WorldWideScience

Sample records for cell surface phenomena

  1. Nonlinear surface electromagnetic phenomena

    CERN Document Server

    Ponath, H-E

    1991-01-01

    In recent years the physics of electromagnetic surface phenomena has developed rapidly, evolving into technologies for communications and industry, such as fiber and integrated optics. The variety of phenomena based on electromagnetism at surfaces is rich and this book was written with the aim of summarizing the available knowledge in selected areas of the field. The book contains reviews written by solid state and optical physicists on the nonlinear interaction of electromagnetic waves at and with surfaces and films. Both the physical phenomena and some potential applications are

  2. Nanophenomena at surfaces fundamentals of exotic condensed matter phenomena

    CERN Document Server

    Michailov, Michail

    2011-01-01

    This book presents the state of the art in nanoscale surface physics. It outlines contemporary trends in the field covering a wide range of topical areas: atomic structure of surfaces and interfaces, molecular films and polymer adsorption, biologically inspired nanophysics, surface design and pattern formation, and computer modeling of interfacial phenomena. Bridging 'classical' and 'nano' concepts, the present volume brings attention to the physical background of exotic condensed-matter properties. The book is devoted to Iwan Stranski and Rostislaw Kaischew, remarkable scientists, who played

  3. Fluid models and simulations of biological cell phenomena

    Science.gov (United States)

    Greenspan, H. P.

    1982-01-01

    The dynamics of coated droplets are examined within the context of biofluids. Of specific interest is the manner in which the shape of a droplet, the motion within it as well as that of aggregates of droplets can be controlled by the modulation of surface properties and the extent to which such fluid phenomena are an intrinsic part of cellular processes. From the standpoint of biology, an objective is to elucidate some of the general dynamical features that affect the disposition of an entire cell, cell colonies and tissues. Conventionally averaged field variables of continuum mechanics are used to describe the overall global effects which result from the myriad of small scale molecular interactions. An attempt is made to establish cause and effect relationships from correct dynamical laws of motion rather than by what may have been unnecessary invocation of metabolic or life processes. Several topics are discussed where there are strong analogies droplets and cells including: encapsulated droplets/cell membranes; droplet shape/cell shape; adhesion and spread of a droplet/cell motility and adhesion; and oams and multiphase flows/cell aggregates and tissues. Evidence is presented to show that certain concepts of continuum theory such as suface tension, surface free energy, contact angle, bending moments, etc. are relevant and applicable to the study of cell biology.

  4. Collective phenomena in volume and surface barrier discharges

    International Nuclear Information System (INIS)

    Barrier discharges are increasingly used as a cost-effective configuration to produce non-equilibrium plasmas at atmospheric pressure. This way, copious amounts of electrons, ions, free radicals and excited species can be generated without significant heating of the background gas. In most applications the barrier is made of dielectric material. Major applications utilizing mainly dielectric barriers include ozone generation, surface cleaning and modification, polymer and textile treatment, sterilization, pollution control, CO2 lasers, excimer lamps, plasma display panels (flat TV screens). More recent research efforts are devoted to biomedical applications and to plasma actuators for flow control. Sinusoidal feeding voltages at various frequencies as well as pulsed excitation schemes are used. Volume as well as surface barrier discharges can exist in the form of filamentary, regularly patterned or diffuse, laterally homogeneous discharges. The physical effects leading to collective phenomena in volume and surface barrier discharges are discussed in detail. Special attention is paid to self-organization of current filaments and pattern formation. Major similarities of the two types of barrier discharges are elaborated.

  5. Collective phenomena in volume and surface barrier discharges

    Science.gov (United States)

    Kogelschatz, U.

    2010-11-01

    Barrier discharges are increasingly used as a cost-effective configuration to produce non-equilibrium plasmas at atmospheric pressure. This way, copious amounts of electrons, ions, free radicals and excited species can be generated without significant heating of the background gas. In most applications the barrier is made of dielectric material. Major applications utilizing mainly dielectric barriers include ozone generation, surface cleaning and modification, polymer and textile treatment, sterilization, pollution control, CO2 lasers, excimer lamps, plasma display panels (flat TV screens). More recent research efforts are devoted to biomedical applications and to plasma actuators for flow control. Sinusoidal feeding voltages at various frequencies as well as pulsed excitation schemes are used. Volume as well as surface barrier discharges can exist in the form of filamentary, regularly patterned or diffuse, laterally homogeneous discharges. The physical effects leading to collective phenomena in volume and surface barrier discharges are discussed in detail. Special attention is paid to self-organization of current filaments and pattern formation. Major similarities of the two types of barrier discharges are elaborated.

  6. Collective phenomena in volume and surface barrier discharges

    Energy Technology Data Exchange (ETDEWEB)

    Kogelschatz, U, E-mail: u.kogelschatz@bluewin.ch [Retired from ABB Corporate Research, Segelhof 1, 5405 Baden (Switzerland)

    2010-11-01

    Barrier discharges are increasingly used as a cost-effective configuration to produce non-equilibrium plasmas at atmospheric pressure. This way, copious amounts of electrons, ions, free radicals and excited species can be generated without significant heating of the background gas. In most applications the barrier is made of dielectric material. Major applications utilizing mainly dielectric barriers include ozone generation, surface cleaning and modification, polymer and textile treatment, sterilization, pollution control, CO{sub 2} lasers, excimer lamps, plasma display panels (flat TV screens). More recent research efforts are devoted to biomedical applications and to plasma actuators for flow control. Sinusoidal feeding voltages at various frequencies as well as pulsed excitation schemes are used. Volume as well as surface barrier discharges can exist in the form of filamentary, regularly patterned or diffuse, laterally homogeneous discharges. The physical effects leading to collective phenomena in volume and surface barrier discharges are discussed in detail. Special attention is paid to self-organization of current filaments and pattern formation. Major similarities of the two types of barrier discharges are elaborated.

  7. Collective Phenomena In Volume And Surface Barrier Discharges

    Science.gov (United States)

    Kogelschatz, U.

    2010-07-01

    Barrier discharges are increasingly used as a cost-effective means to produce non-equilibrium plasmas at atmospheric pressure. This way, copious amounts of electrons, ions, free radicals and excited species can be generated without appreciable gas heating. In most applications the barrier is made of dielectric material. In laboratory experiments also the use of resistive, ferroelectric and semiconducting materials has been investigated, also porous ceramic layers and dielectric barriers with controlled surface conductivity. Major applications utilizing mainly dielectric barriers include ozone generation, surface cleaning and modification, polymer and textile treatment, sterilization, pollution control, CO2 lasers, excimer lamps, plasma display panels (flat TV screens). More recent research efforts are also devoted to biomedical applications and to plasma actuators for flow control. Sinu- soidal feeding voltages at various frequencies as well as pulsed excitation schemes are used. Volume as well as surface barrier discharges can exist in the form of filamentary, regularly patterned or laterally homogeneous discharges. Reviews of the subject and the older literature on barrier discharges were published by Kogelschatz (2002, 2003), by Wagner et al. (2003) and by Fridman et al. (2005). A detailed discussion of various properties of barrier discharges can also be found in the recent book "Non-Equilibrium Air Plasmas at Atmospheric Pressure" by Becker et al. (2005). The physical effects leading to collective phenomena in volume and surface barrier discharges will be discussed in detail. Special attention will be given to self-organization of current filaments. Main similarities and differences of the two types of barrier discharges will be elaborated.

  8. Free surface and hydraulic phenomena in a windowless symmetrical target

    International Nuclear Information System (INIS)

    In the windowless concept for the Accelerator Driven Systems target the liquid flow in the spallation region must be able to remove the volumetric thermal power due to the proton interactions with nuclei. In this paper the hydraulic phenomena of a basic symmetrical windowless target configuration with two concentric cylinders have been studied. The tests were aimed to measure the profile of the free surface of the flow and the liquid velocity field, by using water as hydraulic equivalent to lead-bismuth eutectic fluid. The test section consists of two concentric plexiglass pipes (inner cylinder diameter 200 mm, outer cylinder diameter 290 mm) where the water flows up in the annular region and flows down in the central region. The most important experimental parameters are the fluid level measured from the top edge of the inner cylinder and the imposed flow rate. The experiments have been carried out at room temperature in the following range: flow rate from 2.5 to 20 kg/s; fluid level at zero flow rate from -50 to 186 mm. (authors)

  9. Activity in the lunar surface: Transient Lunar Phenomena

    CERN Document Server

    AF, Cruz Roa

    2013-01-01

    Transient Lunar Phenomena (TLP) observed on the surface of the moon, are of high rarity, low repetition rate and very short observation times, resulting in that there is little information about this topic. This necessitates the importance of studying them in detail. They have been observed as very bright clouds of gases of past geological lunar activity. According its duration, there have been registered in different colors (yellow, orange, red). Its size can vary from a few to hundreds of kilometers. The TLP Usually occur in certain locations as in some craters (Aristarchus, Plato, Kepler, etc.) and at the edges of lunar maria (Sea of Fecundity, Alps hills area, etc.). The exposure time of a TLP can vary from a few seconds to a little more than one hour. In this paper, a literature review of the TLP is made to build a theory from the existing reports and scientific hypotheses, trying to unify and synthesize data and concepts that are scattered by different lunar research lines. The TLP need to be explained ...

  10. Surface segregation phenomena in extended and nanoparticle surfaces of Cu-Au alloys

    Science.gov (United States)

    Li, Jonathan; Wang, Guofeng; Zhou, Guangwen

    2016-07-01

    Using density functional theory (DFT) and Monte Carlo (MC) simulations, we studied the surface segregation phenomena of Au atoms in the extended and nanoparticle surfaces of Cu-Au alloys. Our MC simulations predicted significant Au enrichment in the outermost layer of (111) and (100) extended surfaces, and Au enrichment in the two outermost layers of (110) extended surfaces. The equilibrium Cu-Au nanoparticles were predicted to develop into an Au-enriched shell structure, where Au atoms preferably segregate to the (100) facets while Cu atoms are mainly located on the (111) facet of the nanoparticles. Our simulation predictions agree with experimental measurements.

  11. Surface energy and crystallization phenomena of ammonium dinitramide

    Energy Technology Data Exchange (ETDEWEB)

    Teipel, Ulrich; Heintz, Thomas [Fraunhofer-Institut fuer Chemische Technologie (ICT), PO Box 1240, D-76318 Pfinztal (Germany)

    2005-12-01

    Ammonium dinitramide (ADN) was characterized during recrystallization from the melt. The surface tension of molten ADN at 97 C was measured to be 89 mN/m. The wetting angles between molten ADN and different solid surfaces (polytetrafluoroethylene, glass, steel, and aluminum) were determined. The wettability depends on the surface tension of molten ADN, the free surface energy of the solid surfaces and the interfacial tension between the solid and liquid. Observations of the recrystallization behavior of molten ADN showed that nucleation does not occur, even at super cooling rates of 70 K. Crystallization can be initiated by the application of seed crystals. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  12. Investigation of Surface Phenomena in Shocked Tin in Converging Geometry

    Energy Technology Data Exchange (ETDEWEB)

    Rousculp, Christopher L. [Los Alamos National Laboratory; Oro, David Michael [Los Alamos National Laboratory; Griego, Jeffrey Randall [Los Alamos National Laboratory; Turchi, Peter John [Los Alamos National Laboratory; Reinovsky, Robert Emil [Los Alamos National Laboratory; Bradley, Joseph Thomas [Los Alamos National Laboratory; Cheng, Baolian [Los Alamos National Laboratory; Freeman, Matthew Stouten [Los Alamos National Laboratory; Patten, Austin Randall [Los Alamos National Laboratory

    2016-03-21

    There is great interest in the behavior of the free surface of tin under shock loading. While it is known that meso-scale surface imperfections can seed the Richtmyer- Meshkov Instability (RMI) for a surface that is melted on release, much less is known about a tin surface that is solid, but plastically deforming. Here material properties such as shear and yield strength come into play especially in converging geometry. Previous experiments have been driven by direct contact HE. Usually a thin, flat target coupon is fielded with various single-mode, sinusoidal, machined, profiles on the free surface. The free surface is adjacent to either vacuum or an inert receiver gas. Most of these previous driver/target configurations have been nominal planer geometry. With modern HE it has been straightforward to shock tin into melt on release. However it has been challenging to achieve a low enough pressure for solid state on release. Here we propose to extend the existing base of knowledge to include the behavior of the free surface of tin in cylindrical converging geometry. By shock loading a cylindrical tin shell with a magnetically driven cylindrical liner impactor, the free surface evolution can be diagnosed with proton radiography. With the PHELIX capacitor bank, the drive can easily be varied to span the pressure range to achieve solid, mixed, and liquid states on release. A conceptual cylindrical liner and target is shown in Figure 1.

  13. Investigation of Surface Phenomena in Shocked Tin in Converging Geometry

    Energy Technology Data Exchange (ETDEWEB)

    Rousculp, Christopher L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Oro, David Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Margolin, Len G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Griego, Jeffrey Randall [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reinovsky, Robert Emil [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Turchi, Peter John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-06

    There is great interest in the behavior of the free surface of tin under shock loading. While it is known that meso-scale surface imperfections can seed the Richtmyer-Meshkov Instability (RMI) for a surface that is melted on release, much less is known about a tin surface that is solid, but plastically deforming. Here material properties such as shear and yield strength come into play especially in converging geometry. Previous experiments have been driven by direct contact HE. Usually a thin, flat target coupon is fielded with various single-mode, sinusoidal, machined, profiles on the free surface. The free surface is adjacent to either vacuum or an inert receiver gas. Most of these previous driver/target configurations have been nominal planer geometry. With modern HE it has been straightforward to shock tin into melt on release. However it has been challenging to achieve a low enough pressure for solid state on release. Here we propose to extend the existing base of knowledge to include the behavior of the free surface of tin in cylindrical converging geometry. By shock loading a cylindrical tin shell with a magnetically driven cylindrical liner impactor, the free surface evolution can be diagnosed with proton radiography. With the PHELIX capacitor bank, the drive can easily be varied to span the pressure range to achieve solid, mixed, and liquid states on release.

  14. Using ToF-SIMS to study industrial surface phenomena

    Science.gov (United States)

    Smentkowski, Vincent S.; Keenan, Michael R.; Arlinghaus, Henrik

    2016-10-01

    Time of flight secondary ion mass spectrometry (ToF-SIMS) is frequently used to analyze industrial samples since it offers high (ppb) detection sensitivity, very high surface specificity (analysis of the top 1-3 surface layers during a spectral/image acquisition), high mass resolution (allowing the analyst the ability to separate Cu from C5H3 for instance), the ability to detect hydrogen, high depth resolution for depth profile measurements, and detection of high-mass fragments associated with molecular species/additives. In this manuscript, we demonstrate the advantages of ToF-SIMS including the ability to measure trace quantities of unexpected species on the surfaces of devices, and the ability to extract high-mass resolution information from data sets which were collected at degraded mass resolution. The importance of applying unbiased multivariate statistical analysis (MVSA) to the complete set of measured data is also demonstrated.

  15. Surface Phenomena at Silver Nanoparticles in the Context of Toxicology

    DEFF Research Database (Denmark)

    Miclaus, Teodora

    2015-01-01

    sulphide particles in close proximity to the silver nanoparticle surface, as shown in the second study. The identification of spontaneous sulfidation under in vitro settings is a novel finding with important implications for toxicity, as Ag2S traps toxic silver ions into an insoluble compound. Increased...

  16. Optically induced surface relief phenomena in azobenzene polymers

    DEFF Research Database (Denmark)

    Holme, NCR; Nikolova, Ludmila; Hvilsted, Søren;

    1999-01-01

    Azobenzene polymers and oligomers show intriguing surface relief features when irradiated with polarized laser light. We show through atomic force microscopic investigation of side-chain azobenzene polymers after irradiation through an amplitude mask that large peaks or trenches result depending ...... Institute of Physics....

  17. Surface aging phenomena in multidimensional sp2 carbon allotropes

    Science.gov (United States)

    Chang, Yun-Hsiang; Santos, Sergio; Chiesa, Matteo

    Despite the current interest in the scientific community in exploiting divergent surface properties of graphitic carbon allotropes, conclusive differentiation remains elusive even when dealing with parameters as fundamental as adhesion. Here we set out to provide conclusive experimental evidence on the time evolution of the surface properties of highly oriented pyrolytic graphite (HOPG), graphene monolayer (GML) and multiwalled carbon nanotubes (MWCNTs) as we expose these materials to airborne contaminants, by providing 1) statistically significant results based on large data-sets, i.e. thousands of force measurements, and 2) errors sufficiently self-consistent to treat the comparison between data-sets in atomic force microscopy measurements. We first consider HOPG as a model system and then employ our results to draw conclusions from the GML and MWCNT samples. We find that, in terms of surface properties and thus regarding surface functionality, aged HOPG and GML are more similar than aged HOPG and cleaved HOPG. The state of the HOPG samples is also as relevant for the comparison between HOPG and MWCNTs.

  18. TiO 2 photocatalysis and related surface phenomena

    Science.gov (United States)

    Fujishima, Akira; Zhang, Xintong; Tryk, Donald A.

    2008-12-01

    The field of photocatalysis can be traced back more than 80 years to early observations of the chalking of titania-based paints and to studies of the darkening of metal oxides in contact with organic compounds in sunlight. During the past 20 years, it has become an extremely well researched field due to practical interest in air and water remediation, self-cleaning surfaces, and self-sterilizing surfaces. During the same period, there has also been a strong effort to use photocatalysis for light-assisted production of hydrogen. The fundamental aspects of photocatalysis on the most studied photocatalyst, titania, are still being actively researched and have recently become quite well understood. The mechanisms by which certain types of organic compounds are decomposed completely to carbon dioxide and water, for example, have been delineated. However, certain aspects, such as the photo-induced wetting phenomenon, remain controversial, with some groups maintaining that the effect is a simple one in which organic contaminants are decomposed, while other groups maintain that there are additional effects in which the intrinsic surface properties are modified by light. During the past several years, powerful tools such as surface spectroscopic techniques and scanning probe techniques performed on single crystals in ultra-high vacuum, and ultrafast pulsed laser spectroscopic techniques have been brought to bear on these problems, and new insights have become possible. Quantum chemical calculations have also provided new insights. New materials have recently been developed based on titania, and the sensitivity to visible light has improved. The new information available is staggering, but we hope to offer an overview of some of the recent highlights, as well as to review some of the origins and indicate some possible new directions.

  19. A Synopsis of Interfacial Phenomena in Lithium-Based Polymer Electrolyte Electrochemical Cells

    Science.gov (United States)

    Baldwin, Richard S.; Bennett, William R.

    2007-01-01

    The interfacial regions between electrode materials, electrolytes and other cell components play key roles in the overall performance of lithium-based batteries. For cell chemistries employing lithium metal, lithium alloy or carbonaceous materials (i.e., lithium-ion cells) as anode materials, a "solid electrolyte interphase" (SEI) layer forms at the anode/electrolyte interface, and the properties of this "passivating" layer significantly affect the practical cell/battery quality and performance. A thin, ionically-conducting SEI on the electrode surface can beneficially reduce or eliminate undesirable side reactions between the electrode and the electrolyte, which can result in a degradation in cell performance. The properties and phenomena attributable to the interfacial regions existing at both anode and cathode surfaces can be characterized to a large extent by electrochemical impedance spectroscopy (EIS) and related techniques. The intention of the review herewith is to support the future development of lithium-based polymer electrolytes by providing a synopsis of interfacial phenomena that is associated with cell chemistries employing either lithium metal or carbonaceous "composite" electrode structures which are interfaced with polymer electrolytes (i.e., "solvent-free" as well as "plasticized" polymer-binary salt complexes and single ion-conducting polyelectrolytes). Potential approaches to overcoming poor cell performance attributable to interfacial effects are discussed.

  20. Vacuum chamber surface electronic properties influencing electron cloud phenomena

    International Nuclear Information System (INIS)

    In the vacuum science community, it is now commonly accepted that, for the present and next generation of accelerators, the surface electronic properties of the vacuum chamber material have to be studied in detail. Moreover, such studies are of valuable help to define the cleaning procedures of the chosen materials and to identify the most efficient vacuum commissioning. In the case of the large hadron collider (LHC) the proton beam stability, in the presence of an electron cloud, is analysed using beam induced electron multipacting (BIEM) simulations requiring a number of surface related properties, such as photon reflectivity, electron and photon induced electron emission, heat load, etc. and their modification during machine commissioning and operation. Such simulation codes base their validity on the completeness and reliability of the aforementioned input data. In this work we describe how a surface science approach has been applied to measure, total electron yield (SEY) as well as energy distribution curves excited by a very low-energy electron beam (0-320 eV), from the industrially prepared Cu co-laminated material, the adopted LHC beam-screen material, held at cryogenic temperatures (about 9 K). The data show that the SEY converges to unity at zero primary electron energy and that the ratio of reflected to secondary electrons increases for decreasing energy below about 70 eV, and becomes dominant below electron energies of about 20 eV. These observations lead to the notion of long-lived low-energy electrons in the accelerator vacuum chamber, which could be an issue for the LHC, damping rings and future accelerators

  1. Surface oxidation phenomena of boride coatings grown on iron

    International Nuclear Information System (INIS)

    Very hard boride coatings are grown on various metals using thermochemical as well as chemical vapour deposition techniques. In this way many surface properties, and in particular the wear resistance, can be considerably improved. Usually, also the corrosion behaviour of the treated components is important. In particular, oxidizing atmospheres are involved in many applications where, therefore, coating-environment interactions can play a relevant role. In a previous work, the early stages of the oxidation of iron borides were studied by treating single phase compacted powders in flowing oxygen at low temperatures (300-450deg C). In the present paper, the attention is addressed to the oxidation of both single phase and polyphase boride coatings thermochemically grown on iron. The single phase boride coatings were constituted by Fe2B, while the polyphase coatings were constituted by an inner Fe2B layer and an outer FeB-base layer. All the boride layers displayed strong (002) preferred crystallographic orientations. (orig.)

  2. Synchronization phenomena in surface-reaction models of protocells.

    Science.gov (United States)

    Serra, Roberto; Carletti, Timoteo; Poli, Irene

    2007-01-01

    A class of generic models of protocells is introduced, which are inspired by the Los Alamos bug hypothesis but which, due to their abstraction level, can be applied to a wider set of detailed protocell hypotheses. These models describe the coupled growth of the lipid container and of the self-replicating molecules. A technique to analyze the dynamics of populations of such protocells is described, which couples a continuous-time formalism for the growth between two successive cell divisions, and a discrete map that relates the quantity of self-replicating molecules in successive generations. This technique allows one to derive several properties in an analytical way. It is shown that, under fairly general assumptions, the two growth rates synchronize, so that the lipid container doubles its size when the number of self-replicating molecules has also doubled--thus giving rise to exponential growth of the population of protocells. Such synchronization had been postulated a priori in previous models of protocells; here it is an emergent property. We also compare the rate of duplication of two populations generated by two different protocells with different kinds of self-replicating molecules, considering the interesting case where the rate of self-replication of one kind is higher than that of the other, but its contribution to the container growth rate is smaller. It is shown that in this case the population of offspring of the protocell with the faster-replicating molecule will eventually grow faster than the other. The case where two different types of self-replicating monomers are present in the same protocell is also analyzed, and it is shown that, if the replication follows a first-order kinetic equation, then the faster replicator eventually displaces the slower one, whereas if the growth is sublinear the two coexist. It is also proven by an appropriate rescaling of time that the results that concern the system asymptotic dynamics hold both for micelles and

  3. Basic study for nonlinear instable phenomena of free surface. Response of free surface to down flow (Report of collaboration study)

    International Nuclear Information System (INIS)

    This report contains the result of study performed in Ibaraki University in 1998 as the collaboration with JNC. This year is the last of collaboration period, and then this report is the final report and contains the result of previous year. Oscillation phenomena, which caused by interaction between free surface in a tank and flow that is poured down onto the free surface, is very important for safety of FBR. However, such oscillation phenomena have not been studied well except for the case in open channel flow. Authors focused on a free surface oscillation caused by free jet and performed an experimental study using quasi-two-dimensional rectangular tank. The purpose of the study is to obtain exact knowledge of the nonlinear instable phenomena of free surface, which caused by the interaction between free surface and pouring down flow. In last year, we constructed the experimental apparatus and investigated effects of tank size and flow condition to the free surface oscillation in the tank. This year, experiments in cases, which the jet nozzle was set under the free surface, were performed using the same apparatus. Relationship between the free surface oscillation and internal flow of the tank was investigated based on visualization of internal flow. Then we tried to reveal the mechanism of the free surface oscillation. The results are as followed: Behavior of free surface oscillation depends on the tank width, pouring position, pouring angle and water depth. Larger amplitude oscillation is sloshing-like oscillation or transition among those sloshing-like oscillation. The free surface oscillation holds correlation to the displacement of jet and requires deviation of the jet. (author)

  4. Crystal Ice Formation of Solution and Its Removal Phenomena From Cooled Solid Surface

    Science.gov (United States)

    Hirata, Tetsuo; Ishikawa, Masaaki; Nagasaka, Kouji

    Experimental studies for freezing phenomena of ethylene glycol solution on cooled plate have been performed. A polyvinyl chloride as well as an acrylic resin plates are used for the cooled plates. It is found that the crystal ice formed at the cooled plate is removed from the plate due to buoyancy force acting the crystal ice. It means that ice formation on a cooled plate without deposit ice layer is possible by the present method. It is shown that the cooled plate surface is under cooled about 1.0~1.5 degree below the freezing temperature of the solution during the crystal ice formation and its removal phenomena. The degree of under cooled temperature is unaffected by the cooling temperature of the plate. For higher concentration of solution, it is found that the number of the removed crystal ice per unit time is increased and the volume of each removed ice is decreased.

  5. In-Situ Observation of Surface Phenomena During Sr(NO3)2 Crystal Growth

    Institute of Scientific and Technical Information of China (English)

    陈万春; 李宝霞; 李超荣

    2003-01-01

    The reflected differential interference phase contrast microscope is used to study a growing crystal surface. The surface phenomena on the {111} and {100} faces of Sr(NO3)2, such as the propagation of steps, the bunches of surface steps, the impurity stopper and the growth hillocks, have been observed during the crystal growth. It was found that: (1) The macrosteps velocity is from 0.86μm/s to 9.8 × 10-2 μm/s on the {111} face at σ = 5.33 × 10-3 to 2.13 × 10-3. (2) If the propagating directions of the steps are in opposition, the velocity of the macrosteps will be increased after they bunched. These phenomena first provide the evidence for the existence of the mutual acceleration effect of macroscopic steps. (3) The growth hillocks include a concentric step which evidently results from successive acts of a two-dimension nucleation on surface.

  6. Macroscopic Modeling of Transport Phenomena in Direct Methanol Fuel Cells

    DEFF Research Database (Denmark)

    Olesen, Anders Christian

    An increasing need for energy efficiency and high energy density has sparked a growing interest in direct methanol fuel cells for portable power applications. This type of fuel cell directly generates electricity from a fuel mixture consisting of methanol and water. Although this technology...

  7. The 2007 Nobel Prize in Chemistry for surface chemistry: understanding nanoscale phenomena at surfaces.

    Science.gov (United States)

    Bowker, Michael

    2007-11-01

    The 2007 Nobel Prize in Chemistry was awarded to Gerhard Ertl for his seminal work in the area of surface science, particularly at the gas-solid interface. Although Ertl began his career at a time when the term "nanotechnology" was not yet known, his contributions to the field have paved the way for many future scientists in this area and led to a deeper understanding of catalysis and other surface-specific processes at the nanoscale. Here, we summarize the scientific developments that guided early progress in surface science, and we explore the major advancements in Ertl's career, including his work on adsorption and oxidation of small molecules on metal surfaces. Significant contributions of other key scientists to this rich area are also presented.

  8. The Phenomena of Spreading of Hydrotalcite Sol on A Porous Silica Surface Governed by Marangoni Effect

    Directory of Open Access Journals (Sweden)

    Z. Helwani

    2012-12-01

    Full Text Available Wetting phenomena plays a crucial role in a wide range of technological applications. Spreading of liquids on solids involving phase change is encountered in many areas ranging from biological systems to industrial applications such as coatings, printing, painting and spraying. The fundamental study on wetting of membrane precursors namely hydrotalcite sols on a porous silica surface with different types of precursor material was successfully carried out. Relationship between the contact angle of a hydrotalcite droplet on silica surface and the Marangoni effect was also investigated. The presence of PVA in hydrotalcite sols was found to influence the rheological properties of the sols significantly, resulting in higher viscosity and ultimately leading to lower contact angle on solid surfaces. The degree of hydrotalcite's philicity on a substrate was improved by the addition of PVA solution. In this study, the spreading of a liquid droplet on a solid surface controlled by a surface tension gradient, due to Marangoni effect was found to drive better spreading of the liquid droplet. Marangoni Number, Ma was found to be proportionally related with the surface tension of the sols but inversely proportional to contact angles of the sols. Marangoni forces that decreased the contact angle, promoted spreading of hydrotalcite droplets on the selected glass substrates. Keywords: contact angle, hydrotalcite, marangoni effect, spreading, wetting evolution

  9. Pining phenomena of an evaporated droplet on the hydrophobic micro-textured surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Dong In; Doh, Seung Woo; Park, Hyun Sun; Moriyama Kiyofumia; Kim, Moo Hwan; Kwak, Ho Jae [POSTECH, Pohang (Korea, Republic of); Ahn, Ho Seon [Incheon National University, Incheon (Korea, Republic of)

    2015-10-15

    When the decreased contact angle reaches the receding contact angle, the contact radius is reduced while maintaining a constant contact angle, i.e., this evaporation mode is known as the constant contact angle (CCA) mode. The emphasis of the droplet evaporation is that the transition from CCR to CCA modes is relative with the rate of the droplet evaporation, and it is markedly influenced by the surface wettability. In this study, it is focused on the evaporation mode transition. Especially, the transition from CCR to CCA modes is investigated on the hydrophobic microtextured surfaces. On the basis of the thermodynamics, the transition from CCR to CCA mode is theoretically analyzed. The thermodynamic model is developed to estimate the receding contact angle at the evaporation mode transition. Additionally, to compare between the theoretical model and experimental results, it is shown that the experimental receding contact angle is well estimated by the receding contact angle with the theoretical model. This study was performed to investigate the pinning phenomena of an evaporated droplet on the hydrophobic micro-textured surfaces. The pinning phenomena at the contact line were shown theoretically to be due to the most favorable thermodynamics process that caused the Gibbs free energy to rapidly reach an equilibrium state during droplet evaporation. The evaporation mode underwent a transition when the decrease in the Gibbs free energy was equivalent for the CCR and CCA modes. On the basis of the analysis described here, a theoretical model was developed to estimate the receding contact angle at the mode transition as a function of the surface conditions.

  10. Effect of solar-terrestrial phenomena on solar cell's efficiency

    International Nuclear Information System (INIS)

    It is assumed that the solar cell efficiency of PV device is closely related to the solar irradiance, consider the solar parameter Global Solar Irradiance (G) and the meteorological parameters like daily data of Earth Skin Temperature (E), Average Temperature (T), Relative Humidity (H) and Dew Frost Point (D), for the coastal city Karachi and a non-coastal city Jacobabad, K and J is used as a subscripts for parameters of Karachi and Jacobabad respectively. All variables used here are dependent on the location (latitude and longitude) of our stations except G. To employ ARIMA modeling, the first eighteen years data is used for modeling and forecast is done for the last five years data. In most cases results show good correlation among monthly actual and monthly forecasted values of all the predictors. Next, multiple linear regression is employed to the data obtained by ARIMA modeling and models for mean monthly observed G values are constructed. For each station, two equations are constructed, the R values are above 93% for each model, showing adequacy of the fit. Our computations show that solar cell efficiency can be increased if better modeling for meteorological predictors governs the process. (author)

  11. Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy.

    Science.gov (United States)

    Balke, Nina; Jesse, Stephen; Yu, Pu; Ben Carmichael; Kalinin, Sergei V; Tselev, Alexander

    2016-10-21

    Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ∼1-3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip-sample contact stiffness. The approach has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. This analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques. PMID:27631885

  12. Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy

    Science.gov (United States)

    Balke, Nina; Jesse, Stephen; Yu, Pu; Carmichael, Ben; Kalinin, Sergei V.; Tselev, Alexander

    2016-10-01

    Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ˜1-3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip-sample contact stiffness. The approach has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. This analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.

  13. Dependence of surface smoothing, sputtering and etching phenomena on cluster ion dosage

    CERN Document Server

    Song, J H; Choi, W K

    2002-01-01

    The dependence of surface smoothing and sputtering phenomena of Si (1 0 0) solid surfaces irradiated by CO sub 2 cluster ions on cluster-ion dosage was investigated using an atomic force microscope. The flux and total ion dosage of impinging cluster ions at the acceleration voltage of 50 kV were fixed at 10 sup 9 ions/cm sup 2 s and were scanned from 5x10 sup 1 sup 0 to 5x10 sup 1 sup 3 ions/cm sup 2 , respectively. The density of hillocks induced by cluster ion impact was gradually increased with the dosage up to 5x10 sup 1 sup 1 ions/cm sup 2 , which caused that the irradiated surface became rough from 0.4 to 1.24 nm in root-mean-square roughness (sigma sub r sub m sub s). At the boundary of the ion dosage of 10 sup 1 sup 2 ions/cm sup 2 , the density of the induced hillocks was decreased and sigma sub r sub m sub s was about 1.21 nm, not being deteriorated further. At the dosage of 5x10 sup 1 sup 3 ions/cm sup 2 , the induced hillocks completely disappeared and the surface became very flat as much as sigma...

  14. Simulation of the Internal Transport Phenomena for PEM Fuel Cells with Different Modes of Flow

    Institute of Scientific and Technical Information of China (English)

    胡鸣若; 朱新坚; 顾安忠

    2004-01-01

    A numerical model for proton exchange membrane (PEM) fuel cell is developed, which can simulate such basic transport phenomena as gas-liquid two-phase flow in a working fuel cell. Boundary conditions for both the conventional and the interdigitated modes of flow are presented on a three-dimensional basis. Numerical techniques for this model are discussed in detail. Validation shows good agreement between simulating results and experimental data. Furthermore, internal transport phenomena are discussed and compared for PEM fuel cells with conventional and interdigitated flows. It is found that the dead-ended structure of an interdigitated flow does increase the oxygen mass fraction and decrease the liquid water saturation in the gas diffusion layer as compared to the conventional mode of flow. However, the cathode humidification is important for an interdigitated flow to acquire better performance than a conventional flow fuel cell.

  15. Basic research on nonlinear instability phenomena of liquid surface. Fiscal year 1996 report on preceding basic engineering field

    Energy Technology Data Exchange (ETDEWEB)

    Madarame, Haruki; Okamoto, Koji [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.; Iida, Masao

    1997-03-01

    Various nonlinear behaviors caused by nonlinear boundary conditions have been observed, and it is feared that in large vessels like FBRs, the instability phenomena such as self-exciting sloshing may occur in the free liquid surface of coolant. In this research, the nonlinear instability phenomena in free liquid surface were examined by the basic experiment and the analysis. As to the self-exciting oscillation `jet flutter` of upward plane jet that collides against liquid surface, in order to know the mechanism of determining the frequency and supplying energy, the amplitude and phase relation of various variable quantities were investigated. The simplified model for calculating the displacement of jet was made, and compared with the experiment. The jet flutter phenomena are explained. The interaction of free liquid surface and turbulent flow, which is important for considering the nonlinearity in free liquid surface, was measured by LDV and visualization, and the turbulent flow phenomena in free liquid surface were investigated. In the experiment, turbulent flow energy was given to the free liquid surfaces of water and polymers, and the effect that the Toms effect exerted to interface turbulent flow was observed. The results of these studies are reported. (K.I.)

  16. Analysis of transport phenomena and electrochemical reactions in a micro PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq Al-Baghdadi, Maher A.R. [Fuel Cell Research Center, International Energy and Environment Foundation, Najaf, P.O.Box 39 (Iraq)

    2013-07-01

    Micro-fuel cells are considered as promising electrochemical power sources in portable electronic devices. The presence of microelectromechanical system (MEMS) technology makes it possible to manufacture the miniaturized fuel cell systems. The majority of research on micro-scale fuel cells is aimed at micro-power applications. Performance of micro-fuel cells are closely related to many factors, such as designs and operating conditions. CFD modeling and simulation for heat and mass transport in micro PEM fuel cells are being used extensively in researches and industrial applications to gain better understanding of the fundamental processes and to optimize the micro fuel cell designs before building a prototype for engineering application. In this research, full three-dimensional, non-isothermal computational fluid dynamics model of a micro proton exchange membrane (PEM) fuel cell has been developed. This comprehensive model accounts for the major transport phenomena such as convective and diffusive heat and mass transfer, electrode kinetics, transport and phase-change mechanism of water, and potential fields in a micro PEM fuel cell. The model explains many interacting, complex electrochemical, and transport phenomena that cannot be studied experimentally. Three-dimensional results of the species profiles, temperature distribution, potential distribution, and local current density distribution are presented and analysed, with the focus on the physical insight and fundamental understanding.

  17. Interfacial phenomena at a surface of individual and complex fumed nanooxides.

    Science.gov (United States)

    Gun'ko, V M; Turov, V V; Zarko, V I; Goncharuk, O V; Pakhlov, E M; Skubiszewska-Zięba, J; Blitz, J P

    2016-09-01

    Investigations of interfacial and temperature behaviors of nonpolar and polar adsorbates interacting with individual and complex fumed metal or metalloid oxides (FMO), initial and subjected to various treatments or chemical functionalization and compared to such porous adsorbents as silica gels, precipitated silica, mesoporous ordered silicas, filled polymeric composites, were analyzed. Complex nanooxides include core-shell nanoparticles, CSNP (50-200nm in size) with titania or alumina cores and silica or alumina shells in contrast to simple and smaller nanoparticles of individual FMO. CSNP could be destroyed under high-pressure cryogelation (HPCG) or mechanochemical activation (MCA). These treatments affect the structure of aggregates of nanoparticles and agglomerates of aggregates, resulting in their becoming more compacted. The analysis shows that complex FMO could be more sensitive to external actions than simple nanooxides such as fumed silica. Any treatment of 'soft' FMO affects the interfacial and temperature behaviors of polar and nonpolar adsorbates. Rearrangement of secondary particles and surface functionalization affects the freezing-melting point depression of adsorbates. For some adsorbates, open hysteresis loops became readily apparent in adsorption-desorption isotherms. Clustering of adsorbates bound in textural pores in aggregates of nanoparticles (i.e., voids between nanoparticles in secondary structures) causes reduced changes in enthalpy during phase transitions (freezing, fusion, evaporation). Freezing point depression and melting point elevation cause significant hysteresis freezing-melting effects for adsorbates bound to FMO in the textural pores. Relaxation phenomena for both low- and high-molecular weight adsorbates or filled polymeric composites are affected by the morphology of primary particles, structural organization of secondary particles of differently treated or functionalized FMO, content of adsorbates, co-adsorption order, and

  18. Mechanisms and effective control of physiological browning phenomena in plant cell cultures.

    Science.gov (United States)

    Dong, Yan-Shan; Fu, Chun-Hua; Su, Peng; Xu, Xiang-Ping; Yuan, Jie; Wang, Sheng; Zhang, Meng; Zhao, Chun-Fang; Yu, Long-Jiang

    2016-01-01

    Browning phenomena are ubiquitous in plant cell cultures that severely hamper scientific research and widespread application of plant cell cultures. Up to now, this problem still has not been well controlled due to the unclear browning mechanisms in plant cell cultures. In this paper, the mechanisms were investigated using two typical materials with severe browning phenomena, Taxus chinensis and Glycyrrhiza inflata cells. Our results illustrated that the browning is attributed to a physiological enzymatic reaction, and phenolic biosynthesis regulated by sugar plays a decisive role in the browning. Furthermore, to confirm the specific compounds which participate in the enzymatic browning reaction, transcriptional profile and metabolites of T. chinensis cells, and UV scanning and high-performance liquid chromatography-mass spectrometry (HPLC-MS) profile of the browning compounds extracted from the brown-turned medium were analyzed, flavonoids derived from phenylpropanoid pathway were found to be the main compounds, and myricetin and quercetin were deduced to be the main substrates of the browning reaction. Inhibition of flavonoid biosynthesis can prevent the browning occurrence, and the browning is effectively controlled via blocking flavonoid biosynthesis by gibberellic acid (GA3 ) as an inhibitor, which further confirms that flavonoids mainly contribute to the browning. On the basis above, a model elucidating enzymatic browning mechanisms in plant cell cultures was put forward, and effective control approaches were presented.

  19. Solutes and cells - aspects of advection-diffusion-reaction phenomena in biochips

    DEFF Research Database (Denmark)

    Vedel, Søren

    2012-01-01

    The results in this thesis are part of the work carried out during the author’s doctoral studies. Funding for the project has been provided by the Programme Commission on Strategic Growth Technologies, the Danish Agency for Science, Technology and Innovation (grant no. 2106-08-0018 ‘Pro....... Presented in this thesis is selected parts of the results obtained, which in some cases have also been published in peer-reviewed journals or presented at conferences and meetings, as listed in Sec. 1.2. The studies of the distributions of solutes are motivated by microbiological phenomena in which cells...... subproject, we study the influence of neighboring cells in shaping the iii Abstract migration of the individual cell by a combined experimental and theoretical approach. Using highly controlled microfluidic cell to obtain culture high-resolution image data with subcellular resolution of migrating cells...

  20. Interface and transport phenomena under reduced gravity. II - Surfaces and wetting

    Science.gov (United States)

    Bewersdorff, A.; Mueller, G.; Oertel, H., Jr.; Sahm, P. R.; Sell, P.-J.; Siekmann, J.

    1983-02-01

    Liquids contained in propellant tanks under microgravity conditions are subject to reduced gravity forces, surface forces and boundary adhesion. Based on the principle of the minimum of the total potential energy, the basic equations of capillary hydrostatics are derived and the equilibrium configurations of the free fluid surface in rotationally symmetric containers are calculated. Tank geometries for technical purposes are discussed, as well as the role of outgassing of molten matter in materials processing in space. The Hele-Shaw cell is described as a simple and reliable instrument for terrestrial experiments on bubble dynamics under simulated microgravity and temperature gradients. Finally, the wetting kinetics of model tubes under simulated gravity and microgravity is examined.

  1. Study of surface phenomena in biomaterials: The influence of physical factors

    Science.gov (United States)

    Sachelarie, Liliana; Vasiliu, Mihaela Papusa; Ciobanu, Catalina

    2015-10-01

    This study's purpose is pointing out the phenomenon that occurs at time of interaction between the tissue with implant. The materials used are Ti and its alloys. The oral tissue must be compatible with the materials used in surgical implant to human body. The bio-materials surface behavior is influenced by physical characteristics. The methods we use show a number of bio-compatibility aspects. The success of an implant in a hard tissue depends not only on the initial attachment and the osteogenic cells consecutive proliferation, but also on their capacity to create a new bone.

  2. Investigations of surface characterization of silicone rubber due to tracking phenomena under a.c. and d.c. voltages

    Indian Academy of Sciences (India)

    Uma Maheswar Rao; S S M S Abdul Majeed; C Venkataseshaiah; R Sarathi

    2002-11-01

    In the present work, tracking phenomena has been studied with silicone rubber material under the a.c. and d.c. voltages following IEC-587 standards. The surface condition of the tracked zone was analysed using wide angle X-ray diffraction (WAXD) and thermogravimetric differential thermal analysis (TG–DTA) studies. The tracking time was different for a.c. and d.c. voltages.

  3. Numerical simulation of mass and energy transport phenomena in solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Arpino, F. [Dipartimento di Meccanica, Strutture, Ambiente e Territorio (DiMSAT), University of Cassino, via Di Biasio 43, Cassino (Italy); Massarotti, N. [Dipertimento per le Tecnologie (DiT), University of Naples ' ' Parthenope' ' , Centro Direzionale, isola C4, 80143 Napoli (Italy)

    2009-12-15

    Solid Oxide Fuel Cells (SOFCs) represent a very promising technology for near future energy conversion thanks to a number of advantages, including the possibility of using different fuels. In this paper, a detailed numerical model, based on a general mathematical description and on a finite element Characteristic based Split (CBS) algorithm code is employed to simulate mass and energy transport phenomena in SOFCs. The model predicts the thermodynamic quantity of interest in the fuel cell. Full details of the numerical solution obtained are presented both in terms of heat and mass transfer in the cell and in terms of electro-chemical reactions that occur in the system considered. The results obtained with the present algorithm is compared with the experimental data available in the literature for validation, showing an excellent agreement. (author)

  4. Synchronization phenomena in mixed media of passive, excitable, and oscillatory cells

    Science.gov (United States)

    Kryukov, A. K.; Petrov, V. S.; Averyanova, L. S.; Osipov, G. V.; Chen, W.; Drugova, O.; Chan, C. K.

    2008-09-01

    We study collective phenomena in highly heterogeneous cardiac cell culture and its models. A cardiac culture is a mixture of passive (fibroblasts), oscillatory (pacemakers), and excitable (myocytes) cells. There is also heterogeneity within each type of cell as well. Results of in vitro experiments are modelled by Luo-Rudy and FitzHugh-Nagumo systems. For oscillatory and excitable media, we focus on the transitions from fully incoherent behavior to partially coherent behavior and then to global synchronization as the coupling strength is increased. These regimes are characterized qualitatively by spatiotemporal diagrams and quantitatively by profiles of dependence of individual frequencies on coupling. We find that synchronization clusters are determined by concentric and spiral waves. These waves arising due to the heterogeneity of medium push covered cells to oscillate in synchrony. We are also interested in the influence of passive and excitable elements on the oscillatory characteristics of low- and high-dimensional ensembles of cardiac cells. The mixture of initially silent excitable and passive cells shows the transitions to oscillatory behavior. In the media of oscillatory and passive or excitable cells, the effect of oscillation death is observed.

  5. On macroscopic quantum phenomena in biomolecules and cells: from Levinthal to Hopfield.

    Science.gov (United States)

    Raković, Dejan; Dugić, Miroljub; Jeknić-Dugić, Jasmina; Plavšić, Milenko; Jaćimovski, Stevo; Setrajčić, Jovan

    2014-01-01

    In the context of the macroscopic quantum phenomena of the second kind, we hereby seek for a solution-in-principle of the long standing problem of the polymer folding, which was considered by Levinthal as (semi)classically intractable. To illuminate it, we applied quantum-chemical and quantum decoherence approaches to conformational transitions. Our analyses imply the existence of novel macroscopic quantum biomolecular phenomena, with biomolecular chain folding in an open environment considered as a subtle interplay between energy and conformation eigenstates of this biomolecule, governed by quantum-chemical and quantum decoherence laws. On the other hand, within an open biological cell, a system of all identical (noninteracting and dynamically noncoupled) biomolecular proteins might be considered as corresponding spatial quantum ensemble of these identical biomolecular processors, providing spatially distributed quantum solution to a single corresponding biomolecular chain folding, whose density of conformational states might be represented as Hopfield-like quantum-holographic associative neural network too (providing an equivalent global quantum-informational alternative to standard molecular-biology local biochemical approach in biomolecules and cells and higher hierarchical levels of organism, as well). PMID:25028662

  6. On Macroscopic Quantum Phenomena in Biomolecules and Cells: From Levinthal to Hopfield

    Directory of Open Access Journals (Sweden)

    Dejan Raković

    2014-01-01

    Full Text Available In the context of the macroscopic quantum phenomena of the second kind, we hereby seek for a solution-in-principle of the long standing problem of the polymer folding, which was considered by Levinthal as (semiclassically intractable. To illuminate it, we applied quantum-chemical and quantum decoherence approaches to conformational transitions. Our analyses imply the existence of novel macroscopic quantum biomolecular phenomena, with biomolecular chain folding in an open environment considered as a subtle interplay between energy and conformation eigenstates of this biomolecule, governed by quantum-chemical and quantum decoherence laws. On the other hand, within an open biological cell, a system of all identical (noninteracting and dynamically noncoupled biomolecular proteins might be considered as corresponding spatial quantum ensemble of these identical biomolecular processors, providing spatially distributed quantum solution to a single corresponding biomolecular chain folding, whose density of conformational states might be represented as Hopfield-like quantum-holographic associative neural network too (providing an equivalent global quantum-informational alternative to standard molecular-biology local biochemical approach in biomolecules and cells and higher hierarchical levels of organism, as well.

  7. Modelling of degradation/recovery phenomena in CdS/CdTe ultrathin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gorji, Nima E. [University of Bologna, Department of Electrical, Electronic, and Information Engineering, Bologna (Italy)

    2015-04-01

    The degradation/recovery phenomena in ultrathin film solar cells based on CdS/CdTe are theoretically analysed using Sah-Noyce-Shockley theory for generation and recombination in the depletion region. This theory can explain the overlap of the depletion regions at both front and back contacts where the carrier generation and collection are as important as recombination mechanism. The value of physical parameters such as uncompensated defect density, carrier recombination lifetime and band bending at interface are critically important when reducing the thickness of CdTe layer down to sub-micron. The rollover, materials inter-/out-diffusion, complex defect formation and the role of mobile ions are taken into consideration to obtain an insight into the physics of degradation/recovery phenomena in ultrathin CdTe film solar cells. Both mechanisms are precisely analysed drawing the schematics of the energy band diagrams and mobile ions transport paths which in this case is the grain interior. This means that we neglect the metal diffusion through the grain boundaries which are assumed to be completely passivated. This assumption enabled us to study the role of the defects on the carrier transport in the interiors rather than through the boundaries. (orig.)

  8. Inductive phenomena at low frequencies in impedance spectra of proton exchange membrane fuel cells - A review

    Science.gov (United States)

    Pivac, Ivan; Barbir, Frano

    2016-09-01

    The results of electrochemical impedance spectroscopy of proton exchange membrane (PEM) fuel cells may exhibit inductive phenomena at low frequencies. The occurrence of inductive features at high frequencies is explained by the cables and wires of the test system. However, explanation of inductive loop at low frequencies requires a more detailed study. This review paper discusses several possible causes of such inductive behavior in PEM fuel cells, such as side reactions with intermediate species, carbon monoxide poisoning, and water transport, also as their equivalent circuit representations. It may be concluded that interpretation of impedance spectra at low frequencies is still ambiguous, and that better equivalent circuit models are needed with clearly defined physical meaning of each of the circuit elements.

  9. Probing adsorption phenomena on a single crystal Pt-alloy surface under oxygen reduction reaction conditions

    DEFF Research Database (Denmark)

    Bondarenko, Alexander S.; Stephens, Ifan E.L.; Bech, Lone;

    2012-01-01

    The adsorption dynamics of *OH and *O species at Pt(111) and Cu/Pt(111) near-surface alloy (NSA) surfaces in oxygen-free and O2-saturated 0.1M HClO4 was investigated. Subsurface Cu modifies the electronic structure at the Pt(111) surface resulting in weaker bonding to adsorbates like *OH, *H or *...

  10. Investigation of transport phenomena in a 7-serpentine channel PEM fuel cell

    International Nuclear Information System (INIS)

    Full text: In the past decade, numerical modeling and investigation of PEM fuel cells has received great attention. Many two- and three-dimensional models have been developed in which the computational fluid dynamics -CFD method - has been rigorously coupled with electrochemical phenomena in order to identify, understand, predict, control and optimize various transport and electro-chemical processes that occur at different length scales in the fuel cells. Tremendous progress, both engineering and scientific, made until now has helped to improve the electrochemical performance of PEM fuel cells. Nevertheless, there is an increasing consensus on the need to further improve the performance of PEM fuel cell through design optimization of fuel cell components. Mathematical modeling of PEM fuel cells, based on an accurate description of the mechanisms of various processes occurring within a fuel cell, is an indispensable tool for exploring various architectures for fuel cells and their components. Channel geometry (path length, size, shape) has a tremendous impact on PEMFC performance. Distributions of the reactant species concentration in a PEM fuel cell due to fuel consumption and local transport of water through the membrane can cause changes in current density, temperature and water concentration. Water distribution can lead to flooding or drying of the membrane that may shorten the PEMFC components life. Finding a flow field pattern that distribute the gas more evenly is one method in minimizing these problems and optimising the PEM fuel cell performance. The paper describes our approach in modeling the transport of relevant quantities (mass, chemical species, and charged species) in all components of a fuel cell. The PEM fuel cell simulated in this work consists of two flow-field patterns separated by gas diffusion layers (GDL) and a membrane electrode assembly (MEA). Serpentine flow fields are common, yet the underlying reason for their success has yet to be

  11. The Plant Cell Surface

    Institute of Scientific and Technical Information of China (English)

    Anne-Mie C.Emons; Kurt V.Fagerstedt

    2010-01-01

    @@ Multicellular organization and tissue construction has evolved along essentially different lines in plants and animals. Since plants do not run away, but are anchored in the soil, their tissues are more or less firm and stiff. This strength stems from the cell walls, which encase the fragile cytoplasm, and protect it.

  12. Physics of Transport and Traffic Phenomena in Biology: from molecular motors and cells to organisms

    CERN Document Server

    Chowdhury, D; Nishinari, K; Chowdhury, Debashish; Schadschneider, Andreas; Nishinari, Katsuhiro

    2005-01-01

    Traffic-like collective movements are observed at almost all levels of biological systems. Molecular motor proteins like, for example, kinesin and dynein, which are the vehicles of almost all intra-cellular transport in eukayotic cells, sometimes encounter traffic jam that manifests as a disease of the organism. Similarly, traffic jam of collagenase MMP-1, which moves on the collagen fibrils of the extracellular matrix of vertebrates, has also been observed in recent experiments. Traffic-like movements of social insects like ants and termites on trails are, perhaps, more familiar in our everyday life. Experimental, theoretical and computational investigations in the last few years have led to a deeper understanding of the generic or common physical principles involved in these phenomena. In particular, some of the methods of non-equilibrium statistical mechanics, pioneered almost a hundred years ago by Einstein, Langevin and others, turned out to be powerful theoretical tools for quantitaive analysis of model...

  13. Analysis of effect of temperature gradients on surface-tension phenomena in gas-tungsten-arc welds

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.A.; Chien, P.S.J.

    1982-10-01

    Fluid motion directed by surface tension is considered as a contributor to heat penetration in a weld pool. The potential phenomena at the gas-liquid interface were analyzed, and the dependence of surface motion on temperature in the gas-tungsten-arc (GTA) welding process was examined. An existing heat-transfer model was used and was able to predict weld size to +- 50% of the actual value. A momentum-transfer equation was derived by considering the contribution of Lorentz force. The momentum boundary condition was developed and was able to predict the Marangoni effect. The magnitude of surface-tension-driven force is comparable to the gravitational force on one gram. An empirical approach was proposed to couple heat-transfer and momentum-transfer phenomena. A dimensional analysis identified the pertinent dimensionless groups as Reynolds, Weber, Froude, Peclet, and Power numbers and a dimensionless velocity. A simplified form of the correction was developed by combining dimensionless groups to yield a correlation with the Bond, Prandtl, and modified power numbers. Future experimental work was proposed to test the functionality of the dimensionless groups.

  14. Experimental study and modelling of degradation phenomena in HTPEM fuel cell stacks for use in CHP systems

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl

    2009-01-01

    Degradation phenomena in HTPEM fuel cells for use in CHP systems were investigated experimentally and by modelling. It was found that the two main degradation mechanisms in HTPEM fuel cells are carbon corrosion and Pt agglomeration. On basis of this conclusion a mechanistic model, describing the...

  15. Experimental study and modeling of degradation phenomena in HTPEM fuel cell stacks for use in CHP systems

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh; Andreasen, Søren Juhl; Rasmussen, Peder Lund;

    2009-01-01

    Degradation phenomena in HTPEM fuel cells for use in CHP systems were investigated experimentally and by modeling. It was found that the two main degradation mechanisms in HTPEM fuel cells are carbon corrosion and Pt agglomeration. On basis of this conclusion a mechanistic model, describing the...

  16. Role of surface vibrational properties on cooperative phenomena in spin-crossover nanomaterials

    Science.gov (United States)

    Mikolasek, Mirko; Félix, Gautier; Molnár, Gábor; Terki, Férial; Nicolazzi, William; Bousseksou, Azzedine

    2014-08-01

    The influence of surface/interface on the lattice dynamics of spin crossover nanoparticles has been investigated by a spring-ball model solved by Monte Carlo methods. The bond cohesion energy of the model has been extracted from Mössbauer spectroscopy measurements performed on the model compound Ni3[Fe(CN)6]. We show that the coupling between bulk and surface vibrational properties, which drastically affects the mechanical properties of the whole particle below a characteristic size, has a major impact on the phase stability of the particles. In the case of free surfaces, the Debye temperature decreases with the size and the first-order nature of the spin transition disappears. On the other hand, a hardening of the surface bonds leads to increasing particle stiffness with the size reduction. In this case, a persistence of the hysteretic behavior in the spin transition curve is also predicted in good agreement with previous theoretical and experimental results.

  17. The cell-surface interaction.

    Science.gov (United States)

    Hayes, J S; Czekanska, E M; Richards, R G

    2012-01-01

    The realm of surface-dependent cell and tissue responses is the foundation of orthopaedic-device-related research. However, to design materials that elicit specific responses from tissues is a complex proposition mainly because the vast majority of the biological principles controlling the interaction of cells with implants remain largely ambiguous. Nevertheless, many surface properties, such as chemistry and topography, can be manipulated in an effort to selectively control the cell-material interaction. On the basis of this information there has been much research in this area, including studies focusing on the structure and composition of the implant interface, optimization of biological and chemical coatings and elucidation of the mechanisms involved in the subsequent cell-material interactions. Although a wealth of information has emerged, it also advocates the complexity and dynamism of the cell-material interaction. Therefore, this chapter aims to provide the reader with an introduction to the basic concepts of the cell-material interaction and to provide an insight into the factors involved in determining the cell and tissue response to specific surface features, with specific emphasis on surface microtopography. PMID:21984613

  18. Cooperative phenomena in self-assembled nucleation of 3 × 4-In/Si(100) surface magic clusters

    Science.gov (United States)

    Utas, O. A.; Denisov, N. V.; Kotlyar, V. G.; Zotov, A. V.; Saranin, A. A.; Chou, J. P.; Lai, M. Y.; Wei, C. M.; Wang, Y. L.

    2010-07-01

    Using statistical analysis of the scanning tunneling microscopy images of the 3 × 4-In surface magic cluster (SMC) arrays on Si(100)1 × 2 substrate at low In coverages, the main regularities of the space distribution of the nucleated SMCs have been established. It has been found that a nucleated SMC perturbs the surface potential relief within a limited zone around itself in a way that some of the sites in the zone demonstrate a great preference for nucleating a new cluster, while in the other sites the nucleation is greatly suppressed. Outside the zone, the nucleation probability is close to that of the random nucleation simulated using Monte-Carlo technique. Energetic background of the observed phenomena has been proved using density-functional theory calculations, which clearly demonstrate that the lower the formation energy the higher the occurrence probability of a given cluster-pair configuration.

  19. NTERACTION BETWEEN SURFACE CHARGE PHENOMENA AND MULTI-SPECIES DIFFUSION IN CEMENT BASED MATERIALS

    DEFF Research Database (Denmark)

    Johannesson, Björn

    2008-01-01

    , is one possible explanation for the observed low global diffusion rates in the pore system of positively charged ions compared to the negatively charged ones. Here it is of interest to simulate the multi ionic diffusion behavior when assigning positively charged ions a comparably lower diffusion constant......Measurements strongly indicate that the ‘inner’ surface of the microscopic structure of cement based materials has a fixed negative charge. This charge contributes to the formation of so-called electrical double layers. In the case of cement based materials the ionic species located in such layers...... and also including a negatively charged ‘ion’ with an extremely low diffusion constant so as to represent a fixed negative surface charge. The theoretical results from such simulations, using a tailor made finite element technique, indicates a strong influence of surface charges on global diffusion...

  20. Structural Investigations of Surfaces and Orientation-SpecificPhenomena in Nanocrystals and Their Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Aruguete, Deborah Michiko

    2006-06-17

    Studies of colloidal nanocrystals and their assemblies are presented. Two of these studies concern the atomic-level structural characterization of the surfaces, interfaces, and interiors present in II-VI semiconductor nanorods. The third study investigates the crystallographic arrangement of cobalt nanocrystals in self-assembled aggregates. Crystallographically-aligned assemblies of colloidal CdSe nanorods are examined with linearly-polarized Se-EXAFS spectroscopy, which probes bonding along different directions in the nanorod. This orientation-specific probe is used, because it is expected that the presence of specific surfaces in a nanorod might cause bond relaxations specific to different crystallographic directions. Se-Se distances are found to be contracted along the long axis of the nanorod, while Cd-Se distances display no angular dependence, which is different from the bulk. Ab-initio density functional theory calculations upon CdSe nanowires indicate that relaxations on the rod surfaces cause these changes. ZnS/CdS-CdSe core-shell nanorods are studied with Se, Zn, Cd, and S X-ray absorption spectroscopy (XAS). It is hypothesized that there are two major factors influencing the core and shell structures of the nanorods: the large surface area-to-volume ratio, and epitaxial strain. The presence of the surface may induce bond rearrangements or relaxations to minimize surface energy; epitaxial strain might cause the core and shell lattices to contract or expand to minimize strain energy. A marked contraction of Zn-S bonds is observed in the core-shell nanorods, indicating that surface relaxations may dominate the structure of the nanorod (strain might otherwise drive the Zn-S lattice to accommodate the larger CdS or CdSe lattices via bond expansion). EXAFS and X-ray diffraction (XRD) indicate that Cd-Se bond relaxations might be anisotropic, an expected phenomenon for a rod-shaped nanocrystal. Ordered self-assembled aggregates of cobalt nanocrystals are

  1. An Experimental Investigation on the Impingement of Water Droplets onto Superhydrophobic Surfaces Pertinent to Aircraft Icing Phenomena

    Science.gov (United States)

    Li, Haixing; Waldman, Rye; Hu, Hui

    2015-11-01

    Superhydrophobic surfaces have self-cleaning properties that make them promising candidates as anti-icing solutions for various engineering applications, including aircraft anti-/de-icing. However, under sufficient external pressure, the liquid water on the surface can transition to a wetted state, defeating the self-cleaning properties of superhydrpphobic surfaces. In the present study, an experimental investigation was conducted to quantify the transient behavior of water droplets impinging onto test surfaces with different hydrophobicity properties under different environmental icing conditions. The experiments were performed in the Icing Research Tunnel of Iowa State University (IRT-ISU) with a NACA0012 airfoil. In addition to using a high-speed imaging system to reveal transient behavior of water droplets impinging onto test surfaces with different hydrophobicity properties, an IR thermometry was also used to quantify the unsteady heat transfer and dynamic phase changing process within the water droplets after impingement onto the test plates with different frozen cold temperatures. The high-speed imaging results were correlated with the quantitatively temperature measurements to elucidate underlying physics in order to gain further insight into the underlying physics pertinent to aircraft icing phenomena. The research work is partially supported by NASA with grant number NNX12AC21A and National Science Foundation under award numbers of CBET-1064196 and CBET-1435590.

  2. Influence of bulk and surface phenomena on the hydrogen permeation through metals

    International Nuclear Information System (INIS)

    We discuss the permeation of hydrogen through metals and alloys such as iron, nickel, steels and Inconel wherein H dissolves endothermically from an H2 gas. We assume first that trapping centers, surface contamination layers, the saturation of the H surface coverage and the implantation profile - when energetic ions drive the permeation - can be neglected, that a quasi-equilibrium exists between the H atom concentration ν in the adsorbed layer and c in the near surface layers and that the H solubility and diffusivity are homogeneous in the membrane. We evaluate thereafter separately the influence of these various effects and identify the parameter domains where appreciable corrections result. The permeation phenomenon is complex even when these simplifications are made: the penetration rate is proportional to the flux of thermal molecules, atoms or energetic ions - depending upon the case - which strike the surface; the diffusion in the metal is proportional to the gradient of c; the release rate depends on c2; the time-dependent diffusion equation includes a double spatial derivative of c. Permeation can only be fully described when computer codes such as PERI is used. Simple analytical relations are however obtained in several limiting cases. They are the object of this report. Some of them had already been derived by other authors but they were not shown to be part of a single, self consistent permeation model. A comparison of predicted and experimental results shows that the simplified model describes surprisingly accurately the hydrogen exchange between gas and metal solutions. (orig./GSCH)

  3. Reconstruction and cooperative phenomena on the metal surfaces in strong electric fields

    International Nuclear Information System (INIS)

    The formation of ordered structures in thin dielectric films on the surface of metallic point-samples has been found and studied by means of field-ion microscope. The critical value of the electric field voltage, corresponding to stability of the formed structures has been estimated and measured. It is supposed that the considered system, placed into a strong inhomogeneous electric field (108-109 W/m) is a suitable object to study synergetic regularities

  4. Biphotonic holographic gratings in azobenzene polyesters: Surface relief phenomena and polarization effects

    DEFF Research Database (Denmark)

    Sánchez, C.; Alcalá, R.; Hvilsted, Søren;

    2000-01-01

    Biphotonic holographic gratings have been recorded in a side-chain azobenzene liquid crystalline polyester using a blue incoherent source and a He-Ne laser. Intensity gratings and the appearance of surface relief have been observed when two linearly polarized beams from a He-Ne laser are made to ...... to interfere on a film illuminated with blue light. Polarized holographic gratings are also created with two orthogonally circularly polarized He-Ne beams. All these gratings are stable in darkness but can be erased with blue light. (C) 2000 American Institute of Physics....

  5. Rotating Molten Metallic Drops and Related Phenomena: A New Approach to the Surface Tension Measurement

    Science.gov (United States)

    Rhim, Won-Kyu; Ishikawa, Takehiko

    2000-01-01

    Molten aluminum and tin drops were levitated in a high vacuum by controlled electric fields, and they were systematically rotated by applying by a rotating magnetic field. When the evolution of the drop shape was measured as a function of rotation frequency, it agreed quantitatively well with the Brown and Scriven's theoretical prediction. The normalized rotation frequencies at the bifurcation point agreed with the predicted value 0.559, within 2%. An anomalous phenomenon which totally deviated from the prediction was observed in rotating molten tin drops when they were kept in a high rotation rate for several hours. No anomaly was observed in aluminum drops when they underwent similar condition. It was speculated that under the strong centrifugal force in the drop the tin isotopes must be separating. Since Al-27 is essentially the only naturally abundant isotope in the aluminum drops, the same anomaly is not expected. Based on the shape deformation of a rotating drop, an alternate approach to the surface tension measurement was verified. This new surface tension measurement technique was applied to a glassforming alloy, Zr(41.2)Ti(13.8)Cu(12.5)Ni(10.0)Be(22.5) in its highly viscous states. Also demonstrated in the paper was a use of a molten aluminum drop to verify the Busse's prediction of the influence of the drop rotation on the drop oscillation frequency.

  6. Unique flow transitions and particle collection switching phenomena in a microchannel induced by surface acoustic waves

    Science.gov (United States)

    Tan, Ming K.; Yeo, Leslie Y.; Friend, James R.

    2010-12-01

    We present an experimental approach for controlled switching between uniform flow for pumping and vortical flow for mixing in a microchannel fabricated onto a piezoelectric substrate. For particle laden fluids, this arrangement permits a choice between transport and alignment of microparticles. Using surface acoustic waves with amplitudes beyond 1 nm, the transition from uniform to mixing flows occurs when the acoustic wavelength in the fluid is reduced to a dimension smaller than the channel width, i.e., λf≥Wch for uniform flow and λfmixing flow. On the other hand, using relatively weak surface acoustic waves with amplitudes below 1 nm, particles in an initially homogeneous suspension agglomerate into equally spaced lines with a separation of λf/2. Switching the transducer between its fundamental resonant frequency f0 and its first harmonic frequency f1+˜2f0 causes a switch between uniform and mixing flow, while switching between large and small amplitude excitation allows one to choose whether to collect the particles in the flow along nodal lines parallel to the channel. These results are uniquely achieved without requiring the microfabrication of complex microchannel architectures and control schemes; the switching is simply achieved by adjusting two parameters: the acoustic excitation frequency and amplitude.

  7. Immunity phenomena following olfactory ensheathing cell transplantation into experimental allergic encephalomyelitis rat brain

    Institute of Scientific and Technical Information of China (English)

    Ainong Mei; Jue Wang; Qiong Cheng; Xinqing Yang; Jin Yang; Pengli Zhu; Shougang Guo

    2010-01-01

    Olfactory ensheathing cells(OECs)can promote axonal regeneration and remyelination for the treatment of spinal cord injury.OECs can also treat experimental allergic encephalomyelitis(EAE),but it remains unclear whether OECs might be rejected by the immune system in the brain,including the destruction of the blood-brain barrier under inflammation,the release of inflammatory factors,the activation of local antigen-presenting cells(e.g.,microglia cells)and antigen drainage.We found that OECs expressed major histocompatibility complex(MHC)-Ⅰmolecules on the cell surface,barely expressed MHC-Ⅱ,but MHC-Ⅱ could be induced by interferon-y,suggesting that OECs have certain immunogenicity.When OECs were transplanted into normal animal brains,no OECs were phagocytosed by dendritic cells in the cervical lymph node,and OECs did not induce lymphocyte proliferation,which indicates that OECs share some immune privilege under normal conditions.However,OECs in the rat EAE brain were phagocytosed by dendritic cells in the cervical lymph node and enhanced lymphocyte proliferation.These findings suggest that OECs are rejected because of increased immunogenicity in EAE brain,and that brain inflammation,in particular activated dendritic cells,may be a prerequisite for rejecting OECs.

  8. Ab initio investigation of surface adsorption phenomena: from pyridine gold complexes to larger system

    Energy Technology Data Exchange (ETDEWEB)

    Mollenhauer, Doreen; Floss, Johannes; Voloshina, Elena; Paulus, Beate [Institut fuer Chemie und Biochemie - Physikalische und Theoretische Chemie, Freie Universitaet Berlin, Takustrasse 3, 14195 Berlin (Germany)

    2010-07-01

    The investigation of the adsorption of organic molecules on metal substrates plays an important role for the understanding of multivalent interactions. Due to the enhancement of the adsorption new architectures of multivalent molecules can appear on metal surfaces. Taking into account recent molecular electronic experiments involving molecules linked via N-heterocycles to gold electrodes and nanoclusters, pyridine derivates are seen to be interesting objects for theoretical studies. The interaction of the parent compound pyridine and some substituted derivates with a single gold atom has been investigated. Different quantum-chemical methods and basis sets have been used to find a reliable description. We plan to extend our studies to gold clusters, gold nanoparticles and para-linked pyridine derivates. The main purpose is to analyze the nature of multivalent bonding in comparison to monovalent interaction.

  9. On Macroscopic Quantum Phenomena in Biomolecules and Cells: From Levinthal to Hopfield

    OpenAIRE

    Dejan Raković; Miroljub Dugić; Jasmina Jeknić-Dugić; Milenko Plavšić; Stevo Jaćimovski; Jovan Šetrajčić

    2014-01-01

    In the context of the macroscopic quantum phenomena of the second kind, we hereby seek for a solution-in-principle of the long standing problem of the polymer folding, which was considered by Levinthal as (semi)classically intractable. To illuminate it, we applied quantum-chemical and quantum decoherence approaches to conformational transitions. Our analyses imply the existence of novel macroscopic quantum biomolecular phenomena, with biomolecular chain folding in an open environment consider...

  10. Experimental studies of contact angle hysteresis phenomena on polymer surfaces – Toward the understanding and control of wettability for different applications.

    Science.gov (United States)

    Grundke, K; Pöschel, K; Synytska, A; Frenzel, R; Drechsler, A; Nitschke, M; Cordeiro, A L; Uhlmann, P; Welzel, P B

    2015-08-01

    Contact angle hysteresis phenomena on polymer surfaces have been studied by contact angle measurements using sessile liquid droplets and captive air bubbles in conjunction with a drop shape method known as Axisymmetric Drop Shape Analysis - Profile (ADSA-P). In addition, commercially available sessile drop goniometer techniques were used. The polymer surfaces were characterized with respect to their surface structure (morphology, roughness, swelling) and surface chemistry (elemental surface composition, acid-base characteristics) by scanning electron microscopy (SEM), scanning force microscopy (SFM), ellipsometry, X-ray photoelectron spectroscopy (XPS) and streaming potential measurements. Heterogeneous polymer surfaces with controlled roughness and chemical composition were prepared by different routes using plasma etching and subsequent dip coating or grafting of polymer brushes, anodic oxidation of aluminium substrates coated with thin polymer films, deposition techniques to create regular patterned and rough fractal surfaces from core-shell particles, and block copolymers. To reveal the effects of swelling and reorientation at the solid/liquid interface contact angle hysteresis phenomena on polyimide surfaces, cellulose membranes, and thermo-responsive hydrogels have been studied. The effect of different solutes in the liquid (electrolytes, surfactants) and their impact on contact angle hysteresis were characterized for solid polymers without and with ionizable functional surface groups in aqueous electrolyte solutions of different ion concentrations and pH and for photoresist surfaces in cationic aqueous surfactant solutions. The work is an attempt toward the understanding of contact angle hysteresis phenomena on polymer surfaces aimed at the control of wettability for different applications.

  11. Analysis of transport phenomena and electrochemical reactions in a micro PEM fuel cell with nature inspired flow field design

    Directory of Open Access Journals (Sweden)

    Maher A.R. Sadiq Al-Baghdadi

    2015-01-01

    Full Text Available Micro-fuel cells are considered as promising electrochemical power sources in portable electronic devices. The presence of microelectromechanical system (MEMS technology makes it possible to manufacture the miniaturized fuel cell systems. The majority of research on micro-scale fuel cells is aimed at micro-power applications. Performance of micro-fuel cells are closely related to many factors, such as designs and operating conditions. CFD modeling and simulation for heat and mass transport in micro PEM fuel cells are being used extensively in researches and industrial applications to gain better understanding of the fundamental processes and to optimize the micro fuel cell designs before building a prototype for engineering application. In this research, full three-dimensional, non-isothermal computational fluid dynamics model of a micro proton exchange membrane (PEM fuel cell with nature inspired flow field designs has been developed. The design inspired from the existed biological fluid flow patterns in the leaf. This comprehensive model accounts for the major transport phenomena such as convective and diffusive heat and mass transfer, electrode kinetics, transport and phase-change mechanism of water, and potential fields in a micro PEM fuel cell. The model explains many interacting, complex electrochemical, and transport phenomena that cannot be studied experimentally.

  12. A CFD analysis of transport phenomena and electrochemical reactions in a tubular-shaped PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq Al-Baghdadi, Maher A.R. [Fuel Cell Research Center, International Energy and Environment Foundation, Al-Najaf, P.O.Box 39 (Iraq)

    2013-07-01

    A fuel cell is most interesting new power source because it solves not only the environment problem but also natural resource exhaustion problem. CFD modeling and simulation for heat and mass transport in PEM fuel cells are being used extensively in researches and industrial applications to gain better understanding of the fundamental processes and to optimize fuel cell designs before building a prototype for engineering application. In this research, full three-dimensional, non-isothermal computational fluid dynamics model of a tubular-shaped proton exchange membrane (PEM) fuel cell has been developed. This comprehensive model accounts for the major transport phenomena such as convective and diffusive heat and mass transfer, electrode kinetics, transport and phase-change mechanism of water, and potential fields in a tubular-shaped PEM fuel cell. The model explains many interacting, complex electrochemical, and transport phenomena that cannot be studied experimentally. Three-dimensional results of the species profiles, temperature distribution, potential distribution, and local current density distribution are presented and analysed, with the focus on the physical insight and fundamental understanding.

  13. The Cell Surface Proteome of Human Mesenchymal Stromal Cells

    OpenAIRE

    Christian Niehage; Charlotte Steenblock; Theresia Pursche; Martin Bornhäuser; Denis Corbeil; Bernard Hoflack

    2011-01-01

    BACKGROUND: Multipotent human mesenchymal stromal cells (hMSCs) are considered as promising biological tools for regenerative medicine. Their antibody-based isolation relies on the identification of reliable cell surface markers. METHODOLOGY/PRINCIPAL FINDINGS: To obtain a comprehensive view of the cell surface proteome of bone marrow-derived hMSCs, we have developed an analytical pipeline relying on cell surface biotinylation of intact cells using cell impermeable, cleavable sulfo-NHS-SS-bio...

  14. Cells behaviors and genotoxicity on topological surface

    Energy Technology Data Exchange (ETDEWEB)

    Yang, N.; Yang, M.K.; Bi, S.X. [Tianjin Key Laboratory of Fiber Modification and Functional Fiber, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin, 300387 (China); Chen, L., E-mail: chenlis@tjpu.edu.cn [Tianjin Key Laboratory of Fiber Modification and Functional Fiber, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin, 300387 (China); Zhu, Z.Y.; Gao, Y.T.; Du, Z. [Tianjin Key Laboratory of Artificial Cell, Tianjin Third Central Hospital, Tianjin, 300170 (China)

    2013-08-01

    To investigate different cells behaviors and genotoxicity, which were driven by specific microenvironments, three patterned surfaces (pillars, wide grooves and narrow grooves) and one smooth surface were prepared by template-based technique. Vinculin is a membrane-cytoskeletal protein in focal adhesion plaques and associates with cell–cell and cell–matrix junctions, which can promote cell adhesion and spreading. The immunofluorescence staining of vinculin revealed that the narrow grooves patterned substrate was favorable for L929 cell adhesion. For cell multiplication, the narrow grooves surface was fitted for the proliferation of L929, L02 and MSC cells, the pillars surface was only in favor of L929 cells to proliferate during 7 days of cell cultivation. Cell genetic toxicity was evaluated by cellular micronuclei test (MNT). The results indicated that topological surfaces were more suitable for L929 cells to proliferate and maintain the stability of genome. On the contrary, the narrow grooves surface induced higher micronuclei ratio of L02 and MSC cells than other surfaces. With the comprehensive results of cell multiplication and MNT, it was concluded that the wide grooves surface was best fitted for L02 cells to proliferate and have less DNA damages, and the smooth surface was optimum for the research of MSC cells in vitro. - Highlights: • Different cells behaviors on microstructure surfaces were discussed in this paper. • The expression of cell protein of Vinculin was studied in this research. • Cellular micronuclei test was applied to evaluate cells' genotoxicity. • Cell genotoxicity was first studied in the research field of topological surfaces.

  15. Investigation of the current break-down phenomena in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, S.K.; Srinivasamurthy, N.; Agrawal, B.L. [Power Systems Group, ISRO Satellite Centre, Bangalore (India)

    1996-08-15

    Observed reverse current-voltage characteristics of the single crystal silicon and gallium arsenide solar cells have been analyzed. Physical mechanisms behind the junction break-down in silicon cells and current break-down in gallium arsenide cells have been identified. Preliminary estimates of the diffusion capacitance in GaAs cells have been presented

  16. How a (subcellular coincidence detection mechanism featuring layer-5 pyramidal cells may help produce various visual phenomena

    Directory of Open Access Journals (Sweden)

    Talis eBachmann

    2015-12-01

    Full Text Available Perceptual phenomena such as spatio-temporal illusions and masking are typically explained by psychological (cognitive processing theories or large-scale neural theories involving inter-areal connectivity and neural circuits comprising of hundreds or more interconnected single cells. Subcellular mechanisms are hardly used for such purpose. Here a mechanistic theoretical view is presented on how a subcellular brain mechanism of integration of presynaptic signals that arrive at different compartments of layer-5 pyramidal neurons could explain a couple of spatiotemporal visual-phenomenal effects unfolding along very brief time intervals within the range of sub-second temporal scale.

  17. Functions of proteoglycans at the cell surface

    DEFF Research Database (Denmark)

    Höök, M; Woods, A; Johansson, S;

    1986-01-01

    Proteoglycans (primarily heparan sulphate proteoglycans) are found at the surface of most adherent eukaryotic cells. Earlier studies suggest that these molecules can be associated with the cell surface principally by two different mechanisms. Proteoglycans may occur as membrane-intercalated glyco......Proteoglycans (primarily heparan sulphate proteoglycans) are found at the surface of most adherent eukaryotic cells. Earlier studies suggest that these molecules can be associated with the cell surface principally by two different mechanisms. Proteoglycans may occur as membrane......-intercalated glycoproteins, where the core protein of the proteoglycan is anchored in the lipid interior of the plasma membrane, or they may be bound via the polysaccharide components of the molecule to specific anchoring proteins present at the cell surface. A number of functions have been proposed for cell surface...

  18. Probe microscopy: Scanning below the cell surface

    Science.gov (United States)

    Sahin, Ozgur

    2008-08-01

    Conventional atomic force microscopy probes only the surface of specimens. A related technique called scanning near-field ultrasonic holography can now image nanoparticles buried below the surfaces of cells, which could prove useful in nanotoxicology.

  19. Cancer and malignant resistance of cells as phenomena of adaptation to damaging factors.

    Science.gov (United States)

    Monceviciute-Eringiene, E

    1996-05-01

    I propose the hypothesis that mechanisms of general biological persistent resistance to damaging factors are closely related to the development of tumour cells. This phenomenon is characteristic of bacterial variants whose resistance to antibiotics and other chemotherapeutic drugs appears through L-transformation. As somatic cells are exposed to carcinogens and develop into tumour cells, they also acquire resistance to the toxic effects of carcinogens through multistage malignant transformation. Many cancerous cells, which have acquired persistent resistance to chemotherapy drugs or irradiation, often reappear locally or in metastases after courses of treatment. Thus, these cells undergo a kind of repeated development of malignancy. After a certain remission period, they begin to multiply more intensively locally, and are more likely to spread by metastasis. All resistant cells have the following characteristics: simplified metabolism, genetic, biochemical and morphological properties; lower requirements from their nutrient medium; rapid growth; parasitic qualities; invasiveness. It is as if they regress into a more primitive mode of existence (atavism) to survive under unfavourable circumstances. Somatic cells, resistant to carcinogens and the cells which undergo progression to more malignant types under the influence of drugs become similar to unicellular organisms or to forms of the latter which are resistant to damaging factors. The more primitive the cells become, the better they survive. Thus, cancer is a special case of the general resistance of cells to damaging factors. PMID:8735884

  20. Programming Surface Chemistry with Engineered Cells.

    Science.gov (United States)

    Zhang, Ruihua; Heyde, Keith C; Scott, Felicia Y; Paek, Sung-Ho; Ruder, Warren C

    2016-09-16

    We have developed synthetic gene networks that enable engineered cells to selectively program surface chemistry. E. coli were engineered to upregulate biotin synthase, and therefore biotin synthesis, upon biochemical induction. Additionally, two different functionalized surfaces were developed that utilized binding between biotin and streptavidin to regulate enzyme assembly on programmable surfaces. When combined, the interactions between engineered cells and surfaces demonstrated that synthetic biology can be used to engineer cells that selectively control and modify molecular assembly by exploiting surface chemistry. Our system is highly modular and has the potential to influence fields ranging from tissue engineering to drug development and delivery.

  1. The pancreatic beta cell surface proteome

    OpenAIRE

    Stützer, I.; Esterházy, D.; Stoffel, M.

    2012-01-01

    The pancreatic beta cell is responsible for maintaining normoglycaemia by secreting an appropriate amount of insulin according to blood glucose levels. The accurate sensing of the beta cell extracellular environment is therefore crucial to this endocrine function and is transmitted via its cell surface proteome. Various surface proteins that mediate or affect beta cell endocrine function have been identified, including growth factor and cytokine receptors, transporters, ion channels and prote...

  2. Heat science and transport phenomena in fuel cells; Thermique et phenomenes de transport dans les piles a combustible

    Energy Technology Data Exchange (ETDEWEB)

    Liberatore, P.M.; Boillot, M. [Laboratoire des Sciences du Genie Chimique de Nancy, 54 - Vandoeuvre-les-Nancy (France); Bonnet, C.; Didieerjean, S.; Lapicque, F.; Deseure, J.; Lottin, O.; Maillet, D.; Oseen-Senda, J. [Laboratoire d' Energetique et de Mecanique Theorique et Appliquee, 54 - Vandoeuvre Les Nancy (France); Alexandre, A. [Laboratoire d' Etudes Thermiques, ENSMA, 86 Poitiers (France); Topin, F.; Occelli, R.; Daurelle, J.V. [IUSTI / Polytech' Marseille, Institut universitaire des Systemes Thermiques Industriels Ecole, 13 - Marseille (France); Pauchet, J.; Feidt, M. [CEA Grenoble, Groupement pour la recherche sur les echangeurs thermiques (Greth), 38 (France); Voarino, C. [CEA Centre d' Etudes du Ripault, 37 - Tours (France); Morel, B.; Laurentin, J.; Bultel, Y.; Lefebvre-Joud, F. [CEA Grenoble, LEPMI, 38 (France); Auvity, B.; Lasbet, Y.; Castelain, C.; Peerohossaini, H. [Ecole Centrale de Nantes, Laboratoire de Thermocinetique de Nantes (LTN), 44 - Nantes (France)

    2005-07-01

    In this work are gathered the transparencies of the lectures presented at the conference 'heat science and transport phenomena in fuel cells'. The different lectures have dealt with 1)the gas distribution in the bipolar plates of a fuel cell: experimental studies and computerized simulations 2)two-phase heat distributors in the PEMFC 3)a numerical study of the flow properties of the backing layers on the transfers in a PEMFC 4)modelling of the heat and mass transfers in a PEMFC 5)two-phase cooling of the PEMFC with pentane 6)stationary thermodynamic model of the SOFC in the GECOPAC system 7)modelling of the internal reforming at the anode of the SOFC 8)towards a new thermal design of the PEMFC bipolar plates. (O.M.)

  3. A New Rotation Phenomena of Cells Induced by Homegeneous Electric Field

    Science.gov (United States)

    Hatakeyama, Toyomasa; Yagi, Hiroshi

    1990-05-01

    When at least two plant protoplasts are located close to each other under homogeneous electric field, almost all of the cells rotate in the vicinity of its frequency of 10 kHz and specific cells in the vicinity of 10 MHz. The first rotation occurs in the plane constituted by the connecting line between two cells and the applied electric field line. This angular velocity increases with the square of the field strength. On the other hand, the second rotation or new rotation occurs in any plane and its angular velocity complicatedly depends on the field strength. Furthermore, when two cells are arranged in such a way that their connecting line is parallel to the applied field, the second rotation occurs but the first does not. The distinctive feature of the second rotation can be explained by the anisotropic dielectric in the cell due to the shape of its vacuole.

  4. Surface Functionalization for Protein and Cell Patterning

    Science.gov (United States)

    Colpo, Pascal; Ruiz, Ana; Ceriotti, Laura; Rossi, François

    The interaction of biological systems with synthetic material surfaces is an important issue for many biological applications such as implanted devices, tissue engineering, cell-based sensors and assays, and more generally biologic studies performed ex vivo. To ensure reliable outcomes, the main challenge resides in the ability to design and develop surfaces or artificial micro-environment that mimic 'natural environment' in interacting with biomolecules and cells without altering their function and phenotype. At this effect, microfabrication, surface chemistry and material science play a pivotal role in the design of advanced in-vitro systems for cell culture applications. In this chapter, we discuss and describe different techniques enabling the control of cell-surface interactions, including the description of some techniques for immobilization of ligands for controlling cell-surface interactions and some methodologies for the creation of well confined cell rich areas.

  5. Transport Phenomena and Interfacial Kinetics in Planar Microfluidic Membraneless Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Abruna, Hector Daniel [Cornell University

    2013-08-01

    Our work is focused on membraneless laminar flow fuel cells, an unconventional fuel cell technology, intended to create a system that not only avoids most typical fuel cell drawbacks, but also achieves the highest power density yet recorded for a non-H{sub 2} fuel cell. We have employed rigorous electrochemistry to characterize the high-energy- density fuel BH4-, providing important mechanistic insight for anode catalyst choice and avoiding deleterious side reactions. Numerous fuel cell oxidants, used in place of O{sub 2}, are compared in a detailed, uniform manner, and a powerful new oxidant, cerium ammonium nitrate (CAN), is described. The high-voltage BH{sub 4}{sup -}/CAN fuel/oxidant combination is employed in a membraneless, room temperature, laminar-flow fuel cell, with herringbone micromixers which provide chaotic-convective flow which, in turn, enhances both the power output and efficiency of the device. We have also been involved in the design of a scaled-up version of the membraneless laminar flow fuel cell intended to provide a 10W output.

  6. Controlled surface chemistries and quantitative cell response

    Science.gov (United States)

    Plant, Anne L.

    2002-03-01

    Living cells experience a large number of signaling cues from their extracellular matrix. As a result of these inputs, a variety of intracellular signaling pathways are apparently initiated simultaneously. The vast array of alternative responses that result from the integration of these inputs suggests that it may be reasonable to look for cellular response not as an 'on' or 'off' condition but as a distribution of responses. A difficult challenge is to determine whether variations in responses from individual cells arise from the complexity of intracellular signals or are due to variations in the cell culture environment. By controlling surface chemistry so that every cell 'sees' the same chemical and physical environment, we can begin to assess how the distribution of cell response is affected strictly by changes in the chemistry of the cell culture surface. Using the gene for green fluorescent protein linked to the gene for the promoter of the extracellular matrix protein, tenascin, we can easily probe the end product in a signaling pathway that is purported to be linked to surface protein chemistry and to cell shape. Cell response to well-controlled, well-characterized, and highly reproducible surfaces prepared using soft lithography techniques are compared with more conventional ways of preparing extracellular matrix proteins for cell culture. Using fluorescence microscopy and image analysis of populations of cells on these surfaces, we probe quantitatively the relationship between surface chemistry, cell shape and variations in gene expression endpoint.

  7. The cell surface of Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Wanderley de Souza

    1984-01-01

    Full Text Available The cell surface of trypanosomatids is formed by the plasma membrane and a layer of sub-pellicular microtubules which are connected to the plasma membrane. The plasma membrane is composed by proteins, lipids and carbohydrates which form the glycocalix. In this paper we will review briefly aspects related to the organization of the cell surface of Trypanosoma cruzi.

  8. Neutron Computed Tomography of Freeze/thaw Phenomena in Polymer Electrolyte Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Matthew M. Mech; Jack Brenizer; Kenan Unlu; A.K. Heller

    2008-12-12

    This report summarizes the final year's progress of the three-year NEER program. The overall objectives of this program were to 1) design and construct a sophisticated hight-resolution neutron computed tomography (NCT) facility, 2) develop novel and sophisticated liquid water and ice quantification analysis software for computed tomography, and 3) apply the advanced software and NCT capability to study liquid and ice distribution in polymer electrolyte fuel cells (PEFCs) under cold-start conditions. These objectives have been accomplished by the research team, enabling a new capability for advanced 3D image quantification with neutron imaging for fuel cell and other applications. The NCT water quantification methodology and software will greatly add to the capabilities of the neutron imaging community, and the quantified liquid water and ice distribution provided by its application to PEFCs will enhance understanding and guide design in the fuel cell community.

  9. Radioimmunoassay to quantitatively measure cell surface immunoglobulins

    International Nuclear Information System (INIS)

    A radioimmunoassay techniques developed to quantitatively measure the presence of immunoglobulins on the surface of cells, is described. The amount of immunoglobulins found on different tumor cells varied from 200 to 1140 ng/106 cells. Determination of immunoglobulins on the peripheral lymphocytes obtained from different cancer patients varied between 340 to 1040 ng/106 cells. Cultured tumor cells, on the other hand, were found to contain negligible quantities of human IgG

  10. Cell-surface remodelling during mammalian erythropoiesis.

    Science.gov (United States)

    Wraith, D C; Chesterton, C J

    1982-10-15

    Current evidence suggests that the major cell-surface modification occurring during mammalian erythropoiesis could be generated by two separate mechanisms: either selective loss of membrane proteins during enucleation or endocytosis at the subsequent reticulocyte and erythrocyte stages. The former idea was tested by collecting developing rabbit erythroid cells before and after the enucleation step and comparing their cell-surface protein composition via radiolabelling and electrophoresis. Few changes were observed. Our data thus lend support to the endocytosis mechanism.

  11. Transport phenomena in solid oxide fuel cell electrodes focusing on heat transfer related to chemical reactions

    Science.gov (United States)

    Navasa, M.; Andersson, M.; Yuan, J.; Sundén, B.

    2012-11-01

    Solid oxide fuel cells (SOFCs) are widely studied for their advantages especially at high temperatures. However, operating at high temperatures represents a high cost due to the strict requirements the materials are expected to fulfill. Thus, the main goal in SOFC research has been to decrease the operating temperature so that the range of available materials is widened and hence, the operating cost can be reduced. In this paper, the different heat sources that contribute to the cell energy balance are presented with strong emphasis on the chemical reactions that take place in SOFCs. The knowledge of which heat sources or sinks taking place and their locations within the SOFC can provide useful information for further design and efficiency improvements.

  12. Nanostructuring of Solar Cell Surfaces

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Schmidt, Michael Stenbæk

    schemes such as atomic layer deposition (ALD) of Al2O3. ALD Al2O3 passivation on black Si yields surface recombination velocity (SRV) below 80 cm/s and implied open-circuit voltage (iVOC) of 680 mV. Surface recombination velocity of 20 cm/s and implied open-circuit voltage of 695 mV is obtained for black...

  13. Transport phenomena in the cathode of a molten carbonate fuel cell

    International Nuclear Information System (INIS)

    'Full text': A Molten Carbonate Fuel Cell (MCFC) is an electro-chemical energy conversion technology that runs on natural gas and employs a molten salt electrolyte. In order to keep the electrolyte in this state, the cell must be kept at a temperature above 500 C, eliminating the need for noble catalysts. There has been only a limited amount of research on modelling the transport processes inside this device, mainly due to its limited ability for mobile applications. A model for the reaction-diffusion processes within the cathode of a MCFC is developed using Fick's Law for diffusion and incorporating Darcy's Law for convection. A model for Binary Diffusion is also discussed and compared to those for Fickian diffusion. It can be shown that there exists a limiting case for diffusion across the cathode that depends on the conductivity for the liquid potential, for which there exists an analytical solution. Results are also discussed for varying diffusivities and permeabilities. Ultimately, this research focuses on the optimization of the electrode porosity to increase the power output of the fuel cell. The porosity is considered as a function of position, and is optimized using the software package MATLAB. (author)

  14. Biotransport and intracellular ice formation phenomena in freezing human embryonic kidney cells (HEK293T).

    Science.gov (United States)

    Xu, Yunpeng; Zhao, Gang; Zhou, Xiaoming; Ding, Weiping; Shu, Zhiquan; Gao, Dayong

    2014-04-01

    The objective of this study is to determine the cryobiological characteristics of human embryonic kidney (HEK293T) cells. The cell membrane hydraulic conductivity (L(pg)) and the activation energy of water transport (E(Lp)) were determined in the absence/presence of cryoprotectant agent (CPA), while the nucleation rate kinetic and thermodynamic parameters (Ωo(SCN) and κo(SCN)) were determined in the absence of CPA. Since dehydration and intracellular ice formation (IIF) are two factors that may cause damage to cells during the freezing process, systematical freezing experiments were carried out at different cooling rates (5, 10, 15, 20, 30, and 60°C/min) under the commercial available cryomicroscopy (FDCS 196, Linkham, Waterfield, UK) to further explore the cryoinjury mechanism for HEK293T cells. By simultaneously fitting the water transport equation to the experimentally measured volumetric shrinkage data at 5, 10, and 15°C/min, the "combined best fit" membrane permeability parameters for HEK293T cells in both phosphate buffer saline (PBS) and CPA media (0.75M Me2SO in PBS) are determined. They are L(pg)=2.85×10(-14)m/s/Pa (0.17μm/min/atm), E(Lp)=142.91kJ/mol (34.13kcal/mol) (R(2)=0.990), and L(pg)[cpa]=2.73±0.44×10(-14)m/s/Pa (0.16±0.03μm/min/atm), E(Lp)[cpa]=152.52±27.69kJ/mol (36.42±6.61kcal/mol) (R(2)=0.993), respectively. An optimal cooling rate B(opt) (the highest cooling rate without IIF) was determined to be 14.24°C/min in the absence of CPA. Additionally, the ice nucleation parameters (Ωo(SCN) and κo(SCN)) were averaged to be 1.31±0.11×10(8)m(-2)s(-1) and 7.67±2.55×10(9)K(5) for the cooling rates 20, 30, and 60°C/min. PMID:24582893

  15. Cell behaviour on chemically microstructured surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Magnani, Agnese; Priamo, Alfredo; Pasqui, Daniela; Barbucci, Rolando

    2003-03-03

    Micropatterned surfaces with different chemical topographies were synthesised in order to investigate the influence of surface chemistry and topography on cell behaviour. The microstructured materials were synthesised by photoimmobilising natural Hyaluronan (Hyal) and its sulphated derivative (HyalS), both adequately functionalised with a photorective moiety, on glass substrates. Four different grating patterns (10, 25, 50 and 100 {mu}m) were used to pattern the hyaluronan. The micropatterned samples were analysed by Secondary Ions Mass Spectrometry, Scanning Electron Microscopy (SEM) and Atomic Force Microscopy to investigate the chemistry and the topography of the surfaces. The spectroscopic and microscopic analysis of the microstructured surfaces revealed that the photoimmobilisation process was successful, demonstrating that the photomask patterns were well reproduced on the sample surface. The influence of chemical topographies on the cell behaviour was then analysed. Human and 3T3 fibroblasts, bovine aortic and human (HGTFN line) endothelial cells were used and their behaviour on the micropatterned surfaces was analysed in terms of adhesion, proliferation, locomotion and orientation. Both chemical and topographical controls were found to be important for cell guidance. By decreasing the stripe dimensions, a more fusiform shape of cell was observed. At the same time, the cell locomotion and orientation parallel to the structure increased. However, differences in cell behaviour were detected according to both cell type and micropattern dimensions.

  16. Investigating Surface and Interface Phenomena in LiFeBO3 Electrodes Using Photoelectron Spectroscopy Depth Profiling

    DEFF Research Database (Denmark)

    Maibach, Julia; Younesi, Reza; Schwarzburger, Nele;

    2014-01-01

    The formation of surface and interface layers at the electrodes is highly important for the performance and stability of lithium ion batteries. To unravel the surface composition of electrode materials, photoelectron spectroscopy (PES) is highly suitable as it probes chemical surface and interfac...

  17. [Cooperative phenomena in the membrane potential of parathyroid cells induced by divalent cations].

    Science.gov (United States)

    Hirose, T

    1985-01-01

    Membrane potentials of mouse parathyroid cells were measured by means of the intracellular microelectrode method. The membrane potential in external Krebs solution containing 2.5 mM of Ca++ was -23.6 +/- 0.4 mV (mean +/- standard error of mean). The low concentration of Ca++ (1.0 mM) caused hyperpolarization of the membrane potential to -61.7 +/- 0.8 mV. The membrane potential was proportional to the logarithm of the concentration of K ion in the solution of low Ca ion. The concentration of external Na+, C1- and HPO4-- had no effect on the membrane potential. The sigmoidal transition of membrane potentials was induced by the change of Ca ion concentration in the range from 2.5 to 1.0 mM. The change of the membrane potentials in low Ca ion is originated from increase in potassium permeability of the cell membrane. The similar sigmoidal changes of the membrane potentials were observed in the solution containing 4 to 3 mM of Sr ion. The Mg and Ba ion showed smaller effect on the membrane potential. The Goldman equation was extended to divalent ions. Appling the extended membrane potential equation, ratios of the permeability coefficients were obtained as follows: PK/PCa = 0.067 for 2.5 mM Ca++, 0.33 for 1.0 mM Ca++; PK/PSr = 0.08 for 4 mM Sr++ and 0.4 for 3 mM Sr++; PK/PMg = 0.5; PK/PBa = 0.67 for all range of concentration. The Hill constants of Sr ion and Ca ion were 20; the relationship between Sr ion and Ca ion was competitive. The Hill constants of Mg and Ba ion were 1 each. The Hill constant of Ca ion was depend of the temperature; nmax = 20 at 36 degrees C, n = 9 at 27 degrees C, n = 2 at 22 degrees C. The enthalpy of Ca-binding reaction was obtained from the Van't Hoff plot as 0.58 kcal. The activation energies of the K+ permeability increase were obtained from the Arrhenius plots as 3.3 kcal and 4 kcal. The difference, 0.7 kcal, corresponds to the enthalpy change of this reaction, of which value is close to that of the Ca-binding reaction. PMID:4093891

  18. Surface processing technique based on opto-hydrodynamic phenomena occurring in laser-induced breakdown of a microdroplet

    Science.gov (United States)

    Ahn, Daehwan; Jang, Deoksuk; Choi, Tae-Youl; Kim, Dongsik

    2012-03-01

    We report the development of a surface processing technique based on the optical breakdown of a microdroplet and subsequent ejection of a pulsed microjet. The microjet was sufficiently fast to remove nanoparticles from surfaces and erode most materials. The small volume of the droplet enabled precise and selective treatment of surfaces. When the jet was impinged onto a laser spot focused by the droplet, ablation rates substantially larger than those in conventional pulsed laser ablation were obtained with significantly reduced thermal effects. The jet could remove 20 nm particles and an oxide layer from solid surfaces by hydrodynamic impact only.

  19. Functional dynamics of cell surface membrane proteins

    Science.gov (United States)

    Nishida, Noritaka; Osawa, Masanori; Takeuchi, Koh; Imai, Shunsuke; Stampoulis, Pavlos; Kofuku, Yutaka; Ueda, Takumi; Shimada, Ichio

    2014-04-01

    Cell surface receptors are integral membrane proteins that receive external stimuli, and transmit signals across plasma membranes. In the conventional view of receptor activation, ligand binding to the extracellular side of the receptor induces conformational changes, which convert the structure of the receptor into an active conformation. However, recent NMR studies of cell surface membrane proteins have revealed that their structures are more dynamic than previously envisioned, and they fluctuate between multiple conformations in an equilibrium on various timescales. In addition, NMR analyses, along with biochemical and cell biological experiments indicated that such dynamical properties are critical for the proper functions of the receptors. In this review, we will describe several NMR studies that revealed direct linkage between the structural dynamics and the functions of the cell surface membrane proteins, such as G-protein coupled receptors (GPCRs), ion channels, membrane transporters, and cell adhesion molecules.

  20. Preparation and characterization of chemical gradient surfaces and their application for the study of cellular interaction phenomena

    NARCIS (Netherlands)

    Ruardy, TG; Schakenraad, JM; vanderMei, HC; Busscher, HJ

    1997-01-01

    Chemical gradient surfaces are surfaces with a gradually changing chemistry along their length which is responsible for a position bound variation in physical properties, most notably, the wettability. In this review, methods to prepare (palladium deposition, diffusion technique, density gradient me

  1. Corrosion phenomena of alloys and electrode materials in molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Biedenkopf, P. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Werkstoffe und Verfahren der Energietechnik; Bischoff, M.M. [MTU-Friedrichshafen GmbH, - Neue Technologien - ZEB -, Muenchen (Germany); Wochner, T. [MTU-Friedrichshafen GmbH, Abt. TQZ, Friedrichshafen (Germany)

    2000-05-01

    The corrosion behavior of different alloys and the electrical conductivity of the growing corrosion scales was investigated under simulated and real molten carbonate fuel cell conditions. The corrosion of the usually used NiO cathode material was also investigated. In several exposure tests in oxidizing atmospheres, the FeCrMnNi steel 1.3965 showed a higher corrosion resistance to the aggressive carbonate media than the FeCrNi alloy 1.4404 (SS316L). This superior corrosion resistance is explained by the formation of a mixed (Fe,Ni,Mn){sub x}Cr{sub 3-x}O{sub 4} spinel layer, which reduces the outward diffusion of iron ions more than the mixed (Fe,Ni)Cr{sub 2}O{sub 4} spinel formed on austenitic FeCrNi steels. Oxide debris, which spalls off the current collectors, was investigated by XRD. The corrosion scales spalled off mainly at the curved area of the current collector and not at the cathode/current collector interface. The debris was strongly magnetic and consisted of several, in some cases lithiated iron oxides, whereby {alpha}-Fe{sub 2}O{sub 3} (hematite), {gamma}-Fe{sub 2}O{sub 3} (maghemite) and Fe{sub 3}O{sub 4} (magnetite) formed most of the debris. The investigations of the electrical conductivity of the corrosion scales have shown that the electrical conductivity is limited by the inner, Cr-containing oxide of the multi-layered corrosion scale. Cr-rich alloys which contain more than 20 wt.% Cr showed extremely high ohmic resistance of the corrosion scale, much higher than that of alloys containing less than 20 wt.% Cr due to the formation of highly conductive mixed spinel layers. Small additions of Al in the alloy increased the ohmic resistance of the corrosion scale by many orders of magnitude. Corrosion tests in the fuel environment showed, that common uncoated stainless steels are not suitable for the use as anodic current collectors.

  2. Ion exchange phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Bourg, I.C.; Sposito, G.

    2011-05-01

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).

  3. Adhesion of cells to polystyrene surfaces

    OpenAIRE

    1983-01-01

    The surface treatment of polystyrene, which is required to make polystyrene suitable for cell adhesion and spreading, was investigated. Examination of surfaces treated with sulfuric acid or various oxidizing agents using (a) x-ray photoelectron and attenuated total reflection spectroscopy and (b) measurement of surface carboxyl-, hydroxyl-, and sulfur-containing groups by various radiochemical methods showed that sulfuric acid produces an insignificant number of sulfonic acid groups on polyst...

  4. Nanotomography of Cell Surfaces with Evanescent Fields

    Directory of Open Access Journals (Sweden)

    Michael Wagner

    2008-01-01

    Full Text Available The technique of variable-angle total internal reflection fluorescence microscopy (TIRFM and its application to nanotomography of cell surfaces are described. Present applications include (1 3D imaging of chromosomes in their metaphase to demonstrate axial resolution in the nanometre range, (2 measurements of cell-substrate topology, which upon cholesterol depletion shows some loosening of cell-substrate contacts, and (3 measurements of cell topology upon photodynamic therapy (PDT, which demonstrate cell swelling and maintenance of focal contacts. The potential of the method for in vitro diagnostics, but also some requirements and limitations are discussed.

  5. Cell Adhesion on Surface-Functionalized Magnesium.

    Science.gov (United States)

    Wagener, Victoria; Schilling, Achim; Mainka, Astrid; Hennig, Diana; Gerum, Richard; Kelch, Marie-Luise; Keim, Simon; Fabry, Ben; Virtanen, Sannakaisa

    2016-05-18

    The biocompatibility of commercially pure magnesium-based (cp Mg) biodegradable implants is compromised of strong hydrogen evolution and surface alkalization due to high initial corrosion rates of cp Mg in the physiological environment. To mitigate this problem, the addition of corrosion-retarding alloying elements or coating of implant surfaces has been suggested. In the following work, we explored the effect of organic coatings on long-term cell growth. cp Mg was coated with aminopropyltriehtoxysilane + vitamin C (AV), carbonyldiimidazole (CDI), or stearic acid (SA). All three coatings have been previously suggested to reduce initial corrosion and to enhance protein adsorption and hence cell adhesion on magnesium surfaces. Endothelial cells (DH1+/+) and osteosarcoma cells (MG63) were cultured on coated samples for up to 20 days. To quantify Mg corrosion, electrochemical impedance spectroscopy (EIS) was measured after 1, 3, and 5 days of cell culture. We also investigated the speed of initial cell spreading after seeding using fluorescently labeled fibroblasts (NIH/3T3). Hydrogen evolution after contact with cell culture medium was markedly decreased on AV- and SA-coated Mg compared to uncoated Mg. These coatings also showed improved cell adhesion and spreading after 24 h of culture comparable to tissue-treated plastic surfaces. On AV-coated cp Mg, a confluent layer of endothelial cells formed after 5 days and remained intact for up to 20 days. Together, these data demonstrate that surface coating with AV is a viable strategy for improving long-term biocompatibility of cp Mg-based implants. EIS measurements confirmed that the presence of a confluent cell layer increased the corrosion resistance. PMID:27089250

  6. Numerical and analytical study of the impinging and bouncing phenomena of droplets on superhydrophobic surfaces with microtextured structures.

    Science.gov (United States)

    Quan, Yunyun; Zhang, Li-Zhi

    2014-10-01

    The dynamics of droplets impinging on different microtextured superhydrophobic surfaces are modeled with CFD combined with VOF (Volume of Fluid) technique. The method is validated by experimental data and an analytical model (AM) that is used to predict the penetrating depth and the maximum spreading diameter of an impinging droplet. The effects of geometrical shapes and operating conditions on the spreading and bouncing behaviors of impinging droplets are investigated. Six surfaces with different shapes of pillars are considered, namely, triangular prism, square pillar, pentagonal prism, cylindrical pillar, and crisscross pillar surfaces. The bouncing ability of an impinging droplet on textured surfaces can be illustrated from three aspects, namely, the contact time, the ranges of velocities for rebound and the penetrating depth of liquid in the maximum spreading stage. The surface with crisscross pillars exhibits the best ability to rebound, which can be attributed to its large capillary pressure (PC) and its special structures that can capture air in the gaps during the impinging process. PMID:25203603

  7. Surface phenomena associated with thermal cycling of copper and their impact on the service life of particle accelerator structures

    CERN Document Server

    Aicheler, Markus; Theisen, Werner; Sgobba, Stefano

    2010-01-01

    The performance of accelerating structures (AS) in the Compact LInear Collider (CLIC) is sensitive to a variety of parameters, including the surface quality of key elements of the AS. Processes which affect the surface quality are therefore of particular concern. The present work addresses surface modifications associated with thermal cycling during operation. This type of operating condition represents a specific type of fatigue loading. Four fatigue test procedures were used in the present study in order to investigate the fatigue behaviour of oxygen{free{electronic (OFE) copper, the candidate material of the CLIC-AS: conventional fatigue (CVF), ultrasonic swinger (USS), laser fatigue (LAF) and radio{frequency fatigue (RFF). During operation of the accelerator the material of the AS will be subjected to cyclic temperature changes of approx. Delta T = 56 K, from about 40° C to about 100° C. These temperature changes will result in cyclic biaxial strains in the surface of the order of epsilon(biax) = 9.2 x ...

  8. Surface cell immobilization within perfluoroalkoxy microchannels

    Energy Technology Data Exchange (ETDEWEB)

    Stojkovič, Gorazd; Krivec, Matic [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana (Slovenia); Vesel, Alenka [Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia); Marinšek, Marjan [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana (Slovenia); Žnidaršič-Plazl, Polona, E-mail: polona.znidarsic@fkkt.uni-lj.si [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana (Slovenia)

    2014-11-30

    Graphical abstract: - Highlights: • A very efficient approach for immobilization of cells into microreactors is presented. • It is applicable to various materials, including PFA and cyclic olefin (co)polymers. • It was used to immobilize different prokaryotic and eukaryotic microbes. • Cells were immobilized on the surface in high density and showed good stability. • Mechanisms of APTES interactions with target materials are proposed. - Abstract: Perfluoroalkoxy (PFA) is one of the most promising materials for the fabrication of cheap, solvent resistant and reusable microfluidic chips, which have been recently recognized as effective tools for biocatalytic process development. The application of biocatalysts significantly depends on efficient immobilization of enzymes or cells within the reactor enabling long-term biocatalyst use. Functionalization of PFA microchannels by 3-aminopropyltriethoxysilane (ATPES) and glutaraldehyde was used for rapid preparation of microbioreactors with surface-immobilized cells. X-ray photoelectron spectroscopy and scanning electron microscopy were used to accurately monitor individual treatment steps and to select conditions for cell immobilization. The optimized protocol for Saccharomyces cerevisiae immobilization on PFA microchannel walls comprised ethanol surface pretreatment, 4 h contacting with 10% APTES aqueous solution, 10 min treatment with 1% glutaraldehyde and 20 min contacting with cells in deionized water. The same protocol enabled also immobilization of Escherichia coli, Pseudomonas putida and Bacillus subtilis cells on PFA surface in high densities. Furthermore, the developed procedure has been proved to be very efficient also for surface immobilization of tested cells on other materials that are used for microreactor fabrication, including glass, polystyrene, poly (methyl methacrylate), polycarbonate, and two olefin-based polymers, namely Zeonor{sup ®} and Topas{sup ®}.

  9. The cell surface proteome of human mesenchymal stromal cells.

    Directory of Open Access Journals (Sweden)

    Christian Niehage

    Full Text Available BACKGROUND: Multipotent human mesenchymal stromal cells (hMSCs are considered as promising biological tools for regenerative medicine. Their antibody-based isolation relies on the identification of reliable cell surface markers. METHODOLOGY/PRINCIPAL FINDINGS: To obtain a comprehensive view of the cell surface proteome of bone marrow-derived hMSCs, we have developed an analytical pipeline relying on cell surface biotinylation of intact cells using cell impermeable, cleavable sulfo-NHS-SS-biotin to enrich the plasma membrane proteins and mass spectrometry for identification with extremely high confidence. Among the 888 proteins identified, we found ≈200 bona fide plasma membrane proteins including 33 cell adhesion molecules and 26 signaling receptors. In total 41 CD markers including 5 novel ones (CD97, CD112, CD239, CD276, and CD316 were identified. The CD markers are distributed homogenously within plastic-adherent hMSC populations and their expression is modulated during the process of adipogenesis or osteogenesis. Moreover, our in silico analysis revealed a significant difference between the cell surface proteome of hMSCs and that of human embryonic stem cells reported previously. CONCLUSIONS/SIGNIFICANCE: Collectively, our analytical methods not only provide a basis for further studies of mechanisms maintaining the multipotency of hMSCs within their niches and triggering their differentiation after signaling, but also a toolbox for a refined antibody-based identification of hMSC populations from different tissues and their isolation for therapeutic intervention.

  10. Steady-state observations and theoretical modeling of critical heat flux phenomena on a downward facing hemispherical surface

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, F.B.; Haddad, K.H. [Pennsylvania State Univ., University Park, PA (United States)

    1996-03-01

    Steady-state boiling experiments were performed in the SBLB test facility to observe the two-phase boundary layer flow behavior on the outer surface of a heated hemispherical vessel near the critical heat flux (CHF) limit and to measure the spatial variation of the local CHF along the vessel outer surface. Based upon the flow observations, an advanced hydrodynamic CHF model was developed. The model considers the existence of a micro-layer underneath an elongated vapor slug on the downward facing curved heating surface. The micro-layer is treated as a thin liquid film with numerous micro-vapor jets penetrating through it. The micro-jets have the characteristic size dictated by Helmholtz instability. Local dryout is considered to occur when the supply of fresh liquid from the two phase boundary layer to the micro-layer is not sufficient to prevent depletion of the liquid film by boiling. A boundary layer analysis, treating the two-phase motion as a separated flow, is performed to determine the liquid supply rate and thus the local critical heat flux. The model provides a clear physical explanation for the spatial variation of the CHF observed in the SBLB experiments and for the weak dependence of the CHF data on the physical size of the vessel.

  11. Experimental investigation on the phenomena around the onset nucleate boiling during the impacting of a droplet on the hot surface

    Science.gov (United States)

    Mitrakusuma, Windy H.; Deendarlianto, Kamal, Samsul; Indarto, Nuriyadi, M.

    2016-06-01

    Onset of nucleate boiling of a droplet when impacted onto hot surface was investigated. Three kinds of surfaces, normal stainless steel (NSS), stainless steel with TiO2 coating (UVN), and stainless steel with TiO2 coating and radiated by ultraviolet ray were employed to examine the effect of wettability. The droplet size was 2.4 mm diameter, and dropped under different We number. The image is generated by high speed camera with the frame speed of 1000 fps. The boiling conditions are identified as natural convection, nucleate boiling, critical heat flux, transition, and film boiling. In the present report, the discussion will be focused on the beginning of nucleate boiling on the droplet. Nucleate boiling occurs when bubbles are generated. These bubbles are probably caused by nucleation on the impurities within the liquid rather than at nucleation sites on the heated surface because the bubbles appear to be in the bulk of the liquid instead of at the liquid-solid interface. In addition, the smaller the contact angle, the fastest the boiling.

  12. Soluto-inertial phenomena: Designing long-range, long-lasting, surface-specific interactions in suspensions

    Science.gov (United States)

    Banerjee, Anirudha; Williams, Ian; Nery Azevedo, Rodrigo; Helgeson, Matthew E.; Squires, Todd M.

    2016-08-01

    Equilibrium interactions between particles in aqueous suspensions are limited to distances less than 1 μm. Here, we describe a versatile concept to design and engineer nonequilibrium interactions whose magnitude and direction depends on the surface chemistry of the suspended particles, and whose range may extend over hundreds of microns and last thousands of seconds. The mechanism described here relies on diffusiophoresis, in which suspended particles migrate in response to gradients in solution. Three ingredients are involved: a soluto-inertial “beacon” designed to emit a steady flux of solute over long time scales; suspended particles that migrate in response to the solute flux; and the solute itself, which mediates the interaction. We demonstrate soluto-inertial interactions that extend for nearly half a millimeter and last for tens of minutes, and which are attractive or repulsive, depending on the surface chemistry of the suspended particles. Experiments agree quantitatively with scaling arguments and numerical computations, confirming the basic phenomenon, revealing design strategies, and suggesting a broad set of new possibilities for the manipulation and control of suspended particles.

  13. Ion desorption phenomena induced by various types of multiply charged projectiles and by photons on solid surfaces

    International Nuclear Information System (INIS)

    Ion desorption experiments are described in two regions of primary ion velocities corresponding to two distinct classes of interaction mechanism. At low speeds, atomic collisions take place, at higher speeds than the electron velocity, electronic collisions occur. Experiments with fast ions above 0.2 MeV/u are described, using 32S and 235U ions obtained in a cyclotron and a linear accelerator. Emission of H+ ions from solid surfaces is measured and analyzed, and applied to the determination of the charge state of a fast ion in a solid. Experiments using single atomic and polyatomic, keV ions, and organic and CsI cluster ions as projectiles are also presented. Finally, laser desorption is discussed. (R.P.) 81 refs., 27 figs., 2 tabs

  14. Femtosecond fabricated surfaces for cell biology

    Science.gov (United States)

    Day, Daniel; Gu, Min

    2010-08-01

    Microfabrication using femtosecond pulse lasers is enabling access to a range of structures, surfaces and materials that was not previously available for scientific and engineering applications. The ability to produce micrometre sized features directly in polymer and metal substrates is demonstrated with applications in cell biology. The size, shape and aspect ratio of the etched features can be precisely controlled through the manipulation of the fluence of the laser etching process with respect to the properties of the target material. Femtosecond laser etching of poly(methyl methacrylate) and aluminium substrates has enabled the production of micrometre resolution moulds that can be accurately replicated using soft lithography. The moulded surfaces are used in the imaging of T cells and demonstrate the improved ability to observe biological events over time periods greater than 10 h. These results indicate the great potential femtosecond pulse lasers may have in the future manufacturing of microstructured surfaces and devices.

  15. Engineering novel cell surface chemistry for selective tumor cell targeting

    Energy Technology Data Exchange (ETDEWEB)

    Bertozzi, C.R. [Univ. of California, Berkeley, CA (United States)]|[Lawrence Berkeley National Lab., CA (United States)

    1997-12-31

    A common feature of many different cancers is the high expression level of the two monosaccharides sialic acid and fucose within the context of cell-surface associated glycoconjugates. A correlation has been made between hypersialylation and/or hyperfucosylation and the highly metastatic phenotype. Thus, a targeting strategy based on sialic acid or fucose expression would be a powerful tool for the development of new cancer cell-selective therapies and diagnostic agents. We have discovered that ketone groups can be incorporated metabolically into cell-surface associated sialic acids. The ketone is can be covalently ligated with hydrazide functionalized proteins or small molecules under physiological conditions. Thus, we have discovered a mechanism to selectively target hydrazide conjugates to highly sialylated cells such as cancer cells. Applications of this technology to the generation of novel cancer cell-selective toxins and MRI contrast reagents will be discussed, in addition to progress towards the use of cell surface fucose residues as vehicles for ketone expression.

  16. Thermal Wave Phenomena

    Science.gov (United States)

    1999-01-01

    This map from the MGS Horizon Sensor Assembly (HORSE) shows middle atmospheric temperatures near the 1 mbar level of Mars between Ls 170 to 175 (approx. July 14 - 23, 1999). Local Mars times between 1:30 and 4:30 AM are included. Infrared radiation measured by the Mars Horizon Sensor Assembly was used to make the map. That device continuously views the 'limb' of Mars in four directions, to help orient the spacecraft instruments to the nadir: straight down. The map shows thermal wave phenomena that are caused by the large topographic variety of Mars' surface, as well the latitudinally symmetric behavior expected at this time of year near the equinox.

  17. Classifying the expansion kinetics and critical surface dynamics of growing cell populations

    CERN Document Server

    Block, M; Drasdo, D

    2006-01-01

    Based on a cellular automaton model the growth kinetics and the critical surface dynamics of cell monolayers is systematically studied by variation of the cell migration activity, the size of the proliferation zone and the cell cycle time distribution over wide ranges. The model design avoids lattice artifacts and ensures high performance. The monolayer expansion velocity derived from our simulations can be interpreted as a generalization of the velocity relationship for a traveling front in the Fisher-Kolmogorov-Petrovskii-Piskounov (FKPP) equation that is frequently used to model tumor growth phenomena by continuum models. The critical surface dynamics corresponds to the Kardar-Parisi-Zhang (KPZ) universality class for all parameters and model variations studied. While the velocity agrees quantitatively with experimental observations by Bru et al, the critical surface dynamics is in contrast to their interpretation as generic molecular-beam-epitaxy-like growth.

  18. Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena.

    Science.gov (United States)

    Asadnia, Mohsen; Kottapalli, Ajay Giri Prakash; Miao, Jianmin; Warkiani, Majid Ebrahimi; Triantafyllou, Michael S

    2015-10-01

    Using biological sensors, aquatic animals like fishes are capable of performing impressive behaviours such as super-manoeuvrability, hydrodynamic flow 'vision' and object localization with a success unmatched by human-engineered technologies. Inspired by the multiple functionalities of the ubiquitous lateral-line sensors of fishes, we developed flexible and surface-mountable arrays of micro-electromechanical systems (MEMS) artificial hair cell flow sensors. This paper reports the development of the MEMS artificial versions of superficial and canal neuromasts and experimental characterization of their unique flow-sensing roles. Our MEMS flow sensors feature a stereolithographically fabricated polymer hair cell mounted on Pb(Zr(0.52)Ti(0.48))O3 micro-diaphragm with floating bottom electrode. Canal-inspired versions are developed by mounting a polymer canal with pores that guide external flows to the hair cells embedded in the canal. Experimental results conducted employing our MEMS artificial superficial neuromasts (SNs) demonstrated a high sensitivity and very low threshold detection limit of 22 mV/(mm s(-1)) and 8.2 µm s(-1), respectively, for an oscillating dipole stimulus vibrating at 35 Hz. Flexible arrays of such superficial sensors were demonstrated to localize an underwater dipole stimulus. Comparative experimental studies revealed a high-pass filtering nature of the canal encapsulated sensors with a cut-off frequency of 10 Hz and a flat frequency response of artificial SNs. Flexible arrays of self-powered, miniaturized, light-weight, low-cost and robust artificial lateral-line systems could enhance the capabilities of underwater vehicles. PMID:26423435

  19. CZTSSe thin film solar cells: Surface treatments

    Science.gov (United States)

    Joglekar, Chinmay Sunil

    Chalcopyrite semiconducting materials, specifically CZTS, are a promising alternative to traditional silicon solar cell technology. Because of the high absorption coefficient; films of the order of 1 micrometer thickness are sufficient for the fabrication of solar cells. Liquid based synthesis methods are advantageous because they are easily scalable using the roll to roll manufacturing techniques. Various treatments are explored in this study to enhance the performance of the selenized CZTS film based solar cells. Thiourea can be used as a sulfur source and can be used to tune band gap of CZTSSe. Bromine etching can be used to manipulate the thickness of sintered CZTSSe film. The etching treatment creates recombination centers which lead to poor device performance. Various after treatments were used to improve the performance of the devices. It was observed that the performance of the solar cell devices could not be improved by any of the after treatment steps. Other surface treatment processes are explored including KCN etching and gaseous H2S treatments. Hybrid solar cells which included use of CIGS nanoparticles at the interface between CZTSSe and CdS are also explored.

  20. Characterization of simultaneous heat and mass transfer phenomena for water vapour condensation on a solid surface in an abiotic environment--application to bioprocesses.

    Science.gov (United States)

    Tiwari, Akhilesh; Kondjoyan, Alain; Fontaine, Jean-Pierre

    2012-07-01

    The phenomenon of heat and mass transfer by condensation of water vapour from humid air involves several key concepts in aerobic bioreactors. The high performance of bioreactors results from optimised interactions between biological processes and multiphase heat and mass transfer. Indeed in various processes such as submerged fermenters and solid-state fermenters, gas/liquid transfer need to be well controlled, as it is involved at the microorganism interface and for the control of the global process. For the theoretical prediction of such phenomena, mathematical models require heat and mass transfer coefficients. To date, very few data have been validated concerning mass transfer coefficients from humid air inflows relevant to those bioprocesses. Our study focussed on the condensation process of water vapour and developed an experimental set-up and protocol to study the velocity profiles and the mass flux on a small size horizontal flat plate in controlled environmental conditions. A closed circuit wind tunnel facility was used to control the temperature, hygrometry and hydrodynamics of the flow. The temperature of the active surface was controlled and kept isothermal below the dew point to induce condensation, by the use of thermoelectricity. The experiments were performed at ambient temperature for a relative humidity between 35-65% and for a velocity of 1.0 ms⁻¹. The obtained data are analysed and compared to available theoretical calculations on condensation mass flux.

  1. Point spread function of SDO/HMI and the effects of stray light correction on the apparent properties of solar surface phenomena

    CERN Document Server

    Yeo, K L; Solanki, S K; Couvidat, S; Danilovic, S; Krivova, N A

    2013-01-01

    We present a PSF for SDO/HMI and discuss the effects of its removal on the apparent properties of solar surface phenomena in HMI data. The PSF was retrieved from observations of Venus in transit by matching it to the convolution of a model of the venusian disc and solar background with a guess PSF. Observations recorded near in time to the transit of Venus were corrected for instrumental scattered light by the deconvolution with the PSF. Granulation contrast in restored HMI data is greatly enhanced relative to the original data and exhibit reasonable agreement with numerical simulations. Image restoration enhanced the apparent intensity and pixel averaged magnetic field strength of photospheric magnetic features significantly. For small-scale magnetic features, restoration enhanced intensity contrast in the continuum and core of the Fe I 6173 \\AA{} line by a factor of 1.3, and the magnetogram signal by a factor of 1.7. For sunspots and pores, the enhancement varied strongly within and between features, being ...

  2. Frequency Selective Surfaces with Nanoparticles Unit Cell

    Directory of Open Access Journals (Sweden)

    Nga Hung Poon

    2015-09-01

    Full Text Available The frequency selective surface (FSS is a periodic structure with filtering performance for optical and microwave signals. The general periodic arrays made with patterned metallic elements can act as an aperture or patch on a substrate. In this work, two kinds of materials were used to produce unit cells with various patterns. Gold nanoparticles of 25 nm diameter were used to form periodic monolayer arrays by a confined photocatalytic oxidation-based surface modification method. As the other material, silver gel was used to create multiple layers of silver. Due to the ultra-thin nature of the self-assembled gold nanoparticle monolayer, it is very easy to penetrate the FSS with terahertz radiation. However, the isolated silver islands made from silver gel form thicker multiple layers and contribute to much higher reflectance. This work demonstrated that multiple silver layers are more suitable than gold nanoparticles for use in the fabrication of FSS structures.

  3. Wettability influences cell behavior on superhydrophobic surfaces with different topographies

    NARCIS (Netherlands)

    Lourenco, B.N.; Marchioli, G.; Song, W; Reis, R.L.; Blitterswijk, van C.A.; Karperien, H.B.J.; Apeldoorn, van A.A.; Mano, J.F.

    2012-01-01

    Surface wettability and topography are recognized as critical factors influencing cell behavior on biomaterials. So far only few works have reported cell responses on surfaces exhibiting extreme wettability in combination with surface topography. The goal of this work is to study whether cell behavi

  4. Autoregressive description of biological phenomena

    CERN Document Server

    Morariu, Vasile V; Pop, Alexadru; Soltuz, Stefan M; Buimaga-Iarinca, Luiza; Zainea, Oana

    2008-01-01

    Many natural phenomena can be described by power-laws. A closer look at various experimental data reveals more or less significant deviations from a 1/f spectrum. We exemplify such cases with phenomena offered by molecular biology, cell biophysics, and cognitive psychology. Some of these cases can be described by first order autoregressive (AR) models or by higher order AR models which are short range correlation models. The calculations are checked against astrophysical data which were fitted to a an AR model by a different method. We found that our fitting method of the data give similar results for the astrhophysical data and therefore applied the method for examples mentioned above. Our results show that such phenomena can be described by first or higher order of AR models. Therefore such examples are described by short range correlation properties while they can be easily confounded with long range correlation phenomena.

  5. An acoustically driven microliter flow chamber on a chip (muFCC) for cell-cell and cell-surface interaction studies.

    Science.gov (United States)

    Schneider, Matthias F; Guttenberg, Zeno; Schneider, Stefan W; Sritharan, Kumudesh; Myles, Vanessa M; Pamukci, Umut; Wixforth, Achim

    2008-03-14

    A novel method for pumping very small volumes of liquid by using surface acoustic waves is employed to create a microfluidic flow chamber on a chip. It holds a volume of only a few mul and its planar design provides complete architectural freedom. This allows for the reconstruction of even complex flow scenarios (e.g. curvatures, bifurcations and stenosis). Addition of polymer walls to the planar fluidic track enables cell culturing on the chip surface and the investigation of cell-cell adhesion dynamics under flow. We demonstrate the flexibility of the system for application in many areas of microfluidic investigations including blood clotting phenomena under various flow conditions and the investigation of different stages of cell adhesion. PMID:18306189

  6. Chemistry and material science at the cell surface

    Directory of Open Access Journals (Sweden)

    Weian Zhao

    2010-04-01

    Full Text Available Cell surfaces are fertile ground for chemists and material scientists to manipulate or augment cell functions and phenotypes. This not only helps to answer basic biology questions but also has diagnostic and therapeutic applications. In this review, we summarize the most recent advances in the engineering of the cell surface. In particular, we focus on the potential applications of surface engineered cells for 1 targeting cells to desirable sites in cell therapy, 2 programming assembly of cells for tissue engineering, 3 bioimaging and sensing, and ultimately 4 manipulating cell biology.

  7. Conditioning and breakdown phenomena in accelerator tubes

    International Nuclear Information System (INIS)

    Important breakdown mechanisms in accelerator tubes are reviewed, and discharge phenomena in NEC tubes are deduced from the surface appearance of the electrodes and insulators of a used tube. Microphotos of these surfaces are shown

  8. Strings, fields and critical phenomena

    International Nuclear Information System (INIS)

    The connection between field theory and critical phenomena is reviewed. Emphasis is put on the use of Monte Carlo methods in the study of non-perturbative aspects of field theory. String theory is then described as a statistical theory of random surfaces and the critical behaviour is analyzed both by analytical and numerical methods. (orig.)

  9. Workshop on Interface Phenomena

    CERN Document Server

    Kreuzer, Hans

    1987-01-01

    This book contains the proceedings of the first Workshop on Interface Phenomena, organized jointly by the surface science groups at Dalhousie University and the University of Maine. It was our intention to concentrate on just three topics related to the kinetics of interface reactions which, in our opinion, were frequently obscured unnecessarily in the literature and whose fundamental nature warranted an extensive discussion to help clarify the issues, very much in the spirit of the Discussions of the Faraday Society. Each session (day) saw two principal speakers expounding the different views; the session chairmen were asked to summarize the ensuing discussions. To understand the complexity of interface reactions, paradigms must be formulated to provide a framework for the interpretation of experimen­ tal data and for the construction of theoretical models. Phenomenological approaches have been based on a small number of rate equations for the concentrations or mole numbers of the various species involved i...

  10. Basic surface properties of mononuclear cells from Didelphis marsupialis.

    Science.gov (United States)

    Nacife, V P; de Meirelles, M de N; Silva Filho, F C

    1998-01-01

    The electrostatic surface charge and surface tension of mononuclear cells/monocytes obtained from young and adult marsupials (Didelphis marsupialis) were investigated by using cationized ferritin and colloidal iron hydroxyde, whole cell electrophoresis, and measurements of contact angles. Anionic sites were found distributed throughout the entire investigated cell surfaces. The results revealed that the anionic character of the cells is given by electrostatic charges corresponding to -18.8 mV (cells from young animals) and -29.3 mV (cells from adult animals). The surface electrostatic charge decreased from 10 to 65.2% after treatment of the cells with each one of trypsin, neuraminidase and phospholipase C. The hydrophobic nature of the mononuclear cell surfaces studied by using the contact angle method revealed that both young and adult cells possess cell surfaces of high hidrofilicity since the angles formed with drops of saline water were 42.5 degrees and 40.8 degrees, respectively. Treatment of the cells with trypsin or neuraminidase rendered their surfaces more hydrophobic, suggesting that sialic acid-containing glycoproteins are responsible for most of the hydrophilicity observed in the mononuclear cell surfaces from D. marsupialis. PMID:9921307

  11. Basic Surface Properties of Mononuclear Cells from Didelphis marsupialis

    Directory of Open Access Journals (Sweden)

    Nacife Valéria Pereira

    1998-01-01

    Full Text Available The electrostatic surface charge and surface tension of mononuclear cells/monocytes obtained from young and adult marsupials (Didelphis marsupialis were investigated by using cationized ferritin and colloidal iron hydroxyde, whole cell electrophoresis, and measurements of contact angles. Anionic sites were found distributed throughout the entire investigated cell surfaces. The results revealed that the anionic character of the cells is given by electrostatic charges corresponding to -18.8 mV (cells from young animals and -29.3 mV (cells from adult animals. The surface electrostatic charge decreased from 10 to 65.2% after treatment of the cells with each one of trypsin, neuraminidase and phospholipase C. The hydrophobic nature of the mononuclear cell surfaces studied by using the contact angle method revealed that both young and adult cells possess cell surfaces of high hidrofilicity since the angles formed with drops of saline water were 42.5°and 40.8°, respectively. Treatment of the cells with trypsin or neuraminidase rendered their surfaces more hydrophobic, suggesting that sialic acid-containing glycoproteins are responsible for most of the hydrophilicity observed in the mononuclear cell surfaces from D. marsupialis.

  12. Surface cell differentiation controls tissue surface tension and tissue positioning during zebrafish gastrulation

    Science.gov (United States)

    Krens, S. F. G.

    2011-03-01

    Differences in tissue surface tension (TST) between different tissue types are thought to guide tissue organization and cell sorting in development. Measurements of TST have been useful to predict the outcome of in vitro cell sorting and envelopment experiments. However, the outcome of cell sorting experiments in vitro often substantially differs from tissue positioning in vivo, raising questions as to the actual contribution of TST to tissue positioning within the developing embryo. Here, we show that surface tension of germ layer tissues during zebrafish gastrulation critically relies on the differentiation of their surface cells. We also show that surface differentiation of the different germ layer tissues varies and is considerably different between the situation in vitro and in vivo, explaining the apparent dissimilar outcome of cell segregation between these two situations. To analyze germ layer TST as a function of surface cell differentiation, we interfere with surface cell properties of germ layer aggregates by misexpressing genes involved in surface cell differentiation specifically within surface cells using the GAL4-UAS system, and measure tissue surface tension using both parallel plate compression and micropipette aspiration techniques. Our data provides evidence in favor of a critical function of surface cell differentiation in modulating TST and subsequently tissue positioning within the developing embryo.

  13. Nanofabrication of Nonfouling Surfaces for Micropatterning of Cell and Microtissue

    Directory of Open Access Journals (Sweden)

    Hidenori Otsuka

    2010-08-01

    Full Text Available Surface engineering techniques for cellular micropatterning are emerging as important tools to clarify the effects of the microenvironment on cellular behavior, as cells usually integrate and respond the microscale environment, such as chemical and mechanical properties of the surrounding fluid and extracellular matrix, soluble protein factors, small signal molecules, and contacts with neighboring cells. Furthermore, recent progress in cellular micropatterning has contributed to the development of cell-based biosensors for the functional characterization and detection of drugs, pathogens, toxicants, and odorants. In this regards, the ability to control shape and spreading of attached cells and cell-cell contacts through the form and dimension of the cell-adhesive patches with high precision is important. Commitment of stem cells to different specific lineages depends strongly on cell shape, implying that controlled microenvironments through engineered surfaces may not only be a valuable approach towards fundamental cell-biological studies, but also of great importance for the design of cell culture substrates for tissue engineering. To develop this kind of cellular microarray composed of a cell-resistant surface and cell attachment region, micropatterning a protein-repellent surface is important because cellular adhesion and proliferation are regulated by protein adsorption. The focus of this review is on the surface engineering aspects of biologically motivated micropatterning of two-dimensional surfaces with the aim to provide an introductory overview described in the literature. In particular, the importance of non-fouling surface chemistries is discussed.

  14. Osteoblast cell response to surface-modified carbon nanotubes

    International Nuclear Information System (INIS)

    In order to investigate the interaction of cells with modified multi-walled carbon nanotubes (MWCNTs) for their potential biomedical applications, the MWCNTs were chemically modified with carboxylic acid groups (–COOH), polyvinyl alcohol (PVA) polymer and biomimetic apatite on their surfaces. Additionally, human osteoblast MG-63 cells were cultured in the presence of the surface-modified MWCNTs. The metabolic activities of osteoblastic cells, cell proliferation properties, as well as cell morphology were studied. The surface modification of MWCNTs with biomimetic apatite exhibited a significant increase in the cell viability of osteoblasts, up to 67.23%. In the proliferation phases, there were many more cells in the biomimetic apatite-modified MWCNT samples than in the MWCNTs–COOH. There were no obvious changes in cell morphology in osteoblastic MG-63 cells cultured in the presence of these chemically-modified MWCNTs. The surface modification of MWCNTs with apatite achieves an effective enhancement of their biocompatibility.

  15. Dendritic Cell Responses to Surface Properties of Clinical Titanium Surfaces

    OpenAIRE

    Kou, Peng Meng; Schwartz, Zvi; Boyan, Barbara D; Babensee, Julia E.

    2010-01-01

    Dendritic cells (DCs) play pivotal roles in responding to foreign entities during an innate immune response and initiating effective adaptive immunity as well as maintaining immune tolerance. The sensitivity of DCs to foreign stimuli also makes them useful cells to assess the inflammatory response to biomaterials. Elucidating the material property-DC phenotype relationships using a well-defined biomaterial system is expected to provide criteria for immuno-modulatory biomaterial design. Clinic...

  16. Melittin interaction with sulfated cell surface sugars.

    Science.gov (United States)

    Klocek, Gabriela; Seelig, Joachim

    2008-03-01

    Melittin is a 26-residue cationic peptide with cytolytic and antimicrobial properties. Studies on the action mechanism of melittin have focused almost exclusively on the membrane-perturbing properties of this peptide, investigating in detail the melittin-lipid interaction. Here, we report physical-chemical studies on an alternative mechanism by which melittin could interact with the cell membrane. As the outer surface of many cells is decorated with anionic (sulfated) glycosaminoglycans (GAGs), a strong Coulombic interaction between the two oppositely charged molecules can be envisaged. Indeed, the present study using isothermal titration calorimetry reveals a high affinity of melittin for several GAGs, that is, heparan sulfate (HS), dermatan sulfate, and heparin. The microscopic binding constant of melittin for HS is 2.4 x 10 (5) M (-1), the reaction enthalpy is Delta H melittin (0) = -1.50 kcal/mol, and the peptide-to-HS stoichiometry is approximately 11 at 10 mM Tris, 100 mM NaCl at pH 7.4 and 28 degrees C. Delta H melittin (0) is characterized by a molar heat capacity of Delta C P (0) = -227 cal mol (-1) K (-1). The large negative heat capacity change indicates that hydrophobic interactions must also be involved in the binding of melittin to HS. Circular dichroism spectroscopy demonstrates that the binding of the peptide to HS induces a conformational change to a predominantly alpha-helical structure. A model for the melittin-HS complex is presented. Melittin binding was compared with that of magainin 2 and nisin Z to HS. Magainin 2 is known for its antimicrobial properties, but it does not cause lysis of the eukaryotic cells. Nisin Z shows activity against various Gram-positive bacteria. Isothermal titration calorimetry demonstrates that magainin 2 and nisin Z do not bind to HS (5-50 degrees C, 10 mM Tris, and 100 mM NaCl at pH 7.4). PMID:18220363

  17. Calreticulin: Roles in Cell-Surface Protein Expression

    Directory of Open Access Journals (Sweden)

    Yue Jiang

    2014-09-01

    Full Text Available In order to perform their designated functions, proteins require precise subcellular localizations. For cell-surface proteins, such as receptors and channels, they are able to transduce signals only when properly targeted to the cell membrane. Calreticulin is a multi-functional chaperone protein involved in protein folding, maturation, and trafficking. However, evidence has been accumulating that calreticulin can also negatively regulate the surface expression of certain receptors and channels. In these instances, depletion of calreticulin enhances cell-surface expression and function. In this review, we discuss the role of calreticulin with a focus on its negative effects on the expression of cell-surface proteins.

  18. A mass spectrometric-derived cell surface protein atlas.

    Directory of Open Access Journals (Sweden)

    Damaris Bausch-Fluck

    Full Text Available Cell surface proteins are major targets of biomedical research due to their utility as cellular markers and their extracellular accessibility for pharmacological intervention. However, information about the cell surface protein repertoire (the surfaceome of individual cells is only sparsely available. Here, we applied the Cell Surface Capture (CSC technology to 41 human and 31 mouse cell types to generate a mass-spectrometry derived Cell Surface Protein Atlas (CSPA providing cellular surfaceome snapshots at high resolution. The CSPA is presented in form of an easy-to-navigate interactive database, a downloadable data matrix and with tools for targeted surfaceome rediscovery (http://wlab.ethz.ch/cspa. The cellular surfaceome snapshots of different cell types, including cancer cells, resulted in a combined dataset of 1492 human and 1296 mouse cell surface glycoproteins, providing experimental evidence for their cell surface expression on different cell types, including 136 G-protein coupled receptors and 75 membrane receptor tyrosine-protein kinases. Integrated analysis of the CSPA reveals that the concerted biological function of individual cell types is mainly guided by quantitative rather than qualitative surfaceome differences. The CSPA will be useful for the evaluation of drug targets, for the improved classification of cell types and for a better understanding of the surfaceome and its concerted biological functions in complex signaling microenvironments.

  19. A mass spectrometric-derived cell surface protein atlas.

    Science.gov (United States)

    Bausch-Fluck, Damaris; Hofmann, Andreas; Bock, Thomas; Frei, Andreas P; Cerciello, Ferdinando; Jacobs, Andrea; Moest, Hansjoerg; Omasits, Ulrich; Gundry, Rebekah L; Yoon, Charles; Schiess, Ralph; Schmidt, Alexander; Mirkowska, Paulina; Härtlová, Anetta; Van Eyk, Jennifer E; Bourquin, Jean-Pierre; Aebersold, Ruedi; Boheler, Kenneth R; Zandstra, Peter; Wollscheid, Bernd

    2015-01-01

    Cell surface proteins are major targets of biomedical research due to their utility as cellular markers and their extracellular accessibility for pharmacological intervention. However, information about the cell surface protein repertoire (the surfaceome) of individual cells is only sparsely available. Here, we applied the Cell Surface Capture (CSC) technology to 41 human and 31 mouse cell types to generate a mass-spectrometry derived Cell Surface Protein Atlas (CSPA) providing cellular surfaceome snapshots at high resolution. The CSPA is presented in form of an easy-to-navigate interactive database, a downloadable data matrix and with tools for targeted surfaceome rediscovery (http://wlab.ethz.ch/cspa). The cellular surfaceome snapshots of different cell types, including cancer cells, resulted in a combined dataset of 1492 human and 1296 mouse cell surface glycoproteins, providing experimental evidence for their cell surface expression on different cell types, including 136 G-protein coupled receptors and 75 membrane receptor tyrosine-protein kinases. Integrated analysis of the CSPA reveals that the concerted biological function of individual cell types is mainly guided by quantitative rather than qualitative surfaceome differences. The CSPA will be useful for the evaluation of drug targets, for the improved classification of cell types and for a better understanding of the surfaceome and its concerted biological functions in complex signaling microenvironments. PMID:25894527

  20. Targeting Negative Surface Charges of Cancer Cells by Multifunctional Nanoprobes

    Science.gov (United States)

    Chen, Bingdi; Le, Wenjun; Wang, Yilong; Li, Zhuoquan; Wang, Dong; Ren, Lei; Lin, Ling; Cui, Shaobin; Hu, Jennifer J.; Hu, Yihui; Yang, Pengyuan; Ewing, Rodney C.; Shi, Donglu; Cui, Zheng

    2016-01-01

    A set of electrostatically charged, fluorescent, and superparamagnetic nanoprobes was developed for targeting cancer cells without using any molecular biomarkers. The surface electrostatic properties of the established cancer cell lines and primary normal cells were characterized by using these nanoprobes with various electrostatic signs and amplitudes. All twenty two randomly selected cancer cell lines of different organs, but not normal control cells, bound specifically to the positively charged nanoprobes. The relative surface charges of cancer cells could be quantified by the percentage of cells captured magnetically. The activities of glucose metabolism had a profound impact on the surface charge level of cancer cells. The data indicate that an elevated glycolysis in the cancer cells led to a higher level secretion of lactate. The secreted lactate anions are known to remove the positive ions, leaving behind the negative changes on the cell surfaces. This unique metabolic behavior is responsible for generating negative cancer surface charges in a perpetuating fashion. The metabolically active cancer cells are shown to a unique surface electrostatic pattern that can be used for recovering cancer cells from the circulating blood and other solutions. PMID:27570558

  1. Targeting Negative Surface Charges of Cancer Cells by Multifunctional Nanoprobes.

    Science.gov (United States)

    Chen, Bingdi; Le, Wenjun; Wang, Yilong; Li, Zhuoquan; Wang, Dong; Ren, Lei; Lin, Ling; Cui, Shaobin; Hu, Jennifer J; Hu, Yihui; Yang, Pengyuan; Ewing, Rodney C; Shi, Donglu; Cui, Zheng

    2016-01-01

    A set of electrostatically charged, fluorescent, and superparamagnetic nanoprobes was developed for targeting cancer cells without using any molecular biomarkers. The surface electrostatic properties of the established cancer cell lines and primary normal cells were characterized by using these nanoprobes with various electrostatic signs and amplitudes. All twenty two randomly selected cancer cell lines of different organs, but not normal control cells, bound specifically to the positively charged nanoprobes. The relative surface charges of cancer cells could be quantified by the percentage of cells captured magnetically. The activities of glucose metabolism had a profound impact on the surface charge level of cancer cells. The data indicate that an elevated glycolysis in the cancer cells led to a higher level secretion of lactate. The secreted lactate anions are known to remove the positive ions, leaving behind the negative changes on the cell surfaces. This unique metabolic behavior is responsible for generating negative cancer surface charges in a perpetuating fashion. The metabolically active cancer cells are shown to a unique surface electrostatic pattern that can be used for recovering cancer cells from the circulating blood and other solutions. PMID:27570558

  2. CHAIRMEN'S FOREWORD: The Seventh International Conference on New Phenomena in Mesoscopic Structures & The Fifth International Conference on Surfaces and Interfaces of Mesoscopic Devices

    Science.gov (United States)

    Aoyagi, Yoshinobu; Goodnick, Stephen M.

    2006-05-01

    This special issue of the Journal of Physics: Conference Series contains the proceedings of the joint Seventh International Conference on New Phenomena in Mesoscopic Structures and Fifth International Conference on Surfaces and Interfaces of Mesoscopic Devices, which was held from November 27th - December 2nd, 2005, at the Ritz Carlton Kapalua, Maui, Hawaii. The string of these conferences dates back to the first one in 1989. Of special importance is that this year's conference was dedicated to Professor Gottfried Landwehr, in recognition of his many outstanding contributions to semiconductor physics. A personal tribute to Prof Landwehr by Dr K von Klitzing leads off this issue. The scope of NPMS-7/SIMD-5 spans nano-fabrication through complex phase coherent mesoscopic systems including nano-transistors and nano-scale characterization. Topics of interest include: •Nanoscale fabrication: high-resolution electron lithography, FIB nano-patterning, scanning- force-microscopy (SFM) lithography, SFM-stimulated growth, novel patterning, nano-imprint lithography, special etching, and self-assembled monolayers •Nanocharacterization: SFM characterization, ballistic-electron emission microscopy (BEEM), optical studies of nanostructures, tunneling, properties of discrete impurities, phase coherence, noise, THz studies, and electro-luminescence in small structures •Nanodevices: ultra-scaled FETs, quantum single-electron transistors (SETS), resonant tunneling diodes, ferromagnetic and spin devices, superlattice arrays, IR detectors with quantum dots and wires, quantum point contacts, non-equilibrium transport, simulation, ballistic transport, molecular electronic devices, carbon nanotubes, spin selection devices, spin-coupled quantum dots, and nanomagnetics •Quantum-coherent transport: the quantum Hall effect, ballistic quantum systems, quantum-computing implementations and theory, and magnetic spin systems •Mesoscopic structures: quantum wires and dots, quantum chaos

  3. How cells tiptoe on adhesive surfaces before sticking

    CERN Document Server

    Pierres, Anne; Touchard, Dominique; Bongrand, Pierre

    2008-01-01

    Cell membranes are studded with protrusions that were thoroughly analyzed with electron microscopy. However, the nanometer-scale three-dimensional motions generated by cell membranes to fit the topography of foreign surfaces and initiate adhesion remain poorly understood. Here, we describe the dynamics of surface deformations displayed by monocytic cells bumping against fibronectin-coated surfaces. We observed membrane undulations with typically 5 nm amplitude and 5-10 second lifetime. Cell membranes behaved as independent units of micrometer size. Cells detected the presence of foreign surfaces at 50 nm separation, resulting in time-dependent amplification of membrane undulations. Molecular contact then ensued with apparent cell-membrane separation of 30-40 nm, and this distance steadily decreased during the following tens of seconds. Contact maturation was associated with in-plane egress of bulky molecules and robust membrane fluctuations. Thus, membrane undulations may be the major determinant of cell sens...

  4. Molecularly engineered surfaces for cell biology: from static to dynamic surfaces.

    Science.gov (United States)

    Gooding, J Justin; Parker, Stephen G; Lu, Yong; Gaus, Katharina

    2014-04-01

    Surfaces with a well-defined presentation of ligands for receptors on the cell membrane can serve as models of the extracellular matrix for studying cell adhesion or as model cell surfaces for exploring cell-cell contacts. Because such surfaces can provide exquisite control over, for example, the density of these ligands or when the ligands are presented to the cell, they provide a very precise strategy for understanding the mechanisms by which cells respond to external adhesive cues. In the present feature article, we present an overview of the basic biology of cell adhesion before discussing surfaces that have a static presentation of immobile ligands. We outline the biological information that such surfaces have given us, before progressing to recently developed switchable surfaces and surfaces that mimic the lipid bilayer, having adhesive ligands that can move around the membrane and be remodeled by the cell. Finally, the feature article closes with some of the biological information that these new types of surfaces could provide.

  5. Active faulting Vs other surface displacing complex geomorphic phenomena. Case studies from a tectonically active area, Abruzzi Region, central Apennines, Italy

    Science.gov (United States)

    Lo Sardo, Lorenzo; Gori, Stefano; Falcucci, Emanuela; Saroli, Michele; Moro, Marco; Galadini, Fabrizio; Lancia, Michele; Fubelli, Giandomenico; Pezzo, Giuseppe

    2016-04-01

    How can be univocally inferred the genesis of a linear surface scarp as the result of an active and capable fault (FAC) in tectonically active regions? Or, conversely, how it is possible to exclude that a scarp is the result of a capable fault activation? Trying to unravel this open questions, we show two ambiguous case studies about the problem of the identification of active and capable faults in a tectonically active area just based on the presence of supposed fault scarps at surface. The selected cases are located in the area comprised between the Middle Aterno Valley Fault (MAVF) and the Campo Imperatore Plain (Abruzzi Region, central Apennines), nearby the epicentral area of the April 6th, 2009 L'Aquila earthquake. In particular, the two case studies analysed are located in a region characterized by a widespread Quaternary faults and by several linear scarps: the case studies of (i) Prata D'Ansidonia area and (ii) Santo Stefano di Sessanio area. To assess the origin and the state of activity of the investigated geomorphic features, we applied a classical geological and geomorphological approach, based on the analysis of the available literature, the interpretation of the aerial photographs, field surveying and classical paleoseismological approach, the latter consisting in digging excavations across the analysed scarps. These analysis were then integrated by morphometrical analyses. As for case (i), we focused on determining the geomorphic "meaning" of linear scarps carved onto fluvial-deltaic conglomerates (dated to the Early Pleistocene; Bertini and Bosi, 1993), up to 3 meters high and up to 1,5 km long, that border a narrow, elongated and flat-bottom depressions, filled by colluvial deposits. These features groove the paleo-landsurface of Valle Daria (Bosi and Bertini, 1970), wide landsurface located between Barisciano and Prata D'Ansidonia. Entwining paleoseismological trenching with geophysical analyses (GPR, ERT and microgravimetrical prospections), it

  6. Microplicae: specialized surface structure of epithelial cells of wet-surfaced oral mucosa

    NARCIS (Netherlands)

    P. Asikainen; E. Sirviö; J.J.W. Mikkonen; S.P. Singh; E.A.J.M. Schulten; C.M. ten Bruggenkate; A.P. Koistinen; A.M. Kullaa

    2015-01-01

    The surface structure of the superficial cells of the oral mucosa is decorated with numerous membrane ridges, termed microplicae (MPLs). The MPL structure is typical of the epithelial surfaces that are covered with protective mucus. Cell membrane MPLs are no longer seen as passive consequences of ce

  7. FABRICATION AND BIOCOMPATIBILITY OF CELL OUTER MEMBRANE MIMETIC SURFACES

    Institute of Scientific and Technical Information of China (English)

    Ming-ming Zong; Yong-kuan Gong

    2011-01-01

    The surface design used for improving biocompatibility is one of the most important issues for the fabrication of medical devices. For mimicking the ideal surface structure of cell outer membrane, a large number of polymers bearing phosphorylcholine (PC) groups have been employed to modify the surfaces of biomaterials and medical devices. It has been demonstrated that the biocompatibility of the modified materials whose surface is required to interact with a living organism has been obviously improved by introducing PC groups. In this review, the fabrication strategies of cell outer membrane mimetic surfaces and their resulted biocompatibilities were summarized.

  8. The Use of Yeast Surface Display in Biofuel Cells.

    Science.gov (United States)

    Szczupak, Alon; Alfonta, Lital

    2015-01-01

    Biofuel cells are electrochemical devices which convert chemical energy to electricity using biochemical pathways and redox enzymes. In enzymatic fuel cells purified redox enzymes catalyze the reactions in the anode and cathode compartments whereas in microbial fuel cells (MFCs) the entire metabolism of the microorganisms is exploited. Here, a hybrid biofuel cell concept is presented, which is based on yeast surface display (YSD) of redox enzymes to catalyze the different cell reactions. PMID:26060081

  9. Smooth Muscle Cell Functionality on Collagen Immobilized Polycaprolactone Nanowire Surfaces

    Directory of Open Access Journals (Sweden)

    Victoria Leszczak

    2014-05-01

    Full Text Available Inhibition of smooth muscle cell (SMC proliferation and preservation of a differentiated state are important aspects in the management, avoidance and progression of vascular diseases. An understanding of the interaction between SMCs and the biomaterial involved is essential for a successful implant. In this study, we have developed collagen immobilized nanostructured surfaces with controlled arrays of high aspect ratio nanowires for the growth and maintenance of human aortic SMCs. The nanowire surfaces were fabricated from polycaprolactone and were immobilized with collagen. The objective of this study is to reveal how SMCs interact with collagen immobilized nanostructures. The results indicate significantly higher cellular adhesion on nanostructured and collagen immobilized surfaces; however, SMCs on nanostructured surfaces exhibit a more elongated phenotype. The reduction of MTT was significantly lower on nanowire (NW and collagen immobilized NW (colNW surfaces, suggesting that SMCs on nanostructured surfaces may be differentiated and slowly dividing. Scanning electron microscopy results reveal that SMCs on nanostructured surfaces are more elongated and that cells are interacting with the nano-features on the surface. After providing differentiation cues, heavy chain myosin and calponin, specific to a contractile SMC phenotype, are upregulated on collagen immobilized surfaces. These results suggest that nanotopography affects cell adhesion, proliferation, as well as cell elongation, while collagen immobilized surfaces greatly affect cell differentiation.

  10. Cell Surface Proteome of Dental Pulp Stem Cells Identified by Label-Free Mass Spectrometry

    Science.gov (United States)

    Niehage, Christian; Karbanová, Jana; Steenblock, Charlotte

    2016-01-01

    Multipotent mesenchymal stromal cells (MSCs) are promising tools for regenerative medicine. They can be isolated from different sources based on their plastic-adherence property. The identification of reliable cell surface markers thus becomes the Holy Grail for their prospective isolation. Here, we determine the cell surface proteomes of human dental pulp-derived MSCs isolated from single donors after culture expansion in low (2%) or high (10%) serum-containing media. Cell surface proteins were tagged on intact cells using cell impermeable, cleavable sulfo-NHS-SS-biotin, which allows their enrichment by streptavidin pull-down. For the proteomic analyses, we first compared label-free methods to analyze cell surface proteomes i.e. composition, enrichment and proteomic differences, and we developed a new mathematical model to determine cell surface protein enrichment using a combinatorial gene ontology query. Using this workflow, we identified 101 cluster of differentiation (CD) markers and 286 non-CD cell surface proteins. Based on this proteome profiling, we identified 14 cell surface proteins, which varied consistently in abundance when cells were cultured under low or high serum conditions. Collectively, our analytical methods provide a basis for identifying the cell surface proteome of dental pulp stem cells isolated from single donors and its evolution during culture or differentiation. Our data provide a comprehensive cell surface proteome for the precise identification of dental pulp-derived MSC populations and their isolation for potential therapeutic intervention. PMID:27490675

  11. Cell Surface Proteome of Dental Pulp Stem Cells Identified by Label-Free Mass Spectrometry.

    Science.gov (United States)

    Niehage, Christian; Karbanová, Jana; Steenblock, Charlotte; Corbeil, Denis; Hoflack, Bernard

    2016-01-01

    Multipotent mesenchymal stromal cells (MSCs) are promising tools for regenerative medicine. They can be isolated from different sources based on their plastic-adherence property. The identification of reliable cell surface markers thus becomes the Holy Grail for their prospective isolation. Here, we determine the cell surface proteomes of human dental pulp-derived MSCs isolated from single donors after culture expansion in low (2%) or high (10%) serum-containing media. Cell surface proteins were tagged on intact cells using cell impermeable, cleavable sulfo-NHS-SS-biotin, which allows their enrichment by streptavidin pull-down. For the proteomic analyses, we first compared label-free methods to analyze cell surface proteomes i.e. composition, enrichment and proteomic differences, and we developed a new mathematical model to determine cell surface protein enrichment using a combinatorial gene ontology query. Using this workflow, we identified 101 cluster of differentiation (CD) markers and 286 non-CD cell surface proteins. Based on this proteome profiling, we identified 14 cell surface proteins, which varied consistently in abundance when cells were cultured under low or high serum conditions. Collectively, our analytical methods provide a basis for identifying the cell surface proteome of dental pulp stem cells isolated from single donors and its evolution during culture or differentiation. Our data provide a comprehensive cell surface proteome for the precise identification of dental pulp-derived MSC populations and their isolation for potential therapeutic intervention. PMID:27490675

  12. Cell multiplication following partial enzymatic removal of surface coat.

    Science.gov (United States)

    Wyroba, E

    1978-08-01

    Treatment of Paramecium aurelia with trypsin or pronase (1 mg per 10(5) cells, at 0 to 4 degrees C) partially removes the surface coat and modifies significantly multiplication of cells. The division rate after 24 hours of cultivation is diminished approximately twice in the case of pronase-treated cells and 1.5 for tyrpsin-digested ciliates as compared with the control. On the second day the division rate increases rapidly and number of cell divisions exceeds the values observed in the control. After 72 hours of cultivation the division rate in both untreated and enzyme-treated cells is almost the same. It is concluded that the observed inhibition of cell fission results from the enzymatic removal of the surface coat--the integrity of this surface coat seems to be necessary in the process of cell division. The influence of environmental factors on the rate of growth is presented.

  13. Surface-modified gold nanorods for specific cell targeting

    Science.gov (United States)

    Wang, Chan-Ung; Arai, Yoshie; Kim, Insun; Jang, Wonhee; Lee, Seonghyun; Hafner, Jason H.; Jeoung, Eunhee; Jung, Deokho; Kwon, Youngeun

    2012-05-01

    Gold nanoparticles (GNPs) have unique properties that make them highly attractive materials for developing functional reagents for various biomedical applications including photothermal therapy, targeted drug delivery, and molecular imaging. For in vivo applications, GNPs need to be prepared with very little or negligible cytotoxicitiy. Most GNPs are, however, prepared using growth-directing surfactants such as cetyl trimethylammonium bromide (CTAB), which are known to have considerable cytotoxicity. In this paper, we describe an approach to remove CTAB to a non-toxic concentration. We optimized the conditions for surface modification with methoxypolyethylene glycol thiol (mPEG), which replaced CTAB and formed a protective layer on the surface of gold nanorods (GNRs). The cytotoxicities of pristine and surface-modified GNRs were measured in primary human umbilical vein endothelial cells and human cell lines derived from hepatic carcinoma cells, embryonic kidney cells, and thyroid papillary carcinoma cells. Cytotoxicity assays revealed that treating cells with GNRs did not significantly affect cell viability except for thyroid papillary carcinoma cells. Thyroid cancer cells were more susceptible to residual CTAB, so CTAB had to be further removed by dialysis in order to use GNRs for thyroid cell targeting. PEGylated GNRs are further modified to present monoclonal antibodies that recognize a specific surface marker, Na-I symporter, for thyroid cells. Antibody-conjugated GNRs specifically targeted human thyroid cells in vitro.

  14. Solitary wave propagation in surface stabilized ferroelectric liquid crystal cells

    OpenAIRE

    VIJ, JAGDISH; Song, Jang-Kun

    2008-01-01

    PUBLISHED Solitary wave propagation in surface stabilized ferroelectric liquid crystal cells controlled by surface anchoring of the alignment layers is investigated for different conditions of alignment on the two opposite surfaces. We show that the critical field Ec, where the speed of the solitary wave becomes zero, is finite for asymmetric alignment on two surfaces. We also show that the polar anchoring energy difference (Deltawp) between the alignment layers can be calculated by measur...

  15. Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering

    CERN Document Server

    Drescher, Knut; Cisneros, Luis H; Ganguly, Sujoy; Goldstein, Raymond E; 10.1073/pnas.1019079108

    2011-01-01

    Bacterial processes ranging from gene expression to motility and biofilm formation are constantly challenged by internal and external noise. While the importance of stochastic fluctuations has been appreciated for chemotaxis, it is currently believed that deterministic long-range fluid dynamical effects govern cell-cell and cell-surface scattering - the elementary events that lead to swarming and collective swimming in active suspensions and to the formation of biofilms. Here, we report the first direct measurements of the bacterial flow field generated by individual swimming Escherichia coli both far from and near to a solid surface. These experiments allowed us to examine the relative importance of fluid dynamics and rotational diffusion for bacteria. For cell-cell interactions it is shown that thermal and intrinsic stochasticity drown the effects of long-range fluid dynamics, implying that physical interactions between bacteria are determined by steric collisions and near-field lubrication forces. This dom...

  16. Dropout Phenomena at Universities

    DEFF Research Database (Denmark)

    Larsen, Michael Søgaard; Kornbeck, Kasper Pihl; Kristensen, Rune;

    Dropout from university studies comprises a number of complex phenomena with serious complex consequences and profound political attention. Further analysis of the field is, therefore, warranted. Such an analysis is offered here as a systematic review which gives answers based on the best possible...... evidence found in the research field comprised by the three review questions to be addressed. The aims of this systematic review can, thus, be summarized like this: Which answers can be offered from research in relation to the following questions: What is dropout from university studies? Why do such...... dropout phenomena occur at universities? What can be done by the universities to prevent or reduce such dropout phenomena?...

  17. Ceramic nanopatterned surfaces to explore the effects of nanotopography on cell attachment

    Energy Technology Data Exchange (ETDEWEB)

    Parikh, K.S., E-mail: parikh.71@osu.edu [William G. Lowrie Department of Chemical and Biomolecular Engineering, 140 West 19th Avenue, The Ohio State University, Columbus, OH-43210 (United States); Rao, S.S., E-mail: rao@chbmeng.ohio-state.edu [William G. Lowrie Department of Chemical and Biomolecular Engineering, 140 West 19th Avenue, The Ohio State University, Columbus, OH-43210 (United States); Ansari, H.M., E-mail: ansari@matsceng.ohio-state.edu [Department of Materials Science and Engineering, 2041 College Road, The Ohio State University, Columbus, OH-43210 (United States); Zimmerman, L.B., E-mail: burr.zimmerman@gmail.com [William G. Lowrie Department of Chemical and Biomolecular Engineering, 140 West 19th Avenue, The Ohio State University, Columbus, OH-43210 (United States); Lee, L.J., E-mail: leelj@chbmeng.ohio-state.edu [William G. Lowrie Department of Chemical and Biomolecular Engineering, 140 West 19th Avenue, The Ohio State University, Columbus, OH-43210 (United States); Akbar, S.A., E-mail: Akbar@matsceng.ohio-state.edu [Department of Materials Science and Engineering, 2041 College Road, The Ohio State University, Columbus, OH-43210 (United States); Winter, J.O., E-mail: winter.63@osu.edu [William G. Lowrie Department of Chemical and Biomolecular Engineering, 140 West 19th Avenue, The Ohio State University, Columbus, OH-43210 (United States); Department of Biomedical Engineering, 1080 Carmack Road, The Ohio State University, Columbus, OH-43210 (United States)

    2012-12-01

    Surfaces with ordered, nanopatterned roughness have demonstrated considerable promise in directing cell morphology, migration, proliferation, and gene expression. However, further investigation of these phenomena has been limited by the lack of simple, inexpensive methods of nanofabrication. Here, we report a facile, low-cost nanofabrication approach based on self-assembly of a thin-film of gadolinium-doped ceria on yttria-stabilized zirconia substrates (GDC/YSZ). This approach yields three distinct, randomly-oriented nanofeatures of variable dimensions, similar to those produced via polymer demixing, which can be reproducibly fabricated over tens to hundreds of microns. As a proof-of-concept, we examined the response of SK-N-SH neuroblastoma cells to features produced by this system, and observed significant changes in cell spreading, circularity, and cytoskeletal protein distribution. Additionally, we show that these features can be imprinted into commonly used rigid hydrogel biomaterials, demonstrating the potential broad applicability of this approach. Thus, GDC/YSZ substrates offer an efficient, economical alternative to lithographic methods for investigating cell response to randomly-oriented nanotopographical features. - Highlights: Black-Right-Pointing-Pointer Self-assembled ceramic thin films yield nanopatterned surfaces that span mm{sup 2} areas. Black-Right-Pointing-Pointer Cells respond to these nanopatterns by varying adhesion and spreading behaviors. Black-Right-Pointing-Pointer Adhesion and spreading were correlated to increased feature area. Black-Right-Pointing-Pointer These patterns can be transferred into soft polymer substrates.

  18. Interaction of Epithelial Cells with Surfaces and Surfaces Decorated by Molecules

    CERN Document Server

    Martini, Daniele; Beil, Michael; Paust, T; Huang, C; Moosmann, M; Jin, J; Heiler, T; Gröger, R; Schimmel, Thomas; Walheim, Stefan

    2013-01-01

    A detailed understanding of the interface between living cells and substrate materials is of rising importance in many fields of medicine, biology and biotechnology. Cells at interfaces often form epithelia. The physical barrier that they form is one of their main functions. It is governed by the properties of the networks forming the cytoskeleton systems and by cell-to-cell contacts. Different substrates with varying surface properties modify the migration velocity of the cells. On the one hand one can change the materials composition. Organic and inorganic materials induce differing migration velocities in the same cell system. Within the same class of materials, a change of the surface stiffness or of the surface energy modifies the migration velocity, too. For our cell adhesion studies a variety of different, homogeneous substrates were used (polymers, bio-polymers, metals, oxides). In addition, an effective lithographic method, Polymer Blend Lithography (PBL), is reported, to produce patterned Self-Assem...

  19. Yeast surface display of dehydrogenases in microbial fuel-cells.

    Science.gov (United States)

    Gal, Idan; Schlesinger, Orr; Amir, Liron; Alfonta, Lital

    2016-12-01

    Two dehydrogenases, cellobiose dehydrogenase from Corynascus thermophilus and pyranose dehydrogenase from Agaricus meleagris, were displayed for the first time on the surface of Saccharomyces cerevisiae using the yeast surface display system. Surface displayed dehydrogenases were used in a microbial fuel cell and generated high power outputs. Surface displayed cellobiose dehydrogenase has demonstrated a midpoint potential of -28mV (vs. Ag/AgCl) at pH=6.5 and was used in a mediator-less anode compartment of a microbial fuel cell producing a power output of 3.3μWcm(-2) using lactose as fuel. Surface-displayed pyranose dehydrogenase was used in a microbial fuel cell and generated high power outputs using different substrates, the highest power output that was achieved was 3.9μWcm(-2) using d-xylose. These results demonstrate that surface displayed cellobiose dehydrogenase and pyranose dehydrogenase may successfully be used in microbial bioelectrochemical systems.

  20. Yeast surface display of dehydrogenases in microbial fuel-cells.

    Science.gov (United States)

    Gal, Idan; Schlesinger, Orr; Amir, Liron; Alfonta, Lital

    2016-12-01

    Two dehydrogenases, cellobiose dehydrogenase from Corynascus thermophilus and pyranose dehydrogenase from Agaricus meleagris, were displayed for the first time on the surface of Saccharomyces cerevisiae using the yeast surface display system. Surface displayed dehydrogenases were used in a microbial fuel cell and generated high power outputs. Surface displayed cellobiose dehydrogenase has demonstrated a midpoint potential of -28mV (vs. Ag/AgCl) at pH=6.5 and was used in a mediator-less anode compartment of a microbial fuel cell producing a power output of 3.3μWcm(-2) using lactose as fuel. Surface-displayed pyranose dehydrogenase was used in a microbial fuel cell and generated high power outputs using different substrates, the highest power output that was achieved was 3.9μWcm(-2) using d-xylose. These results demonstrate that surface displayed cellobiose dehydrogenase and pyranose dehydrogenase may successfully be used in microbial bioelectrochemical systems. PMID:27459246

  1. Surface Plasmon Resonance for Cell-Based Clinical Diagnosis

    Directory of Open Access Journals (Sweden)

    Yuhki Yanase

    2014-03-01

    Full Text Available Non-invasive real-time observations and the evaluation of living cell conditions and functions are increasingly demanded in life sciences. Surface plasmon resonance (SPR sensors detect the refractive index (RI changes on the surface of sensor chips in label-free and on a real-time basis. Using SPR sensors, we and other groups have developed techniques to evaluate living cells’ reactions in response to stimuli without any labeling in a real-time manner. The SPR imaging (SPRI system for living cells may visualize single cell reactions and has the potential to expand application of SPR cell sensing for clinical diagnosis, such as multi-array cell diagnostic systems and detection of malignant cells among normal cells in combination with rapid cell isolation techniques.

  2. Surface Passivation Studies on n+pp+ Bifacial Solar Cell

    OpenAIRE

    Suhaila Sepeai; M. Y. Sulaiman; Kamaruzzaman Sopian; Saleem H. Zaidi

    2012-01-01

    Bifacial solar cell is a specially designed solar cell for the production of electricity from both sides of the solar cell. It is an active field of research to make photovoltaics (PV) more competitive by increasing its efficiency and lowering its costs. We developed an n+pp+ structure for the bifacial solar cell. The fabrication used phosphorus-oxy-trichloride (POCl3) diffusion to form the emitter and Al diffusion using conventional screen printing to produce the back surface field (BSF). Th...

  3. Implant Surface Design Regulates Mesenchymal Stem Cell Differentiation and Maturation.

    Science.gov (United States)

    Boyan, B D; Cheng, A; Olivares-Navarrete, R; Schwartz, Z

    2016-03-01

    Changes in dental implant materials, structural design, and surface properties can all affect biological response. While bulk properties are important for mechanical stability of the implant, surface design ultimately contributes to osseointegration. This article reviews the surface parameters of dental implant materials that contribute to improved cell response and osseointegration. In particular, we focus on how surface design affects mesenchymal cell response and differentiation into the osteoblast lineage. Surface roughness has been largely studied at the microscale, but recent studies have highlighted the importance of hierarchical micron/submicron/nanosurface roughness, as well as surface roughness in combination with surface wettability. Integrins are transmembrane receptors that recognize changes in the surface and mediate downstream signaling pathways. Specifically, the noncanonical Wnt5a pathway has been implicated in osteoblastic differentiation of cells on titanium implant surfaces. However, much remains to be elucidated. Only recently have studies been conducted on the differences in biological response to implants based on sex, age, and clinical factors; these all point toward differences that advocate for patient-specific implant design. Finally, challenges in implant surface characterization must be addressed to optimize and compare data across studies. An understanding of both the science and the biology of the materials is crucial for developing novel dental implant materials and surface modifications for improved osseointegration.

  4. Ancestral vascular lumen formation via basal cell surfaces.

    Directory of Open Access Journals (Sweden)

    Tomás Kucera

    Full Text Available The cardiovascular system of bilaterians developed from a common ancestor. However, no endothelial cells exist in invertebrates demonstrating that primitive cardiovascular tubes do not require this vertebrate-specific cell type in order to form. This raises the question of how cardiovascular tubes form in invertebrates? Here we discovered that in the invertebrate cephalochordate amphioxus, the basement membranes of endoderm and mesoderm line the lumen of the major vessels, namely aorta and heart. During amphioxus development a laminin-containing extracellular matrix (ECM was found to fill the space between the basal cell surfaces of endoderm and mesoderm along their anterior-posterior (A-P axes. Blood cells appear in this ECM-filled tubular space, coincident with the development of a vascular lumen. To get insight into the underlying cellular mechanism, we induced vessels in vitro with a cell polarity similar to the vessels of amphioxus. We show that basal cell surfaces can form a vascular lumen filled with ECM, and that phagocytotic blood cells can clear this luminal ECM to generate a patent vascular lumen. Therefore, our experiments suggest a mechanism of blood vessel formation via basal cell surfaces in amphioxus and possibly in other invertebrates that do not have any endothelial cells. In addition, a comparison between amphioxus and mouse shows that endothelial cells physically separate the basement membranes from the vascular lumen, suggesting that endothelial cells create cardiovascular tubes with a cell polarity of epithelial tubes in vertebrates and mammals.

  5. Nanoscale crystallinity modulates cell proliferation on plasma sprayed surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Alan M. [School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH (United Kingdom); Paxton, Jennifer Z.; Hung, Yi-Pei; Hadley, Martin J.; Bowen, James; Williams, Richard L. [School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT (United Kingdom); Grover, Liam M., E-mail: l.m.grover@bham.ac.uk [School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT (United Kingdom)

    2015-03-01

    Calcium phosphate coatings have been applied to the surface of metallic prostheses to mediate hard and soft tissue attachment for more than 40 years. Most coatings are formed of high purity hydroxyapatite, and coating methods are often designed to produce highly crystalline surfaces. It is likely however, that coatings of lower crystallinity can facilitate more rapid tissue attachment since the surface will exhibit a higher specific surface area and will be considerably more reactive than a comparable highly crystalline surface. Here we test this hypothesis by growing a population of MC3T3 osteoblast-like cells on the surface of two types of hip prosthesis with similar composition, but with differing crystallinity. The surfaces with lower crystallinity facilitated more rapid cell attachment and increased proliferation rate, despite having a less heterogeneous surface topography. This work highlights that the influence of the crystallinity of HA at the nano-scale is dominant over macro-scale topography for cell adhesion and growth. Furthermore, crystallinity could be easily adjusted by without compromising coating purity. These findings could facilitate designing novel coated calcium phosphate surfaces that more rapidly bond tissue following implantation. - Highlights: • Crystallinity of HA at the nano-scale was dominant over macro-scale topography. • Lower crystallinity caused rapid cell attachment and proliferation rate. • Crystallinity could be easily adjusted by without compromising coating purity.

  6. Cell surface engineering of industrial microorganisms for biorefining applications.

    Science.gov (United States)

    Tanaka, Tsutomu; Kondo, Akihiko

    2015-11-15

    In order to decrease carbon emissions and negative environmental impacts of various pollutants, biofuel/biochemical production should be promoted for replacing fossil-based industrial processes. Utilization of abundant lignocellulosic biomass as a feedstock has recently become an attractive option. In this review, we focus on recent efforts of cell surface display using industrial microorganisms such as Escherichia coli and yeast. Cell surface display is used primarily for endowing cellulolytic activity on the host cells, and enables direct fermentation to generate useful fuels and chemicals from lignocellulosic biomass. Cell surface display systems are systematically summarized, and the drawbacks/perspectives as well as successful application of surface display for industrial biotechnology are discussed.

  7. Cell surface engineering of industrial microorganisms for biorefining applications.

    Science.gov (United States)

    Tanaka, Tsutomu; Kondo, Akihiko

    2015-11-15

    In order to decrease carbon emissions and negative environmental impacts of various pollutants, biofuel/biochemical production should be promoted for replacing fossil-based industrial processes. Utilization of abundant lignocellulosic biomass as a feedstock has recently become an attractive option. In this review, we focus on recent efforts of cell surface display using industrial microorganisms such as Escherichia coli and yeast. Cell surface display is used primarily for endowing cellulolytic activity on the host cells, and enables direct fermentation to generate useful fuels and chemicals from lignocellulosic biomass. Cell surface display systems are systematically summarized, and the drawbacks/perspectives as well as successful application of surface display for industrial biotechnology are discussed. PMID:26070720

  8. Cell surface carbohydrates as prognostic markers in human carcinomas

    DEFF Research Database (Denmark)

    Dabelsteen, Erik

    1996-01-01

    Tumour development is usually associated with changes in cell surface carbohydrates. These are often divided into changes related to terminal carbohydrate structures, which include incomplete synthesis and modification of normally existing carbohydrates, and changes in the carbohydrate core struc...

  9. Surface texturing of multicrystalline silicon solar cells

    OpenAIRE

    L.A. Dobrzański; A. Drygała

    2008-01-01

    Purpose: The aim of the paper is to elaborate a laser method of texturization multicrystalline silicon. The main reason for taking up the research is that most conventional methods used for texturization of monocrystalline silicon are ineffective when applied for texturing multicrystalline silicon. This is related to random distribution of grains of different crystalographic orientations on the surface of multicrystalline silicon.Design/methodology/approach: The topography of laser ...

  10. Cell orientation on a stripe-micropatterned surface

    Institute of Scientific and Technical Information of China (English)

    SUN JianGuo; TANG Jian; DING JianDong

    2009-01-01

    Stripe-micropatterned surfaces have recently been a unique tool to study cell orientation. In this paper,we prepared,by the photolithography transfer technique,stable gold (Au) micropatterns on PEG hydrogel surfaces with defined cell-resistant (PEG hydrogel) and cell-adhesive (gold microstripes) proparties. 3T3 fibroblasts were cultured on Au-microstripe surfaces to observe cell adhesion and orientation. Five statistical parameters were defined and used to describe cell orientation on micropatterns.With the increase of inter-stripe distance,the orientational order parameter,the ratio of long and short axes of a cell,and the occupation fraction of cells on stripes increased gradually,whereas the spreading area of a single cell decreased. The abrupt changes of these four parameters did not happen at the same inter-distance. The adhesion ratio of a cell on Au stripes over cell spreading area did not change monotonically as a function of inter-stripe distance. The combination of the 5 statistical parameters represented well the cell orientation behaviors semi-quantitatively.

  11. Alternating current electrohydrodynamics in microsystems: Pushing biomolecules and cells around on surfaces.

    Science.gov (United States)

    Vaidyanathan, Ramanathan; Dey, Shuvashis; Carrascosa, Laura G; Shiddiky, Muhammad J A; Trau, Matt

    2015-11-01

    Electrohydrodynamics (EHD) deals with the fluid motion induced by an electric field. This phenomenon originally developed in physical science, and engineering is currently experiencing a renaissance in microfluidics. Investigations by Taylor on Gilbert's theory proposed in 1600 have evolved to include multiple contributions including the promising effects arising from electric field interactions with cells and particles to influence their behaviour on electrode surfaces. Theoretical modelling of electric fields in microsystems and the ability to determine shear forces have certainly reached an advanced state. The ability to deftly manipulate microscopic fluid flow in bulk fluid and at solid/liquid interfaces has enabled the controlled assembly, coagulation, or removal of microstructures, nanostructures, cells, and molecules on surfaces. Furthermore, the ability of electrohydrodynamics to generate fluid flow using surface shear forces generated within nanometers from the surface and their application in bioassays has led to recent advancements in biomolecule, vesicle and cellular detection across different length scales. With the integration of Alternating Current Electrohydrodynamics (AC-EHD) in cellular and molecular assays proving to be highly fruitful, challenges still remain with respect to understanding the discrepancies between each of the associated ac-induced fluid flow phenomena, extending their utility towards clinical diagnostic development, and utilising them in tandem as a standard tool for disease monitoring. In this regard, this article will review the history of electrohydrodynamics, followed by some of the recent developments in the field including a new dimension of electrohydrodynamics that deals with the utilization of surface shear forces for the manipulation of biological cells or molecules on electrode surfaces. Recent advances and challenges in the use of electrohydrodynamic forces such as dielectrophoresis and ac electrosmosis for the

  12. Recent Insights into Cell Surface Heparan Sulphate Proteoglycans and Cancer.

    Science.gov (United States)

    Couchman, John R; Multhaupt, Hinke; Sanderson, Ralph D

    2016-01-01

    A small group of cell surface receptors are proteoglycans, possessing a core protein with one or more covalently attached glycosaminoglycan chains. They are virtually ubiquitous and their chains are major sites at which protein ligands of many types interact. These proteoglycans can signal and regulate important cell processes, such as adhesion, migration, proliferation, and differentiation. Since many protein ligands, such as growth factors, morphogens, and cytokines, are also implicated in tumour progression, it is increasingly apparent that cell surface proteoglycans impact tumour cell behaviour. Here, we review some recent advances, emphasising that many tumour-related functions of proteoglycans are revealed only after their modification in processes subsequent to synthesis and export to the cell surface. These include enzymes that modify heparan sulphate structure, recycling of whole or fragmented proteoglycans into exosomes that can be paracrine effectors or biomarkers, and lateral interactions between some proteoglycans and calcium channels that impact the actin cytoskeleton. PMID:27408707

  13. Recent Insights into Cell Surface Heparan Sulphate Proteoglycans and Cancer

    Science.gov (United States)

    Couchman, John R; Multhaupt, Hinke; Sanderson, Ralph D.

    2016-01-01

    A small group of cell surface receptors are proteoglycans, possessing a core protein with one or more covalently attached glycosaminoglycan chains. They are virtually ubiquitous and their chains are major sites at which protein ligands of many types interact. These proteoglycans can signal and regulate important cell processes, such as adhesion, migration, proliferation, and differentiation. Since many protein ligands, such as growth factors, morphogens, and cytokines, are also implicated in tumour progression, it is increasingly apparent that cell surface proteoglycans impact tumour cell behaviour. Here, we review some recent advances, emphasising that many tumour-related functions of proteoglycans are revealed only after their modification in processes subsequent to synthesis and export to the cell surface. These include enzymes that modify heparan sulphate structure, recycling of whole or fragmented proteoglycans into exosomes that can be paracrine effectors or biomarkers, and lateral interactions between some proteoglycans and calcium channels that impact the actin cytoskeleton. PMID:27408707

  14. Multi-scale cell/surface interaction on modified titanium aluminum vanadium surfaces

    Science.gov (United States)

    Chen, Jianbo

    This dissertation presents a series of experimental studies of the effects of multi-scale cell/surface interactions on modified Ti-6Al-4V surfaces. These include laser-grooved surfaces; porous structures and RGD-coated laser-grooved surfaces. A nano-second DPSS UV lasers with a Gaussian pulse energy profile was used to introduce the desired micro-groove geometries onto Ti-6Al-4V surfaces. This was done without inducing micro-cracks or significant changes in surface chemistry within the heat affected zones. The desired 8-12 mum groove depths and widths were achieved by the control of pulse frequency, scan speed, and the lens focal length that controls spot size. The interactions between human osteosarcoma (HOS) cells and laser-grooved Ti-6Al-4V surfaces were investigated after 48 hours of cell culture. The cell behavior, including cell spreading, alignment and adhesion, was elucidated using scanning electronic microscopy (SEM), immuno-fluorescence staining and enzymatic detachment. Contact guidance was shown to increase as grooved spacing decreased. For the range of micro-groove geometries studied, micro-grooves with groove spacings of 20 mum provided the best combination of cell orientation and adhesion. Short-term adhesion experiments (15 mins to 1 day) also revealed that there is a positive correlation between cell orientation and cell adhesion. Contact guidance on the micro-grooved surfaces is shown to be enhanced by nano- and micro-scale asperities that provide sites for the attachment of lamellopodia during cell locomotion and spreading. Contact guidance is also promoted by the geometrical confinement provided by laser grooves. An experimental study of initial cell spreading and ingrowth into Ti-6Al-4V porous structures was also carried out on porous structures with different pore sizes and geometries. A combination of SEM, the tetrazolium salt (MTT) colorimetric assay and enzymatic detachment were used to study cell spreading and adhesion. The extent of cell

  15. Cell surface localization and tissue distribution of a hepatocyte cell-cell adhesion glycoprotein (cell-CAM 105)

    OpenAIRE

    Ocklind, C; Forsum, U; Obrink, B

    1983-01-01

    We recently identified a 105,000-dalton plasma membrane glycoprotein, denoted cell-CAM 105 (CAM, cell adhesion molecule), that is involved in intercellular adhesion of reaggregating rat hepatocytes (Ocklind, C., and B. Obrink, 1982, J. Biol. Chem., 257:6788-6795). In this communication we used a monospecific rabbit antiserum against cell-CAM 105 to localize the antigen by indirect immunofluorescence on isolated rat cells and on frozen rat tissue sections. This antiserum stained the surface of...

  16. Immunogold labels: cell-surface markers in atomic force microscopy

    NARCIS (Netherlands)

    Putman, Constant A.J.; Grooth, de Bart G.; Hansma, Paul K.; Hulst, van Niek F.; Greve, Jan

    1993-01-01

    The feasibility of using immunogold labels as cell-surface markers in atomic force microscopy is shown in this paper. The atomic force microscope (AFM) was used to image the surface of immunogold-labeled human lymphocytes. The lymphocytes were isolated from whole blood and labeled by an indirect imm

  17. Nanometer polymer surface features: the influence on surface energy, protein adsorption and endothelial cell adhesion

    Science.gov (United States)

    Carpenter, Joseph; Khang, Dongwoo; Webster, Thomas J.

    2008-12-01

    Current small diameter (vascular graft materials exhibit poor long-term patency due to thrombosis and intimal hyperplasia. Tissue engineered solutions have yielded functional vascular tissue, but some require an eight-week in vitro culture period prior to implantation—too long for immediate clinical bedside applications. Previous in vitro studies have shown that nanostructured poly(lactic-co-glycolic acid) (PLGA) surfaces elevated endothelial cell adhesion, proliferation, and extracellular matrix synthesis when compared to nanosmooth surfaces. Nonetheless, these studies failed to address the importance of lateral and vertical surface feature dimensionality coupled with surface free energy; nor did such studies elicit an optimum specific surface feature size for promoting endothelial cell adhesion. In this study, a series of highly ordered nanometer to submicron structured PLGA surfaces of identical chemistry were created using a technique employing polystyrene nanobeads and poly(dimethylsiloxane) (PDMS) molds. Results demonstrated increased endothelial cell adhesion on PLGA surfaces with vertical surface features of size less than 18.87 nm but greater than 0 nm due to increased surface energy and subsequently protein (fibronectin and collagen type IV) adsorption. Furthermore, this study provided evidence that the vertical dimension of nanometer surface features, rather than the lateral dimension, is largely responsible for these increases. In this manner, this study provides key design parameters that may promote vascular graft efficacy.

  18. Expanding the diversity of unnatural cell surface sialic acids

    Energy Technology Data Exchange (ETDEWEB)

    Luchansky, Sarah J.; Goon, Scarlett; Bertozzi, Carolyn R.

    2003-10-30

    Novel chemical reactivity can be introduced onto cell surfaces through metabolic oligosaccharide engineering. This technique exploits the substrate promiscuity of cellular biosynthetic enzymes to deliver unnatural monosaccharides bearing bioorthogonal functional groups into cellular glycans. For example, derivatives of N-acetylmannosamine (ManNAc) are converted by the cellular biosynthetic machinery into the corresponding sialic acids and subsequently delivered to the cell surface in the form of sialoglycoconjugates. Analogs of N-acetylglucosamine (GlcNAc) and N-acetylgalactosamine (GalNAc) are also metabolized and incorporated into cell surface glycans, likely through the sialic acid and GalNAc salvage pathways, respectively. Furthermore, GlcNAc analogs can be incorporated into nucleocytoplasmic proteins in place of {beta}-O-GlcNAc residues. These pathways have been exploited to integrate unique electrophiles such as ketones and azides into the target glycoconjugate class. These functional groups can be further elaborated in a chemoselective fashion by condensation with hydrazides and by Staudinger ligation, respectively, thereby introducing detectable probes onto the cell. In conclusion, sialic acid derivatives are efficient vehicles for delivery of bulky functional groups to cell surfaces and masking of their hydroxyl groups improves their cellular uptake and utilization. Furthermore, the successful introduction of photoactivatable aryl azides into cell surface glycans opens up new avenues for studying sialic acid-binding proteins and elucidating the role of sialic acid in essential processes such as signaling and cell adhesion.

  19. Responses of fibroblasts and glial cells to nanostructured platinum surfaces

    Science.gov (United States)

    Pennisi, C. P.; Sevcencu, C.; Dolatshahi-Pirouz, A.; Foss, M.; Lundsgaard Hansen, J.; Nylandsted Larsen, A.; Zachar, V.; Besenbacher, F.; Yoshida, K.

    2009-09-01

    The chronic performance of implantable neural prostheses is affected by the growth of encapsulation tissue onto the stimulation electrodes. Encapsulation is associated with activation of connective tissue cells at the electrode's metallic contacts, usually made of platinum. Since surface nanotopography can modulate the cellular responses to materials, the aim of the present work was to evaluate the 'in vitro' responses of connective tissue cells to platinum strictly by modulating its surface nanoroughness. Using molecular beam epitaxy combined with sputtering, we produced platinum nanostructured substrates consisting of irregularly distributed nanopyramids and investigated their effect on the proliferation, cytoskeletal organization and cellular morphology of primary fibroblasts and transformed glial cells. Cells were cultured on these substrates and their responses to surface roughness were studied. After one day in culture, the fibroblasts were more elongated and their cytoskeleton less mature when cultured on rough substrates. This effect increased as the roughness of the surface increased and was associated with reduced cell proliferation throughout the observation period (4 days). Morphological changes also occurred in glial cells, but they were triggered by a different roughness scale and did not affect cellular proliferation. In conclusion, surface nanotopography modulates the responses of fibroblasts and glial cells to platinum, which may be an important factor in optimizing the tissue response to implanted neural electrodes.

  20. Electro-optic investigation of the n-alkanethiol GaAs(001) interface: Surface phenomena and applications to photoluminescence-based biosensing

    Science.gov (United States)

    Marshall, Gregory M.

    Semiconductor surfaces coupled to molecular structures derived from organic chemistry form the basis of an emerging class of field-effect devices. In addition to molecular electronics research, these interfaces are developed for a variety of sensor applications in the electronic and optical domains. Of practical interest are self-assembled monolayers (SAMs) comprised of n-alkanethiols [HS(CH2)n], which couple to the GaAs(001) surface through S-GaAs covalent bond formation. These SAMs offer potential functionality in terms of the requisite sensor chemistry and the passivation effect such coupling is known to afford. In this thesis, the SAM-GaAs interface is investigated in the context of a photonic biosensor based on photoluminescence (PL) variation. The scope of the work is categorized into three parts: i) the structural and compositional analysis of the surface using X-ray photoelectron spectroscopy (XPS), ii) the investigation of electronic properties at the interface under equilibrium conditions using infrared (IR) spectroscopy, the Kelvin probe method, and XPS, and iii) the analysis of the electro-optic response under steady-state photonic excitation, specifically, the surface photovoltage (SPV) and PL intensity. Using a partial overlayer model of angle-resolved XPS spectra in which the component assignments are shown to be quantitatively valid, the coverage fraction of methyl-terminated SAMs is shown to exceed 90%. Notable among the findings are a low-oxide, Ga-rich surface with elemental As present in sub-monolayer quantities consistent with theoretical surface morphologies. Modal analysis of transmission IR spectra show that the SAM molecular order is sufficient to support a Beer-Lambert determination of the IR optical constants, which yields the observation of a SAM-specific absorbance enhancement. By correlation of the IR absorbance with the SAM dipole layer potential, the enhancement mechanism is attributed to the vibrational moments added by the

  1. An exchange-Coulomb model potential energy surface for the Ne-CO interaction. II. Molecular beam scattering and bulk gas phenomena in Ne-CO mixtures.

    Science.gov (United States)

    Dham, Ashok K; McBane, George C; McCourt, Frederick R W; Meath, William J

    2010-01-14

    Four potential energy surfaces are of current interest for the Ne-CO interaction. Two are high-level fully ab initio surfaces obtained a decade ago using symmetry-adapted perturbation theory and supermolecule coupled-cluster methods. The other two are very recent exchange-Coulomb (XC) model potential energy surfaces constructed by using ab initio Heitler-London interaction energies and literature long range dispersion and induction energies, followed by the determination of a small number of adjustable parameters to reproduce a selected subset of pure rotational transition frequencies for the (20)Ne-(12)C(16)O van der Waals cluster. Testing of the four potential energy surfaces against a wide range of available experimental microwave, millimeter-wave, and mid-infrared Ne-CO transition frequencies indicated that the XC potential energy surfaces gave results that were generally far superior to the earlier fully ab initio surfaces. In this paper, two XC model surfaces and the two fully ab initio surfaces are tested for their abilities to reproduce experiment for a wide range of nonspectroscopic Ne-CO gas mixture properties. The properties considered here are relative integral cross sections and the angle dependence of rotational state-to-state differential cross sections, rotational relaxation rate constants for CO(v=2) in Ne-CO mixtures at T=296 K, pressure broadening of two pure rotational lines and of the rovibrational lines in the CO fundamental and first overtone transitions at 300 K, and the temperature and, where appropriate, mole fraction dependencies of the interaction second virial coefficient, the binary diffusion coefficient, the interaction viscosity, the mixture shear viscosity and thermal conductivity coefficients, and the thermal diffusion factor. The XC model potential energy surfaces give results that lie within or very nearly within the experimental uncertainties for all properties considered, while the coupled-cluster ab initio surface gives

  2. Study of surface cell Madelung constant and surface free energy of nanosized crystal grain

    Institute of Scientific and Technical Information of China (English)

    Zhang Wei-Jia; Wang Tian-Min; Rong Ai-Lun; Cui Min

    2006-01-01

    Surface cell Madelung constant is firstly defined for calculating the surface free energy of nanosized crystal grains,which explains the physical performance of small crystals and may be greatly beneficial to the analysis of surface states and the study of the dynamics of crystal nucleation and growth.A new approximative expression of the surface energy and relevant thermodynamic data are used in this calculation.New formula and computing method for calculating the Madelung constant α of any complex crystals are proposed,and the surface free energies and surface electrostatic energies of nanosized crystal grains and the Madelung constant of some complex crystals are theoretically calculated in this paper.The surface free energy of nanosized-crystal-grain TiO2 and the surface electrostatic energy (absolute value) of nanosized-crystal-grain α-A12O3 are found to be the biggest among all the crystal grains including those of other species.

  3. Study of Surface Cell Madelung Constant and Surface Free Energy of Nanosized Crystal Grain

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei-Jia; WANG Tian-Min; CUI Min

    2005-01-01

    Surface cell Madelung constant is firstly defined in calculating surface free energy of nanosized crystal grains, which explains the physical performance of small crystals and may be great benefit to make surface analysis and study dynamics of crystal nucleus growth. A new ap- proximative expression of surface energy and relevant thermodynamic data was used in this cal- culation. A new formula and computing method for calculating the Madelung constant α of any complex crystals is proposed, and surface free energies and surface electrostatic energies of nano- sized crystal grains as well as Madelung constant of some complex crystals are theoretically cal- culated in this paper. The surface free energy of nanosized crystal grain TiO2 and surface elec- trostatic energy(absolute value) of nanosized crystal grain α-Al2O3 are found to be the biggest among other crystal grains.

  4. Amplified effect of surface charge on cell adhesion by nanostructures

    Science.gov (United States)

    Xu, Li-Ping; Meng, Jingxin; Zhang, Shuaitao; Ma, Xinlei; Wang, Shutao

    2016-06-01

    Nano-biointerfaces with varied surface charge can be readily fabricated by integrating a template-based process with maleimide-thiol coupling chemistry. Significantly, nanostructures are employed for amplifying the effect of surface charge on cell adhesion, as revealed by the cell-adhesion performance, cell morphology and corresponding cytoskeletal organization. This study may provide a promising strategy for developing new biomedical materials with tailored cell adhesion for tissue implantation and regeneration.Nano-biointerfaces with varied surface charge can be readily fabricated by integrating a template-based process with maleimide-thiol coupling chemistry. Significantly, nanostructures are employed for amplifying the effect of surface charge on cell adhesion, as revealed by the cell-adhesion performance, cell morphology and corresponding cytoskeletal organization. This study may provide a promising strategy for developing new biomedical materials with tailored cell adhesion for tissue implantation and regeneration. Electronic supplementary information (ESI) available: Experimental details, SEM, KFM AFM, chemical modification and characterization. See DOI: 10.1039/c6nr00649c

  5. Simulation of the Internal Transport Phenomena for PEM Fuel Cells with Different Modes of Flow%采用不同流场的质子交换膜燃料电池内部传递现象模拟

    Institute of Scientific and Technical Information of China (English)

    胡鸣若; 朱新坚; 顾安忠

    2004-01-01

    A numerical model for proton exchange membrane (PEM) fuel cell is developed, which can simulate such basic transport phenomena as gas-liquid two-phase flow in a working fuel cell. Boundary conditions for both the conventional and the interdigitated modes of flow are presented on a three-dimensional basis. Numerical techniques for this model are discussed in detail. Validation shows good agreement between simulating results and experimental data. Furthermore, internal transport phenomena are discussed and compared for PEM fuel cells with conventional and interdigitated flows. It is found that the dead-ended structure of an interdigitated flow does increase the oxygen mass fraction and decrease the liquid water saturation in the gas diffusion layer as compared to the conventional mode of flow. However, the cathode humidification is important for an interdigitated flow to acquire better performance than a conventional flow fuel cell.

  6. Biomimetic surface modification of titanium surfaces for early cell capture by advanced electrospinning

    International Nuclear Information System (INIS)

    The time required for osseointegration with a metal implant having a smooth surface ranges from three to six months. We hypothesized that biomimetic coating surfaces with poly(lactic-co-glycolic acid) (PLGA)/collagen fibers and nano-hydroxyapatite (n-HA) on the implant would enhance the adhesion of mesenchymal stem cells. Therefore, this surface modification of dental and bone implants might enhance the process of osseointegration. In this study, we coated PLGA or PLGA/collagen (50:50 w/w ratio) fiber on Ti disks by modified electrospinning for 5 s to 2 min; after that, we further deposited n-HA on the fibers. PLGA fibers of fiber diameter 0.957 ± 0.357 µm had a contact angle of 9.9 ± 0.3° and PLGA/collagen fibers of fiber diameter 0.378 ± 0.068 µm had a contact angle of 0°. Upon n-HA incorporation, all the fibers had a contact angle of 0° owing to the hydrophilic nature of n-HA biomolecule. The cell attachment efficiency was tested on all the scaffolds for different intervals of time (10, 20, 30 and 60 min). The alkaline phosphatase activity, cell proliferation and mineralization were analyzed on all the implant surfaces on days 7, 14 and 21. Results of the cell adhesion study indicated that the cell adhesion was maximum on the implant surface coated with PLGA/collagen fibers deposited with n-HA compared to the other scaffolds. Within a short span of 60 min, 75% of the cells adhered onto the mineralized PLGA/collagen fibers. Similarly by day 21, the rate of cell proliferation was significantly higher (p ≤ 0.05) on the mineralized PLGA/collagen fibers owing to enhanced cell adhesion on these fibers. This enhanced initial cell adhesion favored higher cell proliferation, differentiation and mineralization on the implant surface coated with mineralized PLGA/collagen fibers.

  7. Surface strategies for control of neuronal cell adhesion: A review

    Science.gov (United States)

    Roach, P.; Parker, T.; Gadegaard, N.; Alexander, M. R.

    2010-06-01

    Material engineering methods have been used for many years to develop biomedical devices for use within the body to augment, repair or replace damaged tissues ranging from contact lenses to heart valves. Here we review the findings gathered from the wide and varied surface analytical approaches applied to study the interaction between biology and man-made materials. The key material characteristics identified to be important for biological recognition are surface chemistry, topography and compliance. Model surfaces with controlled chemistry and topography have provided insight into biological response to various types of topographical features over a wide range of length scales from nano to micrometres, along with 3D matrices that have been used as scaffolds to support cells for tissue formation. The cellular response to surfaces with localised areas of patterned chemistry and to those presenting gradually changing chemistry are discussed. Where previous reviews have been structured around specific classes of surface modification, e.g. self-assembly, or have broadly examined the response of various cells to numerous surfaces, we aim in this article to focus in particular on the tissues involved in the nervous system whilst providing a broad overview of key issues from the field of cell and protein surface interactions with surfaces. The goal of repair and treatment of diseases related to the central and peripheral nervous systems rely on understanding the local interfacial environment and controlling responses at the cellular level. The role of the protein layer deposited from serum containing media onto man-made surfaces is discussed. We highlight the particular problems associated with the repair of the nervous system, and review how neuronal attachment and axon guidance can be accomplished using various surface cues when cultured with single and multiple cell types. We include a brief glossary of techniques discussed in the body of this article aimed at the

  8. Rheological phenomena in focus

    CERN Document Server

    Boger, DV

    1993-01-01

    More than possibly any other scientific discipline, rheology is easily visualized and the relevant literature contains many excellent photographs of unusual and often bizarre phenomena. The present book brings together these photographs for the first time. They are supported by a full explanatory text. Rheological Phenomena in Focus will be an indispensable support manual to all those who teach rheology or have to convince colleagues of the practical relevance of the subject within an industrial setting. For those who teach fluid mechanics, the book clearly illustrates the difference be

  9. Fibronectin adsorption, cell adhesion, and proliferation on nanostructured tantalum surfaces.

    Science.gov (United States)

    Dolatshahi-Pirouz, A; Jensen, T; Kraft, David Christian; Foss, Morten; Kingshott, Peter; Hansen, John Lundsgaard; Larsen, Arne Nylandsted; Chevallier, Jacques; Besenbacher, Flemming

    2010-05-25

    The interaction between dental pulp derived mesenchymal stem cells (DP-MSCs) and three different tantalum nanotopographies with and without a fibronectin coating is examined: sputter-coated tantalum surfaces with low surface roughness tantalum surfaces were examined, as well as cellular attachment, proliferation, and vinculin focal adhesion spot assembly on the respective surfaces. The results showed the highest fibronectin mass uptake on the hut structures, with a slightly higher availability of cell-binding domains and the most pronounced formation of vinculin focal adhesion spots as compared to the other surfaces. The proliferation of DP-MSCs was found to be significantly higher on dome and hut surfaces coated with fibronectin compared to the uncoated flat tantalum surfaces. Consequently, the results presented in this study indicate that fibronectin-coated nanotopographies with a vertical dimension of less than 5 nm influence cell adhesion. This rather interesting behavior is argued to originate from the more available fibronectin cell-binding domains observed on the hut structures. PMID:20443575

  10. Estimating intercellular surface tension by laser-induced cell fusion

    International Nuclear Information System (INIS)

    Intercellular surface tension is a key variable in understanding cellular mechanics. However, conventional methods are not well suited for measuring the absolute magnitude of intercellular surface tension because these methods require determination of the effective viscosity of the whole cell, a quantity that is difficult to measure. In this study, we present a novel method for estimating the intercellular surface tension at single-cell resolution. This method exploits the cytoplasmic flow that accompanies laser-induced cell fusion when the pressure difference between cells is large. Because the cytoplasmic viscosity can be measured using well-established technology, this method can be used to estimate the absolute magnitudes of tension. We applied this method to two-cell-stage embryos of the nematode Caenorhabditis elegans and estimated the intercellular surface tension to be in the 30–90 µN m−1 range. Our estimate was in close agreement with cell–medium surface tensions measured at single-cell resolution. (communication)

  11. Cell surface recycling in yeast: mechanisms and machineries.

    Science.gov (United States)

    MacDonald, Chris; Piper, Robert C

    2016-04-15

    Sorting internalized proteins and lipids back to the cell surface controls the supply of molecules throughout the cell and regulates integral membrane protein activity at the surface. One central process in mammalian cells is the transit of cargo from endosomes back to the plasma membrane (PM) directly, along a route that bypasses retrograde movement to the Golgi. Despite recognition of this pathway for decades we are only beginning to understand the machinery controlling this overall process. The budding yeastSaccharomyces cerevisiae, a stalwart genetic system, has been routinely used to identify fundamental proteins and their modes of action in conserved trafficking pathways. However, the study of cell surface recycling from endosomes in yeast is hampered by difficulties that obscure visualization of the pathway. Here we briefly discuss how recycling is likely a more prevalent process in yeast than is widely appreciated and how tools might be built to better study the pathway.

  12. Surface modification of closed plastic bags for adherent cell cultivation

    Science.gov (United States)

    Lachmann, K.; Dohse, A.; Thomas, M.; Pohl, S.; Meyring, W.; Dittmar, K. E. J.; Lindenmeier, W.; Klages, C.-P.

    2011-07-01

    In modern medicine human mesenchymal stem cells are becoming increasingly important. However, a successful cultivation of this type of cells is only possible under very specific conditions. Of great importance, for instance, are the absence of contaminants such as foreign microbiological organisms, i.e., sterility, and the chemical functionalization of the ground on which the cells are grown. As cultivation of these cells makes high demands, a new procedure for cell cultivation has been developed in which closed plastic bags are used. For adherent cell growth chemical functional groups have to be introduced on the inner surface of the plastic bag. This can be achieved by a new, atmospheric-pressure plasma-based method presented in this paper. The method which was developed jointly by the Fraunhofer IST and the Helmholtz HZI can be implemented in automated equipment as is also shown in this contribution. Plasma process gases used include helium or helium-based gas mixtures (He + N2 + H2) and vapors of suitable film-forming agents or precursors such as APTMS, DACH, and TMOS in helium. The effect of plasma treatment is investigated by FTIR-ATR spectroscopy as well as surface tension determination based on contact angle measurements and XPS. Plasma treatment in nominally pure helium increases the surface tension of the polymer foil due to the presence of oxygen traces in the gas and oxygen diffusing through the gas-permeable foil, respectively, reacting with surface radical centers formed during contact with the discharge. Primary amino groups are obtained on the inner surface by treatment in mixtures with nitrogen and hydrogen albeit their amount is comparably small due to diffusion of oxygen through the gas-permeable bag, interfering with the plasma-amination process. Surface modifications introducing amino groups on the inner surface turned out to be most efficient in the promotion of cell growth.

  13. Effect of hydroxyapatite surface morphology on cell adhesion.

    Science.gov (United States)

    Iwamoto, Takashi; Hieda, Yohki; Kogai, Yasumichi

    2016-12-01

    We obtained hydroxyapatite (HAp) materials as a block by mixing HAp nanoparticles and polymer, and then calcining the mixtures. The surface morphology of the HAp materials was tuned by varying heat treatment conditions. After calcining the mixtures at 1200 or 800°C for 4h, the surface morphology of the HAp materials was flat or convexo-concave, respectively. The flat surface morphology, which showed micrometer-ordered grain boundaries, was formed by the aggregation of HAp nanoparticles. On the other hand, the convexo-concave surface morphology resulted from the agglomeration of HAp nanoparticles after heat treatment at 800°C for 4h with nanometer-ordered particle size. We tested cell adhesion to HAp materials with flat or convexo-concave surface morphology and found that cells adhered well to the flat HAp materials but not to the convexo-concave HAp materials. This technique for selectively preparing HAp materials with flat or convexo-concave surface morphology was very easy because we merely mixed commercial HAp nanoparticles with polymer and then calcined the mixtures. As a result, the heat treatment temperature affected the surface morphology of our HAp materials, and their surface morphologies contributed to cell adhesion independently of other material properties. PMID:27612825

  14. A cell cycle and nutritional checkpoint controlling bacterial surface adhesion.

    Directory of Open Access Journals (Sweden)

    Aretha Fiebig

    2014-01-01

    Full Text Available In natural environments, bacteria often adhere to surfaces where they form complex multicellular communities. Surface adherence is determined by the biochemical composition of the cell envelope. We describe a novel regulatory mechanism by which the bacterium, Caulobacter crescentus, integrates cell cycle and nutritional signals to control development of an adhesive envelope structure known as the holdfast. Specifically, we have discovered a 68-residue protein inhibitor of holdfast development (HfiA that directly targets a conserved glycolipid glycosyltransferase required for holdfast production (HfsJ. Multiple cell cycle regulators associate with the hfiA and hfsJ promoters and control their expression, temporally constraining holdfast development to the late stages of G1. HfiA further functions as part of a 'nutritional override' system that decouples holdfast development from the cell cycle in response to nutritional cues. This control mechanism can limit surface adhesion in nutritionally sub-optimal environments without affecting cell cycle progression. We conclude that post-translational regulation of cell envelope enzymes by small proteins like HfiA may provide a general means to modulate the surface properties of bacterial cells.

  15. Biosensing based on surface plasmon resonance and living cells.

    Science.gov (United States)

    Chabot, Vincent; Cuerrier, Charles M; Escher, Emanuel; Aimez, Vincent; Grandbois, Michel; Charette, Paul G

    2009-02-15

    We propose the combination of surface plasmon resonance (SPR) with living cells as a biosensing method. Our detection scheme is based on the premise that cellular activity induced by external agents is often associated with changes in cellular morphology, which in turn should lead to a variation of the effective refractive index at the interface between the cell membrane and the metal layer. We monitored surface plasmon resonance signals originating from a gold surface coated with cells on a custom apparatus after injection of various agents known to influence cellular activity and morphology. Specifically, we evaluated three types of stimulation: response to an endotoxin (lipopolysaccharides), a chemical toxin (sodium azide) and a physiological agonist (thrombin). A comparison with phase contrast microscopy reveals that SPR signal variations are associated with the induction of cell death for lipopolysaccharides treatment and a contraction of the cell body for sodium azide. Thrombin-induced cellular response shows a rapid decrease of the measured laser reflectance over 5min followed by a return to the original value. For this treatment, phase contrast micrographs relate the first phase of the SPR variation to cell contraction and increase of the intercellular gaps, whereas the recovery phase can be associated with a spreading of the cell on the sensing surface. Hence, the SPR signal is very consistent with the cellular response normally observed for these treatments. This confirms the validity of the biosensing method, which could be applied to a large variety of cellular responses involving shape remodeling induced by external agents. PMID:18845432

  16. Engineered microtopographies and surface chemistries direct cell attachment and function

    Science.gov (United States)

    Magin, Chelsea Marie

    Harrison, in 1914, first recognized that cells respond to physicochemical cues such as substratum topography when he observed that fibroblasts elongated while cultured on spider silk. Recently, techniques developed in the micro-electronics industry have been used to create molds for producing microscaled topographies with various shapes and spatial arrangements. Although these patterning techniques are well-established, very little is known about the mechanisms underlying cell sensing and response to microtopographies. In this work cellular micro-environments with varying surface topographies and chemistries were evaluated with marine organisms and mammalian cells to investigate cellular sensing and response. Biofouling---the accumulation of micro-organisms, plants, and animals on submerged surfaces---is an environmental and economic concern. Engineered topographies, replicated in polydimethylsiloxane elastomer (PDMSe) and functionalized poly(ethylene glycol)-dimethacrylate (PEGDMA) hydrogels, were evaluated for inhibition of marine fouling organism attachment. Microtopographies replicated in PDMSe inhibited attachment of the marine bacterium, Cobetia marina up to 99% versus smooth. The average normalized attachment densities of cells of C. marina and zoospores of the green algae Ulva on PDMSe topographies scaled inversely with the Engineered Roughness Index (ERIII), a representation of surface energy. Attachment densities of Ulva from four assays and C. marina from two growth phases to PDMSe surfaces scaled inversely with one equation: ERI II multiplied by the Reynolds number of the organism (Re) (R 2 = 0.77). The same microtopographies created in PDMSe reduced the initial attachment density and attachment strength of cells of the diatoms Navicula incerta and Seminavis robusta compared to smooth PDMSe. The average normalized attachment density of Navicula after exposure to shear stress (48 Pa) was correlated with the contact area between the diatom and a

  17. Cell surface differences of Naegleria fowleri and Naegleria lovaniensis exposed with surface markers.

    Science.gov (United States)

    González-Robles, Arturo; Castañón, Guadalupe; Cristóbal-Ramos, Ana Ruth; Hernández-Ramírez, Verónica Ivonne; Omaña-Molina, Maritza; Martínez-Palomo, Adolfo

    2007-12-01

    Differences in the distribution of diverse cell surface coat markers were found between Naegleria fowleri and Naegleria lovaniensis. The presence of carbohydrate-containing components in the cell coat of the two species was detected by selective staining with ruthenium red and alcian blue. Using both markers, N. fowleri presented a thicker deposit than N. lovaniensis. The existence of exposed mannose or glucose residues was revealed by discriminatory agglutination with the plant lectin Concanavalin A. These sugar residues were also visualized at the cell surface of these parasites either by transmission electron microscopy or by fluorescein-tagged Concanavalin A. Using this lectin cap formation was induced only in N. fowleri. The anionic sites on the cell surface detected by means of cationized ferritin were more apparent in N. fowleri. Biotinylation assays confirmed that even though the two amoebae species have some analogous plasma membrane proteins, there is a clear difference in their composition.

  18. Sawtooth phenomena in tokamaks

    International Nuclear Information System (INIS)

    A review of experimental and theoretical investigaions of sawtooth phenomena in tokamaks is presented. Different types of sawtooth oscillations, scaling laws and methods of interanl disruption stabilization are described. Theoretical models of the sawtooth instability are discussed. 122 refs.; 4 tabs

  19. Bioelectrochemistry II membrane phenomena

    CERN Document Server

    Blank, M

    1987-01-01

    This book contains the lectures of the second course devoted to bioelectro­ chemistry, held within the framework of the International School of Biophysics. In this course another very large field of bioelectrochemistry, i. e. the field of Membrane Phenomena, was considered, which itself consists of several different, but yet related subfields. Here again, it can be easily stated that it is impossible to give a complete and detailed picture of all membrane phenomena of biological interest in a short course of about one and half week. Therefore the same philosophy, as the one of the first course, was followed, to select a series of lectures at postgraduate level, giving a synthesis of several membrane phenomena chosen among the most'important ones. These lectures should show the large variety of membrane-regulated events occurring in living bodies, and serve as sound interdisciplinary basis to start a special­ ized study of biological phenomena, for which the investigation using the dual approach, physico-che...

  20. Cell patterning on polylactic acid through surface-tethered oligonucleotides.

    Science.gov (United States)

    Matsui, Toshiki; Arima, Yusuke; Takemoto, Naohiro; Iwata, Hiroo

    2015-02-01

    Polylactic acid (PLA) is a candidate material to prepare scaffolds for 3-D tissue regeneration. However, cells do not adhere or proliferate well on the surface of PLA because it is hydrophobic. We report a simple and rapid method for inducing cell adhesion to PLA through DNA hybridization. Single-stranded DNA (ssDNA) conjugated to poly(ethylene glycol) (PEG) and to a terminal phospholipid (ssDNA-PEG-lipid) was used for cell surface modification. Through DNA hybridization, modified cells were able to attach to PLA surfaces modified with complementary sequence (ssDNA'). Different cell types can be attached to PLA fibers and films in a spatially controlled manner by using ssDNAs with different sequences. In addition, they proliferate well in a culture medium supplemented with fetal bovine serum. The coexisting modes of cell adhesion through DNA hybridization and natural cytoskeletal adhesion machinery revealed no serious effects on cell growth. The combination of a 3-D scaffold made of PLA and cell immobilization on the PLA scaffold through DNA hybridization will be useful for the preparation of 3-D tissue and organs.

  1. Reversed cell imprinting, AFM imaging and adhesion analyses of cells on patterned surfaces.

    Science.gov (United States)

    Zhou, Xiongtu; Shi, Jian; Zhang, Fan; Hu, Jie; Li, Xin; Wang, Li; Ma, Xueming; Chen, Yong

    2010-05-01

    Cell adhesion and motility depend strongly on the interactions between cells and cell culture substratum. To observe the cell morphology at the interface between cells and artificial substratum or patterned surfaces, we have developed a technique named reversed cell imprinting. After culture and chemical fixation of the cells on a patterned hole array, a liquid polymer was poured on and UV cured, allowing taking off the cell-polymer assembly for a direct observation of the underside cell surface using atomic force microscopy. As expected, we observed local deformation of the cell membrane in the hole area with a penetration depth strongly dependent on the size and depth of the hole as well as the culture time. Quantitative analyses of Hela cells on patterned surfaces of polydimethylsiloxane (PDMS) revealed that the penetration was also position dependent over the cell attachment area due to the non-homogeneous distribution of the membrane stress. With the increase of the culture time, the penetration depth was reduced, in a close correlation with the increase of the cell spreading area. Nevertheless, both cell seeding and adhesion efficiency on high density hole arrays could be significantly increased comparing to that on a smooth surface. Patterned substrates are increasingly required to produce and interrogate new biomaterials for therapeutic benefit. Overall, this work suggests a strategy to endow conventional imaging methods with added functionality to enable easy observation of the underside cell morphology on topographic patterns. PMID:20390138

  2. Hepatic Bel-7402 Cell Proliferation on Different Phospholipid Surfaces

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Phospholipids are believed to be important biomaterials.However, limited information is available on their cytocompatibilities.The objective of this study is to evaluate the effects of different phospholipids on the proliferation of hepatic Bel-7402 cells by comparing the adhesion, viability and proliferation of Bel-7402 cells cultured on different phospholipid surfaces.The cell adhesion, determined by counting the number of adhered cells to the surface, indicated that the cell adhesion was enhanced on charged phospolipid membranes.The cell viability evaluated by MTT[3 (4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium-bromide] showed that cells cultured on charged phospholipids have greater viability than those cultured on the control, while cells cultured on neutral phospholipids showed lower viability.The cell cycle analysis using flow cytometry demonstrated that S phase entry increased on charged phospholipids, while S phase entry decreased on neutral phospholipids.The results suggested that charged phospholipids, especially positively charged phospholipids, show better cytocompatibilities than neutral phospholipids to hepatic Bel-7402 cell.

  3. Origin of subdiffusion of water molecules on cell membrane surfaces

    CERN Document Server

    Yamamoto, Eiji; Yasui, Masato; Yasuoka, Kenji

    2014-01-01

    Water molecules play an important role in providing unique environments for biological reactions on cell membranes. It is widely believed that water molecules form bridges that connect lipid molecules and stabilize cell membranes. Using all-atom molecular dynamics simulations, we show that translational and rotational diffusion of water molecules on lipid membrane surfaces exhibit subdiffusion. Moreover, we provide evidence that both divergent mean trapping time (continuous-time random walk) and long-correlated noise (fractional Brownian motion) contribute to this subdiffusion. These results suggest that subdiffusion on cell membranes causes the water retardation, an enhancement of cell membrane stability, and a higher reaction efficiency.

  4. Investigation of the Cell Surface Proteome of Human Periodontal Ligament Stem Cells.

    Science.gov (United States)

    Xiong, Jimin; Menicanin, Danijela; Zilm, Peter S; Marino, Victor; Bartold, P Mark; Gronthos, Stan

    2016-01-01

    The present study examined the cell surface proteome of human periodontal ligament stem cells (PDLSC) compared to human fibroblasts. Cell surface proteins were prelabelled with CyDye before processing to extract the membrane lysates, which were separated using 2D electrophoresis. Selected differentially expressed protein "spots" were identified using Mass spectrometry. Four proteins were selected for validation: CD73, CD90, Annexin A2, and sphingosine kinase 1 previously associated with mesenchymal stem cells. Flow cytometric analysis found that CD73 and CD90 were highly expressed by human PDLSC and gingival fibroblasts but not by keratinocytes, indicating that these antigens could be used as potential markers for distinguishing between mesenchymal cells and epithelial cell populations. Annexin A2 was also found to be expressed at low copy number on the cell surface of human PDLSC and gingival fibroblasts, while human keratinocytes lacked any cell surface expression of Annexin A2. In contrast, sphingosine kinase 1 expression was detected in all the cell types examined using immunocytochemical analysis. These proteomic studies form the foundation to further define the cell surface protein expression profile of PDLSC in order to better characterise this cell population and help develop novel strategies for the purification of this stem cell population. PMID:27579043

  5. Adhesion defective BHK cell mutant has cell surface heparan sulfate proteoglycan of altered properties

    DEFF Research Database (Denmark)

    Couchman, J R; Austria, R; Woods, A;

    1988-01-01

    sulfation, reduced affinity for fibronectin and decreased half-life on the cell surface when compared to the normal counterpart. Our conclusions based on this data are that these altered properties may, in part, account for the adhesion defect in the ricin-resistant mutant. Whether this results from......In the light of accumulating data that implicate cell surface heparan sulfate proteoglycans (HSPGs) with a role in cell interactions with extracellular matrix molecules such as fibronectin, we have compared the properties of these molecules in wild-type BHK cells and an adhesion-defective ricin......-resistant mutant (RicR14). Our results showed that the mutant, unlike BHK cells, cannot form focal adhesions when adherent to planar substrates in the presence of serum. Furthermore, while both cell lines possess similar amounts of cell surface HSPG with hydrophobic properties, that of RicR14 cells had decreased...

  6. Underwater explosions and cavitation phenomena

    International Nuclear Information System (INIS)

    Some aspects of underwater explosions and cavitation phenomena have been studied by using a thermodynamic equation of state for water and a one-dimensional Lagrangian hydrocode. The study showed that surface cavitation is caused by the main blast wave and a bubble pulse from rebound of a release wave moving toward the center of the exploding bubble. Gravity has little effect on the surface cavitation. In nuclear explosions the bubble is bounded by a two-phase region rather than a gas-water interface. The two-phase region cavitates as the bubble expands, changing the optical absorption coefficient by many orders of magnitude and significantly affecting the optical signature. In assessing cavitation damage, it is concluded that a water jet of unstable bubble collapse erodes solid walls. The study leads to suggestions for future research

  7. Enhanced cell attachment using a novel cell culture surface presenting functional domains from extracellular matrix proteins

    OpenAIRE

    Cooke, M. J.; Phillips, S R; Shah, D. S. H.; Athey, D.; Lakey, J H; Przyborski, S A

    2008-01-01

    Many factors contribute to the creation and maintenance of a realistic environment for cell growth in vitro, e.g. the consistency of the growth medium, the addition of supplements, and the surface on which the cells grow. The nature of the surface on which cells are cultured plays an important role in their ability to attach, proliferate, migrate and function. Components of the extracellular matrix (ECM) are often used to coat glass or plastic surfaces to enhance cell attachment in vitro. Fra...

  8. Immunogold labels: cell-surface markers in atomic force microscopy

    OpenAIRE

    Putman, Constant A.J.; Grooth, de, B.G.; Hansma, Paul K.; Hulst, van der, R.W.M.; Greve, Jan

    1993-01-01

    The feasibility of using immunogold labels as cell-surface markers in atomic force microscopy is shown in this paper. The atomic force microscope (AFM) was used to image the surface of immunogold-labeled human lymphocytes. The lymphocytes were isolated from whole blood and labeled by an indirect immunolabeling method using the monoclonal antibody anti-CD3 and a secondary antibody (Goat-anti-Mouse) linked to 30 nm colloidal gold particles. Some of the samples were enhanced by silver deposition...

  9. Cell surface polypeptides of murine T-cell clones expressing cytolytic or amplifier activity.

    OpenAIRE

    Sarmiento, M.; Glasebrook, A L; Fitch, F. W.

    1980-01-01

    Murine cytolytic T-cell and amplifier T-cell clones derived from secondary unidirectional mixed leukocyte cultures were labeled with 125I by the lactoperoxidase method and their polypeptide profiles were analyzed by NaDodSO4/polyacrylamide gel electrophoresis. All cytolytic T-cell clones derived from the same mouse strain yeilded similar cell surface polypeptide profiles. However, profiles obtained with three amplifier T-cell clones were strikingly different from each other as well as from th...

  10. Surface phenomena in gel-derived glasses and glass-ceramics materials of the CaO-P2O5-SiO2 system

    International Nuclear Information System (INIS)

    Three types of glass ceramics materials of the CaO-P2O-SiO2 system were obtained using the sol gel method and applying calcium nitrate, tetraethyl orthosilicate, and triethyl phosphate as precursors of the respective oxides. The base materials were also modified the addition of 5 mole % Al2O3, using aluminium tri-sec-butoxide as its precursors. Gels were heated up to the temperature 700 grad C. It has been found that after heating these materials contain a glassy phase, hydroxyapatite and wollastonite; there were important differences in the phase compositions as well as in the pore structure of these materials. Materials after treatment were put into simulated body fluid. After a difference time periods the surface changes of these materials were examined using FTIR, scanning electron microscopy (SEM), and X-ray fluorescence analysis in micro-regions (EDAX) methods. It has been found, that the bone-like hydroxyapatite is formed on the surface of gel-derived materials and the time necessary to forming the continual layer of this compound is depend upon the chemical composition of the base materials. On the basis of conducted examinations the attempt of the explanation of the hydroxyapatite formation mechanism was undertaken. The results of our experiments can be interpreted as indicating the bio-activity of obtained gel-derived materials. This means that these materials used as bone implants can be permanently joined to the bone. (authors)

  11. Cell surface proteome of the marine planctomycete Rhodopirellula baltica.

    Science.gov (United States)

    Voigt, Birgit; Hieu, Cao Xuan; Hempel, Kristina; Becher, Dörte; Schlüter, Rabea; Teeling, Hanno; Glöckner, Frank Oliver; Amann, Rudolf; Hecker, Michael; Schweder, Thomas

    2012-06-01

    The surface proteome (surfaceome) of the marine planctomycete Rhodopirellula baltica SH1(T) was studied using a biotinylation and a proteinase K approach combined with SDS-PAGE and mass spectrometry. 52 of the proteins identified in both approaches could be assigned to the group of potential surface proteins. Among them are some high molecular weight proteins, potentially involved in cell-cell attachment, that contain domains shown before to be typical for surface proteins like cadherin/dockerin domains, a bacterial adhesion domain or the fasciclin domain. The identification of proteins with enzymatic functions in the R. baltica surfaceome provides further clues for the suggestion that some degradative enzymes may be anchored onto the cell surface. YTV proteins, which have been earlier supposed to be components of the proteinaceous cell wall of R. baltica, were detected in the surface proteome. Additionally, 8 proteins with a novel protein structure combining a conserved type IV pilin/N-methylation domain and a planctomycete-typical DUF1559 domain were identified. PMID:22623273

  12. Fundamentals of Fire Phenomena

    DEFF Research Database (Denmark)

    Quintiere, James

    Understanding fire dynamics and combustion is essential in fire safety engineering and in fire science curricula. Engineers and students involved in fire protection, safety and investigation need to know and predict how fire behaves to be able to implement adequate safety measures and hazard...... analyses. Fire phenomena encompass everything about the scientific principles behind fire behaviour. Combining the principles of chemistry, physics, heat and mass transfer, and fluid dynamics necessary to understand the fundamentals of fire phenomena, this book integrates the subject into a clear...... discipline. It covers thermo chemistry including mixtures and chemical reactions; Introduces combustion to the fire protection student; Discusses premixed flames and spontaneous ignition; Presents conservation laws for control volumes, including the effects of fire; Describes the theoretical bases...

  13. An electrochemical surface plasmon resonance imaging system targeting cell analysis

    Science.gov (United States)

    Zhang, L. L.; Chen, X.; Wei, H. T.; Li, H.; Sun, J. H.; Cai, H. Y.; Chen, J. L.; Cui, D. F.

    2013-08-01

    This paper presents an electrochemical-surface plasmon resonance imaging (EC-SPRI) system, enabling the characterization of optical and electrical properties of cells, simultaneously. The developed surface plasmon resonance (SPR) imaging system was capable of imaging micro cavities with a dimension of 10 μm × 10 μm and differentiated glycerol solutions with a group of refractive indices (RIs). Furthermore, the EC-SPRI system was used to image A549 cells, suggesting corresponding RI and morphology changes during the cell death process. In the end, electrochemical and SPR methods were used in combination, recording oxidation peaks of A549 cells in the cyclic voltage curves and SPR response unit increase, simultaneously.

  14. 3D surface topology guides stem cell adhesion and differentiation.

    Science.gov (United States)

    Viswanathan, Priyalakshmi; Ondeck, Matthew G; Chirasatitsin, Somyot; Ngamkham, Kamolchanok; Reilly, Gwendolen C; Engler, Adam J; Battaglia, Giuseppe

    2015-06-01

    Polymerized high internal phase emulsion (polyHIPE) foams are extremely versatile materials for investigating cell-substrate interactions in vitro. Foam morphologies can be controlled by polymerization conditions to result in either open or closed pore structures with different levels of connectivity, consequently enabling the comparison between 2D and 3D matrices using the same substrate with identical surface chemistry conditions. Additionally, here we achieve the control of pore surface topology (i.e. how different ligands are clustered together) using amphiphilic block copolymers as emulsion stabilizers. We demonstrate that adhesion of human mesenchymal progenitor (hES-MP) cells cultured on polyHIPE foams is dependent on foam surface topology and chemistry but is independent of porosity and interconnectivity. We also demonstrate that the interconnectivity, architecture and surface topology of the foams has an effect on the osteogenic differentiation potential of hES-MP cells. Together these data demonstrate that the adhesive heterogeneity of a 3D scaffold could regulate not only mesenchymal stem cell attachment but also cell behavior in the absence of soluble growth factors.

  15. The Role of Surface Receptor Density in Surface-Initiated Polymerizations for Cancer Cell Isolation.

    Science.gov (United States)

    Lilly, Jacob L; Berron, Brad J

    2016-06-01

    Fluid biopsies potentially offer a minimally invasive alternative to traditional tissue biopsies for the continual monitoring of metastatic cancer. Current established technologies for isolating circulating tumor cells (CTCs) suffer from poor purity and yield and require fixatives that preclude the collection of viable cells for longitudinal analyses of biological function. Antigen specific lysis (ASL) is a rapid, high-purity method of cell isolation based on targeted protective coatings on antigen-presenting cells and lysis depletion of unprotected antigen-negative cells. In ASL, photoinitiators are specifically labeled on cell surfaces that enable subsequent surface-initiated polymerization. Critically, the significant determinants of process yield have yet to be investigated for this emerging technology. In this work, we show that the labeling density of photoinitiators is strongly correlated with the yield of intact cells during ASL by flow cytometry analysis. Results suggest ASL is capable of delivering ∼25% of targeted cells after isolation using traditional antibody labeling approaches. Monomer formulations of two molecular weights of PEG-diacrylate (Mn ∼ 575 and 3500) are examined. The gelation response during ASL polymerization is also investigated via protein microarray analogues on planar glass. Finally, a density threshold of photoinitiator labeling required for protection during lysis is determined for both monomer formulations. These results indicate ASL is a promising technology for high yield CTC isolation for rare-cell function assays and fluid biopsies. PMID:27206735

  16. Transport phenomena II essentials

    CERN Document Server

    REA, The Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Transport Phenomena II covers forced convention, temperature distribution, free convection, diffusitivity and the mechanism of mass transfer, convective mass transfer, concentration

  17. Blood Flow Multiscale Phenomena

    OpenAIRE

    Agić, Ante; Mijović, Budimir; Nikolić, Tatjana

    2007-01-01

    The cardiovascular disease is one of most frequent cause deaths in modern society. The objective of this work is analyse the effect of dynamic vascular geometry (curvature, torsion,bifurcation) and pulsatile blood nature on secondary flow, wall shear stress and platelet deposition. The problem was examined as multi-scale physical phenomena using perturbation analysis and numerical modelling. The secondary flow determined as influence pulsatile pressure, vascular tube time-dependen...

  18. Tetraploid cells from cytokinesis failure induce aneuploidy and spontaneous transformation of mouse ovarian surface epithelial cells

    OpenAIRE

    Lv, Lei; Zhang, Tianwei; Yi, Qiyi; Huang, Yun; Wang, Zheng; Hou, Heli; Zhang, Huan; Zheng, Wei; Hao, Qiaomei; Guo, Zongyou; Howard J Cooke; Shi, Qinghua

    2012-01-01

    Most ovarian cancers originate from the ovarian surface epithelium and are characterized by aneuploid karyotypes. Aneuploidy, a consequence of chromosome instability, is an early event during the development of ovarian cancers. However, how aneuploid cells are evolved from normal diploid cells in ovarian cancers remains unknown. In the present study, cytogenetic analyses of a mouse syngeneic ovarian cancer model revealed that diploid mouse ovarian surface epithelial cells (MOSECs) experienced...

  19. Monoclonal antibody to human endothelial cell surface internalization and liposome delivery in cell culture.

    Science.gov (United States)

    Trubetskaya, O V; Trubetskoy, V S; Domogatsky, S P; Rudin, A V; Popov, N V; Danilov, S M; Nikolayeva, M N; Klibanov, A L; Torchilin, V P

    1988-02-01

    A monoclonal antibody (mAb), E25, is described that binds to the surface of cultured human endothelial cells. Upon binding E25 is rapidly internalized and digested intracellularly. Selective liposome targeting to the surface of the cells is performed using a biotinylated E25 antibody and an avidin-biotin system. Up to 30% of the cell-adherent liposomal lipid is internalized.

  20. Surface-enhanced Raman spectroscopy of the endothelial cell membrane.

    Directory of Open Access Journals (Sweden)

    Simon W Fogarty

    Full Text Available We applied surface-enhanced Raman spectroscopy (SERS to cationic gold-labeled endothelial cells to derive SERS-enhanced spectra of the bimolecular makeup of the plasma membrane. A two-step protocol with cationic charged gold nanoparticles followed by silver-intensification to generate silver nanoparticles on the cell surface was employed. This protocol of post-labelling silver-intensification facilitates the collection of SERS-enhanced spectra from the cell membrane without contribution from conjugated antibodies or other molecules. This approach generated a 100-fold SERS-enhancement of the spectral signal. The SERS spectra exhibited many vibrational peaks that can be assigned to components of the cell membrane. We were able to carry out spectral mapping using some of the enhanced wavenumbers. Significantly, the spectral maps suggest the distribution of some membrane components are was not evenly distributed over the cells plasma membrane. These results provide some possible evidence for the existence of lipid rafts in the plasma membrane and show that SERS has great potential for the study and characterization of cell surfaces.

  1. Surface plasmon resonance imaging of cells and surface-associated fibronectin

    Directory of Open Access Journals (Sweden)

    Bhadriraju Kiran

    2009-02-01

    Full Text Available Abstract Background A critical challenge in cell biology is quantifying the interactions of cells with their extracellular matrix (ECM environment and the active remodeling by cells of their ECM. Fluorescence microscopy is a commonly employed technique for examining cell-matrix interactions. A label-free imaging method would provide an alternative that would eliminate the requirement of transfected cells and modified biological molecules, and if collected nondestructively, would allow long term observation and analysis of live cells. Results Using surface plasmon resonance imaging (SPRI, the deposition of protein by vascular smooth muscle cells (vSMC cultured on fibronectin was quantified as a function of cell density and distance from the cell periphery. We observed that as much as 120 ng/cm2 of protein was deposited by cells in 24 h. Conclusion SPRI is a real-time, low-light-level, label-free imaging technique that allows the simultaneous observation and quantification of protein layers and cellular features. This technique is compatible with live cells such that it is possible to monitor cellular modifications to the extracellular matrix in real-time.

  2. Emergence of an Apical Epithelial Cell Surface In Vivo.

    Science.gov (United States)

    Sedzinski, Jakub; Hannezo, Edouard; Tu, Fan; Biro, Maté; Wallingford, John B

    2016-01-11

    Epithelial sheets are crucial components of all metazoan animals, enclosing organs and protecting the animal from its environment. Epithelial homeostasis poses unique challenges, as addition of new cells and loss of old cells must be achieved without disrupting the fluid-tight barrier and apicobasal polarity of the epithelium. Several studies have identified cell biological mechanisms underlying extrusion of cells from epithelia, but far less is known of the converse mechanism by which new cells are added. Here, we combine molecular, pharmacological, and laser-dissection experiments with theoretical modeling to characterize forces driving emergence of an apical surface as single nascent cells are added to a vertebrate epithelium in vivo. We find that this process involves the interplay between cell-autonomous actin-generated pushing forces in the emerging cell and mechanical properties of neighboring cells. Our findings define the forces driving this cell behavior, contributing to a more comprehensive understanding of epithelial homeostasis. PMID:26766441

  3. Multijunction Solar Cells Optimized for the Mars Surface Solar Spectrum

    Science.gov (United States)

    Edmondson, Kenneth M.; Fetzer, Chris; Karam, Nasser H.; Stella, Paul; Mardesich, Nick; Mueller, Robert

    2007-01-01

    This paper gives an update on the performance of the Mars Exploration Rovers (MER) which have been continually performing for more than 3 years beyond their original 90-day missions. The paper also gives the latest results on the optimization of a multijunction solar cell that is optimized to give more power on the surface of Mars.

  4. Bacterial Cell Surface Damage Due to Centrifugal Compaction

    NARCIS (Netherlands)

    Peterson, Brandon W.; Sharma, Prashant K.; van der Mei, Henny C.; Busscher, Henk J.

    2012-01-01

    Centrifugal damage has been known to alter bacterial cell surface properties and interior structures, including DNA. Very few studies exist on bacterial damage caused by centrifugation because of the difficulty in relating centrifugation speed and container geometry to the damage caused. Here, we pr

  5. Cell surface hydrophobicity is conveyed by S-layer proteins - A study in recombinant lactobacilli

    NARCIS (Netherlands)

    Mei, H.C. van der; Belt-Gritter, B. van de; Pouwels, P.H.; Martinez, B.; Busscher, H.J.

    2003-01-01

    Cell surface hydrophobicity is one of the most important factors controlling adhesion of microorganisms to surfaces. In this paper, cell surface properties of lactobacilli and recombinant lactobacilli with and without a surface layer protein (SLP) associated with cell surface hydrophobicity were det

  6. Methods To Identify Aptamers against Cell Surface Biomarkers

    Directory of Open Access Journals (Sweden)

    Frédéric Ducongé

    2011-09-01

    Full Text Available Aptamers are nucleic acid-based ligands identified through a process of molecular evolution named SELEX (Systematic Evolution of Ligands by Exponential enrichment. During the last 10-15 years, numerous aptamers have been developed specifically against targets present on or associated with the surface of human cells or infectious pathogens such as viruses, bacteria, fungi or parasites. Several of the aptamers have been described as potent probes, rivalling antibodies, for use in flow cytometry or microscopy. Some have also been used as drugs by inhibiting or activating functions of their targets in a manner similar to neutralizing or agonistic antibodies. Additionally, it is straightforward to conjugate aptamers to other agents without losing their affinity and they have successfully been used in vitro and in vivo to deliver drugs, siRNA, nanoparticles or contrast agents to target cells. Hence, aptamers identified against cell surface biomarkers represent a promising class of ligands. This review presents the different strategies of SELEX that have been developed to identify aptamers for cell surface-associated proteins as well as some of the methods that are used to study their binding on living cells.

  7. "Race for the Surface": Eukaryotic Cells Can Win.

    Science.gov (United States)

    Pham, Vy T H; Truong, Vi Khanh; Orlowska, Anna; Ghanaati, Shahram; Barbeck, Mike; Booms, Patrick; Fulcher, Alex J; Bhadra, Chris M; Buividas, Ričardas; Baulin, Vladimir; Kirkpatrick, C James; Doran, Pauline; Mainwaring, David E; Juodkazis, Saulius; Crawford, Russell J; Ivanova, Elena P

    2016-08-31

    With an aging population and the consequent increasing use of medical implants, managing the possible infections arising from implant surgery remains a global challenge. Here, we demonstrate for the first time that a precise nanotopology provides an effective intervention in bacterial cocolonization enabling the proliferation of eukaryotic cells on a substratum surface, preinfected by both live Gram-negative, Pseudomonas aeruginosa, and Gram-positive, Staphylococcus aureus, pathogenic bacteria. The topology of the model black silicon (bSi) substratum not only favors the proliferation of eukaryotic cells but is biocompatible, not triggering an inflammatory response in the host. The attachment behavior and development of filopodia when COS-7 fibroblast cells are placed in contact with the bSi surface are demonstrated in the dynamic study, which is based on the use of real-time sequential confocal imaging. Bactericidal nanotopology may enhance the prospect for further development of inherently responsive antibacterial nanomaterials for bionic applications such as prosthetics and implants.

  8. Cell adhesion on Ti surface with controlled roughness

    Energy Technology Data Exchange (ETDEWEB)

    Burgos-Asperilla, L.; Garcia-Alonso, M. C.; Escudero, M. L.; Alonso, C.

    2015-07-01

    In this report, the in situ interaction between Saos-2 osteoblast cells and a smooth Ti surface was examined over time. The adhesion kinetics and mechanisms of cellular proliferation were monitored by quartz crystal microbalance (QCM) and electrochemical impedance spectroscopy (EIS). The rate of Saos-2 attachment on Ti surfaces, obtained from the measurements performed with the QCM, is a first-order reaction, with k=2.10{sup -}3 min{sup -}1. The impedance measurements indicate that in the absence of cells, the Ti resistance diminishes over time (7 days), due to the presence of amino acids and proteins from the culture medium that have been adsorbed, while in the presence of osteoblasts, this decrease is much greater because of the compounds generated by the cells that accelerate the dissolution of Ti. (Author)

  9. Galectin-1-mediated cell adhesion, invasion and cell death in human anaplastic large cell lymphoma: Regulatory roles of cell surface glycans

    OpenAIRE

    Suzuki, Osamu; Abe, Masafumi

    2014-01-01

    Galectin-1 is known to be one of the extracellular matrix proteins. To elucidate the biological roles of galectin-1 in cell adhesion and invasion of human anaplastic large cell lymphoma, we performed cell adhesion and invasion assays using the anaplastic large cell lymphoma cell line H-ALCL, which was previously established in our laboratory. From the cell surface lectin array, treatment with neuraminidase from Arthrobacter ureafaciens which cleaves all linkage types of cell surface sialic ac...

  10. Surface modification of hydrophobic polymers for improvement of endothelial cell-surface interactions

    NARCIS (Netherlands)

    Dekker, A.; Reitsma, K.; Beugeling, T.; Bantjes, A.; Feijen, J.; Kirkpatrick, C.J.; Aken, van W.G.

    1992-01-01

    The aim of this study is to improve the interaction of endothelial cells with polymers used in vascular prostheses. Polytetrafluoroethylene (PTFE; Teflon) films were treated by means of nitrogen and oxygen plasmas. Depending on the plasma exposure time, modified PTFE surfaces showed water-contact an

  11. Transport phenomena I essentials

    CERN Document Server

    REA, The Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Transport Phenomena I includes viscosity, flow of Newtonian fluids, velocity distribution in laminar flow, velocity distributions with more than one independent variable, thermal con

  12. Solid state phenomena

    CERN Document Server

    Lawrance, R

    1972-01-01

    Solid State Phenomena explores the fundamentals of the structure and their influence on the properties of solids. This book is composed of five chapters that focus on the electrical and thermal conductivities of crystalline solids. Chapter 1 describes the nature of solids, particularly metals and crystalline materials. This chapter also presents a model to evaluate crystal structure, the forces between atom pairs, and the mechanism of plastic and elastic deformation. Chapter 2 demonstrates random vibrations of atoms in a solid using a one-dimensional array, while Chapter 3 examines the resista

  13. Birefringence phenomena revisited

    CERN Document Server

    Pereira, Dante D; Gonçalves, Bruno

    2016-01-01

    The propagation of electromagnetic waves is investigated in the context of the isotropic and nonlinear dielectric media at rest in the eikonal limit of the geometrical optics. Taking into account the functional dependence $\\varepsilon=\\varepsilon(E,B)$ and $\\mu=\\mu(E,B)$ for the dielectric coefficients, a set of phenomena related to the birefringence of the electromagnetic waves induced by external fields are derived and discussed. Our results contemplate the known cases already reported in the literature: Kerr, Cotton-Mouton, Jones and magnetoelectric effects. Moreover, new effects are presented here as well as the perspectives of its experimental confirmations.

  14. Cell-surface expression of Hsp70 on hematopoietic cancer cells after inhibition of HDAC activity

    DEFF Research Database (Denmark)

    Jensen, Helle; Andresen, Lars; Hansen, Karen Aagaard;

    2009-01-01

    We show that inhibition of HDAC activity leads to surface expression of Hsp70 on various hematopoietic cancer cells, an occurance that was not observed on naïve or activated peripheral blood cells. HDAC inhibitor-mediated Hsp70 surface expression was confined to the apoptotic Annexin V-positive c......We show that inhibition of HDAC activity leads to surface expression of Hsp70 on various hematopoietic cancer cells, an occurance that was not observed on naïve or activated peripheral blood cells. HDAC inhibitor-mediated Hsp70 surface expression was confined to the apoptotic Annexin V......-positive cells and blocked by inhibition of apoptosis. Other chemotherapeutic inducers of apoptosis such as etoposide and camptothecin also led to a robust induction of Hsp70 surface expression. Hsp70 expression was, however, not caused by induction of apoptosis per se, as activated CD4 T cells remained Hsp70...... surface-negative despite effective induction of apoptosis. Interestingly, inhibition of endolysosomes or normal ER/Golgi transport did not affect Hsp70 surface expression. Intracellular calcium and the transcription factor Sp1, which has been shown previously to be important for the intracellular stress...

  15. MEMS-based dynamic cell-to-cell culture platforms using electrochemical surface modifications

    International Nuclear Information System (INIS)

    MEMS-based biological platforms with the capability of both spatial placements and time releases of living cells for cell-to-cell culture experiments have been designed and demonstrated utilizing electrochemical surface modification effects. The spatial placement is accomplished by electrochemical surface modification of substrate surfaces to be either adhesive or non-adhesive for living cells. The time control is achieved by the electrical activation of the selective indium tin oxide co-culture electrode to allow the migration of living cells onto the electrode to start the cell-to-cell culture studies. Prototype devices have a three-electrode design with an electrode size of 50 × 50 µm2 and the separation gaps of 2 µm between them. An electrical voltage of −1.5 V has been used to activate the electrodes independently and sequentially to demonstrate the dynamic cell-to-cell culture experiments of NIH 3T3 fibroblast and Madin Darby canine kidney cells. As such, this MEMS platform could be a basic yet versatile tool to characterize transient cell-to-cell interactions

  16. Proteomics and glycoproteomics of pluripotent stem-cell surface proteins.

    Science.gov (United States)

    Sun, Bingyun

    2015-03-01

    Pluripotent stem cells are a unique cell type with promising potential in regenerative and personalized medicine. Yet the difficulty to understand and coax their seemingly stochastic differentiation and spontaneous self-renewal have largely limited their clinical applications. A call has been made by numerous researchers for a better characterization of surface proteins on these cells, in search of biomarkers that can dictate developmental stages and lineage specifications, and can help formulate mechanistic insight of stem-cell fate choices. In the past two decades, proteomics has gained significant recognition in profiling surface proteins at high throughput. This review will summarize the impact of these studies on stem-cell biology, and discuss the used proteomic techniques. A systematic comparison of all the techniques and their results is also attempted here to help reveal pros, cons, and the complementarity of the existing methods. This awareness should assist in selecting suitable strategies for stem-cell related research, and shed light on technical improvements that can be explored in the future. PMID:25211708

  17. Proteomics and glycoproteomics of pluripotent stem-cell surface proteins.

    Science.gov (United States)

    Sun, Bingyun

    2015-03-01

    Pluripotent stem cells are a unique cell type with promising potential in regenerative and personalized medicine. Yet the difficulty to understand and coax their seemingly stochastic differentiation and spontaneous self-renewal have largely limited their clinical applications. A call has been made by numerous researchers for a better characterization of surface proteins on these cells, in search of biomarkers that can dictate developmental stages and lineage specifications, and can help formulate mechanistic insight of stem-cell fate choices. In the past two decades, proteomics has gained significant recognition in profiling surface proteins at high throughput. This review will summarize the impact of these studies on stem-cell biology, and discuss the used proteomic techniques. A systematic comparison of all the techniques and their results is also attempted here to help reveal pros, cons, and the complementarity of the existing methods. This awareness should assist in selecting suitable strategies for stem-cell related research, and shed light on technical improvements that can be explored in the future.

  18. Hydrodynamics of interaction of particles (including cells) with surfaces

    Science.gov (United States)

    Duszyk, Marek; Doroszewski, Jan

    The study of the phenomena related to the motion of particles flowing in the proximity of the wall is pursued for purely cognitive reason as well as for some important practical purposes in various fields of technology, biology and medicine. When small spherical rigid particles move in the direction parallel to the surface their velocity is smaller than that of the fluid and depends on the ratio of the distance from the wall to the particle radius. The velocity of a particle falling down in a vertical cylinder is maximal in an eccentric position. A sphere in contact with the wall remains stationary. Translational velocity of spherical rigid particles the dimension of which are comparable to that of the tube is only slightly dependent of their lateral position. The differences in the flow parameters of deformable particles in comparison with rigid ones depend on the particle and fluid viscosity coefficient. When the particles move perpendicularly toward the wall, their velocity decreases as the particle approaches the surface. The change of particle velocity is inversely proportional to the gap. There are several theories explaining the influence of the channel diameter on the suspension viscosity (sigma phenomenon); a modern approach is based on the analysis of rheological properties of suspensions. The explanations of the Fahraeus effect (i.e. the fact that the concentration of particles flowing in a tube linking two containers are smaller than that in the containers) are based on non-uniform particle distribution in a transverse cross section and on the differences of velocities of particles and medium. The deviation of the velocity profile of a suspension of rigid particles flowing through a tube from the parabolic shape (blunting) does not depend on the flow velocity; as concerns deformable particles, however, this effect is the smaller the greater is the flow velocity. When the Reynolds number for particles is greater than 10 -3, there appears a component of

  19. Surface code—biophysical signals for apoptotic cell clearance

    Science.gov (United States)

    Biermann, Mona; Maueröder, Christian; Brauner, Jan M.; Chaurio, Ricardo; Janko, Christina; Herrmann, Martin; Muñoz, Luis E.

    2013-12-01

    Apoptotic cell death and the clearance of dying cells play an important and physiological role in embryonic development and normal tissue turnover. In contrast to necrosis, apoptosis proceeds in an anti-inflammatory manner. It is orchestrated by the timed release and/or exposure of so-called ‘find-me’, ‘eat me’ and ‘tolerate me’ signals. Mononuclear phagocytes are attracted by various ‘find-me’ signals, including proteins, nucleotides, and phospholipids released by the dying cell, whereas the involvement of granulocytes is prevented via ‘stay away’ signals. The exposure of anionic phospholipids like phosphatidylserine (PS) by apoptotic cells on the outer leaflet of the plasma membrane is one of the main ‘eat me’ signals. PS is recognized by a number of innate receptors as well as by soluble bridging molecules on the surface of phagocytes. Importantly, phagocytes are able to discriminate between viable and apoptotic cells both exposing PS. Due to cytoskeleton remodeling PS has a higher lateral mobility on the surfaces of apoptotic cells thereby promoting receptor clustering on the phagocyte. PS not only plays an important role in the engulfment process, but also acts as ‘tolerate me’ signal inducing the release of anti-inflammatory cytokines by phagocytes. An efficient and fast clearance of apoptotic cells is required to prevent secondary necrosis and leakage of intracellular danger signals into the surrounding tissue. Failure or prolongation of the clearance process leads to the release of intracellular antigens into the periphery provoking inflammation and development of systemic inflammatory autoimmune disease like systemic lupus erythematosus. Here we review the current findings concerning apoptosis-inducing pathways, important players of apoptotic cell recognition and clearance as well as the role of membrane remodeling in the engulfment of apoptotic cells by phagocytes.

  20. Surface code—biophysical signals for apoptotic cell clearance

    International Nuclear Information System (INIS)

    Apoptotic cell death and the clearance of dying cells play an important and physiological role in embryonic development and normal tissue turnover. In contrast to necrosis, apoptosis proceeds in an anti-inflammatory manner. It is orchestrated by the timed release and/or exposure of so-called ‘find-me’, ‘eat me’ and ‘tolerate me’ signals. Mononuclear phagocytes are attracted by various ‘find-me’ signals, including proteins, nucleotides, and phospholipids released by the dying cell, whereas the involvement of granulocytes is prevented via ‘stay away’ signals. The exposure of anionic phospholipids like phosphatidylserine (PS) by apoptotic cells on the outer leaflet of the plasma membrane is one of the main ‘eat me’ signals. PS is recognized by a number of innate receptors as well as by soluble bridging molecules on the surface of phagocytes. Importantly, phagocytes are able to discriminate between viable and apoptotic cells both exposing PS. Due to cytoskeleton remodeling PS has a higher lateral mobility on the surfaces of apoptotic cells thereby promoting receptor clustering on the phagocyte. PS not only plays an important role in the engulfment process, but also acts as ‘tolerate me’ signal inducing the release of anti-inflammatory cytokines by phagocytes. An efficient and fast clearance of apoptotic cells is required to prevent secondary necrosis and leakage of intracellular danger signals into the surrounding tissue. Failure or prolongation of the clearance process leads to the release of intracellular antigens into the periphery provoking inflammation and development of systemic inflammatory autoimmune disease like systemic lupus erythematosus. Here we review the current findings concerning apoptosis-inducing pathways, important players of apoptotic cell recognition and clearance as well as the role of membrane remodeling in the engulfment of apoptotic cells by phagocytes. (paper)

  1. MULTISCALE PHENOMENA IN MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    A. BISHOP

    2000-09-01

    This project developed and supported a technology base in nonequilibrium phenomena underpinning fundamental issues in condensed matter and materials science, and applied this technology to selected problems. In this way the increasingly sophisticated synthesis and characterization available for classes of complex electronic and structural materials provided a testbed for nonlinear science, while nonlinear and nonequilibrium techniques helped advance our understanding of the scientific principles underlying the control of material microstructure, their evolution, fundamental to macroscopic functionalities. The project focused on overlapping areas of emerging thrusts and programs in the Los Alamos materials community for which nonlinear and nonequilibrium approaches will have decisive roles and where productive teamwork among elements of modeling, simulations, synthesis, characterization and applications could be anticipated--particularly multiscale and nonequilibrium phenomena, and complex matter in and between fields of soft, hard and biomimetic materials. Principal topics were: (i) Complex organic and inorganic electronic materials, including hard, soft and biomimetic materials, self-assembly processes and photophysics; (ii) Microstructure and evolution in multiscale and hierarchical materials, including dynamic fracture and friction, dislocation and large-scale deformation, metastability, and inhomogeneity; and (iii) Equilibrium and nonequilibrium phases and phase transformations, emphasizing competing interactions, frustration, landscapes, glassy and stochastic dynamics, and energy focusing.

  2. Induced-charge Electrokinetic Phenomena

    CERN Document Server

    Bazant, M Z; Bazant, Martin Z.; Squires, Todd M.

    2003-01-01

    Motivated by the recent discovery of AC electro-osmosis near micro-electrodes, we predict a broad class of nonlinear electrokinetic phenomena involving induced interfacial charge. By considering various polarizable objects (metals or dielectrics) in DC and AC applied fields, we develop a simple physical picture of `induced-charge electro-osmosis' (ICEO), the fluid slip at a surface due to an electric field acting on the diffuse charge it induces. We also discuss `induced-charge electrophoresis' (ICEP), the analogous motion of a freely-suspended polarizable particle. Both differ significantly from their classical linear counterparts. We present a mathematical theory of ICEO flows in the weakly nonlinear limit of thin double layers. As an example, we calculate the time-dependent ICEO slip around a metallic sphere with a thin dielectric coating in a suddenly-applied DC field. We briefly discuss possible applications of ICEO to microfluidics and of ICEP to colloidal manipulation.

  3. Involvement of cell surface phosphatidylinositol-anchored glycoproteins in cell-cell adhesion of chick embryo myoblasts

    OpenAIRE

    1989-01-01

    During myogenesis myoblasts fuse to form multinucleate cells that express muscle-specific proteins. A specific cell-cell adhesion process precedes lipid bilayer union during myoblast fusion (Knudsen, K. A., and A. F. Horwitz. 1977. Dev. Biol. 58:328-338) and is mediated by cell surface glycoproteins (Knudsen, K. A., 1985. J. Cell Biol. 101:891- 897). In this paper we show that myoblast adhesion and myotube formation are inhibited by treating fusion-competent myoblasts with phosphatidylinosito...

  4. Phenomena Associated With EIT Waves

    Science.gov (United States)

    Thompson, B. J.; Biesecker, D. A.; Gopalswamy, N.

    2003-01-01

    We discuss phenomena associated with "EIT Wave" transients. These phenomena include coronal mass ejections, flares, EUV/SXR dimmings, chromospheric waves, Moreton waves, solar energetic particle events, energetic electron events, and radio signatures. Although the occurrence of many phenomena correlate with the appearance of EIT waves, it is difficult to mfer which associations are causal. The presentation will include a discussion of correlation surveys of these phenomena.

  5. Surface modified alginate microcapsules for 3D cell culture

    Science.gov (United States)

    Chen, Yi-Wen; Kuo, Chiung Wen; Chueh, Di-Yen; Chen, Peilin

    2016-06-01

    Culture as three dimensional cell aggregates or spheroids can offer an ideal platform for tissue engineering applications and for pharmaceutical screening. Such 3D culture models, however, may suffer from the problems such as immune response and ineffective and cumbersome culture. This paper describes a simple method for producing microcapsules with alginate cores and a thin shell of poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) to encapsulate mouse induced pluripotent stem (miPS) cells, generating a non-fouling surface as an effective immunoisolation barrier. We demonstrated the trapping of the alginate microcapsules in a microwell array for the continuous observation and culture of a large number of encapsulated miPS cells in parallel. miPS cells cultured in the microcapsules survived well and proliferated to form a single cell aggregate. Droplet formation of monodisperse microcapsules with controlled size combined with flow cytometry provided an efficient way to quantitatively analyze the growth of encapsulated cells in a high-throughput manner. The simple and cost-effective coating technique employed to produce the core-shell microcapsules could be used in the emerging field of cell therapy. The microwell array would provide a convenient, user friendly and high-throughput platform for long-term cell culture and monitoring.

  6. Establishment of cell surface engineering and its development.

    Science.gov (United States)

    Ueda, Mitsuyoshi

    2016-07-01

    Cell surface display of proteins/peptides has been established based on mechanisms of localizing proteins to the cell surface. In contrast to conventional intracellular and extracellular (secretion) expression systems, this method, generally called an arming technology, is particularly effective when using yeasts as a host, because the control of protein folding that is often required for the preparation of proteins can be natural. This technology can be employed for basic and applied research purposes. In this review, I describe various strategies for the construction of engineered yeasts and provide an outline of the diverse applications of this technology to industrial processes such as the production of biofuels and chemicals, as well as bioremediation and health-related processes. Furthermore, this technology is suitable for novel protein engineering and directed evolution through high-throughput screening, because proteins/peptides displayed on the cell surface can be directly analyzed using intact cells without concentration and purification. Functional proteins/peptides with improved or novel functions can be created using this beneficial, powerful, and promising technique. PMID:27305282

  7. Anomalous cell surface structure of sickle cell anemia erythrocytes as demonstrated by cell surface labeling and endo-beta-galactosidase treatment

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, M.; Fukuda, M.N.; Hakomori, S.; Papayannopoulou, T.

    1981-01-01

    Erythrocyte surface glycoproteins from patients with various types of sickle cell anemia have been analyzed and compared with those from normal individuals. By hemagglutination with various anti-carbohydrate antibodies, sickle cells showed profound increase of i antigens and moderate increase of GlcNAc beta 1 leads to 3Gal beta 1 leads to 3 Glc structure, whereas antigenicity toward globosidic structure was unchanged. In parallel to these findings, erythrocytes of sickle cell patients have additional sialylated lactosaminoglycan in Band 3. Thus, it can be concluded that erythrocytes of sickle cell patients are characterized by an altered cell surface structure which does not appear to be due to topographical changes of cell surface membrane. It is possible that the anemia or the ''stress'' hematopoiesis in these patients is responsible for these changes.

  8. Brown spider venom toxins interact with cell surface and are endocytosed by rabbit endothelial cells.

    Science.gov (United States)

    Nowatzki, Jenifer; de Sene, Reginaldo Vieira; Paludo, Katia Sabrina; Veiga, Silvio Sanches; Oliver, Constance; Jamur, Maria Célia; Nader, Helena Bonciani; Trindade, Edvaldo S; Franco, Célia Regina C

    2010-09-15

    Bites from the Loxosceles genus (brown spiders) cause severe clinical symptoms, including dermonecrotic injury, hemorrhage, hemolysis, platelet aggregation and renal failure. Histological findings of dermonecrotic lesions in animals exposed to Loxosceles intermedia venom show numerous vascular alterations. Study of the hemorrhagic consequences of the venom in endothelial cells has demonstrated that the degeneration of blood vessels results not only from degradation of the extracellular matrix molecule or massive leukocyte infiltration, but also from a direct and primary activity of the venom on endothelial cells. Exposure of an endothelial cell line in vitro to L. intermedia venom induce morphological alterations, such as cell retraction and disadhesion to the extracellular matrix. The aim of the present study was to investigate the interaction between the venom toxins and the endothelial cell surface and their possible internalization, in order to illuminate the information about the deleterious effect triggered by venom. After treating endothelial cells with venom toxins, we observed that the venom interacts with cell surface. Venom treatment also can cause a reduction of cell surface glycoconjugates. When cells were permeabilized, it was possible to verify that some venom toxins were internalized by the endothelial cells. The venom internalization involves endocytic vesicles and the venom was detected in the lysosomes. However, no damage to lysosomal integrity was observed, suggesting that the cytotoxic effect evoked by L. intermedia venom on endothelial cells is not mediated by venom internalization.

  9. Stable isotope labeling of oligosaccharide cell surface antigens

    Energy Technology Data Exchange (ETDEWEB)

    Unkefer, C.J.; Silks, L.A. III; Martinez, R.A. [and others

    1998-12-31

    The overall goal of this Laboratory Directed Research and Development (LDRD) project was to develop new methods for synthesis of {sup 13}C-labeled oligosaccharides that are required for nuclear magnetic resonance (NMR) studies of their solution conformation. Oligosaccharides are components of the cell`s outer surface and are involved in important processes such as cell-cell recognition and adhesion. Recently, Danishefsky and coworkers at Slone-Kettering Cancer Center developed a method for the solid-phase chemical synthesis of oligosaccharides. The specific goal of this LDRD project was to prepare uniform {sup 13}C-labeled aldohexose precursors required for the solid-phase synthesis of the Lewis blood-group antigenic determinants. We report the synthesis of {sup 13}C-labeled D-glucal, D-galactal and Fucosyl precursors. We have been collaborating with the Danishefsky group on the synthesis of the Lewis oligosaccharides and the NMR analysis of their solution conformation.

  10. Optimizing Grid Patterns on Photovoltaic Cells

    Science.gov (United States)

    Burger, D. R.

    1984-01-01

    CELCAL computer program helps in optimizing grid patterns for different photovoltaic cell geometries and metalization processes. Five different powerloss phenomena associated with front-surface metal grid pattern on photovoltaic cells.

  11. Bacterial Cell Surface Adsorption of Rare Earth Elements

    Science.gov (United States)

    Jiao, Y.; Park, D.; Reed, D.; Fujita, Y.; Yung, M.; Anderko, A.; Eslamimanesh, A.

    2015-12-01

    Rare earth elements (REE) play a critical role in many emerging clean energy technologies, including high-power magnets, wind turbines, solar panels, hybrid/electric vehicle batteries and lamp phosphors. In order to sustain demand for such technologies given current domestic REE shortages, there is a need to develop new approaches for ore processing/refining and recycling of REE-containing materials. To this end, we have developed a microbially-mediated bioadsorption strategy with application towards enrichment of REE from complex mixtures. Specifically, the bacterium Caulobacter crescentus was genetically engineered to display lanthanide binding tags (LBTs), short peptides that possess high affinity and specificity for rare earth elements, on its cell surface S-layer protein. Under optimal conditions, LBT-displayed cells adsorbed greater than 5-fold more REE than control cells lacking LBTs. Competition binding experiments with a selection of REEs demonstrated that our engineered cells could facilitate separation of light- from heavy- REE. Importantly, binding of REE onto our engineered strains was much more favorable compared to non-REE metals. Finally, REE bound to the cell surface could be stripped off using citrate, providing an effective and non-toxic REE recovery method. Together, this data highlights the potential of our approach for selective REE enrichment from REE containing mixtures.

  12. Vaccines based on the cell surface carbohydrates of pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Jones Christopher

    2005-01-01

    Full Text Available Glycoconjugate vaccines, in which a cell surface carbohydrate from a micro-organism is covalently attached to an appropriate carrier protein are proving to be the most effective means to generate protective immune responses to prevent a wide range of diseases. The technology appears to be generic and applicable to a wide range of pathogens, as long as antibodies against surface carbohydrates help protect against infection. Three such vaccines, against Haemophilus influenzae type b, Neisseria meningitidis Group C and seven serotypes of Streptococcus pneumoniae, have already been licensed and many others are in development. This article discusses the rationale for the development and use of glycoconjugate vaccines, the mechanisms by which they elicit T cell-dependent immune responses and the implications of this for vaccine development, the role of physicochemical methods in the characterisation and quality control of these vaccines, and the novel products which are under development.

  13. Active screen plasma nitriding enhances cell attachment to polymer surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kaklamani, Georgia, E-mail: g.kaklamani@bham.ac.uk [University of Birmingham, College of Engineering and Physical Sciences, School of Metallurgy and Materials, Edgbaston, Birmingham B15 2TT (United Kingdom); Bowen, James; Mehrban, Nazia [University of Birmingham, College of Engineering and Physical Sciences, School of Chemical Engineering, Edgbaston, Birmingham B15 2TT (United Kingdom); Dong, Hanshan [University of Birmingham, College of Engineering and Physical Sciences, School of Metallurgy and Materials, Edgbaston, Birmingham B15 2TT (United Kingdom); Grover, Liam M. [University of Birmingham, College of Engineering and Physical Sciences, School of Chemical Engineering, Edgbaston, Birmingham B15 2TT (United Kingdom); Stamboulis, Artemis [University of Birmingham, College of Engineering and Physical Sciences, School of Metallurgy and Materials, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2013-05-15

    Active screen plasma nitriding (ASPN) is a well-established technique used for the surface modification of materials, the result of which is often a product with enhanced functional performance. Here we report the modification of the chemical and mechanical properties of ultra-high molecular weight poly(ethylene) (UHMWPE) using 80:20 (v/v) N{sub 2}/H{sub 2} ASPN, followed by growth of 3T3 fibroblasts on the treated and untreated polymer surfaces. ASPN-treated UHMWPE showed extensive fibroblast attachment within 3 h of seeding, whereas fibroblasts did not successfully attach to untreated UHMWPE. Fibroblast-coated surfaces were maintained for up to 28 days, monitoring their metabolic activity and morphology throughout. The chemical properties of the ASPN-treated UHMWPE surface were studied using X-ray photoelectron spectroscopy, revealing the presence of C-N, C=N, and C≡N chemical bonds. The elastic modulus, surface topography, and adhesion properties of the ASPN-treated UHMWPE surface were studied over 28 days during sample storage under ambient conditions and during immersion in two commonly used cell culture media.

  14. STELLAR SURFACE PHENOMENA: ROTATION, MAGNETISM, AND PULSATIONS

    Directory of Open Access Journals (Sweden)

    C. Neiner

    2010-01-01

    Full Text Available En esta revisi n se resumen los fen menos observados en la super cie y apenas sobre la super cie de estrellas calientes, particularmente los fen menos que se relacionan con la rotaci n, pulsaciones y campos magn ticos. Gracias a los nuevos instrumentos y herramientas, por ejemplo sat lites dedicados a la astrosismolog a (p.ej. CoRoT y la nueva generaci n de espectropolar metros (p.ej. Espadons en CFHT, nuestro conocimiento de estos fen menos ha estado progresando muy r pidamente en los ltimos a os. Combinar estos resultados con los que se pueden obtener con interferometr a proporcionar a una vista global de los fen menos superficiales estelares de las estrellas calientes.

  15. Extraction of cell surface-associated proteins from living yeast cells.

    NARCIS (Netherlands)

    F.M. Klis; M. de Jong; S. Brul; P.W.J. de Groot

    2007-01-01

    To extract cell surface-associated proteins from living fungal cells, reducing agents such as beta-mercaptoethanol and dithiothreitol are often used. We show here that both compounds are moderately lipophilic and may perturb the plasma membrane, thus causing the release of cytosolic proteins, especi

  16. A Simple Hydrophilic Treatment of SU-8 Surfaces for Cell Culturing and Cell Patterning

    DEFF Research Database (Denmark)

    Wang, Zhenyu; Stangegaard, Michael; Dufva, Hans Martin;

    2005-01-01

    SU-8, an epoxy-based photoresist, widely used in constitution different mTAS systems, is incompatible with mammalian cell adhesion and culture in its native form. Here, we demonstrate a simple, cheap and robust two-step method to render a SU-8 surface hydrophilic and compatible with cell culture...

  17. Methods To Identify Aptamers against Cell Surface Biomarkers

    OpenAIRE

    Frédéric Ducongé; Daniel Miotto Dupont; Agnes Cibiel

    2011-01-01

    Aptamers are nucleic acid-based ligands identified through a process of molecular evolution named SELEX (Systematic Evolution of Ligands by Exponential enrichment). During the last 10-15 years, numerous aptamers have been developed specifically against targets present on or associated with the surface of human cells or infectious pathogens such as viruses, bacteria, fungi or parasites. Several of the aptamers have been described as potent probes, rivalling antibodies, for use in flow cytometr...

  18. Biointerface: protein enhanced stem cells binding to implant surface.

    Science.gov (United States)

    Chrzanowski, W; Kondyurin, A; Lee, Jae Ho; Lord, Megan S; Bilek, M M M; Kim, Hae-Won

    2012-09-01

    The number of metallic implantable devices placed every year is estimated at 3.7 million. This number has been steadily increasing over last decades at a rate of around 8 %. In spite of the many successes of the devices the implantation of biomaterial into tissues almost universally leads to the development of an avascular sac, which consists of fibrous tissue around the device and walls off the implant from the body. This reaction can be detrimental to the function of implant, reduces its lifetime, and necessitates repeated surgery. Clearly, to reduce the number of revision surgeries and improve long-term implant function it is necessary to enhance device integration by modulating cell adhesion and function. In this paper we have demonstrated that it is possible to enhance stem cell attachment using engineered biointerfaces. To create this functional interface, samples were coated with polymer (as a precursor) and then ion implanted to create a reactive interface that aids the binding of biomolecules--fibronectin. Both AFM and XPS analyses confirmed the presence of protein layers on the samples. The amount of protein was significant greater for the ion implanted surfaces and was not disrupted upon washing with detergent, hence the formation of strong bonds with the interface was confirmed. While, for non ion implanted surfaces, a decrease of protein was observed after washing with detergent. Finally, the number of stem cells attached to the surface was enhanced for ion implanted surfaces. The studies presented confirm that the developed bionterface with immobilised fibronectin is an effective means to modulate stem cell attachment. PMID:22714559

  19. Recent Insights into Cell Surface Heparan Sulphate Proteoglycans and Cancer

    DEFF Research Database (Denmark)

    Couchman, John R; Multhaupt, Hinke; Sanderson, Ralph D

    2016-01-01

    A small group of cell surface receptors are proteoglycans, possessing a core protein with one or more covalently attached glycosaminoglycan chains. They are virtually ubiquitous and their chains are major sites at which protein ligands of many types interact. These proteoglycans can signal and re...... or fragmented proteoglycans into exosomes that can be paracrine effectors or biomarkers, and lateral interactions between some proteoglycans and calcium channels that impact the actin cytoskeleton....

  20. Smooth Muscle Cell Functionality on Collagen Immobilized Polycaprolactone Nanowire Surfaces

    OpenAIRE

    Victoria Leszczak; Baskett, Dominique A.; Popat, Ketul C.

    2014-01-01

    Inhibition of smooth muscle cell (SMC) proliferation and preservation of a differentiated state are important aspects in the management, avoidance and progression of vascular diseases. An understanding of the interaction between SMCs and the biomaterial involved is essential for a successful implant. In this study, we have developed collagen immobilized nanostructured surfaces with controlled arrays of high aspect ratio nanowires for the growth and maintenance of human aortic SMCs. The nanow...

  1. Surface recombination analysis in silicon-heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Barrio, R.; Gandia, J.J.; Carabe, J.; Gonzalez, N.; Torres, I. [CIEMAT, Madrid (Spain); Munoz, D.; Voz, C. [Universitat Politecnica de Catalunya, Barcelona (Spain)

    2010-02-15

    The origin of this work is the understanding of the correlation observed between efficiency and emitter-deposition temperature in single silicon-heterojunction solar cells prepared by depositing an n-doped hydrogenated-amorphous-silicon thin film onto a p-type crystalline-silicon wafer. In order to interpret these results, surface-recombination velocities have been determined by two methods, i.e. by fitting the current-voltage characteristics to a theoretical model and by means of the Quasi-Steady-State Photoconductance Technique (QSSPC). In addition, effective diffusion lengths have been estimated from internal quantum efficiencies. The analysis of these data has led to conclude that the performance of the cells studied is limited by back-surface recombination rather than by front-heterojunction quality. A 12%-efficient cell has been prepared by combining optimum emitter-deposition conditions with back-surface-field (BSF) formation by vacuum annealing of the back aluminium contact. This result has been achieved without using any transparent conductive oxide. (author)

  2. Cell-surface acceleration of urokinase-catalyzed receptor cleavage

    DEFF Research Database (Denmark)

    Høyer-Hansen, G; Ploug, M; Behrendt, N;

    1997-01-01

    The urokinase-type plasminogen activator (uPA) binds to a specific cell-surface receptor, uPAR. On several cell types uPAR is present both in the full-length form and a cleaved form, uPAR(2+3), which is devoid of binding activity. The formation of uPAR(2+3) on cultured U937 cells is either directly...... by a prior incubation of the cells with uPA inactivated by diisopropyl fluorophosphate, demonstrating a requirement for specific receptor binding of the active uPA to obtain the high-efficiency cleavage of cell-bound uPAR. Furthermore, amino-terminal sequence analysis revealed that uPAR(2+3), purified from U......937 cell lysates, had the same amino termini as uPAR(2+3), generated by uPA in a purified system. In both cases cleavage had occurred at two positions in the hinge region connecting domain 1 and 2, between Arg83-Ala84 and Arg89-Ser90, respectively. The uPA-catalyzed cleavage of uPAR is a new negative...

  3. Surface deformation and shear flow in ligand mediated cell adhesion

    Science.gov (United States)

    Sircar, Sarthok; Roberts, Anthony; Sarthok Sircar / Anthony Roberts Collaboration

    We present a unified, multiscale model to study the attachment/detachment dynamics of two deforming, near spherical cells, coated with binding ligands and subject to a slow, homogeneous shear flow in a viscous fluid medium. The binding ligands on the surface of the cells experience attractive and repulsive forces in an ionic medium and exhibit finite resistance to rotation via bond tilting. The microscale drag forces and couples describing the fluid flow inside the small separation gap between the cells, are calculated using a combination of methods in lubrication theory and previously published numerical results. For a select range of material and fluid parameters, a hysteretic transition of the sticking probability curves (i.e., the function g*) between the adhesion phase (when g*>0.5) and the fragmentation phase (when g*University startup funds and AR is supported by the Australian Research Council Discovery Grant DP150102385.

  4. Advances in targeting cell surface signalling molecules for immune modulation

    Science.gov (United States)

    Yao, Sheng; Zhu, Yuwen; Chen, Lieping

    2013-01-01

    The past decade has witnessed a surge in the development of immunomodulatory approaches to combat a broad range of human diseases, including cancer, viral infections, autoimmunity and inflammation as well as in the prevention of transplant rejection. Immunomodulatory approaches mostly involve the use of monoclonal antibodies or recombinant fusion proteins that target cell surface signalling molecules on immune cells to drive immune responses towards the desired direction. Advances in our understanding of the human immune system, along with valuable lessons learned from the first generation of therapeutic biologics, are aiding the design of the next generation of immunomodulatory biologics with better therapeutic efficacy, minimized adverse effects and long-lasting clinical benefit. The recent encouraging results from antibodies targeting programmed cell death protein 1 (PD1) and B7 homolog 1 (B7H1; also known as PDL1) for the treatment of various advanced human cancers show that immunomodulatory therapy has come of age. PMID:23370250

  5. RPE cell surface proteins in normal and dystrophic rats

    International Nuclear Information System (INIS)

    Membrane-bound proteins in plasma membrane enriched fractions from cultured rat RPE were analyzed by two-dimensional gel electrophoresis. Membrane proteins were characterized on three increasingly specific levels. Total protein was visualized by silver staining. A maximum of 102 separate proteins were counted in silver-stained gels. Glycoproteins were labeled with 3H-glucosamine or 3H-fucose and detected by autoradiography. Thirty-eight fucose-labeled and 61-71 glucosamine-labeled proteins were identified. All of the fucose-labeled proteins were labeled with glucosamine-derived radioactivity. Proteins exposed at the cell surface were labeled by lactoperoxidase-catalyzed radioiodination prior to preparation of membranes for two-dimensional analysis. Forty separate 125I-labeled surface proteins were resolved by two-dimensional electrophoresis/autoradiography. Comparison with the glycoprotein map showed that a number of these surface labeled proteins were glycoproteins. Two-dimensional maps of total protein, fucose-labeled, and glucosamine-labeled glycoproteins, and 125I-labeled surface proteins of membranes from dystrophic (RCS rdy-p+) and normal (Long Evans or RCS rdy+p+) RPE were compared. No differences in the total protein or surface-labeled proteins were observed. However, the results suggest that a 183K glycoprotein is more heavily glycosylated with glucosamine and fucose in normal RPE membranes as compared to membranes from dystrophic RPE

  6. RPE cell surface proteins in normal and dystrophic rats

    Energy Technology Data Exchange (ETDEWEB)

    Clark, V.M.; Hall, M.O.

    1986-02-01

    Membrane-bound proteins in plasma membrane enriched fractions from cultured rat RPE were analyzed by two-dimensional gel electrophoresis. Membrane proteins were characterized on three increasingly specific levels. Total protein was visualized by silver staining. A maximum of 102 separate proteins were counted in silver-stained gels. Glycoproteins were labeled with 3H-glucosamine or 3H-fucose and detected by autoradiography. Thirty-eight fucose-labeled and 61-71 glucosamine-labeled proteins were identified. All of the fucose-labeled proteins were labeled with glucosamine-derived radioactivity. Proteins exposed at the cell surface were labeled by lactoperoxidase-catalyzed radioiodination prior to preparation of membranes for two-dimensional analysis. Forty separate 125I-labeled surface proteins were resolved by two-dimensional electrophoresis/autoradiography. Comparison with the glycoprotein map showed that a number of these surface labeled proteins were glycoproteins. Two-dimensional maps of total protein, fucose-labeled, and glucosamine-labeled glycoproteins, and 125I-labeled surface proteins of membranes from dystrophic (RCS rdy-p+) and normal (Long Evans or RCS rdy+p+) RPE were compared. No differences in the total protein or surface-labeled proteins were observed. However, the results suggest that a 183K glycoprotein is more heavily glycosylated with glucosamine and fucose in normal RPE membranes as compared to membranes from dystrophic RPE.

  7. Development of living cell force sensors for the interrogation of cell surface interactions

    Science.gov (United States)

    Brown, Scott Chang

    The measurement of cell surface interactions, or cell interaction forces, are critical for the early diagnosis and prevention of disease, the design of targeted drug and gene delivery vehicles, the development of next-generation implant materials, and much more. However, the technologies and devices that are currently available are highly limited with respect to the dynamic force range over which they can measure cell-cell or cell-substratum interactions, and with their ability to adequately mimic biologically relevant systems. Consequently, research efforts that involve cell surface interactions have been limited. In this dissertation, existing tools for research at the nanoscale (i.e., atomic force microscopy microcantilevers) are modified to develop living cell force sensors that allow for the highly sensitive measurement of cell-mediated interactions over the entire range of forces expected in biotechnology (and nano-biotechnology) research (from a single to millions of receptor-ligand bonds). Several force sensor motifs have been developed that can be used to measure interactions using single adherent cells, single suspension culture cell, and cell monolayers (tissues) over a wide range of interaction conditions (e.g., approach velocity, shear rate, contact time) using a conventional atomic force microscope. This new tool has been applied to study the pathogenesis of spontaneous pneumothorax and the interaction of cells with 14 man-made interfaces. Consequently, a new hypothesis of the interactions that manifest spontaneous pneumothorax has been developed. Additionally, these findings have the potential to lead to the development of tools for data mining materials and surfaces for unique cell interactions that could have an immense societal impact.

  8. Short-chain ceramides depress integrin cell surface expression and function in colorectal cancer cells.

    Science.gov (United States)

    Morad, Samy A F; Bridges, Lance C; Almeida Larrea, Alex D; Mayen, Anthony L; MacDougall, Matthew R; Davis, Traci S; Kester, Mark; Cabot, Myles C

    2016-07-01

    Colorectal cancer (CRC) is highly metastatic, significantly so to liver, a characteristic that embodies one of the most challenging aspects of treatment. The integrin family of cell-cell and cell-matrix adhesion receptors plays a central role in migration and invasion, functions that underlie metastatic potential. In the present work we sought to determine the impact of ceramide, which plays a key modulatory role in cancer suppression, on integrin cell surface expression and function in CRC cells in order to reveal possible ceramide-centric effects on tumor cell motility. Human CRC cells LoVo, HT-29, and HCT-116 were employed, which represent lines established from primary and metastatic sites. A cell-permeable, short-chain analog, C6-ceramide, was used as ceramide mimic. Exposure of cells to C6-ceramide (24 h) promoted a dose-dependent (2.5-10 µM) decrease in the expression of cell surface β1 and β4 integrin subunits in all cell lines; at 10 µM C6-ceramide, the decreases ranged from 30 to 50% of the control. Expression of cell surface αVβ6 integrin, which is associated with advanced invasion in CRC, was also suppressed by C6-ceramide. Decreases in integrin expression translated to diminished cellular adhesion, 50% of the control at 5 µM C6-ceramide, and markedly reduced cellular migration, approximately 30-40% of the control in all cell lines. Physicochemical examination revealed potent efficacy of nano-formulated C6-ceramide, but inferior activity of dihydro-C6-ceramide and L-C6-ceramide, compared to the unsaturated counterpart and the natural d-enantiomer, respectively. These studies demonstrate novel actions of ceramides that may have application in suppression of tumor metastasis, in addition to their known tumor suppressor effects. PMID:27045476

  9. Remote sensing of natural phenomena

    Directory of Open Access Journals (Sweden)

    Miodrag D. Regodić

    2014-06-01

    monitoring natural phenomena The images taken from Remote Sensing have helped men to use the environment and natural resources in a better way. It is expected that the developement of new technologies will spread the usage of satellite images for the welfare of mankind as well.  Besides monitoring the surface of the Earth, the satellite monitoring of  the processes inside the Earth itself is of great importance since these processes can  cause different catastrophes such as earthquakes, volcano eruptions, floods, etc. Usage of satellite images in monitoring atmospheric phenomena The launch of artificial earth satellites has opened new possibilities for monitoring and studying atmospheric phenomena. A large number of meteorological satellites have been launched by now (Nimbus, Meteor, SNS, ESSA, Meteosat, Terra, etc.. Since these images are primarily used for weather forecast, meteorologists use them to get information about the characteristics of clouds related to their temperature, the temperature of the cloud layer, the degree of cloudness, the profiles of humidity content, the wind parameters, etc. Meteosat satellites Meteosat is the first European geostationary satellite designed for meteorological research. The use of these satellites enabled the surveying in the visible and the near IR part of the spectrum as well as in the infrared thermal and water steam track. Based on these images, it was possible to obtain data such as:  height of clouds, cloud spreading and moving, sea surface temperature, speed of wind, distribution of the water steam, balance of radiation, etc. Usage of satellite images in monitoring floods Satellite images are an excellent background and an initial phase for preventing severe catastrophic events caused by floods. Due to satellite images, it is possible to manage overflown regions before, during and after floods. This enables prevention, forecasting, detection and elimination of consequences, i.e. demage. Satellite images are of great help

  10. Acid Deposition Phenomena

    International Nuclear Information System (INIS)

    Acid deposition, commonly known as acid rain, occurs when emissions from the combustion of fossil fuels and other industrial processes undergo complex chemical reactions in the atmosphere and fall to the earth as wet deposition (rain, snow, cloud, fog) or dry deposition (dry particles, gas). Rain and snow are already naturally acidic, but are only considered problematic when less than a ph of 5.0 The main chemical precursors leading to acidic conditions are atmospheric concentrations of sulfur dioxide (SO2) and nitrogen oxides (NOx). When these two compounds react with water, oxygen, and sunlight in the atmosphere, the result is sulfuric (H2SO4) and nitric acids (HNO3), the primary agents of acid deposition which mainly produced from the combustion of fossil fuel and from petroleum refinery. Airborne chemicals can travel long distances from their sources and can therefore affect ecosystems over broad regional scales and in locations far from the sources of emissions. According to the concern of petroleum ministry with the environment and occupational health, in this paper we will discussed the acid deposition phenomena through the following: Types of acidic deposition and its components in the atmosphere Natural and man-made sources of compounds causing the acidic deposition. Chemical reactions causing the acidic deposition phenomenon in the atmosphere. Factors affecting level of acidic deposition in the atmosphere. Impact of acid deposition. Procedures for acidic deposition control in petroleum industry

  11. Solar Magnetic Phenomena

    Science.gov (United States)

    Hanslmeier, Arnold; Veronig, Astrid; Messerotti, Mauro

    This book contains the proceedings of the Summerschool and Workshop "Solar Magnetic Phenomena" held from 25 August to 5 September 2003 at the Solar Observatory Kanzelhoehe, which belongs to the Institute for Geophysics, Astrophysics and Meteorology of the University of Graz, Austria. The book contains the contributions from six invited lecturers, They give an overview on the following topics: observations of the photosphere and chromosphere, solar flares observations and theory, coronal mass ejections and the relevance of magnetic helicity, high-energy radiation from the Sun, the physics of solar prominences and highlights from the SOHO mission. The lectures contain about 25 to 30 pages each and provide a valuable introduction to the topics mentioned above. The comprehensive lists of references at the end of each contribution enable the interested reader to go into more detail. The second part of the book contains contributed papers. These papers were presented and discussed in the workshop sessions during the afternoons. The sessions stimulated intensive discussions between the participants and the lecturers.

  12. Fibronectin on the Surface of Myeloma Cell-derived Exosomes Mediates Exosome-Cell Interactions.

    Science.gov (United States)

    Purushothaman, Anurag; Bandari, Shyam Kumar; Liu, Jian; Mobley, James A; Brown, Elizabeth E; Sanderson, Ralph D

    2016-01-22

    Exosomes regulate cell behavior by binding to and delivering their cargo to target cells; however, the mechanisms mediating exosome-cell interactions are poorly understood. Heparan sulfates on target cell surfaces can act as receptors for exosome uptake, but the ligand for heparan sulfate on exosomes has not been identified. Using exosomes isolated from myeloma cell lines and from myeloma patients, we identify exosomal fibronectin as a key heparan sulfate-binding ligand and mediator of exosome-cell interactions. We discovered that heparan sulfate plays a dual role in exosome-cell interaction; heparan sulfate on exosomes captures fibronectin, and on target cells it acts as a receptor for fibronectin. Removal of heparan sulfate from the exosome surface releases fibronectin and dramatically inhibits exosome-target cell interaction. Antibody specific for the Hep-II heparin-binding domain of fibronectin blocks exosome interaction with tumor cells or with marrow stromal cells. Regarding exosome function, fibronectin-mediated binding of exosomes to myeloma cells activated p38 and pERK signaling and expression of downstream target genes DKK1 and MMP-9, two molecules that promote myeloma progression. Antibody against fibronectin inhibited the ability of myeloma-derived exosomes to stimulate endothelial cell invasion. Heparin or heparin mimetics including Roneparstat, a modified heparin in phase I trials in myeloma patients, significantly inhibited exosome-cell interactions. These studies provide the first evidence that fibronectin binding to heparan sulfate mediates exosome-cell interactions, revealing a fundamental mechanism important for exosome-mediated cross-talk within tumor microenvironments. Moreover, these results imply that therapeutic disruption of fibronectin-heparan sulfate interactions will negatively impact myeloma tumor growth and progression.

  13. Interaction of KSHV with Host Cell Surface Receptors and Cell Entry

    Directory of Open Access Journals (Sweden)

    Mohanan Valiya Veettil

    2014-10-01

    Full Text Available Virus entry is a complex process characterized by a sequence of events. Since the discovery of KSHV in 1994, tremendous progress has been made in our understanding of KSHV entry into its in vitro target cells. KSHV entry is a complex multistep process involving viral envelope glycoproteins and several cell surface molecules that is utilized by KSHV for its attachment and entry. KSHV has a broad cell tropism and the attachment and receptor engagement on target cells have an important role in determining the cell type-specific mode of entry. KSHV utilizes heparan sulfate, integrins and EphrinA2 molecules as receptors which results in the activation of host cell pre-existing signal pathways that facilitate the subsequent cascade of events resulting in the rapid entry of virus particles, trafficking towards the nucleus followed by viral and host gene expression. KSHV enters human fibroblast cells by dynamin dependant clathrin mediated endocytosis and by dynamin independent macropinocytosis in dermal endothelial cells. Once internalized into endosomes, fusion of the viral envelope with the endosomal membranes in an acidification dependent manner results in the release of capsids which subsequently reaches the nuclear pore vicinity leading to the delivery of viral DNA into the nucleus. In this review, we discuss the principal mechanisms that enable KSHV to interact with the host cell surface receptors as well as the mechanisms that are required to modulate cell signaling machinery for a successful entry.

  14. Distribution of anionic groups at the cell surface of different Sporothrix schenckii cell types.

    Science.gov (United States)

    Benchimol, M; de Souza, W; Travassos, L R

    1979-06-01

    The distribution of anionic groups at the cell surface of yeastlike forms, hyphae, and conidia of Sporothrix schenckii was studied by staining with colloidal iron hydroxide and cationized ferritin. By using colloidal iron hydroxide it was shown that the external cell wall layer of one strain (strain 1099.18) could be resolved into two reactive sublayers and that these layers were present in many but not all cells of the same population. In contrast, most cells of another strain (strain 1099.12) were stained by colloidal iron hydroxide, but only one reactive layer was seen. Acidic layers of the yeastlike forms of the two strains were much thicker than those of conidia and hyphae. By the cationized ferritin staining procedure it was observed that the acidic layers of yeast forms sloughed off of cells, probably due to cell-cell or cell-medium attrition in shaken submerged cultures or to a process by which the outer layers detach from cells as they are replaced by newly synthesized ones. The colloidal iron hydroxide- and cationized ferritin-reactive cell surface layers of S. schenckii correspond to the previously described (L. R. Travassos et al., Exp. Mycol. 1:293-305, 1977) concanavalin A-reactive peptidorhamnomannan complexes, and their reactivity is probably due to the presence of acidic amino acids of low pK values rather than to glucuronic acid units.

  15. Detecting Bacterial Surface Organelles on Single Cells Using Optical Tweezers.

    Science.gov (United States)

    Zakrisson, Johan; Singh, Bhupender; Svenmarker, Pontus; Wiklund, Krister; Zhang, Hanqing; Hakobyan, Shoghik; Ramstedt, Madeleine; Andersson, Magnus

    2016-05-10

    Bacterial cells display a diverse array of surface organelles that are important for a range of processes such as intercellular communication, motility and adhesion leading to biofilm formation, infections, and bacterial spread. More specifically, attachment to host cells by Gram-negative bacteria are mediated by adhesion pili, which are nanometers wide and micrometers long fibrous organelles. Since these pili are significantly thinner than the wavelength of visible light, they cannot be detected using standard light microscopy techniques. At present, there is no fast and simple method available to investigate if a single cell expresses pili while keeping the cell alive for further studies. In this study, we present a method to determine the presence of pili on a single bacterium. The protocol involves imaging the bacterium to measure its size, followed by predicting the fluid drag based on its size using an analytical model, and thereafter oscillating the sample while a single bacterium is trapped by an optical tweezer to measure its effective fluid drag. Comparison between the predicted and the measured fluid drag thereby indicate the presence of pili. Herein, we verify the method using polymer coated silica microspheres and Escherichia coli bacteria expressing adhesion pili. Our protocol can in real time and within seconds assist single cell studies by distinguishing between piliated and nonpiliated bacteria. PMID:27088225

  16. Yeast cell surface display for lipase whole cell catalyst and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yun; Zhang, Rui; Lian, Zhongshuai; Wang, Shihui; Wright, Aaron T.

    2014-08-01

    The cell surface display technique allows for the expression of target proteins or peptides on the microbial cell surface by fusing an appropriate protein as an anchoring motif. Yeast display systems, such as Pichia pastoris, Yarowia lipolytica and Saccharomyces cerevisiae, are ideal, alternative and extensive display systems with the advantage of simple genetic manipulation and post-translational modification of expressed heterologous proteins. Engineered yeasts show high performance characteristics and variant utilizations. Herein, we comprehensively summarize the variant factors affecting lipase whole cell catalyst activity and display efficiency, including the structure and size of target proteins, screening anchor proteins, type and chain length of linkers, and the appropriate matching rules among the above-mentioned display units. Furthermore, we also address novel approaches to enhance stability and activity of recombinant lipases, such as VHb gene co-expression, multi-enzyme co-display technique, and the micro-environmental interference and self-assembly techniques. Finally, we represent the variety of applications of whole cell surface displayed lipases on yeast cells in non-aqueous phases, including synthesis of esters, PUFA enrichment, resolution of chiral drugs, organic synthesis and biofuels. We demonstrate that the lipase surface display technique is a powerful tool for functionalizing yeasts to serve as whole cell catalysts, and increasing interest is providing an impetus for broad application of this technique.

  17. "Race for the Surface": Eukaryotic Cells Can Win.

    Science.gov (United States)

    Pham, Vy T H; Truong, Vi Khanh; Orlowska, Anna; Ghanaati, Shahram; Barbeck, Mike; Booms, Patrick; Fulcher, Alex J; Bhadra, Chris M; Buividas, Ričardas; Baulin, Vladimir; Kirkpatrick, C James; Doran, Pauline; Mainwaring, David E; Juodkazis, Saulius; Crawford, Russell J; Ivanova, Elena P

    2016-08-31

    With an aging population and the consequent increasing use of medical implants, managing the possible infections arising from implant surgery remains a global challenge. Here, we demonstrate for the first time that a precise nanotopology provides an effective intervention in bacterial cocolonization enabling the proliferation of eukaryotic cells on a substratum surface, preinfected by both live Gram-negative, Pseudomonas aeruginosa, and Gram-positive, Staphylococcus aureus, pathogenic bacteria. The topology of the model black silicon (bSi) substratum not only favors the proliferation of eukaryotic cells but is biocompatible, not triggering an inflammatory response in the host. The attachment behavior and development of filopodia when COS-7 fibroblast cells are placed in contact with the bSi surface are demonstrated in the dynamic study, which is based on the use of real-time sequential confocal imaging. Bactericidal nanotopology may enhance the prospect for further development of inherently responsive antibacterial nanomaterials for bionic applications such as prosthetics and implants. PMID:27494044

  18. Cell surface glycopeptides from human intestinal epithelial cell lines derived from normal colon and colon adenocarcinomas

    International Nuclear Information System (INIS)

    The cell surface glycopeptides from an epithelial cell line (CCL 239) derived from normal human colon were compared with those from three cell lines (HCT-8R, HCT-15, and CaCo-2) derived independently from human colonic adenocarcinomas. Cells were incubated with D-[2-3H]mannose or L-[5,6-3H]fucose for 24 h and treated with trypsin to release cell surface components which were then digested exhaustively with Pronase and fractionated on Bio-Gel P-6 before and after treatment with endo-beta-N-acetylglucosaminidase H. The most noticeable difference between the labeled glycopeptides from the tumor and CCL 239 cells was the presence in the former of an endo-beta-N-acetylglucosaminidase H-resistant high molecular weight glycopeptide fraction which was eluted in the void volume of Bio-Gel P-6. This fraction was obtained with both labeled mannose and fucose as precursors. However, acid hydrolysis of this fraction obtained after incubation with [2-3H]mannose revealed that as much as 60-90% of the radioactivity was recovered as fucose. Analysis of the total glycopeptides (cell surface and cell pellet) obtained after incubation with [2-3H]mannose showed that from 40-45% of the radioactivity in the tumor cells and less than 10% of the radioactivity in the CCL 239 cells was recovered as fucose. After incubation of the HCT-8R cells with D-[1,6-3H]glucosamine and L-[1-14C]fucose, strong acid hydrolysis of the labeled glycopeptide fraction excluded from Bio-Gel P-6 produced 3H-labeled N-acetylglucosamine and N-acetylgalactosamine

  19. Cell receptor and surface ligand density effects on dynamic states of adhering circulating tumor cells.

    Science.gov (United States)

    Zheng, Xiangjun; Cheung, Luthur Siu-Lun; Schroeder, Joyce A; Jiang, Linan; Zohar, Yitshak

    2011-10-21

    Dynamic states of cancer cells moving under shear flow in an antibody-functionalized microchannel are investigated experimentally and theoretically. The cell motion is analyzed with the aid of a simplified physical model featuring a receptor-coated rigid sphere moving above a solid surface with immobilized ligands. The motion of the sphere is described by the Langevin equation accounting for the hydrodynamic loadings, gravitational force, receptor-ligand bindings, and thermal fluctuations; the receptor-ligand bonds are modeled as linear springs. Depending on the applied shear flow rate, three dynamic states of cell motion have been identified: (i) free motion, (ii) rolling adhesion, and (iii) firm adhesion. Of particular interest is the fraction of captured circulating tumor cells, defined as the capture ratio, via specific receptor-ligand bonds. The cell capture ratio decreases with increasing shear flow rate with a characteristic rate. Based on both experimental and theoretical results, the characteristic flow rate increases monotonically with increasing either cell-receptor or surface-ligand density within certain ranges. Utilizing it as a scaling parameter, flow-rate dependent capture ratios for various cell-surface combinations collapse onto a single curve described by an exponential formula.

  20. Phospholipid polymer-based antibody immobilization for cell rolling surfaces in stem cell purification system.

    Science.gov (United States)

    Mahara, Atsushi; Chen, Hao; Ishihara, Kazuhiko; Yamaoka, Tetsuji

    2014-01-01

    We previously developed an antibody-conjugated cell rolling column that successfully separates stem cell subpopulations depending on the cell surface marker density, but a large amount of the injected cells were retained in the column because of non-specific interactions. In this study, an amphiphilic copolymer, poly[2-methacryloyloxyethyl phosphorylcholine (MPC)-co-n-butyl methacrylate (nBMA)-co-N-vinyl formamide (NVf)], with phospholipid polar side groups was designed as a novel antibody-immobilizing modifier. The formamide groups in NVf units were converted to active maleimide groups. A plastic flow microfluidic chamber was coated with the copolymers, and a reduced anti-CD90 antibody was immobilized. The adipose tissue-derived stem cells isolated from the rat were injected into the flow chamber, and their rolling behavior was observed under a microscope with a high-speed camera. Non-specific cell adhesion was reduced strongly by means of this immobilization method because of the MPC unit, resulting in a high percentage of rolling cells. These results demonstrate that a surface coated with phospholipid polar groups can be used in an effective stem cell separation system based on the cell rolling process.

  1. Evaluation of Relative Yeast Cell Surface Hydrophobicity Measured by Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Lisa Colling

    2005-01-01

    Full Text Available Objective: To develop an efficient method for evaluating cell surface hydrophobicity and to apply the method to demonstrate the effects of fungal growth conditions on cell surface properties.

  2. Targeting pancreatic progenitor cells in human embryonic stem cell differentiation for the identification of novel cell surface markers.

    Science.gov (United States)

    Fishman, Bettina; Segev, Hanna; Kopper, Oded; Nissenbaum, Jonathan; Schulman, Margarita; Benvenisty, Nissim; Itskovitz-Eldor, Joseph; Kitsberg, Danny

    2012-09-01

    New sources of beta cells are needed in order to develop cell therapies for patients with diabetes. An alternative to forced expansion of post-mitotic beta cells is the induction of differentiation of stem-cell derived progenitor cells that have a natural self-expansion capacity into insulin-producing cells. In order to learn more about these progenitor cells at different stages along the differentiation process in which they become progressively more committed to the final beta cell fate, we took the approach of identifying, isolating and characterizing stage specific progenitor cells. We generated human embryonic stem cell (HESC) clones harboring BAC GFP reporter constructs of SOX17, a definitive endoderm marker, and PDX1, a pancreatic marker, and identified subpopulations of GFP expressing cells. Using this approach, we isolated a highly enriched population of pancreatic progenitor cells from hESCs and examined their gene expression with an emphasis on the expression of stage-specific cell surface markers. We were able to identify novel molecules that are involved in the pancreatic differentiation process, as well as stage-specific cell markers that may serve to define (alone or in combination with other markers) a specific pancreatic progenitor cell. These findings may help in optimizing conditions for ultimately generating and isolating beta cells for transplantation therapy.

  3. Near-surface alloys for hydrogen fuel cell applications

    DEFF Research Database (Denmark)

    Greeley, Jeffrey Philip; Mavrikakis, Manos

    2006-01-01

    Near-surface alloys (NSAs) possess a variety of unusual catalytic properties that could make them useful candidates for improved catalysts in a variety of chemical processes. It is known from previous work, for example, that some NSAs bind hydrogen very weakly while, at the same time, permitting...... facile H-2 activation. These NSAs could, potentially, facilitate highly selective hydrogenation reactions at low temperatures. In the present work, the suitability of NSAs for use as hydrogen fuel cell anodes has been evaluated: the combination of properties, possessed by selected NSAs, of weak binding...

  4. Mechanotransduction Across the Cell Surface and Through the Cytoskeleton

    Science.gov (United States)

    Wang, Ning; Butler, James P.; Ingber, Donald E.

    1993-05-01

    Mechanical stresses were applied directly to cell surface receptors with a magnetic twisting device. The extracellular matrix receptor, integrin β_1, induced focal adhesion formation and supported a force-dependent stiffening response, whereas nonadhesion receptors did not. The cytoskeletal stiffness (ratio of stress to strain) increased in direct proportion to the applied stress and required intact microtubules and intermediate filaments as well as microfilaments. Tensegrity models that incorporate mechanically interdependent struts and strings that reorient globally in response to a localized stress mimicked this response. These results suggest that integrins act as mechanoreceptors and transmit mechanical signals to the cytoskeleton. Mechanotransduction, in turn, may be mediated simultaneously at multiple locations inside the cell through force-induced rearrangements within a tensionally integrated cytoskeleton.

  5. Surface plasmon enhanced cell microscopy with blocked random spatial activation

    Science.gov (United States)

    Son, Taehwang; Oh, Youngjin; Lee, Wonju; Yang, Heejin; Kim, Donghyun

    2016-03-01

    We present surface plasmon enhanced fluorescence microscopy with random spatial sampling using patterned block of silver nanoislands. Rigorous coupled wave analysis was performed to confirm near-field localization on nanoislands. Random nanoislands were fabricated in silver by temperature annealing. By analyzing random near-field distribution, average size of localized fields was found to be on the order of 135 nm. Randomly localized near-fields were used to spatially sample F-actin of J774 cells (mouse macrophage cell-line). Image deconvolution algorithm based on linear imaging theory was established for stochastic estimation of fluorescent molecular distribution. The alignment between near-field distribution and raw image was performed by the patterned block. The achieved resolution is dependent upon factors including the size of localized fields and estimated to be 100-150 nm.

  6. Remote Control of Tissue Interactions via Engineered Photo-switchable Cell Surfaces

    OpenAIRE

    Wei Luo; Abigail Pulsipher; Debjit Dutta; Lamb, Brian M.; Yousaf, Muhammad N.

    2014-01-01

    We report a general cell surface molecular engineering strategy via liposome fusion delivery to create a dual photo-active and bio-orthogonal cell surface for remote controlled spatial and temporal manipulation of microtissue assembly and disassembly. Cell surface tailoring of chemoselective functional groups was achieved by a liposome fusion delivery method and quantified by flow cytometry and characterized by a new cell surface lipid pull down mass spectrometry strategy. Dynamic co-culture ...

  7. Surface-engineered substrates for improved human pluripotent stem cell culture under fully defined conditions

    OpenAIRE

    Saha, Krishanu; Mei, Ying; Reisterer, Colin M.; Pyzocha, Neena Kenton; Yang, Jing; Muffat, Julien; Davies, Martyn C.; Alexander, Morgan R.; Langer, Robert; Anderson, Daniel G.; Jaenisch, Rudolf

    2011-01-01

    The current gold standard for the culture of human pluripotent stem cells requires the use of a feeder layer of cells. Here, we develop a spatially defined culture system based on UV/ozone radiation modification of typical cell culture plastics to define a favorable surface environment for human pluripotent stem cell culture. Chemical and geometrical optimization of the surfaces enables control of early cell aggregation from fully dissociated cells, as predicted from a numerical model of cell...

  8. Surface Properties of Cell-treated Polyethylene Terephthalate

    Directory of Open Access Journals (Sweden)

    Bing Shi

    2006-01-01

    Full Text Available The materials used in artificial joints undergo degradation through fatigue and corrosive wear in human body. The lifetime for well-designed artificial joints like hip joints is at most 12 years and a patient will usually have two total joint replacements during his/her lifetime. Tissue engineering, an alternative to total joint implantation, is the replacement of damaged tissue with the tissue that is designed and constructed to meet the needs of the individual patient. In this study, polyethylene terephthalate (PET in the form of overhead transparency films were investigated on their cell interactions and the tribological properties as an alternative tissue-engineering matrix. The base material of the transparency films is PET. Cell culture methods as well as atomic force microscope (AFM, contact angle goniometer, confocal microscope and universal tribotester were used to study the properties of the substrate materials and the interactions between the surface and the substrate materials. Results showed that cells grew on the substrate of the base materials of the PET. The tribological properties of the slides have been changed after being cell-treated.

  9. Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells.

    Science.gov (United States)

    Katz, Adam J; Tholpady, Ashok; Tholpady, Sunil S; Shang, Hulan; Ogle, Roy C

    2005-03-01

    Adult human subcutaneous adipose tissue contains cells with intriguing multilineage developmental plasticity, much like marrow-derived mesenchymal stem cells. Putative stem or progenitor cells from fat have been given many different names in the literature, reflecting an early and evolving consensus regarding their phenotypic characterization. The study reported here used microarrays to evaluate over 170 genes relating to angiogenesis and extracellular matrix in undifferentiated, early-passage human adipose-derived adherent stromal (hADAS) cells isolated from three separate donors. The hADAS populations unanimously transcribed 66% of the screened genes, and 83% were transcribed by at least two of the three populations. The most highly transcribed genes relate to functional groupings such as cell adhesion, matrix proteins, growth factors and receptors, and proteases. The transcriptome of hADAS cells demonstrated by this work reveals many similarities to published profiles of bone marrow mesenchymal stem cells (MSCs). In addition, flow analysis of over 24 hADAS cell surface proteins (n = 7 donors) both confirms and expands on the existing literature and reveals strong intergroup correlation, despite an inconsistent nomenclature and the lack of standardized protocols for cell isolation and culture. Finally, based on flow analysis and reverse transcription polymerase chain reaction studies, our results suggest that hADAS cells do not express several proteins that are implicated as markers of "stemness" in other stem cell populations, including telomerase, CD133, and the membrane transporter ABCG2.

  10. Teaching Optical Phenomena with Tracker

    Science.gov (United States)

    Rodrigues, M.; Carvalho, P. Simeão

    2014-01-01

    Since the invention and dissemination of domestic laser pointers, observing optical phenomena is a relatively easy task. Any student can buy a laser and experience at home, in a qualitative way, the reflection, refraction and even diffraction phenomena of light. However, quantitative experiments need instruments of high precision that have a…

  11. Relaxation phenomena in disordered systems

    Science.gov (United States)

    Sciortino, F.; Tartaglia, P.

    1997-02-01

    In this article we discuss how the assumptions of self-similarity imposed on the distribution of independently relaxing modes, as well as on their amplitude and characteristic times, manifest in the global relaxation phenomena. We also review recent applications of such approach to the description of relaxation phenomena in microemulsions and molecular glasses.

  12. Interfacial phenomena in electrocatalysis

    CERN Document Server

    Vayenas, Constantinos G

    2011-01-01

    This volume analyzes and summarizes recent developments and breakthroughs in several key interfacial electrochemical systems in fuel cell electrocatatalysis. The chapters are written by internationally recognized experts or rising stars in electrocatatalysis addressing both the fundamental and practical aspects of several emerging key electrochemical technologies.

  13. Heat-transfer-method-based cell culture quality assay through cell detection by surface imprinted polymers.

    Science.gov (United States)

    Eersels, Kasper; van Grinsven, Bart; Khorshid, Mehran; Somers, Veerle; Püttmann, Christiane; Stein, Christoph; Barth, Stefan; Diliën, Hanne; Bos, Gerard M J; Germeraad, Wilfred T V; Cleij, Thomas J; Thoelen, Ronald; De Ceuninck, Ward; Wagner, Patrick

    2015-02-17

    Previous work has indicated that surface imprinted polymers (SIPs) allow for highly specific cell detection through macromolecular cell imprints. The combination of SIPs with a heat-transfer-based read-out technique has led to the development of a selective, label-free, low-cost, and user-friendly cell detection assay. In this study, the breast cancer cell line ZR-75-1 is used to assess the potential of the platform for monitoring the quality of a cell culture in time. For this purpose, we show that the proposed methodology is able to discriminate between the original cell line (adherent growth, ZR-75-1a) and a descendant cell line (suspension growth, ZR-75-1s). Moreover, ZR-75-1a cells were cultured for a prolonged period of time and analyzed using the heat-transfer method (HTM) at regular time intervals. The results of these experiments demonstrate that the thermal resistance (Rth) signal decays after a certain number of cell culture passages. This can likely be attributed to a compromised quality of the cell culture due to cross-contamination with the ZR-75-1s cell line, a finding that was confirmed by classical STR DNA profiling. The cells do not express the same functional groups on their membrane, resulting in a weaker bond between cell and imprint, enabling cell removal by mechanical friction, provided by flushing the measuring chamber with buffer solution. These findings were further confirmed by HTM and illustrate that the biomimetic sensor platform can be used as an assay for monitoring the quality of cell cultures in time.

  14. Association of cell surface heparan sulfate proteoglycans of Schwann cells with extracellular matrix proteins.

    Science.gov (United States)

    Carey, D J; Crumbling, D M; Stahl, R C; Evans, D M

    1990-11-25

    The terminal differentiation of Schwann cells is dependent on contact with basement membrane. The present study was undertaken to investigate the role of cell surface heparan sulfate proteoglycans (HSPGs) in mediating Schwann cell responses to extracellular matrix contact. Phosphatidylinositol-specific phospholipase C-releasable cell surface HSPGs purified from cultures of neonatal rat Schwann cells were subjected to affinity chromatography on immobilized laminin and fibronectin. Binding of the HSPG to both affinity matrices was observed. The strength of the association, however, was sensitive to the ionic strength of the buffer. In 0.1 M Tris-HCl, HSPG binding was essentially irreversible whereas in physiological ionic strength buffer (e.g. 0.142 M NaCl, 10 mM Tris), weaker binding was detected as a delay in elution of the HSPG from the affinity columns. Further studies of HSPG-laminin binding suggested that the binding was mediated by the glycosaminoglycan chains of the proteoglycans. Results of equilibrium gel filtration chromatography provided additional evidence for a reversible association of the HSPG and laminin with a Kd of approximately 1 x 10(-6) M. When Schwann cells were plated on plastic dishes coated with laminin, the cells attached and extended long slender processes. Inclusion of heparin, but not chondroitin sulfate, in the assay medium resulted in partial inhibition of process extension, but at concentrations of heparin which were higher than that needed to disrupt laminin-HSPG association in vitro. Addition of anti-integrin receptor antibodies resulted in more extensive inhibition of laminin-dependent process extension. Anti-integrin antibodies plus heparin essentially totally inhibited laminin-dependent process extension. These results demonstrate that cell surface HSPGs are capable of reversible association with extracellular matrix molecules and suggest that HSPG-laminin interactions play a role in laminin-dependent Schwann cell spreading. PMID

  15. Distribution of Prestin on Outer Hair Cell Basolateral Surface

    Institute of Scientific and Technical Information of China (English)

    YU Ning; ZHAI Suo-qiang; YANG Shi-ming; HAN Dong-yi; ZHAO Hong-bo

    2008-01-01

    Prestin has been identified as a motor protein responsible for outer hair cell (OHC) electromotility and is expressed on the OHC surface. Previous studies revealed that OHC eleetromotility and its associated nonlinear capacitance were mainly located at the OHC lateral wall and absent at the apical cutieular plate and the basal nucleus region. Immunofluorescent staining for prestin also failed to demonstrate prestin expression at the OHC basal ends in whole-mount preparation of the organ of Corti. However, there lacks a definitive demonstration of the pattern of prestin distribution. The OHC lateral wall has a trilaminate organization and is composed of the plasma membrane, cortical lattice, and subsurface cisternae. In this study, the location of prestin proteins in dissociated OHCs was examined using immunofluorescent staining and confocal microscopy. We found that prestin was uniformly expressed on the basolateral surface, including the basal pole. No staining was seen on the cuticular plate and stereocilia. When co-stained with a membrane marker di-8-ANEPPS, prestin-labeling was found to be in the outer layer of the OHC lateral wall. After separating the plasma membrane from the underlying subsurface eisternae using a hypotonic extracellular solution, prestin-labeling was found to be in the plasma membrane, not the subsurface cisternae. The data show that prestin is expressed in the plasma membrane on the entire OHC basolateral surface.

  16. Novel eukaryotic enzymes modifying cell-surface biopolymers

    Directory of Open Access Journals (Sweden)

    Aravind L

    2010-01-01

    Full Text Available Abstract Background Eukaryotic extracellular matrices such as proteoglycans, sclerotinized structures, mucus, external tests, capsules, cell walls and waxes contain highly modified proteins, glycans and other composite biopolymers. Using comparative genomics and sequence profile analysis we identify several novel enzymes that could be potentially involved in the modification of cell-surface glycans or glycoproteins. Results Using sequence analysis and conservation we define the acyltransferase domain prototyped by the fungal Cas1p proteins, identify its active site residues and unify them to the superfamily of classical 10TM acyltransferases (e.g. oatA. We also identify a novel family of esterases (prototyped by the previously uncharacterized N-terminal domain of Cas1p that have a similar fold as the SGNH/GDSL esterases but differ from them in their conservation pattern. Conclusions We posit that the combined action of the acyltransferase and esterase domain plays an important role in controlling the acylation levels of glycans and thereby regulates their physico-chemical properties such as hygroscopicity, resistance to enzymatic hydrolysis and physical strength. We present evidence that the action of these novel enzymes on glycans might play an important role in host-pathogen interaction of plants, fungi and metazoans. We present evidence that in plants (e.g. PMR5 and ESK1 the regulation of carbohydrate acylation by these acylesterases might also play an important role in regulation of transpiration and stress resistance. We also identify a subfamily of these esterases in metazoans (e.g. C7orf58, which are fused to an ATP-grasp amino acid ligase domain that is predicted to catalyze, in certain animals, modification of cell surface polymers by amino acid or peptides. Reviewers This article was reviewed by Gaspar Jekely and Frank Eisenhaber

  17. Novel eukaryotic enzymes modifying cell-surface biopolymers

    Science.gov (United States)

    2010-01-01

    Background Eukaryotic extracellular matrices such as proteoglycans, sclerotinized structures, mucus, external tests, capsules, cell walls and waxes contain highly modified proteins, glycans and other composite biopolymers. Using comparative genomics and sequence profile analysis we identify several novel enzymes that could be potentially involved in the modification of cell-surface glycans or glycoproteins. Results Using sequence analysis and conservation we define the acyltransferase domain prototyped by the fungal Cas1p proteins, identify its active site residues and unify them to the superfamily of classical 10TM acyltransferases (e.g. oatA). We also identify a novel family of esterases (prototyped by the previously uncharacterized N-terminal domain of Cas1p) that have a similar fold as the SGNH/GDSL esterases but differ from them in their conservation pattern. Conclusions We posit that the combined action of the acyltransferase and esterase domain plays an important role in controlling the acylation levels of glycans and thereby regulates their physico-chemical properties such as hygroscopicity, resistance to enzymatic hydrolysis and physical strength. We present evidence that the action of these novel enzymes on glycans might play an important role in host-pathogen interaction of plants, fungi and metazoans. We present evidence that in plants (e.g. PMR5 and ESK1) the regulation of carbohydrate acylation by these acylesterases might also play an important role in regulation of transpiration and stress resistance. We also identify a subfamily of these esterases in metazoans (e.g. C7orf58), which are fused to an ATP-grasp amino acid ligase domain that is predicted to catalyze, in certain animals, modification of cell surface polymers by amino acid or peptides. Reviewers This article was reviewed by Gaspar Jekely and Frank Eisenhaber PMID:20056006

  18. Wave phenomena in sunspots

    Science.gov (United States)

    Löhner-Böttcher, Johannes

    2016-03-01

    Context: The dynamic atmosphere of the Sun exhibits a wealth of magnetohydrodynamic (MHD) waves. In the presence of strong magnetic fields, most spectacular and powerful waves evolve in the sunspot atmosphere. Allover the sunspot area, continuously propagating waves generate strong oscillations in spectral intensity and velocity. The most prominent and fascinating phenomena are the 'umbral flashes' and 'running penumbral waves' as seen in the sunspot chromosphere. Their nature and relation have been under intense discussion in the last decades. Aims: Waves are suggested to propagate upward along the magnetic field lines of sunspots. An observational study is performed to prove or disprove the field-guided nature and coupling of the prevalent umbral and penumbral waves. Comprehensive spectroscopic observations at high resolution shall provide new insights into the wave characteristics and distribution across the sunspot atmosphere. Methods: Two prime sunspot observations were carried out with the Dunn Solar Telescope at the National Solar Observatory in New Mexico and with the Vacuum Tower Telescope at the Teide Observatory on Tenerife. The two-dimensional spectroscopic observations were performed with the interferometric spectrometers IBIS and TESOS. Multiple spectral lines are scanned co-temporally to sample the dynamics at the photospheric and chromospheric layers. The time series (1 - 2.5 h) taken at high spatial and temporal resolution are analyzed according to their evolution in spectral intensities and Doppler velocities. A wavelet analysis was used to obtain the wave power and dominating wave periods. A reconstruction of the magnetic field inclination based on sunspot oscillations was developed. Results and conclusions: Sunspot oscillations occur continuously in spectral intensity and velocity. The obtained wave characteristics of umbral flashes and running penumbral waves strongly support the scenario of slow-mode magnetoacoustic wave propagation along the

  19. Surface Analyses and Immune Reactivities of Major Cell Wall-Associated Proteins of Group A Streptococcus

    OpenAIRE

    Cole, Jason N; Ramirez, Ruben D.; Currie, Bart J.; Cordwell, Stuart J.; Djordjevic, Steven P.; Mark J Walker

    2005-01-01

    A proteomic analysis was undertaken to identify cell wall-associated proteins of Streptococcus pyogenes. Seventy-four distinct cell wall-associated proteins were identified, 66 of which were novel. Thirty-three proteins were immunoreactive with pooled S. pyogenes-reactive human antisera. Biotinylation of the GAS cell surface identified 23 cell wall-associated proteins that are surface exposed.

  20. Altered expression of epithelial cell surface glycoconjugates and intermediate filaments at the margins of mucosal wounds

    DEFF Research Database (Denmark)

    Dabelsteen, Erik; Grøn, B; Mandel, U;

    1998-01-01

    Alterations in cell to cell adhesion are necessary to enable the type of cell movements that are associated with epithelial wound healing and malignant invasion. Several studies of transformed cells have related epithelial cell movement to changes in the cell surface expression of the carbohydrat...

  1. Wolbachia surface protein induces innate immune responses in mosquito cells

    Directory of Open Access Journals (Sweden)

    Pinto Sofia B

    2012-01-01

    Full Text Available Abstract Background Wolbachia endosymbiotic bacteria are capable of inducing chronic upregulation of insect immune genes in some situations and this phenotype may influence the transmission of important insect-borne pathogens. However the molecules involved in these interactions have not been characterized. Results Here we show that recombinant Wolbachia Surface Protein (WSP stimulates increased transcription of immune genes in mosquito cells derived from the mosquito Anopheles gambiae, which is naturally uninfected with Wolbachia; at least two of the upregulated genes, TEP1 and APL1, are known to be important in Plasmodium killing in this species. When cells from Aedes albopictus, which is naturally Wolbachia-infected, were challenged with WSP lower levels of upregulation were observed than for the An. gambiae cells. Conclusions We have found that WSP is a strong immune elicitor in a naturally Wolbachia-uninfected mosquito species (Anopheles gambiae while a milder elicitor in a naturally-infected species (Aedes albopictus. Since the WSP of a mosquito non-native (nematode Wolbachia strain was used, these data suggest that there is a generalized tolerance to WSP in Ae. albopictus.

  2. Soluble and cell surface receptors for tumor necrosis factor

    DEFF Research Database (Denmark)

    Wallach, D; Engelmann, H; Nophar, Y;

    1991-01-01

    Tumor necrosis factor (TNF) initiates its multiple effects on cell function by binding at a high affinity to specific cell surface receptors. Two different molecular species of these receptors, which are expressed differentially in different cells, have been identified. The cDNAs of both receptor...... have recently been cloned. Antibodies to one of these receptor species (the p55, type I receptor) can trigger a variety of TNF like effects by cross-linking of the receptor molecules. Thus, it is not TNF itself but its receptors that provide the signal for the response to this cytokine....... The intracellular domains of the two receptors differ in structure, suggesting that they mediate different activities. Their extracellular domains, however, are structurally related. Both contain cysteine-rich repeats which are homologous to repeated structures found in the extracellular domains of the nerve growth...... factor receptor and the CDw40 protein. Truncated soluble forms of the two receptors, corresponding to these cysteine-rich repeated structures, have been detected in human urine and were later found to be present also in the serum. The serum levels of those soluble TNF receptors increase dramatically...

  3. Regulation of ADAM12 cell-surface expression by protein kinase C epsilon

    DEFF Research Database (Denmark)

    Sundberg, Christina; Thodeti, Charles Kumar; Kveiborg, Marie;

    2004-01-01

    constitutively active protein. However, little is known about the regulation of ADAM12 cell-surface translocation. Here, we used human RD rhabdomyosarcoma cells, which express ADAM12 at the cell surface, in a temporal pattern. We report that protein kinase C (PKC) epsilon induces ADAM12 translocation to the cell......The ADAM (a disintegrin and metalloprotease) family consists of multidomain cell-surface proteins that have a major impact on cell behavior. These transmembrane-anchored proteins are synthesized as proforms that have (from the N terminus): a prodomain; a metalloprotease-, disintegrin......-immunoprecipitated from membrane-enriched fractions of PMA-treated cells, 3) RD cells transfected with EGFP-tagged, myristoylated PKCepsilon expressed more ADAM12 at the cell surface than did non-transfected cells, and 4) RD cells transfected with a kinase-inactive PKCepsilon mutant did not exhibit ADAM12 cell...

  4. Dynamic Morphological Changes Induced By GM1 and Protein Interactions on the Surface of Cell-Sized Liposomes

    Directory of Open Access Journals (Sweden)

    Masahiro Takagi

    2013-06-01

    Full Text Available It is important to understand the physicochemical mechanisms that are responsible for the morphological changes in the cell membrane in the presence of various stimuli such as osmotic pressure. Lipid rafts are believed to play a crucial role in various cellular processes. It is well established that Ctb (Cholera toxin B subunit recognizes and binds to GM1 (monosialotetrahexosylganglioside on the cell surface with high specificity and affinity. Taking advantage of Ctb-GM1 interaction, we examined how Ctb and GM1 molecules affect the dynamic movement of liposomes. GM1 a natural ligand for cholera toxin, was incorporated into liposome and the interaction between fluorescent Ctb and the liposome was analyzed. The interaction plays an important role in determining the various surface interaction phenomena. Incorporation of GM1 into membrane leads to an increase of the line tension leading to either rupture of liposome membrane or change in the morphology of the membrane. This change in morphology was found to be GM1 concentration specific. The interaction between Ctb-GM1 leads to fast and easy rupture or to morphological changes of the liposome. The interactions of Ctb and the glycosyl chain are believed to affect the surface and the curvature of the membrane. Thus, the results are highly beneficial in the study of signal transduction processes.

  5. Cell surface glycan alterations in epithelial mesenchymal transition process of Huh7 hepatocellular carcinoma cell.

    Directory of Open Access Journals (Sweden)

    Shan Li

    Full Text Available BACKGROUND AND OBJECTIVE: Due to recurrence and metastasis, the mortality of Hepatocellular carcinoma (HCC is high. It is well known that the epithelial mesenchymal transition (EMT and glycan of cell surface glycoproteins play pivotal roles in tumor metastasis. The goal of this study was to identify HCC metastasis related differential glycan pattern and their enzymatic basis using a HGF induced EMT model. METHODOLOGY: HGF was used to induce HCC EMT model. Lectin microarray was used to detect the expression of cell surface glycan and the difference was validated by lectin blot and fluorescence cell lectin-immunochemistry. The mRNA expression levels of glycotransferases were determined by qRT-PCR. RESULTS: After HGF treatment, the Huh7 cell lost epithelial characteristics and obtained mesenchymal markers. These changes demonstrated that HGF could induce a typical cell model of EMT. Lectin microarray analysis identified a decreased affinity in seven lectins ACL, BPL, JAC, MPL, PHA-E, SNA, and SBA to the glycan of cell surface glycoproteins. This implied that glycan containing T/Tn-antigen, NA2 and bisecting GlcNAc, Siaα2-6Gal/GalNAc, terminal α or βGalNAc structures were reduced. The binding ability of thirteen lectins, AAL, LCA, LTL, ConA, NML, NPL, DBA, HAL, PTL II, WFL, ECL, GSL II and PHA-L to glycan were elevated, and a definite indication that glycan containing terminal αFuc and ± Sia-Le, core fucose, α-man, gal-β(α GalNAc, β1,6 GlcNAc branching and tetraantennary complex oligosaccharides structures were increased. These results were further validated by lectin blot and fluorescence cell lectin-immunochemistry. Furthermore, the mRNA expression level of Mgat3 decreased while that of Mgat5, FucT8 and β3GalT5 increased. Therefore, cell surface glycan alterations in the EMT process may coincide with the expression of glycosyltransferase. CONCLUSIONS: The findings of this study systematically clarify the alterations of cell surface

  6. Cell surface N-glycans influence the level of functional E-cadherin at the cell–cell border

    OpenAIRE

    M Kristen Hall; Douglas A Weidner; Sahil Dayal; Ruth A. Schwalbe

    2014-01-01

    E-cadherin is crucial for adhesion of cells to each other and thereby development and maintenance of tissue. While it is has been established that N-glycans inside the cell impact the level of E-cadherin at the cell surface of epithelial-derived cells, it is unclear whether N-glycans outside the cell control the clustering of E-cadherin at the cell–cell border. Here, we demonstrate reduction of N-glycans at the cell surface weakened the recruitment and retention of E-cadherin at the cell–cell...

  7. Studies on cell adhesion and recognition. II. The kinetics of cell adhesion and cell spreading on surfaces coated with carbohydrate- reactive proteins (glycosidases and lectins) and fibronectin

    OpenAIRE

    1981-01-01

    The kinetics of cell attachment and cell spreading on the coated surfaces of two classes of carbohydrate-reactive proteins, enzymes and lectins, have been compared with those on fibronectin-coated surfaces with the following results: (a) A remarkable similarity between the kinetics of cell attachment to fibronectin-coated and glycosidase- coated surfaces was found. In contrast, cell attachment kinetics induced by lectin- and galactose oxidase-coated surfaces, in general, were strikingly diffe...

  8. Nanofiber-modified surface directed cell migration and orientation in microsystem

    Science.gov (United States)

    Zhang, Xu; Gao, Xinghua; Jiang, Lei; Zhang, Xulang; Qin, Jianhua

    2011-01-01

    Cell-microscale pattern surface interactions are crucial to understand many fundamental biological questions and develop regenerative medicine and tissue engineering approaches. In this work, we demonstrated a simple method to pattern PDMS surface by sacrificing poly vinyl pyrrolidone (PVP) electrospinning nanofibers and investigated the growth profile of cells on the modified patterned surfaces using stroma cells. The stromal cells were observed to exhibit good viability on this modified surface and the patterned surface with alignment nanofibers could promote cell migration. Furthermore, the modified PDMS surface was integrated with microfluidic channels to create the microscale spatial factor and was used to explore the cell migration and orientation under this microsystem. Both spatial factor and patterned surfaces were found to contribute to the complex cell orientation under the combined dual effects. This established method is simple, fast, and easy for use, demonstrating the potential of this microsystem for applications in addressing biological questions in complex environment. PMID:22662030

  9. Interaction of progenitor bone cells with different surface modifications of titanium implant

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wen-Cheng, E-mail: wencchen@fcu.edu.tw [Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, College of Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Chen, Ya-Shun [Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, College of Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Ko, Chia-Ling [Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, College of Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Dental Medical Devices and Materials Research Center, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Lin, Yi; Kuo, Tzu-Huang; Kuo, Hsien-Nan [Medical Device Development Division, Metal Industries Research and Development Centre, Kaohsiung 82151, Taiwan (China)

    2014-04-01

    Changes in the physical and chemical properties of Ti surfaces can be attributed to cell performance, which improves surface biocompatibility. The cell proliferation, mineralization ability, and gene expression of progenitor bone cells (D1 cell) were compared on five different Ti surfaces, namely, mechanical grinding (M), electrochemical modification through potentiostatic anodization (ECH), sandblasting and acid etching (SLA), sandblasting, hydrogen peroxide treatment, and heating (SAOH), and sandblasting, alkali heating, and etching (SMART). SAOH treatment produced the most hydrophilic surface, whereas SLA produced the most hydrophobic surface. Cell activity indicated that SLA and SMART produced significantly rougher surfaces and promoted D1 cell attachment within 1 day of culturing, whereas SAOH treatment produced moderate roughness (Ra = 1.26 μm) and accelerated the D1 cell proliferation up to 7 days after culturing. The ECH surface significantly promoted alkaline phosphatase (ALP) expression and osteocalcin (OCN) secretion in the D1 cells compared with the other surface groups. The ECH and SMART-treated Ti surfaces resulted in maximum ALP and OCN expressions during the D1 cell culture. SLA, SAOH, and SMART substrate surfaces were rougher and exhibited better cell metabolic responses during the early stage of cell attachment, proliferation, and morphologic expressions within 1 day of D1 cell culture. The D1 cells cultured on the ECH and SMART substrates exhibited higher differentiation, and higher ALP and OCN expressions after 10 days of culture. Thus, the ECH and SMART treatments promote better ability of cell mineralization in vitro, which demonstrate their great potential for clinical use. - Highlights: • Progenitor bone cells onto Ti with different modifications are characterized. • Surface roughness and hydrophilicity encourage early stage cell attachment. • Composition and surface treatments are more vital in bone cell mineralization.

  10. Interaction of progenitor bone cells with different surface modifications of titanium implant

    International Nuclear Information System (INIS)

    Changes in the physical and chemical properties of Ti surfaces can be attributed to cell performance, which improves surface biocompatibility. The cell proliferation, mineralization ability, and gene expression of progenitor bone cells (D1 cell) were compared on five different Ti surfaces, namely, mechanical grinding (M), electrochemical modification through potentiostatic anodization (ECH), sandblasting and acid etching (SLA), sandblasting, hydrogen peroxide treatment, and heating (SAOH), and sandblasting, alkali heating, and etching (SMART). SAOH treatment produced the most hydrophilic surface, whereas SLA produced the most hydrophobic surface. Cell activity indicated that SLA and SMART produced significantly rougher surfaces and promoted D1 cell attachment within 1 day of culturing, whereas SAOH treatment produced moderate roughness (Ra = 1.26 μm) and accelerated the D1 cell proliferation up to 7 days after culturing. The ECH surface significantly promoted alkaline phosphatase (ALP) expression and osteocalcin (OCN) secretion in the D1 cells compared with the other surface groups. The ECH and SMART-treated Ti surfaces resulted in maximum ALP and OCN expressions during the D1 cell culture. SLA, SAOH, and SMART substrate surfaces were rougher and exhibited better cell metabolic responses during the early stage of cell attachment, proliferation, and morphologic expressions within 1 day of D1 cell culture. The D1 cells cultured on the ECH and SMART substrates exhibited higher differentiation, and higher ALP and OCN expressions after 10 days of culture. Thus, the ECH and SMART treatments promote better ability of cell mineralization in vitro, which demonstrate their great potential for clinical use. - Highlights: • Progenitor bone cells onto Ti with different modifications are characterized. • Surface roughness and hydrophilicity encourage early stage cell attachment. • Composition and surface treatments are more vital in bone cell mineralization.

  11. Advanced diffusion processes and phenomena

    CERN Document Server

    Öchsner, Andreas; Belova, Irina

    2014-01-01

    This topical volume on Advanced Diffusion Processes and Phenomena addresses diffusion in a wider sense of not only mass diffusion but also heat diffusion in fluids and solids. Both diffusion phenomena play an important role in the characterization of engineering materials and corresponding structures. Understanding these different transport phenomena at many levels, from atomistic to macro, has therefore long attracted the attention of many researchers in materials science and engineering and related disciplines. The present topical volume captures a representative cross-section of some of the

  12. Cell adhesion behavior on the silicone rubber surface modified by using ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, In Tae; Jung, Chan Hee; Nh, Young Chang; Choi, Jae Hak [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kuk, In Seol [Hanyang University, Seoul (Korea, Republic of); An, Mi Young [Chungnam National University, Daejeon (Korea, Republic of)

    2009-12-15

    In this study we studied cell adhesion and proliferation on the surface of a silicone rubber modified by ion beam irradiation. The surface property of the irradiated silicone rubber was characterized by water contact angle and FT-IR analyses. It was observed that human (HEK293) fibroblast cells exhibit strong adhesion to the irradiated silicone surface. This enhanced adhesion of mammalian cells can be attributed to the increase in the hydrophilicity of the silicone surface by ion beam irradiation.

  13. A yeast surface display system for the discovery of ligands that trigger cell activation.

    Science.gov (United States)

    Cho, B K; Kieke, M C; Boder, E T; Wittrup, K D; Kranz, D M

    1998-11-01

    Opposing cells often communicate signalling events using multivalent interactions between receptors present on their cell surface. For example, T cells are typically activated when the T cell receptor (TCR) and its associated costimulatory molecules are multivalently engaged by the appropriate ligands present on an antigen presenting cell. In this report, yeast expressing high cell-surface levels of a TCR ligand (a recombinant antibody to the TCR Vbeta domain) were shown to act as 'pseudo' antigen presenting cells and induce T cell activation as monitored by increased levels of CD25 and CD69 and by downregulation of cell surface TCR. Similar levels of T cell activation could occur even when a 30-fold excess of irrelevant yeast was present, suggesting that such a yeast display system, by virtue of its ability to present ligands multivalently, may be used in highly sensitive procedures to identify novel polypeptides that interact multivalently with cell surface receptors and thereby trigger specific cellular responses.

  14. Resonant phenomena in colloidal crystals

    OpenAIRE

    Palberg, Thomas; Würth, Mathias; König, Peter; Simnacher, Erwin; Leiderer, Paul

    1992-01-01

    Colloidal crystals of completely deionized suspensions of latex speres are subjected to oscillatory and steady shear, as well as to homogeneous and inhomogeneous electric fields. Various resonant phenomena observed in such experiments are reported.

  15. Impaired cell surface expression of HLA-B antigens on mesenchymal stem cells and muscle cell progenitors

    DEFF Research Database (Denmark)

    Isa, Adiba; Nehlin, Jan; Sabir, Hardee Jawad;

    2010-01-01

    HLA class-I expression is weak in embryonic stem cells but increases rapidly during lineage progression. It is unknown whether all three classical HLA class-I antigens follow the same developmental program. In the present study, we investigated allele-specific expression of HLA-A, -B, and -C...... at the mRNA and protein levels on human mesenchymal stem cells from bone marrow and adipose tissue as well as striated muscle satellite cells and lymphocytes. Using multicolour flow cytometry, we found high cell surface expression of HLA-A on all stem cells and PBMC examined. Surprisingly, HLA-B was either...... undetectable or very weakly expressed on all stem cells protecting them from complement-dependent cytotoxicity (CDC) using relevant human anti-B and anti-Cw sera. IFNgamma stimulation for 48-72 h was required to induce full HLA-B protein expression. Quantitative real-time RT-PCR showed that IFNgamma induced...

  16. A simplified model for dynamics of cell rolling and cell-surface adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Cimrák, Ivan, E-mail: ivan.cimrak@fri.uniza.sk [Cell-in-fluid Research Group, http://cell-in-fluid.fri.uniza.sk Faculty of Management Science and Informatics, University of Žilina Univerzitná 8215/1, 010 26 Žilina (Slovakia)

    2015-03-10

    We propose a three dimensional model for the adhesion and rolling of biological cells on surfaces. We study cells moving in shear flow above a wall to which they can adhere via specific receptor-ligand bonds based on receptors from selectin as well as integrin family. The computational fluid dynamics are governed by the lattice-Boltzmann method. The movement and the deformation of the cells is described by the immersed boundary method. Both methods are fully coupled by implementing a two-way fluid-structure interaction. The adhesion mechanism is modelled by adhesive bonds including stochastic rules for their creation and rupture. We explore a simplified model with dissociation rate independent of the length of the bonds. We demonstrate that this model is able to resemble the mesoscopic properties, such as velocity of rolling cells.

  17. Mathematical Model for Hit Phenomena

    CERN Document Server

    Ishii, Akira; Hayashi, Takefumi; Matsuda, Naoya; Nakagawa, Takeshi; Arakaki, Hisashi; Yoshida, Narihiko

    2010-01-01

    The mathematical model for hit phenomena in entertainments is presented as a nonlinear, dynamical and non-equilibrium phenomena. The purchase intention for each person is introduced and direct and indirect communications are expressed as two-body and three-body interaction in our model. The mathematical model is expressed as coupled nonlinear differential equations. The important factor in the model is the decay time of rumor for the hit. The calculated results agree very well with revenues of recent 25 movies.

  18. Micropatterned polysaccharide surfaces via laser ablation for cell guidance

    Energy Technology Data Exchange (ETDEWEB)

    Barbucci, Rolando; Lamponi, Stefania; Pasqui, Daniela; Rossi, Antonella; Weber, Elisabetta

    2003-03-03

    Micropatterned materials were obtained by a controlled laser ablation of a photoimmobilised homogeneous layer of hyaluronic acid (Hyal) and its sulphated derivative (HyalS). The photoimmobilisation was performed by coating the polysaccharide, adequately functionalised with a photoreactive group, on aminosilanised glass substrate and immobilising it on the surface under UV light. Hyal or HyalS photoimmobilised samples were then subjected to laser ablation with wavelengths in the UV regions in order to drill the pattern. Four different patterns with stripes of 100, 50, 25 and 10 {mu}m were generated. A chemical characterisation by attenuated total reflection/Fourier transform infrared (ATR/FT-IR) and time of flight-secondary ions mass spectrometry (TOF-SIMS) confirmed the success of the laser ablation procedure and the presence of alternating stripes of polysaccharide and native glass. The exact dimensions of the stripes were determined by atomic force microscopy. The analysis of cell behaviour in terms of adhesion, proliferation and movement using mouse fibroblasts (3T3 line) and bovine aortic endothelial cells (BAEC) was also performed.

  19. EXAFS Study of Uranyl Complexation at Pseudomonas fluorescens Cell Surfaces

    Science.gov (United States)

    Bencheikh, R.; Bargar, J. R.; Tebo, B. M.

    2002-12-01

    Little is known about the roles of microbial biomass as a sink and source for uranium in contaminated aquifers, nor of the impact of bacterial biochemistry on uranium speciation in the subsurface. A significant role is implied by the high affinities of both Gram positive and Gram negative cells for binding uranyl (UO2{ 2+}). In the present study, Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy was used to identify membrane functional groups involved in uranyl binding to the Gram negative bacterium Pseudomonas fluorescens from pH 3 to pH 8. Throughout this pH-range, EXAFS spectra can be described primarily in terms of coordination of carboxylic groups to uranyl. U-C distances characteristic of 4-, 5- and 8- membered rings were observed, as well as the possibility of phosphato groups. Both shell-by-shell fits and principle component analyses indicate that the functional groups involved in binding of uranyl to the cell surface do not vary systematically across the pH range investigated. This result contrasts with EXAFS results of uranyl sorbed to Gram positive bacteria, and suggests an important role for long-chain carboxylate-terminated membrane functional groups in binding uranyl.

  20. Effects of DNP on the cell surface properties of marine bacteria and its implication for adhesion to surfaces

    Digital Repository Service at National Institute of Oceanography (India)

    Jain, A.; Nishad, K.K.; Bhosle, N.B.

    The effect of 2, 4-dinitrophenol (DNP) on extracelluar polysaccharides (EPS), cell surface charge, and hydrophobicity of six marine bacterial cultures was studied, and its influence on attachment of these bacteria to glass and polystyrene...

  1. Human epithelial cells exposed to functionalized multiwalled carbon nanotubes: interactions and cell surface modifications.

    Science.gov (United States)

    Fanizza, C; Casciardi, S; Incoronato, F; Cavallo, D; Ursini, C L; Ciervo, A; Maiello, R; Fresegna, A M; Marcelloni, A M; Lega, D; Alvino, A; Baiguera, S

    2015-09-01

    With the expansion of the production and applications of multiwalled carbon nanotubes (MWCNTs) in several industrial and science branches, the potential adverse effects on human health have attracted attention. Numerous studies have been conducted to evaluate how chemical functionalization may affect MWCNT effects; however, controversial data have been reported, showing either increased or reduced toxicity. In particular, the impact of carboxylation on MWCNT cytotoxicity is far from being completely understood. The aim of this work was the evaluation of the modifications induced by carboxylated-MWCNTs (MWCNTs-COOH) on cell surface and the study of cell-MWCNT-COOH interactions by means of field emission scanning electron microscope (FESEM). Human pulmonary epithelial cells (A549) were incubated with MWCNTs-COOH for different exposure times and concentrations (10 μg/mL for 1, 2, 4 h; 5, 10, 20 μg/mL for 24 h). At short incubation time, MWCNTs-COOH were easily observed associated with plasma membrane and in contact with microvilli. After 24 h exposure, FESEM analysis revealed that MWCNTs-COOH induced evident changes in the cellular surface in comparison to control cells: treated cells showed blebs, holes and a depletion of the microvilli density in association with structure modifications, such as widening and/or lengthening. In particular, an increase of cells showing holes and microvilli structure alterations was observed at 20 μg/mL concentration. FESEM analysis showed nanotube agglomerates, of different sizes, entering into the cell with two different mechanisms: inward bending of the membrane followed by nanotube sinking, and nanotube internalization directly through holes. The observed morphological microvilli modifications, induced by MWCNTs-COOH, could affect epithelial functions, such as the control of surfactant production and secretion, leading to pathological conditions, such as alveolar proteinosis. More detailed studies will be, however, necessary to

  2. MC3T3-E1 Cells on Titanium Surfaces with Nanometer Smoothness and Fibronectin Immobilization

    Directory of Open Access Journals (Sweden)

    Tohru Hayakawa

    2012-01-01

    Full Text Available The present study was aimed to evaluate the viability and total protein contents of osteoblast-like cells on the titanium surface with different surface mechanical treatment, namely, nanometer smoothing (Ra: approximately 2.0 nm and sandblasting (Ra: approximately 1.0 μm, and biochemical treatment, namely, with or without fibronectin immobilization. Fibronectin could be easily immobilized by tresyl chloride-activation technique. MC3T3-E1 cells were seeded on the different titanium surfaces. Cell viability was determined by MTT assay. At 1 day of cell culture, there were no significant differences in cell viability among four different titanium surfaces. At 11 days, sandblasted titanium surface with fibronectin immobilization showed the significantly highest cell viability than other titanium surface. No significant differences existed for total protein contents among four different titanium surfaces at 11 days of cell culture. Scanning electron microscopy observation revealed that smoothness of titanium surface produced more spread cell morphologies, but that fibronectin immobilization did not cause any changes of the morphologies of attached cells. Fibronectin immobilization provided greater amount of the number of attached cells and better arrangement of attached cells. In conclusion, the combination of sandblasting and fibronectin immobilization enhanced the cell viability and fibronectin immobilization providing better arrangements of attached cells.

  3. Cell adhesion on Ti surface with controlled roughness

    Directory of Open Access Journals (Sweden)

    Burgos-Asperilla, Laura

    2015-06-01

    Full Text Available In this report, the in situ interaction between Saos-2 osteoblast cells and a smooth Ti surface was examined over time. The adhesion kinetics and mechanisms of cellular proliferation were monitored by quartz crystal microbalance (QCM and electrochemical impedance spectroscopy (EIS. The rate of Saos-2 attachment on Ti surfaces, obtained from the measurements performed with the QCM, is a first-order reaction, with k=2.10−3 min−1. The impedance measurements indicate that in the absence of cells, the Ti resistance diminishes over time (7 days, due to the presence of amino acids and proteins from the culture medium that have been a dsorbed, while in the presence of osteoblasts, this decrease is much greater because of the compounds generated by the cells that accelerate the dissolution of Ti.En este trabajo, se ha estudiado la interacción in situ entre células osteoblásticas Saos-2 y una superficie de Ti de rugosidad controlada a lo largo del tiempo. El estudio de la cinética y los mecanismos de proliferación celular de adhesión se ha realizado a través de la microbalanza de cristal de cuarzo (QCM y espectroscopía de impedancia electroquímica (EIS. La velocidad de adhesión de los osteoblastos sobre la superficie de Ti obtenida a través de medidas con la QCM, sigue una reacción de primer orden, con k=2×10−3 min−1. Los ensayos de impedancia indican que, en ausencia de las células, la resistencia del Ti disminuye con el tiempo (7 días, debido a la presencia de aminoácidos y proteínas del medio de cultivo que se han adsorbido, mientras que en presencia de células, esta disminución es mucho mayor debido a los productos metabólicos generados por las células que aceleran la disolución del Ti.

  4. Cell-surface expression of Hsp70 on hematopoietic cancer cells after inhibition of HDAC activity

    DEFF Research Database (Denmark)

    Jensen, Helle

    The function of Hsp70 depends on its cellular location: When located intracellularly it exerts cytoprotective and anti-apoptotic functions, whereas it exerts immunostimulatory functions when located extracellularly. Secreted Hsp70 is for example involved in cross-presentation of cancer-derived an......The function of Hsp70 depends on its cellular location: When located intracellularly it exerts cytoprotective and anti-apoptotic functions, whereas it exerts immunostimulatory functions when located extracellularly. Secreted Hsp70 is for example involved in cross-presentation of cancer......-derived antigenic peptides, a function which is currently explored in immunotherapeutic approaches against cancer. Additionally, membrane-bound Hsp70 can stimulate antigen presenting cells to release proinflammatory cytokines and can provide a target structure for NK cell-mediated lysis. Human cancer cells...... frequently express Hsp70 on their cell surface, whereas the corresponding normal tissues do not. In addition, several clinically applied reagents, such as alkyl-lysophospholipides, chemotherapeutic agents, and anti-inflammatory reagents, have been found to enhance Hsp70 cell surface expression on cancer...

  5. X-ray photoelectron spectroscopy for the study of microbial cell surfaces

    NARCIS (Netherlands)

    van der Mei, Henderina C; de Vries, Jacob; Busscher, Hendrik J

    2000-01-01

    X-ray photoelectron spectroscopy (XPS) is well known for the characterisation of material surfaces, but at first glance, is an unexpected technique to study the composition of microbial cell surfaces. Despite the fact that intimate contact between materials and microbial cell surfaces occurs in many

  6. Surface Grafted Glycopolymer Brushes to Enhance Selective Adhesion of HepG2 Cells

    DEFF Research Database (Denmark)

    Chernyy, Sergey; Jensen, Bettina Elisabeth Brøgger; Shimizu, Kyoko;

    2013-01-01

    of the cell periphery. On the other hand the cells on bare glass substrate display spheroid morphology. Further analysis using ToF-SIMS imaging shows that the HepG2 cells on glycopolymer surfaces is enriched with protein fragment along the cell periphery which is absent in the case of cells on bare glass...

  7. The topology of plasminogen binding and activation on the surface of human breast cancer cells

    OpenAIRE

    Andronicos, N M; Ranson, M.

    2001-01-01

    The urokinase-dependent activation of plasminogen by breast cancer cells plays an important role in metastasis. We have previously shown that the metastatic breast cancer cell line MDA-MB-231 over-expresses urokinase and binds and efficiently activates plasminogen at the cell surface compared to non-metastatic cells. The aim of this study was to further characterise plasminogen binding and determine the topology of cell surface-bound plasminogen in terms of its potential for activation. The l...

  8. Increasing binding density of yeast cells by control of surface charge with allylamine grafting to ion modified polymer surfaces.

    Science.gov (United States)

    Tran, Clara T H; Kondyurin, Alexey; Chrzanowski, Wojciech; Bilek, Marcela M M; McKenzie, David R

    2014-10-01

    Plasma immersion ion implantation (PIII) treatment of polymers creates a biointerface capable of direct covalent immobilization of biomolecules. The immobilization of protein molecules is achieved by covalent bonds formed between embedded radicals on the treated surface and amino acid side chains and cells can be immobilized through cell-wall proteins. The attachment density of negatively charged entities on a PIII treated surface is inhibited by its negative surface charge at neutral pH. To reduce the negative charge of PIII treated surfaces in phosphate buffer (pH 7.4, 11mM), we develop an effective approach of grafting allylamine monomers onto the treated surface. The results reveal reactions between allylamine and radicals on the PIII treated surface. One of these triggers polymerization, increasing the number of amine groups grafted. As a consequence, the PIII treated polystyrene surface after allylamine exposure becomes more hydrophobic and less negatively charged in phosphate buffer. Using yeast cells as an example, we have shown a significant improvement (6-15 times) of cell density immobilized on the PIII treated surface after exposure to allylamine. PMID:25092587

  9. EDITORIAL: Quantum phenomena in Nanotechnology Quantum phenomena in Nanotechnology

    Science.gov (United States)

    Loss, Daniel

    2009-10-01

    Twenty years ago the Institute of Physics launched the journal Nanotechnology from its publishing house based in the home town of Paul Dirac, a legendary figure in the development of quantum mechanics at the turn of the last century. At the beginning of the 20th century, the adoption of quantum mechanical descriptions of events transformed the existing deterministic world view. But in many ways it also revolutionised the progress of research itself. For the first time since the 17th century when Francis Bacon established inductive reasoning as the means of advancing science from fact to axiom to law, theory was progressing ahead of experiments instead of providing explanations for observations that had already been made. Dirac's postulation of antimatter through purely theoretical investigation before its observation is the archetypal example of theory leading the way for experiment. The progress of nanotechnology and the development of tools and techniques that enabled the investigation of systems at the nanoscale brought with them many fascinating observations of phenomena that could only be explained through quantum mechanics, first theoretically deduced decades previously. At the nanoscale, quantum confinement effects dominate the electrical and optical properties of systems. They also render new opportunities for manipulating the response of systems. For example, a better understanding of these systems has enabled the rapid development of quantum dots with precisely determined properties, which can be exploited in a range of applications from medical imaging and photovoltaic solar cells to quantum computation, a radically new information technology being currently developed in many labs worldwide. As the first ever academic journal in nanotechnology, {\\it Nanotechnology} has been the forum for papers detailing progress of the science through extremely exciting times. In the early years of the journal, the investigation of electron spin led to the formulation

  10. Surface complexation of neptunium (V) onto whole cells and cell componets of Shewanella alga

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Donald Timothy [Los Alamos National Laboratory; Deo, Randhir P [ASU; Rittmann, Bruce E [ASU; Songkasiri, Warinthorn [UNAFFILIATED

    2008-01-01

    We systematically quantified surface complexation of neptunium(V) onto whole cells of Shewanella alga strain BrY and onto cell wall and extracellular polymeric substances (EPS) of S. alga. We first performed acid and base titrations and used the mathematical model FITEQL with constant-capacitance surface-complexation to determine the concentrations and deprotonation constants of specific surface functional groups. Deprotonation constants most likely corresponded to a carboxyl site associated with amino acids (pK{sub a} {approx} 2.4), a carboxyl group not associated with amino acids (pK{sub a} {approx} 5), a phosphoryl site (pK{sub a} {approx} 7.2), and an amine site (pK{sub a} > 10). We then carried out batch sorption experiments with Np(V) and each of the S. alga components at different pHs. Results show that solution pH influenced the speciation of Np(V) and each of the surface functional groups. We used the speciation sub-model of the biogeochemical model CCBATCH to compute the stability constants for Np(V) complexation to each surface functional group. The stability constants were similar for each functional group on S. alga bacterial whole cells, cell walls, and EPS, and they explain the complicated sorption patterns when they are combined with the aqueous-phase speciation of Np(V). For pH < 8, NpO{sub 2}{sup +} was the dominant form of Np(V), and its log K values for the low-pK{sub a} carboxyl, other carboxyl, and phosphoryl groups were 1.75, 1.75, and 2.5 to 3.1, respectively. For pH greater than 8, the key surface ligand was amine >XNH3+, which complexed with NpO{sub 2}(CO{sub 3}){sub 3}{sup 5-}. The log K for NpO{sub 2}(CO{sub 3}){sub 3}{sup 5-} complexed onto the amine groups was 3.1 to 3.6. All of the log K values are similar to those of Np(V) complexes with aqueous carboxyl and N-containing carboxyl ligands. These results point towards the important role of surface complexation in defining key actinide-microbiological interactions in the subsurface.

  11. Cell surface molecules and fibronectin-mediated cell adhesion: effect of proteolytic digestion of membrane proteins

    OpenAIRE

    1982-01-01

    Proteases have been used as a tool to investigate the role of surface molecules in fibronectin-mediated cell adhesion. Proteolytic digestion of membrane-proteins by pronase (1 mg/ml for 20 min at 37 degrees C) completely inhibited adhesion of baby hamster kidney (BHK) fibroblasts on fibronectin-coated plastic dishes. Various degrees of inhibition were also obtained after treatment with proteinase K, chymotrypsin, papain, subtilopeptidase A, and thermolysin. Protein synthesis was required to r...

  12. Quantitative comparison of a human cancer cell surface proteome between interphase and mitosis.

    Science.gov (United States)

    Özlü, Nurhan; Qureshi, Mohammad H; Toyoda, Yusuke; Renard, Bernhard Y; Mollaoglu, Gürkan; Özkan, Nazlı E; Bulbul, Selda; Poser, Ina; Timm, Wiebke; Hyman, Anthony A; Mitchison, Timothy J; Steen, Judith A

    2015-01-13

    The cell surface is the cellular compartment responsible for communication with the environment. The interior of mammalian cells undergoes dramatic reorganization when cells enter mitosis. These changes are triggered by activation of the CDK1 kinase and have been studied extensively. In contrast, very little is known of the cell surface changes during cell division. We undertook a quantitative proteomic comparison of cell surface-exposed proteins in human cancer cells that were tightly synchronized in mitosis or interphase. Six hundred and twenty-eight surface and surface-associated proteins in HeLa cells were identified; of these, 27 were significantly enriched at the cell surface in mitosis and 37 in interphase. Using imaging techniques, we confirmed the mitosis-selective cell surface localization of protocadherin PCDH7, a member of a family with anti-adhesive roles in embryos. We show that PCDH7 is required for development of full mitotic rounding pressure at the onset of mitosis. Our analysis provided basic information on how cell cycle progression affects the cell surface. It also provides potential pharmacodynamic biomarkers for anti-mitotic cancer chemotherapy.

  13. Coupling Binding to Catalysis – Using Yeast Cell Surface Display to Select Enzymatic Activities

    OpenAIRE

    Zhang, Keya; Bhuripanyo, Karan; Wang, Yiyang; Yin, Jun

    2015-01-01

    We find yeast cell surface display can be used to engineer enzymes by selecting the enzyme library for high affinity binding to reaction intermediates. Here we cover key steps of enzyme engineering on the yeast cell surface including library design, construction, and selection based on magnetic and fluorescence activated cell sorting.

  14. Coupling Binding to Catalysis: Using Yeast Cell Surface Display to Select Enzymatic Activities.

    Science.gov (United States)

    Zhang, Keya; Bhuripanyo, Karan; Wang, Yiyang; Yin, Jun

    2015-01-01

    We find yeast cell surface display can be used to engineer enzymes by selecting the enzyme library for high affinity binding to reaction intermediates. Here we cover key steps of enzyme engineering on the yeast cell surface including library design, construction, and selection based on magnetic and fluorescence-activated cell sorting. PMID:26060080

  15. Distribution, Arrangement and Interconnectedness of Cell Surface Receptor sites in the body of an Organism

    Directory of Open Access Journals (Sweden)

    Utoh-Nedosa

    2011-01-01

    Full Text Available Cell surface receptors have been identified as the sites of disease infectivity in living organisms in a previous study. Drugs used for the treatment or cure of infections have to eliminate infections through attacking infective organisms at the cell surface receptors to which the infective organisms are attached. Problem statement: The present study examines a wide sample of living things to get more information on the relationship of one cell surface receptor to other cell surface receptors in the body of an organism. Approach: The arrangement of cell surface receptors on the external covering of a few samples of fruits, leaves, stems, dry wood of a plant; wall gecko and some parts of the human body, were examined and photographed. Transverse and/or Longitudinal sections of soursop fruit and sycamore fruit were also examined and photographed. The five different coverings of the fleshy part of a coconut were also photographed. The photographs were studied to note the relationship of disease infection attached to cell surface receptors on the external surface of an organ to disease infection on the innermost covering of the same organ. Results: The results of the study showed that all living things had ubiquitous distribution of cell surface receptors which are usually observable with the unaided eye as dots or spots on the external covering of an organ, tissue or cell. The dots or receptor sites of cell surface receptors in the study are arranged in lines which were perpendicular, oblique, transverse or arranged in any other lineal geometrical form. The lineally arranged cell surface receptors were noted to be connected by grooves, channels or pipes which joined other receptor channels or intersected with them. Smaller cell surface receptor channels emptied into bigger channels or continued as small sized channels that ran side by side in a connective tissue bundle. These connective tissue bundles that carried many independent small-sized cell

  16. Measurement and modelling of local phenomena in polymer electrolyte fuel cells; Messung und Modellierung lokaler Phaenomene in Polymer-Elektrolyt-Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Eckl, R.

    2007-05-15

    Within the scope of this thesis, a new method for in situ current distribution measurement based on printed circuit board technology is developed and applied to polymer electrolyte fuel cells. Using the finite element method, the accuracy of this new approach is compared to conventional techniques and an estimate of the maximum uncertainty of measurement due to lateral currents is given. The effects of variable operating parameters on local electrochemical performance are studied by stationary and dynamic testing of laboratory cells with 100 cm{sup 2} active area. Based on experimental results, load conditions on the anode side are modelled and characteristic water management issues are analysed with the aid of computational fluid dynamics (CFD) simulations. (orig.)

  17. The effect of cerium valence states at cerium oxide nanoparticle surfaces on cell proliferation

    KAUST Repository

    Naganuma, Tamaki

    2014-05-01

    Understanding and controlling cell proliferation on biomaterial surfaces is critical for scaffold/artificial-niche design in tissue engineering. The mechanism by which underlying integrin ligates with functionalized biomaterials to induce cell proliferation is still not completely understood. In this study, poly-l-lactide (PL) scaffold surfaces were functionalized using layers of cerium oxide nanoparticles (CNPs), which have recently attracted attention for use in therapeutic application due to their catalytic ability of Ce4+ and Ce3+ sites. To isolate the influence of Ce valance states of CNPs on cell proliferation, human mesenchymal stem cells (hMSCs) and osteoblast-like cells (MG63) were cultured on the PL/CNP surfaces with dominant Ce4+ and Ce3+ regions. Despite cell type (hMSCs and MG63 cells), different surface features of Ce4+ and Ce3+ regions clearly promoted and inhibited cell spreading, migration and adhesion behavior, resulting in rapid and slow cell proliferation, respectively. Cell proliferation results of various modified CNPs with different surface charge and hydrophobicity/hydrophilicity, indicate that Ce valence states closely correlated with the specific cell morphologies and cell-material interactions that trigger cell proliferation. This finding suggests that the cell-material interactions, which influence cell proliferation, may be controlled by introduction of metal elements with different valence states onto the biomaterial surface. © 2014 Elsevier Ltd.

  18. Cell surface estrogen receptor alpha is upregulated during subchronic metabolic stress and inhibits neuronal cell degeneration.

    Directory of Open Access Journals (Sweden)

    Cristiana Barbati

    Full Text Available In addition to the classical nuclear estrogen receptor, the expression of non-nuclear estrogen receptors localized to the cell surface membrane (mER has recently been demonstrated. Estrogen and its receptors have been implicated in the development or progression of numerous neurodegenerative disorders. Furthermore, the pathogenesis of these diseases has been associated with disturbances of two key cellular programs: apoptosis and autophagy. An excess of apoptosis or a defect in autophagy has been implicated in neurodegeneration. The aim of this study was to clarify the role of ER in determining neuronal cell fate and the possible implication of these receptors in regulating either apoptosis or autophagy. The human neuronal cell line SH-SY5Y and mouse neuronal cells in primary culture were thus exposed to chronic minimal peroxide treatment (CMP, a form of subcytotoxic minimal chronic stress previously that mimics multiple aspects of long-term cell stress and represents a limited molecular proxy for neurodegenerative processes. We actually found that either E2 or E2-bovine serum albumin construct (E2BSA, i.e. a non-permeant form of E2 was capable of modulating intracellular cell signals and regulating cell survival and death. In particular, under CMP, the up-regulation of mERα, but not mERβ, was associated with functional signals (ERK phosphorylation and p38 dephosphorylation compatible with autophagic cytoprotection triggering and leading to cell survival. The mERα trafficking appeared to be independent of the microfilament system cytoskeletal network but was seemingly associated with microtubular apparatus network, i.e., to MAP2 molecular chaperone. Importantly, antioxidant treatments, administration of siRNA to ERα, or the presence of antagonist of ERα hindered these events. These results support that the surface expression of mERα plays a pivotal role in determining cell fate, and that ligand-induced activation of mER signalling exerts a

  19. An efficient delivery of DAMPs on the cell surface by the unconventional secretion pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Haiyan; Wang, Lan; Ruan, Yuanyuan; Zhou, Lei; Zhang, Dongmei [Department of Biochemistry and Molecular Biology, Shanghai Medical Collage, Fudan University, Shanghai 200032 (China); Min, Zhihui [Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai 200032 (China); Xie, Jianhui [Department of Biochemistry and Molecular Biology, Shanghai Medical Collage, Fudan University, Shanghai 200032 (China); Yu, Min, E-mail: minyu@shmu.edu.cn [Department of Biochemistry and Molecular Biology, Shanghai Medical Collage, Fudan University, Shanghai 200032 (China); Gu, Jianxin [Department of Biochemistry and Molecular Biology, Shanghai Medical Collage, Fudan University, Shanghai 200032 (China)

    2011-01-21

    Research highlights: {yields} Hsp60 transported to cell surface through the classical secretory pathway was modified with N-glycosylation. {yields} HSAPB-N18 could efficiently deliver Hsp60 to the cell surface via the unconventional secretory pathway. {yields} Cell surface Hsp60 delivered by HASPB-N18 has a proper conformation. {yields} HASPB-N18 is an efficient delivery signal for other DAMP molecules such as Hsp70 and HMGB1. -- Abstract: Damage-associated molecular patterns (DAMPs) are signals released from dying cells evoking the immune system response in several inflammatory disorders. In normal situations, many of DAMPs are nuclear or cytosolic proteins with defined intracellular function, but they could be found on the cell surface following tissue injury. The biological function of the translocated DAMPs is still not well known and an efficient delivery of these molecules on the cell surface is required to clarify their biological effects. In this study, we demonstrated that an unclassical secretory signal peptide, N-terminal 18 amino acids of HASPB (HASPB-N18), could efficiently deliver Hsp60, Hsp70, and HMGB1 on the cell surface. Furthermore, the delivery of these molecules on the cell surface by HASPB-N18 is not limited to a special cell line because several cell lines could use this delivery signal to deliver these molecules on the cell surface. Moreover, we demonstrated that Hsp60 on the cell surface delivered by HASPB-N18 could be recognized by a soluble form of LOX-1, which implies that DAMPs on the cell surface delivered by HASPB-N18 have a proper conformation during transport. Therefore, delivery of DAMPs by HASPB-N18 is a reliable model to further understand the biological significance of DAMPs on the cell surface.

  20. Heparanase facilitates cell adhesion and spreading by clustering of cell surface heparan sulfate proteoglycans.

    Directory of Open Access Journals (Sweden)

    Flonia Levy-Adam

    Full Text Available Heparanase is a heparan sulfate (HS degrading endoglycosidase participating in extracellular matrix degradation and remodeling. Apart of its well characterized enzymatic activity, heparanase was noted to exert also enzymatic-independent functions. Non-enzymatic activities of heparanase include enhanced adhesion of tumor-derived cells and primary T-cells. Attempting to identify functional domains of heparanase that would serve as targets for drug development, we have identified heparin binding domains of heparanase. A corresponding peptide (residues Lys(158-Asp(171, termed KKDC was demonstrated to physically associate with heparin and HS, and to inhibit heparanase enzymatic activity. We hypothesized that the pro-adhesive properties of heparanase are mediated by its interaction with cell surface HS proteoglycans, and utilized the KKDC peptide to examine this possibility. We provide evidence that the KKDC peptide interacts with cell membrane HS, resulting in clustering of syndecan-1 and syndecan-4. We applied classical analysis of cell morphology, fluorescent and time-lapse microscopy and demonstrated that the KKDC peptide efficiently stimulates the adhesion and spreading of various cell types, mediated by PKC, Src, and the small GTPase Rac1. These results support, and further substantiate the notion that heparanase function is not limited to its enzymatic activity.

  1. Containment severe accident thermohydraulic phenomena

    International Nuclear Information System (INIS)

    This report describes and discusses the containment accident progression and the important severe accident containment thermohydraulic phenomena. The overall objective of the report is to provide a rather detailed presentation of the present status of phenomenological knowledge, including an account of relevant experimental investigations and to discuss, to some extent, the modelling approach used in the MAAP 3.0 computer code. The MAAP code has been used in Sweden as the main tool in the analysis of severe accidents. The dependence of the containment accident progression and containment phenomena on the initial conditions, which in turn are heavily dependent on the in-vessel accident progression and phenomena as well as associated uncertainties, is emphasized. The report is in three parts dealing with: * Swedish reactor containments, the severe accident mitigation programme in Sweden and containment accident progression in Swedish PWRs and BWRs as predicted by the MAAP 3.0 code. * Key non-energetic ex-vessel phenomena (melt fragmentation in water, melt quenching and coolability, core-concrete interaction and high temperature in containment). * Early containment threats due to energetic events (hydrogen combustion, high pressure melt ejection and direct containment heating, and ex-vessel steam explosions). The report concludes that our understanding of the containment severe accident progression and phenomena has improved very significantly over the parts ten years and, thereby, our ability to assess containment threats, to quantify uncertainties, and to interpret the results of experiments and computer code calculations have also increased. (au)

  2. Teaching optical phenomena with Tracker

    Science.gov (United States)

    Rodrigues, M.; Simeão Carvalho, P.

    2014-11-01

    Since the invention and dissemination of domestic laser pointers, observing optical phenomena is a relatively easy task. Any student can buy a laser and experience at home, in a qualitative way, the reflection, refraction and even diffraction phenomena of light. However, quantitative experiments need instruments of high precision that have a relatively complex setup. Fortunately, nowadays it is possible to analyse optical phenomena in a simple and quantitative way using the freeware video analysis software ‘Tracker’. In this paper, we show the advantages of video-based experimental activities for teaching concepts in optics. We intend to show: (a) how easy the study of such phenomena can be, even at home, because only simple materials are needed, and Tracker provides the necessary measuring instruments; and (b) how we can use Tracker to improve students’ understanding of some optical concepts. We give examples using video modelling to study the laws of reflection, Snell’s laws, focal distances in lenses and mirrors, and diffraction phenomena, which we hope will motivate teachers to implement it in their own classes and schools.

  3. Distinct roles for dystroglycan, beta1 integrin and perlecan in cell surface laminin organization

    DEFF Research Database (Denmark)

    Henry, M D; Satz, J S; Brakebusch, C;

    2001-01-01

    integrin-deficient ES cells, laminin-1 binds to the cell surface, but fails to organize into more morphologically complex structures. This result indicates that beta1 integrin function is required after DG function in the cell surface-mediated laminin assembly process. In perlecan-deficient ES cells......, the formation of complex laminin-1 structures is defective, implicating perlecan in the laminin matrix assembly process. Moreover, laminin and perlecan reciprocally modulate the organization of the other on the cell surface. Taken together, the data support a model whereby DG serves as a receptor essential......Dystroglycan (DG) is a cell surface receptor for several extracellular matrix (ECM) molecules including laminins, agrin and perlecan. Recent data indicate that DG function is required for the formation of basement membranes in early development and the organization of laminin on the cell surface...

  4. Effect of surface treatments of titanium on amphotericin B-treated Candida albicans persister cells

    OpenAIRE

    Tsang, CSP; Tang, DYK

    2010-01-01

    Although persister cells in Candida albicans biofilm may contribute to its increased resistance to antifungal drugs, little information is available on the formation of Candida persister cells on titanium surfaces. The effect of different surface treatments of Ti on persister cells was determined in the present study. Titanium discs were surface-treated by three different methods (Group A - polishing, Group B - sandblasting followed by acid-etching, and Group C - sandblasting alone). Persiste...

  5. Detection of black holes from optical phenomena

    International Nuclear Information System (INIS)

    The way by which the bending of light rays around black holes could give rise to optical phenomena, other than the lens effect, leading to the detection of them, is examined. One such phenomenon is the fact that we will see a ring of brightness around the black hole when we flash light on it. Another phenomenon is the appearance of a nebulosity around the black hole coming from the scattering of light from all discrete sources of the sky when it passes near the black hole. We examine the surface brightness of the phenomena seen and calculate the maximum distance of the black hole in order for the associated phenomena to appear on photographs. We find that primordial black holes of mass M ≅ 1016 Msolarmasses would be detectable by the first phenomenon if they existed within 5 Mpc distance from us, while they would be detectable by the second phenomenon if they existed within 200-300 Mpc distance from us. (author)

  6. Critical Phenomena in Gravitational Collapse

    Directory of Open Access Journals (Sweden)

    Gundlach Carsten

    1999-01-01

    Full Text Available As first discovered by Choptuik, the black hole threshold in the space of initial data for general relativity shows both surprising structure and surprising simplicity. Universality, power-law scaling of the black hole mass, and scale echoing have given rise to the term 'critical phenomena'. They are explained by the existence of exact solutions which are attractors within the black hole threshold, that is, attractors of codimension one in phase space, and which are typically self-similar. This review gives an introduction to the phenomena, tries to summarize the essential features of what is happening, and then presents extensions and applications of this basic scenario. Critical phenomena are of interest particularly for creating surprising structure from simple equations, and for the light they throw on cosmic censorship and the generic dynamics of general relativity.

  7. Controlling cell adhesion via replication of laser micro/nano-textured surfaces on polymers

    International Nuclear Information System (INIS)

    The aim of this study is to investigate cell adhesion and viability on highly rough polymeric surfaces with gradient roughness ratios and wettabilities prepared by microreplication of laser micro/nano-textured Si surfaces. Negative replicas on polydimethylsiloxane as well as positive ones on a photocurable (organically modified ceramic) and a biodegradable (poly(lactide-co-glycolide)) polymer have been successfully reproduced. The final culture substrates comprised from forests of micron-sized conical spikes exhibiting a range of roughness ratios and wettabilities, was achieved by changing the laser fluence used to fabricate the original template surfaces. Cell culture experiments were performed with the fibroblast NIH/3T3 and PC12 neuronal cell lines in order to investigate how these surfaces are capable of modulating different types of cellular responses including, viability, adhesion and morphology. The results showed a preferential adhesion of both cell types on the microstructured surfaces compared to the unstructured ones. In particular, the fibroblast NIH/3T3 cells show optimal adhesion for small roughness ratios, independent of the surface wettability and polymer type, indicating a non-monotonic dependence of cell adhesion on surface energy. In contrast, the PC12 cells were observed to adhere well to the patterned surfaces independent of the roughness ratio and wettability. These experimental findings are correlated with micromechanical measurements performed on the unstructured and replicated surfaces and discussed on the basis of previous observations describing the relation of cell response to surface energy and rigidity.

  8. Controlling cell adhesion via replication of laser micro/nano-textured surfaces on polymers

    Energy Technology Data Exchange (ETDEWEB)

    Koufaki, Niki; Ranella, Anthi; Barberoglou, Marios; Psycharakis, Stylianos; Fotakis, Costas; Stratakis, Emmanuel [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), 711 10, Heraklion, Crete (Greece); Aifantis, Katerina E, E-mail: stratak@iesl.forth.gr [Lab of Mechanics and Materials, Aristotle University of Thessaloniki, Thessaloniki (Greece)

    2011-12-15

    The aim of this study is to investigate cell adhesion and viability on highly rough polymeric surfaces with gradient roughness ratios and wettabilities prepared by microreplication of laser micro/nano-textured Si surfaces. Negative replicas on polydimethylsiloxane as well as positive ones on a photocurable (organically modified ceramic) and a biodegradable (poly(lactide-co-glycolide)) polymer have been successfully reproduced. The final culture substrates comprised from forests of micron-sized conical spikes exhibiting a range of roughness ratios and wettabilities, was achieved by changing the laser fluence used to fabricate the original template surfaces. Cell culture experiments were performed with the fibroblast NIH/3T3 and PC12 neuronal cell lines in order to investigate how these surfaces are capable of modulating different types of cellular responses including, viability, adhesion and morphology. The results showed a preferential adhesion of both cell types on the microstructured surfaces compared to the unstructured ones. In particular, the fibroblast NIH/3T3 cells show optimal adhesion for small roughness ratios, independent of the surface wettability and polymer type, indicating a non-monotonic dependence of cell adhesion on surface energy. In contrast, the PC12 cells were observed to adhere well to the patterned surfaces independent of the roughness ratio and wettability. These experimental findings are correlated with micromechanical measurements performed on the unstructured and replicated surfaces and discussed on the basis of previous observations describing the relation of cell response to surface energy and rigidity.

  9. Numerical modeling of complex heat transfer phenomena in cooling applications

    OpenAIRE

    Hou, Xiaofei

    2015-01-01

    Multiphase and multicomponent flows are frequently encountered in the cooling applications due to combined heat transfer and phase change phenomena. Two-fluid and homogeneous mixture models are chosen to numerically study these flows in the cooling phenomena. Therefore this work is divided in two main parts. In the first part, a two-fluid model algorithm for free surface flows is presented. The two fluid model is usually used as a tool to simulate dispersed flow. With its extension, it may al...

  10. Morphological investigations of cells that adhered to the irregular patterned polydimethylsiloxane (PDMS) surface without reagents.

    Science.gov (United States)

    Chung, Sung Hee; Min, Junhong

    2009-07-01

    Polydimethylsiloxane (PDMS) surface consisting irregular pattern was investigated to develop cell-based biochip using PDMS. PDMS surface was modified with nano- and micro-combined patterns using surface deformation technology. Hydrophobicity of nano-patterned PDMS surface was sustained. Nevertheless it has irregular patterns consisting of micro- and nano-patterns. According to atomic force microscopy (AFM), scanning electron microscopy (SEM) and confocal microscopy results by immunostaining method, human mammary epithelial cells (HMEC) adhered well on irregularly patterned surface without any reagents such as gelatin and collagen, compared to commercial culture dish. It implies PDMS material can be utilized as template for cell-based biochip without any reagents. PMID:19427124

  11. Whistlers and related ionospheric phenomena

    CERN Document Server

    Helliwell, Robert A

    2006-01-01

    The investigation of whistlers and related phenomena is a key element in studies of very-low-frequency propagation, satellite communication, the outer ionosphere, and solar-terrestrial relationships. This comprehensive text presents a history of the study of the phenomena and includes all the elements necessary for the calculation of the characteristics of whistlers and whistler-mode signals.An introduction and brief history are followed by a summary of the theory of whistlers and a detailed explanation of the calculation of their characteristics. Succeeding chapters offer a complete atlas of

  12. Undergraduates' understanding of cardiovascular phenomena.

    Science.gov (United States)

    Michael, Joel A; Wenderoth, Mary Pat; Modell, Harold I; Cliff, William; Horwitz, Barbara; McHale, Philip; Richardson, Daniel; Silverthorn, Dee; Williams, Stephen; Whitescarver, Shirley

    2002-12-01

    Undergraduates students in 12 courses at 8 different institutions were surveyed to determine the prevalence of 13 different misconceptions (conceptual difficulties) about cardiovascular function. The prevalence of these misconceptions ranged from 20 to 81% and, for each misconception, was consistent across the different student populations. We also obtained explanations for the students' answers either as free responses or with follow-up multiple-choice questions. These results suggest that students have a number of underlying conceptual difficulties about cardiovascular phenomena. One possible source of some misconceptions is the students' inability to apply simple general models to specific cardiovascular phenomena. Some implications of these results for teachers of physiology are discussed.

  13. Micro- and nanoscale phenomena in tribology

    CERN Document Server

    Chung, Yip-Wah

    2011-01-01

    Drawn from presentations at a recent National Science Foundation Summer Institute on Nanomechanics, Nanomaterials, and Micro/Nanomanufacturing, Micro- and Nanoscale Phenomena in Tribology explores the convergence of the multiple science and engineering disciplines involved in tribology and the connection from the macro to nano world. Written by specialists from computation, materials science, mechanical engineering, surface physics, and chemistry, each chapter provides up-to-date coverage of both basic and advanced topics and includes extensive references for further study.After discussing the

  14. Quenching phenomena in natural circulation loop

    Energy Technology Data Exchange (ETDEWEB)

    Umekawa, Hisashi; Ozawa, Mamoru [Kansai Univ., Osaka (Japan); Ishida, Naoki [Daihatsu Motor Company, Osaka (Japan)

    1995-09-01

    Quenching phenomena has been investigated experimentally using circulation loop of liquid nitrogen. During the quenching under natural circulation, the heat transfer mode changes from film boiling to nucleate boiling, and at the same time flux changes with time depending on the vapor generation rate and related two-phase flow characteristics. Moreover, density wave oscillations occur under a certain operating condition, which is closely related to the dynamic behavior of the cooling curve. The experimental results indicates that the occurrence of the density wave oscillation induces the deterioration of effective cooling of the heat surface in the film and the transition boiling regions, which results in the decrease in the quenching velocity.

  15. Enhanced compatibility of chemically modified titanium surface with periodontal ligament cells

    Science.gov (United States)

    Kado, T.; Hidaka, T.; Aita, H.; Endo, K.; Furuichi, Y.

    2012-12-01

    A simple chemical modification method was developed to immobilize cell-adhesive molecules on a titanium surface to improve its compatibility with human periodontal ligament cells (HPDLCs).The polished titanium disk was immersed in 1% (v/v) p-vinylbenzoic acid solution for 2 h to introduce carboxyl groups onto the surface. After rinsing with distilled deionized water, the titanium disk was dipped into 1.47% 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide solution containing 0.1 mg/ml Gly-Arg-Gly-Asp-Ser (GRGDS), human plasma fibronectin (pFN), or type I collagen from calf skin (Col) to covalently immobilize the cell-adhesive molecules on the titanium surface via formation of peptide bonds. X-ray photoelectron spectroscopy analyses revealed that cell-adhesive molecules were successfully immobilized on the titanium surfaces. The Col-immobilized titanium surface revealed higher values regarding nano rough characteristics than the as-polished titanium surface under scanning probe microscopy. The number of HPDLCs attached to both the pFN- and Col-immobilized titanium surfaces was twice that attached to the as-polished titanium surfaces. The cells were larger with the cellular processes that stretched to a greater extent on the pFN- and Col-immobilized titanium surfaces than on the as-polished titanium surface (p < 0.05). HPDLCs on the Col-immobilized titanium surfaces showed more extensive expression of vinculin at the tips of cell projections and more contiguously along the cell outline than on the as-polished, GRGDS-immobilized and pFN-immobilized titanium surfaces. It was concluded that cell-adhesive molecules successfully immobilized on the titanium surface and improved the compatibility of the surface with HPDLCs. The Col-immobilized titanium surface could be used for forming ligament-like tissues around titanium dental implants.

  16. Glioma Cell Proliferation Controlled by ERK Activity-Dependent Surface Expression of PDGFRA

    OpenAIRE

    Dongfeng Chen; Duo Zuo; Cheng Luan; Min Liu; Manli Na; Liang Ran; Yingyu Sun; Annette Persson; Elisabet Englund; Leif G Salford; Erik Renström; Xiaolong Fan; Enming Zhang

    2014-01-01

    Increased PDGFRA signaling is an essential pathogenic factor in many subtypes of gliomas. In this context the cell surface expression of PDGFRA is an important determinant of ligand sensing in the glioma microenvironment. However, the regulation of spatial distribution of PDGFRA in glioma cells remains poorly characterized. Here, we report that cell surface PDGFRA expression in gliomas is negatively regulated by an ERK-dependent mechanism, resulting in reduced proliferation of glioma cells. G...

  17. Exocellular esterase and emulsan release from the cell surface of Acinetobacter calcoaceticus.

    OpenAIRE

    Shabtai, Y; Gutnick, D L

    1985-01-01

    An esterase activity has been found, both in the cell-free growth medium and on the cell surface of the hydrocarbon-degrading Acinetobacter calcoaceticus RAG-1. The enzyme catalyzed the hydrolysis of acetyl and other acyl groups from triglycerides and aryl and alkyl esters. Emulsan, the extracellular heteropolysaccharide bioemulsifier produced by strain RAG-1, was also a substrate for the enzyme. Gel filtration showed that the cell-free enzyme was released from the cell surface either emulsan...

  18. Oligonucleotide delivery with cell surface binding and cell penetrating Peptide amphiphile nanospheres.

    Science.gov (United States)

    Mumcuoglu, Didem; Sardan, Melis; Tekinay, Turgay; Guler, Mustafa O; Tekinay, Ayse B

    2015-05-01

    A drug delivery system designed specifically for oligonucleotide therapeutics can ameliorate the problems associated with the in vivo delivery of these molecules. The internalization of free oligonucleotides is challenging, and cytotoxicity is the main obstacle for current transfection vehicles. To develop nontoxic delivery vehicles for efficient transfection of oligonucleotides, we designed a self-assembling peptide amphiphile (PA) nanosphere delivery system decorated with cell penetrating peptides (CPPs) containing multiple arginine residues (R4 and R8), and a cell surface binding peptide (KRSR), and report the efficiency of this system in delivering G-3129, a Bcl-2 antisense oligonucleotide (AON). PA/AON (peptide amphiphile/antisense oligonucleotide) complexes were characterized with regards to their size and secondary structure, and their cellular internalization efficiencies were evaluated. The effect of the number of arginine residues on the cellular internalization was investigated by both flow cytometry and confocal imaging, and the results revealed that uptake efficiency improved as the number of arginines in the sequence increased. The combined effect of cell penetration and surface binding property on the cellular internalization and its uptake mechanism was also evaluated by mixing R8-PA and KRSR-PA. R8 and R8/KRSR decorated PAs were found to drastically increase the internalization of AONs compared to nonbioactive PA control. Overall, the KRSR-decorated self-assembled PA nanospheres were demonstrated to be noncytotoxic delivery vectors with high transfection rates and may serve as a promising delivery system for AONs. PMID:25828697

  19. PROTEIN ADSORPTION AND CELL ADHESION ON RGD-FUNCTIONALIZED SILICON SUBSTRATE SURFACES

    Institute of Scientific and Technical Information of China (English)

    Wei-fang Tong; Xiao-li Liu; Fei Pan; Zhao-qiang Wu; Wen-wen Jiang

    2013-01-01

    A method was developed to modify silicon surfaces with good protein resistance and specific cell attachment.A silicon surface was initially deposited using a block copolymer of N-vinylpyrrolidone (NVP) and 2-hydroxyethyl methacrylate (HEMA) (PVP-b-PHEMA) film through surface-initiated atom transfer radical polymerization and then further immobilized using a short arginine-glycine-aspartate (RGD) peptide.Our results demonstrate that the RGD-modified surfaces (Si-RGD) can suppress non-specific adsorption of proteins and induce the adhesion of L929 cells.The Si-RGD surface exhibited higher cell proliferation rates than the unmodified silicon surface.This research established a simple method for the fabrication of dual-functional silicon surface that combines antifouling and cell attachment promotion.

  20. Cell recognition molecule L1 promotes embryonic stem cell differentiation through the regulation of cell surface glycosylation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian 116023 (China); Huang, Xiaohua [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Clinical Biochemistry, College of Laboratory Medicine, Dalian Medical University, Dalian 116044 (China); An, Yue [Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian 116023 (China); Ren, Feng [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Yang, Zara Zhuyun; Zhu, Hongmei; Zhou, Lei [The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650228 (China); Department of Anatomy and Developmental Biology, Monash University, Clayton 3800 (Australia); He, Xiaowen; Schachner, Melitta [Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ (United States); Xiao, Zhicheng, E-mail: zhicheng.xiao@monash.edu [The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650228 (China); Department of Anatomy and Developmental Biology, Monash University, Clayton 3800 (Australia); Ma, Keli, E-mail: makeli666@aliyun.com [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Li, Yali, E-mail: yalilipaper@gmail.com [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Anatomy, National University of Singapore, Singapore 119078 (Singapore)

    2013-10-25

    Highlights: •Down-regulating FUT9 and ST3Gal4 expression blocks L1-induced neuronal differentiation of ESCs. •Up-regulating FUT9 and ST3Gal4 expression in L1-ESCs depends on the activation of PLCγ. •L1 promotes ESCs to differentiate into neuron through regulating cell surface glycosylation. -- Abstract: Cell recognition molecule L1 (CD171) plays an important role in neuronal survival, migration, differentiation, neurite outgrowth, myelination, synaptic plasticity and regeneration after injury. Our previous study has demonstrated that overexpressing L1 enhances cell survival and proliferation of mouse embryonic stem cells (ESCs) through promoting the expression of FUT9 and ST3Gal4, which upregulates cell surface sialylation and fucosylation. In the present study, we examined whether sialylation and fucosylation are involved in ESC differentiation through L1 signaling. RNA interference analysis showed that L1 enhanced differentiation of ESCs into neurons through the upregulation of FUT9 and ST3Gal4. Furthermore, blocking the phospholipase Cγ (PLCγ) signaling pathway with either a specific PLCγ inhibitor or knockdown PLCγ reduced the expression levels of both FUT9 and ST3Gal4 mRNAs and inhibited L1-mediated neuronal differentiation. These results demonstrate that L1 promotes neuronal differentiation from ESCs through the L1-mediated enhancement of FUT9 and ST3Gal4 expression.

  1. Cell recognition molecule L1 promotes embryonic stem cell differentiation through the regulation of cell surface glycosylation

    International Nuclear Information System (INIS)

    Highlights: •Down-regulating FUT9 and ST3Gal4 expression blocks L1-induced neuronal differentiation of ESCs. •Up-regulating FUT9 and ST3Gal4 expression in L1-ESCs depends on the activation of PLCγ. •L1 promotes ESCs to differentiate into neuron through regulating cell surface glycosylation. -- Abstract: Cell recognition molecule L1 (CD171) plays an important role in neuronal survival, migration, differentiation, neurite outgrowth, myelination, synaptic plasticity and regeneration after injury. Our previous study has demonstrated that overexpressing L1 enhances cell survival and proliferation of mouse embryonic stem cells (ESCs) through promoting the expression of FUT9 and ST3Gal4, which upregulates cell surface sialylation and fucosylation. In the present study, we examined whether sialylation and fucosylation are involved in ESC differentiation through L1 signaling. RNA interference analysis showed that L1 enhanced differentiation of ESCs into neurons through the upregulation of FUT9 and ST3Gal4. Furthermore, blocking the phospholipase Cγ (PLCγ) signaling pathway with either a specific PLCγ inhibitor or knockdown PLCγ reduced the expression levels of both FUT9 and ST3Gal4 mRNAs and inhibited L1-mediated neuronal differentiation. These results demonstrate that L1 promotes neuronal differentiation from ESCs through the L1-mediated enhancement of FUT9 and ST3Gal4 expression

  2. Hydrophobic fractal surface from glycerol tripalmitate and the effects on C6 glioma cell growth.

    Science.gov (United States)

    Zhang, Shanshan; Chen, Xuerui; Yu, Jing; Hong, Biyuan; Lei, Qunfang; Fang, Wenjun

    2016-06-01

    To provide a biomimic environment for glial cell culture, glycerol tripalmitate (PPP) has been used as a raw material to prepare fractal surfaces with different degrees of hydrophobicity. The spontaneous formation of the hydrophobic fractal surfaces was monitored by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The surface morphologies were observed by a scanning electron microscope (SEM), and then the fractal dimension (FD) values of the surfaces were determined with the box-counting method. C6 glioma cells were cultured and compared on different hydrophobic PPP surfaces and poly-L-lysine (PLL)-coated surface. The cell numbers as a function of incubation time on different surfaces during the cell proliferation process were measured, and the cell morphologies were observed under a fluorescence microscope. Influences of hydrophobic fractal surfaces on the cell number and morphology were analyzed. The experimental results show that the cell proliferation rates decrease while the cell morphology complexities increase with the growth of the fractal dimensions of the PPP surfaces. PMID:26970826

  3. Tracking Traction Force Changes of Single Cells on the Liquid Crystal Surface

    Directory of Open Access Journals (Sweden)

    Chin Fhong Soon

    2015-01-01

    Full Text Available Cell migration is a key contributor to wound repair. This study presents findings indicating that the liquid crystal based cell traction force transducer (LCTFT system can be used in conjunction with a bespoke cell traction force mapping (CTFM software to monitor cell/surface traction forces from quiescent state in real time. In this study, time-lapse photo microscopy allowed cell induced deformations in liquid crystal coated substrates to be monitored and analyzed. The results indicated that the system could be used to monitor the generation of cell/surface forces in an initially quiescent cell, as it migrated over the culture substrate, via multiple points of contact between the cell and the surface. Future application of this system is the real-time assaying of the pharmacological effects of cytokines on the mechanics of cell migration.

  4. Transport phenomena in particulate systems

    CERN Document Server

    Freire, José Teixeira; Ferreira, Maria do Carmo

    2012-01-01

    This volume spans 10 chapters covering different aspects of transport phenomena including fixed and fluidized systems, spouted beds, electrochemical and wastewater treatment reactors. This e-book will be valuable for students, engineers and researchers aiming to keep updated on the latest developments on particulate systems.

  5. Nursing phenomena in inpatient psychiatry

    NARCIS (Netherlands)

    Frauenfelder, F.; Muller-Staub, M.; Needham, I.; Achterberg, T. van

    2011-01-01

    Little is known about the question if the nursing diagnosis classification of North American Nursing Association-International (NANDA-I) describes the adult inpatient psychiatric nursing care. The present study aimed to identify nursing phenomena mentioned in journal articles about the psychiatric i

  6. Cell-surface expression of Hsp70 on hematopoietic cancer cells after inhibition of HDAC activity

    DEFF Research Database (Denmark)

    Jensen, Helle; Andresen, Lars; Hansen, Karen Aagaard;

    small HSPs). Hsp70 belongs to the HSP70 family and is expressed at low levels in normal non-stressed cells. Its expression is however induced by different cellular stresses, such as heat shock and oxidative stress. The function of Hsp70 depends on its cellular location: Intracellular it has...... normal ER/Golgi transport did not affect Hsp70 surface expression. Intracellular Calcium and the transcription factor Sp1, that has previously been shown to be important for the intracellular stress mediated by HDAC-inhibitors, were not involved in Hsp70 surface expression. We also found that HDAC...... cytoprotective and anti-apoptotic functions, whereas it exerts immunostimulatory functions extracellularly. Secreted Hsp70 is for example involved in cross-presentation of cancer-derived antigenic peptides, a function which is currently explored in immunotherapeutic approaches against cancer. Additionally...

  7. Effects of Polymer Surfaces on Proliferation and Differentiation of Embryonic Stem Cells and Bone Marrow Stem Cells

    Science.gov (United States)

    Qin, Sisi; Liao, Wenbin; Ma, Yupo; Simon, Marcia; Rafailovich, Miriam; Stony Brook Medical Center Collaboration; Stony Brook Dental Schoo Collaboration

    2013-03-01

    Currently, proliferation and differentiation of stem cell is usually accomplished either in vivo, or on chemical coated tissue culture petri dish with the presence of feeder cells. Here we investigated whether they can be directly cultured on polymeric substrates, in the absence of additional factors. We found that mouse embryonic stem cells did not require gelatin and could remain in the undifferentiated state without feeder cells at least for four passages on partially sulfonated polystyrene. The modulii of cells was measured and found to be higher for cells plated directly on the polymer surface than for those on the same surface covered with gelatin and feeder cells. When plated with feeder cells, the modulii was not sensitive to gelatin. Whereas the differentiation properties of human bone marrow stem cells, which are not adherent, are less dependent on either chemical or mechanical properties of the substrate. However, they behave differently on different toughness hydrogels as oppose to on polymer coated thin films.

  8. Ketone isosteres of 2-N-acetamidosugars as substrates for metabolic cell surface engineering

    Energy Technology Data Exchange (ETDEWEB)

    Hang, Howard C.; Bertozzi, Carolyn R.

    2000-08-22

    Novel chemical reactivity can be engendered on cell surfaces by the metabolic incorporation of unnatural sugars into cell surface glycoconjuagtes. 2-N-Acetamido sugars such as GalNAc and GlcNAc are abundant components of cell surface glycoconjugates, and hence attractive targets for metabolic cell surface engineering. Here we report (1) the synthesis of isosteric analogs bearing a ketone group in place of the N-acetamido group, and (2) evaluation of their metabolic incorporation into mammalian cell surface glycans. A ketone isostere of GalNAc was metabolized by CHO cells through the salvage pathway and delivered to O-linked glycoproteins on the cell surface. Its residence at the core position of O-linked glycans is suggested by studies with a-benzyl GalNAc, an inhibitor of O-linked oligosaccharide extension. A mutant CHO cell line lacking endogenous UDP-GalNAc demonstrated enhanced metabolism of the GalNAc analog, suggesting that competition with native intermediates might limits enzymatic transformation in mammalian cells. A ketone isostere of GlcNAc could not be detected on CHO or human cell surfaces after incubation. Thus, the enzymes in the GlcNAc salvage pathway might be less permissive of unnatural substrates than those comprising the GalNAc salvage pathway. Alternatively, high levels of endogenous GlcNAc derivatives might compete with the ketone isostere and prevent its incorporation into oligosaccharides.

  9. Detection of cells captured with antigens on shear horizontal surface-acoustic-wave sensors.

    Science.gov (United States)

    Hao, Hsu-Chao; Chang, Hwan-You; Wang, Tsung-Pao; Yao, Da-Jeng

    2013-02-01

    Techniques to separate cells are widely applied in immunology. The technique to separate a specific antigen on a microfluidic platform involves the use of a shear horizontal surface-acoustic-wave (SH-SAW) sensor. With specific antibodies conjugated onto the surface of the SH-SAW sensors, this technique can serve to identify specific cells in bodily fluids. Jurkat cells, used as a target in this work, provide a model of cells in small abundance (1:1000) for isolation and purification with the ultimate goal of targeting even more dilute cells. T cells were separated from a mixed-cell medium on a chip (Jurkat cells/K562 cells, 1/1000). A novel microchamber was developed to capture cells during the purification, which required a large biosample. Cell detection was demonstrated through the performance of genetic identification on the chip.

  10. Glycoproteins of coated pits, cell junctions, and the entire cell surface revealed by monoclonal antibodies and immunoelectron microscopy

    OpenAIRE

    1983-01-01

    Topographical descriptions of three major plasma membrane glycoproteins of murine 3T3 cells were obtained by immunoelectron microscopy with monoclonal antibodies. A glycoprotein of Mr 80,000 was distributed throughout the total cell surface. A second of Mr 90,000 was concentrated in coated pits, and a third of Mr 100,000 was localized at cell junctions.

  11. Red blood cell pH, the Bohr effect, and other oxygenation-linked phenomena in blood O2 and CO2 transport.

    Science.gov (United States)

    Jensen, F B

    2004-11-01

    The discovery of the S-shaped O2 equilibrium curve and the Bohr effect in 1904 stimulated a fertile and continued research into respiratory functions of blood and allosteric mechanisms in haemoglobin (Hb). The Bohr effect (influence of pH/CO2 on Hb O2 affinity) and the reciprocal Haldane effect (influence of HbO2 saturation on H+/CO2 binding) originate in the Hb oxy-deoxy conformational change and allosteric interactions between O2 and H+/CO2 binding sites. In steady state, H+ is passively distributed across the vertebrate red blood cell (RBC) membrane, and intracellular pH (pHi) changes are related to changes in extracellular pH, Hb-O2 saturation and RBC organic phosphate content. As the Hb molecule shifts between the oxy and deoxy conformation in arterial-venous gas transport, it delivers O2 and takes up CO2 and H+ in tissue capillaries (elegantly aided by the Bohr effect). Concomitantly, the RBC may sense local O2 demand via the degree of Hb deoxygenation and release vasodilatory agents to match local blood flow with requirements. Three recent hypotheses suggest (1) release of NO from S-nitroso-Hb upon deoxygenation, (2) reduction of nitrite to vasoactive NO by deoxy haems, and (3) release of ATP. Inside RBCs, carbonic anhydrase (CA) provides fast hydration of metabolic CO2 and ensures that the Bohr shift occurs during capillary transit. The formed H+ is bound to Hb (Haldane effect) while HCO3- is shifted to plasma via the anion exchanger (AE1). The magnitude of the oxylabile H+ binding shows characteristic differences among vertebrates. Alternative strategies for CO2 transport include direct HCO3- binding to deoxyHb in crocodilians, and high intracellular free [HCO3-] (due to high pHi) in lampreys. At the RBC membrane, CA, AE1 and other proteins may associate into what appears to be an integrated gas exchange metabolon. Oxygenation-linked binding of Hb to the membrane may regulate glycolysis in mammals and perhaps also oxygen-sensitive ion transport involved in

  12. Alterations in cell surface area and deformability of individual human red blood cells in stored blood

    CERN Document Server

    Park, HyunJoo; Lee, SangYun; Kim, Kyoohyun; Sohn, Yong-Hak; Jang, Seongsoo; Park, YongKeun

    2015-01-01

    The functionality and viability of stored human red blood cells (RBCs) is an important clinical issue in transfusion. To systematically investigate changes in stored whole blood, the hematological properties of individual RBCs were quantified in blood samples stored for various periods with and without a preservation solution called CPDA-1. With 3-D quantitative phase imaging techniques, the optical measurements of the 3-D refractive index (RI) distributions and membrane fluctuations were done at the individual cell level. From the optical measurements, the morphological (volume, surface area and sphericity), biochemical (hemoglobin content and concentration), and mechanical parameters (dynamic membrane fluctuation) were simultaneously quantified to investigate the functionalities and their progressive alterations in stored RBCs. Our results show that the stored RBCs without CPDA-1 had a dramatic morphological transformation from discocytes to spherocytes within 2 weeks which was accompanied with significant ...

  13. Clustering of adhesion receptors following exposure of insect blood cells to foreign surfaces.

    Science.gov (United States)

    Nardi, James B; Zhuang, Shufei; Pilas, Barbara; Bee, Charles Mark; Kanost, Michael R

    2005-05-01

    Cell-mediated immune responses of insects involve interactions of two main classes of blood cells (hemocytes) known as granular cells and plasmatocytes. In response to a foreign surface, these hemocytes suddenly transform from circulating, non-adherent cells to cells that interact and adhere to each other and the foreign surface. This report presents evidence that during this adhesive transformation the extracellular matrix (ECM) proteins lacunin and a ligand for peanut agglutinin (PNA) lectin are released by granular cells and bind to surfaces of both granular cells and plasmatocytes. ECM protein co-localizes on cell surfaces with the adhesive receptors integrin and neuroglian, a member of the immunoglobulin superfamily. The ECM protein(s) secreted by granular cells are hypothesized to interact with adhesion receptors such as neuroglian and integrin by cross linking and clustering them on hemocyte surfaces. This clustering of receptors is known to enhance the adhesiveness (avidity) of interacting mammalian immune cells. The formation of ring-shaped clusters of these adhesion receptors on surfaces of insect immune cells represents an evolutionary antecedent of the mammalian immunological synapse. PMID:15894002

  14. Surface position, not signaling from surrounding maternal tissues, specifies aleurone epidermal cell fate in maize.

    Science.gov (United States)

    Gruis, Darren Fred; Guo, Hena; Selinger, David; Tian, Qing; Olsen, Odd-Arne

    2006-07-01

    Maize (Zea mays) endosperm consists of an epidermal-like surface layer of aleurone cells, an underlying body of starchy endosperm cells, and a basal layer of transfer cells. To determine whether surrounding maternal tissues perform a role in specifying endosperm cell fates, a maize endosperm organ culture technique was established whereby the developing endosperm is completely removed from surrounding maternal tissues. Using cell type-specific fluorescence markers, we show that aleurone cell fate specification occurs exclusively in response to surface position and does not require specific, continued maternal signal input. The starchy endosperm and aleurone cell fates are freely interchangeable throughout the lifespan of the endosperm, with internalized aleurone cells converting to starchy endosperm cells and with starchy endosperm cells that become positioned at the surface converting to aleurone cells. In contrast to aleurone and starchy endosperm cells, transfer cells fail to develop in in vitro-grown endosperm, supporting earlier indications that maternal tissue interaction is required to fully differentiate this cell type. Several parameters confirm that the maize endosperm organ cultures described herein retain the main developmental features of in planta endosperm, including fidelity of aleurone mutant phenotypes, temporal and spatial control of cell type-specific fluorescent markers, specificity of cell type transcripts, and control of mitotic cell divisions.

  15. Facile Discovery of Cell-Surface Protein Targets of Cancer Cell Aptamers.

    Science.gov (United States)

    Bing, Tao; Shangguan, Dihua; Wang, Yinsheng

    2015-10-01

    Cancer biomarker discovery constitutes a frontier in cancer research. In recent years, cell-binding aptamers have become useful molecular probes for biomarker discovery. However, there are few successful examples, and the critical barrier resides in the identification of the cell-surface protein targets for the aptamers, where only a limited number of aptamer targets have been identified so far. Herein, we developed a universal SILAC-based quantitative proteomic method for target discovery of cell-binding aptamers. The method allowed for distinguishing specific aptamer-binding proteins from nonspecific proteins based on abundance ratios of proteins bound to aptamer-carrying bait and control bait. In addition, we employed fluorescently labeled aptamers for monitoring and optimizing the binding conditions. We were able to identify and validate selectin L and integrin α4 as the protein targets for two previously reported aptamers, Sgc-3b and Sgc-4e, respectively. This strategy should be generally applicable for the discovery of protein targets for other cell-binding aptamers, which will promote the applications of these aptamers.

  16. Microarray of neuroblastoma cells on the selectively functionalized nanocrystalline diamond thin film surface

    Science.gov (United States)

    Park, Young-Sang; Son, Hyeong-Guk; Kim, Dae-Hoon; Oh, Hong-Gi; Lee, Da-Som; Kim, Min-Hye; Lim, Ki-Moo; Song, Kwang-Soup

    2016-01-01

    Nanocrystalline diamond (NCD) film surfaces were modified with fluorine or oxygen by plasma treatment in an O2 or C3F8 gas environment in order to induce wettability. The oxygenated-NCD (O-NCD) film surface was hydrophilic and the fluorinated-NCD (F-NCD) surface was hydrophobic. The efficiency of early cell adhesion, which is dependent on the wettability of the cell culture plate and necessary for the growth and proliferation of cells, was 89.62 ± 3.92% on the O-NCD film and 7.78 ± 0.77% on the F-NCD film surface after 3 h of cell culture. The wettability of the NCD film surface was artificially modified using a metal mask and plasma treatment to fabricate a micro-pattern. Four types of micro-patterns were fabricated (line, circle, mesh, and word) on the NCD film surface. We precisely arrayed the neuroblastoma cells on the micro-patterned NCD film surfaces by controlling the surface wettability and cell seeding density. The neuroblastoma cells adhered and proliferated along the O-NCD film surface.

  17. Effect of microfabricated microgroove-surface devices on the morphology of mesenchymal stem cells.

    Science.gov (United States)

    Zhang, Xiangkai; Aoyama, Tomoki; Yasuda, Takashi; Oike, Makoto; Ito, Akira; Tajino, Junichi; Nagai, Momoko; Fujioka, Rune; Iijima, Hirotaka; Yamaguchi, Shoki; Kakinuma, Norihiro; Kuroki, Hiroshi

    2015-12-01

    The surface of a material that is in contact with cells is known to affect cell morphology and function. To develop an appropriate surface for tendon engineering, we used zigzag microgroove surfaces, which are similar to the tenocyte microenvironment. The purpose of this study was to investigate the effect of microgroove surfaces with different ridge angles (RAs), ridge lengths (RLs), ridge widths (RWs), and groove widths (GWs) on human bone marrow-derived mesenchymal stem cell (MSC) shape. Dishes with microgroove surfaces were fabricated using cyclic olefin polymer by injection-compression molding. The other parameters were fixed, and effects of different RAs (180 - 30 °), RLs (5 - 500 μm), RWs (5 - 500 μm), and GWs (5 - 500 μm) were examined. Changes in the zigzag shape of the cell due to different RAs, RLs, RWs, and GWs were observed by optical microscopy and scanning electron microscopy. Cytoskeletal changes were investigated using Phalloidin immunofluorescence staining. As observed by optical microscopy, MSCs changed to a zigzag shape in response to microgroove surfaces with different ridge and groove properties. . As observed by scanning electron microscopy, the cell shape changed at turns in the microgroove surface. Phalloidin immunofluorescence staining indicated that F-actin, not only in cell filopodia but also inside the cell body, changed orientation to conform to the microgrooves. In conclusion, the use of zigzag microgroove surfaces microfabricated by injection-compression molding demonstrated the property of MSCs to alter their shapes to fit the surface. PMID:26573821

  18. Multidimensional profiling of cell surface proteins and nuclear markers

    Energy Technology Data Exchange (ETDEWEB)

    Han, Ju; Chang, Hang; Andarawewa, Kumari; Yaswen, Paul; Helen Barcellos-Hoff, Mary; Parvin, Bahram

    2009-01-30

    Cell membrane proteins play an important role in tissue architecture and cell-cell communication. We hypothesize that segmentation and multidimensional characterization of the distribution of cell membrane proteins, on a cell-by-cell basis, enable improved classification of treatment groups and identify important characteristics that can otherwise be hidden. We have developed a series of computational steps to (i) delineate cell membrane protein signals and associate them with a specific nucleus; (ii) compute a coupled representation of the multiplexed DNA content with membrane proteins; (iii) rank computed features associated with such a multidimensional representation; (iv) visualize selected features for comparative evaluation through heatmaps; and (v) discriminate between treatment groups in an optimal fashion. The novelty of our method is in the segmentation of the membrane signal and the multidimensional representation of phenotypic signature on a cell-by-cell basis. To test the utility of this method, the proposed computational steps were applied to images of cells that have been irradiated with different radiation qualities in the presence and absence of other small molecules. These samples are labeled for their DNA content and E-cadherin membrane proteins. We demonstrate that multidimensional representations of cell-by-cell phenotypes improve predictive and visualization capabilities among different treatment groups, and identify hidden variables.

  19. Spatial and temporal changes in the morphology of preosteoblastic cells seeded on microstructured tantalum surfaces

    DEFF Research Database (Denmark)

    Justesen, Jørn; Lorentzen, M.; Andersen, L. K.;

    2009-01-01

    It has been widely reported that surface morphology on the micrometer scale affects cell function as well as cell shape. In this study, we have systematically compared the influence of 13 topographically micropatterned tantalum surfaces on the temporal development of morphology, including spreading...

  20. A reference guide to microbial cell surface hydrophobicity based on contact angles

    NARCIS (Netherlands)

    van der Mei, HC; Busscher, HJ; Bos, R.R.M.

    1998-01-01

    Acid-base interactions form the origin of the hydrophobicity of microbial cell-surfaces and can be quantitated from contact angle measurements on microbial lawns with water, formamide, methyleneiodide and/or alpha-bromonaphthalene. This review provides a reference guide to microbial cell surface hyd

  1. A simple approach to cancer therapy afforded by multivalent pseudopeptides that target cell-surface nucleoproteins

    NARCIS (Netherlands)

    Destouches, D.; Page, N.; Hamma-Kourbali, Y.; Machi, V.; Chaloin, O.; Frechault, S.; Birmpas, C.; Katsoris, P.; Beyrath, J.D.; Albanese, P.; Maurer, M.; Carpentier, G.; Strub, J.M.; Dorsselaer, A. van; Muller, S.; Bagnard, D.; Briand, J.P.; Courty, J.

    2011-01-01

    Recent studies have implicated the involvement of cell surface forms of nucleolin in tumor growth. In this study, we investigated whether a synthetic ligand of cell-surface nucleolin known as N6L could exert antitumor activity. We found that N6L inhibits the anchorage-dependent and independent growt

  2. The surface charge of a cell lipid membrane

    CERN Document Server

    Pekker, M

    2014-01-01

    In this paper the problem of surface charge of the lipid membrane is considered. It is shown that the membrane surface is negatively charged. Negative ions are in potential wells formed by the dipole heads of membrane phospholipids. The binding energy of the ion with the membrane surface is much greater than its thermal energy. A self-consistent model of the potential in solution is developed, and a stationary charge density on the membrane surface is found. The estimates given in the paper show that the potential difference across the membrane of the unexcited axon (resting potential) can be explained by the difference in surface densities of the bound charges on the inner and outer surfaces of the membrane.

  3. Effect of the back surface topography on the efficiency in silicon solar cells

    International Nuclear Information System (INIS)

    Different processes are used on the back surface of silicon wafers to form cells falling into three groups: textured, planar, and sawed-off pyramid back surface. The characteristic parameters of the cells, ISC, VOC, FF, Pm, and Eff, are measured. All these parameters of the planar back surface cells are the best. The FF, Pm, and Eff of sawed-off pyramid back surface cells are superior to textured back surface cells, although ISC and VOC are lower. The parasitic resistance is analyzed to explain the higher FF of the sawed-off pyramid back surface cells. The cross-section scanning electron microscopy (SEM) pictures show the uniformity of the aluminum-silicon alloy, which has an important effect on the back surface recombination velocity and the ohmic contact. The measured value of the aluminum back surface field thickness in the SEM picture is in good agreement with the theoretical value deduced from the Al-Si phase diagram. It is shown in an external quantum efficiency (EQE) diagram that the planar back surface has the best response to a wavelength between 440 and 1000 nm and the sawed-off back surface has a better long wavelength response.

  4. Impaired cell surface expression of HLA-B antigens on mesenchymal stem cells and muscle cell progenitors.

    Directory of Open Access Journals (Sweden)

    Adiba Isa

    Full Text Available HLA class-I expression is weak in embryonic stem cells but increases rapidly during lineage progression. It is unknown whether all three classical HLA class-I antigens follow the same developmental program. In the present study, we investigated allele-specific expression of HLA-A, -B, and -C at the mRNA and protein levels on human mesenchymal stem cells from bone marrow and adipose tissue as well as striated muscle satellite cells and lymphocytes. Using multicolour flow cytometry, we found high cell surface expression of HLA-A on all stem cells and PBMC examined. Surprisingly, HLA-B was either undetectable or very weakly expressed on all stem cells protecting them from complement-dependent cytotoxicity (CDC using relevant human anti-B and anti-Cw sera. IFNgamma stimulation for 48-72 h was required to induce full HLA-B protein expression. Quantitative real-time RT-PCR showed that IFNgamma induced a 9-42 fold increase of all six HLA-A,-B,-C gene transcripts. Interestingly, prior to stimulation, gene transcripts for all but two alleles were present in similar amounts suggesting that post-transcriptional mechanisms regulate the constitutive expression of HLA-A,-B, and -C. Locus-restricted expression of HLA-A, -B and -C challenges our current understanding of the function of these molecules as regulators of CD8(+ T-cell and NK-cell function and should lead to further inquiries into their expression on other cell types.

  5. Cell Surface Enzymatic Engineering-Based Approaches to Improve Cellular Therapies

    KAUST Repository

    Abuelela, Ayman F.

    2014-06-06

    The cell surface represents the interface between the cell and its environment. As such, the cell surface controls cell–cell interactions and functions such as adhesion and migration, and will transfer external cues to regulate processes such as survival, death, and differentiation. Redefining the cell surface by temporarily (or permanently) modifying the molecular landscape of the plasma membrane affects the way in which the cell interacts with its environment and influences the information that is relayed into the cell along downstream signaling pathways. This chapter outlines the role of key enzymes, the glycosyltransferases, in posttranslationally modifying proteins and lipids to fine-tune cells, ability to migrate. These enzymes are critical in controlling the formation of a platform structure, sialyl Lewis x (sLex), on circulating cells that plays a central role in the recognition and recruitment by selectin counter receptors on endothelial cells that line blood vessels of tissues throughout the body. By developing methods to manipulate the activity of these enzymes and hence the cell surface structures that result, treatments can be envisioned that direct the migration of therapeutic cells to specific locations throughout the body and also to inhibit metastasis of detrimental cells such as circulating tumor cells.

  6. Impurity concentrations and surface charge densities on the heavily doped face of a silicon solar cell

    Science.gov (United States)

    Weinberg, I.; Hsu, L. C.

    1977-01-01

    Increased solar cell efficiencies are attained by reduction of surface recombination and variation of impurity concentration profiles at the n(+) surface of silicon solar cells. Diagnostic techniques are employed to evaluate the effects of specific materials preparation methodologies on surface and near surface concentrations. It is demonstrated that the MOS C-V method, when combined with a bulk measurement technique, yields more complete concentration data than are obtainable by either method alone. Specifically, new solar cell MOS C-V measurements are combined with bulk concentrations obtained by a successive layer removal technique utilizing measurements of sheet resistivity and Hall coefficient.

  7. Enhanced compatibility of chemically modified titanium surface with periodontal ligament cells

    Energy Technology Data Exchange (ETDEWEB)

    Kado, T.; Hidaka, T. [Division of Periodontology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293 (Japan); Aita, H. [Division of Occlusion and Removable Prosthodontics, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293 (Japan); Endo, K. [Division of Biomaterials and Bioengineering, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293 (Japan); Furuichi, Y., E-mail: furuichi@hoku-iryo-u.ac.jp [Division of Periodontology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293 (Japan)

    2012-12-01

    Highlights: Black-Right-Pointing-Pointer Cell-adhesive molecules were covalently immobilized on a Ti surface. Black-Right-Pointing-Pointer Immobilized cell-adhesive molecules maintained native function on the Ti surface. Black-Right-Pointing-Pointer Immobilized collagen enhanced adhesion of periodontal ligament cells to the Ti. - Abstract: A simple chemical modification method was developed to immobilize cell-adhesive molecules on a titanium surface to improve its compatibility with human periodontal ligament cells (HPDLCs).The polished titanium disk was immersed in 1% (v/v) p-vinylbenzoic acid solution for 2 h to introduce carboxyl groups onto the surface. After rinsing with distilled deionized water, the titanium disk was dipped into 1.47% 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide solution containing 0.1 mg/ml Gly-Arg-Gly-Asp-Ser (GRGDS), human plasma fibronectin (pFN), or type I collagen from calf skin (Col) to covalently immobilize the cell-adhesive molecules on the titanium surface via formation of peptide bonds. X-ray photoelectron spectroscopy analyses revealed that cell-adhesive molecules were successfully immobilized on the titanium surfaces. The Col-immobilized titanium surface revealed higher values regarding nano rough characteristics than the as-polished titanium surface under scanning probe microscopy. The number of HPDLCs attached to both the pFN- and Col-immobilized titanium surfaces was twice that attached to the as-polished titanium surfaces. The cells were larger with the cellular processes that stretched to a greater extent on the pFN- and Col-immobilized titanium surfaces than on the as-polished titanium surface (p < 0.05). HPDLCs on the Col-immobilized titanium surfaces showed more extensive expression of vinculin at the tips of cell projections and more contiguously along the cell outline than on the as-polished, GRGDS-immobilized and pFN-immobilized titanium surfaces. It was concluded that cell-adhesive molecules successfully

  8. Adsorption of Amorphous Silica Nanoparticles onto Hydroxyapatite Surfaces Differentially Alters Surfaces Properties and Adhesion of Human Osteoblast Cells.

    Science.gov (United States)

    Kalia, Priya; Brooks, Roger A; Kinrade, Stephen D; Morgan, David J; Brown, Andrew P; Rushton, Neil; Jugdaohsingh, Ravin

    2016-01-01

    Silicon (Si) is suggested to be an important/essential nutrient for bone and connective tissue health. Silicon-substituted hydroxyapatite (Si-HA) has silicate ions incorporated into its lattice structure and was developed to improve attachment to bone and increase new bone formation. Here we investigated the direct adsorption of silicate species onto an HA coated surface as a cost effective method of incorporating silicon on to HA surfaces for improved implant osseointegration, and determined changes in surface characteristics and osteoblast cell adhesion. Plasma-sprayed HA-coated stainless steel discs were incubated in silica dispersions of different concentrations (0-42 mM Si), at neutral pH for 12 h. Adsorbed Si was confirmed by XPS analysis and quantified by ICP-OES analysis following release from the HA surface. Changes in surface characteristics were determined by AFM and measurement of surface wettability. Osteoblast cell adhesion was determined by vinculin plaque staining. Maximum Si adsorption to the HA coated disc occurred after incubation in the 6 mM silica dispersion and decreased progressively with higher silica concentrations, while no adsorption was observed with dispersions below 6 mM Si. Comparison of the Si dispersions that produced the highest and lowest Si adsorption to the HA surface, by TEM-based analysis, revealed an abundance of small amorphous nanosilica species (NSP) of ~1.5 nm in diameter in the 6 mM Si dispersion, with much fewer and larger NSP in the 42 mM Si dispersions. 29Si-NMR confirmed that the NSPs in the 6 mM silica dispersion were polymeric and similar in composition to the larger NSPs in the 42 mM Si dispersion, suggesting that the latter were aggregates of the former. Amorphous NSP adsorbed from the 6 mM dispersion on to a HA-coated disc surface increased the surface's water contact angle by 53°, whereas that adsorbed from the 42 mM dispersion decreased the contact angle by 18°, indicating increased and decreased

  9. Cell surface galectin-3 defines a subset of chemoresistant gastrointestinal tumor-initiating cancer cells with heightened stem cell characteristics.

    Science.gov (United States)

    Ilmer, Matthias; Mazurek, Nachman; Byrd, James C; Ramirez, Karen; Hafley, Margarete; Alt, Eckhard; Vykoukal, Jody; Bresalier, Robert S

    2016-01-01

    Recurrence of gastrointestinal adenocarcinomas after surgery and chemotherapy may be attributed, in part, to the presence of a small population of tumor-initiating cancer stem cells (CSC). The expression of galectin-3 (Gal3), a multifunctional oncolectin, has been associated with biological behaviors associated with CSC. We examined the ability of Gal3 to characterize the CSC phenotype, and to identify a clinically important gastrointestinal cancer CSC population. Human colorectal and pancreatic cancer cell lines were sorted to identify subpopulations expressing commonly used CSC markers, and Gal3-positive CSC subpopulations. The association of Gal3 with the stem cell properties and alterations of these phenotypes by manipulation of Gal3 expression was examined. Gastrointestinal cancer cell lines contain both Gal3-positive and Gal3-negative subpopulations. Gal3-positive CSCs are characterized by high ALDH activity, enhanced self-renewal ability in vitro (sphere formation) and tumor forming ability in vivo, and resistance to chemotherapeutic agents and death-receptor-mediated apoptosis compared to Gal3-negative CSCs. Silencing Gal3 modifies this behavior. Cell surface Gal3 expression identifies a subset of CSCs in gastrointestinal cancers with high levels of stem cell characteristics, including chemoresistance. This may provide a platform for developing treatment strategies that target CSC. PMID:27512958

  10. Microfluidic single-cell transcriptional analysis rationally identifies novel surface marker profiles to enhance cell-based therapies.

    Science.gov (United States)

    Rennert, Robert C; Januszyk, Michael; Sorkin, Michael; Rodrigues, Melanie; Maan, Zeshaan N; Duscher, Dominik; Whittam, Alexander J; Kosaraju, Revanth; Chung, Michael T; Paik, Kevin; Li, Alexander Y; Findlay, Michael; Glotzbach, Jason P; Butte, Atul J; Gurtner, Geoffrey C

    2016-01-01

    Current progenitor cell therapies have only modest efficacy, which has limited their clinical adoption. This may be the result of a cellular heterogeneity that decreases the number of functional progenitors delivered to diseased tissue, and prevents correction of underlying pathologic cell population disruptions. Here, we develop a high-resolution method of identifying phenotypically distinct progenitor cell subpopulations via single-cell transcriptional analysis and advanced bioinformatics. When combined with high-throughput cell surface marker screening, this approach facilitates the rational selection of surface markers for prospective isolation of cell subpopulations with desired transcriptional profiles. We establish the usefulness of this platform in costly and highly morbid diabetic wounds by identifying a subpopulation of progenitor cells that is dysfunctional in the diabetic state, and normalizes diabetic wound healing rates following allogeneic application. We believe this work presents a logical framework for the development of targeted cell therapies that can be customized to any clinical application. PMID:27324848

  11. Comprehensive proteomic analysis of Trypanosoma cruzi epimastigote cell surface proteins by two complementary methods

    DEFF Research Database (Denmark)

    Queiroz, Rayner M L; Charneau, Sébastien; Motta, Flávia N;

    2013-01-01

    Trypanosoma cruzi is a protozoan that causes Chagas' disease, a neglected infectious illness that affects millions of people, mostly in Latin America. Here, the cell surface subproteome of the T. cruzi epimastigote life form was characterized. In order to prepare samples enriched in epimastigote...... plasma membrane protein, two distinct methodologies were optimized and evaluated. The first methodology was based on cell surface trypsinization (Shave) of intact living cells while the second approach used biotinylation of cell surface proteins followed by streptavidin affinity chromatography isolation...

  12. Cell-surface glycoproteins of human sarcomas: differential expression in normal and malignant tissues and cultured cells

    Energy Technology Data Exchange (ETDEWEB)

    Rettig, W.F.; Garin-Chesa, P.; Beresford, H.R.; Oettgen, H.F.; Melamed, M.R.; Old, L.J.

    1988-05-01

    Normal differentiation and malignant transformation of human cells are characterized by specific changes in surface antigen phenotype. In the present study, the authors have defined six cell-surface antigens of human sarcomas and normal mesenchymal cells, by using mixed hemadsorption assays and immunochemical methods for the analysis of cultured cells and immunohistochemical staining for the analysis of normal tissues and > 200 tumor specimens. Differential patterns of F19, F24, G171, G253, S5, and Thy-1 antigen expression were found to characterize (i) subsets of cultured sarcoma cell lines, (ii) cultured fibroblasts derived from various organs, (iii) normal resting and activated mesenchymal tissues, and (iv) sarcoma and nonmesenchymal tumor tissues. These results provide a basic surface antigenic map for cultured mesenchymal cells and mesenchymal tissues and permit the classification of human sarcomas according to their antigenic phenotypes.

  13. Determining the fate of fluorescent quantum dots on surface of engineered budding S. cerevisiae cell molecular landscape

    OpenAIRE

    Chouhan, Raghuraj Singh; Qureshi, Anjum; Kolkar Mohammed, Javed Hussain Niazi

    2015-01-01

    In this study, we surface engineered living S. cerevisiae cells by decorating quantum dots (QDs) and traced the fate of QDs on molecular landscape of single mother cell through several generation times (progeny cells). The fate of QDs on cell-surface was tracked through the cellular division events using confocal microscopy and fluorescence emission profiles. The extent of cell-surface QDs distribution among the offspring was determined as the mother cell divides into daughter cells. Fluoresc...

  14. Is the surface area of the red cell membrane skeleton locally conserved?

    OpenAIRE

    Fischer, T M

    1992-01-01

    The incompressibility of the lipid bilayer keeps the total surface area of the red cell membrane constant. Local conservation of membrane surface area requires that each surface element of the membrane skeleton keeps its area when its aspect ratio is changed. A change in area would require a flow of lipids past the intrinsic proteins to which the skeleton is anchored. in fast red cell deformations, there is no time for such a flow. Consequently, the bilayer provides for local area conservatio...

  15. Surface expressed nucleolin is constantly induced in tumor cells to mediate calcium-dependent ligand internalization.

    Directory of Open Access Journals (Sweden)

    Ara G Hovanessian

    Full Text Available BACKGROUND: Nucleolin is one of the major proteins of the nucleolus, but it is also expressed on the cell surface where is serves as a binding protein for variety of ligands implicated in tumorigenesis and angiogenesis. Emerging evidence suggests that the cell-surface expressed nucleolin is a strategic target for an effective and nontoxic cancer therapy. METHODOLOGY/PRINCIPAL FINDINGS: By monitoring the expression of nucleolin mRNA, and by measuring the level of nucleolin protein recovered from the surface and nucleus of cells, here we show that the presence of nucleolin at the cell surface is dependent on the constant induction of nucleolin mRNA. Indeed, inhibitors of RNA transcription or translation block expression of surface nucleolin while no apparent effect is observed on the level of nucleolin in the nucleus. The estimated half-life of surface nucleolin is less than one hour, whereas that of nuclear nucleolin is more than 8 hours. Nucleolin mRNA induction is reduced markedly in normal fibroblasts that reach confluence, while it occurs continuously even in post-confluent epithelial tumor cells consistent with their capacity to proliferate without contact inhibition. Interestingly, cold and heat shock induce nucleolin mRNA concomitantly to enhanced mRNA expression of the heat shock protein 70, thus suggesting that surface nucleolin induction also occurs in response to an environmental insult. At the cell surface, one of the main functions of nucleolin is to shuttle specific extracellular ligands by an active transport mechanism, which we show here to be calcium dependent. CONCLUSION/SIGNIFICANCE: Our results demonstrate that the expression of surface nucleolin is an early metabolic event coupled with tumor cell proliferation and stress response. The fact that surface nucleolin is constantly and abundantly expressed on the surface of tumor cells, makes them a preferential target for the inhibitory action of anticancer agents that target

  16. Lectin binding profiles of SSEA-4 enriched, pluripotent human embryonic stem cell surfaces

    OpenAIRE

    Shin Soojung; Jones Karen; Lyons Ian; Mitalipova Maisam; Venable Alison; Pierce Michael; Stice Steven

    2005-01-01

    Abstract Background Pluripotent human embryonic stem cells (hESCs) have the potential to form every cell type in the body. These cells must be appropriately characterized prior to differentiation studies or when defining characteristics of the pluripotent state. Some developmentally regulated cell surface antigens identified by monoclonal antibodies in a variety of species and stem cell types have proven to be side chains of membrane glycolipids and glycoproteins. Therefore, to examine hESC s...

  17. Micro checkerboard patterned polymeric surface with discrete rigidity for studying cell migration

    International Nuclear Information System (INIS)

    The control of cell migration has an important role in processes ranging from developmental morphogenesis to the pathogenesis. In this study, we describe a novel approach to develop a micro-checkerboard patterned polymeric flat surface with discrete surface stiffness. This platform as a culture substrate allows us to explore the mechanism of durotaxis, referred to as the directed cell movement via the gradient of surface stiffness. The flat surface with different rigidity was achieved in two stages of fabrication. First, polydimethylsiloxane (PDMS) was pressed and cured on a glass substrate with trenches of varying depths in a checkerboard arrangement, and then, a thin PDMS layer was spin coated on the previous pattern to make the flat surface. The stiff region is defined by a thin layer (2.5 µm) of PDMS and the soft region is defined by a thick one (7.5 µm). To investigate the migratory cell behavior, the NIH 3T3 cell was cultured. The result demonstrates that a single cell showed clearly a migratory cell behavior toward the stiffer regions driven by the difference of effective surface stiffness. At high cell density, the effect of cell migration on effective surface stiffness decreased with increasing cell–cell interactions. However, cell migration was still dominated by difference of effective surface stiffness while fluctuating at the boundary between the stiff and soft regions. This approach enables us to control the mechanical and topological properties of surface. The developed platform will also offer a useful tool to study cell–substrate interaction mediated by surface stiffness (e.g. mechanotransduction). (paper)

  18. Effect of Q-switched Laser Surface Texturing of Titanium on Osteoblast Cell Response

    Science.gov (United States)

    Voisey, K. T.; Scotchford, C. A.; Martin, L.; Gill, H. S.

    Titanium and its alloys are important biomedical materials. It is known that the surface texture of implanted medical devices affects cell response. Control of cell response has the potential to enhance fixation of implants into bone and, in other applications, to prevent undesired cell adhesion. The potential use of a 100W Q-switched YAG laser miller (DMG Lasertec 60 HSC) for texturing titanium is investigated. A series of regular features with dimensions of the order of tens of micrometers are generated in the surface of titanium samples and the cell response to these features is determined. Characterisation of the laser milled features reveals features with a lengthscale of a few microns superposed on the larger scale structures, this is attributed to resolidification of molten droplets generated and propelled over the surface by individual laser pulses. The laser textured samples are exposed to osteoblast cells and it is seen that cells do respond to the features in the laser textured surfaces.

  19. Characterization of cell surface adenosine 3',5'-monophosphate-binding proteins in Y-1 mouse adrenal tumor cells

    International Nuclear Information System (INIS)

    Adrenal cortical cells are known to export cAMP and have binding proteins and cAMP-dependent protein kinase activity associated with their plasma membranes. Because these properties suggest a function for extracellular cAMP, we have undertaken a search for specific cell surface receptors for this cyclic nucleotide. Y-1 mouse adrenal tumor cells actively export cAMP by an energy-dependent process. Analysis of Scatchard plots of the equilibrium binding of [3H]cAMP to these cells indicate the existence of two classes of cAMP binders: one with high affinity (K/sub a/ . 2.9 X 10(9) M-1) and another with low affinity (K/sub a/ . 7.0 X 10(7) M-1). The cell surface localization of these binders was established by the sensitivity of both the [3H]cAMP-binding proteins and the [32P]8-N3-cAMP photoaffinity labeled proteins of intact cells to mild trypsin digestion and by the surface distribution of a BSA-O2-monosuccinyl cAMP-gold complex revealed by electron microscopy. Analysis of radioautograms of cell surface cAMP-binding proteins from confluent monolayer tumor cells, photoaffinity labeled with [32P]8-N3-cAMP and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed two major 32P-labeled protein bands which were indistinguishable from the 49,000 and 55,000 mol wt regulatory subunits of the cytosolic protein kinase isoenzymes of this cell. These observations along with the demonstration of cell surface, cAMP-dependent protein kinase activity in the mouse adrenal tumor cell strongly suggest that these cAMP-binding proteins function as regulatory proteins for cell surface protein kinases

  20. Glioma cell proliferation controlled by ERK activity-dependent surface expression of PDGFRA.

    Science.gov (United States)

    Chen, Dongfeng; Zuo, Duo; Luan, Cheng; Liu, Min; Na, Manli; Ran, Liang; Sun, Yingyu; Persson, Annette; Englund, Elisabet; Salford, Leif G; Renström, Erik; Fan, Xiaolong; Zhang, Enming

    2014-01-01

    Increased PDGFRA signaling is an essential pathogenic factor in many subtypes of gliomas. In this context the cell surface expression of PDGFRA is an important determinant of ligand sensing in the glioma microenvironment. However, the regulation of spatial distribution of PDGFRA in glioma cells remains poorly characterized. Here, we report that cell surface PDGFRA expression in gliomas is negatively regulated by an ERK-dependent mechanism, resulting in reduced proliferation of glioma cells. Glioma tumor tissues and their corresponding cell lines were isolated from 14 patients and analyzed by single-cell imaging and flow cytometry. In both cell lines and their corresponding tumor samples, glioma cell proliferation correlated with the extent of surface expression of PDGFRA. High levels of surface PDGFRA also correlated to high tubulin expression in glioma tumor tissue in vivo. In glioma cell lines, surface PDGFRA declined following treatment with inhibitors of tubulin, actin and dynamin. Screening of a panel of small molecule compounds identified the MEK inhibitor U0126 as a potent inhibitor of surface PDGFRA expression. Importantly, U0126 inhibited surface expression in a reversible, dose- and time-dependent manner, without affecting general PDGFRA expression. Treatment with U0126 resulted in reduced co-localization between PDGFRA and intracellular trafficking molecules e.g. clathrin, RAB11 and early endosomal antigen-1, in parallel with enhanced co-localization between PDGFRA and the Golgi cisternae maker, Giantin, suggesting a deviation of PDGFRA from the endosomal trafficking and recycling compartment, to the Golgi network. Furthermore, U0126 treatment in glioma cells induced an initial inhibition of ERK1/2 phosphorylation, followed by up-regulated ERK1/2 phosphorylation concomitant with diminished surface expression of PDGFRA. Finally, down-regulation of surface PDGFRA expression by U0126 is concordant with reduced glioma cell proliferation. These findings

  1. Glioma cell proliferation controlled by ERK activity-dependent surface expression of PDGFRA.

    Directory of Open Access Journals (Sweden)

    Dongfeng Chen

    Full Text Available Increased PDGFRA signaling is an essential pathogenic factor in many subtypes of gliomas. In this context the cell surface expression of PDGFRA is an important determinant of ligand sensing in the glioma microenvironment. However, the regulation of spatial distribution of PDGFRA in glioma cells remains poorly characterized. Here, we report that cell surface PDGFRA expression in gliomas is negatively regulated by an ERK-dependent mechanism, resulting in reduced proliferation of glioma cells. Glioma tumor tissues and their corresponding cell lines were isolated from 14 patients and analyzed by single-cell imaging and flow cytometry. In both cell lines and their corresponding tumor samples, glioma cell proliferation correlated with the extent of surface expression of PDGFRA. High levels of surface PDGFRA also correlated to high tubulin expression in glioma tumor tissue in vivo. In glioma cell lines, surface PDGFRA declined following treatment with inhibitors of tubulin, actin and dynamin. Screening of a panel of small molecule compounds identified the MEK inhibitor U0126 as a potent inhibitor of surface PDGFRA expression. Importantly, U0126 inhibited surface expression in a reversible, dose- and time-dependent manner, without affecting general PDGFRA expression. Treatment with U0126 resulted in reduced co-localization between PDGFRA and intracellular trafficking molecules e.g. clathrin, RAB11 and early endosomal antigen-1, in parallel with enhanced co-localization between PDGFRA and the Golgi cisternae maker, Giantin, suggesting a deviation of PDGFRA from the endosomal trafficking and recycling compartment, to the Golgi network. Furthermore, U0126 treatment in glioma cells induced an initial inhibition of ERK1/2 phosphorylation, followed by up-regulated ERK1/2 phosphorylation concomitant with diminished surface expression of PDGFRA. Finally, down-regulation of surface PDGFRA expression by U0126 is concordant with reduced glioma cell proliferation

  2. Surface-engineered substrates for improved human pluripotent stem cell culture under fully defined conditions.

    Science.gov (United States)

    Saha, Krishanu; Mei, Ying; Reisterer, Colin M; Pyzocha, Neena Kenton; Yang, Jing; Muffat, Julien; Davies, Martyn C; Alexander, Morgan R; Langer, Robert; Anderson, Daniel G; Jaenisch, Rudolf

    2011-11-15

    The current gold standard for the culture of human pluripotent stem cells requires the use of a feeder layer of cells. Here, we develop a spatially defined culture system based on UV/ozone radiation modification of typical cell culture plastics to define a favorable surface environment for human pluripotent stem cell culture. Chemical and geometrical optimization of the surfaces enables control of early cell aggregation from fully dissociated cells, as predicted from a numerical model of cell migration, and results in significant increases in cell growth of undifferentiated cells. These chemically defined xeno-free substrates generate more than three times the number of cells than feeder-containing substrates per surface area. Further, reprogramming and typical gene-targeting protocols can be readily performed on these engineered surfaces. These substrates provide an attractive cell culture platform for the production of clinically relevant factor-free reprogrammed cells from patient tissue samples and facilitate the definition of standardized scale-up friendly methods for disease modeling and cell therapeutic applications.

  3. Surface-engineered substrates for improved human pluripotent stem cell culture under fully defined conditions.

    Science.gov (United States)

    Saha, Krishanu; Mei, Ying; Reisterer, Colin M; Pyzocha, Neena Kenton; Yang, Jing; Muffat, Julien; Davies, Martyn C; Alexander, Morgan R; Langer, Robert; Anderson, Daniel G; Jaenisch, Rudolf

    2011-11-15

    The current gold standard for the culture of human pluripotent stem cells requires the use of a feeder layer of cells. Here, we develop a spatially defined culture system based on UV/ozone radiation modification of typical cell culture plastics to define a favorable surface environment for human pluripotent stem cell culture. Chemical and geometrical optimization of the surfaces enables control of early cell aggregation from fully dissociated cells, as predicted from a numerical model of cell migration, and results in significant increases in cell growth of undifferentiated cells. These chemically defined xeno-free substrates generate more than three times the number of cells than feeder-containing substrates per surface area. Further, reprogramming and typical gene-targeting protocols can be readily performed on these engineered surfaces. These substrates provide an attractive cell culture platform for the production of clinically relevant factor-free reprogrammed cells from patient tissue samples and facilitate the definition of standardized scale-up friendly methods for disease modeling and cell therapeutic applications. PMID:22065768

  4. Thermodynamic constraints on fluctuation phenomena

    Science.gov (United States)

    Maroney, O. J. E.

    2009-12-01

    The relationships among reversible Carnot cycles, the absence of perpetual motion machines, and the existence of a nondecreasing globally unique entropy function form the starting point of many textbook presentations of the foundations of thermodynamics. However, the thermal fluctuation phenomena associated with statistical mechanics has been argued to restrict the domain of validity of this basis of the second law of thermodynamics. Here we demonstrate that fluctuation phenomena can be incorporated into the traditional presentation, extending rather than restricting the domain of validity of the phenomenologically motivated second law. Consistency conditions lead to constraints upon the possible spectrum of thermal fluctuations. In a special case this uniquely selects the Gibbs canonical distribution and more generally incorporates the Tsallis distributions. No particular model of microscopic dynamics need be assumed.

  5. Transport phenomena in multiphase flows

    CERN Document Server

    Mauri, Roberto

    2015-01-01

    This textbook provides a thorough presentation of the phenomena related to the transport of mass, momentum and energy.  It lays all the basic physical principles, then for the more advanced readers, it offers an in-depth treatment with advanced mathematical derivations and ends with some useful applications of the models and equations in specific settings. The important idea behind the book is to unify all types of transport phenomena, describing them within a common framework in terms of cause and effect, respectively represented by the driving force and the flux of the transported quantity. The approach and presentation are original in that the book starts with a general description of transport processes, providing the macroscopic balance relations of fluid dynamics and heat and mass transfer, before diving into the mathematical realm of continuum mechanics to derive the microscopic governing equations at the microscopic level. The book is a modular teaching tool and can be used either for an introductory...

  6. Emergent Phenomena via Molecular Dynamics

    Science.gov (United States)

    Rapaport, D. C.

    Emergent phenomena are unusual because they are not obvious consequences of the design of the systems in which they appear, a feature no less relevant when they are being simulated. Several systems that exhibit surprisingly rich emergent behavior, each studied by molecular dynamics (MD) simulation, are described: (i) Modeling self-assembly processes associated with virus growth reveals the ability to achieve error-free assembly, where paradoxically, near-maximum yields are due to reversible bond formation. (ii) In fluids studied at the atomistic level, complex hydrodynamic phenomena in rotating and convecting fluids - the Taylor- Couette and Rayleigh-Bénard instabilities - can be reproduced, despite the limited length and time scales accessible by MD. (iii) Segregation studies of granular mixtures in a rotating drum reproduce the expected, but counterintuitive, axial and radial segregation, while for the case of a vertically vibrated layer a novel form of horizontal segregation is revealed.

  7. A Dual Receptor and Reporter for Multi-Modal Cell Surface Engineering.

    Science.gov (United States)

    Luo, Wei; Westcott, Nathan; Dutta, Debjit; Pulsipher, Abigail; Rogozhnikov, Dmitry; Chen, Jean; Yousaf, Muhammad N

    2015-10-16

    The rapid development of new small molecule drugs, nanomaterials, and genetic tools to modulate cellular function through cell surface manipulation has revolutionized the diagnosis, study, and treatment of disorders in human health. Since the cell membrane is a selective gateway barrier that serves as the first line of defense/offense and communication to its environment, new approaches that molecularly engineer or tailor cell membrane surfaces would allow for a new era in therapeutic design, therapeutic delivery, complex coculture tissue construction, and in situ imaging probe tracking technologies. In order to develop the next generation of multimodal therapies, cell behavior studies, and biotechnologies that focus on cell membrane biology, new tools that intersect the fields of chemistry, biology, and engineering are required. Herein, we develop a liposome fusion and delivery strategy to present a novel dual receptor and reporter system at cell surfaces without the use of molecular biology or metabolic biosynthesis. The cell surface receptor is based on bio-orthogonal functional groups that can conjugate a range of ligands while simultaneously reporting the conjugation through the emission of fluorescence. We demonstrate this dual receptor and reporter system by conjugating and tracking various cell surface ligands for temporal control of cell fluorescent signaling, cell-cell interaction, and tissue assembly construction. PMID:26204094

  8. Aquatic flower-inspired cell culture platform with simplified medium exchange process for facilitating cell-surface interaction studies.

    Science.gov (United States)

    Hong, Hyeonjun; Park, Sung Jea; Han, Seon Jin; Lim, Jiwon; Kim, Dong Sung

    2016-02-01

    Establishing fundamentals for regulating cell behavior with engineered physical environments, such as topography and stiffness, requires a large number of cell culture experiments. However, cell culture experiments in cell-surface interaction studies are generally labor-intensive and time-consuming due to many experimental tasks, such as multiple fabrication processes in sample preparation and repetitive medium exchange in cell culture. In this work, a novel aquatic flower-inspired cell culture platform (AFIP) is presented. AFIP aims to facilitate the experiments on the cell-surface interaction studies, especially the medium exchange process. AFIP was devised to capture and dispense cell culture medium based on interactions between an elastic polymer substrate and a liquid medium. Thus, the medium exchange can be performed easily and without the need of other instruments, such as a vacuum suction and pipette. An appropriate design window of AFIP, based on scaling analysis, was identified to provide a criterion for achieving stability in medium exchange as well as various surface characteristics of the petal substrates. The developed AFIP, with physically engineered petal substrates, was also verified to exchange medium reliably and repeatedly. A closed structure capturing the medium was sustained stably during cell culture experiments. NIH3T3 proliferation results also demonstrated that AFIP can be applied to the cell-surface interaction studies as an alternative to the conventional method. PMID:26683462

  9. Nanoscale topographic changes on sterilized glass surfaces affect cell adhesion and spreading.

    Science.gov (United States)

    Wittenburg, Gretel; Lauer, Günter; Oswald, Steffen; Labudde, Dirk; Franz, Clemens M

    2014-08-01

    Producing sterile glass surfaces is of great importance for a wide range of laboratory and medical applications, including in vitro cell culture and tissue engineering. However, sterilization may change the surface properties of glass and thereby affect its use for medical applications, for instance as a substrate for culturing cells. To investigate potential effects of sterilization on glass surface topography, borosilicate glass coverslips were left untreated or subjected to several common sterilization procedures, including low-temperature plasma gas, gamma irradiation and steam. Imaging by atomic force microscopy demonstrated that the surface of untreated borosilicate coverslips features a complex landscape of microislands ranging from 1000 to 3000 nm in diameter and 1 to 3 nm in height. Steam treatment completely removes these microislands, producing a nanosmooth glass surface. In contrast, plasma treatment partially degrades the microisland structure, while gamma irradiation has no effect on microisland topography. To test for possible effects of the nanotopographic structures on cell adhesion, human gingival fibroblasts were seeded on untreated or sterilized glass surfaces. Analyzing fibroblast adhesion 3, 6, and 24 h after cell seeding revealed significant differences in cell attachment and spreading depending on the sterilization method applied. Furthermore, single-cell force spectroscopy revealed a connection between the nanotopographic landscape of glass and the formation of cellular adhesion forces, indicating that fibroblasts generally adhere weakly to nanosmooth but strongly to nanorough glass surfaces. Nanotopographic changes induced by different sterilization methods may therefore need to be considered when preparing sterile glass surfaces for cell culture or biomedical applications.

  10. Passivation of the surface of rear contact solar cells by porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Nichiporuk, O. [Radiophysics Department, Taras Shevchenko National University, 64 Vladimirskaya, 01033, Kiev (Ukraine) and Laboratoire de Physique de la Matiere, UMR 5511, INSA de Lyon, Bat. Blaise Pascal, 7 avenue Jean Capelle, 69621 Villeurbanne Cedex (France)]. E-mail: oleksiy.nichiporuk@insa-lyon.fr; Kaminski, A. [Laboratoire de Physique de la Matiere, UMR 5511, INSA de Lyon, Bat. Blaise Pascal, 7 avenue Jean Capelle, 69621 Villeurbanne Cedex (France); Lemiti, M. [Laboratoire de Physique de la Matiere, UMR 5511, INSA de Lyon, Bat. Blaise Pascal, 7 avenue Jean Capelle, 69621 Villeurbanne Cedex (France); Fave, A. [Laboratoire de Physique de la Matiere, UMR 5511, INSA de Lyon, Bat. Blaise Pascal, 7 avenue Jean Capelle, 69621 Villeurbanne Cedex (France); Litvinenko, S. [Radiophysics Department, Taras Shevchenko National University, 64 Vladimirskaya, 01033, Kiev (Ukraine); Skryshevsky, V. [Radiophysics Department, Taras Shevchenko National University, 64 Vladimirskaya, 01033, Kiev (Ukraine)

    2006-07-26

    In this paper we analyse the passivation of the front surface of p-Si interdigitated rear contacts solar cell (IBC) by a thin porous silicon (PS) layer. Effectively, an efficiency improvement of 87% in relative was observed after porous silicon layer formation on the front surface of the IBC cell. The origin of surface passivation by the PS layer was studied by Laser Beam Induced Current (LBIC) method. The front surface of rear contacts cell with thin porous silicon layer was scanned by a modulated red laser beam in presence of a permanent light with different wavelengths and intensities. It was shown that without permanent illumination, the photocurrent of the cell with PS layer is very low, even lower than for a cell with unpassivated surface. However with short permanent wavelength illumination a strong increase of photocurrent was observed (8-10 times{exclamation_point}). The light-dependent porous silicon passivation phenomenon is explained by a significant negative charge accumulation at the PS/p-Si interface traps under illumination. This leads to the formation of a hi-low (p{sup +}/p) junction at the front surface of the cell and to the reduction of the front surface recombination rate, like in Front Surface Field Solar Cell.

  11. Gravitational anomaly and transport phenomena

    OpenAIRE

    Landsteiner, Karl; Megías Fernández, Eugenio; Pena-Benítez, Francisco

    2011-01-01

    Quantum anomalies give rise to new transport phenomena. In particular, a magnetic field can induce an anomalous current via the chiral magnetic effect and a vortex in the relativistic fluid can also induce a current via the chiral vortical effect. The related transport coefficients can be calculated via Kubo formulas. We evaluate the Kubo formula for the anomalous vortical conductivity at weak coupling and show that it receives contributions proportional to the gravitational anomaly coefficie...

  12. New phenomena searches at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Soha, Aron; /UC, Davis

    2006-04-01

    The authors report on recent results from the Collider Detector at Fermilab (CDF) experiment, which is accumulating data from proton-antiproton collisions with {radical}s = 1.96 TeV at Run II of the Fermilab Tevatron. The new phenomena being explored include Higgs, Supersymmetry, and large extra dimensions. They also present the latest results of searches for heavy objects, which would indicate physics beyond the Standard Model.

  13. Foot Anthropometry and Morphology Phenomena

    OpenAIRE

    Agić, Ante; NIKOLIĆ, VASILIJE; Mijović, Budimir

    2006-01-01

    Foot structure description is important for many reasons. The foot anthropometric morphology phenomena are analyzed together with hidden biomechanical functionality in order to fully characterize foot structure and function. For younger Croatian population the scatter data of the individual foot variables were interpolated by multivariate statistics. Foot structure descriptors are influenced by many factors, as a style of life, race, climate, and things of the great importance in ...

  14. Critical phenomena in complex networks

    OpenAIRE

    Dorogovtsev, S. N.; Goltsev, A. V.; Mendes, J. F. F.

    2007-01-01

    The combination of the compactness of networks, featuring small diameters, and their complex architectures results in a variety of critical effects dramatically different from those in cooperative systems on lattices. In the last few years, researchers have made important steps toward understanding the qualitatively new critical phenomena in complex networks. We review the results, concepts, and methods of this rapidly developing field. Here we mostly consider two closely related classes of t...

  15. Wetting phenomena in electrolyte solutions

    OpenAIRE

    Ibagon, Ingrid

    2014-01-01

    The present study analyzes wetting phenomena in electrolyte solutions. They are investigated by means of classical density functional theory. First, the wetting of a charged substrate by an electrolyte solution is studied with emphasis on the influence of the substrate charge density and of the ionic strength on the wetting transition temperature and on the order of the wetting transition. The corresponding models consist of solvent particles, anions, and cations. Two mean field approaches ar...

  16. Expression of Hepatitis B Surface Antigen Gene in Ginseng Cells

    Institute of Scientific and Technical Information of China (English)

    YU Hai-peng; XUE Yan; AN Wei; LIU Dan; HAO Shu-mei; SHENG Jun

    2009-01-01

    The recombinant plasmid pBIBSa containing the HBsAg DNA fragment was transferred into Agrobacte-rium tumefaciens strain LBA4404 directly. Ginseng cells were transfected with A. Tumefaciens carrying pBIBSa and the ginseng cell lines carrying HBsAg-S gene were obtained. The presence of target gene in the transfect cells was confirmed by PCR and RT-PCR. A clear band at the site of 700 bp was observed by agarose electrophoresis analysis of the samples containing the target gene. HBsAg expressed by the transgenic ginseng cells was detected by Western blot. Maximum expression levels of 184 ng HBsAg/g FW and 0. 009% of the total soluble proteins were observed by ELISA. HBsAg in ginseng cells was located both on the cell membrane and in the nuclei.

  17. Variability in expression of cell surface antigens of Candida albicans during morphogenesis.

    OpenAIRE

    Brawner, D L; Cutler, J. E.

    1986-01-01

    The location and expression of two different cell surface antigens on germinating and nongerminating Candida albicans cells was examined by using transmission electron microscopy after labeling with monoclonal antibodies (H9 or C6) and immunocolloidal gold. Immunodeterminant expression of the two carbohydrate antigens was followed from early germination events through 20 h of development. The determinant detected by H9 antibody, which was initially lost from the mother cell surface and prefer...

  18. A cell surface receptor complex for collagen type I recognizes the Arg- Gly-Asp sequence

    OpenAIRE

    1987-01-01

    To isolate collagen-binding cell surface proteins, detergent extracts of surface-iodinated MG-63 human osteosarcoma cells were chromatographed on affinity matrices of either type I collagen- Sepharose or Sepharose carrying a collagen-like triple-helical peptide. The peptide was designed to be triple helical and to contain the sequence Arg-Gly-Asp, which has been implicated as the cell attachment site of fibronectin, vitronectin, fibrinogen, and von Willebrand factor, and is also present in ty...

  19. Flexible solar cells based on curved surface nano-pyramids

    Science.gov (United States)

    Shrestha, Anil; Mizuno, Genki; Oduor, Patrick; Dutta, Achyut K.; Dhar, Nibir K.; Lewis, Jay

    2016-05-01

    The advent of ultrathin crystalline silicon (c-Si) solar cells has significantly reduced the cost of silicon solar cells by consuming less material. However, the very small thickness of ultrathin solar cells poses a challenge to the absorption of sufficient light to provide efficiency that is competitive to commercial solar cells. Light trapping mechanisms utilizing nanostructure technologies have been utilized to alleviate this problem. Unfortunately, a significant portion of light is still being lost even before entering the solar cells because of reflection. Different kinds of nanostructures have been employed to reduce reflection from solar cells, but reflection losses still prevail. In an effort to reduce reflection loss, we have used an array of modified nanostructures based cones or pyramids with curved sides, which matches the refractive index of air to that of silicon. Moreover, use of these modified nano-pyramids provides a quintic (fifth power) gradient index layer between air and silicon, which significantly reduces reflection. The solar cells made of such nanostructures not only significantly increase conversion efficiency at reduced usage of crystalline silicon material (e.g. thinner), but it also helps to make the c-Si based solar cell flexible. Design and optimization of flexible c-Si solar cell is presented in the paper.

  20. PREFACE Integrability and nonlinear phenomena Integrability and nonlinear phenomena

    Science.gov (United States)

    Gómez-Ullate, David; Lombardo, Sara; Mañas, Manuel; Mazzocco, Marta; Nijhoff, Frank; Sommacal, Matteo

    2010-10-01

    , Manton and Rink [29] explore vortex solutions on hyperbolic surfaces extending an approach by Witten. These solutions can be interpreted as self-dual SU(2) Yang-Mills fields on R4. Shah and Woodhouse [30] use the Penrose-Ward correspondence from twistor theory to relate generalized anti self-duality equations to certain isomonodromic problems whose solutions are expressed in terms of generalized hypergeometric functions. Applications of integrable systems and nonlinear phenomena in other fields are also present in some of the papers. Kanna et al [31] study the collision of soliton solutions to coherently coupled NLS equations using a variant of the Hirota bilinearization method. Their results have applications in pulse shaping in nonlinear optics. Calogero et al [32] present examples of systems of ODEs with quadratic nonlinearities that could describe rate equations in chemical dynamics. They derive explicit conditions on the parameters of the problem for which the solutions are periodic and isochronous. Ablowitz and Haut [33] study the motion of large amplitude water waves with surface tension using asymptotic expansions and providing a comparison with experimental results. This issue is the result of the collaboration of many individuals. We would like to thank the editors and staff of the Journal of Physics A: Mathematical and Theoretical for their enthusiastic support and efficient help during the preparation of this issue. A key factor has been the work of many anonymous referees who performed careful analysis and scrutiny of the research papers submitted to this issue, often making remarks which helped to improve their quality and readability. They carried out dedicated, altruistic work with a very high standard and this issue would not exist without their contribution. Finally, we would like to thank the authors who responded to our open call, sending us their most recent results and sharing with us the enthusiasm and interest for this fascinating field of

  1. The Enhanced Physico-Chemical and Electrochemical Properties for Surface Modified NiO Cathode for Molten Carbonate Fuel Cells (MCFCs)

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hee Seon; Kim, Keon [Korea Univ., Seoul (Korea, Republic of); Yi, Cheolwoo [Sungshin Women' s Univ., Seoul (Korea, Republic of)

    2014-05-15

    The nickel oxide, the most widely used cathode material for the molten carbonate fuel cell (MCFC), has several disadvantages including NiO dissolution, poor mechanical strength, and corrosion phenomena during MCFC operation. The surface modification of NiO with lanthanum maintains the advantages, such as performance and stability, and suppresses the disadvantages of NiO cathode because the modification results in the formation of LaNiO{sub 3} phase which has high conductivity, stability, and catalytic activity. As a result, La-modified NiO cathode shows low NiO dissolution, high degree of lithiation, and mechanical strength, and high cell performance and catalytic activity in comparison with the pristine NiO. These enhanced physico-chemical and electrochemical properties and the durability in marine environment allow MCFC to marine application as a auxiliary propulsion system.

  2. Investigation of human cell response to covalently attached RADA16-I peptide on silicon surfaces.

    Science.gov (United States)

    Shamsi, Fahimeh

    2016-09-01

    We described a modification of the ionic (RADARADARADARADA)(1) peptide or RADA16-I with 4-azidophenyl isothiocyanate via a specific and gentle reaction. The azidated peptide was covalently immobilized on an alkyne-terminated monolayer on Si(111) via the Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition reaction. Detailed characterization using Impedance spectroscopy (IS), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy demonstrated high coverage of the RADA 16-I peptide on silicon surfaces. Scanning electron microscopy (SEM) and methyl tetrazole sulfate (MTS) assay were used to characterize the morphology and proliferation ability of human fibroblast cells on surfaces. Cell adhesion assay was performed to examine cell-substrate interactions. Significant differences in fibroblast cell morphology, adhesion, and viability were observed on the RADA16-I peptide modified surfaces compared to the control surfaces. These results may suggest a potential application of RADA16-I peptide modified surfaces in biomedical applications. PMID:27236098

  3. Tumor suppressor protein SMAR1 modulates the roughness of cell surface: combined AFM and SEM study

    Directory of Open Access Journals (Sweden)

    Mamgain Hitesh

    2009-10-01

    Full Text Available Abstract Background Imaging tools such as scanning electron microscope (SEM and atomic force microscope (AFM can be used to produce high-resolution topographic images of biomedical specimens and hence are well suited for imaging alterations in cell morphology. We have studied the correlation of SMAR1 expression with cell surface smoothness in cell lines as well as in different grades of human breast cancer and mouse tumor sections. Methods We validated knockdown and overexpression of SMAR1 using RT-PCR as well as Western blotting in human embryonic kidney (HEK 293, human breast cancer (MCF-7 and mouse melanoma (B16F1 cell lines. The samples were then processed for cell surface roughness studies using atomic force microscopy (AFM and scanning electron microscopy (SEM. The same samples were used for microarray analysis as well. Tumors sections from control and SMAR1 treated mice as well as tissues sections from different grades of human breast cancer on poly L-lysine coated slides were used for AFM and SEM studies. Results Tumor sections from mice injected with melanoma cells showed pronounced surface roughness. In contrast, tumor sections obtained from nude mice that were first injected with melanoma cells followed by repeated injections of SMAR1-P44 peptide, exhibited relatively smoother surface profile. Interestingly, human breast cancer tissue sections that showed reduced SMAR1 expression exhibited increased surface roughness compared to the adjacent normal breast tissue. Our AFM data establishes that treatment of cells with SMAR1-P44 results into increase in cytoskeletal volume that is supported by comparative gene expression data showing an increase in the expression of specific cytoskeletal proteins compared to the control cells. Altogether, these findings indicate that tumor suppressor function of SMAR1 might be exhibited through smoothening of cell surface by regulating expression of cell surface proteins. Conclusion Tumor suppressor

  4. Dynamics of high Weber number drops impacting on hydrophobic surfaces with closed micro-cells.

    Science.gov (United States)

    Zhang, Rui; Hao, Pengfei; Zhang, Xiwen; He, Feng

    2016-06-29

    The impact dynamics and bouncing performance of high Weber number drops on hydrophobic surfaces with open and closed micro-cells are investigated. Central wetted rings are observed on both closed-cell and open-cell surfaces under high Weber number collisions, which are proposed to constitute the key element affecting the bouncing behaviour. It is found that the drops rebound on closed-cell surfaces where the central area is in the "hybrid wetting state" at high Weber numbers, while the drops adhere to the open-cell surfaces where the central region is in the Wenzel state. A theoretical model is developed to explain this interesting phenomenon, in which the liquid cannot reach the bottom of the closed-cell hydrophobic surfaces since the air stored in micro-cavities prevents the sliding motion of the liquid film and functions as a "gas spring" lifting the liquid lamella. This indicates that the hydrophobic surface with simple micro cavities can maintain the water-repellent characteristics under drop impacts at high Weber numbers. These findings are expected to be crucial to a fundamental understanding of the rapid collisions between drops and micro-structured surfaces, as well as a valuable strategy to guide the fabrication of novel super water-repellant and anti-icing surfaces. PMID:27306824

  5. Display of wasp venom allergens on the cell surface of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Borodina, Irina; Jensen, B. M.; Søndergaard, Ib;

    2010-01-01

    Background: Yeast surface display is a technique, where the proteins of interest are expressed as fusions with yeast surface proteins and thus remain attached to the yeast cell wall after expression. Our purpose was to study whether allergens expressed on the cell surface of baker's yeast...... Saccharomyces cerevisiae preserve their native allergenic properties and whether the yeast native surface glycoproteins interfere with IgE binding. We chose to use the major allergens from the common wasp Vespula vulgaris venom: phospholipase A1, hyaluronidase and antigen 5 as the model. Results: The proteins...... their enzymatic activities. Phospholipase A1 severely inhibited the growth of the yeast cells. Antigen 5 - expressing yeast cells bound IgE antibodies from wasp venom allergic patient sera but not from control sera as demonstrated by FACS. Moreover, antigen 5 - expressing yeast cells were capable of mediating...

  6. Surface nanotopography of an anodized Ti–6Al–7Nb alloy enhances cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Her-Hsiung [Department of Dentistry, National Yang-Ming University, Taipei 112, Taiwan (China); Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan (China); Department of Biomedical Informatics, Asia University, Taichung 413, Taiwan (China); Department of Stomatology, Taipei Veterans General Hospital, Taipei 112, Taiwan (China); Wu, Chia-Ping [Institute of Oral Biology, National Yang-Ming University, Taipei 112, Taiwan (China); Sun, Ying-Sui [Department of Dentistry, National Yang-Ming University, Taipei 112, Taiwan (China); Yang, Wei-En [Institute of Oral Biology, National Yang-Ming University, Taipei 112, Taiwan (China); Lee, Tzu-Hsin, E-mail: biomaterials@hotmail.com [School of Dentistry, Chung Shan Medical University, Taichung 402, Taiwan (China); Oral Medicine Center, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China)

    2014-12-05

    Highlights: • An electrochemical anodization was applied to α/β-type Ti–6Al–7Nb alloy surface. • Anodized surface had a nontoxic nanoporous topography. • Anodized surface increased proteins adsorption due to nanotopography. • Anodized surface enhanced cell growth due to nanotopography. • Electrochemical anodization has potential as implant surface treatment. - Abstract: The α/β-type Ti–6Al–7Nb alloy is a potential replacement for α/β-type Ti–6Al–4V alloy, which is widely used in biomedical implant applications. The biological response to implant material is dependent on the surface characteristics of the material. In the present study, a simple and fast process was developed to perform an electrochemical anodization treatment on Ti–6Al–7Nb alloy. The proposed process yielded a thin surface nanotopography, which enhanced cell growth on the Ti–6Al–7Nb alloy. The surface characteristics, including the morphology, wettability, and protein adsorption, were investigated, and the cytotoxicity was evaluated according to International Organization for Standardization 10993-5 specifications. Cell adhesion of human bone marrow mesenchymal stem cells on the test specimens was observed via fluorescence microscopy and scanning electron microscopy. The anodization process produced a surface nanotopography (pore size <100 nm) on anodized Ti–6Al–7Nb alloy, which enhanced the wettability, protein adsorption, cell adhesion, cell migration, and cell mineralization. The results showed that the surface nanotopography produced using the proposed electrochemical anodization process enhanced cell growth on anodized Ti–6Al–7Nb alloy for implant applications.

  7. Surface nanotopography of an anodized Ti–6Al–7Nb alloy enhances cell growth

    International Nuclear Information System (INIS)

    Highlights: • An electrochemical anodization was applied to α/β-type Ti–6Al–7Nb alloy surface. • Anodized surface had a nontoxic nanoporous topography. • Anodized surface increased proteins adsorption due to nanotopography. • Anodized surface enhanced cell growth due to nanotopography. • Electrochemical anodization has potential as implant surface treatment. - Abstract: The α/β-type Ti–6Al–7Nb alloy is a potential replacement for α/β-type Ti–6Al–4V alloy, which is widely used in biomedical implant applications. The biological response to implant material is dependent on the surface characteristics of the material. In the present study, a simple and fast process was developed to perform an electrochemical anodization treatment on Ti–6Al–7Nb alloy. The proposed process yielded a thin surface nanotopography, which enhanced cell growth on the Ti–6Al–7Nb alloy. The surface characteristics, including the morphology, wettability, and protein adsorption, were investigated, and the cytotoxicity was evaluated according to International Organization for Standardization 10993-5 specifications. Cell adhesion of human bone marrow mesenchymal stem cells on the test specimens was observed via fluorescence microscopy and scanning electron microscopy. The anodization process produced a surface nanotopography (pore size <100 nm) on anodized Ti–6Al–7Nb alloy, which enhanced the wettability, protein adsorption, cell adhesion, cell migration, and cell mineralization. The results showed that the surface nanotopography produced using the proposed electrochemical anodization process enhanced cell growth on anodized Ti–6Al–7Nb alloy for implant applications

  8. Plasma-treated polystyrene surfaces : model surfaces for studying cell-biomaterial interactions

    NARCIS (Netherlands)

    van Kooten, TG; Spijker, HT; Busscher, HJ

    2004-01-01

    Biocompatibility of biomaterials relates, amongst others, to the absence of adverse cellular reactions and modulation of cell adhesion and subsequent responses. With respect to tissue-engineering applications, most materials need to evoke cell adhesion and spreading, while potentially displaying dif

  9. A sensitive electrochemiluminescence cytosensor for quantitative evaluation of epidermal growth factor receptor expressed on cell surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yanjuan; Zhang, Shaolian; Wen, Qingqing; Huang, Hongxing; Yang, Peihui, E-mail: typh@jnu.edu.cn

    2015-06-30

    Highlights: • EGF-cytosensor was used for evaluating EGFR expression level on cell surfaces. • CdSQDs and EGF were coated on magnetic beads (MBs) for ECL-probe. • Good sensitivity was achieved due to the signal amplification of ECL-probe. - Abstract: A sensitive electrochemiluminescence (ECL) strategy for evaluating the epidermal growth factor receptor (EGFR) expression level on cell surfaces was designed by integrating the specific recognition of EGFR expressed on MCF-7 cell surfaces with an epidermal growth factor (EGF)-funtionalized CdS quantum dots (CdSQDs)-capped magnetic bead (MB) probe. The high sensitivity of ECL probe of EGF-funtionalized CdSQD-capped-MB was used for competitive recognition with EGFR expressed on cell surfaces with recombinant EGFR protein. The changes of ECL intensity depended on both the cell number and the expression level of EGFR receptor on cell surfaces. A wide linear response to cells ranging from 80 to 4 × 10{sup 6} cells mL{sup −1} with a detection limit of 40 cells mL{sup −1} was obtained. The EGF-cytosensor was used to evaluate EGFR expression levels on MCF-7 cells, and the average number of EGFR receptor on single MCF-7 cells was 1.35 × 10{sup 5} with the relative standard deviation of 4.3%. This strategy was further used for in-situ and real-time evaluating EGFR receptor expressed on cell surfaces in response to drugs stimulation at different concentration and incubation time. The proposed method provided potential applications in the detection of receptors on cancer cells and anticancer drugs screening.

  10. Defining an optimal surface chemistry for pluripotent stem cell culture in 2D and 3D

    Science.gov (United States)

    Zonca, Michael R., Jr.

    Surface chemistry is critical for growing pluripotent stem cells in an undifferentiated state. There is great potential to engineer the surface chemistry at the nanoscale level to regulate stem cell adhesion. However, the challenge is to identify the optimal surface chemistry of the substrata for ES cell attachment and maintenance. Using a high-throughput polymerization and screening platform, a chemically defined, synthetic polymer grafted coating that supports strong attachment and high expansion capacity of pluripotent stem cells has been discovered using mouse embryonic stem (ES) cells as a model system. This optimal substrate, N-[3-(Dimethylamino)propyl] methacrylamide (DMAPMA) that is grafted on 2D synthetic poly(ether sulfone) (PES) membrane, sustains the self-renewal of ES cells (up to 7 passages). DMAPMA supports cell attachment of ES cells through integrin beta1 in a RGD-independent manner and is similar to another recently reported polymer surface. Next, DMAPMA has been able to be transferred to 3D by grafting to synthetic, polymeric, PES fibrous matrices through both photo-induced and plasma-induced polymerization. These 3D modified fibers exhibited higher cell proliferation and greater expression of pluripotency markers of mouse ES cells than 2D PES membranes. Our results indicated that desirable surfaces in 2D can be scaled to 3D and that both surface chemistry and structural dimension strongly influence the growth and differentiation of pluripotent stem cells. Lastly, the feasibility of incorporating DMAPMA into a widely used natural polymer, alginate, has been tested. Novel adhesive alginate hydrogels have been successfully synthesized by either direct polymerization of DMAPMA and methacrylic acid blended with alginate, or photo-induced DMAPMA polymerization on alginate nanofibrous hydrogels. In particular, DMAPMA-coated alginate hydrogels support strong ES cell attachment, exhibiting a concentration dependency of DMAPMA. This research provides a

  11. Pigment epithelium-derived factor binds to cell-surface F(1)-ATP synthase.

    Science.gov (United States)

    Notari, Luigi; Arakaki, Naokatu; Mueller, David; Meier, Scott; Amaral, Juan; Becerra, S P

    2010-05-01

    Pigment epithelium-derived factor (PEDF), a potent blocker of angiogenesis in vivo, and of endothelial cell migration and tubule formation, binds with high affinity to an as yet unknown protein on the surfaces of endothelial cells. Given that protein fingerprinting suggested a match of a approximately 60 kDa PEDF-binding protein in bovine retina with Bos taurus F(1)-ATP synthase beta-subunit, and that F(1)F(o)-ATP synthase components have been identified recently as cell-surface receptors, we examined the direct binding of PEDF to F(1). Size-exclusion ultrafiltration assays showed that recombinant human PEDF formed a complex with recombinant yeast F(1). Real-time binding as determined by surface plasmon resonance demonstrated that yeast F(1) interacted specifically and reversibly with human PEDF. Kinetic evaluations revealed high binding affinity for PEDF, in agreement with PEDF affinities for endothelial cell surfaces. PEDF blocked interactions between F(1) and angiostatin, another antiangiogenic factor, suggesting overlapping PEDF-binding and angiostatin-binding sites on F(1). Surfaces of endothelial cells exhibited affinity for PEDF-binding proteins of approximately 60 kDa. Antibodies to F(1)beta-subunit specifically captured PEDF-binding components in endothelial plasma membranes. The extracellular ATP synthesis activity of endothelial cells was examined in the presence of PEDF. PEDF significantly reduced the amount of extracellular ATP produced by endothelial cells, in agreement with direct interactions between cell-surface ATP synthase and PEDF. In addition to demonstrating that PEDF binds to cell-surface F(1), these results show that PEDF is a ligand for endothelial cell-surface F(1)F(o)-ATP synthase. They suggest that PEDF-mediated inhibition of ATP synthase may form part of the biochemical mechanisms by which PEDF exerts its antiangiogenic activity. PMID:20412062

  12. Hematopoietic Stem Cell Targeting with Surface-Engineered Lentiviral Vectors

    OpenAIRE

    sprotocols

    2014-01-01

    Authors: Els Verhoeyen and Francois-Loic Cosset Adapted from [*Gene Transfer: Delivery and Expression of DNA and RNA*](http://www.cshlpress.com/link/genetrnp.htm) (eds. Friedmann and Rossi). CSHL Press, Cold Spring Harbor, NY, USA, 2007. ### INTRODUCTION In the protocol presented here, hematopoietic stem cells (HSCs) are specifically transduced with a vector displaying the HSC-activating polypeptides, stem cell factor (SCF) and thrombopoietin (TPO). Targeted HSC transduction is e...

  13. Ancestral vascular lumen formation via basal cell surfaces

    OpenAIRE

    Tomás Kucera; Boris Strilić; Kathrin Regener; Michael Schubert; Vincent Laudet; Eckhard Lammert

    2015-01-01

    The cardiovascular system of bilaterians developed from a common ancestor. However, no endothelial cells exist in invertebrates demonstrating that primitive cardiovascular tubes do not require this vertebrate-specific cell type in order to form. This raises the question of how cardiovascular tubes form in invertebrates? Here we discovered that in the invertebrate cephalochordate amphioxus, the basement membranes of endoderm and mesoderm line the lumen of the major vessels, namely aorta and he...

  14. Analysis of Solar Cell Efficiency for Venus Atmosphere and Surface Missions

    Science.gov (United States)

    Landis, Geoffrey A.; Haag, Emily

    2013-01-01

    A simplified model of solar power in the Venus environment is developed, in which the solar intensity, solar spectrum, and temperature as a function of altitude is applied to a model of photovoltaic performance, incorporating the temperature and intensity dependence of the open-circuit voltage and the temperature dependence of the bandgap and spectral response of the cell. We use this model to estimate the performance of solar cells for both the surface of Venus and for atmospheric probes at altitudes from the surface up to 60 km. The model shows that photovoltaic cells will produce power even at the surface of Venus.

  15. Effects of electrostatic correlations on electrokinetic phenomena.

    Science.gov (United States)

    Storey, Brian D; Bazant, Martin Z

    2012-11-01

    The classical theory of electrokinetic phenomena is based on the mean-field approximation that the electric field acting on an individual ion is self-consistently determined by the local mean charge density. This paper considers situations, such as concentrated electrolytes, multivalent electrolytes, or solvent-free ionic liquids, where the mean-field approximation breaks down. A fourth-order modified Poisson equation is developed that captures the essential features in a simple continuum framework. The model is derived as a gradient approximation for nonlocal electrostatics of interacting effective charges, where the permittivity becomes a differential operator, scaled by a correlation length. The theory is able to capture subtle aspects of molecular simulations and allows for simple calculations of electrokinetic flows in correlated ionic fluids. Charge-density oscillations tend to reduce electro-osmotic flow and streaming current, and overscreening of surface charge can lead to flow reversal. These effects also help to explain the suppression of induced-charge electrokinetic phenomena at high salt concentrations. PMID:23214872

  16. Remote Control of Tissue Interactions via Engineered Photo-switchable Cell Surfaces

    Science.gov (United States)

    Luo, Wei; Pulsipher, Abigail; Dutta, Debjit; Lamb, Brian M.; Yousaf, Muhammad N.

    2014-09-01

    We report a general cell surface molecular engineering strategy via liposome fusion delivery to create a dual photo-active and bio-orthogonal cell surface for remote controlled spatial and temporal manipulation of microtissue assembly and disassembly. Cell surface tailoring of chemoselective functional groups was achieved by a liposome fusion delivery method and quantified by flow cytometry and characterized by a new cell surface lipid pull down mass spectrometry strategy. Dynamic co-culture spheroid tissue assembly in solution and co-culture tissue multilayer assembly on materials was demonstrated by an intercellular photo-oxime ligation that could be remotely cleaved and disassembled on demand. Spatial and temporal control of microtissue structures containing multiple cell types was demonstrated by the generation of patterned multilayers for controlling stem cell differentiation. Remote control of cell interactions via cell surface engineering that allows for real-time manipulation of tissue dynamics may provide tools with the scope to answer fundamental questions of cell communication and initiate new biotechnologies ranging from imaging probes to drug delivery vehicles to regenerative medicine, inexpensive bioreactor technology and tissue engineering therapies.

  17. Polymer microfilters with nanostructured surfaces for the culture of circulating cancer cells.

    Science.gov (United States)

    Makarova, Olga V; Adams, Daniel L; Divan, Ralu; Rosenmann, Daniel; Zhu, Peixuan; Li, Shuhong; Amstutz, Platte; Tang, Cha-Mei

    2016-09-01

    There is a critical need to improve the accuracy of drug screening and testing through the development of in vitro culture systems that more effectively mimic the in vivo environment. Surface topographical features on the nanoscale level, in short nanotopography, effect the cell growth patterns, and hence affect cell function in culture. We report the preliminary results on the fabrication, and subsequent cellular growth, of nanoscale surface topography on polymer microfilters using cell lines as a precursor to circulating tumor cells (CTCs). To create various nanoscale features on the microfilter surface, we used reactive ion etching (RIE) with and without an etching mask. An anodized aluminum oxide (AAO) membrane fabricated directly on the polymer surface served as an etching mask. Polymer filters with a variety of modified surfaces were used to compare the effects on the culture of cancer cell lines in blank culture wells, with untreated microfilters or with RIE-treated microfilters. We then report the differences of cell shape, phenotype and growth patterns of bladder and glioblastoma cancer cell lines after isolation on the various types of material modifications. Our data suggest that RIE modified polymer filters can isolate model cell lines while retaining ell viability, and that the RIE filter modification allows T24 monolayering cells to proliferate as a structured cluster. PMID:27207054

  18. Characterization of fucosyltransferase activity during mouse spermatogenesis: Evidence for a cell surface fucosyltransferase

    International Nuclear Information System (INIS)

    Fucosyltransferase activity was quantified in mouse germ cells at different stages of spermatogenesis. Specifically, fucosyltransferase activities of pachytene spermatocytes, round spermatids, and cauda epididymal sperm were compared. Fucosyltranferase activity of mixed germ cells displayed an apparent Vmax of 17 pmol (mg of protein)-1 min-1 and an apparent Km of approximately 13 μM for GDP-L-[14C]fucose in the presence of saturating amounts of asialofetuin at 33 degree C. Under these conditions, cellular fucosyltransferase activity was found to increase during spermatogenesis. In agreement with assays of intact cells, examination of subcellular fractions indicated that a large fraction of fucosyltransferase activity was associated with the cell surface. The fraction of fucosyltransferase activity that was associated with the cell surface progressively increased throughout spermatogenesis and epididymal maturation so that nearly all of the fucosyltransferase in epididymal sperm was on the cell surface. Specifically, by comparison of activities in the presence and absence of the detergent NP-40, the fraction of fucosyltransferase activity that was associated with the cell surface in pachytene spermatocytes, round spermatids, and epididymal sperm was 0.36, 0.5, and 0.85, respectively. These results suggest that a cell surface fucosyltransferase may be important during differentiation of spermatogenic cells in the testis as well as during epididymal maturation and fertilization

  19. Surface-Coated Polylactide Fiber Meshes as Tissue Engineering Matrices with Enhanced Cell Integration Properties

    Directory of Open Access Journals (Sweden)

    Matthias Schnabelrauch

    2014-01-01

    Full Text Available Poly(L-lactide-co-D/L-lactide-based fiber meshes resembling structural features of the native extracellular matrix have been prepared by electrospinning. Subsequent coating of the electrospun fibers with an ultrathin plasma-polymerized allylamine (PPAAm layer after appropriate preactivation with continuous O2/Ar plasma changed the hydrophobic nature of the polylactide surface into a hydrophilic polymer network and provided positively charged amino groups on the fiber surface able to interact with negatively charged pericellular matrix components. In vitro cell experiments using different human cell types (epithelial origin: gingiva and uroepithelium; bone cells: osteoblasts revealed that the PPAAm-activated surfaces promoted the occupancy of the meshes by cells accompanied by improved initial cell spreading. This nanolayer is stable in its cell adhesive characteristics also after γ-sterilization. An in vivo study in a rat intramuscular implantation model demonstrated that the local inflammatory tissue response did not differ between PPAAm-coated and untreated polylactide meshes.

  20. One Step Quick Detection of Cancer Cell Surface Marker by Integrated NiFe-based Magnetic Biosensing Cell Cultural Chip

    Institute of Scientific and Technical Information of China (English)

    Chenchen Bao; Lei Chen; Tao Wang; Chong Lei; Furong Tian; Daxiang Cui; Yong Zhou

    2013-01-01

    RGD peptides has been used to detect cell surface integrin and direct clinical effective therapeutic drug selection. Herein we report that a quick one step detection of cell surface marker that was realized by a specially designed NiFe-based magnetic biosensing cell chip combined with functionalized magnetic nanoparti-cles. Magnetic nanoparticles with 20-30 nm in diameter were prepared by coprecipitation and modified with RGD-4C, and the resultant RGD-functionalized magnetic nanoparticles were used for targeting cancer cells cul-tured on the NiFe-based magnetic biosensing chip and distinguish the amount of cell surface receptor-integrin. Cell lines such as Calu3, Hela, A549, CaFbr, HEK293 and HUVEC exhibiting different integrin expression were chosen as test samples. Calu3, Hela, HEK293 and HUVEC cells were successfully identified. This approach has advantages in the qualitative screening test. Compared with traditional method, it is fast, sensitive, low cost, easy-operative, and needs very little human intervention. The novel method has great potential in applications such as fast clinical cell surface marker detection, and diagnosis of early cancer, and can be easily extended to other biomedical applications based on molecular recognition.

  1. Tracer Studies of the Influence of Foreign Substances at the Surface of the Electrodes. II Influence in electro crystallization phenomena; Accion de las sustancias extranas en la superficies de los electrodos. Estudio mediante radiotrazadores. II. Influencia en los procesos de electrocristalizacion

    Energy Technology Data Exchange (ETDEWEB)

    Llopis, J.; Gamboa, J. M.; Arizmendi, L.

    1963-07-01

    The action of foreign substances present on the surface of the electrodes, in electro crystallization phenomena, has been studied. The number of Ag crystals per square centimeter of Pt electrode varies with the polishing, the current density and the presence of multilayers of stearic acid. The statistical distribution of Ag crystals without and with multilayers and their influence on the concentration index and the deformation of Ag crystals has been studied. the size of these crystals increases as the current density decreases. (Author) 16 refs.

  2. Anaplasma marginale major surface protein 1a directs cell surface display of tick BM95 immunogenic peptides on Escherichia coli.

    Science.gov (United States)

    Canales, Mario; Almazán, Consuelo; Pérez de la Lastra, José M; de la Fuente, José

    2008-07-31

    The surface display of heterologous proteins on live Escherichia coli using anchoring motifs from outer membranes proteins has impacted on many areas of biochemistry, molecular biology and biotechnology. The Anaplasma marginale major surface protein 1a (MSP1a) contains N-terminal surface-exposed repeated peptides (28-289 amino acids) that are involved in pathogen interaction with host cell receptors and is surface-displayed when the recombinant protein is expressed in E. coli. Therefore, it was predicted that MSP1a would surface display on E. coli peptides inserted in the N-terminal repeats region of the protein. The Rhipicephalus (Boophilus) microplus BM86 and BM95 glycoproteins are homologous proteins that protect cattle against tick infestations. In this study, we demonstrated that a recombinant protein comprising tick BM95 immunogenic peptides fused to the A. marginale MSP1a N-terminal region is displayed on the E. coli surface and is recognized by anti-BM86 and anti-MSP1a antibodies. This system provides a novel approach to the surface display of heterologous antigenic proteins on live E. coli and suggests the possibility to use the recombinant bacteria for immunization studies against cattle tick infestations. PMID:18582976

  3. Quantum theory of collective phenomena

    CERN Document Server

    Sewell, G L

    2014-01-01

    ""An excellent and competent introduction to the field … [and] … a source of information for the expert."" - Physics Today""This a book of major importance…. I trust that this book will be used as a basis for the teaching of a balanced, modern and rigorous course on statistical mechanics in all universities."" - Bulletin of the London Mathematical Society""This is one of the best introductions to the subject, and it is strongly recommended to anyone interested in collective phenomena."" - Physics Bulletin ""The book may be recommended for students as a well-balanced introduction to this rich s

  4. Nonlinear Dynamic Phenomena in Mechanics

    CERN Document Server

    Warminski, Jerzy; Cartmell, Matthew P

    2012-01-01

    Nonlinear phenomena should play a crucial role in the design and control of engineering systems and structures as they can drastically change the prevailing dynamical responses. This book covers theoretical and applications-based problems of nonlinear dynamics concerned with both discrete and continuous systems of interest in civil and mechanical engineering. They include pendulum-like systems, slender footbridges, shape memory alloys, sagged elastic cables and non-smooth problems. Pendulums can be used as a dynamic absorber mounted in high buildings, bridges or chimneys. Geometrical nonlinear

  5. Phase transitions and critical phenomena

    CERN Document Server

    Domb, Cyril

    2000-01-01

    The field of phase transitions and critical phenomena continues to be active in research, producing a steady stream of interesting and fruitful results. No longer an area of specialist interest, it has acquired a central focus in condensed matter studies. The major aim of this serial is to provide review articles that can serve as standard references for research workers in the field, and for graduate students and others wishing to obtain reliable information on important recent developments.The two review articles in this volume complement each other in a remarkable way. Both deal with what m

  6. Measurements design and phenomena discrimination

    International Nuclear Information System (INIS)

    The construction of measurements suitable for discriminating signal components produced by phenomena of different types is considered. The required measurements should be capable of cancelling out those signal components which are to be ignored when focusing on a phenomenon of interest. Under the hypothesis that the subspaces hosting the signal components produced by each phenomenon are complementary, their discrimination is accomplished by measurements giving rise to the appropriate oblique projector operator. The subspace onto which the operator should project is selected by nonlinear techniques in line with adaptive pursuit strategies

  7. Measurements design and phenomena discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Rebollo-Neira, Laura [Department of Mathematics, Aston University, Birmingham, B4 7ET (United Kingdom)

    2009-04-24

    The construction of measurements suitable for discriminating signal components produced by phenomena of different types is considered. The required measurements should be capable of cancelling out those signal components which are to be ignored when focusing on a phenomenon of interest. Under the hypothesis that the subspaces hosting the signal components produced by each phenomenon are complementary, their discrimination is accomplished by measurements giving rise to the appropriate oblique projector operator. The subspace onto which the operator should project is selected by nonlinear techniques in line with adaptive pursuit strategies.

  8. Measurements design and phenomena discrimination

    CERN Document Server

    Rebollo-Neira, Laura

    2009-01-01

    The construction of measurements suitable for discriminating signal components produced by phenomena of different types is considered. The required measurements should be capable of cancelling out those signal components which are to be ignored when focusing on a phenomenon of interest. Under the hypothesis that the subspaces hosting the signal components produced by each phenomenon are complementary, their discrimination is accomplished by measurements giving rise to the appropriate oblique projector operator. The subspace onto which the operator should project is selected by nonlinear techniques in line with adaptive pursuit strategies.

  9. Violent phenomena in the Universe

    CERN Document Server

    Narlikar, Jayant V

    2007-01-01

    The serenity of a clear night sky belies the evidence-gathered by balloons, rockets, satellites, and telescopes-that the universe contains centers of furious activity that pour out vast amounts of energy, some in regular cycles and some in gigantic bursts. This reader-friendly book, acclaimed by Nature as ""excellent and uncompromising,"" traces the development of modern astrophysics and its explanations of these startling celestial fireworks.This lively narrative ranges from the gravitational theories of Newton and Einstein to recent exciting discoveries of such violent phenomena as supernova

  10. Phase transitions and critical phenomena

    CERN Document Server

    Domb, Cyril

    2001-01-01

    The field of phase transitions and critical phenomena continues to be active in research, producing a steady stream of interesting and fruitful results. It has moved into a central place in condensed matter studies.Statistical physics, and more specifically, the theory of transitions between states of matter, more or less defines what we know about 'everyday' matter and its transformations.The major aim of this serial is to provide review articles that can serve as standard references for research workers in the field, and for graduate students and others wishing to obtain reliable in

  11. Precursor films in wetting phenomena

    OpenAIRE

    Popescu, M. N.; Oshanin, G.; Dietrich, S.; Cazabat, A. -M.

    2012-01-01

    The spontaneous spreading of non-volatile liquid droplets on solid substrates poses a classic problem in the context of wetting phenomena. It is well known that the spreading of a macroscopic droplet is in many cases accompanied by a thin film of macroscopic lateral extent, the so-called precursor film, which emanates from the three-phase contact line region and spreads ahead of the latter with a much higher speed. Such films have been usually associated with liquid-on-solid systems, but in t...

  12. An Assessment of Cell Culture Plate Surface Chemistry for in Vitro Studies of Tissue Engineering Scaffolds

    OpenAIRE

    Alexander Röder; Elena García-Gareta; Christina Theodoropoulos; Nikola Ristovski; Keith A. Blackwood; Woodruff, Maria A.

    2015-01-01

    The use of biopolymers as a three dimensional (3D) support structure for cell growth is a leading tissue engineering approach in regenerative medicine. Achieving consistent cell seeding and uniform cell distribution throughout 3D scaffold culture in vitro is an ongoing challenge. Traditionally, 3D scaffolds are cultured within tissue culture plates to enable reproducible cell seeding and ease of culture media change. In this study, we compared two different well-plates with different surface ...

  13. Angiostatin binds ATP synthase on the surface of human endothelial cells

    OpenAIRE

    Moser, Tammy L.; Stack, M. Sharon; Asplin, Iain; Enghild, Jan J; Højrup, Peter; Everitt, Lorraine; Hubchak, Susan; Schnaper, H. William; Pizzo, Salvatore V.

    1999-01-01

    Angiostatin, a proteolytic fragment of plasminogen, is a potent antagonist of angiogenesis and an inhibitor of endothelial cell migration and proliferation. To determine whether the mechanism by which angiostatin inhibits endothelial cell migration and/or proliferation involves binding to cell surface plasminogen receptors, we isolated the binding proteins for plasminogen and angiostatin from human umbilical vein endothelial cells. Binding studies demonstrated that plasminogen and angiostatin...

  14. Microassay for measurement of binding of radiolabelled ligands to cell surface molecules

    International Nuclear Information System (INIS)

    An improved technique for measuring the binding of radiolabelled ligands to cell surface molecules has been developed by modification of a procedure using centrifugation through a water-immiscible oil to separate free and cell-bound ligand. It maximises the percentage of ligand bound since cell-bound and free ligand can be separated easily and reproducibly even when very small reaction volumes are used. This permits low levels of ligand radiolabelling and relatively low numbers of cells to be used

  15. Cell surface thiol isomerases may explain the platelet-selective action of S-nitrosoglutathione

    OpenAIRE

    Xiao, Fang; Gordge, Michael P

    2011-01-01

    S-nitrosoglutathione (GSNO) at low concentration inhibits platelet aggregation without causing vasodilation, suggesting platelet-selective nitric oxide delivery. The mechanism of this selectivity is unknown, but may involve cell surface thiol isomerases, in particular protein disulphide isomerase (csPDI) (EC 5.3.4.1). We have now compared csPDI expression and activity on platelets, endothelial cells and vascular smooth muscle cells, and the dependence on thiol reductase activity of these cell...

  16. Cell shape and spreading of stromal (mesenchymal) stem cells cultured on fibronectin coated gold and hydroxyapatite surfaces

    DEFF Research Database (Denmark)

    Dolatshahi-Pirouz, A; Jensen, Thomas Hartvig Lindkjær; Kolind, Kristian;

    2011-01-01

    In order to identify the cellular mechanisms leading to the biocompatibility of hydroxyapatite implants, we studied the interaction of human bone marrow derived stromal (mesenchymal) stem cells (hMSCs) with fibronectin-coated gold (Au) and hydroxyapatite (HA) surfaces. The adsorption of fibronectin...... as compared to Au. Moreover, the results revealed that the morphology of cells cultured on fibronectin coated HA surfaces were less irregular. In summary we find that fibronectin adsorbs in a more activated state on the HA surfaces, resulting in a slightly different cellular response as compared...

  17. Role of surface chemistry in protein remodeling at the cell-material interface.

    Directory of Open Access Journals (Sweden)

    Virginia Llopis-Hernández

    Full Text Available BACKGROUND: The cell-material interaction is a complex bi-directional and dynamic process that mimics to a certain extent the natural interactions of cells with the extracellular matrix. Cells tend to adhere and rearrange adsorbed extracellular matrix (ECM proteins on the material surface in a fibril-like pattern. Afterwards, the ECM undergoes proteolytic degradation, which is a mechanism for the removal of the excess ECM usually approximated with remodeling. ECM remodeling is a dynamic process that consists of two opposite events: assembly and degradation. METHODOLOGY/PRINCIPAL FINDINGS: This work investigates matrix protein dynamics on mixed self-assembled monolayers (SAMs of -OH and -CH(3 terminated alkanethiols. SAMs assembled on gold are highly ordered organic surfaces able to provide different chemical functionalities and well-controlled surface properties. Fibronectin (FN was adsorbed on the different surfaces and quantified in terms of the adsorbed surface density, distribution and conformation. Initial cell adhesion and signaling on FN-coated SAMs were characterized via the formation of focal adhesions, integrin expression and phosphorylation of FAKs. Afterwards, the reorganization and secretion of FN was assessed. Finally, matrix degradation was followed via the expression of matrix metalloproteinases MMP2 and MMP9 and correlated with Runx2 levels. We show that matrix degradation at the cell material interface depends on surface chemistry in MMP-dependent way. CONCLUSIONS/SIGNIFICANCE: This work provides a broad overview of matrix remodeling at the cell-material interface, establishing correlations between surface chemistry, FN adsorption, cell adhesion and signaling, matrix reorganization and degradation. The reported findings improve our understanding of the role of surface chemistry as a key parameter in the design of new biomaterials. It demonstrates the ability of surface chemistry to direct proteolytic routes at the cell

  18. Adhesion, Proliferation and Migration of NIH/3T3 Cells on Modified Polyaniline Surfaces

    Science.gov (United States)

    Rejmontová, Petra; Capáková, Zdenka; Mikušová, Nikola; Maráková, Nela; Kašpárková, Věra; Lehocký, Marián; Humpolíček, Petr

    2016-01-01

    Polyaniline shows great potential and promises wide application in the biomedical field thanks to its intrinsic conductivity and material properties, which closely resemble natural tissues. Surface properties are crucial, as these predetermine any interaction with biological fluids, proteins and cells. An advantage of polyaniline is the simple modification of its surface, e.g., by using various dopant acids. An investigation was made into the adhesion, proliferation and migration of mouse embryonic fibroblasts on pristine polyaniline films and films doped with sulfamic and phosphotungstic acids. In addition, polyaniline films supplemented with poly (2-acrylamido-2-methyl-1-propanesulfonic) acid at various ratios were tested. Results showed that the NIH/3T3 cell line was able to adhere, proliferate and migrate on the pristine polyaniline films as well as those films doped with sulfamic and phosphotungstic acids; thus, utilization of said forms in biomedicine appears promising. Nevertheless, incorporating poly (2-acrylamido-2-methyl-1-propanesulfonic) acid altered the surface properties of the polyaniline films and significantly affected cell behavior. In order to reveal the crucial factor influencing the surface/cell interaction, cell behavior is discussed in the context of the surface energy of individual samples. It was clearly demonstrated that the lesser the difference between the surface energy of the sample and cell, the more cyto-compatible the surface is. PMID:27649159

  19. Polycarbonate surface cell's adhesion examination after Nd:YAG laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ramazani, S.A. Ahmad, E-mail: Ramazani@sharif.ir [Polymer Group, Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Mousavi, Seyyed Abbas, E-mail: Musavi@che.sharif.ir [Department of Chemistry, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Seyedjafari, Ehsan [Department of Biotechnology, University College of Science, University of Tehran (Iran, Islamic Republic of); Poursalehi, Reza [Department of Physics, University of Shahed, Tehran (Iran, Islamic Republic of); Sareh, Shohreh [Research Center of Iranian Blood Transfusion Organization, Tehran (Iran, Islamic Republic of); Silakhori, Kaveh [Laser Research Center, Atomic Energy Organization, Tehran (Iran, Islamic Republic of); Poorfatollah, Ali Akbar [Research Center of Iranian Blood Transfusion Organization, Tehran (Iran, Islamic Republic of); Shamkhali, Amir Nasser [Department of Chemistry, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2009-05-05

    Nd:YAG laser treatment was used in order to increase surface cell adhesion aspects of polycarbonate (PC) films prepared via melt process. The treatment was carried out under different wavelengths and beam diameters. ATR-FTIR and UV spectra obtained from different samples before and after laser treatment in air showed that laser irradiation has induced some chemical and physical changes in surface properties. The irradiated films were also characterized using scanning electron microscopy (SEM) and contact angle measurements. Effect of pulse numbers on the surface properties was also investigated. Cell culture test was used to evaluate cell adhesion property on the PC films before and after treatment. The results obtained from this test showed that after laser treatment, the cells were attached and proliferated extensively on the Nd:YAG laser treated films in comparison with the unmodified PC. Moreover, it was revealed that a decrease in the laser beam diameter and an increase in the irradiated pulse numbers increased surface wettability and caused a better cell attachment on the polymer surface. The obtained results also showed that a decrease in the laser beam diameter and an increase in the irradiated pulse numbers increased surface wettability and caused a better cell attachment on the polymer surface.

  20. Rho-associated kinase (ROCK) inhibition reverses low cell activity on hydrophobic surfaces

    International Nuclear Information System (INIS)

    Hydrophobic polymers do not offer an adequate scaffold surface for cells to attach, migrate, proliferate, and differentiate. Thus, hydrophobic scaffolds for tissue engineering have traditionally been physicochemically modified to enhance cellular activity. However, modifying the surface by chemical or physical treatment requires supplementary engineering procedures. In the present study, regulation of a cell signal transduction pathway reversed the low cellular activity on a hydrophobic surface without surface modification. Inhibition of Rho-associated kinase (ROCK) by Y-27632 markedly enhanced adhesion, migration, and proliferation of osteoblastic cells cultured on a hydrophobic polystyrene surface. ROCK inhibition regulated cell-cycle-related molecules on the hydrophobic surface. This inhibition also decreased expression of the inhibitors of cyclin-dependent kinases such as p21cip1 and p27kip1 and increased expression of cyclin A and D. These results indicate that defective cellular activity on the hydrophobic surface can be reversed by the control of a cell signal transduction pathway without physicochemical surface modification.

  1. Differential survival of solitary and aggregated bacterial cells promotes aggregate formation on leaf surfaces

    Science.gov (United States)

    Monier, J.-M.; Lindow, S. E.

    2003-01-01

    The survival of individual Pseudomonas syringae cells was determined on bean leaf surfaces maintained under humid conditions or periodically exposed to desiccation stress. Cells of P. syringae strain B728a harboring a GFP marker gene were visualized by epifluorescence microscopy, either directly in situ or after recovery from leaves, and dead cells were identified as those that were stained with propidium iodide in such populations. Under moist, conducive conditions on plants, the proportion of total live cells was always high, irrespective of their aggregated state. In contrast, the proportion of the total cells that remained alive on leaves that were periodically exposed to desiccation stress decreased through time and was only ≈15% after 5 days. However, the fraction of cells in large aggregates that were alive on such plants in both condition was much higher than more solitary cells. Immediately after inoculation, cells were randomly distributed over the leaf surface and no aggregates were observed. However, a very aggregated pattern of colonization was apparent within 7 days, and >90% of the living cells were located in aggregates of 100 cells or more. Our results strongly suggest that, although conducive conditions favor aggregate formation, such cells are much more capable of tolerating environmental stresses, and the preferential survival of cells in aggregates promotes a highly clustered spatial distribution of bacteria on leaf surfaces. PMID:14665692

  2. Oxygen Modulates Human Decidual Natural Killer Cell Surface Receptor Expression and Interactions with Trophoblasts1

    Science.gov (United States)

    Wallace, Alison E.; Goulwara, Sonu S.; Whitley, Guy S.; Cartwright, Judith E.

    2014-01-01

    Decidual natural killer (dNK) cells have been shown to both promote and inhibit trophoblast behavior important for decidual remodeling in pregnancy and have a distinct phenotype compared to peripheral blood NK cells. We investigated whether different levels of oxygen tension, mimicking the physiological conditions of the decidua in early pregnancy, altered cell surface receptor expression and activity of dNK cells and their interactions with trophoblast. dNK cells were isolated from terminated first-trimester pregnancies and cultured in oxygen tensions of 3%, 10%, and 21% for 24 h. Cell surface receptor expression was examined by flow cytometry, and the effects of secreted factors in conditioned medium (CM) on the trophoblast cell line SGHPL-4 were assessed in vitro. SGHPL-4 cells treated with dNK cell CM incubated in oxygen tensions of 10% were significantly more invasive (P oxygen tensions of 3% or 21%. After 24 h, a lower percentage of dNK cells expressed CD56 at 21% oxygen (P oxygen (P oxygen tensions, with large patient variation. This study demonstrates dNK cell phenotype and secreted factors are modulated by oxygen tension, which induces changes in trophoblast invasion and endovascular-like differentiation. Alterations in dNK cell surface receptor expression and secreted factors at different oxygen tensions may represent regulation of function within the decidua during the first trimester of pregnancy. PMID:25232021

  3. Photovoltaic surfaces enable clonal myoblastic cell release using visible light as external stimulation.

    Science.gov (United States)

    Bhuyan, Mohammod Kabir; Rodriguez-Devora, Jorge; Tseng, Tzu-Liang Bill; Boland, Thomas

    2016-03-01

    Many new biomedical approaches to treating disease require the supply of cells delivered to an injured or diseased organ either individually, collectively as aggregates or sheets, or encapsulated with a scaffold. The collection of cells is accomplished by using enzymatic digestion witch suffer from the need to remove the enzymes after digestion. In addition, enzymatic methods are not applicable for all cells, cell aggregates, cell sheets or 3D structures. The objective of this study was to investigate the release of cultured cells from silicon based Photovoltaic (PV) surfaces using a light source as external stimulation. C2C12 myoblasts were cultured on the negative surface of a PV device and upon confluence they were exposed to light. The amount of released cells was quantified as a function light exposure. It was found that light exposure at 25,000 lux for one hour caused equivalent cell release from the PV surface than trypsination. The released cells are viable and can be re-cultured if needed. This mechanism may offer an alternative method to release excitable cells without using an enzymatic agent. This may be important for cell therapy if larger cell structures such as sheets need to be collected.

  4. Hydrophobic and Electrostatic Cell Surface Properties of Thermophilic Dairy Streptococci

    NARCIS (Netherlands)

    Van der Mei, HC; de Vries, Jacob; Busscher, HJ

    1993-01-01

    Microbial adhesion to hydrocarbons (MATH) and microelectrophoresis were done in 10 mM potassium phosphate solutions to characterize the surfaces of thermophilic dairy streptococci, isolated from pasteurizers. Regardless of whether they were grown (in M17 broth) with lactose, sucrose, or glucose adde

  5. Surface characterization of bacterial cells relevant to the mineral industry

    NARCIS (Netherlands)

    Sharma, PK; Rao, KH

    2005-01-01

    Bacteria belonging to the Acidithiobacilli group are widely used in the mineral processing industry in bioleaching and biobeneficiation operations. Paenibacillus polymyxa has also found application in biobeneficiation studies. Microbial adhesion to mineral surface is an essential step,for both biobe

  6. Genetic analysis of the SARS-coronavirus spike glycoprotein functional domains involved in cell-surface expression and cell-to-cell fusion

    International Nuclear Information System (INIS)

    The SARS-coronavirus (SARS-CoV) is the etiological agent of severe acute respiratory syndrome (SARS). The SARS-CoV spike (S) glycoprotein mediates membrane fusion events during virus entry and virus-induced cell-to-cell fusion. To delineate functional domains of the SARS-CoV S glycoprotein, single point mutations, cluster-to-lysine and cluster-to-alanine mutations, as well as carboxyl-terminal truncations were investigated in transient expression experiments. Mutagenesis of either the coiled-coil domain of the S glycoprotein amino terminal heptad repeat, the predicted fusion peptide, or an adjacent but distinct region, severely compromised S-mediated cell-to-cell fusion, while intracellular transport and cell-surface expression were not adversely affected. Surprisingly, a carboxyl-terminal truncation of 17 amino acids substantially increased S glycoprotein-mediated cell-to-cell fusion suggesting that the terminal 17 amino acids regulated the S fusogenic properties. In contrast, truncation of 26 or 39 amino acids eliminating either one or both of the two endodomain cysteine-rich motifs, respectively, inhibited cell fusion in comparison to the wild-type S. The 17 and 26 amino-acid deletions did not adversely affect S cell-surface expression, while the 39 amino-acid truncation inhibited S cell-surface expression suggesting that the membrane proximal cysteine-rich motif plays an essential role in S cell-surface expression. Mutagenesis of the acidic amino-acid cluster in the carboxyl terminus of the S glycoprotein as well as modification of a predicted phosphorylation site within the acidic cluster revealed that this amino-acid motif may play a functional role in the retention of S at cell surfaces. This genetic analysis reveals that the SARS-CoV S glycoprotein contains extracellular domains that regulate cell fusion as well as distinct endodomains that function in intracellular transport, cell-surface expression, and cell fusion

  7. Behavior of osteoblastic cells cultured on titanium and structured zirconia surfaces

    Directory of Open Access Journals (Sweden)

    Wiesmann Hans-Peter

    2008-12-01

    Full Text Available Abstract Background Osseointegration is crucial for the long-term success of dental implants and depends on the tissue reaction at the tissue-implant interface. Mechanical properties and biocompatibility make zirconia a suitable material for dental implants, although surface processings are still problematic. The aim of the present study was to compare osteoblast behavior on structured zirconia and titanium surfaces under standardized conditions. Methods The surface characteristics were determined by scanning electron microscopy (SEM. In primary bovine osteoblasts attachment kinetics, proliferation rate and synthesis of bone-associated proteins were tested on different surfaces. Results The results demonstrated that the proliferation rate of cells was significantly higher on zirconia surfaces than on titanium surfaces (p t-test. In contrast, attachment and adhesion strength of the primary cells was significant higher on titanium surfaces (p U test. No significant differences were found in the synthesis of bone-specific proteins. Ultrastructural analysis revealed phenotypic features of osteoblast-like cells on both zirconia and titanium surfaces. Conclusion The study demonstrates distinct effects of the surface composition on osteoblasts in culture. Zirconia improves cell proliferation significantly during the first days of culture, but it does not improve attachment and adhesion strength. Both materials do not differ with respect to protein synthesis or ultrastructural appearance of osteoblasts. Zirconium oxide may therefore be a suitable material for dental implants.

  8. Ultrasound-induced encapsulated microbubble phenomena

    NARCIS (Netherlands)

    Postema, Michiel; Wamel, van Annemieke; Lancée, Charles T.; Jong, de Nico

    2004-01-01

    When encapsulated microbubbles are subjected to high-amplitude ultrasound, the following phenomena have been reported: oscillation, translation, coalescence, fragmentation, sonic cracking and jetting. In this paper, we explain these phenomena, based on theories that were validated for relatively big

  9. Cell-to-cell heterogeneity in cortical tension specifies curvature of contact surfaces in Caenorhabditis elegans embryos.

    Directory of Open Access Journals (Sweden)

    Masashi Fujita

    Full Text Available In the two-cell stage embryos of Caenorhabditis elegans, the contact surface of the two blastomeres forms a curve that bulges from the AB blastomere to the P₁ blastomere. This curve is a consequence of the high intracellular hydrostatic pressure of AB compared with that of P₁. However, the higher pressure in AB is intriguing because AB has a larger volume than P₁. In soap bubbles, which are a widely used model of cell shape, a larger bubble has lower pressure than a smaller bubble. Here, we reveal that the higher pressure in AB is mediated by its higher cortical tension. The cell fusion experiments confirmed that the curvature of the contact surface is related to the pressure difference between the cells. Chemical and genetic interferences showed that the pressure difference is mediated by actomyosin. Fluorescence imaging indicated that non-muscle myosin is enriched in the AB cortex. The cell killing experiments provided evidence that AB but not P₁ is responsible for the pressure difference. Computer simulation clarified that the cell-to-cell heterogeneity of cortical tensions is indispensable for explaining the pressure difference. This study demonstrates that heterogeneity in surface tension results in significant deviations of cell behavior compared to simple soap bubble models, and thus must be taken into consideration in understanding cell shape within embryos.

  10. Cell-to-cell heterogeneity in cortical tension specifies curvature of contact surfaces in Caenorhabditis elegans embryos.

    Science.gov (United States)

    Fujita, Masashi; Onami, Shuichi

    2012-01-01

    In the two-cell stage embryos of Caenorhabditis elegans, the contact surface of the two blastomeres forms a curve that bulges from the AB blastomere to the P₁ blastomere. This curve is a consequence of the high intracellular hydrostatic pressure of AB compared with that of P₁. However, the higher pressure in AB is intriguing because AB has a larger volume than P₁. In soap bubbles, which are a widely used model of cell shape, a larger bubble has lower pressure than a smaller bubble. Here, we reveal that the higher pressure in AB is mediated by its higher cortical tension. The cell fusion experiments confirmed that the curvature of the contact surface is related to the pressure difference between the cells. Chemical and genetic interferences showed that the pressure difference is mediated by actomyosin. Fluorescence imaging indicated that non-muscle myosin is enriched in the AB cortex. The cell killing experiments provided evidence that AB but not P₁ is responsible for the pressure difference. Computer simulation clarified that the cell-to-cell heterogeneity of cortical tensions is indispensable for explaining the pressure difference. This study demonstrates that heterogeneity in surface tension results in significant deviations of cell behavior compared to simple soap bubble models, and thus must be taken into consideration in understanding cell shape within embryos. PMID:22253922

  11. Three-dimensional manipulation of single cells using surface acoustic waves

    OpenAIRE

    Guo, Feng; Mao, Zhangming; Chen, Yuchao; Xie, Zhiwei; James P Lata; Li, Peng; Ren, Liqiang; Liu, Jiayang; Yang, Jian; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2016-01-01

    We present 3D acoustic tweezers, which can trap and manipulate single cells and particles along three mutually orthogonal axes of motion by recourse to surface acoustic waves. We use 3D acoustic tweezers to pick up single cells, or entire cell assemblies, and deliver them to desired locations to create 2D and 3D cell patterns, or print the cells into complex shapes. This technology is thus shown to offer better performance over prior cell manipulation techniques in terms of both accurate and ...

  12. Cell wall trapping of autocrine peptides for human G-protein-coupled receptors on the yeast cell surface.

    Directory of Open Access Journals (Sweden)

    Jun Ishii

    Full Text Available G-protein-coupled receptors (GPCRs regulate a wide variety of physiological processes and are important pharmaceutical targets for drug discovery. Here, we describe a unique concept based on yeast cell-surface display technology to selectively track eligible peptides with agonistic activity for human GPCRs (Cell Wall Trapping of Autocrine Peptides (CWTrAP strategy. In our strategy, individual recombinant yeast cells are able to report autocrine-positive activity for human GPCRs by expressing a candidate peptide fused to an anchoring motif. Following expression and activation, yeast cells trap autocrine peptides onto their cell walls. Because captured peptides are incapable of diffusion, they have no impact on surrounding yeast cells that express the target human GPCR and non-signaling peptides. Therefore, individual yeast cells can assemble the autonomous signaling complex and allow single-cell screening of a yeast population. Our strategy may be applied to identify eligible peptides with agonistic activity for target human GPCRs.

  13. Molecular dynamics simulation of laser shock phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Fukumoto, Ichirou [Japan Atomic Energy Research Inst., Kansai Research Establishment, Advanced Photon Research Center, Neyagawa, Osaka (Japan).

    2001-10-01

    Recently, ultrashort-pulse lasers with high peak power have been developed, and their application to materials processing is expected as a tool of precision microfabrication. When a high power laser irradiates, a shock wave propagates into the material and dislocations are generated. In this paper, laser shock phenomena of the metal were analyzed using the modified molecular dynamics method, which has been developed by Ohmura and Fukumoto. The main results obtained are summarized as follows: (1) The shock wave induced by the Gaussian beam irradiation propagates radially from the surface to the interior. (2) A lot of dislocations are generated at the solid-liquid interface by the propagation of a shock wave. (3) Some dislocations are moved instantaneously with the velocity of the longitudinal wave when the shock wave passes, and their velocity is not larger than the transverse velocity after the shock wave has passed. (author)

  14. Role of the retinoblastoma protein in cell cycle arrest mediated by a novel cell surface proliferation inhibitor

    Science.gov (United States)

    Enebo, D. J.; Fattaey, H. K.; Moos, P. J.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    A novel cell regulatory sialoglycopeptide (CeReS-18), purified from the cell surface of bovine cerebral cortex cells has been shown to be a potent and reversible inhibitor of proliferation of a wide array of fibroblasts as well as epithelial-like cells and nontransformed and transformed cells. To investigate the possible mechanisms by which CeReS-18 exerts its inhibitory action, the effect of the inhibitor on the posttranslational regulation of the retinoblastoma susceptibility gene product (RB), a tumor suppressor gene, has been examined. It is shown that CeReS-18 mediated cell cycle arrest of both human diploid fibroblasts (HSBP) and mouse fibroblasts (Swiss 3T3) results in the maintenance of the RB protein in the hypophosphorylated state, consistent with a late G1 arrest site. Although their normal nontransformed counterparts are sensitive to cell cycle arrest mediated by CeReS-18, cell lines lacking a functional RB protein, through either genetic mutation or DNA tumor virus oncoprotein interaction, are less sensitive. The refractory nature of these cells is shown to be independent of specific surface receptors for the inhibitor, and another tumor suppressor gene (p53) does not appear to be involved in the CeReS-18 inhibition of cell proliferation. The requirement for a functional RB protein product, in order for CeReS-18 to mediate cell cycle arrest, is discussed in light of regulatory events associated with density-dependent growth inhibition.

  15. The microbial cell surface electric field: life in an ion cloud

    Science.gov (United States)

    Yee, N.

    2005-05-01

    Electrical charge on microbial cell surfaces arises from the ionization of proton-active functional groups attached to cell wall polymers. In Gram-positive cell walls, ionizable functional groups are associated with peptidoglycan and secondary polymers such as teichoic or teichuronic acids. Carboxyl functional groups attached to the unlinked peptide crosslinks of peptidoglycan and phosphoryl groups associated with the teichoic acids can deprotonate to form negatively charged surface sites. These anionic functional groups generate charge in the cell wall which results in the formation of an electric field that surrounds the entire cell. The cell surface electric field controls the concentration and spatial distribution of ions and counterions at the cell-water interface, and strongly affects microbe-fluid and microbe-mineral interactions. Recently, we have used potentiometric titration, infrared spectroscopy, electrophoretic mobility, metal sorption experiments to characterize the surface electrical potential properties of the various Gram-positive and Gram-negative bacterial species. Potentiometric titration experiments show that the deprotonation of acidic cell wall functional groups generate surface charge density values typically ranging from 1.1 to 2.2 mol sites/g of bacteria. Spectroscopic measurements have confirmed that the dominant proton-active sites in the cell wall are carboxyl functional groups. Electrophoretic mobility experiments show that the magnitude of the electrostatic surface potential increases with increasing pH, and decreases with increasing ionic strength. Metal sorption experiments conducted with Ca(II), Sr(II) and Ba(II) exhibit strong ionic strength dependence, suggesting that high concentrations of metal ions are electrostatically bound to bacterial cell walls via outer-sphere complexation. We demonstrate that the electrostatic potential effects on ion sorption at the cell-water interface can be quantified using the Donnan model.

  16. Grid cells used for Surface-Water Network for the Central Valley Hydrologic Model

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset contains the segment and reaches for the surface-water network by model cell for the Central Valley Hydrologic Model (CVHM). The Central Valley...

  17. Cellular Behavior of Human Adipose-Derived Stem Cells on Wettable Gradient Polyethylene Surfaces

    Directory of Open Access Journals (Sweden)

    Hyun Hee Ahn

    2014-01-01

    Full Text Available Appropriate surface wettability and roughness of biomaterials is an important factor in cell attachment and proliferation. In this study, we investigated the correlation between surface wettability and roughness, and biological response in human adipose-derived stem cells (hADSCs. We prepared wettable and rough gradient polyethylene (PE surfaces by increasing the power of a radio frequency corona discharge apparatus with knife-type electrodes over a moving sample bed. The PE changed gradually from hydrophobic and smooth surfaces to hydrophilic (water contact angle, 90° to ~50° and rough (80 to ~120 nm surfaces as the power increased. We found that hADSCs adhered better to highly hydrophilic and rough surfaces and showed broadly stretched morphology compared with that on hydrophobic and smooth surfaces. The proliferation of hADSCs on hydrophilic and rough surfaces was also higher than that on hydrophobic and smooth surfaces. Furthermore, integrin beta 1 gene expression, an indicator of attachment, and heat shock protein 70 gene expression were high on hydrophobic and smooth surfaces. These results indicate that the cellular behavior of hADSCs on gradient surface depends on surface properties, wettability and roughness.

  18. Light-induced phenomena in one-component gas: The transport phenomena

    Science.gov (United States)

    Chermyaninov, I. V.; Chernyak, V. G.

    2016-09-01

    The article presents the theory of transport processes in a one-component gas located in the capillary under the action of resonant laser radiation and the temperature and pressure gradients. The expressions for the kinetic coefficients determining heat and mass transport in the gas are obtained on the basis of the modified Boltzmann equations for the excited and unexcited particles. The Onsager reciprocal relations for cross kinetic coefficients are proven for all Knudsen numbers and for any law interaction of gas particles with each other and boundary surface. Light-induced phenomena associated with the possible non-equilibrium stationary states of system are analyzed.

  19. Bioethanol Production from Uncooked Raw Starch by Immobilized Surface-engineered Yeast Cells

    Science.gov (United States)

    Chen, Jyh-Ping; Wu, Kuo-Wei; Fukuda, Hideki

    Surface-engineered yeast Saccharomyces cerevisiae codisplaying Rhizopus oryzae glucoamylase and Streptococcus bovis α-amylase on the cell surface was used for direct production of ethanol from uncooked raw starch. By using 50 g/L cells during batch fermentation, ethanol concentration could reach 53 g/L in 7 days. During repeated batch fermentation, the production of ethanol could be maintained for seven consecutive cycles. For cells immobilized in loofa sponge, the concentration of ethanol could reach 42 g/L in 3 days in a circulating packed-bed bioreactor. However, the production of ethanol stopped thereafter because of limited contact between cells and starch. The bioreactor could be operated for repeated batch production of ethanol, but ethanol concentration dropped to 55% of its initial value after five cycles because of a decrease in cell mass and cell viability in the bioreactor. Adding cells to the bioreactor could partially restore ethanol production to 75% of its initial value.

  20. Surface grafting of carboxylic groups onto thermoplastic polyurethanes to reduce cell adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Alves, P., E-mail: palves@eq.uc.pt [CIEPQPF, Departamento de Engenharia Química, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-790 Coimbra (Portugal); Ferreira, P. [CIEPQPF, Departamento de Engenharia Química, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-790 Coimbra (Portugal); Kaiser, Jean-Pierre [EMPA, St. Gallen, Lerchenfeldstrasse 5, CH-9014 St. Gallen (Switzerland); Salk, Natalie [Mikrofertigung – Micro Engineering, Fraunhofer IFAM, Wiener Strasse 12, D-288359 Bremen (Germany); Bruinink, Arie [EMPA, St. Gallen, Lerchenfeldstrasse 5, CH-9014 St. Gallen (Switzerland); Sousa, Hermínio C. de; Gil, M.H. [CIEPQPF, Departamento de Engenharia Química, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-790 Coimbra (Portugal)

    2013-10-15

    The interaction of polymers with other materials is an important issue, being their surface properties clearly crucial. For some important polymer applications, their surfaces have to be modified. Surface modification aims to tailor the surface characteristics of a material for a specific application without affecting its bulk properties. Materials can be surface modified by using biological, chemical or physical methods. The aim of this work was to improve the reactivity of the thermoplastic polyurethane (TPU) material (Elastollan{sup ®}) surface and to make its surface cell repellent by grafting carboxylic groups onto its surface. Two TPU materials were studied: a polyether-based TPU and a polyester-based TPU. The grafting efficiency was evaluated by contact angle measurements and by analytical determination of the COOH groups. Scanning electron microscopy (SEM) of the membranes surface was performed as well as cell adhesion tests. It was proved that the surfaces of the TPUs membranes were successfully modified and that cell adhesion was remarkably reduced.

  1. Engineering micropatterned surfaces to modulate the function of vascular stem cells

    International Nuclear Information System (INIS)

    Highlights: • We examine vascular stem cell function on microgrooved and micropost patterned polymer substrates. • 10 μm microgrooved surfaces significantly lower VSC proliferation but do not modulate calcified matrix deposition. • Micropost surfaces significantly lower VSC proliferation and decrease calcified matrix deposition. - Abstract: Multipotent vascular stem cells have been implicated in vascular disease and in tissue remodeling post therapeutic intervention. Hyper-proliferation and calcified extracellular matrix deposition of VSC cause blood vessel narrowing and plaque hardening thereby increasing the risk of myocardial infarct. In this study, to optimize the surface design of vascular implants, we determined whether micropatterned polymer surfaces can modulate VSC differentiation and calcified matrix deposition. Undifferentiated rat VSC were cultured on microgrooved surfaces of varied groove widths, and on micropost surfaces. 10 μm microgrooved surfaces elongated VSC and decreased cell proliferation. However, microgrooved surfaces did not attenuate calcified extracellular matrix deposition by VSC cultured in osteogenic media conditions. In contrast, VSC cultured on micropost surfaces assumed a dendritic morphology, were significantly less proliferative, and deposited minimal calcified extracellular matrix. These results have significant implications for optimizing the design of cardiovascular implant surfaces

  2. Materiomics: deciphering topographic cues for cell-surface interactions

    NARCIS (Netherlands)

    Unadkat, H.V.

    2012-01-01

    The technological advances in the field of material science coupled with the improved understanding of cell behaviour have brought us to the era of smart or instructive biomaterials. In contrast to the bioinert materials this new generation of materials rely on the technological advances from the ev

  3. Expression of cancer stem cell surface markers after chemotherapeutic drug treatment to reflect breast cancer cell regrowth

    Institute of Scientific and Technical Information of China (English)

    Qing Liu; Wings Tjing Yung Loo; Louis Wing Cheong Chow; Kelly Wei Yu Rui

    2014-01-01

    Objective To detect the cell viability and the expressions of stem cell surface markers after chemotherapeutic drug treatment. Methods We observed the cytotoxic effects of three chemotherapeutic agents [ epirubicin ( Epi ) , fluorouracil ( 5-FU ) and cyclophosphamide ( Cyc ) ] in three cell lines, and the cell viabilities after removed these chemotherapeutic agents. Expressions of stem cell surface markers CD44, CD24, CD90, CD14 and aldehyde dehydrogenase1(ALDH1) in breast cancer cells were analyzed by real-time PCR. The post hoc analysis (Tukey’s tests) in conjunction with one-way ANOVA was used for statistical analysis. Results The initial cytotoxic efficacy was most notable. After the treatment of the same therapeutic agents, cell viability was decreased by 64. 8% 35. 14%, 32. 25% in BT-483 cells, 66. 4%, 22. 94% and 45. 88% in MDA-MB-231 cells, 97. 1%, 99. 5% and 76. 4% in MCF cells. The difference was significant compared with that before treatment ( P=0. 000 ) . However, the inhibitory effects were diminished after chemotherapeutic agent withdrawal. Cell viabilities were increased to 167. 9%, 212. 04% and 188. 66% in MDA-MB-231 cells at 48 h after withdrawal. At 72 h after withdrawal, cell viability was increased with a significant difference in three cell lines (all P values=0. 000). Expressions of CD44 and ALDH1 were most prevalent for MDA-MB-231, BT-483 and MCF-7 cells. ALDH1 mRNA level was significant higher in BT-483 ( HER-2 overexpression cell line) than MDA-MB-231 ( triple negative cell line ) ( P = 0. 012 ) . CD14 mRNA level in MCF-7 cells were significantly lower than that in MDA-MB-231 and BT-483 (P=0. 003, 0. 001). BT-483 showed significantly higher level of CD44 than MDA-MB-231 and MCF-7 cell line (P= 0.013, 0.020), and no significant difference was detected between MDA-MB-231 and MCF-7 breast cancer cells ( P=0. 955 ) . CD90 mRNA expressions were detected in MDA-MB-231 cells and MCF-7 cells, but not in BT-483 cells. Conclusion Some malignant

  4. Natural phenomena hazards, Hanford Site, Washington

    International Nuclear Information System (INIS)

    This document presents the natural phenomena hazard loads for use in implementing DOE Order 5480.28, Natural Phenomena Hazards Mitigation, and supports development of double-shell tank systems specifications at the Hanford Site in south-central Washington State. The natural phenomena covered are seismic, flood, wind, volcanic ash, lightning, snow, temperature, solar radiation, suspended sediment, and relative humidity

  5. Black Hole Critical Phenomena Without Black Holes

    CERN Document Server

    Liebling, S L

    2000-01-01

    Studying the threshold of black hole formation via numerical evolution has led to the discovery of fascinating nonlinear phenomena. Power-law mass scaling, aspects of universality, and self-similarity have now been found for a large variety of models. However, questions remain. Here I briefly review critical phenomena, discuss some recent results, and describe a model which demonstrates similar phenomena without gravity.

  6. High resolution surface plasmon microscopy for cell imaging

    Science.gov (United States)

    Argoul, F.; Monier, K.; Roland, T.; Elezgaray, J.; Berguiga, L.

    2010-04-01

    We introduce a new non-labeling high resolution microscopy method for cellular imaging. This method called SSPM (Scanning Surface Plasmon Microscopy) pushes down the resolution limit of surface plasmon resonance imaging (SPRi) to sub-micronic scales. High resolution SPRi is obtained by the surface plasmon lauching with a high numerical aperture objective lens. The advantages of SPPM compared to other high resolution SPRi's rely on three aspects; (i) the interferometric detection of the back reflected light after plasmon excitation, (ii) the twodimensional scanning of the sample for image reconstruction, (iii) the radial polarization of light, enhancing both resolution and sensitivity. This microscope can afford a lateral resolution of - 150 nm in liquid environment and - 200 nm in air. We present in this paper images of IMR90 fibroblasts obtained with SSPM in dried environment. Internal compartments such as nucleus, nucleolus, mitochondria, cellular and nuclear membrane can be recognized without labelling. We propose an interpretation of the ability of SSPM to reveal high index contrast zones by a local decomposition of the V (Z) function describing the response of the SSPM.

  7. The Na+/H+ Exchanger Regulatory Factor Stabilizes Epidermal Growth Factor Receptors at the Cell Surface

    OpenAIRE

    Lazar, Cheri S.; Cresson, Catherine M.; Lauffenburger, Douglas A.; Gill, Gordon N.

    2004-01-01

    Ligand binding to cell surface receptors initiates both signal transduction and endocytosis. Although signaling may continue within the endocytic compartment, down-regulation is the major mechanism that controls the concentration of cell surface receptors, their ability to receive environmental signals, and the ultimate strength of biological signaling. Internalization, recycling, and trafficking of receptor tyrosine kinases (RTKs) within the endosome compartment are each regulated to control...

  8. Heparan sulfate proteoglycans on the cell surface: versatile coordinators of cellular functions

    DEFF Research Database (Denmark)

    Tumova, S; Woods, A; Couchman, J R

    2000-01-01

    Heparan sulfate proteoglycans are complex molecules composed of a core protein with covalently attached glycosaminoglycan chains. While the protein part determines localization of the proteoglycan on the cell surfaces or in the extracellular matrix, the glycosaminoglycan component, heparan sulfate...... and wound repair. This review concentrates on biological roles of cell surface heparan sulfate proteoglycans, namely syndecans and glypicans, and outlines the progress achieved during the last decade in unraveling the molecular interactions behind proteoglycan functions....

  9. Oxidation state of chromium associated with cell surfaces of Shewanella oneidensis during chromate reduction

    Energy Technology Data Exchange (ETDEWEB)

    Neal, Andrew L.; Lowe, Kristine; Daulton, Tyrone L.; Jones-Meehan, Joanne; Little, Brenda J

    2002-12-30

    Employing electron energy loss spectroscopy (EELS) and X-ray photoelectron spectroscopy (XPS), we demonstrate that in both aerobic and anaerobic culture Shewanella oneidensis cells are capable of chromate reduction. No Cr(VI) or Cr(V) species were identified at the cell surfaces in Cr 2p{sub 3/}ore photoelectron spectra. More chromium was associated with cell surfaces recovered from anaerobic medium than aerobic. Multiplet-splitting models derived for Cr(III) and Cr(IV) were employed to determine contributions from each ion to Cr 2p{sub 3/2} photopeaks collected from the various cell treatments. Whilst in all cases Cr(III) was the major ion associated with cell surfaces, a significant contribution was identified due to Cr(IV) in anaerobically grown cells. The Cr(IV) contribution was far less when cells were grown aerobically. Moreover, when anaerobically grown cells were exposed to oxygen very little re-oxidation of Cr-precipitates occurred, the precipitates were again identified as a mixture of Cr(III) and Cr(IV). A positive relationship was observed between amounts of chromium and phosphorous associated with cell surfaces resulting from the various treatments, suggesting the precipitates included Cr(III)-phosphate. The fact that Cr(IV) remained associated with precipitates following re-oxidation suggests that under anaerobic conditions the intermediate ion is afforded sufficient stability to be incorporated within the precipitate matrix and thus conferred a degree of protection from oxidation.

  10. Recent Insights into Cell Surface Heparan Sulphate Proteoglycans and Cancer [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    John R Couchman

    2016-06-01

    Full Text Available A small group of cell surface receptors are proteoglycans, possessing a core protein with one or more covalently attached glycosaminoglycan chains. They are virtually ubiquitous and their chains are major sites at which protein ligands of many types interact. These proteoglycans can signal and regulate important cell processes, such as adhesion, migration, proliferation, and differentiation. Since many protein ligands, such as growth factors, morphogens, and cytokines, are also implicated in tumour progression, it is increasingly apparent that cell surface proteoglycans impact tumour cell behaviour. Here, we review some recent advances, emphasising that many tumour-related functions of proteoglycans are revealed only after their modification in processes subsequent to synthesis and export to the cell surface. These include enzymes that modify heparan sulphate structure, recycling of whole or fragmented proteoglycans into exosomes that can be paracrine effectors or biomarkers, and lateral interactions between some proteoglycans and calcium channels that impact the actin cytoskeleton.

  11. Analysis of the coagulation of human blood cells on diamond surfaces by atomic force microscopy

    Science.gov (United States)

    Baranauskas, V.; Fontana, M.; Guo, Zhao Jing; Ceragioli, H. J.; Peterlevitz, A. C.

    2004-11-01

    Atomic force microscopy (AFM) was used to study the morphology and coagulation of human blood cells in contact with solid surfaces. Blood was extracted from the veins of healthy adult donors and the samples were used immediately after extraction, deposited either on borosilicate glass or diamond substrates. Some blood samples were anti-coagulated by adding heparin for single cell AFM imaging. No chemicals were used for attaching or immobilizing the cells. The diamond substrates were produced by chemical vapour deposition (CVD diamond) using a hot-filament CVD system fed with ethanol highly diluted in hydrogen. AFM imaging of isolated cells (anti-coagulated by heparin) was only possible on the glass substrates due to the lack of adherence of the cells to the diamond surface. The coagulation results suggest that blood clotting on diamond produces a less rough surface than blood clotting on glass.

  12. Surface modification of microparticles causes differential uptake responses in normal and tumoral human breast epithelial cells

    Science.gov (United States)

    Patiño, Tania; Soriano, Jorge; Barrios, Lleonard; Ibáñez, Elena; Nogués, Carme

    2015-06-01

    The use of micro- and nanodevices as multifunctional systems for biomedical applications has experienced an exponential growth during the past decades. Although a large number of studies have focused on the design and fabrication of new micro- and nanosystems capable of developing multiple functions, a deeper understanding of their interaction with cells is required. In the present study, we evaluated the effect of different microparticle surfaces on their interaction with normal and tumoral human breast epithelial cell lines. For this, AlexaFluor488 IgG functionalized polystyrene microparticles (3 μm) were coated with Polyethyleneimine (PEI) at two different molecular weights, 25 and 750 kDa. The effect of microparticle surface properties on cytotoxicity, cellular uptake and endocytic pathways were assessed for both normal and tumoral cell lines. Results showed a differential response between the two cell lines regarding uptake efficiency and mechanisms of endocytosis, highlighting the potential role of microparticle surface tunning for specific cell targeting.

  13. DMPD: Innate immune sensing of pathogens and danger signals by cell surface Toll-likereceptors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17275324 Innate immune sensing of pathogens and danger signals by cell surface Toll... Show Innate immune sensing of pathogens and danger signals by cell surface Toll-likereceptors. PubmedID 172...75324 Title Innate immune sensing of pathogens and danger signals by cell surface

  14. Surface chemical functionalities affect the behavior of human adipose-derived stem cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xujie [State key laboratory of new ceramics and fine processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Feng, Qingling, E-mail: biomater@mail.tsinghua.edu.cn [State key laboratory of new ceramics and fine processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Bachhuka, Akash [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia); Vasilev, Krasimir [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia); School of Advanced Manufacturing, University of South Australia, Mawson Lakes 5095 (Australia)

    2013-04-01

    This study examines the effect of surface chemical functionalities on the behavior of human adipose-derived stem cells (hASCs) in vitro. Plasma polymerized films rich in amine (-NH{sub 2}), carboxyl (-COOH) and methyl (-CH{sub 3}), were generated on hydroxyapatite (HAp) substrates. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy (XPS). The ability of different substrates to absorb proteins was evaluated. The results showed that substrates modified with hydrophilic functional group (-COOH and -NH{sub 2}) can absorb more proteins than these modified with more hydrophobic functional group (-CH{sub 3}). The behavior of human adipose-derived stem cells (hASCs) cultured on different substrates was investigated in vitro: cell counting kit-8 (CCK-8) analysis was used to characterize cell proliferation, scanning electronic microscopy (SEM) analysis was used to characterize cell morphology and alkaline phosphatase (ALP) activity analysis was used to account for differentiation. The results of this study demonstrated that the -NH{sub 2} modified surfaces encourage osteogenic differentiation; the -COOH modified surfaces promote cell adhesion and spreading and the -CH{sub 3} modified surfaces have the lowest ability to induce osteogenic differentiation. These findings confirmed that the surface chemical states of biomaterials can affect the behavior of hASCs in vitro.

  15. Effects of Surface Structure and Chemical Composition of Binary Ti Alloys on Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Ok-Sung Han

    2016-07-01

    Full Text Available Binary Ti alloys containing Fe, Mo, V and Zr were micro-arc oxidized and hydrothermally treated to obtain micro- and nano-porous layers. This study aimed to investigate cell differentiation on micro and micro/nanoporous oxide layers of Ti alloys. The properties of the porous layer formed on Ti alloys were characterized by X-ray diffraction pattern, microstructural and elemental analyses and inductively coupled plasma mass spectrometry (ICP-MS method. The MTT assay, total protein production and alkaline phosphatase (ALPase activity were evaluated using human osteoblast-like cells (MG-63. Microporous structures of micro-arc oxidized Ti alloys were changed to micro/nanoporous surfaces after hydrothermal treatment. Micro/nanoporous surfaces consisted of acicular TiO2 nanoparticles and micron-sized hydroxyapatite particles. From ICP and MTT tests, the Mo and V ions released from porous oxide layers were positive for cell viability, while the released Fe ions were negative for cell viability. Although the micro/nanoporous surfaces led to a lower total protein content than the polished and microporous Ti surfaces after cell incubation for 7 days, they caused higher ALPase activities after 7 days and 14 days of incubation except for V-containing microporous surfaces. The micro/nanoporous surfaces of Ti alloys were more efficient in inducing MG-63 cell differentiation.

  16. Study of concentric iridescent ring around the laser-induced pits on the solar cell surface

    International Nuclear Information System (INIS)

    Highlights: • We studied the laser-induced damage on solar cell surface. • Concentric iridescent ring was observed originated from the gradient distribution pattern of the thickness of the oxidized surface film. • The damaged surface film of the m-Si solar cell is SiO2, while that of the GaAs/Ge solar cell is GeO2. - Abstract: The laser-induced damage on the surface of monocrystalline silicon (m-Si) solar cells and GaAs/Gesingle heterojunction solar cells are investigated. The solar cells were irradiated by a continuous wave laser at the wavelength of 532 nm. Concentric iridescent ring appeared on the damaged surfaces when observed with an optical microscope (OM) of broad spectrum. The damaged surface film was characterized by X-ray photoelectron spectroscopy (XPS) and the Contour Meter. The laser-induced temperature in silicon was calculated. The formation mechanism of the film and the cause of the concentric iridescent ring were analyzed

  17. The interaction of human endothelial cells with chemical gradient surfaces during exposure to flow

    NARCIS (Netherlands)

    Ruardy, TG; Moorlag, HE; Schakenraad, JM; Van der Meer, J; Van der Mei, HC; Busscher, HJ; Olij, WJV; Anderson, HR

    1998-01-01

    In this study, the position bound shape, spreading, detachment and migration of adhering HUVEC endothelial cells on dichlorodimethylsilane (DDS) chemical gradient surfaces was investigated during exposure to flow in a parallel plate flow chamber in the presence of` serum proteins. Gradient surfaces

  18. Proteomic analysis of cell surface-associated proteins from probiotic Lactobacillus plantarum

    DEFF Research Database (Denmark)

    Beck, Hans Christian; Madsen, Søren M; Glenting, Jacob;

    2009-01-01

    In the present study, we used a proteomic approach to identify surface-associated proteins from the probiotic bacterium Lactobacillus plantarum 299v. Proteins were extracted from the cell surface using a mild wash in phosphate buffer and analysed by sodium dodecyl sulphate-polyacrylamide gel...

  19. Serotonin-induced down-regulation of cell surface serotonin transporter

    DEFF Research Database (Denmark)

    Jørgensen, Trine Nygaard; Christensen, Peter Møller; Gether, Ulrik

    2014-01-01

    -membrane spanning protein Tac. In stably transfected HEK293 cells, 5-HT caused a dose-dependent reduction in TacSERT surface signal with an EC50 value equivalent to the Km value observed for 5-HT uptake. The 5-HT-induced reduction in surface signal reached maximum within 40-60min and was blocked by the selective...

  20. Determining surface areas of marine alga cells by acid-base titration method.

    Science.gov (United States)

    Wang, X; Ma, Y; Su, Y

    1997-09-01

    A new method for determining the surface area of living marine alga cells was described. The method uses acid-base titration to measure the surface acid/base amount on the surface of alga cells and uses the BET (Brunauer, Emmett, and Teller) equation to estimate the maximum surface acid/base amount, assuming that hydrous cell walls have carbohydrates or other structural compounds which can behave like surface Brönsted acid-base sites due to coordination of environmental H2O molecules. The method was applied to 18 diverse alga species (including 7 diatoms, 2 flagellates, 8 green algae and 1 red alga) maintained in seawater cultures. For the species examined, the surface areas of individual cells ranged from 2.8 x 10(-8) m2 for Nannochloropsis oculata to 690 x 10(-8) m2 for Dunaliella viridis, specific surface areas from 1,030 m2.g-1 for Dunaliella salina to 28,900 m2.g-1 for Pyramidomonas sp. Measurement accuracy was 15.2%. Preliminary studies show that the method may be more promising and accurate than light/electron microscopic measurements for coarse estimation of the surface area of living algae. PMID:9297794