie V; Unwin, Patrick R

    2010-04-15

    Here we demonstrate the use of microstereolithography (MSL), a 3D direct manufacturing technique, as a viable method to produce small-scale microfluidic components for electrochemical flow detection. The flow cell is assembled simply by resting the microfabricated component on the electrode of interest and securing with thread! This configuration allows the use of a wide range of electrode materials. Furthermore, our approach eliminates the need for additional sealing methods, such as adhesives, waxes, and screws, which have previously been deployed. In addition, it removes any issues associated with compression of the cell chamber. MSL allows a reduction of the dimensions of the channel geometry (and the resultant component) and, compared to most previously produced devices, it offers a high degree of flexibility in the design, reduced manufacture time, and high reliability. Importantly, the polymer utilized does not distort so that the cell maintains well-defined geometrical dimensions after assembly. For the studies herein the channel dimensions were 3 mm wide, 3.5 mm long, and 192 or 250 mum high. The channel flow cell dimensions were chosen to ensure that the substrate electrodes experienced laminar flow conditions, even with volume flow rates of up to 64 mL min(-1) (the limit of our pumping system). The steady-state transport-limited current response, for the oxidation of ferrocenylmethyl trimethylammonium hexaflorophosphate (FcTMA(+)), at gold and polycrystalline boron doped diamond (pBDD) band electrodes was in agreement with the Levich equation and/or finite element simulations of mass transport. We believe that this method of creating and using channel flow electrodes offers a wide range of new applications from electroanalysis to electrocatalysis.

  1. Effect of Nitric Oxide on Potassium Channels of Rat Airway Smooth Muscle Cells

    Institute of Scientific and Technical Information of China (English)

    高亚东; 徐永健; 熊盛道; 张珍祥; 刘先胜; 倪望

    2002-01-01

    Summary: The effect of nitric oxide donor sodium nitroprusside (SNP) on resting membrane potential (Em) and potassium currents of the bronchial smooth muscle cells from rats was investigated. All experiments were conducted in conventional whole-cell configuration. The changes of Em and potassium currents after addition of 0. 1 mmol/L SNP were measured under the current-clamp mode and the voltage-clamp mode respectively. Results showed that (1) SNP could decrease the Em from --33. 8±7.4 mV to -43. 7±6. 7mV (n=10, P<0. 01); (2) SNP could increase the Ca2+-activated K+ channel peak currents under ramp protocol from 466.9±180. 1 pA to 597. 7±237. 6 pA (n= 7, P<0. 01), and the currents under pulse protocol at +50 mV were increased from 544.2±145.4 pA to 678.1±206. 2 pA (n=6, P<0.05); (3) SNP also could increase voltage-gated K+ channel peak currents under ramp protocol from 389. 6±84. 1 pA to 526. 7±98. 7 pA (n=7, P<0. 01), the currents under pulse protocol at +50 mV were increased from 275.7±85.2 pA to 444.3±128.5 pA(n=6,P<0. 01). It was concluded that SNP increases the activities of Ca2+-activated K+ channels and voltage-gated K+ channels and leads to K+ efflux and hyperpolarization of the cell membrane, resulting in a decrease of the cell excitement.

  2. A unifying mechanism for cancer cell death through ion channel activation by HAMLET.

    Science.gov (United States)

    Storm, Petter; Klausen, Thomas Kjaer; Trulsson, Maria; Ho C S, James; Dosnon, Marion; Westergren, Tomas; Chao, Yinxia; Rydström, Anna; Yang, Henry; Pedersen, Stine Falsig; Svanborg, Catharina

    2013-01-01

    Ion channels and ion fluxes control many aspects of tissue homeostasis. During oncogenic transformation, critical ion channel functions may be perturbed but conserved tumor specific ion fluxes remain to be defined. Here we used the tumoricidal protein-lipid complex HAMLET as a probe to identify ion fluxes involved in tumor cell death. We show that HAMLET activates a non-selective cation current, which reached a magnitude of 2.74±0.88 nA within 1.43±0.13 min from HAMLET application. Rapid ion fluxes were essential for HAMLET-induced carcinoma cell death as inhibitors (amiloride, BaCl2), preventing the changes in free cellular Na(+) and K(+) concentrations also prevented essential steps accompanying carcinoma cell death, including changes in morphology, uptake, global transcription, and MAP kinase activation. Through global transcriptional analysis and phosphorylation arrays, a strong ion flux dependent p38 MAPK response was detected and inhibition of p38 signaling delayed HAMLET-induced death. Healthy, differentiated cells were resistant to HAMLET challenge, which was accompanied by innate immunity rather than p38-activation. The results suggest, for the first time, a unifying mechanism for the initiation of HAMLET's broad and rapid lethal effect on tumor cells. These findings are particularly significant in view of HAMLET's documented therapeutic efficacy in human studies and animal models. The results also suggest that HAMLET offers a two-tiered therapeutic approach, killing cancer cells while stimulating an innate immune response in surrounding healthy tissues.

  3. Direct interaction of endogenous Kv channels with syntaxin enhances exocytosis by neuroendocrine cells.

    Directory of Open Access Journals (Sweden)

    Dafna Singer-Lahat

    Full Text Available K(+ efflux through voltage-gated K(+ (Kv channels can attenuate the release of neurotransmitters, neuropeptides and hormones by hyperpolarizing the membrane potential and attenuating Ca(2+ influx. Notably, direct interaction between Kv2.1 channels overexpressed in PC12 cells and syntaxin has recently been shown to facilitate dense core vesicle (DCV-mediated release. Here, we focus on endogenous Kv2.1 channels and show that disruption of their interaction with native syntaxin after ATP-dependent priming of the vesicles by Kv2.1 syntaxin-binding peptides inhibits Ca(2+ -triggered exocytosis of DCVs from cracked PC12 cells in a specific and dose-dependent manner. The inhibition cannot simply be explained by the impairment of the interaction of syntaxin with its SNARE cognates. Thus, direct association between endogenous Kv2.1 and syntaxin enhances exocytosis and in combination with the Kv2.1 inhibitory effect to hyperpolarize the membrane potential, could contribute to the known activity dependence of DCV release in neuroendocrine cells and in dendrites where Kv2.1 commonly expresses and influences release.

  4. Numerical simulations of two-phase flow in an anode gas channel of a proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    In this work, the two-phase flow in an anode gas channel of a PEM (proton exchange membrane) fuel cell is numerically investigated using the VOF (volume of fluid) method. Water movement in the gas channel is analyzed and the effects of hydrogen inlet velocity, operating temperature and channel walls wettability are investigated. Results reveal that for hydrophilic channel walls water moves as films in the upper surface of the channel (surface opposite to the GDL (gas diffusion layer)) whereas it moves as a droplet when the channel walls are hydrophobic. Moreover, increasing hydrogen inlet velocity, operating temperature and channel walls wettability results into a faster water removal. However, for the case when hydrogen velocity is increased, a considerable increment on pressure drop is also observed. Results from the present work provide important quantitative information that complements experimental data from literature. - Highlights: • Simulations of two-phase flow in a PEM fuel cell anode gas channel are conducted. • For hydrophilic channel walls, water moves slowly as films on the upper surface. • Water moves faster and as a droplet when the channel walls are hydrophobic. • Water does not accumulate in the GDL surface, which agrees with experimental data. • Faster water removal for higher hydrogen velocities and operating temperatures

  5. C. elegans TRP channels.

    Science.gov (United States)

    Xiao, Rui; Xu, X Z Shawn

    2011-01-01

    Transient receptor potential (TRP) channels represent a superfamily of cation channels found in all eukaryotes. The C. elegans genome encodes seventeen TRP channels covering all of the seven TRP subfamilies. Genetic analyses in C. elegans have implicated TRP channels in a wide spectrum of behavioral and physiological processes, ranging from sensory transduction (e.g. chemosensation, touch sensation, proprioception and osmosensation) to fertilization, drug dependence, organelle biogenesis, apoptosis, gene expression, and neurotransmitter/hormone release. Many C. elegans TRP channels share similar activation and regulatory mechanisms with their vertebrate counterparts. Studies in C. elegans have also revealed some previously unrecognized functions and regulatory mechanisms of TRP channels. C. elegans represents an excellent genetic model organism for the study of function and regulation of TRP channels in vivo. PMID:21290304

  6. Phenotype variation and newcomers in ion channel disorders.

    Science.gov (United States)

    Bulman, D E

    1997-01-01

    Ion channels are part of a large family of macromolecules whose functions include the control and maintenance of electrical potential across cell membranes, secretion and signal transduction. Close inspection of the physiological processes involved in channel function and the secondary structure of various ion channels has served as a basis for subdividing ion channels into a number of superfamilies. The voltage-gated ion channels are one of these superfamilies. Recent work has shown that mutations in various ion channel genes are responsible for a number of neuromuscular and neurological disorders. Correlation of the various mutations with the clinical phenotype is providing us with insight into the pathophysiology of these channel proteins. Interestingly, different mutations within the same gene may cause quite distinct clinical disorders, while mutations in different channel genes may result in very similar phenotypes (genetic heterogeneity). Examples of phenotypic variation and genetic heterogeneity are presented in the context of the periodic paralytic disorders of skeletal muscle, episodic ataxia, migraine, long QT syndrome and paroxysmal dyskinesia. Some of these disorders are known to be caused by mutations in ion channel genes, while in the episodic movement disorders, ion channel genes are considered excellent candidate genes.

  7. K channel activation by nucleotide diphosphates and its inhibition by glibenclamide in vascular smooth muscle cells.

    Science.gov (United States)

    Beech, D J; Zhang, H; Nakao, K; Bolton, T B

    1993-10-01

    1. Whole-cell and inside-out patch recordings were made from single smooth muscle cells that had been isolated enzymatically and mechanically from the rabbit portal vein. 2. In whole-cells the inclusion in the recording pipette solution of nucleotide diphosphates (NDPs), but not tri- or monophosphates, induced a K-current that developed gradually over 5 to 15 min. Intracellular 1 mM guanosine 5'-diphosphate (GDP) induced a slowly developing outward K-current at -37 mV that reached a maximum on average of 72 +/- 4 pA (n = 40). Half maximal effect was estimated to occur with about 0.2 mM GDP. Except for ADP, other NDPs had comparable effects. At 0.1 mM, ADP was equivalent to GDP but at higher concentration ADP was less effective. ADP induced its maximum effect at 1 mM but had almost no effect at 10 mM. 3. In 14% of inside-out patches exposed to 1 mM GDP at the intracellular surface, characteristic K channel activity was observed which showed long (> 1 s) bursts of openings separated by longer closed periods. The current-voltage relationship for the channel was linear in a 60 mM:130 mM K-gradient and the unitary conductance was 24 pS. 4. Glibenclamide applied via the extracellular solution was found to be a potent inhibitor of GDP-induced K-current (IK(GDP)) in the whole-cell. The Kd was 25 nM and the inhibition was fully reversible on wash-out. 5. IK(GDP) was not evoked if Mg ions were absent from the pipette solution. In contrast the omission of extracellular Mg ions had no effect on outward or inward IK(GDP). 6. Inclusion of 1 mM ATP in the recording pipette solution reduced IK(GDP) and also attenuated its decline during long (25 min) recordings. 7. When perforated-patch whole-cell recording was used, metabolic poisoning with cyanide and 2-deoxy-D-glucose induced a glibenclamide-sensitive K-current. This current was not observed when conventional whole-cell recording was used. Possible reasons for this difference are discussed. 8. These K channels appear similar to

  8. A Study of the Influence of Gas Channel Parameters on HT-PEM Fuel Cell Performance Using FEM Analysis

    Directory of Open Access Journals (Sweden)

    Ionescu Viorel

    2016-01-01

    Full Text Available Proton Exchange Membrane Fuel Cells (PEMFC are highly efficient power generators, achieving up to 50–60% conversion efficiency, even in sizes of a few kilowatts. Comsol Multiphysics, a commercial solver based on the Finite Element Method (FEM was used for developing a three dimensional model of a high temperature PEMFC that can deal with both anode and cathode flow field for examining the micro flow channel with electrochemical reaction. Cathode gas flow velocity influence on the cell performance was investigated at first. Polarization curves for three different channel widths (0.8, 1.6 and 2.4 mm and three different channel depths (1, 2 and 3 mm were computed at a cathode inlet flow velocity of 0.06 m/s. Oxygen molar concentration at cathode catalyst layer-GDL channel interface and local current density variation along the cell length were also studied for specific gas channel geometries.

  9. Protein tyrosine kinases p53/56lyn and p72syk in MHC class I-mediated signal transduction in B lymphoma cells

    DEFF Research Database (Denmark)

    Pedersen, Anders Elm; Bregenholt, S; Skov, S;

    1998-01-01

    Crosslinking of major histocompatibility complex class I (MHC-I) molecules on the surface of human B lymphoma cells was shown to induce protein tyrosine phosphorylation and mobilization of intracellular free calcium. Immunoprecipitations indicated that the protein tyrosine kinases p53/56lyn and p72......syk are among the tyrosine-phosphorylated proteins. The kinetics of phosphorylation of these kinases after MHC-I crosslinking differ from the kinetics observed after crosslinking of the B cell antigen receptor (BCR). Additional experiments were performed with chicken lyn- and syk-negative DT40 B cells...... and the results indicate that these two kinases have different substrate specificity and regulate intracellular free calcium differently in response to MHC-I crosslinking. In addition MHC-I crosslinking of a sIgM-negative DT40 chicken B cell variant results in less activity of tyrosine kinases and less...

  10. Host Signal Transduction and Protein Kinases Implicated in Legionella Infection

    OpenAIRE

    Hempstead, Andrew D.; Isberg, Ralph R.

    2013-01-01

    Modulation of the phosphorylation status of proteins by both kinases and phosphatases plays an important role in cellular signal transduction. Challenge of host cells by Legionella pneumophila manipulates the phosphorylation state of multiple host factors. These changes play roles in bacterial uptake, vacuole modification, cellular survival, and the immune response. In addition to modification by host cell kinases in response to the bacterium, L. pneumophila translocates bacterial kinases int...

  11. Secretory TAT-peptide-mediated protein transduction of LIF receptor α-chain distal cytoplasmic motifs into human myeloid HL-60 cells

    Directory of Open Access Journals (Sweden)

    Q. Sun

    2012-10-01

    Full Text Available The distal cytoplasmic motifs of leukemia inhibitory factor receptor α-chain (LIFRα-CT3 can independently induce intracellular myeloid differentiation in acute myeloid leukemia (AML cells by gene transfection; however, there are significant limitations in the potential clinical use of these motifs due to liposome-derived genetic modifications. To produce a potentially therapeutic LIFRα-CT3 with cell-permeable activity, we constructed a eukaryotic expression pcDNA3.0-TAT-CT3-cMyc plasmid with a signal peptide (ss inserted into the N-terminal that codes for an ss-TAT-CT3-cMyc fusion protein. The stable transfection of Chinese hamster ovary (CHO cells via this vector and subsequent selection by Geneticin resulted in cell lines that express and secrete TAT-CT3-cMyc. The spent medium of pcDNA3.0-TAT-CT3-cMyc-transfected CHO cells could be purified using a cMyc-epitope-tag agarose affinity chromatography column and could be detected via SDS-PAGE, with antibodies against cMyc-tag. The direct administration of TAT-CT3-cMyc to HL-60 cell culture media caused the enrichment of CT3-cMyc in the cytoplasm and nucleus within 30 min and led to a significant reduction of viable cells (P < 0.05 8 h after exposure. The advantages of using this mammalian expression system include the ease of generating TAT fusion proteins that are adequately transcripted and the potential for a sustained production of such proteins in vitro for future AML therapy.

  12. Secretory TAT-peptide-mediated protein transduction of LIF receptor α-chain distal cytoplasmic motifs into human myeloid HL-60 cells

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Q. [Department of Hyperbaric Medicine, No. 401 Hospital of PLA, Qingdao (China); Department of Histology and Embryology, Faculty of Basic Medical Sciences, Second Military Medical University, Shanghai (China); Xiong, J. [Department of Histology and Embryology, Faculty of Basic Medical Sciences, Second Military Medical University, Shanghai (China); Lu, J. [Office of Medical Education, Training Department, Second Military Medical University, Shanghai (China); Xu, S. [Department of Histology and Embryology, Faculty of Basic Medical Sciences, Second Military Medical University, Shanghai (China); Li, Y. [State Food and Drug Administration of China,Huangdao Branch, Qingdao (China); Zhong, X.P.; Gao, G.K. [Department of Hyperbaric Medicine, No. 401 Hospital of PLA, Qingdao (China); Liu, H.Q. [2Department of Histology and Embryology, Faculty of Basic Medical Sciences, Second Military Medical University, Shanghai (China)

    2012-06-22

    The distal cytoplasmic motifs of leukemia inhibitory factor receptor α-chain (LIFRα-CT3) can independently induce intracellular myeloid differentiation in acute myeloid leukemia (AML) cells by gene transfection; however, there are significant limitations in the potential clinical use of these motifs due to liposome-derived genetic modifications. To produce a potentially therapeutic LIFRα-CT3 with cell-permeable activity, we constructed a eukaryotic expression pcDNA3.0-TAT-CT3-cMyc plasmid with a signal peptide (ss) inserted into the N-terminal that codes for an ss-TAT-CT3-cMyc fusion protein. The stable transfection of Chinese hamster ovary (CHO) cells via this vector and subsequent selection by Geneticin resulted in cell lines that express and secrete TAT-CT3-cMyc. The spent medium of pcDNA3.0-TAT-CT3-cMyc-transfected CHO cells could be purified using a cMyc-epitope-tag agarose affinity chromatography column and could be detected via SDS-PAGE, with antibodies against cMyc-tag. The direct administration of TAT-CT3-cMyc to HL-60 cell culture media caused the enrichment of CT3-cMyc in the cytoplasm and nucleus within 30 min and led to a significant reduction of viable cells (P < 0.05) 8 h after exposure. The advantages of using this mammalian expression system include the ease of generating TAT fusion proteins that are adequately transcripted and the potential for a sustained production of such proteins in vitro for future AML therapy.

  13. IN VITRO STUDY ON THE CLONING AND TRANSDUCTION OF HUMAN O6-METHYLGUANINE-DNA-METHYLTRANSFERASE CDNA INTO HUMAN UMBILICAL CORD BLOOD CD34+ CELLS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: To explore whether human umbilical cord blood hematopoietic progenitor cells transduced with human O6-methylguanine-DNA-methyltransferase (MGMT) gene could increase resistance to 1,3-Bis(2-Chloroethyl)-1-Nitrosourea (BCNU). Methods: The cDNA encoding the MGMT was isolated by using RT-PCR method from total RNA of fresh human liver, the fragment was cloned into pGEM-T vector and further subcloned into G1Na retrovirus vector. Then the G1Na-MGMT was transduced into the packaging cell lines GP+E86 and PA317 by LipofectAMINE. By using the medium containing BCNU for cloning selection and ping-ponging supernatant infection between ecotropic producer clone and amphotropic producer clone, high titer amphotropic PA317 producer clone with the highest titer up to 5.8′ 105 CFU/ml was obtained. Cord blood CD34+ cells were transfected repeatedly with supernatant of retrovirus containing human MGMT-cDNA under stimulation of hemopoietic growth factors. Results: The retrovirus vector construction was verified by restriction endonuclease analysis and DNA sequencing. PCR, RT-PCR, Southern Blot, Western Blot and MTT analyses showed that MGMT drug resistance gene has been integrated into the genomic DNA of cord blood CD34+ cells and expressed efficiently. The transgene cord blood CD34+ cells conferred 4-folds stronger resistance to BCNU than untransduced cells. Conclusion: The retrovirus vector-mediated transfer of MGMT drug resistance gene into human cord blood CD34+ cells and its expression provided an experimental foundation for gene therapy in clinical trial.

  14. Modeling and simulation of PEM fuel cell's flow channels using CFD techniques

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Edgar F.; Andrade, Alexandre B.; Robalinho, Eric; Bejarano, Martha L.M.; Linardi, Marcelo [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mails: efcunha@ipen.br; abodart@ipen.br; eric@ipen.br; mmora@ipen.br; mlinardi@ipen.br; Cekinski, Efraim [Instituto de Pesquisas Tecnologicas (IPT-SP), Sao Paulo, SP (Brazil)]. E-mail: cekinski@ipt.br

    2007-07-01

    Fuel cells are one of the most important devices to obtain electrical energy from hydrogen. The Proton Exchange Membrane Fuel Cell (PEMFC) consists of two important parts: the Membrane Electrode Assembly (MEA), where the reactions occur, and the flow field plates. The plates have many functions in a fuel cell: distribute reactant gases (hydrogen and air or oxygen), conduct electrical current, remove heat and water from the electrodes and make the cell robust. The cost of the bipolar plates corresponds up to 45% of the total stack costs. The Computational Fluid Dynamic (CFD) is a very useful tool to simulate hydrogen and oxygen gases flow channels, to reduce the costs of bipolar plates production and to optimize mass transport. Two types of flow channels were studied. The first type was a commercial plate by ELECTROCELL and the other was entirely projected at Programa de Celula a Combustivel (IPEN/CNEN-SP) and the experimental data were compared with modelling results. Optimum values for each set of variables were obtained and the models verification was carried out in order to show the feasibility of this technique to improve fuel cell efficiency. (author)

  15. Silencing of Kv4.1 potassium channels inhibits cell proliferation of tumorigenic human mammary epithelial cells

    International Nuclear Information System (INIS)

    Potassium channel activity has been shown to facilitate cell proliferation in cancer cells. In the present study, the role of Kv4.1 channels in immortal and tumorigenic human mammary epithelial cells was investigated. Kv4.1 protein expression was positively correlated with tumorigenicity. Moreover, transfection with siRNAs targeting Kv4.1 mRNA suppressed proliferation of tumorigenic mammary epithelial cells. Experiments using mRNA isolated from human breast cancer tissues revealed that the level of Kv4.1 mRNA expression varied depending on the stage of the tumor. Kv4.1 protein expression increased during stages T2 and T3 compared to normal tissue. These results demonstrated that Kv4.1 plays a role in proliferation of tumorigenic human mammary epithelial cells. In addition, elevated Kv4.1 expression may be useful as a diagnostic marker for staging mammary tumors and selective blockers of Kv4.1 may serve to suppress tumor cell proliferation.

  16. Girdin/GIV is upregulated by cyclic tension, propagates mechanical signal transduction, and is required for the cellular proliferation and migration of MG-63 cells

    International Nuclear Information System (INIS)

    To explore how Girdin/GIV is regulated by cyclic tension and propagates downstream signals to affect cell proliferation and migration. Human osteoblast-like MG-63 cells were exposed to cyclic tension force at 4000 μstrain and 0.5 Hz for 6 h, produced by a four-point bending system. Cyclic tension force upregulated Girdin and Akt expression and phosphorylation in cultured MG-63 cells. Girdin and Akt each promoted the phosphorylation of the other under stimulated tension. In vitro MTT and transwell assays showed that Girdin and Akt are required for cell proliferation and migration during cellular quiescence. Moreover, STAT3 was determined to be essential for Girdin expression under stimulated tension force in the physiological condition, as well as for osteoblast proliferation and migration during quiescence. These findings suggest that the STAT3/Girdin/Akt pathway activates in osteoblasts in response to mechanical stimulation and may play a significant role in triggering osteoblast proliferation and migration during orthodontic treatment. - Highlights: • Tension force upregulates Girdin and Akt expression and phosphorylation. • Girdin and Akt promotes the phosphorylation of each other under tension stimulation. • Girdin and Akt are required for MG-63 cell proliferation and migration. • STAT3 is essential for Girdin expression after application of the tension forces

  17. An increase in galectin-3 causes cellular unresponsiveness to IFN-γ-induced signal transduction and growth inhibition in gastric cancer cells

    Science.gov (United States)

    Tseng, Po-Chun; Chen, Chia-Ling; Shan, Yan-Shen; Lin, Chiou-Feng

    2016-01-01

    Glycogen synthase kinase (GSK)-3β facilitates interferon (IFN)-γ signaling by inhibiting Src homology-2 domain-containing phosphatase (SHP) 2. Mutated phosphoinositide 3-kinase (PI3K) and phosphatase and tensin homolog (PTEN) cause AKT activation and GSK-3β inactivation to induce SHP2-activated cellular unresponsiveness to IFN-γ in human gastric cancer AGS cells. This study investigated the potential role of galectin-3, which acts upstream of AKT/GSK-3β/SHP2, in gastric cancer cells. Increasing or decreasing galectin-3 altered IFN-γ signaling. Following cisplatin-induced galectin-3 upregulation, surviving cells showed cellular unresponsiveness to IFN-γ. Galectin-3 induced IFN-γ resistance independent of its extracellular β-galactoside-binding activity. Galectin-3 expression was not regulated by PI3K activation or by a decrease in PTEN. Increased galectin-3 may cause GSK-3β inactivation and SHP2 activation by promoting PDK1-induced AKT phosphorylation at a threonine residue. Overexpression of AKT, inactive GSK-3βR96A, SHP2, or active SHP2D61A caused cellular unresponsiveness to IFN-γ in IFN-γ-sensitive MKN45 cells. IFN-γ-induced growth inhibition and apoptosis in AGS cells were observed until galectin-3 expression was downregulated. These results demonstrate that an increase in galectin-3 facilitates AKT/GSK-3β/SHP2 signaling, causing cellular unresponsiveness to IFN-γ. PMID:26934444

  18. Girdin/GIV is upregulated by cyclic tension, propagates mechanical signal transduction, and is required for the cellular proliferation and migration of MG-63 cells

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jiang-Tian; Li, Yan; Yu, Bing; Gao, Guo-Jie; Zhou, Ting; Li, Song, E-mail: song_li59@126.com

    2015-08-21

    To explore how Girdin/GIV is regulated by cyclic tension and propagates downstream signals to affect cell proliferation and migration. Human osteoblast-like MG-63 cells were exposed to cyclic tension force at 4000 μstrain and 0.5 Hz for 6 h, produced by a four-point bending system. Cyclic tension force upregulated Girdin and Akt expression and phosphorylation in cultured MG-63 cells. Girdin and Akt each promoted the phosphorylation of the other under stimulated tension. In vitro MTT and transwell assays showed that Girdin and Akt are required for cell proliferation and migration during cellular quiescence. Moreover, STAT3 was determined to be essential for Girdin expression under stimulated tension force in the physiological condition, as well as for osteoblast proliferation and migration during quiescence. These findings suggest that the STAT3/Girdin/Akt pathway activates in osteoblasts in response to mechanical stimulation and may play a significant role in triggering osteoblast proliferation and migration during orthodontic treatment. - Highlights: • Tension force upregulates Girdin and Akt expression and phosphorylation. • Girdin and Akt promotes the phosphorylation of each other under tension stimulation. • Girdin and Akt are required for MG-63 cell proliferation and migration. • STAT3 is essential for Girdin expression after application of the tension forces.

  19. Mechanosensitive Channels: In Touch with Piezo

    OpenAIRE

    Xiao, Rui; Xu, X. Z. Shawn

    2010-01-01

    Mechanosensory transduction underlies touch, hearing and proprioception and requires mechanosensitive channels that are directly gated by forces; however, the molecular identities of these channels remain largely elusive. A new study has identified Piezo1 and Piezo2 as a novel class of mechanosensitive channels.

  20. Construction Of An Optimized Lentiviral Vector Containing Pdx-1 Gene For Transduction Of Stem Cells Towards Gene Therapy Diabetes Type 1

    Directory of Open Access Journals (Sweden)

    S Rahmati

    2013-02-01

    Full Text Available Abstract Background & aim: Nowadays, most of gene therapy protocols are performed by lentiviral vectors. One of the most important factors which is involved in pancreas development and transcription of insulin gene is pancreatic & duodenal homeobox 1 (PDX-1 transcription factor. The goal of this study was to optimize a lentiviral construct, containing pdx-1 gene, to transfect stem cells towards gene therapy of type-1 diabetes. Methods: In this experimental study, first, the pdx-1 gene was multiplied by PCR from pcDNA3.1-pdx-1 and cloned into pTG19-T vector. Then, pdx-1 was subcloned on upstream of IRES-EGFP gene into IRES2-EGFP vector. At the next step, the cloned parts of IRES-EGFP and pdx-1 were isolated and cloned into the lentiviral expression vector pSINTREM in upstream of TRE-CMV gene. After sequencing, final construct was transfected into HEK 293 cells and gene expression of pdx-1 was evaluated using flow cytometry analysis and reverse fluorescent microscopy. Results: Flow cytometry results and inverted fluorescent microscopy observing showed that pdx-1 and GFP genes are expressed in cells transfected with final recombinant construct. Conclusion: Regarding the design of this construct, to ensure long time expression with higher in vivo and in vitro expression efficiency for stem cells and also use of Tet on induced optimized system, it seems that the current construct can be among the best ones to transfect stem cells. Key words: Gene therapy, Diabetes, Stem cells

  1. Monitoring intracellular calcium ion dynamics in hair cell populations with Fluo-4 AM.

    Directory of Open Access Journals (Sweden)

    Kateri J Spinelli

    Full Text Available We optimized Fluo-4 AM loading of chicken cochlea to report hair-bundle Ca(2+ signals in populations of hair cells. The bundle Ca(2+ signal reported the physiological state of the bundle and cell; extruding cells had very high bundle Fluo-4 fluorescence, cells with intact bundles and tip links had intermediate fluorescence, and damaged cells with broken tip links had low fluorescence. Moreover, Fluo-4 fluorescence in the bundle correlated with Ca(2+ entry through transduction channels; mechanically activating transduction channels increased the Fluo-4 signal, while breaking tip links with Ca(2+ chelators or blocking Ca(2+ entry through transduction channels each caused bundle and cell-body Fluo-4 fluorescence to decrease. These results show that when tip links break, bundle and soma Ca(2+ decrease, which could serve to stimulate the hair cell's tip-link regeneration process. Measurement of bundle Ca(2+ with Fluo-4 AM is therefore a simple method for assessing mechanotransduction in hair cells and permits an increased understanding of the interplay of tip links, transduction channels, and Ca(2+ signaling in the hair cell.

  2. Cytoplasmic Domain of MscS Interacts with Cell Division Protein FtsZ: A Possible Non-Channel Function of the Mechanosensitive Channel in Escherichia Coli.

    Directory of Open Access Journals (Sweden)

    Piotr Koprowski

    Full Text Available Bacterial mechano-sensitive (MS channels reside in the inner membrane and are considered to act as emergency valves whose role is to lower cell turgor when bacteria enter hypo-osmotic environments. However, there is emerging evidence that members of the Mechano-sensitive channel Small (MscS family play additional roles in bacterial and plant cell physiology. MscS has a large cytoplasmic C-terminal region that changes its shape upon activation and inactivation of the channel. Our pull-down and co-sedimentation assays show that this domain interacts with FtsZ, a bacterial tubulin-like protein. We identify point mutations in the MscS C-terminal domain that reduce binding to FtsZ and show that bacteria expressing these mutants are compromised in growth on sublethal concentrations of β-lactam antibiotics. Our results suggest that interaction between MscS and FtsZ could occur upon inactivation and/or opening of the channel and could be important for the bacterial cell response against sustained stress upon stationary phase and in the presence of β-lactam antibiotics.

  3. Diphtheria toxin-induced channels in Vero cells selective for monovalent cations

    Energy Technology Data Exchange (ETDEWEB)

    Sandvig, K.; Olsnes, S.

    1988-09-05

    Ion fluxes associated with translocation of diphtheria toxin across the surface membrane of Vero cells were studied. When cells with surface-bound toxin were exposed to low pH to induce toxin entry, the cells became permeable to Na+, K+, H+, choline+, and glucosamine+. There was no increased permeability to Cl-, SO4(-2), glucose, or sucrose, whereas the uptake of /sup 45/Ca2+ was slightly increased. The influx of Ca2+, which appears to be different from that of monovalent cations, was reduced by several inhibitors of anion transport and by verapamil, Mn2+, Co2+, and Ca2+, but not by Mg2+. The toxin-induced fluxes of N+, K+, and protons were inhibited by Cd2+. Cd2+ also protected the cells against intoxication by diphtheria toxin, suggesting that the open cation-selective channel is required for toxin translocation. The involvement of the toxin receptor is discussed.

  4. P2X7 on mouse T cells: one channel, many functions

    Directory of Open Access Journals (Sweden)

    Björn eRissiek

    2015-05-01

    Full Text Available The P2X7 receptor is an adenosine triphosphate (ATP-gated cation channel that is expressed by several cells of the immune system. P2X7 is best known for its proinflammatory role in promoting inflammasome formation and release of mature IL-1β by innate immune cells. Mounting evidence indicates that P2X7 is also an important regulatory receptor of murine and human T cell functions. Murine T cells express a sensitive splice variant of P2X7 that can be activated either by non-covalent binding of ATP or, in the presence of nicotinamide adenine dinucleotide (NAD+, by its covalent ADP-ribosylation catalyzed by the ecto-ADP-ribosyltransferase ARTC2.2. Prolonged activation of P2X7 by either one of these pathways triggers the induction of T cell death. Conversely, lower concentrations of ATP can activate P2X7 to enhance T cell proliferation and production of IL-2. In this review we will highlight the molecular and cellular consequences of P2X7 activation on mouse T cells and its versatile role in T cell homeostasis and activation. Further, we will discuss important differences in the function of P2X7 on human and murine T cells.

  5. Two pore channel 2 differentially modulates neural differentiation of mouse embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Zhe-Hao Zhang

    Full Text Available Nicotinic acid adenine dinucleotide phosphate (NAADP is an endogenous Ca(2+ mobilizing nucleotide presented in various species. NAADP mobilizes Ca(2+ from acidic organelles through two pore channel 2 (TPC2 in many cell types and it has been previously shown that NAADP can potently induce neuronal differentiation in PC12 cells. Here we examined the role of TPC2 signaling in the neural differentiation of mouse embryonic stem (ES cells. We found that the expression of TPC2 was markedly decreased during the initial ES cell entry into neural progenitors, and the levels of TPC2 gradually rebounded during the late stages of neurogenesis. Correspondingly, TPC2 knockdown accelerated mouse ES cell differentiation into neural progenitors but inhibited these neural progenitors from committing to neurons. Overexpression of TPC2, on the other hand, inhibited mouse ES cell from entering the early neural lineage. Interestingly, TPC2 knockdown had no effect on the differentiation of astrocytes and oligodendrocytes of mouse ES cells. Taken together, our data indicate that TPC2 signaling plays a temporal and differential role in modulating the neural lineage entry of mouse ES cells, in that TPC2 signaling inhibits ES cell entry to early neural progenitors, but is required for late neuronal differentiation.

  6. Biodegradable microsphere-mediated cell perforation in microfluidic channel using femtosecond laser

    Science.gov (United States)

    Ishii, Atsuhiro; Ariyasu, Kazumasa; Mitsuhashi, Tatsuki; Heinemann, Dag; Heisterkamp, Alexander; Terakawa, Mitsuhiro

    2016-05-01

    The use of small particles has expanded the capability of ultrashort pulsed laser optoinjection technology toward simultaneous treatment of multiple cells. The microfluidic platform is one of the attractive systems that has obtained synergy with laser-based technology for cell manipulation, including optoinjection. We have demonstrated the delivery of molecules into suspended-flowing cells in a microfluidic channel by using biodegradable polymer microspheres and a near-infrared femtosecond laser pulse. The use of polylactic-co-glycolic acid microspheres realized not only a higher optoinjection ratio compared to that with polylactic acid microspheres but also avoids optical damage to the microfluidic chip, which is attributable to its higher optical intensity enhancement at the localized spot under a microsphere. Interestingly, optoinjection ratios to nucleus showed a difference for adhered cells and suspended cells. The use of biodegradable polymer microspheres provides high throughput optoinjection; i.e., multiple cells can be treated in a short time, which is promising for various applications in cell analysis, drug delivery, and ex vivo gene transfection to bone marrow cells and stem cells without concerns about residual microspheres.

  7. Granulosa cells from bovine follicles activate different signal transduction pathways dependent on follicle health status and ability to convert androstenedione to estrogen

    Science.gov (United States)

    Since steroidogenesis is a critical component in the development of competent preovulatory follicles we hypothesized that granulosa cells from follicles of cows treated with normal levels of progesterone (CIDR) or with melengestrol acetate (MGA), which results in the development of persistent follic...

  8. Lentiviral vector-mediated transduction of goat undifferentiated spermatogonia.

    Science.gov (United States)

    Abbasi, Hassan; Hosseini, Sayyed Morteza; Hajian, Mahdi; Nasiri, Zahra; Bahadorani, Mehrnoosh; Tahmoorespur, Mojtaba; Nasiri, Mohammad Reza; Nasr-Esfahani, Mohammad Hossein

    2015-12-01

    Recent studies show that spermatogonial stem cells (SSCs) are able to colonize and form mature spermatozoa following transplantation into germ cell depleted testes of recipient males. Therefore, efficient ways for enrichment and gene transfer into SSCs provides a powerful tool for production of transgenic animals. In order to adapt the technique to goats, three issues were addressed: (i) enrichment of the undifferentiated spermatogonia including SSCs using magnetic activated cell sorting (MACS), (ii) lentiviral vector-mediated transduction of an enhanced green fluorescent protein (EGFP) transgene into enriched cells, and (iii) transplantation of transduced undifferentiated spermatogonia into the germ cell depleted testes of immune-suppressed mice to assess for migration and colony formation ability. Enriched cells were transduced by lentiviral vectors and subsequently analyzed for expression of THY1, PLZF, VASA, UCHL1 and BCL6B genes. Cells were also analyzed for GFP and PLZF by flow cytometry. Enriched transduced cells were transplanted into germ cell depleted mice testis. Quantitative analysis of transcripts revealed that MACS-enrichment significantly increased the expression of SSC-characteristic genes THY1, PLZF, VASA, UCHL1 and BCL6B compared to non-enriched population (P≤0.05). EGFP transduction did not affect the expression levels of SSC-characteristic genes. Flow cytometry revealed that 72% of transduced-enriched cells were positive for EGFP. Finally, transduced-enriched goat SSCs could colonize within the cells into the seminiferous tubules of germ cell depleted recipient mice at higher frequency than non-enriched cells. The results indicated that enrichment of goat undifferentiated spermatogonia by magnetic-activated cell sorting for THY1 antibody combined with lentiviral vector-mediated transduction has the potential to be used for production of transgenic goats. PMID:26481046

  9. Tx1, from Phoneutria nigriventer spider venom, interacts with dihydropyridine sensitive-calcium channels in GH3 cells

    International Nuclear Information System (INIS)

    The aim of this work was to use the binding assay of tritiated-dihydropyridine and radioiodinated Tx1, isolated from the Phoneutria nigriventer venom, in order to show the presence of Cav1 calcium channels on pituitary tumour cell (GH3). We showed that GH3 cells have specific sites for 125I-Tx1, which are sensitive to nifedipine (∼20%). Reverse competition assay with 3H-PN200-110 (40% inhibition) and electrophysiological data (50% inhibition) suggest that Cav1 calcium channels are target sites for this toxin. To summarize, Tx1 binds to specific sites on GH3 cells and this interaction results in Cav1 calcium channel blockade. 3H-PN200-110 and 125I-Tx1 binding assays proved to be useful tools to show the presence of calcium channels on GH3 cells. (author)

  10. Real-time visualization of oxygen partial pressures in straight channels of running polymer electrolyte fuel cell with water plugging

    Science.gov (United States)

    Nagase, Katsuya; Suga, Takeo; Nagumo, Yuzo; Uchida, Makoto; Inukai, Junji; Nishide, Hiroyuki; Watanabe, Masahiro

    2015-01-01

    Visualization inside polymer electrolyte fuel cells (PEFCs) for elucidating the reaction distributions is expected to improve the performance, durability, and stability. An oxygen-sensitive film of a luminescent porphyrin was used to visualize the oxygen partial pressures in five straight gas-flow channels of a running PEFC with liquid-water blockages formed at the end of the channels. The blockage greatly lowered and unstabilized the cell voltage. The oxygen partial pressure decreased nearly to 0 kPa in the blocked channel. With a water blockage in a channel, the oxygen partial pressures in the adjacent channels were lowered due to an extra demand of oxygen consumption. When the number of the blocked channels increased, the oxygen partial pressure in the unblocked channels became much lowered. When the water blockages disappeared, the oxygen partial pressures quickly returned to the values before plugging. The influence of the cross flows of air through the gas diffusion layers in straight channels was much smaller than that in serpentine flow channels.

  11. Investigation of transport phenomena in a 7-serpentine channel PEM fuel cell

    International Nuclear Information System (INIS)

    Full text: In the past decade, numerical modeling and investigation of PEM fuel cells has received great attention. Many two- and three-dimensional models have been developed in which the computational fluid dynamics -CFD method - has been rigorously coupled with electrochemical phenomena in order to identify, understand, predict, control and optimize various transport and electro-chemical processes that occur at different length scales in the fuel cells. Tremendous progress, both engineering and scientific, made until now has helped to improve the electrochemical performance of PEM fuel cells. Nevertheless, there is an increasing consensus on the need to further improve the performance of PEM fuel cell through design optimization of fuel cell components. Mathematical modeling of PEM fuel cells, based on an accurate description of the mechanisms of various processes occurring within a fuel cell, is an indispensable tool for exploring various architectures for fuel cells and their components. Channel geometry (path length, size, shape) has a tremendous impact on PEMFC performance. Distributions of the reactant species concentration in a PEM fuel cell due to fuel consumption and local transport of water through the membrane can cause changes in current density, temperature and water concentration. Water distribution can lead to flooding or drying of the membrane that may shorten the PEMFC components life. Finding a flow field pattern that distribute the gas more evenly is one method in minimizing these problems and optimising the PEM fuel cell performance. The paper describes our approach in modeling the transport of relevant quantities (mass, chemical species, and charged species) in all components of a fuel cell. The PEM fuel cell simulated in this work consists of two flow-field patterns separated by gas diffusion layers (GDL) and a membrane electrode assembly (MEA). Serpentine flow fields are common, yet the underlying reason for their success has yet to be

  12. A laser microsurgical method of cell wall removal allows detection of large-conductance ion channels in the guard cell plasma membrane

    Science.gov (United States)

    Miedema, H.; Henriksen, G. H.; Assmann, S. M.; Evans, M. L. (Principal Investigator)

    1999-01-01

    Application of patch clamp techniques to higher-plant cells has been subject to the limitation that the requisite contact of the patch electrode with the cell membrane necessitates prior enzymatic removal of the plant cell wall. Because the wall is an integral component of plant cells, and because cell-wall-degrading enzymes can disrupt membrane properties, such enzymatic treatments may alter ion channel behavior. We compared ion channel activity in enzymatically isolated protoplasts of Vicia faba guard cells with that found in membranes exposed by a laser microsurgical technique in which only a tiny portion of the cell wall is removed while the rest of the cell remains intact within its tissue environment. "Laser-assisted" patch clamping reveals a new category of high-conductance (130 to 361 pS) ion channels not previously reported in patch clamp studies on plant plasma membranes. These data indicate that ion channels are present in plant membranes that are not detected by conventional patch clamp techniques involving the production of individual plant protoplasts isolated from their tissue environment by enzymatic digestion of the cell wall. Given the large conductances of the channels revealed by laser-assisted patch clamping, we hypothesize that these channels play a significant role in the regulation of ion content and electrical signalling in guard cells.

  13. FASEB summer research conference on signal transduction in plants. Final report, June 16, 1996--June 21, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Lomax, T.L.; Quatrano, R.S.

    1996-12-31

    This is the program from the second FASEB conference on Signal Transduction in Plants. Topic areas included the following: environmental signaling; perception and transduction of light signals; signaling in plant microbe interactions; signaling in plant pathogen interactions; cell, cell communication; cytoskeleton, plasma membrane, and cellwall continuum; signaling molecules in plant growth and development I and II. A list of participants is included.

  14. Cystic fibrosis transmembrane conductance regulator and the outwardly rectifying chloride channel: a relationship between two chloride channels expressed in epithelial cells.

    Science.gov (United States)

    Hryciw, D H; Guggino, W B

    2000-11-01

    1. Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) result in the primary defect observed in patients with cystic fibrosis. 2. The CFTR is a member of the ATPase-binding cassette (ABC) transporter family but, unlike other members of this group, CFTR conducts a chloride current that is activated by cAMP. 3. In epithelial cells, the cAMP-stimulated chloride current is conducted by both CFTR and the outwardly rectifying chloride channel (ORCC). 4. The present review summarizes the current knowledge of the properties of the two channels, as well as their relationship. Because the gene encoding the ORCC has not been identified, a discussion as to possible candidates for this chloride channel is included. PMID:11071305

  15. Development in research on triggering receptor expressed on myeloid cells-1 signal transduction%髓样细胞表达的触发受体-1与炎症信号转导的研究进展

    Institute of Scientific and Technical Information of China (English)

    苏龙翔; 解立新

    2012-01-01

    The triggering receptor expressed on myeloid cells-1 (TREM-1) is a recently identified molecule involved in the cascade amplification of inflammatory response.Several microbial components can up-regulate the surface expression of TREM-1 and synergizes with the ligand of TREM-1 in activating this receptor.Activation via TREM-1 induces production of pro-inflammatory cytokices and related inflammatory responses because TREM-1 can noticeably amplify the inflammatory response in endotoxemia arisen from lipopolysaccharide (LPS).There are lots of investigations about the TREM-1 activation signal pathway that have been done and have shown some progress.Otherwise,TREM-1 synergizes with the Toll-like receptors signaling pathway in amplifying the inflammatory response mediated by LPS,but the specific mechanism is not clear enough.In this review,we will focus on the mechanism of TREM-1 signal transduction,clarifying the function of some relative signal moleculars such as TLR,DAP-12,MAPKs,NTAL,CARD9,NLRs.TREM-1 signal transduction mechanism in-depth study will further clarify the pathogenesis of sepsis and to find new therapeutic targets.%研究表明髓样细胞表达的触发受体-1(TREM-1)参与了炎性反应的级联放大过程.细菌的某些成分可以上调细胞表面TREM-1的表达,并且能和TREM-1配体协同激活TREM-1受体向下游传递信号.TREM-1被激活后会诱导前炎性因子的产生并引起相关的炎症反应.由于TREM-1是明显放大内毒素脂多糖(LPS)所引起的炎性反应的关键介质,因此对于TREM-1激活炎症信号通路的研究取得了一定的进展.然而,TREM-1在协同Toll样受体激活炎性反应的信号通路的具体机制尚未完全明晰.专注于TREM-1的信号转导,阐明与此通路相关的信号分子,如TLR、DAP-12、MAPKs、NTAL、CARD9、NLRs的作用,为进一步揭示脓毒症的发病机制并寻找新的治疗靶点.

  16. Methionine Regulates mTORC1 via the T1R1/T1R3-PLCβ-Ca2+-ERK1/2 Signal Transduction Process in C2C12 Cells

    Directory of Open Access Journals (Sweden)

    Yuanfei Zhou

    2016-10-01

    Full Text Available The mammalian target of rapamycin complex 1 (mTORC1 integrates amino acid (AA availability to support protein synthesis and cell growth. Taste receptor type 1 member (T1R is a G protein-coupled receptor that functions as a direct sensor of extracellular AA availability to regulate mTORC1 through Ca2+ stimulation and extracellular signal–regulated kinases 1 and 2 (ERK1/2 activation. However, the roles of specific AAs in T1R1/T1R3-regulated mTORC1 are poorly defined. In this study, T1R1 and T1R3 subunits were expressed in C2C12 myotubes, and l-AA sensing was accomplished by T1R1/T1R3 to activate mTORC1. In response to l-AAs, such as serine (Ser, arginine (Arg, threonine (Thr, alanine (Ala, methionine (Met, glutamine (Gln, and glycine (Gly, Met induced mTORC1 activation and promoted protein synthesis. Met also regulated mTORC1 via T1R1/T1R3-PLCβ-Ca2+-ERK1/2 signal transduction. Results revealed a new role for Met-regulated mTORC1 via an AA receptor. Further studies should be performed to determine the role of T1R1/T1R3 in mediating extracellular AA to regulate mTOR signaling and to reveal its mechanism.

  17. Methionine Regulates mTORC1 via the T1R1/T1R3-PLCβ-Ca2+-ERK1/2 Signal Transduction Process in C2C12 Cells

    Science.gov (United States)

    Zhou, Yuanfei; Ren, Jiao; Song, Tongxing; Peng, Jian; Wei, Hongkui

    2016-01-01

    The mammalian target of rapamycin complex 1 (mTORC1) integrates amino acid (AA) availability to support protein synthesis and cell growth. Taste receptor type 1 member (T1R) is a G protein-coupled receptor that functions as a direct sensor of extracellular AA availability to regulate mTORC1 through Ca2+ stimulation and extracellular signal–regulated kinases 1 and 2 (ERK1/2) activation. However, the roles of specific AAs in T1R1/T1R3-regulated mTORC1 are poorly defined. In this study, T1R1 and T1R3 subunits were expressed in C2C12 myotubes, and l-AA sensing was accomplished by T1R1/T1R3 to activate mTORC1. In response to l-AAs, such as serine (Ser), arginine (Arg), threonine (Thr), alanine (Ala), methionine (Met), glutamine (Gln), and glycine (Gly), Met induced mTORC1 activation and promoted protein synthesis. Met also regulated mTORC1 via T1R1/T1R3-PLCβ-Ca2+-ERK1/2 signal transduction. Results revealed a new role for Met-regulated mTORC1 via an AA receptor. Further studies should be performed to determine the role of T1R1/T1R3 in mediating extracellular AA to regulate mTOR signaling and to reveal its mechanism. PMID:27727170

  18. Antibodies against membrane proteins of the cephalopode visual membrane for the investigation of transduction processes of the evertebrate light perceptive cell. Antikoerper gegen Membranproteine der Cephalopoden-Sehzell-Membran als Mittel zur Untersuchung des Transduktionsprozesses der Evertebraten-Lichtsinneszelle

    Energy Technology Data Exchange (ETDEWEB)

    Conen, H.

    1988-01-01

    In invertebrate photoreceptors signal transduction is not as well investigated as in bovine rod outer segments (Stryer, 1989). The initial event in both vertebrate and invertebrate photoreceptors is the photoisomerisation of the chromophor of the photopigment rhodopsin. There is circumstantial evidence for a G-protein being the target enzyme for the active metarhodopsin: There is an intrinsic GTPase activity that is induced by blue and suppressed by red illumination in musca eyes (Blumenfeld et al, 1986) and also a light-dark difference in GTPAase activity in squid photoreceptors (Saibil and Michel-Villaz, 1984). Blumenfeld et al. (1986) showd that the light activated GTPase activity in fly (musca) photoreceptors is assoziated with a long lasting excited state of metarhodopsin. This metarhodopsin seems also to be responsible for a prolonged depolarizing after potential in fly photoreceptors (Hamdorf and Razmjoo, 1977 and 1979/Hamdorf, 1979). Injections of GDP-US -S, a poorly hydrolysable analogues of GDP into the ventral photoreceptor of Limulus depress the sensitivity of the cells to light (Bolsover and Brown, 1982).

  19. Performance improvement of switched-based interference mitigation for channel assignment in over-loaded small-cell networks

    KAUST Repository

    Gaaloul, Fakhreddine

    2013-05-01

    This paper proposes adequate methods to improve the interference mitigation capability of a recently investigated switched-based interference reduction scheme for single downlink channel assignment in over-loaded small-cell networks. The model assumes that the available orthogonal channels for small cells are distributed among access points in close vicinity, where each access point knows its allocated channels a priori. Each cell has a single antenna, employs the open access strategy, and can reuse its allocated channels simultaneously, while scheduling concurrent service requests. Moreover, the access points can not coordinate their transmissions, and can receive limited feedback from active users. The paper presents low-complexity schemes to identify a suitable channel to serve the scheduled user by maintaining the interference power level within a tolerable range. They attempt to either complement the switched-based scheme by minimum interference channel selection or adopt different interference thresholds on available channels, while reducing the channel examination load. The optimal thresholds for interference mitigation at the desired receive station are quantified for various performance criteria. The performance and processing load of the proposed schemes are obtained analytically, and then compared to those of the single-threshold scheme via numerical and simulation results. © 2002-2012 IEEE.

  20. Effects of La3+ on inward K+ channels at plasma membrane in guard cells

    Institute of Scientific and Technical Information of China (English)

    XUE; Shaowu; YANG; Pin

    2005-01-01

    The effects of La3+ on inward K+ channels at plasma membrane in vicia guard cells are investigated using the whole-cell patch-clamp recording mode. It is shown that La3+ on both sides of plasma membrane blocks inward K+ currents in a concentration- dependent manner, indicating that La3+ binding sites may exist on both sides of plasma membrane in guard cells in vicia. The dose response is fitted by the Michaelis-Menten relation characterized by an inhibitor constant Ki of 2.56±0.25μmol·L-1 (outside membrane) and (1.18±0.11)×10-15 mol·L-1 (inside membrane). Intracellular La3+ has much stronger inhibitory effect on inward K+ currents than extracellular La3+ does, suggesting there may exist stronger binding sites inside membrane than outside membrane. Since ion channel activities of guard cells directly affect plant stomatal movement and water status, our results imply that rare earth elements might have potential practical values in regulating plant water status and strengthening plant drought endurance.

  1. Regulation and function of the two-pore-domain (K2P) potassium channel Trek-1 in alveolar epithelial cells

    OpenAIRE

    Schwingshackl, Andreas; Teng, Bin; Ghosh, Manik; West, Alina Nico; Makena, Patrudu; Gorantla, Vijay; Sinclair, Scott E.; Waters, Christopher M.

    2011-01-01

    Hyperoxia can lead to a myriad of deleterious effects in the lung including epithelial damage and diffuse inflammation. The specific mechanisms by which hyperoxia promotes these pathological changes are not completely understood. Activation of ion channels has been proposed as one of the mechanisms required for cell activation and mediator secretion. The two-pore-domain K+ channel (K2P) Trek-1 has recently been described in lung epithelial cells, but its function remains elusive. In this stud...

  2. THOC5, a member of the mRNA export complex: a novel link between mRNA export machinery and signal transduction pathways in cell proliferation and differentiation.

    Science.gov (United States)

    Tran, Doan D H; Koch, Alexandra; Tamura, Teruko

    2014-01-01

    Cell growth, differentiation, and commitment to a restricted lineage are guided by a timely expressed set of growth factor/cytokine receptors and their down-stream transcription factor genes. Transcriptional control mechanisms of gene expression during differentiation have been mainly studied by focusing on the cis- and trans-elements in promoters however, the role of mRNA export machinery during differentiation has not been adequately examined. THO (Suppressors of the transcriptional defects of hpr1 delta by overexpression) complex 5 (THOC5) is a member of THO complex which is a subcomplex of the transcription/export complex (TREX). THOC5 is evolutionarily conserved in higher eukaryotes, however the exact roles of THOC5 in transcription and mRNA export are still unclear. In this review, we focus on recently uncovered aspects of the role of THOC5 in signal transduction induced by extracellular stimuli. THOC5 is phosphorylated by several protein kinases at multiple residues upon extracellular stimuli. These include stimulation with growth factors/cytokines/chemokines, or DNA damage reagents. Furthermore, THOC5 is a substrate for several oncogenic tyrosine kinases, suggesting that THOC5 may be involved in cancer development. Recent THOC5 knockout mouse data reveal that THOC5 is an essential element in the maintenance of stem cells and growth factor/cytokine-mediated differentiation/proliferation. Furthermore, depletion of THOC5 influences less than 1% of total mRNA export in the steady state, however it influences more than 90% of growth factor/cytokine induced genes. THOC5, thereby contributes to the 3' processing and/or export of immediate-early genes induced by extracellular stimuli. These studies bring new insight into the link between the mRNA export complex and immediate-early gene response. The data from these studies also suggest that THOC5 may be a useful tool for studying stem cell biology, for modifying the differentiation processes and for cancer therapy.

  3. Protein phosphorylation and its role in archaeal signal transduction.

    Science.gov (United States)

    Esser, Dominik; Hoffmann, Lena; Pham, Trong Khoa; Bräsen, Christopher; Qiu, Wen; Wright, Phillip C; Albers, Sonja-Verena; Siebers, Bettina

    2016-09-01

    Reversible protein phosphorylation is the main mechanism of signal transduction that enables cells to rapidly respond to environmental changes by controlling the functional properties of proteins in response to external stimuli. However, whereas signal transduction is well studied in Eukaryotes and Bacteria, the knowledge in Archaea is still rather scarce. Archaea are special with regard to protein phosphorylation, due to the fact that the two best studied phyla, the Euryarchaeota and Crenarchaeaota, seem to exhibit fundamental differences in regulatory systems. Euryarchaeota (e.g. halophiles, methanogens, thermophiles), like Bacteria and Eukaryotes, rely on bacterial-type two-component signal transduction systems (phosphorylation on His and Asp), as well as on the protein phosphorylation on Ser, Thr and Tyr by Hanks-type protein kinases. Instead, Crenarchaeota (e.g. acidophiles and (hyper)thermophiles) only depend on Hanks-type protein phosphorylation. In this review, the current knowledge of reversible protein phosphorylation in Archaea is presented. It combines results from identified phosphoproteins, biochemical characterization of protein kinases and protein phosphatases as well as target enzymes and first insights into archaeal signal transduction by biochemical, genetic and polyomic studies.

  4. Protein phosphorylation and its role in archaeal signal transduction

    Science.gov (United States)

    Esser, Dominik; Hoffmann, Lena; Pham, Trong Khoa; Bräsen, Christopher; Qiu, Wen; Wright, Phillip C.; Albers, Sonja-Verena; Siebers, Bettina

    2016-01-01

    Reversible protein phosphorylation is the main mechanism of signal transduction that enables cells to rapidly respond to environmental changes by controlling the functional properties of proteins in response to external stimuli. However, whereas signal transduction is well studied in Eukaryotes and Bacteria, the knowledge in Archaea is still rather scarce. Archaea are special with regard to protein phosphorylation, due to the fact that the two best studied phyla, the Euryarchaeota and Crenarchaeaota, seem to exhibit fundamental differences in regulatory systems. Euryarchaeota (e.g. halophiles, methanogens, thermophiles), like Bacteria and Eukaryotes, rely on bacterial-type two-component signal transduction systems (phosphorylation on His and Asp), as well as on the protein phosphorylation on Ser, Thr and Tyr by Hanks-type protein kinases. Instead, Crenarchaeota (e.g. acidophiles and (hyper)thermophiles) only depend on Hanks-type protein phosphorylation. In this review, the current knowledge of reversible protein phosphorylation in Archaea is presented. It combines results from identified phosphoproteins, biochemical characterization of protein kinases and protein phosphatases as well as target enzymes and first insights into archaeal signal transduction by biochemical, genetic and polyomic studies. PMID:27476079

  5. Multiscale modeling of mechanosensing channels on vesicles and cell membranes in 3D constricted flows and shear flows

    Science.gov (United States)

    Peng, Zhangli; Pak, On Shun; Young, Yuan-Nan; Liu, Allen; Stone, Howard

    2015-11-01

    We investigate the gating of mechanosensing channels (Mscls) on vesicles and cell membranes under different flow conditions using a multiscale approach. At the cell level (microns), the membrane tension is calculated using a 3D two-component whole-cell membrane model based on dissipative particle dynamics (DPD), including the cortex cytoskeleton and its interactions with the lipid bilayer. At the Mscl level (nanometers), we predict the relation between channel gating and the membrane tension obtained from a cell-level model using a semi-analytical model based on the bilayer hydrophobic mismatch energy. We systematically study the gating of Mscls of vesicles and cell membranes in constricted channel flows and shear flows, and explore the dependence of the gating on flow rate, cell shape and size. The results provide guidance for future experiments in inducing Mscl opening for various purposes such as drug delivery.

  6. Substance P Activates the Wnt Signal Transduction Pathway and Enhances the Differentiation of Mouse Preosteoblastic MC3T3-E1 Cells

    Directory of Open Access Journals (Sweden)

    Gang Mei

    2014-04-01

    Full Text Available Recent experiments have explored the impact of Wnt/β-catenin signaling and Substance P (SP on the regulation of osteogenesis. However, the molecular regulatory mechanisms of SP on the formation of osteoblasts is still unknown. In this study, we investigated the impact of SP on the differentiation of MC3T3-E1 cells. The osteogenic effect of SP was observed at different SP concentrations (ranging from 10−10 to 10−8 M. To unravel the underlying mechanism, the MC3T3-E1 cells were treated with SP after the pretreatment by neurokinin-1 (NK1 antagonists and Dickkopf-1 (DKK1 and gene expression levels of Wnt/β-catenin signaling pathway components, as well as osteoblast differentiation markers (collagen type I, alkaline phosphatase, osteocalcin, and Runx2, were measured using quantitative polymerase chain reaction (PCR. Furthermore, protein levels of Wnt/β-catenin signaling pathway were detected using Western blotting and the effects of SP, NK1 antagonist, and DKK1 on β-catenin activation were investigated by immunofluorescence staining. Our data indicated that SP (10−9 to 10−8 M significantly up-regulated the expressions of osteoblastic genes. SP (10−8 M also elevated the mRNA level of c-myc, cyclin D1, and lymphocyte enhancer factor-1 (Lef1, as well as c-myc and β-catenin protein levels, but decreased the expression of Tcf7 mRNA. Moreover, SP (10−8 M promoted the transfer of β-catenin into nucleus. The effects of SP treatment were inhibited by the NK1 antagonist and DKK1. These findings suggest that SP may enhance differentiation of MC3T3-E1 cells via regulation of the Wnt/β-catenin signaling pathway.

  7. l-glutamine Improves Skeletal Muscle Cell Differentiation and Prevents Myotube Atrophy After Cytokine (TNF-α) Stress Via Reduced p38 MAPK Signal Transduction.

    Science.gov (United States)

    Girven, Matthew; Dugdale, Hannah F; Owens, Daniel J; Hughes, David C; Stewart, Claire E; Sharples, Adam P

    2016-12-01

    Tumour Necrosis Factor-Alpha (TNF-α) is chronically elevated in conditions where skeletal muscle loss occurs. As l-glutamine can dampen the effects of inflamed environments, we investigated the role of l-glutamine in both differentiating C2C12 myoblasts and existing myotubes in the absence/presence of TNF-α (20 ng · ml(-1) ) ± l-glutamine (20 mM). TNF-α reduced the proportion of cells in G1 phase, as well as biochemical (CK activity) and morphological differentiation (myotube number), with corresponding reductions in transcript expression of: Myogenin, Igf-I, and Igfbp5. Furthermore, when administered to mature myotubes, TNF-α induced myotube loss and atrophy underpinned by reductions in Myogenin, Igf-I, Igfbp2, and glutamine synthetase and parallel increases in Fox03, Cfos, p53, and Bid gene expression. Investigation of signaling activity suggested that Akt and ERK1/2 were unchanged, JNK increased (non-significantly) whereas P38 MAPK substantially and significantly increased in both myoblasts and myotubes in the presence of TNF-α. Importantly, 20 mM l-glutamine reduced p38 MAPK activity in TNF-α conditions back to control levels, with a corresponding rescue of myoblast differentiation and a reversal of atrophy in myotubes. l-glutamine resulted in upregulation of genes associated with growth and survival including; Myogenin, Igf-Ir, Myhc2 & 7, Tnfsfr1b, Adra1d, and restored atrophic gene expression of Fox03 back to baseline in TNF-α conditions. In conclusion, l-glutamine supplementation rescued suppressed muscle cell differentiation and prevented myotube atrophy in an inflamed environment via regulation of p38 MAPK. l-glutamine administration could represent an important therapeutic strategy for reducing muscle loss in catabolic diseases and inflamed ageing. J. Cell. Physiol. 9999: 231: 2720-2732, 2016. © 2016 Wiley Periodicals, Inc.

  8. l-glutamine Improves Skeletal Muscle Cell Differentiation and Prevents Myotube Atrophy After Cytokine (TNF-α) Stress Via Reduced p38 MAPK Signal Transduction.

    Science.gov (United States)

    Girven, Matthew; Dugdale, Hannah F; Owens, Daniel J; Hughes, David C; Stewart, Claire E; Sharples, Adam P

    2016-12-01

    Tumour Necrosis Factor-Alpha (TNF-α) is chronically elevated in conditions where skeletal muscle loss occurs. As l-glutamine can dampen the effects of inflamed environments, we investigated the role of l-glutamine in both differentiating C2C12 myoblasts and existing myotubes in the absence/presence of TNF-α (20 ng · ml(-1) ) ± l-glutamine (20 mM). TNF-α reduced the proportion of cells in G1 phase, as well as biochemical (CK activity) and morphological differentiation (myotube number), with corresponding reductions in transcript expression of: Myogenin, Igf-I, and Igfbp5. Furthermore, when administered to mature myotubes, TNF-α induced myotube loss and atrophy underpinned by reductions in Myogenin, Igf-I, Igfbp2, and glutamine synthetase and parallel increases in Fox03, Cfos, p53, and Bid gene expression. Investigation of signaling activity suggested that Akt and ERK1/2 were unchanged, JNK increased (non-significantly) whereas P38 MAPK substantially and significantly increased in both myoblasts and myotubes in the presence of TNF-α. Importantly, 20 mM l-glutamine reduced p38 MAPK activity in TNF-α conditions back to control levels, with a corresponding rescue of myoblast differentiation and a reversal of atrophy in myotubes. l-glutamine resulted in upregulation of genes associated with growth and survival including; Myogenin, Igf-Ir, Myhc2 & 7, Tnfsfr1b, Adra1d, and restored atrophic gene expression of Fox03 back to baseline in TNF-α conditions. In conclusion, l-glutamine supplementation rescued suppressed muscle cell differentiation and prevented myotube atrophy in an inflamed environment via regulation of p38 MAPK. l-glutamine administration could represent an important therapeutic strategy for reducing muscle loss in catabolic diseases and inflamed ageing. J. Cell. Physiol. 9999: 231: 2720-2732, 2016. © 2016 Wiley Periodicals, Inc. PMID:26991744

  9. EDITORIAL: Special section on signal transduction Special section on signal transduction

    Science.gov (United States)

    Shvartsman, Stanislav

    2012-08-01

    This special section of Physical Biology focuses on multiple aspects of signal transduction, broadly defined as the study of the mechanisms by which cells communicate with their environment. Mechanisms of cell communication involve detection of incoming signals, which can be chemical, mechanical or electromagnetic, relaying these signals to intracellular processes, such as cytoskeletal networks or gene expression systems, and, ultimately, converting these signals to responses such as cell differentiation or death. Given the multiscale nature of signal transduction systems, they must be studied at multiple levels, from the identities and structures of molecules comprising signal detection and interpretation networks, to the systems-level properties of these networks. The 11 papers in this special section illustrate some of the most exciting aspects of signal transduction research. The first two papers, by Marie-Anne Félix [1] and by Efrat Oron and Natalia Ivanova [2], focus on cell-cell interactions in developing tissues, using vulval patterning in worm and cell fate specification in mammalian embryos as prime examples of emergent cell behaviors. Next come two papers from the groups of Julio Saez-Rodriguez [3] and Kevin Janes [4]. These papers discuss how the causal relationships between multiple components of signaling systems can be inferred using multivariable statistical analysis of empirical data. An authoritative review by Zarnitsyna and Zhu [5] presents a detailed discussion of the sequence of signaling events involved in T-cell triggering. Once the structure and components of the signaling systems are determined, they can be modeled using approaches that have been successful in other physical sciences. As two examples of such approaches, reviews by Rubinstein [6] and Kholodenko [7], present reaction-diffusion models of cell polarization and thermodynamics-based models of gene regulation. An important class of models takes the form of enzymatic networks

  10. Evidence for the Interaction of Endophilin A3 with Endogenous Kca2.3 Channels in PC12 Cells

    Directory of Open Access Journals (Sweden)

    Malika Janbein

    2014-07-01

    Full Text Available Background/Aims: Small-conductance calcium-activated (SK channels play an important role by controlling the after-hyperpolarization of excitable cells. The level of expression and density of these channels is an essential factor for controlling different cellular functions. Several studies showed a co-localization of KCa2.3 channels and Endophilin A3 in different tissues. Endophilin A3 belongs to a family of BAR- and SH3 domain containing proteins that bind to dynamin and are involved in the process of vesicle scission in clathrin-mediated endocytosis. Methods: Using the yeast two-hybrid system and the GST pull down assay we demonstrated that Endophilin A3 interacts with the N-terminal part of KCa2.3 channels. In addition, we studied the impact of this interaction on channel activity by patch clamp measurements in PC12 cells expressing endogenous KCa2.3 channels. KCa2.3 currents were activated by using pipette solutions containing 1 µM free Ca2+. Results: Whole-cell measurements of PC12 cells transfected with Endophilin A3 showed a reduction of KCa2.3 specifc Cs+ currents indicating that the interaction of Endophilin A3 with KCa2.3 channels also occurs in mammalian cells and that this interaction has functional consequences for current flowing through KCa2.3 channels. Since KCa2.3 specific currents could be increased in PC12 cells transfected with Endophilin A3 with DC-EBIO (30 µM, a known SK-channel activator, these data also implicate that Endophilin A3 did not significantly remove KCa2.3 channels from the membrane but changed the sensitivity of the channels to Ca2+ which could be overcome by DC-EBIO. Conclusion: This interaction seems to be important for the function of KCa2.3 channels and might therefore play a significant role in situations where channel activation is pivotal for cellular function.

  11. Signal perception, transduction, and response in gravity resistance. Another graviresponse in plants

    Science.gov (United States)

    Hoson, T.; Saito, Y.; Soga, K.; Wakabayashi, K.

    Resistance to the gravitational force is a serious problem that plants have had to solve to survive on land. Mechanical resistance to the pull of gravity is thus a principal graviresponse in plants, comparable to gravitropism. Nevertheless, only limited information has been obtained for this gravity response. We have examined the mechanism of gravity-induced mechanical resistance using hypergravity conditions produced by centrifugation. As a result, we have clarified the outline of the sequence of events leading to the development of mechanical resistance. The gravity signal may be perceived by mechanoreceptors (mechanosensitive ion channels) on the plasma membrane and it appears that amyloplast sedimentation in statocytes is not involved. Transformation and transduction of the perceived signal may be mediated by the structural or physiological continuum of microtubule-cell membrane-cell wall. As the final step in the development of mechanical resistance, plants construct a tough body by increasing cell wall rigidity. The increase in cell wall rigidity is brought about by modification of the metabolism of certain wall constituents and modification of the cell wall environment, especially pH. We need to clarify the details of each step by future space and ground-based experiments.

  12. Differential calcium signaling mediated by voltage-gated calcium channels in rat retinal ganglion cells and their unmyelinated axons.

    Directory of Open Access Journals (Sweden)

    Allison Sargoy

    Full Text Available Aberrant calcium regulation has been implicated as a causative factor in the degeneration of retinal ganglion cells (RGCs in numerous injury models of optic neuropathy. Since calcium has dual roles in maintaining homeostasis and triggering apoptotic pathways in healthy and injured cells, respectively, investigation of voltage-gated Ca channel (VGCC regulation as a potential strategy to reduce the loss of RGCs is warranted. The accessibility and structure of the retina provide advantages for the investigation of the mechanisms of calcium signalling in both the somata of ganglion cells as well as their unmyelinated axons. The goal of the present study was to determine the distribution of VGCC subtypes in the cell bodies and axons of ganglion cells in the normal retina and to define their contribution to calcium signals in these cellular compartments. We report L-type Ca channel α1C and α1D subunit immunoreactivity in rat RGC somata and axons. The N-type Ca channel α1B subunit was in RGC somata and axons, while the P/Q-type Ca channel α1A subunit was only in the RGC somata. We patch clamped isolated ganglion cells and biophysically identified T-type Ca channels. Calcium imaging studies of RGCs in wholemounted retinas showed that selective Ca channel antagonists reduced depolarization-evoked calcium signals mediated by L-, N-, P/Q- and T-type Ca channels in the cell bodies but only by L-type Ca channels in the axons. This differential contribution of VGCC subtypes to calcium signals in RGC somata and their axons may provide insight into the development of target-specific strategies to spare the loss of RGCs and their axons following injury.

  13. Rapid effects of 17beta-estradiol on TRPV5 epithelial Ca2+ channels in rat renal cells.

    LENUS (Irish Health Repository)

    Irnaten, Mustapha

    2009-08-01

    The renal distal tubules and collecting ducts play a key role in the control of electrolyte and fluid homeostasis. The discovery of highly calcium selective channels, Transient Receptor Potential Vanilloid 5 (TRPV5) of the TRP superfamily, has clarified the nature of the calcium entry channels. It has been proposed that this channel mediates the critical Ca(2+) entry step in transcellular Ca(2+) re-absorption in the kidney. The regulation of transmembrane Ca(2+) flux through TRPV5 is of particular importance for whole body calcium homeostasis.In this study, we provide evidence that the TRPV5 channel is present in rat cortical collecting duct (RCCD(2)) cells at mRNA and protein levels. We demonstrate that 17beta-estradiol (E(2)) is involved in the regulation of Ca(2+) influx in these cells via the epithelial Ca(2+) channels TRPV5. By combining whole-cell patch-clamp and Ca(2+)-imaging techniques, we have characterized the electrophysiological properties of the TRPV5 channel and showed that treatment with 20-50nM E(2) rapidly (<5min) induced a transient increase in inward whole-cell currents and intracellular Ca(2+) via TRPV5 channels. This rise was significantly prevented when cells were pre-treated with ruthenium red and completely abolished in cells treated with siRNA specifically targeting TRPV5.These data demonstrate for the first time, a novel rapid modulation of endogenously expressed TRPV5 channels by E(2) in kidney cells. Furthermore, the results suggest calcitropic effects of E(2). The results are discussed in relation to present concepts of non-genomic actions of E(2) in Ca(2+) homeostasis.

  14. Sentra, a database of signal transduction proteins.

    Energy Technology Data Exchange (ETDEWEB)

    Maltsev, N.; Marland, E.; Yu, G. X.; Bhatnagar, S.; Lusk, R.; Mathematics and Computer Science

    2002-01-01

    Sentra (http://www-wit.mcs.anl.gov/sentra) is a database of signal transduction proteins with the emphasis on microbial signal transduction. The database was updated to include classes of signal transduction systems modulated by either phosphorylation or methylation reactions such as PAS proteins and serine/threonine kinases, as well as the classical two-component histidine kinases and methyl-accepting chemotaxis proteins. Currently, Sentra contains signal transduction proteins from 43 completely sequenced prokaryotic genomes as well as sequences from SWISS-PROT and TrEMBL. Signal transduction proteins are annotated with information describing conserved domains, paralogous and orthologous sequences, and conserved chromosomal gene clusters. The newly developed user interface supports flexible search capabilities and extensive visualization of the data.

  15. SENTRA, a database of signal transduction proteins.

    Energy Technology Data Exchange (ETDEWEB)

    D' Souza, M.; Romine, M. F.; Maltsev, N.; Mathematics and Computer Science; PNNL

    2000-01-01

    SENTRA, available via URL http://wit.mcs.anl.gov/WIT2/Sentra/, is a database of proteins associated with microbial signal transduction. The database currently includes the classical two-component signal transduction pathway proteins and methyl-accepting chemotaxis proteins, but will be expanded to also include other classes of signal transduction systems that are modulated by phosphorylation or methylation reactions. Although the majority of database entries are from prokaryotic systems, eukaroytic proteins with bacterial-like signal transduction domains are also included. Currently SENTRA contains signal transduction proteins in 34 complete and almost completely sequenced prokaryotic genomes, as well as sequences from 243 organisms available in public databases (SWISS-PROT and EMBL). The analysis was carried out within the framework of the WIT2 system, which is designed and implemented to support genetic sequence analysis and comparative analysis of sequenced genomes.

  16. p53 amplifies Toll-like receptor 5 response in human primary and cancer cells through interaction with multiple signal transduction pathways

    Science.gov (United States)

    Shatz, Maria; Shats, Igor; Menendez, Daniel; Resnick, Michael A.

    2015-01-01

    The p53 tumor suppressor regulates transcription of genes associated with diverse cellular functions including apoptosis, growth arrest, DNA repair and differentiation. Recently, we established that p53 can modulate expression of Toll-like receptor (TLR) innate immunity genes but the degree of cross-talk between p53 and TLR pathways remained unclear. Here, using gene expression profiling we characterize the global effect of p53 on the TLR5-mediated transcription in MCF7 cells. We found that combined activation of p53 and TLR5 pathways synergistically increases expression of over 200 genes, mostly associated with immunity and inflammation. The synergy was observed in several human cancer cells and primary lymphocytes. The p53-dependent amplification of transcriptional response to TLR5 activation required expression of NFκB subunit p65 and was mediated by several molecular mechanisms including increased phosphorylation of p38 MAP kinase, PI3K and STAT3 signaling. Additionally, p53 induction increased cytokine expression in response to TNFα, another activator of NFκB and MAP kinase pathways, suggesting a broad interaction between p53 and these signaling pathways. The expression of many synergistically induced genes is elevated in breast cancer patients responsive to chemotherapy. We suggest that p53's capacity to enhance immune response could be exploited to increase antitumor immunity and to improve cancer treatment. PMID:26220208

  17. A unifying mechanism for cancer cell death through ion channel activation by HAMLET.

    Directory of Open Access Journals (Sweden)

    Petter Storm

    Full Text Available Ion channels and ion fluxes control many aspects of tissue homeostasis. During oncogenic transformation, critical ion channel functions may be perturbed but conserved tumor specific ion fluxes remain to be defined. Here we used the tumoricidal protein-lipid complex HAMLET as a probe to identify ion fluxes involved in tumor cell death. We show that HAMLET activates a non-selective cation current, which reached a magnitude of 2.74±0.88 nA within 1.43±0.13 min from HAMLET application. Rapid ion fluxes were essential for HAMLET-induced carcinoma cell death as inhibitors (amiloride, BaCl2, preventing the changes in free cellular Na(+ and K(+ concentrations also prevented essential steps accompanying carcinoma cell death, including changes in morphology, uptake, global transcription, and MAP kinase activation. Through global transcriptional analysis and phosphorylation arrays, a strong ion flux dependent p38 MAPK response was detected and inhibition of p38 signaling delayed HAMLET-induced death. Healthy, differentiated cells were resistant to HAMLET challenge, which was accompanied by innate immunity rather than p38-activation. The results suggest, for the first time, a unifying mechanism for the initiation of HAMLET's broad and rapid lethal effect on tumor cells. These findings are particularly significant in view of HAMLET's documented therapeutic efficacy in human studies and animal models. The results also suggest that HAMLET offers a two-tiered therapeutic approach, killing cancer cells while stimulating an innate immune response in surrounding healthy tissues.

  18. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels.

    Science.gov (United States)

    Yagoda, Nicholas; von Rechenberg, Moritz; Zaganjor, Elma; Bauer, Andras J; Yang, Wan Seok; Fridman, Daniel J; Wolpaw, Adam J; Smukste, Inese; Peltier, John M; Boniface, J Jay; Smith, Richard; Lessnick, Stephen L; Sahasrabudhe, Sudhir; Stockwell, Brent R

    2007-06-14

    Therapeutics that discriminate between the genetic makeup of normal cells and tumour cells are valuable for treating and understanding cancer. Small molecules with oncogene-selective lethality may reveal novel functions of oncoproteins and enable the creation of more selective drugs. Here we describe the mechanism of action of the selective anti-tumour agent erastin, involving the RAS-RAF-MEK signalling pathway functioning in cell proliferation, differentiation and survival. Erastin exhibits greater lethality in human tumour cells harbouring mutations in the oncogenes HRAS, KRAS or BRAF. Using affinity purification and mass spectrometry, we discovered that erastin acts through mitochondrial voltage-dependent anion channels (VDACs)--a novel target for anti-cancer drugs. We show that erastin treatment of cells harbouring oncogenic RAS causes the appearance of oxidative species and subsequent death through an oxidative, non-apoptotic mechanism. RNA-interference-mediated knockdown of VDAC2 or VDAC3 caused resistance to erastin, implicating these two VDAC isoforms in the mechanism of action of erastin. Moreover, using purified mitochondria expressing a single VDAC isoform, we found that erastin alters the permeability of the outer mitochondrial membrane. Finally, using a radiolabelled analogue and a filter-binding assay, we show that erastin binds directly to VDAC2. These results demonstrate that ligands to VDAC proteins can induce non-apoptotic cell death selectively in some tumour cells harbouring activating mutations in the RAS-RAF-MEK pathway.