WorldWideScience

Sample records for cell system based

  1. Mammalian Cell-Based Sensor System

    Science.gov (United States)

    Banerjee, Pratik; Franz, Briana; Bhunia, Arun K.

    Use of living cells or cellular components in biosensors is receiving increased attention and opens a whole new area of functional diagnostics. The term "mammalian cell-based biosensor" is designated to biosensors utilizing mammalian cells as the biorecognition element. Cell-based assays, such as high-throughput screening (HTS) or cytotoxicity testing, have already emerged as dependable and promising approaches to measure the functionality or toxicity of a compound (in case of HTS); or to probe the presence of pathogenic or toxigenic entities in clinical, environmental, or food samples. External stimuli or changes in cellular microenvironment sometimes perturb the "normal" physiological activities of mammalian cells, thus allowing CBBs to screen, monitor, and measure the analyte-induced changes. The advantage of CBBs is that they can report the presence or absence of active components, such as live pathogens or active toxins. In some cases, mammalian cells or plasma membranes are used as electrical capacitors and cell-cell and cell-substrate contact is measured via conductivity or electrical impedance. In addition, cytopathogenicity or cytotoxicity induced by pathogens or toxins resulting in apoptosis or necrosis could be measured via optical devices using fluorescence or luminescence. This chapter focuses mainly on the type and applications of different mammalian cell-based sensor systems.

  2. Cell-based bioassays in microfluidic systems

    Science.gov (United States)

    Itle, Laura J.; Zguris, Jeanna C.; Pishko, Michael V.

    2004-12-01

    The development of cell-based bioassays for high throughput drug screening or the sensing of biotoxins is contingent on the development of whole cell sensors for specific changes in intracellular conditions and the integration of those systems into sample delivery devices. Here we show the feasibility of using a 5-(and-6)-carboxy SNARF-1, acetoxymethyl ester, acetate, a fluorescent dye capable of responding to changes in intracellular pH, as a detection method for the bacterial endotoxin, lipopolysaccharide. We used photolithography to entrap cells with this dye within poly(ethylene) glyocol diacrylate hydrogels in microfluidic channels. After 18 hours of exposure to lipopolysaccharide, we were able to see visible changes in the fluorescent pattern. This work shows the feasibility of using whole cell based biosensors within microfluidic networks to detect cellular changes in response to exogenous agents.

  3. Novel Fuel Cells for Coal Based Systems

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Tao

    2011-12-31

    The goal of this project was to acquire experimental data required to assess the feasibility of a Direct Coal power plant based upon an Electrochemical Looping (ECL) of Liquid Tin Anode Solid Oxide Fuel Cell (LTA-SOFC). The objective of Phase 1 was to experimentally characterize the interaction between the tin anode, coal fuel and cell component electrolyte, the fate of coal contaminants in a molten tin reactor (via chemistry) and their impact upon the YSZ electrolyte (via electrochemistry). The results of this work will provided the basis for further study in Phase 2. The objective of Phase 2 was to extend the study of coal impurities impact on fuel cell components other than electrolyte, more specifically to the anode current collector which is made of an electrically conducting ceramic jacket and broad based coal tin reduction. This work provided a basic proof-of-concept feasibility demonstration of the direct coal concept.

  4. Chip based electroanalytical systems for cell analysis

    DEFF Research Database (Denmark)

    Spegel, C.; Heiskanen, A.; Skjolding, L.H.D.

    2008-01-01

    This review with 239 references has as its aim to give the reader an introduction to the kinds of methods used for developing microchip based electrode systems as well as to cover the existing literature on electroanalytical systems where microchips play a crucial role for 'nondestructive...

  5. FPGA based Control of a Production Cell System

    NARCIS (Netherlands)

    Groothuis, Marcel A.; Zuijlen, van Jasper J.P.; Broenink, Jan F.

    2008-01-01

    Most motion control systems for mechatronic systems are implemented on digital computers. In this paper we present an FPGA based solution implemented on a low cost Xilinx Spartan III FPGA. A Production Cell setup with multiple parallel operating units is chosen as a test case. The embedded control s

  6. Cell-based microfluidic platform for mimicking human olfactory system.

    Science.gov (United States)

    Lee, Seung Hwan; Oh, Eun Hae; Park, Tai Hyun

    2015-12-15

    Various attempts have been made to mimic the human olfactory system using human olfactory receptors (hORs). In particular, OR-expressed cell-based odorant detection systems mimic the smell sensing mechanism of humans, as they exploit endogenous cellular signaling pathways. However, the majority of such cell-based studies have been performed in the liquid phase to maintain cell viability, and liquid odorants were used as detection targets. Here, we present a microfluidic device for the detection of gaseous odorants which more closely mimics the human olfactory system. Cells expressing hOR were cultured on a porous membrane. The membrane was then flipped over and placed between two compartments. The upper compartment is the gaseous part where gaseous odorants are supplied, while the lower compartment is the aqueous part where viable cells are maintained in the liquid medium. Using this simple microfluidic device, we were able to detect gaseous odorant molecules by a fluorescence signal. The fluorescence signal was generated by calcium influx resulting from the interaction between odorant molecules and the hOR. The system allowed detection of gaseous odorant molecules in real-time, and the findings showed that the fluorescence responses increased dose-dependently in the range of 0-2 ppm odorant. In addition, the system can discriminate among gaseous odorant molecules. This microfluidic system closely mimics the human olfactory system in the sense that the submerged cells detect gaseous odorants.

  7. Model-based fault diagnosis in PEM fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Escobet, T.; de Lira, S.; Puig, V.; Quevedo, J. [Automatic Control Department (ESAII), Universitat Politecnica de Catalunya (UPC), Rambla Sant Nebridi 10, 08222 Terrassa (Spain); Feroldi, D.; Riera, J.; Serra, M. [Institut de Robotica i Informatica Industrial (IRI), Consejo Superior de Investigaciones Cientificas (CSIC), Universitat Politecnica de Catalunya (UPC) Parc Tecnologic de Barcelona, Edifici U, Carrer Llorens i Artigas, 4-6, Planta 2, 08028 Barcelona (Spain)

    2009-07-01

    In this work, a model-based fault diagnosis methodology for PEM fuel cell systems is presented. The methodology is based on computing residuals, indicators that are obtained comparing measured inputs and outputs with analytical relationships, which are obtained by system modelling. The innovation of this methodology is based on the characterization of the relative residual fault sensitivity. To illustrate the results, a non-linear fuel cell simulator proposed in the literature is used, with modifications, to include a set of fault scenarios proposed in this work. Finally, it is presented the diagnosis results corresponding to these fault scenarios. It is remarkable that with this methodology it is possible to diagnose and isolate all the faults in the proposed set in contrast with other well known methodologies which use the binary signature matrix of analytical residuals and faults. (author)

  8. SECA Coal-Based Systems - FuelCell Energy, Inc.

    Energy Technology Data Exchange (ETDEWEB)

    Ayagh, Hossein [Fuelcell Energy, Inc., Danbury, CT (United States)

    2014-01-31

    The overall goal of this U.S. Department of Energy (DOE) sponsored project is the development of solid oxide fuel cell (SOFC) cell and stack technology suitable for use in highly-efficient, economically-competitive central generation power plant facilities fueled by coal synthesis gas (syngas). This program incorporates the following supporting objectives: • Reduce SOFC-based electrical power generation system cost to $700 or less (2007 dollars) for a greater than 100 MW Integrated Gasification Fuel Cell (IGFC) power plant, exclusive of coal gasification and CO2 separation subsystem costs. • Achieve an overall IGFC power plant efficiency of at least 50%, from coal (higher heating value or HHV) to AC power (exclusive of CO2 compression power requirement). • Reduce the release of CO2 to the environment in an IGFC power plant to no more than 10% of the carbon in the syngas. • Increase SOFC stack reliability to achieve a design life of greater than 40,000 hours. At the inception of the project, the efforts were focused on research, design and testing of prototype planar SOFC power generators for stationary applications. FuelCell Energy, Inc. successfully completed the initial stage of the project by meeting the program metrics, culminating in delivery and testing of a 3 kW system at National Energy Technology Laboratory (NETL). Subsequently, the project was re-aligned into a three phase effort with the main goal to develop SOFC technology for application in coal-fueled power plants with >90% carbon capture. Phase I of the Coal-based efforts focused on cell and stack size scale-up with concurrent enhancement of performance, life, cost, and manufacturing characteristics. Also in Phase I, design and analysis of the baseline (greater than 100 MW) power plant system—including concept identification, system definition, and cost analysis—was conducted. Phase II efforts focused on development of a ≥25 kW SOFC stack tower incorporating

  9. SECA Coal-Based Systems - FuelCell Energy, Inc.

    Energy Technology Data Exchange (ETDEWEB)

    Ayagh, Hossein

    2014-01-31

    The overall goal of this U.S. Department of Energy (DOE) sponsored project is the development of solid oxide fuel cell (SOFC) cell and stack technology suitable for use in highly-efficient, economically-competitive central generation power plant facilities fueled by coal synthesis gas (syngas). This program incorporates the following supporting objectives: • Reduce SOFC-based electrical power generation system cost to $700 or less (2007 dollars) for a greater than 100 MW Integrated Gasification Fuel Cell (IGFC) power plant, exclusive of coal gasification and CO2 separation subsystem costs. • Achieve an overall IGFC power plant efficiency of at least 50%, from coal (higher heating value or HHV) to AC power (exclusive of CO2 compression power requirement). • Reduce the release of CO2 to the environment in an IGFC power plant to no more than 10% of the carbon in the syngas. • Increase SOFC stack reliability to achieve a design life of greater than 40,000 hours. At the inception of the project, the efforts were focused on research, design and testing of prototype planar SOFC power generators for stationary applications. FuelCell Energy, Inc. successfully completed the initial stage of the project by meeting the program metrics, culminating in delivery and testing of a 3 kW system at National Energy Technology Laboratory (NETL). Subsequently, the project was re-aligned into a three phase effort with the main goal to develop SOFC technology for application in coal-fueled power plants with >90% carbon capture. Phase I of the Coal-based efforts focused on cell and stack size scale-up with concurrent enhancement of performance, life, cost, and manufacturing characteristics. Also in Phase I, design and analysis of the baseline (greater than 100 MW) power plant system—including concept identification, system definition, and cost analysis—was conducted. Phase II efforts focused on development of a ≥25 kW SOFC stack tower incorporating multiple stack building

  10. Modeling and control of fuel cell based distributed generation systems

    Science.gov (United States)

    Jung, Jin Woo

    This dissertation presents circuit models and control algorithms of fuel cell based distributed generation systems (DGS) for two DGS topologies. In the first topology, each DGS unit utilizes a battery in parallel to the fuel cell in a standalone AC power plant and a grid-interconnection. In the second topology, a Z-source converter, which employs both the L and C passive components and shoot-through zero vectors instead of the conventional DC/DC boost power converter in order to step up the DC-link voltage, is adopted for a standalone AC power supply. In Topology 1, two applications are studied: a standalone power generation (Single DGS Unit and Two DGS Units) and a grid-interconnection. First, dynamic model of the fuel cell is given based on electrochemical process. Second, two full-bridge DC to DC converters are adopted and their controllers are designed: an unidirectional full-bridge DC to DC boost converter for the fuel cell and a bidirectional full-bridge DC to DC buck/boost converter for the battery. Third, for a three-phase DC to AC inverter without or with a Delta/Y transformer, a discrete-time state space circuit model is given and two discrete-time feedback controllers are designed: voltage controller in the outer loop and current controller in the inner loop. And last, for load sharing of two DGS units and power flow control of two DGS units or the DGS connected to the grid, real and reactive power controllers are proposed. Particularly, for the grid-connected DGS application, a synchronization issue between an islanding mode and a paralleling mode to the grid is investigated, and two case studies are performed. To demonstrate the proposed circuit models and control strategies, simulation test-beds using Matlab/Simulink are constructed for each configuration of the fuel cell based DGS with a three-phase AC 120 V (L-N)/60 Hz/50 kVA and various simulation results are presented. In Topology 2, this dissertation presents system modeling, modified space

  11. Photoelectrochemical cells based on photosynthetic systems: a review

    Directory of Open Access Journals (Sweden)

    Roman A. Voloshin

    2015-06-01

    Full Text Available Photosynthesis is a process which converts light energy into energy contained in the chemical bonds of organic compounds by photosynthetic pigments such as chlorophyll (Chl a, b, c, d, f or bacteriochlorophyll. It occurs in phototrophic organisms, which include higher plants and many types of photosynthetic bacteria, including cyanobacteria. In the case of the oxygenic photosynthesis, water is a donor of both electrons and protons, and solar radiation serves as inexhaustible source of energy. Efficiency of energy conversion in the primary processes of photosynthesis is close to 100%. Therefore, for many years photosynthesis has attracted the attention of researchers and designers looking for alternative energy systems as one of the most efficient and eco-friendly pathways of energy conversion. The latest advances in the design of optimal solar cells include the creation of converters based on thylakoid membranes, photosystems, and whole cells of cyanobacteria immobilized on nanostructured electrode (gold nanoparticles, carbon nanotubes, nanoparticles of ZnO and TiO2. The mode of solar energy conversion in photosynthesis has a great potential as a source of renewable energy while it is sustainable and environmentally safety as well. Application of pigments such as Chl f and Chl d (unlike Chl a and Chl b, by absorbing the far red and near infrared region of the spectrum (in the range 700-750 nm, will allow to increase the efficiency of such light transforming systems. This review article presents the last achievements in the field of energy photoconverters based on photosynthetic systems.

  12. Photonic crystal enhanced silicon cell based thermophotovoltaic systems.

    Science.gov (United States)

    Yeng, Yi Xiang; Chan, Walker R; Rinnerbauer, Veronika; Stelmakh, Veronika; Senkevich, Jay J; Joannopoulos, John D; Soljacic, Marin; Čelanović, Ivan

    2015-02-09

    We report the design, optimization, and experimental results of large area commercial silicon solar cell based thermophotovoltaic (TPV) energy conversion systems. Using global non-linear optimization tools, we demonstrate theoretically a maximum radiative heat-to-electricity efficiency of 6.4% and a corresponding output electrical power density of 0.39 W cm(-2) at temperature T = 1660 K when implementing both the optimized two-dimensional (2D) tantalum photonic crystal (PhC) selective emitter, and the optimized 1D tantalum pentoxide - silicon dioxide PhC cold-side selective filter. In addition, we have developed an experimental large area TPV test setup that enables accurate measurement of radiative heat-to-electricity efficiency for any emitter-filter-TPV cell combination of interest. In fact, the experimental results match extremely well with predictions of our numerical models. Our experimental setup achieved a maximum output electrical power density of 0.10W cm(-2) and radiative heat-to-electricity efficiency of 1.18% at T = 1380 K using commercial wafer size back-contacted silicon solar cells.

  13. Research on Software-Cell-Based Software System

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The aim of research on software architecture is to improve the quality attributes of software sys tems, such as security, reliability, maintainability, testability , reassembility , evolvability. However, a sin gle running system is hard to achieve all these goals. In this paper, software-cell is introduced as the basic u nit throughout developing process. Then it is further advanced that a robust, safe and high-quality software system is composed of a running system and four supportive systems. This paper especially discusses the structure of software-cell, the construction of the five systems, and the relations between them.

  14. Unique cell culture systems for ground based research

    Science.gov (United States)

    Lewis, Marian L.

    1990-01-01

    The horizontally rotating fluid-filled, membrane oxygenated bioreactors developed at NASA Johnson for spacecraft applications provide a powerful tool for ground-based research. Three-dimensional aggregates formed by cells cultured on microcarrier beads are useful for study of cell-cell interactions and tissue development. By comparing electron micrographs of plant seedlings germinated during Shuttle flight 61-C and in an earth-based rotating bioreactor it is shown that some effects of microgravity are mimicked. Bioreactors used in the UAH Bioreactor Laboratory will make it possible to determine some of the effects of altered gravity at the cellular level. Bioreactors can be valuable for performing critical, preliminary-to-spaceflight experiments as well as medical investigations such as in vitro tumor cell growth and chemotherapeutic drug response; the enrichment of stem cells from bone marrow; and the effect of altered gravity on bone and muscle cell growth and function and immune response depression.

  15. Systems biology. Conditional density-based analysis of T cell signaling in single-cell data.

    Science.gov (United States)

    Krishnaswamy, Smita; Spitzer, Matthew H; Mingueneau, Michael; Bendall, Sean C; Litvin, Oren; Stone, Erica; Pe'er, Dana; Nolan, Garry P

    2014-11-28

    Cellular circuits sense the environment, process signals, and compute decisions using networks of interacting proteins. To model such a system, the abundance of each activated protein species can be described as a stochastic function of the abundance of other proteins. High-dimensional single-cell technologies, such as mass cytometry, offer an opportunity to characterize signaling circuit-wide. However, the challenge of developing and applying computational approaches to interpret such complex data remains. Here, we developed computational methods, based on established statistical concepts, to characterize signaling network relationships by quantifying the strengths of network edges and deriving signaling response functions. In comparing signaling between naïve and antigen-exposed CD4(+) T lymphocytes, we find that although these two cell subtypes had similarly wired networks, naïve cells transmitted more information along a key signaling cascade than did antigen-exposed cells. We validated our characterization on mice lacking the extracellular-regulated mitogen-activated protein kinase (MAPK) ERK2, which showed stronger influence of pERK on pS6 (phosphorylated-ribosomal protein S6), in naïve cells as compared with antigen-exposed cells, as predicted. We demonstrate that by using cell-to-cell variation inherent in single-cell data, we can derive response functions underlying molecular circuits and drive the understanding of how cells process signals.

  16. Jet Fuel Based High Pressure Solid Oxide Fuel Cell System

    Science.gov (United States)

    Gummalla, Mallika (Inventor); Yamanis, Jean (Inventor); Olsommer, Benoit (Inventor); Dardas, Zissis (Inventor); Bayt, Robert (Inventor); Srinivasan, Hari (Inventor); Dasgupta, Arindam (Inventor); Hardin, Larry (Inventor)

    2015-01-01

    A power system for an aircraft includes a solid oxide fuel cell system which generates electric power for the aircraft and an exhaust stream; and a heat exchanger for transferring heat from the exhaust stream of the solid oxide fuel cell to a heat requiring system or component of the aircraft. The heat can be transferred to fuel for the primary engine of the aircraft. Further, the same fuel can be used to power both the primary engine and the SOFC. A heat exchanger is positioned to cool reformate before feeding to the fuel cell. SOFC exhaust is treated and used as inerting gas. Finally, oxidant to the SOFC can be obtained from the aircraft cabin, or exterior, or both.

  17. Cell Monitoring and Manipulation Systems (CMMSs based on Glass Cell-Culture Chips (GC3s

    Directory of Open Access Journals (Sweden)

    Sebastian M. Buehler

    2016-06-01

    Full Text Available We developed different types of glass cell-culture chips (GC3s for culturing cells for microscopic observation in open media-containing troughs or in microfluidic structures. Platinum sensor and manipulation structures were used to monitor physiological parameters and to allocate and permeabilize cells. Electro-thermal micro pumps distributed chemical compounds in the microfluidic systems. The integrated temperature sensors showed a linear, Pt1000-like behavior. Cell adhesion and proliferation were monitored using interdigitated electrode structures (IDESs. The cell-doubling times of primary murine embryonic neuronal cells (PNCs were determined based on the IDES capacitance-peak shifts. The electrical activity of PNC networks was detected using multi-electrode arrays (MEAs. During seeding, the cells were dielectrophoretically allocated to individual MEAs to improve network structures. MEA pads with diameters of 15, 20, 25, and 35 µm were tested. After 3 weeks, the magnitudes of the determined action potentials were highest for pads of 25 µm in diameter and did not differ when the inter-pad distances were 100 or 170 µm. Using 25-µm diameter circular oxygen electrodes, the signal currents in the cell-culture media were found to range from approximately −0.08 nA (0% O2 to −2.35 nA (21% O2. It was observed that 60-nm thick silicon nitride-sensor layers were stable potentiometric pH sensors under cell-culture conditions for periods of days. Their sensitivity between pH 5 and 9 was as high as 45 mV per pH step. We concluded that sensorized GC3s are potential animal replacement systems for purposes such as toxicity pre-screening. For example, the effect of mefloquine, a medication used to treat malaria, on the electrical activity of neuronal cells was determined in this study using a GC3 system.

  18. Phospholipid polymer-based antibody immobilization for cell rolling surfaces in stem cell purification system.

    Science.gov (United States)

    Mahara, Atsushi; Chen, Hao; Ishihara, Kazuhiko; Yamaoka, Tetsuji

    2014-01-01

    We previously developed an antibody-conjugated cell rolling column that successfully separates stem cell subpopulations depending on the cell surface marker density, but a large amount of the injected cells were retained in the column because of non-specific interactions. In this study, an amphiphilic copolymer, poly[2-methacryloyloxyethyl phosphorylcholine (MPC)-co-n-butyl methacrylate (nBMA)-co-N-vinyl formamide (NVf)], with phospholipid polar side groups was designed as a novel antibody-immobilizing modifier. The formamide groups in NVf units were converted to active maleimide groups. A plastic flow microfluidic chamber was coated with the copolymers, and a reduced anti-CD90 antibody was immobilized. The adipose tissue-derived stem cells isolated from the rat were injected into the flow chamber, and their rolling behavior was observed under a microscope with a high-speed camera. Non-specific cell adhesion was reduced strongly by means of this immobilization method because of the MPC unit, resulting in a high percentage of rolling cells. These results demonstrate that a surface coated with phospholipid polar groups can be used in an effective stem cell separation system based on the cell rolling process.

  19. A cell-based model system links chromothripsis with hyperploidy

    DEFF Research Database (Denmark)

    Mardin, Balca R; Drainas, Alexandros P; Waszak, Sebastian M;

    2015-01-01

    A remarkable observation emerging from recent cancer genome analyses is the identification of chromothripsis as a one-off genomic catastrophe, resulting in massive somatic DNA structural rearrangements (SRs). Largely due to lack of suitable model systems, the mechanistic basis of chromothripsis has...... remained elusive. We developed an integrative method termed "complex alterations after selection and transformation (CAST)," enabling efficient in vitro generation of complex DNA rearrangements including chromothripsis, using cell perturbations coupled with a strong selection barrier followed by massively...... parallel sequencing. We employed this methodology to characterize catastrophic SR formation processes, their temporal sequence, and their impact on gene expression and cell division. Our in vitro system uncovered a propensity of chromothripsis to occur in cells with damaged telomeres, and in particular...

  20. Vision-based Nano Robotic System for High-throughput Non-embedded Cell Cutting

    OpenAIRE

    Wanfeng Shang; Haojian Lu; Wenfeng Wan; Toshio Fukuda; Yajing Shen

    2016-01-01

    Cell cutting is a significant task in biology study, but the highly productive non-embedded cell cutting is still a big challenge for current techniques. This paper proposes a vision-based nano robotic system and then realizes automatic non-embedded cell cutting with this system. First, the nano robotic system is developed and integrated with a nanoknife inside an environmental scanning electron microscopy (ESEM). Then, the positions of the nanoknife and the single cell are recognized, and th...

  1. Cell Based GIS as Cellular Automata for Disaster Spreading Predictions and Required Data Systems

    Directory of Open Access Journals (Sweden)

    Kohei Arai

    2013-03-01

    Full Text Available A method for prediction and simulation based on the Cell Based Geographic Information System(GIS as Cellular Automata (CA is proposed together with required data systems, in particular metasearch engine usage in an unified way. It is confirmed that the proposed cell based GIS as CA has flexible usage of the attribute information that is attached to the cell in concert with location information and does work for disaster spreading simulation and prediction.

  2. A Reconfigurable Logic Cell Based on a Simple Dynamical System

    Directory of Open Access Journals (Sweden)

    Lixiang Li

    2013-01-01

    Full Text Available This paper introduces a new scheme to achieve a dynamic logic gate which can be adjusted flexibly to obtain different logic functions by adjusting specific parameters of a dynamical system. Based on graphical tools and the threshold mechanism, the distribution of different logic gates is studied, and a transformation method between different logics is given. Analyzing the performance of the dynamical system in the presence of noise, we discover that it is resistant to system noise. Moreover, we find some part of the system can be considered as a leaky integrator which has been already widely applied in engineering. Finally, we provide a proof-of-principle hardware implementation of the proposed scheme to illustrate its effectiveness. With the proposed scheme in hand, it is convenient to build the flexible, robust, and general purpose computing devices such as various network coding routers, communication encoders or decoders, and reconfigurable computer chips.

  3. A Power Allocation Algorithm Based on Cooperative Game Theory in Multi-cell OFDM Systems

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2011-11-01

    Full Text Available A centralized resource allocation algorithm in multi-cell OFDM systems is studied, which aims at improving the performance of wireless communication systems and enhancing user’s spectral efficiency on the edge of the cell. The proposed resource allocation algorithm can be divided into two steps. The first step is sub-carrier allocation based on matrix searching in single cell and the second one is joint power allocation based on cooperative game theory in multi-cell. By comparing with traditional resource allocation algorithms in multi-cell scenario, we find that the proposed algorithm has lower computational complexity and good fairness performance.

  4. MAS-based production scheduling system for manufacturing cell-based workshop

    Institute of Scientific and Technical Information of China (English)

    CHU Hong-yan; CAO Quan-jun; FEI Ren-yuan

    2006-01-01

    The task of production scheduling is to determine the detailed machining path,time,machine tool,etc.,for every work piece,according to the production objective and constraints.It is also an important part of the manufacturing system.In this paper,the manufacturing cell-based workshop is described and its scheduling system structure is established based on MAS (multi-agent system) technology.Through the negotiation and communication of each agent,the machining path is determined and the machining sequence and start time are calculated by GA (genetics algorithm).The communication among agents uses the CORBA (common object request broker architecture) technology of the OMG (Object Management Group).The CORBA-based architecture of the communication is designed and some interfaces for the communication are listed.For the genetics algorithm,chromosome coding,fitness function,parameters selection,and the basic genetics operation including selection,crossover and aberrance,are described.The scheduling system also can deal with some abnormal conditions,such as machine tool failure and urgent tasks.Finally,two scheduling examples are given.

  5. [Membrane-based photochemical systems as models for photosynthetic cells

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, J.K.

    1992-01-01

    The objectives of this research are to improve our conceptual view of the ways in which membranes and interfaces can be used to control chemical reactivity. We have focused on understanding three elementary processes that are central to developing membrane-based integrated chemical systems for water photolysis or related photoconversion/photostorage processes. Specifically, we have sought to identify: the influence of interfaces upon charge separation/recombination reactions, pathways for transmembrane charge separation across hydrocarbon bilayer membranes, and mechanisms of water oxidation catalyzed by transition metal coordination complexes. Historically, the chemical dynamics of each of these processes has been poorly understood, with numerous unresolved issues and conflicting viewpoints appearing in the literature. As described in this report our recent research has led to considerable clarification of the underlying reaction mechanisms.

  6. Advanced Materials for PEM-Based Fuel Cell Systems

    Energy Technology Data Exchange (ETDEWEB)

    James E. McGrath

    2005-10-26

    Proton exchange membrane fuel cells (PEMFCs) are quickly becoming attractive alternative energy sources for transportation, stationary power, and small electronics due to the increasing cost and environmental hazards of traditional fossil fuels. Two main classes of PEMFCs include hydrogen/air or hydrogen/oxygen fuel cells and direct methanol fuel cells (DMFCs). The current benchmark membrane for both types of PEMFCs is Nafion, a perfluorinated sulfonated copolymer made by DuPont. Nafion copolymers exhibit good thermal and chemical stability, as well as very high proton conductivity under hydrated conditions at temperatures below 80 °C. However, application of these membranes is limited due to their high methanol permeability and loss of conductivity at high temperatures and low relative humidities. These deficiencies have led to the search for improved materials for proton exchange membranes. Potential PEMs should have good thermal, hydrolytic, and oxidative stability, high proton conductivity, selective permeability, and mechanical durability over long periods of time. Poly(arylene ether)s, polyimides, polybenzimidazoles, and polyphenylenes are among the most widely investigated candidates for PEMs. Poly(arylene ether)s are a promising class of proton exchange membranes due to their excellent thermal and chemical stability and high glass transition temperatures. High proton conductivity can be achieved through post-sulfonation of poly(arylene ether) materials, but this most often results in very high water sorption or even water solubility. Our research has shown that directly polymerized poly(arylene ether) copolymers show important advantages over traditional post-sulfonated systems and also address the concerns with Nafion membranes. These properties were evaluated and correlated with morphology, structure-property relationships, and

  7. Advanced Materials for PEM-Based Fuel Cell Systems

    Energy Technology Data Exchange (ETDEWEB)

    James E. McGrath; Donald G. Baird; Michael von Spakovsky

    2005-10-26

    Proton exchange membrane fuel cells (PEMFCs) are quickly becoming attractive alternative energy sources for transportation, stationary power, and small electronics due to the increasing cost and environmental hazards of traditional fossil fuels. Two main classes of PEMFCs include hydrogen/air or hydrogen/oxygen fuel cells and direct methanol fuel cells (DMFCs). The current benchmark membrane for both types of PEMFCs is Nafion, a perfluorinated sulfonated copolymer made by DuPont. Nafion copolymers exhibit good thermal and chemical stability, as well as very high proton conductivity under hydrated conditions at temperatures below 80 degrees C. However, application of these membranes is limited due to their high methanol permeability and loss of conductivity at high temperatures and low relative humidities. These deficiencies have led to the search for improved materials for proton exchange membranes. Potential PEMs should have good thermal, hydrolytic, and oxidative stability, high proton conductivity, selective permeability, and mechanical durability over long periods of time. Poly(arylene ether)s, polyimides, polybenzimidazoles, and polyphenylenes are among the most widely investigated candidates for PEMs. Poly(arylene ether)s are a promising class of proton exchange membranes due to their excellent thermal and chemical stability and high glass transition temperatures. High proton conductivity can be achieved through post-sulfonation of poly(arylene ether) materials, but this most often results in very high water sorption or even water solubility. Our research has shown that directly polymerized poly(arylene ether) copolymers show important advantages over traditional post-sulfonated systems and also address the concerns with Nafion membranes. These properties were evaluated and correlated with morphology, structure-property relationships, and states of water in the membranes. Further improvements in properties were achieved through incorporation of inorganic

  8. Nanog reporter system in mouse embryonic stem cells based on highly efficient BAC homologous recombination

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Nanog is a novel transcription factor specifically expressed in mouse embryonic stem cells (mES cells). It has been reported that Nanog plays an essential role in maintaining multi-potency of ES cells. The expression of Nanog is very sensitive to ES cells differentiation, making Nanog one of the best markers to indicate the status of ES cells. In this study, we developed an efficient method to construct Nanog promoter driven EGFP reporter system based on the BAC homologous recombination. We further generated a Nanog-EGFP reporter mES cell line. This reporter mES cell line exhibited features similar to those of normal mES cells, and the EGFP reporter efficiently reflected the expression of Nanog, indicating the differentiation status of mES cells. We achieved a reliable experimental reporter system to research self-renewal and differentiation of mES cells. The system could facilitate research on culture system of mES cells and researches on the expression and regulation of Nanog and other related factors in mES cells.

  9. Proton exchange membrane fuel cell system diagnosis based on the signed directed graph method

    Science.gov (United States)

    Hua, Jianfeng; Lu, Languang; Ouyang, Minggao; Li, Jianqiu; Xu, Liangfei

    The fuel-cell powered bus is becoming the favored choice for electric vehicles because of its extended driving range, zero emissions, and high energy conversion efficiency when compared with battery-operated electric vehicles. In China, a demonstration program for the fuel cell bus fleet operated at the Beijing Olympics in 2008 and the Shanghai Expo in 2010. It is necessary to develop comprehensive proton exchange membrane fuel cell (PEMFC) diagnostic tools to increase the reliability of these systems. It is especially critical for fuel-cell city buses serving large numbers of passengers using public transportation. This paper presents a diagnostic analysis and implementation study based on the signed directed graph (SDG) method for the fuel-cell system. This diagnostic system was successfully implemented in the fuel-cell bus fleet at the Shanghai Expo in 2010.

  10. Efficient dielectrophoretic cell enrichment using a dielectrophoresis-well based system.

    Science.gov (United States)

    Abdul Razak, Mohd Azhar; Hoettges, Kai F; Fatoyinbo, Henry O; Labeed, Fatima H; Hughes, Michael P

    2013-01-01

    Whilst laboratory-on-chip cell separation systems using dielectrophoresis are increasingly reported in the literature, many systems are afflicted by factors which impede "real world" performance, chief among these being cell loss (in dead spaces, attached to glass and tubing surfaces, or sedimentation from flow), and designs with large channel height-to-width ratios (large channel widths, small channel heights) that make the systems difficult to interface with other microfluidic systems. In this paper, we present a scalable structure based on 3D wells with approximately unity height-to-width ratios (based on tubes with electrodes on the sides), which is capable of enriching yeast cell populations whilst ensuring that up to 94.3% of cells processed through the device can be collected in tubes beyond the output.

  11. Vision-based Nano Robotic System for High-throughput Non-embedded Cell Cutting

    Science.gov (United States)

    Shang, Wanfeng; Lu, Haojian; Wan, Wenfeng; Fukuda, Toshio; Shen, Yajing

    2016-03-01

    Cell cutting is a significant task in biology study, but the highly productive non-embedded cell cutting is still a big challenge for current techniques. This paper proposes a vision-based nano robotic system and then realizes automatic non-embedded cell cutting with this system. First, the nano robotic system is developed and integrated with a nanoknife inside an environmental scanning electron microscopy (ESEM). Then, the positions of the nanoknife and the single cell are recognized, and the distance between them is calculated dynamically based on image processing. To guarantee the positioning accuracy and the working efficiency, we propose a distance-regulated speed adapting strategy, in which the moving speed is adjusted intelligently based on the distance between the nanoknife and the target cell. The results indicate that the automatic non-embedded cutting is able to be achieved within 1–2 mins with low invasion benefiting from the high precise nanorobot system and the sharp edge of nanoknife. This research paves a way for the high-throughput cell cutting at cell’s natural condition, which is expected to make significant impact on the biology studies, especially for the in-situ analysis at cellular and subcellular scale, such as cell interaction investigation, neural signal transduction and low invasive cell surgery.

  12. Optimization and Evaluation of a Novel Size Based Circulating Tumor Cell Isolation System.

    Directory of Open Access Journals (Sweden)

    Lei Xu

    Full Text Available Isolation of circulating tumor cells (CTCs from peripheral blood has the potential to provide a far easier "liquid biopsy" than tumor tissue biopsies, to monitor tumor cell populations during disease progression and in response to therapies. Many CTC isolation technologies have been developed. We optimized the Parsortix system, an epitope independent, size and compressibility-based platform for CTCs isolation, making it possible to harvest CTCs at the speed and sample volume comparable to standard CellSearch system. We captured more than half of cancer cells from different cancer cell lines spiked in blood samples from healthy donors using this system. Cell loss during immunostaining of cells transferred and fixed on the slides is a major problem for analyzing rare cell samples. We developed a novel cell transfer and fixation method to retain >90% of cells on the slide after the immunofluorescence process without affecting signal strength and specificity. Using this optimized method, we evaluated the Parsortix system for CTC harvest in prostate cancer patients in comparison to immunobead based CTC isolation systems IsoFlux and CellSearch. We harvested a similar number (p = 0.33 of cytokeratin (CK positive CTCs using Parsortix and IsoFlux from 7.5 mL blood samples of 10 prostate cancer patients (an average of 33.8 and 37.6 respectively. The purity of the CTCs harvested by Parsortix at 3.1% was significantly higher than IsoFlux at 1.0% (p = 0.02. Parsortix harvested significantly more CK positive CTCs than CellSearch (p = 0.04 in seven prostate cancer patient samples, where both systems were utilized (an average of 32.1 and 10.1 respectively. We also captured CTC clusters using Parsortix. Using four-color immunofluorescence we found that 85.8% of PC3 cells expressed EpCAM, 91.7% expressed CK and 2.5% cells lacked both epithelial markers. Interestingly, 95.6% of PC3 cells expressed Vimentin, including those cells that lacked both epithelial marker

  13. Subcarrier and power allocation algorithm based on inter-cell interference mitigation for OFDMA system

    Institute of Scientific and Technical Information of China (English)

    ZOU Ting; DENG Gang; WANG Ying; ZHANG Ping

    2007-01-01

    This article proposes a dynamic subcarrier and power allocation algorithm for multicell orthogonal frequency division multiple access (OFDMA) downlink system, based on inter-cell interference (ICI) mitigation. Different from other ICI mitigation schemes, which pay little attention to power allocation in the system, the proposed algorithm assigns channels to each user, based on proportional-fair (PF) scheduling and ICI coordination, whereas allocating power is based on link gain distribution and the loading bit based on adaptive modulation and coding (AMC) in base transceiver station (BTS). Simulation results show that the algorithm yields better performance for data services under fast fading.

  14. Parallel differentiation of embryonic stem cells into different cell types by a single gene-based differentiation system.

    Science.gov (United States)

    Thoma, Eva C; Maurus, Katja; Wagner, Toni U; Schartl, Manfred

    2012-04-01

    The generation of defined somatic cell types from pluripotent stem cells represents a promising system for many applications for regenerative therapy or developmental studies. Certain key developmental genes have been shown to be able to influence the fate determination of differentiating stem cells suggesting an alternative differentiation strategy to conventional medium-based methods. Here, we present a system allowing controlled, directed differentiation of embryonic stem cells (ESCs) solely by ectopic expression of single genes. We demonstrate that the myogenic master regulator myoD1 is sufficient to induce formation of skeletal muscle. In contrast to previous studies, our data suggest that myoD1-induced differentiation is independent of additional differentiation-inducing or lineage-promoting signals and occurs even under pluripotency-promoting conditions. Moreover, we demonstrate that single gene-induced differentiation enables the controlled formation of two distinct cell types in parallel. By mixing ES cell lines expressing myoD1 or the neural transcription factor ngn2, respectively, we generated a mixed culture of myocytes and neurons. Our findings provide new insights in the role of key developmental genes during cell fate decisions. Furthermore, this study represents an interesting strategy to obtain mixed cultures of different cells from stem cells, suggesting a valuable tool for cellular development and cell-cell interaction studies.

  15. Developing a microfluidic-based system to quantify cell capture efficiency

    Institute of Scientific and Technical Information of China (English)

    YANG Fan; GAO YuXin; ZHANG Yan; CHEN Juan; LONG Mian

    2009-01-01

    Micro-fabrication technology has substantial potential for identifying molecular markers expressed on the surfaces of tissue cells and viruses. It has been found in several conceptual prototypes that cells with such markers are able to be captured by their antibodies immobilized on microchannel substrates and unbound cells are flushed out by a driven flow. The feasibility and reliability of such a microfluidic-based assay, however, remains to be further tested. In the current work, we developed a microflu-idic-based system consisting of a microfluidic chip, an image grabbing unit, data acquisition and analysis software, as well as a supporting base. Specific binding of CD59-expressed or BSA-coupled human red blood cells (RBCs) to anti-CD59 or anti-BSA antibody-immobilized chip surfaces was quan-tiffed by capture efficiency and by the fraction of bound cells. Impacts of respective flow rate, cell concentration, antibody concentration and site density were tested systematically. The measured data indicated that the assay was robust. The robustness was further confirmed by capture efficiencies measured from an independent EUSA-based cell binding assay. These results demonstrated that the system developed provided a new plallorm to effectively quantify cellular surface markers effectively, which promoted the potential applications in both biological studies and clinical diagnoses.

  16. Developing a microfluidic-based system to quantify cell capture efficiency

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Micro-fabrication technology has substantial potential for identifying molecular markers expressed on the surfaces of tissue cells and viruses. It has been found in several conceptual prototypes that cells with such markers are able to be captured by their antibodies immobilized on microchannel substrates and unbound cells are flushed out by a driven flow. The feasibility and reliability of such a microflu- idic-based assay, however, remains to be further tested. In the current work, we developed a microflu- idic-based system consisting of a microfluidic chip, an image grabbing unit, data acquisition and analysis software, as well as a supporting base. Specific binding of CD59-expressed or BSA-coupled human red blood cells (RBCs) to anti-CD59 or anti-BSA antibody-immobilized chip surfaces was quan- tified by capture efficiency and by the fraction of bound cells. Impacts of respective flow rate, cell concentration, antibody concentration and site density were tested systematically. The measured data indicated that the assay was robust. The robustness was further confirmed by capture efficiencies measured from an independent ELISA-based cell binding assay. These results demonstrated that the system developed provided a new platform to effectively quantify cellular surface markers effectively, which promoted the potential applications in both biological studies and clinical diagnoses.

  17. The Hardware Implementation of Demonstrator Air Independent Electric Supply System Based on Pem Fuel Cell

    Directory of Open Access Journals (Sweden)

    Grzeczka G.

    2016-12-01

    Full Text Available The paper presents results of the research project whose the main goal was to build a technology demonstrator of an electric supply system based on the PEM fuel cell. The electric supply system is dedicated to operation on a board of a submarine during emergency situations. The underwater conditions influence on a specific architecture of supply subsystems of the PEM fuel cell system. In this case the fuel cell stack is supplied by both clean hydrogen and clean oxygen stored in pressurized tanks. The hydrogen has to be delivered in a closed loop, while the oxygen can be delivered in a closed or an open loop. In the technology demonstrator, the supply of the fuel cell stack by the hydrogen in the closed loop and the oxygen in the open loop with a precise control of its flow were used.

  18. Characterization of Adipogenic Chemicals in Three Different Cell Culture Systems: Implications for Reproducibility Based on Cell Source and Handling.

    Science.gov (United States)

    Kassotis, Christopher D; Masse, Lauren; Kim, Stephanie; Schlezinger, Jennifer J; Webster, Thomas F; Stapleton, Heather M

    2017-02-08

    The potential for chemical exposures to exacerbate the development and/or prevalence of metabolic disorders, such as obesity, is currently of great societal concern. Various in vitro assays are available to assess adipocyte differentiation, though little work has been done to standardize protocols and compare models effectively. This study compares several adipogenic cell culture systems under a variety of conditions to assess variability in responses. Two sources of 3T3-L1 preadipocytes as well as OP9 preadipocytes were assessed for cell proliferation and triglyceride accumulation following different induction periods and using various tissue culture plates. Both cell line and cell source had a significant impact on potencies and efficacies of adipogenic chemicals. Gene expression analyses suggested that differential expression of nuclear receptors involved in adipogenesis underlie the differences between OP9 and 3T3-L1 cells; however, there were also differences based on 3T3-L1 cell source. Induction period modulated potency and efficacy of response depending on cell line and test chemical, and large variations were observed in triglyceride accumulation and cell proliferation between brands of tissue culture plates. Our results suggest that the selection of a cell system and differentiation protocol significantly impacts the detection of adipogenic chemicals, and therefore, influences reproducibility of these studies.

  19. Trigeneration System Based on Municipal Waste Gasification, Fuel Cell and an Absorption Chiller

    DEFF Research Database (Denmark)

    Katsaros, Giannis; Nguyen, Tuong-Van; Rokni, Masoud

    2016-01-01

    for electricity, heating and cooling. The system is modelled in Aspen Plus and the influence of different operating parameters on the system performance is studied. The findings suggest that low air equivalent ratios enhance the overall system performance. The possibility of covering the demand profiles......The present work focuses on the design of a novel tri-generation system based on municipal solid wastes gasification, solid oxide fuel cell and an ammonia-water absorption chiller. Trigeneration systems can be implemented in buildings such as hospitals, where there is a continuous and large demand...

  20. Optimization of cell line development in the GS-CHO expression system using a high-throughput, single cell-based clone selection system.

    Science.gov (United States)

    Nakamura, Tsuyoshi; Omasa, Takeshi

    2015-09-01

    Therapeutic antibodies are commonly produced by high-expressing, clonal and recombinant Chinese hamster ovary (CHO) cell lines. Currently, CHO cells dominate as a commercial production host because of their ease of use, established regulatory track record, and safety profile. CHO-K1SV is a suspension, protein-free-adapted CHO-K1-derived cell line employing the glutamine synthetase (GS) gene expression system (GS-CHO expression system). The selection of high-producing mammalian cell lines is a crucial step in process development for the production of therapeutic antibodies. In general, cloning by the limiting dilution method is used to isolate high-producing monoclonal CHO cells. However, the limiting dilution method is time consuming and has a low probability of monoclonality. To minimize the duration and increase the probability of obtaining high-producing clones with high monoclonality, an automated single cell-based clone selector, the ClonePix FL system, is available. In this study, we applied the high-throughput ClonePix FL system for cell line development using CHO-K1SV cells and investigated efficient conditions for single cell-based clone selection. CHO-K1SV cell growth at the pre-picking stage was improved by optimizing the formulation of semi-solid medium. The efficiency of picking and cell growth at the post-picking stage was improved by optimization of the plating time without decreasing the diversity of clones. The conditions for selection, including the medium formulation, were the most important factors for the single cell-based clone selection system to construct a high-producing CHO cell line.

  1. Expansion of mesenchymal stem cells using a microcarrier-based cultivation system: growth and metabolism

    NARCIS (Netherlands)

    Schop, D.; Janssen, F.W.; Borgart, E.; Bruijn, de J.D.; Dijkhuizen-Radersma, van R.

    2008-01-01

    For the continuous and fast expansion of mesenchymal stem cells (MSCs), microcarriers have gained increasing interest. The aim of this study was to evaluate the growth and metabolism profiles of MSCs, expanded in a microcarrier-based cultivation system. We investigated various cultivation conditions

  2. Systems biology approach to developing S(2)RM-based "systems therapeutics" and naturally induced pluripotent stem cells.

    Science.gov (United States)

    Maguire, Greg; Friedman, Peter

    2015-05-26

    The degree to, and the mechanisms through, which stem cells are able to build, maintain, and heal the body have only recently begun to be understood. Much of the stem cell's power resides in the release of a multitude of molecules, called stem cell released molecules (SRM). A fundamentally new type of therapeutic, namely "systems therapeutic", can be realized by reverse engineering the mechanisms of the SRM processes. Recent data demonstrates that the composition of the SRM is different for each type of stem cell, as well as for different states of each cell type. Although systems biology has been successfully used to analyze multiple pathways, the approach is often used to develop a small molecule interacting at only one pathway in the system. A new model is emerging in biology where systems biology is used to develop a new technology acting at multiple pathways called "systems therapeutics". A natural set of healing pathways in the human that uses SRM is instructive and of practical use in developing systems therapeutics. Endogenous SRM processes in the human body use a combination of SRM from two or more stem cell types, designated as S(2)RM, doing so under various state dependent conditions for each cell type. Here we describe our approach in using state-dependent SRM from two or more stem cell types, S(2)RM technology, to develop a new class of therapeutics called "systems therapeutics." Given the ubiquitous and powerful nature of innate S(2)RM-based healing in the human body, this "systems therapeutic" approach using S(2)RM technology will be important for the development of anti-cancer therapeutics, antimicrobials, wound care products and procedures, and a number of other therapeutics for many indications.

  3. Virtual reality based support system for layout planning and programming of an industrial robotic work cell.

    Science.gov (United States)

    Yap, Hwa Jen; Taha, Zahari; Dawal, Siti Zawiah Md; Chang, Siow-Wee

    2014-01-01

    Traditional robotic work cell design and programming are considered inefficient and outdated in current industrial and market demands. In this research, virtual reality (VR) technology is used to improve human-robot interface, whereby complicated commands or programming knowledge is not required. The proposed solution, known as VR-based Programming of a Robotic Work Cell (VR-Rocell), consists of two sub-programmes, which are VR-Robotic Work Cell Layout (VR-RoWL) and VR-based Robot Teaching System (VR-RoT). VR-RoWL is developed to assign the layout design for an industrial robotic work cell, whereby VR-RoT is developed to overcome safety issues and lack of trained personnel in robot programming. Simple and user-friendly interfaces are designed for inexperienced users to generate robot commands without damaging the robot or interrupting the production line. The user is able to attempt numerous times to attain an optimum solution. A case study is conducted in the Robotics Laboratory to assemble an electronics casing and it is found that the output models are compatible with commercial software without loss of information. Furthermore, the generated KUKA commands are workable when loaded into a commercial simulator. The operation of the actual robotic work cell shows that the errors may be due to the dynamics of the KUKA robot rather than the accuracy of the generated programme. Therefore, it is concluded that the virtual reality based solution approach can be implemented in an industrial robotic work cell.

  4. Self-feeding paper based biofuel cell/self-powered hybrid μ-supercapacitor integrated system.

    Science.gov (United States)

    Narvaez Villarrubia, Claudia W; Soavi, Francesca; Santoro, Carlo; Arbizzani, Catia; Serov, Alexey; Rojas-Carbonell, Santiago; Gupta, Gautam; Atanassov, Plamen

    2016-12-15

    For the first time, a paper based enzymatic fuel cell is used as self-recharged supercapacitor. In this supercapacitive enzymatic fuel cell (SC-EFC), the supercapacitive features of the electrodes are exploited to demonstrate high power output under pulse operation. Glucose dehydrogenase-based anode and bilirubin oxidase-based cathode were assembled to a quasi-2D capillary-driven microfluidic system. Capillary flow guarantees the continuous supply of glucose, cofactor and electrolytes to the anodic enzyme and the gas-diffusional cathode design provides the passive supply of oxygen to the catalytic layer of the electrode. The paper-based cell was self-recharged under rest and discharged by high current pulses up to 4mAcm(-2). The supercapacitive behavior and low equivalent series resistance of the cell permitted to achieve up to a maximum power of 0.87mWcm(-2) (10.6mW) for pulses of 0.01s at 4mAcm(-2). This operation mode allowed the system to achieve at least one order of magnitude higher current/power generation compared to the steady state operation.

  5. Inexpensive microcomputer-based system for solar cell I-V characterization

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Acevedo, A.; Herrera, E.; Valencia, H.

    1989-03-01

    A simple solar cell measurement system is described. The instrument is based on an inexpensive microcomputer with a single bidirectional 8-bit I/O port, in addition to 4 output bits taken from the joystick port. Currents up to 1.5 A and voltages up to 0.7 V can be measured with this system. The temperature of the cell is also measured. Solar cell parameters like open circuit voltage (V/sub oc/), short circuit current (I/sub sc/), series resistance (R/sub s/), shunt resistance (R/sub sh/), and filling factor (F.F.) are determined by a high-level language program that also displays the I-V curve on the monitor screen and stores the data on disk files.

  6. Cell-based galactosemia diagnosis system based on a galactose assay using a bioluminescent Escherichia coli array.

    Science.gov (United States)

    Woo, Min-Ah; Kim, Moon Il; Cho, Daeyeon; Park, Hyun Gyu

    2013-11-19

    A new cell-based galactose assay system, which is comprised of two bioluminescent Escherichia coli strains immobilized within an agarose gel arrayed on a well plate, has been developed. For this purpose, a galT knockout strain [galT(-) cell] of E. coli was genetically constructed so that cell growth is not promoted by galactose but rather by glucose present in a sample. Another E. coli W strain (normal cell), which grows normally in the presence of either glucose or galactose, was employed. A luminescent reporter gene, which produces luminescence as cells grow, was inserted into both of the E. coli strains, so that cell growth could be monitored in a facile manner. The two strains were separately grown for 4 h on gel arrays to which test samples were individually supplied. The relative luminescence unit (RLU) values caused by cell growth were determined for each array, one of which is resulted by glucose only and the other of which is resulted by both glucose and galactose present in the sample. By employing this protocol, galactose concentrations present in the test sample are reflected in the differences between the RLU values for each array. The practical utility of the new assay system was demonstrated by its use in determining galactose levels in clinical blood spot specimens coming from newborn babies. Because it can be employed to diagnosis of galactosemia in newborn babies in a more rapid, convenient, and cost-effective manner, this cell-based solid-phase galactose assay system should become a powerful alternative to conventional methods, which require labor-intensive and time-consuming procedures and/or complicated and expensive equipment.

  7. Study on Cell Error Rate of a Satellite ATM System Based on CDMA

    Institute of Scientific and Technical Information of China (English)

    赵彤宇; 张乃通

    2003-01-01

    In this paper, the cell error rate (CER) of a CDMA-based satellite ATM system is analyzed. Two fading models, i.e. the partial fading model and the total fading model are presented according to multi-path propagation fading and shadow effect. Based on the total shadow model, the relation of CER vs. the number of subscribers at various elevations under 2D-RAKE receiving and non-diversity receiving is got. The impact on cell error rate with pseudo noise (PN) code length is also considered. The result that the maximum likelihood combination of multi-path signal would not improve the system performance when multiple access interference (MAI) is small, on the contrary the performance may be even worse is abtained.

  8. First experience with particle-in-cell plasma physics code on ARM-based HPC systems

    Science.gov (United States)

    Sáez, Xavier; Soba, Alejandro; Sánchez, Edilberto; Mantsinen, Mervi; Mateo, Sergi; Cela, José M.; Castejón, Francisco

    2015-09-01

    In this work, we will explore the feasibility of porting a Particle-in-cell code (EUTERPE) to an ARM multi-core platform from the Mont-Blanc project. The used prototype is based on a system-on-chip Samsung Exynos 5 with an integrated GPU. It is the first prototype that could be used for High-Performance Computing (HPC), since it supports double precision and parallel programming languages.

  9. A versatile system for USER cloning-based assembly of expression vectors for mammalian cell engineering.

    Directory of Open Access Journals (Sweden)

    Anne Mathilde Lund

    Full Text Available A new versatile mammalian vector system for protein production, cell biology analyses, and cell factory engineering was developed. The vector system applies the ligation-free uracil-excision based technique--USER cloning--to rapidly construct mammalian expression vectors of multiple DNA fragments and with maximum flexibility, both for choice of vector backbone and cargo. The vector system includes a set of basic vectors and a toolbox containing a multitude of DNA building blocks including promoters, terminators, selectable marker- and reporter genes, and sequences encoding an internal ribosome entry site, cellular localization signals and epitope- and purification tags. Building blocks in the toolbox can be easily combined as they contain defined and tested Flexible Assembly Sequence Tags, FASTs. USER cloning with FASTs allows rapid swaps of gene, promoter or selection marker in existing plasmids and simple construction of vectors encoding proteins, which are fused to fluorescence-, purification-, localization-, or epitope tags. The mammalian expression vector assembly platform currently allows for the assembly of up to seven fragments in a single cloning step with correct directionality and with a cloning efficiency above 90%. The functionality of basic vectors for FAST assembly was tested and validated by transient expression of fluorescent model proteins in CHO, U-2-OS and HEK293 cell lines. In this test, we included many of the most common vector elements for heterologous gene expression in mammalian cells, in addition the system is fully extendable by other users. The vector system is designed to facilitate high-throughput genome-scale studies of mammalian cells, such as the newly sequenced CHO cell lines, through the ability to rapidly generate high-fidelity assembly of customizable gene expression vectors.

  10. An efficient strategy for cell-based antibody library selection using an integrated vector system

    Directory of Open Access Journals (Sweden)

    Yoon Hyerim

    2012-09-01

    Full Text Available Abstract Background Cell panning of phage-displayed antibody library is a powerful tool for the development of therapeutic and imaging agents since disease-related cell surface proteins in native complex conformation can be directly targeted. Here, we employed a strategy taking advantage of an integrated vector system which allows rapid conversion of scFv-displaying phage into scFv-Fc format for efficient cell-based scFv library selection on a tetraspanin protein, CD9. Results A mouse scFv library constructed by using a phagemid vector, pDR-D1 was subjected to cell panning against stable CD9 transfectant, and the scFv repertoire from the enriched phage pool was directly transferred to a mammalian cassette vector, pDR-OriP-Fc1. The resulting constructs enabled transient expression of enough amounts of scFv-Fcs in HEK293E cells, and flow cytometric screening of binders for CD9 transfectant could be performed simply by using the culture supernatants. All three clones selected from the screening showed correct CD9-specificity. They could immunoprecipitate CD9 molecules out of the transfectant cell lysate and correctly stain endogenous CD9 expression on cancer cell membrane. Furthermore, competition assay with a known anti-CD9 monoclonal antibody (mAb suggested that the binding epitopes of some of them overlap with that of the mAb which resides within the large extracellular loop of CD9. Conclusions This study demonstrates that scFv-Fc from mammalian transient expression can be chosen as a reliable format for rapid screening and validation in cell-based scFv library selection, and the strategy described here will be applicable to efficient discovery of antibodies to diverse cell-surface targets.

  11. Solar cells based on the poly(N-vinylcarbazole):porphyrin:tris(8-hydroxyquinolinato) aluminium blend system

    Institute of Scientific and Technical Information of China (English)

    Zhang Tian-Hui; Zhao Su-Ling; Piao Ling-Yu; Xu Zheng; Ju Si-Ting; Liu Xiao-Dong; Kong Chao; Xu Xu-Rong

    2011-01-01

    Organic solar cells based on poly(N-vinylcarbazole) (PVK): porphyrin: tris (8-hydroxyquinolinato) aluminium (Alq3) blend p-n junction systems have been fabricated in this work. The roles of the different components in the blend system and of the amount of porphyrin have been investigated. The 5, 10, 15, 20-tetraphenylporphyrin (TPP) and 5, 10, 15, 20-tetra(o-chloro)phenylporphyrinato-copper (CuTCIPP) are used in the solar cells. The results show that TPP is better than CuTClPP in enhancing the performance of PVK:Alq3 solar cells. When the weight ratio of PVK:TPP:Alq3 is 1:1.5:1, the best performance of solar cell is obtained. The open circuit voltage (Voc) is 0.87 V, and the short circuit current (Jsc) is 17.5 μA·cm-2. In the ternary bulk hereojunction system, the device may be regarded as a cascade of three devices of PVK:TPP, TPP:Alq3 and PVK:Alq3. PVK, TPP and Alq3 can improve the hole mobility, light absorption intensity and electron mobility of the ternary bulk hereojunction system, respectively.

  12. A Fluid Membrane-Based Soluble Ligand Display System for Live CellAssays

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Jwa-Min; Nair, Pradeep N.; Neve, Richard M.; Gray, Joe W.; Groves, Jay T.

    2005-10-14

    Cell communication modulates numerous biological processes including proliferation, apoptosis, motility, invasion and differentiation. Correspondingly, there has been significant interest in the development of surface display strategies for the presentation of signaling molecules to living cells. This effort has primarily focused on naturally surface-bound ligands, such as extracellular matrix components and cell membranes. Soluble ligands (e.g. growth factors and cytokines) play an important role in intercellular communications, and their display in a surface-bound format would be of great utility in the design of array-based live cell assays. Recently, several cell microarray systems that display cDNA, RNAi, or small molecules in a surface array format were proven to be useful in accelerating high-throughput functional genetic studies and screening therapeutic agents. These surface display methods provide a flexible platform for the systematic, combinatorial investigation of genes and small molecules affecting cellular processes and phenotypes of interest. In an analogous sense, it would be an important advance if one could display soluble signaling ligands in a surface assay format that allows for systematic, patterned presentation of soluble ligands to live cells. Such a technique would make it possible to examine cellular phenotypes of interest in a parallel format with soluble signaling ligands as one of the display parameters. Herein we report a ligand-modified fluid supported lipid bilayer (SLB) assay system that can be used to functionally display soluble ligands to cells in situ (Figure 1A). By displaying soluble ligands on a SLB surface, both solution behavior (the ability to become locally enriched by reaction-diffusion processes) and solid behavior (the ability to control the spatial location of the ligands in an open system) could be combined. The method reported herein benefits from the naturally fluid state of the supported membrane, which allows

  13. Expression System Based on an MTIIa Promoter to Produce hPSA in Mammalian Cell Cultures

    Science.gov (United States)

    Santos, Anderson K.; Parreira, Ricardo C.; Resende, Rodrigo R.

    2016-01-01

    Because of the limitations of standard culture techniques, the development of new recombinant protein expression systems with biotechnological potential is a key challenge. Ideally, such systems should be able to effectively and accurately synthesize a protein of interest with intrinsic metabolic capacity. Here, we describe such a system that was designed based on a plasmid vector containing promoter elements derived from the metallothionein MTIIa promoter, as well as processing and purification elements. This promoter can be induced by heavy metals in a culture medium to induce the synthesis of human prostate-specific antigen (hPSA), which has been modified to insert elements for purification, proteolysis, and secretion. We optimized hPSA production in this system by comparing the effects and contributions of ZnCl2, CdCl2, and CuSO4 in HEK293FT, HeLa, BHK-21, and CHO-K1 cells. We also compared the effectiveness of three different transfection agents: multi-walled carbon nanotubes, Lipofectamine 2000, and X-tremeGENE HP Reagent. hPSA production was confirmed via the detection of enhanced green fluorescent protein fluorescence, and cell viability was determined. The expression of hPSA was compared with that of the native protein produced by LNCaP cells, using enzyme-linked immunosorbent assay and sodium dodecyl sulfate polyacrylamide gel electrophoresis. X-tremeGENE reagent, the BHK-21 cell line, and CuSO4 showed the highest hPSA production rates. Furthermore, BHK-21 cells were more resistant to the oxidative stress caused by 100 μM CuSO4. These results suggest that the proposed optimized inducible expression system can effectively produce recombinant proteins with desired characteristics for a wide range of applications in molecular biology. PMID:27582737

  14. Expression system based on an MTIIa promoter to produce hPSA in mammalian cell cultures

    Directory of Open Access Journals (Sweden)

    Anderson K Santos

    2016-08-01

    Full Text Available Because of the limitations of standard culture techniques, the development of new recombinant protein expression systems with biotechnological potential is a key challenge. Ideally, such systems should be able to effectively and accurately synthesize a protein of interest with intrinsic metabolic capacity. Here, we describe such a system that was designed based on a plasmid vector containing promoter elements derived from the metallothionein MTIIa promoter, as well as processing and purification elements. This promoter can be induced by heavy metals in a culture medium to induce the synthesis of human prostate-specific antigen (hPSA, which has been modified to insert elements for purification, proteolysis, and secretion. We optimized hPSA production in this system by comparing the effects and contributions of ZnCl2, CdCl2, and CuSO4 in HEK293FT, HeLa, BHK-21, and CHO-K1 cells. We also compared the effectiveness of three different transfection agents: multi-walled carbon nanotubes, Lipofectamine 2000, and X-tremeGENE HP Reagent. hPSA production was confirmed via the detection of enhanced green fluorescent protein fluorescence, and cell viability was determined. The expression of hPSA was compared with that of the native protein produced by LNCaP cells, using enzyme-linked immunosorbent assay and sodium dodecyl sulphate polyacrylamide gel electrophoresis. X-tremeGENE reagent, the BHK-21 cell line, and CuSO4 showed the highest hPSA production rates. Furthermore, BHK-21 cells were more resistant to the oxidative stress caused by 100 μM CuSO4. These results suggest that the proposed optimized inducible expression system can effectively produce recombinant proteins with desired characteristics for a wide range of applications in molecular biology.

  15. Large Scale Tissue Morphogenesis Simulation on Heterogenous Systems Based on a Flexible Biomechanical Cell Model.

    Science.gov (United States)

    Jeannin-Girardon, Anne; Ballet, Pascal; Rodin, Vincent

    2015-01-01

    The complexity of biological tissue morphogenesis makes in silico simulations of such system very interesting in order to gain a better understanding of the underlying mechanisms ruling the development of multicellular tissues. This complexity is mainly due to two elements: firstly, biological tissues comprise a large amount of cells; secondly, these cells exhibit complex interactions and behaviors. To address these two issues, we propose two tools: the first one is a virtual cell model that comprise two main elements: firstly, a mechanical structure (membrane, cytoskeleton, and cortex) and secondly, the main behaviors exhibited by biological cells, i.e., mitosis, growth, differentiation, molecule consumption, and production as well as the consideration of the physical constraints issued from the environment. An artificial chemistry is also included in the model. This virtual cell model is coupled to an agent-based formalism. The second tool is a simulator that relies on the OpenCL framework. It allows efficient parallel simulations on heterogenous devices such as micro-processors or graphics processors. We present two case studies validating the implementation of our model in our simulator: cellular proliferation controlled by cell signalling and limb growth in a virtual organism.

  16. Comparative assessment of lipid based nano-carrier systems for dendritic cell based targeting of tumor re-initiating cells in gynecological cancers.

    Science.gov (United States)

    Bhargava, Arpit; Mishra, Dinesh K; Jain, Subodh K; Srivastava, Rupesh K; Lohiya, Nirmal K; Mishra, Pradyumna K

    2016-11-01

    We aimed to identify an optimum nano-carrier system to deliver tumor antigen to dendritic cells (DCs) for efficient targeting of tumor reinitiating cells (TRICs) in gynecological malignancies. Different lipid based nano-carrier systems i.e. liposomes, ethosomes and solid lipid nanoparticles (SLNPs) were examined for their ability to activate DCs in allogeneic settings. Out of these three, the most optimized formulation was subjected for cationic and mannosylated surface modification and pulsed with DCs for specific targeting of tumor cells. In both allogeneic and autologous trials, SLNPs showed a strong ability to activate DCs and orchestrate specific immune responses for targeting TRICs in gynecological malignancies. Our findings suggest that the mannosylated form of SLNPs is a suitable molecular vector for DC based therapeutics. DCs pulsed with mannosylated SLNPs may be utilized as adjuvant therapy for specific removal of TRICs to benefit patients from tumor recurrence.

  17. Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.

    2013-06-01

    This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

  18. Residential Systems Based on Solid Oxide Fuel Cells for Scandinavian Climate

    DEFF Research Database (Denmark)

    Rokni, Masoud; Vialetto, Giulio

    2015-01-01

    are performed under different strategies at a resort located in a northern European climate (Denmark) to cover electricity, space heating and domestic hot water (DHW) demands. The results of these simulations are analyzed with thermodynamic and techno-economic benchmarks, considering different economic...... of them received subsidies to increase installation and reduce cost. This article presents an innovative cogeneration system based on a solid oxide fuel cell (SOFC) system and heat pump for household applications with a focus on primary energy and economic savings using electric equivalent load parameter...... which is a function of the electricity and heat demand of the user, and allows different operation strategies to be considered. The proposal is to maximize the efficiency of the system and to make it profitable, even though technologies with a high purchase cost are considered. Simulations of the system...

  19. A New Cogeneration Residential System Based on Solid Oxide Fuel Cells for a Northern European Climate

    DEFF Research Database (Denmark)

    Vialetto, Giulio; Rokni, Masoud

    2015-01-01

    are performed under different strategies at a resort located in a northern European climate (Denmark) to cover electricity, space heating and domestic hot water (DHW) demands. The results of these simulations are analyzed with thermodynamic and techno-economic benchmarks, considering different economic...... of them received subsidies to increase installation and reduce cost. This article presents an innovative cogeneration system based on a solid oxide fuel cell (SOFC) system and heat pump for household applications with a focus on primary energy and economic savings using electric equivalent load parameter...... which is a function of the electricity and heat demand of the user, and allows different operation strategies to be considered. The proposal is to maximize the efficiency of the system and to make it profitable, even though technologies with a high purchase cost are considered. Simulations of the system...

  20. Dynamic fuel cell stack model for real-time simulation based on system identification

    Science.gov (United States)

    Meiler, M.; Schmid, O.; Schudy, M.; Hofer, E. P.

    The authors have been developing an empirical mathematical model to predict the dynamic behaviour of a polymer electrolyte membrane fuel cell (PEMFC) stack. Today there is a great number of models, describing steady-state behaviour of fuel cells by estimating the equilibrium voltage for a certain set of operating parameters, but models capable of predicting the transient process between two steady-state points are rare. However, in automotive applications round about 80% of operating situations are dynamic. To improve the reliability of fuel cell systems by model-based control for real-time simulation dynamic fuel cell stack model is needed. Physical motivated models, described by differential equations, usually are complex and need a lot of computing time. To meet the real-time capability the focus is set on empirical models. Fuel cells are highly nonlinear systems, so often used auto-regressive (AR), output-error (OE) or Box-Jenkins (BJ) models do not accomplish satisfying accuracy. Best results are achieved by splitting the behaviour into a nonlinear static and a linear dynamic subsystem, a so-called Uryson-Model. For system identification and model validation load steps with different amplitudes are applied to the fuel cell stack at various operation points and the voltage response is recorded. The presented model is implemented in MATLAB environment and has a computing time of less than 1 ms per step on a standard desktop computer with a 2.8 MHz CPU and 504 MB RAM. Lab tests are carried out at DaimlerChrysler R&D Centre with DaimlerChrysler PEMFC hardware and a good agreement is found between model simulations and lab tests.

  1. Dynamic fuel cell stack model for real-time simulation based on system identification

    Energy Technology Data Exchange (ETDEWEB)

    Meiler, M.; Schmid, O.; Schudy, M. [Department of MEA and Stack Technology, DaimlerChrysler AG, Neue Str. 95, D-73230 Kirchheim/Teck (Germany); Hofer, E.P. [Department of Measurement, Control and Microtechnology, University of Ulm, Albert-Einstein-Allee 41, D-89081 Ulm (Germany)

    2008-02-01

    The authors have been developing an empirical mathematical model to predict the dynamic behaviour of a polymer electrolyte membrane fuel cell (PEMFC) stack. Today there is a great number of models, describing steady-state behaviour of fuel cells by estimating the equilibrium voltage for a certain set of operating parameters, but models capable of predicting the transient process between two steady-state points are rare. However, in automotive applications round about 80% of operating situations are dynamic. To improve the reliability of fuel cell systems by model-based control for real-time simulation dynamic fuel cell stack model is needed. Physical motivated models, described by differential equations, usually are complex and need a lot of computing time. To meet the real-time capability the focus is set on empirical models. Fuel cells are highly nonlinear systems, so often used auto-regressive (AR), output-error (OE) or Box-Jenkins (BJ) models do not accomplish satisfying accuracy. Best results are achieved by splitting the behaviour into a nonlinear static and a linear dynamic subsystem, a so-called Uryson-Model. For system identification and model validation load steps with different amplitudes are applied to the fuel cell stack at various operation points and the voltage response is recorded. The presented model is implemented in MATLAB environment and has a computing time of less than 1 ms per step on a standard desktop computer with a 2.8 MHz CPU and 504 MB RAM. Lab tests are carried out at DaimlerChrysler R and D Centre with DaimlerChrysler PEMFC hardware and a good agreement is found between model simulations and lab tests. (author)

  2. [Research on fiber methane sensing system based on prism gas cell].

    Science.gov (United States)

    Wu, Xi-Jun; Wang, Yu-Tian; Liu, Xue-Cai; Li, Shu-Jun

    2010-05-01

    A novel fiber methane detection system was constructed based on integration of prism gas cell and harmonic detection technique. The system can be applied to broad-range concentration detection. Grounded on the Beer-Lambert approximation, the detection of various concentration (0-20%) of methane was completed using subtraction of background and ratio processing method, as the atmosphere surroundings was treated as background. The direct absorption spectra for various concentration were measured using GRIN gas cell, combined with available DFB-LD, and the R5 line of the 2v3 band of methane was selected as absorption peak. The system was tested online during gas mixing process and the linear relation between system indication and concentration variation was validated, while the stability and dynamic response characteristics was confirmed by experiments. The system sensitivity can be adjusted according to the concentration level of various field environments by changing the prism distance using step motor. So that, the system can be applied to various application fields and can be adopted as a monitoring instrument for coalmine tunnel and natural gas pipeline.

  3. Cell-Based Sensor System Using L6 Cells for Broad Band Continuous Pollutant Monitoring in Aquatic Environments

    Directory of Open Access Journals (Sweden)

    Evamaria Stütz

    2012-03-01

    Full Text Available Pollution of drinking water sources represents a continuously emerging problem in global environmental protection. Novel techniques for real-time monitoring of water quality, capable of the detection of unanticipated toxic and bioactive substances, are urgently needed. In this study, the applicability of a cell-based sensor system using selected eukaryotic cell lines for the detection of aquatic pollutants is shown. Readout parameters of the cells were the acidification (metabolism, oxygen consumption (respiration and impedance (morphology of the cells. A variety of potential cytotoxic classes of substances (heavy metals, pharmaceuticals, neurotoxins, waste water was tested with monolayers of L6 cells (rat myoblasts. The cytotoxicity or cellular effects induced by inorganic ions (Ni2+ and Cu2+ can be detected with the metabolic parameters acidification and respiration down to 0.5 mg/L, whereas the detection limit for other substances like nicotine and acetaminophen are rather high, in the range of 0.1 mg/L and 100 mg/L. In a close to application model a real waste water sample shows detectable signals, indicating the existence of cytotoxic substances. The results support the paradigm change from single substance detection to the monitoring of overall toxicity.

  4. Innovative Household Systems Based on Solid Oxide Fuel Cells for a Northern European climate

    DEFF Research Database (Denmark)

    Rokni, Masoud; Vialetto, Giulio

    2015-01-01

    Energy saving is an open point in most European countries where energy policies are oriented to reduce the use of fossil fuels, greenhouses emissions and energy independence and to increase the use of renewable energies. In the last several years, new technologies have been developed, and some...... of them received subsidies to increase installation and reduce cost.This article presents an innovative cogeneration system based on a solid oxide fuel cell (SOFC) systemand heat pump for household applications with a focus on primary energy and economic savings using electric equivalent load parameter...... which is a function of the electricity and heat demand of the user, and allows different operation strategies to be considered. The proposal is to maximize the efficiency of the system and to make it profitable, even though technologies with a high purchase cost are considered.Simulations of the system...

  5. Rescue the failed half-ZFN by a sensitive mammalian cell-based luciferase reporter system.

    Directory of Open Access Journals (Sweden)

    Weifeng Zhang

    Full Text Available ZFN technology is a powerful research tool and has been used for genome editing in cells lines, animals and plants. The generation of functional ZFNs for particular targets in mammalian genome is still challenging for an average research group. The modular-assembly method is relatively fast, easy-to-practice but has a high failure rate. Some recent studies suggested that a ZFP with low binding activity might be able to form a working ZFN pair with another binding active half-ZFP. In order to unveil the potential ZFP candidates among those with low binding activities, this paper established a highly sensitive mammalian cell-based transcriptional reporter system to assess the DNA binding activities of ZFPs by inserting multiple copies of ZFN target sequence fragment (TSF of an interested gene (e. g., hPGRN or hVEGF. Our results showed that this system increased the screening sensitivity up to 50-fold and markedly amplified the differences in the binding activities between different ZFPs. We also found that the targeted chromosomal gene repair efficiency of each hPGRN or hVEGF ZFN pair was in proportion with the combination of the binding activities of the ZFL (Left zinc finger and ZFR (Right zinc finger. A hPGRN ZFR with low binding ability was able to form a biological active ZFN if combined with a hPGRN ZFL with relatively high binding ability. Lastly, site-specific genome editing by hPGRN ZFNs generated by this system was confirmed by sequencing, and the PGRN knock-out cell line showed significantly decreased cell growth compared with the control. Our system will provide a valuable tool for further optimizing the nucleases with regard to specificity and cytotoxicity.

  6. Innovative Household Systems Based on Solid Oxide Fuel Cells for a Northern European climate

    DEFF Research Database (Denmark)

    Rokni, Masoud; Vialetto, Giulio

    2015-01-01

    Energy saving is an open point in most European countries where energy policies are oriented to reduce the use of fossil fuels, greenhouses emissions and energy independence and to increase the use of renewable energies. In the last several years, new technologies have been developed, and some...... of them received subsidies to increase installation and reduce cost.This article presents an innovative cogeneration system based on a solid oxide fuel cell (SOFC) systemand heat pump for household applications with a focus on primary energy and economic savings using electric equivalent load parameter...

  7. Perspectives in Engineered Mesenchymal Stem/Stromal Cells Based Anti- Cancer Drug Delivery Systems.

    Science.gov (United States)

    Ackova, Darinka Gjorgieva; Kanjevac, Tatjana; Rimondini, Lia; Bosnakovski, Darko

    2016-01-01

    Understanding and apprehension of the characteristics and circumstances in which mesenchymal stem cells (MSCs) affect and make alterations (enhance or reduce) to the growth of tumors and metastasis spread is pivotal, not only for reaching the possibility to employ MSCs as drug delivery systems, but also for making forward movement in the existing knowledge of involvement of major factors (tumor microenvironment, soluble signaling molecules, etc.) in the process of carcinogenesis. This capability is reliable because MSCs present a great basis for engineering and constructions of new systems to target cancers, intended to secrete therapeutic proteins in the tumor region, or for delivering of oncolytic viruses' directly at the tumor site (targeted chemotherapy with enzyme prodrug conversion or induction of tumor cell apoptosis). MSCs as a crucial segment of the tumor surroundings and their confirmed tumor tropism, are assumed to be an open gateway for the design of promising drug delivery systems. The presented paper reviews current publications in this fieldwork, searches out the most recent patents that were published after 2012 (WO2014066122, US20140017787, WO2015100268, US20150086515), and tries to present the current progress and future prospective on the design and development in anti-cancer drug delivery systems based on MSCs.

  8. An organic transistor-based system for reference-less electrophysiological monitoring of excitable cells.

    Science.gov (United States)

    Spanu, A; Lai, S; Cosseddu, P; Tedesco, M; Martinoia, S; Bonfiglio, A

    2015-03-06

    In the last four decades, substantial advances have been done in the understanding of the electrical behavior of excitable cells. From the introduction in the early 70's of the Ion Sensitive Field Effect Transistor (ISFET), a lot of effort has been put in the development of more and more performing transistor-based devices to reliably interface electrogenic cells such as, for example, cardiac myocytes and neurons. However, depending on the type of application, the electronic devices used to this aim face several problems like the intrinsic rigidity of the materials (associated with foreign body rejection reactions), lack of transparency and the presence of a reference electrode. Here, an innovative system based on a novel kind of organic thin film transistor (OTFT), called organic charge modulated FET (OCMFET), is proposed as a flexible, transparent, reference-less transducer of the electrical activity of electrogenic cells. The exploitation of organic electronics in interfacing the living matters will open up new perspectives in the electrophysiological field allowing us to head toward a modern era of flexible, reference-less, and low cost probes with high-spatial and high-temporal resolution for a new generation of in-vitro and in-vivo monitoring platforms.

  9. Unit cell-based computer-aided manufacturing system for tissue engineering.

    Science.gov (United States)

    Kang, Hyun-Wook; Park, Jeong Hun; Kang, Tae-Yun; Seol, Young-Joon; Cho, Dong-Woo

    2012-03-01

    Scaffolds play an important role in the regeneration of artificial tissues or organs. A scaffold is a porous structure with a micro-scale inner architecture in the range of several to several hundreds of micrometers. Therefore, computer-aided construction of scaffolds should provide sophisticated functionality for porous structure design and a tool path generation strategy that can achieve micro-scale architecture. In this study, a new unit cell-based computer-aided manufacturing (CAM) system was developed for the automated design and fabrication of a porous structure with micro-scale inner architecture that can be applied to composite tissue regeneration. The CAM system was developed by first defining a data structure for the computing process of a unit cell representing a single pore structure. Next, an algorithm and software were developed and applied to construct porous structures with a single or multiple pore design using solid freeform fabrication technology and a 3D tooth/spine computer-aided design model. We showed that this system is quite feasible for the design and fabrication of a scaffold for tissue engineering.

  10. An Electrical Energy Storage System Based on Solid Oxide Fuel Cells

    Science.gov (United States)

    Luo, T.; Shao, L.; Qian, J. Q.; Wang, S. R.; Zhan, Z. L.

    2013-07-01

    This work studies a proof-of-concept integrated electrical energy storage system of solid oxide fuel cell (SOFC) by using Fe as original fuel and Ca(OH)2 as additive. The design and operation of this cell are based on a conventional anode-supported tubular SOFC, with Ni-SSZ, SSZ, and SSZ-LSM as anode, electrolyte and cathode, respectively. In this design, Fe reacts with H2O generated from the decomposition of Ca(OH)2 at high temperature, as a result, H2 is produced in situ as SOFC fuel. The charging process is realized by electrolysis of water in the SOEC mode along with the reduction of Fe3O4 by the generated H2. It is demonstrated that the open circuit voltage (OCV) for the Fe-Fe3O4 system is above 1.0V at 1073K. By using such fuel, the maximum power density of 124 mW cm-2 has been achieved. Two stable charge/discharge cycles have been tested. Combined with the advantages of environmental friendliness, sustainability promise and excellent performance, the novel SOFC system will be a new choice of grid-scale energy storage.

  11. Fuel-Cell Power Systems Incorporating Mg-Based H2 Generators

    Science.gov (United States)

    Kindler, Andrew; Narayan, Sri R.

    2009-01-01

    Two hydrogen generators based on reactions involving magnesium and steam have been proposed as means for generating the fuel (hydrogen gas) for such fuel-cell power systems as those to be used in the drive systems of advanced motor vehicles. The hydrogen generators would make it unnecessary to rely on any of the hydrogen storage systems developed thus far that are, variously, too expensive, too heavy, too bulky, and/or too unsafe to be practical. The two proposed hydrogen generators are denoted basic and advanced, respectively. In the basic hydrogen generator (see figure), steam at a temperature greater than or equals 330 C would be fed into a reactor charged with magnesium, wherein hydrogen would be released in the exothermic reaction Mg + H2O yields MgO + H2. The steam would be made in a flash boiler. To initiate the reaction, the boiler could be heated electrically by energy borrowed from a storage battery that would be recharged during normal operation of the associated fuel-cell subsystem. Once the reaction was underway, heat from the reaction would be fed to the boiler. If the boiler were made an integral part of the hydrogen-generator reactor vessel, then the problem of transfer of heat from the reactor to the boiler would be greatly simplified. A pump would be used to feed water from a storage tank to the boiler.

  12. Fuzzy Logic Based Control of Power of PEM Fuel Cell System for Residential Application

    Directory of Open Access Journals (Sweden)

    Khaled MAMMAR

    2009-07-01

    Full Text Available This paper presents a dynamic model of Fuel cell system for residential power generation. The models proposed include a fuel cell stack model, reformer model and DC/AC inverter model. Furthermore a fuzzy logic (FLC controller is used to control active power of PEM fuel cell system. The controller modifies the hydrogen flow feedback from the terminal load. Simulation results confirmed the high performance capability of the fuzzy logic controller to control power generation.

  13. Fuzzy Logic Based Control of Power of PEM Fuel Cell System for Residential Application

    OpenAIRE

    Khaled MAMMAR; CHAKER, Abdelkader

    2009-01-01

    This paper presents a dynamic model of Fuel cell system for residential power generation. The models proposed include a fuel cell stack model, reformer model and DC/AC inverter model. Furthermore a fuzzy logic (FLC) controller is used to control active power of PEM fuel cell system. The controller modifies the hydrogen flow feedback from the terminal load. Simulation results confirmed the high performance capability of the fuzzy logic controller to control power generation.

  14. Gas/Water and Heat Management of PEM-Based Fuel Cell and Electrolyzer Systems for Space Applications

    Science.gov (United States)

    Guo, Qing; Ye, Fang; Guo, Hang; Ma, Chong Fang

    2017-02-01

    Hydrogen/oxygen fuel cells were successfully utilized in the field of space applications to provide electric energy and potable water in human-rated space mission since the 1960s. Proton exchange membrane (PEM) based fuel cells, which provide high power/energy densities, were reconsidered as a promising space power equipment for future space exploration. PEM-based water electrolyzers were employed to provide life support for crews or as major components of regenerative fuel cells for energy storage. Gas/water and heat are some of the key challenges in PEM-based fuel cells and electrolytic cells, especially when applied to space scenarios. In the past decades, efforts related to gas/water and thermal control have been reported to effectively improve cell performance, stability lifespan, and reduce mass, volume and costs of those space cell systems. This study aimed to present a primary review of research on gas/water and waste thermal management for PEM-based electrochemical cell systems applied to future space explorations. In the fuel cell system, technologies related to reactant supplement, gas humidification, water removal and active/passive water separation were summarized in detail. Experimental studies were discussed to provide a direct understanding of the effect of the gas-liquid two-phase flow on product removal and mass transfer for PEM-based fuel cell operating in a short-term microgravity environment. In the electrolyzer system, several active and static passive phaseseparation methods based on diverse water supplement approaches were discussed. A summary of two advanced passive thermal management approaches, which are available for various sizes of space cell stacks, was specifically provided

  15. Gas/Water and Heat Management of PEM-Based Fuel Cell and Electrolyzer Systems for Space Applications

    Science.gov (United States)

    Guo, Qing; Ye, Fang; Guo, Hang; Ma, Chong Fang

    2016-11-01

    Hydrogen/oxygen fuel cells were successfully utilized in the field of space applications to provide electric energy and potable water in human-rated space mission since the 1960s. Proton exchange membrane (PEM) based fuel cells, which provide high power/energy densities, were reconsidered as a promising space power equipment for future space exploration. PEM-based water electrolyzers were employed to provide life support for crews or as major components of regenerative fuel cells for energy storage. Gas/water and heat are some of the key challenges in PEM-based fuel cells and electrolytic cells, especially when applied to space scenarios. In the past decades, efforts related to gas/water and thermal control have been reported to effectively improve cell performance, stability lifespan, and reduce mass, volume and costs of those space cell systems. This study aimed to present a primary review of research on gas/water and waste thermal management for PEM-based electrochemical cell systems applied to future space explorations. In the fuel cell system, technologies related to reactant supplement, gas humidification, water removal and active/passive water separation were summarized in detail. Experimental studies were discussed to provide a direct understanding of the effect of the gas-liquid two-phase flow on product removal and mass transfer for PEM-based fuel cell operating in a short-term microgravity environment. In the electrolyzer system, several active and static passive phaseseparation methods based on diverse water supplement approaches were discussed. A summary of two advanced passive thermal management approaches, which are available for various sizes of space cell stacks, was specifically provided

  16. An Efficient Rice Mutagenesis System Based on Suspension-Cultured Cells

    Institute of Scientific and Technical Information of China (English)

    Yuan-Ling Chen; Hui-Lin Liang; Xing-Liang Ma; Su-Lin Lou; Yong-Yao Xie; Zhen-Lan Liu; Le-Tian Chen; Yao-Guang Liu

    2013-01-01

    Plant mutants are important bio-resources for crop breeding and gene functional studies.Conventional methods for generating mutant libraries by mutagenesis of seeds with physical or chemical agents are of low efficiency.Here,we developed a highly-efficient ethyl methanesulfonate (EMS) mutagenesis system based on suspension-cultured cells,with rice (Oryza sativa L.) as an example.We show that treatment of suspension-cultured tiny cell clusters with 0.4% EMS for 18-22 h followed by differentiation and regeneration produced as high as 29.4% independent mutant lines with visible phenotypic variations,including a number of important agronomic traits such as grain size,panicle size,grain or panicle shape,tiller number and angle,heading date,male sterility,and disease sensitivity.No mosaic mutant was observed in the mutant lines tested.In this mutant library,we obtained a mutant with an abnormally elongated uppermost internode.Sequencing and functional analysis revealed that this is a new allelic mutant of eui (elongated uppermost internode) caused by two point mutations in the first exon of the EUI gene,representing a successful example of this mutagenesis system.

  17. CellTracks cell analysis system for rare cell detection

    NARCIS (Netherlands)

    Kagan, Michael T.; Trainer, Michael N.; Bendele, Teresa; Rao, Chandra; Horton, Allen; Tibbe, Arjan G.; Greve, Jan; Terstappen, Leon W.M.M.

    2002-01-01

    The CellTracks system is a Compact Disk-based cell analyzer that, similar to flow cytometry, differentiates cells that are aligned while passing through focused laser beams. In CellTracks, only immuno-magnetically labeled cells are aligned and remain in position for further analysis. This feature is

  18. Stem and Progenitor Cell-Based Therapy of the Central Nervous System

    DEFF Research Database (Denmark)

    Goldman, Steven A.

    2016-01-01

    A variety of neurological disorders are attractive targets for stem and progenitor cell-based therapy. Yet many conditions are not, whether by virtue of an inhospitable disease environment, poorly understood pathophysiology, or poor alignment of donor cell capabilities with patient needs. Moreove...

  19. Proteomics-based systems biology modeling of bovine germinal vesicle stage oocyte and cumulus cell interaction.

    Directory of Open Access Journals (Sweden)

    Divyaswetha Peddinti

    Full Text Available BACKGROUND: Oocytes are the female gametes which establish the program of life after fertilization. Interactions between oocyte and the surrounding cumulus cells at germinal vesicle (GV stage are considered essential for proper maturation or 'programming' of oocytes, which is crucial for normal fertilization and embryonic development. However, despite its importance, little is known about the molecular events and pathways involved in this bidirectional communication. METHODOLOGY/PRINCIPAL FINDINGS: We used differential detergent fractionation multidimensional protein identification technology (DDF-Mud PIT on bovine GV oocyte and cumulus cells and identified 811 and 1247 proteins in GV oocyte and cumulus cells, respectively; 371 proteins were significantly differentially expressed between each cell type. Systems biology modeling, which included Gene Ontology (GO and canonical genetic pathway analysis, showed that cumulus cells have higher expression of proteins involved in cell communication, generation of precursor metabolites and energy, as well as transport than GV oocytes. Our data also suggests a hypothesis that oocytes may depend on the presence of cumulus cells to generate specific cellular signals to coordinate their growth and maturation. CONCLUSIONS/SIGNIFICANCE: Systems biology modeling of bovine oocytes and cumulus cells in the context of GO and protein interaction networks identified the signaling pathways associated with the proteins involved in cell-to-cell signaling biological process that may have implications in oocyte competence and maturation. This first comprehensive systems biology modeling of bovine oocytes and cumulus cell proteomes not only provides a foundation for signaling and cell physiology at the GV stage of oocyte development, but are also valuable for comparative studies of other stages of oocyte development at the molecular level.

  20. Human Pluripotent Stem Cell Based Developmental Toxicity Assays for Chemical Safety Screening and Systems Biology Data Generation.

    Science.gov (United States)

    Shinde, Vaibhav; Klima, Stefanie; Sureshkumar, Perumal Srinivasan; Meganathan, Kesavan; Jagtap, Smita; Rempel, Eugen; Rahnenführer, Jörg; Hengstler, Jan Georg; Waldmann, Tanja; Hescheler, Jürgen; Leist, Marcel; Sachinidis, Agapios

    2015-06-17

    Efficient protocols to differentiate human pluripotent stem cells to various tissues in combination with -omics technologies opened up new horizons for in vitro toxicity testing of potential drugs. To provide a solid scientific basis for such assays, it will be important to gain quantitative information on the time course of development and on the underlying regulatory mechanisms by systems biology approaches. Two assays have therefore been tuned here for these requirements. In the UKK test system, human embryonic stem cells (hESC) (or other pluripotent cells) are left to spontaneously differentiate for 14 days in embryoid bodies, to allow generation of cells of all three germ layers. This system recapitulates key steps of early human embryonic development, and it can predict human-specific early embryonic toxicity/teratogenicity, if cells are exposed to chemicals during differentiation. The UKN1 test system is based on hESC differentiating to a population of neuroectodermal progenitor (NEP) cells for 6 days. This system recapitulates early neural development and predicts early developmental neurotoxicity and epigenetic changes triggered by chemicals. Both systems, in combination with transcriptome microarray studies, are suitable for identifying toxicity biomarkers. Moreover, they may be used in combination to generate input data for systems biology analysis. These test systems have advantages over the traditional toxicological studies requiring large amounts of animals. The test systems may contribute to a reduction of the costs for drug development and chemical safety evaluation. Their combination sheds light especially on compounds that may influence neurodevelopment specifically.

  1. Imaging of blood cells based on snapshot Hyper-Spectral Imaging systems

    Science.gov (United States)

    Robison, Christopher J.; Kolanko, Christopher; Bourlai, Thirimachos; Dawson, Jeremy M.

    2015-05-01

    Snapshot Hyper-Spectral imaging systems are capable of capturing several spectral bands simultaneously, offering coregistered images of a target. With appropriate optics, these systems are potentially able to image blood cells in vivo as they flow through a vessel, eliminating the need for a blood draw and sample staining. Our group has evaluated the capability of a commercial Snapshot Hyper-Spectral imaging system, the Arrow system from Rebellion Photonics, in differentiating between white and red blood cells on unstained blood smear slides. We evaluated the imaging capabilities of this hyperspectral camera; attached to a microscope at varying objective powers and illumination intensity. Hyperspectral data consisting of 25, 443x313 hyperspectral bands with ~3nm spacing were captured over the range of 419 to 494nm. Open-source hyper-spectral data cube analysis tools, used primarily in Geographic Information Systems (GIS) applications, indicate that white blood cells features are most prominent in the 428-442nm band for blood samples viewed under 20x and 50x magnification over a varying range of illumination intensities. These images could potentially be used in subsequent automated white blood cell segmentation and counting algorithms for performing in vivo white blood cell counting.

  2. Sleeping Beauty transposon-based system for rapid generation of HBV-replicating stable cell lines.

    Science.gov (United States)

    Wu, Yong; Zhang, Tian-Ying; Fang, Lin-Lin; Chen, Zi-Xuan; Song, Liu-Wei; Cao, Jia-Li; Yang, Lin; Yuan, Quan; Xia, Ning-Shao

    2016-08-01

    The stable HBV-replicating cell lines, which carry replication-competent HBV genome stably integrated into the genome of host cell, are widely used to evaluate the effects of antiviral agents. However, current methods to generate HBV-replicating cell lines, which are mostly dependent on random integration of foreign DNA via plasmid transfection, are less-efficient and time-consuming. To address this issue, we constructed an all-in-one Sleeping Beauty transposon system (denoted pTSMP-HBV vector) for robust generation of stable cell lines carrying replication-competent HBV genome of different genotype. This vector contains a Sleeping Beauty transposon containing HBV 1.3-copy genome with an expression cassette of the SV40 promoter driving red fluorescent protein (mCherry) and self-cleaving P2A peptide linked puromycin resistance gene (PuroR). In addition, a PGK promoter-driven SB100X hyperactive transposase cassette is placed in the outside of the transposon in the same plasmid.The HBV-replicating stable cells could be obtained from pTSMP-HBV transfected HepG2 cells by red fluorescence-activated cell sorting and puromycin resistant cell selection within 4-week. Using this system, we successfully constructed four cell lines carrying replication-competent HBV genome of genotypes A-D. The replication and viral protein expression profiles of these cells were systematically characterized. In conclusion, our study provides a high-efficiency strategy to generate HBV-replicating stable cell lines, which may facilitate HBV-related virological study.

  3. Increasing the sensitivity for stem cell monitoring in system-function based magnetic particle imaging

    Science.gov (United States)

    Them, Kolja; Salamon, J.; Szwargulski, P.; Sequeira, S.; Kaul, M. G.; Lange, C.; Ittrich, H.; Knopp, Tobias

    2016-05-01

    The use of superparamagnetic iron oxide nanoparticles (SPIONs) has provided new possibilities in biophysics and biomedical imaging technologies. The magnetization dynamics of SPIONs, which can be influenced by the environment, are of central interest. In this work, different biological SPION environments are used to investigate three different calibration methods for stem cell monitoring in magnetic particle imaging. It is shown that calibrating using SPIONs immobilized via agarose gel or intracellular uptake results in superior stem cell image quality compared to mobile SPIONs in saline. This superior image quality enables more sensitive localization and identification of a significantly smaller number of magnetically labeled stem cells. The results are important for cell tracking and monitoring of future SPION based therapies such as hyperthermia based cancer therapies, targeted drug delivery, or tissue regeneration approaches where it is crucial to image a sufficiently small number of SPIONs interacting with biological matter.

  4. Evaluation of a Passive Heat Exchanger Based Cooling System for Fuel Cell Applications

    Science.gov (United States)

    Colozza, Anthony J.; Burke, Kenneth A.

    2011-01-01

    Fuel cell cooling is conventionally performed with an actively controlled, dedicated coolant loop that exchanges heat with a separate external cooling loop. To simplify this system the concept of directly cooling a fuel cell utilizing a coolant loop with a regenerative heat exchanger to preheat the coolant entering the fuel cell with the coolant exiting the fuel cell was analyzed. The preheating is necessary to minimize the temperature difference across the fuel cell stack. This type of coolant system would minimize the controls needed on the coolant loop and provide a mostly passive means of cooling the fuel cell. The results indicate that an operating temperature of near or greater than 70 C is achievable with a heat exchanger effectiveness of around 90 percent. Of the heat exchanger types evaluated with the same type of fluid on the hot and cold side, a counter flow type heat exchanger would be required which has the possibility of achieving the required effectiveness. The number of heat transfer units required by the heat exchanger would be around 9 or greater. Although the analysis indicates the concept is feasible, the heat exchanger design would need to be developed and optimized for a specific fuel cell operation in order to achieve the high effectiveness value required.

  5. A quasi-direct methanol fuel cell system based on blend polymer membrane electrolytes

    DEFF Research Database (Denmark)

    Li, Qingfeng; Hjuler, Hans Aage; Hasiotis, C.

    2002-01-01

    , compared to less than 100 ppm CO for the Nafion-based technology at 80degrees C. The high CO tolerance makes it possible to use the reformed hydrogen directly from a simple methanol reformer without further CO removal. That both the fuel cell and the methanol reformer operate at temperatures around 200......On the basis of blend polymer electrolytes of polybenzimidazole and sulfonated polysulfone, a polymer electrolyte membrane fuel cell was developed with an operational temperature up to 200degrees C. Due to the high operational temperature, the fuel cell can tolerate 1.0-3.0 vol % CO in the fuel...

  6. Model-based optimal control of a hybrid power generation system consisting of photovoltaic arrays and fuel cells

    Science.gov (United States)

    Zervas, P. L.; Sarimveis, H.; Palyvos, J. A.; Markatos, N. C. G.

    Hybrid renewable energy systems are expected to become competitive to conventional power generation systems in the near future and, thus, optimization of their operation is of particular interest. In this work, a hybrid power generation system is studied consisting of the following main components: photovoltaic array (PV), electrolyser, metal hydride tanks, and proton exchange membrane fuel cells (PEMFC). The key advantage of the hybrid system compared to stand-alone photovoltaic systems is that it can store efficiently solar energy by transforming it to hydrogen, which is the fuel supplied to the fuel cell. However, decision making regarding the operation of this system is a rather complicated task. A complete framework is proposed for managing such systems that is based on a rolling time horizon philosophy.

  7. Enhanced local and systemic anti-melanoma CD8+ T cell responses after memory T cell-based adoptive immunotherapy in mice

    Science.gov (United States)

    Contreras, Amanda; Sen, Siddhartha; Tatar, Andrew J.; Mahvi, David A.; Meyers, Justin V.; Srinand, Prakrithi; Suresh, Marulasiddappa

    2016-01-01

    Adoptive cell transfer (ACT) melanoma immunotherapy typically employs acutely activated effector CD8+ T cells for their ability to rapidly recognize and clear antigen. We have previously observed that effector CD8+ T cells are highly susceptible to melanoma-induced suppression, whereas memory CD8+ T cells are not. Although memory T cells have been presumed to be potentially advantageous for ACT, the kinetics of local and systemic T cell responses after effector and memory ACT have not been compared. B16F10 melanoma cells stably transfected to express very low levels of the lymphocytic choriomeningitis virus (LCMV) peptide GP33 (B16GP33) were inoculated into syngeneic C57BL/6 mice. Equal numbers of bona fide naïve, effector, or memory phenotype GP33-specific CD8+ T cells were adoptively transferred into mice 1 day after B16GP33 inoculation. The efficacy of ACT immunotherapy was kinetically assessed using serial tumor measurements and flow cytometric analyses of local and systemic CD8+ T cell responses. Control of B16GP33 tumor growth, persistence of adoptively transferred CD8+ cells, intratumoral infiltration of CD8+ T cells, and systemic CD8+ T cell responsiveness to GP33 were strongest after ACT of memory CD8+ T cells. Following surgical tumor resection and melanoma tumor challenge, only mice receiving memory T cell-based ACT immunotherapy exhibited durable tumor-specific immunity. These findings demonstrate how the use of non-expanded memory CD8+ T cells may enhance ACT immunotherapeutic efficacy. PMID:27011014

  8. Lithium-Ion Battery Cell-Balancing Algorithm for Battery Management System Based on Real-Time Outlier Detection

    Directory of Open Access Journals (Sweden)

    Changhao Piao

    2015-01-01

    Full Text Available A novel cell-balancing algorithm which was used for cell balancing of battery management system (BMS was proposed in this paper. Cell balancing algorithm is a key technology for lithium-ion battery pack in the electric vehicle field. The distance-based outlier detection algorithm adopted two characteristic parameters (voltage and state of charge to calculate each cell’s abnormal value and then identified the unbalanced cells. The abnormal and normal type of battery cells were acquired by online clustering strategy and bleeding circuits (R = 33 ohm were used to balance the abnormal cells. The simulation results showed that with the proposed balancing algorithm, the usable capacity of the battery pack increased by 0.614 Ah (9.5% compared to that without balancing.

  9. Implementing oxygen control in chip-based cell and tissue culture systems.

    Science.gov (United States)

    Oomen, Pieter E; Skolimowski, Maciej D; Verpoorte, Elisabeth

    2016-09-21

    Oxygen is essential in the energy metabolism of cells, as well as being an important regulatory parameter influencing cell differentiation and function. Interest in precise oxygen control for in vitro cultures of tissues and cells continues to grow, especially with the emergence of the organ-on-a-chip and the desire to emulate in vivo conditions. This was recently discussed in this journal in a Critical Review by Brennan et al. (Lab Chip (2014). DOI: ). Microfluidics can be used to introduce flow to facilitate nutrient supply to and waste removal from in vitro culture systems. Well-defined oxygen gradients can also be established. However, cells can quickly alter the oxygen balance in their vicinity. In this Tutorial Review, we expand on the Brennan paper to focus on the implementation of oxygen analysis in these systems to achieve continuous monitoring. Both electrochemical and optical approaches for the integration of oxygen monitoring in microfluidic tissue and cell culture systems will be discussed. Differences in oxygen requirements from one organ to the next are a challenging problem, as oxygen delivery is limited by its uptake into medium. Hence, we discuss the factors determining oxygen concentrations in solutions and consider the possible use of artificial oxygen carriers to increase dissolved oxygen concentrations. The selection of device material for applications requiring precise oxygen control is discussed in detail, focusing on oxygen permeability. Lastly, a variety of devices is presented, showing the diversity of approaches that can be employed to control and monitor oxygen concentrations in in vitro experiments.

  10. Integration of spore-based genetically engineered whole-cell sensing systems into portable centrifugal microfluidic platforms.

    Science.gov (United States)

    Date, Amol; Pasini, Patrizia; Daunert, Sylvia

    2010-09-01

    Bacterial whole-cell biosensing systems provide important information about the bioavailable amount of target analytes. They are characterized by high sensitivity and specificity/selectivity along with rapid response times and amenability to miniaturization as well as high-throughput analysis. Accordingly, they have been employed in various environmental and clinical applications. The use of spore-based sensing systems offers the unique advantage of long-term preservation of the sensing cells by taking advantage of the environmental resistance and ruggedness of bacterial spores. In this work, we have incorporated spore-based whole-cell sensing systems into centrifugal compact disk (CD) microfluidic platforms in order to develop a portable sensing system, which should enable the use of these hardy sensors for fast on-field analysis of compounds of interest. For that, we have employed two spore-based sensing systems for the detection of arsenite and zinc, respectively, and evaluated their analytical performance in the miniaturized microfluidic format. Furthermore, we have tested environmental and clinical samples on the CD microfluidic platforms using the spore-based sensors. Germination of spores and quantitative response to the analyte could be obtained in 2.5-3 h, depending on the sensing system, with detection limits of 1 x 10(-7) M for arsenite and 1 x 10(-6) M for zinc in both serum and fresh water samples. Incorporation of spore-based whole-cell biosensing systems on microfluidic platforms enabled the rapid and sensitive detection of the analytes and is expected to facilitate the on-site use of such sensing systems.

  11. Toward Coordinated Robust Allocation of Reserve Policies for a Cell-based Power System

    DEFF Research Database (Denmark)

    Hu, Junjie; Heussen, Kai; Claessens, Bert;

    2016-01-01

    Conventional regulation reserves have fixed participation factors and are thus not well suited to utilize differentiated capabilities of ancillary service providers. This study applies linear decision rules-based (LDR) control policies, which effectively adapt the present participation factor in ...... to the cooperation of multiple cells. Two illustrating examples are presented to show the functioning of the proposed LDR method....

  12. Dynamic Modelling of a Wind/Fuel-Cell/Ultra-Capacitor-Based Hybrid Power Generation System

    Directory of Open Access Journals (Sweden)

    J. Vanishree

    2014-01-01

    Full Text Available Recent research and development of alternative energy sources have shown excellent potential as a form of contribution to conventional power generation systems. In order to meet sustained load demands during varying natural conditions, different energy sources and converters need to be integrated with each other for extended usage of alternative energy. The paper focuses on the combination of wind, Fuel Cell (FC and Ultra-Capacitor (UC systems for sustained power generation. As the wind turbine output power varies with the wind speed: an FC system with a UC bank can be integrated with the wind turbine to ensure that the system performs under all conditions. A dynamic model, design and simulation of a wind/FC/UC hybrid power generation system with power flow controllers is proposed. In the proposed system, when the wind speed is sufficient, the wind turbine can meet the load demand. If the available power from the wind turbine cannot satisfy the load demand, the FC system can meet the excess power demand, while the UC can meet the load demand above the maximum power available from the FC system for short durations. Furthermore, this system can tolerate the rapid changes in wind speed and suppress the effects of these fluctuations on the equipment side voltage in a novel topology.

  13. A CRISPR/Cas9-Based System for Reprogramming Cell Lineage Specification

    Directory of Open Access Journals (Sweden)

    Syandan Chakraborty

    2014-12-01

    Full Text Available Gene activation by the CRISPR/Cas9 system has the potential to enable new approaches to science and medicine, but the technology must be enhanced to robustly control cell behavior. We show that the fusion of two transactivation domains to Cas9 dramatically enhances gene activation to a level that is necessary to reprogram cell phenotype. Targeted activation of the endogenous Myod1 gene locus with this system led to stable and sustained reprogramming of mouse embryonic fibroblasts into skeletal myocytes. The levels of myogenic marker expression obtained by the activation of endogenous Myod1 gene were comparable to that achieved by overexpression of lentivirally delivered MYOD1 transcription factor.

  14. A Versatile System for USER Cloning-Based Assembly of Expression Vectors for Mammalian Cell Engineering

    DEFF Research Database (Denmark)

    Lund, Anne Mathilde; Kildegaard, Helene Faustrup; Petersen, Maja Borup Kjær;

    2014-01-01

    , in addition the system is fully extendable by other users. The vector system is designed to facilitate high-throughput genome-scale studies of mammalian cells, such as the newly sequenced CHO cell lines, through the ability to rapidly generate high-fidelity assembly of customizable gene expression vectors......., cellular localization signals and epitope- and purification tags. Building blocks in the toolbox can be easily combined as they contain defined and tested Flexible Assembly Sequence Tags, FASTs. USER cloning with FASTs allows rapid swaps of gene, promoter or selection marker in existing plasmids and simple...... construction of vectors encoding proteins, which are fused to fluorescence-, purification-, localization-, or epitope tags. The mammalian expression vector assembly platform currently allows for the assembly of up to seven fragments in a single cloning step with correct directionality and with a cloning...

  15. A magnetic nanoparticle-based multiple-gene delivery system for transfection of porcine kidney cells.

    Directory of Open Access Journals (Sweden)

    Yan Wang

    Full Text Available Superparamagnetic nanoparticles are promising candidates for gene delivery into mammalian somatic cells and may be useful for reproductive cloning using the somatic cell nuclear transfer technique. However, limited investigations of their potential applications in animal genetics and breeding, particularly multiple-gene delivery by magnetofection, have been performed. Here, we developed a stable, targetable and convenient system for delivering multiple genes into the nuclei of porcine somatic cells using magnetic Fe3O4 nanoparticles as gene carriers. After surface modification by polyethylenimine, the spherical magnetic Fe3O4 nanoparticles showed strong binding affinity for DNA plasmids expressing the genes encoding a green (DNAGFP or red (DNADsRed fluorescent protein. At weight ratios of DNAGFP or DNADsRed to magnetic nanoparticles lower than or equal to 10∶1 or 5∶1, respectively, the DNA molecules were completely bound by the magnetic nanoparticles. Atomic force microscopy analyses confirmed binding of the spherical magnetic nanoparticles to stretched DNA strands up to several hundred nanometers in length. As a result, stable and efficient co-expression of GFP and DsRed in porcine kidney PK-15 cells was achieved by magnetofection. The results presented here demonstrate the potential application of magnetic nanoparticles as an attractive delivery system for animal genetics and breeding studies.

  16. Establishment of a cell-based assay system for hepatitis C virus serine protease and its primary applications

    Institute of Scientific and Technical Information of China (English)

    Hong-Xia Mao; Shui-Yun Lan; Yun-Wen Hu; Li Xiang; Zheng-Hong Yuan

    2003-01-01

    AIM: To establish an efficient, sensitive, cell-based assay system for NS3 serine protease in an effort to study further the property of hepatitis C virus (HCV) and develop new antiviral agents.METHOOS: We constructed pCI-neo-NS3/4A-SEAP chimeric plasmid, in which the secreted alkaline phosphatase (SEAP) was fused in-frame to the downstream of NS4A/4B cleavage site. The protease activity of NS3 was reflected by the activity of SEAP in the culture media of transient or stable expression cells. Stably expressing cell lines were obtained by G418 selection. Pefabloc SC, a potent irreversible serine protease inhibitor, was used to treat the stably expressing cell lines to assess the system for screening NS3 inhibitors. To compare the activity of serine proteases from 1b and 1a, two chimeric clones were constructed and introduced into both transient and stable expression systems.RESULTS: The SEAP activity in the culture media could be detected in both transient and stable expression systems,and was apparently decreased after Pefabloc SC treatment.In both transient and stable systems, NS3/4A-SEAP chimeric gene from HCV genotype 1b produced higher SEAP activity in the culture media than that from 1a.CONCLUSION: The cell-based system is efficient and sensitive enough for detection and comparison of NS3 protease activity, and screening of anti-NS3 inhibitors. The functional difference between NS3/4A from 1a and 1b subtypes revealed by this system provides a clue for further investigations.

  17. Advanced chemical hydride-based hydrogen generation/storage system for fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Breault, R.W.; Rolfe, J. [Thermo Power Corp., Waltham, MA (United States)

    1998-08-01

    Because of the inherent advantages of high efficiency, environmental acceptability, and high modularity, fuel cells are potentially attractive power supplies. Worldwide concerns over clean environments have revitalized research efforts on developing fuel cell vehicles (FCV). As a result of intensive research efforts, most of the subsystem technology for FCV`s are currently well established. These include: high power density PEM fuel cells, control systems, thermal management technology, and secondary power sources for hybrid operation. For mobile applications, however, supply of hydrogen or fuel for fuel cell operation poses a significant logistic problem. To supply high purity hydrogen for FCV operation, Thermo Power`s Advanced Technology Group is developing an advanced hydrogen storage technology. In this approach, a metal hydride/organic slurry is used as the hydrogen carrier and storage media. At the point of use, high purity hydrogen will be produced by reacting the metal hydride/organic slurry with water. In addition, Thermo Power has conceived the paths for recovery and regeneration of the spent hydride (practically metal hydroxide). The fluid-like nature of the spent hydride/organic slurry will provide a unique opportunity for pumping, transporting, and storing these materials. The final product of the program will be a user-friendly and relatively high energy storage density hydrogen supply system for fuel cell operation. In addition, the spent hydride can relatively easily be collected at the pumping station and regenerated utilizing renewable sources, such as biomass, natural, or coal, at the central processing plants. Therefore, the entire process will be economically favorable and environmentally friendly.

  18. Automaton based detection of affected cells in three dimensional biological system

    CERN Document Server

    Dundas, Jitesh

    2011-01-01

    The aim of this research review is to propose the logic and search mechanism for the development of an artificially intelligent automaton (AIA) that can find affected cells in a 3-dimensional biological system. Research on the possible application of such automatons to detect and control cancer cells in the human body are greatly focused MRI and PET scans finds the affected regions at the tissue level even as we can find the affected regions at the cellular level using the framework. The AIA may be designed to ensure optimum utilization as they record and might control the presence of affected cells in a human body. The proposed models and techniques can be generalized and used in any application where cells are injured or affected by some disease or accident. The best method to import AIA into the body without surgery or injection is to insert small pill like automata, carrying material viz drugs or leukocytes that is needed to correct the infection. In this process, the AIA can be compared to nano pills to ...

  19. UPS Project for GSM base stations with a fuel cell (PEM fuel cell back-up system) - Final report; Projekt USV fuer GSM-Basisstationen mit BZ (PEM fuel cell back-up system) - Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Trachte, U.

    2007-07-01

    The University of applied sciences HTA Lucerne designed a prototype of an uninterruptible power supply (UPS) with Fuel Cell technology instead of lead-acid batteries and put it into operation. The delayed start-up of the Fuel Cell was bridged with ultra capacitor technology. In a first project stage the system was designed, assembled and tested in laboratory. In a second stage the installation was connected to a real base station of a telecommunication antenna and put to field tests for one year. The field test included monthly simulations of power failure with antenna load of about 2.4 kW as well as tests with external load up to 8.5 kW to establish the characteristic diagram. Hydrogen was provided by two 50 l pressure tanks. The full quantity of hydrogen secured a stand-alone operation of the Fuel Cell system for about 6 hours under antenna load. The results of the 101 grid-failure simulations demonstrate a very reliable start-up behaviour of the Fuel Cell System. Also during a real power failure due to a thunderstorm the installation provided the demanded power without any problem. The total duration of operation of the Fuel Cell during the field tests was 39 hours. No degradation could be noticed. The project takes place in collaboration with the industrial partners APC Industrial Systems, as a producer and market leader of UPS-Systems, and Swisscom Mobile AG, as a user of UPS-systems in telecommunications. Following the good results and in order to get more experience in long-term operation of the Fuel Cell system the tests will go on for two more years. (author)

  20. The Multiscale Systems Immunology project: software for cell-based immunological simulation

    Directory of Open Access Journals (Sweden)

    Kepler Thomas B

    2008-04-01

    Full Text Available Abstract Background Computer simulations are of increasing importance in modeling biological phenomena. Their purpose is to predict behavior and guide future experiments. The aim of this project is to model the early immune response to vaccination by an agent based immune response simulation that incorporates realistic biophysics and intracellular dynamics, and which is sufficiently flexible to accurately model the multi-scale nature and complexity of the immune system, while maintaining the high performance critical to scientific computing. Results The Multiscale Systems Immunology (MSI simulation framework is an object-oriented, modular simulation framework written in C++ and Python. The software implements a modular design that allows for flexible configuration of components and initialization of parameters, thus allowing simulations to be run that model processes occurring over different temporal and spatial scales. Conclusion MSI addresses the need for a flexible and high-performing agent based model of the immune system.

  1. Recombinant Nox4 cytosolic domain produced by a cell or cell-free base systems exhibits constitutive diaphorase activity

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Minh Vu Chuong, E-mail: mvchuong@yahoo.fr [GREPI AGIM FRE 3405 CNRS-UJF, Universite Joseph Fourier, Grenoble (France); Zhang, Leilei [GREPI AGIM FRE 3405 CNRS-UJF, Universite Joseph Fourier, Grenoble (France); Lhomme, Stanislas; Mouz, Nicolas [PX' Therapeutics, MINATEC/Batiment de Haute Technologie, Grenoble (France); Lenormand, Jean-Luc [HumProTher Laboratory, TheReX/TIMC-IMAG UMR 5525 CNRS UJF, Universite Joseph Fourier, UFR de Medecine, Domaine de la Merci, 38706 La Tronche (France); Lardy, Bernard; Morel, Francoise [GREPI AGIM FRE 3405 CNRS-UJF, Universite Joseph Fourier, Grenoble (France)

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer A comparison of two bacterial cell and cell-free protein expression systems is presented. Black-Right-Pointing-Pointer Soluble and active truncated Nox4 proteins are produced. Black-Right-Pointing-Pointer Nox4 has a constitutive diaphorase activity which is independent of cytosolic factors. Black-Right-Pointing-Pointer Isoform Nox4B is unable to initiate the first electronic transfer step. Black-Right-Pointing-Pointer Findings contribute to the understanding of the mechanism of Nox4 oxidase activity. -- Abstract: The membrane protein NADPH (nicotinamide adenine dinucleotide phosphate) oxidase Nox4 constitutively generates reactive oxygen species differing from other NADPH oxidases activity, particularly in Nox2 which needs a stimulus to be active. Although the precise mechanism of production of reactive oxygen species by Nox2 is well characterized, the electronic transfer throughout Nox4 remains unclear. Our study aims to investigate the initial electronic transfer step (diaphorase activity) of the cytosolic tail of Nox4. For this purpose, we developed two different approaches to produce soluble and active truncated Nox4 proteins. We synthesized soluble recombinant proteins either by in vitro translation or by bacteria induction. While proteins obtained by bacteria induction demonstrate an activity of 4.4 {+-} 1.7 nmol/min/nmol when measured against iodonitro tetrazolium chloride and 20.5 {+-} 2.8 nmol/min/nmol with cytochrome c, the soluble proteins produced by cell-free expression system exhibit a diaphorase activity with a turn-over of 26 {+-} 2.6 nmol/min/nmol when measured against iodonitro tetrazolium chloride and 48 {+-} 20.2 nmol/min/nmol with cytochrome c. Furthermore, the activity of the soluble proteins is constitutive and does not need any stimulus. We also show that the cytosolic tail of the isoform Nox4B lacking the first NADPH binding site is unable to demonstrate any diaphorase activity pointing out the

  2. Functional study of p38 mitogen-activated protein kinase based on cell-penetrating peptide delivery system

    Institute of Scientific and Technical Information of China (English)

    Liping Yang; Yongming Yao; Zhiyong Sheng; Xiaomei Zhu; Yong Jiang

    2009-01-01

    Objective p38 Mitogen-activated protein kinase (MAPK) is a crossing center of various pathways. In this study, protein transduction system based on human immunodeficiency virus (HIV)-1 transactivator of transcription (TAT), which is an efficient delivery peptide of the foreign proteins into cells, was employed to study p38 MAPK functions in eukaryotic cells. Methods p38 And its dominant negative form, p38AF, were constructed into pET-His-TAT vector correctly to verify that the recombinant plasmids were well-founded through restriction enzyme digestion and DNA sequencing. The two proteins, His-TAT-p38 and His-TAT-p38AF, were expressed and purified in Escherichia coli by SDS-PAGE. Then they were incubated with ECV304 cells respectively and readily transduced into cells in a time-dependent and dose-dependent manner. The cells were stimulated by sorbitol. Activating transcription factor (ATF) 2 phosphorylation level was checked using Western blot to assess the activity of endogenous p38. Results Compared with controls, it was found that His-TAT-p38 increased the level ofATF2 phosphorylation in sorbitol-stimulated ECV304 cells, while His-TAT-p38AF inhibited it, indicating p38 MAPK protein delivery system based on TAT was constructed successfully. TAT-p38 and its dominant negative form possessed high biological activity after transduction into ECV304 cells by TAT protein delivery system. The results showed that p38AF fused with TAT could inhibit the transduction of endogenous p38 signal pathway in part, and other pathway might regulate p38 phosphorylation. Conclusions Our study provides a novel pathway to inhibit p38 signal pathway and establish a new method to study p38 function.

  3. Evaluation and optimization of chitosan derivatives-based gene delivery system via kidney epithelial cells

    Directory of Open Access Journals (Sweden)

    S. Safari

    2012-06-01

    Full Text Available Purpose: Non-viral vectors have been widely proposed as safer alternatives to viral vectors, and cationic polymers have gained increasing attention because they can form self-assembly with DNA. Chitosan is also considered to be a good candidate for gene delivery systems, since it is already known as a biocompatible, biodegradable, and low toxic material with high cationic potential. However, low solubility and transfection efficiency need to be overcome prior to clinical trial. In this work, we focus on alkyl modified chitosan which might be useful in DNA condensing and efficient gene delivery. Methods: N, N- Diethyl N- Methyl (DEMC and N- Triethyl Chitosan (TEC were synthesized from chitosan polymer. In order to optimize the polymers for gene delivery, we used FITC-dextran (FD. Then the optimized polymer concentrations were used for gene delivery. Fluorescent microscope was used, in order to evaluate the polymers’ efficiency for gene delivery to human embryonic kidney epithelial cells (HEK 293T. Results: This modification increased chitosan’s positive charge, thus these chitosan derivatives spontaneously formed complexes with FD, green fluorescence protein plasmid DNA (pEGFP, red fluorescence protein plasmid DNA (pJred and fluorescent labeled miRNA. Results gained from fluorescent microscope showed that TEC and DEMC were able to transfer FD, DNA and miRNA (micro RNA to HEK cell line. Conclusion: We conclude that these chitosan derivatives present suitable characteristics to be used as non-viral gene delivery vectors to epithelial cells.

  4. Desulfurization of jet fuel for fuel cell-based APU systems in aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.; Pasel, J.; Peters, R.; Stolten, D. [Forschungszentrum Juelich GmbH (Germany)

    2010-07-01

    To prevent the catalysts in fuel cell systems from poisoning by sulfur containing substances the fuel to be used must be desulfurized to a maximum of 10 ppmw of sulfur. Since the conventional hydrodesulfurization process employed in the refinery industry is not suitable for mobile fuel cell applications (e.g. auxiliary power units, APUs), the present study aims at developing an alternative process and determining its technical feasibility. A large number of processes were assessed with respect to their application in fuel cell APUs. The results revealed that a two-step process combining pervaporation and adsorption is a suitable process for the on-board desulfurization of jet fuel. The investigations to evaluate this process are presented in this paper. Seven different membrane materials and ten sorbent materials were screened to choose the most suitable candidates. Further laboratory experiments were conducted to optimize the operating conditions and to collect data for a pilot plant design. Different jet fuel qualities with up to 1650 ppmw of sulfur can be desulfurized to a level of 10 ppmw. (orig.)

  5. Systems biology approach to developing S2RM-based "systemstherapeutics" and naturally induced pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    The degree to, and the mechanisms through, whichstem cells are able to build, maintain, and heal the bodyhave only recently begun to be understood. Much of thestem cell's power resides in the release of a multitudeof molecules, called stem cell released molecules (SRM).A fundamentally new type of therapeutic, namely"systems therapeutic", can be realized by reverseengineering the mechanisms of the SRM processes.Recent data demonstrates that the composition of theSRM is different for each type of stem cell, as well asfor different states of each cell type. Although systemsbiology has been successfully used to analyze multiplepathways, the approach is often used to develop a smallmolecule interacting at only one pathway in the system.A new model is emerging in biology where systemsbiology is used to develop a new technology actingat multiple pathways called "systems therapeutics". Anatural set of healing pathways in the human that usesSRM is instructive and of practical use in developingsystems therapeutics. Endogenous SRM processes inthe human body use a combination of SRM from twoor more stem cell types, designated as S2RM, doing sounder various state dependent conditions for each celltype. Here we describe our approach in using statedependentSRM from two or more stem cell types,S2RM technology, to develop a new class of therapeuticscalled "systems therapeutics." Given the ubiquitous andpowerful nature of innate S2RM-based healing in thehuman body, this "systems therapeutic" approach usingS2RM technology will be important for the developmentof anti-cancer therapeutics, antimicrobials, woundcare products and procedures, and a number of othertherapeutics for many indications.

  6. Electrokinetic gated injection-based microfluidic system for quantitative analysis of hydrogen peroxide in individual HepG2 cells.

    Science.gov (United States)

    Zhang, Xinyuan; Li, Qingling; Chen, Zhenzhen; Li, Hongmin; Xu, Kehua; Zhang, Lisheng; Tang, Bo

    2011-03-21

    A microfluidic system to determine hydrogen peroxide (H(2)O(2)) in individual HepG2 cells based on the electrokinetic gated injection was developed for the first time. A home-synthesized fluorescent probe, bis(p-methylbenzenesulfonate)dichlorofluorescein (FS), was employed to label intracellular H(2)O(2) in the intact cells. On a simple cross microchip, multiple single-cell operations, including single cell injection, cytolysis, electrophoresis separation and detection of H(2)O(2), were automatically carried out within 60 s using the electrokinetic gated injection and laser-induced fluorescence detection (LIFD). The performance of the method was evaluated under the optimal conditions. The linear calibration curve was over a range of 4.39-610 amol (R(2)=0.9994). The detection limit was 0.55 amol or 9.0×10(-10) M (S/N=3). The relative standard deviations (RSDs, n=6) of migration time and peak area were 1.4% and 4.8%, respectively. With the use of this method, the average content of H(2)O(2) in single HepG2 cells was found to be 16.09±9.84 amol (n=15). Separation efficiencies in excess of 17,000 theoretical plates for the cells were achieved. These results demonstrated that the efficient integration and automation of these single-cell operations enabled the sensitive, reproducible, and quantitative examination of intracellular H(2)O(2) at single-cell level. Owing to the advantages of simple microchip structure, controllable single-cell manipulation and ease in building, this platform provides a universal way to automatically determine other intracellular constituents within single cells.

  7. Hybrid electric system based on fuel cell and battery and integrating a single dc/dc converter for a tramway

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Luis M., E-mail: luis.fernandez@uca.e [Department of Electrical Engineering, EPS Algeciras, University of Cadiz, Avda. Ramon Puyol, s/n. 11202 Algeciras (Cadiz) (Spain); Garcia, Pablo, E-mail: pablo.garcia@uca.e [Department of Electrical Engineering, EPS Algeciras, University of Cadiz, Avda. Ramon Puyol, s/n. 11202 Algeciras (Cadiz) (Spain); Garcia, Carlos Andres, E-mail: carlosandres.garcia@uca.e [Department of Electrical Engineering, EPS Algeciras, University of Cadiz, Avda. Ramon Puyol, s/n. 11202 Algeciras (Cadiz) (Spain); Jurado, Francisco, E-mail: fjurado@ujaen.e [Department of Electrical Engineering, EPS Linares, University of Jaen, C/Alfonso X, No. 28. 23700 Linares (Jaen) (Spain)

    2011-05-15

    Research highlights: {yields} Hybrid electric power system for a real surface tramway. {yields} Hybrid system based on PEM fuel cell with dc/dc converter and Ni-MH battery. {yields} New control strategy for the energy management of the tramway. {yields} Hybrid system demonstrated to meet appropriate driving cycle of the tramway. -- Abstract: This paper presents a hybrid electric power system for a real surface tramway. The hybrid system consists of two electrical energy sources integrating a single dc/dc converter to provide the power demanded by the tramway loads (four electric traction motors and auxiliary services): (1) a Polymer Electrolyte Membrane (PEM) fuel cell (FC) as the primary and (2) a rechargeable Ni-MH battery as electrical energy storage to supplement the FC over the driving cycle. According to the requirements of the real driving cycle of the tramway, it was considered a 200 kW PEM FC system with two FCs connected in parallel and a 34 Ah Ni-MH battery. The PEM FC and Ni-MH battery models were designed from commercially available components. The power conditioning system provides the appropriate power for the tramway. It is composed of: (1) a unique dc/dc boot converter which adapts the FC output voltage to the 750 V traction standard dc bus; (2) three phase inverters to drive properly each electric motors; and (3) a braking chopper to dissipate excess of regenerative braking energy. Suitable state machine control architecture is presented for the hybrid system, its objective being to provide demanded power by the driving cycle, optimizing the energy generated. Following this objective, a new state machine control strategy based on eight states decides the operating point of each component of the system and a cascade control structure allows achieving the operating points determined by the strategy. Simulation results of the real driving cycle of the tramway check the adequacy of the hybrid electric power system.

  8. On-line experimental results of an argon gas cell-based laser ion source (KEK Isotope Separation System)

    Science.gov (United States)

    Hirayama, Y.; Watanabe, Y. X.; Imai, N.; Ishiyama, H.; Jeong, S. C.; Jung, H. S.; Miyatake, H.; Oyaizu, M.; Kimura, S.; Mukai, M.; Kim, Y. H.; Sonoda, T.; Wada, M.; Huyse, M.; Kudryavtsev, Yu.; Van Duppen, P.

    2016-06-01

    KEK Isotope Separation System (KISS) has been developed at RIKEN to produce neutron rich isotopes with N = 126 to study the β -decay properties for application to astrophysics. The KISS is an element-selective mass-separation system which consists of an argon gas cell-based on laser ion source for atomic number selection and an ISOL mass-separation system. The argon gas cell of KISS is a key component to stop and collect the unstable nuclei produced in a multi-nucleon transfer reaction, where the isotopes of interest will be selectively ionized using laser resonance ionization. We have performed off- and on-line experiments to study the basic properties of the gas cell as well as of the KISS. We successfully extracted the laser-ionized stable 56Fe (direct implantation of a 56Fe beam into the gas cell) atoms and 198Pt (emitted from the 198Pt target by elastic scattering with a 136Xe beam) atoms from the KISS during the commissioning on-line experiments. We furthermore extracted laser-ionized unstable 199Pt atoms and confirmed that the measured half-life was in good agreement with the reported value.

  9. A novel power generation system based on combination of hydrogen and direct carbon fuel cells for decentralized applications

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, Nazim; Smith, Franklyn; Choi, Pyoungho; Bokerman, Gary [Central Florida Univ., FL (United States)

    2010-07-01

    Fuel cell (FC) based power generation systems are characterized by highest chemical-toelectrical (CTE) energy conversion efficiency compared to conventional power generators (e.g., internal combustion and diesel engines, turbines). Most efforts in this area relate to hydrogen-FC coupled with hydrocarbon fuel reformers (HFR). However, the overall CTE efficiency of the combined HFR-FC systems is relatively low (about 30-35%). The objective of this work is to develop a highly-efficient power generation system integrating a hydrocarbon decomposition reactor (HDR) with both hydrogen and direct-carbon FC. A unique feature of direct carbon FC is that its theoretical CTE efficiency is close to 100% and the practical efficiency could rich 80-90%. The concept of the integrated hydrogen and direct carbon FC system is discussed and the experimental data on the performance testing of a HDR coupled with PEM FC are presented in this paper. (orig.)

  10. The modeling and simulation of thermal based modified solid oxide fuel cell (SOFC for grid-connected systems

    Directory of Open Access Journals (Sweden)

    Ayetül Gelen

    2015-05-01

    Full Text Available This paper presents a thermal based modified dynamic model of a Solid Oxide Fuel Cell (SOFC for grid-connected systems. The proposed fuel cell model involves ohmic, activation and concentration voltage losses, thermal dynamics, methanol reformer, fuel utilization factor and power limiting module. A power conditioning unit (PCU, which consists of a DC-DC boost converter and a DC-AC voltage-source inverter (VSI, their controller, transformer and filter, is designed for grid-connected systems. The voltage-source inverter with six Insulated Gate Bipolar Transistor (IGBT switches inverts the DC voltage that comes from the converter into a sinusoidal voltage synchronized with the grid. The simulations and modeling of the system are developed on Matlab/Simulink environment. The performance of SOFC with converter is examined under step and random load conditions. The simulation results show that the designed boost converter for the proposed thermal based modified SOFC model has fairly followed different DC load variations. Finally, the AC bus of 400 Volt and 50 Hz is connected to a single-machine infinite bus (SMIB through a transmission line. The real and reactive power managements of the inverter are analyzed by an infinite bus system. Thus, the desired nominal values are properly obtained by means of the inverter controller.

  11. Nanovector-based prolyl hydroxylase domain 2 silencing system enhances the efficiency of stem cell transplantation for infarcted myocardium repair

    Science.gov (United States)

    Zhu, Kai; Lai, Hao; Guo, Changfa; Li, Jun; Wang, Yulin; Wang, Lingyan; Wang, Chunsheng

    2014-01-01

    Mesenchymal stem cell (MSC) transplantation has attracted much attention in myocardial infarction therapy. One of the limitations is the poor survival of grafted cells in the ischemic microenvironment. Small interfering RNA-mediated prolyl hydroxylase domain protein 2 (PHD2) silencing in MSCs holds tremendous potential to enhance their survival and paracrine effect after transplantation. However, an efficient and biocompatible PHD2 silencing system for clinical application is lacking. Herein, we developed a novel PHD2 silencing system based on arginine-terminated generation 4 poly(amidoamine) (Arg-G4) nanoparticles. The system exhibited effective and biocompatible small interfering RNA delivery and PHD2 silencing in MSCs in vitro. After genetically modified MSC transplantation in myocardial infarction models, MSC survival and paracrine function of IGF-1 were enhanced significantly in vivo. As a result, we observed decreased cardiomyocyte apoptosis, scar size, and interstitial fibrosis, and increased angiogenesis in the diseased myocardium, which ultimately attenuated ventricular remodeling and improved heart function. This work demonstrated that an Arg-G4 nanovector-based PHD2 silencing system could enhance the efficiency of MSC transplantation for infarcted myocardium repair. PMID:25429216

  12. Models and methods for design and implementation of computer based control and monitoring systems for production cells

    DEFF Research Database (Denmark)

    Lynggaard, Hans Jørgen Birk

    This dissertation is concerned with the engineering, i.e. the designing and making, of industrial cell control systems. The focus is on automated robot welding cells in the shipbuilding industry. The industrial research project defines models and methods for design and implementation of computer...... through the implementation of two cell control systems for robot welding cells in production at Odense Steel Shipyard.It is concluded that cell control technology provides for increased performance in production systems, and that the Cell Control Engineering concept reduces the effort for providing high...

  13. Implementing oxygen control in chip-based cell and tissue culture systems

    NARCIS (Netherlands)

    Oomen, Pieter; Skolimowski, Maciej; Verpoorte, Elisabeth

    2016-01-01

    Oxygen is essential in the energy metabolism of cells, as well as being an important regulatory parameter influencing cell differentiation and function. Interest in precise oxygen control for in vitro cultures of tissues and cells continues to grow, especially with the emergence of the organ-on-a-ch

  14. Intelligent CAD System for Automatic Detection of Mitotic Cells from Breast Cancer Histology Slide Images Based on Teaching-Learning-Based Optimization

    Directory of Open Access Journals (Sweden)

    Ramin Nateghi

    2014-01-01

    Full Text Available This paper introduces a computer-assisted diagnosis (CAD system for automatic mitosis detection from breast cancer histopathology slide images. In this system, a new approach for reducing the number of false positives is proposed based on Teaching-Learning-Based optimization (TLBO. The proposed CAD system is implemented on the histopathology slide images acquired by Aperio XT scanner (scanner A. In TLBO algorithm, the number of false positives (falsely detected nonmitosis candidates as mitosis ones is defined as a cost function and, by minimizing it, many of nonmitosis candidates will be removed. Then some color and texture (textural features such as those derived from cooccurrence and run-length matrices are extracted from the remaining candidates and finally mitotic cells are classified using a specific support vector machine (SVM classifier. The simulation results have proven the claims about the high performance and efficiency of the proposed CAD system.

  15. Fuel Cell Power Plant Initiative. Volume 2; Preliminary Design of a Fixed-Base LFP/SOFC Power System

    Science.gov (United States)

    Veyo, S.E.

    1997-01-01

    This report documents the preliminary design for a military fixed-base power system of 3 MWe nominal capacity using Westinghouse's tubular Solid Oxide Fuel Cell [SOFC] and Haldor Topsoe's logistic fuels processor [LFP]. The LFP provides to the fuel cell a methane rich sulfur free fuel stream derived from either DF-2 diesel fuel, or JP-8 turbine fuel. Fuel cells are electrochemical devices that directly convert the chemical energy contained in fuels such as hydrogen, natural gas, or coal gas into electricity at high efficiency with no intermediate heat engine or dynamo. The SOFC is distinguished from other fuel cell types by its solid state ceramic structure and its high operating temperature, nominally 1000'C. The SOFC pioneered by Westinghouse has a tubular geometry closed at one end. A power generation stack is formed by aggregating many cells in an ordered array. The Westinghouse stack design is distinguished from other fuel cell stacks by the complete absence of high integrity seals between cell elements, cells, and between stack and manifolds. Further, the reformer for natural gas [predominantly methane] and the stack are thermally and hydraulically integrated with no requirement for process water. The technical viability of combining the tubular SOFC and a logistic fuels processor was demonstrated at 27 kWe scale in a test program sponsored by the Advanced Research Projects Agency [ARPA) and carried out at the Southern California Edison's [SCE] Highgrove generating station near San Bernardino, California in 1994/95. The LFP was a breadboard design supplied by Haldor Topsoe, Inc. under subcontract to Westinghouse. The test program was completely successful. The LFP fueled the SOFC for 766 hours on JP-8 and 1555 hours of DF-2. In addition, the fuel cell operated for 3261 hours on pipeline natural gas. Over the 5582 hours of operation, the SOFC generated 118 MVVH of electricity with no perceptible degradation in performance. The LFP processed military

  16. A vector-based system for the differentiation of mouse embryonic stem cells toward germ-line cells

    Directory of Open Access Journals (Sweden)

    Reza Ebrahimzadeh-Vesal

    2014-08-01

    Conclusion: In this study, we demonstrated the in vitro generation of mouse embryonic stem cells to germ cells by using a backbone vector containing the fusion gene Stra8-EGFP. The Stra8 gene is a retinoic acid-responsive protein and is able to regulate meiotic initiation.

  17. Nanovector-based prolyl hydroxylase domain 2 silencing system enhances the efficiency of stem cell transplantation for infarcted myocardium repair

    Directory of Open Access Journals (Sweden)

    Zhu K

    2014-11-01

    Full Text Available Kai Zhu,1,2 Hao Lai,1,2 Changfa Guo,1,2 Jun Li,1,2 Yulin Wang,1,2 Lingyan Wang,3 Chunsheng Wang1,2 1Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China; 2Shanghai Institute of Cardiovascular Disease, Shanghai, People’s Republic of China; 3Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China Abstract: Mesenchymal stem cell (MSC transplantation has attracted much attention in myocardial infarction therapy. One of the limitations is the poor survival of grafted cells in the ischemic microenvironment. Small interfering RNA-mediated prolyl hydroxylase domain protein 2 (PHD2 silencing in MSCs holds tremendous potential to enhance their survival and paracrine effect after transplantation. However, an efficient and biocompatible PHD2 silencing system for clinical application is lacking. Herein, we developed a novel PHD2 silencing system based on arginine-terminated generation 4 poly(amidoamine (Arg-G4 nanoparticles. The system exhibited effective and biocompatible small interfering RNA delivery and PHD2 silencing in MSCs in vitro. After genetically modified MSC transplantation in myocardial infarction models, MSC survival and paracrine function of IGF-1 were enhanced significantly in vivo. As a result, we observed decreased cardiomyocyte apoptosis, scar size, and interstitial fibrosis, and increased angiogenesis in the diseased myocardium, which ultimately attenuated ventricular remodeling and improved heart function. This work demonstrated that an Arg-G4 nanovector-based PHD2 silencing system could enhance the efficiency of MSC transplantation for infarcted myocardium repair. Keywords: nanoparticles, PHD2, siRNA delivery, mesenchymal stem cells, myocardial infarction

  18. Application of a Decomposition Strategy to the Optimal Synthesis/Design and Operation of a Fuel Cell Based Total Energy System

    OpenAIRE

    2002-01-01

    A decomposition methodology based on the concept of â thermoeconomic isolationâ applied to the synthesis/design and operational optimization of a stationary cogeneration proton exchange membrane fuel cell (PEMFC) based total energy system (TES) for residential/commercial applications is the focus of this work. A number of different configurations for the fuel cell based TES were considered. The most promising set based on an energy integration analysis of candidate configurations was devel...

  19. High speed classification of individual bacterial cells using a model-based light scatter system and multivariate statistics

    Science.gov (United States)

    Venkatapathi, Murugesan; Rajwa, Bartek; Ragheb, Kathy; Banada, Padmapriya P.; Lary, Todd; Robinson, J. Paul; Hirleman, E. Daniel

    2008-02-01

    We describe a model-based instrument design combined with a statistical classification approach for the development and realization of high speed cell classification systems based on light scatter. In our work, angular light scatter from cells of four bacterial species of interest, Bacillus subtilis, Escherichia coli, Listeria innocua, and Enterococcus faecalis, was modeled using the discrete dipole approximation. We then optimized a scattering detector array design subject to some hardware constraints, configured the instrument, and gathered experimental data from the relevant bacterial cells. Using these models and experiments, it is shown that optimization using a nominal bacteria model (i.e., using a representative size and refractive index) is insufficient for classification of most bacteria in realistic applications. Hence the computational predictions were constituted in the form of scattering-data-vector distributions that accounted for expected variability in the physical properties between individual bacteria within the four species. After the detectors were optimized using the numerical results, they were used to measure scatter from both the known control samples and unknown bacterial cells. A multivariate statistical method based on a support vector machine (SVM) was used to classify the bacteria species based on light scatter signatures. In our final instrument, we realized correct classification of B. subtilis in the presence of E. coli,L. innocua, and E. faecalis using SVM at 99.1%, 99.6%, and 98.5%, respectively, in the optimal detector array configuration. For comparison, the corresponding values for another set of angles were only 69.9%, 71.7%, and 70.2% using SVM, and more importantly, this improved performance is consistent with classification predictions.

  20. On-line experimental validation of a model-based diagnostic algorithm dedicated to a solid oxide fuel cell system

    Science.gov (United States)

    Polverino, Pierpaolo; Esposito, Angelo; Pianese, Cesare; Ludwig, Bastian; Iwanschitz, Boris; Mai, Andreas

    2016-02-01

    In the current energetic scenario, Solid Oxide Fuel Cells (SOFCs) exhibit appealing features which make them suitable for environmental-friendly power production, especially for stationary applications. An example is represented by micro-combined heat and power (μ-CHP) generation units based on SOFC stacks, which are able to produce electric and thermal power with high efficiency and low pollutant and greenhouse gases emissions. However, the main limitations to their diffusion into the mass market consist in high maintenance and production costs and short lifetime. To improve these aspects, the current research activity focuses on the development of robust and generalizable diagnostic techniques, aimed at detecting and isolating faults within the entire system (i.e. SOFC stack and balance of plant). Coupled with appropriate recovery strategies, diagnosis can prevent undesired system shutdowns during faulty conditions, with consequent lifetime increase and maintenance costs reduction. This paper deals with the on-line experimental validation of a model-based diagnostic algorithm applied to a pre-commercial SOFC system. The proposed algorithm exploits a Fault Signature Matrix based on a Fault Tree Analysis and improved through fault simulations. The algorithm is characterized on the considered system and it is validated by means of experimental induction of faulty states in controlled conditions.

  1. Systems cell biology.

    Science.gov (United States)

    Mast, Fred D; Ratushny, Alexander V; Aitchison, John D

    2014-09-15

    Systems cell biology melds high-throughput experimentation with quantitative analysis and modeling to understand many critical processes that contribute to cellular organization and dynamics. Recently, there have been several advances in technology and in the application of modeling approaches that enable the exploration of the dynamic properties of cells. Merging technology and computation offers an opportunity to objectively address unsolved cellular mechanisms, and has revealed emergent properties and helped to gain a more comprehensive and fundamental understanding of cell biology.

  2. Analysis of DC/DC Converter Efficiency for Energy Storage System Based on Bidirectional Fuel Cells

    DEFF Research Database (Denmark)

    Pittini, Riccardo; Zhang, Zhe; Andersen, Michael A. E.

    2013-01-01

    Renewable energy sources are fluctuating depending on the availability of the energy source. For this reason, energy storage is becoming more important and bidirectional fuel cells represent an attractive technology. Fuel cells require highcurrent low-voltage dc-dc or dc-ac converters as power...

  3. Development and characterization of a green fluorescent protein-based rat cell bioassay system for detection of AH receptor ligands

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Bin; Denison, M. [California Univ., Davis, CA (United States). Dept. of Environmental Toxicology

    2004-09-15

    Proper epidemiological, risk assessment and exposure analysis of TCDD and related HAHs requires accurate measurements of these chemicals both in the species of interest and in various exposure matrices (i.e. biological, environmental, food and feed). While high-resolution instrumental analysis techniques are established for these chemicals, these procedures are very costly, time-consuming and are impractical for large scale sampling studies. Accordingly, numerous bioanalytical methods have been developed for the detection of these chemicals in extracts from a variety of matrices, the majority of which take the advantage of the ability of these chemicals to activate one or more aspects of the AhR-dependent mechanism of action. One of the most sensitive bioassay systems developed to date is the so-called CALUX (Chemically Activated Luciferase Expression) assay, which is based on novel recombinant cell lines that contain a stably transfected dioxin (AhR)-responsive firefly luciferase gene. Treatment of these cells with TCDD and related HAHs and polycyclic aromatic hydrocarbons (PAHs), as well as other AhR ligands, results in induction of reporter gene expression in a time-, dose-, AhR-, and chemical-specific manner. The level of reporter gene expression correlates with the total concentration of the TCDD-like AhR inducers (agonists) present in the sample. Although the firefly luciferase reporter gene contributes to the high degree of sensitivity of the assay, it also has limitations with respect to our need for a rapid and inexpensive bioassay for high-throughput screening analysis. Accordingly, we previously developed a stably transfected murine cell line containing an AhRresponsive enhanced green fluorescent protein (EGFP) reporter gene. This cell line provided us with a high-throughput cell bioassay system for identification and characterization of AhR agonists and antagonists. Here we have extended these studies and describe the development, optimization, and

  4. On Orbit Immuno-Based, Label-Free, White Blood Cell Counting System with MicroElectroMechanical Sensor (MEMS) Technology (OILWBCS-MEMS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aurora Flight Sciences Corporation and partner, Draper Laboratory, propose to develop an on-orbit immuno-based label-free white blood cell counting system using MEMS...

  5. On Orbit Immuno-Based, Label-Free, White Blood Cell Counting System with MicroElectroMechanical Sensor (MEMS) Technology (OILWBCS-MEMS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aurora Flight Sciences Corporation and our partner, Draper Laboratory, propose to develop an on orbit immuno-based, label-free, white blood cell counting system for...

  6. Microelectromechanical System-Based Sensing Arrays for Comparative in Vitro Nanotoxicity Assessment at Single Cell and Small Cell-Population Using Electrochemical Impedance Spectroscopy.

    Science.gov (United States)

    Shah, Pratikkumar; Zhu, Xuena; Zhang, Xueji; He, Jin; Li, Chen-zhong

    2016-03-01

    The traditional in vitro nanotoxicity assessment approaches are conducted on a monolayer of cell culture. However, to study a cell response without interference from the neighbor cells, a single cell study is necessary; especially in cases of neuronal, cancerous, and stem cells, wherein an individual cell's fate is often not explained by the whole cell population. Nonetheless, a single cell does not mimic the actual in vivo environment and lacks important information regarding cell communication with its microenvironment. Both a single cell and a cell population provide important and complementary information about cells' behaviors. In this research, we explored nanotoxicity assessment on a single cell and a small cell population using electrochemical impedance spectroscopy and a microelectromechanical system (MEMS) device. We demonstrated a controlled capture of PC12 cells in different-sized microwells (to capture a different number of cells) using a combined method of surface functionalization and dielectrophoresis. The present approach provides a rapid nanotoxicity response as compared to other conventional approaches. This is the first study, to our knowledge, which demonstrates a comparative response of a single cell and small cell colonies on the same MEMS platform, when exposed to metaloxide nanoparticles. We demonstrated that the microenvironment of a cell is also accountable for cells' behaviors and their responses to nanomaterials. The results of this experimental study open up a new hypothesis to be tested for identifying the role of cell communication in spreading toxicity in a cell population.

  7. Adaptation of a Cell-Based High Content Screening System for the In-Depth Analysis of Celiac Biopsy Tissue.

    Science.gov (United States)

    Cooper, Sarah E J; Mohamed, Bashir M; Elliott, Louise; Davies, Anthony Mitchell; Feighery, Conleth F; Kelly, Jacinta; Dunne, Jean

    2015-01-01

    The IN Cell Analyzer 1000 possesses several distinguishing features that make it a valuable tool in research today. This fully automated high content screening (HCS) system introduced quantitative fluorescent microscopy with computerized image analysis for use in cell-based analysis. Previous studies have focused on live cell assays, where it has proven to be a powerful and robust method capable of providing reproducible, quantitative data. Using HCS as a tool to investigate antigen expression in duodenal biopsies, we developed a novel approach to tissue positioning and mapping. We adapted IN Cell Analyzer 1000's image acquisition and analysis software for the investigation of tissue transglutaminase (tTG) and smooth muscle alpha-actin (SM α-actin) staining in paraffin-embedded duodenal tissue sections from celiac patients and healthy controls. These innovations allowed a quantitative analysis of cellular structure and protein expression. The results from routine biopsy material indicated the intensity of protein expression was altered in celiac disease compared to normal biopsy material.

  8. Implications of nanoscale based drug delivery systems in delivery and targeting tubulin binding agent, noscapine in cancer cells.

    Science.gov (United States)

    Chandra, Ramesh; Madan, Jitender; Singh, Prashant; Chandra, Ankush; Kumar, Pradeep; Tomar, Vartika; Dass, Sujata K

    2012-12-01

    Noscapine, a tubulin binding anticancer agent undergoing Phase I/II clinical trials, inhibits tumor growth in nude mice bearing human xenografts of breast, lung, ovarian, brain, and prostrate origin. The analogues of noscapine like 9-bromonoscapine (EM011) are 5 to 10-fold more active than parent compound, noscapine. Noscapinoids inhibit the proliferation of cancer cells that are resistant to paclitaxel and epothilone. Noscapine also potentiated the anticancer activity of doxorubicin in a synergistic manner against triple negative breast cancer (TNBC). However, physicochemical and pharmacokinetic (ED50˜300-600 mg/kg bodyweight) limitations of noscapine present hurdle in development of commercial anticancer formulations. Therefore, objectives of the present review are to summarize the chemotherapeutic potential of noscapine and implications of nanoscale based drug delivery systems in enhancing the therapeutic efficacy of noscapine in cancer cells. We have constructed noscapine-enveloped gelatin nanoparticles, NPs and poly (ethylene glycol) grafted gelatin NPs as well as inclusion complex of noscapine in β-cyclodextrin (β-CD) and evaluated their physicochemical characteristics. The Fe3O4 NPs were also used to incorporate noscapine in its polymeric nanomatrix system where molecular weight of the polymer governed the encapsulation efficiency of drug. The enhanced noscapine delivery using μPAR-targeted optical-MR imaging trackable NPs offer a great potential for image directed targeted delivery of noscapine. Human Serum Albumin NPs (150-300 nm) as efficient noscapine drug delivery systems have also been developed for potential use in breast cancer.

  9. Diagnostic tool based on an HTLV-1-Tax expression system in eukaryotic cells using a poxvirus vector.

    Science.gov (United States)

    de Souza, Jaqueline Gontijo; Fonseca, Flávio Guimarães da; Martins-Filho, Olindo Assis; Teixeira-Carvalho, Andrea; Martins, Camila Pacheco Silveira; Carvalho, Luciana Debortoli; Coelho-Dos-Reis, Jordana Grazziela Alves; Barbosa-Stancioli, Edel Figueiredo

    2010-06-01

    Human T-lymphotropic virus 1 (HTLV-1) induces an immune-mediated inflammatory disease affecting the nervous system that eventually is accompanied by ocular, rheumatic and dermatologic manifestations (HTLV-1 associated myelopathy/tropical spastic paraparesis, or HAM/TSP). Proviral load and HTLV-1 protein expression, mainly of Tax, is correlated with disease progression and induction of host-virus equilibrium breakdown that, reportedly, involves the presence of Tax-specific cytotoxic T lymphocytes (CTL), T regulatory cells and anti-Tax antibodies. Based on knowledge of anti-Tax antibodies as markers of disease progression, the objectives of this study were both to design an infection/transfection system using the Vaccinia virus and a tax-encoding plasmid for the expression of Tax protein as well as to use this cell support to evaluate anti-Tax IgG by flow cytometry. The flow cytometry assay was standardized using pooled sera from each test group (negative, asymptomatic and HAM/TSP patients). The HAM/TSP group presented higher IgG anti-Tax reactivity (above 70%) than the asymptomatic group (nearly 40% reactivity). The data indicate that the infection/transfection system is useful for assessing Tax expression. This is a promising assay for use as a diagnostic tool to detect IgG anti-Tax and monitor HTLV-1 infected individuals.

  10. In vitro cell irradiation systems based on 210Po alpha source: construction and characterisation

    Science.gov (United States)

    Szabo, J.; Feher, I.; Palfalvi, J.; Balashazy, I.; Dam, A. M.; Polonyi, I.; Bogdandi, E. N.

    2002-01-01

    One way of studying the risk to human health of low-level radiation exposure is to make biological experiments on living cell cultures. Two 210Po alpha-particle emitting devices, with 0.5 and 100 MBq activity, were designed and constructed to perform such experiments irradiating monolayers of cells. Estimates of dose rate at the cell surface were obtained from measurements by a PIPS alpha-particle spectrometer and from calculations by the SRIM 2000, Monte Carlo charged particle transport code. Particle fluence area distributions were measured by solid state nuclear track detectors. The design and dosimetric characterisation of the devices are discussed. c2002 Elsevier Science Ltd. All rights reserved.

  11. A cell-based systems biology assessment of human blood to monitor immune responses after influenza vaccination.

    Science.gov (United States)

    Hoek, Kristen L; Samir, Parimal; Howard, Leigh M; Niu, Xinnan; Prasad, Nripesh; Galassie, Allison; Liu, Qi; Allos, Tara M; Floyd, Kyle A; Guo, Yan; Shyr, Yu; Levy, Shawn E; Joyce, Sebastian; Edwards, Kathryn M; Link, Andrew J

    2015-01-01

    Systems biology is an approach to comprehensively study complex interactions within a biological system. Most published systems vaccinology studies have utilized whole blood or peripheral blood mononuclear cells (PBMC) to monitor the immune response after vaccination. Because human blood is comprised of multiple hematopoietic cell types, the potential for masking responses of under-represented cell populations is increased when analyzing whole blood or PBMC. To investigate the contribution of individual cell types to the immune response after vaccination, we established a rapid and efficient method to purify human T and B cells, natural killer (NK) cells, myeloid dendritic cells (mDC), monocytes, and neutrophils from fresh venous blood. Purified cells were fractionated and processed in a single day. RNA-Seq and quantitative shotgun proteomics were performed to determine expression profiles for each cell type prior to and after inactivated seasonal influenza vaccination. Our results show that transcriptomic and proteomic profiles generated from purified immune cells differ significantly from PBMC. Differential expression analysis for each immune cell type also shows unique transcriptomic and proteomic expression profiles as well as changing biological networks at early time points after vaccination. This cell type-specific information provides a more comprehensive approach to monitor vaccine responses.

  12. Advanced cathode materials for polymer electrolyte fuel cells based on pt/ metal oxides: from model electrodes to catalyst systems.

    Science.gov (United States)

    Fabbri, Emiliana; Pătru, Alexandra; Rabis, Annett; Kötz, Rüdiger; Schmidt, Thomas J

    2014-01-01

    The development of stable catalyst systems for application at the cathode side of polymer electrolyte fuel cells (PEFCs) requires the substitution of the state-of-the-art carbon supports with materials showing high corrosion resistance in a strongly oxidizing environment. Metal oxides in their highest oxidation state can represent viable support materials for the next generation PEFC cathodes. In the present work a multilevel approach has been adopted to investigate the kinetics and the activity of Pt nanoparticles supported on SnO2-based metal oxides. Particularly, model electrodes made of SnO2 thin films supporting Pt nanoparticles, and porous catalyst systems made of Pt nanoparticles supported on Sb-doped SnO2 high surface area powders have been investigated. The present results indicate that SnO2-based supports do not modify the oxygen reduction reaction mechanism on the Pt nanoparticle surface, but rather lead to catalysts with enhanced specific activity compared to Pt/carbon systems. Different reasons for the enhancement in the specific activity are considered and discussed.

  13. Fuel cells, batteries and super-capacitors stand-alone power systems management using optimal/flatness based-control

    Science.gov (United States)

    Benaouadj, M.; Aboubou, A.; Ayad, M. Y.; Bahri, M.; Boucetta, A.

    2016-07-01

    In this work, an optimal control (under constraints) based on the Pontryagin's maximum principle is used to optimally manage energy flows in a basic PEM (Proton Exchange Membrane) fuel cells system associated to lithium-ion batteries and supercapacitors through a common DC bus having a voltage to stabilize using the differential flatness approach. The adaptation of voltage levels between different sources and load is ensured by use of three DC-DC converters, one boost connected to the PEM fuel cells, while the two others are buck/boost and connected to the lithiumion batteries and supercapacitors. The aim of this paper is to develop an energy management strategy that is able to satisfy the following objectives: - Impose the power requested by a habitat (representing the load) according to a proposed daily consumption profile, - Keep fuel cells working at optimal power delivery conditions, - Maintain constant voltage across the common DC bus, - Stabilize the batteries voltage and stored quantity of charge at desired values given by the optimal control.Results obtained under MATLAB/Simulink environment prove that the cited objectives are satisfied, validating then, effectiveness and complementarity between the optimal and flatness concepts proposed for energy management. Note that this study is currently in experimentally validation within MSE Laboratory.

  14. Optimal/flatness based-control of stand-alone power systems using fuel cells, batteries and supercapacitors

    Directory of Open Access Journals (Sweden)

    Mahdi Benaouadj

    2017-03-01

    Full Text Available In this work, an optimal control (under constraints based on the Pontryagin’s maximum principle is used to optimally manage energy flows in a basic PEM (Proton Exchange Membrane fuel cells system associated to lithium-ion batteries and supercapacitors through a common DC bus having a voltage to stabilize using the differential flatness approach. The adaptation of voltage levels between different sources and load is ensured by use of three DCDC converters, one boost connected to the PEM fuel cells, while the two others are buck/boost and connected to the lithium-ion batteries and supercapacitors. The aim of this paper is to develop an energy management strategy that is able to satisfy the following objectives: - Impose the power requested by a habitat (representing the load according to a proposed daily consumption profile, - Keep fuel cells working at optimal power delivery conditions, - Maintain constant voltage across the common DC bus, - Stabilize the batteries voltage and stored quantity of charge at desired values given by the optimal control. Results obtained under MATLAB/Simulink environment prove that the cited objectives are satisfied, validating then effectiveness and complementarity between the optimal and flatness concepts proposed for energy management.

  15. Development of a three-dimensional cell culture system based on microfluidics for nuclear magnetic resonance and optical monitoring.

    Science.gov (United States)

    Esteve, Vicent; Berganzo, Javier; Monge, Rosa; Martínez-Bisbal, M Carmen; Villa, Rosa; Celda, Bernardo; Fernandez, Luis

    2014-11-01

    A new microfluidic cell culture device compatible with real-time nuclear magnetic resonance (NMR) is presented here. The intended application is the long-term monitoring of 3D cell cultures by several techniques. The system has been designed to fit inside commercially available NMR equipment to obtain maximum readout resolution when working with small samples. Moreover, the microfluidic device integrates a fibre-optic-based sensor to monitor parameters such as oxygen, pH, or temperature during NMR monitoring, and it also allows the use of optical microscopy techniques such as confocal fluorescence microscopy. This manuscript reports the initial trials culturing neurospheres inside the microchamber of this device and the preliminary images and spatially localised spectra obtained by NMR. The images show the presence of a necrotic area in the interior of the neurospheres, as is frequently observed in histological preparations; this phenomenon appears whenever the distance between the cells and fresh nutrients impairs the diffusion of oxygen. Moreover, the spectra acquired in a volume of 8 nl inside the neurosphere show an accumulation of lactate and lipids, which are indicative of anoxic conditions. Additionally, a basis for general temperature control and monitoring and a graphical control software have been developed and are also described. The complete platform will allow biomedical assays of therapeutic agents to be performed in the early phases of therapeutic development. Thus, small quantities of drugs or advanced nanodevices may be studied long-term under simulated living conditions that mimic the flow and distribution of nutrients.

  16. Cell Radiation Experiment System

    Science.gov (United States)

    Morrison, Dennis R.

    2010-01-01

    The cell radiation experiment system (CRES) is a perfused-cell culture apparatus, within which cells from humans or other animals can (1) be maintained in homeostasis while (2) being exposed to ionizing radiation during controlled intervals and (3) being monitored to determine the effects of radiation and the repair of radiation damage. The CRES can be used, for example, to determine effects of drug, radiation, and combined drug and radiation treatments on both normal and tumor cells. The CRES can also be used to analyze the effects of radiosensitive or radioprotectant drugs on cells subjected to radiation. The knowledge gained by use of the CRES is expected to contribute to the development of better cancer treatments and of better protection for astronauts, medical-equipment operators, and nuclear-power-plant workers, and others exposed frequently to ionizing radiation.

  17. Multifunctional, chitosan-based nano therapeutics: design and application for two- and three-dimensional cell culture systems

    Science.gov (United States)

    Suarato, Giulia

    There is a constant demand for sensitive and effective anti-cancer drug delivery systems, capable of detecting early-stage pathological conditions and increasing patient survival. Recently, chitosan-based drug delivery nanocomplexes have shown to smartly respond to the distinctive features of the tumor microenvironment, a complex network of extracellular molecules, stromal and endothelial cells, which supports the tumor formation and its metastatic invasion. Due to biocompatibility, easy chemical tailorability, and pH-responsiveness, chitosan has emerged as a promising candidate for the formulation of supramolecular multifunctional materials. The present study focuses on the design, fabrication and characterization of fluorescently labelled, hydrophobically modified glycol chitosan nano-micelles (HGC NPs), suitably tailored for the delivery of anti-neoplastic compounds to various tumor models. Doxorubicin-loaded HGC NPs have been delivered to a bone cancer model, both in monolayer and in 3D spheroid configuration, to assess for differences in the delivery profiles and in the therapeutic efficacy. Compared to the free drug, nanocomplexes showed rapid uptake and a more homogeneous distribution in 3D spheroids, a powerful cellular tool which recapitulates some of the in vivo tumor microenvironment features. In a second part of this thesis work, with the purpose of designing an active targeting tumor-homing nano-therapeutic system, HGC NPs have been linked, via avidin-biotin interaction, with a IVS4 peptide, a small molecule with inhibitory activity on MMP-14-mediated functions. An extensive study conducted on triple negative breast cancer cells in monolayer revealed the MMP-14-IVS4-HGC association at the cancer cell membrane, the preferential uptake, and the consequent impairment of protease-associated migratory ability. As an additional application of our engineered construct, HGC micelles have been decorated with a liver kinase B1 (LKB1), a critical kinase involved

  18. Hybrid Microgrid Model based on Solar Photovoltaics with Batteries and Fuel Cells system for intermittent applications

    Science.gov (United States)

    Patterson, Maxx

    Microgrids are a subset of the modern power structure; using distributed generation (DG) to supply power to communities rather than vast regions. The reduced scale mitigates loss allowing the power produced to do more with better control, giving greater security, reliability, and design flexibility. This paper explores the performance and cost viability of a hybrid grid-tied microgrid that utilizes Photovoltaic (PV), batteries, and fuel cell (FC) technology. The concept proposes that each community home is equipped with more PV than is required for normal operation. As the homes are part of a microgrid, excess or unused energy from one home is collected for use elsewhere within the microgrid footprint. The surplus power that would have been discarded becomes a community asset, and is used to run intermittent services. In this paper, the modeled community does not have parking adjacent to each home allowing for the installment of a privately owned slower Level 2 charger, making EV ownership option untenable. A solution is to provide a Level 3 DC Quick Charger (DCQC) as the intermittent service. The addition of batteries and Fuel Cells are meant to increase load leveling, reliability, and instill limited island capability.

  19. Innovative household systems based on solid oxide fuel cells for the Mediterranean climate

    DEFF Research Database (Denmark)

    Vialetto, Giulio; Rokni, Masoud; Noro, Marco

    2015-01-01

    of a building. Two different integration systems are proposed: electric heater and condensing boiler. Heat storage is also considered to store waste heat when it is unused. An innovative parameter, the electric equivalent load, is proposed: it has the function of characterizing not only electricity consumption...

  20. Headset Bluetooth and cell phone based continuous central body temperature measurement system.

    Science.gov (United States)

    Sanches, J Miguel; Pereira, Bruno; Paiva, Teresa

    2010-01-01

    The accurate measure of the central temperature is a very important physiologic indicator in several clinical applications, namely, in the characterization and diagnosis of sleep disorders. In this paper a simple system is described to continuously measure the body temperature at the ear. An electronic temperature sensor is coupled to the microphone of a common commercial auricular Bluetooth device that sends the temperature measurements to a mobile phone to which is paired. The measurements are stored at the mobile phone and periodically sent to a medical facility by email or SMS (short messaging service).

  1. Macrophages as cell-based delivery systems for nanoshells in photothermal therapy.

    Science.gov (United States)

    Madsen, Steen J; Baek, Seung-Kuk; Makkouk, Amani R; Krasieva, Tatiana; Hirschberg, Henry

    2012-02-01

    Site-specific delivery of nanoparticles poses a significant challenge, especially in the brain where the blood-brain barrier prevents the entry of most therapeutic compounds including nanoparticle-based anti-cancer agents. In this context, the use of macrophages as vectors for the delivery of gold-silica nanoshells to infiltrating gliomas will be reviewed in this article. Gold-silica nanoshells are readily phagocytosed by macrophages without any apparent toxic effects, and the results of in vitro studies have demonstrated the migratory potential of nanoshell-loaded macrophages in human glioma spheroids. Of particular interest is the observation that, after near-infrared exposure of spheroids containing nanoshell-loaded macrophages, sufficient heat was generated to suppress spheroid growth. Collectively, these findings demonstrate the potential of macrophages as nanoshell delivery vectors for photothermal therapy of gliomas, and they certainly provide the basis for future animal studies.

  2. Review on the Recent Developments of Photovoltaic Thermal (PV/T and Proton Exchange Membrane Fuel Cell (PEMFC Based Hybrid System

    Directory of Open Access Journals (Sweden)

    Zulkepli Afzam

    2016-01-01

    Full Text Available Photovoltaic Thermal (PV/T system emerged as one of the convenient type of renewable energy system acquire the ability to generate power and thermal energy in the absence of moving parts. However, the power output of PV/T is intermittent due to dependency on solar irradiation condition. Furthermore, its efficiency decreases because of cells instability at high temperature. On the other hand, fuel cell co-generation system (CGS is another technology that can generate power and heat simultaneously. Integration of PV/T and fuel cell CGS could enhance the reliability and sustainability of both systems as well as increasing the overall system performance. Hence, this paper intended to present the parameters that affect performance of PV/T and Proton Exchange Membrane Fuel Cell (PEMFC CGS. Moreover, recent developments on PV/T-fuel cell hybrid system are also presented. Based on literates, mass flow rate of moving fluid in PV/T was found to affect the system efficiency. For the PEMFC, when the heat is utilized, the system performance can be increased where the heat efficiency is similar to electrical efficiency which is about 50%. Recent developments of hybrid PV/T and fuel cell show that most of the studies only focus on the power generation of the system. There are less study on the both power and heat utilization which is indeed necessary in future development in term of operation strategy, optimization of size, and operation algorithm.

  3. Four-base codon-mediated incorporation of non-natural amino acids into proteins in a eukaryotic cell-free translation system.

    Science.gov (United States)

    Taira, Hikaru; Fukushima, Masaharu; Hohsaka, Takahiro; Sisido, Masahiko

    2005-05-01

    Various four-base codons have been shown to work for the introduction of non-natural amino acids into proteins in an Escherichia coli cell-free translation system. Here, a four-base codon-mediated non-natural mutagenesis was applied to a eukaryotic rabbit reticulocyte cell-free translation system. Mutated streptavidin mRNAs containing four-base codons were prepared and added to a rabbit reticulocyte lysate in the presence of tRNAs that were aminoacylated with a non-natural amino acid and had the corresponding four-base anticodons. A Western blot analysis of translation products indicated that the four-base codons CGGU, CGCU, CCCU, CUCU, CUAU, and GGGU were efficiently decoded by the aminoacyl-tRNAs having the corresponding four-base anticodons. In contrast, the four-base codons AGGU, AGAU, CGAU, UUGU, UCGU, and ACGU were not decoded. The stop codon-derived four-base codons UAGU, UAAU, and UGAU were found to be inefficient, whereas the amber codon UAG and opal codon UGA were efficient for the incorporation of non-natural amino acids. The application of the expanded genetic code in a eukaryotic cell-free system opens the possibility of a four-base codon-mediated incorporation of non-natural amino acids into proteins in living eukaryotic cells.

  4. Culture expansion of adipose derived stromal cells. A closed automated Quantum Cell Expansion System compared with manual flask-based culture

    DEFF Research Database (Denmark)

    Haack-Sørensen, Mandana; Follin, Bjarke; Juhl, Morten

    2016-01-01

    BACKGROUND: Adipose derived stromal cells (ASCs) are a rich and convenient source of cells for clinical regenerative therapeutic approaches. However, applications of ASCs often require cell expansion to reach the needed dose. In this study, cultivation of ASCs from stromal vascular fraction (SVF......) over two passages in the automated and functionally closed Quantum Cell Expansion System (Quantum system) is compared with traditional manual cultivation. METHODS: Stromal vascular fraction was isolated from abdominal fat, suspended in α-MEM supplemented with 10% Fetal Bovine Serum and seeded......, and endotoxins, in addition to the assessment of cell counts, viability, immunophenotype, and differentiation potential. RESULTS: The viability of ASCs passage 0 (P0) and P1 was above 96%, regardless of cultivation in flasks or Quantum system. Expression of surface markers and differentiation potential...

  5. Improvement of N-phthaloylchitosan based gel polymer electrolyte in dye-sensitized solar cells using a binary salt system.

    Science.gov (United States)

    Yusuf, S N F; Azzahari, A D; Selvanathan, V; Yahya, R; Careem, M A; Arof, A K

    2017-02-10

    A binary salt system utilizing lithium iodide (LiI) as the auxiliary component has been introduced to the N-phthaloylchitosan (PhCh) based gel polymer electrolyte consisting of ethylene carbonate (EC), dimethylformamide (DMF), tetrapropylammonium iodide (TPAI), and iodine (I2) in order to improve the performance of dye-sensitized solar cell (DSSC) with efficiency of 6.36%, photocurrent density, JSC of 17.29mAcm(-2), open circuit voltage, VOC of 0.59V and fill factor, FF of 0.62. This efficiency value is an improvement from the 5.00% performance obtained by the DSSC consisting of only TPAI single salt system. The presence of the LiI in addition to the TPAI improves the charge injection rates and increases the iodide contribution to the total conductivity and both factors contribute to the increase in efficiency of the DSSC. The interaction behavior between polymer-plasticizer-salt was thoroughly investigated using EIS, FTIR spectroscopy and XRD.

  6. Fuel cell system with interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhien; Goettler, Richard

    2016-12-20

    The present invention includes an integrated planar, series connected fuel cell system having electrochemical cells electrically connected via interconnects, wherein the anodes of the electrochemical cells are protected against Ni loss and migration via an engineered porous anode barrier layer.

  7. Performance of a microbial fuel cell-based biosensor for online monitoring in an integrated system combining microbial fuel cell and upflow anaerobic sludge bed reactor.

    Science.gov (United States)

    Jia, Hui; Yang, Guang; Wang, Jie; Ngo, Huu Hao; Guo, Wenshan; Zhang, Hongwei; Zhang, Xinbo

    2016-10-01

    A hybrid system integrating a microbial fuel cell (MFC)-based biosensor with upflow anaerobic sludge blanket (UASB) was investigated for real-time online monitoring of the internal operation of the UASB reactor. The features concerned were its rapidity and steadiness with a constant operation condition. In addition, the signal feedback mechanism was examined by the relationship between voltage and time point of changed COD concentration. The sensitivity of different concentrations was explored by comparing the signal feedback time point between the voltage and pH. Results showed that the electrical signal feedback was more sensitive than pH and the thresholds of sensitivity were S=3×10(-5)V/(mg/L) and S=8×10(-5)V/(mg/L) in different concentration ranges, respectively. Although only 0.94% of the influent COD was translated into electricity and applied for biosensing, this integrated system indicated great potential without additional COD consumption for real-time monitoring.

  8. Multidimensional single cell based STAT phosphorylation profiling identifies a novel biosignature for evaluation of systemic lupus erythematosus activity.

    Directory of Open Access Journals (Sweden)

    Xinfang Huang

    Full Text Available INTRODUCTION: Dysregulated cytokine action on immune cells plays an important role in the initiation and progress of systemic lupus erythematosus (SLE, a complex autoimmune disease. Comprehensively quantifying basal STATs phosphorylation and their signaling response to cytokines should help us to better understand the etiology of SLE. METHODS: Phospho-specific flow cytometry was used to measure the basal STAT signaling activation in three immune cell types of peripheral-blood mononuclear cells from 20 lupus patients, 9 rheumatoid arthritis (RA patients and 13 healthy donors (HDs. A panel of 27 cytokines, including inflammatory cytokines, was measured with Bio-Plex™ Human Cytokine Assays. Serum Prolactin levels were measured with an immunoradiometric assay. STAT signaling responses to inflammatory cytokines (interferon α [IFNα], IFNγ, interleukin 2 [IL2], IL6, and IL10 were also monitored. RESULTS: We observed the basal activation of STAT3 in SLE T cells and monocytes, and the basal activation of STAT5 in SLE T cells and B cells. The SLE samples clustered into two main groups, which were associated with the SLE Disease Activity Index 2000, their erythrocyte sedimentation rate, and their hydroxychloroquine use. The phosphorylation of STAT5 in B cells was associated with cytokines IL2, granulocyte colony-stimulating factor (G-CSF, and IFNγ, whereas serum prolactin affected STAT5 activation in T cells. The responses of STAT1, STAT3, and STAT5 to IFNα were greatly reduced in SLE T cells, B cells, and monocytes, except for the STAT1 response to IFNα in monocytes. The response of STAT3 to IL6 was reduced in SLE T cells. CONCLUSIONS: The basal activation of STATs signaling and reduced response to cytokines may be helpful us to identify the activity and severity of SLE.

  9. A novel poly(propylene-co-imidazole) based biofuel cell: System optimization and operation for energy generation

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, Muhammet Samet [Department of Chemistry, Bulent Ecevit University, 67100 Zonguldak (Turkey); Korkut, Seyda, E-mail: s.korkut@beun.edu.tr [Department of Environmental Engineering, Bulent Ecevit University, 67100 Zonguldak (Turkey); Hazer, Baki [Department of Chemistry, Bulent Ecevit University, 67100 Zonguldak (Turkey)

    2015-02-01

    This study describes the construction of an enzymatic fuel cell comprised of novel gold nanoparticles embedded poly(propylene-co-imidazole) coated anode and cathode. Working electrode fabrication steps and operational conditions for the fuel cell have been optimized to get enhanced power output. Electrical generation capacity of the optimized cell was tested by using the municipal wastewater sample. The enzymatic fuel cell system reached to maximum power density with 1 μg and 8 μg of polymer quantity and bilirubin oxidase on electrode surface, respectively. The maximum power output was calculated to be 5 μW cm{sup −2} at + 0.56 V (vs. Ag/AgCl) in phosphate buffer (pH 7.4, 100 mM, 20 °C) by the addition of 15 mM of glucose as a fuel source. The optimized enzymatic fuel cell generated a power density of 0.46 μW cm{sup −2} for the municipal wastewater sample. Poly(propylene-co-imidazole) was easily used for a fuel cell system owing to its metallic nanoparticle content. The developed fuel cell will play a significant role for energy conversion by using glucose readily found in wastewater and in vivo mediums. - Highlights: • Gold nanoparticles provided faster electron transfer in the circuit. • The maximum power density of 5 μW cm{sup −2} was generated at + 0.56 V cell potential. • The cell can be easily operated for in vivo mediums.

  10. In-cell protease assay systems based on trans-localizing molecular beacon proteins using HCV protease as a model system.

    Directory of Open Access Journals (Sweden)

    Jeong Hee Kim

    Full Text Available This study describes a sensitive in-cell protease detection system that enables direct fluorescence detection of a target protease and its inhibition inside living cells. This live-cell imaging system provides a fluorescent molecular beacon protein comprised of an intracellular translocation signal sequence, a protease-specific cleavage sequence, and a fluorescent tag sequence(s. The molecular beacon protein is designed to change its intracellular localization upon cleavage by a target protease, i.e., from the cytosol to a subcellular organelle or from a subcellular organelle to the cytosol. Protease activity can be monitored at the single cell level, and accordingly the entire cell population expressing the protease can be accurately enumerated. The clear cellular change in fluorescence pattern makes this system an ideal tool for various life science and drug discovery research, including high throughput and high content screening applications.

  11. A negative dielectrophoresis and gravity-driven flow-based high-throughput and high-efficiency cell-sorting system.

    Science.gov (United States)

    Lee, Dongkyu; Kim, Dowon; Kim, Youngwoong; Park, Ki-Hyun; Oh, Eun-Jee; Kim, Yonggoo; Kim, Byungkyu

    2014-02-01

    We present a negative dielectrophoresis (n-DEP)-based cell separation system for high-throughput and high-efficiency cell separation. To achieve a high throughput, the proposed system comprises macro-sized channel and cantilever-type electrode (CE) arrays (L × W × H = 150 µm × 500 µm × 50 µm) to generate n-DEP force. For high efficiency, double separation modules, which have macro-sized channels and CE arrays in each separation module, are employed. In addition, flow regulators to precisely control the hydrodynamic force are allocated for each outlet. Because the hydrodynamic force and the n-DEP force acting on the target cell are the main determinants of the separation efficiency, we evaluate the theoretical amount of hydrodynamic force and n-DEP force acting on each target cell. Based on theoretical results, separation conditions are experimentally investigated. Finally, to demonstrate the separation performance, we performed the separation of target cells (live K562) from nontarget cells (dead K562) under conditions of low voltage (7Vp-p with 100 kHz) and a flow rate of 15 µL•min⁻¹, 6 µL•min⁻¹, and 8 µL•min⁻¹ in outlets 1, 2, and 3, respectively. The system can separate target cells with 95% separation efficiency in the case of the ratio of 5:1 (live K562:dead K562).

  12. POST-OPERATIVE STAGING AND SURVIVAL BASED ON THE REVISED TNM STAGING SYSTEM FOR NON-SMALL CELL LUNG CANCER

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: To study the factors affecting post-operative staging and survival in non-small cell lung cancer (NSCLC) patients based on the revised TNM staging system adopted by the UICC in 1977. Methods: Data were collected from 1757 consecutively operated NSCLC patients, including those receiving complete tumor excision, tumor debulking and exploratory thoractomy from April 1969 through Dec. 1993. the end point of follow-up was Nov. 30, 1998. Cumulative survival and its influencing factors were analyzed by Kaplan-Meier and Cox model of SPSS software. Results: In this series, 30 patients (1.7%) were lost from follow-up. The 5-year cumulative survival was 88.0% for patients in stage I A, and 53.9% in stage IB, 33.5% in stage II, 14.7% in stage IIIA, 5.5% in stage IIIB and 7.0% in stage IV. The overall 5-year survival rate was 28.2%. The 5-year survivals were 39.8%, 14.4% and 4.2% in patients treated with completely tumor resection, tumor debulking and explorative thoractomy, respectively. The 10-year survival rate was 31.4%, 9.5% and 0, respectively. Factors affecting long-term cumulative survival, in the order of decreasing significance, were the type of operation, lymph node status, staging, size and pathological type of the primary tumor. Conclusion: the revised staging system for NSCLC is superior to that used since 1986 as far as the end results of treatment in patients in different stage and the staging specificity are concerned. The T3N1M0 classification and the definition of M1 need to be further studied.

  13. AlgiMatrix™ based 3D cell culture system as an in-vitro tumor model for anticancer studies.

    Directory of Open Access Journals (Sweden)

    Chandraiah Godugu

    Full Text Available BACKGROUND: Three-dimensional (3D in-vitro cultures are recognized for recapitulating the physiological microenvironment and exhibiting high concordance with in-vivo conditions. Taking the advantages of 3D culture, we have developed the in-vitro tumor model for anticancer drug screening. METHODS: Cancer cells grown in 6 and 96 well AlgiMatrix™ scaffolds resulted in the formation of multicellular spheroids in the size range of 100-300 µm. Spheroids were grown in two weeks in cultures without compromising the growth characteristics. Different marketed anticancer drugs were screened by incubating them for 24 h at 7, 9 and 11 days in 3D cultures and cytotoxicity was measured by AlamarBlue® assay. Effectiveness of anticancer drug treatments were measured based on spheroid number and size distribution. Evaluation of apoptotic and anti-apoptotic markers was done by immunohistochemistry and RT-PCR. The 3D results were compared with the conventional 2D monolayer cultures. Cellular uptake studies for drug (Doxorubicin and nanoparticle (NLC were done using spheroids. RESULTS: IC(50 values for anticancer drugs were significantly higher in AlgiMatrix™ systems compared to 2D culture models. The cleaved caspase-3 expression was significantly decreased (2.09 and 2.47 folds respectively for 5-Fluorouracil and Camptothecin in H460 spheroid cultures compared to 2D culture system. The cytotoxicity, spheroid size distribution, immunohistochemistry, RT-PCR and nanoparticle penetration data suggested that in vitro tumor models show higher resistance to anticancer drugs and supporting the fact that 3D culture is a better model for the cytotoxic evaluation of anticancer drugs in vitro. CONCLUSION: The results from our studies are useful to develop a high throughput in vitro tumor model to study the effect of various anticancer agents and various molecular pathways affected by the anticancer drugs and formulations.

  14. Analysis and Comparison Based on Component Stress Factor of Dual Active Bridge and Isolated Full Bridge Boost Converters for Bidirectional Fuel Cells Systems

    DEFF Research Database (Denmark)

    Pittini, Riccardo; Mira Albert, Maria del Carmen; Zhang, Zhe;

    2014-01-01

    This paper presents an analysis and comparison of isolated topologies for bidirectional fuel cell systems. The analyzed topologies are the dua l active bridge (DAB) and the isolated full bridge boost converter (IFBBC). The analysis is performed based on the component stress factor (CSF). Results ...

  15. Modelling of pressurised hybrid systems based on integrated planar solid oxide fuel cell (IP-SOFC) technology

    Energy Technology Data Exchange (ETDEWEB)

    Magistri, L.; Traverso, A.; Massardo, A.F. [TPG-DIMSET, University of Genoa, Via Montallegro 1, 16145 Genova (Italy); Cerutti, F.; Costamagna, P. [TPG-DICHEP, University of Genoa, Via Opera Pia 15, 16145 Genova (Italy); Bozzolo, M. [Rolls-Royce Fuel Cell Systems Ltd, PO Box 31, Derby DE24 8BJ (United Kingdom)

    2005-02-01

    This work describes different models, developed by the Thermochemical Power Group at the University of Genoa (Italy), for the simulation of solid oxide fuel cell and gas turbine hybrid systems. The paper focuses on both ''cores'' of the system: the fuel cell stack on the one hand and the turbomachinery and the auxiliaries on the other hand. Therefore, in the first part of the paper the models developed for the analysis of the Rolls-Royce Integrated Planar SOFC cells are presented; the results are compared to experimental data, and carefully analysed and discussed. In the second part of the paper, design and off design models of IP-SOFC pressurised hybrid systems in the range 250 kW-20 MW are presented; the hybrid performance results are presented and discussed, also taking ambient condition effects and a possible control strategy into account. Finally, using an in-house general purpose transient system analysis code (TRANSEO code), where chemical composition, heat transfer, and fluid dynamic influences vs. time are considered in detail, a preliminary time dependent investigation of a pressurised hybrid system behaviour is presented. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  16. Designing and optimization of a micro CHP system based on Solid Oxide Fuel Cell with different fuel processing technologies

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2009-01-01

    (SMR) and partial oxidation (CPO) will be investigated for each configuration. The internal reforming will be also considered for its ability to reduce the stack temperature and decrease the need of cooling air. Finally, optimization criteria for SOFC systems applied to single-family detached dwellings...... are the possibility to partially reform hydrocarbon in the fuel cell anode compartment and the possibility to use high quality heat for cogeneration. In this work, different configurations of solid oxide fuel cell system for decentralized electricity production are examined. The Balance of Plant (BoP) components...... of the Micro Combined Heat and Power plant (mCHP) will be identified including fuel and air supply, fuel management anode re-circulation, exhaust gas heat management, power conditioning and control system. Using mass and energy balance, different types of fuel reforming including steam reforming...

  17. Universal low-temperature MWCNT-COOH-based counter electrode and a new thiolate/disulfide electrolyte system for dye-sensitized solar cells.

    Science.gov (United States)

    Hilmi, Abdulla; Shoker, Tharallah A; Ghaddar, Tarek H

    2014-06-11

    A new thiolate/disulfide organic-based electrolyte system composed of the tetrabutylammonium salt of 2-methyl-5-trifluoromethyl-2H-[1,2,4]triazole-3-thiol (S(-)) and its oxidized form 3,3'-dithiobis(2-methyl-5-trifluoromethyl-2H-[1,2,4]triazole) (DS) has been formulated and used in dye-sensitized solar cells (DSSCs). The electrocatalytic activity of different counter electrodes (CEs) has been evaluated by means of measuring J-V curves, cyclic voltammetry, Tafel plots, and electrochemical impedance spectroscopy. A stable and low-temperature CE based on acid-functionalized multiwalled carbon nanotubes (MWCNT-COOH) was investigated with our S(-)/DS, I(-)/I3(-), T(-)/T2, and Co(II/III)-based electrolyte systems. The proposed CE showed superb electrocatalytic activity toward the regeneration of the different electrolytes. In addition, good stability of solar cell devices based on the reported electrolyte and CE was shown.

  18. Novel Drug Delivery System Based on Docetaxel-Loaded Nanocapsules as a Therapeutic Strategy Against Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Antonia Aránega

    2012-04-01

    Full Text Available In the field of cancer therapy, lipid nanocapsules based on a core-shell structure are promising vehicles for the delivery of hydrophobic drugs such as docetaxel. The main aim of this work was to evaluate whether docetaxel-loaded lipid nanocapsules improved the anti-tumor effect of free docetaxel in breast cancer cells. Three docetaxel-loaded lipid nanocapsules were synthesized by solvent displacement method. Cytotoxic assays were evaluated in breast carcinoma (MCF-7 cells treated by the sulforhodamine B colorimetric method. Cell cycle was studied by flow cytometry and Annexin V-FITC, and apoptosis was evaluated by using propidium iodide assays. The anti-proliferative effect of docetaxel appeared much earlier when the drug was encapsulated in lipid nanoparticles than when it was free. Docetaxel-loaded lipid nanocapsules significantly enhanced the decrease in IC50 rate, and the treated cells evidenced apoptosis and a premature progression of the cell cycle from G(1 to G(2-M phase. The chemotherapeutic effect of free docetaxel on breast cancer cells is improved by its encapsulation in lipid nanocapsules. This approach has the potential to overcome some major limitations of conventional chemotherapy and may be a promising strategy for future applications in breast cancer therapy.

  19. Implementation of a Permeable Membrane Insert-based Infection System to Study the Effects of Secreted Bacterial Toxins on Mammalian Host Cells.

    Science.gov (United States)

    Flaherty, Rebecca A; Lee, Shaun W

    2016-08-19

    Many bacterial pathogens secrete potent toxins to aid in the destruction of host tissue, to initiate signaling changes in host cells or to manipulate immune system responses during the course of infection. Though methods have been developed to successfully purify and produce many of these important virulence factors, there are still many bacterial toxins whose unique structure or extensive post-translational modifications make them difficult to purify and study in in vitro systems. Furthermore, even when pure toxin can be obtained, there are many challenges associated with studying the specific effects of a toxin under relevant physiological conditions. Most in vitro cell culture models designed to assess the effects of secreted bacterial toxins on host cells involve incubating host cells with a one-time dose of toxin. Such methods poorly approximate what host cells actually experience during an infection, where toxin is continually produced by bacterial cells and allowed to accumulate gradually during the course of infection. This protocol describes the design of a permeable membrane insert-based bacterial infection system to study the effects of Streptolysin S, a potent toxin produced by Group A Streptococcus, on human epithelial keratinocytes. This system more closely mimics the natural physiological environment during an infection than methods where pure toxin or bacterial supernatants are directly applied to host cells. Importantly, this method also eliminates the bias of host responses that are due to direct contact between the bacteria and host cells. This system has been utilized to effectively assess the effects of Streptolysin S (SLS) on host membrane integrity, cellular viability, and cellular signaling responses. This technique can be readily applied to the study of other secreted virulence factors on a variety of mammalian host cell types to investigate the specific role of a secreted bacterial factor during the course of infection.

  20. Towards increased selectivity of drug delivery to cancer cells: development of a LDL-based nanodelivery system for hydrophobic photosensitizers

    Science.gov (United States)

    Buzova, Diana; Huntosova, Veronika; Kasak, Peter; Petrovajova, Dana; Joniova, Jaroslava; Dzurova, Lenka; Nadova, Zuzana; Sureau, Franck; Midkovsky, Pavol; Jancura, Daniel

    2012-10-01

    Low-density lipoproteins (LDL), a natural in vivo carrier of cholesterol in the vascular system, play a key role in the delivery of hydrophobic photosensitizers (pts) to tumor cells in photodynamic therapy (PDT) of cancer. To make this delivery system even more efficient, we have constructed a nano-delivery system by coating of LDL surface by polyethylene glycol (PEG) and dextran. Fluorescence spectroscopy and confocal fluorescence imaging were used to characterize redistribution of hypericin (Hyp), a natural potent pts, loaded in LDL/PEG and LDL/dextran complexes to free LDL molecules as well as to monitor cellular uptake of Hyp by U87-MG cells. It was shown than the redistribution process of Hyp between LDL molecules is significantly suppressed by dextran coating of LDL surface. On the other hand, PEG does not significantly influence this process. The modification of LDL molecules by the polymers does not inhibit their recognition by cellular LDL receptors. U-87 MG cellular uptake of Hyp loaded in LDL/PEG and LDL/dextran complexes appears to be similar to that one observed for Hyp transported by unmodified LDL particles. It is proposed that by polymers modified LDL molecules could be used as a basis for construction of a drug transport system for targeted delivery of hydrophobic drugs to cancer cells expressing high level of LDL receptors.

  1. Hydrogel based occlusion systems

    NARCIS (Netherlands)

    Stam, F.A.; Jackson, N.; Dubruel, P.; Adesanya, K.; Embrechts, A.; Mendes, E.; Neves, H.P.; Herijgers, P.; Verbrugghe, Y.; Shacham, Y.; Engel, L.; Krylov, V.

    2013-01-01

    A hydrogel based occlusion system, a method for occluding vessels, appendages or aneurysms, and a method for hydrogel synthesis are disclosed. The hydrogel based occlusion system includes a hydrogel having a shrunken and a swollen state and a delivery tool configured to deliver the hydrogel to a tar

  2. Integration and evaluation of a power system for remote application based on PV panels and PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Llerena, F.I.; Hebrero, C.A.; Argumosa, P.; Gonzalez, A.; Gonzalez, C. [Departamento de Aerodinamica y Propulsion. Instituto Nacional de Tecnica Aeroespacial (INTA), Madrid (Spain)

    2003-09-01

    The 'Fuel Cell Innovative Remote Systems for Telecom' is a Research, Development and Demonstration project co-funded by the European Commission. Seven institutions from four different European countries are partners of the project and carry out the technical work of the project, there are four research centres and three private companies. In addition a 'Board of Interest', integrated by companies dealing with remote telecom systems and uninterrupted power systems, has been established and takes the responsibilities for the exploitation plan of the whole developed system. INTA is the coordinator of the project and this paper will be focused in the showcase 1, installed at INTA facilities. The total budget of the project is 3.400.000 Euro. The project will finish on March 2004. (authors)

  3. Development of droplets‐based microfluidic systems for single­‐cell high‐throughput screening

    DEFF Research Database (Denmark)

    Chen, Jun; Jensen, Thomas Glasdam; Godina, Alexei

    2014-01-01

    High-throughput screening (HTS) plays an important role in the development of microbial cell factories. One of the most popular approaches is to use microplates combined with the application of robotics, liquid handling and sophisticated detection methods. However, these workstations require larg...... picoliter aqueous droplets surround by an immiscible fluorinated oil phase. Our aim is to use this system to facilitate the screening process for both the biotechnology and food industry....

  4. Systems Biology and Stem Cell Pluripotency

    DEFF Research Database (Denmark)

    Mashayekhi, Kaveh; Hall, Vanessa; Freude, Kristine

    2016-01-01

    Recent breakthroughs in stem cell biology have accelerated research in the area of regenerative medicine. Over the past years, it has become possible to derive patient-specific stem cells which can be used to generate different cell populations for potential cell therapy. Systems biological...... modeling of stem cell pluripotency and differentiation have largely been based on prior knowledge of signaling pathways, gene regulatory networks, and epigenetic factors. However, there is a great need to extend the complexity of the modeling and to integrate different types of data, which would further...... improve systems biology and its uses in the field. In this chapter, we first give a general background on stem cell biology and regenerative medicine. Stem cell potency is introduced together with the hierarchy of stem cells ranging from pluripotent embryonic stem cells (ESCs) and induced pluripotent stem...

  5. Development of an all-in-one lentiviral vector system based on the original TetR for the easy generation of Tet-ON cell lines.

    Directory of Open Access Journals (Sweden)

    Karim Benabdellah

    Full Text Available Lentiviral vectors (LVs are considered one of the most promising vehicles to efficiently deliver genetic information for basic research and gene therapy approaches. Combining LVs with drug-inducible expression systems should allow tight control of transgene expression with minimal side effect on relevant target cells. A new doxycycline-regulated system based on the original TetR repressor was developed in 1998 as an alternative to the TetR-VP16 chimeras (tTA and rtTA to avoid secondary effects due to the expression of transactivator domains. However, previously described TetR-based systems required cell cloning and/or antibiotic selection of tetracycline-responsive cells in order to achieve good regulation. In the present manuscript we have constructed a dual Tet-ON system based on two lentiviral vectors, one expressing the TetR through the spleen focus forming virus (SFFV promoter (STetR and a second expressing eGFP through the regulatable CMV-TetO promoter (CTetOE. Using these vectors we have demonstrated that the TetR repressor, contrary to the reverse transactivator (rtTA, can be expressed in excess to bind and modulate a high number of TetO operons. We have also showed that this dual vector system can generate regulatable bulk cell lines (expressing high levels of TetR that are able to modulate transgene expression either by varying doxycycline concentration and/or by varying the amount of CTetOE vector genomes per cell. Based on these results we have developed a new all-in-one lentiviral vector (CEST driving the expression of TetR through the SFFV promoter and the expression of eGFP through the doxycycline-responsive CMV-TetO operon. This vector efficiently produced Tet-ON regulatable immortalized (293T and primary (human mesenchymal stem cells and human primary fibroblasts cells. Bulk doxycycline-responsive cell lines express high levels of the transgene with low amount of doxycycline and are phenotypically indistinct from its parental

  6. Interference Alignment-based Precoding and User Selection with Limited Feedback in Two-cell Downlink Multi-user MIMO Systems

    Directory of Open Access Journals (Sweden)

    Yin Zhu

    2016-05-01

    Full Text Available Interference alignment (IA is a new approach to address interference in modern multiple-input multiple-out (MIMO cellular networks in which interference is an important factor that limits the system throughput. System throughput in most IA implementation schemes is significantly improved only with perfect channel state information and in a high signal-to-noise ratio (SNR region. Designing a simple IA scheme for the system with limited feedback and investigating system performance at a low-to-medium SNR region is important and practical. This paper proposed a precoding and user selection scheme based on partial interference alignment in two-cell downlink multi-user MIMO systems under limited feedback. This scheme aligned inter-cell interference to a predefined direction by designing user’s receive antenna combining vectors. A modified singular value decomposition (SVD-based beamforming method and a corresponding user-selection algorithm were proposed for the system with low rate limited feedback to improve sum rate performance. Simulation results show that the proposed scheme achieves a higher sum rate than traditional schemes without IA. The modified SVD-based beamforming scheme is also superior to the traditional zero-forcing beamforming scheme in low-rate limited feedback systems. The proposed partial IA scheme does not need to collaborate between transmitters and joint design between the transmitter and the users. The scheme can be implemented with low feedback overhead in current MIMO cellular networks.

  7. An insert-based enzymatic cell culture system to rapidly and reversibly induce hypoxia: investigations of hypoxia-induced cell damage, protein expression and phosphorylation in neuronal IMR-32 cells

    Directory of Open Access Journals (Sweden)

    Ying Huang

    2013-11-01

    Ischemia-reperfusion injury and tissue hypoxia are of high clinical relevance because they are associated with various pathophysiological conditions such as myocardial infarction and stroke. Nevertheless, the underlying mechanisms causing cell damage are still not fully understood, which is at least partially due to the lack of cell culture systems for the induction of rapid and transient hypoxic conditions. The aim of the study was to establish a model that is suitable for the investigation of cellular and molecular effects associated with transient and long-term hypoxia and to gain insights into hypoxia-mediated mechanisms employing a neuronal culture system. A semipermeable membrane insert system in combination with the hypoxia-inducing enzymes glucose oxidase and catalase was employed to rapidly and reversibly generate hypoxic conditions in the culture medium. Hydrogen peroxide assays, glucose measurements and western blotting were performed to validate the system and to evaluate the effects of the generated hypoxia on neuronal IMR-32 cells. Using the insert-based two-enzyme model, hypoxic conditions were rapidly induced in the culture medium. Glucose concentrations gradually decreased, whereas levels of hydrogen peroxide were not altered. Moreover, a rapid and reversible (onoff generation of hypoxia could be performed by the addition and subsequent removal of the enzyme-containing inserts. Employing neuronal IMR-32 cells, we showed that 3 hours of hypoxia led to morphological signs of cellular damage and significantly increased levels of lactate dehydrogenase (a biochemical marker of cell damage. Hypoxic conditions also increased the amounts of cellular procaspase-3 and catalase as well as phosphorylation of the pro-survival kinase Akt, but not Erk1/2 or STAT5. In summary, we present a novel framework for investigating hypoxia-mediated mechanisms at the cellular level. We claim that the model, the first of its kind, enables researchers to rapidly and

  8. [Cell based therapy for COPD].

    Science.gov (United States)

    Kubo, Hiroshi

    2007-04-01

    To develop a new cell based therapy for chronic obstructive pulmonary disease (COPD), we need to understand 1) the role of tissue-specific and bone marrow-derived stem cells, 2) extracellular matrix, and 3) growth factors. Recently, bronchioalveolar stem cells were identified in murine distal lungs. Impairment of these stem cells may cause improper lung repair after inflammation, resulting in pulmonary emphysema. Bone marrow-derived cells are necessary to repair injured lungs. However, the long term role of these cells is not understood yet. Although we need more careful analysis and additional experiments, growth factors, such as hepatocyte growth factor, are good candidates for the new cell based therapy for COPD. Lung was believed as a non-regenerative organ. Based on these recent reports about lung regeneration and stem cells, however, new strategies to treat COPD and a new point of view to understand the pathophysiology of COPD are rising.

  9. Control and load management of a fuel cell based hybrid system; Steuerung und Lademanagement eines brennstoffzellen-basierten Hybridsystems

    Energy Technology Data Exchange (ETDEWEB)

    Klausmann, Andreas

    2011-07-01

    Objective of this work is the development of a control for a hybrid electric power train. Initial point is an electric drive powered by a rechargeable battery. This battery shall be recharged during operation by a methanol-driven fuel cell. At this point it is not intended to deploy a direct methanol fuel cell but a combination of a methanol reformer generating hydrogen-rich gas and a high-temperature fuel cell (HTPEM-FC). This work covers the general strategy of operation like load cycles, standby phases etc., the reformer control and the fuel cell operation with a newly developed charge concept. While the basic research is done on a rapid prototyping system this work aims on porting the control system to an embedded platform. Here emphasis is put on the hardware independency of the control. The development of the reformer control contains the strategy for heating up the system with a minimum of electrical energy consumption, since this energy has to be supplied from the battery during the system start-up, increasing the minimum charge level of the battery required for an autarkic recharge. Unlike in common systems the reformer will be modulated according to the electric load and not vice versa, though the fuel cell serves as load sensor. Beside start-up and shutdown strategies the fuel cell control covers particularly the charge control. The electric load is assumed to be unknown, non-influenceable and unsteady. The charge control handles the charging of the battery under optimal utilization of the available hydrogen while avoiding an overload of the fuel cell caused by sudden load changes like powering up the drive. Therefore the common step-down circuit will be advanced so that all huge and heavy electronic components can be minimized or substituted by internal effects of battery and fuel cell. The fuel utilization will be feed back to the reformer control. After coupling of reformer and fuel cell control the system will be ported to an embedded control system

  10. A nano-reference-system based on two orthogonal (molecular micro-goniometers: the centrosome of animal cells.

    Directory of Open Access Journals (Sweden)

    Regolini Marco

    2014-12-01

    Full Text Available The centrosome, because of 9-fold-symmetry of its orthogonalcentrioles and their circumferential polarity (nonequivalence of the nine centriolarblades,each one molecularly distinguishable, constitutes a biological discrete interface, composed of two orthogonal macromolecular protractors, capable of recognizing and decoding morphogenetic instructions, translating them and delivering targeted molecular complexes into their expected 3D real location in the cell: like an interface or a wiring device, the centrosome recognizes each targeting sequence, matches it with the corresponding receptor, soconnectingit with the correctly-oriented microtubule, directed and targeted towards the desired definite cortical compartment.Morphogenetic geometric instructions (DNA coded are translated by the centrosome into actual locations in cells, and, as a consequence, macromolecules, labeled by DNA geometric signals, can be correctly delivered into their programmed cell locations. In addition, the centrosome (the most chiral and enantiomorphous cell structure plays a geometric key role in left-right patterning: axial centriole circumferential polarity, if reversely oriented, constitutes a likely molecular base for bilateral symmetry.

  11. A Low-Cost Computer-Controlled Arduino-Based Educational Laboratory System for Teaching the Fundamentals of Photovoltaic Cells

    Science.gov (United States)

    Zachariadou, K.; Yiasemides, K.; Trougkakos, N.

    2012-01-01

    We present a low-cost, fully computer-controlled, Arduino-based, educational laboratory (SolarInsight) to be used in undergraduate university courses concerned with electrical engineering and physics. The major goal of the system is to provide students with the necessary instrumentation, software tools and methodology in order to learn fundamental…

  12. A Complete Optical Sensor System Based on a POF-SPR Platform and a Thermo-Stabilized Flow Cell for Biochemical Applications.

    Science.gov (United States)

    Cennamo, Nunzio; Chiavaioli, Francesco; Trono, Cosimo; Tombelli, Sara; Giannetti, Ambra; Baldini, Francesco; Zeni, Luigi

    2016-02-04

    An optical sensor platform based on surface plasmon resonance (SPR) in a plastic optical fiber (POF) integrated into a thermo-stabilized flow cell for biochemical sensing applications is proposed. This device has been realized and experimentally tested by using a classic receptor-analyte assay. For this purpose, the gold surface of the POF was chemically modified through the formation of a self-assembling monolayer. The surface robustness of the POF-SPR platform has been tested for the first time thanks to the flow cell. The experimental results show that the proposed device can be successfully used for label-free biochemical sensing. The final goal of this work is to achieve a complete, small-size, simple to use and low cost optical sensor system. The whole system with the flow cell and the optical sensor are extensively described, together with the experimental results obtained with an immunoglobulin G (IgG)/anti-IgG assay.

  13. A Complete Optical Sensor System Based on a POF-SPR Platform and a Thermo-Stabilized Flow Cell for Biochemical Applications

    Directory of Open Access Journals (Sweden)

    Nunzio Cennamo

    2016-02-01

    Full Text Available An optical sensor platform based on surface plasmon resonance (SPR in a plastic optical fiber (POF integrated into a thermo-stabilized flow cell for biochemical sensing applications is proposed. This device has been realized and experimentally tested by using a classic receptor-analyte assay. For this purpose, the gold surface of the POF was chemically modified through the formation of a self-assembling monolayer. The surface robustness of the POF-SPR platform has been tested for the first time thanks to the flow cell. The experimental results show that the proposed device can be successfully used for label-free biochemical sensing. The final goal of this work is to achieve a complete, small-size, simple to use and low cost optical sensor system. The whole system with the flow cell and the optical sensor are extensively described, together with the experimental results obtained with an immunoglobulin G (IgG/anti-IgG assay.

  14. Uninterruptible power supply for GSM/UMTS base stations using fuel cells. PEM-FC back-up system - Final report; Unterbrechungsfreie Stromversorgung (USV) fuer GSM/UMTS-Basisstationen mit Brennstoffzellen. PEM-FC Back-Up System - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Trachte, U.; Wellig, B.; Luethi, E.; Gander, T.; Haerri, V.

    2010-06-15

    The Lucerne University of Applied Sciences and Arts - Lucerne School of Engineering and Architecture conducted field tests with an uninterruptible power supply (UPS) with fuel cell technology since January 2006. The project took place in collaboration with the industrial partners Swisscom (Schweiz) AG, as a user of UPS-systems in telecommunications and the American Power Conversion Corporation as a producer and market leader of UPS-Systems. In this project, the lead-acid batteries were replaced by a PEM fuel cell system. The delayed start-up behaviour of the fuel cell was bridged with supercapacitor technology. The system was connected to an existing working base station of a telecommunication installation, which was installed on the roof of the Lucerne School of Engineering and Architecture in Horw. Hydrogen was provided by two pressurized tanks. The full quantity of hydrogen assured a stand-alone operation for about 6 hours under the load of the telecommunication base station. The field test included monthly grid failure simulations of 5x5 minutes and 2x20 minutes power failures. Also during grid failure simulations for more than 4 hours and during two real outages up to one and a half hour the system provided the demanded power. The field test was performed for a period of three and a half years. Excellent results of the approximately 350 start-up's confirm the functionality, reliability and performance of the system. Under the load of the base station the fuel cell system started with a reliability of 100%. At the end of the tests a decrease of the fuel cell voltage of about 3.3% was measured. The fuel cell system was still fully operational at this time. An amount of energy of about 470 kWh was provided. In addition to the field test, the environmental impact of the lead-acid batteries, which are normally used, and of the fuel cell system was investigated. The comparison between the fuel cell system and lead-acid batteries without recycling showed a

  15. Full membrane spanning self-assembled monolayers as model systems for UHV-based studies of cell-penetrating peptides

    Energy Technology Data Exchange (ETDEWEB)

    Franz, Johannes [Max Planck Institute for Polymer Research, Mainz (Germany); Graham, Daniel J. [Univ. of Washington, Seattle, WA (United States). NESAC/BIO; Schmüser, Lars [Max Planck Institute for Polymer Research, Mainz (Germany); Baio, Joe E. [Oregon State Univ., Corvallis, OR (United States); Lelle, Marco [Max Planck Institute for Polymer Research, Mainz (Germany); Peneva, Kalina [Max Planck Institute for Polymer Research, Mainz (Germany); Müllen, Klaus [Max Planck Institute for Polymer Research, Mainz (Germany); Castner, David G. [Univ. of Washington, Seattle, WA (United States). NESAC/BIO; Bonn, Mischa [Max Planck Institute for Polymer Research, Mainz (Germany); Weidner, Tobias [Max Planck Institute for Polymer Research, Mainz (Germany)

    2015-03-01

    Biophysical studies of the interaction of peptides with model membranes provide a simple yet effective approach to understand the transport of peptides and peptide based drug carriers across the cell membrane. Therein, the authors discuss the use of self-assembled monolayers fabricated from the full membrane-spanning thiol (FMST) 3-((14-((4'-((5-methyl-1-phenyl-35-(phytanyl)oxy-6,9,12,15,18,21,24,27,30,33,37-undecaoxa-2,3-dithiahenpentacontan-51-yl)oxy)-[1,1'-biphenyl]-4-yl)oxy)tetradecyl)oxy)-2-(phytanyl)oxy glycerol for ultrahigh vacuum (UHV) based experiments. UHV-based methods such as electron spectroscopy and mass spectrometry can provide important information about how peptides bind and interact with membranes, especially with the hydrophobic core of a lipid bilayer. Moreover, near-edge x-ray absorption fine structure spectra and x-ray photoelectron spectroscopy (XPS) data showed that FMST forms UHV-stable and ordered films on gold. XPS and time of flight secondary ion mass spectrometry depth profiles indicated that a proline-rich amphipathic cell-penetrating peptide, known as sweet arrow peptide is located at the outer perimeter of the model membrane.

  16. An Ag based brazing system with a tunable thermal expansion for the use as sealant for solid oxide cells

    Science.gov (United States)

    Kiebach, Ragnar; Engelbrecht, Kurt; Grahl-Madsen, Laila; Sieborg, Bertil; Chen, Ming; Hjelm, Johan; Norrman, Kion; Chatzichristodoulou, Christodoulos; Hendriksen, Peter Vang

    2016-05-01

    An Ag-Al2TiO5 composite braze was developed and successfully tested as seal for solid oxide cells. The thermo-mechanical properties of the Ag-Al2TiO5 system and the chemical compatibility between this composite braze and relevant materials used in stacks were characterized and the leak rates as a function of the operation temperature were measured. The thermal expansion coefficient in the Ag-Al2TiO5 system can be tailored by varying the amount of the ceramic filler. The brazing process can be carried out in air, the joining partners showed a good chemical stability and sufficient low leak rates were demonstrated. Furthermore, the long-term stability of the Ag-Al2TiO5 composite braze was studied under relevant SOFC and SOEC conditions. The stability of brazed Crofer/Ag-Al2TiO5/NiO-YSZ assemblies in reducing atmosphere and in pure oxygen was investigated over 500 h at 850 °C. Additionally, a cell component test was performed to investigate the durability of the Ag-Al2TiO5 seal when exposed to dual atmosphere. The seals performed well over 900 h under electrolysis operation conditions (-0.5 A cm2, 850 °C), and no cell degradation related to the Ag-Al2TiO5 sealing was found, indicating that the developed braze system is applicable for the use in SOFC/SOEC stacks.

  17. Cell phone based balance trainer

    Directory of Open Access Journals (Sweden)

    Lee Beom-Chan

    2012-02-01

    Full Text Available Abstract Background In their current laboratory-based form, existing vibrotactile sensory augmentation technologies that provide cues of body motion are impractical for home-based rehabilitation use due to their size, weight, complexity, calibration procedures, cost, and fragility. Methods We have designed and developed a cell phone based vibrotactile feedback system for potential use in balance rehabilitation training in clinical and home environments. It comprises an iPhone with an embedded tri-axial linear accelerometer, custom software to estimate body tilt, a "tactor bud" accessory that plugs into the headphone jack to provide vibrotactile cues of body tilt, and a battery. Five young healthy subjects (24 ± 2.8 yrs, 3 females and 2 males and four subjects with vestibular deficits (42.25 ± 13.5 yrs, 2 females and 2 males participated in a proof-of-concept study to evaluate the effectiveness of the system. Healthy subjects used the system with eyes closed during Romberg, semi-tandem Romberg, and tandem Romberg stances. Subjects with vestibular deficits used the system with both eyes-open and eyes-closed conditions during semi-tandem Romberg stance. Vibrotactile feedback was provided when the subject exceeded either an anterior-posterior (A/P or a medial-lateral (M/L body tilt threshold. Subjects were instructed to move away from the vibration. Results The system was capable of providing real-time vibrotactile cues that informed corrective postural responses. When feedback was available, both healthy subjects and those with vestibular deficits significantly reduced their A/P or M/L RMS sway (depending on the direction of feedback, had significantly smaller elliptical area fits to their sway trajectory, spent a significantly greater mean percentage time within the no feedback zone, and showed a significantly greater A/P or M/L mean power frequency. Conclusion The results suggest that the real-time feedback provided by this system can be used

  18. Systems biomechanics of the cell

    CERN Document Server

    Maly, Ivan V

    2013-01-01

    Systems Biomechanics of the Cell attempts to outline systems biomechanics of the cell as an emergent and promising discipline. The new field owes conceptually to cell mechanics, organism-level systems biomechanics, and biology of biochemical systems. Its distinct methodology is to elucidate the structure and behavior of the cell by analyzing the unintuitive collective effects of elementary physical forces that interact within the heritable cellular framework. The problematics amenable to this approach includes the variety of cellular activities that involve the form and movement of the cell body and boundary (nucleus, centrosome, microtubules, cortex, and membrane). Among the elementary system effects in the biomechanics of the cell, instability of symmetry, emergent irreversibility, and multiperiodic dissipative motion can be noted. Research results from recent journal articles are placed in this unifying framework. It is suggested that the emergent discipline has the potential to expand the spectrum of ques...

  19. Evaluation of cell lysis procedures and use of a micro fluidic system for an automated DNA-based cell identification in interplanetary missions

    Science.gov (United States)

    Hall, J. A.; Felnagle, E.; Fries, M.; Spearing, S.; Monaco, L.; Steele, A.

    2006-12-01

    A Modular Assay System for Solar System Exploration (MASSE) is being developed to include sample handling, pre-treatment, separation and analysis of biological target compounds by both DNA and protein microarrays. To better design sensitive and accurate initial upstream sample handling of the MASSE instrument, experiments investigating the sensitivity and potential extraction bias of commercially available DNA extraction kits between classes of environmentally relevant prokaryotes such as gram-negative bacteria ( Escherichia coli), gram-positive bacteria ( Bacillus megatarium), and Archaea ( Haloarcula marismortui) were performed. For extractions of both planktonic cultures and spiked Mars simulated regolith, FTA ® paper demonstrated the highest sensitivity, with detection as low as ˜1×10 1 cells and ˜3.3×10 2 cells, respectively. In addition to the highest sensitivity, custom modified application of FTA ® paper extraction protocol is the simplest in terms of incorporation into MASSE and displayed little bias in sensitivity with respect to prokaryotic cell type. The implementation of FTA paper for environmental microbiology investigations appears to be a viable and effective option potentially negating the need for other pre-concentration steps such as filtration and negating concerns regarding extraction efficiency of cells. In addition to investigations on useful technology for upstream sample handling in MASSE, we have also evaluated the potential for μTAS to be employed in the MASSE instrument by employing proprietary lab-on-a-chip development technology to investigate the potential for microfluidic cell lysis of different prokaryotic cells employing both chemical and biological lysis agents. Real-time bright-field microscopy and quantitative PMT detection indicated that that gram positive, gram negative and archaeal cells were effectively lyzed in a few seconds using the microfluidic chip protocol developed. This included employing a lysis buffer with

  20. Hydrogel based occlusion systems

    OpenAIRE

    Stam, F.A.; Jackson, N.; Dubruel, P.; Adesanya, K.; Embrechts, A; Mendes, E.; Neves, H.P.; Herijgers, P; Verbrugghe, Y.; Shacham, Y.; Engel, L.; Krylov, V

    2013-01-01

    A hydrogel based occlusion system, a method for occluding vessels, appendages or aneurysms, and a method for hydrogel synthesis are disclosed. The hydrogel based occlusion system includes a hydrogel having a shrunken and a swollen state and a delivery tool configured to deliver the hydrogel to a target occlusion location. The hydrogel is configured to permanently occlude the target occlusion location in the swollen state. The hydrogel may be an electro-activated hydrogel (EAH) which could be ...

  1. Perfusion based cell culture chips

    DEFF Research Database (Denmark)

    Heiskanen, Arto; Emnéus, Jenny; Dufva, Martin

    2010-01-01

    Performing cell culture in miniaturized perfusion chambers gives possibilities to experiment with cells under near in vivo like conditions. In contrast to traditional batch cultures, miniaturized perfusion systems provide precise control of medium composition, long term unattended cultures...... and tissue like structuring of the cultures. However, as this chapter illustrates, many issues remain to be identified regarding perfusion cell culture such as design, material choice and how to use these systems before they will be widespread amongst biomedical researchers....

  2. An Ag based brazing system with a tunable thermal expansion for the use as sealant for solid oxide cells

    DEFF Research Database (Denmark)

    Kiebach, Wolff-Ragnar; Engelbrecht, Kurt; Grahl-Madsen, Laila;

    2016-01-01

    An Ag-Al2TiO5 composite braze was developed and successfully tested as seal for solid oxide cells. The thermo-mechanical properties of the Ag-Al2TiO5 system and the chemical compatibility between this composite braze and relevant materials used in stacks were characterized and the leak rates...... as a function of the operation temperature were measured. The thermal expansion coefficient in the Ag-Al2TiO5 system can be tailored by varying the amount of the ceramic filler. The brazing process can be carried out in air, the joining partners showed a good chemical stability and sufficient low leak rates...

  3. The role of a platelet Lysate-Based compartmentalized system as a carrier of cells and platelet-origin cytokines for periodontal tissue regeneration

    OpenAIRE

    Babo, Pedro Miguel Sousa; Xinjie Cai; Plachokova, A.; Reis, R. L.; Jansen, John A.; Gomes, Manuela E.; Walboomers, X. Frank

    2016-01-01

    Currently available clinical therapies are not capable to regenerate tissues that are lost by periodontitis. Tissue engineering can be applied as a strategy to regenerate reliably the tissues and function of damaged periodontium. A prerequisite for this regeneration is the colonization of the defect with the adequate cell populations. In this study, we proposed a bilayered system composed of (1) a platelet lysate (PL)-based construct produced by crosslinking of PL proteins with genipin (gP...

  4. A low-cost computer-controlled Arduino-based educational laboratory system for teaching the fundamentals of photovoltaic cells

    Science.gov (United States)

    Zachariadou, K.; Yiasemides, K.; Trougkakos, N.

    2012-11-01

    We present a low-cost, fully computer-controlled, Arduino-based, educational laboratory (SolarInsight) to be used in undergraduate university courses concerned with electrical engineering and physics. The major goal of the system is to provide students with the necessary instrumentation, software tools and methodology in order to learn fundamental concepts of semiconductor physics by exploring the process of an experimental physics inquiry. The system runs under the Windows operating system and is composed of a data acquisition/control board, a power supply and processing boards, sensing elements, a graphical user interface and data analysis software. The data acquisition/control board is based on the Arduino open source electronics prototyping platform. The graphical user interface and communication with the Arduino are developed in C# and C++ programming languages respectively, by using IDE Microsoft Visual Studio 2010 Professional, which is freely available to students. Finally, the data analysis is performed by using the open source, object-oriented framework ROOT. Currently the system supports five teaching activities, each one corresponding to an independent tab in the user interface. SolarInsight has been partially developed in the context of a diploma thesis conducted within the Technological Educational Institute of Piraeus under the co-supervision of the Physics and Electronic Computer Systems departments’ academic staff.

  5. Fabrication and Optimization of Polymer Solar Cells Based on P3HT:PC70BM System

    Directory of Open Access Journals (Sweden)

    Huangzhong Yu

    2016-01-01

    Full Text Available Efficient bulk heterojunction (BHJ polymer solar cells (PSCs based on P3HT:PC70BM were fabricated by optimizing the processing parameters. The optimized thickness and annealing temperature have been found to be about 200 nm and 130°C. The effect of cathode interfacial layers on device performance is related to the formation of interfacial dipole. Furthermore, the effect of optimum ZnO interfacial thickness (~30 nm on device performance is attributed to good interfacial conductivity and its optical property. The metal electrode deposited in the slow rate has a better influence on device performance. Based on these optimal conditions, the best power conversion efficiency (PCE of 3.91% was obtained under AM 1.5G and 100 mW/cm2 illumination. This detailed investigation provides an important reference for the fabrication and optimization of polymer photovoltaic devices.

  6. Production of oncolytic adenovirus and human mesenchymal stem cells in a single-use, Vertical-Wheel bioreactor system: Impact of bioreactor design on performance of microcarrier-based cell culture processes.

    Science.gov (United States)

    Sousa, Marcos F Q; Silva, Marta M; Giroux, Daniel; Hashimura, Yas; Wesselschmidt, Robin; Lee, Brian; Roldão, António; Carrondo, Manuel J T; Alves, Paula M; Serra, Margarida

    2015-01-01

    Anchorage-dependent cell cultures are used for the production of viruses, viral vectors, and vaccines, as well as for various cell therapies and tissue engineering applications. Most of these applications currently rely on planar technologies for the generation of biological products. However, as new cell therapy product candidates move from clinical trials towards potential commercialization, planar platforms have proven to be inadequate to meet large-scale manufacturing demand. Therefore, a new scalable platform for culturing anchorage-dependent cells at high cell volumetric concentrations is urgently needed. One promising solution is to grow cells on microcarriers suspended in single-use bioreactors. Toward this goal, a novel bioreactor system utilizing an innovative Vertical-Wheel™ technology was evaluated for its potential to support scalable cell culture process development. Two anchorage-dependent human cell types were used: human lung carcinoma cells (A549 cell line) and human bone marrow-derived mesenchymal stem cells (hMSC). Key hydrodynamic parameters such as power input, mixing time, Kolmogorov length scale, and shear stress were estimated. The performance of Vertical-Wheel bioreactors (PBS-VW) was then evaluated for A549 cell growth and oncolytic adenovirus type 5 production as well as for hMSC expansion. Regarding the first cell model, higher cell growth and number of infectious viruses per cell were achieved when compared with stirred tank (ST) bioreactors. For the hMSC model, although higher percentages of proliferative cells could be reached in the PBS-VW compared with ST bioreactors, no significant differences in the cell volumetric concentration and expansion factor were observed. Noteworthy, the hMSC population generated in the PBS-VW showed a significantly lower percentage of apoptotic cells as well as reduced levels of HLA-DR positive cells. Overall, these results showed that process transfer from ST bioreactor to PBS-VW, and scale-up was

  7. Synthesis and Structure-Property Relationships of Phosphole-Based π Systems and Their Applications in Organic Solar Cells.

    Science.gov (United States)

    Matano, Yoshihiro

    2015-06-01

    Phosphole is a chemically tunable heterole, and its π-conjugated derivatives are potential candidates for optoelectronic materials. This account describes recent developments in the synthesis and structure-property relationships of π-conjugated phosphole derivatives made by my research group. Thiophene-phosphole-styrene, phosphole-acetylene-arene, oligophosphole, polyphosphole, areno[c]phosphole, and phosphole-heterole π systems are synthesized using titanacycle-mediated metathesis and palladium-catalyzed cross-coupling reactions. The structural, optical, and electrochemical properties of selected compounds are discussed. Initial results on some applications of thiophene-phosphole copolymers, acenaphtho[c]phospholes, and amine-terthiophene-phosphole donor-π-acceptor dyes in organic solar cells are described. These results give valuable information and guidelines for designing new phosphorus-containing organic materials for molecular electronics.

  8. A new MATLAB/Simulink model of triple-junction solar cell and MPPT based on artificial neural networks for photovoltaic energy systems

    Directory of Open Access Journals (Sweden)

    Hegazy Rezk

    2015-09-01

    Full Text Available This paper presents a new Matlab/Simulink model of a PV module and a maximum power point tracking (MPPT system for high efficiency InGaP/InGaAs/Ge triple-junction solar cell. The proposed technique is based on Artificial Neural Network. The equivalent circuit model of the triple-junction solar cell includes the parameters of each sub-cell. It is also include the effect of the temperature variations on the energy gap of each sub-cell as well as the diode reverse saturation currents. The implementation of a PV model is based on the triple-junction solar cell in the form of masked block in Matlab/Simulink software package that has a user-friendly icon and dialog. It is fast and accurate technique to follow the maximum power point. The simulation results of the proposed MPPT technique are compared with Perturb and Observe MPPT technique. The output power and energy of the proposed technique are higher than that of the Perturb and Observe MPPT technique. The proposed technique increases the output energy per day for a one PV module from 3.37 kW h to 3.75 kW h, i.e. a percentage of 11.28%.

  9. Evaluation of a BGO-Based PET System for Single-Cell Tracking Performance by Simulation and Phantom Studies

    Directory of Open Access Journals (Sweden)

    Yu Ouyang PhD

    2016-05-01

    Full Text Available A recent method based on positron emission was reported for tracking moving point sources using the Inveon PET system. However, the effect of scanner background noise was not further explored. Here, we evaluate tracking with the Genisys4, a bismuth germanate-based PET system, which has no significant intrinsic background and may be better suited to tracking lower and/or faster activity sources. Position-dependent sensitivity of the Genisys4 was simulated in Geant4 Application for Tomographic Emission (GATE using a static 18F point source. Trajectories of helically moving point sources with varying activity and rotation speed were reconstructed from list-mode data as described previously. Simulations showed that the Inveon’s ability to track sources within 2 mm of localization error is limited to objects with a velocity-to-activity ratio < 0.13 mm/decay, compared to < 0.29 mm/decay for the Genisys4. Tracking with the Genisys4 was then validated using a physical phantom of helically moving [18F] fluorodeoxyglucose-in-oil droplets (< 0.24 mm diameter, 139-296 Bq, yielding < 1 mm localization error under the tested conditions, with good agreement between simulated sensitivity and measured activity (Pearson correlation R = .64, P << .05 in a representative example. We have investigated the tracking performance with the Genisys4, and results suggest the feasibility of tracking low activity, point source-like objects with this system.

  10. Preparation and tumor cell model based biobehavioral evaluation of the nanocarrier system using partially reduced graphene oxide functionalized by surfactant

    Directory of Open Access Journals (Sweden)

    Wang Y

    2015-07-01

    lysosomes in 2 hours through endocytosis, then the drug is released in the cytoplasm in 8 hours, and ultimately EPI is delivered into cell nucleus to exhibit medicinal effects in 1 day.Conclusion: The comprehensive exploration of the biological uptake mechanism of functional graphene-mediated tumor cell targeting model provides a typical protocol for evaluation of drug delivery system and will benefit the discovery of new surfactant-modified nanocarriers in nanomedicine. Keywords: biocompatibility, cytotoxicity, drug delivery, controlled release, fluorescence colocalization, epirubicin

  11. Overview of a HLA-Ig based "Lego-like system" for T cell monitoring, modulation and expansion.

    Science.gov (United States)

    Oelke, Mathias; Schneck, Jonathan P

    2010-07-01

    Recent advances in molecular medicine have shown that soluble MHC-multimers can be valuable tools for both analysis and modulation of antigen-specific immune responses in vitro and in vivo. In this review, we describe the use of dimeric human and mouse major histocompatibility complexes, MHC-Ig, as part of an artificial Antigen-Presenting Cell (aAPC). MHC-Ig-based aAPC and its derivatives represent an exciting new platform technology for measuring and manipulating immune responses in vitro as well as in vivo. This new technology has the potential to help overcome many of the obstacles associated with limitations in current antigen-specific approaches of immunotherapy for the treatment of cancer, infectious diseases and autoimmunity.

  12. Quantitative evaluation of Candia antarctica lipase B displayed on the cell surface of a Pichia pastoris based on an FS anchor system.

    Science.gov (United States)

    Liang, Xing-xiang; Wang, Bei-bei; Sun, Yu-fei; Lin, Ying; Han, Shuang-yan; Zheng, Sui-ping; Cui, Tang-bing

    2013-03-01

    A new approach is described to quantify the number of enzyme molecules, such as Candia antarctica lipase B, that are displayed on the cell surface of Pichia pastoris. Enhanced green fluorescent protein (EGFP) and Candida antarctica lipase B (CALB) were fused and displayed on the surface of P. pastoris by linking to the anchor flocculation functional domain of FLO1p from Saccharomyces cerevisiae. Confocal laser scanning microscopy, flow cytometry, and fluorescence spectrophotometry were used to monitor the fluorescence intensity of fused EGFP. Combined with the corresponding protein concentration detected in the medium, a standard curve describing the relationship between the fusion protein concentration and fluorescence intensity were obtained and could be used to number CALB displayed on the cell surface. The results showed that approx. 10(4) molecules of CALB molecules were immobilized on the single P. pastoris cell wall based on FS anchor system.

  13. Establishment and validation of whole-cell based fluorescence assays to identify anti-mycobacterial compounds using the Acanthamoeba castellanii-Mycobacterium marinum host-pathogen system.

    Directory of Open Access Journals (Sweden)

    Sébastien Kicka

    Full Text Available Tuberculosis is considered to be one of the world's deadliest disease with 2 million deaths each year. The need for new antitubercular drugs is further exacerbated by the emergence of drug-resistance strains. Despite multiple recent efforts, the majority of the hits discovered by traditional target-based screening showed low efficiency in vivo. Therefore, there is heightened demand for whole-cell based approaches directly using host-pathogen systems. The phenotypic host-pathogen assay described here is based on the monitoring of GFP-expressing Mycobacterium marinum during infection of the amoeba Acanthamoeba castellanii. The assay showed straight-forward medium-throughput scalability, robustness and ease of manipulation, demonstrating its qualities as an efficient compound screening system. Validation with a series of known antitubercular compounds highlighted the advantages of the assay in comparison to previously published macrophage-Mycobacterium tuberculosis-based screening systems. Combination with secondary growth assays based on either GFP-expressing D. discoideum or M. marinum allowed us to further fine-tune compound characterization by distinguishing and quantifying growth inhibition, cytotoxic properties and antibiotic activities of the compounds. The simple and relatively low cost system described here is most suitable to detect anti-infective compounds, whether they present antibiotic activities or not, in which case they might exert anti-virulence or host defense boosting activities, both of which are largely overlooked by classical screening approaches.

  14. Establishment and validation of whole-cell based fluorescence assays to identify anti-mycobacterial compounds using the Acanthamoeba castellanii-Mycobacterium marinum host-pathogen system.

    Science.gov (United States)

    Kicka, Sébastien; Trofimov, Valentin; Harrison, Christopher; Ouertatani-Sakouhi, Hajer; McKinney, John; Scapozza, Leonardo; Hilbi, Hubert; Cosson, Pierre; Soldati, Thierry

    2014-01-01

    Tuberculosis is considered to be one of the world's deadliest disease with 2 million deaths each year. The need for new antitubercular drugs is further exacerbated by the emergence of drug-resistance strains. Despite multiple recent efforts, the majority of the hits discovered by traditional target-based screening showed low efficiency in vivo. Therefore, there is heightened demand for whole-cell based approaches directly using host-pathogen systems. The phenotypic host-pathogen assay described here is based on the monitoring of GFP-expressing Mycobacterium marinum during infection of the amoeba Acanthamoeba castellanii. The assay showed straight-forward medium-throughput scalability, robustness and ease of manipulation, demonstrating its qualities as an efficient compound screening system. Validation with a series of known antitubercular compounds highlighted the advantages of the assay in comparison to previously published macrophage-Mycobacterium tuberculosis-based screening systems. Combination with secondary growth assays based on either GFP-expressing D. discoideum or M. marinum allowed us to further fine-tune compound characterization by distinguishing and quantifying growth inhibition, cytotoxic properties and antibiotic activities of the compounds. The simple and relatively low cost system described here is most suitable to detect anti-infective compounds, whether they present antibiotic activities or not, in which case they might exert anti-virulence or host defense boosting activities, both of which are largely overlooked by classical screening approaches.

  15. A magnetic cell-based sensor.

    Science.gov (United States)

    Wang, Hua; Mahdavi, Alborz; Tirrell, David A; Hajimiri, Ali

    2012-11-07

    Cell-based sensing represents a new paradigm for performing direct and accurate detection of cell- or tissue-specific responses by incorporating living cells or tissues as an integral part of a sensor. Here we report a new magnetic cell-based sensing platform by combining magnetic sensors implemented in the complementary metal-oxide-semiconductor (CMOS) integrated microelectronics process with cardiac progenitor cells that are differentiated directly on-chip. We show that the pulsatile movements of on-chip cardiac progenitor cells can be monitored in a real-time manner. Our work provides a new low-cost approach to enable high-throughput screening systems as used in drug development and hand-held devices for point-of-care (PoC) biomedical diagnostic applications.

  16. In Vitro Testing of Scaffolds for Mesenchymal Stem Cell-Based Meniscus Tissue Engineering—Introducing a New Biocompatibility Scoring System

    Directory of Open Access Journals (Sweden)

    Felix P. Achatz

    2016-04-01

    Full Text Available A combination of mesenchymal stem cells (MSCs and scaffolds seems to be a promising approach for meniscus repair. To facilitate the search for an appropriate scaffold material a reliable and objective in vitro testing system is essential. This paper introduces a new scoring for this purpose and analyzes a hyaluronic acid (HA gelatin composite scaffold and a polyurethane scaffold in combination with MSCs for tissue engineering of meniscus. The pore quality and interconnectivity of pores of a HA gelatin composite scaffold and a polyurethane scaffold were analyzed by surface photography and Berliner-Blau-BSA-solution vacuum filling. Further the two scaffold materials were vacuum-filled with human MSCs and analyzed by histology and immunohistochemistry after 21 days in chondrogenic media to determine cell distribution and cell survival as well as proteoglycan production, collagen type I and II content. The polyurethane scaffold showed better results than the hyaluronic acid gelatin composite scaffold, with signs of central necrosis in the HA gelatin composite scaffolds. The polyurethane scaffold showed good porosity, excellent pore interconnectivity, good cell distribution and cell survival, as well as an extensive content of proteoglycans and collagen type II. The polyurethane scaffold seems to be a promising biomaterial for a mesenchymal stem cell-based tissue engineering approach for meniscal repair. The new score could be applied as a new standard for in vitro scaffold testing.

  17. A comparison between molten carbonate fuel cells based hybrid systems using air and supercritical carbon dioxide Brayton cycles with state of the art technology

    Science.gov (United States)

    Sánchez, D.; Muñoz de Escalona, J. M.; Chacartegui, R.; Muñoz, A.; Sánchez, T.

    A proposal for high efficiency hybrid systems based on molten carbonate fuel cells is presented in this paper. This proposal is based on adopting a closed cycle bottoming gas turbine using supercritical carbon dioxide as working fluid as opposed to open cycle hot air turbines typically used in this type of power generators. First, both bottoming cycles are compared for the same operating conditions, showing that their performances do not differ as much as initially expected, even if the initial objective of reducing compression work is accomplished satisfactorily. In view of these results, a profound review of research and industrial literature is carried out in order to determine realistic specifications for the principal components of the bottoming systems. From this analysis, it is concluded that an appropriate set of specifications must be developed for each bottoming cycle as the performances of compressor, turbine and recuperator differ significantly from one working fluid to another. Thus, when the operating conditions are updated, the performances of the resulting systems show a remarkable advantage of carbon dioxide based systems over conventional air units. Actually, the proposed hybrid system shows its capability to achieve 60% net efficiency, what represents a 10% increase with respect to the reference system.

  18. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    DEFF Research Database (Denmark)

    Nielsen, L.H.; Jørgensen K.

    2000-01-01

    The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore toillustrate the potential synergistic interplay...... between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalisedelectricity market are analysed. The project focuses on battery electric vehicles and fuel cell...... vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and forthe conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport...

  19. Biosensors and Biofuel Cells based on Vertically Aligned Carbon Nanotubes for Integrated Energy Sensing, Generation, and Storage (SGS) Systems

    Science.gov (United States)

    Pandey, Archana; Prasad, Abhishek; Khin Yap, Yoke

    2010-03-01

    Diabetes is a growing health issue in the nation. Thus in-situ glucose sensors that can monitor the glucose level in our body are in high demand. Furthermore, it will be exciting if the excessive blood sugar can be converted into usable energy, and be stored in miniature batteries for applications. This will be the basis for an integrated energy sensing, generation, and storage (SGS) system in the future. Here we report the use of functionalized carbon nanotubes arrays as the glucose sensors as well as fuel cells that can convert glucose into energy. In principle, these devices can be integrated to detect excessive blood glucose and then convert the glucose into energy. They are also inline with our efforts on miniature 3D microbatteries using CNTs [1]. All these devices will be the basis for future SGS systems. Details of these results will be discussed in the meeting. [1] Wang et al., in 206^th Meeting of the Electrochemical Society, October 3-8, Honolulu, Hawaii (2004), Symposium Q1, abstract 1492. Y. K. Yap acknowledges supports from DARPA (DAAD17-03-C-0115), USDA (2007-35603-17740), and the Multi-Scale Technologies Institute (MuSTI) at MTU.

  20. Graphite-based photovoltaic cells

    Science.gov (United States)

    Lagally, Max; Liu, Feng

    2010-12-28

    The present invention uses lithographically patterned graphite stacks as the basic building elements of an efficient and economical photovoltaic cell. The basic design of the graphite-based photovoltaic cells includes a plurality of spatially separated graphite stacks, each comprising a plurality of vertically stacked, semiconducting graphene sheets (carbon nanoribbons) bridging electrically conductive contacts.

  1. LTCC based bioreactors for cell cultivation

    Science.gov (United States)

    Bartsch, H.; Welker, T.; Welker, K.; Witte, H.; Müller, J.

    2016-01-01

    LTCC multilayers offer a wide range of structural options and flexibility of connections not available in standard thin film technology. Therefore they are considered as material base for cell culture reactors. The integration of microfluidic handling systems and features for optical and electrical capturing of indicators for cell culture growth offers the platform for an open system concept. The present paper assesses different approaches for the creation of microfluidic channels in LTCC multilayers. Basic functions required for the fluid management in bioreactors include temperature and flow control. Both features can be realized with integrated heaters and temperature sensors in LTCC multilayers. Technological conditions for the integration of such elements into bioreactors are analysed. The temperature regulation for the system makes use of NTC thermistor sensors which serve as real value input for the control of the heater. It allows the adjustment of the fluid temperature with an accuracy of 0.2 K. The tempered fluid flows through the cell culture chamber. Inside of this chamber a thick film electrode array monitors the impedance as an indicator for the growth process of 3-dimensional cell cultures. At the system output a flow sensor is arranged to monitor the continual flow. For this purpose a calorimetric sensor is implemented, and its crucial design parameters are discussed. Thus, the work presented gives an overview on the current status of LTCC based fluid management for cell culture reactors, which provides a promising base for the automation of cell culture processes.

  2. Fuel cell system with interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhien; Goettler, Richard; Delaforce, Philip Mark

    2016-03-08

    The present invention includes a fuel cell system having an interconnect that reduces or eliminates diffusion (leakage) of fuel and oxidant by providing an increased densification, by forming the interconnect as a ceramic/metal composite.

  3. Direct methanol feed fuel cell and system

    Science.gov (United States)

    Surampudi, Subbarao (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Kindler, Andrew (Inventor); Halpert, Gerald (Inventor)

    2009-01-01

    Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous. The fuel cell system also comprises a fuel supplying part including a meter which meters an amount of fuel which is used by the fuel cell, and controls the supply of fuel based on said metering.

  4. Characterization of a Solid Oxide Fuel Cell Gas Turbine Hybrid System Based on a Factorial Design of Experiments Using Hardware Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Restrepo, Bernardo; Banta, Larry E; Tucker, David

    2012-10-01

    A full factorial experimental design and a replicated fractional factorial design were carried out using the Hybrid Performance (HyPer) project facility installed at the National Energy Technology Laboratory (NETL), U.S. Department of Energy to simulate gasifer/fuel cell/turbine hybrid power systems. The HyPer facility uses hardware in the loop (HIL) technology that couples a modified recuperated gas turbine cycle with hardware driven by a solid oxide fuel cell model. A 34 full factorial design (FFD) was selected to study the effects of four factors: cold-air, hot-air, bleed-air bypass valves, and the electric load on different parameters such as cathode and turbine inlet temperatures, pressure and mass flow. The results obtained, compared with former results where the experiments were made using one-factor-at-a-time (OFAT), show that no strong interactions between the factors are present in the different parameters of the system. This work also presents a fractional factorial design (ffd) 34-2 in order to analyze replication of the experiments. In addition, a new envelope is described based on the results of the design of experiments (DoE), compared with OFAT experiments, and analyzed in an off-design integrated fuel cell/gas turbine framework. This paper describes the methodology, strategy, and results of these experiments that bring new knowledge concerning the operating state space for this kind of power generation system.

  5. Cell-Based Systems Biology Analysis of Human AS03-Adjuvanted H5N1 Avian Influenza Vaccine Responses: A Phase I Randomized Controlled Trial

    Science.gov (United States)

    Samir, Parimal; Galassie, Allison; Allos, Tara M.; Niu, Xinnan; Gordy, Laura E.; Creech, C. Buddy; Prasad, Nripesh; Jensen, Travis L.; Hill, Heather; Levy, Shawn E.; Joyce, Sebastian; Link, Andrew J.; Edwards, Kathryn M.

    2017-01-01

    Background Vaccine development for influenza A/H5N1 is an important public health priority, but H5N1 vaccines are less immunogenic than seasonal influenza vaccines. Adjuvant System 03 (AS03) markedly enhances immune responses to H5N1 vaccine antigens, but the underlying molecular mechanisms are incompletely understood. Objective and Methods We compared the safety (primary endpoint), immunogenicity (secondary), gene expression (tertiary) and cytokine responses (exploratory) between AS03-adjuvanted and unadjuvanted inactivated split-virus H5N1 influenza vaccines. In a double-blinded clinical trial, we randomized twenty adults aged 18–49 to receive two doses of either AS03-adjuvanted (n = 10) or unadjuvanted (n = 10) H5N1 vaccine 28 days apart. We used a systems biology approach to characterize and correlate changes in serum cytokines, antibody titers, and gene expression levels in six immune cell types at 1, 3, 7, and 28 days after the first vaccination. Results Both vaccines were well-tolerated. Nine of 10 subjects in the adjuvanted group and 0/10 in the unadjuvanted group exhibited seroprotection (hemagglutination inhibition antibody titer > 1:40) at day 56. Within 24 hours of AS03-adjuvanted vaccination, increased serum levels of IL-6 and IP-10 were noted. Interferon signaling and antigen processing and presentation-related gene responses were induced in dendritic cells, monocytes, and neutrophils. Upregulation of MHC class II antigen presentation-related genes was seen in neutrophils. Three days after AS03-adjuvanted vaccine, upregulation of genes involved in cell cycle and division was detected in NK cells and correlated with serum levels of IP-10. Early upregulation of interferon signaling-related genes was also found to predict seroprotection 56 days after first vaccination. Conclusions Using this cell-based systems approach, novel mechanisms of action for AS03-adjuvanted pandemic influenza vaccination were observed. Trial Registration ClinicalTrials.gov NCT

  6. [Membrane-based photochemical systems as models for photosynthetic cells]. Progress report, February 15, 1990--August 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, J.K.

    1992-12-31

    The objectives of this research are to improve our conceptual view of the ways in which membranes and interfaces can be used to control chemical reactivity. We have focused on understanding three elementary processes that are central to developing membrane-based integrated chemical systems for water photolysis or related photoconversion/photostorage processes. Specifically, we have sought to identify: the influence of interfaces upon charge separation/recombination reactions, pathways for transmembrane charge separation across hydrocarbon bilayer membranes, and mechanisms of water oxidation catalyzed by transition metal coordination complexes. Historically, the chemical dynamics of each of these processes has been poorly understood, with numerous unresolved issues and conflicting viewpoints appearing in the literature. As described in this report our recent research has led to considerable clarification of the underlying reaction mechanisms.

  7. Multifuel burners based on the porous burner technology for the application in fuel cell systems; Mehrstofffaehige Brenner auf Basis der Porenbrennertechnik fuer den Einsatz in Brennstoffzellensystemen

    Energy Technology Data Exchange (ETDEWEB)

    Diezinger, S.

    2006-07-01

    The present doctoral thesis describes the development of multifuel burners based on the porous burner technology for the application in hydrocarbon driven fuel cell systems. One objective of such burners is the heating of the fuel cell system to the operating temperature at the cold start. In stationary operation the burner has to postcombust the waste gases from the fuel cell and the gas processing system in order to reduce the pollutant emissions. As the produced heat is required for endothermal processes like the steam reforming the burner has a significant influence on the system's efficiency. The performed investigations are targeting on a gasoline driven PEMFC-System with steam reforming. In such systems the burner has to be capable to combust the system's fuel gasoline at the cold start, a low calorific fuel cell offgas (HU = 6,4 MJ/kg) in stationary operation and a hydrogen rich gas in the case of an emergency shut down. Pre-tests revealed that in state of the art porous burners the flame front of hydrogen/air combustion can only be stabilized at very high excess air ratios. In basic investigations concerning the stabilization of flame fronts in porous media the dominant influence parameters were determined. Based on this findings a new flame trap was developed which increases the operational range with hydrogen rich mixtures significantly. Furthermore the burning velocity at stationary combustion in porous media was investigated. The dependency of the porous burning velocity on the excess air ratio for different hydrocarbons and hydrogen as well as for mixtures of both was determined. The results of these basic investigations were applied for the design of a multifuel burner. In order to achieve an evaporation of the gasoline without the use of additional energy, an internal heat exchanger section for heating the combustion air was integrated into the burner. Additionally different experimental and numerical methods were applied for designing the

  8. Comparing System Dynamics and Agent-Based Simulation for Tumour Growth and its Interactions with Effector Cells

    CERN Document Server

    Figueredo, Grazziela P

    2011-01-01

    There is little research concerning comparisons and combination of System Dynamics Simulation (SDS) and Agent Based Simulation (ABS). ABS is a paradigm used in many levels of abstraction, including those levels covered by SDS. We believe that the establishment of frameworks for the choice between these two simulation approaches would contribute to the simulation research. Hence, our work aims for the establishment of directions for the choice between SDS and ABS approaches for immune system-related problems. Previously, we compared the use of ABS and SDS for modelling agents' behaviour in an environment with nomovement or interactions between these agents. We concluded that for these types of agents it is preferable to use SDS, as it takes up less computational resources and produces the same results as those obtained by the ABS model. In order to move this research forward, our next research question is: if we introduce interactions between these agents will SDS still be the most appropriate paradigm to be u...

  9. White blood cell counting system

    Science.gov (United States)

    1972-01-01

    The design, fabrication, and tests of a prototype white blood cell counting system for use in the Skylab IMSS are presented. The counting system consists of a sample collection subsystem, sample dilution and fluid containment subsystem, and a cell counter. Preliminary test results show the sample collection and the dilution subsystems are functional and fulfill design goals. Results for the fluid containment subsystem show the handling bags cause counting errors due to: (1) adsorption of cells to the walls of the container, and (2) inadequate cleaning of the plastic bag material before fabrication. It was recommended that another bag material be selected.

  10. Highly Efficient JFH1-Based Cell-Culture System for Hepatitis C Virus Genotype 5a: Failure of Homologous Neutralizing-Antibody Treatment to Control Infection

    DEFF Research Database (Denmark)

    Jensen, Tanja B; Gottwein, Judith Margarete; Scheel, Troels Kasper Høyer

    2008-01-01

    Background. @nbsp; Recently, a hepatitis C virus (HCV) cell-culture system was developed that employed strain JFH1 (genotype 2a), and JFH1-based intra- and intergenotypic recombinants now permit functional studies of the structural genes (Core, E1, and E2), p7, and NS2 of genotypes 1-4. The goal...... neutralizing antibodies could not control SA13/JFH1 infection in culture. Conclusion. @nbsp; The SA13/JFH1 culture permits genotype 5a-specific studies of Core-NS2 function and interfering agents. The ability of HCV to spread in vivo during treatment with neutralizing antibodies was confirmed in vitro....

  11. Computer-aided screening system for cervical precancerous cells based on field emission scanning electron microscopy and energy dispersive x-ray images and spectra

    Science.gov (United States)

    Jusman, Yessi; Ng, Siew-Cheok; Hasikin, Khairunnisa; Kurnia, Rahmadi; Osman, Noor Azuan Bin Abu; Teoh, Kean Hooi

    2016-10-01

    The capability of field emission scanning electron microscopy and energy dispersive x-ray spectroscopy (FE-SEM/EDX) to scan material structures at the microlevel and characterize the material with its elemental properties has inspired this research, which has developed an FE-SEM/EDX-based cervical cancer screening system. The developed computer-aided screening system consisted of two parts, which were the automatic features of extraction and classification. For the automatic features extraction algorithm, the image and spectra of cervical cells features extraction algorithm for extracting the discriminant features of FE-SEM/EDX data was introduced. The system automatically extracted two types of features based on FE-SEM/EDX images and FE-SEM/EDX spectra. Textural features were extracted from the FE-SEM/EDX image using a gray level co-occurrence matrix technique, while the FE-SEM/EDX spectra features were calculated based on peak heights and corrected area under the peaks using an algorithm. A discriminant analysis technique was employed to predict the cervical precancerous stage into three classes: normal, low-grade intraepithelial squamous lesion (LSIL), and high-grade intraepithelial squamous lesion (HSIL). The capability of the developed screening system was tested using 700 FE-SEM/EDX spectra (300 normal, 200 LSIL, and 200 HSIL cases). The accuracy, sensitivity, and specificity performances were 98.2%, 99.0%, and 98.0%, respectively.

  12. Fuel cell power system for utility vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Graham, M.; Barbir, F.; Marken, F.; Nadal, M. [Energy Partners, Inc., West Palm Beach, FL (United States)

    1996-12-31

    Based on the experience of designing and building the Green Car, a fuel cell/battery hybrid vehicle, and Genesis, a hydrogen/oxygen fuel cell powered transporter, Energy Partners has developed a fuel cell power system for propulsion of an off-road utility vehicle. A 10 kW hydrogen/air fuel cell stack has been developed as a prototype for future mass production. The main features of this stack are discussed in this paper. Design considerations and selection criteria for the main components of the vehicular fuel cell system, such as traction motor, air compressor and compressor motor, hydrogen storage and delivery, water and heat management, power conditioning, and control and monitoring subsystem are discussed in detail.

  13. Renewable Electricity Generation via Solar-Powered Methanol Reforming: Hybrid Proton Exchange Membrane Fuel Cell Systems Based on Novel Non-Concentrating, Intermediate-Temperature Solar Collectors

    Science.gov (United States)

    Real, Daniel J.

    Tremendous research efforts have been conducted studying the capturing and conversion of solar energy. Solar thermal power systems offer a compelling opportunity for renewable energy utilization with high efficiencies and excellent cost-effectiveness. The goal of this work was to design a non-concentrating collector capable of reaching temperatures above 250 °C, use this collector to power methanol steam reforming, and operate a proton exchange membrane (PEM) fuel cell using the generated hydrogen. The study presents the construction and characterization of a non-concentrating, intermediate-temperature, fin-in-tube evacuated solar collector, made of copper and capable of reaching stagnation temperatures of 268.5 °C at 1000 W/m2 irradiance. The collector was used to power methanol steam reforming, including the initial heating and vaporization of liquid reactants and the final heating of the gaseous reactants. A preferential oxidation (PROX) catalyst was used to remove CO from simulated reformate gas, and this product gas was used to operate a PEM fuel cell. The results show 1) that the outlet temperature is not limited by heat transfer from the absorber coating to the heat transfer fluid, but by the amount of solar energy absorbed. This implicates a constant heat flux description of the heat transfer process and allows for the usage of materials with lower thermal conductivity than copper. 2) It is possible to operate a PEM fuel cell from reformate gas if a PROX catalyst is used to remove CO from the gas. 3) The performance of the fuel cell is only slightly decreased (~4%) by CO2 dilution present in the reformate and PROX gas. These results provide a foundation for the first renewable electricity generation via solar-powered methanol reforming through a hybrid PEM fuel cell system based on novel non-concentrating, intermediate-temperature solar collectors.

  14. Development and validation of a high-throughput cell-based screen to identify activators of a bacterial two-component signal transduction system.

    Science.gov (United States)

    van Rensburg, Julia J; Fortney, Kate R; Chen, Lan; Krieger, Andrew J; Lima, Bruno P; Wolfe, Alan J; Katz, Barry P; Zhang, Zhong-Yin; Spinola, Stanley M

    2015-07-01

    CpxRA is a two-component signal transduction system (2CSTS) found in many drug-resistant Gram-negative bacteria. In response to periplasmic stress, CpxA autophosphorylates and donates a phosphoryl group to its cognate response regulator, CpxR. Phosphorylated CpxR (CpxR-P) upregulates genes involved in membrane repair and downregulates multiple genes that encode virulence factors, which are trafficked across the cell membrane. Mutants that constitutively activate CpxRA in Salmonella enterica serovar Typhimurium and Haemophilus ducreyi are avirulent in mice and humans, respectively. Thus, the activation of CpxRA has high potential as a novel antimicrobial/antivirulence strategy. Using a series of Escherichia coli strains containing a CpxR-P-responsive lacZ reporter and deletions in genes encoding CpxRA system components, we developed and validated a novel cell-based high-throughput screen (HTS) for CpxRA activators. A screen of 36,000 compounds yielded one hit compound that increased reporter activity in wild-type cells. This is the first report of a compound that activates, rather than inhibits, a 2CSTS. The activity profile of the compound against CpxRA pathway mutants in the presence of glucose suggested that the compound inhibits CpxA phosphatase activity. We confirmed that the compound induced the accumulation of CpxR-P in treated cells. Although the hit compound contained a nitro group, a derivative lacking this group retained activity in serum and had lower cytotoxicity than that of the initial hit. This HTS is amenable for the screening of larger libraries to find compounds that activate CpxRA by other mechanisms, and it could be adapted to find activators of other two-component systems.

  15. Calculating the Energy Cost of CO2 Removal in a Coal Based Gas Turbine Fuel Cell Hybrid Power Generation System with an Isolated Anode Stream

    Energy Technology Data Exchange (ETDEWEB)

    Vanosdol, J G; Gemmen, R S; Liese, E A

    2007-10-01

    In recent years there has been significant interest in identifying carbon capturing technologies that can be applied to fossil fuel power generation plants.CO2 capture technologies seek to reduce the amount of CO2 that would normally be emitted into the atmosphere from the daily operation of these plants. In terms of system efficiency and operating costs, this carbon capture is expensive. Further, the additional equipment that would be used to capture CO2 emissions greatly adds to the complexity of the system. There has also been significant interest in coal based gas turbine fuel cell hybrid power plants. A hybrid power plant can have much greater system efficiency than a normal gas turbine power plant because the heat that is normally unused in a standalone solid oxide fuel cell (SOFC) is recovered and used to drive a power producing turbine. It is thought that the increased system efficiency of the hybrid system might compensate for the increased expense of performing carbon capture. In order to provide some analytical insight on this tradeoff we present a 100 MW class coal fired gas turbine SOFC hybrid power generation system. The hybrid system operates at a pressure ratio of 6, and uses heat recuperation and cathode air recirculation to control the SOFC inlet temperature and the temperature change across the SOFC. A carbon capture scheme is added to this system in order to calculate the relative energy cost in terms of system efficiency due to CO2 compression. The carbon capture is performed by burning the unused fuel from the SOFC in an isolated anode stream using pure O2 injection. The resulting heat that is generated from this process is then used to drive a secondary turbine that is placed in the anode exhaust stream where more work is extracted. With an isolated anode stream, the products of combustion from this secondary combustion process are mostly water and carbon dioxide. The water by-product is

  16. Design and part-load performance of a hybrid system based on a solid oxide fuel cell reactor and a micro gas turbine

    Science.gov (United States)

    Costamagna, P.; Magistri, L.; Massardo, A. F.

    This paper addresses the design and off-design analysis of a hybrid system (HS) based on the coupling of a recuperated micro gas turbine (MGT) with a high temperature solid oxide fuel cell (SOFC) reactor. The SOFC reactor model is presented and discussed, taking into account the influence of the reactor lay-out, the current density, the air utilisation factor, the cell operating temperature, etc. The SOFC design and off-design performance is presented and discussed; the design and off-design models of a recuperated micro-gas turbine are also presented. The operating line, the influence of the micro gas turbine "variable speed" control, and the efficiency behaviour at part load are analysed in depth. Finally, the model of the hybrid system obtained by coupling the MGT and the SOFC reactor, considering the compatibility (technological constraints) of the two systems, is presented. The model allows the evaluation of the design and off-design behaviour of the hybrid system, particularly when the MGT variable speed control system is considered. The thermal efficiency of the hybrid system, taking into account its size (250/300 kW e), is noteworthy: higher than 60% at design point, and also very high at part load conditions. Such a result is mainly due to the simultaneous positive influence of SOFC off-design behaviour and MGT variable speed control. Moreover, it is possible to recover the waste heat from the gas at the MGT recuperator outlet ( Tgas is about 250°C) for cogeneration purposes.

  17. A cell nanoinjector based on carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xing; Kis, Andras; Zettl, Alex; Bertozzi, Carolyn R.

    2007-01-30

    Technologies for introducing molecules into living cells are vital for probing the physical properties and biochemical interactions that govern the cell's behavior. Here we report the development of a nanoscale cell injection system-termed the nanoinjector-that uses carbon nanotubes to deliver cargo into cells. A single multi-walled carbon nanotube attached to an atomic force microscope tip was functionalized with cargo via a disulfide-based linker. Penetration of cell membranes with this 'nanoneedle', followed by reductive cleavage of the disulfide bonds within the cell's interior, resulted in the release of cargo inside the cells. The capability of the nanoinjector was demonstrated by injection of protein-coated quantum dots into live human cells. Single-particle tracking was employed to characterize the diffusion dynamics of injected quantum dots in the cytosol. This new technique causes no discernible membrane or cell damage, and can deliver a discrete number of molecules to the cell's interior without the requirement of a carrier solvent.

  18. Machine-vision based optofluidic cell sorting

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Bañas, Andrew

    In contemporary life science there is an increasing emphasis on sorting rare disease-indicating cells within small dilute quantities such as in the confines of optofluidic lab-on-chip devices. Our approach to this is based on the use of optical forces to isolate red blood cells detected by advanced...... machine vision1. This approach is gentler, less invasive and more economical compared to conventional FACS-systems. As cells are less responsive to plastic or glass objects commonly used in the optical manipulation literature2, and since laser safety would be an issue in clinical use, we develop efficient...... the available light and creating 2D or 3D beam distributions aimed at the positions of the detected cells. Furthermore, the beam shaping freedom provided by GPC can allow optimizations in the beam’s propagation and its interaction with the laser catapulted and sorted cells....

  19. Studying Sensing-Based Systems

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun

    2013-01-01

    Recent sensing-based systems involve a multitude of users, devices, and places. These types of systems challenge existing approaches for conducting valid system evaluations. Here, the author discusses such evaluation challenges and revisits existing system evaluation methodologies....

  20. A Lipid Based Antigen Delivery System Efficiently Facilitates MHC Class-I Antigen Presentation in Dendritic Cells to Stimulate CD8(+) T Cells.

    Science.gov (United States)

    Maji, Mithun; Mazumder, Saumyabrata; Bhattacharya, Souparno; Choudhury, Somsubhra Thakur; Sabur, Abdus; Shadab, Md; Bhattacharya, Pradyot; Ali, Nahid

    2016-06-02

    The most effective strategy for protection against intracellular infections such as Leishmania is vaccination with live parasites. Use of recombinant proteins avoids the risks associated with live vaccines. However, due to low immunogenicity, they fail to trigger T cell responses particularly of CD8(+) cells requisite for persistent immunity. Previously we showed the importance of protein entrapment in cationic liposomes and MPL as adjuvant for elicitation of CD4(+) and CD8(+) T cell responses for long-term protection. In this study we investigated the role of cationic liposomes on maturation and antigen presentation capacity of dendritic cells (DCs). We observed that cationic liposomes were taken up very efficiently by DCs and transported to different cellular sites. DCs activated with liposomal rgp63 led to efficient presentation of antigen to specific CD4(+) and CD8(+) T cells. Furthermore, lymphoid CD8(+) T cells from liposomal rgp63 immunized mice demonstrated better proliferative ability when co-cultured ex vivo with stimulated DCs. Addition of MPL to vaccine enhanced the antigen presentation by DCs and induced more efficient antigen specific CD8(+) T cell responses when compared to free and liposomal antigen. These liposomal formulations presented to CD8(+) T cells through TAP-dependent MHC-I pathway offer new possibilities for a safe subunit vaccine.

  1. A Lipid Based Antigen Delivery System Efficiently Facilitates MHC Class-I Antigen Presentation in Dendritic Cells to Stimulate CD8+ T Cells

    Science.gov (United States)

    Maji, Mithun; Mazumder, Saumyabrata; Bhattacharya, Souparno; Choudhury, Somsubhra Thakur; Sabur, Abdus; Shadab, Md.; Bhattacharya, Pradyot; Ali, Nahid

    2016-06-01

    The most effective strategy for protection against intracellular infections such as Leishmania is vaccination with live parasites. Use of recombinant proteins avoids the risks associated with live vaccines. However, due to low immunogenicity, they fail to trigger T cell responses particularly of CD8+ cells requisite for persistent immunity. Previously we showed the importance of protein entrapment in cationic liposomes and MPL as adjuvant for elicitation of CD4+ and CD8+ T cell responses for long-term protection. In this study we investigated the role of cationic liposomes on maturation and antigen presentation capacity of dendritic cells (DCs). We observed that cationic liposomes were taken up very efficiently by DCs and transported to different cellular sites. DCs activated with liposomal rgp63 led to efficient presentation of antigen to specific CD4+ and CD8+ T cells. Furthermore, lymphoid CD8+ T cells from liposomal rgp63 immunized mice demonstrated better proliferative ability when co-cultured ex vivo with stimulated DCs. Addition of MPL to vaccine enhanced the antigen presentation by DCs and induced more efficient antigen specific CD8+ T cell responses when compared to free and liposomal antigen. These liposomal formulations presented to CD8+ T cells through TAP-dependent MHC-I pathway offer new possibilities for a safe subunit vaccine.

  2. Solid polymer MEMS-based fuel cells

    Science.gov (United States)

    Jankowski, Alan F.; Morse, Jeffrey D.

    2008-04-22

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  3. Solid oxide MEMS-based fuel cells

    Science.gov (United States)

    Jankowksi, Alan F.; Morse, Jeffrey D.

    2007-03-13

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  4. Adaptive mutations allow establishment of JFH1-based cell culture systems for hepatitis C virus genotype 4A

    DEFF Research Database (Denmark)

    2013-01-01

    transmembrane domain (.alpha.), in the cytoplasmic part (.beta.) or at the NS2/NS3 cleavage site (y). Following transfection of Huh7.5 cells with RNA transcripts, infectious viruses were produced in the ED43/JFH1-.beta. and -y cultures only. Compared to the 2a control virus, production of infectious viruses...

  5. Microfluidic-Based Synthesis of Hydrogel Particles for Cell Microencapsulation and Cell-Based Drug Delivery

    Directory of Open Access Journals (Sweden)

    Jiandi Wan

    2012-04-01

    Full Text Available Encapsulation of cells in hydrogel particles has been demonstrated as an effective approach to deliver therapeutic agents. The properties of hydrogel particles, such as the chemical composition, size, porosity, and number of cells per particle, affect cellular functions and consequently play important roles for the cell-based drug delivery. Microfluidics has shown unparalleled advantages for the synthesis of polymer particles and been utilized to produce hydrogel particles with a well-defined size, shape and morphology. Most importantly, during the encapsulation process, microfluidics can control the number of cells per particle and the overall encapsulation efficiency. Therefore, microfluidics is becoming the powerful approach for cell microencapsulation and construction of cell-based drug delivery systems. In this article, I summarize and discuss microfluidic approaches that have been developed recently for the synthesis of hydrogel particles and encapsulation of cells. I will start by classifying different types of hydrogel material, including natural biopolymers and synthetic polymers that are used for cell encapsulation, and then focus on the current status and challenges of microfluidic-based approaches. Finally, applications of cell-containing hydrogel particles for cell-based drug delivery, particularly for cancer therapy, are discussed.

  6. PEM Fuel Cell System Replacement for BA-559O Battery

    Science.gov (United States)

    2007-11-02

    H Power Corp. developed a fuel cell system to demonstrate that fuel cells can be effectively designed for missions requiring a high degree of...equivalent in size to that of a BA-5590 battery. The system comprised an air-cooled fuel cell stack, a metal-hydride-based fuel storage section, and a

  7. Coal Integrated Gasification Fuel Cell System Study

    Energy Technology Data Exchange (ETDEWEB)

    Chellappa Balan; Debashis Dey; Sukru-Alper Eker; Max Peter; Pavel Sokolov; Greg Wotzak

    2004-01-31

    This study analyzes the performance and economics of power generation systems based on Solid Oxide Fuel Cell (SOFC) technology and fueled by gasified coal. System concepts that integrate a coal gasifier with a SOFC, a gas turbine, and a steam turbine were developed and analyzed for plant sizes in excess of 200 MW. Two alternative integration configurations were selected with projected system efficiency of over 53% on a HHV basis, or about 10 percentage points higher than that of the state-of-the-art Integrated Gasification Combined Cycle (IGCC) systems. The initial cost of both selected configurations was found to be comparable with the IGCC system costs at approximately $1700/kW. An absorption-based CO2 isolation scheme was developed, and its penalty on the system performance and cost was estimated to be less approximately 2.7% and $370/kW. Technology gaps and required engineering development efforts were identified and evaluated.

  8. The Inhibition of Mast Cell Activation of Radix Paeoniae alba Extraction Identified by TCRP Based and Conventional Cell Function Assay Systems

    OpenAIRE

    Huiying Fu; Hongqiang Cheng; Gang Cao; Xingde Zhang; Jue Tu; Mingjiao Sun; Xiaozhou Mou; Qiyang Shou; Yuehai Ke

    2016-01-01

    Chinese herbs have long been used to treat allergic disease, but recently the development was greatly impeded by the lack of good methods to explore the mechanism of action. Here, we showed the effects of Chinese herb Radix Paeoniae alba were identified and characterized by a mast cell activation assay that involves electronic impedance readouts for dynamic monitoring of cellular responses to produce time-dependent cell responding profiles (TCRPs), and the anti-allergic activities were furthe...

  9. Development of advanced cell/tissue culture systems, based on enhanced polymeric scaffolds and sophisticated bioreactors, for tissue engineering applications

    OpenAIRE

    Costa, Pedro Ferreira da

    2014-01-01

    Programa Doutoral em Engenharia Biomédica In a typical tissue engineering approach, cells are collected from the patient and then seeded into a threedimensional scaffold where they proliferate to generate a tissue-like substitute to be re-implanted back into the defect site. However, human tissues possess various degrees of complexity which often makes them impossible to be reproduced in such a simplified way. In fact, many tissues such as bone, for example, exhibit specific ar...

  10. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, L.H.; Joergensen, K.

    2000-04-01

    The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore to illustrate the potential synergistic interplay between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalised electricity market are analysed. The project focuses on battery electric vehicles and fuel cell vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and for the conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport vehicles. Focus is put on the Danish fleet of passenger cars and delivery vans. The scenario analysis includes assumptions on market potential developments and market penetration for the alternative vehicles. Vehicle replacement rates in the Danish transport fleet and the size of fleet development are based on data from The Danish Road Directorate. The electricity supply system development assumed is based on the Danish energy plan, Energy 21, The Plan scenario. The time horizon of the analysis is year 2030. Results from the scenario analysis include the time scales involved for the potential transition towards electricity based vehicles, the fleet composition development, the associated developments in transport fuel consumption and fuel substitution, and the potential CO{sub 2}-emission reduction achievable in the overall transport and power supply system. Detailed model simulations, on an hourly basis, have furthermore been carried out for year 2005 that address potential electricity purchase options for electric vehicles in the context of a liberalised electricity market

  11. Branched DNA-based Alu quantitative assay for cell-free plasma DNA levels in patients with sepsis or systemic inflammatory response syndrome.

    Science.gov (United States)

    Hou, Yan-Qiang; Liang, Dong-Yu; Lou, Xiao-Li; Zhang, Mei; Zhang, Zhen-huan; Zhang, Lu-rong

    2016-02-01

    Cell-free circulating DNA (cf-DNA) can be detected by various of laboratory techniques. We described a branched DNA-based Alu assay for measuring cf-DNA in septic patients. Compared to healthy controls and systemic inflammatory response syndrome (SIRS) patients, serum cf-DNA levels were significantly higher in septic patients (1426.54 ± 863.79 vs 692.02 ± 703.06 and 69.66 ± 24.66 ng/mL). The areas under the receiver operating characteristic curve of cf-DNA for normal vs sepsis and SIRS vs sepsis were 0.955 (0.884-1.025), and 0.856 (0.749-0.929), respectively. There was a positive correlation between cf-DNA and interleukin 6 or procalcitonin or Acute Physiology and Chronic Health Evaluation II. The cf-DNA concentration was higher in intensive care unit nonsurviving patients compared to surviving patients (2183.33 ± 615.26 vs 972.46 ± 648.36 ng/mL; P DNA-based Alu assays are feasible and useful to quantify serum cf-DNA levels. Increased cf-DNA levels in septic patients might complement C-reactive protein and procalcitonin in a multiple marker format. Cell-free circulating DNA might be a new marker in discrimination of sepsis and SIRS.

  12. On-Orbit, Immuno-Based, Label-Free White Blood Cell Counting System with Microelectromechanical Sensor Technology (OILWBCS-MEMS)

    Science.gov (United States)

    Edmonds, Jessica

    2015-01-01

    Aurora Flight Sciences, in partnership with Draper Laboratory, has developed a miniaturized system to count white blood cells in microgravity environments. The system uses MEMS technology to simultaneously count total white blood cells, the five white blood cell differential subgroups, and various lymphocyte subtypes. The OILWBCS-MEMS detection technology works by immobilizing an array of white blood cell-specific antibodies on small, gold-coated membranes. When blood flows across the membranes, specific cells' surface protein antigens bind to their corresponding antibodies. This binding can be measured and correlated to cell counts. In Phase I, the partners demonstrated surface chemistry sensitivity and specificity for total white blood cells and two lymphocyte subtypes. In Phase II, a functional prototype demonstrated end-to-end operation. This rugged, miniaturized device requires minimal blood sample preparation and will be useful for both space flight and terrestrial applications.

  13. A high cell density transient transfection system for therapeutic protein expression based on a CHO GS-knockout cell line: process development and product quality assessment.

    Science.gov (United States)

    Rajendra, Yashas; Hougland, Maria D; Alam, Riazul; Morehead, Teresa A; Barnard, Gavin C

    2015-05-01

    Transient gene expression (TGE) is a rapid method for the production of recombinant proteins in mammalian cells. While the volumetric productivity of TGE has improved significantly over the past decade, most methods involve extensive cell line engineering and plasmid vector optimization in addition to long fed batch cultures lasting up to 21 days. Our colleagues have recently reported the development of a CHO K1SV GS-KO host cell line. By creating a bi-allelic glutamine synthetase knock out of the original CHOK1SV host cell line, they were able to improve the efficiency of generating high producing stable CHO lines for drug product manufacturing. We developed a TGE method using the same CHO K1SV GS-KO host cell line without any further cell line engineering. We also refrained from performing plasmid vector engineering. Our objective was to setup a TGE process to mimic protein quality attributes obtained from stable CHO cell line. Polyethyleneimine (PEI)-mediated transfections were performed at high cell density (4 × 10(6) cells/mL) followed by immediate growth arrest at 32 °C for 7 days. Optimizing DNA and PEI concentrations proved to be important. Interestingly, found the direct transfection method (where DNA and PEI were added sequentially) to be superior to the more common indirect method (where DNA and PEI are first pre-complexed). Moreover, the addition of a single feed solution and a polar solvent (N,N dimethylacetamide) significantly increased product titers. The scalability of process from 2 mL to 2 L was demonstrated using multiple proteins and multiple expression volumes. Using this simple, short, 7-day TGE process, we were able to successfully produce 54 unique proteins in a fraction of the time that would have been required to produce the respective stable CHO cell lines. The list of 54 unique proteins includes mAbs, bispecific antibodies, and Fc-fusion proteins. Antibody titers of up to 350 mg/L were achieved with the simple 7-day process. Titers

  14. Moon base reactor system

    Science.gov (United States)

    Chavez, H.; Flores, J.; Nguyen, M.; Carsen, K.

    1989-01-01

    The objective of our reactor design is to supply a lunar-based research facility with 20 MW(e). The fundamental layout of this lunar-based system includes the reactor, power conversion devices, and a radiator. The additional aim of this reactor is a longevity of 12 to 15 years. The reactor is a liquid metal fast breeder that has a breeding ratio very close to 1.0. The geometry of the core is cylindrical. The metallic fuel rods are of beryllium oxide enriched with varying degrees of uranium, with a beryllium core reflector. The liquid metal coolant chosen was natural lithium. After the liquid metal coolant leaves the reactor, it goes directly into the power conversion devices. The power conversion devices are Stirling engines. The heated coolant acts as a hot reservoir to the device. It then enters the radiator to be cooled and reenters the Stirling engine acting as a cold reservoir. The engines' operating fluid is helium, a highly conductive gas. These Stirling engines are hermetically sealed. Although natural lithium produces a lower breeding ratio, it does have a larger temperature range than sodium. It is also corrosive to steel. This is why the container material must be carefully chosen. One option is to use an expensive alloy of cerbium and zirconium. The radiator must be made of a highly conductive material whose melting point temperature is not exceeded in the reactor and whose structural strength can withstand meteor showers.

  15. Development of Dendritic Cell System

    Institute of Scientific and Technical Information of China (English)

    Li Wu; Aleksandar Dakic

    2004-01-01

    The dendritic cell system contains conventional dendritic cells (DCs) and plasmacytoid pre-dendritic cells (pDCs). Both DCs and pDCs are bone marrow derived cells. Although the common functions of DCs are antigen-processing and T-lymphocyte activation, they differ in surface markers, migratory patterns, and cytokine output. These differences can determine the fate of the T cells they activate. Several subsets of mature DCs have been described in both mouse and human and the developmental processes of these specialized DC subsets have been studied extensively. The original concept that all DCs were of myeloid origin was questioned by several recent studies, which demonstrated that in addition to the DCs derived from myeloid precursors,some DCs could also be efficiently generated from lymphoid-restricted precursors. Moreover, it has been shown recently that both conventional DCs and pDCs can be generated by the Flt3 expressing hemopoietic progenitors regardless of their myeloid- or lymphoid-origin. These findings suggest an early developmental flexibility of precursors for DCs and pDCs. This review summarizes some recent observations on the development of DC system in both human and mouse.

  16. Adaptive mutations allow establishment of JFH1-based cell culture systems for hepatitis C virus genotype 4A

    DEFF Research Database (Denmark)

    2013-01-01

    transmembrane domain (.alpha.), in the cytoplasmic part (.beta.) or at the NS2/NS3 cleavage site (y). Following transfection of Huh7.5 cells with RNA transcripts, infectious viruses were produced in the ED43/JFH1-.beta. and -y cultures only. Compared to the 2a control virus, production of infectious viruses...... was significantly delayed. However, in subsequent passages efficient spread of infection and high HCV RNA titers were obtained. Infectivity titers were approximately 10-fold lower than for the 2a control virus. Sequence analysis of recovered 4a/2a recombinants from 3 serial passages and subsequent reverse genetic...

  17. Configurable impedance matching to maximise power extraction for enabling self-powered system based-on photovoltaic cells

    Science.gov (United States)

    Rahman, Airul Azha Abd; Jamil, Wan Adil Wan; Umar, Akrajas Ali

    2016-07-01

    Multivariate energy harvesting system, solar and thermal energies, with configurable impedance matching features is presented. The system consists of a tuneable mechanism for peak performance tracking. The inputs are voltages ranging from 20 mV to 3.1 V. The matching load is individually tuned for photovoltaic and thermoelectric power efficiency not less than 80% and 50% of the open circuit voltage respectively. Of experimentation and analysis has been done, the time it takes to fully charge up to 3.4 V is 23 minutes with the rate of charging is 1.8 mV/sec. Empirical data is presented. [Figure not available: see fulltext.

  18. Linear DNA for rapid prototyping of synthetic biological circuits in an Escherichia coli based TX-TL cell-free system.

    Science.gov (United States)

    Sun, Zachary Z; Yeung, Enoch; Hayes, Clarmyra A; Noireaux, Vincent; Murray, Richard M

    2014-06-20

    Accelerating the pace of synthetic biology experiments requires new approaches for rapid prototyping of circuits from individual DNA regulatory elements. However, current testing standards require days to weeks due to cloning and in vivo transformation. In this work, we first characterized methods to protect linear DNA strands from exonuclease degradation in an Escherichia coli based transcription-translation cell-free system (TX-TL), as well as mechanisms of degradation. This enabled the use of linear DNA PCR products in TX-TL. We then compared expression levels and binding dynamics of different promoters on linear DNA and plasmid DNA. We also demonstrated assembly technology to rapidly build circuits entirely in vitro from separate parts. Using this strategy, we prototyped a four component genetic switch in under 8 h entirely in vitro. Rapid in vitro assembly has future applications for prototyping multiple component circuits if combined with predictive computational models.

  19. Novel organ-slice culturing system to simulate meniscal repair: Proof of concept using a synovium-based pool of meniscoprogenitor cells.

    Science.gov (United States)

    Hunziker, Ernst B; Lippuner, Kurt; Keel, Marius J B; Shintani, Nahoko

    2016-09-01

    Meniscal injuries can occur secondary to trauma or be instigated by the changes in knee-joint function that are associated with aging, osteo- and rheumatoid arthritis, disturbances in gait, and obesity. Sixty percent of persons over 50 years of age manifest signs of meniscal pathology. The surgical and arthroscopic measures that are currently implemented to treat meniscal deficiencies bring only transient relief from pain and effect but a temporary improvement in joint function. Although tissue-engineering-based approaches to meniscal repair are now being pursued, an appropriate in-vitro model has not been conceived. The aim of this study was to develop an organ-slice culturing system to simulate the repair of human meniscal lesions in vitro. The model consists of a ring of bovine meniscus enclosing a chamber that represents the defect and reproduces its sequestered physiological microenvironment. The defect, which is closed with a porous membrane, is filled with fragments of synovial tissue, as a source of meniscoprogenitor cells, and a fibrin-embedded, calcium-phosphate-entrapped depot of the meniscogenic agents BMP-2 and TGF-β1. After culturing for 2 to 6 weeks, the constructs were evaluated histochemically and histomorphometrically, as well as immunohistochemically, for the apoptotic marker caspase 3 and collagen types I and II. Under the defined conditions, the fragments of synovium underwent differentiation into meniscal tissue, which bonded with the parent meniscal wall. Both the parent and the neoformed meniscal tissue survived the duration of the culturing period without significant cell losses. The concept on which the in-vitro system is based was thus validated. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1588-1596, 2016.

  20. AlgiMatrix™-Based 3D Cell Culture System as an In Vitro Tumor Model: An Important Tool in Cancer Research.

    Science.gov (United States)

    Godugu, Chandraiah; Singh, Mandip

    2016-01-01

    Routinely used two-dimensional cell culture-based models often fail while translating the observations into in vivo models. This setback is more common in cancer research, due to several reasons. The extracellular matrix and cell-to-cell interactions are not present in two-dimensional (2D) cell culture models. Diffusion of drug molecules into cancer cells is hindered by barriers of extracellular components in in vivo conditions, these barriers are absent in 2D cell culture models. To better mimic or simulate the in vivo conditions present in tumors, the current study used the alginate based three-dimensional cell culture (AlgiMatrix™) model, which resembles close to the in vivo tumor models. The current study explains the detailed protocols involved in AlgiMatrix™ based in vitro non-small-cell lung cancer (NSCLC) models. The suitability of this model was studied by evaluating, cytotoxicity, apoptosis, and penetration of nanoparticles into the in vitro tumor spheroids. This study also demonstrated the effect of EphA2 receptor targeted docetaxel-loaded nanoparticles on MDA-MB-468 TNBC cell lines. The methods section is subdivided into three subsections such as (1) preparation of AlgiMatrix™-based 3D in vitro tumor models and cytotoxicity assays, (2) free drug and nanoparticle uptake into spheroid studies, and (3) western blot, IHC, and RT-PCR studies.

  1. Organic-inorganic hybrid materials based on polyaniline/TiO(2) nanocomposites for ascorbic acid fuel cell systems.

    Science.gov (United States)

    Ganesan, Raman; Gedanken, Aharon

    2008-10-29

    Polyaniline was grafted onto a mixture of rutile and anatase TiO(2) nanoparticles by in situ chemical oxidative polymerization. These nanocomposites were characterized by carbon, hydrogen and nitrogen (CHN) analysis, x-ray diffraction (XRD), Fourier transform infrared (FTIR), ultraviolet-visible (UV-vis), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. FTIR and UV-vis confirm the formation of polyaniline on TiO(2) nanoparticles. The TEM shows that the composites consist of PANI and TiO(2) nanoparticles. Compared to the neat polyaniline, PANI/TiO(2) composites show a higher capacitance and also a higher activity per mass of polyaniline. Since the PANI/TiO(2) composites are stable during the electrooxidation of ascorbic acid, they can be used as an alternative catalyst for direct ascorbic acid fuel cells.

  2. Neural Network-Based Modeling of PEM fuel cell and Controller Synthesis of a stand-alone system for residential application

    OpenAIRE

    Khaled Mammar; Abdelkader Chaker

    2012-01-01

    The paper is focused especially on presenting possibilities of applying artificial neural networks at creating the optimal model PEM fuel cell. Various ANN approaches have been tested; the back-propagation feed-forward networks show satisfactory performance with regard to cell voltage prediction. The model is then used in a power system for residential application. This models include an ANN fuel cell stack model, reformer model and DC/AC inverter model. Furthermore a neural network (NNTC) an...

  3. Disposable self-support paper-based multi-anode microbial fuel cell (PMMFC) integrated with power management system (PMS) as the real time "shock" biosensor for wastewater.

    Science.gov (United States)

    Xu, Zhiheng; Liu, Yucheng; Williams, Isaiah; Li, Yan; Qian, Fengyu; Zhang, Hui; Cai, Dingyi; Wang, Lei; Li, Baikun

    2016-11-15

    A paper-based multi-anode microbial fuel cell (PMMFC) integrated with power management system (PMS) was developed as a disposable self-support real-time "shock" biosensor for wastewater. PMMFCs were examined at three types of shocks (chromium, hypochlorite and acetate) in a batch-mode chamber, and exhibited various responses to shock types and concentrations. The power output of PMMFC sensor was four times as the carbon cloth (CC)-based MFCs, indicating the advantage of paper-based anode for bacterial adhesion. The power output was more sensitive than the voltage output under shocks, and thus preventing the false signals. The simulation of power harvest using PMS indicated that PMMFC could accomplish more frequent data transmission than single-anode MFCs (PSMFC) and CC anode MFCs (CCMMFC), making the self-support wastewater monitor and data transmission possible. Compared with traditional MFC sensors, PMMFCs integrated with PMS exhibit the distinct advantages of tight paper-packed structure, short acclimation period, high power output, and high sensitivity to a wide range of shocks, posing a great potential as "disposable self-support shock sensor" for real time in situ monitoring of wastewater quality.

  4. Development of Dendritic Cell System

    Institute of Scientific and Technical Information of China (English)

    LiWu; AleksandarDakic

    2004-01-01

    The dendritic cell system contains conventional dendritic cells (DCs) and plasmacytoid pre-dendritic cells (pDCs). Both DCs and pDCs are bone marrow derived calls. Although the common functions of DCs are antigen-processing and T-lymphocyte activation, they differ in surface markers, migratory patterns, and cytokine output. These differences can determine the fate of the T cells they activate. Several subsets of mature DCs have been described in both mouse and human and the developmental processes of these specialized DC subsets have been studied extensively. The original concept that all DCs were of myeloid origin was questioned by several recent studies, which demonstrated that in addition to the DCs derived from myeloid precursors, some DCs could also be efficiently generated from lymphoid-restricted precursors. Moreover, it has been shown recently that both conventional DCs and pDCs can be generated by the Fit3 expressing hemopoietic progenitors regardless of their myeloid- or lymphoid-origin. These findings suggest an early developmental flexibility of precursors for DCs and pDCs. This review summarizes some recent observations on the development of DC system in both human and mouse. Cellular & Molecular Immunology. 2004;1(2):112-118.

  5. Capability-based computer systems

    CERN Document Server

    Levy, Henry M

    2014-01-01

    Capability-Based Computer Systems focuses on computer programs and their capabilities. The text first elaborates capability- and object-based system concepts, including capability-based systems, object-based approach, and summary. The book then describes early descriptor architectures and explains the Burroughs B5000, Rice University Computer, and Basic Language Machine. The text also focuses on early capability architectures. Dennis and Van Horn's Supervisor; CAL-TSS System; MIT PDP-1 Timesharing System; and Chicago Magic Number Machine are discussed. The book then describes Plessey System 25

  6. Impact of lipid-based drug delivery systems on the transport and uptake of insulin across Caco-2 Cell monolayers

    DEFF Research Database (Denmark)

    Li, Ping; Nielsen, Hanne Mørck; Müllertz, Anette

    2016-01-01

    Self-(nano)-emulsifying drug delivery systems (SNEDDSs) used to deliver peptides and proteins across biological barriers, such as the small intestinal membrane, represents an increasingly interesting field in nanomedicine. Hence, the present study was designed to evaluate the impact of SNEDDS......V). The entrapment of insulin on dispersion in the experimental media ranged from 40% to 78% for all SNEDDSs. Fluorescent microscopy studies indicated that fluorescein isothiocyanate-labeled insulin when administered in solution, as well as when loaded into MCT1 or MCT2 SNEDDS, localized within the intercellular...

  7. Mechatronics in fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Stefanopoulou, Anna G.; Kyungwon Suh [Mechanical Engineering Department, University of Michigan, 1231 Beal Avenue, Ann Arbor, MI 48109, (United States)

    2007-03-15

    Power generation from fuel cells (FCs) requires the integration of chemical, fluid, mechanical, thermal, electrical, and electronic subsystems. This integration presents many challenges and opportunities in the mechatronics field. This paper highlights important design issues and poses problems that require mechatronics solutions. The paper begins by describing the process of designing a toy school bus powered by hydrogen for an undergraduate student project. The project was an effective and rewarding educational activity that revealed complex systems issues associated with FC technology. (Author)

  8. Wheat germ cell-free system-based production of hemagglutinin-neuraminidase protein of human parainfluenza virus type 3: generation and characterization of monoclonal antibody

    Directory of Open Access Journals (Sweden)

    Satoko eMatsunaga

    2014-05-01

    Full Text Available Human parainfluenza virus 3 (HPIV3 commonly causes respiratory disorders in infants and young children. Monoclonal antibodies (MAbs have been produced to several components of HPIV3 and commercially available. However, the utility of these antibodies for several immunological and proteomic assays for understanding the nature of HPIV3 infection remain to be characterized. Herein, we report the development and characterization of monoclonal antibodies against hemagglutinin-neuraminidase (HN of HPIV3. A recombinant full-length HPIV3-HN was successfully synthesized using the wheat-germ cell-free protein production system. After immunization and cell fusion, 36 mouse hybridomas producing MAbs to HPIV3-HN were established. The MAbs obtained were fully characterized using ELISA, immunoblotting and immunofluorescent analyses. Of the MAbs tested, single clone was found to be applicable in both flow cytometry and immunoprecipitation procedures. By utilizing the antibody, we newly identified HPIV3-HN binding host proteins via immunoprecipitation-based mass spectrometry analysis. This study provides the availability of our newly-developed MAbs as a valuable tool for the study of HPIV3 infection as well as the several diagnostic tests of this virus.

  9. Carbon-based Fuel Cell

    Energy Technology Data Exchange (ETDEWEB)

    Steven S. C. Chuang

    2005-08-31

    The direct use of coal in the solid oxide fuel cell to generate electricity is an innovative concept for power generation. The C-fuel cell (carbon-based fuel cell) could offer significant advantages: (1) minimization of NOx emissions due to its operating temperature range of 700-1000 C, (2) high overall efficiency because of the direct conversion of coal to CO{sub 2}, and (3) the production of a nearly pure CO{sub 2} exhaust stream for the direct CO{sub 2} sequestration. The objective of this project is to determine the technical feasibility of using a highly active anode catalyst in a solid oxide fuel for the direct electrochemical oxidation of coal to produce electricity. Results of this study showed that the electric power generation from Ohio No 5 coal (Lower Kittanning) Seam, Mahoning County, is higher than those of coal gas and pure methane on a solid oxide fuel cell assembly with a promoted metal anode catalyst at 950 C. Further study is needed to test the long term activity, selectivity, and stability of anode catalysts.

  10. Intelligence-based systems engineering

    CERN Document Server

    Tolk, Andreas

    2011-01-01

    The International Council on Systems Engineering (INCOSE) defines Systems Engineering as an interdisciplinary approach and means to enable the realization of successful systems. Researchers are using intelligence-based techniques to support the practices of systems engineering in an innovative way. This research volume includes a selection of contributions by subject experts to design better systems.

  11. A comparison of high-speed flywheels, batteries, and ultracapacitors on the bases of cost and fuel economy as the energy storage system in a fuel cell based hybrid electric vehicle

    Science.gov (United States)

    Doucette, Reed T.; McCulloch, Malcolm D.

    Fuel cells aboard hybrid electric vehicles (HEVs) are often hybridized with an energy storage system (ESS). Batteries and ultracapacitors are the most common technologies used in ESSs aboard HEVs. High-speed flywheels are an emerging technology with traits that have the potential to make them competitive with more established battery and ultracapacitor technologies in certain vehicular applications. This study compares high-speed flywheels, ultracapacitors, and batteries functioning as the ESS in a fuel cell based HEV on the bases of cost and fuel economy. In this study, computer models were built to simulate the powertrain of a fuel cell based HEV where high-speed flywheels, batteries, and ultracapacitors of a range of sizes were used as the ESS. A simulated vehicle with a powertrain using each of these technologies was run over two different drive cycles in order to see how the different ESSs performed under different driving patterns. The results showed that when cost and fuel economy were both considered, high-speed flywheels were competitive with batteries and ultracapacitors.

  12. Evaluation of an AAV2-based rapamycin-regulated glial cell line-derived neurotrophic factor (GDNF expression vector system.

    Directory of Open Access Journals (Sweden)

    Piotr Hadaczek

    Full Text Available Effective regulation of transgene product in anatomically circumscribed brain tissue is dependent on the pharmacokinetics of the regulating agent, the kinetics of transcriptional activation and degradation of the transgene product. We evaluated rapamycin-regulated AAV2-GDNF expression in the rat brain (striatum. Regulated (a dual-component system: AAV2-FBZhGDNF + AAV2-TF1Nc and constitutive (CMV-driven expression vectors were compared. Constitutively active AAV2-GDNF directed stable GDNF expression in a dose-dependent manner and it increased for the first month, thereafter reaching a plateau that was maintained over a further 3 months. For the AAV2-regGDNF, rapamycin was administered in a 3-days on/4-days off cycle. Intraperitoneal, oral, and direct brain delivery (CED of rapamycin were evaluated. Two cycles of rapamycin at an intraperitoneal dose of 10 mg/kg gave the highest GDNF level (2.75±0.01 ng/mg protein. Six cycles at 3 mg/kg resulted in lower GDNF values (1.36±0.3 ng/mg protein. Interestingly, CED of rapamycin into the brain at a very low dose (50 ng induced GDNF levels comparable to a 6-week intraperitoneal rapamycin cycle. This study demonstrates the effectiveness of rapamycin regulation in the CNS. However, the kinetics of the transgene in brain tissue, the regulator dosing amount and schedule are critical parameters that influence the kinetics of accumulation and zenith of the encoded transgene product.

  13. Polymer-based solar cells

    Directory of Open Access Journals (Sweden)

    Alex C. Mayer

    2007-11-01

    Full Text Available A significant fraction of the cost of solar panels comes from the photoactive materials and sophisticated, energy-intensive processing technologies. Recently, it has been shown that the inorganic components can be replaced by semiconducting polymers capable of achieving reasonably high power conversion efficiencies. These polymers are inexpensive to synthesize and can be solution-processed in a roll-to-roll fashion with high throughput. Inherently poor polymer properties, such as low exciton diffusion lengths and low mobilities, can be overcome by nanoscale morphology. We discuss polymer-based solar cells, paying particular attention to device design and potential improvements.

  14. A complex 3D human tissue culture system based on mammary stromal cells and silk scaffolds for modeling breast morphogenesis and function.

    Science.gov (United States)

    Wang, Xiuli; Sun, Lin; Maffini, Maricel V; Soto, Ana; Sonnenschein, Carlos; Kaplan, David L

    2010-05-01

    Epithelial-stromal interactions play a crucial role in normal embryonic development and carcinogenesis of the human breast while the underlying mechanisms of these events remain poorly understood. To address this issue, we constructed a physiologically relevant, three-dimensional (3D) culture surrogate of complex human breast tissue that included a tri-culture system made up of human mammary epithelial cells (MCF10A), human fibroblasts and adipocytes, i.e., the two dominant breast stromal cell types, in a Matrigel/collagen mixture on porous silk protein scaffolds. The presence of stromal cells inhibited MCF10A cell proliferation and induced both alveolar and ductal morphogenesis and enhanced casein expression. In contrast to the immature polarity exhibited by co-cultures with either fibroblasts or adipocytes, the alveolar structures formed by the tri-cultures exhibited proper polarity similar to that observed in breast tissue in vivo. Only alveolar structures with reverted polarity were observed in MCF10A monocultures. Consistent with their phenotypic appearance, more functional differentiation of epithelial cells was also observed in the tri-cultures, where casein alpha- and -beta mRNA expression was significantly increased. This in vitro tri-culture breast tissue system sustained on silk scaffold effectively represents a more physiologically relevant 3D microenvironment for mammary epithelial cells and stromal cells than either co-cultures or monocultures. This experimental model provides an important first step for bioengineering an informative human breast tissue system, with which to study normal breast morphogenesis and neoplastic transformation.

  15. A modified TALEN-based system for robust generation of knock-out human pluripotent stem cell lines and disease models

    OpenAIRE

    Frank, Stefan; Skryabin, Boris V.; Greber, Boris

    2013-01-01

    Background Transcription activator-like effector nucleases (TALENs) have emerged as a tool for enabling targeted gene editing and disruption in difficult systems, such as human pluripotent stem cells (hPSCs). The modular architecture of TAL effectors theoretically enables targeting of any genomic locus and several cloning systems for custom TALEN assembly have recently been established. However, there is a lack of versatile TALEN expression systems applicable to hPSCs. Results Here, we extend...

  16. Improved biosensor-based detection system

    DEFF Research Database (Denmark)

    2015-01-01

    Described is a new biosensor-based detection system for effector compounds, useful for in vivo applications in e.g. screening and selecting of cells which produce a small molecule effector compound or which take up a small molecule effector compound from its environment. The detection system...... comprises a protein or RNA-based biosensor for the effector compound which indirectly regulates the expression of a reporter gene via two hybrid proteins, providing for fewer false signals or less 'noise', tuning of sensitivity or other advantages over conventional systems where the biosensor directly...

  17. SECA Coal-Based Systems

    Energy Technology Data Exchange (ETDEWEB)

    Pierre, Joseph

    2010-09-10

    This report documents the results of Cooperative Agreement DE-FC26-05NT42613 between Siemens Energy and the U.S. Department of Energy for the period October 1, 2008 through September 30, 2010. The Phase I POCD8R0 stack test was successfully completed as it operated for approximately 5,300 hrs and achieved all test objectives. The stack test article contained twenty-four 75 cm active length Delta8 scandiastabilized zirconia cells. Maximum power was approximately 10 kWe and the SOFC generator demonstrated an availability factor of 85% at 50% power or greater. The Phase II POCD8R1 stack test operated for approximately 410 hrs before being aborted due to a sudden decrease in voltage accompanied by a rapid increase in temperature. The POCD8R1 test article contained forty-eight 100 cm active length Delta8 scandiastabilized zirconia cells arranged in an array of six bundles, with each bundle containing eight cells. Cell development activities resulted in an approximate 100% improvement in cell power at 900°C. Cell manufacturing process improvements led to manufacturing yields of greater than 40% for the Delta8 cells. Delta8 cells with an active length of 100 cm were successfully manufactured as were cells with a seamless closed end. A pressurized cell test article was assembled, installed into the pressurized test facility and limited pressurized testing conducted. Open circuit voltage tests were performed at one and three atmospheres at 950°C were in agreement with the theoretical increase in the Nernst potential. Failed guard heaters precluded further testing. The SOFC analytical basis for the baseline system was validated with experimental data. Two system configurations that utilize a pressurized SOFC design with separated anode and cathode streams were analyzed. System efficiencies greater than 60% were predicted when integrating the separated anode and cathode stream module configuration with a high efficiency catalytic gasifier.

  18. SECA Coal-Based Systems

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Pierre

    2010-09-01

    This report documents the results of Cooperative Agreement DE-FC26-05NT42613 between Siemens Energy and the U.S. Department of Energy for the period October 1, 2008 through September 30, 2010. The Phase I POCD8R0 stack test was successfully completed as it operated for approximately 5,300 hrs and achieved all test objectives. The stack test article contained twenty-four 75 cm active length Delta8 scandia-stabilized zirconia cells. Maximum power was approximately 10 kWe and the SOFC generator demonstrated an availability factor of 85% at 50% power or greater. The Phase II POCD8R1 stack test operated for approximately 410 hrs before being aborted due to a sudden decrease in voltage accompanied by a rapid increase in temperature. The POCD8R1 test article contained forty-eight 100 cm active length Delta8 scandia-stabilized zirconia cells arranged in an array of six bundles, with each bundle containing eight cells. Cell development activities resulted in an approximate 100% improvement in cell power at 900°C. Cell manufacturing process improvements led to manufacturing yields of greater than 40% for the Delta8 cells. Delta8 cells with an active length of 100 cm were successfully manufactured as were cells with a seamless closed end. A pressurized cell test article was assembled, installed into the pressurized test facility and limited pressurized testing conducted. Open circuit voltage tests were performed at one and three atmospheres at 950°C were in agreement wi th the theoretical increase in the Nernst potential. Failed guard heaters precluded further testing. The SOFC analytical basis for the baseline system was validated with experimental data. Two system configurations that utilize a pressurized SOFC design with separated anode and cathode streams were analyzed. System efficiencies greater than 60% were predicted when integrating the separated anode and cathode stream module configuration with a high efficiency catalytic gasifier.

  19. Development of a Fish Cell Biosensor System for Genotoxicity Detection Based on DNA Damage-Induced Trans-Activation of p21 Gene Expression

    Directory of Open Access Journals (Sweden)

    Huarong Guo

    2012-09-01

    Full Text Available p21CIP1/WAF1 is a p53-target gene in response to cellular DNA damage. Here we report the development of a fish cell biosensor system for high throughput genotoxicity detection of new drugs, by stably integrating two reporter plasmids of pGL3-p21-luc (human p21 promoter linked to firefly luciferase and pRL-CMV-luc (CMV promoter linked to Renilla luciferase into marine flatfish flounder gill (FG cells, referred to as p21FGLuc. Initial validation of this genotoxicity biosensor system showed that p21FGLuc cells had a wild-type p53 signaling pathway and responded positively to the challenge of both directly acting genotoxic agents (bleomycin and mitomycin C and indirectly acting genotoxic agents (cyclophosphamide with metabolic activation, but negatively to cyclophosphamide without metabolic activation and the non-genotoxic agents ethanol and D-mannitol, thus confirming a high specificity and sensitivity, fast and stable response to genotoxic agents for this easily maintained fish cell biosensor system. This system was especially useful in the genotoxicity detection of Di(2-ethylhexyl phthalate (DEHP, a rodent carcinogen, but negatively reported in most non-mammalian in vitro mutation assays, by providing a strong indication of genotoxicity for DEHP. A limitation for this biosensor system was that it might give false positive results in response to sodium butyrate and any other agents, which can trans-activate the p21 gene in a p53-independent manner.

  20. Heart-on-a-chip based on stem cell biology.

    Science.gov (United States)

    Jastrzebska, Elzbieta; Tomecka, Ewelina; Jesion, Iwona

    2016-01-15

    Heart diseases are one of the main causes of death around the world. The great challenge for scientists is to develop new therapeutic methods for these types of ailments. Stem cells (SCs) therapy could be one of a promising technique used for renewal of cardiac cells and treatment of heart diseases. Conventional in vitro techniques utilized for investigation of heart regeneration do not mimic natural cardiac physiology. Lab-on-a-chip systems may be the solution which could allow the creation of a heart muscle model, enabling the growth of cardiac cells in conditions similar to in vivo conditions. Microsystems can be also used for differentiation of stem cells into heart cells, successfully. It will help better understand of proliferation and regeneration ability of these cells. In this review, we present Heart-on-a-chip systems based on cardiac cell culture and stem cell biology. This review begins with the description of the physiological environment and the functions of the heart. Next, we shortly described conventional techniques of stem cells differentiation into the cardiac cells. This review is mostly focused on describing Lab-on-a-chip systems for cardiac tissue engineering. Therefore, in the next part of this article, the microsystems for both cardiac cell culture and SCs differentiation into cardiac cells are described. The section about SCs differentiation into the heart cells is divided in sections describing biochemical, physical and mechanical stimulations. Finally, we outline present challenges and future research concerning Heart-on-a-chip based on stem cell biology.

  1. Expression regulation by a methyl-CpG binding domain in an E. coli based, cell-free TX-TL system

    Science.gov (United States)

    Schenkelberger, M.; Shanak, S.; Finkler, M.; Worst, E. G.; Noireaux, V.; Helms, V.; Ott, A.

    2017-04-01

    Cytosine methylation plays an important role in the epigenetic regulation of eukaryotic gene expression. The methyl-CpG binding domain (MBD) is common to a family of eukaryotic transcriptional regulators. How MBD, a stretch of about 80 amino acids, recognizes CpGs in a methylation dependent manner, and as a function of sequence, is only partly understood. Here we show, using an Escherichia coli cell-free expression system, that MBD from the human transcriptional regulator MeCP2 performs as a specific, methylation-dependent repressor in conjunction with the BDNF (brain-derived neurotrophic factor) promoter sequence. Mutation of either base flanking the central CpG pair changes the expression level of the target gene. However, the relative degree of repression as a function of MBD concentration remains unaltered. Molecular dynamics simulations that address the DNA B fiber ratio and the handedness reveal cooperative transitions in the promoter DNA upon MBD binding that correlate well with our experimental observations. We suggest that not only steric hindrance, but also conformational changes of the BDNF promoter as a result of MBD binding are required for MBD to act as a specific inhibitory element. Our work demonstrates that the prokaryotic transcription machinery can reproduce features of epigenetic mammalian transcriptional regulatory elements.

  2. Web-based support systems

    CERN Document Server

    Yao, JingTao

    2010-01-01

    The emerging interdisciplinary study of Web-based support systems focuses on the theories, technologies and tools for the design and implementation of Web-based systems that support various human activities. This book presents the state-of-the-art in Web-based support systems (WSS). The research on WSS is multidisciplinary and focuses on supporting various human activities in different domains/fields based on computer science, information technology, and Web technology. The main goal is to take the opportunities of the Web, to meet the challenges of the Web, to extend the human physical limita

  3. Cell-Based Therapies for Diabetic Complications

    Science.gov (United States)

    Bernardi, Stella; Severini, Giovanni Maria; Zauli, Giorgio; Secchiero, Paola

    2012-01-01

    In recent years, accumulating experimental evidence supports the notion that diabetic patients may greatly benefit from cell-based therapies, which include the use of adult stem and/or progenitor cells. In particular, mesenchymal stem cells and the circulating pool of endothelial progenitor cells have so far been the most studied populations of cells proposed for the treatment of vascular complications affecting diabetic patients. We review the evidence supporting their use in this setting, the therapeutic benefits that these cells have shown so far as well as the challenges that cell-based therapies in diabetic complications put out. PMID:21822425

  4. Cell-Based Therapies for Diabetic Complications

    Directory of Open Access Journals (Sweden)

    Stella Bernardi

    2012-01-01

    Full Text Available In recent years, accumulating experimental evidence supports the notion that diabetic patients may greatly benefit from cell-based therapies, which include the use of adult stem and/or progenitor cells. In particular, mesenchymal stem cells and the circulating pool of endothelial progenitor cells have so far been the most studied populations of cells proposed for the treatment of vascular complications affecting diabetic patients. We review the evidence supporting their use in this setting, the therapeutic benefits that these cells have shown so far as well as the challenges that cell-based therapies in diabetic complications put out.

  5. Cell-Based Genotoxicity Testing

    Science.gov (United States)

    Reifferscheid, Georg; Buchinger, Sebastian

    Genotoxicity test systems that are based on bacteria display an important role in the detection and assessment of DNA damaging chemicals. They belong to the basic line of test systems due to their easy realization, rapidness, broad applicability, high sensitivity and good reproducibility. Since the development of the Salmonella microsomal mutagenicity assay by Ames and coworkers in the early 1970s, significant development in bacterial genotoxicity assays was achieved and is still a subject matter of research. The basic principle of the mutagenicity assay is a reversion of a growth inhibited bacterial strain, e.g., due to auxotrophy, back to a fast growing phenotype (regain of prototrophy). Deeper knowledge of the ­mutation events allows a mechanistic understanding of the induced DNA-damage by the utilization of base specific tester strains. Collections of such specific tester strains were extended by genetic engineering. Beside the reversion assays, test systems utilizing the bacterial SOS-response were invented. These methods are based on the fusion of various SOS-responsive promoters with a broad variety of reporter genes facilitating numerous methods of signal detection. A very important aspect of genotoxicity testing is the bioactivation of ­xenobiotics to DNA-damaging compounds. Most widely used is the extracellular metabolic activation by making use of rodent liver homogenates. Again, genetic engineering allows the construction of highly sophisticated bacterial tester strains with significantly enhanced sensitivity due to overexpression of enzymes that are involved in the metabolism of xenobiotics. This provides mechanistic insights into the toxification and detoxification pathways of xenobiotics and helps explaining the chemical nature of hazardous substances in unknown mixtures. In summary, beginning with "natural" tester strains the rational design of bacteria led to highly specific and sensitive tools for a rapid, reliable and cost effective

  6. Review of cell and particle trapping in microfluidic systems

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, J.; Evander, M.; Hammarstroem, B. [Department of Measurement Technology and Industrial Electrical Engineering, Div. of Nanobiotechnology, Lund University, P.O. Box 118, Lund (Sweden); Laurell, T., E-mail: thomas.laurell@elmat.lth.se [Department of Measurement Technology and Industrial Electrical Engineering, Div. of Nanobiotechnology, Lund University, P.O. Box 118, Lund (Sweden)

    2009-09-07

    The ability to obtain ideal conditions for well-defined chemical microenvironments and controlled temporal chemical and/or thermal variations holds promise of high-resolution cell response studies, cell-cell interactions or e.g. proliferation conditions for stem cells. It is a major motivation for the rapid increase of lab-on-a-chip based cell biology research. In view of this, new chip-integrated technologies are at an increasing rate being presented to the research community as potential tools to offer spatial control and manipulation of cells in microfluidic systems. This is becoming a key area of interest in the emerging lab-on-a-chip based cell biology research field. This review focuses on the different technical approaches presented to enable trapping of particles and cells in microfluidic system.

  7. Expert and Knowledge Based Systems.

    Science.gov (United States)

    Demaid, Adrian; Edwards, Lyndon

    1987-01-01

    Discusses the nature and current state of knowledge-based systems and expert systems. Describes an expert system from the viewpoints of a computer programmer and an applications expert. Addresses concerns related to materials selection and forecasts future developments in the teaching of materials engineering. (ML)

  8. MTA Computer Based Evaluation System.

    Science.gov (United States)

    Brenner, Lisa P.; And Others

    The MTA PLATO-based evaluation system, which has been implemented by a consortium of schools of medical technology, is designed to be general-purpose, modular, data-driven, and interactive, and to accommodate other national and local item banks. The system provides a comprehensive interactive item-banking system in conjunction with online student…

  9. Battery Cell Balancing System and Method

    Science.gov (United States)

    Davies, Francis J. (Inventor)

    2014-01-01

    A battery cell balancing system is operable to utilize a relatively small number of transformers interconnected with a battery having a plurality of battery cells to selectively charge the battery cells. Windings of the transformers are simultaneously driven with a plurality of waveforms whereupon selected battery cells or groups of cells are selected and charged. A transformer drive circuit is operable to selectively vary the waveforms to thereby vary a weighted voltage associated with each of the battery cells.

  10. Efficient anti-Prelog enantioselective reduction of acetyltrimethylsilane to (R-1-trimethylsilylethanol by immobilized Candida parapsilosis CCTCC M203011 cells in ionic liquid-based biphasic systems

    Directory of Open Access Journals (Sweden)

    Zhang Bo-Bo

    2012-08-01

    Full Text Available Abstract Background Biocatalytic asymmetric reductions with whole cells can offer high enantioselectivity, environmentally benign processes and energy-effective operations and thus are of great interest. The application of whole cell-mediated bioreduction is often restricted if substrate and product have low water solubility and/or high toxicity to the biocatalyst. Many studies have shown that a biphasic system is often useful in this instance. Hence, we developed efficient biphasic reaction systems with biocompatible water-immiscible ionic liquids (ILs, to improve the biocatalytic anti-Prelog enantioselective reduction of acetyltrimethylsilane (ATMS to (R-1-trimethylsilylethanol {(R-1-TMSE}, which is key synthon for a large number of silicon-containing drugs, using immobilized Candida parapsilosis CCTCC M203011 cells as the biocatalyst. Results It was found that the substrate ATMS and the product 1-TMSE exerted pronounced toxicity to immobilized Candida parapsilosis CCTCC M203011 cells. The biocompatible water-immiscible ILs can be applied as a substrate reservoir and in situ extractant for the product, thus greatly enhancing the efficiency of the biocatalytic process and the operational stability of the cells as compared to the IL-free aqueous system. Various ILs exerted significant but different effects on the bioreduction and the performances of biocatalysts were closely related to the kinds and combination of cation and anion of ILs. Among all the water-immiscible ILs investigated, the best results were observed in 1-butyl-3-methylimidazolium hexafluorophosphate (C4mim·PF6/buffer biphasic system. Furthermore, it was shown that the optimum substrate concentration, volume ratio of buffer to IL, buffer pH, reaction temperature and shaking rate for the bioreduction were 120 mM, 8/1 (v/v, 6.0, 30°C and 180 r/min, respectively. Under these optimized conditions, the initial reaction rate, the maximum yield and the product e.e. were 8.1

  11. Modular PEM Fuel Cell SCADA & Simulator System

    Directory of Open Access Journals (Sweden)

    Francisca Segura

    2015-09-01

    Full Text Available The paper presents a Supervision, Control, Data Acquisition and Simulation (SCADA & Simulator system that allows for real-time training in the actual operation of a modular PEM fuel cell system. This SCADA & Simulator system consists of a free software tool that operates in real time and simulates real situations like failures and breakdowns in the system. This developed SCADA & Simulator system allows us to properly operate a fuel cell and helps us to understand how fuel cells operate and what devices are needed to configure and run the fuel cells, from the individual stack up to the whole fuel cell system. The SCADA & Simulator system governs a modular system integrated by three PEM fuel cells achieving power rates higher than tens of kilowatts.

  12. Development of JFH1-based cell culture systems for hepatitis C virus genotype 4a and evidence for cross-genotype neutralization

    DEFF Research Database (Denmark)

    Scheel, Troels Kasper Høyer; Gottwein, Judith Margarete; Jensen, Tina Birk

    2008-01-01

    in serial passages. Sequence analysis of recovered viruses and subsequent reverse genetic studies revealed a vital dependence on one or two NS2 mutations, depending on the 4a/2a junction. Infectivity of ED43/JFH1 viruses was CD81 dependent. The genotype 4 cell culture systems permit functional analyses...

  13. Non-genetic engineering of cells for drug delivery and cell-based therapy.

    Science.gov (United States)

    Wang, Qun; Cheng, Hao; Peng, Haisheng; Zhou, Hao; Li, Peter Y; Langer, Robert

    2015-08-30

    Cell-based therapy is a promising modality to address many unmet medical needs. In addition to genetic engineering, material-based, biochemical, and physical science-based approaches have emerged as novel approaches to modify cells. Non-genetic engineering of cells has been applied in delivering therapeutics to tissues, homing of cells to the bone marrow or inflammatory tissues, cancer imaging, immunotherapy, and remotely controlling cellular functions. This new strategy has unique advantages in disease therapy and is complementary to existing gene-based cell engineering approaches. A better understanding of cellular systems and different engineering methods will allow us to better exploit engineered cells in biomedicine. Here, we review non-genetic cell engineering techniques and applications of engineered cells, discuss the pros and cons of different methods, and provide our perspectives on future research directions.

  14. Automated microscopy system for peripheral blood cells

    Science.gov (United States)

    Boev, Sergei F.; Sazonov, Vladimir V.; Kozinets, Gennady I.; Pogorelov, Valery M.; Gusev, Alexander A.; Korobova, Farida V.; Vinogradov, Alexander G.; Verdenskaya, Natalya V.; Ivanova, Irina A.

    2000-11-01

    The report describes the instrument ASPBS (Automated Screening of Peripheral Blood Cells) designed for an automated analysis of dry blood smears. The instrument is based on computer microscopy and uses dry blood smears prepared according to the standard Romanovskii-Giemza procedure. In comparison with the well-known flow cytometry systems, our instrument provides more detailed information and offers an opporunity of visualizing final results. The basic performances of the instrument are given. Software of this instrument is based on digital image processing and image recognition procedures. It is pointed out that the instrument can be used as a fairly universal tool in scientific research, public demonstrations, in medical treatment, and in medical education. The principle used as the basis of the instrument appeared adequate for creating an instrument version serviceable even during space flights where standard manual procedures and flow cytometry systems fail. The benefit of the use of the instrument in clinical laboratories is described.

  15. Accelerated killing of cancer cells using a multifunctional single-walled carbon nanotube-based system for targeted drug delivery in combination with photothermal therapy

    Directory of Open Access Journals (Sweden)

    Jeyamohan P

    2013-07-01

    Full Text Available Prashanti Jeyamohan, Takashi Hasumura, Yutaka Nagaoka, Yasuhiko Yoshida, Toru Maekawa, D Sakthi Kumar Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Japan Abstract: The photothermal effect of single-walled carbon nanotubes (SWCNTs in combination with the anticancer drug doxorubicin (DOX for targeting and accelerated destruction of breast cancer cells is demonstrated in this paper. A targeted drug-delivery system was developed for selective killing of breast cancer cells with polyethylene glycol biofunctionalized and DOX-loaded SWCNTs conjugated with folic acid. In our work, in vitro drug-release studies showed that the drug (DOX binds at physiological pH (pH 7.4 and is released only at a lower pH, ie, lysosomal pH (pH 4.0, which is the characteristic pH of the tumor environment. A sustained release of DOX from the SWCNTs was observed for a period of 3 days. SWCNTs have strong optical absorbance in the near-infrared (NIR region. In this special spectral window, biological systems are highly transparent. Our study reports that under laser irradiation at 800 nm, SWCNTs exhibited strong light–heat transfer characteristics. These optical properties of SWCNTs open the way for selective photothermal ablation in cancer therapy. It was also observed that internalization and uptake of folate-conjugated NTs into cancer cells was achieved by a receptor-mediated endocytosis mechanism. Results of the in vitro experiments show that laser was effective in destroying the cancer cells, while sparing the normal cells. When the above laser effect was combined with DOX-conjugated SWCNTs, we found enhanced and accelerated killing of breast cancer cells. Thus, this nanodrug-delivery system, consisting of laser, drug, and SWCNTs, looks to be a promising selective modality with high treatment efficacy and low side effects for cancer therapy. Keywords: cancer, nanotherapy, SWCNTs, targeted drug delivery

  16. Cell-Based Biosensors Principles and Applications

    CERN Document Server

    Wang, Ping

    2009-01-01

    Written by recognized experts the field, this leading-edge resource is the first book to systematically introduce the concept, technology, and development of cell-based biosensors. You find details on the latest cell-based biosensor models and novel micro-structure biosensor techniques. Taking an interdisciplinary approach, this unique volume presents the latest innovative applications of cell-based biosensors in a variety of biomedical fields. The book also explores future trends of cell-based biosensors, including integrated chips, nanotechnology and microfluidics. Over 140 illustrations hel

  17. Design of carrier tRNAs and selection of four-base codons for efficient incorporation of various nonnatural amino acids into proteins in Spodoptera frugiperda 21 (Sf21) insect cell-free translation system.

    Science.gov (United States)

    Taki, Masumi; Tokuda, Yasunori; Ohtsuki, Takashi; Sisido, Masahiko

    2006-12-01

    Spodoptera frugiperda 21 (Sf21) insect cell-free protein synthesizing system was expanded to include nonnatural amino acids. Orthogonal tRNAs that work as carriers of nonnatural amino acids in the insect system were explored. Four-base codons for assigning the positions of nonnatural amino acids were also selected. Mutated streptavidin mRNAs that contained different four-base codons were prepared and added to the insect cell-free system in the presence of various tRNAs possessing the corresponding four-base anticodons. The tRNAs were chemically aminoacylated with various types of nonnatural amino acids to examine their incorporation efficiencies. Using p-nitrophenylalanine as the nonnatural amino acid and streptavidin as the target protein, tRNA sequences and the types of four-base codons were optimized to maximize the yield of the nonnatural mutant and to minimize production of full-length proteins that do not contain the nonnatural amino acid. Among the tRNA sequences taken from a variety of tRNAs of nonstandard structures, the tRNA derived from Methanosarcina acetivorans tRNA(Pyl) was the most efficient and orthogonal tRNA. Of the CGGN-type four-base codons, CGGA and CGGG were the most efficient ones for assigning the positions of nonnatural amino acids. p-Nitrophenylalanine and 2-naphthylalanine were efficiently incorporated as in the case of Escherichia coli and rabbit reticulocyte cell-free systems. Much less efficient incorporation was observed, however, for other nonnatural amino acids, indicating that the insect system is less tolerant to the structural diversity of amino acids than the E. coli cell-free system.

  18. Cell boundary fault detection system

    Science.gov (United States)

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2009-05-05

    A method determines a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  19. Microencapsulating and Banking Living Cells for Cell-Based Medicine

    Directory of Open Access Journals (Sweden)

    Wujie Zhang

    2011-01-01

    Full Text Available A major challenge to the eventual success of the emerging cell-based medicine such as tissue engineering, regenerative medicine, and cell transplantation is the limited availability of the desired cell sources. This challenge can be addressed by cell microencapsulation to overcome the undesired immune response (i.e., to achieve immunoisolation so that non-autologous cells can be used to treat human diseases, and by cell/tissue preservation to bank living cells for wide distribution to end users so that they are readily available when needed in the future. This review summarizes the status quo of research in both cell microencapsulation and banking the microencapsulated cells. It is concluded with a brief outlook of future research directions in this important field.

  20. Cell Delivery System for Traumatic Brain Injury

    Science.gov (United States)

    2008-03-21

    REPORT Cell Delivery System for Traumatic Brain Injury 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: We have met all of the milestones outlined in this...COVERED (From - To) 18-Sep-2006 Standard Form 298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 - 17-Mar-2008 Cell Delivery System for Traumatic Brain Injury Report...Manassero*, Justin Kim*, Maureen St Georges*, Nicole Esclamado* and Elizabeth Orwin. “Development of a Cell Delivery System for Traumatic Brain Injury Using

  1. Web based Measurement System for Solar Radiation

    Directory of Open Access Journals (Sweden)

    Shachi Awasthi

    2012-06-01

    Full Text Available We present in this paper, the principles of the measurement system for solar radiation, and our implementation using Web based data logging concept. The photocurrent produced by Silicon PN junction is used as a solar radiation transducer, to make it more viable we have used commercially available solar panels as our transducers. Using a silicon solar cell as sensor, a low cost solar radiometer can be constructed. The photocurrent produced by solar cell is electronically tailored to be measured and stored by our web based data acquisition and monitoring system. Measurement using real solar cell array gives a good measure of actual producible energy by solar arrays. Our portable instrument can be used in remote sites and substitutes the solar monitor and integrator, Current data of solar radiation can be monitored using Ethernet interface available in all PC, Laptops. We store the data into a secure digital card which can be retrieved to plot and analyse the data. We have developed system hardware and software based on ATmega32 AVR Microcontrollers and ENC28J60 Ethernet PHY and MAC network interface chip by Microchip. So the global irradiance data are obtained after correction using the instantaneous measurement of ambient temperature which allows us to calculate the junction temperature and consequently improve the precision of measurement of our data acquisition system.

  2. Web based Measurement System for Solar Radiation

    Directory of Open Access Journals (Sweden)

    Shachi Awasthi

    2012-06-01

    Full Text Available We present in this paper, the principles of themeasurement system for solar radiation, and ourimplementation using Web based data loggingconcept.The photocurrent produced by Silicon PNjunction is used as a solar radiation transducer, tomake it more viable we have used commerciallyavailable solar panels as our transducers. Using asilicon solar cell as sensor, a low cost solarradiometer can be constructed. The photocurrentproduced by solar cell is electronically tailored to bemeasured and stored by our web based dataacquisition and monitoring system. Measurementusing real solar cell array gives a good measure ofactual producible energy by solar arrays. Ourportable instrument can be used in remote sites andsubstitutes the solar monitor and integrator,Current data of solar radiation can be monitoredusing Ethernet interface available in all PC,Laptops. We store the data into a secure digital cardwhich can be retrieved to plot and analyse the data.We have developed system hardware andsoftware based on ATmega32 AVR Microcontrollersand ENC28J60 Ethernet PHY and MAC networkinterface chip by Microchip.So the global irradiance data are obtained aftercorrection using the instantaneous measurement ofambient temperature which allows us to calculatethe junction temperature and consequently improvethe precision of measurement of our dataacquisition system

  3. Size effects on the open probability of two-state ion channel system in cell membranes using microcanonical formalism based on gamma function

    Science.gov (United States)

    Erdem, Riza; Aydiner, Ekrem

    2016-08-01

    Ion channel systems are a class of proteins that reside in the membranes of all biological cells and forms conduction pores that regulate the transport of ions into and out of cells. They can be investigated theoretically in the microcanonical formalism since the number of accessible states can be easily evaluated by using the Stirling approximation to deal with factorials. In this work, we have used gamma function (Γ (n)) to solve the two-state or open-close channel model without any approximation. New values are calculated for the open probability (p0) and the relative error between our numerical results and the approximate one using Stirling formula is presented. This error (p0 app — p0)/p0 is significant for small channel systems.

  4. Analysis and Design of Bi-Directional DC-DC Converter in the Extended Run Time DC UPS System Based on Fuel Cell and Supercapacitor

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2009-01-01

    input voltage combined with load current feedback using PI controller with anti-windup scheme to realize closed-loop control of the whole system, and verify the feasibility of the control scheme proposed by simulation. A 1kW prototype controlled by TMS320F2808 DSP is implemented and tested. Experimental......Abstract-In this paper, an extended run time DC UPS system structure with fuel cell and supercapacitor is investigated. A wide input range bi-directional dc-dc converter is described along with the phase-shift modulation scheme and phase-shift with duty cycle control, in different modes...

  5. 基于学习元平台的微课设计%Design of Micro-lecture Based on Learning Cell System

    Institute of Scientific and Technical Information of China (English)

    余胜泉; 陈敏

    2014-01-01

    微课已成为当前教育领域研究的一大热点,受到越来越多学者的关注。本文通过微课的各种定义,分析了微课认识的误区,指出微课的本质是“课”,并从“课”的角度提出,微课是在微型资源的基础上附加教学服务的小型化课程,由微型资源、学习活动、学习评价和认证服务四部分构成。此外,由于微课小而散,应通过语义技术描述微课间的整体知识逻辑,实现散而有序。在此基础之上,本文介绍了基于学习元的微课设计思路,包括微课设计、教学信息描述、微课聚合和开发模式等,试图为研究者和设计者们提供参考。%Micro-lecture has become a hot research point in education,which attracts more and more attention from scholars. This paper analyzes the current various definitions of micro-lecture, revealing people's misunderstanding of micro-lecture, pointing out that the nature of micro-lecture is"lesson". From this point, micro-lecture is micro-les-son based on micro-resources with additional teaching service,which consists of four parts: micro resources, learning activities, learning assessment and certification services. Besides, micro-lecture is small and scattered, so the overall knowledge logic between micro-lectures should be described by semantic technology to keep micro-lecture organized. On this basis, this paper gives the introduction to micro-lecture design based on learning cell system, including micro-lecture planning, teaching information description, micro-lecture aggregation and development patterns,etc. , trying to provide ideas and reference for micro-lecture researchers and designers.

  6. Fuel Cells: Power System Option for Space Research

    Science.gov (United States)

    Shaneeth, M.; Mohanty, Surajeet

    2012-07-01

    Fuel Cells are direct energy conversion devices and, thereby, they deliver electrical energy at very high efficiency levels. Hydrogen and Oxygen gases are electrochemically processed, producing clean electric power with water as the only by product. A typical, Fuel Cell based power system involve a Electrochemical power converter, gas storage and management systems, thermal management systems and relevant control units. While there exists different types of Fuel cells, Proton Exchange Membrane (PEM) Fuel Cells are considered as the most suitable one for portable applications. Generally, Fuel Cells are considered as the primary power system option in space missions requiring high power ( > 5kW) and long durations and also where water is a consumable, such as manned missions. This is primarily due to the advantage that fuel cell based power systems offer, in terms of specific energy. Fuel cells have the potential to attain specific energy > 500Wh/kg, specific power >500W/kg, energy density > 400Whr/L and also power density > 200 W/L. This apart, a fuel cell system operate totally independent of sun light, whereas as battery based system is fully dependent on the same. This uniqueness provides added flexibility and capabilities to the missions and modularity for power system. High power requiring missions involving reusable launch vehicles, manned missions etc are expected to be richly benefited from this. Another potential application of Fuel Cell would be interplanetary exploration. Unpredictable and dusty atmospheres of heavenly bodies limits sun light significantly and there fuel cells of different types, eg, Bio-Fuel Cells, PEMFC, DMFCs would be able to work effectively. Manned or unmanned lunar out post would require continuous power even during extra long lunar nights and high power levels are expected. Regenerative Fuel Cells, a combination of Fuel Cells and Electrolysers, are identified as strong candidate. While application of Fuel Cells in high power

  7. Efficiency enhancement in dye sensitized solar cells using gel polymer electrolytes based on a tetrahexylammonium iodide and MgI2 binary iodide system.

    Science.gov (United States)

    Bandara, T M W J; Dissanayake, M A K L; Jayasundara, W J M J S R; Albinsson, I; Mellander, B-E

    2012-06-28

    Quasi-solid-state dye-sensitized solar cells have drawn the attention of scientists and technologists as a potential candidate to supplement future energy needs. The conduction of iodide ions in quasi-solid-state polymer electrolytes and the performance of dye sensitized solar cells containing such electrolytes can be enhanced by incorporating iodides having appropriate cations. Gel-type electrolytes, based on PAN host polymers and mixture of salts tetrahexylammonium iodide (Hex4N(+)I(-)) and MgI2, were prepared by incorporating ethylene carbonate and propylene carbonate as plasticizers. The salt composition in the binary mixture was varied in order to optimize the performance of solar cells. The electrolyte containing 120% Hex4N(+)I(-) with respect to weight of PAN and without MgI2 showed the highest conductivity out of the compositions studied, 2.5 × 10(-3) S cm(-1) at 25 °C, and a glass transition at -102.4 °C. However, the electrolyte containing 100% Hex4N(+)I(-) and 20% MgI2 showed the best solar cell performance highlighting the influence of the cation on the performance of the cell. The predominantly ionic behaviour of the electrolytes was established from the dc polarization data and all the electrolytes exhibit iodide ion transport. Seven different solar cells were fabricated employing different electrolyte compositions. The best cell using the electrolyte with 100% Hex4N(+)I(-) and 20% MgI2 with respect to PAN weight showed 3.5% energy conversion efficiency and 8.6 mA cm(-2) short circuit current density.

  8. Solar based hydrogen production systems

    CERN Document Server

    Dincer, Ibrahim

    2013-01-01

    This book provides a comprehensive analysis of various solar based hydrogen production systems. The book covers first-law (energy based) and second-law (exergy based) efficiencies and provides a comprehensive understanding of their implications. It will help minimize the widespread misuse of efficiencies among students and researchers in energy field by using an intuitive and unified approach for defining efficiencies. The book gives a clear understanding of the sustainability and environmental impact analysis of the above systems. The book will be particularly useful for a clear understanding

  9. Immune modulation by dendritic-cell-based cancer vaccines

    Indian Academy of Sciences (India)

    CHAITANYA KUMAR; SAKSHI KOHLI; POONAMALLE PARTHASARATHY BAPSY; ASHOK KUMAR VAID; MINISH JAIN; VENKATA SATHYA SURESH ATTILI; BANDANA SHARAN

    2017-03-01

    The interplay between host immunity and tumour cells has opened the possibility of targeting tumour cells bymodulation of the human immune system. Cancer immunotherapy involves the treatment of a tumour by utilizing therecombinant human immune system components to target the pro-tumour microenvironment or by revitalizing theimmune system with the ability to kill tumour cells by priming the immune cells with tumour antigens. In this review,current immunotherapy approaches to cancer with special focus on dendritic cell (DC)-based cancer vaccines arediscussed. Some of the DC-based vaccines under clinical trials for various cancer types are highlighted. Establishingtumour immunity involves a plethora of immune components and pathways; hence, combining chemotherapy,radiation therapy and various arms of immunotherapy, after analysing the benefits of individual therapeutic agents,might be beneficial to the patient.

  10. Application of an improved operational strategy for a high temperature-proton exchange membrane fuel cell-based micro-combined heat and power system for Danish single-family households

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2013-01-01

    characteristics. Based on these findings, an improved operational strategy is formulated and applied in an attempt to minimize the shortcomings of conventional strategies. System parameters, such as electrical and thermal efficiencies, heat dumping, and import/export of electricity, are analyzed. The applied load......A proposed residential energy system based on the PBI (Polybenzimidazole) fuel cell technology is analyzed in terms of operational performance. Conventional operational strategies, such as heat-led and electricity-led, are applied to the simulated system to investigate their performance...... profile is based on average data for a single-family household in Denmark and includes consumption data for electricity and heat demands. The study analyzes the potential of the proposed system on market penetration in the area of residential heat-and-power generation and whether this deployment can...

  11. Environmental tests of metallization systems for terrestrial photovoltaic cells

    Science.gov (United States)

    Alexander, P., Jr.

    1985-01-01

    Seven different solar cell metallization systems were subjected to temperature cycling tests and humidity tests. Temperature cycling excursions were -50 deg C to 150 deg C per cycle. Humidity conditions were 70 deg C at 98% relative humidity. The seven metallization systems were: Ti/Ag, Ti/Pd/Ag, Ti/Pd/Cu, Ni/Cu, Pd/Ni/Solder, Cr/Pd/Ag, and thick film Ag. All metallization systems showed a slight to moderate decrease in cell efficiencies after subjection to 1000 temperature cycles. Six of the seven metallization systems also evidenced slight increases in cell efficiencies after moderate numbers of cycles, generally less than 100 cycles. The copper based systems showed the largest decrease in cell efficiencies after temperature cycling. All metallization systems showed moderate to large decreases in cell efficiencies after 123 days of humidity exposure. The copper based systems again showed the largest decrease in cell efficiencies after humidity exposure. Graphs of the environmental exposures versus cell efficiencies are presented for each metallization system, as well as environmental exposures versus fill factors or series resistance.

  12. Mesenchymal stem cell recruitment by stromal derived factor-1-delivery systems based on chitosan/poly(γ-glutamic acid polyelectrolyte complexes

    Directory of Open Access Journals (Sweden)

    RM Gonçalves

    2012-04-01

    Full Text Available Human mesenchymal stem cells (hMSCs have an enormous potential for tissue engineering and cell-based therapies. With a potential of differentiation into multiple lineages and immune-suppression, these cells play a key role in tissue remodelling and regeneration.Here a method of hMSC recruitment is described, based on the incorporation of a chemokine in Chitosan (Ch/Poly(γ-glutamic acid (γ-PGA complexes. Ch is a non-toxic, cationic polysaccharide widely investigated. γ-PGA is a hydrophilic, non-toxic, biodegradable and negatively charged poly-amino acid. Ch and γ-PGA, being oppositely charged, can be combined through electrostatic interactions. These biocompatible structures can be used as carriers for active substances and can be easily modulated in order to control the delivery of drugs, proteins, DNA, etc.Using the layer-by-layer method, Ch and γ-PGA were assembled into polyelectrolyte multilayers films (PEMs with thickness of 120 nm. The chemokine stromal-derived factor-1 (SDF-1 was incorporated in these complexes and was continuously released during 120 h. The method of SDF-1 incorporation is of crucial importance for polymers assembly into PEMs and for the release kinetics of this chemokine. The Ch/γ-PGA PEMs with SDF-1 were able to recruit hMSCs, increasing the cell migration up to 6 fold to a maximum of 16.2 ± 4.9 cells/mm2. The controlled release of SDF-1 would be of great therapeutic value in the process of hMSC homing to injured tissues. This is the first study suggesting Ch/γ-PGA PEMs as SDF-1 reservoirs to recruit hMSCs, describing an efficient method of chemokine incorporation that allows a sustained released up to 5 days and that can be easily scaled-up.

  13. Immunity Based Worm Detection System

    Institute of Scientific and Technical Information of China (English)

    HONG Zheng; WU Li-fa; WANG Yuan-yuan

    2007-01-01

    Current worm detection methods are unable to detect multi-vector polymorphic worms effectively.Based on negative selection mechanism of the immune system,a local network worm detection system that detects worms was proposed.Normal network service requests were represented by self-strings,and the detection system used self-strings to monitor the network for anomaly.According to the properties of worm propagation,a control center correlated the anomalies detected in the form of binary trees to ensure the accuracy of worm detection.Experiments show the system to be effective in detecting the traditional as well as multi-vector polymorphic worms.

  14. Spectrin-based skeleton as an actor in cell signaling.

    Science.gov (United States)

    Machnicka, B; Grochowalska, R; Bogusławska, D M; Sikorski, A F; Lecomte, M C

    2012-01-01

    This review focuses on the recent advances in functions of spectrins in non-erythroid cells. We discuss new data concerning the commonly known role of the spectrin-based skeleton in control of membrane organization, stability and shape, and tethering protein mosaics to the cellular motors and to all major filament systems. Particular effort has been undertaken to highlight recent advances linking spectrin to cell signaling phenomena and its participation in signal transduction pathways in many cell types.

  15. Fuel cell power generation system. Nenryo denchi hatsuden system

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M.; Shiba, Y.

    1993-06-11

    It is general to fabricate the primary cooling water system including the fuel cell main body using corrosion resistant stainless steel, while the secondary cooling system including absorption type freezer is made of carbon steel. For this structure, returning the cooling water of the secondary cooling system to the primary cooling system can cause the corrosion of the primary cooling system. That is, the water of inferior quality in the secondary system can corrode the primary system including the fuel cell. This invention solves the problem. The fuel cell bypass which is branched from the fuel cell cooling water inlet, detours the fuel cell, and it is connected to the water-vapor separator installed to the fuel cell. And the heat exchanger is installed at any of fuel cooling water outlet line, fuel cell cooling water inlet line, or fuel cell bypass line. With this structure, recovering the heat generated during the power generation by the fuel cell at the secondary side of the heat exchanger can be achieved while separating the primary and secondary cooling water. So that the trouble of fuel cell operation caused by the contamination of the primary cooling water with the secondary cooling water which contains corrosive impurities can be avoided. 6 figs.

  16. Computational approaches to substrate-based cell motility

    Science.gov (United States)

    Ziebert, Falko; Aranson, Igor S.

    2016-07-01

    Substrate-based crawling motility of eukaryotic cells is essential for many biological functions, both in developing and mature organisms. Motility dysfunctions are involved in several life-threatening pathologies such as cancer and metastasis. Motile cells are also a natural realisation of active, self-propelled 'particles', a popular research topic in nonequilibrium physics. Finally, from the materials perspective, assemblies of motile cells and evolving tissues constitute a class of adaptive self-healing materials that respond to the topography, elasticity and surface chemistry of the environment and react to external stimuli. Although a comprehensive understanding of substrate-based cell motility remains elusive, progress has been achieved recently in its modelling on the whole-cell level. Here we survey the most recent advances in computational approaches to cell movement and demonstrate how these models improve our understanding of complex self-organised systems such as living cells.

  17. Innovative High Temperature Fuel Cell systems

    NARCIS (Netherlands)

    Au, Siu Fai

    2003-01-01

    The world's energy consumption is growing extremely rapidly. Fuel cell systems are of interest by researchers and industry as the more efficient alternative to conventional thermal systems for power generation. The principle of fuel cell conversion does not involve thermal combustion and hence in th

  18. SMS BASED REMOTE CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    Reecha Ranjan Singh , Sangeeta Agrawal , Saurabh Kapoor ,S. Sharma

    2011-08-01

    Full Text Available A modern world contains varieties of electronic equipment and systems like: TV, security system, Hi-fi equipment, central heating systems, fire alarm systems, security alarm systems, lighting systems, SET Top Box, AC (Air Conditioner etc., we need to handle, ON/OFF or monitor these electrical devices remotely or to communicate with these but, if you are not at the home or that place and you want to communicate with these device. So the new technology for handled these devices remotely and for communication to required the GSM, mobile technology, SMS (short message service and some hardware resources. SMS based remote control for home appliances is beneficial for the human generation, because mobile is most recently used technology nowadays.

  19. Baculovirus integration with the vertebrate cells in system in vitro

    Directory of Open Access Journals (Sweden)

    Strokovskaya L. I.

    2010-11-01

    Full Text Available In this review the literature data are analyzed relative to the study of a new vector system for the cells of vertebrates, based on the insect viruses – baculoviruses. The ways and mechanisms of recombinant baculoviruses penetration into cells, the factors, which influence the effectiveness of transduction, the principles of the modification of virus display, and the reaction of the different types of cells on virus introduction are examined. The prospects of using recombinant baculoviruses in cellular engineering are discussed.

  20. Modelling of robotic work cells using agent based-approach

    Science.gov (United States)

    Sękala, A.; Banaś, W.; Gwiazda, A.; Monica, Z.; Kost, G.; Hryniewicz, P.

    2016-08-01

    In the case of modern manufacturing systems the requirements, both according the scope and according characteristics of technical procedures are dynamically changing. This results in production system organization inability to keep up with changes in a market demand. Accordingly, there is a need for new design methods, characterized, on the one hand with a high efficiency and on the other with the adequate level of the generated organizational solutions. One of the tools that could be used for this purpose is the concept of agent systems. These systems are the tools of artificial intelligence. They allow assigning to agents the proper domains of procedures and knowledge so that they represent in a self-organizing system of an agent environment, components of a real system. The agent-based system for modelling robotic work cell should be designed taking into consideration many limitations considered with the characteristic of this production unit. It is possible to distinguish some grouped of structural components that constitute such a system. This confirms the structural complexity of a work cell as a specific production system. So it is necessary to develop agents depicting various aspects of the work cell structure. The main groups of agents that are used to model a robotic work cell should at least include next pattern representatives: machine tool agents, auxiliary equipment agents, robots agents, transport equipment agents, organizational agents as well as data and knowledge bases agents. In this way it is possible to create the holarchy of the agent-based system.

  1. NFC based parking payment system

    Directory of Open Access Journals (Sweden)

    Arun Radhakrishnan

    2015-06-01

    Full Text Available All people want to improve their quality of life and this can be achieved only by technology. Many problems are faced by daily vehicle users in payment based parking systems, both in open air parking system where the parking is done along the streets and in closed parking system where parking is done in closed infrastructure added with entry and exit points. Delays (long queues and accuracy in fares are the main problems faced by the users. Many solutions are proposed to solve this problem but all have their own drawbacks. In this paper a new solution is proposed based on Near Field Communication (NFC which makes the payment system reliable and easy.

  2. A fully automated system for adherent cells microinjection.

    Science.gov (United States)

    Becattini, Gabriele; Mattos, Leonardo S; Caldwell, Darwin G

    2014-01-01

    This paper proposes an automated robotic system to perform cell microinjections to relieve human operators from this highly difficult and tedious manual procedure. The system, which uses commercial equipment currently found on most biomanipulation laboratories, consists of a multitask software framework combining computer vision and robotic control elements. The vision part features an injection pipette tracker and an automatic cell targeting system that is responsible for defining injection points within the contours of adherent cells in culture. The main challenge is the use of bright-field microscopy only, without the need for chemical markers normally employed to highlight the cells. Here, cells are identified and segmented using a threshold-based image processing technique working on defocused images. Fast and precise microinjection pipette positioning over the automatically defined targets is performed by a two-stage robotic system which achieves an average injection rate of 7.6 cells/min with a pipette positioning precision of 0.23 μm. The consistency of these microinjections and the performance of the visual targeting framework were experimentally evaluated using two cell lines (CHO-K1 and HEK) and over 500 cells. In these trials, the cells were automatically targeted and injected with a fluorescent marker, resulting in a correct cell detection rate of 87% and a successful marker delivery rate of 67.5%. These results demonstrate that the new system is capable of better performances than expert operators, highlighting its benefits and potential for large-scale application.

  3. TOPICAL REVIEW: Stem cells engineering for cell-based therapy

    Science.gov (United States)

    Taupin, Philippe

    2007-09-01

    Stem cells carry the promise to cure a broad range of diseases and injuries, from diabetes, heart and muscular diseases, to neurological diseases, disorders and injuries. Significant progresses have been made in stem cell research over the past decade; the derivation of embryonic stem cells (ESCs) from human tissues, the development of cloning technology by somatic cell nuclear transfer (SCNT) and the confirmation that neurogenesis occurs in the adult mammalian brain and that neural stem cells (NSCs) reside in the adult central nervous system (CNS), including that of humans. Despite these advances, there may be decades before stem cell research will translate into therapy. Stem cell research is also subject to ethical and political debates, controversies and legislation, which slow its progress. Cell engineering has proven successful in bringing genetic research to therapy. In this review, I will review, in two examples, how investigators are applying cell engineering to stem cell biology to circumvent stem cells' ethical and political constraints and bolster stem cell research and therapy.

  4. NOD/scid IL-2Rgnull mice: a preclinical model system to evaluate human dendritic cell-based vaccine strategies in vivo

    Directory of Open Access Journals (Sweden)

    Spranger Stefani

    2012-02-01

    Full Text Available Abstract Background To date very few systems have been described for preclinical investigations of human cellular therapeutics in vivo. However, the ability to carry out comparisons of new cellular vaccines in vivo would be of substantial interest for design of clinical studies. Here we describe a humanized mouse model to assess the efficacy of various human dendritic cell (DC preparations. Two reconstitution regimes of NOD/scid IL2Rgnull (NSG mice with adult human peripheral blood mononuclear cells (PBMC were evaluated for engraftment using 4-week and 9-week schedules. This led to selection of a simple and rapid protocol for engraftment and vaccine evaluation that encompassed 4 weeks. Methods NSG recipients of human PBMC were engrafted over 14 days and then vaccinated twice with autologous DC via intravenous injection. Three DC vaccine formulations were compared that varied generation time in vitro (3 days versus 7 days and signals for maturation (with or without Toll-like receptor (TLR3 and TLR7/8 agonists using MART-1 as a surrogate antigen, by electroporating mature DC with in vitro transcribed RNA encoding full length protein. After two weekly vaccinations, the splenocyte populations containing human lymphocytes were recovered 7 days later and assessed for MART-1-specific immune responses using MHC-multimer-binding assays and functional assessment of specific killing of melanoma tumor cell lines. Results Human monocyte-derived DC generated in vitro in 3 days induced better MART-1-specific immune responses in the autologous donor T cells present in the humanized NSG mice. Moreover, consistent with our in vitro observations, vaccination using mature DC activated with TLR3 and TLR7/8 agonists resulted in enhanced immune responses in vivo. These findings led to a ranking of the DC vaccine effects in vivo that reflected the hierarchy previously found for these mature DC variations in vitro. Conclusions This humanized mouse model system enables

  5. A hybrid base isolation system

    Energy Technology Data Exchange (ETDEWEB)

    Hart, G.C. [Univ. of California, Los Angeles, CA (United States); Lobo, R.F.; Srinivasan, M. [Hart Consultant Group, Santa Monica, CA (United States); Asher, J.W. [kpff Engineers, Santa Monica, CA (United States)

    1995-12-01

    This paper proposes a new analysis procedure for hybrid base isolation buildings when considering the displacement response of a base isolated building to wind loads. The system is considered hybrid because of the presence of viscous dampers in the building above the isolator level. The proposed analysis approach incorporates a detailed site specific wind study combined with a dynamic nonlinear analysis of the building response.

  6. Creating a completely "cell-free" system for protein synthesis.

    Science.gov (United States)

    Smith, Mark Thomas; Bennett, Anthony M; Hunt, Jeremy M; Bundy, Bradley C

    2015-01-01

    Cell-free protein synthesis is a promising tool to take biotechnology outside of the cell. A cell-free approach provides distinct advantages over in vivo systems including open access to the reaction environment and direct control over all chemical components for facile optimization and synthetic biology integration. Promising applications of cell-free systems include portable diagnostics, biotherapeutics expression, rational protein engineering, and biocatalyst production. The highest yielding and most economical cell-free systems use an extract composed of the soluble component of lysed Escherichia coli. Although E. coli lysis can be highly efficient (>99.999%), one persistent challenge is that the extract remains contaminated with up to millions of cells per mL. In this work, we examine the potential of multiple decontamination strategies to further reduce or eliminate bacteria in cell-free systems. Two strategies, sterile filtration and lyophilization, effectively eliminate contaminating cells while maintaining the systems' protein synthesis capabilities. Lyophilization provides the additional benefit of long-term stability at storage above freezing. Technologies for personalized, portable medicine and diagnostics can be expanded based on these foundational sterilized and completely "cell-free" systems.

  7. Development of an Expert System as a Diagnostic Support of Cervical Cancer in Atypical Glandular Cells, Based on Fuzzy Logics and Image Interpretation

    Directory of Open Access Journals (Sweden)

    Karem R. Domínguez Hernández

    2013-01-01

    Full Text Available Cervical cancer is the second largest cause of death among women worldwide. Nowadays, this disease is preventable and curable at low cost and low risk when an accurate diagnosis is done in due time, since it is the neoplasm with the highest prevention potential. This work describes the development of an expert system able to provide a diagnosis to cervical neoplasia (CN precursor injuries through the integration of fuzzy logics and image interpretation techniques. The key contribution of this research focuses on atypical cases, specifically on atypical glandular cells (AGC. The expert system consists of 3 phases: (1 risk diagnosis which consists of the interpretation of a patient’s clinical background and the risks for contracting CN according to specialists; (2 cytology images detection which consists of image interpretation (IM and the Bethesda system for cytology interpretation, and (3 determination of cancer precursor injuries which consists of in retrieving the information from the prior phases and integrating the expert system by means of a fuzzy logics (FL model. During the validation stage of the system, 21 already diagnosed cases were tested with a positive correlation in which 100% effectiveness was obtained. The main contribution of this work relies on the reduction of false positives and false negatives by providing a more accurate diagnosis for CN.

  8. A Comparison of Optimal Operation of a Residential Fuel Cell Co-Generation System Using Clustered Demand Patterns Based on Kullback-Leibler Divergence

    Directory of Open Access Journals (Sweden)

    Takumi Hasizume

    2013-01-01

    Full Text Available When evaluating residential energy systems like co-generation systems, hot water and electricity demand profiles are critical. In this paper, the authors aim to extract basic time-series demand patterns from two kinds of measured demand (electricity and domestic hot water, and also aim to reveal effective demand patterns for primary energy saving. Time-series demand data are categorized with a hierarchical clustering method using a statistical pseudo-distance, which is represented by the generalized Kullback-Leibler divergence of two Gaussian mixture distributions. The classified demand patterns are built using hierarchical clustering and then a comparison is made between the optimal operation of a polymer electrolyte membrane fuel cell co-generation system and the operation of a reference system (a conventional combination of a condensing gas boiler and electricity purchased from the grid using the appropriately built demand profiles. Our results show that basic demand patterns are extracted by the proposed method, and the heat-to-power ratio of demand, the amount of daily demand, and demand patterns affect the primary energy saving of the co-generation system.

  9. Cell detachment and label-free cell sorting using modulated surface acoustic waves (SAW) in droplet-based microfluidics

    CERN Document Server

    Bussonnière, Adrien; Baudoin, Michael; Bou-Matar, Olivier; Grandbois, Michel; Charette, Paul; Renaudin, Alan

    2014-01-01

    We present a droplet-based surface acoustic wave (SAW) system designed to viably detach biological cells from a surface and sort cell types based on differences in adhesion strength (adhesion contrast), without the need to label cells with molecular markers. The system uses modulated SAW to generate pulsatile flows in the droplets and efficiently detach the cells, thereby minimizing SAW excitation power and exposure time. As a proof-of-principle, the system is shown to efficiently sort HEK 293 from A7r5 cells based on adhesion contrast. Results are obtained in minutes with sorting purity and efficiency reaching 97 % and 95 %, respectively.

  10. Fullerene based organic solar cells

    NARCIS (Netherlands)

    Popescu, Lacramioara Mihaela

    2008-01-01

    The direct conversion of the sunlight into electricity is the most elegant process to generate environmentally-friendly renewable energy. Plastic solar cells offer the prospect of flexible, lightweight, lower cost of manufacturing, and hopefully an efficient way to produce electricity from sunlight.

  11. Immobilization of Lactobacillus rhamnosus in mesoporous silica-based material: An efficiency continuous cell-recycle fermentation system for lactic acid production.

    Science.gov (United States)

    Zhao, Zijian; Xie, Xiaona; Wang, Zhi; Tao, Yanchun; Niu, Xuedun; Huang, Xuri; Liu, Li; Li, Zhengqiang

    2016-06-01

    Lactic acid bacteria immobilization methods have been widely used for lactic acid production. Until now, the most common immobilization matrix used is calcium alginate. However, Ca-alginate gel disintegrated during lactic acid fermentation. To overcome this deficiency, we developed an immobilization method in which Lactobacillus rhamnosus cells were successfully encapsulated into an ordered mesoporous silica-based material under mild conditions with a high immobilization efficiency of 78.77% by using elemental analysis. We also optimized the cultivation conditions of the immobilized L. rhamnosus and obtained a high glucose conversion yield of 92.4%. Furthermore, L. rhamnosus encapsulated in mesoporous silica-based material exhibited operational stability during repeated fermentation processes and no decrease in lactic acid production up to 8 repeated batches.

  12. Flexible UL/DL in Small Cell TDD Systems

    DEFF Research Database (Denmark)

    Catania, Davide; Gatnau, Marta; Cattoni, Andrea Fabio;

    2015-01-01

    Time division duplex (TDD) systems offer a substantial amount of freedom to deal with downlink (DL) and uplink (UL) traffic asymmetries. Most TDD-based systems define either multiple static configurations or adaptive approaches to deal with such asymmetries. Our envisioned 5G concept embraces......, and for multi-cell scenarios where both DL and UL traffic are present....

  13. Avicequinone C Isolated from Avicennia marina Exhibits 5α-Reductase-Type 1 Inhibitory Activity Using an Androgenic Alopecia Relevant Cell-Based Assay System

    Directory of Open Access Journals (Sweden)

    Ruchy Jain

    2014-05-01

    Full Text Available Avicennia marina (AM exhibits various biological activities and has been traditionally used in Egypt to cure skin diseases. In this study, the methanolic heartwood extract of AM was evaluated for inhibitory activity against 5α-reductase (5α-R [E.C.1.3.99.5], the enzyme responsible for the over-production of 5α-dihydrotestosterone (5α-DHT causing androgenic alopecia (AGA. An AGA-relevant cell-based assay was developed using human hair dermal papilla cells (HHDPCs, the main regulator of hair growth and the only cells within the hair follicle that are the direct site of 5α-DHT action, combined with a non-radioactive thin layer chromatography (TLC detection technique. The results revealed that AM is a potent 5α-R type 1 (5α-R1 inhibitor, reducing the 5α-DHT production by 52% at the final concentration of 10 µg/mL. Activity-guided fractionation has led to the identification of avicequinone C, a furanonaphthaquinone, as a 5α-R1 inhibitor with an IC50 of 9.94 ± 0.33 µg/mL or 38.8 ± 1.29 µM. This paper is the first to report anti-androgenic activity through 5α-R1 inhibition of AM and avicequinone C.

  14. Expression, Purification, and Characterization of a Sucrose Nonfermenting 1-Related Protein Kinases 2 of Arabidopsis thaliana in E. coli-Based Cell-Free System

    Directory of Open Access Journals (Sweden)

    Xu Zhang

    2016-01-01

    Full Text Available The plant-specific sucrose nonfermenting 1-related protein kinase 2 (SnRK2 family is considered an important regulator of plant responses to abiotic stresses such as drought, cold, salinity, and nutrition deficiency. However, little information is available on how SnRK2s regulate sulfur deprivation responses in Arabidopsis. Large-scale production of SnRK2 kinases in vitro can help to elucidate the biochemical properties and physiological functions of this protein family. However, heterogenous expression of SnRK2s usually leads to inactive proteins. In this study, we expressed a recombinant Arabidopsis SnRK2.1 in a modified E. coli cell-free system, which combined two kinds of extracts allowing for a convenient and affordable protein preparation. The recombinant SnRK2.1 was produced in large-scale and the autophosphorylation activity of purified SnRK2.1 was characterized, allowing for further biochemical and substrate binding analysis in sulfur signaling. The application of this improved E. coli cell-free system provides us a promising and convenient platform to enhance expression of the target proteins economically.

  15. Photoelectrochemical based direct conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    Kocha, S.; Arent, D.; Peterson, M. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1995-09-01

    The goal of this research is to develop a stable, cost effective, photoelectrochemical based system that will split water upon illumination, producing hydrogen and oxygen directly, using sunlight as the only energy input. This type of direct conversion system combines a photovoltaic material and an electrolyzer into a single monolithic device. We report on our studies of two multifunction multiphoton photoelectrochemical devices, one based on the ternary semiconductor gallium indium phosphide, (GaInP{sub 2}), and the other one based on amorphous silicon carbide. We also report on our studies of the solid state surface treatment of GaInP{sub 2} as well as our continuing effort to develop synthetic techniques for the attachment of transition metal complexes to the surface of semiconductor electrodes. All our surface studies are directed at controlling the interface energetics and forming stable catalytic surfaces.

  16. Water reactive hydrogen fuel cell power system

    Science.gov (United States)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  17. Stem cells in the nervous system.

    Science.gov (United States)

    Maldonado-Soto, Angel R; Oakley, Derek H; Wichterle, Hynek; Stein, Joel; Doetsch, Fiona K; Henderson, Christopher E

    2014-11-01

    Given their capacity to regenerate cells lost through injury or disease, stem cells offer new vistas into possible treatments for degenerative diseases and their underlying causes. As such, stem cell biology is emerging as a driving force behind many studies in regenerative medicine. This review focuses on the current understanding of the applications of stem cells in treating ailments of the human brain, with an emphasis on neurodegenerative diseases. Two types of neural stem cells are discussed: endogenous neural stem cells residing within the adult brain and pluripotent stem cells capable of forming neural cells in culture. Endogenous neural stem cells give rise to neurons throughout life, but they are restricted to specialized regions in the brain. Elucidating the molecular mechanisms regulating these cells is key in determining their therapeutic potential as well as finding mechanisms to activate dormant stem cells outside these specialized microdomains. In parallel, patient-derived stem cells can be used to generate neural cells in culture, providing new tools for disease modeling, drug testing, and cell-based therapies. Turning these technologies into viable treatments will require the integration of basic science with clinical skills in rehabilitation.

  18. Cell based assay for hypoglycemic drugs screening

    Institute of Scientific and Technical Information of China (English)

    LiZHANG; Juan-juanHU; Guan-huaDU

    2004-01-01

    OBJECTIVE: To establish a cell based assay for hypoglyc emicdrugs. METHODS: The five cell lines, BALB/c3T3, HepG2, NIH3T3, Be17402, and L929 were incubated with insulin (0-125n mol/L) for 48 h. Their sensitivities to insulin were studied by detecting glucose consumption. The dose-response and time-response relationship between the sensitive cell line (BALB/c 3T3)

  19. Systems Biology for Organotypic Cell Cultures

    Energy Technology Data Exchange (ETDEWEB)

    Grego, Sonia [RTI International, Research Triangle Park, NC (United States); Dougherty, Edward R. [Texas A & M Univ., College Station, TX (United States); Alexander, Francis J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Auerbach, Scott S. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Berridge, Brian R. [GlaxoSmithKline, Research Triangle Park, NC (United States); Bittner, Michael L. [Translational Genomics Research Inst., Phoenix, AZ (United States); Casey, Warren [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Cooley, Philip C. [RTI International, Research Triangle Park, NC (United States); Dash, Ajit [HemoShear Therapeutics, Charlottesville, VA (United States); Ferguson, Stephen S. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Fennell, Timothy R. [RTI International, Research Triangle Park, NC (United States); Hawkins, Brian T. [RTI International, Research Triangle Park, NC (United States); Hickey, Anthony J. [RTI International, Research Triangle Park, NC (United States); Kleensang, Andre [Johns Hopkins Univ., Baltimore, MD (United States). Center for Alternatives to Animal Testing; Liebman, Michael N. [IPQ Analytics, Kennett Square, PA (United States); Martin, Florian [Phillip Morris International, Neuchatel (Switzerland); Maull, Elizabeth A. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Paragas, Jason [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Qiao, Guilin [Defense Threat Reduction Agency, Ft. Belvoir, VA (United States); Ramaiahgari, Sreenivasa [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Sumner, Susan J. [RTI International, Research Triangle Park, NC (United States); Yoon, Miyoung [The Hamner Inst. for Health Sciences, Research Triangle Park, NC (United States); ScitoVation, Research Triangle Park, NC (United States)

    2016-08-04

    Translating in vitro biological data into actionable information related to human health holds the potential to improve disease treatment and risk assessment of chemical exposures. While genomics has identified regulatory pathways at the cellular level, translation to the organism level requires a multiscale approach accounting for intra-cellular regulation, inter-cellular interaction, and tissue/organ-level effects. Tissue-level effects can now be probed in vitro thanks to recently developed systems of three-dimensional (3D), multicellular, “organotypic” cell cultures, which mimic functional responses of living tissue. However, there remains a knowledge gap regarding interactions across different biological scales, complicating accurate prediction of health outcomes from molecular/genomic data and tissue responses. Systems biology aims at mathematical modeling of complex, non-linear biological systems. We propose to apply a systems biology approach to achieve a computational representation of tissue-level physiological responses by integrating empirical data derived from organotypic culture systems with computational models of intracellular pathways to better predict human responses. Successful implementation of this integrated approach will provide a powerful tool for faster, more accurate and cost-effective screening of potential toxicants and therapeutics. On September 11, 2015, an interdisciplinary group of scientists, engineers, and clinicians gathered for a workshop in Research Triangle Park, North Carolina, to discuss this ambitious goal. Participants represented laboratory-based and computational modeling approaches to pharmacology and toxicology, as well as the pharmaceutical industry, government, non-profits, and academia. Discussions focused on identifying critical system perturbations to model, the computational tools required, and the experimental approaches best suited to generating key data. This consensus report summarizes the discussions held.

  20. Production Process for Stem Cell Based Therapeutic Implants: Expansion of the Production Cell Line and Cultivation of Encapsulated Cells

    Science.gov (United States)

    Weber, C.; Pohl, S.; Poertner, R.; Pino-Grace, Pablo; Freimark, D.; Wallrapp, C.; Geigle, P.; Czermak, P.

    Cell based therapy promises the treatment of many diseases like diabetes mellitus, Parkinson disease or stroke. Microencapsulation of the cells protects them against host-vs-graft reactions and thus enables the usage of allogenic cell lines for the manufacturing of cell therapeutic implants. The production process of such implants consists mainly of the three steps expansion of the cells, encapsulation of the cells, and cultivation of the encapsulated cells in order to increase their vitality and thus quality. This chapter deals with the development of fixed-bed bioreactor-based cultivation procedures used in the first and third step of production. The bioreactor system for the expansion of the stem cell line (hMSC-TERT) is based on non-porous glass spheres, which support cell growth and harvesting with high yield and vitality. The cultivation process for the spherical cell based implants leads to an increase of vitality and additionally enables the application of a medium-based differentiation protocol.

  1. Seca Coal-Based Systems Program

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Alinger

    2008-05-31

    This report summarizes the progress made during the August 1, 2006 - May 31, 2008 award period under Cooperative Agreement DE-FC26-05NT42614 for the U. S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled 'SECA Coal Based Systems'. The initial overall objective of this program was to design, develop, and demonstrate multi-MW integrated gasification fuel cell (IGFC) power plants with >50% overall efficiency from coal (HHV) to AC power. The focus of the program was to develop low-cost, high performance, modular solid oxide fuel cell (SOFC) technology to support coal gas IGFC power systems. After a detailed GE internal review of the SOFC technology, the program was de-scoped at GE's request. The primary objective of this program was then focused on developing a performance degradation mitigation path for high performing, cost-effective solid oxide fuel cells (SOFCs). There were two initial major objectives in this program. These were: (1) Develop and optimize a design of a >100 MWe integrated gasification fuel cell (IGFC) power plant; (2) Resolve identified barrier issues concerning the long-term economic performance of SOFC. The program focused on designing and cost estimating the IGFC system and resolving technical and economic barrier issues relating to SOFC. In doing so, manufacturing options for SOFC cells were evaluated, options for constructing stacks based upon various cell configurations identified, and key performance characteristics were identified. Key factors affecting SOFC performance degradation for cells in contact with metallic interconnects were be studied and a fundamental understanding of associated mechanisms was developed using a fixed materials set. Experiments and modeling were carried out to identify key processes/steps affecting cell performance degradation under SOFC operating conditions. Interfacial microstructural and elemental changes were characterized, and their relationships to observed

  2. An Automatic Indirect Immunofluorescence Cell Segmentation System

    Directory of Open Access Journals (Sweden)

    Yung-Kuan Chan

    2014-01-01

    Full Text Available Indirect immunofluorescence (IIF with HEp-2 cells has been used for the detection of antinuclear autoantibodies (ANA in systemic autoimmune diseases. The ANA testing allows us to scan a broad range of autoantibody entities and to describe them by distinct fluorescence patterns. Automatic inspection for fluorescence patterns in an IIF image can assist physicians, without relevant experience, in making correct diagnosis. How to segment the cells from an IIF image is essential in developing an automatic inspection system for ANA testing. This paper focuses on the cell detection and segmentation; an efficient method is proposed for automatically detecting the cells with fluorescence pattern in an IIF image. Cell culture is a process in which cells grow under control. Cell counting technology plays an important role in measuring the cell density in a culture tank. Moreover, assessing medium suitability, determining population doubling times, and monitoring cell growth in cultures all require a means of quantifying cell population. The proposed method also can be used to count the cells from an image taken under a fluorescence microscope.

  3. Sensitizers for Aqueous-Based Solar Cells.

    Science.gov (United States)

    Li, Chun-Ting; Lin, Ryan Yeh-Yung; Lin, Jiann T

    2017-03-02

    Aqueous dye-sensitized solar cells (DSSCs) are attractive due to their sustainability, the use of water as a safe solvent for the redox mediators, and their possible applications in photoelectrochemical water splitting. However, the higher tendency of dye leaching by water and the lower wettability of dye molecules are two major obstacles that need to be tackled for future applications of aqueous DSSCs. Sensitizers designed for aqueous DSSCs are discussed based on their functions, such as modification of the molecular skeleton and the anchoring group for better stability against dye leaching by water, and the incorporation of hydrophilic entities into the dye molecule or the addition of a surfactant to the system to increase the wettability of the dye for more facile dye regeneration. Surface treatment of the photoanode to deter dye leaching or improve the wettability of the dye molecule is also discussed. Redox mediators designed for aqueous DSSCs are also discussed. The review also includes quantum-dot-sensitized solar cells, with a focus on improvements in QD loading and suppression of interfacial charge recombination at the photoanode.

  4. Fingerprint Indoor Position System Based

    Directory of Open Access Journals (Sweden)

    José Antonio Gómez Martin

    2013-01-01

    Full Text Available This paper presents a research and a development of a fingerprint-indoor-positioning system using the Received Signal Strength Indication (RSSI of a Wireless Sensor Network (WSN. The WSN implementation is based on two different protocol stacks: BitCloud and OpenMAC, a certified ZigBee Compliant Platform (ZCP and an IEEE 802.15.4 embedded software implementation respectively, both from Atmel, and the system uses two different fingerprint algorithms, Simple and Centroid. A comparative analysis of both algorithms using both protocol stacks implementations have been performed to ascertain the best WSN protocol stack and the best algorithm for positioning purposes.

  5. Nucleic acid based logical systems.

    Science.gov (United States)

    Han, Da; Kang, Huaizhi; Zhang, Tao; Wu, Cuichen; Zhou, Cuisong; You, Mingxu; Chen, Zhuo; Zhang, Xiaobing; Tan, Weihong

    2014-05-12

    Researchers increasingly visualize a significant role for artificial biochemical logical systems in biological engineering, much like digital logic circuits in electrical engineering. Those logical systems could be utilized as a type of servomechanism to control nanodevices in vitro, monitor chemical reactions in situ, or regulate gene expression in vivo. Nucleic acids (NA), as carriers of genetic information with well-regulated and predictable structures, are promising materials for the design and engineering of biochemical circuits. A number of logical devices based on nucleic acids (NA) have been designed to handle various processes for technological or biotechnological purposes. This article focuses on the most recent and important developments in NA-based logical devices and their evolution from in vitro, through cellular, even towards in vivo biological applications.

  6. Integrating fuel cell power systems into building physical plants

    Energy Technology Data Exchange (ETDEWEB)

    Carson, J. [KCI Technologies, Inc., Hunt Valley, MD (United States)

    1996-12-31

    This paper discusses the integration of fuel cell power plants and absorption chillers to cogenerate chilled water or hot water/steam for all weather air conditioning as one possible approach to building system applications. Absorption chillers utilize thermal energy in an absorption based cycle to chill water. It is feasible to use waste heat from fuel cells to provide hydronic heating and cooling. Performance regimes will vary as a function of the supply and quality of waste heat. Respective performance characteristics of fuel cells, absorption chillers and air conditioning systems will define relationships between thermal and electrical load capacities for the combined systems. Specifically, this paper develops thermodynamic relationships between bulk electrical power and cooling/heating capacities for combined fuel cell and absorption chiller system in building applications.

  7. Synthesis, Characterization, and Application in HeLa Cells of an NIR Light Responsive Doxorubicin Delivery System Based on NaYF4:Yb,Tm@SiO2-PEG Nanoparticles.

    Science.gov (United States)

    Alonso-Cristobal, Paulino; Oton-Fernandez, Olalla; Mendez-Gonzalez, Diego; Díaz, J Fernando; Lopez-Cabarcos, Enrique; Barasoain, Isabel; Rubio-Retama, Jorge

    2015-07-15

    Herein, we present a phototriggered drug delivery system based on light responsive nanoparticles, which is able to release doxorubicin upon NIR light illumination. The proposed system is based on upconversion fluorescence nanoparticles of β-NaYF4:Yb,Tm@SiO2-PEG with a mean diameter of 52±2.5 nm that absorb the NIR light and emit UV light. The UV radiation causes the degradation of photodegradable ortho-nitrobenzyl alcohol derivates, which are attached on one side to the surface of the nanoparticles and on the other to doxorubicin. This degradation triggers the doxorubicin release. This drug delivery system has been tested "in vitro" with HeLa cells. The results of this study demonstrated that this system caused negligible cytotoxicity when they were not illuminated with NIR light. In contrast, under NIR light illumination, the HeLa cell viability was conspicuously reduced. These results demonstrated the suitability of the proposed system to control the release of doxorubicin via an external NIR light stimulus.

  8. Microfluidics and cancer analysis: cell separation, cell/tissue culture, cell mechanics, and integrated analysis systems.

    Science.gov (United States)

    Pappas, Dimitri

    2016-01-21

    Among the growing number of tools available for cancer studies, microfluidic systems have emerged as a promising analytical tool to elucidate cancer cell and tumor function. Microfluidic methods to culture cells have created approaches to provide a range of environments from single-cell analysis to complex three-dimensional devices. In this review we discuss recent advances in tumor cell culture, cancer cell analysis, and advanced studies enabled by microfluidic systems.

  9. B Cell Epitope-Based Vaccination Therapy

    Directory of Open Access Journals (Sweden)

    Yoshie Kametani

    2015-08-01

    Full Text Available Currently, many peptide vaccines are undergoing clinical studies. Most of these vaccines were developed to activate cytotoxic T cells; however, the response is not robust. Unlike vaccines, anti-cancer antibodies based on passive immunity have been approved as a standard treatment. Since passive immunity is more effective in tumor treatment, the evidence suggests that limited B cell epitope-based peptide vaccines may have similar activity. Nevertheless, such peptide vaccines have not been intensively developed primarily because humoral immunity is thought to be preferable to cancer progression. B cells secrete cytokines, which suppress immune functions. This review discusses the possibility of therapeutic antibody induction by a peptide vaccine and the role of active and passive B cell immunity in cancer patients. We also discuss the use of humanized mice as a pre-clinical model. The necessity of a better understanding of the activity of B cells in cancer is also discussed.

  10. Research and fabrication of image-forming system of the cell based on LIFD%基于激光诱导的细胞荧光成像系统研制

    Institute of Scientific and Technical Information of China (English)

    柳葆; 张思祥; 周围; 常银霞

    2011-01-01

    分析了激光诱导荧光法检测钙离子浓度的原理.并利用微流控芯片在细胞培养和检测上的独特优越性,设计实现了基于微流控芯片的测量细胞内钙离子浓度变化的显微荧光成像系统.在对微流控芯片技术研究的基础上设计制作了微流控芯片,并设计了显微系统、快速波长切换系统、CCD成像系统等.利用这套显微荧光成像系统对活体细胞的荧光图像进行采集.本系统的设计为微流控芯片开辟了新的应用领域,同时提供了一种活体细胞离子检测的新手段.%Theory of laser-induced fluorescence detection (LIFD) method for concentration of calcium ion detection is analyzed. Because of superiority in cells development and detection, an image-forming system for concentration detecting of calcium ion in cells based on microfiuidic chip using the technology of LIFD is built. On the basis of studies of the technology of microfiuidic chips, a microfiuidic chip has been designed and manufactured for the detection of calcium concentration. A microscope system, a fast wavelength switching system and a CCD image forming system have also been designed. The images of fluorescence are collected by the imageforming system. Based on this new image-forming system, a new application domain is opened for microfiuidic chip and a new method is provided for detecting ion in cells.

  11. A Cell-in-the-Loop Approach to Systems Modelling and Simulation of Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    James Marco

    2015-08-01

    Full Text Available This research is aligned with the engineering challenge of scaling-up individual battery cells into a complete energy storage system (ESS. Manufacturing tolerances, coupled with thermal gradients and the differential electrical loading of adjacent cells, can result in significant variations in the rate of cell degradation, energy distribution and ESS performance. The uncertain transition from cell to system often manifests itself in over-engineered, non-optimal ESS designs within both the transport and energy sectors. To alleviate these issues, the authors propose a novel model-based framework for cell-in-the-loop simulation (CILS in which a physical cell may be integrated within a complete model of an ESS and exercised against realistic electrical and thermal loads in real-time. This paper focuses on the electrical integration of both real and simulated cells within the CILS test environment. Validation of the CILS approach using real-world electric vehicle data is presented for an 18650 cell. The cell is integrated within a real-time simulation model of a series string of similar cells in a 4sp1 configuration. Results are presented that highlight the impact of cell variability (i.e., capacity and impedance on the energy available from the multi-cell system and the useable capacity of the physical cell.

  12. Rotating cell culture systems for human cell culture: human trophoblast cells as a model.

    Science.gov (United States)

    Zwezdaryk, Kevin J; Warner, Jessica A; Machado, Heather L; Morris, Cindy A; Höner zu Bentrup, Kerstin

    2012-01-18

    The field of human trophoblast research aids in understanding the complex environment established during placentation. Due to the nature of these studies, human in vivo experimentation is impossible. A combination of primary cultures, explant cultures and trophoblast cell lines support our understanding of invasion of the uterine wall and remodeling of uterine spiral arteries by extravillous trophoblast cells (EVTs), which is required for successful establishment of pregnancy. Despite the wealth of knowledge gleaned from such models, it is accepted that in vitro cell culture models using EVT-like cell lines display altered cellular properties when compared to their in vivo counterparts. Cells cultured in the rotating cell culture system (RCCS) display morphological, phenotypic, and functional properties of EVT-like cell lines that more closely mimic differentiating in utero EVTs, with increased expression of genes mediating invasion (e.g. matrix metalloproteinases (MMPs)) and trophoblast differentiation. The Saint Georges Hospital Placental cell Line-4 (SGHPL-4) (kindly donated by Dr. Guy Whitley and Dr. Judith Cartwright) is an EVT-like cell line that was used for testing in the RCCS. The design of the RCCS culture vessel is based on the principle that organs and tissues function in a three-dimensional (3-D) environment. Due to the dynamic culture conditions in the vessel, including conditions of physiologically relevant shear, cells grown in three dimensions form aggregates based on natural cellular affinities and differentiate into organotypic tissue-like assemblies. The maintenance of a fluid orbit provides a low-shear, low-turbulence environment similar to conditions found in vivo. Sedimentation of the cultured cells is countered by adjusting the rotation speed of the RCCS to ensure a constant free-fall of cells. Gas exchange occurs through a permeable hydrophobic membrane located on the back of the bioreactor. Like their parental tissue in vivo, RCCS

  13. [Immune system evolution. (From cells to humans)].

    Science.gov (United States)

    Belek, A S

    1992-01-01

    The great variety of cells and molecules observed in the mammalian immune system can be explained by stepwise acquisition of them during phylogeny. Self/nonself discrimination and cell-mediated immunity have been present since the early stages of evolution. Although some inducible antimicrobial molecules have been demonstrated in invertebrates, immunoglobulins appear in vertebrates. T and B cell diversity, development of the lymphoid organs, MHC molecules, complement and cytokines are the characteristics that appear through the evolution of vertebrates. Further knowledge that will be obtained from phylogenetic studies will improve our understanding of the immune system of human.

  14. Monolithic fuel cell based power source for burst power generation

    Science.gov (United States)

    Fee, D. C.; Blackburn, P. E.; Busch, D. E.; Dees, D. W.; Dusek, J.; Easler, T. E.; Ellingson, W. A.; Flandermeyer, B. K.; Fousek, R. J.; Heiberger, J. J.

    A unique fuel cell coupled with a low power nuclear reactor presents an attractive approach for SDI burst power requirements. The monolithic fuel cell looks attractive for space applications and represents a quantum jump in fuel cell technology. Such a breakthrough in design is the enabling technology for lightweight, low volume power sources for space based pulse power systems. The monolith is unique among fuel cells in being an all solid state device. The capability for miniaturization, inherent in solid state devices, gives the low volume required for space missions. In addition, the solid oxide fuel cell technology employed in the monolith has high temperature reject heat and can be operated in either closed or open cycles. Both these features are attractive for integration into a burst power system.

  15. Spectrin-based skeleton as an actor in cell signaling

    OpenAIRE

    Machnicka, B.; Grochowalska, R.; Bogusławska, D. M.; Sikorski, A F; Lecomte, M C

    2011-01-01

    This review focuses on the recent advances in functions of spectrins in non-erythroid cells. We discuss new data concerning the commonly known role of the spectrin-based skeleton in control of membrane organization, stability and shape, and tethering protein mosaics to the cellular motors and to all major filament systems. Particular effort has been undertaken to highlight recent advances linking spectrin to cell signaling phenomena and its participation in signal transduction pathways in man...

  16. Regenerative fuel cell systems R and D

    Energy Technology Data Exchange (ETDEWEB)

    Mitlitsky, F.; Myers, B.; Weisberg, A.H. [Lawrence Livermore National Lab., Livermore, CA (United States)

    1998-08-01

    Regenerative fuel cell (RFC) systems produce power and electrolytically regenerate their reactants using stacks of electrochemical cells. Energy storage systems with extremely high specific energy (> 400 Wh/kg) have been designed that use lightweight pressure vessels to contain the gases generated by reversible (unitized) regenerative fuel cells (URFCs). Progress is reported on the development, integration, and operation of rechargeable energy storage systems with such high specific energy. Lightweight pressure vessels that enable high specific energies have been designed with performance factors (burst pressure/internal volume/tank weight) > 50 km (2.0 million inches), and a vessel with performance factor of 40 km (1.6 million inches) was fabricated. New generations of both advanced and industry-supplied hydrogen tankage are under development. A primary fuel cell test rig with a single cell (46 cm{sup 2} active area) has been modified and operated reversibly as a URFC (for up to 2010 cycles on a single cell). This URFC uses bifunctional electrodes (oxidation and reduction electrodes reverse roles when switching from charge to discharge, as with a rechargeable battery) and cathode feed electrolysis (water is fed from the hydrogen side of the cell). Recent modifications also enable anode feed electrolysis (water is fed from the oxygen side of the cell). Hydrogen/halogen URFCs, capable of higher round-trip efficiency than hydrogen/oxygen URFCs, have been considered, and will be significantly heavier. Progress is reported on higher performance hydrogen/oxygen URFC operation with reduced catalyst loading.

  17. Cell-based technologies for Huntington's disease

    Directory of Open Access Journals (Sweden)

    Mônica Santoro Haddad

    Full Text Available ABSTRACT Huntington's disease (HD is a fatal genetic disorder, which causes the progressive breakdown of neurons in the human brain. HD deteriorates human physical and mental abilities over time and has no cure. Stem cell-based technologies are promising novel treatments, and in HD, they aim to replace lost neurons and/or to prevent neural cell death. Herein we discuss the use of human fetal tissue (hFT, neural stem cells (NSCs of hFT origin or embryonic stem cells (ESCs and induced pluripotent stem cells (IPSCs, in clinical and pre-clinical studies. The in vivo use of mesenchymal stem cells (MSCs, which are derived from non-neural tissues, will also be discussed. All these studies prove the potential of stem cells for transplantation therapy in HD, demonstrating cell grafting and the ability to differentiate into mature neurons, resulting in behavioral improvements. We claim that there are still many problems to overcome before these technologies become available for HD patient treatment, such as: a safety regarding the use of NSCs and pluripotent stem cells, which are potentially teratogenic; b safety regarding the transplantation procedure itself, which represents a risk and needs to be better studied; and finally c technical and ethical issues regarding cells of fetal and embryonic origin.

  18. Global behavior of gear system using mixed cell mapping

    Institute of Scientific and Technical Information of China (English)

    SHEN Yunwen; LIU Mengjun; DONG Haijun

    2004-01-01

    In some mechanical nonlinear systems, the transient motion will be undergoing a very long process and the attractor-basin boundaries are so complicated that some difficulties occur in analyzing the system global behavior. To solve this problem a mixed cell mapping method based on the point mapping and the principle of simple cell mapping is developed. The algorithm of the mixed cell mapping is studied. A dynamic model of a gear pair is established with the backlash, damping, transmission error and the time-varying stiffness taken into consideration. The global behaviors of this system are analyzed. The coexistence of the system attractors and the respective attractor-basin of each attractor with different parameters are obtained, thus laying a theoretical basis for improvement of the dynamic behaviors of gear system.

  19. Ultracapacitor-Based Uninterrupted Power Supply System

    Science.gov (United States)

    Eichenberg, Dennis J.

    2011-01-01

    The ultracapacitor-based uninterrupted power supply (UPS) system enhances system reliability; reduces life-of-system, maintenance, and downtime costs; and greatly reduces environmental impact when compared to conventional UPS energy storage systems. This design provides power when required and absorbs power when required to smooth the system load and also has excellent low-temperature performance. The UPS used during hardware tests at Glenn is an efficient, compact, maintenance-free, rack-mount, pure sine-wave inverter unit. The UPS provides a continuous output power up to 1,700 W with a surge rating of 1,870 W for up to one minute at a nominal output voltage of 115 VAC. The ultracapacitor energy storage system tested in conjunction with the UPS is rated at 5.8 F. This is a bank of ten symmetric ultracapacitor modules. Each module is actively balanced using a linear voltage balancing technique in which the cell-to-cell leakage is dependent upon the imbalance of the individual cells. The ultracapacitors are charged by a DC power supply, which can provide up to 300 VDC at 4 A. A constant-voltage, constant-current power supply was selected for this application. The long life of ultracapacitors greatly enhances system reliability, which is significant in critical applications such as medical power systems and space power systems. The energy storage system can usually last longer than the application, given its 20-year life span. This means that the ultracapacitors will probably never need to be replaced and disposed of, whereas batteries require frequent replacement and disposal. The charge-discharge efficiency of rechargeable batteries is approximately 50 percent, and after some hundreds of charges and discharges, they must be replaced. The charge-discharge efficiency of ultracapacitors exceeds 90 percent, and can accept more than a million charges and discharges. Thus, there is a significant energy savings through the efficiency improvement, and there is far less

  20. Stem Cell-Based Cell Carrier for Targeted Oncolytic Virotherapy: Translational Opportunity and Open Questions.

    Science.gov (United States)

    Kim, Janice; Hall, Robert R; Lesniak, Maciej S; Ahmed, Atique U

    2015-11-27

    Oncolytic virotherapy for cancer is an innovative therapeutic option where the ability of a virus to promote cell lysis is harnessed and reprogrammed to selectively destroy cancer cells. Such treatment modalities exhibited antitumor activity in preclinical and clinical settings and appear to be well tolerated when tested in clinical trials. However, the clinical success of oncolytic virotherapy has been significantly hampered due to the inability to target systematic metastasis. This is partly due to the inability of the therapeutic virus to survive in the patient circulation, in order to target tumors at distant sites. An early study from various laboratories demonstrated that cells infected with oncolytic virus can protect the therapeutic payload form the host immune system as well as function as factories for virus production and enhance the therapeutic efficacy of oncolytic virus. While a variety of cell lineages possessed potential as cell carriers, copious investigation has established stem cells as a very attractive cell carrier system in oncolytic virotherapy. The ideal cell carrier desire to be susceptible to viral infection as well as support viral infection, maintain immunosuppressive properties to shield the loaded viruses from the host immune system, and most importantly possess an intrinsic tumor homing ability to deliver loaded viruses directly to the site of the metastasis-all qualities stem cells exhibit. In this review, we summarize the recent work in the development of stem cell-based carrier for oncolytic virotherapy, discuss the advantages and disadvantages of a variety of cell carriers, especially focusing on why stem cells have emerged as the leading candidate, and finally propose a future direction for stem cell-based targeted oncolytic virotherapy that involves its establishment as a viable treatment option for cancer patients in the clinical setting.

  1. 基于CCD摄像头的小区自动循迹停车系统%Cell automatically tracking parking system based on CCD camera

    Institute of Scientific and Technical Information of China (English)

    李兴泽; 王福平

    2013-01-01

    This paper designed a car automatic tracing system based on the CCD camera.The system could collect environmental information by the CCD camera and range by using the ultrasonic sensor.The host controller MC9S12XS128 controlled the steering gear and motor in the PID algorithm.This made the car move to the specified garage by automatic tracking.This system solved the problem caused by some private garages have a long distance from their residential district.The project made the parking easily and intelligently.%设计了一种基于CCD摄像头的小车自动循迹系统.该系统通过CCD摄像头进行环境信息采集,通过超声波传感器测距.主控器MC9S12XS128采用PID算法对舵机和电机进行控制,使小车从指定位置开始以自动的循迹的方式行驶到指定车库或停车位.解决了一些住宅小区私家车库或停车位距住宅楼较远,自驾车停车不方便问题,实现了小区私家车停车智能化.

  2. DNA-Based Enzyme Reactors and Systems

    Directory of Open Access Journals (Sweden)

    Veikko Linko

    2016-07-01

    Full Text Available During recent years, the possibility to create custom biocompatible nanoshapes using DNA as a building material has rapidly emerged. Further, these rationally designed DNA structures could be exploited in positioning pivotal molecules, such as enzymes, with nanometer-level precision. This feature could be used in the fabrication of artificial biochemical machinery that is able to mimic the complex reactions found in living cells. Currently, DNA-enzyme hybrids can be used to control (multi-enzyme cascade reactions and to regulate the enzyme functions and the reaction pathways. Moreover, sophisticated DNA structures can be utilized in encapsulating active enzymes and delivering the molecular cargo into cells. In this review, we focus on the latest enzyme systems based on novel DNA nanostructures: enzyme reactors, regulatory devices and carriers that can find uses in various biotechnological and nanomedical applications.

  3. Stem cells and the aging hematopoietic system.

    Science.gov (United States)

    Beerman, Isabel; Maloney, William J; Weissmann, Irving L; Rossi, Derrick J

    2010-08-01

    Advancing age is accompanied by a number of clinically significant conditions arising in the hematopoietic system that include: diminution and decreased competence of the adaptive immune system, elevated incidence of certain autoimmune diseases, increased hematological malignancies, and elevated incidence of age-associated anemia. As with most tissues, the aged hematopoietic system also exhibits a reduced capacity to regenerate and return to normal homeostasis after injury or stress. Evidence suggests age-dependent functional alterations within the hematopoietic stem cell compartment significantly contribute to many of these pathophysiologies. Recent developments have shed light on how aging of the hematopoietic stem cell compartment contributes to hematopoietic decline through diverse mechanisms.

  4. Stem Cell-Based Gene Therapy.

    Science.gov (United States)

    Bagnis; Mannoni

    1997-01-01

    Many researchers and clinicians wonder if gene therapy remains a way to treat genetic or acquired life-threatening diseases. For the last few years, many experimental, pre-clinical, and clinical data have been published showing that it is possible to transfer with relatively high efficiency new genetic information (transgene) in many cells or tissues including both hematopoietic progenitor cells and differentiated cells. Based on experimental works, addition of the normal gene to cells with deletions, mutations, or alterations of the corresponding endogenous one has been shown to reverse the phenotype and to restore (in some case) the functional defect. In spite of very attractive preliminary results, however, suggesting the feasibility and safety of this process, therapeutically efficient gene transfer and expression in targeted cells or tissues must be proven. In this review, we will focus primarily on the attempts to use gene transfer in hematopoietic stem cells as a model for more general genetic manipulations of stem cells. Hematopoietic stem cells are included in a subset of bone marrow, cord blood, or peripheral blood cells identified by the expression of the CD34 antigen on their membrane.

  5. IBCIS:Intelligent blood cell identification system

    Institute of Scientific and Technical Information of China (English)

    Adnan Khashman

    2008-01-01

    The analysis of blood cells in microscope images can provide useful information concerning the health of patients.There are three major blood cell types,namely,erythrocytes (red),leukocytes (white),and platelets.Manual classification is time consuming and susceptible to error due to the different morphological features of the cells.This paper presents an intelligent system that simulates a human visual inspection and classification of the three blood cell types.The proposed system comprises two phases:The image preprocessing phase where blood cell features are extracted via global pattern averaging,and the neural network arbitration phase where training is the first and then classification is carried out.Experimental results suggest that the proposed method performs well in identifying blood cell types regardless of their irregular shapes,sizes and orientation,thus providing a fast,simple and efficient rotational and scale invariant blood cell identification system which can be used in automating laboratory reporting.

  6. Speech recognition systems on the Cell Broadband Engine

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y; Jones, H; Vaidya, S; Perrone, M; Tydlitat, B; Nanda, A

    2007-04-20

    In this paper we describe our design, implementation, and first results of a prototype connected-phoneme-based speech recognition system on the Cell Broadband Engine{trademark} (Cell/B.E.). Automatic speech recognition decodes speech samples into plain text (other representations are possible) and must process samples at real-time rates. Fortunately, the computational tasks involved in this pipeline are highly data-parallel and can receive significant hardware acceleration from vector-streaming architectures such as the Cell/B.E. Identifying and exploiting these parallelism opportunities is challenging, but also critical to improving system performance. We observed, from our initial performance timings, that a single Cell/B.E. processor can recognize speech from thousands of simultaneous voice channels in real time--a channel density that is orders-of-magnitude greater than the capacity of existing software speech recognizers based on CPUs (central processing units). This result emphasizes the potential for Cell/B.E.-based speech recognition and will likely lead to the future development of production speech systems using Cell/B.E. clusters.

  7. Stem cell-based approaches in dentistry

    OpenAIRE

    Mitsiadis, T A; Orsini, G.; Jimenez-Rojo, L

    2015-01-01

    Repair of dental pulp and periodontal lesions remains a major clinical challenge. Classical dental treatments require the use of specialised tissue-adapted materials with still questionable efficacy and durability. Stem cell-based therapeutic approaches could offer an attractive alternative in dentistry since they can promise physiologically improved structural and functional outcomes. These therapies necessitate a sufficient number of specific stem cell populations for implantation. Dental m...

  8. Nanowire-based All Oxide Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang*, Benjamin D. Yuhas and Peidong; Yang, Peidong

    2008-12-07

    We present an all-oxide solar cell fabricated from vertically oriented zinc oxide nanowires and cuprous oxide nanoparticles. Our solar cell consists of vertically oriented n-type zinc oxide nanowires, surrounded by a film constructed from p-type cuprous oxide nanoparticles. Our solution-based synthesis of inexpensive and environmentally benign oxide materials in a solar cell would allow for the facile production of large-scale photovoltaic devices. We found that the solar cell performance is enhanced with the addition of an intermediate oxide insulating layer between the nanowires and the nanoparticles. This observation of the important dependence of the shunt resistance on the photovoltaic performance is widely applicable to any nanowire solar cell constructed with the nanowire array in direct contact with one electrode.

  9. SBR-Blood: systems biology repository for hematopoietic cells.

    Science.gov (United States)

    Lichtenberg, Jens; Heuston, Elisabeth F; Mishra, Tejaswini; Keller, Cheryl A; Hardison, Ross C; Bodine, David M

    2016-01-04

    Extensive research into hematopoiesis (the development of blood cells) over several decades has generated large sets of expression and epigenetic profiles in multiple human and mouse blood cell types. However, there is no single location to analyze how gene regulatory processes lead to different mature blood cells. We have developed a new database framework called hematopoietic Systems Biology Repository (SBR-Blood), available online at http://sbrblood.nhgri.nih.gov, which allows user-initiated analyses for cell type correlations or gene-specific behavior during differentiation using publicly available datasets for array- and sequencing-based platforms from mouse hematopoietic cells. SBR-Blood organizes information by both cell identity and by hematopoietic lineage. The validity and usability of SBR-Blood has been established through the reproduction of workflows relevant to expression data, DNA methylation, histone modifications and transcription factor occupancy profiles.

  10. Sensitive-cell-based fish chromatophore biosensor

    Science.gov (United States)

    Plant, Thomas K.; Chaplen, Frank W.; Jovanovic, Goran; Kolodziej, Wojtek; Trempy, Janine E.; Willard, Corwin; Liburdy, James A.; Pence, Deborah V.; Paul, Brian K.

    2004-07-01

    A sensitive biosensor (cytosensor) has been developed based on color changes in the toxin-sensitive colored living cells of fish. These chromatophores are highly sensitive to the presence of many known and unknown toxins produced by microbial pathogens and undergo visible color changes in a dose-dependent manner. The chromatophores are immobilized and maintained in a viable state while potential pathogens multiply and fish cell-microbe interactions are monitored. Low power LED lighting is used to illuminate the chromatophores which are magnified using standard optical lenses and imaged onto a CCD array. Reaction to toxins is detected by observing changes is the total area of color in the cells. These fish chromatophores are quite sensitive to cholera toxin, Staphococcus alpha toxin, and Bordatella pertussis toxin. Numerous other toxic chemical and biological agents besides bacterial toxins also cause readily detectable color effects in chromatophores. The ability of the chromatophore cell-based biosensor to distinguish between different bacterial pathogens was examined. Toxin producing strains of Salmonella enteritis, Vibrio parahaemolyticus, and Bacillus cereus induced movement of pigmented organelles in the chromatophore cells and this movement was measured by changes in the optical density over time. Each bacterial pathogen elicited this measurable response in a distinctive and signature fashion. These results suggest a chromatophore cell-based biosensor assay may be applicable for the detection and identification of virulence activities associated with certain air-, food-, and water-borne bacterial pathogens.

  11. Nanotechnology-based drug delivery systems

    Directory of Open Access Journals (Sweden)

    Singh Baljit

    2007-12-01

    Full Text Available Abstract Nanoparticles hold tremendous potential as an effective drug delivery system. In this review we discussed recent developments in nanotechnology for drug delivery. To overcome the problems of gene and drug delivery, nanotechnology has gained interest in recent years. Nanosystems with different compositions and biological properties have been extensively investigated for drug and gene delivery applications. To achieve efficient drug delivery it is important to understand the interactions of nanomaterials with the biological environment, targeting cell-surface receptors, drug release, multiple drug administration, stability of therapeutic agents and molecular mechanisms of cell signalling involved in pathobiology of the disease under consideration. Several anti-cancer drugs including paclitaxel, doxorubicin, 5-fluorouracil and dexamethasone have been successfully formulated using nanomaterials. Quantom dots, chitosan, Polylactic/glycolic acid (PLGA and PLGA-based nanoparticles have also been used for in vitro RNAi delivery. Brain cancer is one of the most difficult malignancies to detect and treat mainly because of the difficulty in getting imaging and therapeutic agents past the blood-brain barrier and into the brain. Anti-cancer drugs such as loperamide and doxorubicin bound to nanomaterials have been shown to cross the intact blood-brain barrier and released at therapeutic concentrations in the brain. The use of nanomaterials including peptide-based nanotubes to target the vascular endothelial growth factor (VEGF receptor and cell adhesion molecules like integrins, cadherins and selectins, is a new approach to control disease progression.

  12. New Polymer Electrolyte Cell Systems

    Science.gov (United States)

    Smyrl, William H.; Owens, Boone B.; Mann, Kent; Pappenfus, T.; Henderson, W.

    2004-01-01

    PAPERS PUBLISHED: 1. Pappenfus, Ted M.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; Smyrl, William H. Complexes of Lithium Imide Salts with Tetraglyme and Their Polyelectrolyte Composite Materials. Journal of the Electrochemical Society (2004), 15 1 (2), A209-A2 15. 2. Pappenfus, Ted M.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; Smyrl, William H. Ionic-liquidlpolymer electrolyte composite materials for electrochemical device applications. Polymeric Materials Science and Engineering (2003), 88 302. 3. Pappenfus, Ted R.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; and Smyrl, William H. Ionic Conductivity of a poly(vinylpyridinium)/Silver Iodide Solid Polymer Electrolyte System. Solid State Ionics (in press 2004). 4. Pappenfus Ted M.; Mann, Kent R; Smyrl, William H. Polyelectrolyte Composite Materials with LiPFs and Tetraglyme. Electrochemical and Solid State Letters, (2004), 7(8), A254.

  13. Fuzzy control for the operation of an electrical energy generation system based on standard fuel cells PEM; Control difuso para la operacion de un sistema de generacion de energia electrica basado en celdas de combustible tipo PEM

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez R, Miguel; Gutierrez A, Ruben [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Rodriguez P, Alejandro [Centro Nacional de Investigacion y Desarrollo Tecnologico (Cenidet), Cuernavaca, Morelos (Mexico)

    2005-07-01

    Fuel cells, as totally clean power plants, have many applications in the industry in general, in the transport system, in the electricity generation for domestic consumption and in the communication systems, among others. When developing new forms of generation with renewable energy sources, it must be considered that petroleum will stop in being an available power resource. The interest in the study of the fuel cells has been increased in the last years because it is considered a solution to the supply of distributed energy problem. Therefore, already exist research institutions that are developing work on this technology. A generation of electrical energy system based on fuel cells is a nonlinear system where the control of the variables of the process, such as the temperature of the system and the pressurization of the reactants, are an important aspect for its proper operation, since it influences in the water balance and therefore in the global efficiency of the system. [Spanish] Las celdas de combustible, como fuente de energia totalmente limpia, tienen muchas aplicaciones en la industria en general: en el sistema de transporte, en la generacion de electricidad para consumo domestico y en los sistemas de comunicacion, entre otros. Al desarrollar nuevas formas de generacion con fuentes de energia renovables, se debe considerar que el petroleo dejara de ser un recurso energetico disponible. El interes en el estudio de las celdas de combustible se ha incrementado en los ultimos anos debido a que se le considera una solucion al problema de abasto de energia distribuida. Por lo tanto, ya existen instituciones de investigacion que estan desarrollando trabajos sobre esta tecnologia. Un sistema de generacion de energia electrica basado en celdas de combustible es un sistema no lineal en donde el control de las variables del proceso, tales como la temperatura del sistema y la presurizacion de los reactantes, es un aspecto importante para su buen funcionamiento, ya que

  14. High Energy Density Regenerative Fuel Cell Systems for Terrestrial Applications

    Science.gov (United States)

    Burke, Kenneth A.

    1999-01-01

    Regenerative Fuel Cell System (RFCS) technology for energy storage has been a NASA power system concept for many years. Compared to battery-based energy storage systems, RFCS has received relatively little attention or resources for development because the energy density and electrical efficiency were not sufficiently attractive relative to advanced battery systems. Even today, RFCS remains at a very low technology readiness level (TRL of about 2 indicating feasibility has been demonstrated). Commercial development of the Proton Exchange Membrane (PEM) fuel cells for automobiles and other terrestrial applications and improvements in lightweight pressure vessel design to reduce weight and improve performance make possible a high energy density RFCS energy storage system. The results from this study of a lightweight RFCS energy storage system for a remotely piloted, solar-powered, high altitude aircraft indicate an energy density up to 790 w-h/kg with electrical efficiency of 53.4% is attainable. Such an energy storage system would allow a solar-powered aircraft to carry hundreds of kilograms of payload and remain in flight indefinitely for use in atmospheric research, earth observation, resource mapping. and telecommunications. Future developments in the areas of hydrogen and oxygen storage, pressure vessel design, higher temperature and higher- pressure fuel cell operation, unitized regenerative fuel cells, and commercial development of fuel cell technology will improve both the energy density and electrical efficiency of the RFCS.

  15. MMS Based Car Security System

    Directory of Open Access Journals (Sweden)

    Surendra Sot

    2013-03-01

    Full Text Available In This paper “MMS Based Car Security System” is being proposed to solve the issue. It introduces the integration between monitoring and tracking system. Both elements are very crucial in order to have a powerful security system. The system can send SMS and MMS to the owner to have fast response especially if the car is nearby. This paper focuses on using MMS and SMS technology. As soon as there is intrusion detected, first the SMS is sent to master user and the picture of the intruder will be sent via local GSM/GPRS service provider to user (and / or police mail ID. The implementation and testing results show the success of prototype in sending MMS to owner within 30 seconds. The timing and results are suitable to owner and police to take suitable action against intruder. User can also control the module using command. User has to send different SMS to module while configuration of module for master. Master user can be change as per need, only master user can make changes in to the module.

  16. A Correlation-Based Fingerprint Verification System

    NARCIS (Netherlands)

    Bazen, Asker M.; Verwaaijen, Gerben T.B.; Gerez, Sabih H.; Veelenturf, Leo P.J.; Zwaag, van der Berend Jan

    2000-01-01

    In this paper, a correlation-based fingerprint verification system is presented. Unlike the traditional minutiae-based systems, this system directly uses the richer gray-scale information of the fingerprints. The correlation-based fingerprint verification system first selects appropriate templates i

  17. An integrated one-step system to extract, analyze and annotate all relevant information from image-based cell screening of chemical libraries.

    Science.gov (United States)

    Rabal, Obdulia; Link, Wolfgang; Serelde, Beatriz G; Bischoff, James R; Oyarzabal, Julen

    2010-04-01

    Here we report the development and validation of a complete solution to manage and analyze the data produced by image-based phenotypic screening campaigns of small-molecule libraries. In one step initial crude images are analyzed for multiple cytological features, statistical analysis is performed and molecules that produce the desired phenotypic profile are identified. A naïve Bayes classifier, integrating chemical and phenotypic spaces, is built and utilized during the process to assess those images initially classified as "fuzzy"-an automated iterative feedback tuning. Simultaneously, all this information is directly annotated in a relational database containing the chemical data. This novel fully automated method was validated by conducting a re-analysis of results from a high-content screening campaign involving 33 992 molecules used to identify inhibitors of the PI3K/Akt signaling pathway. Ninety-two percent of confirmed hits identified by the conventional multistep analysis method were identified using this integrated one-step system as well as 40 new hits, 14.9% of the total, originally false negatives. Ninety-six percent of true negatives were properly recognized too. A web-based access to the database, with customizable data retrieval and visualization tools, facilitates the posterior analysis of annotated cytological features which allows identification of additional phenotypic profiles; thus, further analysis of original crude images is not required.

  18. Stem Cell-Based Cell Therapy for Glomerulonephritis

    Directory of Open Access Journals (Sweden)

    Meiling Jin

    2014-01-01

    Full Text Available Glomerulonephritis (GN, characterized by immune-mediated inflammatory changes in the glomerular, is a common cause of end stage renal disease. Therapeutic options for glomerulonephritis applicable to all cases mainly include symptomatic treatment and strategies to delay progression. In the attempt to yield innovative interventions fostering the limited capability of regeneration of renal tissue after injury and the uncontrolled pathological process by current treatments, stem cell-based therapy has emerged as novel therapy for its ability to inhibit inflammation and promote regeneration. Many basic and clinical studies have been performed that support the ability of various stem cell populations to ameliorate glomerular injury and improve renal function. However, there is a long way before putting stem cell-based therapy into clinical practice. In the present article, we aim to review works performed with respect to the use of stem cell of different origins in GN, and to discuss the potential mechanism of therapeutic effect and the challenges for clinical application of stem cells.

  19. Covering the Bases: Exploring Alternative Systems

    Science.gov (United States)

    Kurz, Terri L.; Garcia, Jorge

    2015-01-01

    Since the 1950s, the understanding of how the base 10 system works has been encouraged through alternative base systems (Price 1995; Woodward 2004). If high school students are given opportunities to learn other base systems and analyze what they denote, we believe that they will better understand the structure of base 10 and its operations…

  20. Stress-strain relationship of granular materials based on two cell systems%基于双胞元的颗粒材料应力-应变关系研究

    Institute of Scientific and Technical Information of China (English)

    董启朋; 姚海林; 卢正; 詹永祥

    2014-01-01

    基于细观力学,建立颗粒材料的宏观应力-应变与接触力、接触位移、枝矢量等细观量之间的关系。用改进的Voronoi-Delaunay法对颗粒材料进行几何和物理上划分,得到改进Bagi双胞元体系;以固体胞元为基础,运用牛顿第二定律和Gauss定理提出含有旋转矢量和重力的颗粒材料平均等效应力,避免了颗粒材料的准静态假设;在孔隙胞元区域内利用变形协调条件推导出含有孔隙面矢量等几何变量的颗粒材料平均等效应变。结合文献的二维颗粒材料宏观试验结果验证了双胞元平均等效应力-应变的正确性;在三维情形下,对比双胞元等效应变和最优拟合应变结果,同样验证了基于双胞元的颗粒材料应力-应变关系,因此,该颗粒材料应力-应变关系可以为数值模拟颗粒材料力学行为提供依据。%Based on granular mesomechanics, this paper sets up the relationship between the macro stress-strain and the mesoscopic quantities including the contact force, contact displacement and branch vector in granular materials. The method of improved Voronoi-Delaunay tessellation for granular materials in geometry and physics is further modified into two cell systems of Bagi. Taking solid cell systems as the basic elements, the average stress tensor that includes particle rotation vector and acceleration of gravity is derived based on Newton’s second law of motion and Gauss theorem. It avoids a static hypothesis. The average strain tensor expression including the void surface vector is derived based on the void cell with compatibility requirement. Two cell systems average equivalent stress-strain is correct combined with the literature of experimental resulting in two dimensions. Compared with two cell systems average equivalent strain and best fitting stress results under three dimensions, granular material stress-strain relationship based on the two cell systems is also

  1. Bringing fuel cells to reality and reality to fuel cells: A systems perspective on the use of fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Saxe, Maria

    2008-10-15

    The hopes and expectations on fuel cells are high and sometimes unrealistically positive. However, as an emerging technology, much remains to be proven and the proper use of the technology in terms of suitable applications, integration with society and extent of use is still under debate. This thesis is a contribution to the debate, presenting results from two fuel cell demonstration projects, looking into the introduction of fuel cells on the market, discussing the prospects and concerns for the near-term future and commenting on the potential use in a future sustainable energy system. Bringing fuel cells to reality implies finding near-term niche applications and markets where fuel cell systems may be competitive. In a sense fuel cells are already a reality as they have been demonstrated in various applications world-wide. However, in many of the envisioned applications fuel cells are far from being competitive and sometimes also the environmental benefit of using fuel cells in a given application may be questioned. Bringing reality to fuel cells implies emphasising the need for realistic expectations and pointing out that the first markets have to be based on the currently available technology and not the visions of what fuel cells could be in the future. The results from the demonstration projects show that further development and research on especially the durability for fuel cell systems is crucial and a general recommendation is to design the systems for high reliability and durability rather than striving towards higher energy efficiencies. When sufficient reliability and durability are achieved, fuel cell systems may be introduced in niche markets where the added values presented by the technology compensate for the initial high cost

  2. Multipotenciostat System Based on Virtual Instrumentation

    Directory of Open Access Journals (Sweden)

    Arrieta-Almario Álvaro Angel

    2014-07-01

    Full Text Available To carry out this project an electronic multichannel system of electrochemical measurement or multipotenciostat was developed. It is based on the cyclic voltammetry measurement technique, controlled by a computer that monitors, by means of an electronic circuit, both the voltage generated from the Pc and supplied to an electrolytic cell, and the current that flows through the electrodes of it. To design the application software and the user interface, Virtual Instrumentation was used. On the other hand, to perform the communication between the multipotenciostat circuit and the designed software, the National Instruments NI9263 and NI9203 acquisition modules were used. The system was tested on a substance with a known REDOX property, as well as to discriminate and classify some samples of coffee.

  3. Solid oxide fuel cell power system development

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, Rick [Delphi Automotive Systems, LLC., Troy, MI (United States); Wall, Mark [Independent Energy Partners Technology, LLC., Parker, CO (United States); Sullivan, Neal [Colorado School of Mines, Golden, CO (United States)

    2015-06-26

    This report summarizes the progress made during this contractual period in achieving the goal of developing the solid oxide fuel cell (SOFC) cell and stack technology to be suitable for use in highly-efficient, economically-competitive, commercially deployed electrical power systems. Progress was made in further understanding cell and stack degradation mechanisms in order to increase stack reliability toward achieving a 4+ year lifetime, in cost reduction developments to meet the SECA stack cost target of $175/kW (in 2007 dollars), and in operating the SOFC technology in a multi-stack system in a real-world environment to understand the requirements for reliably designing and operating a large, stationary power system.

  4. Hydrogen peroxide oxidant fuel cell systems for ultra-portable applications

    Science.gov (United States)

    Valdez, T. I.; Narayanan, S. R.

    2001-01-01

    This paper will address the issues of using hydrogen peroxide as an oxidant fuel in a miniature DMFC system. Cell performance for DMFC based fuel cells operating on hydrogen peroxide will be presented and discussed.

  5. Gas composition modeling in a reformed Methanol Fuel Cell system using adaptive Neuro-Fuzzy Inference Systems

    DEFF Research Database (Denmark)

    Justesen, Kristian Kjær; Andreasen, Søren Juhl; Shaker, Hamid Reza

    2013-01-01

    This work presents a method for modeling the gas composition in a Reformed Methanol Fuel Cell system. The method is based on Adaptive Neuro-Fuzzy-Inference-Systems which are trained on experimental data. The developed models are of the H2, CO2, CO and CH3OH mass flows of the reformed gas. The ANFIS......, or fuel cell diagnostics systems....

  6. Engineered cells as biosensing systems in biomedical analysis.

    Science.gov (United States)

    Raut, Nilesh; O'Connor, Gregory; Pasini, Patrizia; Daunert, Sylvia

    2012-04-01

    Over the past two decades there have been great advances in biotechnology, including use of nucleic acids, proteins, and whole cells to develop a variety of molecular analytical tools for diagnostic, screening, and pharmaceutical applications. Through manipulation of bacterial plasmids and genomes, bacterial whole-cell sensing systems have been engineered that can serve as novel methods for analyte detection and characterization, and as more efficient and cost-effective alternatives to traditional analytical techniques. Bacterial cell-based sensing systems are typically sensitive, specific and selective, rapid, easy to use, low-cost, and amenable to multiplexing, high-throughput, and miniaturization for incorporation into portable devices. This critical review is intended to provide an overview of available bacterial whole-cell sensing systems for assessment of a variety of clinically relevant analytes. Specifically, we examine whole-cell sensing systems for detection of bacterial quorum sensing molecules, organic and inorganic toxic compounds, and drugs, and for screening of antibacterial compounds for identification of their mechanisms of action. Methods used in the design and development of whole-cell sensing systems are also reviewed.

  7. Decision Support and Knowledge-Based Systems.

    Science.gov (United States)

    Konsynski, Benn R.; And Others

    1988-01-01

    A series of articles addresses issues concerning decision support and knowledge based systems. Topics covered include knowledge-based systems for information centers; object oriented systems; strategic information systems case studies; user perception; manipulation of certainty factors by individuals and expert systems; spreadsheet program use;…

  8. Fabrication and Characterization of Copper System Compound Semiconductor Solar Cells

    Directory of Open Access Journals (Sweden)

    Ryosuke Motoyoshi

    2010-01-01

    Full Text Available Copper system compound semiconductor solar cells were produced by a spin-coating method, and their cell performance and structures were investigated. Copper indium disulfide- (CIS- based solar cells with titanium dioxide (TiO2 were produced on F-doped SnO2 (FTO. A device based on an FTO/CIS/TiO2 structure provided better cell performance compared to that based on FTO/TiO2/CIS structure. Cupric oxide- (CuO- and cuprous oxide- (Cu2O- based solar cells with fullerene (C60 were also fabricated on FTO and indium tin oxide (ITO. The microstructure and cell performance of the CuO/C60 heterojunction and the Cu2O:C60 bulk heterojunction structure were investigated. The photovoltaic devices based on FTO/CuO/C60 and ITO/Cu2O:C60 structures provided short-circuit current density of 0.015 mAcm−2 and 0.11 mAcm−2, and open-circuit voltage of 0.045 V and 0.17 V under an Air Mass 1.5 illumination, respectively. The microstructures of the active layers were examined by X-ray diffraction and transmission electron microscopy.

  9. Multiphysics Based Thermal Modeling of a Pouch Lithium-Ion Battery Cell for the Development of Pack Level Thermal Management System

    DEFF Research Database (Denmark)

    Khan, Mohammad Rezwan; Kær, Søren Knudsen

    2016-01-01

    The research is focused on the development of a three-dimensional cell level multiphysics battery thermal model. The primary aim is to represent the cooling mechanism inside the unit cell battery pack. It is accomplished through the coupling of heat transfer and computational fluid dynamics (CFD)...

  10. Microfabricated Electrochemical Cell-Based Biosensors for Analysis of Living Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2012-04-01

    Full Text Available Cellular biochemical parameters can be used to reveal the physiological and functional information of various cells. Due to demonstrated high accuracy and non-invasiveness, electrochemical detection methods have been used for cell-based investigation. When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring. In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology. This review aims to give an overview of the microfabricated electrochemical cell-based biosensors, such as microelectrode arrays (MEA, the electric cell-substrate impedance sensing (ECIS technique, and the light addressable potentiometric sensor (LAPS. The details in their working principles, measurement systems, and applications in cell monitoring are covered. Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

  11. Break-in and Performance Issues on a single cell PBI-based PEM Fuel Cell

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen; Jespersen, Jesper Lebæk

    and the current drawn from the fuel cell are of great importance. One must therefore choose the point of operation carefully in order for the fuel cell to fulfil the requirements for lifetime perform-ance of the system. Break-in of fuel cells is often done in scientific experiments to improve the performance...... of the fuel cell, even though break-in of a fuel cell implemented in a commercial application would most likely not be feasible. In the present work a commercially available PBI-based high temperature MEA is subject to a break-in procedure, as specified by the manufacturer. The cell was operated at 160 °C...... at the active sites of the electrodes causing a more sluggish perform-ance. Moreover, preliminary data is given on a long term degradation study, using Electrochemical Im-pedance Spectroscopy (EIS) measurements to analyze the degradation at high current densities (0.8 A/cm2)....

  12. Remote Monitoring System for Communication Base Based on Short Message

    Directory of Open Access Journals (Sweden)

    Han Yu Fu

    2013-07-01

    Full Text Available This paper presents design and development of an automatic monitoring system of communication base which is an important means to realize modernization of mobile communication base station management. Firstly, this paper proposes the architecture of the monitoring system. The proposed system consists of mocrocontrollers, sensors, GSM module and MFRC500 etc. The value of parameters is measured in the system including terminal is studied and designed, including hardware design based on embedded system and software design. Finally, communication module is discussed. The monitoring system which is designed  based on GSM SMS(short message service can improve the integrity, reliability, flexibility and intellectuality of monitoring system.

  13. Ni-Based Solid Oxide Cell Electrodes

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Holtappels, Peter

    2013-01-01

    This paper is a critical review of the literature on nickel-based electrodes for application in solid oxide cells at temperature from 500 to 1000 _C. The applications may be fuel cells or electrolyser cells. The reviewed literature is that of experimental results on both model electrodes...... and practical composite cermet electrodes. A substantially longer three-phase boundary (TPB) can be obtained per unit area of cell in such a composite of nickel and electrolyte material, provided that two interwoven solid networks of the two solid and one gaseous phases are obtained to provide a three...... - dimensional TPB throughout the electrode volume. Variables that are used for controlling the properties of Ni-cermet electrodes are: (1) Ni/YSZ volume ratio, and (2) porosity and particle size distribution, which mainly affected by raw materials morphology, application methods and production parameters...

  14. A web-based audiometry database system.

    Science.gov (United States)

    Yeh, Chung-Hui; Wei, Sung-Tai; Chen, Tsung-Wen; Wang, Ching-Yuang; Tsai, Ming-Hsui; Lin, Chia-Der

    2014-07-01

    To establish a real-time, web-based, customized audiometry database system, we worked in cooperation with the departments of medical records, information technology, and otorhinolaryngology at our hospital. This system includes an audiometry data entry system, retrieval and display system, patient information incorporation system, audiometry data transmission program, and audiometry data integration. Compared with commercial audiometry systems and traditional hand-drawn audiometry data, this web-based system saves time and money and is convenient for statistics research.

  15. Honeypot based Secure Network System

    Directory of Open Access Journals (Sweden)

    Yogendra Kumar Jain

    2011-02-01

    Full Text Available A honeypot is a non-production system, design to interact with cyber-attackers to collect intelligence on attack techniques and behaviors. There has been great amount of work done in the field of networkintrusion detection over the past three decades. With networks getting faster and with the increasing dependence on the Internet both at the personal and commercial level, intrusion detection becomes a challenging process. The challenge here is not only to be able to actively monitor large numbers of systems, but also to be able to react quickly to different events. Before deploying a honeypot it is advisable to have a clear idea of what the honeypot should and should not do. There should be clear understandingof the operating systems to be used and services (like a web server, ftp server etc a honeypot will run. The risks involved should be taken into consideration and methods to tackle or reduce these risks should be understood. It is also advisable to have a plan on what to do should the honeypot be compromised. In case of production honeypots, a honeypot policy addressing security issues should be documented. Any legal issues with respect to the honeypots or their functioning should also be taken into consideration. In this paper we explain the relatively new concept of “honeypot.” Honeypots are a computer specifically designed to help learn the motives, skills and techniques of the hacker community and also describes in depth the concepts of honeypots and their contribution to the field of network security. The paper then proposes and designs an intrusion detection tool based on some of the existing intrusion detection techniques and the concept of honeypots.

  16. Automated microinjection system for adherent cells

    Science.gov (United States)

    Youoku, Sachihiro; Suto, Yoshinori; Ando, Moritoshi; Ito, Akio

    2007-07-01

    We have developed an automated microinjection system that can handle more than 500 cells an hour. Microinjection injects foreign agents directly into cells using a micro-capillary. It can randomly introduce agents such as DNA, proteins and drugs into various types of cells. However, conventional methods require a skilled operator and suffer from low throughput. The new automated microinjection techniques we have developed consist of a Petri dish height measuring method and a capillary apex position measuring method. The dish surface height is measured by analyzing the images of cells that adhere to the dish surface. The contrast between the cell images is minimized when the focus plane of an object lens coincides with the dish surface. We have developed an optimized focus searching method with a height accuracy of +/-0.2 um. The capillary apex position detection method consists of three steps: rough, middle, and precise. These steps are employed sequentially to cover capillary displacements of up to +/-2 mm, and to ultimately accomplish an alignment accuracy of less than one micron. Experimental results using this system we developed show that it can introduce fluorescent material (Alexa488) into adherent cells, HEK293, with a success rate of 88.5%.

  17. Sizing an isolated wind-solar-fuel cell generation system based on the particle swarm optimization method; Dimensionamiento de un sistema de generacion aislado eolico-solar-celda de combustible basado en el metodo de optimizacion de enjambre de particulas

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Huerta, V; Ramirez-Arredondo, Juan M. [Universidad de Quintana Roo, Chetumal, Quintana Roo (Mexico)]. E-mail: vsanchez@gdl.cinvestav.mx; Arriaga-Hurtado, L. G. [CIDETEQ, Queretaro (Mexico)

    2009-09-15

    Sizing an electric energy system requires an analysis of investment, maintenance and operating costs. In the case of a generation system that uses renewable sources, optimal capacity becomes more complex compared to a conventional system, because of the randomness of renewable resources (wind, solar) and the still high costs of wind and photovoltage generator modules. This work presents the optimal sizing of a wind-solar-fuel cell generation system, minimizing the costs of the system while satisfying the energy demands of an isolated charge. The optimization method used is based on an evolutionary programming technique known as particle swarms (PSO-particle swarm optimization). The generation of energy with a hybrid system is discussed, based on the profile of insolation and wind availability at the site, with the objective of satisfying a specific electric demand. [Spanish] El dimensionamiento de un sistema de generacion de energia electrica requiere un analisis de los costos de inversion, mantenimiento y operacion. En el caso de un sistema de generacion que utiliza fuentes renovables la capacidad optima resulta mas compleja con respecto a un sistema convencional, debido a la aleatoriedad de los recursos renovables (eolico, solar), y a los aun altos costos de generadores eolicos y modulos fotovoltaicos. En este trabajo se presenta el dimensionamiento optimo de un sistema de generacion eolico-solar-celda de combustible minimizando los costos del sistema que satisfaga la energia demandada por una carga aislada. El metodo de optimizacion utilizado esta basado en una tecnica de programacion evolutiva conocida como enjambre de particulas (PSO por sus siglas en ingles: particle swarm optimization). Se plantea la generacion de energia del sistema hibrido con base a la insolacion y el perfil del viento disponible en sitio, con objeto de satisfacer una demanda electrica determinada.

  18. Modeling and control of the output current of a Reformed Methanol Fuel Cell system

    DEFF Research Database (Denmark)

    Justesen, Kristian Kjær; Andreasen, Søren Juhl; Pasupathi, Sivakumar

    2015-01-01

    In this work, a dynamic Matlab SIMULINK model of the relationship between the fuel cell current set point of a Reformed Methanol Fuel Cell system and the output current of the system is developed. The model contains an estimated fuel cell model, based on a polarization curve and assumed first order...

  19. Synthesis of Evolving Cells for Reconfigurable Manufacturing Systems

    Science.gov (United States)

    Padayachee, J.; Bright, G.

    2014-07-01

    The concept of Reconfigurable Manufacturing Systems (RMSs) was formulated due to the global necessity for production systems that are able to economically evolve according to changes in markets and products. Technologies and design methods are under development to enable RMSs to exhibit transformable system layouts, reconfigurable processes, cells and machines. Existing factory design methods and software have not yet advanced to include reconfigurable manufacturing concepts. This paper presents the underlying group technology framework for the design of manufacturing cells that are able to evolve according to a changing product mix by mechanisms of reconfiguration. The framework is based on a Norton- Bass forecast and time variant BOM models. An adaptation of legacy group technology methods is presented for the synthesis of evolving cells and two optimization problems are presented within this context.

  20. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    David Deangelis; Rich Depuy; Debashis Dey; Georgia Karvountzi; Nguyen Minh; Max Peter; Faress Rahman; Pavel Sokolov; Deliang Yang

    2004-09-30

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale up strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.

  1. Fuel quality issues in stationary fuel cell systems.

    Energy Technology Data Exchange (ETDEWEB)

    Papadias, D.; Ahmed, S.; Kumar, R. (Chemical Sciences and Engineering Division)

    2012-02-07

    Fuel cell systems are being deployed in stationary applications for the generation of electricity, heat, and hydrogen. These systems use a variety of fuel cell types, ranging from the low temperature polymer electrolyte fuel cell (PEFC) to the high temperature solid oxide fuel cell (SOFC). Depending on the application and location, these systems are being designed to operate on reformate or syngas produced from various fuels that include natural gas, biogas, coal gas, etc. All of these fuels contain species that can potentially damage the fuel cell anode or other unit operations and processes that precede the fuel cell stack. These detrimental effects include loss in performance or durability, and attenuating these effects requires additional components to reduce the impurity concentrations to tolerable levels, if not eliminate the impurity entirely. These impurity management components increase the complexity of the fuel cell system, and they add to the system's capital and operating costs (such as regeneration, replacement and disposal of spent material and maintenance). This project reviewed the public domain information available on the impurities encountered in stationary fuel cell systems, and the effects of the impurities on the fuel cells. A database has been set up that classifies the impurities, especially in renewable fuels, such as landfill gas and anaerobic digester gas. It documents the known deleterious effects on fuel cells, and the maximum allowable concentrations of select impurities suggested by manufacturers and researchers. The literature review helped to identify the impurity removal strategies that are available, and their effectiveness, capacity, and cost. A generic model of a stationary fuel-cell based power plant operating on digester and landfill gas has been developed; it includes a gas processing unit, followed by a fuel cell system. The model includes the key impurity removal steps to enable predictions of impurity breakthrough

  2. Examination of the effect of system pressure ratio and heat recuperation on the efficiency of a coal based gas turbine fuel cell hybrid power generation system with CO2 capture

    Energy Technology Data Exchange (ETDEWEB)

    VanOsdol, J.G.; Gemmen, R.S.; Liese, E.A

    2008-06-01

    This paper examines two coal-based hybrid configurations that employ separated anode and cathode streams for the capture and compression of CO2. One configuration uses a standard Brayton cycle, and the other adds heat recuperation ahead of the fuel cell. Results show that peak efficiencies near 55% are possible, regardless of cycle configuration, including the cost in terms of energy production of CO2 capture and compression. The power that is required to capture and compress the CO2 is shown to be approximately 15% of the total plant power.

  3. Fuel Cell System for Transportation -- 2005 Cost Estimate

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, D.

    2006-10-01

    Independent review report of the methodology used by TIAX to estimate the cost of producing PEM fuel cells using 2005 cell stack technology. The U.S. Department of Energy (DOE) Hydrogen, Fuel Cells and Infrastructure Technologies Program Manager asked the National Renewable Energy Laboratory (NREL) to commission an independent review of the 2005 TIAX cost analysis for fuel cell production. The NREL Systems Integrator is responsible for conducting independent reviews of progress toward meeting the DOE Hydrogen Program (the Program) technical targets. An important technical target of the Program is the proton exchange membrane (PEM) fuel cell cost in terms of dollars per kilowatt ($/kW). The Program's Multi-Year Program Research, Development, and Demonstration Plan established $125/kW as the 2005 technical target. Over the last several years, the Program has contracted with TIAX, LLC (TIAX) to produce estimates of the high volume cost of PEM fuel cell production for transportation use. Since no manufacturer is yet producing PEM fuel cells in the quantities needed for an initial hydrogen-based transportation economy, these estimates are necessary for DOE to gauge progress toward meeting its targets. For a PEM fuel cell system configuration developed by Argonne National Laboratory, TIAX estimated the total cost to be $108/kW, based on assumptions of 500,000 units per year produced with 2005 cell stack technology, vertical integration of cell stack manufacturing, and balance-of-plant (BOP) components purchased from a supplier network. Furthermore, TIAX conducted a Monte Carlo analysis by varying ten key parameters over a wide range of values and estimated with 98% certainty that the mean PEM fuel cell system cost would be below DOE's 2005 target of $125/kW. NREL commissioned DJW TECHNOLOGY, LLC to form an Independent Review Team (the Team) of industry fuel cell experts and to evaluate the cost estimation process and the results reported by TIAX. The results of

  4. SQUID-based measuring systems

    Indian Academy of Sciences (India)

    M P Janawadkar; R Baskaran; R Nagendran; K Gireesan; N Harishkumar; Rita Saha; L S Vaidhyanathan; J Jayapandian; Y Hariharan; T S Radhakrishnan

    2002-05-01

    A program has been developed and initiated at the Indira Gandhi Centre for Atomic Research (IGCAR) for the utilization of SQUID sensors in various application areas. DC SQUID sensors based on Nb–AlO–Nb Josephson junctions have been designed and developed inhouse along with associated flux-locked loop (FLL) electronics. A compact low field SQUID magnetometer insertible in a liquid helium storage dewar has also been developed inhouse and is in use. Efforts to build a high field SQUID magnetometer, SQUID-DAC system, are in progress. A planar gradiometric DC SQUID sensor for non-destructive evaluation (NDE) application to be used in relatively unshielded environment has been designed and developed. An easily portable NDE cryostat with a small lift-off distance, to be used in external locations has been designed and tested. The magnetic field produced by a given two-dimensional current density distribution is inverted using the Fourier transform technique.

  5. A human stem cell-based model for identifying adverse effects of organic and inorganic chemicals on the developing nervous system

    DEFF Research Database (Denmark)

    Buzanska, Leonora; Sypecka, Joanna; Nerini-Molteni, Silvia;

    2009-01-01

    (sodium tellurite, methylmercury chloride, cadmium chloride, chlorpyrifos, and L-glutamate) and non-neurotoxic (acetaminophen, theophylline, and D-glutamate) compounds. In addition, we investigated the effect of some compounds on key neurodevelopmental processes like cell proliferation, apoptotic cell...... death, and neuronal and glial differentiation. Less differentiated HUCB-NSCs were generally more sensitive to neurotoxicants, with the notable exception of L-glutamate, which showed a higher toxicity to later stages. The relative potencies of the compounds were: cadmium chloride > methylmercury chloride...

  6. Advanced photovoltaic power system technology for lunar base applications

    Science.gov (United States)

    Brinker, David J.; Flood, Dennis J.

    1992-01-01

    The development of an advanced photovoltaic power system that would have application for a manned lunar base is currently planned under the Surface Power element of Pathfinder. Significant mass savings over state-of-the-art photovoltaic/battery systems are possible with the use of advanced lightweight solar arrays coupled with regenerative fuel cell storage. The solar blanket, using either ultrathin GaAs or amorphous silicon solar cells, would be integrated with a reduced-g structure. Regenerative fuel cells with high-pressure gas storage in filament-wound tanks are planned for energy storage. An advanced PV/RFC power system is a leading candidate for a manned lunar base as it offers a tremendous weight advantage over state-of-the-art photovoltaic/battery systems and is comparable in mass to other advanced power generation technologies.

  7. Solar cell auto-tracking system based on Siemens S7-200 PLC%基于S7-200 PLC的太阳能电池自动跟踪实训系统

    Institute of Scientific and Technical Information of China (English)

    杨晟

    2013-01-01

    According to the working principle of solar cell auto-tracking system,a solar cell auto-tracking system based on Siemens S7-200 PLC was studied for student′s training. The bi-axial tracking system is adopted in this system. The optical sen-sors are used to collect the information of the sun position to control the 2D movement mechanism,which keeps the solar panels facing the sun to gain the maximum solar power. This system meets the training requirements for students in PV new energy ma-jor of vocational colleges,and can be applied to real engineering circumstances.%根据太阳能电池自动跟踪系统的工作原理,研究了一种基于西门子S7-200可编程序控制器(PLC)的太阳能电池自动跟踪实训系统。系统采用双轴跟踪,通过光学传感器采集模拟太阳光位置信息,控制两维运动机构,使太阳能电池板始终正对着模拟太阳光源,从而获得最大的太阳能,该系统能够满足高职院校光伏新能源专业学生的实训教学,也可应用于工程实际中。

  8. Evaluation of clinical trial eligibility and prognostic indices in a population-based cohort of systemic peripheral T-cell lymphomas from the Danish Lymphoma Registry

    DEFF Research Database (Denmark)

    Pedersen, Martin Bjerregaard; Hamilton-Dutoit, Stephen Jacques; Bendix, Knud;

    2015-01-01

    patients, approximately half were eligible for multiagent chemotherapy with or without consolidating SCT. Both IPI and PIT are useful prognostic indices in all 'primary nodal' PTCL entities. The prognostic value of ALK protein expression in anaplastic large cell lymphoma is significantly downsized when...

  9. Novel proton exchange membrane fuel cell electrodes to improve performance of reversible fuel cell systems

    Science.gov (United States)

    Brown, Tim Matthew

    Proton exchange membrane (PEM) fuel cells react fuel and oxidant to directly and efficiently produce electrical power, without the need for combustion, heat engines, or motor-generators. Additionally, PEM fuel cell systems emit zero to virtually zero criteria pollutants and have the ability to reduce CO2 emissions due to their efficient operation, including the production or processing of fuel. A reversible fuel cell (RFC) is one particular application for a PEM fuel cell. In this application the fuel cell is coupled with an electrolyzer and a hydrogen storage tank to complete a system that can store and release electrical energy. These devices can be highly tailored to specific energy storage applications, potentially surpassing the performance of current and future secondary battery technology. Like all PEM applications, RFCs currently suffer from performance and cost limitations. One approach to address these limitations is to improve the cathode performance by engineering more optimal catalyst layer geometry as compared to the microscopically random structure traditionally used. Ideal configurations are examined and computer modeling shows promising performance improvements are possible. Several novel manufacturing methods are used to build and test small PEM fuel cells with novel electrodes. Additionally, a complete, dynamic model of an RFC system is constructed and the performance is simulated using both traditional and novel cathode structures. This work concludes that PEM fuel cell microstructures can be tailored to optimize performance based on design operating conditions. Computer modeling results indicate that novel electrode microstructures can improve fuel cell performance, while experimental results show similar performance gains that bolster the theoretical predictions. A dynamic system model predicts that novel PEM fuel cell electrode structures may enable RFC systems to be more competitive with traditional energy storage technology options.

  10. The promise of fuel cell-based automobiles

    Indian Academy of Sciences (India)

    A K Shukla; C L Jackson; K Scott

    2003-02-01

    Fuel cell-based automobiles have gained attention in the last few years due to growing public concern about urban air pollution and consequent environmental problems. From an analysis of the power and energy requirements of a modern car, it is estimated that a base sustainable power of $ca$. 50 kW supplemented with short bursts up to 80 kW will suffice in most driving requirements. The energy demand depends greatly on driving characteristics but under normal usage is expected to be 200 Wh/km. The advantages and disadvantages of candidate fuel-cell systems and various fuels are considered together with the issue of whether the fuel should be converted directly in the fuel cell or should be reformed to hydrogen onboard the vehicle. For fuel cell vehicles to compete successfully with conventional internal-combustion engine vehicles, it appears that direct conversion fuel cells using probably hydrogen, but possibly methanol, are the only realistic contenders for road transportation applications. Among the available fuel cell technologies, polymer–electrolyte fuel cells directly fueled with hydrogen appear to be the best option for powering fuel cell vehicles as there is every prospect that these will exceed the performance of the internal-combustion engine vehicles but for their first cost. A target cost of $ 50/kW would be mandatory to make polymer–electrolyte fuel cells competitive with the internal combustion engines and can only be achieved with design changes that would substantially reduce the quantity of materials used. At present, prominent car manufacturers are deploying important research and development efforts to develop fuel cell vehicles and are projecting to start production by 2005.

  11. Sublingual administration of an adenovirus serotype 5 (Ad5)-based vaccine confirms Toll-like receptor agonist activity in the oral cavity and elicits improved mucosal and systemic cell-mediated responses against HIV antigens despite preexisting Ad5 immunity.

    Science.gov (United States)

    Appledorn, Daniel M; Aldhamen, Yasser A; Godbehere, Sarah; Seregin, Sergey S; Amalfitano, Andrea

    2011-01-01

    HIV/AIDS continue to devastate populations worldwide. Recent studies suggest that vaccines that induce beneficial immune responses in the mucosal compartment may improve the efficacy of HIV vaccines. Adenovirus serotype 5 (Ad5)-based vectors remain a promising platform for the development of effective vaccines. In an effort to improve the efficacy of Ad5-based vaccines, even in the presence of preexisting Ad5 immunity, we evaluated the potential for an Ad5-based HIV vaccine to induce antigen-specific immune responses following sublingual (s.l.) administration, a route not previously tested in regard to Ad-based vaccines. s.l. vaccination with an Ad5-based HIV-Gag vaccine resulted in a significant induction of Gag-specific cytotoxic T-lymphocyte (CTL) responses in both the systemic and the mucosal compartment. We also show that s.l. immunization not only avoided preexisting Ad5 immunity but also elicited a broad repertoire of antigen-specific CTL clones. Additionally, we confirm for the first time that oral delivery of a vaccine expressing a potent Toll-like receptor (TLR) agonist can stimulate innate immune responses through induction of cytokines and chemokines and activation of NK cells, NKT cells, and macrophages in vivo. These results positively correlated with improved antigen-specific CTL responses. These results could be achieved both in Ad5-naïve mice and in mice with preexisting immunity to Ad5. The simplicity of the s.l. vaccination regimen coupled with augmentation of TLR-dependent pathways active in the oral cavity makes s.l. delivery a promising method for HIV vaccine development specifically, as well as for many other vaccine applications in general.

  12. Tensegrity I. Cell structure and hierarchical systems biology

    Science.gov (United States)

    Ingber, Donald E.

    2003-01-01

    In 1993, a Commentary in this journal described how a simple mechanical model of cell structure based on tensegrity architecture can help to explain how cell shape, movement and cytoskeletal mechanics are controlled, as well as how cells sense and respond to mechanical forces (J. Cell Sci. 104, 613-627). The cellular tensegrity model can now be revisited and placed in context of new advances in our understanding of cell structure, biological networks and mechanoregulation that have been made over the past decade. Recent work provides strong evidence to support the use of tensegrity by cells, and mathematical formulations of the model predict many aspects of cell behavior. In addition, development of the tensegrity theory and its translation into mathematical terms are beginning to allow us to define the relationship between mechanics and biochemistry at the molecular level and to attack the larger problem of biological complexity. Part I of this two-part article covers the evidence for cellular tensegrity at the molecular level and describes how this building system may provide a structural basis for the hierarchical organization of living systems--from molecule to organism. Part II, which focuses on how these structural networks influence information processing networks, appears in the next issue.

  13. Fluorogenic Cell-Based Biosensors for Monitoring Microbes

    Science.gov (United States)

    Curtis, Theresa; Salazar, Noe; Tabb, Joel; Chase, Chris

    2010-01-01

    Fluorogenic cell-based sensor systems for detecting microbes (especially pathogenic ones) and some toxins and allergens are undergoing development. These systems harness the natural signaltransduction and amplification cascades that occur in mast cells upon activation with antigens. These systems include (1) fluidic biochips for automated containment of samples, reagents, and wastes and (2) sensitive, compact fluorometers for monitoring the fluorescent responses of mast cells engineered to contain fluorescent dyes. It should be possible to observe responses within minutes of adding immune complexes. The systems have been shown to work when utilizing either immunoglobulin E (IgE) antibodies or traditionally generated rat antibodies - a promising result in that it indicates that the systems could be developed to detect many target microbes. Chimeric IgE antibodies and rat immunoglobulin G (IgG) antibodies could be genetically engineered for recognizing biological and chemical warfare agents and airborne and food-borne allergens. Genetic engineering efforts thus far have yielded (1) CD14 chimeric antibodies that recognize both Grampositive and Gram-negative bacteria and bind to the surfaces of mast cells, eliciting a degranulation response and (2) rat IgG2a antibodies that act similarly in response to low levels of canine parvovirus.

  14. Ontology for cell-based geographic information

    Science.gov (United States)

    Zheng, Bin; Huang, Lina; Lu, Xinhai

    2009-10-01

    Inter-operability is a key notion in geographic information science (GIS) for the sharing of geographic information (GI). That requires a seamless translation among different information sources. Ontology is enrolled in GI discovery to settle the semantic conflicts for its natural language appearance and logical hierarchy structure, which are considered to be able to provide better context for both human understanding and machine cognition in describing the location and relationships in the geographic world. However, for the current, most studies on field ontology are deduced from philosophical theme and not applicable for the raster expression in GIS-which is a kind of field-like phenomenon but does not physically coincide to the general concept of philosophical field (mostly comes from the physics concepts). That's why we specifically discuss the cell-based GI ontology in this paper. The discussion starts at the investigation of the physical characteristics of cell-based raster GI. Then, a unified cell-based GI ontology framework for the recognition of the raster objects is introduced, from which a conceptual interface for the connection of the human epistemology and the computer world so called "endurant-occurrant window" is developed for the better raster GI discovery and sharing.

  15. Systems Engineering for Contingency Basing

    Science.gov (United States)

    2012-11-30

    11 Figure 2 – Boardman Soft Systems Methodology ............................................................ 12...into detailed consideration of solution implementation The creation of systemigrams follow the Boardman Soft Systems Methodology (BSSM) of seven...are depicted in Figure 2 followed by a description of each step as it related to this sub-task. Figure 2 – Boardman Soft Systems Methodology Step

  16. Design of Propulsion System for a Fuel Cell Vehicle

    DEFF Research Database (Denmark)

    Schaltz, Erik; Andreasen, Søren Juhl; Rasmussen, Peter Omand

    2007-01-01

    This paper presents a design method of propulsion systems for fuel cell vehicles complying with the 42V PowerNet standard. The method is based on field measurements during several weeks. Several cases of combining energy storage devices to a common bus voltage are investigated, and the total mass......, volume, cost and efficiency of the propulsion system are compared. It is concluded that the number of energy storage devices and their connecting to the common bus have a significant affect of the mass, volume, cost and efficiency of the propulsion system....

  17. Polybenzimidazoles based on high temperature polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Linares Leon, Jose Joaquin; Camargo, Ana Paula M.; Ashino, Natalia M.; Morgado, Daniella L.; Frollini, Elisabeth; Paganin, Valdecir A.; Gonzalez, Ernesto Rafael [Universidade de Sao Paulo (IQSC/USP), Sao Carlos, SP (Brazil); Bajo, Justo Lobato [University of Castilla-La Mancha, Ciudad Real (Spain). Dept. of Chemical Engineering

    2010-07-01

    This work presents an interesting approach in order to enhance the performance of Polymer Electrolyte Membrane Fuel Cells (PEMFC) by means of an increase in the operational temperature. For this, two polymeric materials, Poly(2,5-bibenzimidazole) (ABPBI) and Poly[2,2'-(m-phenyl en)-5,5' bib enzimidazol] (PBI), impregnated with phosphoric acid have been utilized. These have shown excellent properties, such as thermal stability above 500 deg C, reasonably high conductivity when impregnated with H{sub 3}PO{sub 4} and a low permeability to alcohols compared to Nafion. Preliminary fuel cells measurements on hydrogen based Polymer Electrolyte Membrane Fuel Cell (PEMFC) displayed an interestingly reasonable good fuel cell performance, a quite reduced loss when the hydrogen stream was polluted with carbon monoxide, and finally, when the system was tested with an ethanol/water (E/W) fuel, it displayed quite promising results that allows placing this system as an attractive option in order to increase the cell performance and deal with the typical limitations of low temperature Nafion-based PEMFC. (author)

  18. Organic electrochemical transistors for cell-based impedance sensing

    Energy Technology Data Exchange (ETDEWEB)

    Rivnay, Jonathan, E-mail: rivnay@emse.fr, E-mail: owens@emse.fr; Ramuz, Marc; Hama, Adel; Huerta, Miriam; Owens, Roisin M., E-mail: rivnay@emse.fr, E-mail: owens@emse.fr [Department of Bioelectronics, Ecole des Mines de St. Etienne, 13541 Gardanne (France); Leleux, Pierre [Department of Bioelectronics, Ecole des Mines de St. Etienne, 13541 Gardanne (France); Microvitae Technologies, Pole d' Activite Y. Morandat, 13120 Gardanne (France)

    2015-01-26

    Electrical impedance sensing of biological systems, especially cultured epithelial cell layers, is now a common technique to monitor cell motion, morphology, and cell layer/tissue integrity for high throughput toxicology screening. Existing methods to measure electrical impedance most often rely on a two electrode configuration, where low frequency signals are challenging to obtain for small devices and for tissues with high resistance, due to low current. Organic electrochemical transistors (OECTs) are conducting polymer-based devices, which have been shown to efficiently transduce and amplify low-level ionic fluxes in biological systems into electronic output signals. In this work, we combine OECT-based drain current measurements with simultaneous measurement of more traditional impedance sensing using the gate current to produce complex impedance traces, which show low error at both low and high frequencies. We apply this technique in vitro to a model epithelial tissue layer and show that the data can be fit to an equivalent circuit model yielding trans-epithelial resistance and cell layer capacitance values in agreement with literature. Importantly, the combined measurement allows for low biases across the cell layer, while still maintaining good broadband signal.

  19. Organic electrochemical transistors for cell-based impedance sensing

    Science.gov (United States)

    Rivnay, Jonathan; Ramuz, Marc; Leleux, Pierre; Hama, Adel; Huerta, Miriam; Owens, Roisin M.

    2015-01-01

    Electrical impedance sensing of biological systems, especially cultured epithelial cell layers, is now a common technique to monitor cell motion, morphology, and cell layer/tissue integrity for high throughput toxicology screening. Existing methods to measure electrical impedance most often rely on a two electrode configuration, where low frequency signals are challenging to obtain for small devices and for tissues with high resistance, due to low current. Organic electrochemical transistors (OECTs) are conducting polymer-based devices, which have been shown to efficiently transduce and amplify low-level ionic fluxes in biological systems into electronic output signals. In this work, we combine OECT-based drain current measurements with simultaneous measurement of more traditional impedance sensing using the gate current to produce complex impedance traces, which show low error at both low and high frequencies. We apply this technique in vitro to a model epithelial tissue layer and show that the data can be fit to an equivalent circuit model yielding trans-epithelial resistance and cell layer capacitance values in agreement with literature. Importantly, the combined measurement allows for low biases across the cell layer, while still maintaining good broadband signal.

  20. Area Logistics System Based on System Dynamics Model

    Institute of Scientific and Technical Information of China (English)

    GUI Shouping; ZHU Qiang; LU Lifang

    2005-01-01

    At present, there are few effective ways to analyze area logistics systems. This paper uses system dynamics to analyze the area logistics system and establishes a system dynamics model for the area logistics system based on the characteristics of the area logistics system and system dynamics. Numerical simulations with the system dynamic model were used to analyze a logistic system. Analysis of the Guangzhou economy shows that the model can reflect the actual state of the system objectively and can be used to make policy and harmonize environment.

  1. Non-disruptive measurement system of cell viability in bioreactors

    Science.gov (United States)

    Rudek, F.; Nelsen, B. L.; Baselt, T.; Berger, T.; Wiele, M.; Prade, I.; Hartmann, P.

    2016-04-01

    Nutrient and oxygen transport, as well as the removal of metabolic waste are essential processes to support and maintain viable tissue. Current bioreactor technology used to grow tissue cultures in vitro has a fundamental limit to the thickness of tissues. Based on the low diffusion limit of oxygen a maximum tissue thickness of 200 μm is possible. The efficiency of those systems is currently under investigation. During the cultivation process of the artificial tissue in bioreactors, which lasts 28 days or longer, there are no possibilities to investigate the viability of cells. This work is designed to determine the influence of a non-disruptive cell viability measuring system on cellular activity. The measuring system uses a natural cellular marker produced during normal metabolic activity. Nicotinamide adenine dinucleotide (NADH) is a coenzyme naturally consumed and produced during cellular metabolic processes and has thoroughly been studied to determine the metabolic state of a cell. Measuring the fluorescence of NADH within the cell represents a non-disruptive marker for cell viability. Since the measurement process is optical in nature, NADH fluorescence also provides a pathway for sampling at different measurement depths within a given tissue sample. The measurement system we are using utilizes a special UV light source, to excite the NADH fluorescence state. However, the high energy potentially alters or harms the cells. To investigate the influence of the excitation signal, the cells were irradiated with a laser operating at a wavelength of 355 nm and examined for cytotoxic effects. The aim of this study was to develop a non-cytotoxic system that is applicable for large-scale operations during drug-tissue interaction testing.

  2. Multifunctional non-viral delivery systems based on conjugated polymers.

    Science.gov (United States)

    Yang, Gaomai; Lv, Fengting; Wang, Bing; Liu, Libing; Yang, Qiong; Wang, Shu

    2012-12-01

    Multifunctional nanomaterials with simultaneous therapeutic and imaging functions explore new strategies for the treatment of various diseases. Conjugated polymers (CPs) are considered as novel candidates to serve as multifunctional delivery systems due to their high fluorescence quantum yield, good photostability, and low cytotoxicity. Highly sensitive sensing and imaging properties of CPs are well reviewed, while the applications of CPs as delivery systems are rarely covered. This feature article mainly focuses on CP-based multifunctional non-viral delivery systems for drug, protein, gene, and cell delivery. Promising directions for the further development of CP-based delivery systems are also discussed.

  3. Microprocessor based systems for the higher technician

    CERN Document Server

    Vears, RE

    2013-01-01

    Microprocessor Based Systems for the Higher Technician provides coverage of the BTEC level 4 unit in Microprocessor Based Systems (syllabus U80/674). This book is composed of 10 chapters and concentrates on the development of 8-bit microcontrollers specifically constructed around the Z80 microprocessor. The design cycle for the development of such a microprocessor based system and the use of a disk-based development system (MDS) as an aid to design are both described in detail. The book deals with the Control Program Monitor (CP/M) operating system and gives background information on file hand

  4. Spatial organization of mesenchymal stem cells in vitro--results from a new individual cell-based model with podia.

    Directory of Open Access Journals (Sweden)

    Martin Hoffmann

    Full Text Available Therapeutic application of mesenchymal stem cells (MSC requires their extensive in vitro expansion. MSC in culture typically grow to confluence within a few weeks. They show spindle-shaped fibroblastoid morphology and align to each other in characteristic spatial patterns at high cell density. We present an individual cell-based model (IBM that is able to quantitatively describe the spatio-temporal organization of MSC in culture. Our model substantially improves on previous models by explicitly representing cell podia and their dynamics. It employs podia-generated forces for cell movement and adjusts cell behavior in response to cell density. At the same time, it is simple enough to simulate thousands of cells with reasonable computational effort. Experimental sheep MSC cultures were monitored under standard conditions. Automated image analysis was used to determine the location and orientation of individual cells. Our simulations quantitatively reproduced the observed growth dynamics and cell-cell alignment assuming cell density-dependent proliferation, migration, and morphology. In addition to cell growth on plain substrates our model captured cell alignment on micro-structured surfaces. We propose a specific surface micro-structure that according to our simulations can substantially enlarge cell culture harvest. The 'tool box' of cell migratory behavior newly introduced in this study significantly enhances the bandwidth of IBM. Our approach is capable of accommodating individual cell behavior and collective cell dynamics of a variety of cell types and tissues in computational systems biology.

  5. Expert system for web based collaborative CAE

    Science.gov (United States)

    Hou, Liang; Lin, Zusheng

    2006-11-01

    An expert system for web based collaborative CAE was developed based on knowledge engineering, relational database and commercial FEA (Finite element analysis) software. The architecture of the system was illustrated. In this system, the experts' experiences, theories and typical examples and other related knowledge, which will be used in the stage of pre-process in FEA, were categorized into analysis process and object knowledge. Then, the integrated knowledge model based on object-oriented method and rule based method was described. The integrated reasoning process based on CBR (case based reasoning) and rule based reasoning was presented. Finally, the analysis process of this expert system in web based CAE application was illustrated, and an analysis example of a machine tool's column was illustrated to prove the validity of the system.

  6. Lithium-thionyl chloride cell system safety hazard analysis

    Science.gov (United States)

    Dampier, F. W.

    1985-03-01

    This system safety analysis for the lithium thionyl chloride cell is a critical review of the technical literature pertaining to cell safety and draws conclusions and makes recommendations based on this data. The thermodynamics and kinetics of the electrochemical reactions occurring during discharge are discussed with particular attention given to unstable SOCl2 reduction intermediates. Potentially hazardous reactions between the various cell components and discharge products or impurities that could occur during electrical or thermal abuse are described and the most hazardous conditions and reactions identified. Design factors influencing the safety of Li/SOCl2 cells, shipping and disposal methods and the toxicity of Li/SOCl2 battery components are additional safety issues that are also addressed.

  7. Economic competitiveness of fuel cell onsite integrated energy systems

    Science.gov (United States)

    Bollenbacher, G.

    1983-01-01

    The economic competitiveness of fuel cell onsite integrated energy systems (OS/IES) in residential and commercial buildings is examined. The analysis is carried out for three different buildings with each building assumed to be at three geographic locations spanning a range of climatic conditions. Numerous design options and operating strategies are evaluated and two economic criteria are used to measure economic performance. In general the results show that fuel cell OS/IES's are competitive in most regions of the country if the OS/IES is properly designed. The preferred design is grid connected, makes effective use of the fuel cell's thermal output, and has a fuel cell powerplant sized for the building's base electrical load.

  8. Coded illumination for motion-blur free imaging of cells on cell-phone based imaging flow cytometer

    Science.gov (United States)

    Saxena, Manish; Gorthi, Sai Siva

    2014-10-01

    Cell-phone based imaging flow cytometry can be realized by flowing cells through the microfluidic devices, and capturing their images with an optically enhanced camera of the cell-phone. Throughput in flow cytometers is usually enhanced by increasing the flow rate of cells. However, maximum frame rate of camera system limits the achievable flow rate. Beyond this, the images become highly blurred due to motion-smear. We propose to address this issue with coded illumination, which enables recovery of high-fidelity images of cells far beyond their motion-blur limit. This paper presents simulation results of deblurring the synthetically generated cell/bead images under such coded illumination.

  9. Reliability-Based Optimization of Series Systems of Parallel Systems

    DEFF Research Database (Denmark)

    Enevoldsen, I.; Sørensen, John Dalsgaard

    Reliability-based design of structural systems is considered. Especially systems where the reliability model is a series system of parallel systems are analysed. A sensitivity analysis for this class of problems is presented. Direct and sequential optimization procedures to solve the optimization...... problems are described. Numerical tests indicate that a sequential technique called the bounds iteration method (BIM) is particularly fast and stable....

  10. Cell Communication in a Coculture System Consisting of Outgrowth Endothelial Cells and Primary Osteoblasts

    Directory of Open Access Journals (Sweden)

    David Paul Eric Herzog

    2014-01-01

    Full Text Available Bone tissue is a highly vascularized and dynamic system with a complex construction. In order to develop a construct for implant purposes in bone tissue engineering, a proper understanding of the complex dependencies between different cells and cell types would provide further insight into the highly regulated processes during bone repair, namely, angiogenesis and osteogenesis, and might result in sufficiently equipped constructs to be beneficial to patients and thereby accomplish their task. This study is based on an in vitro coculture model consisting of outgrowth endothelial cells and primary osteoblasts and is currently being used in different studies of bone repair processes with special regard to angiogenesis and osteogenesis. Coculture systems of OECs and pOBs positively influence the angiogenic potential of endothelial cells by inducing the formation of angiogenic structures in long-term cultures. Although many studies have focused on cell communication, there are still numerous aspects which remain poorly understood. Therefore, the aim of this study is to investigate certain growth factors and cell communication molecules that are important during bone repair processes. Selected growth factors like VEGF, angiopoietins, BMPs, and IGFs were investigated during angiogenesis and osteogenesis and their expression in the cultures was observed and compared after one and four weeks of cultivation. In addition, to gain a better understanding on the origin of different growth factors, both direct and indirect coculture strategies were employed. Another important focus of this study was to investigate the role of “gap junctions,” small protein pores which connect adjacent cells. With these bridges cells are able to exchange signal molecules, growth factors, and other important mediators. It could be shown that connexins, the gap junction proteins, were located around cell nuclei, where they await their transport to the cell membrane. In

  11. Multi-Cell MIMO Downlink with Cell Cooperation and Fair Scheduling: a Large-System Limit Analysis

    CERN Document Server

    Huh, Hoon; Moon, Sung-Hyun; Kim, Young-Tae; Lee, Inkyu

    2010-01-01

    We consider the downlink of a cellular network with multiple cells and multi-antenna base stations, including a realistic distance-dependent pathloss model, clusters of cooperating cells, and general "fairness" requirements. Beyond Monte Carlo simulation, no efficient computation method to evaluate the ergodic throughput of such systems has been presented so far. We propose an analytic solution based on the combination of large random matrix results and convex optimization. The proposed method is computationally much more efficient than Monte Carlo simulation and provides surprisingly accurate approximations for the actual finite-dimensional systems, even for a small number of users and base station antennas. Numerical examples include 2-cell linear and three-sectored 7-cell planar layouts, with no inter-cell cooperation, sector cooperation, or full inter-cell cooperation.

  12. System design of a large fuel cell hybrid locomotive

    Science.gov (United States)

    Miller, A. R.; Hess, K. S.; Barnes, D. L.; Erickson, T. L.

    Fuel cell power for locomotives combines the environmental benefits of a catenary-electric locomotive with the higher overall energy efficiency and lower infrastructure costs of a diesel-electric. A North American consortium, a public-private partnership, is developing a prototype hydrogen-fueled fuel cell-battery hybrid switcher locomotive for urban and military-base rail applications. Switcher locomotives are used in rail yards for assembling and disassembling trains and moving trains from one point to another. At 127 tonnes (280,000 lb), continuous power of 250 kW from its (proton exchange membrane) PEM fuel cell prime mover, and transient power well in excess of 1 MW, the hybrid locomotive will be the heaviest and most powerful fuel cell land vehicle yet. This fast-paced project calls for completion of the vehicle itself near the end of 2007. Several technical challenges not found in the development of smaller vehicles arise when designing and developing such a large fuel cell vehicle. Weight, center of gravity, packaging, and safety were design factors leading to, among other features, the roof location of the lightweight 350 bar compressed hydrogen storage system. Harsh operating conditions, especially shock loads during coupling to railcars, require component mounting systems capable of absorbing high energy. Vehicle scale-up by increasing mass, density, or power presents new challenges primarily related to issues of system layout, hydrogen storage, heat transfer, and shock loads.

  13. System design of a large fuel cell hybrid locomotive

    Energy Technology Data Exchange (ETDEWEB)

    Miller, A.R.; Hess, K.S.; Barnes, D.L.; Erickson, T.L. [Vehicle Projects LLC, 621 17th Street, Suite 2131, Denver, CO 80293 (United States)

    2007-11-15

    Fuel cell power for locomotives combines the environmental benefits of a catenary-electric locomotive with the higher overall energy efficiency and lower infrastructure costs of a diesel-electric. A North American consortium, a public-private partnership, is developing a prototype hydrogen-fueled fuel cell-battery hybrid switcher locomotive for urban and military-base rail applications. Switcher locomotives are used in rail yards for assembling and disassembling trains and moving trains from one point to another. At 127 tonnes (280,000 lb), continuous power of 250 kW from its (proton exchange membrane) PEM fuel cell prime mover, and transient power well in excess of 1 MW, the hybrid locomotive will be the heaviest and most powerful fuel cell land vehicle yet. This fast-paced project calls for completion of the vehicle itself near the end of 2007. Several technical challenges not found in the development of smaller vehicles arise when designing and developing such a large fuel cell vehicle. Weight, center of gravity, packaging, and safety were design factors leading to, among other features, the roof location of the lightweight 350 bar compressed hydrogen storage system. Harsh operating conditions, especially shock loads during coupling to railcars, require component mounting systems capable of absorbing high energy. Vehicle scale-up by increasing mass, density, or power presents new challenges primarily related to issues of system layout, hydrogen storage, heat transfer, and shock loads. (author)

  14. Extensions in model-based system analysis

    OpenAIRE

    Graham, Matthew R.

    2007-01-01

    Model-based system analysis techniques provide a means for determining desired system performance prior to actual implementation. In addition to specifying desired performance, model-based analysis techniques require mathematical descriptions that characterize relevant behavior of the system. The developments of this dissertation give ex. tended formulations for control- relevant model estimation as well as model-based analysis conditions for performance requirements specified as frequency do...

  15. Microfluidic cell culture systems with integrated sensors for drug screening

    Science.gov (United States)

    Grist, Samantha; Yu, Linfen; Chrostowski, Lukas; Cheung, Karen C.

    2012-03-01

    Cell-based testing is a key step in drug screening for cancer treatments. A microfluidic platform can permit more precise control of the cell culture microenvironment, such as gradients in soluble factors. These small-scale devices also permit tracking of low cell numbers. As a new screening paradigm, a microscale system for integrated cell culture and drug screening promises to provide a simple, scalable tool to apply standardized protocols used in cellular response assays. With the ability to dynamically control the microenvironment, we can create temporally varying drug profiles to mimic physiologically measured profiles. In addition, low levels of oxygen in cancerous tumors have been linked with drug resistance and decreased likelihood of successful treatment and patient survival. Our work also integrates a thin-film oxygen sensor with a microfluidic oxygen gradient generator which will in future allow us to create spatial oxygen gradients and study effects of hypoxia on cell response to drug treatment. In future, this technology promises to improve cell-based validation in the drug discovery process, decreasing the cost and increasing the speed in screening large numbers of compounds.

  16. Fiber-Based Ultraviolet Laser System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this program is to develop a compact and efficient ultraviolet laser system for use in space-based uv-Raman instruments. The basis for this system...

  17. Systems, methods and computer-readable media for modeling cell performance fade of rechargeable electrochemical devices

    Science.gov (United States)

    Gering, Kevin L

    2013-08-27

    A system includes an electrochemical cell, monitoring hardware, and a computing system. The monitoring hardware periodically samples performance characteristics of the electrochemical cell. The computing system determines cell information from the performance characteristics of the electrochemical cell. The computing system also develops a mechanistic level model of the electrochemical cell to determine performance fade characteristics of the electrochemical cell and analyzing the mechanistic level model to estimate performance fade characteristics over aging of a similar electrochemical cell. The mechanistic level model uses first constant-current pulses applied to the electrochemical cell at a first aging period and at three or more current values bracketing a first exchange current density. The mechanistic level model also is based on second constant-current pulses applied to the electrochemical cell at a second aging period and at three or more current values bracketing the second exchange current density.

  18. Advanced ECU Software Development Method for Fuel Cell Systems

    Institute of Scientific and Technical Information of China (English)

    TIAN Shuo; LIU Yuan; XIA Wenchuan; LI Jianqiu; YANG Minggao

    2005-01-01

    The electronic control unit (ECU) in electrical powered hybrid and fuel cell vehicles is exceedingly complex. Rapid prototyping control is used to reduce development time and eliminate errors during software development. This paper describes a high-efficiency development method and a flexible tool chain suitable for various applications in automotive engineering. The control algorithm can be deployed directly from a Matlab/Simulink/Stateflow environment into the ECU hardware together with an OSEK real-time operating system (RTOS). The system has been successfully used to develop a 20-kW fuel cell system ECU based on a Motorola PowerPC 555 (MPC555) microcontroller. The total software development time is greatly reduced and the code quality and reliability are greatly enhanced.

  19. Reprogramming of mouse amniotic fluid cells using a PiggyBac transposon system

    Directory of Open Access Journals (Sweden)

    E. Bertin

    2015-11-01

    Full Text Available Induced pluripotent stem (iPS cells are generated from mouse and human somatic cells by forced expression of defined transcription factors using different methods. Amniotic fluid (AF cells are easy to obtain from routinely scheduled procedures for prenatal diagnosis and iPS cells have been generated from human AF. Here, we generated iPS cells from mouse AF cells, using a non-viral-based approach constituted by the PiggyBac (PB transposon system. All iPS cell lines obtained exhibited characteristics of pluripotent cells, including the ability to differentiate toward derivatives of all three germ layers in vitro and in vivo.

  20. Laser-based agriculture system

    KAUST Repository

    Ooi, Boon S.

    2016-03-31

    A system and method are provided for indoor agriculture using at least one growth chamber illuminated by laser light. In an example embodiment of the agriculture system, a growth chamber is provided having one or more walls defining an interior portion of the growth chamber. The agriculture system may include a removable tray disposed within the interior portion of the growth chamber. The agriculture system also includes a light source, which may be disposed outside the growth chamber. The one or more walls may include at least one aperture. The light source is configured to illuminate at least a part of the interior portion of the growth chamber. In embodiments in which the light source is disposed outside the growth chamber, the light source is configured to transmit the laser light to the interior portion of the growth chamber via the at least one aperture.

  1. Smartphones Based Mobile Mapping Systems

    Science.gov (United States)

    Al-Hamad, A.; El-Sheimy, N.

    2014-06-01

    The past 20 years have witnessed an explosive growth in the demand for geo-spatial data. This demand has numerous sources and takes many forms; however, the net effect is an ever-increasing thirst for data that is more accurate, has higher density, is produced more rapidly, and is acquired less expensively. For mapping and Geographic Information Systems (GIS) projects, this has been achieved through the major development of Mobile Mapping Systems (MMS). MMS integrate various navigation and remote sensing technologies which allow mapping from moving platforms (e.g. cars, airplanes, boats, etc.) to obtain the 3D coordinates of the points of interest. Such systems obtain accuracies that are suitable for all but the most demanding mapping and engineering applications. However, this accuracy doesn't come cheaply. As a consequence of the platform and navigation and mapping technologies used, even an "inexpensive" system costs well over 200 000 USD. Today's mobile phones are getting ever more sophisticated. Phone makers are determined to reduce the gap between computers and mobile phones. Smartphones, in addition to becoming status symbols, are increasingly being equipped with extended Global Positioning System (GPS) capabilities, Micro Electro Mechanical System (MEMS) inertial sensors, extremely powerful computing power and very high resolution cameras. Using all of these components, smartphones have the potential to replace the traditional land MMS and portable GPS/GIS equipment. This paper introduces an innovative application of smartphones as a very low cost portable MMS for mapping and GIS applications.

  2. SPIRE Data-Base Management System

    Science.gov (United States)

    Fuechsel, C. F.

    1984-01-01

    Spacelab Payload Integration and Rocket Experiment (SPIRE) data-base management system (DBMS) based on relational model of data bases. Data bases typically used for engineering and mission analysis tasks and, unlike most commercially available systems, allow data items and data structures stored in forms suitable for direct analytical computation. SPIRE DBMS designed to support data requests from interactive users as well as applications programs.

  3. Consent Based Verification System (CBSV)

    Data.gov (United States)

    Social Security Administration — CBSV is a fee-based service offered by SSA's Business Services Online (BSO). It is used by private companies to verify the SSNs of their customers and clients that...

  4. Targeting Dendritic Cell Function during Systemic Autoimmunity to Restore Tolerance

    Directory of Open Access Journals (Sweden)

    Juan P. Mackern-Oberti

    2014-09-01

    Full Text Available Systemic autoimmune diseases can damage nearly every tissue or cell type of the body. Although a great deal of progress has been made in understanding the pathogenesis of autoimmune diseases, current therapies have not been improved, remain unspecific and are associated with significant side effects. Because dendritic cells (DCs play a major role in promoting immune tolerance against self-antigens (self-Ags, current efforts are focusing at generating new therapies based on the transfer of tolerogenic DCs (tolDCs during autoimmunity. However, the feasibility of this approach during systemic autoimmunity has yet to be evaluated. TolDCs may ameliorate autoimmunity mainly by restoring T cell tolerance and, thus, indirectly modulating autoantibody development. In vitro induction of tolDCs loaded with immunodominant self-Ags and subsequent cell transfer to patients would be a specific new therapy that will avoid systemic immunosuppression. Herein, we review recent approaches evaluating the potential of tolDCs for the treatment of systemic autoimmune disorders.

  5. Performance benchmarking of four cell-free protein expression systems.

    Science.gov (United States)

    Gagoski, Dejan; Polinkovsky, Mark E; Mureev, Sergey; Kunert, Anne; Johnston, Wayne; Gambin, Yann; Alexandrov, Kirill

    2016-02-01

    Over the last half century, a range of cell-free protein expression systems based on pro- and eukaryotic organisms have been developed and have found a range of applications, from structural biology to directed protein evolution. While it is generally accepted that significant differences in performance among systems exist, there is a paucity of systematic experimental studies supporting this notion. Here, we took advantage of the species-independent translation initiation sequence to express and characterize 87 N-terminally GFP-tagged human cytosolic proteins of different sizes in E. coli, wheat germ (WGE), HeLa, and Leishmania-based (LTE) cell-free systems. Using a combination of single-molecule fluorescence spectroscopy, SDS-PAGE, and Western blot analysis, we assessed the expression yields, the fraction of full-length translation product, and aggregation propensity for each of these systems. Our results demonstrate that the E. coli system has the highest expression yields. However, we observe that high expression levels are accompanied by production of truncated species-particularly pronounced in the case of proteins larger than 70 kDa. Furthermore, proteins produced in the E. coli system display high aggregation propensity, with only 10% of tested proteins being produced in predominantly monodispersed form. The WGE system was the most productive among eukaryotic systems tested. Finally, HeLa and LTE show comparable protein yields that are considerably lower than the ones achieved in the E. coli and WGE systems. The protein products produced in the HeLa system display slightly higher integrity, whereas the LTE-produced proteins have the lowest aggregation propensity among the systems analyzed. The high quality of HeLa- and LTE-produced proteins enable their analysis without purification and make them suitable for analysis of multi-domain eukaryotic proteins.

  6. Cell Line Data Base: structure and recent improvements towards molecular authentication of human cell lines.

    Science.gov (United States)

    Romano, Paolo; Manniello, Assunta; Aresu, Ottavia; Armento, Massimiliano; Cesaro, Michela; Parodi, Barbara

    2009-01-01

    The Cell Line Data Base (CLDB) is a well-known reference information source on human and animal cell lines including information on more than 6000 cell lines. Main biological features are coded according to controlled vocabularies derived from international lists and taxonomies. HyperCLDB (http://bioinformatics.istge.it/hypercldb/) is a hypertext version of CLDB that improves data accessibility by also allowing information retrieval through web spiders. Access to HyperCLDB is provided through indexes of biological characteristics and navigation in the hypertext is granted by many internal links. HyperCLDB also includes links to external resources. Recently, an interest was raised for a reference nomenclature for cell lines and CLDB was seen as an authoritative system. Furthermore, to overcome the cell line misidentification problem, molecular authentication methods, such as fingerprinting, single-locus short tandem repeat (STR) profile and single nucleotide polymorphisms validation, were proposed. Since this data is distributed, a reference portal on authentication of human cell lines is needed. We present here the architecture and contents of CLDB, its recent enhancements and perspectives. We also present a new related database, the Cell Line Integrated Molecular Authentication (CLIMA) database (http://bioinformatics.istge.it/clima/), that allows to link authentication data to actual cell lines.

  7. New Materials for Chalcogenide Based Solar Cells

    Science.gov (United States)

    Tosun, Banu Selin

    Thin film solar cells based on copper indium gallium diselenide (CIGS) have achieved efficiencies exceeding 20 %. The p-n junction in these solar cells is formed between a p-type CIGS absorber layer and a composite n-type film that consists of a 50-100 nm thin n-type CdS followed by a 50-200 nm thin n-type ZnO. This dissertation focuses on developing materials for replacing CdS and ZnO films to improve the damp-heat stability of the solar cells and for minimizing the use of Cd. Specifically, I demonstrate a new CIGS solar cell with better damp heat stability wherein the ZnO layer is replaced with SnO2. The efficiency of solar cells made with SnO2 decreased less than 5 % after 120 hours at 85 °C and 85 % relative humidity while the efficiency of solar cells made with ZnO declined by more than 70 %. Moreover, I showed that a SnO2 film deposited on top of completed CIGS solar cells significantly increased the device lifetime by forming a barrier against water diffusion. Semicrystalline SnO2 films deposited at room temperature had nanocrystals embedded in an amorphous matrix, which resulted in films without grain boundaries. These films exhibited better damp-heat stability than ZnO and crystalline SnO2 films deposited at higher temperature and this difference is attributed to the lack of grain boundary water diffusion. In addition, I studied CBD of Zn1-xCdxS from aqueous solutions of thiourea, ethylenediaminetetraacetic acid and zinc and cadmium sulfate. I demonstrated that films with varying composition (x) can be deposited through CBD and studied the structure and composition variation along the films' thickness. However, this traditional chemical bath deposition (CBD) approach heats the entire solution and wastes most of the chemicals by homogenous particle formation. To overcome this problem, I designed and developed a continuous-flow CBD approach to utilize the chemicals efficiently and to eliminate homogenous particle formation. Only the substrate is heated to

  8. 基于单神经元-PID的液压变桨距控制系统的设计%The Design of Hydraulic Pitch-control System Based on Single Neuron Cell PID

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    An intelligent PID control calculation is developed using single neuron,combining the advantages such as adaptability, self-learning, simple structure, short weight learning time, small computational amount and strong ro-bustness. Through the experimental study, it indicated that the hydraulic pitch-control system based on single neuron cell PID can better meet the requirements of nonlinear dynamics of the system and parameter time-variation than the classical PID control system.%  提出的单神经元-PID液压变桨距控制方法,结合了单神经元自适应性,自学习,结构简单,权值学习时间短,计算量小,鲁棒性强等优点,并通过实验,对该控制方法进行了验证,证明了其相比常规PID控制的优越性,能更好地满足风力变桨距系统的非线性,参数时变性的要求。

  9. A filter based encoding model for mouse retinal ganglion cells.

    Science.gov (United States)

    Zhong, Q; Roychowdhury, V; Boykin, P; Jacobs, A; Nirenberg, S

    2005-01-01

    We adopt a system theoretic approach and explore the model of retinal ganglion cells as linear filters followed by a maximum-likelihood Bayesian predictor. We evaluate the model by using cross-validation, i.e., first the model parameters are estimated using a training set, and then the prediction error is computed (by comparing the stochastic rate predicted by the model with the rate code of the response) for a test set. As in system identification theory, we present spatially uniform stimuli to the retina, whose temporal intensity is drawn independently from a Gaussian distribution, and we simultaneously record the spike trains from multiple neurons. The optimal linear filter for each cell is obtained by maximizing the mutual information between the filtered stimulus values and the output of the cell (as measured in terms of a stochastic rate code). Our results show that the model presented in this paper performs well on the test set, and it outperforms the identity Bayesian model and the traditional linear model. Moreover, in order to reduce the number of optimal filters needed for prediction, we cluster the cells based on the filters' shapes, and use the cluster consensus filters to predict the firing rates of all neurons in the same class. We obtain almost the same performance with these cluster filters. These results provide hope that filter-based retinal prosthetics might be an effective and feasible idea.

  10. Response Based Emergency Control System for Power System Transient Stability

    Directory of Open Access Journals (Sweden)

    Huaiyuan Wang

    2015-11-01

    Full Text Available A transient stability control system for the electric power system composed of a prediction method and a control method is proposed based on trajectory information. This system, which is independent of system parameters and models, can detect the transient stability of the electric power system quickly and provide the control law when the system is unstable. Firstly, system instability is detected by the characteristic concave or convex shape of the trajectory. Secondly, the control method is proposed based on the analysis of the slope of the state plane trajectory when the power system is unstable. Two control objectives are provided according to the methods of acquiring the far end point: one is the minimal cost to restore the system to a stable state; the other one is the minimal cost to limit the maximum swing angle. The simulation indicates that the mentioned transient stability control system is efficient.

  11. Reflectable bases for affine reflection systems

    CERN Document Server

    Azam, Saeid; Yousofzadeh, Malihe

    2011-01-01

    The notion of a "root base" together with its geometry plays a crucial role in the theory of finite and affine Lie theory. However, it is known that such a notion does not exist for the recent generalizations of finite and affine root systems such as extended affine root systems and affine reflection systems. As an alternative, we introduce the notion of a "reflectable base", a minimal subset $\\Pi$ of roots such that the non-isotropic part of the root system can be recovered by reflecting roots of $\\Pi$ relative to the hyperplanes determined by $\\Pi$. We give a full characterization of reflectable bases for tame irreducible affine reflection systems of reduced types, excluding types $E_{6,7,8}$. As a byproduct of our results, we show that if the root system under consideration is locally finite then any reflectable base is an integral base.

  12. Troubleshooting on microprocessor based systems

    CERN Document Server

    Williams, G B

    1984-01-01

    The structure of a computing system presents unique problems when it fails to operate correctly and requires testing. This concise, yet comprehensive book describes the major test methods in current use, and their development from basic principles. Examines the sequence of tests which, built on each other, provide a suitable vehicle for testing digital systems, and the various types of testing equipment that should be applied for specific tests. An excellent introduction for those entering this increasingly complex world, the text will provide the reader with a firm basis on which to judge

  13. Component Based Electronic Voting Systems

    Science.gov (United States)

    Lundin, David

    An electronic voting system may be said to be composed of a number of components, each of which has a number of properties. One of the most attractive effects of this way of thinking is that each component may have an attached in-depth threat analysis and verification strategy. Furthermore, the need to include the full system when making changes to a component is minimised and a model at this level can be turned into a lower-level implementation model where changes can cascade to as few parts of the implementation as possible.

  14. Optimizing mesenchymal stem cell-based therapeutics.

    Science.gov (United States)

    Wagner, Joseph; Kean, Thomas; Young, Randell; Dennis, James E; Caplan, Arnold I

    2009-10-01

    Mesenchymal stem cell (MSC)-based therapeutics are showing significant benefit in multiple clinical trials conducted by both academic and commercial organizations, but obstacles remain for their large-scale commercial implementation. Recent studies have attempted to optimize MSC-based therapeutics by either enhancing their potency or increasing their delivery to target tissues. Overexpression of trophic factors or in vitro exposure to potency-enhancing factors are two approaches that are demonstrating success in preclinical animal models. Delivery enhancement strategies involving tissue-specific cytokine pathways or binding sites are also showing promise. Each of these strategies has its own set of distinct advantages and disadvantages when viewed with a mindset of ultimate commercialization and clinical utility.

  15. Recent Developments in Mems-Based Micro Fuel Cells

    CERN Document Server

    Pichonat, T

    2007-01-01

    Micro fuel cells ($\\mu$-FC) represent promising power sources for portable applications. Today, one of the technological ways to make $\\mu$-FC is to have recourse to standard microfabrication techniques used in the fabrication of micro electromechanical systems (MEMS). This paper shows an overview on the applications of MEMS techniques on miniature FC by presenting several solutions developed throughout the world. It also describes the latest developments of a new porous silicon-based miniature fuel cell. Using a silane grafted on an inorganic porous media as the proton-exchange membrane instead of a common ionomer such as Nafion, the fuel cell achieved a maximum power density of 58 mW cm-2 at room temperature with hydrogen as fuel.

  16. Conductometric biosensor for ethanol detection based on whole yeast cells.

    Science.gov (United States)

    Korpan, Y I; Dzyadevich, S V; Zharova, V P; El'skaya, A V

    1994-01-01

    The quantification of ethanol in alcoholic beverages was performed by yeast cell-based conductometric biosensor. A membrane with yeast cells immobilized in 2% Ca-alginate gel was attached on gold planar electrodes. Changes in conductivity due to the specific consumption of ethanol by yeast cells were registered by the computer-controlled sensor system. The response time of the constructed microbial sensor was less than 5 min, linearity (in a logarithmic scale) was observed in the range of 5-100 mM alcohol concentration. It was established that pH value in their region from 5 to 8 did not influence the levels of initial signal. The increase of a buffer capacity in the sample results in the decrease of the biosensor output. The minimal detectable level of ethanol was 1 mM and the relative standard deviation appeared to be 10-12% for 15 repeated assays. When the system was operated and stored at 20-25 degrees C, the biosensor response was stable for only 3 days. However, when the microbial sensor was stored at 4 degrees C, the system was stable up to 12 days. Good correlation between the results obtained by a conductometric cell-biosensor and gas chromatograph was observed.

  17. Interaction of tumor cells with the immune system: implications for dendritic cell therapy and cancer progression.

    Science.gov (United States)

    Imhof, Marianne; Karas, Irene; Gomez, Ivan; Eger, Andreas; Imhof, Martin

    2013-01-01

    There is a continuous demand for preclinical modeling of the interaction of dendritic cells with the immune system and cancer cells. Recent progress in gene expression profiling with nucleic acid microarrays, in silico modeling and in vivo cell and animal approaches for non-clinical proof of safety and efficacy of these immunotherapies is summarized. Immunoinformatic approaches look promising to unfold this potential, although still unstable and difficult to interpret. Animal models have progressed a great deal in recent years, finally narrowing the gap from bench to bedside. However, translation to the clinic should be done with precaution. The most significant results concerning clinical benefit might come from detailed immunologic investigations made during well designed clinical trials of dendritic-cell-based therapies, which in general prove safe.

  18. KNOWLEDGE AND XML BASED CAPP SYSTEM

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shijie; SONG Laigang

    2006-01-01

    In order to enhance the intelligent level of system and improve the interactivity with other systems, a knowledge and XML based computer aided process planning (CAPP) system is implemented. It includes user management, bill of materials(BOM) management, knowledge based process planning, knowledge management and database maintaining sub-systems. This kind of nesting knowledge representation method the system provided can represent complicated arithmetic and logical relationship to deal with process planning tasks. With the representation and manipulation of XML based technological file, the system solves some important problems in web environment such as information interactive efficiency and refreshing of web page. The CAPP system is written in ASP VBScript, JavaScript, Visual C++ languages and Oracle database. At present, the CAPP system is running in Shenyang Machine Tools. The functions of it meet the requirements of enterprise production.

  19. Cell-based detection of microbial biomaterial contaminations.

    Science.gov (United States)

    Roch, Toralf; Ma, Nan; Kratz, Karl; Lendlein, Andreas

    2015-01-01

    A major challenge in biomaterial synthesis and functionalization is the prevention of microbial contaminations such as endotoxins (lipopolysaccharides (LPS)). In addition to LPS, which are exclusively expressed by Gram negative bacteria, also other microbial products derived from fungi or Gram positive bacteria can be found as contaminations in research laboratories. Typically, the Limulus amebocyte lysate (LAL)-test is used to determine the endotoxin levels of medical devices. However, this test fails to detect material-bound LPS and other microbial contaminations and, as demonstrated in this study, detects LPS from various bacterial species with different sensitivities.In this work, a cell-based assay using genetically engineered RAW macrophages, which detect not only soluble but also material-bound microbial contaminations is introduced.The sensitivity of this cell-line towards different LPS species and different heat-inactivated microbes was investigated. As proof of principle a soft hydrophobic poly(n-butyl acrylate) network (cPnBA), which may due to adhesive properties strongly bind microbes, was deliberately contaminated with heat-inactivated bacteria. While the LAL-test failed to detect the microbial contamination, the cell-based assay clearly detected material-bound microbial contaminations. Our data demonstrate that a cell-based detection system should routinely be used as supplement to the LAL-test to determine microbial contaminations of biomaterials.

  20. Innovative laser based solar cell scribing

    Science.gov (United States)

    Frei, Bruno; Schneeberger, Stefan; Witte, Reiner

    2011-03-01

    The solar photovoltaic market is continuously growing utilizing boths crystalline silicon (c-Si) as well as thin film technologies. This growth is directly dependant on the manufacturing costs for solar cells. Factors for cost reduction are innovative ideas for an optimization of precision and throughput. Lasers are excellent tools to provide highly efficient processes with impressive accuracy. They need to be used in combination with fast and precise motion systems for a maximum gain in the manufacturing process, yielding best cost of ownership. In this article such an innovative solution is presented for laser scribing in thin film Si modules. A combination of a new glass substrate holding system combined with a fast and precise motion system is the foundation for a cost effective scribing machine. In addition, the advantages of fiber lasers in beam delivery and beam quality guarantee not only shorter setup and down times but also high resolution and reproducibility for the scribing processes P1, P2 and P3. The precision of the whole system allows to reduce the dead zone to a minimum and therefore to improve the efficiency of the modules.

  1. Optimizing cell viability in droplet-based cell deposition

    NARCIS (Netherlands)

    Hendriks, Jan; Willem Visser, Claas; Henke, Sieger; Leijten, Jeroen; Saris, Daniël B F; Sun, Chao; Lohse, Detlef; Karperien, Marcel

    2015-01-01

    Biofabrication commonly involves the use of liquid droplets to transport cells to the printed structure. However, the viability of the cells after impact is poorly controlled and understood, hampering applications including cell spraying, inkjet bioprinting, and laser-assisted cell transfer. Here, w

  2. Self-assembled hybrid materials based on conjugated polymers and semiconductors nano-crystals for plastic solar cells; Architectures hybrides auto-assemblees a base de systemes polyconjugues et de nanocristaux de semi-conducteurs pour le photovoltaique plastique

    Energy Technology Data Exchange (ETDEWEB)

    Girolamo, J. de

    2007-11-15

    This work is devoted to the elaboration of self-assembled hybrid materials based on poly(3- hexyl-thiophene) and CdSe nano-crystals for photovoltaic applications. For that, complementary molecular recognition units were introduced as side chain groups on the polymer and at the nano-crystals' surface. Diamino-pyrimidine groups were introduced by post-functionalization of a precursor copolymer, namely poly(3-hexyl-thiophene-co-3- bromo-hexyl-thiophene) whereas thymine groups were introduced at the nano-crystals' surface by a ligand exchange reaction with 1-(6-mercapto-hexyl)thymine. However, due to their different solubility, the mixing of the two components by solution processes is difficult. A 'one-pot' procedure was developed, but this method led to insoluble aggregates without control of the hybrid composition. To overcome the solubility problem, the layer-by-layer method was used to prepare the films. This method allows a precise control of the deposition process. Experimental parameters were tested in order to evaluate their impact on the resulting film. The films morphology was investigated by microscopy and X-Ray diffraction techniques. These analyses reveal an interpenetrated structure of nano-crystals within the polymer matrix rather than a multilayered structure. Electrochemical and spectro electrochemical studies were performed on the hybrid material deposited by the LBL process. Finally the materials were tested in a solar cell configuration and the I=f(V) curves reveals a clear photovoltaic behaviour. (author)

  3. Titania nanotube array based photovoltaic cells

    Science.gov (United States)

    Yip, C. T.; Cheung, K. Y.; Djurišić, A. B.; Chan, W. K.

    2007-09-01

    It has been shown that dye sensitized solar cells (DSSCs) based on porous titanium dioxide (titania) layers have efficiencies exceeding 10%. Although porous structure has the advantage of large surface area for light harvesting, electron transport through the random nanoparticle network forming a porous film results in electron mobilities which are two orders of magnitude lower compared to the single crystal materials. Therefore, considerable efforts have been made to fabricate DSSC based on one dimensional nanostructures, such as nanowires or nanotubes. Titania nanotube arrays are typically made by anodization of titanium, followed by annealing to improve crystallinity. In this work, we investigated the influence of annealing temperature and annealing atmosphere on the crystal structure, the electron transport, and the solar cell performance of titania nanotube arrays. The titania nanotube arrays were prepared from electrochemically anodized titanium foils and their morphology and crystal structure were characterized by scanning electron microscopy and transmission electron microscopy. The crystal phases and the compositions of nanotube arrays were further investigated by X-ray diffraction for different annealing temperatures and X-ray photoelectron spectroscopy for different annealing atmospheres. For optimal annealing conditions, the short circuit current density of 4.27 mA/cm2 and power conversion efficiency of 1.30% could be achieved under AM 1.5 simulated solar irradiation for 2 μm long nanotubes.

  4. Long-term maintenance of human induced pluripotent stem cells by automated cell culture system.

    Science.gov (United States)

    Konagaya, Shuhei; Ando, Takeshi; Yamauchi, Toshiaki; Suemori, Hirofumi; Iwata, Hiroo

    2015-11-17

    Pluripotent stem cells, such as embryonic stem cells and induced pluripotent stem (iPS) cells, are regarded as new sources for cell replacement therapy. These cells can unlimitedly expand under undifferentiated conditions and be differentiated into multiple cell types. Automated culture systems enable the large-scale production of cells. In addition to reducing the time and effort of researchers, an automated culture system improves the reproducibility of cell cultures. In the present study, we newly designed a fully automated cell culture system for human iPS maintenance. Using an automated culture system, hiPS cells maintained their undifferentiated state for 60 days. Automatically prepared hiPS cells had a potency of differentiation into three germ layer cells including dopaminergic neurons and pancreatic cells.

  5. Laser-based patterning for transfected cell microarrays

    Energy Technology Data Exchange (ETDEWEB)

    Hook, Andrew L; Creasey, Rhiannon; Voelcker, Nicolas H [Flinders University, GPO Box 2100, Bedford Park, SA 5042 (Australia); Hayes, Jason P [MiniFAB, 1 Dalmore Drive, Caribbean Park, Scoresby VIC 3179 (Australia); Thissen, Helmut, E-mail: Nico.Voelcker@flinders.edu.a [CSIRO Molecular and Health Technologies, Bayview Avenue, Clayton VIC 3168 (Australia)

    2009-12-15

    The spatial control over biomolecule- and cell-surface interactions is of great interest to a broad range of biomedical applications, including sensors, implantable devices and cell microarrays. Microarrays in particular require precise spatial control and the formation of patterns with microscale features. Here, we have developed an approach specifically designed for transfected cell microarray (TCM) applications that allows microscale spatial control over the location of both DNA and cells on highly doped p-type silicon substrates. This was achieved by surface modification, involving plasma polymerization of allylamine, grafting of poly(ethylene glycol) and subsequent excimer laser ablation. DNA could be delivered in a spatially defined manner using ink-jet printing. In addition, electroporation was investigated as an approach to transfect attached cells with adsorbed DNA and good transfection efficiencies of approximately 20% were observed. The ability of the microstructured surfaces to spatially direct both DNA adsorption and cell attachment was demonstrated in a functional TCM, making this system an exciting platform for chip-based functional genomics.

  6. Processing of nanolitre liquid plugs for microfluidic cell-based assays

    Directory of Open Access Journals (Sweden)

    Junji Fukuda, Shintaro Takahashi, Tatsuya Osaki, Naoto Mochizuki and Hiroaki Suzuki

    2012-01-01

    Full Text Available Plugs, i.e. droplets formed in a microchannel, may revolutionize microfluidic cell-based assays. This study describes a microdevice that handles nanolitre-scale liquid plugs for the preparation of various culture setups and subsequent cellular assays. An important feature of this mode of liquid operation is that the recirculation flow generated inside the plug promotes the rapid mixing of different solutions after plugs are merged, and it keeps cell suspensions homogeneous. Thus, serial dilutions of reagents and cell suspensions with different cell densities and cell types were rapidly performed using nanolitres of solution. Cells seeded through the plug processing grew well in the microdevice, and subsequent plug processing was used to detect the glucose consumption of cells and cellular responses to anticancer agents. The plug-based microdevice may provide a useful platform for cell-based assay systems in various fields, including fundamental cell biology and drug screening applications.

  7. Fostering synergy between cell biology and systems biology

    OpenAIRE

    2015-01-01

    In the shared pursuit of elucidating detailed mechanisms of cell function, systems biology presents a natural complement to ongoing efforts in cell biology. Systems biology aims to characterize biological systems through integrated and quantitative modeling of cellular information. The process of model building and analysis provides value through synthesizing and cataloging information about cells and molecules; predicting mechanisms and identifying generalizable themes; generating hypotheses...

  8. Spherical Individual Cell-Based Models

    OpenAIRE

    Krinner, Axel

    2010-01-01

    Over the last decade a huge amount of experimental data on biological systems has been generated by modern high-throughput methods. Aided by bioinformatics, the '-omics' (genomics, transcriptomics, proteomics, metabolomics and interactomics) have listed, quantif ed and analyzed molecular components and interactions on all levels of cellular regulation. However, a comprehensive framework, that does not only list, but links all those components, is still largely missing. The biology-based but h...

  9. Analysis of Syetem Reliability in Manufacturing Cell Based on Triangular Fuzzy Number

    Institute of Scientific and Technical Information of China (English)

    ZHANG Caibo; HAN Botang; SUN Changsen; XU Chunjie

    2006-01-01

    Due to lacking of test-data and field-data in reliability research during the design stage of manufacturing cell system. The degree of manufacturing cell system reliability research is increased. In order to deal with the deficient data and the uncertainty occurred from analysis and judgment, the paper discussed a method for studying reliability of manufacturing cell system through the analysis of fuzzy fault tree, which was based on triangular fuzzy number. At last, calculation case indicated that it would have great significance for ascertaining reliability index, maintenance and establishing keeping strategy towards manufacturing cell system.

  10. Droplet microfluidics based microseparation systems.

    Science.gov (United States)

    Xiao, Zhiliang; Niu, Menglei; Zhang, Bo

    2012-06-01

    Lab on a chip (LOC) technology is a promising miniaturization approach. The feature that it significantly reduced sample consumption makes great sense in analytical and bioanalytical chemistry. Since the start of LOC technology, much attention has been focused on continuous flow microfluidic systems. At the turn of the century, droplet microfluidics, which was also termed segmented flow microfluidics, was introduced. Droplet microfluidics employs two immiscible phases to form discrete droplets, which are ideal vessels with confined volume, restricted dispersion, limited cross-contamination, and high surface area. Due to these unique features, droplet microfluidics proves to be a versatile tool in microscale sample handling. This article reviews the utility of droplet microfluidics in microanalytical systems with an emphasize on separation science, including sample encapsulation at ultra-small volume, compartmentalization of separation bands, isolation of droplet contents, and related detection techniques.

  11. A bladder cancer microenvironment simulation system based on a microfluidic co-culture model

    OpenAIRE

    Liu, Peng-Fei; Cao, Yan-wei; Zhang, Shu-Dong; Zhao, Yang; Liu, Xiao-guang; Shi, Hao-qing; Hu, Ke-yao; Zhu, Guan-qun; Ma, Bo; Niu, Hai-Tao

    2015-01-01

    A tumor microenvironment may promote tumor metastasis and progression through the dynamic interplay between neoplastic cells and stromal cells. In this work, the most representative and significant stromal cells, fibroblasts, endothelial cells, and macrophages were used as vital component elements and combined with bladder cancer cells to construct a bladder cancer microenvironment simulation system. This is the first report to explore bladder cancer microenvironments based on 4 types of cell...

  12. Improved generalized cell mapping for global analysis of dynamical systems

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Three main parts of generalized cell mapping are improved for global analysis. A simple method, which is not based on the theory of digraphs, is presented to locate complete self-cycling sets that corre- spond to attractors and unstable invariant sets involving saddle, unstable periodic orbit and chaotic saddle. Refinement for complete self-cycling sets is developed to locate attractors and unstable in- variant sets with high degree of accuracy, which can start with a coarse cell structure. A nonuniformly interior-and-boundary sampling technique is used to make the refinement robust. For homeomorphic dissipative dynamical systems, a controlled boundary sampling technique is presented to make gen- eralized cell mapping method with refinement extremely accurate to obtain invariant sets. Recursive laws of group absorption probability and expected absorption time are introduced into generalized cell mapping, and then an optimal order for quantitative analysis of transient cells is established, which leads to the minimal computational work. The improved method is applied to four examples to show its effectiveness in global analysis of dynamical systems.

  13. Improved generalized cell mapping for global analysis of dynamical systems

    Institute of Scientific and Technical Information of China (English)

    ZOU HaiLin; XU JianXue

    2009-01-01

    Three main parts of generalized cell mapping are improved for global analysis. A simple method, whichis not based on the theory of digraphs, is presented to locate complete self-cycling sets that corre-spond to attractors and unstable invariant sets involving saddle, unstable periodic orbit and chaotic saddle. Refinement for complete self-cycling sets is developed to locate attractors and unstable in-variant sets with high degree of accuracy, which can start with a coarse cell structure. A nonuniformly interior-and-boundary sampling technique is used to make the refinement robust. For homeomorphic dissipative dynamical systems, a controlled boundary sampling technique is presented to make gen-eralized cell mapping method with refinement extremely accurate to obtain invariant sets. Recursive laws of group absorption probability and expected absorption time are introduced into generalized cell mapping, and then an optimal order for quantitative analysis of transient cells is established, which leads to the minimal computational work. The improved method is applied to four examples to show its effectiveness in global analysis of dynamical systems.

  14. 基于MotoTron平台的燃料电池共轨喷射系统的研发%Research and Development of the Common-rail Injector System for Fuel Cell Based on MotoTron Platform

    Institute of Scientific and Technical Information of China (English)

    何雍; 李亚超; 吴兵; 王丙龙; 王鸿鹄

    2013-01-01

    针对目前常用的燃料电池氢气供应方式存在氢气利用率低、耗能大和使用范围小等缺点,本文中提出了基于MotoTron平台的氢共轨喷射系统快速原型开发技术.通过对控制参数的整定,达到共轨喷射系统氢气输出稳态误差合理、出口流量动态可调的目的.结果表明,该方法能使氢气在燃料电池阳极分布更为均匀,提高了氢气利用率,延长了燃料电池寿命,为后续的整车开发奠定了基础.%In view of the low utilization rate of hydrogen, high energy consumption, narrow use scope and other defects of the way of hydrogen supply commonly used in fuel cell at present, a rapid prototyping development technique for common rail hydrogen injection system is proposed based on MotoTron platform. By tuning the control parameters, reasonable steady-state error of hydrogen output and dynamically adjustable exit flow rate are realized. The results show that the technique proposed can enable evener distribution of hydrogen at fuel cell anode, raise the utilization rate of hydrogen and extend the lifespan of fuel cell, laying a foundation for subsequent vehicle development.

  15. Exploratory studies on some electrochemical cell systems

    Science.gov (United States)

    Chaudhuri, Srikumar; Guha, D.

    Exploratory studies were conducted on cell systems with different metal anodes, and iodine and sulphur mixed with graphite powder in a polymer matrix as cathodes, using different electrolytes in non-aqueous and aqueous media as ionic charge carriers. The electrical conductance of the electrolyte solutions in aqueous and non-aqueous solvents, the open circuit voltage (OCV) and short circuit current (SCC) for the different cell systems were measured. To date, the non-aqueous solvents used in our studies were dimethylformamide, formamide, dioxan, and nitrobenzene, and the electrolytes used were potassium iodide, caustic potash, cetyltrimethylammonium bromide (CTAB), sodium lauryl sulphate (SLS) and calcium chloride. These electrolytes were used in both non-aqueous and aqueous media. In general, aqueous electrolyte solutions gave a better performance than non-aqueous electrolyte solutions. Of the aqueous electrolytes, the highest conductance was shown by potassium chloride solution in water (conductance=0.0334 mho). However, the best OCV and SCC were shown by aluminium as anode and iodine as cathode with a saturated solution of caustic potash in water. The OCV was 1.85 V and the SCC was 290 mA cm -2. The highest conductance among the non-aqueous systems was shown by caustic potash in formamide. (Conductance=0.013 mho.) The best OCV and SCC, however, were shown by a zinc anode and iodine cathode with saturated potassium chloride in formamide, having an OCV of 1.55 V and an SCC of 150 mA cm -2. Further studies are in progress to obtain detailed performance data and recharging characteristics of some of the more promising systems reported here.

  16. Dynamic cell culture system (7-IML-1)

    Science.gov (United States)

    Cogoli, Augusto

    1992-01-01

    This experiment is one of the Biorack experiments being flown on the International Microgravity Laboratory 1 (MIL-1) mission as part of an investigation studying cell proliferation and performance in space. One of the objectives of this investigation is to assess the potential benefits of bioprocessing in space with the ultimate goal of developing a bioreactor for continuous cell cultures in space. This experiment will test the operation of an automated culture chamber that was designed for use in a Bioreactor in space. The device to be tested is called the Dynamic Cell Culture System (DCCS). It is a simple device in which media are renewed or chemicals are injected automatically, by means of osmotic pumps. This experiment uses four Type I/O experiment containers. One DCCS unit, which contains a culture chamber with renewal of medium and a second chamber without a medium supply fits in each container. Two DCCS units are maintained under zero gravity conditions during the on-orbit period. The other two units are maintained under 1 gh conditions in a 1 g centrifuge. The schedule for incubator transfer is given.

  17. Signal transduction in cells of the immune system in microgravity

    Directory of Open Access Journals (Sweden)

    Huber Kathrin

    2008-10-01

    Full Text Available Abstract Life on Earth developed in the presence and under the constant influence of gravity. Gravity has been present during the entire evolution, from the first organic molecule to mammals and humans. Modern research revealed clearly that gravity is important, probably indispensable for the function of living systems, from unicellular organisms to men. Thus, gravity research is no more or less a fundamental question about the conditions of life on Earth. Since the first space missions and supported thereafter by a multitude of space and ground-based experiments, it is well known that immune cell function is severely suppressed in microgravity, which renders the cells of the immune system an ideal model organism to investigate the influence of gravity on the cellular and molecular level. Here we review the current knowledge about the question, if and how cellular signal transduction depends on the existence of gravity, with special focus on cells of the immune system. Since immune cell function is fundamental to keep the organism under imnological surveillance during the defence against pathogens, to investigate the effects and possible molecular mechanisms of altered gravity is indispensable for long-term space flights to Earth Moon or Mars. Thus, understanding the impact of gravity on cellular functions on Earth will provide not only important informations about the development of life on Earth, but also for therapeutic and preventive strategies to cope successfully with medical problems during space exploration.

  18. System Identification of a Non-Uniformly Sampled Multi-Rate System in Aluminium Electrolysis Cells

    Directory of Open Access Journals (Sweden)

    Håkon Viumdal

    2014-07-01

    Full Text Available Standard system identification algorithms are usually designed to generate mathematical models with equidistant sampling instants, that are equal for both input variables and output variables. Unfortunately, real industrial data sets are often disrupted by missing samples, variations of sampling rates in the different variables (also known as multi-rate systems, and intermittent measurements. In industries with varying events based maintenance or manual operational measures, intermittent measurements are performed leading to uneven sampling rates. Such is the case with aluminium smelters, where in addition the materials fed into the cell create even more irregularity in sampling. Both measurements and feeding are mostly manually controlled. A simplified simulation of the metal level in an aluminium electrolysis cell is performed based on mass balance considerations. System identification methods based on Prediction Error Methods (PEM such as Ordinary Least Squares (OLS, and the sub-space method combined Deterministic and Stochastic system identification and Realization (DSR, and its variants are applied to the model of a single electrolysis cell as found in the aluminium smelters. Aliasing phenomena due to large sampling intervals can be crucial in avoiding unsuitable models, but with knowledge about the system dynamics, it is easier to optimize the sampling performance, and hence achieve successful models. The results based on the simulation studies of molten aluminium height in the cells using the various algorithms give results which tally well with the synthetic data sets used. System identification on a smaller data set from a real plant is also implemented in this work. Finally, some concrete suggestions are made for using these models in the smelters.

  19. Machine Learning Based Single-Frame Super-Resolution Processing for Lensless Blood Cell Counting

    Directory of Open Access Journals (Sweden)

    Xiwei Huang

    2016-11-01

    Full Text Available A lensless blood cell counting system integrating microfluidic channel and a complementary metal oxide semiconductor (CMOS image sensor is a promising technique to miniaturize the conventional optical lens based imaging system for point-of-care testing (POCT. However, such a system has limited resolution, making it imperative to improve resolution from the system-level using super-resolution (SR processing. Yet, how to improve resolution towards better cell detection and recognition with low cost of processing resources and without degrading system throughput is still a challenge. In this article, two machine learning based single-frame SR processing types are proposed and compared for lensless blood cell counting, namely the Extreme Learning Machine based SR (ELMSR and Convolutional Neural Network based SR (CNNSR. Moreover, lensless blood cell counting prototypes using commercial CMOS image sensors and custom designed backside-illuminated CMOS image sensors are demonstrated with ELMSR and CNNSR. When one captured low-resolution lensless cell image is input, an improved high-resolution cell image will be output. The experimental results show that the cell resolution is improved by 4×, and CNNSR has 9.5% improvement over the ELMSR on resolution enhancing performance. The cell counting results also match well with a commercial flow cytometer. Such ELMSR and CNNSR therefore have the potential for efficient resolution improvement in lensless blood cell counting systems towards POCT applications.

  20. Wireless software update system based on Zigbee for LAMOST

    Science.gov (United States)

    Li, Su; Gu, Yonggang; Jin, Yi; Zhai, Chao

    2014-08-01

    Large Sky Area Multi-object Fiber Spectroscopic Telescope - LAMOST, has a 1.75m-diameter focal plane on which 4000 optical fibers are arranged in order to obtain the spectrums of astrometric objects. Each optical fiber is installed on a mechanical unit which is driven by a cell controller. The mechanical units are installed on the focal plane one by one closely with high density, and the focal plane is above-ground, so the cell controllers are very inconvenient to remove and install. Each time when we maintain or upgrade the motor drive system of LAMOST, we need to download new program to the cell controllers. But it always takes a lot of time to take out the cell controllers from the focal plane. So we propose a wireless program-updated technology based on Zigbee which can download the program to the cell controllers without removing and installing. In order to realize the goal, we need to update the FLASH of target controllers without hardware connection. So we transmit the program through Zigbee wireless network which has been used in LAMOST already. After we use the wireless update system based on Zigbee, it is much easier and convenient for us to maintain or upgrade the motor drive system of LAMOST. In this paper we illustrate how to realize the wireless update system from hardware and software.

  1. Knowledge Based Systems and Metacognition in Radar

    Science.gov (United States)

    Capraro, Gerard T.; Wicks, Michael C.

    An airborne ground looking radar sensor's performance may be enhanced by selecting algorithms adaptively as the environment changes. A short description of an airborne intelligent radar system (AIRS) is presented with a description of the knowledge based filter and detection portions. A second level of artificial intelligence (AI) processing is presented that monitors, tests, and learns how to improve and control the first level. This approach is based upon metacognition, a way forward for developing knowledge based systems.

  2. A systems biology-based approach to deciphering the etiology of steatosis employing patient-derived dermal fibroblasts and iPS cells

    Directory of Open Access Journals (Sweden)

    Justyna eJozefczuk

    2012-09-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD comprises a broad spectrum of disease states ranging from simple steatosis to nonalcoholic steatohepatitis (NASH. As a result of increases in the prevalences of obesity, insulin resistance, and hyperlipidemia, the number of people with hepatic steatosis continues to increase. Differences in susceptibility to steatohepatitis and its progression to cirrhosis have been attributed to a complex interplay of genetic and external factors all addressing the intracellular network. Increase in sugar or refined carbohydrate consumption results in an increase of insulin and insulin resistance that can lead to the accumulation of fat in the liver. Here we demonstrate how a multidisciplinary approach encompassing cellular reprogramming, transcriptomics, proteomics, metabolomics, modeling, network reconstruction and data management can be employed to unveil the mechanisms underlying the progression of steatosis. Proteomics revealed reduced AKT/mTOR signaling in fibroblasts derived from steatosis patients and further establishes that the insulin-resistant phenotype is present not only in insulin-metabolizing central organs, e.g. the liver, but is also manifested in skin fibroblasts. Transcriptome data enabled the generation of a regulatory network based on the transcription factor SREBF1, linked to a metabolic network of glycerolipid and fatty acid biosynthesis including the downstream transcriptional targets of SREBF1 which include LIPIN1 (LPIN and low density lipoprotein receptor (LDLR. Glutathione metabolism was among the pathways enriched in steatosis patients in comparison to healthy controls. By using a model of the glutathione pathway we predict a significant increase in the flux through glutathione synthesis as both gamma-glutamylcysteine synthetase and glutathione synthetase have an increased flux. We anticipate that a larger sample of patients and matching controls will confirm our preliminary findings presented

  3. Port-based modeling of mechatronic systems

    NARCIS (Netherlands)

    Breedveld, Peter C.

    2004-01-01

    Many engineering activities, including mechatronic design, require that a multidomain or ‘multi-physics’ system and its control system be designed as an integrated system. This contribution discusses the background and tools for a port-based approach to integrated modeling and simulation of physical

  4. Phase Space Cell in Nonextensive Classical Systems

    Directory of Open Access Journals (Sweden)

    Piero Quarati

    2003-06-01

    Full Text Available Abstract: We calculate the phase space volume Ω occupied by a nonextensive system of N classical particles described by an equilibrium (or steady-state, or long-term stationary state of a nonequilibrium system distribution function, which slightly deviates from Maxwell-Boltzmann (MB distribution in the high energy tail. We explicitly require that the number of accessible microstates does not change respect to the extensive MB case. We also derive, within a classical scheme, an analytical expression of the elementary cell that can be seen as a macrocell, different from the third power of Planck constant. Thermodynamic quantities like entropy, chemical potential and free energy of a classical ideal gas, depending on elementary cell, are evaluated. Considering the fractional deviation from MB distribution we can deduce a physical meaning of the nonextensive parameter q of the Tsallis nonextensive thermostatistics in terms of particle correlation functions (valid at least in the case, discussed in this work, of small deviations from MB standard case.

  5. PRESSURIZED SOLID OXIDE FUEL CELL/GAS TURBINE POWER SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    W.L. Lundberg; G.A. Israelson; R.R. Moritz(Rolls-Royce Allison); S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann (Consultant)

    2000-02-01

    Power systems based on the simplest direct integration of a pressurized solid oxide fuel cell (SOFC) generator and a gas turbine (GT) are capable of converting natural gas fuel energy to electric power with efficiencies of approximately 60% (net AC/LHV), and more complex SOFC and gas turbine arrangements can be devised for achieving even higher efficiencies. The results of a project are discussed that focused on the development of a conceptual design for a pressurized SOFC/GT power system that was intended to generate 20 MWe with at least 70% efficiency. The power system operates baseloaded in a distributed-generation application. To achieve high efficiency, the system integrates an intercooled, recuperated, reheated gas turbine with two SOFC generator stages--one operating at high pressure, and generating power, as well as providing all heat needed by the high-pressure turbine, while the second SOFC generator operates at a lower pressure, generates power, and provides all heat for the low-pressure reheat turbine. The system cycle is described, major system components are sized, the system installed-cost is estimated, and the physical arrangement of system components is discussed. Estimates of system power output, efficiency, and emissions at the design point are also presented, and the system cost of electricity estimate is developed.

  6. Stem Cell-Based Therapies for Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Lei Hao

    2014-01-01

    Full Text Available In recent years, stem cell-based approaches have attracted more attention from scientists and clinicians due to their possible therapeutical effect on stroke. Animal studies have demonstrated that the beneficial effects of stem cells including embryonic stem cells (ESCs, inducible pluripotent stem cells (iPSCs, neural stem cells (NSCs, and mesenchymal stem cell (MSCs might be due to cell replacement, neuroprotection, endogenous neurogenesis, angiogenesis, and modulation on inflammation and immune response. Although several clinical studies have shown the high efficiency and safety of stem cell in stroke management, mainly MSCs, some issues regarding to cell homing, survival, tracking, safety, and optimal cell transplantation protocol, such as cell dose and time window, should be addressed. Undoubtably, stem cell-based gene therapy represents a novel potential therapeutic strategy for stroke in future.

  7. Fluidized bed control system based on inverse system method

    Institute of Scientific and Technical Information of China (English)

    SONG Fu-hua; LI Ping

    2005-01-01

    The invertible of the Large Air Dense Medium Fluidized Bed (ADMFB) were studied by introducing the concept of the inverse system theory of nonlinear systems.Then the ADMFB, which was a multivariable, nonlinear and coupled strongly system,was decoupled into independent SISO pseudo-linear subsystems. Linear controllers were designed for each of subsystems based on linear systems theory. The practice output proves that this method improves the stability of the ADMFB obviously.

  8. The cell monolayer trajectory from the system state point of view.

    Science.gov (United States)

    Stys, Dalibor; Vanek, Jan; Nahlik, Tomas; Urban, Jan; Cisar, Petr

    2011-10-01

    Time-lapse microscopic movies are being increasingly utilized for understanding the derivation of cell states and predicting cell future. Often, fluorescence and other types of labeling are not available or desirable, and cell state-definitions based on observable structures must be used. We present the methodology for cell behavior recognition and prediction based on the short term cell recurrent behavior analysis. This approach has theoretical justification in non-linear dynamics theory. The methodology is based on the general stochastic systems theory which allows us to define the cell states, trajectory and the system itself. We introduce the usage of a novel image content descriptor based on information contribution (gain) by each image point for the cell state characterization as the first step. The linkage between the method and the general system theory is presented as a general frame for cell behavior interpretation. We also discuss extended cell description, system theory and methodology for future development. This methodology may be used for many practical purposes, ranging from advanced, medically relevant, precise cell culture diagnostics to very utilitarian cell recognition in a noisy or uneven image background. In addition, the results are theoretically justified.

  9. A yeast pheromone-based inter-species communication system.

    Science.gov (United States)

    Hennig, Stefan; Clemens, André; Rödel, Gerhard; Ostermann, Kai

    2015-02-01

    We report on a pheromone-based inter-species communication system, allowing for a controlled cell-cell communication between the two species Saccharomyces cerevisiae and Schizosaccharomyces pombe as a proof of principle. It exploits the mating response pathways of the two yeast species employing the pheromones, α- or P-factor, as signaling molecules. The authentic and chimeric pheromone-encoding genes were engineered to code for the P-factor in S. cerevisiae and the α-factor in S. pombe. Upon transformation of the respective constructs, cells were enabled to express the mating pheromone of the opposite species. The supernatant of cultures of S. pombe cells expressing α-factor were able to induce a G1 arrest in the cell cycle, a change in morphology to the typical shmoo effect and expression driven by the pheromone-responsive FIG1 promoter in S. cerevisiae. The supernatant of cultures of S. cerevisiae cells expressing P-factor similarly induced cell cycle arrest in G1, an alteration in morphology typical for mating as well as the activation of the pheromone-responsive promoters of the rep1 and sxa2 genes in a pheromone-hypersensitive reporter strain of S. pombe. Apparently, both heterologous pheromones were correctly processed and secreted in an active form by the cells of the other species. Our data clearly show that the species-specific pheromone systems of yeast species can be exploited for a controlled inter-species communication.

  10. Z - Source Multi Level Inverter Based PV Generation System

    Directory of Open Access Journals (Sweden)

    T. Lakhmi kanth

    2014-09-01

    Full Text Available In this paper a novel technique of Z-Source multilevel Inverter based PV Generation system is implemented and simulated using MATLAB-Simulink simulation software. The Photovoltaic cells are healthier option for converting solar energy into electricity. Due to high capital cost and low efficiency PV cells have not yet been a fully smart choice for electricity users. To enhance the performance of the system, Z-Source multi level inverter can be used in place of conventional Voltage Source Inverter (VSI in Solar Power Generation System. The PV cell model is developed using circuit mathematical equations. The Z-Source multilevel inverter is modeled to realize boosted DC to AC conversion (inversion with low THD. Outcome shows that the energy conversion efficiency of ZSMLI is a lot improved as compared to conventional voltage Source Inverter (VSI. By doing FFT analysis we can know the total THD.

  11. Android Based Mobile Drive System

    Directory of Open Access Journals (Sweden)

    Dr. Sheifali Gupta

    2014-01-01

    Full Text Available This project reports an undergraduate engineering team’s effort to develop a system to empower the people facing the problem of paralysis of various degrees like in Hemiplegia. To make their lives easier, a wheelchair working with an android application has been designed with the help of which paralysed person can move from one place to other and can control all the home appliances. He is also empowered with the facilities of calling and sending a message to the helper. This paper will outline and discuss the specifications and functions of the innovation done by us. It also tells how new technologies are used to provide improved support to the people bounded in their homes and make them independent of others..

  12. Fuzzy Case-Based Reasoning System

    Directory of Open Access Journals (Sweden)

    Jing Lu

    2016-06-01

    Full Text Available In this paper, we propose a fuzzy case-based reasoning system, using a case-based reasoning (CBR system that learns from experience to solve problems. Different from a traditional case-based reasoning system that uses crisp cases, our system works with fuzzy ones. Specifically, we change a crisp case into a fuzzy one by fuzzifying each crisp case element (feature, according to the maximum degree principle. Thus, we add the “vague” concept into a case-based reasoning system. It is these somewhat vague inputs that make the outcomes of the prediction more meaningful and accurate, which illustrates that it is not necessarily helpful when we always create accurate predictive relations through crisp cases. Finally, we prove this and apply this model to practical weather forecasting, and experiments show that using fuzzy cases can make some prediction results more accurate than using crisp cases.

  13. GCtool for fuel cell systems design and analysis : user documentation.

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, R.K.; Geyer, H.K.

    1999-01-15

    GCtool is a comprehensive system design and analysis tool for fuel cell and other power systems. A user can analyze any configuration of component modules and flows under steady-state or dynamic conditions. Component models can be arbitrarily complex in modeling sophistication and new models can be added easily by the user. GCtool also treats arbitrary system constraints over part or all of the system, including the specification of nonlinear objective functions to be minimized subject to nonlinear, equality or inequality constraints. This document describes the essential features of the interpreted language and the window-based GCtool environment. The system components incorporated into GCtool include a gas flow mixer, splitier, heater, compressor, gas turbine, heat exchanger, pump, pipe, diffuser, nozzle, steam drum, feed water heater, combustor, chemical reactor, condenser, fuel cells (proton exchange membrane, solid oxide, phosphoric acid, and molten carbonate), shaft, generator, motor, and methanol steam reformer. Several examples of system analysis at various levels of complexity are presented. Also given are instructions for generating two- and three-dimensional plots of data and the details of interfacing new models to GCtool.

  14. Model Based Testing for Agent Systems

    Science.gov (United States)

    Zhang, Zhiyong; Thangarajah, John; Padgham, Lin

    Although agent technology is gaining world wide popularity, a hindrance to its uptake is the lack of proper testing mechanisms for agent based systems. While many traditional software testing methods can be generalized to agent systems, there are many aspects that are different and which require an understanding of the underlying agent paradigm. In this paper we present certain aspects of a testing framework that we have developed for agent based systems. The testing framework is a model based approach using the design models of the Prometheus agent development methodology. In this paper we focus on model based unit testing and identify the appropriate units, present mechanisms for generating suitable test cases and for determining the order in which the units are to be tested, present a brief overview of the unit testing process and an example. Although we use the design artefacts from Prometheus the approach is suitable for any plan and event based agent system.

  15. Dendritic Cell Regulation by Cannabinoid-Based Drugs

    Directory of Open Access Journals (Sweden)

    Mattias Svensson

    2010-08-01

    Full Text Available Cannabinoid pharmacology has made important advances in recent years after the cannabinoid system was discovered. Studies in experimental models and in humans have produced promising results using cannabinoid-based drugs for the treatment of obesity and cancer, as well as neuroinflammatory and chronic inflammatory diseases. Moreover, as we discuss here, additional studies also indicates that these drugs have immunosuppressive and anti-inflammatory properties including modulation of immune cell function. Thus, manipulation of the endocannabinoid system in vivo may provide novel therapeutic strategies against inflammatory disorders. At least two types of cannabinoid receptors, cannabinoid 1 and cannabinoid 2 receptors are expressed on immune cells such as dendritic cells (DC. Dendritic cells are recognized for their critical role in initiating and maintaining immune responses. Therefore, DC are potential targets for cannabinoid-mediated modulation. Here, we review the effects of cannabinoids on DC and provide some perspective concerning the therapeutic potential of cannabinoids for the treatment of human diseases involving aberrant inflammatory processes.

  16. PQ Control Based Grid Connected DG Systems

    Directory of Open Access Journals (Sweden)

    P Siva Srinivas1 ,

    2015-10-01

    Full Text Available Distributed generation (DG generally refer to small scale electric power generators produce electricity that is bound to an electric distribution system. Distributed generation systems such as photovoltaic (PV or wind energy systems are parts of the future smart grids. By applying intelligent techniques these future grids change as smarter grids. During the past few years electrical energy consumption to the investment is increased when compared to cost on transmission and distribution resulting in compromised reliability and high energy costs. So there is need to change from conventional grid to smart grid. Micro grids consist of small power sources called distributed generation system. Many distributed generation systems such as photovoltaic systems are grid interfaced through power electronic voltage source inverters. In this paper a boost inverter technique is explained and distributed generation sources such as PV and fuel cell are connected in series with the help of PQ controller technique the above system is evaluated.

  17. Component Based Dynamic Reconfigurable Test System

    Institute of Scientific and Technical Information of China (English)

    LAI Hong; HE Lingsong; ZHANG Dengpan

    2006-01-01

    In this paper, a novel component based framework of test system is presented for the new requirements of dynamic changes of test functions and reconfiguration of test resources. The complexity of dynamic reconfiguration arises from the scale, redirection, extensibility and interconnection of components in test system. The paper is started by discussing the component assembly based framework which provide the open platform to the deploy of components and then the script interpreter model is introduced to dynamically create the components and build the test system by analyzing XML based information of test system. A pipeline model is presented to provide the data channels and behavior reflection among the components. Finally, a dynamic reconfigurable test system is implemented on the basis of COM and applied in the remote test and control system of CNC machine.

  18. Texture based iris recognition system

    Science.gov (United States)

    Mehrotra, Hunny; Gupta, Phalguni; Kaushik, Anil K.

    2008-04-01

    The paper proposes an efficient iris recognition algorithm, obtained through the fusion of Haar Wavelet and Circular Mellin operator. The recognition system preprocesses the captured iris image to remove the effect of holes or spot of light lying on the pupillary region which creates problem in pupil localization. The processed image is localized by detecting inner and outer boundaries from the pupil center using maximum value of the spectrum image. Then the eyelids are detected by fitting a 3 rd degree polynomial on the suitable edge segments and removing the region occluded by eyelids from the normalized iris image. The features for the iris pattern are extracted using Haar Wavelet and Circular Mellin operator. The Haar Wavelet decomposition reduces the size of feature vector while Circular Mellin operator is used for rotation and scale invariant feature extraction. The features are compared using Hamming Distance method and the fusion is done at decision level using Conjunction rule. The recognizer is found to be more robust with accuracy level more than 95%.

  19. Distributed Monitoring System Based on ICINGA

    CERN Multimedia

    Haen, C; Neufeld, N

    2011-01-01

    The LHCb online system relies on a large and heterogeneous I.T. infrastructure : it comprises more than 2000 servers and embedded systems and more than 200 network devices. While for the control and monitoring of detectors, PLCs, and readout boards an industry standard SCADA system PVSSII has been put in production, we use a low level monitoring system to monitor the control infrastructure itself. While our previous system was based on a single central NAGIOS server, our current system uses a distributed ICINGA infrastructure.

  20. Fuel-Cell Power Source Based on Onboard Rocket Propellants

    Science.gov (United States)

    Ganapathi, Gani; Narayan, Sri

    2010-01-01

    The use of onboard rocket propellants (dense liquids at room temperature) in place of conventional cryogenic fuel-cell reactants (hydrogen and oxygen) eliminates the mass penalties associated with cryocooling and boil-off. The high energy content and density of the rocket propellants will also require no additional chemical processing. For a 30-day mission on the Moon that requires a continuous 100 watts of power, the reactant mass and volume would be reduced by 15 and 50 percent, respectively, even without accounting for boiloff losses. The savings increase further with increasing transit times. A high-temperature, solid oxide, electrolyte-based fuel-cell configuration, that can rapidly combine rocket propellants - both monopropellant system with hydrazine and bi-propellant systems such as monomethyl hydrazine/ unsymmetrical dimethyl hydrazine (MMH/UDMH) and nitrogen tetroxide (NTO) to produce electrical energy - overcomes the severe drawbacks of earlier attempts in 1963-1967 of using fuel reforming and aqueous media. The electrical energy available from such a fuel cell operating at 60-percent efficiency is estimated to be 1,500 Wh/kg of reactants. The proposed use of zirconia-based oxide electrolyte at 800-1,000 C will permit continuous operation, very high power densities, and substantially increased efficiency of conversion over any of the earlier attempts. The solid oxide fuel cell is also tolerant to a wide range of environmental temperatures. Such a system is built for easy refueling for exploration missions and for the ability to turn on after several years of transit. Specific examples of future missions are in-situ landers on Europa and Titan that will face extreme radiation and temperature environments, flyby missions to Saturn, and landed missions on the Moon with 14 day/night cycles.

  1. Drug delivery system and breast cancer cells

    Science.gov (United States)

    Colone, Marisa; Kaliappan, Subramanian; Calcabrini, Annarica; Tortora, Mariarosaria; Cavalieri, Francesca; Stringaro, Annarita

    2016-06-01

    Recently, nanomedicine has received increasing attention for its ability to improve the efficacy of cancer therapeutics. Nanosized polymer therapeutic agents offer the advantage of prolonged circulation in the blood stream, targeting to specific sites, improved efficacy and reduced side effects. In this way, local, controlled delivery of the drug will be achieved with the advantage of a high concentration of drug release at the target site while keeping the systemic concentration of the drug low, thus reducing side effects due to bioaccumulation. Various drug delivery systems such as nanoparticles, liposomes, microparticles and implants have been demonstrated to significantly enhance the preventive/therapeutic efficacy of many drugs by increasing their bioavailability and targetability. As these carriers significantly increase the therapeutic effect of drugs, their administration would become less cost effective in the near future. The purpose of our research work is to develop a delivery system for breast cancer cells using a microvector of drugs. These results highlight the potential uses of these responsive platforms suited for biomedical and pharmaceutical applications. At the request of all authors of the paper an updated version was published on 12 July 2016. The manuscript was prepared and submitted without Dr. Francesca Cavalieri's contribution and her name was added without her consent. Her name has been removed in the updated and re-published article.

  2. System-level modeling and simulation of the cell culture microfluidic biochip ProCell

    DEFF Research Database (Denmark)

    Minhass, Wajid Hassan; Pop, Paul; Madsen, Jan

    2010-01-01

    -defined micro-channels using valves and pumps. We present an approach to the system-level modeling and simulation of a cell culture microfluidic biochip called ProCell, Programmable Cell Culture Chip. ProCell contains a cell culture chamber, which is envisioned to run 256 simultaneous experiments (viewed...

  3. Direct hydrogen fuel cell systems for hybrid vehicles

    Science.gov (United States)

    Ahluwalia, Rajesh K.; Wang, X.

    Hybridizing a fuel cell system with an energy storage system offers an opportunity to improve the fuel economy of the vehicle through regenerative braking and possibly to increase the specific power and decrease the cost of the combined energy conversion and storage systems. Even in a hybrid configuration it is advantageous to operate the fuel cell system in a load-following mode and use the power from the energy storage system when the fuel cell alone cannot meet the power demand. This paper discusses an approach for designing load-following fuel cell systems for hybrid vehicles and illustrates it by applying it to pressurized, direct hydrogen, polymer-electrolyte fuel cell (PEFC) systems for a mid-size family sedan. The vehicle level requirements relative to traction power, response time, start-up time and energy conversion efficiency are used to select the important parameters for the PEFC stack, air management system, heat rejection system and the water management system.

  4. Heat recovery subsystem and overall system integration of fuel cell on-site integrated energy systems

    Science.gov (United States)

    Mougin, L. J.

    1983-01-01

    The best HVAC (heating, ventilating and air conditioning) subsystem to interface with the Engelhard fuel cell system for application in commercial buildings was determined. To accomplish this objective, the effects of several system and site specific parameters on the economic feasibility of fuel cell/HVAC systems were investigated. An energy flow diagram of a fuel cell/HVAC system is shown. The fuel cell system provides electricity for an electric water chiller and for domestic electric needs. Supplemental electricity is purchased from the utility if needed. An excess of electricity generated by the fuel cell system can be sold to the utility. The fuel cell system also provides thermal energy which can be used for absorption cooling, space heating and domestic hot water. Thermal storage can be incorporated into the system. Thermal energy is also provided by an auxiliary boiler if needed to supplement the fuel cell system output. Fuel cell/HVAC systems were analyzed with the TRACE computer program.

  5. Innate immune cells in the pathogenesis of primary systemic vasculitis.

    Science.gov (United States)

    Misra, Durga Prasanna; Agarwal, Vikas

    2016-02-01

    Innate immune system forms the first line of defense against foreign substances. Neutrophils, eosinophils, erythrocytes, platelets, monocytes, macrophages, dendritic cells, γδ T cells, natural killer and natural killer T cells comprise the innate immune system. Genetic polymorphisms influencing the activation of innate immune cells predispose to development of vasculitis and influence its severity. Abnormally activated innate immune cells cross-talk with other cells of the innate immune system, present antigens more efficiently and activate T and B lymphocytes and cause tissue destruction via cell-mediated cytotoxicity and release of pro-inflammatory cytokines. These secreted cytokines further recruit other cells to the sites of vascular injury. They are involved in both the initiation as well as the perpetuation of vasculitis. Evidences suggest reversal of aberrant activation of immune cells in response to therapy. Understanding the role of innate immune cells in vasculitis helps understand the potential of therapeutic modulation of their activation to treat vasculitis.

  6. Systems definition space based power conversion systems: Executive summary

    Science.gov (United States)

    1977-01-01

    Potential space-located systems for the generation of electrical power for use on earth were investigated. These systems were of three basic types: (1) systems producing electrical power from solar energy; (2) systems producing electrical power from nuclear reactors; (3) systems for augmenting ground-based solar power plants by orbital sunlight reflectors. Configurations implementing these concepts were developed through an optimization process intended to yield the lowest cost for each. A complete program was developed for each concept, identifying required production rates, quantities of launches, required facilities, etc. Each program was costed in order to provide the electric power cost appropriate to each concept.

  7. Simplified Load-Following Control for a Fuel Cell System

    Science.gov (United States)

    Vasquez, Arturo

    2010-01-01

    A simplified load-following control scheme has been proposed for a fuel cell power system. The scheme could be used to control devices that are important parts of a fuel cell system but are sometimes characterized as parasitic because they consume some of the power generated by the fuel cells.

  8. Web-based Project Reporting System

    Data.gov (United States)

    US Agency for International Development — Web-PRS is a web-based system that captures financial information and project status information that is sortable by geographical location, pillar, project type and...

  9. Photo electrochemical and organic-based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, N.S. [California Institute of Technology, Pasadena, CA (United States); Kamat, P. [Univ. of Notre Dame, IN (United States); Spitler, M. [Boston Univ., MA (United States)

    1996-09-01

    Research in solar photoconversion has resulted in significant advances in the fields of photoelectrochemistry and dye-sensitized solar cells. Progress is also evident in the understanding of solid state organic systems for energy transduction. It is evident, however, that the examination in this report of the accomplishments in these areas serves to highlight the great extent of research that is necessary to establish a technology base sufficient for practical application. Recommendations are made in this report on the directions that this research should take.

  10. Dendritic cell-based cancer immunotherapy for colorectal cancer.

    Science.gov (United States)

    Kajihara, Mikio; Takakura, Kazuki; Kanai, Tomoya; Ito, Zensho; Saito, Keisuke; Takami, Shinichiro; Shimodaira, Shigetaka; Okamoto, Masato; Ohkusa, Toshifumi; Koido, Shigeo

    2016-05-01

    Colorectal cancer (CRC) is one of the most common cancers and a leading cause of cancer-related mortality worldwide. Although systemic therapy is the standard care for patients with recurrent or metastatic CRC, the prognosis is extremely poor. The optimal sequence of therapy remains unknown. Therefore, alternative strategies, such as immunotherapy, are needed for patients with advanced CRC. This review summarizes evidence from dendritic cell-based cancer immunotherapy strategies that are currently in clinical trials. In addition, we discuss the possibility of antitumor immune responses through immunoinhibitory PD-1/PD-L1 pathway blockade in CRC patients.

  11. Fault Diagnosis for Fuel Cell Based on Naive Bayesian Classification

    Directory of Open Access Journals (Sweden)

    Liping Fan

    2013-07-01

    Full Text Available Many kinds of uncertain factors may exist in the process of fault diagnosis and affect diagnostic results. Bayesian network is one of the most effective theoretical models for uncertain knowledge expression and reasoning. The method of naive Bayesian classification is used in this paper in fault diagnosis of a proton exchange membrane fuel cell (PEMFC system. Based on the model of PEMFC, fault data are obtained through simulation experiment, learning and training of the naive Bayesian classification are finished, and some testing samples are selected to validate this method. Simulation results demonstrate that the method is feasible.    

  12. Real cell overlay measurement through design based metrology

    Science.gov (United States)

    Yoo, Gyun; Kim, Jungchan; Park, Chanha; Lee, Taehyeong; Ji, Sunkeun; Jo, Gyoyeon; Yang, Hyunjo; Yim, Donggyu; Yamamoto, Masahiro; Maruyama, Kotaro; Park, Byungjun

    2014-04-01

    Until recent device nodes, lithography has been struggling to improve its resolution limit. Even though next generation lithography technology is now facing various difficulties, several innovative resolution enhancement technologies, based on 193nm wavelength, were introduced and implemented to keep the trend of device scaling. Scanner makers keep developing state-of-the-art exposure system which guarantees higher productivity and meets a more aggressive overlay specification. "The scaling reduction of the overlay error has been a simple matter of the capability of exposure tools. However, it is clear that the scanner contributions may no longer be the majority component in total overlay performance. The ability to control correctable overlay components is paramount to achieve the desired performance.(2)" In a manufacturing fab, the overlay error, determined by a conventional overlay measurement: by using an overlay mark based on IBO and DBO, often does not represent the physical placement error in the cell area of a memory device. The mismatch may arise from the size or pitch difference between the overlay mark and the cell pattern. Pattern distortion, caused by etching or CMP, also can be a source of the mismatch. Therefore, the requirement of a direct overlay measurement in the cell pattern gradually increases in the manufacturing field, and also in the development level. In order to overcome the mismatch between conventional overlay measurement and the real placement error of layer to layer in the cell area of a memory device, we suggest an alternative overlay measurement method utilizing by design, based metrology tool. A basic concept of this method is shown in figure1. A CD-SEM measurement of the overlay error between layer 1 and 2 could be the ideal method but it takes too long time to extract a lot of data from wafer level. An E-beam based DBM tool provides high speed to cover the whole wafer with high repeatability. It is enabled by using the design as a

  13. Development of a Drosophila cell-based error correction assay

    Directory of Open Access Journals (Sweden)

    Jeffrey D. Salemi

    2013-07-01

    Full Text Available Accurate transmission of the genome through cell division requires microtubules from opposing spindle poles to interact with protein super-structures called kinetochores that assemble on each sister chromatid. Most kinetochores establish erroneous attachments that are destabilized through a process called error correction. Failure to correct improper kinetochore-microtubule (kt-MT interactions before anaphase onset results in chromosomal instability (CIN, which has been implicated in tumorigenesis and tumor adaptation. Thus, it is important to characterize the molecular basis of error correction to better comprehend how CIN occurs and how it can be modulated. An error correction assay has been previously developed in cultured mammalian cells in which incorrect kt-MT attachments are created through the induction of monopolar spindle assembly via chemical inhibition of kinesin-5. Error correction is then monitored following inhibitor wash out. Implementing the error correction assay in Drosophila melanogaster S2 cells would be valuable because kt-MT attachments are easily visualized and the cells are highly amenable to RNAi and high-throughput screening. However, Drosophila kinesin-5 (Klp61F is unaffected by available small molecule inhibitors. To overcome this limitation, we have rendered S2