WorldWideScience

Sample records for cell therapeutic research

  1. Developments in stem cell research and therapeutic cloning: Islamic ethical positions, a review.

    Science.gov (United States)

    Fadel, Hossam E

    2012-03-01

    Stem cell research is very promising. The use of human embryos has been confronted with objections based on ethical and religious positions. The recent production of reprogrammed adult (induced pluripotent) cells does not - in the opinion of scientists - reduce the need to continue human embryonic stem cell research. So the debate continues. Islam always encouraged scientific research, particularly research directed toward finding cures for human disease. Based on the expectation of potential benefits, Islamic teachings permit and support human embryonic stem cell research. The majority of Muslim scholars also support therapeutic cloning. This permissibility is conditional on the use of supernumerary early pre-embryos which are obtained during infertility treatment in vitro fertilization (IVF) clinics. The early pre-embryos are considered in Islamic jurisprudence as worthy of respect but do not have the full sanctity offered to the embryo after implantation in the uterus and especially after ensoulment. In this paper the Islamic positions regarding human embryonic stem cell research and therapeutic cloning are reviewed in some detail, whereas positions in other religious traditions are mentioned only briefly. The status of human embryonic stem cell research and therapeutic cloning in different countries, including the USA and especially in Muslim countries, is discussed. © 2010 Blackwell Publishing Ltd.

  2. Synthetic biology in mammalian cells: Next generation research tools and therapeutics

    Science.gov (United States)

    Lienert, Florian; Lohmueller, Jason J; Garg, Abhishek; Silver, Pamela A

    2014-01-01

    Recent progress in DNA manipulation and gene circuit engineering has greatly improved our ability to programme and probe mammalian cell behaviour. These advances have led to a new generation of synthetic biology research tools and potential therapeutic applications. Programmable DNA-binding domains and RNA regulators are leading to unprecedented control of gene expression and elucidation of gene function. Rebuilding complex biological circuits such as T cell receptor signalling in isolation from their natural context has deepened our understanding of network motifs and signalling pathways. Synthetic biology is also leading to innovative therapeutic interventions based on cell-based therapies, protein drugs, vaccines and gene therapies. PMID:24434884

  3. Advancing Stem Cell Biology toward Stem Cell Therapeutics

    OpenAIRE

    Scadden, David; Srivastava, Alok

    2012-01-01

    Here, the International Society for Stem Cell Research (ISSCR) Clinical Translation Committee introduces a series of articles outlining the current status, opportunities, and challenges surrounding the clinical translation of stem cell therapeutics for specific medical conditions.

  4. Genome editing in pluripotent stem cells: research and therapeutic applications

    Energy Technology Data Exchange (ETDEWEB)

    Deleidi, Michela, E-mail: michela.deleidi@dzne.de [German Center for Neurodegenerative Diseases (DZNE) Tübingen within the Helmholtz Association, Tübingen (Germany); Hertie Institute for Clinical Brain Research, University of Tübingen (Germany); Yu, Cong [Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, New York (United States)

    2016-05-06

    Recent progress in human pluripotent stem cell (hPSC) and genome editing technologies has opened up new avenues for the investigation of human biology in health and disease as well as the development of therapeutic applications. Gene editing approaches with programmable nucleases have been successfully established in hPSCs and applied to study gene function, develop novel animal models and perform genetic and chemical screens. Several studies now show the successful editing of disease-linked alleles in somatic and patient-derived induced pluripotent stem cells (iPSCs) as well as in animal models. Importantly, initial clinical trials have shown the safety of programmable nucleases for ex vivo somatic gene therapy. In this context, the unlimited proliferation potential and the pluripotent properties of iPSCs may offer advantages for gene targeting approaches. However, many technical and safety issues still need to be addressed before genome-edited iPSCs are translated into the clinical setting. Here, we provide an overview of the available genome editing systems and discuss opportunities and perspectives for their application in basic research and clinical practice, with a particular focus on hPSC based research and gene therapy approaches. Finally, we discuss recent research on human germline genome editing and its social and ethical implications. - Highlights: • Programmable nucleases have proven efficient and specific for genome editing in human pluripotent stem cells (hPSCs). • Genome edited hPSCs can be employed to study gene function in health and disease as well as drug and chemical screens. • Genome edited hPSCs hold great promise for ex vivo gene therapy approaches. • Technical and safety issues should be first addressed to advance the clinical use of gene-edited hPSCs.

  5. Genome editing in pluripotent stem cells: research and therapeutic applications

    International Nuclear Information System (INIS)

    Deleidi, Michela; Yu, Cong

    2016-01-01

    Recent progress in human pluripotent stem cell (hPSC) and genome editing technologies has opened up new avenues for the investigation of human biology in health and disease as well as the development of therapeutic applications. Gene editing approaches with programmable nucleases have been successfully established in hPSCs and applied to study gene function, develop novel animal models and perform genetic and chemical screens. Several studies now show the successful editing of disease-linked alleles in somatic and patient-derived induced pluripotent stem cells (iPSCs) as well as in animal models. Importantly, initial clinical trials have shown the safety of programmable nucleases for ex vivo somatic gene therapy. In this context, the unlimited proliferation potential and the pluripotent properties of iPSCs may offer advantages for gene targeting approaches. However, many technical and safety issues still need to be addressed before genome-edited iPSCs are translated into the clinical setting. Here, we provide an overview of the available genome editing systems and discuss opportunities and perspectives for their application in basic research and clinical practice, with a particular focus on hPSC based research and gene therapy approaches. Finally, we discuss recent research on human germline genome editing and its social and ethical implications. - Highlights: • Programmable nucleases have proven efficient and specific for genome editing in human pluripotent stem cells (hPSCs). • Genome edited hPSCs can be employed to study gene function in health and disease as well as drug and chemical screens. • Genome edited hPSCs hold great promise for ex vivo gene therapy approaches. • Technical and safety issues should be first addressed to advance the clinical use of gene-edited hPSCs.

  6. Therapeutic potential of stem cells in veterinary practice

    Directory of Open Access Journals (Sweden)

    Nitin E Gade

    Full Text Available Stem cell research acquired great attention during last decade inspite of incredible therapeutic potential of these cells the ethical controversies exists. Stem cells have enormous uses in animal cloning, drug discovery, gene targeting, transgenic production and regenerative therapy. Stem cells are the naïve cells of body which can self-renew and differentiate into other cell types to carry out multiple functions, these properties have been utilized in therapeutic application of stem cells in human and veterinary medicine. The application of stem cells in human medicine is well established and it is commonly used for chronic and accidental injuries. In Veterinary sciences previous studies mostly focused on establishing protocols for isolation and their characterization but with advancement in array of techniques for in vitro studies, stem cells rapidly became a viable tool for regenerative therapy of chronic, debilitating and various unresponsive clinical diseases and disorders. Multipotent adult stem cells have certain advantages over embryonic stem cells like easy isolation and expansion from numerous sources, less immunogenicity and no risk of teratoma formation hence their use is preferred in therapeutics. Adult stem cells have been utilized for treatment of spinal injuries, tendonitis, cartilage defects, osteoarthritis and ligament defects, liver diseases, wounds, cardiac and bone defects in animals. The multi-potential capability of these cells can be better utilized in near future to overcome the challenges faced by the clinicians. This review will emphasize on the therapeutic utilization and success of stem cell therapies in animals. [Vet. World 2012; 5(8.000: 499-507

  7. Allogenic banking of dental pulp stem cells for innovative therapeutics.

    Science.gov (United States)

    Collart-Dutilleul, Pierre-Yves; Chaubron, Franck; De Vos, John; Cuisinier, Frédéric J

    2015-08-26

    Medical research in regenerative medicine and cell-based therapy has brought encouraging perspectives for the use of stem cells in clinical trials. Multiple types of stem cells, from progenitors to pluripotent stem cells, have been investigated. Among these, dental pulp stem cells (DPSCs) are mesenchymal multipotent cells coming from the dental pulp, which is the soft tissue within teeth. They represent an interesting adult stem cell source because they are recovered in large amount in dental pulps with non-invasive techniques compared to other adult stem cell sources. DPSCs can be obtained from discarded teeth, especially wisdom teeth extracted for orthodontic reasons. To shift from promising preclinical results to therapeutic applications to human, DPSCs must be prepared in clinical grade lots and transformed into advanced therapy medicinal products (ATMP). As the production of patient-specific stem cells is costly and time-consuming, allogenic biobanking of clinical grade human leukocyte antigen (HLA)-typed DPSC lines provides efficient innovative therapeutic products. DPSC biobanks represent industrial and therapeutic innovations by using discarded biological tissues (dental pulps) as a source of mesenchymal stem cells to produce and store, in good manufacturing practice (GMP) conditions, DPSC therapeutic batches. In this review, we discuss about the challenges to transfer biological samples from a donor to HLA-typed DPSC therapeutic lots, following regulations, GMP guidelines and ethical principles. We also present some clinical applications, for which there is no efficient therapeutics so far, but that DPSCs-based ATMP could potentially treat.

  8. Stem Cell Therapy and Breast Cancer Treatment: review of stem cell research and potential therapeutic impact against cardiotoxicities due to breast cancer treatment

    Directory of Open Access Journals (Sweden)

    Thomas E. Sharp

    2014-11-01

    Full Text Available A new problem has emerged with the ever-increasing number of breast cancer survivors. While early screening and advances in treatment have allowed these patients to overcome their cancer, these treatments often have adverse cardiovascular side effects that can produce abnormal cardiovascular function. Chemotherapeutic and radiation therapy have both been linked to cardiotoxicity; these therapeutics can cause a loss of cardiac muscle and deterioration of vascular structure that can eventually lead to heart failure (HF. This cardiomyocyte toxicity can leave the breast cancer survivor with a probable diagnosis of dilated or restrictive cardiomyopathy (DCM or RCM. While current HF standard of care can alleviate symptoms, other than heart transplantation, there is no therapy that replaces cardiac myocytes that are killed during cancer therapies. There is a need to develop novel therapeutics that can either prevent or reverse the cardiac injury caused by cancer therapeutics. These new therapeutics should promote the regeneration of lost or deteriorating myocardium. Over the last several decades the therapeutic potential of cell-based therapy has been investigated for HF patients. In this review we discuss the progress of preclinical and clinical stem cell research for the diseased heart and discuss the possibility of utilizing these novel therapies to combat cardiotoxicity observed in breast cancer survivors.

  9. Cancer stem cells in hepatocellular carcinoma: Therapeutic implications based on stem cell biology.

    Science.gov (United States)

    Chiba, Tetsuhiro; Iwama, Atsushi; Yokosuka, Osamu

    2016-01-01

    Hepatocellular carcinoma (HCC) is the sixth most common cancer and the third most frequent cause of cancer-related death worldwide. Despite advances in its diagnosis and treatment, the prognosis of patients with advanced HCC remains unfavorable. Recent advances in stem cell biology and associated technologies have enabled the identification of minor components of tumorigenic cells, termed cancer stem cells (CSC) or tumor-initiating cells, in cancers such as HCC. Furthermore, because CSC play a central role in tumor development, metastasis and recurrence, they are considered to be a therapeutic target in cancer treatment. Hepatic CSC have been successfully identified using functional and cell surface markers. The analysis of purified hepatic CSC has revealed the molecular machinery and signaling pathways involved in their maintenance. In addition, epigenetic transcriptional regulation has been shown to be important in the development and maintenance of CSC. Although inhibitors of CSC show promise as CSC-targeting drugs, novel therapeutic approaches for the eradication of CSC are yet to be established. In this review, we describe recent progress in hepatic CSC research and provide a perspective on the available therapeutic approaches based on stem cell biology. © 2015 The Japan Society of Hepatology.

  10. Cell-based therapeutics from an economic perspective: primed for a commercial success or a research sinkhole?

    Science.gov (United States)

    McAllister, Todd N; Dusserre, Nathalie; Maruszewski, Marcin; L'heureux, Nicolas

    2008-11-01

    Despite widespread hype and significant investment through the late 1980s and 1990s, cell-based therapeutics have largely failed from both a clinical and financial perspective. While the early pioneers were able to create clinically efficacious products, small margins coupled with small initial indications made it impossible to produce a reasonable return on the huge initial investments that had been made to support widespread research activities. Even as US FDA clearance opened up larger markets, investor interest waned, and the crown jewels of cell-based therapeutics went bankrupt or were rescued by corporate bailout. Despite the hard lessons learned from these pioneering companies, many of today's regenerative medicine companies are supporting nearly identical strategies. It remains to be seen whether or not our proposed tenets for investment and commercialization strategy yield an economic success or whether the original model can produce a return on investment sufficient to justify the large up-front investments. Irrespective of which approach yields a success, it is critically important that more of the second-generation products establish profitability if the field is to enjoy continued investment from both public and private sectors.

  11. Organoid technology for brain and therapeutics research.

    Science.gov (United States)

    Wang, Zhi; Wang, Shu-Na; Xu, Tian-Ying; Miao, Zhu-Wei; Su, Ding-Feng; Miao, Chao-Yu

    2017-10-01

    Brain is one of the most complex organs in human. The current brain research is mainly based on the animal models and traditional cell culture. However, the inherent species differences between humans and animals as well as the gap between organ level and cell level make it difficult to study human brain development and associated disorders through traditional technologies. Recently, the brain organoids derived from pluripotent stem cells have been reported to recapitulate many key features of human brain in vivo, for example recapitulating the zone of putative outer radial glia cells. Brain organoids offer a new platform for scientists to study brain development, neurological diseases, drug discovery and personalized medicine, regenerative medicine, and so on. Here, we discuss the progress, applications, advantages, limitations, and prospects of brain organoid technology in neurosciences and related therapeutics. © 2017 John Wiley & Sons Ltd.

  12. Focus on Extracellular Vesicles: Therapeutic Potential of Stem Cell-Derived Extracellular Vesicles

    Directory of Open Access Journals (Sweden)

    Bin Zhang

    2016-02-01

    Full Text Available The intense research focus on stem and progenitor cells could be attributed to their differentiation potential to generate new cells to replace diseased or lost cells in many highly intractable degenerative diseases, such as Alzheimer disease, multiple sclerosis, and heart diseases. However, experimental and clinical studies have increasingly attributed the therapeutic efficacy of these cells to their secretion. While stem and progenitor cells secreted many therapeutic molecules, none of these molecules singly or in combination could recapitulate the functional effects of stem cell transplantations. Recently, it was reported that extracellular vesicles (EVs could recapitulate the therapeutic effects of stem cell transplantation. Based on the observations reported thus far, the prevailing hypothesis is that stem cell EVs exert their therapeutic effects by transferring biologically active molecules such as proteins, lipids, mRNA, and microRNA from the stem cells to injured or diseased cells. In this respect, stem cell EVs are similar to EVs from other cell types. They are both primarily vehicles for intercellular communication. Therefore, the differentiating factor is likely due to the composition of their cargo. The cargo of EVs from different cell types are known to include a common set of proteins and also proteins that reflect the cell source of the EVs and the physiological or pathological state of the cell source. Hence, elucidation of the stem cell EV cargo would provide an insight into the multiple physiological or biochemical changes necessary to affect the many reported stem cell-based therapeutic outcomes in a variety of experimental models and clinical trials.

  13. Cell mediated therapeutics for cancer treatment: Tumor homing cells as therapeutic delivery vehicles

    Science.gov (United States)

    Balivada, Sivasai

    Many cell types were known to have migratory properties towards tumors and different research groups have shown reliable results regarding cells as delivery vehicles of therapeutics for targeted cancer treatment. Present report discusses proof of concept for 1. Cell mediated delivery of Magnetic nanoparticles (MNPs) and targeted Magnetic hyperthermia (MHT) as a cancer treatment by using in vivo mouse cancer models, 2. Cells surface engineering with chimeric proteins for targeted cancer treatment by using in vitro models. 1. Tumor homing cells can carry MNPs specifically to the tumor site and tumor burden will decrease after alternating magnetic field (AMF) exposure. To test this hypothesis, first we loaded Fe/Fe3O4 bi-magnetic NPs into neural progenitor cells (NPCs), which were previously shown to migrate towards melanoma tumors. We observed that NPCs loaded with MNPs travel to subcutaneous melanoma tumors. After alternating magnetic field (AMF) exposure, the targeted delivery of MNPs by the NPCs resulted in a mild decrease in tumor size (Chapter-2). Monocytes/macrophages (Mo/Ma) are known to infiltrate tumor sites, and also have phagocytic activity which can increase their uptake of MNPs. To test Mo/Ma-mediated MHT we transplanted Mo/Ma loaded with MNPs into a mouse model of pancreatic peritoneal carcinomatosis. We observed that MNP-loaded Mo/Ma infiltrated pancreatic tumors and, after AMF treatment, significantly prolonged the lives of mice bearing disseminated intraperitoneal pancreatic tumors (Chapter-3). 2. Targeted cancer treatment could be achieved by engineering tumor homing cell surfaces with tumor proteases cleavable, cancer cell specific recombinant therapeutic proteins. To test this, Urokinase and Calpain (tumor specific proteases) cleavable; prostate cancer cell (CaP) specific (CaP1 targeting peptide); apoptosis inducible (Caspase3 V266ED3)- rCasp3V266ED3 chimeric protein was designed in silico. Hypothesized membrane anchored chimeric protein (rCasp3V

  14. Indications of hematopoietic stem cell transplantations and therapeutic strategies of accidental irradiations

    International Nuclear Information System (INIS)

    2003-01-01

    Produced by a group of experts, this document first discusses the issue of accidental irradiations in terms of medical management. They notably outline the peculiar characteristics of these irradiations with respect to therapeutic irradiations. They agreed on general principles regarding casualty sorting criteria and process, and their medical treatment (systematic hematopoiesis stimulation, allogeneic transplantation of hematopoietic stem cells). They discuss some practical aspects of these issues: casualty sorting within a therapeutic perspective (actions to be performed within 48 hours), therapeutic strategies (support therapy, use of cytokines, and therapy by hematopoietic stem cell transplant). They state a set of recommendations regarding the taking into care and diagnosis, therapeutic strategies, research perspectives, and teaching

  15. Therapeutic application of multipotent stem cells

    DEFF Research Database (Denmark)

    Mirzaei, Hamed; Sahebkar, Amirhossein; Sichani, Laleh Shiri

    2018-01-01

    Cell therapy is an emerging fields in the treatment of various diseases such as cardiovascular, pulmonary, hepatic, and neoplastic diseases. Stem cells are an integral tool for cell therapy. Multipotent stem cells are an important class of stem cells which have the ability to self-renew through...... been showed that multipotent stem cells exert their therapeutic effects via inhibition/activation of a sequence of cellular and molecular pathways. Although the advantages of multipotent stem cells are numerous, further investigation is still necessary to clarify the biology and safety of these cells...... before they could be considered as a potential treatment for different types of diseases. This review summarizes different features of multipotent stem cells including isolation, differentiation, and therapeutic applications....

  16. BiovaxID, a personalized therapeutic vaccine against B-cell lymphomas

    Czech Academy of Sciences Publication Activity Database

    Reiniš, Milan

    2008-01-01

    Roč. 10, č. 5 (2008), s. 526-534 ISSN 1464-8431 Institutional research plan: CEZ:AV0Z50520514 Keywords : B-cell lymphomas * tumor antigen * therapeutic vaccine Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.913, year: 2008

  17. Therapeutic approaches to preventing cell death in Huntington disease.

    Science.gov (United States)

    Kaplan, Anna; Stockwell, Brent R

    2012-12-01

    Neurodegenerative diseases affect the lives of millions of patients and their families. Due to the complexity of these diseases and our limited understanding of their pathogenesis, the design of therapeutic agents that can effectively treat these diseases has been challenging. Huntington disease (HD) is one of several neurological disorders with few therapeutic options. HD, like numerous other neurodegenerative diseases, involves extensive neuronal cell loss. One potential strategy to combat HD and other neurodegenerative disorders is to intervene in the execution of neuronal cell death. Inhibiting neuronal cell death pathways may slow the development of neurodegeneration. However, discovering small molecule inhibitors of neuronal cell death remains a significant challenge. Here, we review candidate therapeutic targets controlling cell death mechanisms that have been the focus of research in HD, as well as an emerging strategy that has been applied to developing small molecule inhibitors-fragment-based drug discovery (FBDD). FBDD has been successfully used in both industry and academia to identify selective and potent small molecule inhibitors, with a focus on challenging proteins that are not amenable to traditional high-throughput screening approaches. FBDD has been used to generate potent leads, pre-clinical candidates, and has led to the development of an FDA approved drug. This approach can be valuable for identifying modulators of cell-death-regulating proteins; such compounds may prove to be the key to halting the progression of HD and other neurodegenerative disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. New perspectives in human stem cell therapeutic research

    Directory of Open Access Journals (Sweden)

    Trounson Alan

    2009-06-01

    Full Text Available Abstract Human stem cells are in evaluation in clinical stem cell trials, primarily as autologous bone marrow studies, autologous and allogenic mesenchymal stem cell trials, and some allogenic neural stem cell transplantation projects. Safety and efficacy are being addressed for a number of disease state applications. There is considerable data supporting safety of bone marrow and mesenchymal stem cell transplants but the efficacy data are variable and of mixed benefit. Mechanisms of action of many of these cells are unknown and this raises the concern of unpredictable results in the future. Nevertheless there is considerable optimism that immune suppression and anti-inflammatory properties of mesenchymal stem cells will be of benefit for many conditions such as graft versus host disease, solid organ transplants and pulmonary fibrosis. Where bone marrow and mesenchymal stem cells are being studied for heart disease, stroke and other neurodegenerative disorders, again progress is mixed and mostly without significant benefit. However, correction of multiple sclerosis, at least in the short term is encouraging. Clinical trials on the use of embryonic stem cell derivatives for spinal injury and macular degeneration are beginning and a raft of other clinical trials can be expected soon, for example, the use of neural stem cells for killing inoperable glioma and embryonic stem cells for regenerating β islet cells for diabetes. The change in attitude to embryonic stem cell research with the incoming Obama administration heralds a new co-operative environment for study and evaluation of stem cell therapies. The Californian stem cell initiative (California Institute for Regenerative Medicine has engendered global collaboration for this new medicine that will now also be supported by the US Federal Government. The active participation of governments, academia, biotechnology, pharmaceutical companies, and private investment is a powerful consortium for

  19. Human therapeutic cloning (NTSC): applying research from mammalian reproductive cloning.

    Science.gov (United States)

    French, Andrew J; Wood, Samuel H; Trounson, Alan O

    2006-01-01

    Human therapeutic cloning or nuclear transfer stem cells (NTSC) to produce patient-specific stem cells, holds considerable promise in the field of regenerative medicine. The recent withdrawal of the only scientific publications claiming the successful generation of NTSC lines afford an opportunity to review the available research in mammalian reproductive somatic cell nuclear transfer (SCNT) with the goal of progressing human NTSC. The process of SCNT is prone to epigenetic abnormalities that contribute to very low success rates. Although there are high mortality rates in some species of cloned animals, most surviving clones have been shown to have normal phenotypic and physiological characteristics and to produce healthy offspring. This technology has been applied to an increasing number of mammals for utility in research, agriculture, conservation, and biomedicine. In contrast, attempts at SCNT to produce human embryonic stem cells (hESCs) have been disappointing. Only one group has published reliable evidence of success in deriving a cloned human blastocyst, using an undifferentiated hESC donor cell, and it failed to develop into a hESC line. When optimal conditions are present, it appears that in vitro development of cloned and parthenogenetic embryos, both of which may be utilized to produce hESCs, may be similar to in vitro fertilized embryos. The derivation of ESC lines from cloned embryos is substantially more efficient than the production of viable offspring. This review summarizes developments in mammalian reproductive cloning, cell-to-cell fusion alternatives, and strategies for oocyte procurement that may provide important clues facilitating progress in human therapeutic cloning leading to the successful application of cell-based therapies utilizing autologous hESC lines.

  20. Host manipulation by cancer cells: Expectations, facts, and therapeutic implications.

    Science.gov (United States)

    Tissot, Tazzio; Arnal, Audrey; Jacqueline, Camille; Poulin, Robert; Lefèvre, Thierry; Mery, Frédéric; Renaud, François; Roche, Benjamin; Massol, François; Salzet, Michel; Ewald, Paul; Tasiemski, Aurélie; Ujvari, Beata; Thomas, Frédéric

    2016-03-01

    Similar to parasites, cancer cells depend on their hosts for sustenance, proliferation and reproduction, exploiting the hosts for energy and resources, and thereby impairing their health and fitness. Because of this lifestyle similarity, it is predicted that cancer cells could, like numerous parasitic organisms, evolve the capacity to manipulate the phenotype of their hosts to increase their own fitness. We claim that the extent of this phenomenon and its therapeutic implications are, however, underappreciated. Here, we review and discuss what can be regarded as cases of host manipulation in the context of cancer development and progression. We elaborate on how acknowledging the applicability of these principles can offer novel therapeutic and preventive strategies. The manipulation of host phenotype by cancer cells is one more reason to adopt a Darwinian approach in cancer research. © 2016 WILEY Periodicals, Inc.

  1. Gastric cancer stem cells: A novel therapeutic target

    Science.gov (United States)

    Singh, Shree Ram

    2013-01-01

    Gastric cancer remains one of the leading causes of global cancer mortality. Multipotent gastric stem cells have been identified in both mouse and human stomachs, and they play an essential role in the self-renewal and homeostasis of gastric mucosa. There are several environmental and genetic factors known to promote gastric cancer. In recent years, numerous in vitro and in vivo studies suggest that gastric cancer may originate from normal stem cells or bone marrow–derived mesenchymal cells, and that gastric tumors contain cancer stem cells. Cancer stem cells are believed to share a common microenvironment with normal niche, which play an important role in gastric cancer and tumor growth. This mini-review presents a brief overview of the recent developments in gastric cancer stem cell research. The knowledge gained by studying cancer stem cells in gastric mucosa will support the development of novel therapeutic strategies for gastric cancer. PMID:23583679

  2. Cell-based therapeutic strategies for multiple sclerosis.

    Science.gov (United States)

    Scolding, Neil J; Pasquini, Marcelo; Reingold, Stephen C; Cohen, Jeffrey A

    2017-11-01

    The availability of multiple disease-modifying medications with regulatory approval to treat multiple sclerosis illustrates the substantial progress made in therapy of the disease. However, all are only partially effective in preventing inflammatory tissue damage in the central nervous system and none directly promotes repair. Cell-based therapies, including immunoablation followed by autologous haematopoietic stem cell transplantation, mesenchymal and related stem cell transplantation, pharmacologic manipulation of endogenous stem cells to enhance their reparative capabilities, and transplantation of oligodendrocyte progenitor cells, have generated substantial interest as novel therapeutic strategies for immune modulation, neuroprotection, or repair of the damaged central nervous system in multiple sclerosis. Each approach has potential advantages but also safety concerns and unresolved questions. Moreover, clinical trials of cell-based therapies present several unique methodological and ethical issues. We summarize here the status of cell-based therapies to treat multiple sclerosis and make consensus recommendations for future research and clinical trials. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.

  3. Cell kinetics and therapeutic efficiency

    International Nuclear Information System (INIS)

    Andreeff, M.; Abenhardt, W.; Gruner, B.; Stoffner, D.; Mainz Univ.

    1976-01-01

    The study shows that cell kinetics effects correlate with the effects of cytostatic drugs in the tumour model investigated here. It should, however, be noted that even genetically related tumour cell types may react differently to the same cytostatic drug, and that the cell kinetics effects, due to the changes in the cell cycle, cannot be predicted but should be followed with a very fast method, e.g. sequential flan fluorescence cytophotometry, for optimal therapeutic results. (orig./GSE) [de

  4. Triggering receptor expressed on myeloid cells 2 (TREM2): a potential therapeutic target for Alzheimer disease?

    Science.gov (United States)

    Deming, Yuetiva; Li, Zeran; Benitez, Bruno A; Cruchaga, Carlos

    2018-06-20

    There are currently no effective therapeutics for Alzheimer disease (AD). Clinical trials targeting amyloid beta thus far have shown very little benefit and only in the earliest stages of disease. These limitations have driven research to identify alternative therapeutic targets, one of the most promising is the triggering receptor expressed on myeloid cells 2 (TREM2). Areas covered: Here, we review the literature to-date and discuss the potentials and pitfalls for targeting TREM2 as a potential therapeutic for AD. We focus on research in animal and cell models for AD and central nervous system injury models which may help in understanding the role of TREM2 in disease. Expert opinion: Studies suggest TREM2 plays a key role in AD pathology; however, results have been conflicting about whether TREM2 is beneficial or harmful. More research is necessary before designing TREM2-targeting therapies. Successful therapeutics will most likely be administered early in disease.

  5. Towards the therapeutic use of vascular smooth muscle progenitor cells.

    Science.gov (United States)

    Merkulova-Rainon, Tatyana; Broquères-You, Dong; Kubis, Nathalie; Silvestre, Jean-Sébastien; Lévy, Bernard I

    2012-07-15

    Recent advances in the development of alternative proangiogenic and revascularization processes, including recombinant protein delivery, gene therapy, and cell therapy, hold the promise of greater efficacy in the management of cardiovascular disease in the coming years. In particular, vascular progenitor cell-based strategies have emerged as an efficient treatment approach to promote vessel formation and repair and to improve tissue perfusion. During the past decade, considerable progress has been achieved in understanding therapeutic properties of endothelial progenitor cells, while the therapeutic potential of vascular smooth muscle progenitor cells (SMPC) has only recently been explored; the number of the circulating SMPC being correlated with cardiovascular health. Several endogenous SMPC populations with varying phenotypes have been identified and characterized in the peripheral blood, bone marrow, and vascular wall. While the phenotypic entity of vascular SMPC is not fully defined and remains an evolving area of research, SMPC are increasingly recognized to play a special role in cardiovascular biology. In this review, we describe the current approaches used to define vascular SMPC. We further summarize the data on phenotype and functional properties of SMPC from various sources in adults. Finally, we discuss the role of SMPC in cardiovascular disease, including the contribution of SMPC to intimal proliferation, angiogenesis, and atherosclerotic plaque instability as well as the benefits resulting from the therapeutic use of SMPC.

  6. Phenotypic Plasticity Determines Cancer Stem Cell Therapeutic Resistance in Oral Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Adrian Biddle

    2016-02-01

    Full Text Available Cancer stem cells (CSCs drive tumour spread and therapeutic resistance, and can undergo epithelial-to-mesenchymal transition (EMT and mesenchymal-to-epithelial transition (MET to switch between epithelial and post-EMT sub-populations. Examining oral squamous cell carcinoma (OSCC, we now show that increased phenotypic plasticity, the ability to undergo EMT/MET, underlies increased CSC therapeutic resistance within both the epithelial and post-EMT sub-populations. The post-EMT CSCs that possess plasticity exhibit particularly enhanced therapeutic resistance and are defined by a CD44highEpCAMlow/−CD24+ cell surface marker profile. Treatment with TGFβ and retinoic acid (RA enabled enrichment of this sub-population for therapeutic testing, through which the endoplasmic reticulum (ER stressor and autophagy inhibitor Thapsigargin was shown to selectively target these cells. Demonstration of the link between phenotypic plasticity and therapeutic resistance, and development of an in vitro method for enrichment of a highly resistant CSC sub-population, provides an opportunity for the development of improved chemotherapeutic agents that can eliminate CSCs.

  7. Phenotypic Plasticity Determines Cancer Stem Cell Therapeutic Resistance in Oral Squamous Cell Carcinoma.

    Science.gov (United States)

    Biddle, Adrian; Gammon, Luke; Liang, Xiao; Costea, Daniela Elena; Mackenzie, Ian C

    2016-02-01

    Cancer stem cells (CSCs) drive tumour spread and therapeutic resistance, and can undergo epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET) to switch between epithelial and post-EMT sub-populations. Examining oral squamous cell carcinoma (OSCC), we now show that increased phenotypic plasticity, the ability to undergo EMT/MET, underlies increased CSC therapeutic resistance within both the epithelial and post-EMT sub-populations. The post-EMT CSCs that possess plasticity exhibit particularly enhanced therapeutic resistance and are defined by a CD44(high)EpCAM(low/-) CD24(+) cell surface marker profile. Treatment with TGFβ and retinoic acid (RA) enabled enrichment of this sub-population for therapeutic testing, through which the endoplasmic reticulum (ER) stressor and autophagy inhibitor Thapsigargin was shown to selectively target these cells. Demonstration of the link between phenotypic plasticity and therapeutic resistance, and development of an in vitro method for enrichment of a highly resistant CSC sub-population, provides an opportunity for the development of improved chemotherapeutic agents that can eliminate CSCs.

  8. Promising Therapeutic Strategies for Mesenchymal Stem Cell-Based Cardiovascular Regeneration: From Cell Priming to Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Seung Taek Ji

    2017-01-01

    Full Text Available The primary cause of death among chronic diseases worldwide is ischemic cardiovascular diseases, such as stroke and myocardial infarction. Recent evidence indicates that adult stem cell therapies involving cardiovascular regeneration represent promising strategies to treat cardiovascular diseases. Owing to their immunomodulatory properties and vascular repair capabilities, mesenchymal stem cells (MSCs are strong candidate therapeutic stem cells for use in cardiovascular regeneration. However, major limitations must be overcome, including their very low survival rate in ischemic lesion. Various attempts have been made to improve the poor survival and longevity of engrafted MSCs. In order to develop novel therapeutic strategies, it is necessary to first identify stem cell modulators for intracellular signal triggering or niche activation. One promising therapeutic strategy is the priming of therapeutic MSCs with stem cell modulators before transplantation. Another is a tissue engineering-based therapeutic strategy involving a cell scaffold, a cell-protein-scaffold architecture made of biomaterials such as ECM or hydrogel, and cell patch- and 3D printing-based tissue engineering. This review focuses on the current clinical applications of MSCs for treating cardiovascular diseases and highlights several therapeutic strategies for promoting the therapeutic efficacy of MSCs in vitro or in vivo from cell priming to tissue engineering strategies, for use in cardiovascular regeneration.

  9. Therapeutic Process and Outcome: The Interplay of Research

    Science.gov (United States)

    Campbel, Holly

    2008-01-01

    From Freud through to modern times researchers have aimed to develop a clearer understanding of therapeutic processes and outcomes. Despite this continued interest in the field, the representation of psychotherapy processes and the applicability of research findings and recommendations to the therapeutic field continue to prove difficult.…

  10. Recent Advances in Stem Cell-Based Therapeutics for Stroke

    OpenAIRE

    Napoli, Eleonora; Borlongan, Cesar V.

    2016-01-01

    Regenerative medicine for central nervous system disorders, including stroke, has challenged the non-regenerative capacity of the brain. Among the many treatment strategies tailored towards repairing the injured brain, stem cell-based therapeutics have been demonstrated as safe and effective in animal models of stroke, and are being tested in limited clinical trials. We address here key lab-to-clinic translational research that relate to efficacy, safety, and mechanism of action underlying st...

  11. Introduction to thematic minireview series: Development of human therapeutics based on induced pluripotent stem cell (iPSC) technology.

    Science.gov (United States)

    Rao, Mahendra; Gottesfeld, Joel M

    2014-02-21

    With the advent of human induced pluripotent stem cell (hiPSC) technology, it is now possible to derive patient-specific cell lines that are of great potential in both basic research and the development of new therapeutics for human diseases. Not only do hiPSCs offer unprecedented opportunities to study cellular differentiation and model human diseases, but the differentiated cell types obtained from iPSCs may become therapeutics themselves. These cells can also be used in the screening of therapeutics and in toxicology assays for potential liabilities of therapeutic agents. The remarkable achievement of transcription factor reprogramming to generate iPSCs was recognized by the award of the Nobel Prize in Medicine to Shinya Yamanaka in 2012, just 6 years after the first publication of reprogramming methods to generate hiPSCs (Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007) Cell 131, 861-872). This minireview series highlights both the promises and challenges of using iPSC technology for disease modeling, drug screening, and the development of stem cell therapeutics.

  12. Emerging Therapeutic Strategies for Targeting Chronic Myeloid Leukemia Stem Cells

    Directory of Open Access Journals (Sweden)

    Ahmad Hamad

    2013-01-01

    Full Text Available Chronic myeloid leukemia (CML is a clonal myeloproliferative disorder. Current targeted therapies designed to inhibit the tyrosine kinase activity of the BCR-ABL oncoprotein have made a significant breakthrough in the treatment of CML patients. However, CML remains a chronic disease that a patient must manage for life. Although tyrosine kinase inhibitors (TKI therapy has completely transformed the prognosis of CML, it has made the therapeutic management more complex. The interruption of TKI treatment results in early disease progression because it does not eliminate quiescent CML stem cells which remain a potential reservoir for disease relapse. This highlights the need to develop new therapeutic strategies for CML to achieve a permanent cure, and to allow TKI interruption. This review summarizes recent research done on alternative targeted therapies with a particular focus on some important signaling pathways (such as Alox5, Hedgehog, Wnt/b-catenin, autophagy, and PML that have the potential to target CML stem cells and potentially provide cure for CML.

  13. Cancer Stem Cell Plasticity Drives Therapeutic Resistance

    Directory of Open Access Journals (Sweden)

    Mary R. Doherty

    2016-01-01

    Full Text Available The connection between epithelial-mesenchymal (E-M plasticity and cancer stem cell (CSC properties has been paradigm-shifting, linking tumor cell invasion and metastasis with therapeutic recurrence. However, despite their importance, the molecular pathways involved in generating invasive, metastatic, and therapy-resistant CSCs remain poorly understood. The enrichment of cells with a mesenchymal/CSC phenotype following therapy has been interpreted in two different ways. The original interpretation posited that therapy kills non-CSCs while sparing pre-existing CSCs. However, evidence is emerging that suggests non-CSCs can be induced into a transient, drug-tolerant, CSC-like state by chemotherapy. The ability to transition between distinct cell states may be as critical for the survival of tumor cells following therapy as it is for metastatic progression. Therefore, inhibition of the pathways that promote E-M and CSC plasticity may suppress tumor recurrence following chemotherapy. Here, we review the emerging appreciation for how plasticity confers therapeutic resistance and tumor recurrence.

  14. Research progress of therapeutic vaccines for treating chronic hepatitis B.

    Science.gov (United States)

    Li, Jianqiang; Bao, Mengru; Ge, Jun; Ren, Sulin; Zhou, Tong; Qi, Fengchun; Pu, Xiuying; Dou, Jia

    2017-05-04

    Hepatitis B virus (HBV) is a member of Hepadnavirus family, which leads to chronic infection in around 5% of patients with a high risk of developing liver cirrhosis, liver failure, and hepatocellular carcinoma. 1 Despite the availability of prophylactic vaccines against hepatitis B for over 3 decades, there are still more than 2 billion people have been infected and 240 million of them were chronic. Antiviral therapies currently used in the treatment of CHB (chronic hepatitis B) infection include peg-interferon, standard α-interferon and nucleos/tide analogs (NAs), but none of them can provide sustained control of viral replication. As an alternative strategy, therapeutic vaccines for CHB patients have been widely studied and showed some promising efficacies in dozens of preclinical and clinical trials. In this article, we review current research progress in several types of therapeutic vaccines for CHB treatment, including protein-based vaccines, DNA-based vaccines, live vector-based vaccines, peptide-based vaccines and cell-based therapies. These researches may provide some clues for developing new treatments in CHB infection.

  15. Cancer Stem Cell Hypothesis for Therapeutic Innovation in Clinical Oncology? Taking the Root Out, Not Chopping the Leaf.

    Science.gov (United States)

    Dzobo, Kevin; Senthebane, Dimakatso Alice; Rowe, Arielle; Thomford, Nicholas Ekow; Mwapagha, Lamech M; Al-Awwad, Nasir; Dandara, Collet; Parker, M Iqbal

    2016-12-01

    Clinical oncology is in need of therapeutic innovation. New hypotheses and concepts for translation of basic research to novel diagnostics and therapeutics are called for. In this context, the cancer stem cell (CSC) hypothesis rests on the premise that tumors comprise tumor cells and a subset of tumor-initiating cells, CSCs, in a quiescent state characterized by slow cell cycling and expression of specific stem cell surface markers with the capability to maintain a tumor in vivo. The CSCs have unlimited self-renewal abilities and propagate tumors through division into asymmetric daughter cells. This differentiation is induced by both genetic and environmental factors. Another characteristic of CSCs is their therapeutic resistance, which is due to their quiescent state and slow dividing. Notably, the CSC phenotype differs greatly between patients and different cancer types. The CSCs may differ genetically and phenotypically and may include primary CSCs and metastatic stem cells circulating within the blood system. Targeting CSCs will require the knowledge of distinct stem cells within the tumor. CSCs can differentiate into nontumorigenic cells and this has been touted as the source of heterogeneity observed in many solid tumors. The latter cannot be fully explained by epigenetic regulation or by the clonal evolution theory. This heterogeneity markedly influences how tumors respond to therapy and prognosis. The present expert review offers an analysis and synthesis of the latest research and concepts on CSCs, with a view to truly disruptive innovation for future diagnostics and therapeutics in clinical oncology.

  16. Human Pluripotent Stem Cell-Derived Cardiomyocytes as Research and Therapeutic Tools

    Directory of Open Access Journals (Sweden)

    Ivana Acimovic

    2014-01-01

    Full Text Available Human pluripotent stem cells (hPSCs, namely, embryonic stem cells (ESCs and induced pluripotent stem cells (iPSCs, with their ability of indefinite self-renewal and capability to differentiate into cell types derivatives of all three germ layers, represent a powerful research tool in developmental biology, for drug screening, disease modelling, and potentially cell replacement therapy. Efficient differentiation protocols that would result in the cell type of our interest are needed for maximal exploitation of these cells. In the present work, we aim at focusing on the protocols for differentiation of hPSCs into functional cardiomyocytes in vitro as well as achievements in the heart disease modelling and drug testing on the patient-specific iPSC-derived cardiomyocytes (iPSC-CMs.

  17. Insights into cell-free therapeutic approach: Role of stem cell "soup-ernatant".

    Science.gov (United States)

    Raik, Shalini; Kumar, Ajay; Bhattacharyya, Shalmoli

    2018-03-01

    Current advances in medicine have revolutionized the field of regenerative medicine dramatically with newly evolved therapies for repair or replacement of degenerating or injured tissues. Stem cells (SCs) can be harvested from different sources for clinical therapeutics, which include fetal tissues, umbilical cord blood, embryos, and adult tissues. SCs can be isolated and differentiated into desired lineages for tissue regeneration and cell replacement therapy. However, several loopholes need to be addressed properly before this can be extended for large-scale therapeutic application. These include a careful approach for patient safety during SC treatments and tolerance of recipients. SC treatments are associated with a number of risk factors and require successful integration and survival of transplanted cells in the desired microenvironment with concurrent tissue regeneration. Recent studies have focused on developing alternatives that can replace the cell-based therapy using paracrine factors. The development of stem "cell free" therapies can be devoted mainly to the use of soluble factors (secretome), extracellular vesicles, and mitochondrial transfer. The present review emphasizes on the paradigms related to the use of SC-based therapeutics and the potential applications of a cell-free approach as an alternative to cell-based therapy in the area of regenerative medicine. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  18. Stem Cell Therapy: A Promising Therapeutic Method for Intracerebral Hemorrhage.

    Science.gov (United States)

    Gao, Liansheng; Xu, Weilin; Li, Tao; Chen, Jingyin; Shao, Anwen; Yan, Feng; Chen, Gao

    2018-01-01

    Spontaneous intracerebral hemorrhage (ICH) is one type of the most devastating cerebrovascular diseases worldwide, which causes high morbidity and mortality. However, efficient treatment is still lacking. Stem cell therapy has shown good neuroprotective and neurorestorative effect in ICH and is a promising treatment. In this study, our aim was to review the therapeutic effects, strategies, related mechanisms and safety issues of various types of stem cell for ICH treatment. Numerous studies had demonstrated the therapeutic effects of diverse stem cell types in ICH. The potential mechanisms include tissue repair and replacement, neurotrophy, promotion of neurogenesis and angiogenesis, anti-apoptosis, immunoregulation and anti-inflammation and so forth. The microenvironment of the central nervous system (CNS) can also influence the effects of stem cell therapy. The detailed therapeutic strategies for ICH treatment such as cell type, the number of cells, time window, and the routes of medication delivery, varied greatly among different studies and had not been determined. Moreover, the safety issues of stem cell therapy for ICH should not be ignored. Stem cell therapy showed good therapeutic effect in ICH, making it a promising treatment. However, safety should be carefully evaluated, and more clinical trials are required before stem cell therapy can be extensively applied to clinical use.

  19. Therapeutic strategies in Sickle Cell Anemia: The past present and future.

    Science.gov (United States)

    Fernandes, Queenie

    2017-06-01

    Sickle Cell Anemia (SCA) was one of the first hemoglobinopathies to be discovered. It is distinguished by the mutation-induced expression of a sickle cell variant of hemoglobin (HbS) that triggers erythrocytes to take a characteristic sickled conformation. The complex physiopathology of the disease and its associated clinical complications has initiated multi-disciplinary research within its field. This review attempts to lay emphasis on the evolution, current standpoint and future scope of therapeutic strategies in SCA. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Cell-based therapeutic strategies for multiple sclerosis

    DEFF Research Database (Denmark)

    Scolding, Neil J; Pasquini, Marcelo; Reingold, Stephen C

    2017-01-01

    and none directly promotes repair. Cell-based therapies, including immunoablation followed by autologous haematopoietic stem cell transplantation, mesenchymal and related stem cell transplantation, pharmacologic manipulation of endogenous stem cells to enhance their reparative capabilities......, and transplantation of oligodendrocyte progenitor cells, have generated substantial interest as novel therapeutic strategies for immune modulation, neuroprotection, or repair of the damaged central nervous system in multiple sclerosis. Each approach has potential advantages but also safety concerns and unresolved...

  1. [Nuclear transfer and therapeutic cloning].

    Science.gov (United States)

    Xu, Xiao-Ming; Lei, An-Min; Hua, Jin-Lian; Dou, Zhong-Ying

    2005-03-01

    Nuclear transfer and therapeutic cloning have widespread and attractive prospects in animal agriculture and biomedical applications. We reviewed that the quality of oocytes and nuclear reprogramming of somatic donor cells were the main reasons of the common abnormalities in cloned animals and the low efficiency of cloning and showed the problems and outlets in therapeutic cloning, such as some basic problems in nuclear transfer affected clinical applications of therapeutic cloning. Study on isolation and culture of nuclear transfer embryonic stem (ntES) cells and specific differentiation of ntES cells into important functional cells should be emphasized and could enhance the efficiency. Adult stem cells could help to cure some great diseases, but could not replace therapeutic cloning. Ethics also impeded the development of therapeutic cloning. It is necessary to improve many techniques and reinforce the research of some basic theories, then somatic nuclear transfer and therapeutic cloning may apply to agriculture reproduction and benefit to human life better.

  2. Therapeutic approaches for treating hemophilia A using embryonic stem cells.

    Science.gov (United States)

    Kasuda, Shogo; Tatsumi, Kohei; Sakurai, Yoshihiko; Shima, Midori; Hatake, Katsuhiko

    2016-06-01

    Hemophilia A is an X-linked rescessive bleeding disorder that results from F8 gene aberrations. Previously, we established embryonic stem (ES) cells (tet-226aa/N6-Ainv18) that secrete human factor VIII (hFVIII) by introducing the human F8 gene in mouse Ainv18 ES cells. Here, we explored the potential of cell transplantation therapy for hemophilia A using the ES cells. Transplant tet-226aa/N6-Ainv18 ES cells were injected into the spleens of severe combined immunodeficiency (SCID) mice, carbon tetrachloride (CCl4)-pretreated wild-type mice, and CCl4-pretreated hemophilia A mice. F8 expression was induced by doxycycline in drinking water, and hFVIII-antigen production was assessed in all cell transplantation experiments. Injecting the ES cells into SCID mice resulted in an enhanced expression of the hFVIII antigen; however, teratoma generation was confirmed in the spleen. Transplantation of ES cells into wild-type mice after CCl4-induced liver injury facilitated survival and engraftment of transplanted cells without teratoma formation, resulting in hFVIII production in the plasma. Although CCl4 was lethal to most hemophilia A mice, therapeutic levels of FVIII activity, as well as the hFVIII antigen, were detected in surviving hemophilia A mice after cell transplantation. Immunolocalization results for hFVIII suggested that transplanted ES cells might be engrafted at the periportal area in the liver. Although the development of a safer induction method for liver regeneration is required, our results suggested the potential for developing an effective ES-cell transplantation therapeutic model for treating hemophilia A in the future. Copyright © 2016 King Faisal Specialist Hospital & Research Centre. Published by Elsevier Ltd. All rights reserved.

  3. Mechanisms of therapeutic resistance in cancer (stem cells with emphasis on thyroid cancer cells.

    Directory of Open Access Journals (Sweden)

    Sabine eHombach-Klonisch

    2014-03-01

    Full Text Available Tissue invasion, metastasis and therapeutic resistance to anti-cancer treatments are common and main causes of death in cancer patients. Tumor cells mount complex and still poorly understood molecular defense mechanisms to counteract and evade oxygen deprivation, nutritional restrictions as well as radio- and chemotherapeutic treatment regimens aimed at destabilizing their genomes and important cellular processes. In thyroid cancer, as in other tumors, such defense strategies include the reactivation in cancer cells of early developmental programs normally active exclusively in stem cells, the stimulation of cancer stem-like cells resident within the tumor tissue and the recruitment of bone marrow-derived progenitors into the tumor (Thomas et al., 2008;Klonisch et al., 2009;Derwahl, 2011. Metastasis and therapeutic resistance in cancer (stem cells involves the epithelial-to-mesenchymal transition- (EMT- mediated enhancement in cellular plasticity, which includes coordinated dynamic biochemical and nuclear changes (Ahmed et al., 2010. The purpose of the present review is to provide an overview of the role of DNA repair mechanisms contributing to therapeutic resistance in thyroid cancer and highlight the emerging roles of autophagy and damage associated molecular pattern (DAMP responses in EMT and chemoresistance in tumor cells. Finally, we use the stem cell factor and nucleoprotein High Mobility Group A2 (HMGA2 as an example to demonstrate how factors intended to protect stem cells are wielded by cancer (stem cells to gain increased transformative cell plasticity which enhances metastasis, therapeutic resistance and cell survival. Wherever possible, we have included information on these cellular processes and associated factors as they relate to thyroid cancer cells.

  4. Exosomes and Their Therapeutic Potentials of Stem Cells

    Directory of Open Access Journals (Sweden)

    Chao Han

    2016-01-01

    Full Text Available Exosomes, a group of vesicles originating from the multivesicular bodies (MVBs, are released into the extracellular space when MVBs fuse with the plasma membrane. Numerous studies indicate that exosomes play important roles in cell-to-cell communication, and exosomes from specific cell types and conditions display multiple functions such as exerting positive effects on regeneration in many tissues. It is widely accepted that the therapeutic potential of stem cells may be mediated largely by the paracrine factors, so harnessing the paracrine effects of stem and progenitor cells without affecting these living, replicating, and potentially pluripotent cell populations is an advantage in terms of safety and complexity. Ascending evidence indicated that exosomes might be the main components of paracrine factors; thus, understanding the role of exosomes in each subtype of stem cells is far-reaching. In this review, we discuss the functions of exosomes from different types of stem cells and emphasize the therapeutic potentials of exosomes, providing an alternative way of developing strategies to cure diseases.

  5. [Cancer stem cells as the therapeutic target of tomorrow].

    Science.gov (United States)

    Hatina, Jiří

    2017-02-01

    The concept of hierarchical organization of tumour cell population, with cancer stem cells positioned at the apex of the cell hierarchy, can explain at least some crucial aspects of biological and clinical behaviour of cancer, like its propensity to relapse as well as the development of therapeutic resistance. The underlying biological properties of cancer stem cells are crucially dependent on various signals, inhibition of which provides an attractive opportunity to attack pharmacologically cancer stem cells. Currently, a lot of such stemness-inhibitors undergo various phases of clinical testing. Interestingly, numerous old drugs that are in routine use in human and veterinary medicine for non-oncological indications appear to be able to specifically target cancer stem cells as well. As cancer stem cells, at least for most tumours, represent usually only a minor tumour cell fraction, it is quite probable that the main focus of the clinical use of the stemness inhibitors would consist in their rational combinations with traditional anticancer treatment modalities. A highly important goal for the future research is to identify reliable and clinically applicable predictive markers that would allow to apply these novel anticancer drugs on the individual basis within the context of personalized medicine.

  6. Therapeutic targeting of the p53 pathway in cancer stem cells

    Science.gov (United States)

    Prabhu, Varun V.; Allen, Joshua E.; Hong, Bo; Zhang, Shengliang; Cheng, Hairong; El-Deiry, Wafik S.

    2013-01-01

    Introduction Cancer stem cells are a high profile drug target for cancer therapeutics due to their indispensable role in cancer progression, maintenance, and therapeutic resistance. Restoring wild-type p53 function is an attractive new therapeutic approach for the treatment of cancer due to the well-described powerful tumor suppressor function of p53. As emerging evidence intimately links p53 and stem cell biology, this approach also provides an opportunity to target cancer stem cells. Areas covered Therapeutic approaches to restore the function of wild-type p53, cancer and normal stem cell biology in relation to p53, and the downstream effects of p53 on cancer stem cells. Expert opinion The restoration of wild-type p53 function by targeting p53 directly, its interacting proteins, or its family members holds promise as a new class of cancer therapies. This review examines the impact that such therapies may have on normal and cancer stem cells based on the current evidence linking p53 signaling with these populations. PMID:22998602

  7. Therapeutic potential of adult stem cells

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Keith, W. Nicol

    2006-01-01

    is the necessity to be able to identify, select, expand and manipulate cells outside the body. Recent advances in adult stem cell technologies and basic biology have accelerated therapeutic opportunities aimed at eventual clinical applications. Adult stem cells with the ability to differentiate down multiple...... lineages are an attractive alternative to human embryonic stem cells (hES) in regenerative medicine. In many countries, present legislation surrounding hES cells makes their use problematic, and indeed the origin of hES cells may represent a controversial issue for many communities. However, adult stem...... cells are not subject to these issues. This review will therefore focus on adult stem cells. Based on their extensive differentiation potential and, in some cases, the relative ease of their isolation, adult stem cells are appropriate for clinical development. Recently, several observations suggest...

  8. Cancer Stem Cells and Their Microenvironment: Biology and Therapeutic Implications

    Directory of Open Access Journals (Sweden)

    Eunice Yuen-Ting Lau

    2017-01-01

    Full Text Available Tumor consists of heterogeneous cancer cells including cancer stem cells (CSCs that can terminally differentiate into tumor bulk. Normal stem cells in normal organs regulate self-renewal within a stem cell niche. Likewise, accumulating evidence has also suggested that CSCs are maintained extrinsically within the tumor microenvironment, which includes both cellular and physical factors. Here, we review the significance of stromal cells, immune cells, extracellular matrix, tumor stiffness, and hypoxia in regulation of CSC plasticity and therapeutic resistance. With a better understanding of how CSC interacts with its niche, we are able to identify potential therapeutic targets for the development of more effective treatments against cancer.

  9. Breast cancer stem cells, EMT and therapeutic targets

    Energy Technology Data Exchange (ETDEWEB)

    Kotiyal, Srishti; Bhattacharya, Susinjan, E-mail: s.bhattacharya@jiit.ac.in

    2014-10-10

    Highlights: • Therapeutic targeting or inhibition of the key molecules of signaling pathways can control growth of breast cancer stem cells (BCSCs). • Development of BCSCs also involves miRNA interactions. • Therapeutic achievement can be done by targeting identified targets in the BCSC pathways. - Abstract: A small heterogeneous population of breast cancer cells acts as seeds to induce new tumor growth. These seeds or breast cancer stem cells (BCSCs) exhibit great phenotypical plasticity which allows them to undergo “epithelial to mesenchymal transition” (EMT) at the site of primary tumor and a future reverse transition. Apart from metastasis they are also responsible for maintaining the tumor and conferring it with drug and radiation resistance and a tendency for post-treatment relapse. Many of the signaling pathways involved in induction of EMT are involved in CSC generation and regulation. Here we are briefly reviewing the mechanism of TGF-β, Wnt, Notch, TNF-α, NF-κB, RTK signalling pathways which are involved in EMT as well as BCSCs maintenance. Therapeutic targeting or inhibition of the key/accessory players of these pathways could control growth of BCSCs and hence malignant cancer. Additionally several miRNAs are dysregulated in cancer stem cells indicating their roles as oncogenes or tumor suppressors. This review also lists the miRNA interactions identified in BCSCs and discusses on some newly identified targets in the BCSC regulatory pathways like SHIP2, nicastrin, Pin 1, IGF-1R, pro-inflammatory cytokines and syndecan which can be targeted for therapeutic achievements.

  10. Stem cell transplantation therapy for multifaceted therapeutic benefits after stroke.

    Science.gov (United States)

    Wei, Ling; Wei, Zheng Z; Jiang, Michael Qize; Mohamad, Osama; Yu, Shan Ping

    2017-10-01

    One of the exciting advances in modern medicine and life science is cell-based neurovascular regeneration of damaged brain tissues and repair of neuronal structures. The progress in stem cell biology and creation of adult induced pluripotent stem (iPS) cells has significantly improved basic and pre-clinical research in disease mechanisms and generated enthusiasm for potential applications in the treatment of central nervous system (CNS) diseases including stroke. Endogenous neural stem cells and cultured stem cells are capable of self-renewal and give rise to virtually all types of cells essential for the makeup of neuronal structures. Meanwhile, stem cells and neural progenitor cells are well-known for their potential for trophic support after transplantation into the ischemic brain. Thus, stem cell-based therapies provide an attractive future for protecting and repairing damaged brain tissues after injury and in various disease states. Moreover, basic research on naïve and differentiated stem cells including iPS cells has markedly improved our understanding of cellular and molecular mechanisms of neurological disorders, and provides a platform for the discovery of novel drug targets. The latest advances indicate that combinatorial approaches using cell based therapy with additional treatments such as protective reagents, preconditioning strategies and rehabilitation therapy can significantly improve therapeutic benefits. In this review, we will discuss the characteristics of cell therapy in different ischemic models and the application of stem cells and progenitor cells as regenerative medicine for the treatment of stroke. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Experimental Methodology used by Cell Cultures Laboratory from INRMFB to assess the therapeutic effect of natural factors

    Directory of Open Access Journals (Sweden)

    Munteanu Constantin

    2010-11-01

    Full Text Available The experimental study design on cell cultures allows the direct biological evaluation at the cellular level, of the therapeutic effect that natural factors can play over the organism.Techniques for obtaining cell cultures requires a complex and laborious task that starts from live tissue sampling, continuous with isolation of cells and their preparation for sowing a culture plate. This preparation involves mechanical and enzymatic action from the researcher on biological material. Derived cell cultures are monitored morphologically by high-performance inverted biological microscope, with video camera for image acquisition. In the final stage, the cells are scraped, and through biochemical and molecular techniques, the therapeutic efficiency hypothesis of the investigated natural factor is verified experimentally. The cell cultures can be crioconservated in special containers with liquid nitrogen.

  12. Therapeutic cloning in the mouse

    Science.gov (United States)

    Mombaerts, Peter

    2003-01-01

    Nuclear transfer technology can be applied to produce autologous differentiated cells for therapeutic purposes, a concept termed therapeutic cloning. Countless articles have been published on the ethics and politics of human therapeutic cloning, reflecting the high expectations from this new opportunity for rejuvenation of the aging or diseased body. Yet the research literature on therapeutic cloning, strictly speaking, is comprised of only four articles, all in the mouse. The efficiency of derivation of embryonic stem cell lines via nuclear transfer is remarkably consistent among these reports. However, the efficiency is so low that, in its present form, the concept is unlikely to become widespread in clinical practice. PMID:12949262

  13. Fifty Years of Research in ARDS. Cell-based Therapy for Acute Respiratory Distress Syndrome. Biology and Potential Therapeutic Value.

    Science.gov (United States)

    Laffey, John G; Matthay, Michael A

    2017-08-01

    On the basis of several preclinical studies, cell-based therapy has emerged as a potential new therapeutic for acute respiratory distress syndrome (ARDS). Of the various cell-based therapy options, mesenchymal stem/stromal cells (MSCs) from bone marrow, adipose tissue, and umbilical cord have the most experimental data to support their potential efficacy for lung injury from both infectious and noninfectious causes. Mechanistically, MSCs exert their beneficial effects by release of paracrine factors, microvesicles, and transfer of mitochondria, all of which have antiinflammatory and pro-resolving effects on injured lung endothelium and alveolar epithelium, including enhancing the resolution of pulmonary edema by up-regulating sodium-dependent alveolar fluid clearance. MSCs also have antimicrobial effects mediated by release of antimicrobial factors and by up-regulating monocyte/macrophage phagocytosis. Phase 2a clinical trials to establish safety in ARDS are in progress, and two phase 1 trials did not report any serious adverse events. Several issues need further study, including: determining the optimal methods for large-scale production, reconstitution of cryopreserved cells for clinical use, defining cell potency assays, and determining the therapeutic potential of conditioned media derived from MSCs. Because ARDS is a heterogeneous syndrome, targeting MSCs to patients with ARDS with a more hyperinflammatory endotype may further enhance their potential for efficacy.

  14. Progenitor cells in the kidney: biology and therapeutic perspectives

    NARCIS (Netherlands)

    Rookmaaker, M.B.; Verhaar, M.C.; Zonneveld, A.J. van; Rabelink, T.J.

    2004-01-01

    Progenitor cells in the kidney: Biology and therapeutic perspectives. The stem cell may be viewed as an engineer who can read the blue print and become the building. The role of this fascinating cell in physiology and pathophysiology has recently attracted a great deal of interest. The archetype of

  15. 78 FR 28630 - Pfizer Therapeutic Research, Pfizer Worldwide Research & Development Division, Formerly Known as...

    Science.gov (United States)

    2013-05-15

    ... Research, Pfizer Worldwide Research & Development Division, Formerly Known as Warner Lambert Company... Groton, Connecticut location of Pfizer Therapeutic Research, Pfizer Worldwide Research & Development... Worldwide Research & Development Division, formerly known as Warner Lambert Company, Comparative Medicine...

  16. Fetal stem cells and skeletal muscle regeneration: a therapeutic approach

    Directory of Open Access Journals (Sweden)

    Michela ePozzobon

    2014-08-01

    Full Text Available More than 40% of the body mass is represented by muscle tissue, which possesses the innate ability to regenerate after damage through the activation of muscle specific stem cell, namely satellite cells. Muscle diseases, in particular chronic degenerative state of skeletal muscle such as dystrophies, lead to a perturbation of the regenerative process, which causes the premature exhaustion of satellite cell reservoir due to continue cycles of degeneration/regeneration. Nowadays, the research is focused on different therapeutic approaches, ranging from gene and cell to pharmacological therapy, but still there is not a definitive cure in particular for genetic muscle disease. Taking this in mind, in this article we will give special consideration to muscle diseases and the use of fetal derived stem cells as new approach for therapy. Cells of fetal origin, from cord blood to placenta and amniotic fluid, can be easily obtained without ethical concern, expanded and differentiated in culture, and possess immunemodulatory properties. The in vivo approach in animal models can be helpful to study the mechanism underneath the operating principle of the stem cell reservoir, namely the niche, which holds great potential to understand the onset of muscle pathologies.

  17. The Promise and Perils of Stem Cell Therapeutics

    OpenAIRE

    Daley, George Q.

    2012-01-01

    Stem cells are the seeds of tissue repair and regeneration and a promising source for novel therapies. However, apart from hematopoietic stem cell (HSC) transplantation for hematologic disease, essentially all other stem cell treatments remain experimental. High hopes have inspired numerous clinical trials, but it has been difficult to obtain unequivocal evidence for robust clinical benefit, likely owing to our primitive state of knowledge about therapeutic mechanisms. Outside the standard cl...

  18. Evaluation of somatostatin and nucleolin receptors for therapeutic delivery in non-small cell lung cancer stem cells applying the somatostatin-analog DOTATATE and the nucleolin-targeting aptamer AS1411

    DEFF Research Database (Denmark)

    Holmboe, Sif; Hansen, Pernille Lund; Thisgaard, Helge

    2017-01-01

    Cancer stem cells represent the putative tumor-driving subpopulation thought to account for drug resistance, relapse, and metastatic spread of epithelial and other cancer types. Accordingly, cell surface markers for therapeutic delivery to cancer stem cells are subject of intense research. Somato...

  19. Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson's disease treatment.

    Science.gov (United States)

    Kojima, Ryosuke; Bojar, Daniel; Rizzi, Giorgio; Hamri, Ghislaine Charpin-El; El-Baba, Marie Daoud; Saxena, Pratik; Ausländer, Simon; Tan, Kelly R; Fussenegger, Martin

    2018-04-03

    Exosomes are cell-derived nanovesicles (50-150 nm), which mediate intercellular communication, and are candidate therapeutic agents. However, inefficiency of exosomal message transfer, such as mRNA, and lack of methods to create designer exosomes have hampered their development into therapeutic interventions. Here, we report a set of EXOsomal transfer into cells (EXOtic) devices that enable efficient, customizable production of designer exosomes in engineered mammalian cells. These genetically encoded devices in exosome producer cells enhance exosome production, specific mRNA packaging, and delivery of the mRNA into the cytosol of target cells, enabling efficient cell-to-cell communication without the need to concentrate exosomes. Further, engineered producer cells implanted in living mice could consistently deliver cargo mRNA to the brain. Therapeutic catalase mRNA delivery by designer exosomes attenuated neurotoxicity and neuroinflammation in in vitro and in vivo models of Parkinson's disease, indicating the potential usefulness of the EXOtic devices for RNA delivery-based therapeutic applications.

  20. Cell-Specific Aptamers as Emerging Therapeutics

    Directory of Open Access Journals (Sweden)

    Cindy Meyer

    2011-01-01

    Full Text Available Aptamers are short nucleic acids that bind to defined targets with high affinity and specificity. The first aptamers have been selected about two decades ago by an in vitro process named SELEX (systematic evolution of ligands by exponential enrichment. Since then, numerous aptamers with specificities for a variety of targets from small molecules to proteins or even whole cells have been selected. Their applications range from biosensing and diagnostics to therapy and target-oriented drug delivery. More recently, selections using complex targets such as live cells have become feasible. This paper summarizes progress in cell-SELEX techniques and highlights recent developments, particularly in the field of medically relevant aptamers with a focus on therapeutic and drug-delivery applications.

  1. 77 FR 35060 - Pfizer Therapeutic Research, Formerly Known as Warner Lambert Company, Pfizer Worldwide Research...

    Science.gov (United States)

    2012-06-12

    ... Research, Formerly Known as Warner Lambert Company, Pfizer Worldwide Research & Development Division... December 2, 2011, applicable to workers of Pfizer Therapeutic Research, Pfizer Worldwide Research... Worldwide Research & Development Division, Antibacterial Research Unit, Pharmacokinetics, Dynamics and...

  2. Underwater Shock Wave Research Applied to Therapeutic Device Developments

    Science.gov (United States)

    Takayama, K.; Yamamoto, H.; Shimokawa, H.

    2013-07-01

    The chronological development of underwater shock wave research performed at the Shock Wave Research Center of the Institute of Fluid Science at the Tohoku University is presented. Firstly, the generation of planar underwater shock waves in shock tubes and their visualization by using the conventional shadowgraph and schlieren methods are described. Secondly, the generation of spherical underwater shock waves by exploding lead azide pellets weighing from several tens of micrograms to 100 mg, that were ignited by irradiating with a Q-switched laser beam, and their visualization by using double exposure holographic interferometry are presented. The initiation, propagation, reflection, focusing of underwater shock waves, and their interaction with various interfaces, in particular, with air bubbles, are visualized quantitatively. Based on such a fundamental underwater shock wave research, collaboration with the School of Medicine at the Tohoku University was started for developing a shock wave assisted therapeutic device, which was named an extracorporeal shock wave lithotripter (ESWL). Miniature shock waves created by irradiation with Q-switched HO:YAG laser beams are studied, as applied to damaged dysfunctional nerve cells in the myocardium in a precisely controlled manner, and are effectively used to design a catheter for treating arrhythmia.

  3. Research from therapeutic radiographers: An audit of research capacity within the UK

    International Nuclear Information System (INIS)

    Probst, H.; Harris, R.; McNair, H.A.; Baker, A.; Miles, E.A.; Beardmore, C.

    2015-01-01

    Research from Allied Health Professionals (AHPs) is anecdotally known to lag behind that of other professions. The developing research landscape within other therapies and internationally led us to question how UK practice in therapeutic radiography was developing. The aim of the survey was to audit research capacity across therapy radiography in the UK. Method: An electronic survey was sent to Radiotherapy Service Managers (RSM) and research leads in each of the radiotherapy centres in the UK. An adapted version of the ‘Auditing Research Capacity’ tool (ARC © tool) was used as the basis of the questionnaire. Results: A total of 45 RSM responded to the survey (67% response rate) and 30 Research radiographers (RR) (45% response rate). A total of 51 RR were in post equating to 40.3 whole time equivalents and averaging 1 RR per centre. Variation was evident in the commitment to the development of a research culture identified by practices such as linking research to the business planning cycle, inclusion of research in recruitment and advertising materials, or having a nominated therapeutic radiographer lead on research for the department. Over a third of responding centres did not have a research strategy and training for RRs was limited; specifically in areas such as writing funding bids, writing for publication and the research and governance process. Conclusion: A number of short and long-term strategies are proposed that should enhance a positive research culture and improve research capacity for therapeutic radiography led research. These include utilisation of the existing infrastructure provided by the National Institute for Health Research, a lead or co-ordinator for research activity with a remit to motivate others. Development of links and networks, and the development of a research strategy linked to wider Trust research priorities. The research strategy should include mentoring or developing appropriate research skills for those engaged in research

  4. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor

    Science.gov (United States)

    Wu, Chia-Yung; Roybal, Kole T.; Puchner, Elias M.; Onuffer, James; Lim, Wendell A.

    2016-01-01

    There is growing promise in using engineered cells as therapeutic agents. For example, synthetic Chimeric Antigen Receptors (CARs) can redirect T cells to recognize and eliminate tumor cells expressing specific antigens. Despite promising clinical results, excessive activity and poor control over such engineered T cells can cause severe toxicities. We present the design of “ON-switch” CARs that enable small molecule-control over T cell therapeutic functions, while still retaining antigen specificity. In these split receptors, antigen binding and intracellular signaling components only assemble in the presence of a heterodimerizing small molecule. This titratable pharmacologic regulation could allow physicians to precisely control the timing, location, and dosage of T cell activity, thereby mitigating toxicity. This work illustrates the potential of combining cellular engineering with orthogonal chemical tools to yield safer therapeutic cells that tightly integrate both cell autonomous recognition and user control. PMID:26405231

  5. Evaluation of somatostatin and nucleolin receptors for therapeutic delivery in non-small cell lung cancer stem cells applying the somatostatin-analog DOTATATE and the nucleolin-targeting aptamer AS1411.

    Directory of Open Access Journals (Sweden)

    Sif Holmboe

    Full Text Available Cancer stem cells represent the putative tumor-driving subpopulation thought to account for drug resistance, relapse, and metastatic spread of epithelial and other cancer types. Accordingly, cell surface markers for therapeutic delivery to cancer stem cells are subject of intense research. Somatostatin receptor 2 and nucleolin are known to be overexpressed by various cancer types, which have elicited comprehensive efforts to explore their therapeutic utilization. Here, we evaluated somatostatin receptor 2 targeting and nucleolin targeting for therapeutic delivery to cancer stem cells from lung cancer. Nucleolin is expressed highly but not selectively, while somatostatin receptor 2 is expressed selectively but not highly by cancer cells. The non-small cell lung cancer cell lines A549 and H1299, displayed average levels of both surface molecules as judged based on analysis of a larger cell line panel. H1299 compared to A549 cells showed significantly elevated sphere-forming capacity, indicating higher cancer stem cell content, thus qualifying as suitable test system. Nucleolin-targeting 57Co-DOTA-AS1411 aptamer showed efficient internalization by cancer cells and, remarkably, at even higher efficiency by cancer stem cells. In contrast, somatostatin receptor 2 expression levels were not sufficiently high in H1299 cells to confer efficient uptake by either non-cancer stem cells or cancer stem cells. The data provides indication that the nucleolin-targeting AS1411 aptamer might be used for therapeutic delivery to non-small cell lung cancer stem cells.

  6. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor.

    Science.gov (United States)

    Wu, Chia-Yung; Roybal, Kole T; Puchner, Elias M; Onuffer, James; Lim, Wendell A

    2015-10-16

    There is growing interest in using engineered cells as therapeutic agents. For example, synthetic chimeric antigen receptors (CARs) can redirect T cells to recognize and eliminate tumor cells expressing specific antigens. Despite promising clinical results, these engineered T cells can exhibit excessive activity that is difficult to control and can cause severe toxicity. We designed "ON-switch" CARs that enable small-molecule control over T cell therapeutic functions while still retaining antigen specificity. In these split receptors, antigen-binding and intracellular signaling components assemble only in the presence of a heterodimerizing small molecule. This titratable pharmacologic regulation could allow physicians to precisely control the timing, location, and dosage of T cell activity, thereby mitigating toxicity. This work illustrates the potential of combining cellular engineering with orthogonal chemical tools to yield safer therapeutic cells that tightly integrate cell-autonomous recognition and user control. Copyright © 2015, American Association for the Advancement of Science.

  7. 77 FR 65582 - Pfizer Therapeutic Research, Pfizer Worldwide Reasearch & Development Division, Formerly Known as...

    Science.gov (United States)

    2012-10-29

    ... Research, Pfizer Worldwide Reasearch & Development Division, Formerly Known as Warner Lambert Company... workers of Pfizer Therapeutic Research, Pfizer Worldwide Research & Development Division, formerly known... follows: All workers of Pfizer Therapeutic Research, Pfizer Worldwide Research & Development Division...

  8. Synthetic Immunology: Hacking Immune Cells to Expand Their Therapeutic Capabilities.

    Science.gov (United States)

    Roybal, Kole T; Lim, Wendell A

    2017-04-26

    The ability of immune cells to survey tissues and sense pathologic insults and deviations makes them a unique platform for interfacing with the body and disease. With the rapid advancement of synthetic biology, we can now engineer and equip immune cells with new sensors and controllable therapeutic response programs to sense and treat diseases that our natural immune system cannot normally handle. Here we review the current state of engineered immune cell therapeutics and their unique capabilities compared to small molecules and biologics. We then discuss how engineered immune cells are being designed to combat cancer, focusing on how new synthetic biology tools are providing potential ways to overcome the major roadblocks for treatment. Finally, we give a long-term vision for the use of synthetic biology to engineer immune cells as a general sensor-response platform to precisely detect disease, to remodel disease microenvironments, and to treat a potentially wide range of challenging diseases.

  9. Research progresses in treating diabetic foot with autologous stem cell transplantation

    International Nuclear Information System (INIS)

    Qin Hanlin; Gao Bin

    2010-01-01

    Because the distal arteries of lower extremities become narrowed or even occluded in diabetic foot, the clinical therapeutic results for diabetic foot have been unsatisfactory so far. Autologous stem cell transplantation that has emerged in recent years is a new, safe and effective therapy for diabetic foot, which achieves its excellent clinical success in restoring the blood supply of ischemic limb by way of therapeutic angiogenesis. Now autologous stem cell transplantation has become one of the hot points in medical research both at home and abroad, moreover, it has brought a new hope of cure to the patients with diabetic foot. (authors)

  10. Development of the Fibulin-3 protein therapeutics of non small cell lung cancer stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Gyu; Kim, Kugchan; Jung, Il Lae; Kim, Seo Yeon; Choi, Su Im; Lee, Jae Ha

    2013-09-15

    This study focuses on developing an efficient bioprocess for large-scale production of fibulin-3 using Chinese Hamster Ovary cell expression system and evaluating its therapeutic potential for the treatment of cancer. The specific aims are as follows: Isolation and establishment of CSCs using FACS based on cell surface markers and high ALDH1 activity. Identification and characterization of lung cancer stem cells that acquire features of CSC upon exposure to ionizing radiation. Evaluation of the fibulin-3 effects on the stem traits and signaling pathways required for the generation and maintenance of CSCs. In vivo validation of fivulin-3 for tumor prognosis and therapeutic efficacy against lung cancer using animal model.

  11. In vitro and in vivo delivery of therapeutic proteins using cell penetrating peptides.

    Science.gov (United States)

    Bolhassani, Azam; Jafarzade, Behnaz Sadat; Mardani, Golnaz

    2017-01-01

    The failure of proteins to penetrate mammalian cells or target tumor cells restricts their value as therapeutic tools in a variety of diseases such as cancers. Recently, protein transduction domains (PTDs) or cell penetrating peptides (CPPs) have been shown to promote the delivery of therapeutic proteins or peptides into live cells. The successful delivery of proteins mainly depends on their physicochemical properties. Although, linear cell penetrating peptides are one of the most effective delivery vehicles; but currently, cyclic CPPs has been developed to potently transport bioactive full-length proteins into cells. Up to now, several small protein transduction domains from viral proteins including Tat or VP22 could be fused to other peptides or proteins to entry them in various cell types at a dose-dependent approach. A major disadvantage of PTD-fusion proteins is primary uptake into endosomal vesicles leading to inefficient release of the fusion proteins into the cytosol. Recently, non-covalent complex formation (Chariot) between proteins and CPPs has attracted a special interest to overcome some delivery limitations (e.g., toxicity). Many preclinical and clinical trials of CPP-based delivery are currently under evaluation. Generally, development of more efficient protein transduction domains would significantly increase the potency of protein therapeutics. Moreover, the synergistic or combined effects of CPPs with other delivery systems for protein/peptide drug delivery would promote their therapeutic effects in cancer and other diseases. In this review, we will describe the functions and implications of CPPs for delivering the therapeutic proteins or peptides in preclinical and clinical studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. On Informatics Diagnostics and Informatics Therapeutics - Good Medical Informatics Research Is Needed Here.

    Science.gov (United States)

    Haux, Reinhold

    2017-01-01

    In the era of digitization some new procedures play an increasing role for diagnosis as well as for therapy: informatics diagnostics and informatics therapeutics. Challenges for such procedures are described. It is discussed, when research on such diagnostics and therapeutics can be regarded as good research. Examples are mentioned for informatics diagnostics and informatics therapeutics, which are based on health-enabling technologies.

  13. Stem cell research in pakistan; past, present and future.

    Science.gov (United States)

    Zahra, Sayeda Anum; Muzavir, Sayed Raheel; Ashraf, Sadia; Ahmad, Aftab

    2015-05-01

    Stem cells have proved to have great therapeutic potential as stem cell treatment is replacing traditional ways of treatment in different disorders like cancer, aplastic anemia, stroke, heart disorders. The developed and developing countries are investing differently in this area of research so research output and clinical translation of research greatly vary among developed and developing countries. Present study was done to investigate the current status of stem cells research in Pakistan and ways to improve it. Many advanced countries (USA, UK and Canada etc.) are investing heavily in stem cell research and treatment. Different developing countries like Iran, Turkey and India are also following the developed countries and investing a lot in stem cells research. Pakistan is also making efforts in establishing this field to get desired benefits but unfortunately the progress is at very low pace. If Government plays an active role along with private sector, stem cell research in Pakistan can be boosted up. The numbers of publications from Pakistan are very less compared to developed and neighboring countries and Pakistan also has very less number of institutes working in this area of research. Stem cells research is at its initial stages in Pakistan and there is great need to bring Government, academia and industry together so they could make serious efforts to promote research in this very important field. This will help millions of patients suffering from incurable disorders and will also reduce economic loss.

  14. European regulation for therapeutic use of stem cells.

    Science.gov (United States)

    Ferry, Nicolas

    2017-01-01

    The regulation for the use of stem cells has evolved during the past decade with the aim of ensuring a high standard of quality and safety for human derived products throughout Europe to comply with the provision of the Lisbon treaty. To this end, new regulations have been issued and the regulatory status of stem cells has been revised. Indeed, stem cells used for therapeutic purposes can now be classified as a cell preparation, or as advanced therapy medicinal products depending on the clinical indication and on the procedure of cell preparation. Furthermore, exemptions to the European regulation are applicable for stem cells prepared and used within the hospital. The aim of this review is to give the non-specialized reader a broad overview of this particular regulatory landscape.

  15. Potential therapeutic applications of biosurfactants.

    Science.gov (United States)

    Gudiña, Eduardo J; Rangarajan, Vivek; Sen, Ramkrishna; Rodrigues, Lígia R

    2013-12-01

    Biosurfactants have recently emerged as promising molecules for their structural novelty, versatility, and diverse properties that are potentially useful for many therapeutic applications. Mainly due to their surface activity, these molecules interact with cell membranes of several organisms and/or with the surrounding environments, and thus can be viewed as potential cancer therapeutics or as constituents of drug delivery systems. Some types of microbial surfactants, such as lipopeptides and glycolipids, have been shown to selectively inhibit the proliferation of cancer cells and to disrupt cell membranes causing their lysis through apoptosis pathways. Moreover, biosurfactants as drug delivery vehicles offer commercially attractive and scientifically novel applications. This review covers the current state-of-the-art in biosurfactant research for therapeutic purposes, providing new directions towards the discovery and development of molecules with novel structures and diverse functions for advanced applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Bone Marrow-Derived Cells as a Therapeutic Approach to Optic Nerve Diseases

    Directory of Open Access Journals (Sweden)

    Louise A. Mesentier-Louro

    2016-01-01

    Full Text Available Following optic nerve injury associated with acute or progressive diseases, retinal ganglion cells (RGCs of adult mammals degenerate and undergo apoptosis. These diseases have limited therapeutic options, due to the low inherent capacity of RGCs to regenerate and due to the inhibitory milieu of the central nervous system. Among the numerous treatment approaches investigated to stimulate neuronal survival and axonal extension, cell transplantation emerges as a promising option. This review focuses on cell therapies with bone marrow mononuclear cells and bone marrow-derived mesenchymal stem cells, which have shown positive therapeutic effects in animal models of optic neuropathies. Different aspects of available preclinical studies are analyzed, including cell distribution, potential doses, routes of administration, and mechanisms of action. Finally, published and ongoing clinical trials are summarized.

  17. Lung Regeneration: Endogenous and Exogenous Stem Cell Mediated Therapeutic Approaches.

    Science.gov (United States)

    Akram, Khondoker M; Patel, Neil; Spiteri, Monica A; Forsyth, Nicholas R

    2016-01-19

    The tissue turnover of unperturbed adult lung is remarkably slow. However, after injury or insult, a specialised group of facultative lung progenitors become activated to replenish damaged tissue through a reparative process called regeneration. Disruption in this process results in healing by fibrosis causing aberrant lung remodelling and organ dysfunction. Post-insult failure of regeneration leads to various incurable lung diseases including chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis. Therefore, identification of true endogenous lung progenitors/stem cells, and their regenerative pathway are crucial for next-generation therapeutic development. Recent studies provide exciting and novel insights into postnatal lung development and post-injury lung regeneration by native lung progenitors. Furthermore, exogenous application of bone marrow stem cells, embryonic stem cells and inducible pluripotent stem cells (iPSC) show evidences of their regenerative capacity in the repair of injured and diseased lungs. With the advent of modern tissue engineering techniques, whole lung regeneration in the lab using de-cellularised tissue scaffold and stem cells is now becoming reality. In this review, we will highlight the advancement of our understanding in lung regeneration and development of stem cell mediated therapeutic strategies in combating incurable lung diseases.

  18. Therapeutic Effect of Ligustilide-Stimulated Adipose-Derived Stem Cells in a Mouse Thromboembolic Stroke Model.

    Science.gov (United States)

    Chi, Kang; Fu, Ru-Huei; Huang, Yu-Chuen; Chen, Shih-Yin; Lin, Shinn-Zong; Huang, Pi-Chun; Lin, Po-Cheng; Chang, Fu-Kuei; Liu, Shih-Ping

    2016-01-01

    Stroke is a result of cerebral ischemia that triggers a cascade of both physiological and biochemical events. No effective treatment is available for stroke; however, stem cells have the potential to rescue tissue from the effects of stroke. Adipose-derived stem cells (ADSCs) are an abundant source of adult stem cells; therefore, ADSC therapy can be considered as a future strategy for regenerative medicine. However, more research is required to improve the effectiveness of transplanted ADSCs as a treatment for stroke in the mouse stroke model. Ligustilide, isolated from the herb Angelica sinensis, exhibits a protective effect on neurons and inhibits inflammation. We also demonstrated that ligustilide treatment increases the expression levels of homing factors such as SDF-1 and CXCR4. In the present study, we evaluated the therapeutic effects of ADSC transplantation and ligustilide treatment in a mouse thromboembolic stroke model by behavioral tests, including beam walking, locomotor activity, and rotarod analysis. ADSCs pretreated with ligustilide were transplanted into the brains of stroke mice. The results showed that the therapeutic effect of ADSCs pretreated with ligustilide was better than that of ADSCs without ligustilide pretreatment. There was no difference between the recovery of mice treated by ADSC transplantation combined with subcutaneous ligustilide injection and that of mice treated only with ADSCs. The TUNEL assay showed fewer apoptotic cells in the brains of mice transplanted with ADSCs pretreated with ligustilide as well as in those without pretreatment. In summary, pretreatment of ADSCs with ligustilide improves the therapeutic efficacy of ADSC transplantation. The results of this study will help improve stem cell therapies being developed for future clinical applications.

  19. Technological progress and challenges towards cGMP manufacturing of human pluripotent stem cells based therapeutic products for allogeneic and autologous cell therapies.

    Science.gov (United States)

    Abbasalizadeh, Saeed; Baharvand, Hossein

    2013-12-01

    Recent technological advances in the generation, characterization, and bioprocessing of human pluripotent stem cells (hPSCs) have created new hope for their use as a source for production of cell-based therapeutic products. To date, a few clinical trials that have used therapeutic cells derived from hESCs have been approved by the Food and Drug Administration (FDA), but numerous new hPSC-based cell therapy products are under various stages of development in cell therapy-specialized companies and their future market is estimated to be very promising. However, the multitude of critical challenges regarding different aspects of hPSC-based therapeutic product manufacturing and their therapies have made progress for the introduction of new products and clinical applications very slow. These challenges include scientific, technological, clinical, policy, and financial aspects. The technological aspects of manufacturing hPSC-based therapeutic products for allogeneic and autologous cell therapies according to good manufacturing practice (cGMP) quality requirements is one of the most important challenging and emerging topics in the development of new hPSCs for clinical use. In this review, we describe main critical challenges and highlight a series of technological advances in all aspects of hPSC-based therapeutic product manufacturing including clinical grade cell line development, large-scale banking, upstream processing, downstream processing, and quality assessment of final cell therapeutic products that have brought hPSCs closer to clinical application and commercial cGMP manufacturing. © 2013.

  20. The Mircen project, neuro-degenerative disease: mechanisms, therapeutics and imaging research Unit URA Cea Cnrs 2210

    International Nuclear Information System (INIS)

    Hantraye, Ph.

    2006-01-01

    During the post-genomic era, significant advances in our understanding of the molecular basis of disease have been made. The power of functional and molecular imaging in translating this knowledge into effective therapy is now being more and more recognized. Thus, molecular imaging plays a vital role in the early identification of disease-related molecular markers, in the development of molecular-targeted therapies, and in monitoring phenotypic response to therapy both in experimental animals and in human patients. In this context, MIRCen (acronym for Molecular Imaging Research Center ) provides a comprehensive resource available to empower basic, translational, and clinical research through the application of imaging and drug, cell, and gene based technologies. The MIR center will be dedicated to the development of pre-clinical trials for the treatment of various seriously debilitating diseases such as neuro-degenerative diseases, cardiac and hepatic disorders, and infectious diseases (AIDS). Despite the fact that many of these pathologies are still incurable, recent advances in drug, cell and gene therapy point to the feasibility of new therapeutic approaches. The long term goals of MIRCen are therefore to develop and validate: - pertinent animal models for neuro-degenerative, hepatic, cardiac and infectious diseases in rodents as well as non-human primates, - novel technologies for in vivo sensing and imaging of disease-related molecular events,- drug, gene and cell based palliative and or curative therapeutic strategies aiming at protecting and /or restoring damaged or lost functions. (author)

  1. Mesenchymal Stem Cells as New Therapeutic Agents for the Treatment of Primary Biliary Cholangitis

    Directory of Open Access Journals (Sweden)

    Aleksandar Arsenijevic

    2017-01-01

    Full Text Available Primary biliary cholangitis (PBC is a chronic autoimmune cholestatic liver disease characterized by the progressive destruction of small- and medium-sized intrahepatic bile ducts with resultant cholestasis and progressive fibrosis. Ursodeoxycholic acid and obethicholic acid are the only agents approved by the US Food and Drug Administration (FDA for the treatment of PBC. However, for patients with advanced, end-stage PBC, liver transplantation is still the most effective treatment. Accordingly, the alternative approaches, such as mesenchymal stem cell (MSC transplantation, have been suggested as an effective alternative therapy for these patients. Due to their immunomodulatory characteristics, MSCs are considered as promising therapeutic agents for the therapy of autoimmune liver diseases, including PBC. In this review, we have summarized the therapeutic potential of MSCs for the treatment of these diseases, emphasizing molecular and cellular mechanisms responsible for MSC-based effects in an animal model of PBC and therapeutic potential observed in recently conducted clinical trials. We have also presented several outstanding problems including safety issues regarding unwanted differentiation of transplanted MSCs which limit their therapeutic use. Efficient and safe MSC-based therapy for PBC remains a challenging issue that requires continuous cooperation between clinicians, researchers, and patients.

  2. [Research progress of intervertebral disc endogenous stem cells for intervertebral disc regeneration].

    Science.gov (United States)

    Liang, Hang; Deng, Xiangyu; Shao, Zengwu

    2017-10-01

    To summarize the research progress of intervertebral disc endogenous stem cells for intervertebral disc regeneration and deduce the therapeutic potential of endogenous repair for intervertebral disc degeneration. The original articles about intervertebral disc endogenous stem cells for intervertebral disc regeneration were extensively reviewed; the reparative potential in vivo and the extraction and identification in vitro of intervertebral disc endogenous stem cells were analyzed; the prospect of endogenous stem cells for intervertebral disc regeneration was predicted. Stem cell niche present in the intervertebral discs, from which stem cells migrate to injured tissues and contribute to tissues regeneration under certain specific microenvironment. Moreover, the migration of stem cells is regulated by chemokines system. Tissue specific progenitor cells have been identified and successfully extracted and isolated. The findings provide the basis for biological therapy of intervertebral disc endogenous stem cells. Intervertebral disc endogenous stem cells play a crucial role in intervertebral disc regeneration. Therapeutic strategy of intervertebral disc endogenous stem cells is proven to be a promising biological approach for intervertebral disc regeneration.

  3. Regulatory B cells: an exciting target for future therapeutics in transplantation

    Directory of Open Access Journals (Sweden)

    Alexandre eNouël

    2014-01-01

    Full Text Available Transplantation is the preferred treatment for most end-stage solid organ diseases. Despite potent immunosuppressive agents, chronic rejection remains a real problem in transplantation. For many years, the predominant immunological focus of research into transplant rejection has been T cells. The pillar of immunotherapy in clinical practice is T cell-directed, which efficiently prevents acute T cell-mediated allograft rejection. However, the root of late allograft failure is chronic rejection and the humoral arm of the immune response now emerges as an important factor in transplantation. Thus, the potential effects of Abs and B cell infiltrates on transplants have cast B cells as major actors in late graft rejection. Consequently, a number of recent drugs target either B cells or plasma cells. However, immunotherapies, such as the anti-CD20 B cell-depleting Ab, can generate deleterious effects on the transplant, likely due to the deletion of beneficial population. The positive contribution of regulatory B (Breg cells -or B10 cells- has been reported in the case of transplantation, mainly in mice models and highlights the primordial role that some populations of B cells can play in graft tolerance. Yet, this regulatory aspect remains poorly characterized in clinical transplantation. Thus, total B cell depletion treatments should be avoided and novel approaches should be considered that manipulate the different B cell subsets. This article provides an overview of the current knowledge on the link between Breg cells and grafts, and reports a number of data advising Breg cells as a new target for future therapeutic approaches.

  4. Mesenchymal stem cells as therapeutic delivery vehicles targeting tumor stroma

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Christensen, Rikke; Sørensen, Flemming Brandt

    2011-01-01

    The field of stem cell biology continues to evolve by characterization of further types of stem cells and by exploring their therapeutic potential for experimental and clinical applications. Human mesenchymal stem cells (hMSCs) are one of the most promising candidates simply because...... better understanding and in vivo supporting data. The homing ability of hMSCs was investigated by creating a human xenograft model by transplanting an ovarian cancer cell line into immunocompromised mice. Then, genetically engineered hMSC-telo1 cells were injected through the tail vein...

  5. Engineering Specificity and Function of Therapeutic Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Jenny L. McGovern

    2017-11-01

    Full Text Available Adoptive therapy with polyclonal regulatory T cells (Tregs has shown efficacy in suppressing detrimental immune responses in experimental models of autoimmunity and transplantation. The lack of specificity is a potential limitation of Treg therapy, as studies in mice have demonstrated that specificity can enhance the therapeutic potency of Treg. We will discuss that vectors encoding T cell receptors or chimeric antigen receptors provide an efficient gene-transfer platform to reliably produce Tregs of defined antigen specificity, thus overcoming the considerable difficulties of isolating low-frequency, antigen-specific cells that may be present in the natural Treg repertoire. The recent observations that Tregs can polarize into distinct lineages similar to the Th1, Th2, and Th17 subsets described for conventional T helper cells raise the possibility that Th1-, Th2-, and Th17-driven pathology may require matching Treg subsets for optimal therapeutic efficacy. In the future, genetic engineering may serve not only to enforce FoxP3 expression and a stable Treg phenotype but it may also enable the expression of particular transcription factors that drive differentiation into defined Treg subsets. Together, established and recently developed gene transfer and editing tools provide exciting opportunities to produce tailor-made antigen-specific Treg products with defined functional activities.

  6. Therapeutic Potential of Mesenchymal Stem Cell-Derived Exosomes in the Treatment of Eye Diseases.

    Science.gov (United States)

    Harrell, C Randall; Simovic Markovic, Bojana; Fellabaum, Crissy; Arsenijevic, Aleksandar; Djonov, Valentin; Arsenijevic, Nebojsa; Volarevic, Vladislav

    2018-05-18

    Mesenchymal stem cells (MSCs) were, due to their immunomodulatory and pro-angiogenic characteristics, extensively explored as new therapeutic agents in cell-based therapy of uveitis, glaucoma, retinal and ocular surface diseases.Since it was recently revealed that exosomes play an important role in biological functions of MSCs, herewith we summarized current knowledge about the morphology, structure, phenotype and functional characteristics of MSC-derived exosomes emphasizing their therapeutic potential in the treatment of eye diseases.MSC-derived exosomes were as efficient as transplanted MSCs in limiting the extent of eye injury and inflammation. Immediately after intravitreal injection, MSC-derived exosomes, due to nano-dimension, diffused rapidly throughout the retina and significantly attenuated retinal damage and inflammation. MSC-derived exosomes successfully delivered trophic and immunomodulatory factors to the inner retina and efficiently promoted survival and neuritogenesis of injured retinal ganglion cells. MSC-derived exosomes efficiently suppressed migration of inflammatory cells, attenuated detrimental Th1 and Th17 cell-driven immune response and ameliorated experimental autoimmune uveitis. MSC-derived exosomes were able to fuse with the lysosomes within corneal cells, enabling delivering of MSC-derived active β-glucuronidase and consequent catabolism of accumulated glycosaminoglycans, indicating their therapeutic potential in the treatment of Mucopolysaccharidosis VII (Sly Syndrome). Importantly, beneficent effects were noticed only in animals that received MSC-derived exosomes and were not seen after therapy with fibroblasts-derived exosomes confirming specific therapeutic potential of MSCs and their products in the treatment of eye diseases.In conclusion, MSC-derived exosomes represent potentially new therapeutic agents in the therapy of degenerative and inflammatory ocular diseases.

  7. Function and Therapeutic Potential of Mesenchymal Stem Cells in Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Feifei Li

    2017-05-01

    Full Text Available Atherosclerosis is a complicated disorder and largely attributable to dyslipidaemia and chronic inflammation. Despite therapeutic advances over past decades, atherosclerosis remains the leading cause of mortality worldwide. Due to their capability of immunomodulation and tissue regeneration, mesenchymal stem cells (MSCs have evolved as an attractive therapeutic agent in various diseases including atherosclerosis. Accumulating evidences support the protective role of MSCs in all stages of atherosclerosis. In this review, we highlight the current understanding of MSCs including their characteristics such as molecular markers, tissue distribution, migratory property, immune-modulatory competence, etc. We also summarize MSC functions in animal models of atherosclerosis. MSC transplantation is able to modulate cytokine and chemokine secretion, reduce endothelial dysfunction, promote regulatory T cell function, decrease dyslipidemia, and stabilize vulnerable plaques during atherosclerosis development. In addition, MSCs may migrate to lesions where they develop into functional cells during atherosclerosis formation. Finally, the perspectives of MSCs in clinical atherosclerosis therapy are discussed.

  8. [Transgenic cell cultures that synthesize neurotrophic factors and the possibility of therapeutic use of its cells].

    Science.gov (United States)

    Pavlova, G V; Kanaĭkina, N N; Panteleev, D Iu; Okhotin, V E; Revishchin, A V

    2012-01-01

    Under the leadership of Corresponding Member of the Russian Academy of Sciences L.I. Korochkin, the Laboratory of Neurogenetics and Developmental Genetics (Institute of Gene Biology, Russian Academy of Sciences) for many years has been conducting studies of nervous system development, neural cell differentiation, and application of gene and cell technology to cure neurodegenerative diseases. The results of the study initiated by L.I. Korochkin and continued by his scientific successors support the direction of allocation of transgenic neurotrofic factors and heat-shock proteins as neuroprotectors for cell therapy. Potential for usage of promoter of HSP70 heat-shock gene of Drosophila to create transgenic constructs for therapy has been shown. Further improvement of technology of nonvirus transfer for therapeutic genes, as well as production of multicomponent genetic constructs coding several therapeutic factors with synergy effect, would stimulate creation of efficient cell medicals to cure neurodegenerative diseases.

  9. Nanotechnology in stem cells research: advances and applications.

    Science.gov (United States)

    Deb, Kaushik Dilip; Griffith, May; Muinck, Ebo De; Rafat, Mehrdad

    2012-01-01

    Human beings suffer from a myriad of disorders caused by biochemical or biophysical alteration of physiological systems leading to organ failure. For a number of these conditions, stem cells and their enormous reparative potential may be the last hope for restoring function to these failing organ or tissue systems. To harness the potential of stem cells for biotherapeutic applications, we need to work at the size scale of molecules and processes that govern stem cells fate. Nanotechnology provides us with such capacity. Therefore, effective amalgamation of nanotechnology and stem cells - medical nanoscience or nanomedicine - offers immense benefits to the human race. The aim of this paper is to discuss the role and importance of nanotechnology in stem cell research by focusing on several important areas such as stem cell visualization and imaging, genetic modifications and reprogramming by gene delivery systems, creating stem cell niche, and similar therapeutic applications.

  10. Therapeutic Potential of Umbilical Cord Blood Stem Cells on Brain Damage of a Model of Stroke

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Nikravesh

    2011-11-01

    Full Text Available Introduction: Human cord blood-derived stem cells are a rich source of stem cells as well as precursors. With regard to the researchers have focused on the therapeutic potential of stem cell in the neurological disease such as stroke, the aim of this study was the investiga-tion of the therapeutic effects of human cord blood-derived stem cells in cerebral ischemia on rat. Methods: This study was carried out on young rats. Firstly, to create a laboratory model of ischemic stroke, carotid artery of animals was occluded for 30 minutes. Then, umbilical cord blood cells were isolated and labeled using bromodeoxyuridine and 2×105 cells were injected into the experimental group via the tail vein. Rats with hypoxic condi-tions were used as a sham group. A group of animals did not receive any injection or sur-geries were used as a control. Results: Obtained results were evaluated based on behavior-al responses and immunohistochemistry, with emphasis on areas of putamen and caudate nucleus in the control, sham and experimental groups. Our results indicated that behavioral recovery was observed in the experimental group compared to the either the sham or the control group. However, histological studies demonstrated a low percent of tissue injury in the experimental group in comparison with the sham group. Conclusion: Stem cell trans-plantation is beneficial for the brain tissue reparation after hypoxic ischemic cell death.

  11. Natural killer (NK) cells inhibit systemic metastasis of glioblastoma cells and have therapeutic effects against glioblastomas in the brain.

    Science.gov (United States)

    Lee, Se Jeong; Kang, Won Young; Yoon, Yeup; Jin, Ju Youn; Song, Hye Jin; Her, Jung Hyun; Kang, Sang Mi; Hwang, Yu Kyeong; Kang, Kyeong Jin; Joo, Kyeung Min; Nam, Do-Hyun

    2015-12-24

    Glioblastoma multiforme (GBM) is characterized by extensive local invasion, which is in contrast with extremely rare systemic metastasis of GBM. Molecular mechanisms inhibiting systemic metastasis of GBM would be a novel therapeutic candidate for GBM in the brain. Patient-derived GBM cells were primarily cultured from surgical samples of GBM patients and were inoculated into the brains of immune deficient BALB/c-nude or NOD-SCID IL2Rgamma(null) (NSG) mice. Human NK cells were isolated from peripheral blood mononucleated cells and expanded in vitro. Patient-derived GBM cells in the brains of NSG mice unexpectedly induced spontaneous lung metastasis although no metastasis was detected in BALB/c-nude mice. Based on the difference of the innate immunity between two mouse strains, NK cell activities of orthotopic GBM xenograft models based on BALB/c-nude mice were inhibited. NK cell inactivation induced spontaneous lung metastasis of GBM cells, which indicated that NK cells inhibit the systemic metastasis. In vitro cytotoxic activities of human NK cells against GBM cells indicated that cytotoxic activity of NK cells against GBM cells prevents systemic metastasis of GBM and that NK cells could be effective cell therapeutics against GBM. Accordingly, NK cells transplanted into orthotopic GBM xenograft models intravenously or intratumorally induced apoptosis of GBM cells in the brain and showed significant therapeutic effects. Our results suggest that innate NK immunity is responsible for rare systemic metastasis of GBM and that sufficient supplementation of NK cells could be a promising immunotherapeutic strategy for GBM in the brain.

  12. Prostate Stem Cell Antigen: A Prospective Therapeutic and Diagnostic Target

    Science.gov (United States)

    Raff, Adam B.; Gray, Andrew; Kast, W. Martin

    2009-01-01

    The development of novel clinical tools to combat cancer is an intense field of research and recent efforts have been directed at the identification of proteins that may provide diagnostic, prognostic and/or therapeutic applications due to their restricted expression. To date, a number of protein candidates have emerged as potential clinical tools in the treatment of prostate cancer. Discovered over ten year ago, prostate stem cell antigen (PSCA) is a cell surface antigen that belongs to the Ly-6/Thy-1 family of glycosylphosphatidylinositol-anchored proteins. PSCA is highly overexpressed in human prostate cancer, with limited expression in normal tissues, making it an ideal target for both diagnosis and therapy. Several studies have now clearly correlated the expression of PSCA with relevant clinical benchmarks, such as Gleason score and metastasis, while others have demonstrated the efficacy of PSCA targeting in treatment through various modalities. The purpose of this review is to present the current body of knowledge about PSCA and its potential role in the treatment of human prostate cancer. PMID:18838214

  13. Application of Mesenchymal Stem Cells for Therapeutic Agent Delivery in Anti-tumor Treatment

    Directory of Open Access Journals (Sweden)

    Daria S. Chulpanova

    2018-03-01

    Full Text Available Mesenchymal stem cells (MSCs are non-hematopoietic progenitor cells, which can be isolated from different types of tissues including bone marrow, adipose tissue, tooth pulp, and placenta/umbilical cord blood. There isolation from adult tissues circumvents the ethical concerns of working with embryonic or fetal stem cells, whilst still providing cells capable of differentiating into various cell lineages, such as adipocytes, osteocytes and chondrocytes. An important feature of MSCs is the low immunogenicity due to the lack of co-stimulatory molecules expression, meaning there is no need for immunosuppression during allogenic transplantation. The tropism of MSCs to damaged tissues and tumor sites makes them a promising vector for therapeutic agent delivery to tumors and metastatic niches. MSCs can be genetically modified by virus vectors to encode tumor suppressor genes, immunomodulating cytokines and their combinations, other therapeutic approaches include MSCs priming/loading with chemotherapeutic drugs or nanoparticles. MSCs derived membrane microvesicles (MVs, which play an important role in intercellular communication, are also considered as a new therapeutic agent and drug delivery vector. Recruited by the tumor, MSCs can exhibit both pro- and anti-oncogenic properties. In this regard, for the development of new methods for cancer therapy using MSCs, a deeper understanding of the molecular and cellular interactions between MSCs and the tumor microenvironment is necessary. In this review, we discuss MSC and tumor interaction mechanisms and review the new therapeutic strategies using MSCs and MSCs derived MVs for cancer treatment.

  14. Breast Cancer Stem Cell Therapeutics, Multiple Strategies Versus Using Engineered Mesenchymal Stem Cells With Notch Inhibitory Properties: Possibilities and Perspectives.

    Science.gov (United States)

    Bose, Bipasha; Sen, Utsav; Shenoy P, Sudheer

    2018-01-01

    Relapse cases of cancers are more vigorous and difficult to control due to the preponderance of cancer stem cells (CSCs). Such CSCs that had been otherwise dormant during the first incidence of cancer gradually appear as radiochemoresistant cancer cells. Hence, cancer therapeutics aimed at CSCs would be an effective strategy for mitigating the cancers during relapse. Alternatively, CSC therapy can also be proposed as an adjuvant therapy, along-with the conventional therapies. As regenerative stem cells (RSCs) are known for their trophic effects, anti-tumorogenicity, and better migration toward an injury site, this review aims to address the use of adult stem cells such as dental pulp derived; cord blood derived pure populations of regenerative stem cells for targeting CSCs. Indeed, pro-tumorogenicity of RSCs is of concern and hence has also been dealt with in relation to breast CSC therapeutics. Furthermore, as notch signaling pathways are upregulated in breast cancers, and anti-notch antibody based and sh-RNA based therapies are already in the market, this review focuses the possibilities of engineering RSCs to express notch inhibitory proteins for breast CSC therapeutics. Also, we have drawn a comparison among various possibilities of breast CSC therapeutics, about, notch1 inhibition. J. Cell. Biochem. 119: 141-149, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Therapeutic targeting strategies using endogenous cells and proteins.

    Science.gov (United States)

    Parayath, Neha N; Amiji, Mansoor M

    2017-07-28

    Targeted drug delivery has become extremely important in enhancing efficacy and reducing the toxicity of therapeutics in the treatment of various disease conditions. Current approaches include passive targeting, which relies on naturally occurring differences between healthy and diseased tissues, and active targeting, which utilizes various ligands that can recognize targets expressed preferentially at the diseased site. Clinical translation of these mechanisms faces many challenges including the immunogenic and toxic effects of these non-natural systems. Thus, use of endogenous targeting systems is increasingly gaining momentum. This review is focused on strategies for employing endogenous moieties, which could serve as safe and efficient carriers for targeted drug delivery. The first part of the review involves cells and cellular components as endogenous carriers for therapeutics in multiple disease states, while the second part discusses the use of endogenous plasma components as endogenous carriers. Further understanding of the biological tropism with cells and proteins and the newer generation of delivery strategies that exploits these endogenous approaches promises to provide better solutions for site-specific delivery and could further facilitate clinical translations. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Social Responsibility in Stem Cell Research - Is the News All Bad?

    Science.gov (United States)

    Benjaminy, Shelly; Lo, Cody; Illes, Judy

    2016-06-01

    Transparent public discourse about translational stem cell research promotes informed hope about scientific progress and the sustainable development of biotechnologies. Using an a priori coding scheme, we surveyed articles from leading news media about stem cell interventions for neurodegenerative diseases (1991-2014) from United States (n = 83), Canada (n = 29), and United Kingdom (n = 65). While, this analysis of translational contexts in the news demonstrates a lingering tendency to celebrate the benefits of research with little context of its caveats even for chronic neurologic diseases, in a departure from many previous studies, the data also reveal conscientious reporting about stem cell tourism and timeframe estimates for the development of relevant therapeutics.

  17. Production Methods for a Mesenchymal Stem Cell Therapeutic as a Medical Defense Countermeasure

    Science.gov (United States)

    2012-02-01

    mesenchymal stem cell (MSC) efficacy in a variety of injury models demonstrate the unique qualities of this reparative cell population to adapt to the...therapeutic product. Characterization of stem cell properties of culture-expanded MSCs is shown by in vitro differentiation to form mature cell types. The

  18. Targeting lipid metabolism of cancer cells: A promising therapeutic strategy for cancer.

    Science.gov (United States)

    Liu, Qiuping; Luo, Qing; Halim, Alexander; Song, Guanbin

    2017-08-10

    One of the most important metabolic hallmarks of cancer cells is deregulation of lipid metabolism. In addition, enhancing de novo fatty acid (FA) synthesis, increasing lipid uptake and lipolysis have also been considered as means of FA acquisition in cancer cells. FAs are involved in various aspects of tumourigenesis and tumour progression. Therefore, targeting lipid metabolism is a promising therapeutic strategy for human cancer. Recent studies have shown that reprogramming lipid metabolism plays important roles in providing energy, macromolecules for membrane synthesis, and lipid signals during cancer progression. Moreover, accumulation of lipid droplets in cancer cells acts as a pivotal adaptive response to harmful conditions. Here, we provide a brief review of the crucial roles of FA metabolism in cancer development, and place emphasis on FA origin, utilization and storage in cancer cells. Understanding the regulation of lipid metabolism in cancer cells has important implications for exploring a new therapeutic strategy for management and treatment of cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Targeting tissue factor as a novel therapeutic oncotarget for eradication of cancer stem cells isolated from tumor cell lines, tumor xenografts and patients of breast, lung and ovarian cancer.

    Science.gov (United States)

    Hu, Zhiwei; Xu, Jie; Cheng, Jijun; McMichael, Elizabeth; Yu, Lianbo; Carson, William E

    2017-01-03

    Targeting cancer stem cell (CSC) represents a promising therapeutic approach as it can potentially fight cancer at its root. The challenge is to identify a surface therapeutic oncotarget on CSC. Tissue factor (TF) is known as a common yet specific surface target for cancer cells and tumor neovasculature in several solid cancers. However, it is unknown if TF is expressed by CSCs. Here we demonstrate that TF is constitutively expressed on CD133 positive (CD133+) or CD24-CD44+ CSCs isolated from human cancer cell lines, tumor xenografts from mice and breast tumor tissues from patients. TF-targeted agents, i.e., a factor VII (fVII)-conjugated photosensitizer (fVII-PS for targeted photodynamic therapy) and fVII-IgG1Fc (Immunoconjugate or ICON for immunotherapy), can eradicate CSC via the induction of apoptosis and necrosis and via antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity, respectively. In conclusion, these results demonstrate that TF is a novel surface therapeutic oncotarget for CSC, in addition to cancer cell TF and tumor angiogenic vascular endothelial TF. Moreover, this research highlights that TF-targeting therapeutics can effectively eradicate CSCs, without drug resistance, isolated from breast, lung and ovarian cancer with potential to translate into other most commonly diagnosed solid cancer, in which TF is also highly expressed.

  20. Derivation of porcine pluripotent stem cells for biomedical research.

    Science.gov (United States)

    Shiue, Yow-Ling; Yang, Jenn-Rong; Liao, Yu-Jing; Kuo, Ting-Yung; Liao, Chia-Hsin; Kang, Ching-Hsun; Tai, Chein; Anderson, Gary B; Chen, Lih-Ren

    2016-07-01

    Pluripotent stem cells including embryonic stem cells (ESCs), embryonic germ cells (EGCs), and induced pluripotent stem cells (iPSCs) are capable of self-renew and limitlessly proliferating in vitro with undifferentiated characteristics. They are able to differentiate in vitro, spontaneously or responding to suitable signals, into cells of all three primary germ layers. Consequently, these pluripotent stem cells will be valuable sources for cell replacement therapy in numerous disorders. However, the promise of human ESCs and EGCs is cramped by the ethical argument about destroying embryos and fetuses for cell line creation. Moreover, there are still carcinogenic risks existing toward the goal of clinical application for human ESCs, EGCs, and iPSCs. Therefore, a suitable animal model for stem cell research will benefit the further development of human stem cell technology. The pigs, on the basis of their similarity in anatomy, immunology, physiology, and biochemical properties, have been wide used as model animals in the study of various human diseases. The development of porcine pluripotent stem cell lines will hold the opportunity to provide an excellent material for human counterpart to the transplantation in biomedical research and further development of cell-based therapeutic strategy. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Stem cell transplantation for amyotrophic lateral sclerosis: therapeutic potential and perspectives on clinical translation.

    Science.gov (United States)

    Faravelli, Irene; Riboldi, Giulietta; Nizzardo, Monica; Simone, Chiara; Zanetta, Chiara; Bresolin, Nereo; Comi, Giacomo P; Corti, Stefania

    2014-09-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease characterized by degeneration of upper and lower motor neurons. There are currently no clinically impactful treatments for this disorder. Death occurs 3-5 years after diagnosis, usually due to respiratory failure. ALS pathogenesis seems to involve several pathological mechanisms (i.e., oxidative stress, inflammation, and loss of the glial neurotrophic support, glutamate toxicity) with different contributions from environmental and genetic factors. This multifaceted combination highlights the concept that an effective therapeutic approach should counteract simultaneously different aspects: stem cell therapies are able to maintain or rescue motor neuron function and modulate toxicity in the central nervous system (CNS) at the same time, eventually representing the most comprehensive therapeutic approach for ALS. To achieve an effective cell-mediated therapy suitable for clinical applications, several issues must be addressed, including the identification of the most performing cell source, a feasible administration protocol, and the definition of therapeutic mechanisms. The method of cell delivery represents a major issue in developing cell-mediated approaches since the cells, to be effective, need to be spread across the CNS, targeting both lower and upper motor neurons. On the other hand, there is the need to define a strategy that could provide a whole distribution without being too invasive or burdened by side effects. Here, we review the recent advances regarding the therapeutic potential of stem cells for ALS with a focus on the minimally invasive strategies that could facilitate an extensive translation to their clinical application.

  2. Multiple sclerosis in children: an update on clinical diagnosis, therapeutic strategies, and research

    Science.gov (United States)

    Waldman, Amy; Ghezzi, Angelo; Bar-Or, Amit; Mikaeloff, Yann; Tardieu, Marc; Banwell, Brenda

    2015-01-01

    The clinical features, diagnostic challenges, neuroimaging appearance, therapeutic options, and pathobiological research progress in childhood—and adolescent—onset multiple sclerosis have been informed by many new insights in the past 7 years. National programmes in several countries, collaborative research efforts, and an established international paediatric multiple sclerosis study group have contributed to revised clinical diagnostic definitions, identified clinical features of multiple sclerosis that differ by age of onset, and made recommendations regarding the treatment of paediatric multiple sclerosis. The relative risks conveyed by genetic and environmental factors to paediatric multiple sclerosis have been the subject of several large cohort studies. MRI features have been characterised in terms of qualitative descriptions of lesion distribution and applicability of MRI aspects to multiple sclerosis diagnostic criteria, and quantitative studies have assessed total lesion burden and the effect of the disease on global and regional brain volume. Humoral-based and cell-based assays have identified antibodies against myelin, potassium-channel proteins, and T-cell profiles that support an adult-like T-cell repertoire and cellular reactivity against myelin in paediatric patients with multiple sclerosis. Finally, the safety and efficacy of standard first-line therapies in paediatric multiple sclerosis populations are now appreciated in more detail, and consensus views on the future conduct and feasibility of phase 3 trials for new drugs have been proposed. PMID:25142460

  3. ALS Pathogenesis and Therapeutic Approaches: The Role of Mesenchymal Stem Cells and Extracellular Vesicles.

    Science.gov (United States)

    Bonafede, Roberta; Mariotti, Raffaella

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive muscle paralysis determined by the degeneration of motoneurons in the motor cortex brainstem and spinal cord. The ALS pathogenetic mechanisms are still unclear, despite the wealth of studies demonstrating the involvement of several altered signaling pathways, such as mitochondrial dysfunction, glutamate excitotoxicity, oxidative stress and neuroinflammation. To date, the proposed therapeutic strategies are targeted to one or a few of these alterations, resulting in only a minimal effect on disease course and survival of ALS patients. The involvement of different mechanisms in ALS pathogenesis underlines the need for a therapeutic approach targeted to multiple aspects. Mesenchymal stem cells (MSC) can support motoneurons and surrounding cells, reduce inflammation, stimulate tissue regeneration and release growth factors. On this basis, MSC have been proposed as promising candidates to treat ALS. However, due to the drawbacks of cell therapy, the possible therapeutic use of extracellular vesicles (EVs) released by stem cells is raising increasing interest. The present review summarizes the main pathological mechanisms involved in ALS and the related therapeutic approaches proposed to date, focusing on MSC therapy and their preclinical and clinical applications. Moreover, the nature and characteristics of EVs and their role in recapitulating the effect of stem cells are discussed, elucidating how and why these vesicles could provide novel opportunities for ALS treatment.

  4. Liver cell-targeted delivery of therapeutic molecules.

    Science.gov (United States)

    Kang, Jeong-Hun; Toita, Riki; Murata, Masaharu

    2016-01-01

    The liver is the largest internal organ in mammals and is involved in metabolism, detoxification, synthesis of proteins and lipids, secretion of cytokines and growth factors and immune/inflammatory responses. Hepatitis, alcoholic or non-alcoholic liver disease, hepatocellular carcinoma, hepatic veno-occlusive disease, and liver fibrosis and cirrhosis are the most common liver diseases. Safe and efficient delivery of therapeutic molecules (drugs, genes or proteins) into the liver is very important to increase the clinical efficacy of these molecules and to reduce their side effects in other organs. Several liver cell-targeted delivery systems have been developed and tested in vivo or ex vivo/in vitro. In this review, we discuss the literature concerning liver cell-targeted delivery systems, with a particular emphasis on the results of in vivo studies.

  5. Ovarian steroids, stem cells and uterine leiomyoma: therapeutic implications.

    Science.gov (United States)

    Moravek, Molly B; Yin, Ping; Ono, Masanori; Coon, John S; Dyson, Matthew T; Navarro, Antonia; Marsh, Erica E; Chakravarti, Debabrata; Kim, J Julie; Wei, Jian-Jun; Bulun, Serdar E

    2015-01-01

    Uterine leiomyoma is the most common benign tumor in women and is thought to arise from the clonal expansion of a single myometrial smooth muscle cell transformed by a cellular insult. Leiomyomas cause a variety of symptoms, including abnormal uterine bleeding, pelvic pain, bladder or bowel dysfunction, and recurrent pregnancy loss, and are the most common indication for hysterectomy in the USA. A slow rate of cell proliferation, combined with the production of copious amounts of extracellular matrix, accounts for tumor expansion. A common salient feature of leiomyomas is their responsiveness to steroid hormones, thus providing an opportunity for intervention. A comprehensive search of PUBMED was conducted to identify peer-reviewed literature published since 1980 pertinent to the roles of steroid hormones and somatic stem cells in leiomyoma, including literature on therapeutics that target steroid hormone action in leiomyoma. Reviewed articles were restricted to English language only. Studies in both animals and humans were reviewed for the manuscript. Estrogen stimulates the growth of leiomyomas, which are exposed to this hormone not only through ovarian steroidogenesis, but also through local conversion of androgens by aromatase within the tumors themselves. The primary action of estrogen, together with its receptor estrogen receptor α (ERα), is likely mediated via induction of progesterone receptor (PR) expression, thereby allowing leiomyoma responsiveness to progesterone. Progesterone has been shown to stimulate the growth of leiomyoma through a set of key genes that regulate both apoptosis and proliferation. Given these findings, aromatase inhibitors and antiprogestins have been developed for the treatment of leiomyoma, but neither treatment results in complete regression of leiomyoma, and tumors recur after treatment is stopped. Recently, distinct cell populations were discovered in leiomyomas; a small population showed stem-progenitor cell properties, and

  6. Acacetin enhances the therapeutic efficacy of doxorubicin in non-small-cell lung carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Reenu Punia

    Full Text Available Anthracyclines are efficient and potent agents to treat broad range of cancers but cytotoxicity induced by them limits their use in therapeutics. Use of plant-derived agents help to prevent or delay the process of cancer progression and their combination increases the anti-cancer potential of mainstream compound. However, multidrug resistance is major cause of treatment failure in cancer patients.In this study, combination treatments of fisetin or acacetin with doxorubicin were explored for their potential synergistic effect on non-small-cell lung carcinoma (NSCLC cells.During this study, NSCLC model cell lines A549 and H1299 were used to determine the combinatorial effect of phytochemicals namly acacetin and fisetin with doxorubicin.The effects of individual compounds and their combination on cell viability, clonogenic potential and cell cycle progression were studied. Efflux of doxorubicin was measured by spectrofluorophotometer, whereas accumulation inside the cells was analyzed by flow cytometry and confocal microscopy. Expression of MDR1 was checked by semi-quantitative PCR.The results showed that the cell viability of A549 and H1299 cells were significantly decreased in time- and dose-dependent manner, although A549 cells showed more sensitivity toward doxorubicin than H1299 cells. Mostly, combination of doxorubicin showed good synergy with acacetin in both the cell lines whereas, fisetin exerted synergistic effect only at 72 h of treatment in H1299 cells. Acacetin with doxorubicin caused G2/M arrest by downregulating CDK-cyclin complex in A549 cells. Acacetin-doxorubicin combination decreased the clonogenic potential of A549 and H1299 cells upto 82% and 59%, respectively, as compared to control. Acacetin also decreased efflux of doxorubicin by 59% after 30 mins of exposure to A549 cells and further increased accumulation of doxorubicin inside the cells upto 55% in 2 h. The modulatory effect of acacetin-doxorubicin combination on

  7. Participatory Action Research with therapeutic arts practitioners : Research capacity building in a pediatric hospital

    NARCIS (Netherlands)

    Lind, Candace; Cantell, Marja; Baggott, Sandy; Houde, Marc; Coupal, Stephanie

    2015-01-01

    The therapeutic arts (TA) encompass a vast area of practices including art, music, drama, dance, and horticultural therapy in multiple settings. However, TA often lack recognition in hospital settings and may be viewed as expendable programming. Credibility and visibility obtained through research

  8. Cuban experience with the therapeutic use of adult stem cells

    International Nuclear Information System (INIS)

    Hernandez Ramirez, Porfirio; Alfonso Simon, Amel; Aparicio Suarez, Jose L

    2011-01-01

    The basic and clinical researches carried out during past years on the stem cells and its therapeutic possibilities are at present times, one of the most interesting subjects of the contemporaneous medicine. There are advances in the study and application of adult stem cells showing remarkable advantages on the embryonic ones, since its handling is more simple, economic and they are obtained from the own subject to be treated. For the introduction in Cuba of the regenerative cellular therapy in the Institute of Hematology and Immunology the cellular sources selected were the adult stem cells derived from bone marrow and the mobilized ones to the peripheral blood. To make easy the expansion of treatment to other hospital centers, authors standardized a technique for the mobilization of the hematopoietic stem cells to peripheral blood using a granulocyte colony-stimulating factor (Filgrastim, of national production) developing a simple, economic and more tolerable method for patients. In this way, the cellular therapy has been expanded to 6 Cuban provinces and until April, 2009 562 cases with autologous adult stem cells transplant have been treated, from which the 81.7% to correspond to patients presenting with Angiology diseases with a significant reduction of major amputations. Also, the results have been very promising in the bone lesions and periodontal processes among other diseases treated. The results obtained until now may be considered as a new achievement of revolutionary science and of our national health systems and of science and technique. The method used is an economic and feasible procedure for the institutions with scarce resources

  9. Therapeutic limitations in tumor-specific CD8+ memory T cell engraftment

    International Nuclear Information System (INIS)

    Bathe, Oliver F; Dalyot-Herman, Nava; Malek, Thomas R

    2003-01-01

    Adoptive immunotherapy with cytotoxic T lymphocytes (CTL) represents an alternative approach to treating solid tumors. Ideally, this would confer long-term protection against tumor. We previously demonstrated that in vitro-generated tumor-specific CTL from the ovalbumin (OVA)-specific OT-I T cell receptor transgenic mouse persisted long after adoptive transfer as memory T cells. When recipient mice were challenged with the OVA-expressing E.G7 thymoma, tumor growth was delayed and sometimes prevented. The reasons for therapeutic failures were not clear. OT-I CTL were adoptively transferred to C57BL/6 mice 21 – 28 days prior to tumor challenge. At this time, the donor cells had the phenotypical and functional characteristics of memory CD8+ T cells. Recipients which developed tumor despite adoptive immunotherapy were analyzed to evaluate the reason(s) for therapeutic failure. Dose-response studies demonstrated that the degree of tumor protection was directly proportional to the number of OT-I CTL adoptively transferred. At a low dose of OT-I CTL, therapeutic failure was attributed to insufficient numbers of OT-I T cells that persisted in vivo, rather than mechanisms that actively suppressed or anergized the OT-I T cells. In recipients of high numbers of OT-I CTL, the E.G7 tumor that developed was shown to be resistant to fresh OT-I CTL when examined ex vivo. Furthermore, these same tumor cells no longer secreted a detectable level of OVA. In this case, resistance to immunotherapy was secondary to selection of clones of E.G7 that expressed a lower level of tumor antigen. Memory engraftment with tumor-specific CTL provides long-term protection against tumor. However, there are several limitations to this immunotherapeutic strategy, especially when targeting a single antigen. This study illustrates the importance of administering large numbers of effectors to engraft sufficiently efficacious immunologic memory. It also demonstrates the importance of targeting several

  10. Bone Marrow Stem Cell Derived Paracrine Factors for Regenerative Medicine: Current Perspectives and Therapeutic Potential

    Directory of Open Access Journals (Sweden)

    Tom J. Burdon

    2011-01-01

    Full Text Available During the past several years, there has been intense research in the field of bone marrow-derived stem cell (BMSC therapy to facilitate its translation into clinical setting. Although a lot has been accomplished, plenty of challenges lie ahead. Furthermore, there is a growing body of evidence showing that administration of BMSC-derived conditioned media (BMSC-CM can recapitulate the beneficial effects observed after stem cell therapy. BMSCs produce a wide range of cytokines and chemokines that have, until now, shown extensive therapeutic potential. These paracrine mechanisms could be as diverse as stimulating receptor-mediated survival pathways, inducing stem cell homing and differentiation or regulating the anti-inflammatory effects in wounded areas. The current review reflects the rapid shift of interest from BMSC to BMSC-CM to alleviate many logistical and technical issues regarding cell therapy and evaluates its future potential as an effective regenerative therapy.

  11. Strategy to prime the host and cells to augment therapeutic efficacy of progenitor cells for patients with myocardial infarction

    Directory of Open Access Journals (Sweden)

    Jeehoon Kang

    2016-11-01

    Full Text Available Cell therapy in myocardial infarction (MI is an innovative strategy that is regarded as a rescue therapy to repair the damaged myocardium and to promote neovascularization for the ischemic border zone. Among several stem cell sources for this purpose, autologous progenitors from bone marrow or peripheral blood would be the most feasible and safest cell-source. Despite the theoretical benefit of cell therapy, this method is not widely adopted in the actual clinical practice due to its low therapeutic efficacy. Various methods have been used to augment the efficacy of cell therapy in MI, such as using different source of progenitors, genetic manipulation of cells, or priming of the cells or hosts (patients with agents. Among these methods, the strategy to augment the therapeutic efficacy of the autologous peripheral blood mononuclear cells by priming agents may be the most feasible and the safest method that can be applied directly to the clinic. In this review, we will discuss the current status and future directions of priming peripheral blood mononuclear cells or patients, as for cell therapy of MI.

  12. Therapeutic Potential, Challenges and Future Perspective of Cancer Stem Cells in Translational Oncology: A Critical Review.

    Science.gov (United States)

    Shukla, Gaurav; Khera, Harvinder Kour; Srivastava, Amit Kumar; Khare, Piush; Patidar, Rahul; Saxena, Rajiv

    2017-01-01

    Stem cell research is a rapidly developing field that offers effective treatment for a variety of malignant and non-malignant diseases. Stem cell is a regenerative medicine associated with the replacement, repair, and restoration of injured tissue. Stem cell research is a promising field having maximum therapeutic potential. Cancer stem cells (CSCs) are the cells within the tumor that posses capacity of selfrenewal and have a root cause for the failure of traditional therapies leading to re-occurrence of cancer. CSCs have been identified in blood, breast, brain, and colon cancer. Traditional therapies target only fast growing tumor mass, but not slow-dividing cancer stem cells. It has been shown that embryonic pathways such as Wnt, Hedgehog and Notch, control self-renewal capacity and involved in cancer stem cell maintenance. Targeting of these pathways may be effective in eradicating cancer stem cells and preventing chemotherapy and radiotherapy resistance. Targeting CSCs has become one of the most effective approaches to improve the cancer survival by eradicating the main root cause of cancer. The present review will address, in brief, the importance of cancer stem cells in targeting cancer as better and effective treatment along with a concluding outlook on the scope and challenges in the implication of cancer stem cells in translational oncology. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Human cloning, stem cell research. An Islamic perspective.

    Science.gov (United States)

    Al-Aqeel, Aida I

    2009-12-01

    The rapidly changing technologies that involve human subjects raise complex ethical, legal, social, and religious issues. Recent advances in the field of cloning and stem cell research have introduced new hopes for the treatment of serious diseases. But this promise has raised many complex questions. This field causes debate and challenge, not only among scientists but also among ethicists, religious scholars, governments, and politicians. There is no consensus on the morality of human cloning, even within specific religious traditions. In countries in which religion has a strong influence on political decision making, the moral status of the human embryo is at the center of the debate. Because of the inevitable consequences of reproductive cloning, it is prohibited in Islam. However, stem cell research for therapeutic purposes is permissible with full consideration, and all possible precautions in the pre-ensoulment stages of early fetus development, if the source is legitimate.

  14. A Survey of Italian Physicians' Opinion about Stem Cells Research: What Doctors Prefer and What the Law Requires

    Directory of Open Access Journals (Sweden)

    Paola Frati

    2014-01-01

    Full Text Available To evaluate the Italian physicians' knowledge/information level about the therapeutic potential of stem cells, the research choice between embryonic and cordonal stem cells, and the preference between autologous and heterologous storage of cordonal stem cells, we performed a national survey. The questionnaire—distributed to 3361 physicians—involved physicians of different religious orientations and of different medical specialities. Most of the physicians involved (67% were Catholics, and the majority were gynaecologists and paediatricians (43% who are mainly in charge to inform future mothers about the possibility of cordonal stem cells conservation. The majority of the physicians interviewed do not have specific knowledge about stem cells (59%, most of them having only generic information (92%. The largest part of physicians prefer to use umbilical cord blood cells rather than embryonic stem cells. Nevertheless, a large percentage of physicians were in favour of embryo research, especially when embryos are supernumerary (44% versus 34%. Eighty-seven % of the physicians interviewed proved to have a general knowledge about stem cells and believe in their therapeutic potential. They prefer research on cordonal stem cells rather than on embryo stem cells. Although they are in favour of heterologous stem cells donation, they still prefer cryopreservation for personal use.

  15. Psychiatric therapeutic applications of virtual reality technology (VRT): research prospectus and phenomenological critique.

    Science.gov (United States)

    Bloom, R W

    1997-01-01

    There is theoretical and empirical research supporting the hypothesis that virtual reality technology (VRT) can be efficaciously applied to attenuate the symptoms of mental disorders (Baer, 1996; Rothbaum et al, 1995a, 1995b; Rothbaum et al, 1996.) Yet there is also research suggesting psychiatric therapeutic applications of VRT may induce noxious or unexpected psychological consequences (Kolasinski, 1996; Muscott & Gifford, 1994; Regan & Price, 1994; Regan & Ramsey, 1996; Strickland, 1995.) A prudent conclusion would be to advocate ever more sophisticated studies on psychiatric therapeutic applications of VRT concerning (1) increasing the overall socioadaptiveness of patients, (2) the robustness of moderating, modifying, or other intermediary variables effecting or affecting VRT therapeutic efficacy, and (3) variables, processes, and hypotheses generated from VRT applications in non-psychiatric fields.

  16. Using therapeutic cloning to fight human disease: a conundrum or reality?

    Science.gov (United States)

    Hall, Vanessa J; Stojkovic, Petra; Stojkovic, Miodrag

    2006-07-01

    The development and transplantation of autologous cells derived from nuclear transfer embryonic stem cell (NT-ESC) lines to treat patients suffering from disease has been termed therapeutic cloning. Human NT is still a developing field, with further research required to improve somatic cell NT and human embryonic stem cell differentiation to deliver safe and effective cell replacement therapies. Furthermore, the implications of transferring mitochondrial heteroplasmic cells, which may harbor aberrant epigenetic gene expression profiles, are of concern. The production of human NT-ESC lines also remains plagued by ethical dilemmas, societal concerns, and controversies. Recently, a number of alternate therapeutic strategies have been proposed to circumvent the moral implications surrounding human nuclear transfer. It will be critical to overcome these biological, legislative, and moral restraints to maximize the potential of this therapeutic strategy and to alleviate human disease.

  17. Enhancement of cell-based therapeutic angiogenesis using a novel type of injectable scaffolds of hydroxyapatite-polymer nanocomposite microspheres.

    Directory of Open Access Journals (Sweden)

    Yohei Mima

    Full Text Available BACKGROUND: Clinical trials demonstrate the effectiveness of cell-based therapeutic angiogenesis in patients with severe ischemic diseases; however, their success remains limited. Maintaining transplanted cells in place are expected to augment the cell-based therapeutic angiogenesis. We have reported that nano-hydroxyapatite (HAp coating on medical devices shows marked cell adhesiveness. Using this nanotechnology, HAp-coated poly(l-lactic acid (PLLA microspheres, named nano-scaffold (NS, were generated as a non-biological, biodegradable and injectable cell scaffold. We investigate the effectiveness of NS on cell-based therapeutic angiogenesis. METHODS AND RESULTS: Bone marrow mononuclear cells (BMNC and NS or control PLLA microspheres (LA were intramuscularly co-implanted into mice ischemic hindlimbs. When BMNC derived from enhanced green fluorescent protein (EGFP-transgenic mice were injected into ischemic muscle, the muscle GFP level in NS+BMNC group was approximate fivefold higher than that in BMNC or LA+BMNC groups seven days after operation. Kaplan-Meier analysis demonstrated that NS+BMNC markedly prevented hindlimb necrosis (P<0.05 vs. BMNC or LA+BMNC. NS+BMNC revealed much higher induction of angiogenesis in ischemic tissues and collateral blood flow confirmed by three-dimensional computed tomography angiography than those of BMNC or LA+BMNC groups. NS-enhanced therapeutic angiogenesis and arteriogenesis showed good correlations with increased intramuscular levels of vascular endothelial growth factor and fibroblast growth factor-2. NS co-implantation also prevented apoptotic cell death of transplanted cells, resulting in prolonged cell retention. CONCLUSION: A novel and feasible injectable cell scaffold potentiates cell-based therapeutic angiogenesis, which could be extremely useful for the treatment of severe ischemic disorders.

  18. Identifying and engineering promoters for high level and sustainable therapeutic recombinant protein production in cultured mammalian cells.

    Science.gov (United States)

    Ho, Steven C L; Yang, Yuansheng

    2014-08-01

    Promoters are essential on plasmid vectors to initiate transcription of the transgenes when generating therapeutic recombinant proteins expressing mammalian cell lines. High and sustained levels of gene expression are desired during therapeutic protein production while gene expression is useful for cell engineering. As many finely controlled promoters exhibit cell and product specificity, new promoters need to be identified, optimized and carefully evaluated before use. Suitable promoters can be identified using techniques ranging from simple molecular biology methods to modern high-throughput omics screenings. Promoter engineering is often required after identification to either obtain high and sustained expression or to provide a wider range of gene expression. This review discusses some of the available methods to identify and engineer promoters for therapeutic recombinant protein expression in mammalian cells.

  19. Therapeutic Potential of Invariant Natural Killer T Cells in Autoimmunity

    Directory of Open Access Journals (Sweden)

    Luc Van Kaer

    2018-03-01

    Full Text Available Tolerance against self-antigens is regulated by a variety of cell types with immunoregulatory properties, such as CD1d-restricted invariant natural killer T (iNKT cells. In many experimental models of autoimmunity, iNKT cells promote self-tolerance and protect against autoimmunity. These findings are supported by studies with patients suffering from autoimmune diseases. Based on these studies, the therapeutic potential of iNKT cells in autoimmunity has been explored. Many of these studies have been performed with the potent iNKT cell agonist KRN7000 or its structural variants. These findings have generated promising results in several autoimmune diseases, although mechanisms by which iNKT cells modulate autoimmunity remain incompletely understood. Here, we will review these preclinical studies and discuss the prospects for translating their findings to patients suffering from autoimmune diseases.

  20. Specimen collection for induced pluripotent stem cell research: harmonizing the approach to informed consent.

    Science.gov (United States)

    Lowenthal, Justin; Lipnick, Scott; Rao, Mahendra; Hull, Sara Chandros

    2012-05-01

    Induced pluripotent stem cells (iPSCs) have elicited excitement in both the scientific and ethics communities for their potential to advance basic and translational research. They have been hailed as an alternative to derivation from embryos that provides a virtually unlimited source of pluripotent stem cells for research and therapeutic applications. However, research with iPSCs is ethically complex, uniquely encompassing the concerns associated with genomics, immortalized cell lines, transplantation, human reproduction, and biobanking. Prospective donation of tissue specimens for iPSC research thus requires an approach to informed consent that is constructed for this context. Even in the nascent stages of this field, approaches to informed consent have been variable in ways that threaten the simultaneous goals of protecting donors and safeguarding future research and translation, and investigators are seeking guidance. We address this need by providing concrete recommendations for informed consent that balance the perspectives of a variety of stakeholders. Our work combines analysis of consent form language collected from investigators worldwide with a conceptual balancing of normative ethical concerns, policy precedents, and scientific realities. Our framework asks people to consent prospectively to a broad umbrella of foreseeable research, including future therapeutic applications, with recontact possible in limited circumstances. We argue that the long-term goals of regenerative medicine, interest in sharing iPSC lines, and uncertain landscape of future research all would be served by a framework of ongoing communication with donors. Our approach balances the goals of iPSC and regenerative medicine researchers with the interests of individual research participants.

  1. Engineering Therapeutic T Cells: From Synthetic Biology to Clinical Trials.

    Science.gov (United States)

    Esensten, Jonathan H; Bluestone, Jeffrey A; Lim, Wendell A

    2017-01-24

    Engineered T cells are currently in clinical trials to treat patients with cancer, solid organ transplants, and autoimmune diseases. However, the field is still in its infancy. The design, and manufacturing, of T cell therapies is not standardized and is performed mostly in academic settings by competing groups. Reliable methods to define dose and pharmacokinetics of T cell therapies need to be developed. As of mid-2016, there are no US Food and Drug Administration (FDA)-approved T cell therapeutics on the market, and FDA regulations are only slowly adapting to the new technologies. Further development of engineered T cell therapies requires advances in immunology, synthetic biology, manufacturing processes, and government regulation. In this review, we outline some of these challenges and discuss the contributions that pathologists can make to this emerging field.

  2. Stem cells in degenerative orthopaedic pathologies: effects of aging on therapeutic potential.

    Science.gov (United States)

    Atesok, Kivanc; Fu, Freddie H; Sekiya, Ichiro; Stolzing, Alexandra; Ochi, Mitsuo; Rodeo, Scott A

    2017-02-01

    The purpose of this study was to summarize the current evidence on the use of stem cells in the elderly population with degenerative orthopaedic pathologies and to highlight the pathophysiologic mechanisms behind today's therapeutic challenges in stem cell-based regeneration of destructed tissues in the elderly patients with osteoarthritis (OA), degenerative disc disease (DDD), and tendinopathies. Clinical and basic science studies that report the use of stem cells in the elderly patients with OA, DDD, and tendinopathies were identified using a PubMed search. The studies published in English have been assessed, and the best and most recent evidence was included in the current study. Evidence suggests that, although short-term results regarding the effects of stem cell therapy in degenerative orthopaedic pathologies can be promising, stem cell therapies do not appear to reverse age-related tissue degeneration. Causes of suboptimal outcomes can be attributed to the decrease in the therapeutic potential of aged stem cell populations and the regenerative capacity of these cells, which might be negatively influenced in an aged microenvironment within the degenerated tissues of elderly patients with OA, DDD, and tendinopathies. Clinical protocols guiding the use of stem cells in the elderly patient population are still under development, and high-level randomized controlled trials with long-term outcomes are lacking. Understanding the consequences of age-related changes in stem cell function and responsiveness of the in vivo microenvironment to stem cells is critical when designing cell-based therapies for elderly patients with degenerative orthopaedic pathologies.

  3. Cell-based therapeutic strategies for replacement and preservation in retinal degenerative diseases

    Science.gov (United States)

    Jones, Melissa K.; Lu, Bin; Girman, Sergey; Wang, Shaomei

    2017-01-01

    Cell-based therapeutics offer diverse options for treating retinal degenerative diseases, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP). AMD is characterized by both genetic and environmental risks factors, whereas RP is mainly a monogenic disorder. Though treatments exist for some patients with neovascular AMD, a majority of retinal degenerative patients have no effective therapeutics, thus indicating a need for universal therapies to target diverse patient populations. Two main cell-based mechanistic approaches are being tested in clinical trials. Replacement therapies utilize cell-derived retinal pigment epithelial (RPE) cells to supplant lost or defective host RPE cells. These cells are similar in morphology and function to native RPE cells and can potentially supplant the responsibilities of RPE in vivo. Preservation therapies utilize supportive cells to aid in visual function and photoreceptor preservation partially by neurotrophic mechanisms. The goal of preservation strategies is to halt or slow the progression of disease and maintain remaining visual function. A number of clinical trials are testing the safety of replacement and preservation cell therapies in patients; however, measures of efficacy will need to be further evaluated. In addition, a number of prevailing concerns with regards to the immune-related response, longevity, and functionality of the grafted cells will need to be addressed in future trials. This review will summarize the current status of cell-based preclinical and clinical studies with a focus on replacement and preservation strategies and the obstacles that remain regarding these types of treatments. PMID:28111323

  4. Chromatin Configuration Determines Cell Responses to Hormone Stimuli | Center for Cancer Research

    Science.gov (United States)

    Ever since selective gene expression was established as the central driver of cell behavior, researchers have been working to understand the forces that control gene transcription. Aberrant gene expression can cause or promote many diseases, including cancer, and alterations in gene expression are the goal of many therapeutic agents. Recent work has focused on the potential

  5. [Mantle cell lymphoma: Towards a personalized therapeutic strategy?].

    Science.gov (United States)

    Navarro Matilla, Belén; García-Marco, José A

    2015-06-22

    Mantle cell lymphoma (MCL) is a clinically heterogeneous non-Hodgkin lymphoma with an aggressive clinical behaviour and short survival in some cases and an indolent course in others. Advances in the biology and pathogenesis of MCL have unveiled several genes involved in deregulation of cell cycle checkpoints and the finding of subclonal populations with specific recurrent mutations (p53, ATM, NOTCH2) with an impact on disease progression and refractoriness to treatment. Prognostic stratification helps to distinguish between indolent and aggressive forms of MCL. Currently, younger fit patients benefit from more intensive front line chemotherapy regimens and consolidation with autologous transplantation, while older or frail patients are treated with less intensive regimens and rituximab maintenance. For relapsing disease, the introduction of bortezomib and lenalidomide containing regimens and B-cell receptor pathway inhibitors such as ibrutinib and idelalisib in combination with immunochemotherapy have emerged as therapeutic agents with promising clinical outcomes. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  6. Extracellular vesicles derived from mesenchymal stromal cells: a therapeutic option in respiratory diseases?

    Science.gov (United States)

    Abreu, Soraia C; Weiss, Daniel J; Rocco, Patricia R M

    2016-04-14

    Extracellular vesicles (EVs) are plasma membrane-bound fragments released from several cell types, including mesenchymal stromal cells (MSCs), constitutively or under stimulation. EVs derived from MSCs and other cell types transfer molecules (such as DNA, proteins/peptides, mRNA, microRNA, and lipids) and/or organelles with reparative and anti-inflammatory properties to recipient cells. The paracrine anti-inflammatory effects promoted by MSC-derived EVs have attracted significant interest in the regenerative medicine field, including for potential use in lung injuries. In the present review, we describe the characteristics, biological activities, and mechanisms of action of MSC-derived EVs. We also review the therapeutic potential of EVs as reported in relevant preclinical models of acute and chronic respiratory diseases, such as pneumonia, acute respiratory distress syndrome, asthma, and pulmonary arterial hypertension. Finally, we discuss possible approaches for potentiating the therapeutic effects of MSC-derived EVs so as to enable use of this therapy in clinical practice.

  7. Therapeutic action of taurine on the postirradiation recovery of the yeast cells

    International Nuclear Information System (INIS)

    Benevolenskij, V.N.; Yartsev, E.I.; Novosteltseva, S.D.; Yakovlev, V.G.

    1975-01-01

    It has been shown on X-irradiated Saccharomyces ellipsoides cells that taurine-potassium phosphate applied after the exposure has a therapeutic action, that is, it intensifies the natural process of intracellular dark repair

  8. Benefiting from 'evil': an incipient moral problem in human stem cell research.

    Science.gov (United States)

    Green, Ronald M

    2002-11-01

    When does benefiting from others' wrongdoing effectively make one a moral accomplice in their evil deeds? If stem cell research lives up to its therapeutic promise, this question (which has previously cropped up in debates over fetal tissue research or the use of Nazi research data) is likely to become a central one for opponents of embryo destruction. I argue that benefiting from wrongdoing is prima facie morally wrong under any of three conditions: (1) when the wrongdoing is one's agent; (2) when acceptance of benefit directly encourages the repetition of the wrongful deed (even though no agency relationship is involved); and (3) when acceptance of a benefit legitimates a wrongful practice. I conclude by showing that, because of the ways in which most embryonic stem cell lines come into being, people who oppose embryo destruction may use human embryonic stem cells without incurring moral blame.

  9. Therapeutic cloning: The ethical limits

    International Nuclear Information System (INIS)

    Whittaker, Peter A.

    2005-01-01

    A brief outline of stem cells, stem cell therapy and therapeutic cloning is given. The position of therapeutic cloning with regard to other embryonic manipulations - IVF-based reproduction, embryonic stem formation from IVF embryos and reproductive cloning - is indicated. The main ethically challenging stages in therapeutic cloning are considered to be the nuclear transfer process including the source of eggs for this and the destruction of an embryo to provide stem cells for therapeutic use. The extremely polarised nature of the debate regarding the status of an early human embryo is noted, and some potential alternative strategies for preparing immunocompatible pluripotent stem cells are indicated

  10. Engineering Multi-Walled Carbon Nanotube Therapeutic Bionanofluids to Selectively Target Papillary Thyroid Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Idit Dotan

    Full Text Available The incidence of papillary thyroid carcinoma (PTC has risen steadily over the past few decades as well as the recurrence rates. It has been proposed that targeted ablative physical therapy could be a therapeutic modality in thyroid cancer. Targeted bio-affinity functionalized multi-walled carbon nanotubes (BioNanofluid act locally, to efficiently convert external light energy to heat thereby specifically killing cancer cells. This may represent a promising new cancer therapeutic modality, advancing beyond conventional laser ablation and other nanoparticle approaches.Thyroid Stimulating Hormone Receptor (TSHR was selected as a target for PTC cells, due to its wide expression. Either TSHR antibodies or Thyrogen or purified TSH (Thyrotropin were chemically conjugated to our functionalized Bionanofluid. A diode laser system (532 nm was used to illuminate a PTC cell line for set exposure times. Cell death was assessed using Trypan Blue staining.TSHR-targeted BioNanofluids were capable of selectively ablating BCPAP, a TSHR-positive PTC cell line, while not TSHR-null NSC-34 cells. We determined that a 2:1 BCPAP cell:α-TSHR-BioNanofluid conjugate ratio and a 30 second laser exposure killed approximately 60% of the BCPAP cells, while 65% and >70% of cells were ablated using Thyrotropin- and Thyrogen-BioNanofluid conjugates, respectively. Furthermore, minimal non-targeted killing was observed using selective controls.A BioNanofluid platform offering a potential therapeutic path for papillary thyroid cancer has been investigated, with our in vitro results suggesting the development of a potent and rapid method of selective cancer cell killing. Therefore, BioNanofluid treatment emphasizes the need for new technology to treat patients with local recurrence and metastatic disease who are currently undergoing either re-operative neck explorations, repeated administration of radioactive iodine and as a last resort external beam radiation or chemotherapy, with

  11. Therapeutic Misconception in Psychiatry Research: A Systematic Review.

    Science.gov (United States)

    Thong, Ivan Sk; Foo, Meng Yee; Sum, Min Yi; Capps, Benjamin; Lee, Tih-Shih; Ho, Calvin; Sim, Kang

    2016-02-29

    Therapeutic misconception (TM) denotes the phenomenon in which research subjects conflate research purpose, protocols and procedures with clinical treatment. We examined the prevalence, contributory factors, clinical associations, impact, and collated solutions on TM within psychiatric research, and made suggestions going ahead. Literature search for relevant empirical research papers was conducted until February 2015. Eighty-eight reports were extracted, of which 31 were selected, summarised into different headings for discussion of implications and collated solutions of TM. We found variable and high rates of TM (ranging from 12.5% to 86%) in some psychiatry research populations. Contributory factors to TM included perceived medical roles of researchers, media, research setting and subject factors. Greater TM in affective, neurodevelopmental and psychotic spectrum conditions were associated with demographic variables (such as lower education, increased age), clinical factors (such as poor insight, cognitive deficits, increased symptoms, poorer self-rated quality of health), and social functioning (such as decreased independence). Inattention to TM may lead to frustration, negative impression and abandonment of participation in psychiatry research. Strategies such as the employment of a neutral educator during the informed consent process and education modules may be effective in addressing TM. Further research is warranted to examine the different TM facets, specific clinical correlates and more effective management strategies.

  12. IMPROVING THE REPORTING OF THERAPEUTIC EXERCISE INTERVENTIONS IN REHABILITATION RESEARCH.

    Science.gov (United States)

    Page, Phil; Hoogenboom, Barb; Voight, Michael

    2017-04-01

    The foundation of evidence-based practice lies in clinical research, which is based on the utilization of the scientific method. The scientific method requires that all details of the experiment be provided in publications to support replication of the study in order to evaluate and validate the results. More importantly, clinical research can only be translated into practice when researchers provide explicit details of the study. Too often, rehabilitation exercise intervention studies lack the appropriate detail to allow clinicians to replicate the exercise protocol in their patient populations. Therefore, the purpose of this clinical commentary is to provide guidelines for optimal reporting of therapeutic exercise interventions in rehabilitation research. 5.

  13. Nanoparticle-labeled stem cells: a novel therapeutic vehicle

    Directory of Open Access Journals (Sweden)

    Abir O El-Sadik

    2010-03-01

    Full Text Available Abir O El-Sadik1, Afaf El-Ansary2, Sherif M Sabry31Stem Cell Unit, Anatomy Department, College of Medicine, Health Science Colleges; 2Biochemistry Department, Science College, King Saud University; 3Anatomy Department, Faculty of Medicine, Cairo University, Cairo, EgyptAbstract: Nanotechnology has been described as a general purpose technology. It has already generated a range of inventions and innovations. Development of nanotechnology will provide clinical medicine with a range of new diagnostic and therapeutic opportunities such as medical imaging, medical diagnosis, drug delivery, and cancer detection and management. Nanoparticles such as manganese, polystyrene, silica, titanium oxide, gold, silver, carbon, quantum dots, and iron oxide have received enormous attention in the creation of new types of analytical tools for biotechnology and life sciences. Labeling of stem cells with nanoparticles overcame the problems in homing and fixing stem cells to their desired site and guiding extension of stem cells to specific directions. Although the biologic effects of some nanoparticles have already been assessed, information on toxicity and possible mechanisms of various particle types remains inadequate. The aim of this review is to give an overview of the mechanisms of internalization and distribution of nanoparticles inside stem cells, as well as the influence of different types of nanoparticles on stem cell viability, proliferation, differentiation, and cytotoxicity, and to assess the role of nanoparticles in tracking the fate of stem cells used in tissue regeneration.Keywords: nanoparticles, stem cells, uptake, differentiation, cytotoxicity, tracking

  14. Applications of inorganic nanoparticles as therapeutic agents

    Science.gov (United States)

    Kim, Taeho; Hyeon, Taeghwan

    2014-01-01

    During the last decade, various functional nanostructured materials with interesting optical, magnetic, mechanical and chemical properties have been extensively applied to biomedical areas including imaging, diagnosis and therapy. In therapeutics, most research has focused on the application of nanoparticles as potential delivery vehicles for drugs and genes, because nanoparticles in the size range of 2-100 nm can interact with biological systems at the molecular level, and allow targeted delivery and passage through biological barriers. Recent investigations have even revealed that several kinds of nanomaterials are intrinsically therapeutic. Not only can they passively interact with cells, but they can also actively mediate molecular processes to regulate cell functions. This can be seen in the treatment of cancer via anti-angiogenic mechanisms as well as the treatment of neurodegenerative diseases by effectively controlling oxidative stress. This review will present recent applications of inorganic nanoparticles as therapeutic agents in the treatment of disease.

  15. Cell therapeutics to treat diseases of the retina

    Directory of Open Access Journals (Sweden)

    Natarajan S

    2008-11-01

    Full Text Available Background: The adult Bone Marrow Stem Cells (BMSCs have distinct advantages over the other types of stem cells. They are multipotent, can be stored for upto 10 years and considered to be one of the best sources of hematopoietic and mesenchymal stem cells in an adult body. Genetically inherited diseases such as Retinitis Pigmentosa and Degenerative diseases such as Age Related Macular Degeneration remain unsolved as no definitive treatment is available to repair the damages caused to the RPE and Photoreceptors as of now. In this scenario, the technique of Bone Marrow aspiration & isolation of Mono Nucleated Cells (MNCs & intra-vitreal injection of a very small volume of MNCs in human retinal disorders has been standardized and is safe and feasible for human studies (Mohanty et al and autotransplantation of RPEs from periphery to affected area are underpractice(Coffey et al. In this study we report our research work on different approaches to the above diseases using cell therapeuticsStudy 1 Materials & methods: Ciliary Pigment Epithelium was harvested from donor eyes from Aditya Jyot Eye Hospital, Mumbai and was taken to and grown at NCRM lab. The cells were grown in the earlier reported methodology of Brenda et al (Science 2004. Results: The CPE derived Retinal stem cells grew well in the lab. However, the practical difficulties of harvesting the same in patients limited our further steps in this study. Study II:? Materials & methods: Cadaver eye RPE cells were harvested and grown using polymer scaffolds after transporting them over 6 to 12 Hrs. The RPEs were grown on conventional methods and in polymer scaffolds and were subjected to RT-PCR. Results: Human RPEs were able to grow without amniotic membrane and the same was proven by RT-PCR. This would make it possible for the peripheral RPEs taken from patients to be stored and later expanded and used for replacing the diseased cells of the central portion of the retina in future, without having

  16. The controversial origin of pericytes during angiogenesis - Implications for cell-based therapeutic angiogenesis and cell-based therapies.

    Science.gov (United States)

    Blocki, Anna; Beyer, Sebastian; Jung, Friedrich; Raghunath, Michael

    2018-01-01

    Pericytes reside within the basement membrane of small vessels and are often in direct cellular contact with endothelial cells, fulfilling important functions during blood vessel formation and homeostasis. Recently, these pericytes have been also identified as mesenchymal stem cells. Mesenchymal stem cells, and especially their specialized subpopulation of pericytes, represent promising candidates for therapeutic angiogenesis applications, and have already been widely applied in pre-clinical and clinical trials. However, cell-based therapies of ischemic diseases (especially of myocardial infarction) have not resulted in significant long-term improvement. Interestingly, pericytes from a hematopoietic origin were observed in embryonic skin and a pericyte sub-population expressing leukocyte and monocyte markers was described during adult angiogenesis in vivo. Since mesenchymal stem cells do not express hematopoietic markers, the latter cell type might represent an alternative pericyte population relevant to angiogenesis. Therefore, we sourced blood-derived angiogenic cells (BDACs) from monocytes that closely resembled hematopoietic pericytes, which had only been observed in vivo thus far. BDACs displayed many pericytic features and exhibited enhanced revascularization and functional tissue regeneration in a pre-clinical model of critical limb ischemia. Comparison between BDACs and mesenchymal pericytes indicated that BDACs (while resembling hematopoietic pericytes) enhanced early stages of angiogenesis, such as endothelial cell sprouting. In contrast, mesenchymal pericytes were responsible for blood vessel maturation and homeostasis, while reducing endothelial sprouting.Since the formation of new blood vessels is crucial during therapeutic angiogenesis or during integration of implants into the host tissue, hematopoietic pericytes (and therefore BDACs) might offer an advantageous addition or even an alternative for cell-based therapies.

  17. WE-FG-BRA-04: A Portable Confocal Microscope to Image Live Cell Damage Response Induced by Therapeutic Radiation

    Energy Technology Data Exchange (ETDEWEB)

    McFadden, C; Flint, D; Grosshans, D; Sawakuchi, G [The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Sadetaporn, D [The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Rice University, Houston, TX (United States); Asaithamby, A [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: To construct a custom and portable fluorescence confocal laser-scanning microscope (FCLSM) that can be placed in the path of therapeutic radiation beams to study real-time radiation-induced damage response in live cells. Methods: We designed and constructed a portable FCLSM with three laser diodes for excitation (405, 488, and 635 nm). An objective lens focuses the excitation light and collects fluorescence from the sample. A pair of galvanometer mirrors scans/collects the laser beam/fluorescence along the focal plane (x/y-directions). A stepper motor stage scans in the axial direction and positions the x/y of the image field. Barrier filters and dichroic mirrors are used to route the spectral emission bands to the appropriate photodetector. An avalanche photodiode collects near-infrared fluorescence; a photodiode collects back-reflected 635 nm light; and a photomultiplier tube collects green fluorescence in the range of eGFP/eYFP. A 200-µm diameter pinhole was used to implement the confocal geometry for near-infrared and red channels and a 150-µm diameter pinhole for the green channel. Data acquisition and system control were achieved using a high-throughput data acquisition card. In-house software developed in LabVIEW was used to control the hardware, collect data from the photodetectors and reconstruct the confocal images. Results: 6 frames/s can be acquired for a 25 µm{sup 2} (128×128 pixels) field of view, visualizing the entire volume of the cell nucleus (∼10 µm depth) in <10 s. To demonstrate the usefulness of our FCLSM, we imaged gold nanoshells in live cells, radiation-induced damage in fibrosarcoma cells expressing eGFP tagged to a DNA repair protein, and neurons expressing eGFP. The system can also image particle tracks in fluorescent nuclear track detectors. Conclusion: We developed a versatile and portable FCLSM that allows radiobiology studies in live cells exposed to therapeutic radiation. The FCLSM can be placed in any vertical beam

  18. WE-FG-BRA-04: A Portable Confocal Microscope to Image Live Cell Damage Response Induced by Therapeutic Radiation

    International Nuclear Information System (INIS)

    McFadden, C; Flint, D; Grosshans, D; Sawakuchi, G; Sadetaporn, D; Asaithamby, A

    2016-01-01

    Purpose: To construct a custom and portable fluorescence confocal laser-scanning microscope (FCLSM) that can be placed in the path of therapeutic radiation beams to study real-time radiation-induced damage response in live cells. Methods: We designed and constructed a portable FCLSM with three laser diodes for excitation (405, 488, and 635 nm). An objective lens focuses the excitation light and collects fluorescence from the sample. A pair of galvanometer mirrors scans/collects the laser beam/fluorescence along the focal plane (x/y-directions). A stepper motor stage scans in the axial direction and positions the x/y of the image field. Barrier filters and dichroic mirrors are used to route the spectral emission bands to the appropriate photodetector. An avalanche photodiode collects near-infrared fluorescence; a photodiode collects back-reflected 635 nm light; and a photomultiplier tube collects green fluorescence in the range of eGFP/eYFP. A 200-µm diameter pinhole was used to implement the confocal geometry for near-infrared and red channels and a 150-µm diameter pinhole for the green channel. Data acquisition and system control were achieved using a high-throughput data acquisition card. In-house software developed in LabVIEW was used to control the hardware, collect data from the photodetectors and reconstruct the confocal images. Results: 6 frames/s can be acquired for a 25 µm 2 (128×128 pixels) field of view, visualizing the entire volume of the cell nucleus (∼10 µm depth) in <10 s. To demonstrate the usefulness of our FCLSM, we imaged gold nanoshells in live cells, radiation-induced damage in fibrosarcoma cells expressing eGFP tagged to a DNA repair protein, and neurons expressing eGFP. The system can also image particle tracks in fluorescent nuclear track detectors. Conclusion: We developed a versatile and portable FCLSM that allows radiobiology studies in live cells exposed to therapeutic radiation. The FCLSM can be placed in any vertical beam line

  19. Self-focusing therapeutic gene delivery with intelligent gene vector swarms: intra-swarm signalling through receptor transgene expression in targeted cells.

    Science.gov (United States)

    Tolmachov, Oleg E

    2015-01-01

    Gene delivery in vivo that is tightly focused on the intended target cells is essential to maximize the benefits of gene therapy and to reduce unwanted side-effects. Cell surface markers are immediately available for probing by therapeutic gene vectors and are often used to direct gene transfer with these vectors to specific target cell populations. However, it is not unusual for the choice of available extra-cellular markers to be too scarce to provide a reliable definition of the desired therapeutically relevant set of target cells. Therefore, interrogation of intra-cellular determinants of cell-specificity, such as tissue-specific transcription factors, can be vital in order to provide detailed cell-guiding information to gene vector particles. An important improvement in cell-specific gene delivery can be achieved through auto-buildup in vector homing efficiency using intelligent 'self-focusing' of swarms of vector particles on target cells. Vector self-focusing was previously suggested to rely on the release of diffusible chemo-attractants after a successful target-specific hit by 'scout' vector particles. I hypothesize that intelligent self-focusing behaviour of swarms of cell-targeted therapeutic gene vectors can be accomplished without the employment of difficult-to-use diffusible chemo-attractants, instead relying on the intra-swarm signalling through cells expressing a non-diffusible extra-cellular receptor for the gene vectors. In the proposed model, cell-guiding information is gathered by the 'scout' gene vector particles, which: (1) attach to a variety of cells via a weakly binding (low affinity) receptor; (2) successfully facilitate gene transfer into these cells; (3) query intra-cellular determinants of cell-specificity with their transgene expression control elements and (4) direct the cell-specific biosynthesis of a vector-encoded strongly binding (high affinity) cell-surface receptor. Free members of the vector swarm loaded with therapeutic cargo

  20. Therapeutic potential and challenges of Natural killer cells in treatment of solid tumors

    Directory of Open Access Journals (Sweden)

    Andrea eGras Navarro

    2015-04-01

    Full Text Available Natural killer (NK cells are innate lymphoid cells that hold tremendous potential for effective immunotherapy for a broad range of cancers. Due to the mode of NK cell killing requiring one–to-one target engagement and site directed release of cytolytic granules, the therapeutic potential of NK cells has been most extensively explored in hematological malignancies. However, their ability to precisely kill antibody coated cells, cancer stem cells (CSCs and genotoxically altered cells, while maintaining tolerance to healthy cells makes them appealing therapeutic effectors for all cancer forms, including metastases. Due to their release of pro-inflammatory cytokines, NK cells may potently reverse the anti-inflammatory tumor microenvironment (TME and augment adaptive immune responses by promoting differentiation, activation and/ or recruitment of accessory immune cells to sites of malignancy. Nevertheless, integrated and coordinated mechanisms of subversion of NK cell activity against the tumor and its microenvironment exist. Although our understanding of the receptor ligand interactions that regulate NK cell functionality has evolved remarkably, the diversity of ligands and receptors is complex, as is their mechanistic foundations in regulating NK cell function. In this article, we review the literature and highlight how the TME manipulates the NK cell phenotypes, genotypes and tropism to evade tumor recognition and elimination. We discuss counter strategies that may be adopted to augment the efficacy of NK cell anti-tumor surveillance, the clinical trials that have been undertaken so far in solid malignancies, critically weighing the challenges and opportunities with this approach.

  1. The Impact of CRISPR/Cas9 Technology on Cardiac Research: From Disease Modelling to Therapeutic Approaches

    Science.gov (United States)

    Pramstaller, Peter P.; Hicks, Andrew A.; Rossini, Alessandra

    2017-01-01

    Genome-editing technology has emerged as a powerful method that enables the generation of genetically modified cells and organisms necessary to elucidate gene function and mechanisms of human diseases. The clustered regularly interspaced short palindromic repeats- (CRISPR-) associated 9 (Cas9) system has rapidly become one of the most popular approaches for genome editing in basic biomedical research over recent years because of its simplicity and adaptability. CRISPR/Cas9 genome editing has been used to correct DNA mutations ranging from a single base pair to large deletions in both in vitro and in vivo model systems. CRISPR/Cas9 has been used to increase the understanding of many aspects of cardiovascular disorders, including lipid metabolism, electrophysiology and genetic inheritance. The CRISPR/Cas9 technology has been proven to be effective in creating gene knockout (KO) or knockin in human cells and is particularly useful for editing induced pluripotent stem cells (iPSCs). Despite these progresses, some biological, technical, and ethical issues are limiting the therapeutic potential of genome editing in cardiovascular diseases. This review will focus on various applications of CRISPR/Cas9 genome editing in the cardiovascular field, for both disease research and the prospect of in vivo genome-editing therapies in the future. PMID:29434642

  2. Stem Cell Research: A Novel Boulevard towards Improved Bovine Mastitis Management

    Science.gov (United States)

    Sharma, Neelesh; Jeong, Dong Kee

    2013-01-01

    The dairy industry is a multi-billion dollar industry catering the nutritional needs of all age groups globally through the supply of milk. Clinical mastitis has a severe impact on udder tissue and is also an animal welfare issue. Moreover, it significantly reduces animal value and milk production. Mammary tissue damage reduces the number and activity of epithelial cells and consequently contributes to decreased milk production. The high incidence, low cure rate of this highly economic and sometimes deadly disease is an alarming for dairy sector as well as policy makers. Bovine mammary epithelial cells (MECs) and their stem cells are very important in milk production and bioengineering. The adult mammary epithelium consists of two main cell types; an inner layer of luminal epithelial cells, which produce the milk during lactation, and an outer layer of myoepithelial cells resting on a basement membrane, which are responsible for pushing the milk through the ductal network to the teat cistern. Inner layer of columner/luminal cells of bovine MECs, is characterized by cytokeratin18, 19 (CK18, CK19) and outer layer such as myoepithelial cells which are characterized by CK14, α-smooth muscle actin (α-SMA) and p63. Much work has been done in mouse and human, on mammary gland stem cell research, particularly in cancer therapy, but stem cell research in bovine is still in its infancy. Such stem/progenitor cell discoveries in human and mouse mammary gland bring some hope for application in bovines. These progenitors may be therapeutically adopted to correct the structural/cytological defects in the bovine udder due to mastitis. In the present review we focused on various kinds of stem/progenitor cells which can have therapeutic utility and their possibilities to use as a potential stem cell therapy in the management of bovine post-mastitis damage in orders to restore milk production. The possibilities of bovine mammary stem cell therapy offers significant potential for

  3. Therapeutic Ultrasound Research And Development From An Industrial And Commercial Perspective

    International Nuclear Information System (INIS)

    Seip, Ralf

    2009-01-01

    The objective of this paper is to share the challenges and opportunities as viewed from an industrial and commercial perspective that one encounters when performing therapeutic ultrasound research, development, manufacturing, and sales activities. Research in therapeutic ultrasound has become an active field in the last decade, spurred by technological advances in the areas of transducer materials, control electronics, treatment monitoring techniques, an ever increasing number of clinical applications, and private and governmental funding opportunities. The development of devices and methods utilizing therapeutic ultrasound to cure or manage disease is being pursued by startup companies and large established companies alike, driven by the promise of profiting at many levels from this new and disruptive technology. Widespread penetration within the clinical community remains elusive, with current approaches focusing on very specific applications and niche markets. Challenges include difficulties in securing capital to develop the technology and undertake costly clinical trials, a regulatory landscape that varies from country to country, resistance from established practitioners, and difficulties in assembling a team with the right mix of technological savvy and business expertise. Success is possible and increasing, however, as evidenced by several companies, initiatives, and products with measurable benefits to the patient, clinician, and companies alike.

  4. Therapeutic Ultrasound Research And Development From An Industrial And Commercial Perspective

    Science.gov (United States)

    Seip, Ralf

    2009-04-01

    The objective of this paper is to share the challenges and opportunities as viewed from an industrial and commercial perspective that one encounters when performing therapeutic ultrasound research, development, manufacturing, and sales activities. Research in therapeutic ultrasound has become an active field in the last decade, spurred by technological advances in the areas of transducer materials, control electronics, treatment monitoring techniques, an ever increasing number of clinical applications, and private and governmental funding opportunities. The development of devices and methods utilizing therapeutic ultrasound to cure or manage disease is being pursued by startup companies and large established companies alike, driven by the promise of profiting at many levels from this new and disruptive technology. Widespread penetration within the clinical community remains elusive, with current approaches focusing on very specific applications and niche markets. Challenges include difficulties in securing capital to develop the technology and undertake costly clinical trials, a regulatory landscape that varies from country to country, resistance from established practitioners, and difficulties in assembling a team with the right mix of technological savvy and business expertise. Success is possible and increasing, however, as evidenced by several companies, initiatives, and products with measurable benefits to the patient, clinician, and companies alike.

  5. Achieving the Promise of Therapeutic Extracellular Vesicles: The Devil is in Details of Therapeutic Loading.

    Science.gov (United States)

    Sutaria, Dhruvitkumar S; Badawi, Mohamed; Phelps, Mitch A; Schmittgen, Thomas D

    2017-05-01

    Extracellular vesicles (EVs) represent a class of cell secreted organelles which naturally contain biomolecular cargo such as miRNA, mRNA and proteins. EVs mediate intercellular communication, enabling the transfer of functional nucleic acids from the cell of origin to the recipient cells. In addition, EVs make an attractive delivery vehicle for therapeutics owing to their increased stability in circulation, biocompatibility, low immunogenicity and toxicity profiles. EVs can also be engineered to display targeting moieties on their surfaces which enables targeting to desired tissues, organs or cells. While much has been learned on the role of EVs as cell communicators, the field of therapeutic EV application is currently under development. Critical to the future success of EV delivery system is the description of methods by which therapeutics can be successfully and efficiently loaded within the EVs. Two methods of loading of EVs with therapeutic cargo exist, endogenous and exogenous loading. We have therefore focused this review on describing the various published approaches for loading EVs with therapeutics.

  6. Manufacturing of Human Extracellular Vesicle-Based Therapeutics for Clinical Use

    Directory of Open Access Journals (Sweden)

    Mario Gimona

    2017-06-01

    Full Text Available Extracellular vesicles (EVs derived from stem and progenitor cells may have therapeutic effects comparable to their parental cells and are considered promising agents for the treatment of a variety of diseases. To this end, strategies must be designed to successfully translate EV research and to develop safe and efficacious therapies, whilst taking into account the applicable regulations. Here, we discuss the requirements for manufacturing, safety, and efficacy testing of EVs along their path from the laboratory to the patient. Development of EV-therapeutics is influenced by the source cell types and the target diseases. In this article, we express our view based on our experience in manufacturing biological therapeutics for routine use or clinical testing, and focus on strategies for advancing mesenchymal stromal cell (MSC-derived EV-based therapies. We also discuss the rationale for testing MSC-EVs in selected diseases with an unmet clinical need such as critical size bone defects, epidermolysis bullosa and spinal cord injury. While the scientific community, pharmaceutical companies and clinicians are at the point of entering into clinical trials for testing the therapeutic potential of various EV-based products, the identification of the mode of action underlying the suggested potency in each therapeutic approach remains a major challenge to the translational path.

  7. Mechanisms of Plasma Therapeutics

    Science.gov (United States)

    Graves, David

    2015-09-01

    In this talk, I address research directed towards biomedical applications of atmospheric pressure plasma such as sterilization, surgery, wound healing and anti-cancer therapy. The field has seen remarkable growth in the last 3-5 years, but the mechanisms responsible for the biomedical effects have remained mysterious. It is known that plasmas readily create reactive oxygen species (ROS) and reactive nitrogen species (RNS). ROS and RNS (or RONS), in addition to a suite of other radical and non-radical reactive species, are essential actors in an important sub-field of aerobic biology termed ``redox'' (or oxidation-reduction) biology. It is postulated that cold atmospheric plasma (CAP) can trigger a therapeutic shielding response in tissue in part by creating a time- and space-localized, burst-like form of oxy-nitrosative stress on near-surface exposed cells through the flux of plasma-generated RONS. RONS-exposed surface layers of cells communicate to the deeper levels of tissue via a form of the ``bystander effect,'' similar to responses to other forms of cell stress. In this proposed model of CAP therapeutics, the plasma stimulates a cellular survival mechanism through which aerobic organisms shield themselves from infection and other challenges.

  8. CRISPR/Cas9 Genome Editing: A Promising Tool for Therapeutic Applications of Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Zhang, Yanli; Sastre, Danuta; Wang, Feng

    2018-01-01

    Induced pluripotent stem cells hold tremendous potential for biological and therapeutic applications. The development of efficient technologies for targeted genome alteration of stem cells in disease models is a prerequisite for utilizing stem cells to their full potential. The revolutionary technology for genome editing known as the clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (Cas9) system is recently recognized as a powerful tool for editing DNA at specific loci. The ease of use of the CRISPR-Cas9 technology will allow us to improve our understanding of genomic variation in disease processes via cellular and animal models. More recently, this system was modified to repress (CRISPR interference, CRISPRi) or activate (CRISPR activation, CRISPRa) gene expression without alterations in the DNA, which amplified the scope of applications of CRISPR systems for stem cell biology. Here, we highlight latest advances of CRISPR-associated applications in human pluripotent stem cells. The challenges and future prospects of CRISPR-based systems for human research are also discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Preclinical evaluation of NF-kappa B-triggered dendritic cells expressing the viral oncogenic driver of Merkel cell carcinoma for therapeutic vaccination

    DEFF Research Database (Denmark)

    Gerer, Kerstin F.; Erdmann, Michael; Hadrup, Sine Reker

    2017-01-01

    Background: Merkel cell carcinoma (MCC) is a rare but very aggressive skin tumor that develops after integration of a truncated form of the large T-antigen (truncLT) of the Merkel cell polyomavirus (MCV) into the host's genome. Therapeutic vaccination with dendritic cells (DCs) loaded with tumor ...

  10. Hepatic leukemia factor promotes resistance to cell death: Implications for therapeutics and chronotherapy

    International Nuclear Information System (INIS)

    Waters, Katrina M.; Sontag, Ryan L.; Weber, Thomas J.

    2013-01-01

    Physiological variation related to circadian rhythms and aberrant gene expression patterns are believed to modulate therapeutic efficacy, but the precise molecular determinants remain unclear. Here we examine the regulation of cell death by hepatic leukemia factor (HLF), which is an output regulator of circadian rhythms and is aberrantly expressed in human cancers, using an ectopic expression strategy in JB6 mouse epidermal cells and human keratinocytes. Ectopic HLF expression inhibited cell death in both JB6 cells and human keratinocytes, as induced by serum-starvation, tumor necrosis factor alpha and ionizing radiation. Microarray analysis indicates that HLF regulates a complex multi-gene transcriptional program encompassing upregulation of anti-apoptotic genes, downregulation of pro-apoptotic genes, and many additional changes that are consistent with an anti-death program. Collectively, our results demonstrate that ectopic expression of HLF, an established transcription factor that cycles with circadian rhythms, can recapitulate many features associated with circadian-dependent physiological variation. - Highlights: ► Circadian-dependent physiological variation impacts therapeutic efficacy. ► Hepatic leukemia factor inhibits cell death and is a candidate circadian factor. ► Hepatic leukemia factor anti-death program is conserved in murine and human cells. ► Transcriptomics indicates the anti-death program results from a systems response

  11. Hepatic leukemia factor promotes resistance to cell death: Implications for therapeutics and chronotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Waters, Katrina M. [Computational Biology and Bioinformatics, Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Sontag, Ryan L. [Systems Toxicology Groups, Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Weber, Thomas J., E-mail: Thomas.Weber@pnl.gov [Systems Toxicology Groups, Pacific Northwest National Laboratory, Richland, WA 99354 (United States)

    2013-04-15

    Physiological variation related to circadian rhythms and aberrant gene expression patterns are believed to modulate therapeutic efficacy, but the precise molecular determinants remain unclear. Here we examine the regulation of cell death by hepatic leukemia factor (HLF), which is an output regulator of circadian rhythms and is aberrantly expressed in human cancers, using an ectopic expression strategy in JB6 mouse epidermal cells and human keratinocytes. Ectopic HLF expression inhibited cell death in both JB6 cells and human keratinocytes, as induced by serum-starvation, tumor necrosis factor alpha and ionizing radiation. Microarray analysis indicates that HLF regulates a complex multi-gene transcriptional program encompassing upregulation of anti-apoptotic genes, downregulation of pro-apoptotic genes, and many additional changes that are consistent with an anti-death program. Collectively, our results demonstrate that ectopic expression of HLF, an established transcription factor that cycles with circadian rhythms, can recapitulate many features associated with circadian-dependent physiological variation. - Highlights: ► Circadian-dependent physiological variation impacts therapeutic efficacy. ► Hepatic leukemia factor inhibits cell death and is a candidate circadian factor. ► Hepatic leukemia factor anti-death program is conserved in murine and human cells. ► Transcriptomics indicates the anti-death program results from a systems response.

  12. Multifunctional quantum dots-based cancer diagnostics and stem cell therapeutics for regenerative medicine.

    Science.gov (United States)

    Onoshima, Daisuke; Yukawa, Hiroshi; Baba, Yoshinobu

    2015-12-01

    A field of recent diagnostics and therapeutics has been advanced with quantum dots (QDs). QDs have developed into new formats of biomolecular sensing to push the limits of detection in biology and medicine. QDs can be also utilized as bio-probes or labels for biological imaging of living cells and tissues. More recently, QDs has been demonstrated to construct a multifunctional nanoplatform, where the QDs serve not only as an imaging agent, but also a nanoscaffold for diagnostic and therapeutic modalities. This review highlights the promising applications of multi-functionalized QDs as advanced nanosensors for diagnosing cancer and as innovative fluorescence probes for in vitro or in vivo stem cell imaging in regenerative medicine. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Th17 Pathway As a Target for Multipotent Stromal Cell Therapy in Dogs: Implications for Translational Research.

    Science.gov (United States)

    Kol, A; Walker, N J; Nordstrom, M; Borjesson, D L

    2016-01-01

    Detrimental Th17 driven inflammatory and autoimmune disease such as Crohn's disease, graft versus host disease and multiple sclerosis remain a significant cause of morbidity and mortality worldwide. Multipotent stromal/stem cell (MSC) inhibit Th17 polarization and activation in vitro and in rodent models. As such, MSC based therapeutic approaches are being investigated as novel therapeutic approaches to treat Th17 driven diseases in humans. The significance of naturally occurring diseases in dogs is increasingly recognized as a realistic platform to conduct pre-clinical testing of novel therapeutics. Full characterization of Th17 cells in dogs has not been completed. We have developed and validated a flow-cytometric method to detect Th17 cells in canine blood. We further demonstrate that Th17 and other IL17 producing cells are present in tissues of dogs with naturally occurring chronic inflammatory diseases. Finally, we have determined the kinetics of a canine specific Th17 polarization in vitro and demonstrate that canine MSC inhibit Th17 polarization in vitro, in a PGE2 independent mechanism. Our findings provide fundamental research tools and suggest that naturally occurring diseases in dogs, such as inflammatory bowel disease, may be harnessed to translate novel MSC based therapeutic strategies that target the Th17 pathway.

  14. Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds

    Science.gov (United States)

    Arandel, Ludovic; Polay Espinoza, Micaela; Matloka, Magdalena; Bazinet, Audrey; De Dea Diniz, Damily; Naouar, Naïra; Rau, Frédérique; Jollet, Arnaud; Edom-Vovard, Frédérique; Mamchaoui, Kamel; Tarnopolsky, Mark; Puymirat, Jack; Battail, Christophe; Boland, Anne; Deleuze, Jean-Francois; Mouly, Vincent; Klein, Arnaud F.

    2017-01-01

    ABSTRACT Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are autosomal dominant neuromuscular diseases caused by microsatellite expansions and belong to the family of RNA-dominant disorders. Availability of cellular models in which the DM mutation is expressed within its natural context is essential to facilitate efforts to identify new therapeutic compounds. Here, we generated immortalized DM1 and DM2 human muscle cell lines that display nuclear RNA aggregates of expanded repeats, a hallmark of myotonic dystrophy. Selected clones of DM1 and DM2 immortalized myoblasts behave as parental primary myoblasts with a reduced fusion capacity of immortalized DM1 myoblasts when compared with control and DM2 cells. Alternative splicing defects were observed in differentiated DM1 muscle cell lines, but not in DM2 lines. Splicing alterations did not result from differentiation delay because similar changes were found in immortalized DM1 transdifferentiated fibroblasts in which myogenic differentiation has been forced by overexpression of MYOD1. As a proof-of-concept, we show that antisense approaches alleviate disease-associated defects, and an RNA-seq analysis confirmed that the vast majority of mis-spliced events in immortalized DM1 muscle cells were affected by antisense treatment, with half of them significantly rescued in treated DM1 cells. Immortalized DM1 muscle cell lines displaying characteristic disease-associated molecular features such as nuclear RNA aggregates and splicing defects can be used as robust readouts for the screening of therapeutic compounds. Therefore, immortalized DM1 and DM2 muscle cell lines represent new models and tools to investigate molecular pathophysiological mechanisms and evaluate the in vitro effects of compounds on RNA toxicity associated with myotonic dystrophy mutations. PMID:28188264

  15. Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds

    Directory of Open Access Journals (Sweden)

    Ludovic Arandel

    2017-04-01

    Full Text Available Myotonic dystrophy type 1 (DM1 and type 2 (DM2 are autosomal dominant neuromuscular diseases caused by microsatellite expansions and belong to the family of RNA-dominant disorders. Availability of cellular models in which the DM mutation is expressed within its natural context is essential to facilitate efforts to identify new therapeutic compounds. Here, we generated immortalized DM1 and DM2 human muscle cell lines that display nuclear RNA aggregates of expanded repeats, a hallmark of myotonic dystrophy. Selected clones of DM1 and DM2 immortalized myoblasts behave as parental primary myoblasts with a reduced fusion capacity of immortalized DM1 myoblasts when compared with control and DM2 cells. Alternative splicing defects were observed in differentiated DM1 muscle cell lines, but not in DM2 lines. Splicing alterations did not result from differentiation delay because similar changes were found in immortalized DM1 transdifferentiated fibroblasts in which myogenic differentiation has been forced by overexpression of MYOD1. As a proof-of-concept, we show that antisense approaches alleviate disease-associated defects, and an RNA-seq analysis confirmed that the vast majority of mis-spliced events in immortalized DM1 muscle cells were affected by antisense treatment, with half of them significantly rescued in treated DM1 cells. Immortalized DM1 muscle cell lines displaying characteristic disease-associated molecular features such as nuclear RNA aggregates and splicing defects can be used as robust readouts for the screening of therapeutic compounds. Therefore, immortalized DM1 and DM2 muscle cell lines represent new models and tools to investigate molecular pathophysiological mechanisms and evaluate the in vitro effects of compounds on RNA toxicity associated with myotonic dystrophy mutations.

  16. Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds.

    Science.gov (United States)

    Arandel, Ludovic; Polay Espinoza, Micaela; Matloka, Magdalena; Bazinet, Audrey; De Dea Diniz, Damily; Naouar, Naïra; Rau, Frédérique; Jollet, Arnaud; Edom-Vovard, Frédérique; Mamchaoui, Kamel; Tarnopolsky, Mark; Puymirat, Jack; Battail, Christophe; Boland, Anne; Deleuze, Jean-Francois; Mouly, Vincent; Klein, Arnaud F; Furling, Denis

    2017-04-01

    Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are autosomal dominant neuromuscular diseases caused by microsatellite expansions and belong to the family of RNA-dominant disorders. Availability of cellular models in which the DM mutation is expressed within its natural context is essential to facilitate efforts to identify new therapeutic compounds. Here, we generated immortalized DM1 and DM2 human muscle cell lines that display nuclear RNA aggregates of expanded repeats, a hallmark of myotonic dystrophy. Selected clones of DM1 and DM2 immortalized myoblasts behave as parental primary myoblasts with a reduced fusion capacity of immortalized DM1 myoblasts when compared with control and DM2 cells. Alternative splicing defects were observed in differentiated DM1 muscle cell lines, but not in DM2 lines. Splicing alterations did not result from differentiation delay because similar changes were found in immortalized DM1 transdifferentiated fibroblasts in which myogenic differentiation has been forced by overexpression of MYOD1. As a proof-of-concept, we show that antisense approaches alleviate disease-associated defects, and an RNA-seq analysis confirmed that the vast majority of mis-spliced events in immortalized DM1 muscle cells were affected by antisense treatment, with half of them significantly rescued in treated DM1 cells. Immortalized DM1 muscle cell lines displaying characteristic disease-associated molecular features such as nuclear RNA aggregates and splicing defects can be used as robust readouts for the screening of therapeutic compounds. Therefore, immortalized DM1 and DM2 muscle cell lines represent new models and tools to investigate molecular pathophysiological mechanisms and evaluate the in vitro effects of compounds on RNA toxicity associated with myotonic dystrophy mutations. © 2017. Published by The Company of Biologists Ltd.

  17. Induced-Decay of Glycine Decarboxylase Transcripts as an Anticancer Therapeutic Strategy for Non-Small-Cell Lung Carcinoma

    Directory of Open Access Journals (Sweden)

    Jing Lin

    2017-12-01

    Full Text Available Self-renewing tumor-initiating cells (TICs are thought to be responsible for tumor recurrence and chemo-resistance. Glycine decarboxylase, encoded by the GLDC gene, is reported to be overexpressed in TIC-enriched primary non-small-cell lung carcinoma (NSCLC. GLDC is a component of the mitochondrial glycine cleavage system, and its high expression is required for growth and tumorigenic capacity. Currently, there are no therapeutic agents against GLDC. As a therapeutic strategy, we have designed and tested splicing-modulating steric hindrance antisense oligonucleotides (shAONs that efficiently induce exon skipping (half maximal inhibitory concentration [IC50] at 3.5–7 nM, disrupt the open reading frame (ORF of GLDC transcript (predisposing it for nonsense-mediated decay, halt cell proliferation, and prevent colony formation in both A549 cells and TIC-enriched NSCLC tumor sphere cells (TS32. One candidate shAON causes 60% inhibition of tumor growth in mice transplanted with TS32. Thus, our shAONs candidates can effectively inhibit the expression of NSCLC-associated metabolic enzyme GLDC and may have promising therapeutic implications.

  18. Therapeutically engineered induced neural stem cells are tumour-homing and inhibit progression of glioblastoma

    OpenAIRE

    Bag?, Juli R.; Alfonso-Pecchio, Adolfo; Okolie, Onyi; Dumitru, Raluca; Rinkenbaugh, Amanda; Baldwin, Albert S.; Miller, C. Ryan; Magness, Scott T.; Hingtgen, Shawn D.

    2016-01-01

    Transdifferentiation (TD) is a recent advancement in somatic cell reprogramming. The direct conversion of TD eliminates the pluripotent intermediate state to create cells that are ideal for personalized cell therapy. Here we provide evidence that TD-derived induced neural stem cells (iNSCs) are an efficacious therapeutic strategy for brain cancer. We find that iNSCs genetically engineered with optical reporters and tumouricidal gene products retain the capacity to differentiate and induced ap...

  19. Androgen-Forming Stem Leydig cells: Identification, Function and Therapeutic Potential

    Directory of Open Access Journals (Sweden)

    Yunhui Zhang

    2008-01-01

    Full Text Available Leydig cells are the primary source of testosterone in the male, and differentiation of Leydig cells in the testes is one of the primary events in the development of the male body and fertility. Stem Leydig cells (SLCs exist in the testis throughout postnatal life, but a lack of cell surface markers previously hindered attempts to obtain purified SLC fractions. Once isolated, the properties of SLCs provide interesting clues for the ontogeny of these cells within the embryo. Moreover, the clinical potential of SLCs might be used to reverse age-related declines in testosterone levels in aging men, and stimulate reproductive function in hypogonadal males. This review focuses on the source, identification and outlook for therapeutic applications of SLCs. Separate pools of SLCs may give rise to fetal and adult generations of Leydig cell, which may account for their observed functional differences. These differences should in turn be taken into account when assessing the consequences of environmental pollutants such as the phthalate ester, diethylhexylphthalate (DEHP.

  20. Trans-differentiation of neural stem cells: a therapeutic mechanism against the radiation induced brain damage.

    Directory of Open Access Journals (Sweden)

    Kyeung Min Joo

    Full Text Available Radiation therapy is an indispensable therapeutic modality for various brain diseases. Though endogenous neural stem cells (NSCs would provide regenerative potential, many patients nevertheless suffer from radiation-induced brain damage. Accordingly, we tested beneficial effects of exogenous NSC supplementation using in vivo mouse models that received whole brain irradiation. Systemic supplementation of primarily cultured mouse fetal NSCs inhibited radiation-induced brain atrophy and thereby preserved brain functions such as short-term memory. Transplanted NSCs migrated to the irradiated brain and differentiated into neurons, astrocytes, or oligodendrocytes. In addition, neurotrophic factors such as NGF were significantly increased in the brain by NSCs, indicating that both paracrine and replacement effects could be the therapeutic mechanisms of NSCs. Interestingly, NSCs also differentiated into brain endothelial cells, which was accompanied by the restoration the cerebral blood flow that was reduced from the irradiation. Inhibition of the VEGF signaling reduced the migration and trans-differentiation of NSCs. Therefore, trans-differentiation of NSCs into brain endothelial cells by the VEGF signaling and the consequential restoration of the cerebral blood flow would also be one of the therapeutic mechanisms of NSCs. In summary, our data demonstrate that exogenous NSC supplementation could prevent radiation-induced functional loss of the brain. Therefore, successful combination of brain radiation therapy and NSC supplementation would provide a highly promising therapeutic option for patients with various brain diseases.

  1. Potential antitumor therapeutic strategies of human amniotic membrane and amniotic fluid-derived stem cells.

    Science.gov (United States)

    Kang, N-H; Hwang, K-A; Kim, S U; Kim, Y-B; Hyun, S-H; Jeung, E-B; Choi, K-C

    2012-08-01

    As stem cells are capable of self-renewal and can generate differentiated progenies for organ development, they are considered as potential source for regenerative medicine and tissue replacement after injury or disease. Along with this capacity, stem cells have the therapeutic potential for treating human diseases including cancers. According to the origins, stem cells are broadly classified into two types: embryonic stem cells (ESCs) and adult stem cells. In terms of differentiation potential, ESCs are pluripotent and adult stem cells are multipotent. Amnion, which is a membranous sac that contains the fetus and amniotic fluid and functions in protecting the developing embryo during gestation, is another stem cell source. Amnion-derived stem cells are classified as human amniotic membrane-derived epithelial stem cells, human amniotic membrane-derived mesenchymal stem cells and human amniotic fluid-derived stem cells. They are in an intermediate stage between pluripotent ESCs and lineage-restricted adult stem cells, non-tumorigenic, and contribute to low immunogenicity and anti-inflammation. Furthermore, they are easily available and do not cause any controversial issues in their recovery and applications. Not only are amnion-derived stem cells applicable in regenerative medicine, they have anticancer capacity. In non-engineered stem cells transplantation strategies, amnion-derived stem cells effectively target the tumor and suppressed the tumor growth by expressing cytotoxic cytokines. Additionally, they also have a potential as novel delivery vehicles transferring therapeutic genes to the cancer formation sites in gene-directed enzyme/prodrug combination therapy. Owing to their own advantageous properties, amnion-derived stem cells are emerging as a new candidate in anticancer therapy.

  2. Estimating the effectiveness of human-cell irradiation by protons of a therapeutic beam of the joint institute for nuclear research phasotron using cytogenetic methods

    Science.gov (United States)

    Zaytseva, E. M.; Govorun, R. D.; Mitsin, G. V.; Molokanov, A. G.

    2011-11-01

    The effectiveness of the impact of therapeutic proton beams in human cells with respect to the criterion of formation of chromosome aberrations in human-blood lymphocytes is estimated. The physical characteristics of radiation (proton LET at the input of the object and in the region of the modified Bragg peak) and the role of the biological factor (the differences in the radiosensitivity of nondividing cells corresponding to the irradiation of normal tissues along the proton-beam path and tumor tissues) are taken into account. The relative biological effectiveness of protons is ˜1 at the beam input of the object and ˜1.2 in the Bragg peak region. Taking into account the higher radiosensitivity of dividing cells in the G 2 phase of the cell cycle, the irradiation effectiveness increases to ˜1.4.

  3. MIS416 Enhances Therapeutic Functions of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Against Experimental Colitis by Modulating Systemic Immune Milieu

    Directory of Open Access Journals (Sweden)

    Byung-Chul Lee

    2018-05-01

    Full Text Available Human adult stem cells, including umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs, have recently been considered a promising alternative treatment for inflammatory bowel disease (IBD due to their unique immunomodulatory properties and ability to promote tissue regeneration. However, despite many years of research and pre-clinical studies, results from clinical trials using these cells have been diverse and conflicting. This discrepancy is caused by several factors, such as poor engraftment, low survival rate, and donor-dependent variation of the cells. Enhancement of consistency and efficacy of MSCs remains a challenge for the feasibility of cell-based therapy. In this study, we investigated whether administration of MIS416, a novel microparticle that activates NOD2 and TLR9 signaling, could enhance the therapeutic efficacy of hUCB-MSCs against Crohn’s disease, using dextran sulfate sodium (DSS-induced colitis model. Colitis was experimentally induced in mice by using 3% DSS, and mice were administered a retro-orbital injection of MIS416 and subsequent intraperitoneal injection of hUCB-MSCs. Mice were examined grossly, and blood, spleen, and colon tissues were subsequently collected for further ex vivo analyses. To explore the effects of MIS416 on the therapeutic process, hUCB-MSCs and primary isolated immune cells were cultured with MIS416, and in vitro assays were performed. Compared to the single administration of hUCB-MSCs, co-administration with MIS416 improved the therapeutic efficiency of the stem cells by significantly alleviating the symptoms of IBD. Interestingly, MIS416 did not exert any direct effect on the immunomodulatory capacity of hUCB-MSCs. Instead, systemically injected MIS416 altered the immune milieu in the colon which caused hUCB-MSCs to be more readily recruited toward the lesion site and to suppress inflammation more efficiently. In addition, considerable numbers of regulatory immune cells were stimulated

  4. Ran GTPase-activating protein 1 is a therapeutic target in diffuse large B-cell lymphoma.

    Directory of Open Access Journals (Sweden)

    Kung-Chao Chang

    Full Text Available Lymphoma-specific biomarkers contribute to therapeutic strategies and the study of tumorigenesis. Diffuse large B-cell lymphoma (DLBCL is the most common type of malignant lymphoma. However, only 50% of patients experience long-term survival after current treatment; therefore, developing novel therapeutic strategies is warranted. Comparative proteomic analysis of two DLBCL lines with a B-lymphoblastoid cell line (LCL showed differential expression of Ran GTPase-activating protein 1 (RanGAP1 between them, which was confirmed using immunoblotting. Immunostaining showed that the majority of DLBCLs (92%, 46/50 were RanGAP1(+, while reactive lymphoid hyperplasia (n = 12 was RanGAP1(+ predominantly in germinal centers. RanGAP1 was also highly expressed in other B-cell lymphomas (BCL, n = 180 with brisk mitotic activity (B-lymphoblastic lymphoma/leukemia: 93%, and Burkitt lymphoma: 95% or cell-cycle dysregulation (mantle cell lymphoma: 83%, and Hodgkin's lymphoma 91%. Interestingly, serum RanGAP1 level was higher in patients with high-grade BCL (1.71 ± 2.28 ng/mL, n = 62 than in low-grade BCL (0.75 ± 2.12 ng/mL, n = 52 and healthy controls (0.55 ± 1.58 ng/mL, n = 75 (high-grade BCL vs. low-grade BCL, p = 0.002; high-grade BCL vs. control, p < 0.001, Mann-Whitney U test. In vitro, RNA interference of RanGAP1 showed no effect on LCL but enhanced DLBCL cell death (41% vs. 60%; p = 0.035 and cell-cycle arrest (G0/G1: 39% vs. 49%, G2/M: 19.0% vs. 7.5%; p = 0.030 along with decreased expression of TPX2 and Aurora kinases, the central regulators of mitotic cell division. Furthermore, ON 01910.Na (Estybon, a multikinase inhibitor induced cell death, mitotic cell arrest, and hyperphosphorylation of RanGAP1 in DLBCL cell lines but no effects in normal B and T cells. Therefore, RanGAP1 is a promising marker and therapeutic target for aggressive B-cell lymphoma, especially DLBCL.

  5. Therapeutic cloning in individual parkinsonian mice

    Science.gov (United States)

    Tabar, Viviane; Tomishima, Mark; Panagiotakos, Georgia; Wakayama, Sayaka; Menon, Jayanthi; Chan, Bill; Mizutani, Eiji; Al-Shamy, George; Ohta, Hiroshi; Wakayama, Teruhiko; Studer, Lorenz

    2009-01-01

    Cell transplantation with embryonic stem (ES) cell progeny requires immunological compatibility with host tissue. ‘Therapeutic cloning’ is a strategy to overcome this limitation by generating nuclear transfer (nt)ES cells that are genetically matched to an individual. Here we establish the feasibility of treating individual mice via therapeutic cloning. Derivation of 187 ntES cell lines from 24 parkinsonian mice, dopaminergic differentiation, and transplantation into individually matched host mice showed therapeutic efficacy and lack of immunological response. PMID:18376409

  6. Therapeutic potential of CAR-T cell-derived exosomes: a cell-free modality for targeted cancer therapy.

    Science.gov (United States)

    Tang, Xiang-Jun; Sun, Xu-Yong; Huang, Kuan-Ming; Zhang, Li; Yang, Zhuo-Shun; Zou, Dan-Dan; Wang, Bin; Warnock, Garth L; Dai, Long-Jun; Luo, Jie

    2015-12-29

    Chimeric antigen receptor (CAR)-based T-cell adoptive immunotherapy is a distinctively promising therapy for cancer. The engineering of CARs into T cells provides T cells with tumor-targeting capabilities and intensifies their cytotoxic activity through stimulated cell expansion and enhanced cytokine production. As a novel and potent therapeutic modality, there exists some uncontrollable processes which are the potential sources of adverse events. As an extension of this impactful modality, CAR-T cell-derived exosomes may substitute CAR-T cells to act as ultimate attackers, thereby overcoming some limitations. Exosomes retain most characteristics of parent cells and play an essential role in intercellular communications via transmitting their cargo to recipient cells. The application of CAR-T cell-derived exosomes will make this cell-based therapy more clinically controllable as it also provides a cell-free platform to diversify anticancer mediators, which responds effectively to the complexity and volatility of cancer. It is believed that the appropriate application of both cellular and exosomal platforms will make this effective treatment more practicable.

  7. The Impact of Endometriosis across the Lifespan of Women: Foreseeable Research and Therapeutic Prospects

    Directory of Open Access Journals (Sweden)

    C. L. Hughes

    2015-01-01

    Full Text Available In addition to estrogen dependence, endometriosis is characterized by chronic pelvic inflammation. The impact of the chronic pelvic inflammatory state on other organ systems and women’s health is unclear. Endometriosis associated chronic inflammation and potential adverse health effects across the lifespan render it imperative for renewed research vigor into the identification of novel biomarkers of disease and therapeutic options. Herein we propose a number of opportunities for research and development of new therapeutics to address the unmet needs in the treatment of endometriosis per se and its ancillary risks for other diseases in women across the lifespan.

  8. New Therapeutic Approaches to Prevent or Delay Beta-Cell Failure in Diabetes

    Directory of Open Access Journals (Sweden)

    Ionica Floriana Elvira

    2015-09-01

    Full Text Available Background and aims: The most recent estimates of International Diabetes Federation indicate that 382 million people have diabetes, and the incidence of this disease is increasing. While in type 1 diabetes mellitus (T1DM beta-cell death is autoimmunemediated, type 2 diabetes mellitus (T2DM results from an interaction between genetic and environmental factors that impair beta-cell function and insulin action. Many people with T2DM remain unaware of their illness for a long time because symptoms may take years to appear or be recognized, while the body is affected by excess blood glucose. These patients are often diagnosed only when diabetes complications have already developed. The aim of this article was to perform a review based on literature data on therapeutic modalities to prevent/delay beta cell function decline. Material and Methods: We searched MEDLINE from 2000 to the present to identify the therapeutic approaches to prevent or delay beta-cell failure in patients with T2DM. Results and conclusions: Several common polymorphisms in genes linked to monogenic forms of diabetes appear to influence the response to T2DM pharmacotherapy. Recent studies report the role of the G protein coupled receptor 40 (GPR40, also known as Free Fatty Acids Receptor 1 (FFAR1 in the regulation of beta-cell function- CNX-011-67 (a GPR40 agonist has the potential to provide good and durable glycemic control in T2DM patients.

  9. Glioblastoma: Molecular Pathways, Stem Cells and Therapeutic Targets

    International Nuclear Information System (INIS)

    Jhanwar-Uniyal, Meena; Labagnara, Michael; Friedman, Marissa; Kwasnicki, Amanda; Murali, Raj

    2015-01-01

    Glioblastoma (GBM), a WHO-defined Grade IV astrocytoma, is the most common and aggressive CNS malignancy. Despite current treatment modalities, the survival time remains dismal. The main cause of mortality in patients with this disease is reoccurrence of the malignancy, which is attributed to treatment-resistant cancer stem cells within and surrounding the primary tumor. Inclusion of novel therapies, such as immuno- and DNA-based therapy, may provide better means of treating GBM. Furthermore, manipulation of recently discovered non-coding microRNAs, some of which regulate tumor growth through the development and maintenance of GBM stem cells, could provide new prospective therapies. Studies conducted by The Cancer Genome Atlas (TCGA) also demonstrate the role of molecular pathways, specifically the activated PI3K/AKT/mTOR pathway, in GBM tumorigenesis. Inhibition of the aforementioned pathway may provide a more direct and targeted method to GBM treatment. The combination of these treatment modalities may provide an innovative therapeutic approach for the management of GBM

  10. Novel therapeutic options for relapsed hairy cell leukemia.

    Science.gov (United States)

    Jain, Preetesh; Polliack, Aaron; Ravandi, Farhad

    2015-01-01

    The majority of patients with hairy cell leukemia (HCL) achieve a response to therapy with cladribine or pentostatin with or without rituximab. However, late relapses can occur. Treatment of relapsed HCL can be difficult due to a poor tolerance to chemotherapy, increased risk of infections and decreased responsiveness to chemotherapy. The identification of BRAFV600E mutations and the role of aberrant MEK kinase and Bruton's tyrosine kinase (BTK) pathways in the pathogenesis of HCL have helped to develop novel targeted therapies for these patients. Currently, the most promising therapeutic strategies for relapsed or refractory HCL include recombinant immunoconjugates targeting CD22 (e.g. moxetumomab pasudotox), BRAF inhibitors such as vemurafenib and B cell receptor signaling kinase inhibitors such as ibrutinib. Furthermore, the VH4-34 molecular variant of classic HCL has been identified to be less responsive to chemotherapy. Herein, we review the results of the ongoing clinical trials and potential future therapies for relapsed/refractory HCL.

  11. Glioblastoma: Molecular Pathways, Stem Cells and Therapeutic Targets

    Energy Technology Data Exchange (ETDEWEB)

    Jhanwar-Uniyal, Meena, E-mail: meena_jhanwar@nymc.edu; Labagnara, Michael; Friedman, Marissa; Kwasnicki, Amanda; Murali, Raj [Department of Neurosurgery, New York Medical College, Valhalla, NY 10595 (United States)

    2015-03-25

    Glioblastoma (GBM), a WHO-defined Grade IV astrocytoma, is the most common and aggressive CNS malignancy. Despite current treatment modalities, the survival time remains dismal. The main cause of mortality in patients with this disease is reoccurrence of the malignancy, which is attributed to treatment-resistant cancer stem cells within and surrounding the primary tumor. Inclusion of novel therapies, such as immuno- and DNA-based therapy, may provide better means of treating GBM. Furthermore, manipulation of recently discovered non-coding microRNAs, some of which regulate tumor growth through the development and maintenance of GBM stem cells, could provide new prospective therapies. Studies conducted by The Cancer Genome Atlas (TCGA) also demonstrate the role of molecular pathways, specifically the activated PI3K/AKT/mTOR pathway, in GBM tumorigenesis. Inhibition of the aforementioned pathway may provide a more direct and targeted method to GBM treatment. The combination of these treatment modalities may provide an innovative therapeutic approach for the management of GBM.

  12. The Therapeutic Effect of Human Embryonic Stem Cell-Derived Multipotent Mesenchymal Stem Cells on Chemical-Induced Cystitis in Rats

    Directory of Open Access Journals (Sweden)

    Sang Wook Lee

    2018-01-01

    Full Text Available Purpose To evaluate the therapeutic effect of human embryonic stem cell (hESC-derived multipotent mesenchymal stem cells (M-MSCs on ketamine-induced cystitis (KC in rats. Methods To induce KC, 10-week-old female rats were injected with 25-mg/kg ketamine hydrochloride twice weekly for 12 weeks. In the sham group, phosphate buffered saline (PBS was injected instead of ketamine. One week after the final injection of ketamine, the indicated doses (0.25, 0.5, and 1×106 cells of M-MSCs (KC+M-MSC group or PBS vehicle (KC group were directly injected into the bladder wall. One week after M-MSC injection, the therapeutic outcomes were evaluated via cystometry, histological analyses, and measurement of gene expression. Next, we compared the efficacy of M-MSCs at a low dose (1×105 cells to that of an identical dose of adult bone marrow (BM-derived MSCs. Results Rats in the KC group exhibited increased voiding frequency and reduced bladder capacity compared to rats of the sham group. However, these parameters recovered after transplantation of M-MSCs at all doses tested. KC bladders exhibited markedly increased mast cell infiltration, apoptosis, and tissue fibrosis. Administration of M-MSCs significantly reversed these characteristic histological alterations. Gene expression analyses indicated that several genes associated with tissue fibrosis were markedly upregulated in KC bladders. However the expression of these genes was significantly suppressed by the administration of M-MSCs. Importantly, M-MSCs ameliorated bladder deterioration in KC rats after injection of a low dose (1×105 of cells, at which point BM-derived MSCs did not substantially improve bladder function. Conclusions This study demonstrates for the first time the therapeutic efficacy of hESC-derived M-MSCs on KC in rats. M-MSCs restored bladder function more effectively than did BM-derived MSCs, protecting against abnormal changes including mast cell infiltration, apoptosis and fibrotic

  13. Identification of unique expression signatures and therapeutic targets in esophageal squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Yan Wusheng

    2012-01-01

    Full Text Available Abstract Background Esophageal squamous cell carcinoma (ESCC, the predominant histological subtype of esophageal cancer, is characterized by high mortality. Previous work identified important mRNA expression differences between normal and tumor cells; however, to date there are limited ex vivo studies examining expression changes occurring during normal esophageal squamous cell differentiation versus those associated with tumorigenesis. In this study, we used a unique tissue microdissection strategy and microarrays to measure gene expression profiles associated with cell differentiation versus tumorigenesis in twelve cases of patient-matched normal basal squamous epithelial cells (NB, normal differentiated squamous epithelium (ND, and squamous cell cancer. Class comparison and pathway analysis were used to compare NB versus tumor in a search for unique therapeutic targets. Results As a first step towards this goal, gene expression profiles and pathways were evaluated. Overall, ND expression patterns were markedly different from NB and tumor; whereas, tumor and NB were more closely related. Tumor showed a general decrease in differentially expressed genes relative to NB as opposed to ND that exhibited the opposite trend. FSH and IgG networks were most highly dysregulated in normal differentiation and tumorigenesis, respectively. DNA repair pathways were generally elevated in NB and tumor relative to ND indicating involvement in both normal and pathological growth. PDGF signaling pathway and 12 individual genes unique to the tumor/NB comparison were identified as therapeutic targets, and 10 associated ESCC gene-drug pairs were identified. We further examined the protein expression level and the distribution patterns of four genes: ODC1, POSTN, ASPA and IGF2BP3. Ultimately, three genes (ODC1, POSTN, ASPA were verified to be dysregulated in the same pattern at both the mRNA and protein levels. Conclusions These data reveal insight into genes and

  14. Preparation, Surface Properties, and Therapeutic Applications of Gold Nanoparticles in Biomedicine.

    Science.gov (United States)

    Panahi, Yunes; Mohammadhosseini, Majid; Nejati-Koshki, Kazem; Abadi, Azam Jafari Najaf; Moafi, Hadi Fallah; Akbarzadeh, Abolfazl; Farshbaf, Masoud

    2017-02-01

    Gold nanoparticles (AuNPs) due to their unique properties and manifold surface functionalities have been applied in bio-nanotechnology. The application of GNPs in recent medical and biological research is very extensive. Especially it involves applications such as detection and photothermalysis of microorganisms and cancer stem cells, biosensors; optical bio-imaging and observing of cells and these nanostructures also serve as practical platforms for therapeutic agents. In this review we studied all therapeutic applications of gold nanoparticles in biomedicine, synthesis methods, and surface properties. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Prophylactic and therapeutic adenoviral vector-based multivirus-specific T-cell immunotherapy for transplant patients

    Directory of Open Access Journals (Sweden)

    Vijayendra Dasari

    2016-01-01

    Full Text Available Viral infections including cytomegalovirus, Epstein-Barr virus, adenovirus, and BK virus are a common and predictable problem in transplant recipients. While cellular immune therapies have been successfully used to tackle infectious complications in transplant recipients, manufacturing immunotherapies to address the multitude of possible pathogens can be technically challenging and labor-intensive. Here we describe a novel adenoviral antigen presentation platform (Ad-MvP as a tool for rapid generation of multivirus-specific T-cells in a single step. Ad-MvP encodes 32 CD8+ T-cell epitopes from cytomegalovirus, Epstein-Barr virus, adenovirus, and BK virus as a contiguous polyepitope. We demonstrate that Ad-MvP vector can be successfully used for rapid in vitro expansion of multivirus-specific T-cells from transplant recipients and in vivo priming of antiviral T-cell immunity. Most importantly, using an in vivo murine model of Epstein-Barr virus-induced lymphoma, we also show that adoptive immunotherapy with Ad-MvP expanded autologous and allogeneic multivirus-specific T-cells is highly effective in controlling Epstein-Barr virus tumor outgrowth and improving overall survival. We propose that Ad-MvP has wide ranging therapeutic applications in greatly facilitating in vivo priming of antiviral T-cells, the generation of third-party T-cell banks as “off-the-shelf” therapeutics as well as autologous T-cell therapies for transplant patients.

  16. Pathological and therapeutic roles of innate lymphoid cells in diverse diseases.

    Science.gov (United States)

    Kim, Jisu; Kim, Geon; Min, Hyeyoung

    2017-11-01

    Innate lymphoid cells (ILCs) are a recently defined type of innate-immunity cells that belong to the lymphoid lineage and have lymphoid morphology but do not express an antigen-specific B cell or T-cell receptor. ILCs regulate immune functions prior to the formation of adaptive immunity and exert effector functions through a cytokine release. ILCs have been classified into three groups according to the transcription factors that regulate their development and function and the effector cytokines they produce. Of note, ILCs resemble T helper (Th) cells, such as Th1, Th2, and Th17 cells, and show a similar dependence on transcription factors and distinct cytokine production. Despite their short history in immunology, ILCs have received much attention, and numerous studies have revealed biological functions of ILCs including host defense against pathogens, inflammation, tissue repair, and metabolic homeostasis. Here, we describe recent findings about the roles of ILCs in the pathogenesis of various diseases and potential therapeutic targets.

  17. Primary nodal peripheral T-cell lymphomas: diagnosis and therapeutic considerations

    Directory of Open Access Journals (Sweden)

    Luis Alberto de Pádua Covas Lage

    2015-08-01

    Full Text Available Nodal peripheral T-cell lymphomas are a rare group of neoplasms derived from post-thymic and activated T lymphocytes. A review of scientific articles listed in PubMed, Lilacs, and the Cochrane Library databases was performed using the term "peripheral T-cell lymphomas". According to the World Health Organization classification of hematopoietic tissue tumors, this group of neoplasms consists of peripheral T-cell lymphoma not otherwise specified (PTCL-NOS, angioimmunoblastic T-cell lymphoma (AITL, anaplastic large cell lymphoma-anaplastic lymphoma kinase positive (ALCL-ALK+, and a provisional entity called anaplastic large cell lymphoma-anaplastic lymphoma kinase negative (ALCL-ALK-. Because the treatment and prognoses of these neoplasms involve different principles, it is essential to distinguish each one by its clinical, immunophenotypic, genetic, and molecular features. Except for anaplastic large cell lymphoma-anaplastic lymphoma kinase positive, which has no adverse international prognostic index, the prognosis of nodal peripheral T-cell lymphomas is worse than that of aggressive B-cell lymphomas. Chemotherapy based on anthracyclines provides poor outcomes because these neoplasms frequently have multidrug-resistant phenotypes. Based on this, the current tendency is to use intensified cyclophosphamide, doxorubicin, vincristine, prednisolone (CHOP regimens with the addition of new drugs, and autologous hematopoietic stem cell transplantation. This paper describes the clinical features and diagnostic methods, and proposes a therapeutic algorithm for nodal peripheral T-cell lymphoma patients.

  18. The pros and cons of human therapeutic cloning in the public debate.

    Science.gov (United States)

    Nippert, Irmgard

    2002-09-11

    Few issues linked to genetic research have raised as much controversial debate as the use of somatic cell nuclear transfer technology to create embryos specifically for stem cell research. Whereas European countries unanimously agree that reproductive cloning should be prohibited there is no agreement to be found on whether or not research into therapeutic cloning should be permitted. Since the UK took the lead and voted in favour of regulations allowing therapeutic cloning the public debate has intensified on the Continent. This debate reflects the wide spectrum of diverse religious and secular moralities that are prevalent in modern multicultural European democratic societies. Arguments range from putting forward strictly utilitarian views that weight the moral issues involved against the potential benefits that embryonic stem cell research may harbour to considering the embryo as a human being, endowed with human dignity and human rights from the moment of its creation, concluding that its use for research is unethical and should be strictly prohibited. Given the current state of dissension among the various European states, it is difficult to predict whether 'non-harmonisation' will prevail or whether in the long run 'harmonisation' of legislation that will allow stem cell research will evolve in the EU.

  19. A Survey of Italian Physicians' Opinion about Stem Cells Research: What Doctors Prefer and What the Law Requires

    OpenAIRE

    Frati, Paola; Gulino, Matteo; Pacchiarotti, Arianna; D'Errico, Stefano; Sicuro, Lorella; Fineschi, Vittorio

    2014-01-01

    To evaluate the Italian physicians' knowledge/information level about the therapeutic potential of stem cells, the research choice between embryonic and cordonal stem cells, and the preference between autologous and heterologous storage of cordonal stem cells, we performed a national survey. The questionnaire—distributed to 3361 physicians—involved physicians of different religious orientations and of different medical specialities. Most of the physicians involved (67%) were Catholics, and th...

  20. The significance of the host inflammatory response on the therapeutic efficacy of cell therapies utilising human adult stem cells

    International Nuclear Information System (INIS)

    Navarro, Melba; Pu, Fanrong; Hunt, John A.

    2012-01-01

    Controlling the fate of implanted hMSCs is one of the major drawbacks to be overcome to realize tissue engineering strategies. In particular, the effect of the inflammatory environment on hMSCs behaviour is poorly understood. Studying and mimicking the inflammatory process in vitro is a very complex and challenging task that involves multiple variables. This research addressed the questions using in vitro co-cultures of primary derived hMSCs together with human peripheral blood mononucleated cells (PBMCs); the latter are key agents in the inflammatory process. This work explored the in vitro phenotypic changes of hMSCs in co-culture direct contact with monocytes and lymphocytes isolated from blood using both basal and osteogenic medium. Our findings indicated that hMSCs maintained their undifferentiated phenotype and pluripotency despite the contact with PBMCs. Moreover, hMSCs demonstrated increased proliferation and were able to differentiate specifically down the osteogenic lineage pathway. Providing significant crucial evidence to support the hypothesis that inflammation and host defence mechanisms could be utilised rather than avoided and combated to provide for the successful therapeutic application of stem cell therapies.

  1. CIMAvax-EGF®: Therapeutic Vaccine Against Non-small Cell Lung Cancer in Advanced Stages

    Directory of Open Access Journals (Sweden)

    Diana Rosa Fernández Ruiz

    2017-02-01

    Full Text Available Biotechnology is one of the scientific activities deployed by the Cuban State, which shows greater results and impact on the of the Cuban population health. It has increased the therapeutic repertoire in dealing with oncological diseases with products such as CIMAvax-EGF®, the first therapeutic vaccine of its kind, from the Molecular Immunology Center, against non-small cell lung cancer in advanced stages IIIB IV. The application of this product already extends to Primary Health Care with encouraging results, by prolonging the survival of patients with higher quality of life.

  2. Applications of inorganic nanoparticles as therapeutic agents

    International Nuclear Information System (INIS)

    Kim, Taeho; Hyeon, Taeghwan

    2014-01-01

    During the last decade, various functional nanostructured materials with interesting optical, magnetic, mechanical and chemical properties have been extensively applied to biomedical areas including imaging, diagnosis and therapy. In therapeutics, most research has focused on the application of nanoparticles as potential delivery vehicles for drugs and genes, because nanoparticles in the size range of 2–100 nm can interact with biological systems at the molecular level, and allow targeted delivery and passage through biological barriers. Recent investigations have even revealed that several kinds of nanomaterials are intrinsically therapeutic. Not only can they passively interact with cells, but they can also actively mediate molecular processes to regulate cell functions. This can be seen in the treatment of cancer via anti-angiogenic mechanisms as well as the treatment of neurodegenerative diseases by effectively controlling oxidative stress. This review will present recent applications of inorganic nanoparticles as therapeutic agents in the treatment of disease. (topical review)

  3. Current Status of Dengue Therapeutics Research and Development.

    Science.gov (United States)

    Low, Jenny G H; Ooi, Eng Eong; Vasudevan, Subhash G

    2017-03-01

    Dengue is a significant global health problem. Even though a vaccine against dengue is now available, which is a notable achievement, its long-term protective efficacy against each of the 4 dengue virus serotypes remains to be definitively determined. Consequently, drugs directed at the viral targets or critical host mechanisms that can be used safely as prophylaxis or treatment to effectively ameliorate disease or reduce disease severity and fatalities are still needed to reduce the burden of dengue. This review will provide a brief account of the status of therapeutics research and development for dengue. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America.

  4. Rethinking Therapeutic Misconception in Biobanking

    DEFF Research Database (Denmark)

    Tupasela, Aaro; Snell, Karoliina; Cañada, Jose

    2017-01-01

    Some authors have noted that in biobank research participants may be guided by what is called therapeutic misconception, whereby participants attribute therapeutic intent to research procedures.This article argues that the notion of therapeutic misconception is increasingly less justified when...... underpinnings for the need to separate research and treatment, and thus the notion of therapeutic misconception in the fi rst place. We call this tension between research and treatment ambivalent research advancement to highlight the difficulties that various actors have in managing such shifts within...

  5. Endothelial progenitor cells from human dental pulp-derived iPS cells as a therapeutic target for ischemic vascular diseases.

    Science.gov (United States)

    Yoo, Chae Hwa; Na, Hee-Jun; Lee, Dong-Seol; Heo, Soon Chul; An, Yuri; Cha, Junghwa; Choi, Chulhee; Kim, Jae Ho; Park, Joo-Cheol; Cho, Yee Sook

    2013-11-01

    Human dental pulp cells (hDPCs) are a valuable source for the generation of patient-specific human induced pluripotent stem cells (hiPSCs). An advanced strategy for the safe and efficient reprogramming of hDPCs and subsequent lineage-specific differentiation is a critical step toward clinical application. In present research, we successfully generated hDPC-iPSCs using only two non-oncogenic factors: Oct4 and Sox2 (2F hDPC-hiPSCs) and evaluated the feasibility of hDPC-iPSCs as substrates for endothelial progenitor cells (EPCs), contributing to EPC-based therapies. Under conventional differentiation conditions, 2F hDPC-hiPSCs showed higher differentiation efficiency, compared to hiPSCs from other cell types, into multipotent CD34(+) EPCs (2F-hEPCs) capable to differentiate into functional endothelial and smooth muscle cells. The angiogenic and neovasculogenic activities of 2F-hEPCs were confirmed using a Matrigel plug assay in mice. In addition, the therapeutic effects of 2F-hEPC transplantation were confirmed in mouse models of hind-limb ischemia and myocardial infarction. Importantly, 2F-EPCs effectively integrated into newly formed vascular structures and enhanced neovascularization via likely both direct and indirect paracrine mechanisms. 2F hDPC-hiPSCs have a robust capability for the generation of angiogenic and vasculogenic EPCs, representing a strategy for patient-specific EPC therapies and disease modeling, particularly for ischemic vascular diseases. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Hormone Use for Therapeutic Amenorrhea and Contraception During Hematopoietic Cell Transplantation

    Science.gov (United States)

    Chang, Katherine; Merideth, Melissa A.; Stratton, Pamela

    2015-01-01

    There is a growing population of women who have or will undergo hematopoietic stem cell transplant for a variety of malignant and benign conditions. Gynecologists play an important role in addressing the gynecologic and reproductive health concerns for these women throughout the transplant process. As women undergo cell transplantation, they should avoid becoming pregnant and are at risk of uterine bleeding. Thus, counseling about and implementing hormonal treatments such as gonadotropin-releasing hormone agonists, combined hormonal contraceptives, and progestin-only methods help to achieve therapeutic amenorrhea and can serve as contraception during the peritransplant period. In this commentary, we summarize the timing, risks and benefits of the hormonal options just prior, during and for the year after hematopoietic stem cell transplantation. PMID:26348182

  7. Cell-derived microparticles: new targets in the therapeutic management of disease.

    Science.gov (United States)

    Roseblade, Ariane; Luk, Frederick; Rawling, Tristan; Ung, Alison; Grau, Georges E R; Bebawy, Mary

    2013-01-01

    Intercellular communication is essential to maintain vital physiological activities and to regulate the organism's phenotype. There are a number of ways in which cells communicate with one another. This can occur via autocrine signaling, endocrine signaling or by the transfer of molecular mediators across gap junctions. More recently communication via microvesicular shedding has gained important recognition as a significant pathway by which cells can coordinate the spread and dominance of selective traits within a population. Through this communication apparatus, cells can now acquire and secure a survival advantage, particularly in the context of malignant disease. This review aims to highlight some of the functions and implications of microparticles in physiology of various disease states, and present a novel therapeutic strategy through the regulation of microparticle production.

  8. Recruiting endogenous stem cells: a novel therapeutic approach for erectile dysfunction

    Directory of Open Access Journals (Sweden)

    Zhong-Cheng Xin

    2016-01-01

    Full Text Available Transplanted stem cells (SCs, owing to their regenerative capacity, represent one of the most promising methods to restore erectile dysfunction (ED. However, insufficient source, invasive procedures, ethical and regulatory issues hamper their use in clinical applications. The endogenous SCs/progenitor cells resident in organ and tissues play critical roles for organogenesis during development and for tissue homeostasis in adulthood. Even without any therapeutic intervention, human body has a robust self-healing capability to repair the damaged tissues or organs. Therefore, SCs-for-ED therapy should not be limited to a supply-side approach. The resident endogenous SCs existing in patients could also be a potential target for ED therapy. The aim of this review was to summarize contemporary evidence regarding: (1 SC niche and SC biological features in vitro; (2 localization and mobilization of endogenous SCs; (3 existing evidence of penile endogenous SCs and their possible mode of mobilization. We performed a search on PubMed for articles related to these aspects in a wide range of basic studies. Together, numerous evidences hold the promise that endogenous SCs would be a novel therapeutic approach for the therapy of ED.

  9. Skin Stem Cells in Skin Cell Therapy

    Directory of Open Access Journals (Sweden)

    Mollapour Sisakht

    2015-12-01

    Full Text Available Context Preclinical and clinical research has shown that stem cell therapy is a promising therapeutic option for many diseases. This article describes skin stem cells sources and their therapeutic applications. Evidence Acquisition Compared with conventional methods, cell therapy reduces the surgical burden for patients because it is simple and less time-consuming. Skin cell therapy has been developed for variety of diseases. By isolation of the skin stem cell from the niche, in vitro expansion and transplantation of cells offers a surprising healing capacity profile. Results Stem cells located in skin cells have shown interesting properties such as plasticity, transdifferentiation, and specificity. Mesenchymal cells of the dermis, hypodermis, and other sources are currently being investigated to promote regeneration. Conclusions Because skin stem cells are highly accessible from autologous sources and their immunological profile is unique, they are ideal for therapeutic approaches. Optimization of administrative routes requires more investigation own to the lack of a standard protocol.

  10. Natural Killer (NK- and T-Cell Engaging Antibody-Derived Therapeutics

    Directory of Open Access Journals (Sweden)

    Christoph Stein

    2012-06-01

    Full Text Available Unmodified antibodies (abs have been successful in the treatment of hematologic malignancies, but less so for the treatment of solid tumors. They trigger anti-tumor effects through their Fc-domains, and one way to improve their efficacy is to optimize their interaction with the effectors through Fc-engineering. Another way to empower abs is the design of bispecific abs and related fusion proteins allowing a narrower choice of effector cells. Here we review frequently chosen classes of effector cells, as well as common trigger molecules. Natural Killer (NK- and T-cells are the most investigated populations in therapeutical approaches with bispecific agents until now. Catumaxomab, the first bispecific ab to receive drug approval, targets the tumor antigen Epithelial Cell Adhesion Molecule (EpCAM and recruits T-cells via a binding site for the cell surface protein CD3. The next generation of recombinant ab-derivatives replaces the broadly reactive Fc-domain by a binding domain for a single selected trigger. Blinatumomab is the first clinically successful member of this class, targeting cancer cells via CD19 and engaging T-cells by CD3. Other investigators have developed related recombinant fusion proteins to recruit effectors, such as NK-cells and macrophages. The first such agents currently in preclinical and clinical development will be discussed.

  11. The Vascular Niche in Tissue Repair: A Therapeutic Target for Regeneration

    OpenAIRE

    Rivera, Francisco J.; Silva, Maria Elena; Aigner, Ludwig

    2017-01-01

    Editorial on the Research Topic The Vascular Niche in Tissue Repair: A Therapeutic Target for Regeneration In mammals, although regeneration is quite restricted to a number of tissues and organs, this particular healing process is possible through the existence of tissue-resident stem/progenitor cells. Upon injury, these cells are activated, they proliferate, migrate, and differentiate into tissue-specific cells and functionally replace the damaged or lost cells. Besides this, angio...

  12. Regulation of matriptase and HAI-1 system, a novel therapeutic target in human endometrial cancer cells.

    Science.gov (United States)

    Sun, Pengming; Xue, Lifang; Song, Yiyi; Mao, Xiaodan; Chen, Lili; Dong, Binhua; Braicu, Elena Loana; Sehouli, Jalid

    2018-02-27

    The effects of specific and non-specific regulation of matriptase on endometrial cancer cells in vitro were investigated. Messenger ribonucleic acid (mRNA) and protein expression of matriptase and hepatocyte growth factor activator inhibitor-1 (HAI-1) in RL-952, HEC-1A, and HEC-1B endometrial cancer cells were detected by real-time quantitative PCR (RT-qPCR) and western blot. The cells were infected with lentivirus-mediated small-interfering RNA (siRNA) targeted on matriptase (MA-siRNA) or treated with different cisplatin (DDP) concentrations. After treatment, invasion, migration, and cellular apoptosis were analyzed. Matriptase mRNA and protein expression significantly decreased to 80% after infection with MA-siRNA ( P scratch and trans-well chamber assays showed significant inhibition of invasiveness and metastasis. Upon incubation with cisplatin at concentrations higher than the therapeutic dose for 24 h, the expressions of matriptase and HAI-1 significantly decreased ( P endometrial cancer cells were significantly decreased ( P endometrial cancer cells showed promising therapeutic features.

  13. Therapeutic potential of the metabolic modulator Metformin on osteosarcoma cancer stem-like cells.

    Science.gov (United States)

    Paiva-Oliveira, Daniela I; Martins-Neves, Sara R; Abrunhosa, Antero J; Fontes-Ribeiro, Carlos; Gomes, Célia M F

    2018-01-01

    Osteosarcoma is the most common primary bone tumour appearing in children and adolescents. Recent studies demonstrate that osteosarcoma possesses a stem-like cell subset, so-called cancer stem-like cells, refractory to conventional chemotherapeutics and pointed out as responsible for relapses frequently observed in osteosarcoma patients. Here, we explored the therapeutic potential of Metformin on osteosarcoma stem-like cells, alone and as a chemosensitizer of doxorubicin. Stem-like cells were isolated from human osteosarcoma cell lines, MNNG/HOS and MG-63, using the sphere-forming assay. Metformin cytotoxicity alone and combined with doxorubicin were evaluated using MTT/BrdU assays. Protein levels of AMPK and AKT were evaluated by Western Blot. Cellular metabolic status was assessed based on [ 18 F]-FDG uptake and lactate production measurements. Sphere-forming efficiency and expression of pluripotency transcription factors analysed by qRT-PCR were tested as readout of Metformin effects on stemness features. Metformin induced a concentration-dependent decrease in the metabolic activity and proliferation of sphere-forming cells and improved doxorubicin-induced cytotoxicity. This drug also down-regulated the expression of master regulators of pluripotency (OCT4, SOX2, NANOG), and decreased spheres' self-renewal ability. Metformin effects on mitochondria led to the activation and phosphorylation of the energetic sensor AMPK along with an upregulation of the pro-survival AKT pathway in both cell populations. Furthermore, Metformin-induced mitochondrial stress increased [ 18 F]-FDG uptake and lactate production in parental cells but not in the quiescent stem-like cells, suggesting the inability of the latter to cope with the energy crisis induced by metformin. This preclinical study suggests that Metformin may be a potentially useful therapeutic agent and chemosensitizer of osteosarcoma stem-like cells to doxorubicin.

  14. Safety and function of a new clinical intracerebral microinjection instrument for stem cells and therapeutics examined in the Göttingen minipig

    DEFF Research Database (Denmark)

    Bjarkam, Carsten R; GLUD, AN; Margolin, Lee

    2010-01-01

    Safety and function of a new clinical intracerebral microinjection instrument for stem cells and therapeutics examined in the Göttingen minipig......Safety and function of a new clinical intracerebral microinjection instrument for stem cells and therapeutics examined in the Göttingen minipig...

  15. The therapeutic alliance in internet interventions: A narrative review and suggestions for future research.

    Science.gov (United States)

    Berger, Thomas

    2017-09-01

    Research on Internet interventions has grown rapidly over the recent years and evidence is growing that Internet-based treatments often result in similar outcomes as conventional face-to-face psychotherapy. Yet there are still unanswered concerns such as whether a therapeutic alliance can be established over the Internet and whether the alliance is important in this new treatment format. A narrative review of studies formally assessing the therapeutic alliance in Internet interventions was conducted. It is the first review summarizing findings on the therapeutic alliance that (i) distinguishes between different forms of Internet interventions and (ii) does not restrict itself to specific Internet-based treatment formats such as guided self-help treatments, e-mail or videoconferencing therapies. Independent of communication modalities, diagnostic groups and amount of contact between clients and therapists, client-rated alliance scores were high, roughly equivalent to alliance ratings found in studies on face-to-face therapy. Mixed results were found regarding the therapist-rated alliance and alliance-outcome associations. The review points to the limitations of the available evidence and identifies unanswered questions. It is concluded that one of the major tasks for future research is to identify unique characteristics of the therapeutic alliance in the different treatment formats.

  16. Mesenchymal stem cells as therapeutic target of biophysical stimulation for the treatment of musculoskeletal disorders.

    Science.gov (United States)

    Viganò, Marco; Sansone, Valerio; d'Agostino, Maria Cristina; Romeo, Pietro; Perucca Orfei, Carlotta; de Girolamo, Laura

    2016-12-16

    Musculoskeletal disorders are regarded as a major cause of worldwide morbidity and disability, and they result in huge costs for national health care systems. Traditional therapies frequently turned out to be poorly effective in treating bone, cartilage, and tendon disorders or joint degeneration. As a consequence, the development of novel biological therapies that can treat more effectively these conditions should be the highest priority in regenerative medicine. Mesenchymal stem cells (MSCs) represent one of the most promising tools in musculoskeletal tissue regenerative medicine, thanks to their proliferation and differentiation potential and their immunomodulatory and trophic ability. Indeed, MSC-based approaches have been proposed for the treatment of almost all orthopedic conditions, starting from different cell sources, alone or in combination with scaffolds and growth factors, and in one-step or two-step procedures. While all these approaches would require cell harvesting and transplantation, the possibility to stimulate the endogenous MSCs to enhance their tissue homeostasis activity represents a less-invasive and cost-effective therapeutic strategy. Nowadays, the role of tissue-specific resident stem cells as possible therapeutic target in degenerative pathologies is underinvestigated. Biophysical stimulations, and in particular extracorporeal shock waves treatment and pulsed electromagnetic fields, are able to induce proliferation and support differentiation of MSCs from different origins and affect their paracrine production of growth factors and cytokines. The present review reports the attempts to exploit the resident stem cell potential in musculoskeletal pathologies, highlighting the role of MSCs as therapeutic target of currently applied biophysical treatments.

  17. Ethical, legal and practical issues of establishing an adipose stem cell bank for research.

    Science.gov (United States)

    West, C C; Murray, I R; González, Z N; Hindle, P; Hay, D C; Stewart, K J; Péault, B

    2014-06-01

    Access to human tissue is critical to medical research, however the laws and regulations surrounding gaining ethical and legal access to tissue are often poorly understood. Recently, there has been a huge increase in the interest surrounding the therapeutic application of adipose tissue, and adipose-derived stem cells. To facilitate our own research interests and possibly assist our local colleagues and collaborators, we established a Research Tissue Bank (RTB) to collect, store and distribute human adipose tissue derived cells with all the appropriate ethical approval for subsequent downstream research. Here we examine the legal, ethical and practical issues relating to the banking of adipose tissue for research in the UK, and discuss relevant international guidelines and policies. We also share our experiences of establishing an RTB including the necessary infrastructure and the submission of an application to a Research Ethics Committee (REC). Copyright © 2014 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  18. Kinase Gene Expression Profiling of Metastatic Clear Cell Renal Cell Carcinoma Tissue Identifies Potential New Therapeutic Targets.

    Directory of Open Access Journals (Sweden)

    Pooja Ghatalia

    Full Text Available Kinases are therapeutically actionable targets. Kinase inhibitors targeting vascular endothelial growth factor receptors (VEGFR and mammalian target of rapamycin (mTOR improve outcomes in metastatic clear cell renal cell carcinoma (ccRCC, but are not curative. Metastatic tumor tissue has not been comprehensively studied for kinase gene expression. Paired intra-patient kinase gene expression analysis in primary tumor (T, matched normal kidney (N and metastatic tumor tissue (M may assist in identifying drivers of metastasis and prioritizing therapeutic targets. We compared the expression of 519 kinase genes using NanoString in T, N and M in 35 patients to discover genes over-expressed in M compared to T and N tissue. RNA-seq data derived from ccRCC tumors in The Cancer Genome Atlas (TCGA were used to demonstrate differential expression of genes in primary tumor tissue from patients that had metastasis at baseline (n = 79 compared to those that did not develop metastasis for at least 2 years (n = 187. Functional analysis was conducted to identify key signaling pathways by using Ingenuity Pathway Analysis. Of 10 kinase genes overexpressed in metastases compared to primary tumor in the discovery cohort, 9 genes were also differentially expressed in TCGA primary tumors with metastasis at baseline compared to primary tumors without metastasis for at least 2 years: EPHB2, AURKA, GSG2, IKBKE, MELK, CSK, CHEK2, CDC7 and MAP3K8; p<0.001. The top pathways overexpressed in M tissue were pyridoxal 5'-phosphate salvage, salvage pathways of pyrimidine ribonucleotides, NF-kB signaling, NGF signaling and cell cycle control of chromosomal replication. The 9 kinase genes validated to be over-expressed in metastatic ccRCC may represent currently unrecognized but potentially actionable therapeutic targets that warrant functional validation.

  19. PIM kinases as potential therapeutic targets in a subset of peripheral T cell lymphoma cases.

    Directory of Open Access Journals (Sweden)

    Esperanza Martín-Sánchez

    Full Text Available Currently, there is no efficient therapy for patients with peripheral T cell lymphoma (PTCL. The Proviral Integration site of Moloney murine leukemia virus (PIM kinases are important mediators of cell survival. We aimed to determine the therapeutic value of PIM kinases because they are overexpressed in PTCL patients, T cell lines and primary tumoral T cells. PIM kinases were inhibited genetically (using small interfering and short hairpin RNAs and pharmacologically (mainly with the pan-PIM inhibitor (PIMi ETP-39010 in a panel of 8 PTCL cell lines. Effects on cell viability, apoptosis, cell cycle, key proteins and gene expression were evaluated. Individual inhibition of each of the PIM genes did not affect PTCL cell survival, partially because of a compensatory mechanism among the three PIM genes. In contrast, pharmacological inhibition of all PIM kinases strongly induced apoptosis in all PTCL cell lines, without cell cycle arrest, in part through the induction of DNA damage. Therefore, pan-PIMi synergized with Cisplatin. Importantly, pharmacological inhibition of PIM reduced primary tumoral T cell viability without affecting normal T cells ex vivo. Since anaplastic large cell lymphoma (ALK+ ALCL cell lines were the most sensitive to the pan-PIMi, we tested the simultaneous inhibition of ALK and PIM kinases and found a strong synergistic effect in ALK+ ALCL cell lines. Our findings suggest that PIM kinase inhibition could be of therapeutic value in a subset of PTCL, especially when combined with ALK inhibitors, and might be clinically beneficial in ALK+ ALCL.

  20. Musings on genome medicine: is there hope for ethical and safe stem cell therapeutics?

    Science.gov (United States)

    Rao, Mahendra; Condic, Maureen L

    2009-07-14

    Although most stem cell therapy has been non-controversial, therapy based on pluripotent stem cells has raised both ethical and safety concerns. Despite these concerns, the use of cells derived from pluripotent stem cells has recently been approved for clinical trials. We suggest that recent advances in the field have provided avenues to develop pluripotent cells that raise far fewer ethical concerns. Moreover, advances in cell sorting, gene modification and screening have allowed the development of safer therapeutic approaches. Continued advances in this rapidly evolving field are likely to allow therapy to be delivered in a safe and effective manner without socially divisive ethical controversy in the not-so-distant future.

  1. Cell targeting peptides as smart ligands for targeting of therapeutic or diagnostic agents: a systematic review.

    Science.gov (United States)

    Mousavizadeh, Ali; Jabbari, Ali; Akrami, Mohammad; Bardania, Hassan

    2017-10-01

    Cell targeting peptides (CTP) are small peptides which have high affinity and specificity to a cell or tissue targets. They are typically identified by using phage display and chemical synthetic peptide library methods. CTPs have attracted considerable attention as a new class of ligands to delivery specifically therapeutic and diagnostic agents, because of the fact they have several advantages including easy synthesis, smaller physical sizes, lower immunogenicity and cytotoxicity and their simple and better conjugation to nano-carriers and therapeutic or diagnostic agents compared to conventional antibodies. In this systematic review, we will focus on the basic concepts concerning the use of cell-targeting peptides (CTPs), following the approaches of selecting them from peptide libraries. We discuss several developed strategies for cell-specific delivery of different cargos by CTPs, which are designed for drug delivery and diagnostic applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Design of clinical trials for therapeutic cancer vaccines development.

    Science.gov (United States)

    Mackiewicz, Jacek; Mackiewicz, Andrzej

    2009-12-25

    Advances in molecular and cellular biology as well as biotechnology led to definition of a group of drugs referred to as medicinal products of advanced technologies. It includes gene therapy products, somatic cell therapeutics and tissue engineering. Therapeutic cancer vaccines including whole cell tumor cells vaccines or gene modified whole cells belong to somatic therapeutics and/or gene therapy products category. The drug development is a multistep complex process. It comprises of two phases: preclinical and clinical. Guidelines on preclinical testing of cell based immunotherapy medicinal products have been defined by regulatory agencies and are available. However, clinical testing of therapeutic cancer vaccines is still under debate. It presents a serious problem since recently clinical efficacy of the number of cancer vaccines has been demonstrated that focused a lot of public attention. In general clinical testing in the current form is very expensive, time consuming and poorly designed what may lead to overlooking of products clinically beneficial for patients. Accordingly regulatory authorities and researches including Cancer Vaccine Clinical Trial Working Group proposed three regulatory solutions to facilitate clinical development of cancer vaccines: cost-recovery program, conditional marketing authorization, and a new development paradigm. Paradigm includes a model in which cancer vaccines are investigated in two types of clinical trials: proof-of-principle and efficacy. The proof-of-principle trial objectives are: safety; dose selection and schedule of vaccination; and demonstration of proof-of-principle. Efficacy trials are randomized clinical trials with objectives of demonstrating clinical benefit either directly or through a surrogate. The clinical end points are still under debate.

  3. 3D culture of Her2+ breast cancer cells promotes AKT to MAPK switching and a loss of therapeutic response.

    Science.gov (United States)

    Gangadhara, Sharath; Smith, Chris; Barrett-Lee, Peter; Hiscox, Stephen

    2016-06-01

    The Her2 receptor is overexpressed in up to 25 % of breast cancers and is associated with a poor prognosis. Around half of Her2+ breast cancers also express the estrogen receptor and treatment for such tumours can involve both endocrine and Her2-targeted therapies. However, despite preclinical data supporting the effectiveness of these agents, responses can vary widely in the clinical setting. In light of the increasing evidence pointing to the interplay between the tumour and its extracellular microenvironment as a significant determinant of therapeutic sensitivity and response here we investigated the impact of 3D matrix culture of breast cancer cells on their therapeutic sensitivity. A 3D Matrigel-based culture system was established and optimized for the growth of ER+/Her2+ breast cancer cell models. Growth of cells in response to trastuzumab and endocrine agents in 3D culture versus routine monolayer culture were assessed using cell counting and Ki67 staining. Endogenous and trastuzumab-modulated signalling pathway activity in 2D and 3D cultures were assessed using Western blotting. Breast cancer cells in 3D culture displayed an attenuated response to both endocrine agents and trastuzumab compared with cells cultured in traditional 2D monolayers. Underlying this phenomenon was an apparent matrix-induced shift from AKT to MAPK signalling; consequently, suppression of MAPK in 3D cultures restores therapeutic response. These data suggest that breast cancer cells in 3D culture display a reduced sensitivity to therapeutic agents which may be mediated by internal MAPK-mediated signalling. Targeting of adaptive pathways that maintain growth in 3D culture may represent an effective strategy to improve therapeutic response clinically.

  4. Therapeutic dendritic cell vaccination of patients with metastatic renal cell carcinoma: a clinical phase 1/2 trial

    DEFF Research Database (Denmark)

    Berntsen, Annika; Trepiakas, Redas; Wenandy, Lynn

    2008-01-01

    Therapeutic dendritic cell (DC) vaccination against cancer is a strategy aimed at activating the immune system to recognize and destroy tumor cells. In this nonrandomized phase 1/2 trial, we investigated the safety, feasibility, induction of T-cell response, and clinical response after treatment...... with a DC-based vaccine in patients with metastatic renal cell carcinoma. Twenty-seven patients with progressive cytokine-refractory metastatic renal cell carcinoma were vaccinated with DCs loaded with either a cocktail of survivin and telomerase peptides or tumor lysate depending on their HLA-A2 haplotype......, and low-dose IL-2 was administered concomitantly. Tumor response, immune response, and serum IL-6 and YKL-40 were measured during treatment. Vaccine generation was successful in all patients and no serious adverse events were observed. None of the patients had an objective response but 13/27 patients...

  5. Autophagy‑mediated adaptation of hepatocellular carcinoma cells to hypoxia‑mimicking conditions constitutes an attractive therapeutic target.

    Science.gov (United States)

    Owada, Satoshi; Endo, Hitoshi; Shida, Yukari; Okada, Chisa; Ito, Kanako; Nezu, Takahiro; Tatemichi, Masayuki

    2018-04-01

    Hepatocellular carcinoma has extremely poor prognosis. In cancerous liver tissues, aberrant proliferation of cancer cells leads to the creation of an area where an immature vascular network is formed. Since oxygen is supplied to cancer tissues through the bloodstream, a part of the tumor is exposed to hypoxic conditions. As hypoxia is known to severely reduce the effectiveness of existing anticancer agents, novel valid therapeutic targets must be identified for the treatment of hepatocellular carcinoma. Generally, autophagy has been reported to play an important role in the adaptation of cancer cells to hypoxia. However, the exact role and significance of this process vary depending on the cancer type, requiring detailed analysis in individual primary tumors and cell lines. In the present study, we examined autophagy induced by cobalt chloride, a hypoxia‑mimicking agent, in hepatocellular carcinoma cells with the aim to evaluate the validity of this process as a potential therapeutic target. We observed that treatment with cobalt chloride induced autophagy, including the intracellular quality control mechanism, in an AMPK‑dependent manner. Furthermore, treatment with autophagy inhibitors (bafilomycin and LY294002) resulted in significant, highly‑selective cytotoxicity and apoptosis activation under hypoxia‑mimicking conditions. The knockdown of AMPK also revealed significant cytotoxicity in hypoxia‑mimicking conditions. These results clearly demonstrated that autophagy, especially mitophagy, was induced by the AMPK pathway when hepatocellular carcinoma cells were subjected to hypoxic conditions and played an important role in the adaptation of these cells to such conditions. Thus, autophagy may constitute an attractive therapeutic target for the treatment of hepatocellular carcinoma.

  6. Optimal Therapeutic Strategy for Non-small Cell Lung Cancer with Mutated Epidermal Growth Factor Receptor

    Directory of Open Access Journals (Sweden)

    Zhong SHI

    2015-02-01

    Full Text Available Although epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs have been widely used in non-small cell lung cancer (NSCLC patients, it is still controversial about how to combine EGFR-TKI with chemotherapy and other targeted drugs. We have made a summary on the current therapeutic models of EGFR-TKI combined with chemotherapy/bevacizumab in this review and aimed to find the optimal therapeutic strategy for NSCLC patients with EGFR mutation.

  7. The therapeutic implications of plasticity of the cancer stem cell phenotype.

    Directory of Open Access Journals (Sweden)

    Kevin Leder

    2010-12-01

    Full Text Available The cancer stem cell hypothesis suggests that tumors contain a small population of cancer cells that have the ability to undergo symmetric self-renewing cell division. In tumors that follow this model, cancer stem cells produce various kinds of specified precursors that divide a limited number of times before terminally differentiating or undergoing apoptosis. As cells within the tumor mature, they become progressively more restricted in the cell types to which they can give rise. However, in some tumor types, the presence of certain extra- or intracellular signals can induce committed cancer progenitors to revert to a multipotential cancer stem cell state. In this paper, we design a novel mathematical model to investigate the dynamics of tumor progression in such situations, and study the implications of a reversible cancer stem cell phenotype for therapeutic interventions. We find that higher levels of dedifferentiation substantially reduce the effectiveness of therapy directed at cancer stem cells by leading to higher rates of resistance. We conclude that plasticity of the cancer stem cell phenotype is an important determinant of the prognosis of tumors. This model represents the first mathematical investigation of this tumor trait and contributes to a quantitative understanding of cancer.

  8. Self-Assembling Peptide Amphiphiles for Therapeutic Delivery of Proteins, Drugs, and Stem Cells

    Science.gov (United States)

    Lee, Sungsoo Seth

    Biomaterials are used to help regenerate or replace the structure and function of damaged tissues. In order to elicit desired therapeutic responses in vivo, biomaterials are often functionalized with bioactive agents, such as growth factors, small molecule drugs, or even stem cells. Therefore, the strategies used to incorporate these bioactive agents in the microstructures and nanostructures of biomaterials can strongly influence the their therapeutic efficacy. Using self-assembling peptide amphiphiles (PAs), this work has investigated supramolecular nanostructures with improved interaction with three types of therapeutic agents: bone morphogenetic protein 2 (BMP-2) which promotes osteogenic differentiation and bone growth, anti-inflammatory drug naproxen which is used to treat osteo- and rheumatoid arthritis, and neural stem cells that could differentiate into neurons to treat neurodegenerative diseases. For BMP-2 delivery, two specific systems were investigated with affinity for BMP-2: 1) heparin-binding nanofibers that display the natural ligand of the osteogenic protein, and 2) nanofibers that display a synthetic peptide ligand discovered in our laboratory through phage display to directly bind BMP-2. Both systems promoted enhanced osteoblast differentiation of pluripotent C2C12 cells and augmented bone regeneration in two in vivo models, a rat critical-size femur defect model and spinal arthrodesis model. The thesis also describes the use of PA nanofibers to improve the delivery of the anti-inflammatory drug naproxen. To promote a controlled release, naproxen was chemically conjugated to the nanofiber surface via an ester bond that would only be cleaved by esterases, which are enzymes found naturally in the body. In the absence of esterases, the naproxen remained conjugated to the nanofibers and was non-bioactive. On the other hand, in the presence of esterases, naproxen was slowly released and inhibited cyclooxygenase-2 (COX-2) activity, an enzyme responsible

  9. Developments in intervertebral disc disease research: pathophysiology, mechanobiology, and therapeutics.

    Science.gov (United States)

    Weber, Kathryn T; Jacobsen, Timothy D; Maidhof, Robert; Virojanapa, Justin; Overby, Chris; Bloom, Ona; Quraishi, Shaheda; Levine, Mitchell; Chahine, Nadeen O

    2015-03-01

    Low back pain is a leading cause of disability worldwide and the second most common cause of physician visits. There are many causes of back pain, and among them, disc herniation and intervertebral disc degeneration are the most common diagnoses and targets for intervention. Currently, clinical treatment outcomes are not strongly correlated with diagnoses, emphasizing the importance for characterizing more completely the mechanisms of degeneration and their relationships with symptoms. This review covers recent studies elucidating cellular and molecular changes associated with disc mechanobiology, as it relates to degeneration and regeneration. Specifically, we review findings on the biochemical changes in disc diseases, including cytokines, chemokines, and proteases; advancements in disc disease diagnostics using imaging modalities; updates on studies examining the response of the intervertebral disc to injury; and recent developments in repair strategies, including cell-based repair, biomaterials, and tissue engineering. Findings on the effects of the omega-6 fatty acid, linoleic acid, on nucleus pulposus tissue engineering are presented. Studies described in this review provide greater insights into the pathogenesis of disc degeneration and may define new paradigms for early or differential diagnostics of degeneration using new techniques such as systemic biomarkers. In addition, research on the mechanobiology of disease enriches the development of therapeutics for disc repair, with potential to diminish pain and disability associated with disc degeneration.

  10. Cell differentiation: therapeutical challenges in diabetes.

    Science.gov (United States)

    Roche, Enrique; Vicente-Salar, Nestor; Arribas, Maribel; Paredes, Beatriz

    2012-01-01

    Stem cells, derived from either embryonic or adult tissues, are considered to be potential sources of insulin-secreting cells to be transplanted into type 1 and advanced stages of type 2 diabetic patients. Many laboratories have considered this possibility, resulting in a large amount of published protocols, with a wide degree of complexity among them. Our group was the first to report that it was possible to obtain insulin-secreting cells from mouse embryonic stem cells, proving the feasibility of this new challenge. The same observation was immediately reported using human embryonic stem cells. However, the resulting cell product was not properly characterised, affecting the reproducibility of the protocol by other groups. A more elaborated protocol was developed by Lumelsky and co-workers, demonstrating that neuroectodermal cells could be an alternative source for insulin-producing cells. However, the resulting cells of this protocol produced low amounts of the hormone. This aimed other groups to perform key changes in order to improve the insulin content of the resulting cells. Recently, Baetge's group has published a new protocol based on the knowledge accumulated in pancreatic development. In this protocol, human embryonic stem cells were differentiated into islet-like structures through a five step protocol, emulating the key steps during embryonic development of the endocrine pancreas. The final cell product, however, seemed to be in an immature state, thus further improvement is required. Despite this drawback, the protocol represents the culmination of work performed by different groups and offers new research challenges for the investigators in this exciting field. Concerning adult stem cells, the possibility of identifying pancreatic precursors or of reprogramming extrapancreatic derived cells are key possibilities that may circumvent the problems that appear when using embryonic stem cells, such as immune rejection and tumour formation.

  11. A network biology approach evaluating the anticancer effects of bortezomib identifies SPARC as a therapeutic target in adult T-cell leukemia cells

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2008-10-01

    Full Text Available Junko H Ohyashiki1, Ryoko Hamamura2, Chiaki Kobayashi2, Yu Zhang2, Kazuma Ohyashiki21Intractable Immune System Disease Research Center, Tokyo Medical University, Tokyo, Japan; 2First Department of Internal Medicine, Tokyo Medical University, Tokyo, JapanAbstract: There is a need to identify the regulatory gene interaction of anticancer drugs on target cancer cells. Whole genome expression profiling offers promise in this regard, but can be complicated by the challenge of identifying the genes affected by hundreds to thousands of genes that induce changes in expression. A proteasome inhibitor, bortezomib, could be a potential therapeutic agent in treating adult T-cell leukemia (ATL patients, however, the underlying mechanism by which bortezomib induces cell death in ATL cells via gene regulatory network has not been fully elucidated. Here we show that a Bayesian statistical framework by VoyaGene® identified a secreted protein acidic and rich in cysteine (SPARC gene, a tumor-invasiveness related gene, as a possible modulator of bortezomib-induced cell death in ATL cells. Functional analysis using RNAi experiments revealed that inhibition of the expression SPARC by siRNA enhanced the apoptotic effect of bortezomib on ATL cells in accordance with an increase of cleaved caspase 3. Targeting SPARC may help to treat ATL patients in combination with bortezomib. This work shows that a network biology approach can be used advantageously to identify the genetic interaction related to anticancer effects.Keywords: network biology, adult T cell leukemia, bortezomib, SPARC

  12. Current issues of RNAi therapeutics delivery and development.

    Science.gov (United States)

    Haussecker, D

    2014-12-10

    the applications of RNAi therapeutics are rather limited. This is largely based on the observation that the biodistribution of RNAi formulations is typically more limited compared to small molecules and oral administration is not possible with current technologies. Similarly, the utility of a given RNAi formulation is limited to a few cell types and tissues at most and a universal delivery strategy should remain elusive for the foreseeable future. Therefore, to further expand on the therapeutic utility and patient convenience of RNAi, it is important to overcome a number of delivery-related technical and scientific challenges which will be discussed in this presentation. For systemic applications, these include the necessity for extended blood circulation times, vascular escape (probably the most rewarding inquiry currently), tissue penetration, cellular uptake, and escape into the cytoplasm. In terms of safety, it is important that these formulations do not accumulate in the body, do not cause excessive off-targeting due to 'chemical stickiness' (often useful for purposes of biodistribution), and overcome the physical/biological barriers in a controlled manner. The time for realizing the therapeutic potential of RNAi has come. At the same time, it is important to lay the foundations for the next leg of value creation by overcoming the challenges of delivering RNAi to new cell types. Based on results from exploratory research, the renewed interest in RNAi therapeutics and capital infusion, there is a reason to be optimistic that this can be achieved. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. [Research on Depression in the GDR - Historical Lines of Development and Therapeutic Approaches].

    Science.gov (United States)

    Thormann, J; Himmerich, H; Steinberg, H

    2014-02-01

    Historical research has raised the issue of whether GDR psychiatry was isolated from Western influences to such an extent that an autonomous East German psychiatry developed. Taking a chronological approach and being based on a clearly defined range of topics, the objective of this paper is to identify specific contributions made by GDR psychiatry to academic research as well as the degree of its international orientation by focusing on the treatment and research on depression. We have performed a systematic review of the East German psychiatric journal "Psychiatrie, Neurologie und medizinische Psychologie" and a screening of all psychiatric textbooks that appeared in the GDR. Although East German psychiatry was oriented towards Soviet as well as Western developments, some internationally used therapeutic or conceptual innovations reached East German clinics only with some delay. Yet, East German psychiatrists have also contributed their own, independent nosological and therapeutic concepts to research on depression. Pivotal figures included, among others, R. Lemke (Jena), D. Müller-Hegemann (Leipzig) or K. Leonhard (Berlin). With regard to research on depression one cannot truly speak of an autonomous East German psychiatry. Developments in East and West were largely running in parallel. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Nuclear data for production of therapeutic radionuclides. Summary report of second research coordination meeting

    International Nuclear Information System (INIS)

    Sublet, J.-Ch.; Capote Noy, R.

    2004-11-01

    A summary is given of the Second Research Coordination Meeting on Nuclear Data for Production of Therapeutic Radionuclides. The new library of evaluated cross section will cover the reactor and/or accelerator production of therapeutic radionuclides to appropriate specific activities and purity along with the relevant decay data. There are a significant number of radioisotopes in use or being proposed for therapeutic applications. As a consequence of the work undertaken during the course of this CRP, the resulting completeness and accuracy of the nuclear data for the production of these nuclides to appropriate specific activities and purity along with the re-definition of their decay data should be adequate for safe and efficient medical applications. The radioisotopes to be considered in the CRP were divided into two categories: Established Radioisotopes (therapeutic radioisotopes that have established clinical uses) and Emerging Radioisotopes (less-commonly used but potentially interesting radioisotopes for which medical applications have been demonstrated). Experimental data compilations and selection and preliminary evaluations for each of the reactions were extensively discussed during the meeting. The recommendations for both established and emerging radionuclides, and validation/testing of the cross section library are summarized. Technical discussions and the resulting work plan of the Coordinated Research Programme are summarized for every reaction path to be evaluated, along with actions and deadlines. Participants' contributions to the RCM are also attached. (author)

  15. Information on Stem Cell Research

    Science.gov (United States)

    ... Home » Current Research » Focus on Research Focus on Stem Cell Research Stem cells possess the unique ability to differentiate into ... virus infection. To search the complete list of stem cell research projects funded by NIH please go to NIH ...

  16. Regulatory T cell derived Exosomes: possible therapeutic and diagnostic tools in transplantation

    Directory of Open Access Journals (Sweden)

    Akansha eAgarwal

    2014-11-01

    Full Text Available Exosomes are extracellular vesicles released by many cells of the body. These small vesicles play an important part in intercellular communication both in the local environment and systemically, facilitating in the transfer of proteins, cytokines as well as miRNA between cells. The observation that exosomes isolated from immune cells such as dendritic cells (DCs modulate the immune response has paved the way for these structures to be considered as potential immunotherapeutic reagents. Indeed clinical trials using DC derived exosomes to facilitate immune responses to specific cancer antigens are now underway. Exosomes can also have a negative effect on the immune response and exosomes isolated from regulatory T cells (Tregs and other subsets of T cells have been shown to have immune suppressive capacities. Here we review what is currently known about Treg derived exosomes and their contribution to immune regulation, as well as highlighting their possible therapeutic potential for preventing graft rejection, and their possible use as diagnostic tools to assess transplant outcome.

  17. Novel therapeutic strategies to target leukemic cells that hijack compartmentalized continuous hematopoietic stem cell niches.

    Science.gov (United States)

    Hira, Vashendriya V V; Van Noorden, Cornelis J F; Carraway, Hetty E; Maciejewski, Jaroslaw P; Molenaar, Remco J

    2017-08-01

    Acute myeloid leukemia and acute lymphoblastic leukemia cells hijack hematopoietic stem cell (HSC) niches in the bone marrow and become leukemic stem cells (LSCs) at the expense of normal HSCs. LSCs are quiescent and resistant to chemotherapy and can cause relapse of the disease. HSCs in niches are needed to generate blood cell precursors that are committed to unilineage differentiation and eventually production of mature blood cells, including red blood cells, megakaryocytes, myeloid cells and lymphocytes. Thus far, three types of HSC niches are recognized: endosteal, reticular and perivascular niches. However, we argue here that there is only one type of HSC niche, which consists of a periarteriolar compartment and a perisinusoidal compartment. In the periarteriolar compartment, hypoxia and low levels of reactive oxygen species preserve the HSC pool. In the perisinusoidal compartment, hypoxia in combination with higher levels of reactive oxygen species enables proliferation of progenitor cells and their mobilization into the circulation. Because HSC niches offer protection to LSCs against chemotherapy, we review novel therapeutic strategies to inhibit homing of LSCs in niches for the prevention of dedifferentiation of leukemic cells into LSCs and to stimulate migration of leukemic cells out of niches. These strategies enhance differentiation and proliferation and thus sensitize leukemic cells to chemotherapy. Finally, we list clinical trials of therapies that tackle LSCs in HSC niches to circumvent their protection against chemotherapy. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Therapeutic effect of mesenchymal multipotent stromal cells on memory in animals with Alzheimer-type neurodegeneration.

    Science.gov (United States)

    Bobkova, N V; Poltavtseva, R A; Samokhin, A N; Sukhikh, G T

    2013-11-01

    Transplantation of human mesenchymal multipotent stromal cells improved spatial memory in bulbectomized mice with Alzheimer-type neurodegeneration. The positive effect was observed in 1 month after intracerebral transplantation and in 3 months after systemic injection of mesenchymal multipotent stromal cells. No cases of malignant transformation were noted. These findings indicate prospects of using mesenchymal multipotent stromal cells for the therapy of Alzheimer disease and the possibility of their systemic administration for attaining the therapeutic effect.

  19. Translating Research into Clinical Scale Manufacturing of Mesenchymal Stromal Cells

    Directory of Open Access Journals (Sweden)

    Karen Bieback

    2010-01-01

    Full Text Available It sounds simple to obtain sufficient numbers of cells derived from fetal or adult human tissues, isolate and/or expand the stem cells, and then transplant an appropriate number of these cells into the patient at the correct location. However, translating basic research into routine therapies is a complex multistep process which necessitates product regulation. The challenge relates to managing the expected therapeutic benefits with the potential risks and to balance the fast move to clinical trials with time-consuming cautious risk assessment. This paper will focus on the definition of mesenchymal stromal cells (MSCs, and challenges and achievements in the manufacturing process enabling their use in clinical studies. It will allude to different cellular sources, special capacities of MSCs, but also to current regulations, with a special focus on accessory material of human or animal origin, like media supplements. As cellular integrity and purity, formulation and lot release testing of the final product, validation of all procedures, and quality assurance are of utmost necessity, these topics will be addressed.

  20. Therapeutic Vaccination Using Cationic Liposome-Adjuvanted HIV Type 1 Peptides Representing HLA-Supertype-Restricted Subdominant T Cell Epitopes

    DEFF Research Database (Denmark)

    Román, Victor Raúl Gómez; Jensen, Kristoffer Jarlov; Jensen, Sanne Skov

    2013-01-01

    We have designed a therapeutic HIV-1 vaccine concept based on peptides together with the adjuvant CAF01. Peptides represented 15 HLA-supertype-restricted subdominant and conserved CD8 T cell epitopes and three CD4 T-helper cell epitopes. In this phase I clinical trial, safety and immunogenicity...... were assessed in untreated HIV-1-infected individuals in Guinea-Bissau, West Africa. Twenty-three HIV-1-infected individuals were randomized to receive placebo (n=5) or vaccine (n=18). Safety was appraised by clinical follow-up combined with monitoring of biochemistry, hematology, CD4 T cell counts......, and HIV-1 viral loads. T cell immunogenicity was monitored longitudinally by interferon (IFN)-γ ELISpot. New vaccine-specific T cell responses were induced in 6/14 vaccinees for whom ELISpot data were valid. CD4 T cell counts and viral loads were stable. The study shows that therapeutic immunization...

  1. Invasion-Related Factors as Potential Diagnostic and Therapeutic Targets in Oral Squamous Cell Carcinoma—A Review

    Science.gov (United States)

    Siriwardena, Samadarani B. S. M.; Tsunematsu, Takaaki; Qi, Guangying; Ishimaru, Naozumi; Kudo, Yasusei

    2018-01-01

    It is well recognized that the presence of cervical lymph node metastasis is the most important prognostic factor in oral squamous cell carcinoma (OSCC). In solid epithelial cancer, the first step during the process of metastasis is the invasion of cancer cells into the underlying stroma, breaching the basement membrane (BM)—the natural barrier between epithelium and the underlying extracellular matrix (ECM). The ability to invade and metastasize is a key hallmark of cancer progression, and the most complicated and least understood. These topics continue to be very active fields of cancer research. A number of processes, factors, and signaling pathways are involved in regulating invasion and metastasis. However, appropriate clinical trials for anti-cancer drugs targeting the invasion of OSCC are incomplete. In this review, we summarize the recent progress on invasion-related factors and emerging molecular determinants which can be used as potential for diagnostic and therapeutic targets in OSCC. PMID:29758011

  2. Enhancement of therapeutic drug and DNA delivery into cells by electroporation

    Energy Technology Data Exchange (ETDEWEB)

    Rabussay, Dietmar [Genetronics, Inc., Department of Research and Development, 11199 Sorrento Valley Road, San Diego, CA (United States); Dev, Nagendu B [Genetronics, Inc., Department of Research and Development, 11199 Sorrento Valley Road, San Diego, CA (United States); Fewell, Jason [Valentis, Inc., 8301 New Trails Drive, The Woodlands, TX (United States); Smith, Louis C [Valentis, Inc., 8301 New Trails Drive, The Woodlands, TX (United States); Widera, Georg [Genetronics, Inc., Department of Research and Development, 11199 Sorrento Valley Road, San Diego, CA (United States); Zhang Lei [Genetronics, Inc., Department of Research and Development, 11199 Sorrento Valley Road, San Diego, CA (United States)

    2003-02-21

    The effectiveness of potentially powerful therapeutics, including DNA, is often limited by their inability to permeate the cell membrane efficiently. Electroporation (EP) also referred to as 'electropermeabilization' of the outer cell membrane renders this barrier temporarily permeable by inducing 'pores' across the lipid bilayer. For in vivo EP, the drug or DNA is delivered into the interstitial space of the target tissue by conventional means, followed by local EP. EP pulses of micro- to millisecond duration and field strengths of 100-1500 V cm{sup -1} generally enhance the delivery of certain chemotherapeutic drugs by three to four orders of magnitude and intracellular delivery of DNA several hundred-fold. We have used EP in clinical studies for human cancer therapy and in animals for gene therapy and DNA vaccination. Late stage squamous cell carcinomas of the head and neck were treated with intratumoural injection of bleomycin and subsequent EP. Of the 69 tumours treated, 25% disappeared completely and another 32% were reduced in volume by more than half. Residence time of bleomycin in electroporated tumours was significantly greater than in non-electroporated lesions. Histological findings and gene expression patterns after bleomycin-EP treatment indicated rapid apoptosis of the majority of tumour cells. In animals, we demonstrated the usefulness of EP for enhanced DNA delivery by achieving normalization of blood clotting times in haemophilic dogs, and by substantially increasing transgene expression in smooth muscle cells of arterial walls using a novel porous balloon EP catheter. Finally, we have found in animal experiments that the immune response to DNA vaccines can be dramatically enhanced and accelerated by EP and co-injection of micron-sized particles. We conclude that EP represents an effective, economical and safe approach to enhance the intracellular delivery, and thus potency, of important drugs and genes for therapeutic purposes

  3. Enhancement of therapeutic drug and DNA delivery into cells by electroporation

    International Nuclear Information System (INIS)

    Rabussay, Dietmar; Dev, Nagendu B; Fewell, Jason; Smith, Louis C; Widera, Georg; Zhang Lei

    2003-01-01

    The effectiveness of potentially powerful therapeutics, including DNA, is often limited by their inability to permeate the cell membrane efficiently. Electroporation (EP) also referred to as 'electropermeabilization' of the outer cell membrane renders this barrier temporarily permeable by inducing 'pores' across the lipid bilayer. For in vivo EP, the drug or DNA is delivered into the interstitial space of the target tissue by conventional means, followed by local EP. EP pulses of micro- to millisecond duration and field strengths of 100-1500 V cm -1 generally enhance the delivery of certain chemotherapeutic drugs by three to four orders of magnitude and intracellular delivery of DNA several hundred-fold. We have used EP in clinical studies for human cancer therapy and in animals for gene therapy and DNA vaccination. Late stage squamous cell carcinomas of the head and neck were treated with intratumoural injection of bleomycin and subsequent EP. Of the 69 tumours treated, 25% disappeared completely and another 32% were reduced in volume by more than half. Residence time of bleomycin in electroporated tumours was significantly greater than in non-electroporated lesions. Histological findings and gene expression patterns after bleomycin-EP treatment indicated rapid apoptosis of the majority of tumour cells. In animals, we demonstrated the usefulness of EP for enhanced DNA delivery by achieving normalization of blood clotting times in haemophilic dogs, and by substantially increasing transgene expression in smooth muscle cells of arterial walls using a novel porous balloon EP catheter. Finally, we have found in animal experiments that the immune response to DNA vaccines can be dramatically enhanced and accelerated by EP and co-injection of micron-sized particles. We conclude that EP represents an effective, economical and safe approach to enhance the intracellular delivery, and thus potency, of important drugs and genes for therapeutic purposes. The safety and pharmaco

  4. Human embryonic stem cells and good manufacturing practice: Report of a 1- day workshop held at Stem Cell Biology Research Center, Yazd, 27th April 2017

    Directory of Open Access Journals (Sweden)

    Fatemeh Akyash

    2017-09-01

    Full Text Available This report explains briefly the minutes of a 1-day workshop entitled; “human embryonic stem cells (hESCs and good manufacturing practice (GMP” held by Stem Cell Biology Research Center based in Yazd Reproductive Sciences Institute at Shahid Sadoughi University of Medical Sciences, Yazd, Iran on 27th April 2017. In this workshop, in addition to the practical sessions, Prof. Harry D. Moore from Centre for Stem Cell Biology, University of Sheffield, UK presented the challenges and the importance of the biotechnology of clinical-grade human embryonic stem cells from first derivation to robust defined culture for therapeutic applications.

  5. Human embryonic stem cells and good manufacturing practice: Report of a 1- day workshop held at Stem Cell Biology Research Center, Yazd, 27th April 2017.

    Science.gov (United States)

    Akyash, Fatemeh; Sadeghian-Nodoushan, Fatemeh; Tahajjodi, Somayyeh Sadat; Nikukar, Habib; Farashahi Yazd, Ehsan; Azimzadeh, Mostafa; D Moore, Harry; Aflatoonian, Behrouz

    2017-05-01

    This report explains briefly the minutes of a 1-day workshop entitled; "human embryonic stem cells (hESCs) and good manufacturing practice (GMP)" held by Stem Cell Biology Research Center based in Yazd Reproductive Sciences Institute at Shahid Sadoughi University of Medical Sciences, Yazd, Iran on 27 th April 2017. In this workshop, in addition to the practical sessions, Prof. Harry D. Moore from Centre for Stem Cell Biology, University of Sheffield, UK presented the challenges and the importance of the biotechnology of clinical-grade human embryonic stem cells from first derivation to robust defined culture for therapeutic applications.

  6. Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds

    OpenAIRE

    Arandel, Ludovic; Polay Espinoza, Micaela; Matloka, Magdalena; Bazinet, Audrey; De Dea Diniz, Damily; Naouar, Na?ra; Rau, Fr?d?rique; Jollet, Arnaud; Edom-Vovard, Fr?d?rique; Mamchaoui, Kamel; Tarnopolsky, Mark; Puymirat, Jack; Battail, Christophe; Boland, Anne; Deleuze, Jean-Francois

    2017-01-01

    International audience; Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are autosomal dominant neuromuscular diseases caused by microsatellite expansions and belong to the family of RNA-dominant disorders. Availability of cellular models in which the DM mutation is expressed within its natural context is essential to facilitate efforts to identify new therapeutic compounds. Here, we generated immortalized DM1 and DM2 human muscle cell lines that display nuclear RNA aggregates of expanded rep...

  7. Legislation governing pluripotent stem cells in South Africa

    Directory of Open Access Journals (Sweden)

    Michael Pepper

    2015-09-01

    Full Text Available One of the most exciting areas of medical research involves the use of stem cells for the treatment of patients with a variety of diseases and for tissue repair. Although stem cell research is accelerating rapidly in many countries, it has in the past been limited in South Africa (SA; very little has been done in this country to explore the great potential offered by stem cells to address the high disease burden. Stem cell therapy has however been practised for many years, in SA and worldwide, in the form of haematopoietic stem cell transplantation, mainly for haematological malignancies. From a therapeutic perspective, two types of stem cells can be defined: pluripotent stem cells and adult stem cells. Pluripotent cells derived from the inner cell mass of blastocysts (either from in vitro fertilisation or following somatic cell nuclear transfer are called embryonic stem (ES cells, while those derived by reprogramming adult cells are called induced pluripotent stem (iPS cells. Adult stem cells include haematopoietic, mesenchymal and neural stem cells.The purpose of this article is to critically examine the SA legislation with regard to elements that impact on pluripotent stem cell research and the use of pluripotent stem cells for therapeutic purposes. This includes (but is not limited to legislation from the National Health Act (Chapter 8 in particular and its regulations, and deals with matters related to research on embryos in the stem cell context, somatic cell nuclear transfer, reproductive and therapeutic cloning and the generation and therapeutic use of iPS and ES cells.

  8. Hsp40 gene therapy exerts therapeutic effects on polyglutamine disease mice via a non-cell autonomous mechanism.

    Directory of Open Access Journals (Sweden)

    H Akiko Popiel

    Full Text Available The polyglutamine (polyQ diseases such as Huntington's disease (HD, are neurodegenerative diseases caused by proteins with an expanded polyQ stretch, which misfold and aggregate, and eventually accumulate as inclusion bodies within neurons. Molecules that inhibit polyQ protein misfolding/aggregation, such as Polyglutamine Binding Peptide 1 (QBP1 and molecular chaperones, have been shown to exert therapeutic effects in vivo by crossing of transgenic animals. Towards developing a therapy using these aggregation inhibitors, we here investigated the effect of viral vector-mediated gene therapy using QBP1 and molecular chaperones on polyQ disease model mice. We found that injection of adeno-associated virus type 5 (AAV5 expressing QBP1 or Hsp40 into the striatum both dramatically suppresses inclusion body formation in the HD mouse R6/2. AAV5-Hsp40 injection also ameliorated the motor impairment and extended the lifespan of R6/2 mice. Unexpectedly, we found even in virus non-infected cells that AAV5-Hsp40 appreciably suppresses inclusion body formation, suggesting a non-cell autonomous therapeutic effect. We further show that Hsp40 inhibits secretion of the polyQ protein from cultured cells, implying that it inhibits the recently suggested cell-cell transmission of the polyQ protein. Our results demonstrate for the first time the therapeutic effect of Hsp40 gene therapy on the neurological phenotypes of polyQ disease mice.

  9. A highly efficient method for generation of therapeutic quality human pluripotent stem cells by using naive induced pluripotent stem cells nucleus for nuclear transfer.

    Science.gov (United States)

    Sanal, Madhusudana Girija

    2014-01-01

    Even after several years since the discovery of human embryonic stem cells and induced pluripotent stem cells (iPSC), we are still unable to make any significant therapeutic benefits out of them such as cell therapy or generation of organs for transplantation. Recent success in somatic cell nuclear transfer (SCNT) made it possible to generate diploid embryonic stem cells, which opens up the way to make high-quality pluripotent stem cells. However, the process is highly inefficient and hence expensive compared to the generation of iPSC. Even with the latest SCNT technology, we are not sure whether one can make therapeutic quality pluripotent stem cell from any patient's somatic cells or by using oocytes from any donor. Combining iPSC technology with SCNT, that is, by using the nucleus of the candidate somatic cell which got reprogrammed to pluripotent state instead that of the unmodified nucleus of the candidate somatic cell, would boost the efficiency of the technique, and we would be able to generate therapeutic quality pluripotent stem cells. Induced pluripotent stem cell nuclear transfer (iPSCNT) combines the efficiency of iPSC generation with the speed and natural reprogramming environment of SCNT. The new technique may be called iPSCNT. This technique could prove to have very revolutionary benefits for humankind. This could be useful in generating organs for transplantation for patients and for reproductive cloning, especially for childless men and women who cannot have children by any other techniques. When combined with advanced gene editing techniques (such as CRISPR-Cas system) this technique might also prove useful to those who want to have healthy children but suffer from inherited diseases. The current code of ethics may be against reproductive cloning. However, this will change with time as it happened with most of the revolutionary scientific breakthroughs. After all, it is the right of every human to have healthy offspring and it is the question of

  10. A highly efficient method for generation of therapeutic quality human pluripotent stem cells by using naive induced pluripotent stem cells nucleus for nuclear transfer

    Directory of Open Access Journals (Sweden)

    Madhusudana Girija Sanal

    2014-09-01

    Full Text Available Even after several years since the discovery of human embryonic stem cells and induced pluripotent stem cells (iPSC, we are still unable to make any significant therapeutic benefits out of them such as cell therapy or generation of organs for transplantation. Recent success in somatic cell nuclear transfer (SCNT made it possible to generate diploid embryonic stem cells, which opens up the way to make high-quality pluripotent stem cells. However, the process is highly inefficient and hence expensive compared to the generation of iPSC. Even with the latest SCNT technology, we are not sure whether one can make therapeutic quality pluripotent stem cell from any patient’s somatic cells or by using oocytes from any donor. Combining iPSC technology with SCNT, that is, by using the nucleus of the candidate somatic cell which got reprogrammed to pluripotent state instead that of the unmodified nucleus of the candidate somatic cell, would boost the efficiency of the technique, and we would be able to generate therapeutic quality pluripotent stem cells. Induced pluripotent stem cell nuclear transfer (iPSCNT combines the efficiency of iPSC generation with the speed and natural reprogramming environment of SCNT. The new technique may be called iPSCNT. This technique could prove to have very revolutionary benefits for humankind. This could be useful in generating organs for transplantation for patients and for reproductive cloning, especially for childless men and women who cannot have children by any other techniques. When combined with advanced gene editing techniques (such as CRISPR-Cas system this technique might also prove useful to those who want to have healthy children but suffer from inherited diseases. The current code of ethics may be against reproductive cloning. However, this will change with time as it happened with most of the revolutionary scientific breakthroughs. After all, it is the right of every human to have healthy offspring and it is

  11. Possible Therapeutic Application of Targeting Type II Natural Killer T Cell-Mediated Suppression of Tumor Immunity

    Science.gov (United States)

    Kato, Shingo; Berzofsky, Jay A.; Terabe, Masaki

    2018-01-01

    Natural killer T (NKT) cells are a unique T cell subset that exhibits characteristics from both the innate immune cells and T cells. There are at least two subsets of NKT cells, type I and type II. These two subsets of NKT cells have opposite functions in antitumor immunity. Type I NKT cells usually enhance and type II NKT cells suppress antitumor immunity. In addition, these two subsets of NKT cells cross-regulate each other. In this review, we mainly focus on immunosuppressive NKT cells, type II NKT cells. After summarizing their definition, experimental tools to study them, and subsets of them, we will discuss possible therapeutic applications of type II NKT cell pathway targeted therapies. PMID:29520281

  12. Mast cell inhibition as a therapeutic approach in fibrodysplasia ossificans progressiva (FOP).

    Science.gov (United States)

    Brennan, Tracy A; Lindborg, Carter M; Bergbauer, Christian R; Wang, Haitao; Kaplan, Frederick S; Pignolo, Robert J

    2018-04-01

    Episodic flare-ups of fibrodysplasia ossificans progressiva (FOP) are characterized clinically by severe, often posttraumatic, connective tissue swelling and intramuscular edema, followed histologically by an intense and highly angiogenic fibroproliferative reaction. This early inflammatory and angiogenic fibroproliferative response is accompanied by the presence of abundant mast cells far in excess of other reported myopathies. Using an injury-induced, constitutively-active transgenic mouse model of FOP we show that mast cell inhibition by cromolyn, but not aprepitant, results in a dramatic reduction of heterotopic ossification. Cromolyn, but not aprepitant, significantly decreases the total number of mast cells in FOP lesions. Furthermore, cromolyn specifically diminishes the number of degranulating and resting degranulated mast cells in pre-osseous lesions. This work demonstrates that consideration of FOP as a type of localized mastocytosis may offer new therapeutic interventions for treatment of this devastating condition. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Cell-mediated immune response: a clinical review of the therapeutic potential of human papillomavirus vaccination.

    Science.gov (United States)

    Meyer, Sonja Izquierdo; Fuglsang, Katrine; Blaakaer, Jan

    2014-12-01

    This clinical review aims to assess the efficacy of human papillomavirus 16/18 (HPV16/18) vaccination on the cell-mediated immune response in women with existing cervical intraepithelial neoplasia or cervical cancer induced by HPV16 or HPV18. A focused and thorough literature search conducted in five different databases found 996 publications. Six relevant articles were chosen for further review. In total, 154 patients (>18 years of age) were enrolled in prospective study trials with 3-15 months of follow up. The vaccine applications were administered two to four times. The vaccines contained different combinations of HPV16 and HPV18 and early proteins, E6 and E7. The primary outcome was the cell-mediated immune response. Correlation to clinical outcome (histopathology) and human leukocyte antigen genes were secondary endpoints. All vaccines triggered a detectable cell-mediated immune response, some of which were statistically significant. Correlations between immunological response and clinical outcome (histopathology) were not significant, so neoplasms may not be susceptible to vaccine-generated cytotoxic T cells (CD8(+)). Prophylactic HPV vaccines have been introduced to reduce the incidence of cervical cancer in young women. Women already infected with HPV could benefit from a therapeutic HPV vaccination. Hence, it is important to continue the development of therapeutic HPV vaccines to lower the rate of HPV-associated malignancies and crucial to evaluate vaccine efficacy clinically. This clinical review represents an attempt to elucidate the theories supporting the development of an HPV vaccine with a therapeutic effect on human papillomavirus-induced malignancies of the cervix. © 2014 Nordic Federation of Societies of Obstetrics and Gynecology.

  14. Identification of novel therapeutic targets in microdissected clear cell ovarian cancers.

    Directory of Open Access Journals (Sweden)

    Michael P Stany

    Full Text Available Clear cell ovarian cancer is an epithelial ovarian cancer histotype that is less responsive to chemotherapy and carries poorer prognosis than serous and endometrioid histotypes. Despite this, patients with these tumors are treated in a similar fashion as all other ovarian cancers. Previous genomic analysis has suggested that clear cell cancers represent a unique tumor subtype. Here we generated the first whole genomic expression profiling using epithelial component of clear cell ovarian cancers and normal ovarian surface specimens isolated by laser capture microdissection. All the arrays were analyzed using BRB ArrayTools and PathwayStudio software to identify the signaling pathways. Identified pathways validated using serous, clear cell cancer cell lines and RNAi technology. In vivo validations carried out using an orthotopic mouse model and liposomal encapsulated siRNA. Patient-derived clear cell and serous ovarian tumors were grafted under the renal capsule of NOD-SCID mice to evaluate the therapeutic potential of the identified pathway. We identified major activated pathways in clear cells involving in hypoxic cell growth, angiogenesis, and glucose metabolism not seen in other histotypes. Knockdown of key genes in these pathways sensitized clear cell ovarian cancer cell lines to hypoxia/glucose deprivation. In vivo experiments using patient derived tumors demonstrate that clear cell tumors are exquisitely sensitive to antiangiogenesis therapy (i.e. sunitinib compared with serous tumors. We generated a histotype specific, gene signature associated with clear cell ovarian cancer which identifies important activated pathways critical for their clinicopathologic characteristics. These results provide a rational basis for a radically different treatment for ovarian clear cell patients.

  15. Inhibition of HSP27 alone or in combination with pAKT inhibition as therapeutic approaches to target SPARC-induced glioma cell survival

    Directory of Open Access Journals (Sweden)

    Schultz Chad R

    2012-04-01

    Full Text Available Abstract Background The current treatment regimen for glioma patients is surgery, followed by radiation therapy plus temozolomide (TMZ, followed by 6 months of adjuvant TMZ. Despite this aggressive treatment regimen, the overall survival of all surgically treated GBM patients remains dismal, and additional or different therapies are required. Depending on the cancer type, SPARC has been proposed both as a therapeutic target and as a therapeutic agent. In glioma, SPARC promotes invasion via upregulation of the p38 MAPK/MAPKAPK2/HSP27 signaling pathway, and promotes tumor cell survival by upregulating pAKT. As HSP27 and AKT interact to regulate the activity of each other, we determined whether inhibition of HSP27 was better than targeting SPARC as a therapeutic approach to inhibit both SPARC-induced glioma cell invasion and survival. Results Our studies found the following. 1 SPARC increases the expression of tumor cell pro-survival and pro-death protein signaling in balance, and, as a net result, tumor cell survival remains unchanged. 2 Suppressing SPARC increases tumor cell survival, indicating it is not a good therapeutic target. 3 Suppressing HSP27 decreases tumor cell survival in all gliomas, but is more effective in SPARC-expressing tumor cells due to the removal of HSP27 inhibition of SPARC-induced pro-apoptotic signaling. 4 Suppressing total AKT1/2 paradoxically enhanced tumor cell survival, indicating that AKT1 or 2 are poor therapeutic targets. 5 However, inhibiting pAKT suppresses tumor cell survival. 6 Inhibiting both HSP27 and pAKT synergistically decreases tumor cell survival. 7 There appears to be a complex feedback system between SPARC, HSP27, and AKT. 8 This interaction is likely influenced by PTEN status. With respect to chemosensitization, we found the following. 1 SPARC enhances pro-apoptotic signaling in cells exposed to TMZ. 2 Despite this enhanced signaling, SPARC protects cells against TMZ. 3 This protection can be reduced

  16. The therapeutic CD38 monoclonal antibody daratumumab induces programmed cell death via fcg receptor-mediated cross-linking

    DEFF Research Database (Denmark)

    Overdijk, Marije B.; Jansen, J. H. Marco; Nederend, Maaike

    2016-01-01

    RIIb as well as activating FcgRs induce DARA cross-linking-mediated PCD. In conclusion, our in vitro and in vivo data show that FcgRmediated cross-linking of DARA induces PCD of CD38-expressing multiple myeloma tumor cells, which potentially contributes to the depth of response observed in DARA......Emerging evidence suggests that FcgR-mediated cross-linking of tumor-bound mAbs may induce signaling in tumor cells that contributes to their therapeutic activity. In this study, we show that daratumumab (DARA), a therapeutic human CD38 mAb with a broad-spectrum killing activity, is able to induce...... programmed cell death (PCD) of CD38+ multiple myeloma tumor cell lines when cross-linked in vitro by secondary Abs or via an FcgR. By comparing DARA efficacy in a syngeneic in vivo tumor model using FcRg-chain knockout or NOTAM mice carrying a signaling-inactive FcRg-chain, we found that the inhibitory Fcg...

  17. Therapeutic potential of umbilical cord blood cells for type 1 diabetes mellitus.

    Science.gov (United States)

    He, Binbin; Li, Xia; Yu, Haibo; Zhou, Zhiguang

    2015-11-01

    Type 1 diabetes mellitus (T1DM) is a chronic disorder that results from autoimmune-mediated destruction of pancreatic islet β-cells. However, to date, no conventional intervention has successfully treated the disease. The optimal therapeutic method for T1DM should effectively control the autoimmunity, restore immune homeostasis, preserve residual β-cells, reverse β-cell destruction, and protect the regenerated insulin-producing cells against re-attack. Umbilical cord blood is rich in regulatory T (T(reg)) cells and multiple types of stem cells that exhibit immunomodulating potential and hold promise in their ability to restore peripheral tolerance towards pancreatic islet β-cells through remodeling of immune responses and suppression of autoreactive T cells. Recently, reinfusion of autologous umbilical cord blood or immune cells from cord blood has been proposed as a novel therapy for T1DM, with the advantages of no risk to the donors, minimal ethical concerns, a low incidence of graft-versus-host disease and easy accessibility. In this review, we revisit the role of autologous umbilical cord blood or immune cells from cord blood-based applications for the treatment of T1DM. © 2015 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  18. Toward a new generation of therapeutics: artificial cell targeted delivery of live cells for therapy.

    Science.gov (United States)

    Prakash, Satya; Martoni, Christopher

    2006-01-01

    Scientific evidence in the prevention and treatment of various disorders is accumulating regarding probiotics. The health benefits supported by adequate clinical data include increased resistance to infectious disease, decreased duration of diarrhea, management of inflammatory bowel disease, reduction of serum cholesterol, prevention of allergy, modulation of cytokine gene expression, and suppression of carcinogen production. Recent ventures in metabolic engineering and heterologous protein expression have enhanced the enzymatic and immunomodulatory effects of probiotics and, with time, may allow more active intervention among critical care patients. In addition, a number of approaches are currently being explored, including the physical and chemical protection of cells, to increase probiotic viability and its health benefits. Traditional immobilization of probiotics in gel matrices, most notably calcium alginate and kappa-carrageenan, has frequently been employed, with noted improvements in viability during freezing and storage. Conflicting reports exist, however, on the protection offered by immobilization from harsh physiologic environments. An alternative approach, microencapsulation in "artificial cells," builds on immobilization technologies by combining enhanced mechanical stability of the capsule membrane with improved mass transport, increased cell loading, and greater control of parameters. This review summarizes the current clinical status of probiotics, examines the promises and challenges of current immobilization technologies, and presents the concept of artificial cells for effective delivery of therapeutic bacterial cells.

  19. Mesenchymal stem cell-based gene therapy: A promising therapeutic strategy.

    Science.gov (United States)

    Mohammadian, Mozhdeh; Abasi, Elham; Akbarzadeh, Abolfazl

    2016-08-01

    Mesenchymal stem cells (MSCs) are multipotent stromal cells that exist in bone marrow, fat, and so many other tissues, and can differentiate into a variety of cell types including osteoblasts, chondrocytes, and adipocytes, as well as myocytes and neurons. Moreover, they have great capacity for self-renewal while maintaining their multipotency. Their capacity for proliferation and differentiation, in addition to their immunomodulatory activity, makes them very promising candidates for cell-based regenerative medicine. Moreover, MSCs have the ability of mobilization to the site of damage; therefore, they can automatically migrate to the site of injury via their chemokine receptors following intravenous transplantation. In this respect, they can be applied for MSC-based gene therapy. In this new therapeutic method, genes of interest are introduced into MSCs via viral and non-viral-based methods that lead to transgene expression in them. Although stem cell-based gene therapy is a relatively new strategy, it lights a new hope for the treatment of a variety of genetic disorders. In the near future, MSCs can be of use in a vast number of clinical applications, because of their uncomplicated isolation, culture, and genetic manipulation. However, full consideration is still crucial before they are utilized for clinical trials, because the number of studies that signify the advantageous effects of MSC-based gene therapy are still limited.

  20. A highly efficient method for generation of therapeutic quality human pluripotent stem cells by using naive induced pluripotent stem cells nucleus for nuclear transfer

    OpenAIRE

    Sanal, Madhusudana Girija

    2014-01-01

    Even after several years since the discovery of human embryonic stem cells and induced pluripotent stem cells (iPSC), we are still unable to make any significant therapeutic benefits out of them such as cell therapy or generation of organs for transplantation. Recent success in somatic cell nuclear transfer (SCNT) made it possible to generate diploid embryonic stem cells, which opens up the way to make high-quality pluripotent stem cells. However, the process is highly inefficient and hence e...

  1. Magnetic catechin-dextran conjugate as targeted therapeutic for pancreatic tumour cells.

    Science.gov (United States)

    Vittorio, Orazio; Voliani, Valerio; Faraci, Paolo; Karmakar, Biswajit; Iemma, Francesca; Hampel, Silke; Kavallaris, Maria; Cirillo, Giuseppe

    2014-06-01

    Catechin-dextran conjugates have recently attracted a lot of attention due to their anticancer activity against a range of cancer cells. Magnetic nanoparticles have the ability to concentrate therapeutically important drugs due to their magnetic-spatial control and provide opportunities for targeted drug delivery. Enhancement of the anticancer efficiency of catechin-dextran conjugate by functionalisation with magnetic iron oxide nanoparticles. Modification of the coating shell of commercial magnetic nanoparticles (Endorem) composed of dextran with the catechin-dextran conjugate. Catechin-dextran conjugated with Endorem (Endo-Cat) increased the intracellular concentration of the drug and it induced apoptosis in 98% of pancreatic tumour cells placed under magnetic field. The conjugation of catechin-dextran with Endorem enhances the anticancer activity of this drug and provides a new strategy for targeted drug delivery on tumour cells driven by magnetic field. The ability to spatially control the delivery of the catechin-dextran by magnetic field makes it a promising agent for further application in cancer therapy.

  2. The Multifaceted Uses and Therapeutic Advantages of Nanoparticles for Atherosclerosis Research.

    Science.gov (United States)

    DiStasio, Nicholas; Lehoux, Stephanie; Khademhosseini, Ali; Tabrizian, Maryam

    2018-05-08

    Nanoparticles are uniquely suited for the study and development of potential therapies against atherosclerosis by virtue of their size, fine-tunable properties, and ability to incorporate therapies and/or imaging modalities. Furthermore, nanoparticles can be specifically targeted to the atherosclerotic plaque, evading off-target effects and/or associated cytotoxicity. There has been a wealth of knowledge available concerning the use of nanotechnologies in cardiovascular disease and atherosclerosis, in particular in animal models, but with a major focus on imaging agents. In fact, roughly 60% of articles from an initial search for this review included examples of imaging applications of nanoparticles. Thus, this review focuses on experimental therapy interventions applied to and observed in animal models. Particular emphasis is placed on how nanoparticle materials and properties allow researchers to learn a great deal about atherosclerosis. The objective of this review was to provide an update for nanoparticle use in imaging and drug delivery studies and to illustrate how nanoparticles can be used for sensing and modelling, for studying fundamental biological mechanisms, and for the delivery of biotherapeutics such as proteins, peptides, nucleic acids, and even cells all with the goal of attenuating atherosclerosis. Furthermore, the various atherosclerosis processes targeted mainly for imaging studies have been summarized in the hopes of inspiring new and exciting targeted therapeutic and/or imaging strategies.

  3. Human Induced Pluripotent Stem Cells from Basic Research to Potential Clinical Applications in Cancer

    Directory of Open Access Journals (Sweden)

    Teresa de Souza Fernandez

    2013-01-01

    Full Text Available The human induced pluripotent stem cells (hiPSCs are derived from a direct reprogramming of human somatic cells to a pluripotent stage through ectopic expression of specific transcription factors. These cells have two important properties, which are the self-renewal capacity and the ability to differentiate into any cell type of the human body. So, the discovery of hiPSCs opens new opportunities in biomedical sciences, since these cells may be useful for understanding the mechanisms of diseases in the production of new diseases models, in drug development/drug toxicity tests, gene therapies, and cell replacement therapies. However, the hiPSCs technology has limitations including the potential for the development of genetic and epigenetic abnormalities leading to tumorigenicity. Nowadays, basic research in the hiPSCs field has made progress in the application of new strategies with the aim to enable an efficient production of high-quality of hiPSCs for safety and efficacy, necessary to the future application for clinical practice. In this review, we show the recent advances in hiPSCs’ basic research and some potential clinical applications focusing on cancer. We also present the importance of the use of statistical methods to evaluate the possible validation for the hiPSCs for future therapeutic use toward personalized cell therapies.

  4. IL8-CXCR2 pathway inhibition as a therapeutic strategy against MDS and AML stem cells.

    Science.gov (United States)

    Schinke, Carolina; Giricz, Orsolya; Li, Weijuan; Shastri, Aditi; Gordon, Shanisha; Barreyro, Laura; Barreryo, Laura; Bhagat, Tushar; Bhattacharyya, Sanchari; Ramachandra, Nandini; Bartenstein, Matthias; Pellagatti, Andrea; Boultwood, Jacqueline; Wickrema, Amittha; Yu, Yiting; Will, Britta; Wei, Sheng; Steidl, Ulrich; Verma, Amit

    2015-05-14

    Acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are associated with disease-initiating stem cells that are not eliminated by conventional therapies. Novel therapeutic targets against preleukemic stem cells need to be identified for potentially curative strategies. We conducted parallel transcriptional analysis of highly fractionated stem and progenitor populations in MDS, AML, and control samples and found interleukin 8 (IL8) to be consistently overexpressed in patient samples. The receptor for IL8, CXCR2, was also significantly increased in MDS CD34(+) cells from a large clinical cohort and was predictive of increased transfusion dependence. High CXCR2 expression was also an adverse prognostic factor in The Cancer Genome Atlas AML cohort, further pointing to the critical role of the IL8-CXCR2 axis in AML/MDS. Functionally, CXCR2 inhibition by knockdown and pharmacologic approaches led to a significant reduction in proliferation in several leukemic cell lines and primary MDS/AML samples via induction of G0/G1 cell cycle arrest. Importantly, inhibition of CXCR2 selectively inhibited immature hematopoietic stem cells from MDS/AML samples without an effect on healthy controls. CXCR2 knockdown also impaired leukemic growth in vivo. Together, these studies demonstrate that the IL8 receptor CXCR2 is an adverse prognostic factor in MDS/AML and is a potential therapeutic target against immature leukemic stem cell-enriched cell fractions in MDS and AML. © 2015 by The American Society of Hematology.

  5. Fuel Cell Manufacturing Research and Development | Hydrogen and Fuel Cells

    Science.gov (United States)

    | NREL Fuel Cell Manufacturing Research and Development Fuel Cell Manufacturing Research and Development NREL's fuel cell manufacturing R&D focuses on improving quality-inspection practices for high costs. A researcher monitoring web-line equipment in the Manufacturing Laboratory Many fuel cell

  6. [Cell-based therapies - an innovative therapeutic option in ophthalmology: Treating corneal diseases with stem cells].

    Science.gov (United States)

    Bakker, Ann-Christin; Langer, Barbara

    2015-11-01

    Pathological changes and disorders of the cornea are a major cause of severe visual impairment and blindness. Replacement of a pathologically altered cornea with healthy corneal tissue from the eye of a suitable donor is among the most common and successful transplantation procedures in medicine. In Germany, approximately 5000-6000 corneal transplantations are performed each year, but the total demand per year is estimated to be twice as high. With a success rate of 90%, the outcome of cornea transplantation is very favourable. However, long-term maintenance and regeneration of a healthy new cornea requires tissue-specific corneal stem cells residing at the basal layer of the limbus, which is the annular transition zone between the cornea and sclera. When this important limbal stem cell population is destroyed or dysfunctional, a pathological condition known as limbal stem cell deficiency (LSCD) manifests. Limbal stem cell deficiency describes conditions associated with impaired corneal wound healing and regeneration. In this situation, transplantation of healthy limbal stem cells is the only curative treatment approach for restoration of an intact and functional ocular surface. To date, treatment of LSCD presents a great challenge for ophthalmologists. However, innovative, cell-therapeutic approaches may open new, promising treatment perspectives. In February 2015, the European Commission granted marketing authorization to the first stem cell-based treatment in the European Union. The product named Holoclar® is an advanced therapy medicinal product (ATMP) for the treatment of moderate to severe LSCD due to physical and chemical burns in adults. Further cell-based treatment approaches are in clinical development.

  7. New technology for ultrasensitive detection and isolation of rare cells for clinical diagnostics and therapeutics

    Science.gov (United States)

    Leary, James F.; McLaughlin, Scott R.

    1995-04-01

    A high-speed, 11-parameter, 6-color fluorescence, laser flow cytometer/cell sorter with a number of special and unique features has been built for ultrasensitive detection and isolation of rare cells for clinical diagnostics and therapeutics. The software for real-time data acquisition and sort control, written as C++ programming language modules with a WindowsTM graphical user interface, runs on a 66-MHz 80486 computer joined by an extended bus to 23 sophisticated multi-layered boards of special data acquisition and sorting electronics. Special features include: high-speed (> 100,000 cells/sec) real-time data classification module (U.S. Patent 5,204,884 (1993)); real-time principal component cell sorting; multi-queue signal-processing system with multiple hardware and software event buffers to reduce instrument dead time, LUT charge-pulse definition, high-resolution `flexible' sorting for optimal yield/purity sort strategies (U.S. Patent 5,199,576); pre-focusing optical wavelength correction for a second laser beam; and two trains of three fluorescence detectors-- each adjustable for spatial separation to interrogate only one of two laser beams, syringe- driven or pressure-driven fluidics, and time-windowed parameters. The system has been built to be both expandable and versatile through the use of LUT's and a modular hardware and software design. The instrument is especially useful at detection and isolation of rare cell subpopulations for which our laboratory is well-known. Cell subpopulations at frequencies as small as 10-7 have been successfully studied with this system. Current applications in clinical diagnostics and therapeutics include detection and isolation of (1) fetal cells from material blood for prenatal diagnosis of birth defects, (2) hematopoietic stem and precursor cells for autologous bone marrow transplantation, (3) metastatic breast cancer cells for molecular characterization, and (4) HIV-infected maternal cells in newborn blood to study mother

  8. Therapeutic potential of mesenchymal stem cells to treat Achilles tendon injuries.

    Science.gov (United States)

    Vieira, M H C; Oliveira, R J; Eça, L P M; Pereira, I S O; Hermeto, L C; Matuo, R; Fernandes, W S; Silva, R A; Antoniolli, A C M B

    2014-12-12

    Rupture of the Achilles tendon diminishes quality of life. The gold-standard therapy is a surgical suture, but this presents complications, including wound formation and inflammation. These complications spurred evaluation of the therapeutic potential of mesenchymal stem cells (MSCs) from adipose tissue. New Zealand rabbits were divided into 6 groups (three treatments with two time points each) evaluated at either 14 or 28 days after surgery: cross section of the Achilles tendon (CSAT); CSAT + Suture; and CSAT + MSC. A comparison between all groups at both time points showed a statistically significant increase in capillaries and in the structural organization of collagen in the healed tendon in the CSAT + Suture and CSAT + MSC groups at the 14-day assessment. Comparison between the two time points within the same group showed a statistically significant decrease in the inflammatory process and an increase in the structural organization of collagen in the CSAT and CSAT + MSC groups. A study of the genomic integrity of the cells suggested a linear correlation between an increase of injuries and culture time. Thus, MSC transplantation is a good alternative for treatment of Achilles tendon ruptures because it may be conducted without surgery and tendon suture and, therefore, has no risk of adverse effects resulting from the surgical wound or inflammation caused by nonabsorbable sutures. Furthermore, this alternative treatment exhibits a better capacity for wound healing and maintaining the original tendon architecture, depending on the arrangement of the collagen fibers, and has important therapeutic potential.

  9. Patents and innovation in cancer therapeutics: lessons from CellPro.

    Science.gov (United States)

    Bar-Shalom, Avital; Cook-Deegan, Robert

    2002-01-01

    This article discusses the interaction between intellectual property and cancer treatment. CellPro developed a stem cell separation technology based on research at the Fred Hutchinson Cancer Center. A patent with broad claims to bone marrow stem cell antibodies had been awarded to Johns Hopkins University and licensed to Baxter Healthcare under the 1980 Bayh-Dole Act to promote commercial use of inventions from federally funded research. CellPro got FDA approval more than two years before Baxter but lost patent infringement litigation. NIH elected not to compel Hopkins to license its patents to CellPro. CellPro went out of business, selling its technology to its competitor. Decisions at both firms and university licensing offices, and policies at the Patent and Trademark Office, NIH, and the courts influenced the outcome.

  10. Improving the Post-Stroke Therapeutic Potency of Mesenchymal Multipotent Stromal Cells by Cocultivation With Cortical Neurons: The Role of Crosstalk Between Cells.

    Science.gov (United States)

    Babenko, Valentina A; Silachev, Denis N; Zorova, Ljubava D; Pevzner, Irina B; Khutornenko, Anastasia A; Plotnikov, Egor Y; Sukhikh, Gennady T; Zorov, Dmitry B

    2015-09-01

    The goal of the present study was to maximally alleviate the negative impact of stroke by increasing the therapeutic potency of injected mesenchymal multipotent stromal cells (MMSCs). To pursue this goal, the intercellular communications of MMSCs and neuronal cells were studied in vitro. As a result of cocultivation of MMSCs and rat cortical neurons, we proved the existence of intercellular contacts providing transfer of cellular contents from one cell to another. We present evidence of intercellular exchange with fluorescent probes specifically occupied by cytosol with preferential transfer from neurons toward MMSCs. In contrast, we observed a reversed transfer of mitochondria (from MMSCs to neural cells). Intravenous injection of MMSCs in a postischemic period alleviated the pathological indexes of a stroke, expressed as a lower infarct volume in the brain and partial restoration of neurological status. Also, MMSCs after cocultivation with neurons demonstrated more profound neuroprotective effects than did unprimed MMSCs. The production of the brain-derived neurotrophic factor was slightly increased in MMSCs, and the factor itself was redistributed in these cells after cocultivation. The level of Miro1 responsible for intercellular traffic of mitochondria was increased in MMSCs after cocultivation. We conclude that the exchange by cellular compartments between neural and stem cells improves MMSCs' protective abilities for better rehabilitation after stroke. This could be used as an approach to enhance the therapeutic benefits of stem cell therapy to the damaged brain. The idea of priming stem cells before practical use for clinical purposes was applied. Thus, cells were preconditioned by coculturing them with the targeted cells (i.e., neurons for the treatment of brain pathological features) before the transfusion of stem cells to the organism. Such priming improved the capacity of stem cells to treat stroke. Some additional minimal study will be required to

  11. Legislation governing pluripotent stem cells in South Africa

    African Journals Online (AJOL)

    2015-08-24

    Aug 24, 2015 ... Although stem cell research is accelerating rapidly in many countries, it has in the ... and therapeutic cloning and the generation and therapeutic use of iPS and ES cells. ..... Two methods can be used to obtain a blastocyst.

  12. Targeting of tolerogenic dendritic cells towards heat-shock proteins: a novel therapeutic strategy for autoimmune diseases?

    Science.gov (United States)

    Jansen, Manon A A; Spiering, Rachel; Broere, Femke; van Laar, Jacob M; Isaacs, John D; van Eden, Willem; Hilkens, Catharien M U

    2018-01-01

    Tolerogenic dendritic cells (tolDCs) are a promising therapeutic tool to restore immune tolerance in autoimmune diseases. The rationale of using tolDCs is that they can specifically target the pathogenic T-cell response while leaving other, protective, T-cell responses intact. Several ways of generating therapeutic tolDCs have been described, but whether these tolDCs should be loaded with autoantigen(s), and if so, with which autoantigen(s), remains unclear. Autoimmune diseases, such as rheumatoid arthritis, are not commonly defined by a single, universal, autoantigen. A possible solution is to use surrogate autoantigens for loading of tolDCs. We propose that heat-shock proteins may be a relevant surrogate antigen, as they are evolutionarily conserved between species, ubiquitously expressed in inflamed tissues and have been shown to induce regulatory T cells, ameliorating disease in various arthritis mouse models. In this review, we provide an overview on how immune tolerance may be restored by tolDCs, the problem of selecting relevant autoantigens for loading of tolDCs, and why heat-shock proteins could be used as surrogate autoantigens. © 2017 John Wiley & Sons Ltd.

  13. Immunomodulatory effect of Mesenchymal Stem Cells on B cells

    Directory of Open Access Journals (Sweden)

    Marcella eFranquesa

    2012-07-01

    Full Text Available The research on T cell immunosuppression therapies has attracted most of the attention in clinical transplantation. However, B cells and humoral immune responses are increasingly acknowledged as crucial mediators of chronic allograft rejection. Indeed, humoral immune responses can lead to renal allograft rejection even in patients whose cell-mediated immune responses are well controlled. On the other hand, newly studied B cell subsets with regulatory effects have been linked to tolerance achievement in transplantation. Better understanding of the regulatory and effector B cell responses may therefore lead to new therapeutic approaches.Mesenchymal Stem Cells (MSC are arising as a potent therapeutic tool in transplantation due to their regenerative and immunomodulatory properties. The research on MSCs has mainly focused on their effects on T cells and although data regarding the modulatory effects of MSCs on alloantigen-specific humoral response in humans is scarce, it has been demonstrated that MSCs significantly affect B cell functioning. In the present review we will analyze and discuss the results in this field.

  14. Drug-releasing nano-engineered titanium implants: therapeutic efficacy in 3D cell culture model, controlled release and stability

    Energy Technology Data Exchange (ETDEWEB)

    Gulati, Karan [School of Chemical Engineering, The University of Adelaide, SA 5005 (Australia); Kogawa, Masakazu; Prideaux, Matthew; Findlay, David M. [Discipline of Orthopaedics and Trauma, The University of Adelaide, SA 5005 (Australia); Atkins, Gerald J., E-mail: gerald.atkins@adelaide.edu.au [Discipline of Orthopaedics and Trauma, The University of Adelaide, SA 5005 (Australia); Losic, Dusan, E-mail: dusan.losic@adelaide.edu.au [School of Chemical Engineering, The University of Adelaide, SA 5005 (Australia)

    2016-12-01

    There is an ongoing demand for new approaches for treating localized bone pathologies. Here we propose a new strategy for treatment of such conditions, via local delivery of hormones/drugs to the trauma site using drug releasing nano-engineered implants. The proposed implants were prepared in the form of small Ti wires/needles with a nano-engineered oxide layer composed of array of titania nanotubes (TNTs). TNTs implants were inserted into a 3D collagen gel matrix containing human osteoblast-like, and the results confirmed cell migration onto the implants and their attachment and spread. To investigate therapeutic efficacy, TNTs/Ti wires loaded with parathyroid hormone (PTH), an approved anabolic therapeutic for the treatment of severe bone fractures, were inserted into 3D gels containing osteoblast-like cells. Gene expression studies revealed a suppression of SOST (sclerostin) and an increase in RANKL (receptor activator of nuclear factor kappa-B ligand) mRNA expression, confirming the release of PTH from TNTs at concentrations sufficient to alter cell function. The performance of the TNTs wire implants using an example of a drug needed at relatively higher concentrations, the anti-inflammatory drug indomethacin, is also demonstrated. Finally, the mechanical stability of the prepared implants was tested by their insertion into bovine trabecular bone cores ex vivo followed by retrieval, which confirmed the robustness of the TNT structures. This study provides proof of principle for the suitability of the TNT/Ti wire implants for localized bone therapy, which can be customized to cater for specific therapeutic requirements. - Highlights: • Ti wire with titania nanotubes (TNTs) are proposed as ‘in-bone’ therapeutic implants. • 3D cell culture model is used to confirm therapeutic efficacy of drug releasing implants. Osteoblasts migrated and firmly attached to the TNTs and the micro-scale cracks. • Tailorable drug loading from few nanograms to several hundred

  15. Macromolecular therapeutics.

    Science.gov (United States)

    Yang, Jiyuan; Kopeček, Jindřich

    2014-09-28

    This review covers water-soluble polymer-drug conjugates and macromolecules that possess biological activity without attached low molecular weight drugs. The main design principles of traditional and backbone degradable polymer-drug conjugates as well as the development of a new paradigm in nanomedicines - (low molecular weight) drug-free macromolecular therapeutics are discussed. To address the biological features of cancer, macromolecular therapeutics directed to stem/progenitor cells and the tumor microenvironment are deliberated. Finally, the future perspectives of the field are briefly debated. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Inhibition of miR-155, a therapeutic target for breast cancer, prevented in cancer stem cell formation.

    Science.gov (United States)

    Zuo, Jiangcheng; Yu, Yalan; Zhu, Man; Jing, Wei; Yu, Mingxia; Chai, Hongyan; Liang, Chunzi; Tu, Jiancheng

    2018-02-06

    Breast cancer is a common cancer in women of worldwide. Cancer cells with stem-like properties played important roles in breast cancer, such as relapse, metastasis and treatment resistance. Micro-RNA-155 (miR-155) is a well-known oncogenic miRNA overexpressed in many human cancers. The expression levels of miR-155 in 38 pairs of cancer tissues and adjacent normal tissues from breast cancer patients were detected using quantitative real-time PCR. The invasive cell line MDA-MB-231 was used to quantify the expression of miR-155 by tumor-sphere forming experiment. Soft agar colony formation assay and tumor xenografts was used to explore whether the inhibition of miR-155 could reduce proliferation of cancer cells in vivo and vitro. In the study, we found miR-155 was upregulated in BC. Soft agar colony formation assay and tumor xenografts showed inhibition of miR-155 could significantly reduce proliferation of cancer cells in vivo and vitro, which confirmed that miR-155 is an effective therapeutic target of breast cancer. Sphere-forming experiment showed that overexpression of miR-155 significantly correlated with stem-like properties. Expressions of ABCG2, CD44 and CD90 were repressed by inhibition of miR-155, but CD24 was promoted. Interestingly, inhibition of miR-155 rendered MDA-MB-231 cells more sensitive to Doxorubicinol, which resulted in an increase of inhibition rate from 20.23% to 68.72%. Expression of miR-155 not only was a therapeutic target but also was associated with cancer stem cell formation and Doxorubicinol sensitivity. Our results underscore the importance of miR-155 as a therapeutic target and combination of Doxorubicinol and miR-155-silencing would be a potential way to cure breast cancer.

  17. Safety paradigm: genetic evaluation of therapeutic grade human embryonic stem cells.

    Science.gov (United States)

    Stephenson, Emma; Ogilvie, Caroline Mackie; Patel, Heema; Cornwell, Glenda; Jacquet, Laureen; Kadeva, Neli; Braude, Peter; Ilic, Dusko

    2010-12-06

    The use of stem cells for regenerative medicine has captured the imagination of the public, with media attention contributing to rising expectations of clinical benefits. Human embryonic stem cells (hESCs) are the best model for capital investment in stem cell therapy and there is a clear need for their robust genetic characterization before scaling-up cell expansion for that purpose. We have to be certain that the genome of the starting material is stable and normal, but the limited resolution of conventional karyotyping is unable to give us such assurance. Advanced molecular cytogenetic technologies such as array comparative genomic hybridization for identifying chromosomal imbalances, and single nucleotide polymorphism analysis for identifying ethnic background and loss of heterozygosity should be introduced as obligatory diagnostic tests for each newly derived hESC line before it is deposited in national stem cell banks. If this new quality standard becomes a requirement, as we are proposing here, it would facilitate and accelerate the banking process, since end-users would be able to select the most appropriate line for their particular application, thus improving efficiency and streamlining the route to manufacturing therapeutics. The pharmaceutical industry, which may use hESC-derived cells for drug screening, should not ignore their genomic profile as this may risk misinterpretation of results and significant waste of resources.

  18. Mechanism of oral tolerance induction to therapeutic proteins.

    Science.gov (United States)

    Wang, Xiaomei; Sherman, Alexandra; Liao, Gongxian; Leong, Kam W; Daniell, Henry; Terhorst, Cox; Herzog, Roland W

    2013-06-15

    Oral tolerance is defined as the specific suppression of humoral and/or cellular immune responses to an antigen by administration of the same antigen through the oral route. Due to its absence of toxicity, easy administration, and antigen specificity, oral tolerance is a very attractive approach to prevent unwanted immune responses that cause a variety of diseases or that complicate treatment of a disease. Many researchers have induced oral tolerance to efficiently treat autoimmune and inflammatory diseases in different animal models. However, clinical trials yielded limited success. Thus, understanding the mechanisms of oral tolerance induction to therapeutic proteins is critical for paving the way for clinical development of oral tolerance protocols. This review will summarize progress on understanding the major underlying tolerance mechanisms and contributors, including antigen presenting cells, regulatory T cells, cytokines, and signaling pathways. Potential applications, examples for therapeutic proteins and disease targets, and recent developments in delivery methods are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Nuclear data for the production of therapeutic radionuclides. Summary report of third research coordination meeting

    International Nuclear Information System (INIS)

    Sublet, J.-Ch.; Capote Noy, R.

    2006-08-01

    A summary is given of the Third Research Coordination Meeting on Nuclear Data for the Production of Therapeutic Radionuclides. The new library of evaluated cross-section will cover reactor and accelerator production of therapeutic radionuclides to appropriate specific activities and purity, along with the relevant decay data. A few new reactions were added at this meeting. Technical discussions and the resulting work plan to conclude the data evaluation activities are summarized for every reaction path. Timescales and agreed actions to deliver the database and Technical Report are also given. (author)

  20. Exploring miRNA based approaches in cancer diagnostics and therapeutics.

    Science.gov (United States)

    Mishra, Shivangi; Yadav, Tanuja; Rani, Vibha

    2016-02-01

    MicroRNAs (miRNAs), a highly conserved class of tissue specific, small non-protein coding RNAs maintain cell homeostasis by negative gene regulation. Proper controlling of miRNA expression is required for a balanced physiological environment, as these small molecules influence almost every genetic pathway from cell cycle checkpoint, cell proliferation to apoptosis, with a wide range of target genes. Deregulation in miRNAs expression correlates with various cancers by acting as tumor suppressors and oncogenes. Although promising therapies exist to control tumor development and progression, there is a lack of efficient diagnostic and therapeutic approaches for delineating various types of cancer. The molecularly different tumors can be differentiated by specific miRNA profiling as their phenotypic signatures, which can hence be exploited to surmount the diagnostic and therapeutic challenges. Present review discusses the involvement of miRNAs in oncogenesis with the analysis of patented research available on miRNAs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Therapeutic peptides for cancer therapy. Part II - cell cycle inhibitory peptides and apoptosis-inducing peptides.

    Science.gov (United States)

    Raucher, Drazen; Moktan, Shama; Massodi, Iqbal; Bidwell, Gene L

    2009-10-01

    Therapeutic peptides have great potential as anticancer agents owing to their ease of rational design and target specificity. However, their utility in vivo is limited by low stability and poor tumor penetration. The authors review the development of peptide inhibitors with potential for cancer therapy. Peptides that arrest the cell cycle by mimicking CDK inhibitors or induce apoptosis directly are discussed. The authors searched Medline for articles concerning the development of therapeutic peptides and their delivery. Inhibition of cancer cell proliferation directly using peptides that arrest the cell cycle or induce apoptosis is a promising strategy. Peptides can be designed that interact very specifically with cyclins and/or cyclin-dependent kinases and with members of apoptotic cascades. Use of these peptides is not limited by their design, as a rational approach to peptide design is much less challenging than the design of small molecule inhibitors of specific protein-protein interactions. However, the limitations of peptide therapy lie in the poor pharmacokinetic properties of these large, often charged molecules. Therefore, overcoming the drug delivery hurdles could open the door for effective peptide therapy, thus making an entirely new class of molecules useful as anticancer drugs.

  2. Small cell ovarian carcinoma: genomic stability and responsiveness to therapeutics.

    Science.gov (United States)

    Gamwell, Lisa F; Gambaro, Karen; Merziotis, Maria; Crane, Colleen; Arcand, Suzanna L; Bourada, Valerie; Davis, Christopher; Squire, Jeremy A; Huntsman, David G; Tonin, Patricia N; Vanderhyden, Barbara C

    2013-02-21

    The biology of small cell ovarian carcinoma of the hypercalcemic type (SCCOHT), which is a rare and aggressive form of ovarian cancer, is poorly understood. Tumourigenicity, in vitro growth characteristics, genetic and genomic anomalies, and sensitivity to standard and novel chemotherapeutic treatments were investigated in the unique SCCOHT cell line, BIN-67, to provide further insight in the biology of this rare type of ovarian cancer. The tumourigenic potential of BIN-67 cells was determined and the tumours formed in a xenograft model was compared to human SCCOHT. DNA sequencing, spectral karyotyping and high density SNP array analysis was performed. The sensitivity of the BIN-67 cells to standard chemotherapeutic agents and to vesicular stomatitis virus (VSV) and the JX-594 vaccinia virus was tested. BIN-67 cells were capable of forming spheroids in hanging drop cultures. When xenografted into immunodeficient mice, BIN-67 cells developed into tumours that reflected the hypercalcemia and histology of human SCCOHT, notably intense expression of WT-1 and vimentin, and lack of expression of inhibin. Somatic mutations in TP53 and the most common activating mutations in KRAS and BRAF were not found in BIN-67 cells by DNA sequencing. Spectral karyotyping revealed a largely normal diploid karyotype (in greater than 95% of cells) with a visibly shorter chromosome 20 contig. High density SNP array analysis also revealed few genomic anomalies in BIN-67 cells, which included loss of heterozygosity of an estimated 16.7 Mb interval on chromosome 20. SNP array analyses of four SCCOHT samples also indicated a low frequency of genomic anomalies in the majority of cases. Although resistant to platinum chemotherapeutic drugs, BIN-67 cell viability in vitro was reduced by > 75% after infection with oncolytic viruses. These results show that SCCOHT differs from high-grade serous carcinomas by exhibiting few chromosomal anomalies and lacking TP53 mutations. Although BIN-67 cells are

  3. Characterization of acetate transport in colorectal cancer cells and potential therapeutic implications

    Science.gov (United States)

    Ferro, Suellen; Azevedo-Silva, João; Casal, Margarida; Côrte-Real, Manuela; Baltazar, Fatima; Preto, Ana

    2016-01-01

    Acetate, together with other short chain fatty acids has been implicated in colorectal cancer (CRC) prevention/therapy. Acetate was shown to induce apoptosis in CRC cells. The precise mechanism underlying acetate transport across CRC cells membrane, that may be implicated in its selectivity towards CRC cells, is not fully understood and was addressed here. We also assessed the effect of acetate in CRC glycolytic metabolism and explored its use in combination with the glycolytic inhibitor 3-bromopyruvate (3BP). We provide evidence that acetate enters CRC cells by the secondary active transporters MCT1 and/or MCT2 and SMCT1 as well as by facilitated diffusion via aquaporins. CRC cell exposure to acetate upregulates the expression of MCT1, MCT4 and CD147, while promoting MCT1 plasma membrane localization. We also observed that acetate increases CRC cell glycolytic phenotype and that acetate-induced apoptosis and anti-proliferative effect was potentiated by 3BP. Our data suggest that acetate selectivity towards CRC cells might be explained by the fact that aquaporins and MCTs are found overexpressed in CRC clinical cases. Our work highlights the importance that acetate transport regulation has in the use of drugs such as 3BP as a new therapeutic strategy for CRC. PMID:28874966

  4. Transplantation of autologous adipose stem cells lacks therapeutic efficacy in the experimental autoimmune encephalomyelitis model.

    Directory of Open Access Journals (Sweden)

    Xiujuan Zhang

    Full Text Available Multiple sclerosis (MS, characterized by chronic inflammation, demyelination, and axonal damage, is a complicated neurological disease of the human central nervous system. Recent interest in adipose stromal/stem cell (ASCs for the treatment of CNS diseases has promoted further investigation in order to identify the most suitable ASCs. To investigate whether MS affects the biologic properties of ASCs and whether autologous ASCs from MS-affected sources could serve as an effective source for stem cell therapy, cells were isolated from subcutaneous inguinal fat pads of mice with established experimental autoimmune encephalomyelitis (EAE, a murine model of MS. ASCs from EAE mice and their syngeneic wild-type mice were cultured, expanded, and characterized for their cell morphology, surface antigen expression, osteogenic and adipogenic differentiation, colony forming units, and inflammatory cytokine and chemokine levels in vitro. Furthermore, the therapeutic efficacy of the cells was assessed in vivo by transplantation into EAE mice. The results indicated that the ASCs from EAE mice displayed a normal phenotype, typical MSC surface antigen expression, and in vitro osteogenic and adipogenic differentiation capacity, while their osteogenic differentiation capacity was reduced in comparison with their unafflicted control mice. The ASCs from EAE mice also demonstrated increased expression of pro-inflammatory cytokines and chemokines, specifically an elevation in the expression of monocyte chemoattractant protein-1 and keratin chemoattractant. In vivo, infusion of wild type ASCs significantly ameliorate the disease course, autoimmune mediated demyelination and cell infiltration through the regulation of the inflammatory responses, however, mice treated with autologous ASCs showed no therapeutic improvement on the disease progression.

  5. [Ethical aspects of regenerative medicine, with special reference to embryonic stem cells and therapeutic cloning].

    Science.gov (United States)

    Imura, Hiroo

    2003-03-01

    Regenerative medicine is expected to be new therapeutic means for treating incurable diseases but requires serious bioethical consideration. Embryonic stem(ES) cells, that are pleuripotent cells suitable to regenerative medicine, can be used in Japan for investigative use under a strict control by guide-lines. On the other hand, use of embryo produced by nuclear transfer has not been allowed in Japan and further serious consideration is required. Some other ethical aspects of regenerative medicine are also discussed.

  6. Therapeutic iodine 125 for hyperthyroidism: evidence for a special radiobiological effect on the follicular cell

    International Nuclear Information System (INIS)

    Gray, H.W.; Greig, W.R.; Gillespie, F.C.; Western Regional Hospital Board, Glasgow

    1982-01-01

    An IV perchlorate test was used qualitatively to detect a functional abnormality of the colloid-follicular cell interface in patients given 131 I or 125 I for hyperthyroidism. Radiation damage, manifest as abnormal iodide organification, was more prolonged after 125 I and more often accompanied by unremitting hyperthyroidism than after 131 I. These results conform with theoretical and laboratory data which predict a gradient of deposited radiation across the human follicular cell after therapeutic 125 I. (author)

  7. Huntington's disease and its therapeutic target genes: a global functional profile based on the HD Research Crossroads database.

    Science.gov (United States)

    Kalathur, Ravi Kiran Reddy; Hernández-Prieto, Miguel A; Futschik, Matthias E

    2012-06-28

    Huntington's disease (HD) is a fatal progressive neurodegenerative disorder caused by the expansion of the polyglutamine repeat region in the huntingtin gene. Although the disease is triggered by the mutation of a single gene, intensive research has linked numerous other genes to its pathogenesis. To obtain a systematic overview of these genes, which may serve as therapeutic targets, CHDI Foundation has recently established the HD Research Crossroads database. With currently over 800 cataloged genes, this web-based resource constitutes the most extensive curation of genes relevant to HD. It provides us with an unprecedented opportunity to survey molecular mechanisms involved in HD in a holistic manner. To gain a synoptic view of therapeutic targets for HD, we have carried out a variety of bioinformatical and statistical analyses to scrutinize the functional association of genes curated in the HD Research Crossroads database. In particular, enrichment analyses were performed with respect to Gene Ontology categories, KEGG signaling pathways, and Pfam protein families. For selected processes, we also analyzed differential expression, using published microarray data. Additionally, we generated a candidate set of novel genetic modifiers of HD by combining information from the HD Research Crossroads database with previous genome-wide linkage studies. Our analyses led to a comprehensive identification of molecular mechanisms associated with HD. Remarkably, we not only recovered processes and pathways, which have frequently been linked to HD (such as cytotoxicity, apoptosis, and calcium signaling), but also found strong indications for other potentially disease-relevant mechanisms that have been less intensively studied in the context of HD (such as the cell cycle and RNA splicing, as well as Wnt and ErbB signaling). For follow-up studies, we provide a regularly updated compendium of molecular mechanism, that are associated with HD, at http://hdtt.sysbiolab.eu Additionally

  8. Huntington's Disease and its therapeutic target genes: a global functional profile based on the HD Research Crossroads database

    Directory of Open Access Journals (Sweden)

    Kalathur Ravi Kiran

    2012-06-01

    Full Text Available Abstract Background Huntington’s disease (HD is a fatal progressive neurodegenerative disorder caused by the expansion of the polyglutamine repeat region in the huntingtin gene. Although the disease is triggered by the mutation of a single gene, intensive research has linked numerous other genes to its pathogenesis. To obtain a systematic overview of these genes, which may serve as therapeutic targets, CHDI Foundation has recently established the HD Research Crossroads database. With currently over 800 cataloged genes, this web-based resource constitutes the most extensive curation of genes relevant to HD. It provides us with an unprecedented opportunity to survey molecular mechanisms involved in HD in a holistic manner. Methods To gain a synoptic view of therapeutic targets for HD, we have carried out a variety of bioinformatical and statistical analyses to scrutinize the functional association of genes curated in the HD Research Crossroads database. In particular, enrichment analyses were performed with respect to Gene Ontology categories, KEGG signaling pathways, and Pfam protein families. For selected processes, we also analyzed differential expression, using published microarray data. Additionally, we generated a candidate set of novel genetic modifiers of HD by combining information from the HD Research Crossroads database with previous genome-wide linkage studies. Results Our analyses led to a comprehensive identification of molecular mechanisms associated with HD. Remarkably, we not only recovered processes and pathways, which have frequently been linked to HD (such as cytotoxicity, apoptosis, and calcium signaling, but also found strong indications for other potentially disease-relevant mechanisms that have been less intensively studied in the context of HD (such as the cell cycle and RNA splicing, as well as Wnt and ErbB signaling. For follow-up studies, we provide a regularly updated compendium of molecular mechanism, that are

  9. New cancer diagnostics and therapeutics from a ninth 'hallmark of cancer': symmetric self-renewal by mutated distributed stem cells.

    Science.gov (United States)

    Sherley, James L

    2013-11-01

    A total of eight cellular alterations associated with human carcinogenesis have been framed as the 'hallmarks of cancer'. This representation overlooks a ninth hallmark of cancer: the requirement for tumor-originating distributed stem cells to shift sufficiently from asymmetric to symmetric self-renewal kinetics for attainment of the high cell production rate necessary to form clinically significant tumors within a human lifespan. Overlooking this ninth hallmark costs opportunities for discovery of more selective molecular targets for development of improved cancer therapeutics and missing cancer stem cell biomarkers of greater specificity. Here, the biological basis for the ninth hallmark of cancer is considered toward highlighting its importance in human carcinogenesis and, as such, its potential for revealing unique molecules for targeting cancer diagnostics and therapeutics.

  10. Advances in the proteomic discovery of novel therapeutic targets in cancer

    Directory of Open Access Journals (Sweden)

    Guo S

    2013-10-01

    Full Text Available Shanchun Guo,1 Jin Zou,2 Guangdi Wang3 1Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 2Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA, USA; 3Research Centers in Minority Institutions Cancer Research Program, Xavier University of Louisiana, New Orleans, LA, USA Abstract: Proteomic approaches are continuing to make headways in cancer research by helping to elucidate complex signaling networks that underlie tumorigenesis and disease progression. This review describes recent advances made in the proteomic discovery of drug targets for therapeutic development. A variety of technical and methodological advances are overviewed with a critical assessment of challenges and potentials. A number of potential drug targets, such as baculoviral inhibitor of apoptosis protein repeat-containing protein 6, macrophage inhibitory cytokine 1, phosphoglycerate mutase 1, prohibitin 1, fascin, and pyruvate kinase isozyme 2 were identified in the proteomic analysis of drug-resistant cancer cells, drug action, and differential disease state tissues. Future directions for proteomics-based target identification and validation to be more translation efficient are also discussed. Keywords: proteomics, cancer, therapeutic target, signaling network, tumorigenesis

  11. Joint conference on the impact of EU legislation on therapeutic advance.

    Science.gov (United States)

    Forgó, Nikolaus; Hildebrandt, Martin

    2013-12-01

    On October 11, 2012, two FP7-funded Research Consortia, CONTRACT (Consent in a Trial and Care Environment) and Academic GMP, held a Joint Conference in Brussels entitled "The Impact of EU Legislation on Therapeutic Advance." Academic researchers including stem cell transplant physicians and cell therapy specialists, legal advocates and representatives from industry, regulatory authorities and patient advocacy groups met with members of the European Parliament and the European Commission. This article summarizes important points of discussion and detailed proposals for improvement. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  12. Translational research in addiction: toward a framework for the development of novel therapeutics.

    Science.gov (United States)

    Paterson, Neil E

    2011-06-15

    The development of novel substance use disorder (SUD) therapeutics is insufficient to meet the medical needs of a growing SUD patient population. The identification of translatable SUD models and tests is a crucial step in establishing a framework for SUD therapeutic development programs. The present review begins by identifying the clinical features of SUDs and highlights the narrow regulatory end-point required for approval of a novel SUD therapeutic. A conceptual overview of dependence is provided, followed by identification of potential intervention targets in the addiction cycle. The main components of the addiction cycle provide the framework for a discussion of preclinical models and their clinical analogs, all of which are focused on isolated behavioral end-points thought to be relevant to the persistence of compulsive drug use. Thus, the greatest obstacle to successful development is the gap between the multiplicity of preclinical and early clinical end-points and the regulatory end-point of sustained abstinence. This review proposes two pathways to bridging this gap: further development and validation of the preclinical extended access self-administration model; inclusion of secondary end-points comprising all of the measures highlighted in the present discussion in Phase 3 trials. Further, completion of the postdictive validation of analogous preclinical and clinical assays is of high priority. Ultimately, demonstration of the relevance and validity of a variety of end-points to the ultimate goal of abstinence will allow researchers to identify truly relevant therapeutic mechanisms and intervention targets, and establish a framework for SUD therapeutic development that allows optimal decision-making and resource allocation. 2011 Elsevier Inc. All rights reserved.

  13. Nanotechnology solutions for Alzheimer's disease: advances in research tools, diagnostic methods and therapeutic agents.

    Science.gov (United States)

    Nazem, Amir; Mansoori, G Ali

    2008-03-01

    A century of research has passed since the discovery and definition of Alzheimer's disease (AD), the primary common dementing disorder worldwide. However, AD lacks definite diagnostic approaches and effective cure at the present. Moreover, the currently available diagnostic tools are not sufficient for an early screening of AD in order to start preventive approaches. Recently the emerging field of nanotechnology has promised new techniques to solve some of the AD challenges. Nanotechnology refers to the techniques of designing and manufacturing nanosize (1-100 nm) structures through controlled positional and/or self-assembly of atoms and molecules. In this report, we present the promises that nanotechnology brings in research on the AD diagnosis and therapy. They include its potential for the better understanding of the AD root cause molecular mechanisms, AD's early diagnoses, and effective treatment. The advances in AD research offered by the atomic force microscopy, single molecule fluorescence microscopy and NanoSIMS microscopy are examined here. In addition, the recently proposed applications of nanotechnology for the early diagnosis of AD including bio-barcode assay, localized surface plasmon resonance nanosensor, quantum dot and nanomechanical cantilever arrays are analyzed. Applications of nanotechnology in AD therapy including neuroprotections against oxidative stress and anti-amyloid therapeutics, neuroregeneration and drug delivery beyond the blood brain barrier (BBB) are discussed and analyzed. All of these applications could improve the treatment approach of AD and other neurodegenerative diseases. The complete cure of AD may become feasible by a combination of nanotechnology and some other novel approaches, like stem cell technology.

  14. The intersection of cancer, cancer stem cells, and the immune system: therapeutic opportunities.

    Science.gov (United States)

    Silver, Daniel J; Sinyuk, Maksim; Vogelbaum, Michael A; Ahluwalia, Manmeet S; Lathia, Justin D

    2016-02-01

    During brain neoplasia, malignant cells subjugate the immune system to provide an environment that favors tumor growth. These mechanisms capitalize on tumor-promoting functions of various immune cell types and typically result in suppression of tumor immune rejection. Immunotherapy efforts are underway to disrupt these mechanisms and turn the immune system against developing tumors. While many of these therapies are already in early-stage clinical trials, understanding how these therapies impact various tumor cell populations, including self-renewing cancer stem cells, may help to predict their efficacy and clarify their mechanisms of action. Moreover, interrogating the biology of glioma cell, cancer stem cell, and immune cell interactions may provide additional therapeutic targets to leverage against disease progression. In this review, we begin by highlighting a series of investigations into immune cell-mediated tumor promotion that do not parse the tumor into stem and non-stem components. We then take a closer look at the immune-suppressive mechanisms derived specifically from cancer stem cell interactions with the immune system and end with an update on immunotherapy and cancer stem cell-directed clinical trials in glioblastoma. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Stem Cells of Dental Origin: Current Research Trends and Key Milestones towards Clinical Application

    Directory of Open Access Journals (Sweden)

    Athina Bakopoulou

    2016-01-01

    Full Text Available Dental Mesenchymal Stem Cells (MSCs, including Dental Pulp Stem Cells (DPSCs, Stem Cells from Human Exfoliated Deciduous teeth (SHED, and Stem Cells From Apical Papilla (SCAP, have been extensively studied using highly sophisticated in vitro and in vivo systems, yielding substantially improved understanding of their intriguing biological properties. Their capacity to reconstitute various dental and nondental tissues and the inherent angiogenic, neurogenic, and immunomodulatory properties of their secretome have been a subject of meticulous and costly research by various groups over the past decade. Key milestone achievements have exemplified their clinical utility in Regenerative Dentistry, as surrogate therapeutic modules for conventional biomaterial-based approaches, offering regeneration of damaged oral tissues instead of simply “filling the gaps.” Thus, the essential next step to validate these immense advances is the implementation of well-designed clinical trials paving the way for exploiting these fascinating research achievements for patient well-being: the ultimate aim of this ground breaking technology. This review paper presents a concise overview of the major biological properties of the human dental MSCs, critical for the translational pathway “from bench to clinic.”

  16. Biomaterials-based 3D cell printing for next-generation therapeutics and diagnostics.

    Science.gov (United States)

    Jang, Jinah; Park, Ju Young; Gao, Ge; Cho, Dong-Woo

    2018-02-01

    Building human tissues via 3D cell printing technology has received particular attention due to its process flexibility and versatility. This technology enables the recapitulation of unique features of human tissues and the all-in-one manufacturing process through the design of smart and advanced biomaterials and proper polymerization techniques. For the optimal engineering of tissues, a higher-order assembly of physiological components, including cells, biomaterials, and biomolecules, should meet the critical requirements for tissue morphogenesis and vascularization. The convergence of 3D cell printing with a microfluidic approach has led to a significant leap in the vascularization of engineering tissues. In addition, recent cutting-edge technology in stem cells and genetic engineering can potentially be adapted to the 3D tissue fabrication technique, and it has great potential to shift the paradigm of disease modeling and the study of unknown disease mechanisms required for precision medicine. This review gives an overview of recent developments in 3D cell printing and bioinks and provides technical requirements for engineering human tissues. Finally, we propose suggestions on the development of next-generation therapeutics and diagnostics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. International Society for Stem Cell Research

    Science.gov (United States)

    ... renowned stem cell and regenerative medicine community. More stem cell research Take a closer look Recent Blogs View ... story independent nonprofit organization & the voice of the stem cell research community The International Society for Stem Cell ...

  18. Cellular Therapeutics for Heart Failure: Focus on Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Amitabh C. Pandey

    2017-01-01

    Full Text Available Resulting from a various etiologies, the most notable remains ischemia; heart failure (HF manifests as the common end pathway of many cardiovascular processes and remains among the top causes for hospitalization and a major cause of morbidity and mortality worldwide. Current pharmacologic treatment for HF utilizes pharmacologic agents to control symptoms and slow further deterioration; however, on a cellular level, in a patient with progressive disease, fibrosis and cardiac remodeling can continue leading to end-stage heart failure. Cellular therapeutics have risen as the new hope for an improvement in the treatment of HF. Mesenchymal stem cells (MSCs have gained popularity given their propensity of promoting endogenous cellular repair of a myriad of disease processes via paracrine signaling through expression of various cytokines, chemokines, and adhesion molecules resulting in activation of signal transduction pathways. While the exact mechanism remains to be completely elucidated, this remains the primary mechanism identified to date. Recently, MSCs have been incorporated as the central focus in clinical trials investigating the role how MSCs can play in the treatment of HF. In this review, we focus on the characteristics of MSCs that give them a distinct edge as cellular therapeutics and present results of clinical trials investigating MSCs in the setting of ischemic HF.

  19. Recruiting Terminally Ill Patients into Non-Therapeutic Oncology Studies: views of Health Professionals

    Directory of Open Access Journals (Sweden)

    Kleiderman Erika

    2012-12-01

    Full Text Available Abstract Background Non-therapeutic trials in which terminally ill cancer patients are asked to undergo procedures such as biopsies or venipunctures for research purposes, have become increasingly important to learn more about how cancer cells work and to realize the full potential of clinical research. Considering that implementing non-therapeutic studies is not likely to result in direct benefits for the patient, some authors are concerned that involving patients in such research may be exploitive of vulnerable patients and should not occur at all, or should be greatly restricted, while some proponents doubt whether such restrictions are appropriate. Our objective was to explore clinician-researcher attitudes and concerns when recruiting patients who are in advanced stages of cancer into non-therapeutic research. Methods We conducted a qualitative exploratory study by carrying out open-ended interviews with health professionals, including physicians, research nurses, and study coordinators. Interviews were audio-recorded and transcribed. Analysis was carried out using grounded theory. Results The analysis of the interviews unveiled three prominent themes: 1 ethical considerations; 2 patient-centered issues; 3 health professional issues. Respondents identified ethical issues surrounding autonomy, respect for persons, beneficence, non-maleficence, discrimination, and confidentiality; bringing to light that patients contribute to science because of a sense of altruism and that they want reassurance before consenting. Several patient-centered and health professional issues are having an impact on the recruitment of patients for non-therapeutic research. Facilitators were most commonly associated with patient-centered issues enhancing communication, whereas barriers in non-therapeutic research were most often professionally based, including the doctor-patient relationship, time constraints, and a lack of education and training in research

  20. Therapeutic Potential of Human Adipose-Derived Stem/Stromal Cell Microspheroids Prepared by Three-Dimensional Culture in Non-Cross-Linked Hyaluronic Acid Gel.

    Science.gov (United States)

    Mineda, Kazuhide; Feng, Jingwei; Ishimine, Hisako; Takada, Hitomi; Doi, Kentaro; Kuno, Shinichiro; Kinoshita, Kahori; Kanayama, Koji; Kato, Harunosuke; Mashiko, Takanobu; Hashimoto, Ichiro; Nakanishi, Hideki; Kurisaki, Akira; Yoshimura, Kotaro

    2015-12-01

    Three-dimensional culture of mesenchymal stem/stromal cells for spheroid formation is known to enhance their therapeutic potential for regenerative medicine. Spheroids were prepared by culturing human adipose-derived stem/stromal cells (hASCs) in a non-cross-linked hyaluronic acid (HA) gel and compared with dissociated hASCs and hASC spheroids prepared using a nonadherent dish. Preliminary experiments indicated that a 4% HA gel was the most appropriate for forming hASC spheroids with a relatively consistent size (20-50 µm) within 48 hours. Prepared spheroids were positive for pluripotency markers (NANOG, OCT3/4, and SOX-2), and 40% of the cells were SSEA-3-positive, a marker of the multilineage differentiating stress enduring or Muse cell. In contrast with dissociated ASCs, increased secretion of cytokines such as hepatocyte growth factor was detected in ASC spheroids cultured under hypoxia. On microarray ASC spheroids showed upregulation of some pluripotency markers and downregulation of genes related to the mitotic cell cycle. After ischemia-reperfusion injury to the fat pad in SCID mice, local injection of hASC spheroids promoted tissue repair and reduced the final atrophy (1.6%) compared with that of dissociated hASCs (14.3%) or phosphate-buffered saline (20.3%). Part of the administered hASCs differentiated into vascular endothelial cells. ASC spheroids prepared in a HA gel contain undifferentiated cells with therapeutic potential to promote angiogenesis and tissue regeneration after damage. This study shows the therapeutic value of human adipose-derived stem cell spheroids prepared in hyarulonic acid gel. The spheroids have various benefits as an injectable cellular product and show therapeutic potential to the stem cell-depleted conditions such as diabetic chronic skin ulcer. ©AlphaMed Press.

  1. Laboratory methods to evaluate therapeutic radiopharmaceuticals

    International Nuclear Information System (INIS)

    Arteaga de Murphy, C.; Rodriguez-Cortes, J.; Pedraza-Lopez, M.; Ramirez-Iglesias, MT.; Ferro-Flores, G.

    2007-01-01

    The overall aim of this coordinated research project was to develop in vivo and in vitro laboratory methods to evaluate therapeutic radiopharmaceuticals. Towards this end, the laboratory methods used in this study are described in detail. Two peptides - an 8 amino acid minigastrin analogue and octreotate - were labelled with 177 Lu. Bombesin was labelled with 99 mTc, and its diagnostic utility was proven. For comparison, 99 mTc-TOC was used. The cell lines used in this study were AR42J cells, which overexpress somatostatin receptors found in neuroendocrine cancers, and PC3 cells, which overexpress gastric releasing peptide receptors (GRP-r) found in human prostate and breast cancers. The animal model chosen was athymic mice with implanted dorsal tumours of pathologically confirmed cell cancers. The methodology described for labelling, quality control, and in vitro and in vivo assays can be easily used with other radionuclides and other peptides of interest. (author)

  2. The potential therapeutic value for bereaved relatives participating in research: An exploratory study.

    Science.gov (United States)

    Germain, Alison; Mayland, Catriona R; Jack, Barbara A

    2016-10-01

    Conducting research with the bereaved presents an immediate ethical challenge, as they are undoubtedly a vulnerable group, associated with high levels of distress and susceptible to both physical and mental health issues. A comprehensive understanding of the potential therapeutic benefits for bereaved relatives participating in palliative care research is limited, and therefore the ethics of engaging this group remain questionable. This paper describes a secondary analysis of qualitative data collected in the Care of the Dying Evaluation (CODE) project, examining the experiences of patients who died at home. It explores the motivations and potential benefits for bereaved relatives participating in research with reference to the recently developed concepts in bereavement theory. Cognitive interviews were conducted with 15 bereaved relatives and secondary analysis using a content analysis framework was employed to classify the data. The results center around six recurring concepts identified as adaptive in current bereavement theory: an opportunity to share the narrative accounts of the final hours of their relative's life; a search for sense and meaning in loss; an ongoing bond/attachment with the deceased; altruistic motivations; oscillation between loss and restorative orientations; and a sense of resilience. Overall, the participants found that taking part in the research was valuable and that it could be described as offering therapeutic benefits. The need for bereaved relatives to take part in research studies should be encouraged, as they provide an accurate proxy for the patient's experience of end-of-life care while also providing a valuable account of their own perspective as family member and carer. In addition, we highlight the need for ethics committees to be aware of the potential benefits for bereaved relatives participating in research of this kind.

  3. Molecular Targets in Alzheimer’s Disease: From Pathogenesis to Therapeutics

    Directory of Open Access Journals (Sweden)

    Xuan Cheng

    2015-01-01

    Full Text Available Alzheimer’s disease (AD is characterized by progressive cognitive decline usually beginning with impairment in the ability to form recent memories. Nonavailability of definitive therapeutic strategy urges developing pharmacological targets based on cell signaling pathways. A great revival of interest in nutraceuticals and adjuvant therapy has been put forward. Tea polyphenols for their multiple health benefits have also attracted the attention of researchers. Tea catechins showed enough potentiality to be used in future as therapeutic targets to provide neuroprotection against AD. This review attempts to present a concise map of different receptor signaling pathways associated with AD with an insight into drug designing based on the proposed signaling pathways, molecular mechanistic details of AD pathogenesis, and a scientific rationale for using tea polyphenols as proposed therapeutic agents in AD.

  4. Therapeutic Applications of Interleukin 24 (IL24): A Review ...

    African Journals Online (AJOL)

    IL24 has growth suppressive properties in a wide variety of human cancer cell lines without inducing harmful effects in normal cells. This review is focused on the role of IL 24 on tumor cell biology and its potential therapeutic applications. Keywords: Melanoma differentiation, Protein, Therapeutics, Interleukin, ...

  5. Cell death induced by ozone and various non-thermal plasmas: therapeutic perspectives and limitations

    Czech Academy of Sciences Publication Activity Database

    Lunov, Oleg; Zablotskyy, Vitaliy A.; Churpita, Olexandr; Chánová, Eliška; Syková, Eva; Dejneka, Alexandr; Kubinová, Šárka

    2014-01-01

    Roč. 4, NOV (2014), "7129-1"-"7129-11" ISSN 2045-2322 R&D Projects: GA MŠk LO1309 Grant - others:AV ČR(CZ) M100101219 Institutional support: RVO:68378271 ; RVO:61389013 ; RVO:68378041 Keywords : cell death * non-thermal plasma * therapeutic perspectives Subject RIV: BO - Biophysics; FH - Neurology (UEM-P); CD - Macromolecular Chemistry (UMCH-V) Impact factor: 5.578, year: 2014

  6. Poly ADP-ribose polymerase-1 as a potential therapeutic target in Merkel cell carcinoma.

    Science.gov (United States)

    Ferrarotto, Renata; Cardnell, Robert; Su, Shirley; Diao, Lixia; Eterovic, A Karina; Prieto, Victor; Morrisson, William H; Wang, Jing; Kies, Merrill S; Glisson, Bonnie S; Byers, Lauren Averett; Bell, Diana

    2018-03-23

    Patients with metastatic Merkel cell carcinoma are treated similarly to small cell lung cancer (SCLC). Poly ADP-ribose polymerase-1 (PARP1) is overexpressed in SCLC and response to PARP inhibitors have been reported in patients with SCLC. Our study explores PARP as a therapeutic target in Merkel cell carcinoma. We evaluated PARP1 expression and Merkel cell polyomavirus (MCPyV) in 19 patients with Merkel cell carcinoma. Target exome-sequencing was performed in 14 samples. Sensitivity to olaparib was tested in 4 Merkel cell carcinoma cell lines. Most Merkel cell carcinomas (74%) express PARP1 at high levels. Mutations in DNA-damage repair genes were identified in 9 samples (64%), occurred exclusively in head neck primaries, and correlated with TP53/RB1 mutations. The TP53/RB1 mutations were more frequent in MCPyV-negative tumors. Sensitivity to olaparib was seen in the Merkel cell carcinoma line with highest PARP1 expression. Based on PARP1 overexpression, DNA-damage repair gene mutations, platinum sensitivity, and activity of olaparib in a Merkel cell carcinoma line, clinical trials with PARP inhibitors are warranted in Merkel cell carcinoma. © 2018 Wiley Periodicals, Inc.

  7. Japan-China Joint Medical Workshop on Drug Discoveries and Therapeutics 2008: The need of Asian pharmaceutical researchers' cooperation.

    Science.gov (United States)

    Nakata, M; Tang, W

    2008-10-01

    The Japan-China Joint Medical Workshop on Drug Discoveries and Therapeutics 2008 (JCMWDDT 2008) was held from September 29 to October 1, 2008 at The University of Tokyo, Tokyo, Japan. JCMWDDT is an international workshop that is mainly organized by Asian editorial members of Drug Discoveries & Therapeutics (http://www.ddtjournal.com/home) for the purpose of promoting research exchanges in the field of drug discovery and therapeutic. This year's JCMWDDT is the second workshop and focused particularly on novel development and technological innovation of anti-influenza agents. The workshop began with an announcement by the Japanese Co-chairperson, Dr. Sekimizu (Department of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan; Editorin- Chief of Drug Discoveries & Therapeutics, DDT) followed by a speech by the Chinese Co-chairperson, Dr. Wenfang Xu (School of Pharmaceutical Sciences, Shandong University, Shandong, China; Editor in China Office of DDT), with additional speeches by Dr. Norio Matsuki (The University of Tokyo, Japan; Editor of DDT) and Dr. Guanhua Du (Chinese Academy of Medical Science, China; Editor of DDT). Fifty-nine titles were presented in 6 specialized sessions (Research Advances in Drug Discoveries and Therapeutics, Drug Synthesis/Clinical Therapeutics, Medicinal Chemistry/Natural Products, Anti-influenza Drugs, Anti-infection/antiviral Drugs, Biochemistry/Molecular Biology /Pharmacology) and a poster session (Drug Discov Ther 2008; 2, Suppl; available at http://www.ddtjournal.com/Announce/index.htm). An annual outbreak of avian influenza in Asian countries including China and Japan has sparked fears that the virus will mutate and then cause an epidemic in humans. Therefore, Asian researchers need to work together to control this infection. This year's JCMWDDT helped provide an opportunity to reiterate the crucial role of medicinal chemistry in conquering influenza and created an environment for cooperative

  8. Potential targets for lung squamous cell carcinoma

    Science.gov (United States)

    Researchers have identified potential therapeutic targets in lung squamous cell carcinoma, the second most common form of lung cancer. The Cancer Genome Atlas (TCGA) Research Network study comprehensively characterized the lung squamous cell carcinoma gen

  9. Delphi process yielded consensus on terminology and research agenda for therapeutic footwear for neuropathic foot.

    NARCIS (Netherlands)

    Dahmen, R.; van der Wilden, G.J.; Lankhorst, G.J.; Boers, M.

    2008-01-01

    Objective: To investigate areas of consensus and disagreement among Dutch physiatrists concerning prescription of therapeutic footwear for the neuropathic foot and to develop a research agenda. Study Design and Setting: Forty participants were physiatrists and experts in the field of orthopedic shoe

  10. Induction of Type I Interferons by Therapeutic Nanoparticle-Based Vaccination Is Indispensable to Reinforce Cytotoxic CD8+ T Cell Responses During Chronic Retroviral Infection

    Science.gov (United States)

    Knuschke, Torben; Rotan, Olga; Bayer, Wibke; Kollenda, Sebastian; Dickow, Julia; Sutter, Kathrin; Hansen, Wiebke; Dittmer, Ulf; Lang, Karl S.; Epple, Matthias; Buer, Jan; Westendorf, Astrid M.

    2018-01-01

    T cell dysfunction and immunosuppression are characteristic for chronic viral infections and contribute to viral persistence. Overcoming these burdens is the goal of new therapeutic strategies to cure chronic infectious diseases. We recently described that therapeutic vaccination of chronic retrovirus infected mice with a calcium phosphate (CaP) nanoparticle (NP)-based vaccine carrier, functionalized with CpG and viral peptides is able to efficiently reactivate the CD8+ T cell response and improve the eradication of virus infected cells. However, the mechanisms underlying this effect were largely unclear. While type I interferons (IFNs I) are considered to drive T cell exhaustion by persistent immune activation during chronic viral infection, we here describe an indispensable role of IFN I induced by therapeutic vaccination to efficiently reinforce cytotoxic CD8+ T cells (CTL) and improve control of chronic retroviral infection. The induction of IFN I is CpG dependent and leads to significant IFN signaling indicated by upregulation of IFN stimulated genes. By vaccinating chronically retrovirus-infected mice lacking the IFN I receptor (IFNAR−/−) or by blocking IFN I signaling in vivo during therapeutic vaccination, we demonstrate that IFN I signaling is necessary to drive full reactivation of CTLs. Surprisingly, we also identified an impaired suppressive capability of regulatory T cells in the presence of IFNα, which implicates an important role for vaccine-induced IFNα in the regulation of the T cell response during chronic retroviral infection. Our data suggest that inducing IFN I signaling in conjunction with the presentation of viral antigens can reactivate immune functions and reduce viral loads in chronic infections. Therefore, we propose CaP NPs as potential therapeutic tool to treat chronic infections. PMID:29740425

  11. IL17/IL17RA as a Novel Signaling Axis Driving Mesenchymal Stem Cell Therapeutic Function in Experimental Autoimmune Encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Mónica Kurte

    2018-04-01

    Full Text Available The therapeutic effect of mesenchymal stem cells (MSCs in multiple sclerosis (MS and the experimental autoimmune encephalomyelitis (EAE model has been well described. This effect is, in part, mediated through the inhibition of IL17-producing cells and the generation of regulatory T cells. While proinflammatory cytokines such as IFNγ, TNFα, and IL1β have been shown to enhance MSCs immunosuppressive function, the role of IL17 remains poorly elucidated. The aim of this study was, therefore, to investigate the role of the IL17/IL17R pathway on MSCs immunoregulatory effects focusing on Th17 cell generation in vitro and on Th17-mediated EAE pathogenesis in vivo. In vitro, we showed that the immunosuppressive effect of MSCs on Th17 cell proliferation and differentiation is partially dependent on IL17RA expression. This was associated with a reduced expression level of MSCs immunosuppressive mediators such as VCAM1, ICAM1, and PD-L1 in IL17RA−/− MSCs as compared to wild-type (WT MSCs. In the EAE model, we demonstrated that while WT MSCs significantly reduced the clinical scores of the disease, IL17RA−/− MSCs injected mice exhibited a clinical worsening of the disease. The disability of IL17RA−/− MSCs to reduce the progression of the disease paralleled the inability of these cells to reduce the frequency of Th17 cells in the draining lymph node of the mice as compared to WT MSCs. Moreover, we showed that the therapeutic effect of MSCs was correlated with the generation of classical Treg bearing the CD4+CD25+Foxp3+ signature in an IL17RA-dependent manner. Our findings reveal a novel role of IL17RA on MSCs immunosuppressive and therapeutic potential in EAE and suggest that the modulation of IL17RA in MSCs could represent a novel method to enhance their therapeutic effect in MS.

  12. The Role and Potential Therapeutic Application of Myeloid-Derived Suppressor Cells in Allo- and Autoimmunity

    Directory of Open Access Journals (Sweden)

    Qi Zhang

    2015-01-01

    Full Text Available Myeloid-derived suppressor cells (MDSCs are a heterogeneous population of cells that consists of myeloid progenitor cells and immature myeloid cells. They have been identified as a cell population that may affect the activation of CD4+ and CD8+ T-cells to regulate the immune response negatively, which makes them attractive targets for the treatment of transplantation and autoimmune diseases. Several studies have suggested the potential suppressive effect of MDSCs on allo- and autoimmune responses. Conversely, MDSCs have also been found at various stages of differentiation, accumulating during pathological situations, not only during tumor development but also in a variety of inflammatory immune responses, bone marrow transplantation, and some autoimmune diseases. These findings appear to be contradictory. In this review, we summarize the roles of MDSCs in different transplantation and autoimmune diseases models as well as the potential to target these cells for therapeutic benefit.

  13. Stem Cell Therapy: Repurposing Cell-Based Regenerative Medicine Beyond Cell Replacement.

    Science.gov (United States)

    Napoli, Eleonora; Lippert, Trenton; Borlongan, Cesar V

    2018-02-27

    Stem cells exhibit simple and naive cellular features, yet their exact purpose for regenerative medicine continues to elude even the most elegantly designed research paradigms from developmental biology to clinical therapeutics. Based on their capacity to divide indefinitely and their dynamic differentiation into any type of tissue, the advent of transplantable stem cells has offered a potential treatment for aging-related and injury-mediated diseases. Recent laboratory evidence has demonstrated that transplanted human neural stem cells facilitate endogenous reparative mechanisms by initiating multiple regenerative processes in the brain neurogenic areas. Within these highly proliferative niches reside a myriad of potent regenerative molecules, including anti-inflammatory cytokines, proteomes, and neurotrophic factors, altogether representing a biochemical cocktail vital for restoring brain function in the aging and diseased brain. Here, we advance the concept of therapeutically repurposing stem cells not towards cell replacement per se, but rather exploiting the cells' intrinsic properties to serve as the host brain regenerative catalysts.

  14. Advanced Research of Fibroblast Growth Factor Receptor 
in Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Dan PU

    2013-11-01

    Full Text Available Lung cancer is severely threatening human health. In recent years, the treatment for lung adenocarcinoma has made a great progress, targeted therapy has been widely applied in clinic, and benefits amount of patients. However, in squamous cell lung cancer, the incidence of epidermal growth factor receptor (EGFR gene mutant and ALK fusion gene are low,and targeted therapy like Tarceva and crizotinib, can hardly work. Since the fibroblast growth factors (fibroblast growth factor, FGF pathway is considered to be related to tumor cell proliferation, metastasis and angiogenesis, more and more researches proved the amplification of fibroblast growth factor receptor (FGFR in squamous cell lung cancer. Experiments in vivo and in vitro found that blocking FGF pathway could reduce the proliferation of tumor cells and inhibit metastasis. The FGF pathway might be a new target for treatment of squamous cell lung cancer. This article reviews the effect of FGFR in tumorigenesis,as well as the prospect as a therapeutic target in non-small cell lung cancer.

  15. Therapeutic effects of antibiotic drug tigecycline against cervical squamous cell carcinoma by inhibiting Wnt/β-catenin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui; Jiao, Shun [Department of Obstetrics and Gynaecology, JingZhou Hospital Affiliated to Huazhong University of Science and Technology, Jingzhou (China); Li, Xin [Department of Obstetrics and Gynaecology, RenMin Hospital of Wuhan University, Wuhan (China); Banu, Hasina; Hamal, Shreejana [Department of Clinical Medicine, Medical School of Yangtze University, Jingzhou (China); Wang, Xianrong, E-mail: Dr.XianRong.Wang@hotmail.com [Department of Obstetrics and Gynaecology, JingZhou Hospital Affiliated to Huazhong University of Science and Technology, Jingzhou (China)

    2015-11-06

    Aberrant activation of the Wnt/β-catenin signaling pathway is common in human cervical cancers and has great potential therapeutic value. We show that tigecycline, a FDA-approved antibiotic drug, targets cervical squamous cell carcinoma through inhibiting Wnt/β-catenin signaling pathway. Tigecycline is effective in inducing apoptosis, inhibiting proliferation and anchorage-independent colony formation of Hela cells. The inhibitory effects of tigecycline are further enhanced upon combination with paclitaxel, a most commonly used chemotherapeutic drug for cervical cancer. In a cervical xenograft model, tigecycline inhibits tumor growth as a single agent and its combination with paclitaxel significantly inhibits more tumor growth throughout the duration of treatment. We further show that tigecycline decreases level of both cytoplasmic and nuclear β-catenin and suppressed Wnt/β-catenin-mediated transcription through increasing levels of Axin 1 in Hela cells. In addition, stabilization or overexpression of β-catenin using pharmacological and genetic approaches abolished the effects of tigecycline in inhibiting proliferation and inducing apoptosis of Hela cells. Our study suggests that tigecycline is a useful addition to the treatment armamentarium for cervical cancer and targeting Wnt/β-catenin represents a potential therapeutic strategy in cervical cancer. - Highlights: • We repurposed the antibiotic drug tigecycline for cervical cancer treatment. • Tigecycline is effectively against cervical cancer cells in vitro and in vivo. • Combination of tigecycline and paclitaxel is synergistic in targeting Hela cells. • Tigecycline acts on Hela cells through inhibiting Wnt/β-catenin signaling.

  16. Therapeutic effects of antibiotic drug tigecycline against cervical squamous cell carcinoma by inhibiting Wnt/β-catenin signaling

    International Nuclear Information System (INIS)

    Li, Hui; Jiao, Shun; Li, Xin; Banu, Hasina; Hamal, Shreejana; Wang, Xianrong

    2015-01-01

    Aberrant activation of the Wnt/β-catenin signaling pathway is common in human cervical cancers and has great potential therapeutic value. We show that tigecycline, a FDA-approved antibiotic drug, targets cervical squamous cell carcinoma through inhibiting Wnt/β-catenin signaling pathway. Tigecycline is effective in inducing apoptosis, inhibiting proliferation and anchorage-independent colony formation of Hela cells. The inhibitory effects of tigecycline are further enhanced upon combination with paclitaxel, a most commonly used chemotherapeutic drug for cervical cancer. In a cervical xenograft model, tigecycline inhibits tumor growth as a single agent and its combination with paclitaxel significantly inhibits more tumor growth throughout the duration of treatment. We further show that tigecycline decreases level of both cytoplasmic and nuclear β-catenin and suppressed Wnt/β-catenin-mediated transcription through increasing levels of Axin 1 in Hela cells. In addition, stabilization or overexpression of β-catenin using pharmacological and genetic approaches abolished the effects of tigecycline in inhibiting proliferation and inducing apoptosis of Hela cells. Our study suggests that tigecycline is a useful addition to the treatment armamentarium for cervical cancer and targeting Wnt/β-catenin represents a potential therapeutic strategy in cervical cancer. - Highlights: • We repurposed the antibiotic drug tigecycline for cervical cancer treatment. • Tigecycline is effectively against cervical cancer cells in vitro and in vivo. • Combination of tigecycline and paclitaxel is synergistic in targeting Hela cells. • Tigecycline acts on Hela cells through inhibiting Wnt/β-catenin signaling.

  17. Nanomedicine therapeutics and diagnostics are the goal.

    Science.gov (United States)

    Miller, Andrew D

    2016-07-01

    Understanding and exploiting molecular mechanisms in biology is central to chemical biology. In 20 years, chemical biology research has advanced from simple mechanistic studies using isolated biological macromolecules to molecular-level and nanomolecular-level mechanistic studies involving whole organisms. This review documents the best of my personal and collaborative academic research work that has made use of a solid organic chemistry and chemical biology approach toward nanomedicine, in which my focus has been on the design, creation and use of synthetic, self-assembly lipid-based nanoparticle technologies for the functional delivery of active pharmaceutical ingredients to target cells in vivo. This research is now leading to precision therapeutics approaches (PTAs) for the treatment of diseases that may define the future of nanomedicine.

  18. Widening and Elaboration of Consecutive Research into Therapeutic Antioxidant Enzyme Derivatives

    Directory of Open Access Journals (Sweden)

    Alexander V. Maksimenko

    2016-01-01

    Full Text Available Undiminishing actuality of enzyme modification for therapeutic purposes has been confirmed by application of modified enzymes in clinical practice and numerous research data on them. Intravenous injection of the superoxide dismutase-chondroitin sulfate-catalase (SOD-CHS-CAT conjugate in preventive and medicative regimes in rats with endotoxin shock induced with a lipopolysaccharide bolus has demonstrated that antioxidant agents not only effectively prevent damage caused by oxidative stress (as believed previously but also can be used for antioxidative stress therapy. The results obtained emphasize the importance of investigation into the pathogenesis of vascular damage and the role of oxidative stress in it. The effects of intravenous medicative injection of SOD-CHS-CAT in a rat model of endotoxin shock have demonstrated a variety in the activity of this conjugate in addition to prevention of NO conversion in peroxynitrite upon interaction with O2∙- superoxide radical. Together with the literature data, these findings offer a prospect for the study of NO-independent therapeutic effects of SOD-CHS-CAT, implying the importance of a better insight into the mechanisms of the conjugate activity in modeled cardiovascular damage involving vasoactive agents other than NO.

  19. Nano-Engineered Mesenchymal Stem Cells Increase Therapeutic Efficacy of Anticancer Drug Through True Active Tumor Targeting.

    Science.gov (United States)

    Layek, Buddhadev; Sadhukha, Tanmoy; Panyam, Jayanth; Prabha, Swayam

    2018-06-01

    Tumor-targeted drug delivery has the potential to improve therapeutic efficacy and mitigate non-specific toxicity of anticancer drugs. However, current drug delivery approaches rely on inefficient passive accumulation of the drug carrier in the tumor. We have developed a unique, truly active tumor-targeting strategy that relies on engineering mesenchymal stem cells (MSC) with drug-loaded nanoparticles. Our studies using the A549 orthotopic lung tumor model show that nano-engineered MSCs carrying the anticancer drug paclitaxel (PTX) home to tumors and create cellular drug depots that release the drug payload over several days. Despite significantly lower doses of PTX, nano-engineered MSCs resulted in significant inhibition of tumor growth and superior survival. Anticancer efficacy of nano-engineered MSCs was confirmed in immunocompetent C57BL/6 albino female mice bearing orthotopic Lewis Lung Carcinoma (LL/2-luc) tumors. Furthermore, at doses that resulted in equivalent therapeutic efficacy, nano-engineered MSCs had no effect on white blood cell count, whereas PTX solution and PTX nanoparticle treatments caused leukopenia. Biodistribution studies showed that nano-engineered MSCs resulted in greater than 9-fold higher AUC lung of PTX (1.5 μg.day/g) than PTX solution and nanoparticles (0.2 and 0.1 μg.day/g tissue, respectively) in the target lung tumors. Furthermore, the lung-to-liver and the lung-to-spleen ratios of PTX were several folds higher for nano-engineered MSCs relative to those for PTX solution and nanoparticle groups, suggesting that nano-engineered MSCs demonstrate significantly less off-target deposition. In summary, our results demonstrate that nano-engineered MSCs can serve as an efficient carrier for tumor-specific drug delivery and significantly improved anti-cancer efficacy of conventional chemotherapeutic drugs. Mol Cancer Ther; 17(6); 1196-206. ©2018 AACR . ©2018 American Association for Cancer Research.

  20. STEM CELL RESEARCH-CONCEPT AND CONTROVERSIES

    African Journals Online (AJOL)

    Dr. E. P. Gharoro

    cells, heart cells, brain cells, etc.). Some researchers regard them as offering the greatest potential for the .... anaemia, heart damage, corneal damage, etc. To be useful for transplant purposes, stem cells must ... activity in the brain was demonstrated contradicting caja's “no new neurons” dogma. However, research into.

  1. Ion channel expression patterns in glioblastoma stem cells with functional and therapeutic implications for malignancy.

    Directory of Open Access Journals (Sweden)

    Julia Pollak

    Full Text Available Ion channels and transporters have increasingly recognized roles in cancer progression through the regulation of cell proliferation, migration, and death. Glioblastoma stem-like cells (GSCs are a source of tumor formation and recurrence in glioblastoma multiforme, a highly aggressive brain cancer, suggesting that ion channel expression may be perturbed in this population. However, little is known about the expression and functional relevance of ion channels that may contribute to GSC malignancy. Using RNA sequencing, we assessed the enrichment of ion channels in GSC isolates and non-tumor neural cell types. We identified a unique set of GSC-enriched ion channels using differential expression analysis that is also associated with distinct gene mutation signatures. In support of potential clinical relevance, expression of selected GSC-enriched ion channels evaluated in human glioblastoma databases of The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project correlated with patient survival times. Finally, genetic knockdown as well as pharmacological inhibition of individual or classes of GSC-enriched ion channels constrained growth of GSCs compared to normal neural stem cells. This first-in-kind global examination characterizes ion channels enriched in GSCs and explores their potential clinical relevance to glioblastoma molecular subtypes, gene mutations, survival outcomes, regional tumor expression, and experimental responses to loss-of-function. Together, the data support the potential biological and therapeutic impact of ion channels on GSC malignancy and provide strong rationale for further examination of their mechanistic and therapeutic importance.

  2. Ion channel expression patterns in glioblastoma stem cells with functional and therapeutic implications for malignancy.

    Science.gov (United States)

    Pollak, Julia; Rai, Karan G; Funk, Cory C; Arora, Sonali; Lee, Eunjee; Zhu, Jun; Price, Nathan D; Paddison, Patrick J; Ramirez, Jan-Marino; Rostomily, Robert C

    2017-01-01

    Ion channels and transporters have increasingly recognized roles in cancer progression through the regulation of cell proliferation, migration, and death. Glioblastoma stem-like cells (GSCs) are a source of tumor formation and recurrence in glioblastoma multiforme, a highly aggressive brain cancer, suggesting that ion channel expression may be perturbed in this population. However, little is known about the expression and functional relevance of ion channels that may contribute to GSC malignancy. Using RNA sequencing, we assessed the enrichment of ion channels in GSC isolates and non-tumor neural cell types. We identified a unique set of GSC-enriched ion channels using differential expression analysis that is also associated with distinct gene mutation signatures. In support of potential clinical relevance, expression of selected GSC-enriched ion channels evaluated in human glioblastoma databases of The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project correlated with patient survival times. Finally, genetic knockdown as well as pharmacological inhibition of individual or classes of GSC-enriched ion channels constrained growth of GSCs compared to normal neural stem cells. This first-in-kind global examination characterizes ion channels enriched in GSCs and explores their potential clinical relevance to glioblastoma molecular subtypes, gene mutations, survival outcomes, regional tumor expression, and experimental responses to loss-of-function. Together, the data support the potential biological and therapeutic impact of ion channels on GSC malignancy and provide strong rationale for further examination of their mechanistic and therapeutic importance.

  3. Mesenchymal Stem/Stromal Cell-Derived Extracellular Vesicles and Their Potential as Novel Immunomodulatory Therapeutic Agents

    Directory of Open Access Journals (Sweden)

    Verena Börger

    2017-07-01

    Full Text Available Extracellular vesicles (EVs, such as exosomes and microvesicles, have been identified as mediators of a newly-discovered intercellular communication system. They are essential signaling mediators in various physiological and pathophysiological processes. Depending on their origin, they fulfill different functions. EVs of mesenchymal stem/stromal cells (MSCs have been found to promote comparable therapeutic activities as MSCs themselves. In a variety of in vivo models, it has been observed that they suppress pro-inflammatory processes and reduce oxidative stress and fibrosis. By switching pro-inflammatory into tolerogenic immune responses, MSC-EVs very likely promote tissue regeneration by creating a pro-regenerative environment allowing endogenous stem and progenitor cells to successfully repair affected tissues. Accordingly, MSC-EVs provide a novel, very promising therapeutic agent, which has already been successfully applied to humans. However, the MSC-EV production process has not been standardized, yet. Indeed, a collection of different protocols has been used for the MSC-EV production, characterization and application. By focusing on kidney, heart, liver and brain injuries, we have reviewed the major outcomes of published MSC-EV in vivo studies.

  4. Merkel Cell Carcinoma: Chemotherapy and Emerging New Therapeutic Options

    International Nuclear Information System (INIS)

    Desch, L.; Kunstfeld, R.

    2013-01-01

    Merkel cell carcinoma (MCC) is a rare neuroendocrine skin tumor that typically occurs in elderly, immunosuppressed patients. Infection with Merkel cell virus (MCV) and immunosuppression play an important role in the development of MCC. Different staging systems make it difficult to compare the existing clinical data. Furthermore, there predominantly exist single case reports and case series, but no randomized controlled trials. However, it is necessary to develop further therapy options because MCC tends to grow rapidly and metastasizes early. In the metastatic disease, therapeutic attempts were made with various chemotherapeutic combination regimens. Because of the high toxicity of these combinations, especially those established in SCLC, and regarding the unsatisfying results, the challenge is to balance the pros and cons of chemotherapy individually and carefully. Up to now, emerging new therapy options as molecular-targeted agents, for example, pipebuzone, imatinib, or somatostatin analogues as well as immunologic als, for example, imiquimod and interferons, also showed less success concerning the disease-free response rates. According to the literature, neither chemotherapy nor molecular-targeted agents or immunotherapeutic strategies have shown promising effects in the therapy of the metastatic disease of MCC so far. There is a great demand for randomized controlled studies and a need for an MCC registry and multicenter clinical trials due to the tumors curiosity.

  5. Antecedents and Consequences of Therapeutic Communication in Iranian Nursing Students: A Qualitative Research

    OpenAIRE

    Abdolrahimi, Mahbobeh; Ghiyasvandian, Shahrzad; Zakerimoghadam, Masoumeh; Ebadi, Abbas

    2017-01-01

    In recent years, particular attention has been paid to nursing students’ therapeutic communication (TC) with patients, due to a strong emphasis on patient-centered education in the Iranian healthcare reform. However, various studies have highlighted the poor communication of future nurses. Therefore, researchers have used qualitative methodology to shed light on the antecedents and consequences of nursing students’ TC and promote it. We carried out a conventional content analysis using semist...

  6. Induction of Type I Interferons by Therapeutic Nanoparticle-Based Vaccination Is Indispensable to Reinforce Cytotoxic CD8+ T Cell Responses During Chronic Retroviral Infection

    Directory of Open Access Journals (Sweden)

    Torben Knuschke

    2018-04-01

    Full Text Available T cell dysfunction and immunosuppression are characteristic for chronic viral infections and contribute to viral persistence. Overcoming these burdens is the goal of new therapeutic strategies to cure chronic infectious diseases. We recently described that therapeutic vaccination of chronic retrovirus infected mice with a calcium phosphate (CaP nanoparticle (NP-based vaccine carrier, functionalized with CpG and viral peptides is able to efficiently reactivate the CD8+ T cell response and improve the eradication of virus infected cells. However, the mechanisms underlying this effect were largely unclear. While type I interferons (IFNs I are considered to drive T cell exhaustion by persistent immune activation during chronic viral infection, we here describe an indispensable role of IFN I induced by therapeutic vaccination to efficiently reinforce cytotoxic CD8+ T cells (CTL and improve control of chronic retroviral infection. The induction of IFN I is CpG dependent and leads to significant IFN signaling indicated by upregulation of IFN stimulated genes. By vaccinating chronically retrovirus-infected mice lacking the IFN I receptor (IFNAR−/− or by blocking IFN I signaling in vivo during therapeutic vaccination, we demonstrate that IFN I signaling is necessary to drive full reactivation of CTLs. Surprisingly, we also identified an impaired suppressive capability of regulatory T cells in the presence of IFNα, which implicates an important role for vaccine-induced IFNα in the regulation of the T cell response during chronic retroviral infection. Our data suggest that inducing IFN I signaling in conjunction with the presentation of viral antigens can reactivate immune functions and reduce viral loads in chronic infections. Therefore, we propose CaP NPs as potential therapeutic tool to treat chronic infections.

  7. College Students' Conceptions of Stem Cells, Stem Cell Research, and Cloning

    Science.gov (United States)

    Concannon, James P.; Siegel, Marcelle A.; Halverson, Kristy; Freyermuth, Sharyn

    2010-01-01

    In this study, we examined 96 undergraduate non-science majors' conceptions of stem cells, stem cell research, and cloning. This study was performed at a large, Midwest, research extensive university. Participants in the study were asked to answer 23 questions relating to stem cells, stem cell research, and cloning in an on-line assessment before…

  8. Examination of thromboxane synthase as a prognostic factor and therapeutic target in non-small cell lung cancer.

    LENUS (Irish Health Repository)

    Cathcart, Mary-Clare

    2011-03-01

    Thromboxane synthase (TXS) metabolises prostaglandin H2 into thromboxanes, which are biologically active on cancer cells. TXS over-expression has been reported in a range of cancers, and associated with a poor prognosis. TXS inhibition induces cell death in-vitro, providing a rationale for therapeutic intervention. We aimed to determine the expression profile of TXS in NSCLC and if it is prognostic and\\/or a survival factor in the disease.

  9. Evidence-based radiology (part 2): Is there sufficient research to support the use of therapeutic injections into the peripheral joints?

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Cynthia; Hodler, Juerg [Orthopaedic University Hospital of Balgrist, Radiology, Zuerich (Switzerland)

    2010-01-15

    This review article addresses the best evidence currently available for the effectiveness of injection therapy for musculoskeletal conditions involving the peripheral joints. The research is presented by anatomical region and areas of controversy and the need for additional research are identified. Randomized controlled trials, meta-analyses and systematic reviews are lacking that address the effectiveness of therapeutic injections to the sternoclavicular, acromioclavicular, ankle and foot joints. No research studies of any kind have been reported for therapeutic injections of the sternoclavicular joint. With the exception of the knee, possibly the hip and patients with inflammatory arthropathies, research does not unequivocally support the use of therapeutic joint injections for most of the peripheral joints, including the shoulder. Additionally, controversy exists in some areas as to whether or not corticosteroids provide better outcomes compared to local anesthetic injections alone. When viscosupplementation injections are compared to corticosteroids in patients with osteoarthritis of the knee, the evidence supports the use of viscosupplementation for more prolonged improvement in outcomes, with corticosteroids being good for short-term relief. (orig.)

  10. Evidence-based radiology (part 2): Is there sufficient research to support the use of therapeutic injections into the peripheral joints?

    International Nuclear Information System (INIS)

    Peterson, Cynthia; Hodler, Juerg

    2010-01-01

    This review article addresses the best evidence currently available for the effectiveness of injection therapy for musculoskeletal conditions involving the peripheral joints. The research is presented by anatomical region and areas of controversy and the need for additional research are identified. Randomized controlled trials, meta-analyses and systematic reviews are lacking that address the effectiveness of therapeutic injections to the sternoclavicular, acromioclavicular, ankle and foot joints. No research studies of any kind have been reported for therapeutic injections of the sternoclavicular joint. With the exception of the knee, possibly the hip and patients with inflammatory arthropathies, research does not unequivocally support the use of therapeutic joint injections for most of the peripheral joints, including the shoulder. Additionally, controversy exists in some areas as to whether or not corticosteroids provide better outcomes compared to local anesthetic injections alone. When viscosupplementation injections are compared to corticosteroids in patients with osteoarthritis of the knee, the evidence supports the use of viscosupplementation for more prolonged improvement in outcomes, with corticosteroids being good for short-term relief. (orig.)

  11. Innovative diagnostics and treatment nanorobotics and stem cells

    CERN Document Server

    Jadczyk, Tomasz; Mishra, Sachin; Jędrzejek, Marek; Bołoz, Marta; Padmanabhan, Parasuraman; Wojakowski, Wojciech; Stárek, Zdeněk; Martel, Sylvain; Gulyás, Balázs

    2017-01-01

    This book focuses on nanorobotic agents and stem cells for biomedical applications.It is intended for researchers and clinicians interested in innovative diagnostic and therapeutic strategies based on nanorobots and stem cells.It presents current advances in the field of molecular machines, which could be applied to generate novel therapeutic-diagnostic systems.

  12. Trans-species Engineering of Glycosylated Therapeutic Proteins

    DEFF Research Database (Denmark)

    Yang, Zhang

    important to address. Whenever glycosylation has been found to be an important PTM for function or bioactivity, human therapeutics have generally been produced in mammalian Chinese hamster ovary (CHO) cell line. Oglycosylation is one of the most complex regulated PTMs of proteins but also one of the least...... understood. Currently, mammalian cells are required for human O-glycosylation. Increasing efforts have been devoted to engineering non-mammalian cells for production of recombinant proteins with “human-like” glycosylation. Substantial success has been achieved with designed N-glycosylation in both lower......Recombinant expression of therapeutic proteins is one of the major tasks in modern biomedicine. One of the most important factors with respect to therapeutic use in human is posttranslational modifications (PTMs) of the recombinant proteins, of which protein glycosylation is by far the most...

  13. Structuring polymers for delivery of DNA-based therapeutics: updated insights.

    Science.gov (United States)

    Gupta, Madhu; Tiwari, Shailja; Vyas, Suresh

    2012-01-01

    Gene therapy offers greater opportunities for treating numerous incurable diseases from genetic disorders, infections, and cancer. However, development of appropriate delivery systems could be one of the most important factors to overcome numerous biological barriers for delivery of various therapeutic molecules. A number of nonviral polymer-mediated vectors have been developed for DNA delivery and offer the potential to surmount the associated problems of their viral counterpart. To address the concerns associated with safety issues, a wide range of polymeric vectors are available and have been utilized successfully to deliver their therapeutics in vivo. Today's research is mainly focused on the various natural or synthetic polymer-based delivery carriers that protect the DNA molecule from degradation, which offer specific targeting to the desired cells after systemic administration, have transfection efficiencies equivalent to virus-mediated gene delivery, and have long-term gene expression through sustained-release mechanisms. This review explores an updated overview of different nonviral polymeric delivery system for delivery of DNA-based therapeutics. These polymeric carriers have been evaluated in vitro and in vivo and are being utilized in various stages of clinical evaluation. Continued research and understanding of the principles of polymer-based gene delivery systems will enable us to develop new and efficient delivery systems for the delivery of DNA-based therapeutics to achieve the goal of efficacious and specific gene therapy for a vast array of clinical disorders as the therapeutic solutions of tomorrow.

  14. Bioprinting for stem cell research

    Science.gov (United States)

    Tasoglu, Savas; Demirci, Utkan

    2012-01-01

    Recently, there has been a growing interest to apply bioprinting techniques to stem cell research. Several bioprinting methods have been developed utilizing acoustics, piezoelectricity, and lasers to deposit living cells onto receiving substrates. Using these technologies, spatially defined gradients of immobilized proteins can be engineered to direct stem cell differentiation into multiple subpopulations of different lineages. Stem cells can also be patterned in a high-throughput manner onto flexible implementation patches for tissue regeneration or onto substrates with the goal of accessing encapsulated stem cell of interest for genomic analysis. Here, we review recent achievements with bioprinting technologies in stem cell research, and identify future challenges and potential applications including tissue engineering and regenerative medicine, wound healing, and genomics. PMID:23260439

  15. Comparison of cell-based and non-cell-based assay platforms for the detection of clinically relevant anti-drug neutralizing antibodies for immunogenicity assessment of therapeutic proteins.

    Science.gov (United States)

    Hu, Jenny; Wala, Iwona; Han, Hong; Nagatani, Janice; Barger, Troy; Civoli, Francesca; Kaliyaperumal, Arunan; Zhuang, Yao; Gupta, Shalini

    2015-04-01

    Anti-drug neutralizing antibodies (NAbs) formed due to unwanted immunogenicity of a therapeutic protein point towards a mature immune response. NAb detection is important in interpreting the therapeutic's efficacy and safety in vivo. In vitro cell-based NAb assays provide a physiological system for NAb detection, however are complex assays. Non-cell-based competitive ligand binding (CLB) approaches are also employed for NAb detection. Instead of cells, CLB assays use soluble receptor and conjugated reagents and are easier to perform, however have reduced physiological relevance. The aim of this study was to compare the performance of CLB assays to established cell-based assays to determine the former's ability to detect clinically relevant NAbs towards therapeutics that (i) acted as an agonist or (ii) acted as antagonists by binding to a target receptor. We performed a head-to-head comparison of the performance of cell-based and CLB NAb assays for erythropoietin (EPO) and two anti-receptor monoclonal antibodies (AMG-X and AMG 317). Clinically relevant NAb-positive samples identified previously by a cell-based assay were assessed in the corresponding CLB format(s). A panel of 12 engineered fully human anti-EPO monoclonal antibodies (MAbs) was tested in both EPO NAb assay formats. Our results showed that the CLB format was (i) capable of detecting human anti-EPO MAbs of differing neutralizing capabilities and affinities and (ii) provided similar results as the cell-based assay for detecting NAbs in patient samples. The cell-based and CLB assays also behaved comparably in detecting NAbs in clinical samples for AMG-X. In the case of anti-AMG 317 NAbs, the CLB format failed to detect NAbs in more than 50% of the tested samples. We conclude that assay sensitivity, drug tolerance and the selected assay matrix played an important role in the inability of AMG 317 CLB assays to detect clinically relevant NAbs. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. EMMPRIN in gynecologic cancers: pathologic and therapeutic aspects.

    Science.gov (United States)

    Liu, Dan-tong

    2015-07-01

    The highly glycosylated transmembrane protein extracellular matrix metalloproteinase inducer (EMMPRIN) is associated with several pathological conditions, including various types of cancers. In different gynecological malignancies, such as ovarian, cervical, and endometrial cancers, EMMPRIN plays significant roles in cell adhesion modulation, tumor growth, invasion, angiogenesis, and metastasis by inducing the production of various molecules, including matrix metalloproteinases and vascular endothelial growth factor. Because of its high level of expression, EMMPRIN can possibly be used as a diagnostic marker of gynecological cancers. Recent studies have showed that targeting EMMPRIN, especially by RNA interference (RNAi) technology, has promising therapeutic potential in basic research on gynecological cancer treatments, which make a platform for the future clinical success. This review study focused on the association of EMMPRIN in gynecological cancers in the perspectives of pathogenesis, diagnosis, and therapeutics.

  17. Therapeutic and reproductive cloning: a critique.

    Science.gov (United States)

    Bowring, Finn

    2004-01-01

    This article is a critical examination of the science and ethics of human cloning. It summarises the key scientific milestones in the development of nuclear transplantation, explains the importance of cloning to research into the medical potential of embryonic stem cells, and discusses the well-worn distinction between 'therapeutic' and 'reproductive' cloning. Suggesting that this distinction will be impossible to police, it goes on to consider the ethics of full human cloning. It is concluded that it represents an unacceptable form of parental despotism, and that the genetic engineering and cloning of future human beings will fracture the foundations of modern humanism.

  18. [Cell signaling pathways interaction in cellular proliferation: Potential target for therapeutic interventionism].

    Science.gov (United States)

    Valdespino-Gómez, Víctor Manuel; Valdespino-Castillo, Patricia Margarita; Valdespino-Castillo, Víctor Edmundo

    2015-01-01

    Nowadays, cellular physiology is best understood by analysing their interacting molecular components. Proteins are the major components of the cells. Different proteins are organised in the form of functional clusters, pathways or networks. These molecules are ordered in clusters of receptor molecules of extracellular signals, transducers, sensors and biological response effectors. The identification of these intracellular signaling pathways in different cellular types has required a long journey of experimental work. More than 300 intracellular signaling pathways have been identified in human cells. They participate in cell homeostasis processes for structural and functional maintenance. Some of them participate simultaneously or in a nearly-consecutive progression to generate a cellular phenotypic change. In this review, an analysis is performed on the main intracellular signaling pathways that take part in the cellular proliferation process, and the potential use of some components of these pathways as target for therapeutic interventionism are also underlined. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  19. Dysregulated choline metabolism in T-cell lymphoma: role of choline kinase-α and therapeutic targeting

    International Nuclear Information System (INIS)

    Xiong, J; Bian, J; Wang, L; Zhou, J-Y; Wang, Y; Zhao, Y; Wu, L-L; Hu, J-J; Li, B; Chen, S-J; Yan, C; Zhao, W-L

    2015-01-01

    Cancer cells have distinct metabolomic profile. Metabolic enzymes regulate key oncogenic signaling pathways and have an essential role on tumor progression. Here, serum metabolomic analysis was performed in 45 patients with T-cell lymphoma (TCL) and 50 healthy volunteers. The results showed that dysregulation of choline metabolism occurred in TCL and was related to tumor cell overexpression of choline kinase-α (Chokα). In T-lymphoma cells, pharmacological and molecular silencing of Chokα significantly decreased Ras-GTP activity, AKT and ERK phosphorylation and MYC oncoprotein expression, leading to restoration of choline metabolites and induction of tumor cell apoptosis/necropotosis. In a T-lymphoma xenograft murine model, Chokα inhibitor CK37 remarkably retarded tumor growth, suppressed Ras-AKT/ERK signaling, increased lysophosphatidylcholine levels and induced in situ cell apoptosis/necropotosis. Collectively, as a regulatory gene of aberrant choline metabolism, Chokα possessed oncogenic activity and could be a potential therapeutic target in TCL, as well as other hematological malignancies with interrupted Ras signaling pathways

  20. Toxin-Based Therapeutic Approaches

    Science.gov (United States)

    Shapira, Assaf; Benhar, Itai

    2010-01-01

    Protein toxins confer a defense against predation/grazing or a superior pathogenic competence upon the producing organism. Such toxins have been perfected through evolution in poisonous animals/plants and pathogenic bacteria. Over the past five decades, a lot of effort has been invested in studying their mechanism of action, the way they contribute to pathogenicity and in the development of antidotes that neutralize their action. In parallel, many research groups turned to explore the pharmaceutical potential of such toxins when they are used to efficiently impair essential cellular processes and/or damage the integrity of their target cells. The following review summarizes major advances in the field of toxin based therapeutics and offers a comprehensive description of the mode of action of each applied toxin. PMID:22069564

  1. Enzymatic Inactivation of Endogenous IgG by IdeS Enhances Therapeutic Antibody Efficacy.

    Science.gov (United States)

    Järnum, Sofia; Runström, Anna; Bockermann, Robert; Winstedt, Lena; Crispin, Max; Kjellman, Christian

    2017-09-01

    Endogenous plasma IgG sets an immunologic threshold that dictates the activity of tumor-directed therapeutic antibodies. Saturation of cellular antibody receptors by endogenous antibody limits antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). Here, we show how enzymatic cleavage of IgG using the bacterial enzyme IdeS can be utilized to empty both high and low affinity Fcγ-receptors and clear the entire endogenous antibody pool. Using in vitro models, tumor animal models as well as ex vivo analysis of sera collected during a previous clinical trial with IdeS, we show how clearing of competing plasma antibody levels with IdeS unblocks cellular antibody receptors. We show that therapeutic antibodies against breast cancer (trastuzumab), colon cancer (cetuximab), and lymphomas (rituximab and alemtuzumab) can be potentiated when endogenous IgG is removed. Overall, IdeS is shown to be a potent tool to reboot the human antibody repertoire and to generate a window to preferentially load therapeutic antibodies onto effector cells and thereby create an armada of dedicated tumor-seeking immune cells. Mol Cancer Ther; 16(9); 1887-97. ©2017 AACR . ©2017 American Association for Cancer Research.

  2. Nuclear data for the production of therapeutic radionuclides. Summary report of first research coordination meeting

    International Nuclear Information System (INIS)

    Sublet, J.-Ch.; Paviotti-Corcuera, R.

    2003-06-01

    Presentations, discussions and conclusions from the First Co-ordination Meeting on Nuclear Data for the Production of Therapeutic Radionuclides are summarised in this report. The main purpose of the meeting was to discuss scientific and technical matters related to the subject and to co-ordinate related tasks. Programmes of work were agreed and assigned, and deadlines were set. Participants emphasized the importance of the completeness and accuracy of the resulting nuclear data for the production of these radionuclides to appropriate specific activities and purity along with the relevant decay data. The recommended data from this Coordinated Research Project should meet the requirements for the safe and efficacious application of therapeutic treatments in nuclear medicine. (author)

  3. Unconscious emotional reasoning and the therapeutic misconception.

    Science.gov (United States)

    Charuvastra, A; Marder, S R

    2008-03-01

    The "therapeutic misconception" describes a process whereby research volunteers misinterpret the intentions of researchers and the nature of clinical research. This misinterpretation leads research volunteers to falsely attribute a therapeutic potential to clinical research, and compromises informed decision making, therefore compromising the ethical integrity of a clinical experiment. We review recent evidence from the neurobiology of social cognition to provide a novel framework for thinking about the therapeutic misconception. We argue that the neurobiology of social cognition should be considered in any ethical analysis of how people make decisions about participating in clinical trials. The neurobiology of social cognition also suggests how the complicated dynamics of the doctor-patient relationship may unavoidably interfere with the process of obtaining informed consent. Following this argument we suggest new ways to prevent or at least mitigate the therapeutic misconception.

  4. c-Met in esophageal squamous cell carcinoma: an independent prognostic factor and potential therapeutic target.

    Science.gov (United States)

    Ozawa, Yohei; Nakamura, Yasuhiro; Fujishima, Fumiyoshi; Felizola, Saulo J A; Takeda, Kenichiro; Okamoto, Hiroshi; Ito, Ken; Ishida, Hirotaka; Konno, Takuro; Kamei, Takashi; Miyata, Go; Ohuchi, Noriaki; Sasano, Hironobu

    2015-06-03

    c-Met is widely known as a poor prognostic factor in various human malignancies. Previous studies have suggested the involvement of c-Met and/or its ligand, hepatocyte growth factor (HGF), in esophageal squamous cell carcinoma (ESCC), but the correlation between c-Met status and clinical outcome remains unclear. Furthermore, the identification of a novel molecular therapeutic target might potentially help improve the clinical outcome of ESCC patients. The expression of c-Met and HGF was immunohistochemically assessed in 104 surgically obtained tissue specimens. The correlation between c-Met/HGF expression and patients' clinicopathological features, including survival, was evaluated. We also investigated changes in cell functions and protein expression of c-Met and its downstream signaling pathway components under treatments with HGF and/or c-Met inhibitor in ESCC cell lines. Elevated expression of c-Met was significantly correlated with tumor depth and pathological stage. Patients with high c-Met expression had significantly worse survival. In addition, multivariate analysis identified the high expression of c-Met as an independent prognostic factor. Treatment with c-Met inhibitor under HGF stimulation significantly inhibited the invasive capacity of an ESCC cell line with elevated c-Met mRNA expression. Moreover, c-Met and its downstream signaling inactivation was also detected after treatment with c-Met inhibitor. The results of our study identified c-Met expression as an independent prognostic factor in ESCC patients and demonstrated that c-Met could be a potential molecular therapeutic target for the treatment of ESCC with elevated c-Met expression.

  5. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma

    Science.gov (United States)

    2011-01-01

    Curcumin (diferuloylmethane) is a polyphenol derived from the Curcuma longa plant, commonly known as turmeric. Curcumin has been used extensively in Ayurvedic medicine for centuries, as it is nontoxic and has a variety of therapeutic properties including anti-oxidant, analgesic, anti-inflammatory and antiseptic activity. More recently curcumin has been found to possess anti-cancer activities via its effect on a variety of biological pathways involved in mutagenesis, oncogene expression, cell cycle regulation, apoptosis, tumorigenesis and metastasis. Curcumin has shown anti-proliferative effect in multiple cancers, and is an inhibitor of the transcription factor NF-κB and downstream gene products (including c-myc, Bcl-2, COX-2, NOS, Cyclin D1, TNF-α, interleukins and MMP-9). In addition, curcumin affects a variety of growth factor receptors and cell adhesion molecules involved in tumor growth, angiogenesis and metastasis. Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide and treatment protocols include disfiguring surgery, platinum-based chemotherapy and radiation, all of which may result in tremendous patient morbidity. As a result, there is significant interest in developing adjuvant chemotherapies to augment currently available treatment protocols, which may allow decreased side effects and toxicity without compromising therapeutic efficacy. Curcumin is one such potential candidate, and this review presents an overview of the current in vitro and in vivo data supporting its therapeutic activity in head and neck cancer as well as some of the challenges concerning its development as an adjuvant chemotherapeutic agent. PMID:21299897

  6. The effects of therapeutic touch on pain.

    Science.gov (United States)

    Monroe, Carolyn Magdalen

    2009-06-01

    To better understand how Therapeutic Touch can be used in today's health care arena, this integrative literature review will examine current research that will help answer the question, Does Therapeutic Touch reduce pain? An extensive search was conducted of the online databases MEDLINE, CINAHL, Cochrane Library, EMBASE, PsychLIT, and PubMed to retrieve research articles published from 1997 to 2007. Seven studies that were conducted between 1997 and 2004 were found and only five of the seven were included as pertinent evidence to answer the question. All of the research that was reviewed to answer whether Therapeutic Touch could significantly reduce pain revealed a majority of statistically significant positive results for implementing this intervention. Because there are no identified risks to Therapeutic Touch as a pain relief measure, it is safe to recommend despite the limitations of current research. Therapeutic Touch should be considered among the many possible nursing interventions for the treatment of pain.

  7. MESENCHYMAL STEM CELLS AS A THERAPEUTIC STRATEGY FOR MULTIPLE SCLEROSIS: ISSUES AND PERSPECTIVES

    Directory of Open Access Journals (Sweden)

    M. M. Zafranskaya

    2017-01-01

    Full Text Available The ability of mesenchymal stem cells (MSC to influence the regulatory/suppressive effect in the autoimmune process and promote remyelination allows to consider them a new method of multiple sclerosis (MS therapy, by means of modifying the disease activity. Genetic stability, proliferative potential, ability to migrate into the damaged tissue areas and agreed protocols for isolation and culture are the main advantages for successful autologous, as well as allogeneic MSC therapy. Preliminary results from clinical studies using MSC application in MS patients show efficiency and safety of this therapeutic approach. Nevertheless, successful demonstration of the cell therapy in MS is only possible after detailed analysis and understanding of MSC biology and mechanisms of appropriate intercellular interactions. The article reviews general experience in usage of immunomodulatory and neuroprotective properties of MSС in MS, and highlights the issues of validity in cell-based therapy taking into account both in vitro и in vivo studies.

  8. Therapeutic effect of adipose-derived mesenchymal stem cells on radiation enteritis

    International Nuclear Information System (INIS)

    Chang Pengyu; Cui Shuang; Luo Jinghua; Qu Chao; Jiang Xin; Qu Yaqin; Dong Lihua

    2014-01-01

    Objective: To evaluate the therapeutic effect of adipose-derived mesenchymal stem cells on radiation enteritis. Methods: A total of 52 male Sprague-Dawley rats were used in the present study. Herein, 46 rats were randomly selected and irradiated with a dose of 15 Gy at their abdomens. Two hours post-irradiation, 23 rats were randomly selected and infused intraperitoneally with adipose-derived mesenchymal stem cells in passage 6 from young-female donor. The other 23 rats were intraperitoneally infused with PBS. The rest 6 rats were set as normal control. During the first 10 days post-irradiation, peripheral blood-samples from irradiated rats were harvested for testing the levels of IL-10 in serum using ELISA assay. Additionally, after isolating the thymic cells and peripheral blood mononuclear cells, the percentages of CD4/CD25/Foxp(3)-positive regulatory T cells in thymus and peripheral blood were tested by flow-cytometry. Finally, infiltration of inflammatory cells and deposition of collagens within irradiated small intestine were analyzed by H&E staining and Masson Trichrome staining, respectively. Based on the MPO-immunohistochemistry staining, the type of infiltrated cells was identified. The Kaplan-Meier method was used for analyzing the survival rate of irradiated rats. Results: During a period of 30 days post-irradiation, the irradiated rats receiving adipose-derived mesenchymal stem cells survived longer than those receiving PBS (t = 4.53, P < 0.05). Compared to the irradiated rats with PBS-treatment, adipose-derived mesenchymal stem cells could elevate the level of IL-10 in serum (7 d: t = 13.93, P < 0.05) and increase the percentages of CD4/CD25/Foxp(3)-positive regulatory T cells in both peripheral blood (3.5 d: t = 7.72, 7 d: t = 11.11, 10 d: t = 6.99, P < 0.05) and thymus (7 d: t = 16.17, 10 d: t = 12.12, P < 0.05). Moreover, infiltration of inflammatory cells and deposition of collagens within irradiated small intestine were mitigated by adipose

  9. A fully automated primary screening system for the discovery of therapeutic antibodies directly from B cells.

    Science.gov (United States)

    Tickle, Simon; Howells, Louise; O'Dowd, Victoria; Starkie, Dale; Whale, Kevin; Saunders, Mark; Lee, David; Lightwood, Daniel

    2015-04-01

    For a therapeutic antibody to succeed, it must meet a range of potency, stability, and specificity criteria. Many of these characteristics are conferred by the amino acid sequence of the heavy and light chain variable regions and, for this reason, can be screened for during antibody selection. However, it is important to consider that antibodies satisfying all these criteria may be of low frequency in an immunized animal; for this reason, it is essential to have a mechanism that allows for efficient sampling of the immune repertoire. UCB's core antibody discovery platform combines high-throughput B cell culture screening and the identification and isolation of single, antigen-specific IgG-secreting B cells through a proprietary technique called the "fluorescent foci" method. Using state-of-the-art automation to facilitate primary screening, extremely efficient interrogation of the natural antibody repertoire is made possible; more than 1 billion immune B cells can now be screened to provide a useful starting point from which to identify the rare therapeutic antibody. This article will describe the design, construction, and commissioning of a bespoke automated screening platform and two examples of how it was used to screen for antibodies against two targets. © 2014 Society for Laboratory Automation and Screening.

  10. Therapeutic Engagement as a Predictor of Retention in Adolescent Therapeutic Community Treatment

    Science.gov (United States)

    Abdel-Salam, Sami; Gunter, Whitney D.

    2014-01-01

    The adolescent drug problem places a huge toll on society and a heavy burden on the criminal justice system. Research regarding the benefits of therapeutic community (TC) treatment for adolescents has shown it to be effective. Despite the ability of therapeutic communities to lower drug relapse and reduce criminality, a great deal remains unknown…

  11. Fuel cells: Trends in research and applications

    Science.gov (United States)

    Appleby, A. J.

    Various aspects of fuel cells are discussed. The subjects addressed include: fuel cells for electric power production; phosphoric acid fuel cells; long-term testing of an air-cooled 2.5 kW PAFC stack in Italy; status of fuel cell research and technology in the Netherlands, Bulgaria, PRC, UK, Sweden, India, Japan, and Brazil; fuel cells from the manufacturer's viewpoint; and fuel cells using biomass-derived fuels. Also examined are: solid oxide electrolye fuel cells; aluminum-air batteries with neutral chloride electrolyte; materials research for advanced solid-state fuel cells at the Energy Research Laboratory in Denmark; molten carbonate fuel cells; the impact of the Siemens program; fuel cells at Sorapec; impact of fuel cells on the electric power generation systems in industrial and developing countries; and application of fuel cells to large vehicles.

  12. Priming with ceramide-1 phosphate promotes the therapeutic effect of mesenchymal stem/stromal cells on pulmonary artery hypertension

    International Nuclear Information System (INIS)

    Lim, Jisun; Kim, YongHwan; Heo, Jinbeom; Kim, Kang-Hyun; Lee, Seungun; Lee, Sei Won; Kim, Kyunggon; Kim, In-Gyu; Shin, Dong-Myung

    2016-01-01

    Some molecules enriched in damaged organs can contribute to tissue repair by stimulating the mobilization of stem cells. These so-called “priming” factors include bioactive lipids, complement components, and cationic peptides. However, their therapeutic significance remains to be determined. Here, we show that priming of mesenchymal stromal/stem cells (MSCs) with ceramide-1 phosphate (C1P), a bioactive lipid, enhances their therapeutic efficacy in pulmonary artery hypertension (PAH). Human bone marrow (BM)-derived MSCs treated with 100 or 200 μM C1P showed improved migration activity in Transwell assays compared with non-primed MSCs and concomitantly activated MAPK p42/44 and AKT signaling cascades. Although C1P priming had little effect on cell surface marker phenotypes and the multipotency of MSCs, it potentiated their proliferative, colony-forming unit-fibroblast, and anti-inflammatory activities. In a monocrotaline-induced PAH animal model, a single administration of human MSCs primed with C1P significantly attenuated the PAH-related increase in right ventricular systolic pressure, right ventricular hypertrophy, and thickness of α-smooth muscle actin-positive cells around the vessel wall. Thus, this study shows that C1P priming increases the effects of MSC therapy by enhancing the migratory, self-renewal, and anti-inflammatory activity of MSCs and that MSC therapy optimized with priming protocols might be a promising option for the treatment of PAH patients. - Highlights: • Human BM-derived MSCs primed with C1P have enhanced migratory activity. • C1P primed MSCs increase proliferation, self-renewal, and anti-inflammatory capacity. • C1P priming enhances the therapeutic capacity of MSCs in a PAH animal model.

  13. Priming with ceramide-1 phosphate promotes the therapeutic effect of mesenchymal stem/stromal cells on pulmonary artery hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jisun [Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Department of Physiology, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, 88 Olympic-ro 43 gil, Songpa-gu, Seoul 05505 (Korea, Republic of); Kim, YongHwan; Heo, Jinbeom; Kim, Kang-Hyun; Lee, Seungun [Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Department of Physiology, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Lee, Sei Won [Department of Pulmonary and Critical Care Medicine and Clinical Research Center for Chronic Obstructive Airway Diseases, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Kim, Kyunggon [Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Clinical Proteomics Core Lab, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Kim, In-Gyu, E-mail: igkim@plaza.snu.ac.kr [Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, 88 Olympic-ro 43 gil, Songpa-gu, Seoul 05505 (Korea, Republic of); Shin, Dong-Myung, E-mail: d0shin03@amc.seoul.kr [Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Department of Physiology, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2016-04-22

    Some molecules enriched in damaged organs can contribute to tissue repair by stimulating the mobilization of stem cells. These so-called “priming” factors include bioactive lipids, complement components, and cationic peptides. However, their therapeutic significance remains to be determined. Here, we show that priming of mesenchymal stromal/stem cells (MSCs) with ceramide-1 phosphate (C1P), a bioactive lipid, enhances their therapeutic efficacy in pulmonary artery hypertension (PAH). Human bone marrow (BM)-derived MSCs treated with 100 or 200 μM C1P showed improved migration activity in Transwell assays compared with non-primed MSCs and concomitantly activated MAPK{sup p42/44} and AKT signaling cascades. Although C1P priming had little effect on cell surface marker phenotypes and the multipotency of MSCs, it potentiated their proliferative, colony-forming unit-fibroblast, and anti-inflammatory activities. In a monocrotaline-induced PAH animal model, a single administration of human MSCs primed with C1P significantly attenuated the PAH-related increase in right ventricular systolic pressure, right ventricular hypertrophy, and thickness of α-smooth muscle actin-positive cells around the vessel wall. Thus, this study shows that C1P priming increases the effects of MSC therapy by enhancing the migratory, self-renewal, and anti-inflammatory activity of MSCs and that MSC therapy optimized with priming protocols might be a promising option for the treatment of PAH patients. - Highlights: • Human BM-derived MSCs primed with C1P have enhanced migratory activity. • C1P primed MSCs increase proliferation, self-renewal, and anti-inflammatory capacity. • C1P priming enhances the therapeutic capacity of MSCs in a PAH animal model.

  14. Mesenchymal stem/stromal cells as a pharmacological and therapeutic approach to accelerate angiogenesis.

    Science.gov (United States)

    Bronckaers, Annelies; Hilkens, Petra; Martens, Wendy; Gervois, Pascal; Ratajczak, Jessica; Struys, Tom; Lambrichts, Ivo

    2014-08-01

    Mesenchymal stem cells or multipotent stromal cells (MSCs) have initially captured attention in the scientific world because of their differentiation potential into osteoblasts, chondroblasts and adipocytes and possible transdifferentiation into neurons, glial cells and endothelial cells. This broad plasticity was originally hypothesized as the key mechanism of their demonstrated efficacy in numerous animal models of disease as well as in clinical settings. However, there is accumulating evidence suggesting that the beneficial effects of MSCs are predominantly caused by the multitude of bioactive molecules secreted by these remarkable cells. Numerous angiogenic factors, growth factors and cytokines have been discovered in the MSC secretome, all have been demonstrated to alter endothelial cell behavior in vitro and induce angiogenesis in vivo. As a consequence, MSCs have been widely explored as a promising treatment strategy in disorders caused by insufficient angiogenesis such as chronic wounds, stroke and myocardial infarction. In this review, we will summarize into detail the angiogenic factors found in the MSC secretome and their therapeutic mode of action in pathologies caused by limited blood vessel formation. Also the application of MSC as a vehicle to deliver drugs and/or genes in (anti-)angiogenesis will be discussed. Furthermore, the literature describing MSC transdifferentiation into endothelial cells will be evaluated critically. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Understanding the importance of therapeutic relationships in the development of self-management behaviours during cancer rehabilitation: a qualitative research protocol.

    Science.gov (United States)

    Wilkinson, Wendy M; Rance, Jaynie; Fitzsimmons, Deborah

    2017-01-17

    Cancer is a growing health, social and economic problem. 1 in 3 people in the UK will develop cancer in their lifetime. With survival rates rising to over 50%, the long-term needs of cancer survivors are of growing importance. Cancer rehabilitation is tailored to address the physical or psychosocial decline in ability to engage in daily activities. Its use is supported by high-quality international, multicentre research. Incorporating strategies for self-management behaviour development into rehabilitation can prepare individuals for cancer survivorship. However, healthcare professionals will need to adjust their therapeutic interactions accordingly. Research is yet to clarify the impact of the therapeutic relationship on rehabilitation outcomes in cancer. This study aims to explore the impact of therapeutic relationships on self-management behaviours after cancer. This qualitative study aims to understand cancer rehabilitation participants' beliefs regarding the importance of therapeutic relationships in developing self-management behaviours. A sample representative of a local cancer rehabilitation cohort will be asked to complete a semistructured interview to identify their perspectives on the importance of therapeutic relationships in cancer rehabilitation. Data obtained from the interviews will be analysed, coded and entered into a Delphi questionnaire for circulation to a local cancer rehabilitation population to determine if the views expressed by the interviewees are supported by group consensus. This study was approved by Wales Research Ethics Committee 6 (15/WA/0331) in April 2016. Findings will be disseminated through the first author's doctoral thesis; peer-reviewed journals; local, national and international conference presentations; and public events involving research participants and the general public. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  16. Adipose-derived Stem Cells Stimulated with n-Butylidenephthalide Exhibit Therapeutic Effects in a Mouse Model of Parkinson's Disease.

    Science.gov (United States)

    Chi, Kang; Fu, Ru-Huei; Huang, Yu-Chuen; Chen, Shih-Yin; Hsu, Ching-Ju; Lin, Shinn-Zong; Tu, Chi-Tang; Chang, Li-Hsun; Wu, Ping-An; Liu, Shih-Ping

    2018-03-01

    Parkinson's disease (PD) causes motor dysfunction and dopaminergic cell death. Drug treatments can effectively reduce symptoms but often cause unwanted side effects. Stem cell therapies using cell replacement or indirect beneficial secretomes have recently emerged as potential therapeutic strategies. Although various types of stem cells have been proposed as possible candidates, adipose-derived stem cells (ADSCs) are easily obtainable, more abundant, less ethically disputed, and able to differentiate into multiple cell lineages. However, treatment of PD using adult stem cells is known to be less efficacious than neuron or embryonic stem cell transplantation. Therefore, improved therapies are urgently needed. n-Butylidenephthalide (BP), which is extracted from Angelica sinensis, has been shown to have anti-inflammatory and neuroprotective effects. Indeed, we previously demonstrated that BP treatment of ADSCs enhances the expression of neurogenesis and homing factors such as nuclear receptor related 1 protein, stromal-derived factor 1, and brain-derived neurotrophic factor. In the present study, we examined the ability of BP-pretreated ADSC transplantation to improve PD motor symptoms and protect dopamine neurons in a mouse model of PD. We evaluated the results using neuronal behavior tests such as beam walking, rotarod, and locomotor activity tests. ADSCs with or without BP pretreatment were transplanted into the striatum. Our findings demonstrated that ADSC transplantation improved motor abilities with varied efficacies and that BP stimulation improved the therapeutic effects of transplantation. Dopaminergic cell numbers returned to normal in ADSC-transplanted mice after 22 d. In summary, stimulating ADSCs with BP improved PD recovery efficiency. Thus, our results provide important new strategies to improve stem cell therapies for neurodegenerative diseases in future studies.

  17. Individualised cancer therapeutics: dream or reality? Therapeutics construction.

    Science.gov (United States)

    Shen, Yuqiao; Senzer, Neil; Nemunaitis, John

    2005-11-01

    The analysis of DNA microarray and proteomic data, and the subsequent integration into functional expression sets, provides a circuit map of the hierarchical cellular networks responsible for sustaining the viability and environmental competitiveness of cancer cells, that is, their robust systematics. These technologies can be used to 'snapshot' the unique patterns of molecular derangements and modified interactions in cancer, and allow for strategic selection of therapeutics that best match the individual profile of the tumour. This review highlights technology that can be used to selectively disrupt critical molecular targets and describes possible vehicles to deliver the synthesised molecular therapeutics to the relevant cellular compartments of the malignant cells. RNA interference (RNAi) involves a group of evolutionarily conserved gene silencing mechanisms in which small sequences of double-stranded RNA or intrinsic antisense RNA trigger mRNA cleavage or translational repression, respectively. Although RNAi molecules can be synthesised to 'silence' virtually any gene, even if upregulated, a mechanism for selective delivery of RNAi effectors to sites of malignant disease remains challenging. The authors will discuss gene-modified conditionally replicating viruses as candidate vehicles for the delivery of RNAi.

  18. Insights into the Molecular Pathogenesis of Activated B-Cell-like Diffuse Large B-Cell Lymphoma and Its Therapeutic Implications

    Directory of Open Access Journals (Sweden)

    Georg Lenz

    2015-05-01

    Full Text Available Within the last couple of years, the understanding of the molecular mechanisms that drive the pathogenesis of diffuse large B-cell lymphoma (DLBCL has significantly improved. Large-scale gene expression profiling studies have led to the discovery of several molecularly defined subtypes that are characterized by specific oncogene addictions and significant differences in their outcome. Next generation sequencing efforts combined with RNA interference screens frequently identify crucial oncogenes that lead to constitutive activation of various signaling pathways that drive lymphomagenesis. This review summarizes our current understanding of the molecular pathogenesis of the activated B-cell-like (ABC DLBCL subtype that is characterized by poor prognosis. A special emphasis is put on findings that might impact therapeutic strategies of affected patients.

  19. Insights into the Molecular Pathogenesis of Activated B-Cell-like Diffuse Large B-Cell Lymphoma and Its Therapeutic Implications

    Energy Technology Data Exchange (ETDEWEB)

    Lenz, Georg [Translational Oncology, Department of Medicine A, Albert-Schweitzer Campus 1, University Hospital Münster, 48149 Münster (Germany); Cluster of Excellence EXC 1003, Cells in Motion, 48149 Münster (Germany)

    2015-05-22

    Within the last couple of years, the understanding of the molecular mechanisms that drive the pathogenesis of diffuse large B-cell lymphoma (DLBCL) has significantly improved. Large-scale gene expression profiling studies have led to the discovery of several molecularly defined subtypes that are characterized by specific oncogene addictions and significant differences in their outcome. Next generation sequencing efforts combined with RNA interference screens frequently identify crucial oncogenes that lead to constitutive activation of various signaling pathways that drive lymphomagenesis. This review summarizes our current understanding of the molecular pathogenesis of the activated B-cell-like (ABC) DLBCL subtype that is characterized by poor prognosis. A special emphasis is put on findings that might impact therapeutic strategies of affected patients.

  20. Setting FIRES to Stem Cell Research

    Science.gov (United States)

    Miller, Roxanne Grietz

    2005-01-01

    The goal of this lesson is to present the basic scientific knowledge about stem cells, the promise of stem cell research to medicine, and the ethical considerations and arguments involved. One of the challenges of discussing stem cell research is that the field is constantly evolving and the most current information changes almost daily. Few…

  1. Examination of thromboxane synthase as a prognostic factor and therapeutic target in non-small cell lung cancer

    LENUS (Irish Health Repository)

    Cathcart, Mary-Clare

    2011-03-09

    Abstract Background Thromboxane synthase (TXS) metabolises prostaglandin H2 into thromboxanes, which are biologically active on cancer cells. TXS over-expression has been reported in a range of cancers, and associated with a poor prognosis. TXS inhibition induces cell death in-vitro, providing a rationale for therapeutic intervention. We aimed to determine the expression profile of TXS in NSCLC and if it is prognostic and\\/or a survival factor in the disease. Methods TXS expression was examined in human NSCLC and matched controls by western analysis and IHC. TXS metabolite (TXB2) levels were measured by EIA. A 204-patient NSCLC TMA was stained for COX-2 and downstream TXS expression. TXS tissue expression was correlated with clinical parameters, including overall survival. Cell proliferation\\/survival and invasion was examined in NSCLC cells following both selective TXS inhibition and stable TXS over-expression. Results TXS was over-expressed in human NSCLC samples, relative to matched normal controls. TXS and TXB2 levels were increased in protein (p < 0.05) and plasma (p < 0.01) NSCLC samples respectively. TXS tissue expression was higher in adenocarcinoma (p < 0.001) and female patients (p < 0.05). No significant correlation with patient survival was observed. Selective TXS inhibition significantly reduced tumour cell growth and increased apoptosis, while TXS over-expression stimulated cell proliferation and invasiveness, and was protective against apoptosis. Conclusion TXS is over-expressed in NSCLC, particularly in the adenocarcinoma subtype. Inhibition of this enzyme inhibits proliferation and induces apoptosis. Targeting thromboxane synthase alone, or in combination with conventional chemotherapy is a potential therapeutic strategy for NSCLC.

  2. Maslinic acid inhibits proliferation of renal cell carcinoma cell lines and suppresses angiogenesis of endothelial cells

    Directory of Open Access Journals (Sweden)

    Parth Thakor

    2017-03-01

    Full Text Available Despite the introduction of many novel therapeutics in clinical practice, metastatic renal cell carcinoma (RCC remains a treatment-re-sistant cancer. As red and processed meat are considered risk factors for RCC, and a vegetable-rich diet is thought to reduce this risk, research into plant-based therapeutics may provide valuable complementary or alternative therapeutics for the management of RCC. Herein, we present the antiproliferative and antiangiogenic effects of maslinic acid, which occurs naturally in edible plants, particularly in olive fruits, and also in a variety of medicinal plants. Human RCC cell lines (ACHN, Caki-1, and SN12K1, endothelial cells (human umbilical vein endothelial cell line [HUVEC], and primary cultures of kidney proximal tubular epithelial cells (PTEC were treated with maslinic acid. Maslinic acid was relatively less toxic to PTEC when compared with RCC under similar experimental conditions. In RCC cell lines, maslinic acid induced a significant reduction in proliferation, proliferating cell nuclear antigen, and colony formation. In HUVEC, maslinic acid induced a significant reduction in capillary tube formation in vitro and vascular endothelial growth factor. This study provides a rationale for incorporating a maslinic acid–rich diet either to reduce the risk of developing kidney cancer or as an adjunct to existing antiangiogenic therapy to improve efficacy.

  3. Speech acts and performances of scientific citizenship: Examining how scientists talk about therapeutic cloning.

    Science.gov (United States)

    Marks, Nicola J

    2014-07-01

    Scientists play an important role in framing public engagement with science. Their language can facilitate or impede particular interactions taking place with particular citizens: scientists' "speech acts" can "perform" different types of "scientific citizenship". This paper examines how scientists in Australia talked about therapeutic cloning during interviews and during the 2006 parliamentary debates on stem cell research. Some avoided complex labels, thereby facilitating public examination of this field. Others drew on language that only opens a space for publics to become educated, not to participate in a more meaningful way. Importantly, public utterances made by scientists here contrast with common international utterances: they did not focus on the therapeutic but the research promises of therapeutic cloning. Social scientists need to pay attention to the performative aspects of language in order to promote genuine citizen involvement in techno-science. Speech Act Theory is a useful analytical tool for this.

  4. FasL Mediates T-Cell Eradication of Tumor Cells Presenting Low Levels of Antigens | Center for Cancer Research

    Science.gov (United States)

    One approach to cancer immunotherapy, as opposed to therapeutic vaccination, is the transfusion of large numbers of tumor-specific killer T cells (cytotoxic T cells or CTLs) into patients. The body’s own defense killer T cells are a subgroup of T lymphocytes (a type of white blood cells) that are capable of inducing death in tumor cells. CTLs can cause the death of target cells either by releasing granules containing toxic molecules including perforin, or by producing a membrane protein called Fas ligand (FasL) which on interaction with the tumor cell results in cell death.

  5. Profiling Prostate Cancer Therapeutic Resistance

    OpenAIRE

    Cameron A. Wade; Natasha Kyprianou

    2018-01-01

    The major challenge in the treatment of patients with advanced lethal prostate cancer is therapeutic resistance to androgen-deprivation therapy (ADT) and chemotherapy. Overriding this resistance requires understanding of the driving mechanisms of the tumor microenvironment, not just the androgen receptor (AR)-signaling cascade, that facilitate therapeutic resistance in order to identify new drug targets. The tumor microenvironment enables key signaling pathways promoting cancer cell survival ...

  6. 3 CFR - Guidelines for Human Stem Cell Research

    Science.gov (United States)

    2010-01-01

    ... 3 The President 1 2010-01-01 2010-01-01 false Guidelines for Human Stem Cell Research Presidential Documents Other Presidential Documents Memorandum of July 30, 2009 Guidelines for Human Stem Cell Research..., scientifically worthy human stem cell research, including human embryonic stem cell research, to the extent...

  7. Using Big Data to Discover Diagnostics and Therapeutics for Gastrointestinal and Liver Diseases

    Science.gov (United States)

    Wooden, Benjamin; Goossens, Nicolas; Hoshida, Yujin; Friedman, Scott L.

    2016-01-01

    Technologies such as genome sequencing, gene expression profiling, proteomic and metabolomic analyses, electronic medical records, and patient-reported health information have produced large amounts of data, from various populations, cell types, and disorders (big data). However, these data must be integrated and analyzed if they are to produce models or concepts about physiologic function or mechanisms of pathogenesis. Many of these data are available to the public, allowing researchers anywhere to search for markers of specific biologic processes or therapeutic targets for specific diseases or patient types. We review recent advances in the fields of computational and systems biology, and highlight opportunities for researchers to use big data sets in the fields of gastroenterology and hepatology, to complement traditional means of diagnostic and therapeutic discovery. PMID:27773806

  8. Frontiers in nano-therapeutics

    CERN Document Server

    Tasnim, Nishat; Sai Krishna, Katla; Kalagara, Sudhakar; Narayan, Mahesh; Noveron, Juan C; Joddar, Binata

    2017-01-01

    This brief highlights recent research advances in the area of nano-therapeutics. Nanotechnology holds immense potential for application in a wide range of biological and engineering applications such as molecular sensors for disease diagnosis, therapeutic agents for the treatment of diseases, a vehicle for delivering therapeutics and imaging agents for theranostic applications, both in-vitro and in-vivo. The brief is grouped into the following sections namely, A) Discrete Nanosystems ; B) Anisotropic Nanoparticles; C) Nano-films/coated/layered and D) Nano-composites.

  9. Recent Perspectives on Genome, Transmission, Clinical Manifestation, Diagnosis, Therapeutic Strategies, Vaccine Developments, and Challenges of Zika Virus Research

    Directory of Open Access Journals (Sweden)

    Apoorva Shankar

    2017-09-01

    Full Text Available One of the potential threats to public health microbiology in 21st century is the increased mortality rate caused by Zika virus (ZIKV, a mosquito-borne flavivirus. The severity of ZIKV infection urged World Health Organization (WHO to declare this virus as a global concern. The limited knowledge on the structure, virulent factors, and replication mechanism of the virus posed as hindrance for vaccine development. Several vector and non-vector-borne mode of transmission are observed for spreading the disease. The similarities of the virus with other flaviviruses such as dengue and West Nile virus are worrisome; hence, there is high scope to undertake ZIKV research that probably provide insight for novel therapeutic intervention. Thus, this review focuses on the recent aspect of ZIKV research which includes the outbreak, genome structure, multiplication and propagation of the virus, current animal models, clinical manifestations, available treatment options (probable vaccines and therapeutics, and the recent advancements in computational drug discovery pipelines, challenges and limitation to undertake ZIKV research. The review suggests that the infection due to ZIKV became one of the universal concerns and an interdisciplinary environment of in vitro cellular assays, genomics, proteomics, and computational biology approaches probably contribute insights for screening of novel molecular targets for drug design. The review tried to provide cutting edge knowledge in ZIKV research with future insights required for the development of novel therapeutic remedies to curtail ZIKV infection.

  10. Attitude of A Sample of Iranian Researchers toward The Future of Stem Cell Research.

    Science.gov (United States)

    Lotfipanah, Mahdi; Azadeh, Fereydoon; Totonchi, Mehdi; Omani-Samani, Reza

    2018-10-01

    Stem cells that have unlimited proliferation potential as well as differentiation potency are considered to be a promising future treatment method for incurable diseases. The aim of the present study is to evaluate the future trend of stem cell researches from researchers' viewpoints. This was a cross-sectional descriptive study on researchers involved in stem cell research at Royan Institute. We designed a questionnaire using a qualitative study based on expert opinion and a literature review. Content validity was performed using three rounds of the Delphi method with experts. Face validity was undertaken by a Persian literature expert and a graphics designer. The questionnaire was distributed among 150 researchers involved in stem cell studies in Royan Institute biology laboratories. We collected 138 completed questionnaires. The mean age of participants was 31.13 ± 5.8 years; most (60.9%) were females. Participants (76.1%) considered the budget to be the most important issue in stem cell research, 79.7% needed financial support from the government, and 77.5% felt that charities could contribute substantially to stem cell research. A total of 90.6% of participants stated that stem cells should lead to commercial usage which could support future researches (86.2%). The aim of stem cell research was stipulated as increasing health status of the society according to 92.8% of the participants. At present, among cell types, importance was attached to cord blood and adult stem cells. Researchers emphasized the importance of mesenchymal stem cells (MSCs) rather than hematopoietic stem cells (HSCs, 57.73%). The prime priorities were given to cancer so that stem cell research could be directed to sphere stem cell research whereas the least preference was given to skin research. Regenerative medicine is considered the future of stem cell research with emphasis on application of these cells, especially in cancer treatment. Copyright© by Royan Institute. All rights

  11. Mass Spectrometry for Research and Application in Therapeutic Drug Monitoring or Clinical and Forensic Toxicology.

    Science.gov (United States)

    Maurer, Hans H

    2018-04-30

    This paper reviews current applications of various hyphenated low- and high-resolution mass spectrometry techniques in the field of therapeutic drug monitoring and clinical/forensic toxicology in both research and practice. They cover gas chromatography, liquid chromatography, matrix-assisted laser desorption ionization, or paper spray ionization coupled to quadrupole, ion trap, time-of-flight, or Orbitrap mass analyzers.

  12. First-In-Class Small Molecule ONC201 Induces DR5 and Cell Death in Tumor but Not Normal Cells to Provide a Wide Therapeutic Index as an Anti-Cancer Agent.

    Science.gov (United States)

    Allen, Joshua E; Crowder, Roslyn N; Crowder, Roslyn; El-Deiry, Wafik S

    2015-01-01

    We previously identified ONC201 (TIC10) as a first-in-class orally active small molecule with robust antitumor activity that is currently in clinical trials in advanced cancers. Here, we further investigate the safety characteristics of ONC201 in preclinical models that reveal an excellent safety profile at doses that exceed efficacious doses by 10-fold. In vitro studies indicated a strikingly different dose-response relationship when comparing tumor and normal cells where maximal effects are much stronger in tumor cells than in normal cells. In further support of a wide therapeutic index, investigation of tumor and normal cell responses under identical conditions demonstrated large apoptotic effects in tumor cells and modest anti-proliferative effects in normal cells that were non-apoptotic and reversible. Probing the underlying mechanism of apoptosis indicated that ONC201 does not induce DR5 in normal cells under conditions that induce DR5 in tumor cells; DR5 is a pro-apoptotic TRAIL receptor previously linked to the anti-tumor mechanism of ONC201. GLP toxicology studies in Sprague-Dawley rats and beagle dogs at therapeutic and exaggerated doses revealed no dose-limiting toxicities. Observations in both species at the highest doses were mild and reversible at doses above 10-fold the expected therapeutic dose. The no observed adverse event level (NOAEL) was ≥42 mg/kg in dogs and ≥125 mg/kg in rats, which both correspond to a human dose of approximately 1.25 g assuming standard allometric scaling. These results provided the rationale for the 125 mg starting dose in dose escalation clinical trials that began in 2015 in patients with advanced cancer.

  13. First-In-Class Small Molecule ONC201 Induces DR5 and Cell Death in Tumor but Not Normal Cells to Provide a Wide Therapeutic Index as an Anti-Cancer Agent.

    Directory of Open Access Journals (Sweden)

    Joshua E Allen

    Full Text Available We previously identified ONC201 (TIC10 as a first-in-class orally active small molecule with robust antitumor activity that is currently in clinical trials in advanced cancers. Here, we further investigate the safety characteristics of ONC201 in preclinical models that reveal an excellent safety profile at doses that exceed efficacious doses by 10-fold. In vitro studies indicated a strikingly different dose-response relationship when comparing tumor and normal cells where maximal effects are much stronger in tumor cells than in normal cells. In further support of a wide therapeutic index, investigation of tumor and normal cell responses under identical conditions demonstrated large apoptotic effects in tumor cells and modest anti-proliferative effects in normal cells that were non-apoptotic and reversible. Probing the underlying mechanism of apoptosis indicated that ONC201 does not induce DR5 in normal cells under conditions that induce DR5 in tumor cells; DR5 is a pro-apoptotic TRAIL receptor previously linked to the anti-tumor mechanism of ONC201. GLP toxicology studies in Sprague-Dawley rats and beagle dogs at therapeutic and exaggerated doses revealed no dose-limiting toxicities. Observations in both species at the highest doses were mild and reversible at doses above 10-fold the expected therapeutic dose. The no observed adverse event level (NOAEL was ≥42 mg/kg in dogs and ≥125 mg/kg in rats, which both correspond to a human dose of approximately 1.25 g assuming standard allometric scaling. These results provided the rationale for the 125 mg starting dose in dose escalation clinical trials that began in 2015 in patients with advanced cancer.

  14. Simultaneous silencing of ACSL4 and induction of GADD45B in hepatocellular carcinoma cells amplifies the synergistic therapeutic effect of aspirin and sorafenib

    Science.gov (United States)

    Xia, Hongping; Lee, Kee Wah; Chen, Jianxiang; Kong, Shik Nie; Sekar, Karthik; Deivasigamani, Amudha; Seshachalam, Veerabrahma Pratap; Goh, Brian Kim Poh; Ooi, London Lucien; Hui, Kam M

    2017-01-01

    Sorafenib is currently the only US Food and Drug Administration (FDA)-approved molecular inhibitor for the systemic therapy of advanced hepatocellular carcinoma (HCC). Aspirin has been studied extensively as an anti-inflammation, cancer preventive and therapeutic agent. However, the potential synergistic therapeutic effects of sorafenib and aspirin on advanced HCC treatment have not been well studied. Drug combination studies and their synergy quantification were performed using the combination index method of Chou-Talalay. The synergistic therapeutic effects of sorafenib and aspirin were evaluated using an orthotopic mouse model of HCC and comprehensive gene profiling analyses were conducted to identify key factors mediating the synergistic therapeutic effects of sorafenib and aspirin. Sorafenib was determined to act synergistically on HCC cells with aspirin in vitro. Using Hep3B and HuH7 HCC cells, it was demonstrated that sorafenib and aspirin acted synergistically to induce apoptosis. Mechanistic studies demonstrated that combining sorafenib and aspirin yielded significant synergistically anti-tumor effects by simultaneously silencing ACSL4 and the induction of GADD45B expression in HCC cells both in vitro and in the orthotopic HCC xenograft mouse model. Importantly, clinical evidence has independently corroborated that survival of HCC patients expressing ACSL4highGADD45Blow was significantly poorer compared to patients with ACSL4lowGADD45Bhigh, thus demonstrating the potential clinical value of combining aspirin and sorafenib for HCC patients expressing ACSL4highGADD45Blow. In conclusion, sorafenib and aspirin provide synergistic therapeutic effects on HCC cells that are achieved through simultaneous silencing of ACSL4 and induction of GADD45B expression. Targeting HCC with ACSL4highGADD45Blow expression with aspirin and sorafenib could provide potential synergistic therapeutic benefits. PMID:28900541

  15. Adjuvant effects of therapeutic glycolipids administered to a cohort of NKT cell-diverse pigs.

    Science.gov (United States)

    Artiaga, Bianca L; Whitener, Robert L; Staples, Charles R; Driver, John P

    2014-11-15

    CD1d-restricted natural killer T (NKT) cells are a unique lymphocyte population that makes important contributions to host defense against numerous microbial pathogens. The powerful immunomodulatory effects of these cells can be exploited in mice by cognate antigens for multiple therapeutic purposes, including for protection from infectious diseases and as adjuvants to improve vaccines against microbial organisms. These applications have potential to treat and prevent infectious diseases in livestock species that express NKT cells, including pigs. In this study, immune tissues from commercial swine of mixed genetic background were compared for NKT cell frequency, cytokine secretion and subset ratios. Pigs were also injected with the model antigen hen-egg lysozyme (HEL) in conjunction with one of three glycosphingolipids, alpha-galactosylceramide (αGC), OCH and C-glycoside that selectively activate NKT cells, to assess the adjuvant potential of each. There was significant variation between individual pigs for all NKT cell parameters measured. The NKT cell agonists elicited HEL-specific immune responses of different quality, but only αGC increased the systemic concentration of NKT cells. Peripheral blood NKT cell frequency measured prior to treatment was a poor predictor of how individual animals responded to NKT cell therapy. However, our results show that although NKT cells vary considerably between pigs, there exists considerable potential to harness these cells to protect swine from infectious diseases. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. c-Met in esophageal squamous cell carcinoma: an independent prognostic factor and potential therapeutic target

    International Nuclear Information System (INIS)

    Ozawa, Yohei; Nakamura, Yasuhiro; Fujishima, Fumiyoshi; Felizola, Saulo JA; Takeda, Kenichiro; Okamoto, Hiroshi; Ito, Ken; Ishida, Hirotaka; Konno, Takuro; Kamei, Takashi; Miyata, Go; Ohuchi, Noriaki; Sasano, Hironobu

    2015-01-01

    c-Met is widely known as a poor prognostic factor in various human malignancies. Previous studies have suggested the involvement of c-Met and/or its ligand, hepatocyte growth factor (HGF), in esophageal squamous cell carcinoma (ESCC), but the correlation between c-Met status and clinical outcome remains unclear. Furthermore, the identification of a novel molecular therapeutic target might potentially help improve the clinical outcome of ESCC patients. The expression of c-Met and HGF was immunohistochemically assessed in 104 surgically obtained tissue specimens. The correlation between c-Met/HGF expression and patients’ clinicopathological features, including survival, was evaluated. We also investigated changes in cell functions and protein expression of c-Met and its downstream signaling pathway components under treatments with HGF and/or c-Met inhibitor in ESCC cell lines. Elevated expression of c-Met was significantly correlated with tumor depth and pathological stage. Patients with high c-Met expression had significantly worse survival. In addition, multivariate analysis identified the high expression of c-Met as an independent prognostic factor. Treatment with c-Met inhibitor under HGF stimulation significantly inhibited the invasive capacity of an ESCC cell line with elevated c-Met mRNA expression. Moreover, c-Met and its downstream signaling inactivation was also detected after treatment with c-Met inhibitor. The results of our study identified c-Met expression as an independent prognostic factor in ESCC patients and demonstrated that c-Met could be a potential molecular therapeutic target for the treatment of ESCC with elevated c-Met expression. The online version of this article (doi:10.1186/s12885-015-1450-3) contains supplementary material, which is available to authorized users

  17. Chimeric Antigen Receptor-Engineered NK-92 Cells: An Off-the-Shelf Cellular Therapeutic for Targeted Elimination of Cancer Cells and Induction of Protective Antitumor Immunity

    Directory of Open Access Journals (Sweden)

    Congcong Zhang

    2017-05-01

    Full Text Available Significant progress has been made in recent years toward realizing the potential of natural killer (NK cells for cancer immunotherapy. NK cells can respond rapidly to transformed and stressed cells and have the intrinsic potential to extravasate and reach their targets in almost all body tissues. In addition to donor-derived primary NK cells, also the established NK cell line NK-92 is being developed for adoptive immunotherapy, and general safety of infusion of irradiated NK-92 cells has been established in phase I clinical trials with clinical responses observed in some of the cancer patients treated. To enhance their therapeutic utility, NK-92 cells have been modified to express chimeric antigen receptors (CARs composed of a tumor-specific single chain fragment variable antibody fragment fused via hinge and transmembrane regions to intracellular signaling moieties such as CD3ζ or composite signaling domains containing a costimulatory protein together with CD3ζ. CAR-mediated activation of NK cells then bypasses inhibitory signals and overcomes NK resistance of tumor cells. In contrast to primary NK cells, CAR-engineered NK-92 cell lines suitable for clinical development can be established from molecularly and functionally well-characterized single cell clones following good manufacturing practice-compliant procedures. In preclinical in vitro and in vivo models, potent antitumor activity of NK-92 variants targeted to differentiation antigens expressed by hematologic malignancies, and overexpressed or mutated self-antigens associated with solid tumors has been found, encouraging further development of CAR-engineered NK-92 cells. Importantly, in syngeneic mouse tumor models, induction of endogenous antitumor immunity after treatment with CAR-expressing NK-92 cells has been demonstrated, resulting in cures and long-lasting immunological memory protecting against tumor rechallenge at distant sites. Here, we summarize the current status and future

  18. How children can be respected as 'ends' yet still be used as subjects in non-therapeutic research.

    OpenAIRE

    Redmon, R B

    1986-01-01

    The question of whether or not children may be used as subjects in non-therapeutic research projects has generated a great deal of debate and received answers varying from 'no, never' to 'yes, if societal interests are served'. It has been claimed that a Kantian, deontological ethics would necessarily rule out such research, since valid consent would be impossible. The present paper gives a deontological argument for allowing children to be subjects in certain types of research.

  19. How children can be respected as 'ends' yet still be used as subjects in non-therapeutic research.

    Science.gov (United States)

    Redmon, R B

    1986-06-01

    The question of whether or not children may be used as subjects in non-therapeutic research projects has generated a great deal of debate and received answers varying from 'no, never' to 'yes, if societal interests are served'. It has been claimed that a Kantian, deontological ethics would necessarily rule out such research, since valid consent would be impossible. The present paper gives a deontological argument for allowing children to be subjects in certain types of research.

  20. How children can be respected as 'ends' yet still be used as subjects in non-therapeutic research.

    Science.gov (United States)

    Redmon, R B

    1986-01-01

    The question of whether or not children may be used as subjects in non-therapeutic research projects has generated a great deal of debate and received answers varying from 'no, never' to 'yes, if societal interests are served'. It has been claimed that a Kantian, deontological ethics would necessarily rule out such research, since valid consent would be impossible. The present paper gives a deontological argument for allowing children to be subjects in certain types of research. PMID:3735361

  1. Live-Cell Imaging of Protease Activity: Assays to Screen Therapeutic Approaches.

    Science.gov (United States)

    Chalasani, Anita; Ji, Kyungmin; Sameni, Mansoureh; Mazumder, Samia H; Xu, Yong; Moin, Kamiar; Sloane, Bonnie F

    2017-01-01

    Methodologies to image and quantify the activity of proteolytic enzymes have been developed in an effort to identify protease-related druggable pathways that are involved in malignant progression of cancer. Our laboratory has pioneered techniques for functional live-cell imaging of protease activity in pathomimetic avatars for breast cancer. We analyze proteolysis in the context of proliferation and formation of structures by tumor cells in 3-D cultures over time (4D). In order to recapitulate the cellular composition and architecture of tumors in the pathomimetic avatars, we include other tumor-associated cells (e.g., fibroblasts, myoepithelial cells, microvascular endothelial cells). We also model noncellular aspects of the tumor microenvironment such as acidic pericellular pH. Use of pathomimetic avatars in concert with various types of imaging probes has allowed us to image, quantify, and follow the dynamics of proteolysis in the tumor microenvironment and to test interventions that impact directly or indirectly on proteolytic pathways. To facilitate use of the pathomimetic avatars for screening of therapeutic modalities, we have designed and fabricated custom 3D culture chambers with multiple wells that are either individual or connected by a channel to allow cells to migrate between wells. Optical glass microscope slides underneath an acrylic plate allow the cultures to be imaged with an inverted microscope. Fluid ports in the acrylic plate are at a level above the 3D cultures to allow introduction of culture media and test agents such as drugs into the wells and the harvesting of media conditioned by the cultures for immunochemical and biochemical analyses. We are using the pathomimetic avatars to identify druggable pathways, screen drug and natural product libraries and accelerate entry of validated drugs or natural products into clinical trials.

  2. Toxin-Based Therapeutic Approaches

    Directory of Open Access Journals (Sweden)

    Itai Benhar

    2010-10-01

    Full Text Available Protein toxins confer a defense against predation/grazing or a superior pathogenic competence upon the producing organism. Such toxins have been perfected through evolution in poisonous animals/plants and pathogenic bacteria. Over the past five decades, a lot of effort has been invested in studying their mechanism of action, the way they contribute to pathogenicity and in the development of antidotes that neutralize their action. In parallel, many research groups turned to explore the pharmaceutical potential of such toxins when they are used to efficiently impair essential cellular processes and/or damage the integrity of their target cells. The following review summarizes major advances in the field of toxin based therapeutics and offers a comprehensive description of the mode of action of each applied toxin.

  3. Neural stem cells for disease modeling of Wolman disease and evaluation of therapeutics.

    Science.gov (United States)

    Aguisanda, Francis; Yeh, Charles D; Chen, Catherine Z; Li, Rong; Beers, Jeanette; Zou, Jizhong; Thorne, Natasha; Zheng, Wei

    2017-06-28

    Wolman disease (WD) is a rare lysosomal storage disorder that is caused by mutations in the LIPA gene encoding lysosomal acid lipase (LAL). Deficiency in LAL function causes accumulation of cholesteryl esters and triglycerides in lysosomes. Fatality usually occurs within the first year of life. While an enzyme replacement therapy has recently become available, there is currently no small-molecule drug treatment for WD. We have generated induced pluripotent stem cells (iPSCs) from two WD patient dermal fibroblast lines and subsequently differentiated them into neural stem cells (NSCs). The WD NSCs exhibited the hallmark disease phenotypes of neutral lipid accumulation, severely deficient LAL activity, and increased LysoTracker dye staining. Enzyme replacement treatment dramatically reduced the WD phenotype in these cells. In addition, δ-tocopherol (DT) and hydroxypropyl-beta-cyclodextrin (HPBCD) significantly reduced lysosomal size in WD NSCs, and an enhanced effect was observed in DT/HPBCD combination therapy. The results demonstrate that these WD NSCs are valid cell-based disease models with characteristic disease phenotypes that can be used to evaluate drug efficacy and screen compounds. DT and HPBCD both reduce LysoTracker dye staining in WD cells. The cells may be used to further dissect the pathology of WD, evaluate compound efficacy, and serve as a platform for high-throughput drug screening to identify new compounds for therapeutic development.

  4. Optimization of Intracellular Transportation of Gene Therapeutic DNA in Small Cell Lung Cancer (Ph.d.)

    DEFF Research Database (Denmark)

    Cramer, Frederik

    2013-01-01

    Small cell lung cancer (SCLC) is a highly malignant disease characterized as being very aggressive and metastasizing at a rapid pace. The malevolent pace of SCLC cell migration results in almost three out of four SCLC patients having disseminated SCLC at the time of diagnosis. Unfortunately...... has to be able to repeated systemic delivery of gene therapy to cancer cells in a both safe and efficient way. Non-viral delivery vectors fulfill many of these requirements except the latter. It is currently very difficult to systemically transport sufficient amounts of therapeutic DNA, by a non......-viral delivery system, to the nuclei of the SCLC cells. As a result, the gene therapy expression obtained is too low to have any clinical relevance. We have at the Department of Radiation Biology developed a transcriptionally targeting suicide gene therapy system which is built on a double stranded DNA plasmid...

  5. Purging of acute myeloid leukaemia cells from stem cell grafts by hyperthermia : enhancement of the therapeutic index by the tetrapeptide AcSDKP and the alkyl-lysophospholipid ET-18-OCH3

    NARCIS (Netherlands)

    Wierenga, PK; Setroikromo, R; Vellenga, E; Kampinga, HH

    2000-01-01

    Hyperthermia has been shown to be a potential purging modality in autologous stem cell transplantation settings owing to its selective toxicity towards leukaemic cells, We describe two approaches to further increase the therapeutic index of the hyperthermic purging modality by using normal murine

  6. Extracellular vesicles as a platform for membrane-associated therapeutic protein delivery.

    Science.gov (United States)

    Yang, Yoosoo; Hong, Yeonsun; Cho, Eunji; Kim, Gi Beom; Kim, In-San

    2018-01-01

    Membrane proteins are of great research interest, particularly because they are rich in targets for therapeutic application. The suitability of various membrane proteins as targets for therapeutic formulations, such as drugs or antibodies, has been studied in preclinical and clinical studies. For therapeutic application, however, a protein must be expressed and purified in as close to its native conformation as possible. This has proven difficult for membrane proteins, as their native conformation requires the association with an appropriate cellular membrane. One solution to this problem is to use extracellular vesicles as a display platform. Exosomes and microvesicles are membranous extracellular vesicles that are released from most cells. Their membranes may provide a favourable microenvironment for membrane proteins to take on their proper conformation, activity, and membrane distribution; moreover, membrane proteins can cluster into microdomains on the surface of extracellular vesicles following their biogenesis. In this review, we survey the state-of-the-art of extracellular vesicle (exosome and small-sized microvesicle)-based therapeutics, evaluate the current biological understanding of these formulations, and forecast the technical advances that will be needed to continue driving the development of membrane protein therapeutics.

  7. The egg-sharing model for human therapeutic cloning research: managing donor selection criteria, the proportion of shared oocytes allocated to research, and amount of financial subsidy given to the donor.

    Science.gov (United States)

    Heng, Boon Chin; Tong, Guo Qing; Stojkovic, Miodrag

    2006-01-01

    Recent advances in human therapeutic cloning made by Hwang and colleagues have opened up new avenues of therapy for various human diseases. However, the major bottleneck of this new technology is the severe shortage of human donor oocytes. Egg-sharing in return for subsidized fertility treatment has been suggested as an ethically justifiable and practical solution to overcome the shortage of donor oocytes for therapeutic cloning. Because the utilization of shared oocytes in therapeutic cloning research does not result in any therapeutic benefit to a second party, this would necessitate a different management strategy compared to their use for the assisted conception of infertile women who are unable to produce any oocytes of their own. It is proposed that the pool of prospective egg-sharers in therapeutic cloning research be limited only to younger women (below 30 years of age) with indications for either male partner sub-fertility or tubal blockage. With regards to the proportion of the shared gametes being allocated to research, a threshold number of retrieved oocytes should be set that if not exceeded, would result in the patient being automatically removed from the egg-sharing scheme. Any excess supernumerary oocyte above this threshold number can be contributed to science, and allocation should be done in a randomized manner. Perhaps, a total of 10 retrieved oocytes from the patient may be considered a suitable threshold, since the chances of conception are unlikely to be impaired. With regards to the amount of subsidy being given to the patient, it is suggested that the proportion of financial subsidy should be equal to the proportion of the patient's oocytes being allocated to research. No doubt, the promise of future therapeutic benefit may be offered to the patient instead of financial subsidy. However, this is ethically controversial because therapeutic cloning has not yet been demonstrated to be a viable model of clinical therapy and any promises made to

  8. Recommendations for the validation of cell-based assays used for the detection of neutralizing antibody immune responses elicited against biological therapeutics.

    Science.gov (United States)

    Gupta, Shalini; Devanarayan, Viswanath; Finco, Deborah; Gunn, George R; Kirshner, Susan; Richards, Susan; Rup, Bonita; Song, An; Subramanyam, Meena

    2011-07-15

    The administration of biological therapeutics may result in the development of anti-drug antibodies (ADAs) in treated subjects. In some cases, ADA responses may result in the loss of therapeutic efficacy due to the formation of neutralizing ADAs (NAbs). An important characteristic of anti-drug NAbs is their direct inhibitory effect on the pharmacological activity of the therapeutic. Neutralizing antibody responses are of particular concern for biologic products with an endogenous homolog whose activity can be potentially dampened or completely inhibited by the NAbs leading to an autoimmune-type deficiency syndrome. Therefore, it is important that ADAs are detected and characterized appropriately using sensitive and reliable methods. The design, development and optimization of cell-based assays used for detection of NAbs have been published previously by Gupta et al. 2007 [1]. This paper provides recommendations on best practices for the validation of cell-based NAb assay and suggested validation parameters based on the experience of the authors. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Orchestration of transplantation tolerance by regulatory dendritic cell therapy or in-situ targeting of dendritic cells.

    Science.gov (United States)

    Morelli, Adrian E; Thomson, Angus W

    2014-08-01

    Extensive research in murine transplant models over the past two decades has convincingly demonstrated the ability of regulatory dendritic cells (DCregs) to promote long-term allograft survival. We review important considerations regarding the source of therapeutic DCregs (donor or recipient) and their mode of action, in-situ targeting of DCregs, and optimal therapeutic regimens to promote DCreg function. Recent studies have defined protocols and mechanisms whereby ex-vivo-generated DCregs of donor or recipient origin subvert allogeneic T-cell responses and promote long-term organ transplant survival. Particular interest has focused on how donor antigen is acquired, processed and presented by autologous dendritic cells, on the stability of DCregs, and on in-situ targeting of dendritic cells to promote their tolerogenic function. New evidence of the therapeutic efficacy of DCregs in a clinically relevant nonhuman primate organ transplant model and production of clinical grade DCregs support early evaluation of DCreg therapy in human graft recipients. We discuss strategies currently used to promote dendritic cell tolerogenicity, including DCreg therapy and in-situ targeting of dendritic cells, with a view to improved understanding of underlying mechanisms and identification of the most promising strategies for therapeutic application.

  10. Reprogramming to developmental plasticity in cancer stem cells.

    Science.gov (United States)

    O'Brien-Ball, Caitlin; Biddle, Adrian

    2017-10-15

    During development and throughout adult life, sub-populations of cells exist that exhibit phenotypic plasticity - the ability to differentiate into multiple lineages. This behaviour is important in embryogenesis, is exhibited in a more limited context by adult stem cells, and can be re-activated in cancer cells to drive important processes underlying tumour progression. A well-studied mechanism of phenotypic plasticity is the epithelial-to-mesenchymal transition (EMT), a process which has been observed in both normal and cancerous cells. The epigenetic and metabolic modifications necessary to facilitate phenotypic plasticity are first seen in development and can be re-activated both in normal regeneration and in cancer. In cancer, the re-activation of these mechanisms enables tumour cells to acquire a cancer stem cell (CSC) phenotype with enhanced ability to survive in hostile environments, resist therapeutic interventions, and undergo metastasis. However, recent research has suggested that plasticity may also expose weaknesses in cancer cells that could be exploited for future therapeutic development. More research is needed to identify developmental mechanisms that are active in cancer, so that these may be targeted to reduce tumour growth and metastasis and overcome therapeutic resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Protein based therapeutic delivery agents: Contemporary developments and challenges.

    Science.gov (United States)

    Yin, Liming; Yuvienco, Carlo; Montclare, Jin Kim

    2017-07-01

    As unique biopolymers, proteins can be employed for therapeutic delivery. They bear important features such as bioavailability, biocompatibility, and biodegradability with low toxicity serving as a platform for delivery of various small molecule therapeutics, gene therapies, protein biologics and cells. Depending on size and characteristic of the therapeutic, a variety of natural and engineered proteins or peptides have been developed. This, coupled to recent advances in synthetic and chemical biology, has led to the creation of tailor-made protein materials for delivery. This review highlights strategies employing proteins to facilitate the delivery of therapeutic matter, addressing the challenges for small molecule, gene, protein and cell transport. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Exploiting Herpes Simplex Virus Entry for Novel Therapeutics

    Directory of Open Access Journals (Sweden)

    Deepak Shukla

    2013-06-01

    Full Text Available Herpes Simplex virus (HSV is associated with a variety of diseases such as genital herpes and numerous ocular diseases. At the global level, high prevalence of individuals who are seropositive for HSV, combined with its inconspicuous infection, remains a cause for major concern. At the molecular level, HSV entry into a host cell involves multiple steps, primarily the interaction of viral glycoproteins with various cell surface receptors, many of which have alternate substitutes. The molecular complexity of the virus to enter a cell is also enhanced by the existence of different modes of viral entry. The availability of many entry receptors, along with a variety of entry mechanisms, has resulted in a virus that is capable of infecting virtually all cell types. While HSV uses a wide repertoire of viral and host factors in establishing infection, current therapeutics aimed against the virus are not as diversified. In this particular review, we will focus on the initial entry of the virus into the cell, while highlighting potential novel therapeutics that can control this process. Virus entry is a decisive step and effective therapeutics can translate to less virus replication, reduced cell death, and detrimental symptoms.

  13. Potential role of mTORC2 as a therapeutic target in clear cell carcinoma of the ovary.

    Science.gov (United States)

    Hisamatsu, Takeshi; Mabuchi, Seiji; Matsumoto, Yuri; Kawano, Mahiru; Sasano, Tomoyuki; Takahashi, Ryoko; Sawada, Kenjiro; Ito, Kimihiko; Kurachi, Hirohisa; Schilder, Russell J; Testa, Joseph R; Kimura, Tadashi

    2013-07-01

    The goal of this study was to examine the role of mTOR complex 2 (mTORC2) as a therapeutic target in ovarian clear cell carcinoma (CCC), which is regarded as an aggressive, chemoresistant histologic subtype. Using tissue microarrays of 98 primary ovarian cancers [52 CCCs and 46 serous adenocarcinomas (SAC)], activation of mTORC2 was assessed by immunohistochemistry. Then, the growth-inhibitory effect of mTORC2-targeting therapy, as well as the role of mTORC2 signaling as a mechanism for acquired resistance to the mTOR complex 1 (mTORC1) inhibitor RAD001 in ovarian CCC, were examined using two pairs of RAD001-sensitive parental (RMG2 and HAC2) and RAD001-resistant CCC cell lines (RMG2-RR and HAC2-RR). mTORC2 was more frequently activated in CCCs than in SACs (71.2% vs. 45.7%). Simultaneous inhibition of mTORC1 and mTORC2 by AZD8055 markedly inhibited the proliferation of both RAD001-sensitive and -resistant cells in vitro. Treatment with RAD001 induced mTORC2-mediated AKT activation in RAD001-sensitive CCC cells. Moreover, increased activation of mTORC2-AKT signaling was observed in RAD001-resistant CCC cells compared with the respective parental cells. Inhibition of mTORC2 during RAD001 treatment enhanced the antitumor effect of RAD001 and prevented CCC cells from acquiring resistance to RAD001. In conclusion, mTORC2 is frequently activated, and can be a promising therapeutic target, in ovarian CCCs. Moreover, mTORC2-targeted therapy may be efficacious in a first-line setting as well as for second-line treatment of recurrent disease developing after RAD001-treatment.

  14. A new glucocerebrosidase-deficient neuronal cell model provides a tool to probe pathophysiology and therapeutics for Gaucher disease.

    Science.gov (United States)

    Westbroek, Wendy; Nguyen, Matthew; Siebert, Marina; Lindstrom, Taylor; Burnett, Robert A; Aflaki, Elma; Jung, Olive; Tamargo, Rafael; Rodriguez-Gil, Jorge L; Acosta, Walter; Hendrix, An; Behre, Bahafta; Tayebi, Nahid; Fujiwara, Hideji; Sidhu, Rohini; Renvoise, Benoit; Ginns, Edward I; Dutra, Amalia; Pak, Evgenia; Cramer, Carole; Ory, Daniel S; Pavan, William J; Sidransky, Ellen

    2016-07-01

    Glucocerebrosidase is a lysosomal hydrolase involved in the breakdown of glucosylceramide. Gaucher disease, a recessive lysosomal storage disorder, is caused by mutations in the gene GBA1 Dysfunctional glucocerebrosidase leads to accumulation of glucosylceramide and glycosylsphingosine in various cell types and organs. Mutations in GBA1 are also a common genetic risk factor for Parkinson disease and related synucleinopathies. In recent years, research on the pathophysiology of Gaucher disease, the molecular link between Gaucher and Parkinson disease, and novel therapeutics, have accelerated the need for relevant cell models with GBA1 mutations. Although induced pluripotent stem cells, primary rodent neurons, and transfected neuroblastoma cell lines have been used to study the effect of glucocerebrosidase deficiency on neuronal function, these models have limitations because of challenges in culturing and propagating the cells, low yield, and the introduction of exogenous mutant GBA1 To address some of these difficulties, we established a high yield, easy-to-culture mouse neuronal cell model with nearly complete glucocerebrosidase deficiency representative of Gaucher disease. We successfully immortalized cortical neurons from embryonic null allele gba(-/-) mice and the control littermate (gba(+/+)) by infecting differentiated primary cortical neurons in culture with an EF1α-SV40T lentivirus. Immortalized gba(-/-) neurons lack glucocerebrosidase protein and enzyme activity, and exhibit a dramatic increase in glucosylceramide and glucosylsphingosine accumulation, enlarged lysosomes, and an impaired ATP-dependent calcium-influx response; these phenotypical characteristics were absent in gba(+/+) neurons. This null allele gba(-/-) mouse neuronal model provides a much-needed tool to study the pathophysiology of Gaucher disease and to evaluate new therapies. © 2016. Published by The Company of Biologists Ltd.

  15. A new glucocerebrosidase-deficient neuronal cell model provides a tool to probe pathophysiology and therapeutics for Gaucher disease

    Directory of Open Access Journals (Sweden)

    Wendy Westbroek

    2016-07-01

    Full Text Available Glucocerebrosidase is a lysosomal hydrolase involved in the breakdown of glucosylceramide. Gaucher disease, a recessive lysosomal storage disorder, is caused by mutations in the gene GBA1. Dysfunctional glucocerebrosidase leads to accumulation of glucosylceramide and glycosylsphingosine in various cell types and organs. Mutations in GBA1 are also a common genetic risk factor for Parkinson disease and related synucleinopathies. In recent years, research on the pathophysiology of Gaucher disease, the molecular link between Gaucher and Parkinson disease, and novel therapeutics, have accelerated the need for relevant cell models with GBA1 mutations. Although induced pluripotent stem cells, primary rodent neurons, and transfected neuroblastoma cell lines have been used to study the effect of glucocerebrosidase deficiency on neuronal function, these models have limitations because of challenges in culturing and propagating the cells, low yield, and the introduction of exogenous mutant GBA1. To address some of these difficulties, we established a high yield, easy-to-culture mouse neuronal cell model with nearly complete glucocerebrosidase deficiency representative of Gaucher disease. We successfully immortalized cortical neurons from embryonic null allele gba−/− mice and the control littermate (gba+/+ by infecting differentiated primary cortical neurons in culture with an EF1α-SV40T lentivirus. Immortalized gba−/− neurons lack glucocerebrosidase protein and enzyme activity, and exhibit a dramatic increase in glucosylceramide and glucosylsphingosine accumulation, enlarged lysosomes, and an impaired ATP-dependent calcium-influx response; these phenotypical characteristics were absent in gba+/+ neurons. This null allele gba−/− mouse neuronal model provides a much-needed tool to study the pathophysiology of Gaucher disease and to evaluate new therapies.

  16. Generation and Characterization of Erythroid Cells from Human Embryonic Stem Cells and Induced Pluripotent Stem Cells: An Overview

    Directory of Open Access Journals (Sweden)

    Kai-Hsin Chang

    2011-01-01

    Full Text Available Because of the imbalance in the supply and demand of red blood cells (RBCs, especially for alloimmunized patients or patients with rare blood phenotypes, extensive research has been done to generate therapeutic quantities of mature RBCs from hematopoietic stem cells of various sources, such as bone marrow, peripheral blood, and cord blood. Since human embryonic stem cells (hESCs and induced pluripotent stem cells (iPSCs can be maintained indefinitely in vitro, they represent potentially inexhaustible sources of donor-free RBCs. In contrast to other ex vivo stem-cell-derived cellular therapeutics, tumorigenesis is not a concern, as RBCs can be irradiated without marked adverse effects on in vivo function. Here, we provide a comprehensive review of the recent publications relevant to the generation and characterization of hESC- and iPSC-derived erythroid cells and discuss challenges to be met before the eventual realization of clinical usage of these cells.

  17. From Research to Application: Supportive and Therapeutic Environments for People Living With Dementia.

    Science.gov (United States)

    Calkins, Margaret P

    2018-01-18

    The evidence about the role the designed and built environment plays in supporting individuals living with dementia has been steadily mounting for almost 40 years. Beginning with the work of M. Powell Lawton at the Weiss Pavilion at the Philadelphia Geriatric Center, there are now dozens of researchers who are exploring how the environment can be either supportive and therapeutic, indeed even serving as a prosthetic for various changes in cognition, or be a barrier to independent functioning and high quality of life. Two recent literature reviews published on the impact of environmental factors and characteristics on individuals living with dementia clearly delineate evidence that the environment can have a therapeutic or a debilitating impact on individuals living with dementia. Rather than duplicate these excellent reviews, this article puts the knowledge gleaned from this research into the shifting context that is long-term care. This article begins with an exploration of the evolution of approaches to the design of spaces for individuals living with dementia from traditional or medical models, to special care units (SCUs), to person-centered care (PCC), which is the organizing theme of this supplemental issue. A novel, person-centered way of conceptualizing the domains of environmental systems is then presented and used as the framework for structuring recommendations and creating supportive and therapeutic environments for individuals living with dementia. Although there are distinct pathophysiological and behavioral manifestations of different forms of dementia, there is almost no evidence that suggests alternative environmental characteristics are better for one type of dementia over another. Thus, this article will refer to "individuals living with dementia" as opposed to Alzheimer's disease or other specific forms of dementia. Further, this article only addresses residential environments: homes in the community, independent and assisted living residences

  18. Multidisciplinary perspectives for Alzheimer's and Parkinson's diseases: hydrogels for protein delivery and cell-based drug delivery as therapeutic strategies.

    Science.gov (United States)

    Giordano, Carmen; Albani, Diego; Gloria, Antonio; Tunesi, Marta; Batelli, Sara; Russo, Teresa; Forloni, Gianluigi; Ambrosio, Luigi; Cigada, Alberto

    2009-12-01

    This review presents two intriguing multidisciplinary strategies that might make the difference in the treatment of neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. The first proposed strategy is based on the controlled delivery of recombinant proteins known to play a key role in these neurodegenerative disorders that are released in situ by optimized polymer-based systems. The second strategy is the use of engineered cells, encapsulated and delivered in situ by suitable polymer-based systems, that act as drug reservoirs and allow the delivery of selected molecules to be used in the treatment of Alzheimer's and Parkinson's diseases. In both these scenarios, the design and development of optimized polymer-based drug delivery and cell housing systems for central nervous system applications represent a key requirement. Materials science provides suitable hydrogel-based tools to be optimized together with suitably designed recombinant proteins or drug delivering-cells that, once in situ, can provide an effective treatment for these neurodegenerative disorders. In this scenario, only interdisciplinary research that fully integrates biology, biochemistry, medicine and materials science can provide a springboard for the development of suitable therapeutic tools, not only for the treatment of Alzheimer's and Parkinson's diseases but also, prospectively, for a wide range of severe neurodegenerative disorders.

  19. [Xenogeneic cell therapeutics: Treatment of type 1 diabetes using porcine pancreatic islets and islet cells].

    Science.gov (United States)

    Godehardt, Antonia W; Schilling-Leiß, Dagmar; Sanzenbacher, Ralf; Tönjes, Ralf R

    2015-11-01

    In view of the existing shortage of human donor organs and tissues, xenogeneic cell therapeutics (xCT) offer an alternative for adequate treatment. In particular, porcine pancreatic islets and islet cells have already entered the field of experimental therapy for type-1 diabetes mellitus (T1DM) patients. Thereby, xCT depict challenging products with a glance on medical, ethical, and regulatory questions. With cross-species transplantation (xenotransplantation), the risk of immunological graft rejection as well as the risk of infectious transmission of microbial and viral pathogens must be considered. This includes the bidirectional transmission of microorganisms from graft to host as well as from host to graft. Crossing the border of species requires a critical risk-benefit evaluation as well as a thorough longtime surveillance of transplant recipients after treatment. The international legal and regulatory requirements for xCT are inter alia based on the World Health Organization criteria summarized in the Changsha Communiqué (2008). In the European Union, they were reflected by the European Medicines Agency (EMA) Guideline on Xenogeneic Cell-based Medicinal Products following the implementation of the Regulation on Advanced Therapies (ATMP). On the basis of this regulation, the first non-clinical and clinical experiences were obtained for porcine islets. The results suggest that supportive treatment of T1DM risk patients with xCT may be an alternative to established allogeneic organ transplantation in the future.

  20. Implication of fractionated dose exposures in therapeutic gain

    International Nuclear Information System (INIS)

    Kim, Hye-Jin; Lee, Min-Ho; Kim, Eun-Hee

    2016-01-01

    Radiation therapy pursues killing tumor cells while sparing normal cells from the radiation exposure. Stereotactic radiosurgery (SRS) is a cancer treatment modality that delivers a high dose in a single operation. This high-dose single operation shortens the treatment course, but can increase the risk of normal cell damage. Normal cell damage can be reduced by employing multi-directional exposures for an increasing number of isocenters. In this study, we investigated whether therapeutic benefits would be expected by employing new dose fractionation patterns at a high-dose single operation. The conventional single-dose operation in brain tumor radiosurgery is performed by delivering fractionated uniform doses. According to Figs. 2 and 3, the conventional radiosurgery might have obtained some therapeutic benefit by employing the fractionated uniform-dose exposures instead of a single-dose exposure. We suggest that further therapeutic gain be expected by employing the fractionated radiation exposures in an increasing dose pattern. Until ensuring our suggestion, the significance in gain of cell surviving should be verified for all three dose patterns with both normal and tumor cells. The investigation whether normal and tumor cells show the same responses to the fractionated dose exposures at lower and higher than 15 Gy of total dose is also reserved for future work

  1. Stem Cell Research: Unlocking the Mystery of Disease

    Science.gov (United States)

    ... Home Current Issue Past Issues From the Director: Stem Cell Research: Unlocking the Mystery of Disease Past Issues / ... Zerhouni, NIH Director, described the need for expanding stem cell research. Recently, he spoke about stem cell research ...

  2. Therapeutic Use of Native and Recombinant Enteroviruses

    Directory of Open Access Journals (Sweden)

    Jani Ylä-Pelto

    2016-02-01

    Full Text Available Research on human enteroviruses has resulted in the identification of more than 100 enterovirus types, which use more than 10 protein receptors and/or attachment factors required in cell binding and initiation of the replication cycle. Many of these “viral” receptors are overexpressed in cancer cells. Receptor binding and the ability to replicate in specific target cells define the tropism and pathogenesis of enterovirus types, because cellular infection often results in cytolytic response, i.e., disruption of the cells. Viral tropism and cytolytic properties thus make native enteroviruses prime candidates for oncolytic virotherapy. Copy DNA cloning and modification of enterovirus genomes have resulted in the generation of enterovirus vectors with properties that are useful in therapy or in vaccine trials where foreign antigenic epitopes are expressed from or on the surface of the vector virus. The small genome size and compact particle structure, however, set limits to enterovirus genome modifications. This review focuses on the therapeutic use of native and recombinant enteroviruses and the methods that have been applied to modify enterovirus genomes for therapy.

  3. Therapeutic HIV Peptide Vaccine

    DEFF Research Database (Denmark)

    Fomsgaard, Anders

    2015-01-01

    Therapeutic vaccines aim to control chronic HIV infection and eliminate the need for lifelong antiretroviral therapy (ART). Therapeutic HIV vaccine is being pursued as part of a functional cure for HIV/AIDS. We have outlined a basic protocol for inducing new T cell immunity during chronic HIV-1...... infection directed to subdominant conserved HIV-1 epitopes restricted to frequent HLA supertypes. The rationale for selecting HIV peptides and adjuvants are provided. Peptide subunit vaccines are regarded as safe due to the simplicity, quality, purity, and low toxicity. The caveat is reduced immunogenicity...

  4. Enzymatic detachment of therapeutic mesenchymal stromal cells grown on glass carriers in a bioreactor.

    Science.gov (United States)

    Salzig, Denise; Schmiermund, Alexandra; P Grace, Pablo; Elseberg, Christiane; Weber, Christian; Czermak, Peter

    2013-01-01

    Cell therapies require the in vitro expansion of adherent cells such as mesenchymal stromal cells (hMSCs) in bioreactor systems or other culture environments, followed by cell harvest. As hMSCs are strictly adherent cells, cell harvest requires cell detachment. The use of hMSCs for cell therapy requires GMP production in accordance with the guidelines for advanced therapeutic medical products. Therefore, several GMP-conform available proteolytic enzymes were investigated for their ability to promote hMSC detachment. An allogeneic hMSC cell line (hMSC-TERT) that is used in clinical trials in the form of alginate cell capsules was chosen as a model. This study investigated the influence of several factors on the outcome of proteolytic hMSC-TERT detachment. Therefore, hMSC-TERT detachment was analyzed in different cultivation systems (static, dynamic) and in combination with further cell processing including encapsulation. Only two of the commercially available enzymes (AccutaseTM, TrypZeanTM) that fulfill all process requirements (commercial availability, cost, GMP conditions during manufacturing and non-animal origin) are found to be generally suitable for detaching hMSC-TERT. Combining cell detachment with encapsulation demonstrated a high impact of the experimental set up on cell damage. It was preferable to reduce the temperature during detachment and limit the detachment time to a maximum of 20 minutes. Cell detachment in static systems was not comparable with detachment in dynamic systems. Detachment yields in dynamic systems were lower and cell damage was higher for the same experimental conditions. Finally, only TrypZeanTM seemed to be suitable for the detachment of hMSC-TERT from dynamic reactor systems.

  5. Prospects for therapeutic mitochondrial transplantation.

    Science.gov (United States)

    Gollihue, Jenna L; Rabchevsky, Alexander G

    2017-07-01

    Mitochondrial dysfunction has been implicated in a multitude of diseases and pathological conditions- the organelles that are essential for life can also be major players in contributing to cell death and disease. Because mitochondria are so well established in our existence, being present in all cell types except for red blood cells and having the responsibility of providing most of our energy needs for survival, then dysfunctional mitochondria can elicit devastating cellular pathologies that can be widespread across the entire organism. As such, the field of "mitochondrial medicine" is emerging in which disease states are being targeted therapeutically at the level of the mitochondrion, including specific antioxidants, bioenergetic substrate additions, and membrane uncoupling agents. New and compelling research investigating novel techniques for mitochondrial transplantation to replace damaged or dysfunctional mitochondria with exogenous healthy mitochondria has shown promising results, including tissue sparing accompanied by increased energy production and decreased oxidative damage. Various experimental techniques have been attempted and each has been challenged to accomplish successful transplantation. The purpose of this review is to present the history of mitochondrial transplantation, the different techniques used for both in vitro and in vivo delivery, along with caveats and pitfalls that have been discovered along the way. Results from such pioneering studies are promising and could be the next big wave of "mitochondrial medicine" once technical hurdles are overcome. Copyright © 2017 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  6. Radioresistant head and neck squamous cell carcinoma cells: Intracellular signaling, putative biomarkers for tumor recurrences and possible therapeutic targets

    International Nuclear Information System (INIS)

    Skvortsov, Sergej; Jimenez, Connie R.; Knol, Jaco C.; Eichberger, Paul; Schiestl, Bernhard; Debbage, Paul; Skvortsova, Ira; Lukas, Peter

    2011-01-01

    Purpose: Treatment of local and distant head and neck cancer recurrences after radiotherapy remains an unsolved problem. In order to identify potential targets for use in effective therapy of recurrent tumors, we have investigated protein patterns in radioresistant (FaDu-IRR and SCC25-IRR, “IRR cells”) as compared to parental (FaDu and SCC25) head and neck carcinoma cells. Methods and materials: Radiation resistant IRR cells were derived from parental cells after repeated exposure to ionizing radiation 10 times every two weeks at a single dose of 10 Gy, resulting in a total dose of 100 Gy. Protein profiling in parental and IRR cells was carried out using two-dimensional differential gel electrophoresis (2D-DIGE) followed by MALDI-TOF/TOF mass spectrometry. Cell viability, cell migration assays and Western blot analysis were used to confirm results obtained using the proteome approach. Results: Forty-five proteins that were similarly modulated in FaDu-IRR and SCC25-IRR cells compared to parental cells were selected to analyze their common targets. It was found that these either up- or down-regulated proteins are closely related to the enhancement of cell migration which is regulated by Rac1 protein. Further investigations confirmed that Rac1 is up-regulated in IRR cells, and inhibiting its action reduces the migratory abilities of these cells. Additionally, the Rac1 inhibitor exerts cytostatic effects in HNSCC cells, mostly in migratory cells. Conclusions: Based on these results, we conclude that radioresistant HNSCC cells possess enhanced metastatic abilities that are regulated by a network of migration-related proteins. Rac1 protein may be considered as a putative biomarker of HNSCC radiation resistance, and as a potential therapeutic target for treating local and distant HNSCC recurrences.

  7. Ethical Issues in Stem Cell Research

    OpenAIRE

    Lo, Bernard; Parham, Lindsay

    2009-01-01

    Stem cell research offers great promise for understanding basic mechanisms of human development and differentiation, as well as the hope for new treatments for diseases such as diabetes, spinal cord injury, Parkinson’s disease, and myocardial infarction. However, human stem cell (hSC) research also raises sharp ethical and political controversies. The derivation of pluripotent stem cell lines from oocytes and embryos is fraught with disputes about the onset of human personhood. The reprogramm...

  8. The Role of Stem Cell Therapeutics in Wound Healing: Current Understanding and Future Directions.

    Science.gov (United States)

    Sorice, Sarah; Rustad, Kristine C; Li, Alexander Y; Gurtner, Geoffrey C

    2016-09-01

    Chronic wounds present unique challenges for healthcare providers as they place patients at increased risk for various morbidities and mortality. Advances in wound care technology have expanded the treatment options available for wound management, but few products fully address the underlying core deficiencies responsible for the development of poorly healing wounds. In the future, addressing these derangements will undoubtedly play a key role in the treatment of these patients. Broad enthusiasm has surrounded the field of stem cell biology, which has shown great promise in repairing damaged tissues across numerous disease phenotypes. In this review, we provide a comprehensive review of the literature and evaluate the present landscape of wound therapeutics while discussing the rationales and allure behind stem cell-based products. We further propose 2 challenges that remain as new stem cell-based therapies are being developed and as this technology moves toward clinical translation. Given the relatively young age of this newer technology in wound healing, numerous challenges continue to surround its effective use including identifying the ideal population of stem cells to use and determining the optimal cell delivery method. However, significant forward progress has been made, with several clinical trials beginning to demonstrate reliable clinical benefit. The upward trajectory of stem cell technologies provides an exciting opportunity to positively impact patient outcomes through the controlled application of regenerative cell-based therapy.

  9. Dysfunctional Hematopoietic Stem Cell Biology: Underlying Mechanisms and Potential Therapeutic Strategies

    Directory of Open Access Journals (Sweden)

    Anja Geiselhart

    2012-01-01

    Full Text Available Fanconi anemia (FA is the most common inherited bone marrow failure syndrome. FA patients suffer to varying degrees from a heterogeneous range of developmental defects and, in addition, have an increased likelihood of developing cancer. Almost all FA patients develop a severe, progressive bone marrow failure syndrome, which impacts upon the production of all hematopoietic lineages and, hence, is thought to be driven by a defect at the level of the hematopoietic stem cell (HSC. This hypothesis would also correlate with the very high incidence of MDS and AML that is observed in FA patients. In this paper, we discuss the evidence that supports the role of dysfunctional HSC biology in driving the etiology of the disease. Furthermore, we consider the different model systems currently available to study the biology of cells defective in the FA signaling pathway and how they are informative in terms of identifying the physiologic mediators of HSC depletion and dissecting their putative mechanism of action. Finally, we ask whether the insights gained using such disease models can be translated into potential novel therapeutic strategies for the treatment of the hematologic disorders in FA patients.

  10. Microfluidic cell culture systems for drug research.

    Science.gov (United States)

    Wu, Min-Hsien; Huang, Song-Bin; Lee, Gwo-Bin

    2010-04-21

    In pharmaceutical research, an adequate cell-based assay scheme to efficiently screen and to validate potential drug candidates in the initial stage of drug discovery is crucial. In order to better predict the clinical response to drug compounds, a cell culture model that is faithful to in vivo behavior is required. With the recent advances in microfluidic technology, the utilization of a microfluidic-based cell culture has several advantages, making it a promising alternative to the conventional cell culture methods. This review starts with a comprehensive discussion on the general process for drug discovery and development, the role of cell culture in drug research, and the characteristics of the cell culture formats commonly used in current microfluidic-based, cell-culture practices. Due to the significant differences in several physical phenomena between microscale and macroscale devices, microfluidic technology provides unique functionality, which is not previously possible by using traditional techniques. In a subsequent section, the niches for using microfluidic-based cell culture systems for drug research are discussed. Moreover, some critical issues such as cell immobilization, medium pumping or gradient generation in microfluidic-based, cell-culture systems are also reviewed. Finally, some practical applications of microfluidic-based, cell-culture systems in drug research particularly those pertaining to drug toxicity testing and those with a high-throughput capability are highlighted.

  11. Do ABO blood group antigens hamper the therapeutic efficacy of mesenchymal stromal cells?

    Science.gov (United States)

    Moll, Guido; Hult, Annika; von Bahr, Lena; Alm, Jessica J; Heldring, Nina; Hamad, Osama A; Stenbeck-Funke, Lillemor; Larsson, Stella; Teramura, Yuji; Roelofs, Helene; Nilsson, Bo; Fibbe, Willem E; Olsson, Martin L; Le Blanc, Katarina

    2014-01-01

    Investigation into predictors for treatment outcome is essential to improve the clinical efficacy of therapeutic multipotent mesenchymal stromal cells (MSCs). We therefore studied the possible harmful impact of immunogenic ABO blood groups antigens - genetically governed antigenic determinants - at all given steps of MSC-therapy, from cell isolation and preparation for clinical use, to final recipient outcome. We found that clinical MSCs do not inherently express or upregulate ABO blood group antigens after inflammatory challenge or in vitro differentiation. Although antigen adsorption from standard culture supplements was minimal, MSCs adsorbed small quantities of ABO antigen from fresh human AB plasma (ABP), dependent on antigen concentration and adsorption time. Compared to cells washed in non-immunogenic human serum albumin (HSA), MSCs washed with ABP elicited stronger blood responses after exposure to blood from healthy O donors in vitro, containing high titers of ABO antibodies. Clinical evaluation of hematopoietic stem cell transplant (HSCT) recipients found only very low titers of anti-A/B agglutination in these strongly immunocompromised patients at the time of MSC treatment. Patient analysis revealed a trend for lower clinical response in blood group O recipients treated with ABP-exposed MSC products, but not with HSA-exposed products. We conclude, that clinical grade MSCs are ABO-neutral, but the ABP used for washing and infusion of MSCs can contaminate the cells with immunogenic ABO substance and should therefore be substituted by non-immunogenic HSA, particularly when cells are given to immunocompentent individuals.

  12. Identification of cell surface targets for HIV-1 therapeutics using genetic screens

    International Nuclear Information System (INIS)

    Dunn, Stephen J.; Khan, Imran H.; Chan, Ursula A.; Scearce, Robin L.; Melara, Claudia L.; Paul, Amber M.; Sharma, Vikram; Bih, Fong-Yih; Holzmayer, Tanya A.; Luciw, Paul A.; Abo, Arie

    2004-01-01

    Human immunodeficiency virus (HIV) drugs designed to interfere with obligatory utilization of certain host cell factors by virus are less likely to encounter development of resistant strains than drugs directed against viral components. Several cellular genes required for productive infection by HIV were identified by the use of genetic suppressor element (GSE) technology as potential targets for anti-HIV drug development. Fragmented cDNA libraries from various pools of human peripheral blood mononuclear cells (PBMC) were expressed in vitro in human immunodeficiency virus type 1 (HIV-1)-susceptible cell lines and subjected to genetic screens to identify GSEs that interfered with viral replication. After three rounds of selection, more than 15 000 GSEs were sequenced, and the cognate genes were identified. The GSEs that inhibited the virus were derived from a diverse set of genes including cell surface receptors, cytokines, signaling proteins, transcription factors, as well as genes with unknown function. Approximately 2.5% of the identified genes were previously shown to play a role in the HIV-1 life cycle; this finding supports the biological relevance of the assay. GSEs were derived from the following 12 cell surface proteins: CXCR4, CCR4, CCR7, CD11C, CD44, CD47, CD68, CD69, CD74, CSF3R, GABBR1, and TNFR2. Requirement of some of these genes for viral infection was also investigated by using RNA interference (RNAi) technology; accordingly, 10 genes were implicated in early events of the viral life cycle, before viral DNA synthesis. Thus, these cell surface proteins represent novel targets for the development of therapeutics against HIV-1 infection and AIDS

  13. Animal and plant stem cells concepts, propagation and engineering

    CERN Document Server

    Pavlović, Mirjana

    2017-01-01

    This book provides a multifaceted look into the world of stem cells and explains the similarities and differences between plant and human stem cells. It explores the intersection between animals and plants and explains their cooperative role in bioengineering studies. The book treats both theoretical and practical aspects of stem cell research. It covers the advantages and limitations of many common applications related to stem cells: their sources, categories, engineering of these cells, reprogramming of their functions, and their role as novel cellular therapeutic approach. Written by experts in the field, the book focuses on aspects of stem cells ranging from expansion-propagation to metabolic reprogramming. It introduces the emergence of cancer stem cells and different modalities in targeted cancer stem cell therapies. It is a valuable source of fresh information for academics and researchers, examining molecular mechanisms of animal and plant stem cell regulation and their usage for therapeutic applicati...

  14. A new prospect in cancer therapy: targeting cancer stem cells to eradicate cancer.

    Science.gov (United States)

    Chen, Li-Sha; Wang, An-Xin; Dong, Bing; Pu, Ke-Feng; Yuan, Li-Hua; Zhu, Yi-Min

    2012-12-01

    According to the cancer stem cell theory, cancers can be initiated by cancer stem cells. This makes cancer stem cells prime targets for therapeutic intervention. Eradicating cancer stem cells by efficient targeting agents may have the potential to cure cancer. In this review, we summarize recent breakthroughs that have improved our understanding of cancer stem cells, and we discuss the therapeutic strategy of targeting cancer stem cells, a promising future direction for cancer stem cell research.

  15. Cell Science and Cell Biology Research at MSFC: Summary

    Science.gov (United States)

    2003-01-01

    The common theme of these research programs is that they investigate regulation of gene expression in cells, and ultimately gene expression is controlled by the macromolecular interactions between regulatory proteins and DNA. The NASA Critical Path Roadmap identifies Muscle Alterations and Atrophy and Radiation Effects as Very Serious Risks and Severe Risks, respectively, in long term space flights. The specific problem addressed by Dr. Young's research ("Skeletal Muscle Atrophy and Muscle Cell Signaling") is that skeletal muscle loss in space cannot be prevented by vigorous exercise. Aerobic skeletal muscles (i.e., red muscles) undergo the most extensive atrophy during long-term space flight. Of the many different potential avenues for preventing muscle atrophy, Dr. Young has chosen to study the beta-adrenergic receptor (betaAR) pathway. The reason for this choice is that a family of compounds called betaAR agonists will preferentially cause an increase in muscle mass of aerobic muscles (i.e., red muscle) in animals, potentially providing a specific pharmacological solution to muscle loss in microgravity. In addition, muscle atrophy is a widespread medical problem in neuromuscular diseases, spinal cord injury, lack of exercise, aging, and any disease requiring prolonged bedridden status. Skeletal muscle cells in cell culture are utilized as a model system to study this problem. Dr. Richmond's research ("Radiation & Cancer Biology of Mammary Cells in Culture") is directed toward developing a laboratory model for use in risk assessment of cancer caused by space radiation. This research is unique because a human model will be developed utilizing human mammary cells that are highly susceptible to tumor development. This approach is preferential over using animal cells because of problems in comparing radiation-induced cancers between humans and animals.

  16. Therapeutic Strategies in Fragile X Syndrome: Dysregulated mGluR Signaling and Beyond

    Science.gov (United States)

    Gross, Christina; Berry-Kravis, Elizabeth M; Bassell, Gary J

    2012-01-01

    Fragile X syndrome (FXS) is an inherited neurodevelopmental disease caused by loss of function of the fragile X mental retardation protein (FMRP). In the absence of FMRP, signaling through group 1 metabotropic glutamate receptors is elevated and insensitive to stimulation, which may underlie many of the neurological and neuropsychiatric features of FXS. Treatment of FXS animal models with negative allosteric modulators of these receptors and preliminary clinical trials in human patients support the hypothesis that metabotropic glutamate receptor signaling is a valuable therapeutic target in FXS. However, recent research has also shown that FMRP may regulate diverse aspects of neuronal signaling downstream of several cell surface receptors, suggesting a possible new route to more direct disease-targeted therapies. Here, we summarize promising recent advances in basic research identifying and testing novel therapeutic strategies in FXS models, and evaluate their potential therapeutic benefits. We provide an overview of recent and ongoing clinical trials motivated by some of these findings, and discuss the challenges for both basic science and clinical applications in the continued development of effective disease mechanism-targeted therapies for FXS. PMID:21796106

  17. Applying extracellular vesicles based therapeutics in clinical trials – an ISEV position paper

    Science.gov (United States)

    Lener, Thomas; Gimona, Mario; Aigner, Ludwig; Börger, Verena; Buzas, Edit; Camussi, Giovanni; Chaput, Nathalie; Chatterjee, Devasis; Court, Felipe A.; del Portillo, Hernando A.; O'Driscoll, Lorraine; Fais, Stefano; Falcon-Perez, Juan M.; Felderhoff-Mueser, Ursula; Fraile, Lorenzo; Gho, Yong Song; Görgens, André; Gupta, Ramesh C.; Hendrix, An; Hermann, Dirk M.; Hill, Andrew F.; Hochberg, Fred; Horn, Peter A.; de Kleijn, Dominique; Kordelas, Lambros; Kramer, Boris W.; Krämer-Albers, Eva-Maria; Laner-Plamberger, Sandra; Laitinen, Saara; Leonardi, Tommaso; Lorenowicz, Magdalena J.; Lim, Sai Kiang; Lötvall, Jan; Maguire, Casey A.; Marcilla, Antonio; Nazarenko, Irina; Ochiya, Takahiro; Patel, Tushar; Pedersen, Shona; Pocsfalvi, Gabriella; Pluchino, Stefano; Quesenberry, Peter; Reischl, Ilona G.; Rivera, Francisco J.; Sanzenbacher, Ralf; Schallmoser, Katharina; Slaper-Cortenbach, Ineke; Strunk, Dirk; Tonn, Torsten; Vader, Pieter; van Balkom, Bas W. M.; Wauben, Marca; Andaloussi, Samir El; Théry, Clotilde; Rohde, Eva; Giebel, Bernd

    2015-01-01

    Extracellular vesicles (EVs), such as exosomes and microvesicles, are released by different cell types and participate in physiological and pathophysiological processes. EVs mediate intercellular communication as cell-derived extracellular signalling organelles that transmit specific information from their cell of origin to their target cells. As a result of these properties, EVs of defined cell types may serve as novel tools for various therapeutic approaches, including (a) anti-tumour therapy, (b) pathogen vaccination, (c) immune-modulatory and regenerative therapies and (d) drug delivery. The translation of EVs into clinical therapies requires the categorization of EV-based therapeutics in compliance with existing regulatory frameworks. As the classification defines subsequent requirements for manufacturing, quality control and clinical investigation, it is of major importance to define whether EVs are considered the active drug components or primarily serve as drug delivery vehicles. For an effective and particularly safe translation of EV-based therapies into clinical practice, a high level of cooperation between researchers, clinicians and competent authorities is essential. In this position statement, basic and clinical scientists, as members of the International Society for Extracellular Vesicles (ISEV) and of the European Cooperation in Science and Technology (COST) program of the European Union, namely European Network on Microvesicles and Exosomes in Health and Disease (ME-HaD), summarize recent developments and the current knowledge of EV-based therapies. Aspects of safety and regulatory requirements that must be considered for pharmaceutical manufacturing and clinical application are highlighted. Production and quality control processes are discussed. Strategies to promote the therapeutic application of EVs in future clinical studies are addressed. PMID:26725829

  18. The value of basic research insights into atrial fibrillation mechanisms as a guide to therapeutic innovation: a critical analysis.

    Science.gov (United States)

    Heijman, Jordi; Algalarrondo, Vincent; Voigt, Niels; Melka, Jonathan; Wehrens, Xander H T; Dobrev, Dobromir; Nattel, Stanley

    2016-04-01

    Atrial fibrillation (AF) is an extremely common clinical problem associated with increased morbidity and mortality. Current antiarrhythmic options include pharmacological, ablation, and surgical therapies, and have significantly improved clinical outcomes. However, their efficacy remains suboptimal, and their use is limited by a variety of potentially serious adverse effects. There is a clear need for improved therapeutic options. Several decades of research have substantially expanded our understanding of the basic mechanisms of AF. Ectopic firing and re-entrant activity have been identified as the predominant mechanisms for arrhythmia initiation and maintenance. However, it has become clear that the clinical factors predisposing to AF and the cellular and molecular mechanisms involved are extremely complex. Moreover, all AF-promoting and maintaining mechanisms are dynamically regulated and subject to remodelling caused by both AF and cardiovascular disease. Accordingly, the initial presentation and clinical progression of AF patients are enormously heterogeneous. An understanding of arrhythmia mechanisms is widely assumed to be the basis of therapeutic innovation, but while this assumption seems self-evident, we are not aware of any papers that have critically examined the practical contributions of basic research into AF mechanisms to arrhythmia management. Here, we review recent insights into the basic mechanisms of AF, critically analyse the role of basic research insights in the development of presently used anti-AF therapeutic options and assess the potential value of contemporary experimental discoveries for future therapeutic innovation. Finally, we highlight some of the important challenges to the translation of basic science findings to clinical application. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  19. Design of therapeutic vaccines as a novel antibody therapy for cardiovascular diseases.

    Science.gov (United States)

    Nakagami, Hironori

    2017-09-01

    Vaccines are primarily used worldwide as a preventive medicine for infectious diseases and have recently been applied to cancer. We and others have developed therapeutic vaccines designed for cardiovascular diseases that are notably different from previous vaccines. In the case of cancer vaccines, a specific protein in cancer cells is a target antigen, and the activation of cytotoxic T cells (CTL) is required to kill and remove the antigen-presenting cancer cells. Our therapeutic vaccines work against hypertension by targeting angiotensin II (Ang II) as the antigen, which is an endogenous hormone. Therapeutic vaccines must avoid CTL activation and induce the blocking antibodies for Ang II. The goal of our therapeutic vaccine for cardiovascular diseases is to induce the specific antibody response toward the target protein without inducing T-cell or antibody-mediated inflammation through the careful selection of the target antigen, carrier protein and adjuvants. The goal of our therapeutic vaccine is similar to that of antibody therapy. Recently, multiple antibody-based drugs have been developed for cancer, immune-related diseases, and dyslipidemia, which are efficient but expensive. If the effect of a therapeutic vaccine is nearly equivalent to antibody therapy as an alternative approach, the lower medical cost and improvement in drug adherence can be advantages of therapeutic vaccines. In this review, we will describe our concept of therapeutic vaccines for cardiovascular diseases and the future directions of therapeutic vaccines as novel antibody therapies. Copyright © 2017. Published by Elsevier Ltd.

  20. Redirecting Therapeutic T Cells against Myelin-Specific T Lymphocytes Using a Humanized Myelin Basic Protein-HLA-DR2-{zeta} Chimeric Receptor

    DEFF Research Database (Denmark)

    Moisini, Ioana; Nguyen, Phuong; Fugger, Lars

    2008-01-01

    Therapies that Ag-specifically target pathologic T lymphocytes responsible for multiple sclerosis (MS) and other autoimmune diseases would be expected to have improved therapeutic indices compared with Ag-nonspecific therapies. We have developed a cellular immunotherapy that uses chimeric receptors...... mouse model system. Finally, the chimeric receptor-modified CTL ameliorated or blocked experimental allergic encephalomyelitis (EAE) disease mediated by MBP(84-102)/DR2-specific T lymphocytes. These results provide support for the further development of redirected therapeutic T cells able to counteract...... pathologic, self-specific T lymphocytes, and specifically validate humanized MBP-DR2-zeta chimeric receptors as a potential therapeutic in MS. Udgivelsesdato: 2008-Mar-1...

  1. Stem Cell Therapy for Erectile Dysfunction.

    Science.gov (United States)

    Matz, Ethan L; Terlecki, Ryan; Zhang, Yuanyuan; Jackson, John; Atala, Anthony

    2018-04-06

    The prevalence of erectile dysfunction (ED) is substantial and continues to rise. Current therapeutics for ED consist of oral medications, intracavernosal injections, vacuum erection devices, and penile implants. While such options may manage the disease state, none of these modalities, however, restore function. Stem cell therapy has been evaluated for erectile restoration in animal models. These cells have been derived from multiple tissues, have varied potential, and may function via local engraftment or paracrine signaling. Bone marrow-derived stem cells (BMSC) and adipose-derived stem cells (ASC) have both been used in these models with noteworthy effects. Herein, we will review the pathophysiology of ED, animal models, current and novel stem-cell based therapeutics, clinical trials and areas for future research. The relevant literature and contemporary data using keywords, "stem cells and erectile dysfunction" was reviewed. Examination of evidence supporting the association between erectile dysfunction and adipose derived stem cells, bone marrow derived stem cells, placental stem cells, urine stem cells and stem cell therapy respectively. Placental-derived stem cells and urine-derived stem cells possess many similar properties as BMSC and ASC, but the methods of acquisition are favorable. Human clinical trials have already demonstrated successful use of stem cells for improvement of erectile function. The future of stem cell research is constantly being evaluated, although, the evidence suggests a place for stem cells in erectile dysfunction therapeutics. Matz EL, Terlecki R, Zhang Y, et al. Stem Cell Therapy for Erectile Dysfunction. Sex Med Rev 2018;XX:XXX-XXX. Copyright © 2018 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  2. Therapeutic Inertia and Treatment Intensification.

    Science.gov (United States)

    Josiah Willock, Robina; Miller, Joseph B; Mohyi, Michelle; Abuzaanona, Ahmed; Muminovic, Meri; Levy, Phillip D

    2018-01-29

    This review aims to emphasize how therapeutic inertia, the failure of clinicians to intensify treatment when blood pressure rises or remains above therapeutic goals, contributes to suboptimal blood pressure control in hypertensive populations. Studies reveal that the therapeutic inertia is quite common and contributes to suboptimal blood pressure control. Quality improvement programs and standardized approaches to support antihypertensive treatment intensification are ways to combat therapeutic inertia. Furthermore, programs that utilize non-physician medical professionals such as pharmacists and nurses demonstrate promise in mitigating the effects of this important problem. Therapeutic inertia impedes antihypertensive management and requires a broad effort to reduce its effects. There is an ongoing need for renewed focus and research in this area to improve hypertension control.

  3. ROCK as a therapeutic target for ischemic stroke.

    Science.gov (United States)

    Sladojevic, Nikola; Yu, Brian; Liao, James K

    2017-12-01

    Stroke is a major cause of disability and the fifth leading cause of death. Currently, the only approved acute medical treatment of ischemic stroke is tissue plasminogen activator (tPA), but its effectiveness is greatly predicated upon early administration of the drug. There is, therefore, an urgent need to find new therapeutic options for acute stroke. Areas covered: In this review, we summarize the role of Rho-associated coiled-coil containing kinase (ROCK) and its potential as a therapeutic target in stroke pathophysiology. ROCK is a major regulator of cell contractility, motility, and proliferation. Many of these ROCK-mediated processes in endothelial cells, vascular smooth muscle cells, pericytes, astrocytes, glia, neurons, leukocytes, and platelets are important in stroke pathophysiology, and the inhibition of such processes could improve stroke outcome. Expert commentary: ROCK is a potential therapeutic target for cardiovascular disease and ROCK inhibitors have already been approved for human use in Japan and China for the treatment of acute stroke. Further studies are needed to determine the role of ROCK isoforms in the pathophysiology of cerebral ischemia and whether there are further therapeutic benefits with selective ROCK inhibitors.

  4. Alternative therapeutic approach to renal-cell carcinoma: induction of apoptosis with combination of vitamin K3 and D-fraction.

    Science.gov (United States)

    Degen, Michael; Alexander, Bobby; Choudhury, Muhammad; Eshghi, Majid; Konno, Sensuke

    2013-12-01

    Because of a dismal prognosis for advanced renal-cell carcinoma (RCC), an alternative therapeutic approach, using vitamin K3 (VK3) and D-fraction (DF) was investigated. VK3 is a synthetic VK derivative and DF is a bioactive mushroom extract, and they have been shown to have antitumor activity. We examined if the combination of VK3 and DF would exhibit the improved anticancer effect on RCC in vitro. Human RCC, ACHN cell line, were treated with varying concentrations of VK3, DF, or a combination of the two. Cell viability was assessed at 72 hours by MTT assay. To explore the possible anticancer mechanism, studies on cell cycle, chromatin modifications, and apoptosis were conducted. VK3 alone led to a ~20% reduction in cell viability at 4 μM, while DF alone induced a 20% to 45% viability reduction at ≥ 500 μg/mL. A combination of VK3 (4 μM) and DF (300 μg/mL) led to a drastic >90% viability reduction, however. Cell cycle analysis indicated that VK3/DF treatment induced a G1 cell cycle arrest, accompanied by the up-regulation of p21(WAF1) and p27(Kip1). Histone deacetylase (HDAC) was also significantly (~60%) inactivated, indicating chromatin modifications. In addition, Western blot analysis revealed that the up-regulation of Bax and activation of poly-(ADP-ribose)-polymerase (PARP) were seen in VK3/DF-treated cells, indicating induction of apoptosis. The combination of VK3 and DF can lead to a profound reduction in ACHN cell viability, through a p21(WAF1)-mediated G1 cell cycle arrest, and ultimately induces apoptosis. Therefore, the combination of VK3/DF may have clinical implications as an alternative, improved therapeutic modality for advanced RCC.

  5. Urinary Exosomes: The Potential for Biomarker Utility, Intercellular Signaling and Therapeutics in Urological Malignancy.

    Science.gov (United States)

    Franzen, Carrie A; Blackwell, Robert H; Foreman, Kimberly E; Kuo, Paul C; Flanigan, Robert C; Gupta, Gopal N

    2016-05-01

    Exosomes are small secreted vesicles that contain proteins, mRNA and miRNA with the potential to alter signaling pathways in recipient cells. While exosome research has flourished, few publications have specifically considered the role of genitourinary cancer shed exosomes in urine, their implication in disease progression and their usefulness as noninvasive biomarkers. In this review we examined the current literature on the role of exosomes in intercellular communication and as biomarkers, and their potential as delivery vehicles for therapeutic applications in bladder, prostate and renal cancer. We searched PubMed® and Google® with the key words prostate cancer, bladder cancer, kidney cancer, exosomes, microvesicles and urine. Relevant articles, including original research studies and reviews, were selected based on contents. A review of this literature was generated. Cancer exosomes can be isolated from urine using various techniques. Cancer cells have been found to secrete more exosomes than normal cells. These exosomes have a role in cellular communication by interacting with and depositing their cargo in target cells. Bladder, prostate and renal cancer exosomes have been shown to enhance migration, invasion and angiogenesis. These exosomes have also been shown to increase proliferation, confer drug resistance and promote immune evasion. Urinary exosomes can be isolated from bladder, kidney and prostate cancer. They serve as a potential reservoir for biomarker identification. Exosomes also have potential for therapeutics as siRNA or pharmacological agents can be loaded into exosomes. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  6. Potential Therapeutic Effects of Psilocybin.

    Science.gov (United States)

    Johnson, Matthew W; Griffiths, Roland R

    2017-07-01

    Psilocybin and other 5-hydroxytryptamine 2A agonist classic psychedelics have been used for centuries as sacraments within indigenous cultures. In the mid-twentieth century they were a focus within psychiatry as both probes of brain function and experimental therapeutics. By the late 1960s and early 1970s these scientific inquires fell out of favor because classic psychedelics were being used outside of medical research and in association with the emerging counter culture. However, in the twenty-first century, scientific interest in classic psychedelics has returned and grown as a result of several promising studies, validating earlier research. Here, we review therapeutic research on psilocybin, the classic psychedelic that has been the focus of most recent research. For mood and anxiety disorders, three controlled trials have suggested that psilocybin may decrease symptoms of depression and anxiety in the context of cancer-related psychiatric distress for at least 6 months following a single acute administration. A small, open-label study in patients with treatment-resistant depression showed reductions in depression and anxiety symptoms 3 months after two acute doses. For addiction, small, open-label pilot studies have shown promising success rates for both tobacco and alcohol addiction. Safety data from these various trials, which involve careful screening, preparation, monitoring, and follow-up, indicate the absence of severe drug-related adverse reactions. Modest drug-related adverse effects at the time of medication administration are readily managed. US federal funding has yet to support therapeutic psilocybin research, although such support will be important to thoroughly investigate efficacy, safety, and therapeutic mechanisms.

  7. Intravenous administration of mesenchymal stem cells exerts therapeutic effects on parkinsonian model of rats: Focusing on neuroprotective effects of stromal cell-derived factor-1α

    Directory of Open Access Journals (Sweden)

    Tayra Judith

    2010-04-01

    Full Text Available Abstract Background Mesenchymal stem cells (MSCs are pluripotent stem cells derived from bone marrow with secretory functions of various neurotrophic factors. Stromal cell-derived factor-1α (SDF-1α is also reported as one of chemokines released from MSCs. In this research, the therapeutic effects of MSCs through SDF-1α were explored. 6-hydroxydopamine (6-OHDA, 20 μg was injected into the right striatum of female SD rats with subsequent administration of GFP-labeled MSCs, fibroblasts, (i.v., 1 × 107 cells, respectively or PBS at 2 hours after 6-OHDA injection. All rats were evaluated behaviorally with cylinder test and amphetamine-induced rotation test for 1 month with consequent euthanasia for immunohistochemical evaluations. Additionally, to explore the underlying mechanisms, neuroprotective effects of SDF-1α were explored using 6-OHDA-exposed PC12 cells by using dopamine (DA assay and TdT-mediated dUTP-biotin nick-end labeling (TUNEL staining. Results Rats receiving MSC transplantation significantly ameliorated behaviorally both in cylinder test and amphetamine-induced rotation test compared with the control groups. Correspondingly, rats with MSCs displayed significant preservation in the density of tyrosine hydroxylase (TH-positive fibers in the striatum and the number of TH-positive neurons in the substantia nigra pars compacta (SNc compared to that of control rats. In the in vitro study, SDF-1α treatment increased DA release and suppressed cell death induced by 6-OHDA administration compared with the control groups. Conclusions Consequently, MSC transplantation might exert neuroprotection on 6-OHDA-exposed dopaminergic neurons at least partly through anti-apoptotic effects of SDF-1α. The results demonstrate the potentials of intravenous MSC administration for clinical applications, although further explorations are required.

  8. Dendritic cell-based vaccination in cancer: therapeutic implications emerging from murine models

    Directory of Open Access Journals (Sweden)

    Soledad eMac Keon

    2015-05-01

    Full Text Available Dendritic cells (DCs play a pivotal role in the orchestration of immune responses, and are thus key targets in cancer vaccine design. Since the 2010 FDA approval of the first cancer DC-based vaccine (Sipuleucel T there has been a surge of interest in exploiting these cells as a therapeutic option for the treatment of tumors of diverse origin. In spite of the encouraging results obtained in the clinic, many elements of DC-based vaccination strategies need to be optimized. In this context, the use of experimental cancer models can help direct efforts towards an effective vaccine design. This paper reviews recent findings in murine models regarding the antitumoral mechanisms of DC-based vaccination, covering issues related to antigen sources, the use of adjuvants and maturing agents, and the role of DC subsets and their interaction in the initiation of antitumoral immune responses. The summary of such diverse aspects will highlight advantages and drawbacks in the use of murine models, and contribute to the design of successful DC-based translational approaches for cancer treatment.

  9. How to optimize therapeutic ratio in brachytherapy of head and neck squamous cell carcinoma?

    International Nuclear Information System (INIS)

    Mazeron, J.J.; Simon, J.M.; Hardiman, C.; Gerbaulet, A.

    1998-01-01

    Considerable experience has been accumulated with low dose rate (LDR) brachytherapy in the treatment of squamous cell carcinoma of the oral cavity and oropharynx, 4 cm or less in diameter. Recent analysis of large clinical series provided data indicating that modalities of LDR brachytherapy should be optimized in treating these tumours for increasing therapeutic ratio. LDR brachytherapy is now challenged by high dose rate (HDR) brachytherapy and pulsed dose rate (PDR) brachytherapy. Preliminary results obtained with the last two modalities are discussed in comparison with those achieved with LDR brachytherapy. (orig.)

  10. Bladder Cancer Stem-Like Cells: Their Origin and Therapeutic Perspectives

    Directory of Open Access Journals (Sweden)

    Tomokazu Ohishi

    2015-12-01

    Full Text Available Bladder cancer (BC, the most common cancer arising from the human urinary tract, consists of two major clinicopathological phenotypes: muscle-invasive bladder cancer (MIBC and non-muscle-invasive bladder cancer (NMIBC. MIBC frequently metastasizes and is associated with an unfavorable prognosis. A certain proportion of patients with metastatic BC can achieve a remission with systemic chemotherapy; however, the disease relapses in most cases. Evidence suggests that MIBC comprises a small population of cancer stem cells (CSCs, which may be resistant to these treatments and may be able to form new tumors in the bladder or other organs. Therefore, the unambiguous identification of bladder CSCs and the development of targeted therapies are urgently needed. Nevertheless, it remains unclear where bladder CSCs originate and how they are generated. We review recent studies on bladder CSCs, specifically focusing on their proposed origin and the possible therapeutic options based on the CSC theory.

  11. Bcl-xL Genetic Modification Enhanced the Therapeutic Efficacy of Mesenchymal Stem Cell Transplantation in the Treatment of Heart Infarction.

    Science.gov (United States)

    Xue, Xiaodong; Liu, Yu; Zhang, Jian; Liu, Tao; Yang, Zhonglu; Wang, Huishan

    2015-01-01

    Objectives. Low survival rate of mesenchymal stem cells (MSCs) severely limited the therapeutic efficacy of cell therapy in the treatment of myocardial infarction (MI). Bcl-xL genetic modification might enhance MSC survival after transplantation. Methods. Adult rat bone marrow MSCs were modified with human Bcl-xL gene (hBcl-xL-MSCs) or empty vector (vector-MSCs). MSC apoptosis and paracrine secretions were characterized using flow cytometry, TUNEL, and ELISA in vitro. In vivo, randomized adult rats with MI received myocardial injections of one of the three reagents: hBcl-xL-MSCs, vector-MSCs, or culture medium. Histochemistry, TUNEL, and echocardiography were carried out to evaluate cell engraftment, apoptosis, angiogenesis, scar formation, and cardiac functional recovery. Results. In vitro, cell apoptosis decreased 43%, and vascular endothelial growth factor (VEGF), insulin-like growth factor-1 (IGF-1), and plate-derived growth factor (PDGF) increased 1.5-, 0.7-, and 1.2-fold, respectively, in hBcl-xL-MSCs versus wild type and vector-MSCs. In vivo, cell apoptosis decreased 40% and 26% in hBcl-xL-MSC group versus medium and vector-MSC group, respectively. Similar results were observed in cell engraftment, angiogenesis, scar formation, and cardiac functional recovery. Conclusions. Genetic modification of MSCs with hBcl-xL gene could be an intriguing strategy to improve the therapeutic efficacy of cell therapy in the treatment of heart infarction.

  12. Survivin-T34A: molecular mechanism and therapeutic potential

    Directory of Open Access Journals (Sweden)

    Jonathan R Aspe

    2010-12-01

    Full Text Available Jonathan R Aspe, Nathan R WallCenter for Health Disparities Research and Molecular Medicine, Division of Biochemistry and Microbiology, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USAAbstract: The inhibitor of apoptosis protein survivin's threonine 34 to alanine (T34A mutation abolishes a phosphorylation site for p34(cdc2–cyclin B1, resulting in initiation of the mitochondrial apoptotic pathway in cancer cells; however, it has little known direct effects on normal cells. The possibility that targeting survivin in this way may provide a novel approach for selective cancer gene therapy has yet to be fully evaluated. Although a flurry of work was undertaken in the late 1990s and early 2000s, only minor advances on this mutant have recently taken place. We recently described that cells generated to express a stable form of the mutant protein released this survivin-T34A to the conditioned medium. When this conditioned medium was collected and deposited on naive tumor cells, conditioned medium T34A was as effective as some chemotherapeutics in the induction of tumor cell apoptosis, and when combined with other forms of genotoxic stressors potentiated their killing effects. We hope with this review to revitalize the T34A field, as there is still much that needs to be investigated. In addition to determining the therapeutic dose and the duration of drug therapy required at the disease site, a better understanding of other key factors is also important. These include knowledge of target cell populations, cell-surface receptors, changes that occur in the target tissue at the molecular and cellular level with progression of the disease, and the mechanism and site of therapeutic action.Keywords: survivin, T34A, apoptosis, proliferation, therapy

  13. Improvement in therapeutic ability of wharton's jelly derived mesenchymal stem cells with vitamin e in breast cancer

    International Nuclear Information System (INIS)

    Wajid, N.; Azam, M.; Khalid, S.; Qazi, M.H.

    2017-01-01

    To assess the role of Vitamin E to improve the survival of Wharton's jelly derived mesenchymal stem cells (WJMSCs) in breast cancer conditions. Study Design:An experimental study. Place and Duration of Study:Centre for Research in Molecular Medicine, University of Lahore, from November 2016 to March 2017. Methodology:WJMSCs were obtained from umbilical cord tissue with enzyme digestion method. Isolated cells were characterized for CD90 and CD45 by immunocytochemistry. Pretreatment and conjugation therapies of vitamin E in 50mM and 100mM concentration were used on WJMSCs and breast cancer plasma was provided to mimic the cancer conditions, while WJMSCs provided with normal plasma were considered control. Cells' viability, proliferation and death were evaluated by crystal violet staining, MTT assay and LDH assay, respectively. Oxidative stress was observed by activity of anti-oxidant enzymes (GSH, catalase, SOD) and reactive oxygen species (MDA). Results:The isolated cells expressed mesenchymal stem cells marker CD90 and lacked hematopoietic marker CD45. Vitamin E improved the viability and proliferation of WJMSCs in normal plasma, in conjugation with breast cancer plasma and in pretreatment groups but conjugation group showed even better results with concentration of 100mM as compared to the pretreatment group and opposite was observed for LDH assay for cells death analysis. Vitamin E also reduced the oxidative stress in 100mM more pronounced in conjugation group as compared to pretreatment group while left no harmful effects on WJMSCs in normal plasma. Conclusion:Vitamin E conjugation with breast cancer conditions significantly improved growth of WJMSCs. Thus vitamin E treated WJMSCs are better therapeutic options for breast cancer. (author)

  14. Perspectives for Preventive and Therapeutic HPV Vaccines

    Science.gov (United States)

    Lin, Ken; Doolan, Kimberley; Hung, Chien-Fu; Wu, T-C

    2010-01-01

    Cervical cancer is the second most common cause of female cancer death worldwide. Persistent infection with `high risk' HPV genotypes is the major etiological factor in cervical cancer and thus effective vaccination against HPV provides an opportunity to reduce the morbidity and mortality associated with HPV. The FDA has approved two preventive vaccines to limit the spread of HPV. However, these are unlikely to impact upon HPV prevalence and cervical cancer rates for many years. Furthermore, preventive vaccines do not exert therapeutic effects on pre-existing HPV infections and HPV-associated lesions. In order to further impact upon the burden of HPV infections worldwide, therapeutic vaccines are being developed. These vaccines aim to generate a cell-mediated immune response to infected cells. This review discusses current preventive and therapeutic HPV vaccines and their future directions. PMID:20123582

  15. Melatonin-Based Therapeutics for Neuroprotection in Stroke

    Directory of Open Access Journals (Sweden)

    Cesar V. Borlongan

    2013-04-01

    Full Text Available The present review paper supports the approach to deliver melatonin and to target melatonin receptors for neuroprotection in stroke. We discuss laboratory evidence demonstrating neuroprotective effects of exogenous melatonin treatment and transplantation of melatonin-secreting cells in stroke. In addition, we describe a novel mechanism of action underlying the therapeutic benefits of stem cell therapy in stroke, implicating the role of melatonin receptors. As we envision the clinical entry of melatonin-based therapeutics, we discuss translational experiments that warrant consideration to reveal an optimal melatonin treatment strategy that is safe and effective for human application.

  16. Enhancing the Therapeutic Efficacy of Cancer Treatment With Cannabinoids

    Directory of Open Access Journals (Sweden)

    Sayeda Yasmin-Karim

    2018-04-01

    Full Text Available Over the years, many in vitro and in vivo studies have shown the antineoplastic effects of cannabinoids (CBDs, with reports advocating for investigations of combination therapy approaches that could better leverage these effects in clinical translation. This study explores the potential of combination approaches employing CBDs with radiotherapy (RT or smart biomaterials toward enhancing therapeutic efficacy during treatment of pancreatic and lung cancers. In in vitro studies, clonogenic assay results showed greater effective tumor cell killing, when combining CBDs and RT. Meanwhile, in vivo study results revealed major increase in survival when employing smart biomaterials for sustained delivery of CBDs to tumor cells. The significance of these findings, considerations for further research, and viable roadmap to clinical translation are discussed.

  17. Regulatory T cells, maternal-foetal immune tolerance and recurrent miscarriage: new therapeutic challenging opportunities.

    Science.gov (United States)

    Alijotas-Reig, Jaume; Melnychuk, Taisiia; Gris, Josep Maria

    2015-03-15

    Because maternal alloreactive lymphocytes are not depleted during pregnancy, local and/or systemic mechanisms have to play a key role in altering the maternal immune response. Peripheral T regulatory cells (pTregs) at the maternal-foetal interface are necessary in situ to prevent early abortion, but only those pTregs that have been previously exposed to paternal alloantigens. It has been showed that pregnancy selectively stimulates the accumulation of maternal Foxp3(+)CD4(+)CD25(+) (Foxp3Tregs) cells with foetal specificity. Interestingly, after delivery, foetal-specific pTregs persist at elevated levels, maintain tolerance to pre-existing foetal antigen, and rapidly re-accumulate during subsequent pregnancy. pTreg up-regulation could be hypothesized as a possible future therapeutic strategy in humans. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  18. RNAi therapeutics and applications of microRNAs in cancer treatment.

    Science.gov (United States)

    Uchino, Keita; Ochiya, Takahiro; Takeshita, Fumitaka

    2013-06-01

    RNA interference-based therapies are proving to be powerful tools for combating various diseases, including cancer. Scientists are researching the development of safe and efficient systems for the delivery of small RNA molecules, which are extremely fragile in serum, to target organs and cells in the human body. A dozen pre-clinical and clinical trials have been under way over the past few years involving biodegradable nanoparticles, lipids, chemical modification and conjugation. On the other hand, microRNAs, which control the balance of cellular biological processes, have been studied as attractive therapeutic targets in cancer treatment. In this review, we provide an overview of RNA interference-based therapeutics in clinical trials and discuss the latest technology for the systemic delivery of nucleic acid drugs. Furthermore, we focus on dysregulated microRNAs in human cancer, which have progressed in pre-clinical trials as therapeutic targets, and describe a wide range of strategies to control the expression levels of endogenous microRNAs. Further development of RNA interference technologies and progression of clinical trials will contribute to the achievement of practical applications of nucleic acid drugs.

  19. Implementation of nanoparticles in therapeutic radiation oncology

    Science.gov (United States)

    Beeler, Erik; Gabani, Prashant; Singh, Om V.

    2017-05-01

    Development and progress of cancer is a very complex disease process to comprehend because of the multiple changes in cellular physiology, pathology, and pathophysiology resulting from the numerous genetic changes from which cancer originates. As a result, most common treatments are not directed at the molecular level but rather at the tissue level. While personalized care is becoming an increasingly aim, the most common cancer treatments are restricted to chemotherapy, radiation, and surgery, each of which has a high likelihood of resulting in rather severe adverse side effects. For example, currently used radiation therapy does not discriminate between normal and cancerous cells and greatly relies on the external targeting of the radiation beams to specific cells and organs. Because of this, there is an immediate need for the development of new and innovative technologies that help to differentiate tumor cells and micrometastases from normal cells and facilitate the complete destruction of those cells. Recent advancements in nanoscience and nanotechnology have paved a way for the development of nanoparticles (NPs) as multifunctional carriers to deliver therapeutic radioisotopes for tumor targeted radiation therapy, to monitor their delivery, and improve the therapeutic index of radiation and tumor response to the treatment. The application of NPs in radiation therapy has aimed to improve outcomes in radiation therapy by increasing therapeutic effect in tumors and reducing toxicity on normal tissues. Because NPs possess unique properties, such as preferential accumulation in tumors and minimal uptake in normal tissues, it makes them ideal for the delivery of radiotherapy. This review provides an overview of the recent development of NPs for carrying and delivering therapeutic radioisotopes for systemic radiation treatment for a variety of cancers in radiation oncology.

  20. Real-time cellular and molecular dynamics of bi-metallic self-therapeutic nanoparticle in cancer cells

    Science.gov (United States)

    Vishwakarma, Sandeep Kumar; Bardia, Avinash; Lakkireddy, Chandrakala; Paspala, Syed Ameer Basha; Habeeb, Md. Aejaz; Khan, Aleem Ahmed

    2018-02-01

    Since last decades various kinds of nanoparticles have been functionalized to improve their biomedical applications. However, the biological effect of un-modified/non-functionalized bi-metallic magnetic nanoparticles remains under investigated. Herein we demonstrate a multifaceted non-functionalized bi-metallic inorganic Gd-SPIO nanoparticle which passes dual high MRI contrast and can kill the cancer cells through several mechanisms. The results of the present study demonstrate that Gd-SPIO nanoparticles have potential to induce cancer cell death by production of reactive oxygen species and apoptotic events. Furthermore, Gd-SPIO nanoparticles also enhance the expression levels of miRNA-199a and miRNA-181a-7p which results in decreased levels of cancer markers such as C-met, TGF-β and hURP. One very interesting finding of this study reveals side scatter-based real-time analysis of nanoparticle uptake in cancer cells using flow cytometry analysis. In conclusion, this study paves a way for future investigation of un-modified inorganic nanoparticles to purport enhanced therapeutic effect in combination with potential anti-tumor drugs/molecules in cancer cells.

  1. Therapeutic Effect of Bone Marrow Mesenchymal Stem Cells on Laser-Induced Retinal Injury in Mice

    Directory of Open Access Journals (Sweden)

    Yuanfeng Jiang

    2014-05-01

    Full Text Available Stem cell therapy has shown encouraging results for neurodegenerative diseases. The retina provides a convenient locus to investigate stem cell functions and distribution in the nervous system. In the current study, we investigated the therapeutic potential of bone marrow mesenchymal stem cells (MSCs by systemic transplantation in a laser-induced retinal injury model. MSCs from C57BL/6 mice labeled with green fluorescent protein (GFP were injected via the tail vein into mice after laser photocoagulation. We found that the average diameters of laser spots and retinal cell apoptosis were decreased in the MSC-treated group. Interestingly, GFP-MSCs did not migrate to the injured retina. Further examination revealed that the mRNA expression levels of glial fibrillary acidic protein and matrix metalloproteinase-2 were lower in the injured eyes after MSC transplantation. Our results suggest that intravenously injected MSCs have the ability to inhibit retinal cell apoptosis, reduce the inflammatory response and limit the spreading of damage in the laser-injured retina of mice. Systemic MSC therapy might play a role in neuroprotection, mainly by regulation of the intraocular microenvironment.

  2. Towards new therapeutic approaches for malignant melanoma.

    Science.gov (United States)

    Pacheco, Ivan; Buzea, Cristina; Tron, Victor

    2011-11-01

    Recent progress in understanding the molecular mechanisms of the initiation and progression of melanoma has created new opportunities for developing novel therapeutic modalities to manage this potentially lethal disease. Although at first glance, melanoma carcinogenesis appears to be a chaotic system, it is indeed, arguably, a deterministic multistep process involving sequential alterations of proto-oncogenes, tumour suppressors and miRNA genes. The scope of this article is to discuss the most recent and significant advances in melanoma molecular therapeutics. It is apparent that using single agents targeting solely individual melanoma pathways might be insufficient for long-term survival. However, the outstanding results on melanoma survival observed with novel selective inhibitors of B-RAF, such as PLX4032 give hope that melanoma can be cured. The fact that melanoma develops acquired resistance to PLX4032 emphasises the importance of simultaneously targeting several pathways. Because the most striking feature of melanoma is its unsurpassed ability to metastasise, it is important to implement newer systems for drug delivery adapted from research on stem cells and nanotechnology.

  3. Influence of the number and interval of treatment cycles on cytokine-induced killer cells and their adjuvant therapeutic effects in advanced non-small-cell lung cancer (NSCLC).

    Science.gov (United States)

    Gu, Yuanlong; Lv, Huimin; Zhao, Juan; Li, Qi; Mu, Guannan; Li, Jiade; Wuyang, Jiazi; Lou, Ge; Wang, Ruitao; Zhang, Yanqiao; Huang, Xiaoyi

    2017-09-01

    Cytokine-induced killer (CIK) cells have important therapeutic effects in adoptive cell transfer (ACT) for the treatment of various malignancies. In this study, we focused on in vitro expansion of CIK cells and their clinical efficacy in combination with chemotherapy in patients with advanced non-small-cell lung cancer (NSCLC). A total of 64 patients with NSCLC (enrolled from 2011 to 2012), including 32 patients who received chemotherapy alone or with sequential radiotherapy (conventional treatment, control group) and 32 patients who received conventional treatment and sequential CIK infusion (study group), were retrospectively analyzed. The time to progression (TTP), overall survival (OS) and adverse effects were analyzed and the phenotype of lymphocytes in CIK population was also determined by flow cytometry. After in vitro expansion, the average percentage of CIK cells was 26.35%. During the 54-month follow up, the median OS and TTP were significantly longer in the study group than in the control group (P=0.0189 and P=0.0129, respectively). The median OS of the ACT≥4cycles subgroup was significantly longer than that of the ACTcells in patients who received ≥4cycles of ACT was higher than that in patients treated with cells were difficult to expand in vitro in some patients after the first ACT cycle but became much easier as the treatment cycles increased monthly. Longer treatment interval negatively impacted the expansion of CIK cells. Systematic immune levels can be increasingly boosted by reinfusion of ACT. Conventional treatment plus CIK cells is an effective therapeutic strategy to prevent progression and prolong survival of patients with advanced NSCLC. Copyright © 2017. Published by Elsevier B.V.

  4. PRX1 knockdown potentiates vitamin K3 toxicity in cancer cells: a potential new therapeutic perspective for an old drug.

    Science.gov (United States)

    He, Tiantian; Hatem, Elie; Vernis, Laurence; Lei, Ming; Huang, Meng-Er

    2015-12-21

    Many promising anticancer molecules are abandoned during the course from bench to bedside due to lack of clear-cut efficiency and/or severe side effects. Vitamin K3 (vitK3) is a synthetic naphthoquinone exhibiting significant in vitro and in vivo anticancer activity against multiple human cancers, and has therapeutic potential when combined with other anticancer molecules. The major mechanism for the anticancer activity of vitK3 is the generation of cytotoxic reactive oxygen species (ROS). We thus reasoned that a rational redox modulation of cancer cells could enhance vitK3 anticancer efficiency. Cancer cell lines with peroxiredoxin 1 (PRX1) gene transiently or stably knocked-down and corresponding controls were exposed to vitK3 as well as a set of anticancer molecules, including vinblastine, taxol, doxorubicin, daunorubicin, actinomycin D and 5-fluorouracil. Cytotoxic effects and cell death events were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)-based assay, cell clonogenic assay, measurement of mitochondrial membrane potential and annexin V/propidium iodide double staining. Global ROS accumulation and compartment-specific H2O2 generation were determined respectively by a redox-sensitive chemical probe and H2O2-sensitive sensor HyPer. Oxidation of endogenous antioxidant proteins including TRX1, TRX2 and PRX3 was monitored by redox western blot. We observed that the PRX1 knockdown in HeLa and A549 cells conferred enhanced sensitivity to vitK3, reducing substantially the necessary doses to kill cancer cells. The same conditions (combination of vitK3 and PRX1 knockdown) caused little cytotoxicity in non-cancerous cells, suggesting a cancer-cell-selective property. Increased ROS accumulation had a crucial role in vitK3-induced cell death in PRX1 knockdown cells. The use of H2O2-specific sensors HyPer revealed that vitK3 lead to immediate accumulation of H2O2 in the cytosol, nucleus, and mitochondrial matrix. PRX1 silencing

  5. Ethical and regulatory aspects of embryonic stem cell research.

    Science.gov (United States)

    Jain, Kewal K

    2002-12-01

    Ethical and regulatory issues concerning embryonic stem (ES) cell research are reviewed here a year after the controversy became a public and political issue in the US. The background of various issues are examined and the current regulations in various countries are reviewed. In the US, the debate is linked with abortion, as well as the status of a fetus as a human being, and is politically driven. Obtaining stem cells from embryonic tissues involves destruction of the embryo, to which objections are raised. Religious beliefs are examined and no serious impediments to ES cell research could be identified. Regulations vary from one country to another and it is unlikely that there will ever be any universally uniform ethical and regulatory standards for ES cell research. Currently, the most liberal and favourable environments for ES cell research are in the UK, Singapore, Sweden, India, Israel and China. Unless the US liberalises ES cell research, it may lose its lead in ES cell research and investments in this area may drift to countries with better environments for research. Suggestions are offered in this review to improve the ethical environment for ES cell research.

  6. Hypothermia broadens the therapeutic time window of mesenchymal stem cell transplantation for severe neonatal hypoxic ischemic encephalopathy.

    Science.gov (United States)

    Ahn, So Yoon; Chang, Yun Sil; Sung, Dong Kyung; Sung, Se In; Park, Won Soon

    2018-05-16

    Recently, we have demonstrated that concurrent hypothermia and mesenchymal stem cells (MSCs) transplantation synergistically improved severe neonatal hypoxic ischemic encephalopathy (HIE). The current study was designed to determine whether hypothermia could extend the therapeutic time window of MSC transplantation for severe neonatal HIE. To induce HIE, newborn rat pups were exposed to 8% oxygen for 2 h following unilateral carotid artery ligation on postnatal day (P) 7. After approving severe HIE involving >50% of the ipsilateral hemisphere volume, hypothermia (32 °C) for 2 days was started. MSCs were transplanted 2 days after HIE modeling. Follow-up brain MRI, sensorimotor function tests, assessment of inflammatory cytokines in the cerebrospinal fluid (CSF), and histological evaluation of peri-infarction area were performed. HIE induced progressively increasing brain infarction area over time, increased cell death, reactive gliosis and brain inflammation, and impaired sensorimotor function. All these damages observed in severe HIE showed better, robust improvement with a combination treatment of hypothermia and delayed MSC transplantation than with either stand-alone therapy. Hypothermia itself did not significantly reduce brain injury, but broadened the therapeutic time window of MSC transplantation for severe newborn HIE.

  7. Pluripotent stem cell-derived neural stem cells: From basic research to applications

    OpenAIRE

    Otsu, Masahiro; Nakayama, Takashi; Inoue, Nobuo

    2014-01-01

    Basic research on pluripotent stem cells is designed to enhance understanding of embryogenesis, whereas applied research is designed to develop novel therapies and prevent diseases. Attainment of these goals has been enhanced by the establishment of embryonic stem cell lines, the technological development of genomic reprogramming to generate induced-pluripotent stem cells, and improvements in vitro techniques to manipulate stem cells. This review summarizes the techniques required to generate...

  8. Nuclear transport in Entamoeba histolytica: knowledge gap and therapeutic potential.

    Science.gov (United States)

    Gwairgi, Marina A; Ghildyal, Reena

    2018-03-22

    Entamoeba histolytica is the protozoan parasite that causes human amoebiasis. It is one of the leading parasitic disease burdens in tropical regions and developing countries, with spread to developed countries through migrants from and travellers to endemic regions. Understanding E. histolytica's invasion mechanisms requires an understanding of how it interacts with external cell components and how it engulfs and kills cells (phagocytosis). Recent research suggests that optimal phagocytosis requires signalling events from the cell surface to the nucleus via the cytoplasm, and the induction of several factors that are transported to the plasma membrane. Current research in other protozoans suggests the presence of proteins with nuclear localization signals, nuclear export signals and Ran proteins; however, there is limited literature on their functionality and their functional similarity to higher eukaryotes. Based on learnings from the development of antivirals, nuclear transport elements in E. histolytica may present viable, specific, therapeutic targets. In this review, we aim to summarize our limited knowledge of the eukaryotic nuclear transport mechanisms that are conserved and may function in E. histolytica.

  9. TRAIL: A Novel Therapeutic Agent for Prostate Cancer

    National Research Council Canada - National Science Library

    Li, Honglin

    2002-01-01

    This study aims to elucidate the signaling pathway of TRAIL-mediated apoptosis in prostate cancer cells, and to examine the therapeutic effect of TRAIL on prostate cancer cells in vitro and in vivo...

  10. TRAIL: A Novel Therapeutic Agent for Prostate Cancer

    National Research Council Canada - National Science Library

    Li, Honglin

    2004-01-01

    This study aims to elucidate the signaling pathway of TRAIL-mediated apoptosis in prostate cancer cells, and to examine the therapeutic effect of TRAIL on prostate cancer cells in vitro and in vivo...

  11. TRAIL: A Novel Therapeutic Agent for Prostate Cancer

    National Research Council Canada - National Science Library

    Li, Honglin

    2003-01-01

    This study aims to elucidate the signaling pathway of TRAIL-mediated apoptosis in prostate cancer cells, and to examine the therapeutic effect of TRAIL on prostate cancer cells in vitro and in vivo...

  12. New concepts in therapeutic photomedicine: photochemistry, optical targeting and the therapeutic window

    International Nuclear Information System (INIS)

    Parrish, J.A.

    1981-01-01

    Advances in optics technology, synthetic photochemistry, and the science of photobiology make it possible to think beyond phototherapy and photochemotherapy which is dependent on direct photochemical alteration of metabolites or direct phototoxic insult to cells. This report discusses another gender of photomedicine therapy which includes in vivo photoactivation of medicines, photon-dependent drug delivery, and manipulation of host and exposure source to maximize therapeutic index. These therapeutic manipulations are made possible because the skin is highly overperfused and because non-ionizing electromagnetic radiation that enters skin and blood has adequate photon energy to cause electronic excitation. Radiation of 320-800 nm is not very directly phototoxic, is absorbed by a variety of relatively nontoxic photolabile molecules and has an internal dosimetric depth profile. This radiation can therefore be used to activate, deactivate, bind, release or biotransform medications in vivo in skin or other organs. The photochemist, synthetic chemist and photobiologist can collaborate to significantly increase therapeutic possibilities

  13. Applying extracellular vesicles based therapeutics in clinical trials – an ISEV position paper

    Directory of Open Access Journals (Sweden)

    Thomas Lener

    2015-12-01

    Full Text Available Extracellular vesicles (EVs, such as exosomes and microvesicles, are released by different cell types and participate in physiological and pathophysiological processes. EVs mediate intercellular communication as cell-derived extracellular signalling organelles that transmit specific information from their cell of origin to their target cells. As a result of these properties, EVs of defined cell types may serve as novel tools for various therapeutic approaches, including (a anti-tumour therapy, (b pathogen vaccination, (c immune-modulatory and regenerative therapies and (d drug delivery. The translation of EVs into clinical therapies requires the categorization of EV-based therapeutics in compliance with existing regulatory frameworks. As the classification defines subsequent requirements for manufacturing, quality control and clinical investigation, it is of major importance to define whether EVs are considered the active drug components or primarily serve as drug delivery vehicles. For an effective and particularly safe translation of EV-based therapies into clinical practice, a high level of cooperation between researchers, clinicians and competent authorities is essential. In this position statement, basic and clinical scientists, as members of the International Society for Extracellular Vesicles (ISEV and of the European Cooperation in Science and Technology (COST program of the European Union, namely European Network on Microvesicles and Exosomes in Health and Disease (ME-HaD, summarize recent developments and the current knowledge of EV-based therapies. Aspects of safety and regulatory requirements that must be considered for pharmaceutical manufacturing and clinical application are highlighted. Production and quality control processes are discussed. Strategies to promote the therapeutic application of EVs in future clinical studies are addressed.

  14. TRPV2 activation induces apoptotic cell death in human T24 bladder cancer cells: a potential therapeutic target for bladder cancer.

    Science.gov (United States)

    Yamada, Takahiro; Ueda, Takashi; Shibata, Yasuhiro; Ikegami, Yosuke; Saito, Masaki; Ishida, Yusuke; Ugawa, Shinya; Kohri, Kenjiro; Shimada, Shoichi

    2010-08-01

    To investigate the functional expression of the transient receptor potential vanilloid 2 (TRPV2) channel protein in human urothelial carcinoma (UC) cells and to determine whether calcium influx into UC cells through TRPV2 is involved in apoptotic cell death. The expression of TRPV2 mRNA in bladder cancer cell lines (T24, a poorly differentiated UC cell line and RT4, a well-differentiated UC cell line) was analyzed using reverse transcriptase-polymerase chain reaction. The calcium permeability of TRPV2 channels in T24 cells was investigated using a calcium imaging assay that used cannabidiol (CBD), a relatively selective TRPV2 agonist, and ruthenium red (RuR), a nonselective TRPV channel antagonist. The death of T24 or RT4 cells in the presence of CBD was evaluated using a cellular viability assay. Apoptosis of T24 cells caused by CBD was confirmed using an annexin-V assay and small interfering RNA (siRNA) silencing of TRPV2. TRPV2 mRNA was abundantly expressed in T24 cells. The expression level in UC cells was correlated with high-grade disease. The administration of CBD increased intracellular calcium concentrations in T24 cells. In addition, the viability of T24 cells progressively decreased with increasing concentrations of CBD, whereas RT4 cells were mostly unaffected. Cell death occurred via apoptosis caused by continuous influx of calcium through TRPV2. TRPV2 channels in UC cells are calcium-permeable and the regulation of calcium influx through these channels leads directly to the death of UC cells. TRPV2 channels in UC cells may be a potential new therapeutic target, especially in higher-grade UC cells. Copyright 2010 Elsevier Inc. All rights reserved.

  15. Therapeutic Response to Non-genotoxic Activation of p53 by Nutlin3a Is Driven by PUMA-Mediated Apoptosis in Lymphoma Cells

    Directory of Open Access Journals (Sweden)

    Liz J. Valente

    2016-03-01

    Full Text Available Nutlin3a is a small-molecule antagonist of MDM2 that promotes non-genotoxic activation of p53 through p53 protein stabilization and transactivation of p53 target genes. Nutlin3a is the forerunner of a class of cancer therapeutics that have reached clinical trials. Using transgenic and gene-targeted mouse models lacking the critical p53 target genes, p21, Puma, and Noxa, we found that only loss of PUMA conferred profound protection against Nutlin3a-induced killing in both non-transformed lymphoid cells and Eμ-Myc lymphomas in vitro and in vivo. CRISPR/Cas9-mediated targeting of the PUMA gene rendered human hematopoietic cancer cell lines markedly resistant to Nutlin3a-induced cell death. These results demonstrate that PUMA-mediated apoptosis, but not p21-mediated cell-cycle arrest or senescence, is a critical determinant of the therapeutic response to non-genotoxic p53 activation by Nutlin3a. Importantly, in human cancer, PUMA expression may predict patient responses to treatment with MDM2 antagonists.

  16. Spatiotemporal PET Imaging of Dynamic Metabolic Changes After Therapeutic Approaches of Induced Pluripotent Stem Cells, Neuronal Stem Cells, and a Chinese Patent Medicine in Stroke.

    Science.gov (United States)

    Zhang, Hong; Song, Fahuan; Xu, Caiyun; Liu, Hao; Wang, Zefeng; Li, Jinhui; Wu, Shuang; YehuaShen; Chen, Yao; Zhu, Yunqi; Du, Ruili; Tian, Mei

    2015-11-01

    This study aimed to use spatiotemporal PET imaging to investigate the dynamic metabolic changes after a combined therapeutic approach of induced pluripotent stem cells (iPSCs), neuronal stem cells (NSCs), and Chinese patent medicine in a rat model of cerebral ischemia-reperfusion injury. Cerebral ischemia was established by the middle cerebral artery occlusion approach. Thirty-six male rats were randomly assigned to 1 of the 6 groups: control phosphate-buffered saline (PBS), Chinese patent medicine (Qing-kai-ling [QKL]), induced pluripotent stem cells (iPSCs), combination of iPSCs and QKL, neuronal stem cells (NSCs), and combination of NSCs and QKL. Serial (18)F-FDG small-animal PET imaging and neurofunctional tests were performed weekly. Autoradiographic imaging and immunohistochemical and immunofluorescent analyses were performed at 4 wk after stem cell transplantation. Compared with the PBS control group, significantly higher (18)F-FDG accumulations in the ipsilateral cerebral infarction were observed in 5 treatment groups from weeks 1-4. Interestingly, the most intensive (18)F-FDG accumulation was found in the NSCs + QKL group at week 1 but in the iPSCs + QKL group at week 4. The neurofunctional scores in the 5 treatment groups were significantly higher than that of the PBS group from week 3 to 4. In addition, there was a significant correlation between the PET imaging findings and neurofunctional recovery (P PET imaging with (18)F-FDG demonstrated dynamic metabolic and functional recovery after iPSCs or NSCs combined with QKL in a rat model of cerebral ischemia-reperfusion injury. iPSCs or NSCs combined with Chinese medicine QKL seemed to be a better therapeutic approach than these stem cells used individually. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  17. Intracellular delivery of potential therapeutic genes: prospects in cancer gene therapy.

    Science.gov (United States)

    Bakhtiar, Athirah; Sayyad, Mustak; Rosli, Rozita; Maruyama, Atsushi; Chowdhury, Ezharul H

    2014-01-01

    Conventional therapies for malignant cancer such as chemotherapy and radiotherapy are associated with poor survival rates owing to the development of cellular resistance to cancer drugs and the lack of targetability, resulting in unwanted adverse effects on healthy cells and necessitating the lowering of therapeutic dose with consequential lower efficacy of the treatment. Gene therapy employing different types of viral and non-viral carriers to transport gene(s) of interest and facilitating production of the desirable therapeutic protein(s) has tremendous prospects in cancer treatments due to the high-level of specificity in therapeutic action of the expressed protein(s) with diminished off-target effects, although cancer cell-specific delivery of transgene(s) still poses some challenges to be addressed. Depending on the potential therapeutic target genes, cancer gene therapy could be categorized into tumor suppressor gene replacement therapy, immune gene therapy and enzyme- or prodrug-based therapy. This review would shed light on the current progress of delivery of potentially therapeutic genes into various cancer cells in vitro and animal models utilizing a variety of viral and non-viral vectors.

  18. Proteotranscriptomic Profiling of 231-BR Breast Cancer Cells: Identification of Potential Biomarkers and Therapeutic Targets for Brain Metastasis*

    Science.gov (United States)

    Dun, Matthew D.; Chalkley, Robert J.; Faulkner, Sam; Keene, Sheridan; Avery-Kiejda, Kelly A.; Scott, Rodney J.; Falkenby, Lasse G.; Cairns, Murray J.; Larsen, Martin R.; Bradshaw, Ralph A.; Hondermarck, Hubert

    2015-01-01

    Brain metastases are a devastating consequence of cancer and currently there are no specific biomarkers or therapeutic targets for risk prediction, diagnosis, and treatment. Here the proteome of the brain metastatic breast cancer cell line 231-BR has been compared with that of the parental cell line MDA-MB-231, which is also metastatic but has no organ selectivity. Using SILAC and nanoLC-MS/MS, 1957 proteins were identified in reciprocal labeling experiments and 1584 were quantified in the two cell lines. A total of 152 proteins were confidently determined to be up- or down-regulated by more than twofold in 231-BR. Of note, 112/152 proteins were decreased as compared with only 40/152 that were increased, suggesting that down-regulation of specific proteins is an important part of the mechanism underlying the ability of breast cancer cells to metastasize to the brain. When matched against transcriptomic data, 43% of individual protein changes were associated with corresponding changes in mRNA, indicating that the transcript level is a limited predictor of protein level. In addition, differential miRNA analyses showed that most miRNA changes in 231-BR were up- (36/45) as compared with down-regulations (9/45). Pathway analysis revealed that proteome changes were mostly related to cell signaling and cell cycle, metabolism and extracellular matrix remodeling. The major protein changes in 231-BR were confirmed by parallel reaction monitoring mass spectrometry and consisted in increases (by more than fivefold) in the matrix metalloproteinase-1, ephrin-B1, stomatin, myc target-1, and decreases (by more than 10-fold) in transglutaminase-2, the S100 calcium-binding protein A4, and l-plastin. The clinicopathological significance of these major proteomic changes to predict the occurrence of brain metastases, and their potential value as therapeutic targets, warrants further investigation. PMID:26041846

  19. Resveratrol as a Therapeutic Agent for Alzheimer's Disease

    Science.gov (United States)

    Ma, Teng; Tan, Meng-Shan; Yu, Jin-Tai; Tan, Lan

    2014-01-01

    Alzheimer's disease (AD) is the most common cause of dementia, but there is no effective therapy till now. The pathogenic mechanisms of AD are considerably complex, including Aβ accumulation, tau protein phosphorylation, oxidative stress, and inflammation. Exactly, resveratrol, a polyphenol in red wine and many plants, is indicated to show the neuroprotective effect on mechanisms mostly above. Recent years, there are numerous researches about resveratrol acting on AD in many models, both in vitro and in vivo. However, the effects of resveratrol are limited by its pool bioavailability; therefore researchers have been trying a variety of methods to improve the efficiency. This review summarizes the recent studies in cell cultures and animal models, mainly discusses the molecular mechanisms of the neuroprotective effects of resveratrol, and thus investigates the therapeutic potential in AD. PMID:25525597

  20. Therapeutic Recombinant Monoclonal Antibodies

    Science.gov (United States)

    Bakhtiar, Ray

    2012-01-01

    During the last two decades, the rapid growth of biotechnology-derived techniques has led to a myriad of therapeutic recombinant monoclonal antibodies with significant clinical benefits. Recombinant monoclonal antibodies can be obtained from a number of natural sources such as animal cell cultures using recombinant DNA engineering. In contrast to…

  1. Discovery and design of carbohydrate-based therapeutics.

    Science.gov (United States)

    Cipolla, Laura; Araújo, Ana C; Bini, Davide; Gabrielli, Luca; Russo, Laura; Shaikh, Nasrin

    2010-08-01

    Till now, the importance of carbohydrates has been underscored, if compared with the two other major classes of biopolymers such as oligonucleotides and proteins. Recent advances in glycobiology and glycochemistry have imparted a strong interest in the study of this enormous family of biomolecules. Carbohydrates have been shown to be implicated in recognition processes, such as cell-cell adhesion, cell-extracellular matrix adhesion and cell-intruder recognition phenomena. In addition, carbohydrates are recognized as differentiation markers and as antigenic determinants. Due to their relevant biological role, carbohydrates are promising candidates for drug design and disease treatment. However, the growing number of human disorders known as congenital disorders of glycosylation that are being identified as resulting from abnormalities in glycan structures and protein glycosylation strongly indicates that a fast development of glycobiology, glycochemistry and glycomedicine is highly desirable. The topics give an overview of different approaches that have been used to date for the design of carbohydrate-based therapeutics; this includes the use of native synthetic carbohydrates, the use of carbohydrate mimics designed on the basis of their native counterpart, the use of carbohydrates as scaffolds and finally the design of glyco-fused therapeutics, one of the most recent approaches. The review covers mainly literature that has appeared since 2000, except for a few papers cited for historical reasons. The reader will gain an overview of the current strategies applied to the design of carbohydrate-based therapeutics; in particular, the advantages/disadvantages of different approaches are highlighted. The topic is presented in a general, basic manner and will hopefully be a useful resource for all readers who are not familiar with it. In addition, in order to stress the potentialities of carbohydrates, several examples of carbohydrate-based marketed therapeutics are given

  2. Long-Term Therapeutic Effects of Mesenchymal Stem Cells Compared to Dexamethasone on Recurrent Experimental Autoimmune Uveitis of Rats

    Science.gov (United States)

    Zhang, Lingjun; Zheng, Hui; Shao, Hui; Nian, Hong; Zhang, Yan; Bai, Lingling; Su, Chang; Liu, Xun; Dong, Lijie; Li, Xiaorong; Zhang, Xiaomin

    2014-01-01

    Purpose. We tested the long-term effects of different regimens of mesenchymal stem cell (MSC) administration in a recurrent experimental autoimmune uveitis (rEAU) model in rats, and compared the efficacy of MSC to that of dexamethasone (DEX). Methods. One or two courses of MSC treatments were applied to R16-specific T cell–induced rEAU rats before or after disease onsets. The DEX injections were given for 7 or 50 days continuously after disease onsets. Clinical appearances were observed until the 50th day after transfer. On the 10th day, T cells from control and MSC groups were analyzed by flow cytometry. Supernatants from the proliferation assay and aqueous humor were collected for cytokine detection. Functions of T cells and APCs in spleens also were studied by lymphocyte proliferation assays. Results. One course of MSC therapy, administered after disease onset, led to a lasting therapeutic effect, with a decreased incidence, reduced mean clinical score, and reduced retinal impairment after 50 days of observation, while multiple courses of treatment did not improve the therapeutic benefit. Although DEX and MSCs equally reduced the severity of the first episode of rEAU, the effect of DEX was shorter lasting, and DEX therapy failed to control the disease even with long periods of treatment. The MSCs significantly decreased T helper 1 (Th1) and Th17 responses, suppressed the function of antigen-presenting cells, and upregulated T regulatory cells. Conclusions. These results suggested that MSCs might be new corticosteroid spring agents, while providing fewer side effects and longer lasting suppressive effects for recurrent uveitis. PMID:25125599

  3. Splenectomy enhances the therapeutic effect of adipose tissue-derived mesenchymal stem cell infusion on cirrhosis rats.

    Science.gov (United States)

    Tang, Wei-Ping; Akahoshi, Tomohiko; Piao, Jing-Shu; Narahara, Sayoko; Murata, Masaharu; Kawano, Takahito; Hamano, Nobuhito; Ikeda, Tetsuo; Hashizume, Makoto

    2016-08-01

    Clinical studies suggest that splenectomy improves liver function in cirrhotic patients, but the influence of splenectomy on stem cell transplantation is poorly understood. This study investigated the effect of splenectomy on stem cell infusion and elucidated its mechanism. Rat adipose tissue-derived mesenchymal stem cells were infused into cirrhosis rats with or without splenectomy, followed by the assessment of the in vivo distribution of stem cells and pathological changes. Stromal cell-derived factor-1 and hepatocyte growth factor expression were also investigated in splenectomized cirrhosis patients and rats. Splenectomy, prior to cell infusion, improved liver function and suppressed fibrosis progression more efficiently than cell infusion alone in the experimental cirrhosis model. Stromal cell-derived factor-1 and hepatocyte growth factor levels after splenectomy were increased in patients and rats. These upregulated cytokines significantly facilitated stem cell motility, migration and proliferation in vitro. C-X-C chemokine receptor type 4 neutralization weakened the promotion of cell migration by these cytokines. The infused cells integrated into liver fibrosis septa and participated in regeneration more efficiently in splenectomized rats. Direct coculture with stem cells led to inhibition of hepatic stellate cell proliferation. In addition, hepatocyte growth factor induced hepatic stellate cell apoptosis via the c-jun N-terminal kinase-p53 pathway. Splenectomy prior to cell infusion enhanced the therapeutic effect of stem cells on cirrhosis, which involved upregulation of stromal cell-derived factor-1 and hepatocyte growth factor after splenectomy. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Potential of cancer cell-derived exosomes in clinical application: a review of recent research advances.

    Science.gov (United States)

    Sun, Yu; Liu, Jing

    2014-06-01

    Exosomes are 30- to 100-nm, membrane-bound vesicles that are released by most types of cells, including tumor cells. Exosomes contain a great variety of bioactive molecules, including signal peptides, microRNA, lipids, and DNA. In cancer, tumor cells aberrantly secrete large quantities of exosomes to transport paracrine signals or to contribute to tumor-environment interaction at a distance. The goal of this review was to discuss the recent advances on the mechanism of cancer-derived exosomes in tumor regulation. Pertinent articles and abstracts were identified through searches of PubMed for literature published from 1983 to December 2013. Search terms included exosome, tumor, cancer, diagnosis, and therapy. All of the exposed evidence points to communication between cancer cells and their surroundings, either mediated by cancer cell-derived exosomes or by stromal cell-derived exosomes. This communication probably supports tumor proliferation, motility, invasion, angiogenesis, and premetastatic niche preparation. In addition, recent research implies that cancer cell-derived exosomes play a suppressive role in cancer-directed immune response. The biomarkers detected in bodily fluid-derived exosomes imply a potential for exosomes in cancer diagnosis. Also, exosomes could be used as a vehicle to selectively deliver therapeutic nucleic-acid drugs or conventional drugs for tumor therapy. The tolerability and feasibility of cancer exosomes in diagnosis and therapy need to be further evaluated. Copyright © 2014 Elsevier HS Journals, Inc. All rights reserved.

  5. Photochemical internalisation, a minimally invasive strategy for light-controlled endosomal escape of cancer stem cell-targeting therapeutics.

    Science.gov (United States)

    Selbo, Pål Kristian; Bostad, Monica; Olsen, Cathrine Elisabeth; Edwards, Victoria Tudor; Høgset, Anders; Weyergang, Anette; Berg, Kristian

    2015-08-01

    Despite progress in radio-, chemo- and photodynamic-therapy (PDT) of cancer, treatment resistance still remains a major problem for patients with aggressive tumours. Cancer stem cells (CSCs) or tumour-initiating cells are intrinsically and notoriously resistant to conventional cancer therapies and are proposed to be responsible for the recurrence of tumours after therapy. According to the CSC hypothesis, it is imperative to develop novel anticancer agents or therapeutic strategies that take into account the biology and role of CSCs. The present review outlines our recent study on photochemical internalisation (PCI) using the clinically relevant photosensitiser TPCS2a/Amphinex® as a rational, non-invasive strategy for the light-controlled endosomal escape of CSC-targeting drugs. PCI is an intracellular drug delivery method based on light-induced ROS-generation and a subsequent membrane-disruption of endocytic vesicles, leading to cytosolic release of the entrapped drugs of interest. In different proof-of-concept studies we have demonstrated that PCI of CSC-directed immunotoxins targeting CD133, CD44, CSPG4 and EpCAM is a highly specific and effective strategy for killing cancer cells and CSCs. CSCs overexpressing CD133 are PDT-resistant; however, this is circumvented by PCI of CD133-targeting immunotoxins. In view of the fact that TPCS2a is not a substrate of the efflux pumps ABCG2 and P-glycoprotein (ABCB1), the PCI-method is a promising anti-CSC therapeutic strategy. Due to a laser-controlled exposure, PCI of CSC-targeting drugs will be confined exclusively to the tumour tissue, suggesting that this drug delivery method has the potential to spare distant normal stem cells.

  6. Therapeutic strategies and genetic profile comparisons in small cell carcinoma and large cell neuroendocrine carcinoma of the lung using next-generation sequencing.

    Science.gov (United States)

    Ito, Masaoki; Miyata, Yoshihiro; Hirano, Shoko; Kimura, Shingo; Irisuna, Fumiko; Ikeda, Kyoko; Kushitani, Kei; Tsutani, Yasuhiro; Ueda, Daisuke; Tsubokawa, Norifumi; Takeshima, Yukio; Okada, Morihito

    2017-12-12

    Small cell lung cancer (SCLC) and large cell neuroendocrine carcinoma (LCNEC) of the lung are classified as variants of endocrine carcinoma and subdivided into pure or combined type. Clinical benefit of target therapy has not been established in these tumors. This study aimed to compare genetic and clinicopathological features between SCLC and LCNEC or pure and combined types, and explore the possibility of target therapy using next-generation sequencing. In 13 SCLC and 22 LCNEC cases, 72 point mutations, 19 deletions, and 3 insertions were detected. As therapeutically targetable variants, mutations in EGFR (L858R), KRAS (G12D, G12A, G12V), and PIK3CA (E545K) were detected in 5 cases. The case harboring EGFR mutation showed response to EGFR-tyrosine kinase inhibitor. However, there are no clinicopathological features associated with therapeutically targetable cases. And there was no significant genetic feature between SCLC and LCNEC or pure and combined types. In conclusion, although patients with SCLC and LCNEC may benefit from target therapy, they were not identifiable by clinicopathologic background. And there was not significant genetic difference between SCLC and LCNEC, including between pure and combined types. Classifying SCLC and LCNEC in same category is reasonable. However, distinguishing the pure type from combined type was not validated. Comprehensive genetic analysis should be performed to detect targetable variants in any type of SCLC and LCNEC.

  7. Animal-cell culture in aqueous two-phase systems

    NARCIS (Netherlands)

    Zijlstra, G.M.

    1998-01-01

    In current industrial biotechnology, animal-cell culture is an important source of therapeutic protein products. The conventional animal-cell production processes, however, include many unit operations as part of the fermentation and downstream processing strategy. The research described in

  8. Mesenchymal Stem Cells as a Source of Dopaminergic Neurons: A Potential Cell Based Therapy for Parkinson's Disease.

    Science.gov (United States)

    Venkatesh, Katari; Sen, Dwaipayan

    2017-01-01

    Cell repair/replacing strategies for neurodegenerative diseases such as Parkinson's disease depend on well-characterized dopaminergic neuronal candidates that are healthy and show promising effect on the rejuvenation of degenerated area of the brain. Therefore, it is imperative to develop innovative therapeutic strategies that replace damaged neurons with new/functional dopaminergic neurons. Although several research groups have reported the generation of neural precursors/neurons from human/ mouse embryonic stem cells and mesenchymal stem cells, the latter is considered to be an attractive therapeutic candidate because of its high capacity for self-renewable, no adverse effect to allogeneic versus autologous transplants, high ethical acceptance and no teratoma formation. Therefore, mesenchymal stem cells can be considered as an ideal source for replacing lost cells in degenerative diseases like Parkinson's. Hence, the use of these cells in the differentiation of dopaminergic neurons becomes significant and thrives as a therapeutic approach to treat Parkinson's disease. Here we highlight the basic biology of mesenchymal stem cells, their differentiation potential into dopaminergic neurons and potential use in the clinics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Autophagy regulates the therapeutic potential of mesenchymal stem cells in experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Dang, Shipeng; Xu, Huanbai; Xu, Congfeng; Cai, Wei; Li, Qian; Cheng, Yiji; Jin, Min; Wang, Ru-Xing; Peng, Yongde; Zhang, Yi; Wu, Changping; He, Xiaozhou; Wan, Bing; Zhang, Yanyun

    2014-07-01

    Mesenchymal stem cell (MSC)-based therapy is a promising approach to treat various inflammatory disorders including multiple sclerosis. However, the fate of MSCs in the inflammatory microenvironment is largely unknown. Experimental autoimmune encephalomyelitis (EAE) is a well-studied animal model of multiple sclerosis. We demonstrated that autophagy occurred in MSCs during their application for EAE treatment. Inflammatory cytokines, e.g., interferon gamma and tumor necrosis factor, induced autophagy in MSCs synergistically by inducing expression of BECN1/Beclin 1. Inhibition of autophagy by knockdown of Becn1 significantly improved the therapeutic effects of MSCs on EAE, which was mainly attributable to enhanced suppression upon activation and expansion of CD4(+) T cells. Mechanistically, inhibition of autophagy increased reactive oxygen species generation and mitogen-activated protein kinase 1/3 activation in MSCs, which were essential for PTGS2 (prostaglandin-endoperoxide synthase 2 [prostaglandin G/H synthase and cyclooxygenase]) and downstream prostaglandin E2 expression to exert immunoregulatory function. Furthermore, pharmacological treatment of MSCs to inhibit autophagy increased their immunosuppressive effects on T cell-mediated EAE. Our findings indicate that inflammatory microenvironment-induced autophagy downregulates the immunosuppressive function of MSCs. Therefore, modulation of autophagy in MSCs would provide a novel strategy to improve MSC-based immunotherapy.

  10. The research progress of MSCs proliferation and differentiation in ...

    African Journals Online (AJOL)

    Nowadays, researchers are reunderstanding TCM drugs and formulas by studying mesenchymal stem cells (MSCs) proliferation and differentiation in vitro and vivo. This review will ... future bone-injury-therapeutic production of MSCs.

  11. An Isochemogenic Set of Inhibitors To Define the Therapeutic Potential of Histone Deacetylases in β-Cell Protection

    DEFF Research Database (Denmark)

    Wagner, Florence F; Lundh, Morten; Kaya, Taner

    2016-01-01

    Modulation of histone deacetylase (HDAC) activity has been implicated as a potential therapeutic strategy for multiple diseases. However, it has been difficult to dissect the role of individual HDACs due to a lack of selective small-molecule inhibitors. Here, we report the synthesis of a series...... of highly potent and isoform-selective class I HDAC inhibitors, rationally designed by exploiting minimal structural changes to the clinically experienced HDAC inhibitor CI-994. We used this toolkit of isochemogenic or chemically matched inhibitors to probe the role of class I HDACs in β-cell pathobiology...... pancreatic β-cells from inflammatory cytokines and nutrient overload in diabetes....

  12. Current and future regenerative medicine - principles, concepts, and therapeutic use of stem cell therapy and tissue engineering in equine medicine

    DEFF Research Database (Denmark)

    Koch, Thomas Gadegaard; Berg, Lise Charlotte; Betts, Dean H.

    2009-01-01

    This paper provides a bird's-eye perspective of the general principles of stem-cell therapy and tissue engineering; it relates comparative knowledge in this area to the current and future status of equine regenerative medicine.The understanding of equine stem cell biology, biofactors, and scaffolds...... mesenchymal stromal cells, unless there is proof that they exhibit the fundamental in vivo characteristics of pluripotency and the ability to self-renew. That said, these cells from various tissues hold great promise for therapeutic use in horses. The 3 components of tissue engineering - cells, biological...... factors, and biomaterials - are increasingly being applied in equine medicine, fuelled by better scaffolds and increased understanding of individual biofactors and cell sources.The effectiveness of stem cell-based therapies and most tissue engineering concepts has not been demonstrated sufficiently...

  13. Punica granatum fabricated platinum nanoparticles: A therapeutic pill for breast cancer

    Science.gov (United States)

    Jha, Babita; Rao, Mugdha; Chattopadhyay, A.; Bandyopadhyay, A.; Prasad, K.; Jha, Anal K.

    2018-05-01

    The current research highlights the fabrication of biocompatible platinum nanoparticles (Pt NPs) in first hand from arils of Punica granatum by using green chemistry approach. Formation of Pt NPs was determined by UV-visible, X-ray diffraction, and FTIR techniques. The anti-cancer potential of fabricated Pt NPs was evaluated by MTT assay on MCF7 and MDA-MB-231 breast cancer cell lines. This work is foreshadowing the prospect of Pt NPs application as a therapeutic drug for cancer treatment.

  14. Enhanced neuro-therapeutic potential of Wharton's Jelly-derived mesenchymal stem cells in comparison with bone marrow mesenchymal stem cells culture.

    Science.gov (United States)

    Drela, Katarzyna; Lech, Wioletta; Figiel-Dabrowska, Anna; Zychowicz, Marzena; Mikula, Michał; Sarnowska, Anna; Domanska-Janik, Krystyna

    2016-04-01

    Substantial inconsistencies in mesenchymal stem (stromal) cell (MSC) therapy reported in early translational and clinical studies may indicate need for selection of the proper cell population for any particular therapeutic purpose. In the present study we have examined stromal stem cells derived either from umbilical cord Wharton's Jelly (WJ-MSC) or bone marrow (BM-MSC) of adult, healthy donors. The cells characterized in accordance with the International Society for Cellular Therapy (ISCT) indications as well as other phenotypic and functional parameters have been compared under strictly controlled culture conditions. WJ-MSC, in comparison with BM-MSC, exhibited a higher proliferation rate, a greater expansion capability being additionally stimulated under low-oxygen atmosphere, enhanced neurotrophic factors gene expression and spontaneous tendency toward a neural lineage differentiation commitment confirmed by protein and gene marker induction. Our data suggest that WJ-MSC may represent an example of immature-type "pre-MSC," where a substantial cellular component is embryonic-like, pluripotent derivatives with the default neural-like differentiation. These cells may contribute in different extents to nearly all classical MSC populations adversely correlated with the age of cell donors. Our data suggest that neuro-epithelial markers, like nestin, stage specific embryonic antigens-4 or α-smooth muscle actin expressions, may serve as useful indicators of MSC culture neuro-regeneration-associated potency. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  15. Stem Cell Therapy and Breast Cancer Treatment: Review of Stem Cell Research and Potential Therapeutic Impact Against Cardiotoxicities Due to Breast Cancer Treatment

    OpenAIRE

    Sharp, Thomas E.; George, Jon C.

    2014-01-01

    A new problem has emerged with the ever-increasing number of breast cancer survivors. While early screening and advances in treatment have allowed these patients to overcome their cancer, these treatments often have adverse cardiovascular side effects that can produce abnormal cardiovascular function. Chemotherapeutic and radiation therapy have both been linked to cardiotoxicity; these therapeutics can cause a loss of cardiac muscle and deterioration of vascular structure that can eventually ...

  16. ATM regulates 3-methylpurine-DNA glycosylase and promotes therapeutic resistance to alkylating agents.

    Science.gov (United States)

    Agnihotri, Sameer; Burrell, Kelly; Buczkowicz, Pawel; Remke, Marc; Golbourn, Brian; Chornenkyy, Yevgen; Gajadhar, Aaron; Fernandez, Nestor A; Clarke, Ian D; Barszczyk, Mark S; Pajovic, Sanja; Ternamian, Christian; Head, Renee; Sabha, Nesrin; Sobol, Robert W; Taylor, Michael D; Rutka, James T; Jones, Chris; Dirks, Peter B; Zadeh, Gelareh; Hawkins, Cynthia

    2014-10-01

    Alkylating agents are a first-line therapy for the treatment of several aggressive cancers, including pediatric glioblastoma, a lethal tumor in children. Unfortunately, many tumors are resistant to this therapy. We sought to identify ways of sensitizing tumor cells to alkylating agents while leaving normal cells unharmed, increasing therapeutic response while minimizing toxicity. Using an siRNA screen targeting over 240 DNA damage response genes, we identified novel sensitizers to alkylating agents. In particular, the base excision repair (BER) pathway, including 3-methylpurine-DNA glycosylase (MPG), as well as ataxia telangiectasia mutated (ATM), were identified in our screen. Interestingly, we identified MPG as a direct novel substrate of ATM. ATM-mediated phosphorylation of MPG was required for enhanced MPG function. Importantly, combined inhibition or loss of MPG and ATM resulted in increased alkylating agent-induced cytotoxicity in vitro and prolonged survival in vivo. The discovery of the ATM-MPG axis will lead to improved treatment of alkylating agent-resistant tumors. Inhibition of ATM and MPG-mediated BER cooperate to sensitize tumor cells to alkylating agents, impairing tumor growth in vitro and in vivo with no toxicity to normal cells, providing an ideal therapeutic window. ©2014 American Association for Cancer Research.

  17. Fuel Cell Research

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Peter M. [Brown University

    2014-03-30

    Executive Summary In conjunction with the Brown Energy Initiative, research Projects selected for the fuel cell research grant were selected on the following criteria: They should be fundamental research that has the potential to significantly impact the nation’s energy infrastructure. They should be scientifically exciting and sound. They should synthesize new materials, lead to greater insights, explore new phenomena, or design new devices or processes that are of relevance to solving the energy problems. They involve top-caliper senior scientists with a record of accomplishment, or junior faculty with outstanding promise of achievement. They should promise to yield at least preliminary results within the given funding period, which would warrant further research development. They should fit into the overall mission of the Brown Energy Initiative, and the investigators should contribute as partners to an intellectually stimulating environment focused on energy science. Based on these criteria, fourteen faculty across three disciplines (Chemistry, Physics and Engineering) and the Charles Stark Draper Laboratory were selected to participate in this effort.1 In total, there were 30 people supported, at some level, on these projects. This report highlights the findings and research outcomes of the participating researchers.

  18. Glycosylation profiles of therapeutic antibody pharmaceuticals.

    Science.gov (United States)

    Wacker, Christoph; Berger, Christoph N; Girard, Philippe; Meier, Roger

    2011-11-01

    Recombinant antibodies specific for human targets are often used as therapeutics and represent a major class of drug products. Their therapeutic efficacy depends on the formation of antibody complexes resulting in the elimination of a target molecule or the modulation of specific signalling pathways. The physiological effects of antibody therapeutics are known to depend on the structural characteristics of the antibody molecule, specifically on the glycosylation which is the result of posttranslational modifications. Hence, production of therapeutic antibodies with a defined and consistent glycoform profile is needed which still remains a considerable challenge to the biopharmaceutical industry. To provide an insight into the industries capability to control their manufacturing process and to provide antibodies of highest quality, we conducted a market surveillance study and compared major oligosaccharide profiles of a number of monoclonal antibody pharmaceuticals sampled on the Swiss market. Product lot-to-lot variability was found to be generally low, suggesting that a majority of manufacturers have implemented high quality standards in their production processes. However, proportions of G0, G1 and G2 core-fucosylated chains derived from different products varied considerably and showed a bias towards the immature agalactosidated G0 form. Interestingly, differences in glycosylation caused by the production cell type seem to be of less importance compared with process related parameters such as cell growth. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Scientist, Single Cell Analysis Facility | Center for Cancer Research

    Science.gov (United States)

    The Cancer Research Technology Program (CRTP) develops and implements emerging technology, cancer biology expertise and research capabilities to accomplish NCI research objectives.  The CRTP is an outward-facing, multi-disciplinary hub purposed to enable the external cancer research community and provides dedicated support to NCI’s intramural Center for Cancer Research (CCR).  The dedicated units provide electron microscopy, protein characterization, protein expression, optical microscopy and nextGen sequencing. These research efforts are an integral part of CCR at the Frederick National Laboratory for Cancer Research (FNLCR).  CRTP scientists also work collaboratively with intramural NCI investigators to provide research technologies and expertise. KEY ROLES AND RESPONSIBILITIES We are seeking a highly motivated Scientist II to join the newly established Single Cell Analysis Facility (SCAF) of the Center for Cancer Research (CCR) at NCI. The SCAF will house state of the art single cell sequencing technologies including 10xGenomics Chromium, BD Genomics Rhapsody, DEPPArray, and other emerging single cell technologies. The Scientist: Will interact with close to 200 laboratories within the CCR to design and carry out single cell experiments for cancer research Will work on single cell isolation/preparation from various tissues and cells and related NexGen sequencing library preparation Is expected to author publications in peer reviewed scientific journals

  20. The arsenal of pathogens and antivirulence therapeutic strategies for disarming them

    Directory of Open Access Journals (Sweden)

    Brannon JR

    2016-05-01

    Full Text Available John R Brannon,1 Maria Hadjifrangiskou1,21Division of Molecular Pathogenesis, Department of Pathology, Microbiology and Immunology, 2Department of Urologic Surgery, Vanderbilt University School of Medicine, Nashville, TN, USAAbstract: Pathogens deploy an arsenal of virulence factors (VFs to establish themselves within their infectious niche. The discovery of antimicrobial compounds and their development into therapeutics has made a monumental impact on human and microbial populations. Although humans have used antimicrobials for medicinal and agricultural purposes, microorganism populations have developed and shared resistance mechanisms to persevere in the face of classical antimicrobials. However, a positive substitute is antivirulence therapy; antivirulence therapeutics prevent or interrupt an infection by counteracting a pathogen’s VFs. Their application can reduce the use of broad-spectrum antimicrobials and dampen the frequency with which resistant strains emerge. Here, we summarize the contribution of VFs to various acute and chronic infections. In correspondence with this, we provide an overview of the research and development of antivirulence strategies.Keywords: virulence factors, antivirulence therapeutics, biofilms, regulation, Escherichia coli, quorum sensing, persister cells

  1. Interferon-gamma sensitizes colonic epithelial cell lines to physiological and therapeutic inducers of colonocyte apoptosis.

    LENUS (Irish Health Repository)

    O'Connell, J

    2012-02-03

    Homeostasis in the colonic epithelium is achieved by a continuous cycle of proliferation and apoptosis, in which imbalances are associated with disease. Inflammatory bowel disease (IBD) and colon cancer are associated with either excessive or insufficient apoptosis of colonic epithelial cells, respectively. By using two colonic epithelial cell lines, HT29 and SW620, we investigated how the epithelial cell\\'s sensitivity to apoptosis was regulated by the proinflammatory cytokine interferon-gamma (IFN-gamma). We found that IFN-gamma sensitized HT29 cells, and to a lesser extent SW620, to diverse inducers of apoptosis of physiologic or therapeutic relevance to the colon. These apoptosis inducers included Fas (CD95\\/APO-1) ligand (FasL), short-chain fatty acids, and chemotherapeutic drugs. The extent of IFN-gamma-mediated apoptosis sensitization in these two cell lines correlated well with the degree of IFN-gamma-mediated upregulation of the proapoptotic protease caspase-1. Although IFN-gamma alone effectively sensitized HT29 cells to apoptosis, inclusion of the protein synthesis inhibitor cyclohexamide (CHX) during apoptotic challenge was necessary for maximal sensitization of SW620. The requirement of CHX to sensitize SW620 cells to apoptosis implies a need to inhibit translation of antiapoptotic proteins absent from HT29. In particular, the antiapoptotic protein Bcl-2 was strongly expressed in SW620 cells but absent from HT29. Our results indicate that IFN-gamma increases the sensitivity of colonic epithelial cells to diverse apoptotic stimuli in concert, via upregulation of caspase-1. Our findings implicate caspase-1 and Bcl-2 as important central points of control determining the general sensitivity of colonic epithelial cells to apoptosis.

  2. Genetic modification of mesenchymal stem cells to overexpress CXCR4 and CXCR7 does not improve the homing and therapeutic potentials of these cells in experimental acute kidney injury.

    Science.gov (United States)

    Gheisari, Yousof; Azadmanesh, Kayhan; Ahmadbeigi, Naser; Nassiri, Seyed Mahdi; Golestaneh, Azadeh Fahim; Naderi, Mahmood; Vasei, Mohammad; Arefian, Ehsan; Mirab-Samiee, Siamak; Shafiee, Abbas; Soleimani, Masoud; Zeinali, Sirous

    2012-11-01

    The therapeutic potential of bone marrow mesenchymal stem cells (MSCs) in kidney failure has been examined in some studies. However, recent findings indicate that after transplantation, these cells home to kidneys at very low levels. Interaction of stromal derived factor-1 (SDF-1) with its receptor, CXCR4, is of pivotal importance in migration and homing. Recently, CXCR7 has also been recognized as another SDF-1 receptor that interacts with CXCR4 and modulates its functions. In this study, CXCR4 and CXCR7 were separately and simultaneously overexpressed in BALB/c bone marrow MSCs by using a lentiviral vector system and the homing and renoprotective potentials of these cells were evaluated in a mouse model of cisplatin-induced acute kidney injury. Using flow cytometry, immunohistochemistry, and real-time PCR methods for detection of GFP-labeled MSCs, we found that although considerably entrapped in lungs, native MSCs home very rarely to kidneys and bone marrow and this rate cannot be significantly affected by CXCR4 and/or CXCR7 upregulation. Transplantation of neither native nor genetically engineered MSCs ameliorated kidney failure. We concluded that overexpression of CXCR4 and CXCR7 receptors in murine MSCs cannot improve the homing and therapeutic potentials of these cells and it can be due to severe chromosomal abnormalities that these cells bear during ex vivo expansion.

  3. The use of cell-sheet technique eliminates arrhythmogenicity of skeletal myoblast-based therapy to the heart with enhanced therapeutic effects.

    Science.gov (United States)

    Narita, Takuya; Shintani, Yasunori; Ikebe, Chiho; Kaneko, Masahiro; Harada, Narumi; Tshuma, Nomathamsanqa; Takahashi, Kunihiko; Campbell, Niall G; Coppen, Steven R; Yashiro, Kenta; Sawa, Yoshiki; Suzuki, Ken

    2013-09-20

    Clinical application of skeletal myoblast transplantation has been curtailed due to arrhythmogenicity and inconsistent therapeutic benefits observed in previous studies. However, these issues may be solved by the use of a new cell-delivery mode. It is now possible to generate "cell-sheets" using temperature-responsive dishes without artificial scaffolds. This study aimed to validate the safety and efficacy of epicardial placement of myoblast-sheets (myoblast-sheet therapy) in treating heart failure. After coronary artery ligation in rats, the same numbers of syngeneic myoblasts were transplanted by intramyocardial injection or cell-sheet placement. Continuous radio-telemetry monitoring detected increased ventricular arrhythmias, including ventricular tachycardia, after intramyocardial injection compared to the sham-control, while these were abolished in myoblast-sheet therapy. This effect was conjunct with avoidance of islet-like cell-cluster formation that disrupts electrical conduction, and with prevention of increased arrhythmogenic substrates due to exaggerated inflammation. Persistent ectopic donor cells were found in the lung only after intramyocardial injection, strengthening the improved safety of myoblast-sheet therapy. In addition, myoblast-sheet therapy enhanced cardiac function, corresponding to a 9.2-fold increase in donor cell survival, compared to intramyocardial injection. Both methods achieved reduced infarct size, decreased fibrosis, attenuated cardiomyocyte hypertrophy, and increased neovascular formation, in association with myocardial upregulation of a group of relevant molecules. The pattern of these beneficial changes was similar between two methods, but the degree was more substantial after myoblast-sheet therapy. The cell-sheet technique enhanced safety and therapeutic efficacy of myoblast-based therapy, compared to the current method, thereby paving the way for clinical application. Copyright © 2012 Elsevier Ireland Ltd. All rights

  4. Interactions of silica nanoparticles with therapeutics for oxidative stress attenuation in neurons

    Science.gov (United States)

    White-Schenk, Desiree; Shi, Riyi; Leary, James F.

    2015-03-01

    Oxidative stress plays a major role in many disease pathologies, notably in the central nervous system (CNS). For instance, after initial spinal cord injury, the injury site tends to increase during a secondary chemical injury process based on oxidative stress from necrotic cells and the inflammatory response. Prevention of this secondary chemical injury would represent a major advance in the treatment of people with spinal cord injuries. Few therapeutics are useful in combating such stress in the CNS due to side effects, low efficacy, or half-life. Mesoporous silica nanoparticles show promise for delivering therapeutics based on the formation of a porous network during synthesis. Ideally, they increase the circulation time of loaded therapeutics to increase the half-life while reducing overall concentrations to avoid side effects. The current study explored the use of silica nanoparticles for therapeutic delivery of anti-oxidants, in particular, the neutralization of acrolein which can lead to extensive tissue damage due to its ability to generate more and more copies of itself when it interacts with normal tissue. Both an FDA-approved therapeutic, hydralazine, and natural product, epigallocatechin gallate, were explored as antioxidants for acrolein with nanoparticles for increased efficacy and stability in neuronal cell cultures. Not only were the nanoparticles explored in neuronal cells, but also in a co-cultured in vitro model with microglial cells to study potential immune responses to near-infrared (NIRF)-labeled nanoparticles and uptake. Studies included nanoparticle toxicity, uptake, and therapeutic response using fluorescence-based techniques with both dormant and activated immune microglia co-cultured with neuronal cells.

  5. Platelet-rich Preparation may serve as a Powerful Tool for Therapeutic Dental Pulp Regeneration

    Directory of Open Access Journals (Sweden)

    Hai-Hua Sun

    2011-09-01

    Full Text Available Introduction: Regeneration of dental pulp tissues presents one of the most challenging issues in regenerative dentistry due to their extremely poor intrinsic ability for self-healing and re-growth.The hypothesis: We hypothes-ize that patient-derived platelet-rich preparation can be used in clinical endodontic regenerative procedure, serving as a powerful tool for therapeutic dental pulp regeneration.Evaluation of the hypothesis: The cell transplantation does not always obtain the good result because of the low survival rate of transplanted cells. In addition, the use of ex vivo manipulated cell products faces many translational hurdles in treating non-vital disease. Recently, the body cells are focused as a potential source for therapeutics. Some researchers have demonstrated that endogenous stem cells may be recruited to a desired anatomic site pharma-cologically. This is spurring interest in developing new generation of biomaterials that incorporate and release selected powerful extracellular influences in a near-physiological fashion, and subsequently capture endogenous stem cells and influence their fates for regene-ration. The use of patient-derived products such as platelet-rich preparations that contain a multitude of endogenous growth factors and proteins is a clinically translatable biotechnology for this proposes. These simple and cost efficient procedures may have a potential impact in reducing the economic costs for standard medical treatments in regenerative endodontics.

  6. Therapeutic Effect of CD4+CD25+ Regulatory T Cells Amplified In Vitro on Experimental Autoimmune Neuritis in Rats

    Directory of Open Access Journals (Sweden)

    Feng-Jie Wang

    2018-05-01

    Full Text Available Background/Aims: This study aimed to explore whether the adoptive transfusion of autologous CD4+CD25+ regulatory T cells (CD4+CD25+ Tregs has a therapeutic effect on Experimental autoimmune neuritis (EAN model rats, and it provides new experimental and theoretical bases for the immunotherapy of Guillain-Barre syndrome (GBS. Methods: CD4+CD25+ Tregs were sorted from the spleens of rats using immunomagnetic bead separation techniques combined with flow cytometry. Their in vitro inhibitory function was determined using a lymphocyte proliferation inhibition test, and their purity was confirmed by flow cytometry. Cells were stimulated using CD3/CD28 monoclonal antibodies and were cultured in culture medium containing interleukin 2 (IL-2, transforming growth factor-β (TGF-β and rapamycin. After 15 days of amplification, CD4+CD25+ Tregs were collected and transfused into EAN model rats. Changes in the pathology and electron microscopical morphology of rat sciatic nerves in the normal group, untreated group, low-dose group (2 × 107 and high-dose group (4 × 107 were observed, and the expression of CD4+CD25+FOXP3 in peripheral blood in the four groups of rats was detected by flow cytometry. Results: Compared with rats in the untreated group, rats in the treatment groups had significantly reduced infiltration of inflammatory cells in the sciatic nerve, as well as myelin and axonal damage. Additionally, the CD4+CD25+ Tregs levels in peripheral blood were significantly higher than those in the untreated group (P< 0. 05. Moreover, the therapeutic effect became more significant with an increase in the dose of adoptive transfusion. Conclusion: Adoptive transfusion of CD4+CD25+ Tregs into EAN model rats has significant therapeutic effects.

  7. Therapeutic effects of human multilineage-differentiating stress enduring (MUSE cell transplantation into infarct brain of mice.

    Directory of Open Access Journals (Sweden)

    Tomohiro Yamauchi

    Full Text Available Bone marrow stromal cells (BMSCs are heterogeneous and their therapeutic effect is pleiotropic. Multilineage-differentiating stress enduring (Muse cells are recently identified to comprise several percentages of BMSCs, being able to differentiate into triploblastic lineages including neuronal cells and act as tissue repair cells. This study was aimed to clarify how Muse and non-Muse cells in BMSCs contribute to functional recovery after ischemic stroke.Human BMSCs were separated into stage specific embryonic antigen-3-positive Muse cells and -negative non-Muse cells. Immunodeficient mice were subjected to permanent middle cerebral artery occlusion and received transplantation of vehicle, Muse, non-Muse or BMSCs (2.5×104 cells into the ipsilateral striatum 7 days later.Motor function recovery in BMSC and non-Muse groups became apparent at 21 days after transplantation, but reached the plateau thereafter. In Muse group, functional recovery was not observed for up to 28 days post-transplantation, but became apparent at 35 days post-transplantation. On immunohistochemistry, only Muse cells were integrated into peri-infarct cortex and differentiate into Tuj-1- and NeuN-expressing cells, while negligible number of BMSCs and non-Muse cells remained in the peri-infarct area at 42 days post-transplantation.These findings strongly suggest that Muse cells and non-Muse cells may contribute differently to tissue regeneration and functional recovery. Muse cells may be more responsible for replacement of the lost neurons through their integration into the peri-infarct cortex and spontaneous differentiation into neuronal marker-positive cells. Non-Muse cells do not remain in the host brain and may exhibit trophic effects rather than cell replacement.

  8. Psychedelics and hypnosis: Commonalities and therapeutic implications.

    Science.gov (United States)

    Lemercier, Clément E; Terhune, Devin B

    2018-06-01

    Recent research on psychedelics and hypnosis demonstrates the value of both methods in the treatment of a range of psychopathologies with overlapping applications and neurophenomenological features. The potential of harnessing the power of suggestion to influence the phenomenological response to psychedelics toward more therapeutic action has remained unexplored in recent research and thereby warrants empirical attention. Here we aim to elucidate the phenomenological and neurophysiological similarities and dissimilarities between psychedelic states and hypnosis in order to revisit how contemporary knowledge may inform their conjunct usage in psychotherapy. We review recent advances in phenomenological and neurophysiological research on psychedelics and hypnosis, and we summarize early investigations on the coupling of psychedelics and hypnosis in scientific and therapeutic contexts. Results/outcomes: We highlight commonalities and differences between psychedelics and hypnosis that point to the potential efficacy of combining the two in psychotherapy. We propose multiple research paths for coupling these two phenomena at different stages in the preparation, acute phase and follow-up of psychedelic-assisted psychotherapy in order to prepare, guide and integrate the psychedelic experience with the aim of enhancing therapeutic outcomes. Harnessing the power of suggestion to modulate response to psychedelics could enhance their therapeutic efficacy by helping to increase the likelihood of positive responses, including mystical-type experiences.

  9. Genome Engineering for Personalized Arthritis Therapeutics.

    Science.gov (United States)

    Adkar, Shaunak S; Brunger, Jonathan M; Willard, Vincent P; Wu, Chia-Lung; Gersbach, Charles A; Guilak, Farshid

    2017-10-01

    Arthritis represents a family of complex joint pathologies responsible for the majority of musculoskeletal conditions. Nearly all diseases within this family, including osteoarthritis, rheumatoid arthritis, and juvenile idiopathic arthritis, are chronic conditions with few or no disease-modifying therapeutics available. Advances in genome engineering technology, most recently with CRISPR-Cas9, have revolutionized our ability to interrogate and validate genetic and epigenetic elements associated with chronic diseases such as arthritis. These technologies, together with cell reprogramming methods, including the use of induced pluripotent stem cells, provide a platform for human disease modeling. We summarize new evidence from genome-wide association studies and genomics that substantiates a genetic basis for arthritis pathogenesis. We also review the potential contributions of genome engineering in the development of new arthritis therapeutics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Gene therapy prospects--intranasal delivery of therapeutic genes.

    Science.gov (United States)

    Podolska, Karolina; Stachurska, Anna; Hajdukiewicz, Karolina; Małecki, Maciej

    2012-01-01

    Gene therapy is recognized to be a novel method for the treatment of various disorders. Gene therapy strategies involve gene manipulation on broad biological processes responsible for the spreading of diseases. Cancer, monogenic diseases, vascular and infectious diseases are the main targets of gene therapy. In order to obtain valuable experimental and clinical results, sufficient gene transfer methods are required. Therapeutic genes can be administered into target tissues via gene carriers commonly defined as vectors. The retroviral, adenoviral and adeno-associated virus based vectors are most frequently used in the clinic. So far, gene preparations may be administered directly into target organs or by intravenous, intramuscular, intratumor or intranasal injections. It is common knowledge that the number of gene therapy clinical trials has rapidly increased. However, some limitations such as transfection efficiency and stable and long-term gene expression are still not resolved. Consequently, great effort is focused on the evaluation of new strategies of gene delivery. There are many expectations associated with intranasal delivery of gene preparations for the treatment of diseases. Intranasal delivery of therapeutic genes is regarded as one of the most promising forms of pulmonary gene therapy research. Gene therapy based on inhalation of gene preparations offers an alternative way for the treatment of patients suffering from such lung diseases as cystic fibrosis, alpha-1-antitrypsin defect, or cancer. Experimental and first clinical trials based on plasmid vectors or recombinant viruses have revealed that gene preparations can effectively deliver therapeutic or marker genes to the cells of the respiratory tract. The noninvasive intranasal delivery of gene preparations or conventional drugs seems to be very encouraging, although basic scientific research still has to continue.

  11. Development of new therapeutic methods of lung cancer through team approach study

    International Nuclear Information System (INIS)

    Park, Jong Ho; Zo, Jae Ill; Baek, Hee Jong; Jung, Jin Haeng; Lee, Jae Cheol; Ryoo, Baek Yeol; Kim, Mi Sook; Choi, Du Hwan; Park, Sun Young; Lee, Hae Young

    2000-12-01

    The aims of this study were to make the lung cancer clinics in Korea Cancer Center Hospital, and to establish new therapeutic methods of lung cancer for increasing the cure rate and survival rate of patients. Also another purpose of this study was to establish a common treatment method in our hospital. All patients who were operated in Korea Cancer Center Hospital from 1987 due to lung cancer were followed up and evaluated. And we have been studied the effect of postoperative adjuvant therapy in stage I, II, IIIA non-small cell lung cancer patients from 1989 with the phase three study form. Follow-up examinations were scheduled in these patients and interim analysis was made. Also we have been studied the effect of chemo-therapeutic agents in small cell lung cancer patients from 1997 with the phase two study form. We evaluated the results of this study. Some important results of this study were as follows. 1. The new therapeutic method (surgery + MVP chemotherapy) was superior to the standard therapeutic one in stage I Non-small cell lung cancer patients. So, we have to change the standard method of treatment in stage I NSCLC. 2. Also, this new therapeutic method made a good result in stage II NSCLC patients. And this result was reported in The Annals of Thoracic Surgery. 3. However, this new therapeutic method was not superior to the standard treatment method (surgery only) in stage IIIA NSCLC patients. So, we must develop new chemo-therapeutic agents in the future for advanced NSCLC patients. 4. In the results of the randomized phase II studies about small cell lung cancer, there was no difference in survival between Etoposide + Carboplatin + Ifosfamide + Cisplatin group and Etoposide + Carboplatin + Ifosfamide + Cisplatin + Tamoxifen group in both the limited and extended types of small cell lung cancer patients

  12. Molecular, Phenotypic Aspects and Therapeutic Horizons of Rare Genetic Bone Disorders

    Directory of Open Access Journals (Sweden)

    Taha Faruqi

    2014-01-01

    Full Text Available A rare disease afflicts less than 200,000 individuals, according to the National Organization for Rare Diseases (NORD of the United States. Over 6,000 rare disorders affect approximately 1 in 10 Americans. Rare genetic bone disorders remain the major causes of disability in US patients. These rare bone disorders also represent a therapeutic challenge for clinicians, due to lack of understanding of underlying mechanisms. This systematic review explored current literature on therapeutic directions for the following rare genetic bone disorders: fibrous dysplasia, Gorham-Stout syndrome, fibrodysplasia ossificans progressiva, melorheostosis, multiple hereditary exostosis, osteogenesis imperfecta, craniometaphyseal dysplasia, achondroplasia, and hypophosphatasia. The disease mechanisms of Gorham-Stout disease, melorheostosis, and multiple hereditary exostosis are not fully elucidated. Inhibitors of the ACVR1/ALK2 pathway may serve as possible therapeutic intervention for FOP. The use of bisphosphonates and IL-6 inhibitors has been explored to be useful in the treatment of fibrous dysplasia, but more research is warranted. Cell therapy, bisphosphonate polytherapy, and human growth hormone may avert the pathology in osteogenesis imperfecta, but further studies are needed. There are still no current effective treatments for these bone disorders; however, significant promising advances in therapeutic modalities were developed that will limit patient suffering and treat their skeletal disabilities.

  13. Tumor cell-targeted delivery of CRISPR/Cas9 by aptamer-functionalized lipopolymer for therapeutic genome editing of VEGFA in osteosarcoma.

    Science.gov (United States)

    Liang, Chao; Li, Fangfei; Wang, Luyao; Zhang, Zong-Kang; Wang, Chao; He, Bing; Li, Jie; Chen, Zhihao; Shaikh, Atik Badshah; Liu, Jin; Wu, Xiaohao; Peng, Songlin; Dang, Lei; Guo, Baosheng; He, Xiaojuan; Au, D W T; Lu, Cheng; Zhu, Hailong; Zhang, Bao-Ting; Lu, Aiping; Zhang, Ge

    2017-12-01

    Osteosarcoma (OS) is a highly aggressive pediatric cancer, characterized by frequent lung metastasis and pathologic bone destruction. Vascular endothelial growth factor A (VEGFA), highly expressed in OS, not only contributes to angiogenesis within the tumor microenvironment via paracrine stimulation of vascular endothelial cells, but also acts as an autocrine survival factor for tumor cell themselves, thus making it a promising therapeutic target for OS. CRISPR/Cas9 is a versatile genome editing technology and holds tremendous promise for cancer treatment. However, a major bottleneck to achieve the therapeutic potential of the CRISPR/Cas9 is the lack of in vivo tumor-targeted delivery systems. Here, we screened an OS cell-specific aptamer (LC09) and developed a LC09-functionalized PEG-PEI-Cholesterol (PPC) lipopolymer encapsulating CRISPR/Cas9 plasmids encoding VEGFA gRNA and Cas9. Our results demonstrated that LC09 facilitated selective distribution of CRISPR/Cas9 in both orthotopic OS and lung metastasis, leading to effective VEGFA genome editing in tumor, decreased VEGFA expression and secretion, inhibited orthotopic OS malignancy and lung metastasis, as well as reduced angiogenesis and bone lesion with no detectable toxicity. The delivery system simultaneously restrained autocrine and paracrine VEGFA signaling in tumor cells and could facilitate translating CRISPR-Cas9 into clinical cancer treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Assessment of Research Needs for Advanced Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Penner, S.S.

    1985-11-01

    The DOE Advanced Fuel Cell Working Group (AFCWG) was formed and asked to perform a scientific evaluation of the current status of fuel cells, with emphasis on identification of long-range research that may have a significant impact on the practical utilization of fuel cells in a variety of applications. The AFCWG held six meetings at locations throughout the country where fuel cell research and development are in progress, for presentations by experts on the status of fuel cell research and development efforts, as well as for inputs on research needs. Subsequent discussions by the AFCWG have resulted in the identification of priority research areas that should be explored over the long term in order to advance the design and performance of fuel cells of all types. Surveys describing the salient features of individual fuel cell types are presented in Chapters 2 to 6 and include elaborations of long-term research needs relating to the expeditious introduction of improved fuel cells. The Introduction and the Summary (Chapter 1) were prepared by AFCWG. They were repeatedly revised in response to comments and criticism. The present version represents the closest approach to a consensus that we were able to reach, which should not be interpreted to mean that each member of AFCWG endorses every statement and every unexpressed deletion. The Introduction and Summary always represent a majority view and, occasionally, a unanimous judgment. Chapters 2 to 6 provide background information and carry the names of identified authors. The identified authors of Chapters 2 to 6, rather than AFCWG as a whole, bear full responsibility for the scientific and technical contents of these chapters.

  15. Mesenchymal Stem Cell-Like Cells Derived from Mouse Induced Pluripotent Stem Cells Ameliorate Diabetic Polyneuropathy in Mice

    Directory of Open Access Journals (Sweden)

    Tatsuhito Himeno

    2013-01-01

    Full Text Available Background. Although pathological involvements of diabetic polyneuropathy (DPN have been reported, no dependable treatment of DPN has been achieved. Recent studies have shown that mesenchymal stem cells (MSCs ameliorate DPN. Here we demonstrate a differentiation of induced pluripotent stem cells (iPSCs into MSC-like cells and investigate the therapeutic potential of the MSC-like cell transplantation on DPN. Research Design and Methods. For induction into MSC-like cells, GFP-expressing iPSCs were cultured with retinoic acid, followed by adherent culture for 4 months. The MSC-like cells, characterized with flow cytometry and RT-PCR analyses, were transplanted into muscles of streptozotocin-diabetic mice. Three weeks after the transplantation, neurophysiological functions were evaluated. Results. The MSC-like cells expressed MSC markers and angiogenic/neurotrophic factors. The transplanted cells resided in hindlimb muscles and peripheral nerves, and some transplanted cells expressed S100β in the nerves. Impairments of current perception thresholds, nerve conduction velocities, and plantar skin blood flow in the diabetic mice were ameliorated in limbs with the transplanted cells. The capillary number-to-muscle fiber ratios were increased in transplanted hindlimbs of diabetic mice. Conclusions. These results suggest that MSC-like cell transplantation might have therapeutic effects on DPN through secreting angiogenic/neurotrophic factors and differentiation to Schwann cell-like cells.

  16. B cells are multifunctional players in multiple sclerosis pathogenesis: insights from therapeutic interventions

    Directory of Open Access Journals (Sweden)

    Nele eClaes

    2015-12-01

    Full Text Available Multiple sclerosis (MS is a severe disease of the central nervous system (CNS characterized by autoimmune inflammation and neurodegeneration. Historically, damage to the CNS was thought to be mediated predominantly by activated pro-inflammatory T cells. B cell involvement in the pathogenesis of MS was solely attributed to autoantibody production. The first clues for the involvement of antibody-independent B cell functions in MS pathology came from positive results in clinical trials of the B cell depleting treatment rituximab in patients with relapsing-remitting (RR MS. The survival of antibody-secreting plasma cells and decrease in T cell numbers indicated the importance of other B cell functions in MS such as antigen presentation, costimulation and cytokine production. Rituximab provided us with an example of how clinical trials can lead to new research opportunities concerning B cell biology. Moreover, analysis of the antibody-independent B cell functions in MS has gained interest since these trials. Limited information is present on the effects of current immunomodulatory therapies on B cell functions, although effects of both first-line (interferon, glatiramer acetate, dimethyl fumarate and teriflunomide, second-line (fingolimod, natalizumab and even third-line (monoclonal antibody therapies treatments on B cell subtype distribution, expression of functional surface markers and secretion of different cytokines by B cells have been studied to some extent. In this review, we summarize the effects of different MS related treatments on B cell functions that have been described up to now in order to find new research opportunities and contribute to the understanding of the pathogenesis of MS.

  17. Effects of fotemustine or dacarbasine on a melanoma cell line pretreated with therapeutic proton irradiation

    Directory of Open Access Journals (Sweden)

    Privitera Giuseppe

    2009-04-01

    Full Text Available Abstract Background Considering that HTB140 melanoma cells have shown a poor response to either protons or alkylating agents, the effects of a combined use of these agents have been analysed. Methods Cells were irradiated in the middle of the therapeutic 62 MeV proton spread out Bragg peak (SOBP. Irradiation doses were 12 or 16 Gy and are those frequently used in proton therapy. Four days after irradiation cells were treated with fotemustine (FM or dacarbazine (DTIC. Drug concentrations were 100 and 250 μM, values close to those that produce 50% of growth inhibition. Cell viability, proliferation, survival and cell cycle distribution were assessed 7 days after irradiation that corresponds to more than six doubling times of HTB140 cells. In this way incubation periods providing the best single effects of drugs (3 days and protons (7 days coincided at the same time. Results Single proton irradiations have reduced the number of cells to ~50%. FM caused stronger cell inactivation due to its high toxicity, while the effectiveness of DTIC, that was important at short term, almost vanished with the incubation of 7 days. Cellular mechanisms triggered by proton irradiation differently influenced the final effects of combined treatments. Combination of protons and FM did not improve cell inactivation level achieved by single treatments. A low efficiency of the single DTIC treatment was overcome when DTIC was introduced following proton irradiation, giving better inhibitory effects with respect to the single treatments. Most of the analysed cells were in G1/S phase, viable, active and able to replicate DNA. Conclusion The obtained results are the consequence of a high resistance of HTB140 melanoma cells to protons and/or drugs. The inactivation level of the HTB140 human melanoma cells after protons, FM or DTIC treatments was not enhanced by their combined application.

  18. Therapeutic touch affects DNA synthesis and mineralization of human osteoblasts in culture.

    Science.gov (United States)

    Jhaveri, Ankur; Walsh, Stephen J; Wang, Yatzen; McCarthy, MaryBeth; Gronowicz, Gloria

    2008-11-01

    Complementary and alternative medicine (CAM) techniques are commonly used in hospitals and private medical facilities; however, the effectiveness of many of these practices has not been thoroughly studied in a scientific manner. Developed by Dr. Dolores Krieger and Dora Kunz, Therapeutic Touch is one of these CAM practices and is a highly disciplined five-step process by which a practitioner can generate energy through their hands to promote healing. There are numerous clinical studies on the effects of TT but few in vitro studies. Our purpose was to determine if Therapeutic Touch had any effect on osteoblast proliferation, differentiation, and mineralization in vitro. TT was performed twice a week for 10 min each on human osteoblasts (HOBs) and on an osteosarcoma-derived cell line, SaOs-2. No significant differences were found in DNA synthesis, assayed by [(3)H]-thymidine incorporation at 1 or 2 weeks for SaOs-2 or 1 week for HOBs. However, after four TT treatments in 2 weeks, TT significantly (p = 0.03) increased HOB DNA synthesis compared to controls. Immunocytochemistry for Proliferating Cell Nuclear Antigen (PCNA) confirmed these data. At 2 weeks in differentiation medium, TT significantly increased mineralization in HOBs (p = 0.016) and decreased mineralization in SaOs-2 (p = 0.0007), compared to controls. Additionally, Northern blot analysis indicated a TT-induced increase in mRNA expression for Type I collagen, bone sialoprotein, and alkaline phosphatase in HOBs and a decrease of these bone markers in SaOs-2 cells. In conclusion, Therapeutic Touch appears to increase human osteoblast DNA synthesis, differentiation and mineralization, and decrease differentiation and mineralization in a human osteosarcoma-derived cell line. (c) 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  19. The Preclinical Research Progress of Stem Cells Therapy in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2016-01-01

    Full Text Available Parkinson’s disease (PD is a type of degenerative disorder of the basal ganglia, causing tremor at rest, muscle rigidity hypokinesia, and dementia. The effectiveness of drug treatments gradually diminishes because the conversion to dopamine within the brain is increasingly disrupted by the progressive degeneration of the dopaminergic terminals. After long-term treatment, most patients with PD suffer from disability that cannot be satisfactorily controlled. To solve these issues, stem cells have recently been used for cell therapy of PD. In this review, the characteristics of different stem cells and their therapeutic effects on PD treatment will be discussed.

  20. Ground Zero in the Debate over Stem-Cell Research.

    Science.gov (United States)

    Southwick, Ron

    2001-01-01

    Describes how political, legal, and ethical battles over embryonic stem-cell research are focused on the University of Wisconsin at Madison, where the cells were first isolated. Addresses the issue of access to the university's stem cells and a recent presidential decision regarding funding for stem-cell research.(EV)

  1. State performance in pluripotent and adult stem cell research, 2009-2016.

    Science.gov (United States)

    Surani, Sana H; Levine, Aaron D

    2018-04-01

    To examine how the geographic distribution of pluripotent and adult stem cell research publications within the USA differs from other areas of biomedical research. Publication count data for pluripotent stem cell research, adult stem cell research and a comparison group representative of biomedical research more broadly were collected and analyzed for each US state from 2009 to 2016. The distribution of pluripotent stem cell research differed from the other fields with overperformance in pluripotent stem cell research observed in California, as well as Wisconsin, Massachusetts, Maryland and Connecticut. Our analysis suggests that permissive state stem cell policy may be one of the several factors contributing to strong state performance in pluripotent stem cell research.

  2. Recombinant IκBα-loaded curcumin nanoparticles for improved cancer therapeutics

    International Nuclear Information System (INIS)

    Banerjee, Subhamoy; Ghosh, Siddhartha Sankar; Sahoo, Amaresh Kumar; Chattopadhyay, Arun

    2014-01-01

    The field of recombinant protein therapeutics has been evolving rapidly, making significant impact on clinical applications for several diseases, including cancer. However, the functional aspects of proteins rely exclusively on their structural integrity, in which nanoparticle mediated delivery offers unique advantages over free proteins. In the present work, a novel strategy has been developed where the nanoparticles (NPs) used for the delivery of the recombinant protein could contribute to enhancing the therapeutic efficacy of the recombinant protein. The transcription factor, NFκB, involved in cell growth and its inhibitor, IκBα, regulates its proliferation. Another similar naturally available molecule, which inhibits the function of NFκB, is curcumin. Hence, we have developed a ‘green synthesis’ method for preparing water-soluble curcumin nanoparticles to stabilize recombinant IκBα protein. The NPs were characterized by UV–vis and fluorescence spectroscopy, transmission electron microscopy (TEM) and dynamic light scattering before administration into human cervical carcinoma (HeLa) and glioblastoma (U87MG) cells. Experimental results demonstrated that this combined module had enhanced therapeutic efficacy, causing apoptotic cell death, which was confirmed by cytotoxicity assay and flowcytometry analyses. The expression of apoptotic genes studied by semi-quantitative reverse transcription PCR delineated the molecular pathways involved in cell death. Thus, our study revealed that the functional delivery of recombinant IκBα-loaded curcumin NPs has promise as a natural-product-based protein therapeutics against cancer cells. (paper)

  3. Recombinant IκBα-loaded curcumin nanoparticles for improved cancer therapeutics

    Science.gov (United States)

    Banerjee, Subhamoy; Sahoo, Amaresh Kumar; Chattopadhyay, Arun; Sankar Ghosh, Siddhartha

    2014-08-01

    The field of recombinant protein therapeutics has been evolving rapidly, making significant impact on clinical applications for several diseases, including cancer. However, the functional aspects of proteins rely exclusively on their structural integrity, in which nanoparticle mediated delivery offers unique advantages over free proteins. In the present work, a novel strategy has been developed where the nanoparticles (NPs) used for the delivery of the recombinant protein could contribute to enhancing the therapeutic efficacy of the recombinant protein. The transcription factor, NFκB, involved in cell growth and its inhibitor, IκBα, regulates its proliferation. Another similar naturally available molecule, which inhibits the function of NFκB, is curcumin. Hence, we have developed a ‘green synthesis’ method for preparing water-soluble curcumin nanoparticles to stabilize recombinant IκBα protein. The NPs were characterized by UV-vis and fluorescence spectroscopy, transmission electron microscopy (TEM) and dynamic light scattering before administration into human cervical carcinoma (HeLa) and glioblastoma (U87MG) cells. Experimental results demonstrated that this combined module had enhanced therapeutic efficacy, causing apoptotic cell death, which was confirmed by cytotoxicity assay and flowcytometry analyses. The expression of apoptotic genes studied by semi-quantitative reverse transcription PCR delineated the molecular pathways involved in cell death. Thus, our study revealed that the functional delivery of recombinant IκBα-loaded curcumin NPs has promise as a natural-product-based protein therapeutics against cancer cells.

  4. Therapeutic approaches for spinal cord injury

    Directory of Open Access Journals (Sweden)

    Alexandre Fogaça Cristante

    2012-10-01

    Full Text Available This study reviews the literature concerning possible therapeutic approaches for spinal cord injury. Spinal cord injury is a disabling and irreversible condition that has high economic and social costs. There are both primary and secondary mechanisms of damage to the spinal cord. The primary lesion is the mechanical injury itself. The secondary lesion results from one or more biochemical and cellular processes that are triggered by the primary lesion. The frustration of health professionals in treating a severe spinal cord injury was described in 1700 BC in an Egyptian surgical papyrus that was translated by Edwin Smith; the papyrus reported spinal fractures as a ''disease that should not be treated.'' Over the last biological or pharmacological treatment method. Science is unraveling the mechanisms of cell protection and neuroregeneration, but clinically, we only provide supportive care for patients with spinal cord injuries. By combining these treatments, researchers attempt to enhance the functional recovery of patients with spinal cord injuries. Advances in the last decade have allowed us to encourage the development of experimental studies in the field of spinal cord regeneration. The combination of several therapeutic strategies should, at minimum, allow for partial functional recoveries for these patients, which could improve their quality of life.

  5. Sphingosine 1-phosphate (S1P) signalling: Role in bone biology and potential therapeutic target for bone repair.

    Science.gov (United States)

    Sartawi, Ziad; Schipani, Ernestina; Ryan, Katie B; Waeber, Christian

    2017-11-01

    The lipid mediator sphingosine 1-phosphate (S1P) affects cellular functions in most systems. Interest in its therapeutic potential has increased following the discovery of its G protein-coupled receptors and the recent availability of agents that can be safely administered in humans. Although the role of S1P in bone biology has been the focus of much less research than its role in the nervous, cardiovascular and immune systems, it is becoming clear that this lipid influences many of the functions, pathways and cell types that play a key role in bone maintenance and repair. Indeed, S1P is implicated in many osteogenesis-related processes including stem cell recruitment and subsequent differentiation, differentiation and survival of osteoblasts, and coupling of the latter cell type with osteoclasts. In addition, S1P's role in promoting angiogenesis is well-established. The pleiotropic effects of S1P on bone and blood vessels have significant potential therapeutic implications, as current therapeutic approaches for critical bone defects show significant limitations. Because of the complex effects of S1P on bone, the pharmacology of S1P-like agents and their physico-chemical properties, it is likely that therapeutic delivery of S1P agents will offer significant advantages compared to larger molecular weight factors. Hence, it is important to explore novel methods of utilizing S1P agents therapeutically, and improve our understanding of how S1P and its receptors modulate bone physiology and repair. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Scanning the horizon for high value-add manufacturing science: Accelerating manufacturing readiness for the next generation of disruptive, high-value curative cell therapeutics.

    Science.gov (United States)

    Hourd, Paul; Williams, David J

    2018-05-01

    Since the regenerative medicine sector entered the second phase of its development (RegenMed 2.0) more than a decade ago, there is increasing recognition that current technology innovation trajectories will drive the next translational phase toward the production of disruptive, high-value curative cell and gene-based regenerative medicines. To identify the manufacturing science problems that must be addressed to permit translation of these next generation therapeutics. In this short report, a long lens look within the pluripotent stem cell therapeutic space, both embryonic and induced, is used to gain early insights on where critical technology and manufacturing challenges may emerge. This report offers a future perspective on the development and innovation that will be needed within manufacturing science to add value in the production and commercialization of the next generation of advanced cell therapies and precision medicines. Copyright © 2018 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  7. Therapeutic hypothermia reduces intestinal ischemia/reperfusion ...

    African Journals Online (AJOL)

    The detached intestinal epithelial cells in hypothermia group showed ... of apoptosis than those in normothermia group at 4 h (17.30 ± 2.56 vs. ... intestinal ischemia/reperfusion (IR) injury, which could be attenuated by therapeutic hypothermia.

  8. Therapeutic genes for anti-HIV/AIDS gene therapy.

    Science.gov (United States)

    Bovolenta, Chiara; Porcellini, Simona; Alberici, Luca

    2013-01-01

    The multiple therapeutic approaches developed so far to cope HIV-1 infection, such as anti-retroviral drugs, germicides and several attempts of therapeutic vaccination have provided significant amelioration in terms of life-quality and survival rate of AIDS patients. Nevertheless, no approach has demonstrated efficacy in eradicating this lethal, if untreated, infection. The curative power of gene therapy has been proven for the treatment of monogenic immunodeficiensies, where permanent gene modification of host cells is sufficient to correct the defect for life-time. No doubt, a similar concept is not applicable for gene therapy of infectious immunodeficiensies as AIDS, where there is not a single gene to be corrected; rather engineered cells must gain immunotherapeutic or antiviral features to grant either short- or long-term efficacy mostly by acquisition of antiviral genes or payloads. Anti-HIV/AIDS gene therapy is one of the most promising strategy, although challenging, to eradicate HIV-1 infection. In fact, genetic modification of hematopoietic stem cells with one or multiple therapeutic genes is expected to originate blood cell progenies resistant to viral infection and thereby able to prevail on infected unprotected cells. Ultimately, protected cells will re-establish a functional immune system able to control HIV-1 replication. More than hundred gene therapy clinical trials against AIDS employing different viral vectors and transgenes have been approved or are currently ongoing worldwide. This review will overview anti-HIV-1 infection gene therapy field evaluating strength and weakness of the transgenes and payloads used in the past and of those potentially exploitable in the future.

  9. Mixed-Meal Tolerance Test Versus Glucagon Stimulation Test for the Assessment of β-Cell Function in Therapeutic Trials in Type 1 Diabetes

    Science.gov (United States)

    Greenbaum, Carla J.; Mandrup-Poulsen, Thomas; McGee, Paula Friedenberg; Battelino, Tadej; Haastert, Burkhard; Ludvigsson, Johnny; Pozzilli, Paolo; Lachin, John M.; Kolb, Hubert

    2008-01-01

    OBJECTIVE—β-Cell function in type 1 diabetes clinical trials is commonly measured by C-peptide response to a secretagogue in either a mixed-meal tolerance test (MMTT) or a glucagon stimulation test (GST). The Type 1 Diabetes TrialNet Research Group and the European C-peptide Trial (ECPT) Study Group conducted parallel randomized studies to compare the sensitivity, reproducibility, and tolerability of these procedures. RESEARCH DESIGN AND METHODS—In randomized sequences, 148 TrialNet subjects completed 549 tests with up to 2 MMTT and 2 GST tests on separate days, and 118 ECPT subjects completed 348 tests (up to 3 each) with either two MMTTs or two GSTs. RESULTS—Among individuals with up to 4 years’ duration of type 1 diabetes, >85% had measurable stimulated C-peptide values. The MMTT stimulus produced significantly higher concentrations of C-peptide than the GST. Whereas both tests were highly reproducible, the MMTT was significantly more so (R2 = 0.96 for peak C-peptide response). Overall, the majority of subjects preferred the MMTT, and there were few adverse events. Some older subjects preferred the shorter duration of the GST. Nausea was reported in the majority of GST studies, particularly in the young age-group. CONCLUSIONS—The MMTT is preferred for the assessment of β-cell function in therapeutic trials in type 1 diabetes. PMID:18628574

  10. Stem cell terminology: practical, theological and ethical implications.

    Science.gov (United States)

    Shanner, Laura

    2002-01-01

    Stem cell policy discussions frequently confuse embryonic and fetal sources of stem cells, and label untested, non-reproductive cloning as "therapeutic." Such misnomers distract attention from significant practical and ethical implications: accelerated research agendas tend to be supported at the expense of physical risks to women, theological implications in a multi-faith community, informed consent for participation in research, and treatment decisions altered by unrealistic expectations.

  11. Unexplored therapeutic opportunities in the human genome

    DEFF Research Database (Denmark)

    Oprea, Tudor I; Bologa, Cristian G; Brunak, Søren

    2018-01-01

    A large proportion of biomedical research and the development of therapeutics is focused on a small fraction of the human genome. In a strategic effort to map the knowledge gaps around proteins encoded by the human genome and to promote the exploration of currently understudied, but potentially d...... as well as key drug target classes, including G protein-coupled receptors, protein kinases and ion channels, which illustrate the nature of the unexplored opportunities for biomedical research and therapeutic development....

  12. Retinal pigment epithelial cells secrete neurotrophic factors and synthesize dopamine: possible contribution to therapeutic effects of RPE cell transplantation in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Gu Qing

    2009-06-01

    Full Text Available Abstract Background New strategies for the treatment of Parkinson's disease (PD are shifted from dopamine (DA replacement to regeneration or restoration of the nigro-striatal system. A cell therapy using human retinal pigment epithelial (RPE cells as substitution for degenerated dopaminergic (DAergic neurons has been developed and showed promising prospect in clinical treatment of PD, but the exact mechanism underlying this therapy is not fully elucidated. In the present study, we investigated whether the beneficial effects of this therapy are related to the trophic properties of RPE cells and their ability to synthesize DA. Methods We evaluated the protective effects of conditioned medium (CM from cultured RPE cells on the DAergic cells against 6-hydroxydopamine (6-OHDA- and rotenone-induced neurotoxicity and determined the levels of glial cell derived neurotrophic factor (GDNF and brain derived neurotrophic factor (BDNF released by RPE cells. We also measured the DA synthesis and release. Finally we transplanted microcarriers-RPE cells into 6-OHDA lesioned rats and observed the improvement in apomorphine-induced rotations (AIR. Results We report here: (1 CM from RPE cells can secret trophic factors GDNF and BDNF, and protect DAergic neurons against the 6-OHDA- and rotenone-induced cell injury; (2 cultured RPE cells express L-dopa decarboxylase (DDC and synthesize DA; (3 RPE cells attached to microcarriers can survive in the host striatum and improve the AIR in 6-OHDA-lesioned animal model of PD; (4 GDNF and BDNF levels are found significantly higher in the RPE cell-grafted tissues. Conclusion These findings indicate the RPE cells have the ability to secret GDNF and BDNF, and synthesize DA, which probably contribute to the therapeutic effects of RPE cell transplantation in PD.

  13. Polyethylenimine-based siRNA nanocomplexes reprogram tumor-associated dendritic cells via TLR5 to elicit therapeutic antitumor immunity.

    Science.gov (United States)

    Cubillos-Ruiz, Juan R; Engle, Xavier; Scarlett, Uciane K; Martinez, Diana; Barber, Amorette; Elgueta, Raul; Wang, Li; Nesbeth, Yolanda; Durant, Yvon; Gewirtz, Andrew T; Sentman, Charles L; Kedl, Ross; Conejo-Garcia, Jose R

    2009-08-01

    The success of clinically relevant immunotherapies requires reversing tumor-induced immunosuppression. Here we demonstrated that linear polyethylenimine-based (PEI-based) nanoparticles encapsulating siRNA were preferentially and avidly engulfed by regulatory DCs expressing CD11c and programmed cell death 1-ligand 1 (PD-L1) at ovarian cancer locations in mice. PEI-siRNA uptake transformed these DCs from immunosuppressive cells to efficient antigen-presenting cells that activated tumor-reactive lymphocytes and exerted direct tumoricidal activity, both in vivo and in situ. PEI triggered robust and selective TLR5 activation in vitro and elicited the production of hallmark TLR5-inducible cytokines in WT mice, but not in Tlr5-/- littermates. Thus, PEI is a TLR5 agonist that, to our knowledge, was not previously recognized. In addition, PEI-complexed nontargeting siRNA oligonucleotides stimulated TLR3 and TLR7. The nonspecific activation of multiple TLRs (specifically, TLR5 and TLR7) reversed the tolerogenic phenotype of human and mouse ovarian tumor-associated DCs. In ovarian carcinoma-bearing mice, this induced T cell-mediated tumor regression and prolonged survival in a manner dependent upon myeloid differentiation primary response gene 88 (MyD88; i.e., independent of TLR3). Furthermore, gene-specific siRNA-PEI nanocomplexes that silenced immunosuppressive molecules on mouse tumor-associated DCs elicited discernibly superior antitumor immunity and enhanced therapeutic effects compared with nontargeting siRNA-PEI nanocomplexes. Our results demonstrate that the intrinsic TLR5 and TLR7 stimulation of siRNA-PEI nanoparticles synergizes with the gene-specific silencing activity of siRNA to transform tumor-infiltrating regulatory DCs into DCs capable of promoting therapeutic antitumor immunity.

  14. Dye solar cell research

    CSIR Research Space (South Africa)

    Cummings, F

    2009-11-01

    Full Text Available Cummings Energy and Processes Materials Science and Manufacturing Council for Scientific and Industrial Research P.O. Box 395 Pretoria 0001, South Africa 27 November 2009 CONTENT head2rightBackground head2rightCSIR Dye Solar Cell Research head2... rightCollaborations and Links © CSIR 2007 www.csir.co.za head2rightAcknowledgements BACKGROUND head2rightSA is dry: Annual rainfall average of 450 mm compared with a world average of 860 mm head2rightOn upside, we have some...

  15. Combination therapy and evaluation of therapeutic effect in hepatocellular carcinoma cell using triple reporter genes; containing for NIS, HSV1-sr39tk and GFP

    Energy Technology Data Exchange (ETDEWEB)

    Lee, You La; Lee, Yong Jin; Ahn, Sohn Joo; Ahn, Byeong Cheol; Lee, Sang Woo; Yoo, Jeong Soo; Lee, Jae Tae [Kyungpook National University, Daegu (Korea, Republic of)

    2007-07-01

    To identify therapeutic effect after combine Sodium Iodine Symporter (NIS) and Mutant Herpes-simplex virus type 1 sr39tk (HSV1-sr39tk) expression in hepatocellular carcinoma cell, we transfected triple gene and investigated the properties of these gene ability in hepatocellular carcinoma cell line. After making vector with gene encoding a fusion protein comprised of HSV1-sr39tk and green florescence protein (GFP), to make triple reporter genes NIS gene was further fused to the vector using IRES vector. The vector expressing triple reporter gene was transfected to the Huh-7 cell line using liposome. Functions of hNIS and HSV1-sr39tk expression were confirmed by radio iodine uptake with and without perchlorate and [3H]-penciclovir (3-H PCV) uptake, respectively. To evaluate therapeutic effect in vitro, GCV and I-131 was treated in Huh-7/NTG cell and dual therapy performed. An animal imaging acquired using Optix and microPET in vivo. I-125 uptake was increased up to 100-fold compare to that of non-transfected cells. The transfected cell accumulated H-3 PCV up to 53 times higher at 2 hour than that of non-transfected cells. With fluorescence microscopy, green fluorescence was detected in the transfected cell. In cytotoxic studies, the cell viability of Huh-7/NTG cell was decreased to 41 % of control cell at 10ug/ml GCV concentrations. The survival rate of the Huh-7/NTG cell treated with I-131 decreased up to 16%. In I-131 and GCV dual therapy, Huh-7/NTG cell survival rate decreased up to 4%. In animal studies, Huh-7/NTG tumors showed higher uptake of 18F-FHBG and I-124 than Huh-7 tumors. GFP signal is also higher in Huh-7/NTG tumor than control. We successfully constructed a vector with delivery two therapeutic genes and one reporter gene and transfected the vector to a Huh-7 cell. The hepatocellular carcinoma cell transfected with the vector can be treated with GCV and I-131. The effect of dual gene therapy could be easily assessed by the optical reporter gene imaging.

  16. Fake news portrayals of stem cells and stem cell research.

    Science.gov (United States)

    Marcon, Alessandro R; Murdoch, Blake; Caulfield, Timothy

    2017-10-01

    This study examines how stem cells and stem cell research are portrayed on websites deemed to be purveyors of distorted and dubious information. Content analysis was conducted on 224 articles from 2015 to 2016, compiled by searching with the keywords 'stem cell(s)' on a list of websites flagged for containing either 'fake' or 'junk science' news. Articles contained various exaggerated positive and negative claims about stem cells and stem cell science, health and science related conspiracy theories, and statements promoting fear and mistrust of conventional medicine. Findings demonstrate the existence of organized misinformation networks, which may lead the public away from accurate information and facilitate a polarization of public discourse.

  17. [Advances in Neurological Therapeutics for Friedreich Ataxia and Machado-Joseph Disease].

    Science.gov (United States)

    Yabe, Ichiro; Sasaki, Hidenao

    2017-08-01

    We reviewed advances in therapeutics for both Friedreich ataxia and Machado-Joseph disease. Various clinical trials have been carried out, mainly for Friedreich ataxia; however, the therapeutic reports from these trials have not provided much evidence for success. Some interesting clinical trials have been reported, and further developments are expected. Regenerative therapy using umbilical cord mesenchymal stem cells and a therapeutic study investigating a new pathomechanism in animal and/or cell culture studies were reported. We expect that these results will translate to therapeutic strategies for patients with these disorders. In addition, biomarkers play an important role when novel treatments are discovered and clinical trials are performed: hence at present, a number of biomarkers such as gait analysis by triaxial accelerometers and prism adaptation of hand-reaching movements, are being examined.

  18. Electrochemotherapy as a new therapeutic strategy in advanced Merkel cell carcinoma of head and neck region

    International Nuclear Information System (INIS)

    Scelsi, Daniele; Mevio, Niccolò; Bertino, Giulia; Occhini, Antonio; Brazzelli, Valeria; Morbini, Patrizia; Benazzo, Marco

    2013-01-01

    Merkel Cell Carcinoma (MCC) is a rare and aggressive tumour, arising from a cutaneous mechanoceptor cell located in the basal layer of epidermis, with poor prognosis. The treatment of choice for the initial stage of the disease is surgery and/or radiotherapy. The treatment of recurrent or advanced disease is still controversial. We report a case of 84 years old woman with a recurrent MCC of the chin treated with electrochemotherapy (ECT). During the period of 20 months, four sessions of ECT were employed, which resulted in an objective response of the tumour and good quality of residual life. Our case shows the effectiveness of ECT in the treatment of locally advanced MCC of the head and neck region in a patient not suitable for standard therapeutic options

  19. Biominetic High Density Lipoproteins for the Delivery of Therapeutic Oligonucleotides

    Science.gov (United States)

    Tripathy, Sushant

    Advances in nanotechnology have brought about novel inorganic and hybrid nanoparticles with unique physico-chemical properties that make them suitable for a broad range of applications---from nano-circuitry to drug delivery. A significant part of those advancements have led to ground-breaking discoveries that have changed the approaches to formulation of therapeutics against diseases, such as cancer. Now-a-days the focus does not lie solely on finding a candidate small-molecule therapeutic with minimal adverse effects, but researchers are looking up to nanoparticles to improve biodistribution and biocompatibility profile of clinically proven therapeutics. The plethora of conjugation chemistries offered by currently extant inorganic nanoparticles have, in recent years, led to great leaps in the field of biomimicry---a modality that promises high biocompatibility. Further, in the pursuit of highly specific therapeutic molecules, researchers have turned to silencing oligonucleotides and some have already brought together the strengths of nanoparticles and silencing oligonucleotides in search of an efficacious therapy for cancer with minimal adverse effects. This dissertation work focuses on such a biomimetic platform---a gold nanoparticle based high density lipoprotein biomimetic (HDL NP), for the delivery of therapeutic oligonucleotides. The first chapter of this body of work introduces the molecular target of the silencing oligonucleotides---VEGFR2, and its role in the progression of solid tumor cancers. The background information also covers important aspects of natural high density lipoproteins (HDL), especially their innate capacity to bind and deliver exogenous and endogenous silencing oligonucleotides to tissues that express their high affinity receptor SRB1. We subsequently describe the synthesis of the biomimetic HDL NP and its oligonucleotide conjugates, and establish their biocompatibility. Further on, experimental data demonstrate the efficacy of silencing

  20. Cancer-associated fibroblasts as target and tool in cancer therapeutics and diagnostics.

    Science.gov (United States)

    De Vlieghere, Elly; Verset, Laurine; Demetter, Pieter; Bracke, Marc; De Wever, Olivier

    2015-10-01

    Cancer-associated fibroblasts (CAFs) are drivers of tumour progression and are considered as a target and a tool in cancer diagnostic and therapeutic applications. An increased abundance of CAFs or CAF signatures are recognized as a bad prognostic marker in several cancer types. Tumour-environment biomimetics strongly improve our understanding of the communication between CAFs, cancer cells and other host cells. Several experimental drugs targeting CAFs are in clinical trials for multiple tumour entities; alternatively, CAFs can be exploited as a tool to characterize the functionality of circulating tumour cells or to capture them as a tool to prevent metastasis. The continuous interaction between tissue engineers, biomaterial experts and cancer researchers creates the possibility to biomimic the tumour-environment and provides new opportunities in cancer diagnostics and management.