WorldWideScience

Sample records for cell surface hydrophobicity

  1. Cell surface hydrophobicity is conveyed by S-layer proteins - A study in recombinant lactobacilli

    NARCIS (Netherlands)

    Mei, H.C. van der; Belt-Gritter, B. van de; Pouwels, P.H.; Martinez, B.; Busscher, H.J.

    2003-01-01

    Cell surface hydrophobicity is one of the most important factors controlling adhesion of microorganisms to surfaces. In this paper, cell surface properties of lactobacilli and recombinant lactobacilli with and without a surface layer protein (SLP) associated with cell surface hydrophobicity were det

  2. Improved assay for surface hydrophobic avidity of Candida albicans cells.

    OpenAIRE

    Hazen, K C; LeMelle, W G

    1990-01-01

    A simple method that distinguishes among hydrophobic avidity levels of highly hydrophobic isolates of the pathogenic fungus Candida albicans is described. This method involves mixing polystyrene microspheres at different concentrations with a constant concentration of yeast cells and plotting the data in accordance with the Langmuir isotherm equation. A 10-fold difference between the C. albicans isolates with the lowest and highest avidity (KH) values was found. This method may also demonstra...

  3. Evaluation of Relative Yeast Cell Surface Hydrophobicity Measured by Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Lisa Colling

    2005-01-01

    Full Text Available Objective: To develop an efficient method for evaluating cell surface hydrophobicity and to apply the method to demonstrate the effects of fungal growth conditions on cell surface properties.

  4. Effect of Substrate and Cell Surface Hydrophobicity on Phosphate Utilization in Bacteria

    OpenAIRE

    Lemke, M. J.; Churchill, P. F.; Wetzel, R. G.

    1995-01-01

    We measured the rates of utilization of hydrophobic and hydrophilic phosphate compounds in gram-negative bacteria with different surface hydrophobicities, isolated from wetland habitats. Three hydrophobic and two hydrophilic bacterial species were selected for study by measuring cell adherence to hydrocarbons. The bacteria were grown under phosphorus-limited conditions with P(infi), hydrophilic (beta)-glycerophosphate, or hydrophobic phosphatidic acid as the phosphate source. Hydrophilic bact...

  5. Rho-associated kinase (ROCK) inhibition reverses low cell activity on hydrophobic surfaces

    International Nuclear Information System (INIS)

    Hydrophobic polymers do not offer an adequate scaffold surface for cells to attach, migrate, proliferate, and differentiate. Thus, hydrophobic scaffolds for tissue engineering have traditionally been physicochemically modified to enhance cellular activity. However, modifying the surface by chemical or physical treatment requires supplementary engineering procedures. In the present study, regulation of a cell signal transduction pathway reversed the low cellular activity on a hydrophobic surface without surface modification. Inhibition of Rho-associated kinase (ROCK) by Y-27632 markedly enhanced adhesion, migration, and proliferation of osteoblastic cells cultured on a hydrophobic polystyrene surface. ROCK inhibition regulated cell-cycle-related molecules on the hydrophobic surface. This inhibition also decreased expression of the inhibitors of cyclin-dependent kinases such as p21cip1 and p27kip1 and increased expression of cyclin A and D. These results indicate that defective cellular activity on the hydrophobic surface can be reversed by the control of a cell signal transduction pathway without physicochemical surface modification.

  6. Hydrophobic fractal surface from glycerol tripalmitate and the effects on C6 glioma cell growth.

    Science.gov (United States)

    Zhang, Shanshan; Chen, Xuerui; Yu, Jing; Hong, Biyuan; Lei, Qunfang; Fang, Wenjun

    2016-06-01

    To provide a biomimic environment for glial cell culture, glycerol tripalmitate (PPP) has been used as a raw material to prepare fractal surfaces with different degrees of hydrophobicity. The spontaneous formation of the hydrophobic fractal surfaces was monitored by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The surface morphologies were observed by a scanning electron microscope (SEM), and then the fractal dimension (FD) values of the surfaces were determined with the box-counting method. C6 glioma cells were cultured and compared on different hydrophobic PPP surfaces and poly-L-lysine (PLL)-coated surface. The cell numbers as a function of incubation time on different surfaces during the cell proliferation process were measured, and the cell morphologies were observed under a fluorescence microscope. Influences of hydrophobic fractal surfaces on the cell number and morphology were analyzed. The experimental results show that the cell proliferation rates decrease while the cell morphology complexities increase with the growth of the fractal dimensions of the PPP surfaces. PMID:26970826

  7. A reference guide to microbial cell surface hydrophobicity based on contact angles

    NARCIS (Netherlands)

    van der Mei, HC; Busscher, HJ; Bos, R.R.M.

    1998-01-01

    Acid-base interactions form the origin of the hydrophobicity of microbial cell-surfaces and can be quantitated from contact angle measurements on microbial lawns with water, formamide, methyleneiodide and/or alpha-bromonaphthalene. This review provides a reference guide to microbial cell surface hyd

  8. Relationship of cell surface morphology and composition of Streptococcus salivarius K+ to adherence and hydrophobicity.

    Science.gov (United States)

    Weerkamp, A H; van der Mei, H C; Slot, J W

    1987-01-01

    The cell surfaces of a range of variants of Streptococcus salivarius HB, altered in cell wall antigen composition, were compared with those of the parent with respect to adherence, ability to adsorb to hexadecane, morphology, and exposure of lipoteichoic acid (LTA). Adherence to host surfaces was measured by using both saliva-coated hydroxyapatite beads and tissue-cultured HeLa cells, and interbacterial adherence was measured by using Veillonella alcalescens V1 cells. Progressive loss of the protease-sensitive fibril classes was generally associated with decreasing ability to adsorb to hexadecane. However, increased exposure of protein antigen C (AgC) increased the apparent hydrophobicity of the cell. This correlated with the finding that AgC was the most hydrophobic of the solubilized fibrillar cell wall antigens. Collectively, this demonstrates that adsorption to hydrophobic ligands is directly related to the density of the fibrillar layer on the cells and the properties and surface exposure of specific fibril classes. The involvement of hydrophobic interactions in AgC-associated attachment was suggested by its sensitivity to low levels of the hydrophobic bond-breaking agent tetramethyl urea, although the reduction was not to the level of adherence observed with strains lacking AgC. However, hydrophobicity was less essential to other adherence reactions. Circumstantial evidence, including immunoelectron microscopy, showing that LTA was virtually absent from the fibrillar layer, whole-cell enzyme-linked immunosorbent assay, suggesting that surface exposure of LTA related inversely to the density of the fibrillar layer, and agarose gel electrophoresis, showing that LTA was not specifically associated with protein fibrillar antigens, strongly suggested that LTA does not confer hydrophobic properties to these cells and is not involved in adherence reactions associated with the cell wall protein antigens. Images PMID:3804445

  9. Electrohydrodynamics Near Hydrophobic Surfaces

    Science.gov (United States)

    Maduar, S. R.; Belyaev, A. V.; Lobaskin, V.; Vinogradova, O. I.

    2015-03-01

    We show that an electro-osmotic flow near the slippery hydrophobic surface depends strongly on the mobility of surface charges, which are balanced by counterions of the electrostatic diffuse layer. For a hydrophobic surface with immobile charges, the fluid transport is considerably amplified by the existence of a hydrodynamic slippage. In contrast, near the hydrophobic surface with mobile adsorbed charges, it is also controlled by an additional electric force, which increases the shear stress at the slipping interface. To account for this, we formulate electrohydrodynamic boundary conditions at the slipping interface, which should be applied to quantify electro-osmotic flows instead of hydrodynamic boundary conditions. Our theoretical predictions are fully supported by dissipative particle dynamics simulations with explicit charges. These results lead to a new interpretation of zeta potential of hydrophobic surfaces.

  10. Dynamics of high Weber number drops impacting on hydrophobic surfaces with closed micro-cells.

    Science.gov (United States)

    Zhang, Rui; Hao, Pengfei; Zhang, Xiwen; He, Feng

    2016-06-29

    The impact dynamics and bouncing performance of high Weber number drops on hydrophobic surfaces with open and closed micro-cells are investigated. Central wetted rings are observed on both closed-cell and open-cell surfaces under high Weber number collisions, which are proposed to constitute the key element affecting the bouncing behaviour. It is found that the drops rebound on closed-cell surfaces where the central area is in the "hybrid wetting state" at high Weber numbers, while the drops adhere to the open-cell surfaces where the central region is in the Wenzel state. A theoretical model is developed to explain this interesting phenomenon, in which the liquid cannot reach the bottom of the closed-cell hydrophobic surfaces since the air stored in micro-cavities prevents the sliding motion of the liquid film and functions as a "gas spring" lifting the liquid lamella. This indicates that the hydrophobic surface with simple micro cavities can maintain the water-repellent characteristics under drop impacts at high Weber numbers. These findings are expected to be crucial to a fundamental understanding of the rapid collisions between drops and micro-structured surfaces, as well as a valuable strategy to guide the fabrication of novel super water-repellant and anti-icing surfaces. PMID:27306824

  11. Hydrophobic and Electrostatic Cell Surface Properties of Thermophilic Dairy Streptococci

    NARCIS (Netherlands)

    Van der Mei, HC; de Vries, Jacob; Busscher, HJ

    1993-01-01

    Microbial adhesion to hydrocarbons (MATH) and microelectrophoresis were done in 10 mM potassium phosphate solutions to characterize the surfaces of thermophilic dairy streptococci, isolated from pasteurizers. Regardless of whether they were grown (in M17 broth) with lactose, sucrose, or glucose adde

  12. Biodegradation and surfactant-mediated biodegradation of diesel fuel by 218 microbial consortia are not correlated to cell surface hydrophobicity

    Energy Technology Data Exchange (ETDEWEB)

    Owsianiak, Mikolaj; Szulc, Alicja; Chrzanowski, Lukasz; Bogacki, Mariusz [Poznan Univ. of Technology (Poland). Inst. of Chemical Technology and Engineering; Cyplik, Pawel; Olejnik-Schmidt, Agniezka K. [Poznan Univ. of Life Sciences (Poland). Dept. of Biotechnology and Food Microbiology; Heipieper, Hermann J. [Helmholtz Centre for Environmental Research - UFZ, Leipzig (Germany). Dept. of Environmental Biotechnology

    2009-09-15

    In this study, we elucidated the role of cell surface hydrophobicity (microbial adhesion to hydrocarbons method, MATH) and the effect of anionic rhamnolipids and nonionic Triton X-100 surfactants on biodegradation of diesel fuel employing 218 microbial consortia isolated from petroleum-contaminated soils. Applied enrichment procedure with floating diesel fuel as a sole carbon source in liquid cultures resulted in consortia of varying biodegradation potential and diametrically different cell surface properties, suggesting that cell surface hydrophobicity is a conserved parameter. Surprisingly, no correlations between cell surface hydrophobicity and biodegradation of diesel fuel were found. Nevertheless, both surfactants altered cell surface hydrophobicity of the consortia in similar manner: increased for the hydrophilic and decreased for the hydrophobic cultures. In addition to this, the surfactants exhibited similar influence on diesel fuel biodegradation: Increase was observed for initially slow-degrading cultures and the opposite for fast degraders. This indicates that in the surfactant-mediated biodegradation, effectiveness of surfactants depends on the specification of microorganisms and not on the type of surfactant. In contrary to what was previously reported for pure strains, cell surface hydrophobicity, as determined by MATH, is not a good descriptor of biodegrading potential for mixed cultures. (orig.)

  13. Protein Adsorption Alters Hydrophobic Surfaces Used for Suspension Culture of Pluripotent Stem Cells

    Science.gov (United States)

    Jonas, Steven J.; Stieg, Adam Z.; Richardson, Wade; Guo, Shuling; Powers, David N.; Wohlschlegel, James; Dunn, Bruce

    2015-01-01

    This Letter examines the physical and chemical changes that occur at the interface of methyl-terminated alkanethiol self-assembled monolayers (SAMs) after exposure to cell culture media used to derive embryoid bodies (EBs) from pluripotent stem cells. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy analysis of the SAMs indicates that protein components within the EB cell culture medium preferentially adsorb at the hydrophobic interface. In addition, we examined the adsorption process using surface plasmon resonance and atomic force microscopy. These studies identify the formation of a porous, mat-like adsorbed protein film with an approximate thickness of 2.5 nm. Captive bubble contact angle analysis reveals a shift toward superhydrophilic wetting behavior at the cell culture interface due to adsorption of these proteins. These results show how EBs are able to remain in suspension when derived on hydrophobic materials, which carries implications for the rational design of suspension culture interfaces for lineage specific stem-cell differentiation. PMID:26261952

  14. Effects of elaidic acid, a predominant industrial trans fatty acid, on bacterial growth and cell surface hydrophobicity of lactobacilli.

    Science.gov (United States)

    Wu, Qinglong; Shah, Nagendra P

    2014-12-01

    The consumption of trans fatty acids (TFAs) increases the risk of cardiovascular diseases and coronary heart disease in human, and there are no effective ways to remove TFAs after consumption. The aim of this study was to investigate the effects of elaidic acid on bacterial growth, cell surface hydrophobicity of lactobacilli, and metabolism of elaidic acid by lactobacilli. Lactobacilli were inoculated in MRS broth containing 0, 100, 200, and 500 mg/L of elaidic acid. Viable cell counts of lactobacilli were enumerated, concentrations of elaidic acid were determined, and cell surface hydrophobicity of lactobacilli was measured. The results showed that the growth of lactobacilli was significantly inhibited by 500 mg/L of elaidic acid, however, a cell count of 8.50 log10 CFU/mL was still reached for tested lactobacilli after 24-h incubation. In particular, a reduction of elaidic acid was found for tested lactobacilli after 24-h incubation as compared to its initial concentration of 200 mg/L. However, cell surface hydrophobicity showed no correlations with the metabolism of elaidic acid by lactobacilli. Moreover, elaidic acid was able to influence cell surface hydrophobicity, and the decrease in hydrophobicity was more obvious in Lactobacillus paracasei and Lactobacillus casei compared with that in other tested lactobacilli. This study suggests that elaidic acid could change physiochemical surface properties of lactobacilli and the lactobacilli have the potential to reduce TFAs.

  15. Changes in the hydrophobic-hydrophilic cell surface character of Halomonas elongata in response to NaCl.

    OpenAIRE

    Hart, D J; Vreeland, R H

    1988-01-01

    Phase-partitioning studies of the euryhaline bacterium Halomonas elongata demonstrated that the hydrophobic-hydrophilic nature of the cell surface changed as the bacterium grew in different NaCl concentrations. Mid-log-phase cells grown in a high (3.4 M) NaCl concentration were more hydrophilic than were cells grown in a low (0.05 M) NaCl concentration. Mid-log-phase cells from defined medium containing 3.4 M NaCl normally produced a hydrophobicity reading of only 14 (hexadecane hydrophobicit...

  16. Surface modification of hydrophobic polymers for improvement of endothelial cell-surface interactions

    NARCIS (Netherlands)

    Dekker, A.; Reitsma, K.; Beugeling, T.; Bantjes, A.; Feijen, J.; Kirkpatrick, C.J.; Aken, van W.G.

    1992-01-01

    The aim of this study is to improve the interaction of endothelial cells with polymers used in vascular prostheses. Polytetrafluoroethylene (PTFE; Teflon) films were treated by means of nitrogen and oxygen plasmas. Depending on the plasma exposure time, modified PTFE surfaces showed water-contact an

  17. A bioluminescence ATP assay for estimating surface hydrophobicity and membrane damage of Escherichia coli cells treated with pulsed electric fields

    Science.gov (United States)

    Pulse Electric Field (PEF) treatments, a non-thermal process have been reported to injure and inactivate bacteria in liquid foods. However, the effect of this treatment on bacterial cell surface charge and hydrophobicity has not been investigated. Apple juice (AJ, pH 3.8) purchased from a wholesale ...

  18. Hydrophobic patches on protein surfaces

    NARCIS (Netherlands)

    Lijnzaad, P.

    2007-01-01

    Hydrophobicity is a prime determinant of the structure and function of proteins. It is the driving force behind the folding of soluble proteins, and when exposed on the surface, it is frequently involved in recognition and binding of ligands and other proteins. The energetic cost of exposing hydroph

  19. Expression of surface hydrophobic proteins by Candida albicans in vivo.

    OpenAIRE

    Glee, P M; Sundstrom, P; Hazen, K C

    1995-01-01

    Candida albicans modulates cell surface hydrophobicity during growth and morphogenesis in vitro. To determine if surface hydrophobicity is expressed during pathogenesis, we generated a polyclonal antiserum against yeast hydrophobic proteins. The antiserum was then used for indirect immunofluorescence analysis of tissues from mice colonized and chronically infected with C. albicans. Results demonstrated that yeast hydrophobic proteins are exposed on fungal cells present in host tissues. The po...

  20. The Non-Specific Binding of Fluorescent-Labeled MiRNAs on Cell Surface by Hydrophobic Interaction.

    Directory of Open Access Journals (Sweden)

    Ting Lu

    Full Text Available MicroRNAs are small noncoding RNAs about 22 nt long that play key roles in almost all biological processes and diseases. The fluorescent labeling and lipofection are two common methods for changing the levels and locating the position of cellular miRNAs. Despite many studies about the mechanism of DNA/RNA lipofection, little is known about the characteristics, mechanisms and specificity of lipofection of fluorescent-labeled miRNAs.Therefore, miRNAs labeled with different fluorescent dyes were transfected into adherent and suspension cells using lipofection reagent. Then, the non-specific binding and its mechanism were investigated by flow cytometer and laser confocal microscopy. The results showed that miRNAs labeled with Cy5 (cyanine fluorescent dye could firmly bind to the surface of adherent cells (Hela and suspended cells (K562 even without lipofection reagent. The binding of miRNAs labeled with FAM (carboxyl fluorescein to K562 cells was obvious, but it was not significant in Hela cells. After lipofectamine reagent was added, most of the fluorescently labeled miRNAs binding to the surface of Hela cells were transfected into intra-cell because of the high transfection efficiency, however, most of them were still binding to the surface of K562 cells. Moreover, the high-salt buffer which could destroy the electrostatic interactions did not affect the above-mentioned non-specific binding, but the organic solvent which could destroy the hydrophobic interactions eliminated it.These results implied that the fluorescent-labeled miRNAs could non-specifically bind to the cell surface by hydrophobic interaction. It would lead to significant errors in the estimation of transfection efficiency only according to the cellular fluorescence intensity. Therefore, other methods to evaluate the transfection efficiency and more appropriate fluorescent dyes should be used according to the cell types for the accuracy of results.

  1. Hydrophobically-associating cationic polymers as micro-bubble surface modifiers in dissolved air flotation for cyanobacteria cell separation.

    Science.gov (United States)

    Yap, R K L; Whittaker, M; Diao, M; Stuetz, R M; Jefferson, B; Bulmus, V; Peirson, W L; Nguyen, A V; Henderson, R K

    2014-09-15

    Dissolved air flotation (DAF), an effective treatment method for clarifying algae/cyanobacteria-laden water, is highly dependent on coagulation-flocculation. Treatment of algae can be problematic due to unpredictable coagulant demand during blooms. To eliminate the need for coagulation-flocculation, the use of commercial polymers or surfactants to alter bubble charge in DAF has shown potential, termed the PosiDAF process. When using surfactants, poor removal was obtained but good bubble adherence was observed. Conversely, when using polymers, effective cell removal was obtained, attributed to polymer bridging, but polymers did not adhere well to the bubble surface, resulting in a cationic clarified effluent that was indicative of high polymer concentrations. In order to combine the attributes of both polymers (bridging ability) and surfactants (hydrophobicity), in this study, a commercially-available cationic polymer, poly(dimethylaminoethyl methacrylate) (polyDMAEMA), was functionalised with hydrophobic pendant groups of various carbon chain lengths to improve adherence of polymer to a bubble surface. Its performance in PosiDAF was contrasted against commercially-available poly(diallyl dimethyl ammonium chloride) (polyDADMAC). All synthesised polymers used for bubble surface modification were found to produce positively charged bubbles. When applying these cationic micro-bubbles in PosiDAF, in the absence of coagulation-flocculation, cell removals in excess of 90% were obtained, reaching a maximum of 99% cell removal and thus demonstrating process viability. Of the synthesised polymers, the polymer containing the largest hydrophobic functionality resulted in highly anionic treated effluent, suggesting stronger adherence of polymers to bubble surfaces and reduced residual polymer concentrations. PMID:24934266

  2. HYDROPHOBICITY OF CONTAMINATED SILICONE RUBBER SURFACES

    Institute of Scientific and Technical Information of China (English)

    Zhi-min Zheng; Cai-hong Xu; Jian Jiang; Chang-yu Ren; Wei Gao; Ze-min Xie

    2002-01-01

    Silicone rubber (SIR) shows superior performance when used outdoors, but its surface can be transformed frominherently hydrophobic to hydrophilic by the adsorption of contaminants. Al(OH)3, Al2O3, quartz powder and active carbonwere selected as authentic contaminants. Hydrophobicity of the surface was determined using contact angle measurement.The results indicate that the adsorbability of the contaminants can strongly affect the hydrophobicity of contaminated SIRsurface. The increasing rate of contact angle of specimens contaminated by Al(OH)3 was much faster than that by Al2O3 andquartz due to the adsorption of migrated low molecular weight (LMW) polydimethylsiloxanes. Specimens contaminated byactive carbon could achieve surface hydrophobicity within 15 min because active carbon has high adsorbability. Surfaces ofcontaminated ultrapure SIR, polytetrafluoroethylene (PTFE) and glass remain hydrophilic because they contain no mobileLMW components. The addition of oligomeric polydimethylsiloxanes has little effect on the hydrophobicity of contaminantscovered on SIR surface.

  3. Electro-hydrodynamics near Hydrophobic Surfaces

    CERN Document Server

    Maduar, S R; Lobaskin, V; Vinogradova, O I

    2014-01-01

    We show that the dynamics of the electrostatic diffuse layer at the slippery hydrophobic surface depends strongly on the mobility of surface charges. For a hydrophobic surface with immobile charges the fluid transport is considerably amplified by the existence of a hydrodynamic slippage. In contrast, near the hydrophobic surface with mobile adsorbed charges it is also controlled by an additional electric force, which increases the shear stress at the slipping interface. To account for this we formulate electro-hydrodynamic boundary conditions at the slipping interface, which are applied to quantify electro-osmotic flows. Our theoretical predictions are fully supported by dissipative particle dynamics simulations with explicit charges. These results lead to a new general concept of zeta-potential of hydrophobic surfaces.

  4. Robust hydrophobic surfaces with various micropillar arrays

    International Nuclear Information System (INIS)

    In the present study, we design, fabricate and characterize robust hydrophobic surfaces on which four different shapes (rectangle, circle, triangle and cross) of a micropillar array are patterned. Various micropillar arrays are designed to give rise to the same Wenzel and Cassie contact angles (CAs) of the surfaces through changes in the shape and size of the micropillar and the spacing between adjacent micropillars. The designed surfaces are fabricated using polydimethylsiloxane (PDMS) replica molding with photolithographically manufactured SU-8 masters. The hydrophobicities of the various PDMS surfaces are evaluated through theoretical and experimental measurements of the water CAs. The theoretical and experimental CAs are strongly correlated to each other, as expected. The generalization of the suggested design rule was carried out by introducing effective parameters of square-arranged micropillar arrays. The apparent contact angle of the robust hydrophobic surface monotonically increases as the top surface area decreases for a given perimeter and height.

  5. Water on hydrophobic surfaces: Mechanistic modeling of hydrophobic interaction chromatography.

    Science.gov (United States)

    Wang, Gang; Hahn, Tobias; Hubbuch, Jürgen

    2016-09-23

    Mechanistic models are successfully used for protein purification process development as shown for ion-exchange column chromatography (IEX). Modeling and simulation of hydrophobic interaction chromatography (HIC) in the column mode has been seldom reported. As a combination of these two techniques is often encountered in biopharmaceutical purification steps, accurate modeling of protein adsorption in HIC is a core issue for applying holistic model-based process development, especially in the light of the Quality by Design (QbD) approach. In this work, a new mechanistic isotherm model for HIC is derived by consideration of an equilibrium between well-ordered water molecules and bulk-like ordered water molecules on the hydrophobic surfaces of protein and ligand. The model's capability of describing column chromatography experiments is demonstrated with glucose oxidase, bovine serum albumin (BSA), and lysozyme on Capto™ Phenyl (high sub) as model system. After model calibration from chromatograms of bind-and-elute experiments, results were validated with batch isotherms and prediction of further gradient elution chromatograms. PMID:27575919

  6. Effect of Eugenol on Cell Surface Hydrophobicity, Adhesion, and Biofilm of Candida tropicalis and Candida dubliniensis Isolated from Oral Cavity of HIV-Infected Patients

    Directory of Open Access Journals (Sweden)

    Suelen Balero de Paula

    2014-01-01

    Full Text Available Most Candida spp. infections are associated with biofilm formation on host surfaces. Cells within these communities display a phenotype resistant to antimicrobials and host defenses, so biofilm-associated infections are difficult to treat, representing a source of reinfections. The present study evaluated the effect of eugenol on the adherence properties and biofilm formation capacity of Candida dubliniensis and Candida tropicalis isolated from the oral cavity of HIV-infected patients. All isolates were able to form biofilms on different substrate surfaces. Eugenol showed inhibitory activity against planktonic and sessile cells of Candida spp. No metabolic activity in biofilm was detected after 24 h of treatment. Scanning electron microscopy demonstrated that eugenol drastically reduced the number of sessile cells on denture material surfaces. Most Candida species showed hydrophobic behavior and a significant difference in cell surface hydrophobicity was observed after exposure of planktonic cells to eugenol for 1 h. Eugenol also caused a significant reduction in adhesion of most Candida spp. to HEp-2 cells and to polystyrene. These findings corroborate the effectiveness of eugenol against Candida species other than C. albicans, reinforcing its potential as an antifungal applied to limit both the growth of planktonic cells and biofilm formation on different surfaces.

  7. Switchable Hydrophobic-Hydrophilic Surfaces

    CERN Document Server

    Bunker, B C; Huber, D L; Kent, M S; Kushmerick, J G; Lopez, G P; Manginell, R P; Méndez, S E; Yim, H

    2002-01-01

    Tethered films of poly n-isopropylacrylamide (PNIPAM) films have been developed as materials that can be used to switch the chemistry of a surface in response to thermal activation. In water, PNIPAM exhibits a thermally-activated phase transition that is accompanied by significant changes in polymer volume, water contact angle, and protein adsorption characteristics. New synthesis routes have been developed to prepare PNIPAM films via in-situ polymerization on self-assembled monolayers. Swelling transitions in tethered films have been characterized using a wide range of techniques including surface plasmon resonance, attenuated total reflectance infrared spectroscopy, interfacial force microscopy, neutron reflectivity, and theoretical modeling. PNIPAM films have been deployed in integrated microfluidic systems. Switchable PNIPAM films have been investigated for a range of fluidic applications including fluid pumping via surface energy switching and switchable protein traps for pre-concentrating and separating...

  8. Hydrophobic surface protein masking by the opportunistic fungal pathogen Candida albicans.

    OpenAIRE

    Hazen, K C; Hazen, B W

    1992-01-01

    Ultrastructural and biochemical analyses of hydrophobic and hydrophilic yeast cell surface proteins of Candida albicans were performed. Hydrophobic and hydrophilic yeast cells were obtained by growth at 23 and 37 degrees C, respectively. In addition, hydrophilic yeast cells were converted to surface hydrophobicity by treatment with tunicamycin and dithiothreitol. When freeze-etched cells were examined, the temperature-induced hydrophilic cells had long (0.198 micron), compact, evenly distribu...

  9. Research progress on theultra hydrophobic surface topography effect

    Institute of Scientific and Technical Information of China (English)

    WANG Jiadao; YU Ying; CHEN Darong

    2006-01-01

    Ultra hydrophobic surfaces take on better hydrophobicity and exhibit a water contact angle larger than 150°. In this paper the ultra hydrophobicity is analyzed and common fabrication methods are summarized in detail. The applications of micro topography in both the fabrication of hydrophobic surface and the experiments of drag reduction are addressed. Finally, the development trend and foreground of ultra hydrophobic surface are discussed.

  10. Phase diagram of water between hydrophobic surfaces

    OpenAIRE

    Koga, Kenichiro; Tanaka, Hideki

    2005-01-01

    Molecular dynamics simulations demonstrate that there are at least two classes of quasi-two-dimensional solid water into which liquid water confined between hydrophobic surfaces freezes spontaneously and whose hydrogen-bond networks are as fully connected as those of bulk ice. One of them is the monolayer ice and the other is the bilayer solid which takes either a crystalline or an amorphous form. Here we present the phase transformations among liquid, bilayer amorphous (or crystalline) ice, ...

  11. Enhanced conversion efficiency and surface hydrophobicity of nano-roughened Teflon-like film coated poly-crystalline Si solar cells.

    Science.gov (United States)

    Lin, Gong-Ru; Meng, Fan-Shuen; Pai, Yi-Hao; Lin, Yung-Hsiang

    2012-03-21

    Nano-roughened Teflon-like film coated poly-crystalline Si photovoltaic solar cells (PVSCs) with enhanced surface hydrophobicity and conversion efficiency (η) are characterized and compared with those coated by a Si nanorod array or a standard SiN anti-reflection layer. The Teflon-like film coated PVSC surface reveals a water contact angle increasing from 89.3° to 96.2° as its thickness enlarges from 22 to 640 nm, which is much larger than those of the standard and Si nanorod array coated PVSC surfaces (with angles of 55.6° and 32.8°, respectively). After nano-roughened Teflon-like film passivation, the PVSC shows a comparable η(10.89%) with the standard SiN coated PVSC (η = 11.39%), while the short-circuit current (I(SC)) is slightly reduced by 2% owing to the slightly decreased UV transmittance and unchanged diode performance. In contrast, the Si nanorod array may offer an improved surface anti-reflection with surface reflectance decreasing from 30% to 5% at a cost of optical scattering and randomized deflection, which simultaneously decrease the optical transmittance from 15% to 3% in the visible region without improving hydrophobicity and conversion efficiency. The Si nanorod array covered PVSC with numerous surface dangling bonds induced by 1 min wet-etching, which greatly reduces the open-circuit voltage (V(OC)) by 10-15% and I(SC) by 30% due to the reduced shunt resistance from 3 to 0.24 kΩ. The nano-scale roughened Teflon-like film coated on PVSC has provided better hydrophobicity and conversion efficiency than the Si nanorod array covered PVSC, which exhibits superior water repellant performance and comparable conversion efficiency to be one alternative approach for self-cleaning PVSC applications.

  12. Hydrophobic Interactions Involved in Attachment of a Baculovirus to Hydrophobic Surfaces

    OpenAIRE

    Small, Deirdre A.; Moore, Norman F.; Entwistle, Philip F.

    1986-01-01

    The hydrophobic interactions of Trichoplusia ni nuclear polyhedrosis virus were characterized by hydrophobic interaction chromatography. The determination of the hydrophobic force and some of the factors that influence its size is discussed in relation to the attachment to leaf surfaces of polyhedra during their use as biological control agents against insect pests.

  13. Cell surface hydrophobicity and biofilm formation ability of Vibrio splendidus%灿烂弧菌的疏水性和生物被膜形成能力

    Institute of Scientific and Technical Information of China (English)

    李华; 王扬; 李强; 乔帼

    2011-01-01

    以仿刺参“化皮”病病原菌-灿烂弧菌(Vibrio splendidus)AP622为试验菌株,研究了培养材料、培养时间、培养基、葡萄糖浓度对菌株生物被膜形成能力的影响,证实鞭毛和菌毛介导的运动性,同时比较了浮游细菌与形成生物被膜的细菌对抗生素的敏感性,并研究了菌株的疏水性.结果表明,菌株AP622为高疏水性和高生物被膜形成菌株,在聚氯乙烯为培养材料、含葡萄糖浓度为0.5%、LB培养基中形成的生物被膜最多,生物被膜形成周期为24 h.菌株AP622明显表现出鞭毛介导的群集性和Ⅳ型菌毛介导的颤搐等运动力.生物被膜中的菌株AP622对抗生素的抵抗力明显强于浮游细菌,其最小抑菌浓度(MIC)是浮游细菌的32倍.综上所述,菌株AP622具有很强的疏水性和高生物被膜形成能力,判断其具有很强的黏附力,同时具有明显的抗药性.%Vibrio splendidus infects a range of hosts, including fish, shellfish, and echinoderms. Infection with this pathogen has led to significant economic loss in several cultured species, including the sea cucumber (Aposti-chopus japonicus). Thus, there is an urgent need to understand the pathogenesis of V. Splendidus. The virulence of a pathogen is partly a function of its adhesion properties. Adhesion depends on cell surface hydrophobicity and biofilm formation. The hydrophobic cell surface provides an advantage to the bacteria in vivo by increasing resistance to phagocytosis or by favoring colonization of mucosal or connective tissue in wounds and endocarditis in bacteria. We evaluated the hydrophobicity and biofilm formation in V. Splendidus AP622, isolated from diseased A. Japonicus. We also evaluated the effect of culture constituents, culture time, growth medium, and the concentration of glucose on biofilm formation. We compared the sensitivity of planktonic cells and resuspended V. Splendidus AP622 biofilm cells to gentamycin sulphate. Last, we quantified

  14. Staphylococcus epidermidis adhesion on hydrophobic and hydrophilic textured biomaterial surfaces.

    Science.gov (United States)

    Xu, Li-Chong; Siedlecki, Christopher A

    2014-06-01

    It is of great interest to use nano- or micro-structured surfaces to inhibit microbial adhesion and biofilm formation and thereby to prevent biomaterial-associated infection, without modification of the surface chemistry or bulk properties of the materials and without use of the drugs. Our previous study showed that a submicron textured polyurethane surface can inhibit staphylococcal bacterial adhesion and biofilm formation. To further understand the effect of the geometry of textures on bacterial adhesion as well as the underlying mechanism, in this study, submicron and micron textured polyurethane surfaces featuring ordered arrays of pillars were fabricated and modified to have different wettabilities. All the textured surfaces were originally hydrophobic and showed significant reductions in Staphylococcus epidermidis RP62A adhesion in phosphate buffered saline or 25% platelet poor plasma solutions under shear, as compared to smooth surfaces. After being subjected to an air glow discharge plasma treatment, all polyurethane surfaces were modified to hydrophilic, and reductions in bacterial adhesion on surfaces were subsequently found to be dependent on the size of the patterns. The submicron patterned surfaces reduced bacterial adhesion, while the micron patterned surfaces led to increased bacterial adhesion. The extracellular polymeric substances (EPS) from the S. epidermidis cell surfaces were extracted and purified, and were coated on a glass colloidal surface so that the adhesion force and separation energy in interactions of the EPS and the surface could be measured by colloidal probe atomic force microscopy. These results were consistent with the bacterial adhesion observations. Overall, the data suggest that the increased surface hydrophobicity and the decreased availability of the contact area contributes to a reduction in bacterial adhesion to the hydrophobic textured surfaces, while the availability of the contact area is the primary determinant factor

  15. Staphylococcus epidermidis adhesion on hydrophobic and hydrophilic textured biomaterial surfaces

    International Nuclear Information System (INIS)

    It is of great interest to use nano- or micro-structured surfaces to inhibit microbial adhesion and biofilm formation and thereby to prevent biomaterial-associated infection, without modification of the surface chemistry or bulk properties of the materials and without use of the drugs. Our previous study showed that a submicron textured polyurethane surface can inhibit staphylococcal bacterial adhesion and biofilm formation. To further understand the effect of the geometry of textures on bacterial adhesion as well as the underlying mechanism, in this study, submicron and micron textured polyurethane surfaces featuring ordered arrays of pillars were fabricated and modified to have different wettabilities. All the textured surfaces were originally hydrophobic and showed significant reductions in Staphylococcus epidermidis RP62A adhesion in phosphate buffered saline or 25% platelet poor plasma solutions under shear, as compared to smooth surfaces. After being subjected to an air glow discharge plasma treatment, all polyurethane surfaces were modified to hydrophilic, and reductions in bacterial adhesion on surfaces were subsequently found to be dependent on the size of the patterns. The submicron patterned surfaces reduced bacterial adhesion, while the micron patterned surfaces led to increased bacterial adhesion. The extracellular polymeric substances (EPS) from the S. epidermidis cell surfaces were extracted and purified, and were coated on a glass colloidal surface so that the adhesion force and separation energy in interactions of the EPS and the surface could be measured by colloidal probe atomic force microscopy. These results were consistent with the bacterial adhesion observations. Overall, the data suggest that the increased surface hydrophobicity and the decreased availability of the contact area contributes to a reduction in bacterial adhesion to the hydrophobic textured surfaces, while the availability of the contact area is the primary determinant factor

  16. Enhanced Permeation of a Hydrophobic Fluid through Particles with Hydrophobic and Hydrophilic Patterned Surfaces

    OpenAIRE

    Renliang Zhang; Yousheng Xu; Binghai Wen; Nan Sheng; Haiping Fang

    2014-01-01

    The wetting properties of solid surfaces are significant in oil/gas and liquid displacement processes. It is difficult for hydrophobic fluids to permeate channels filled with hydrophilic particles and an aqueous phase, and this is thought to be the primary cause of low yields in low permeability reservoir operations. Using three-dimensional lattice Boltzmann simulations, we show that particles with hydrophobic and hydrophilic patterned surfaces can greatly improve hydrophobic fluid permeation...

  17. Droplet Impact Dynamics on Micropillared Hydrophobic Surfaces

    CERN Document Server

    Patil, Nagesh D; Sharma, Atul

    2016-01-01

    The effect of pitch of the pillars and impact velocity are studied for the impact dynamics of a microliter water droplet on a micropillared hydrophobic surface. The results are presented qualitatively by the high-speed photography and quantitatively by the temporal variation of wetted diameter and droplet height. A characterization of the transient quantitative results is a novel aspect of our work. Three distinct regimes, namely, non-bouncing, complete bouncing and partial bouncing are presented. A critical pitch as well as impact velocity exists for the transition from one regime to another. This is explained with a demonstration of Cassie to Wenzel wetting transition in which the liquid penetrates in the grooves between the pillars at larger pitch or impact velocity. The regimes are demarcated on a map of pitch and impact velocity. A good agreement is reported between the present measurements and published analytical models.

  18. Computational Protein Design with Explicit Consideration of Surface Hydrophobic Patches

    OpenAIRE

    Jacak, Ron; Leaver-Fay, Andrew; Kuhlman, Brian

    2011-01-01

    De novo protein design requires the identification of amino-acid sequences that favor the target folded conformation and are soluble in water. One strategy for promoting solubility is to disallow hydrophobic residues on the protein surface during design. However, naturally occurring proteins often have hydrophobic amino acids on their surface that contribute to protein stability via the partial burial of hydrophobic surface area or play a key role in the formation of protein-protein interacti...

  19. Effects of fluconazole treatment of mice infected with fluconazole-susceptible and -resistant Candida tropicalis on fungal cell surface hydrophobicity, adhesion and biofilm formation

    Directory of Open Access Journals (Sweden)

    R L Kanoshiki

    2015-01-01

    Full Text Available Background : The incidence of Candida tropicalis less susceptible to fluconazole (FLC has been reported in many parts of the world. Objectives : The aim of this study was to examine the changes of putative virulence attributes of Candida tropicalis accompanying the development of resistance to FLC in vitro and in vivo. Materials and Methods : A FLC-resistant strain (FLC-R was obtained after sequential exposure of a clinical isolate FLC-sensitive (FLC-S to increasing concentrations of the antifungal. The course of infection by both strains was analyzed in BALB/c mice. Analyses of gene expression were performed by real-time polymerase chain reaction PCR. The cell surface hydrophobicity, adhesion and biofilm formation were also determined. Results : Development of resistance to FLC could be observed after 15 days of subculture in azole-containing medium. Overexpression of MDR1 and ERG11 genes were observed in FLC-R, and this strain exhibited enhanced virulence in mice, as assessed by the mortality rate. All mice challenged with the FLC-R died and FLC-treatment caused earlier death in mice infected with this strain. All animals challenged with FLC-S survived the experiment, regardless of FLC-treatment. Overall, FLC-R derivatives strains were significantly more hydrophobic than FLC-S strains and showed greater adherence and higher capacity to form biofilm on polystyrene surface. Conclusions : The expression of virulence factors was higher in FLC-R-C. tropicalis and it was enhanced after FLC-exposure. These data alert us to the importance of identifying microorganisms that show resistance to the antifungals to establish an appropriate management of candidiasis therapy.

  20. Hydroglyphics: Demonstration of Selective Wetting on Hydrophilic and Hydrophobic Surfaces

    Science.gov (United States)

    Kim, Philseok; Alvarenga, Jack; Aizenberg, Joanna; Sleeper, Raymond S.

    2013-01-01

    A visual demonstration of the difference between hydrophilic and hydrophobic surfaces has been developed. It involves placing a shadow mask on an optically clear hydrophobic plastic dish, corona treating the surface with a modified Tesla coil, removing the shadow mask, and visualizing the otherwise invisible message or pattern by applying water,…

  1. The hydrophobic effect: Molecular dynamics simulations of water confined between extended hydrophobic and hydrophilic surfaces

    DEFF Research Database (Denmark)

    Jensen, Morten Østergaard; Mouritsen, Ole G.; Peters, Günther H.J.

    2004-01-01

    Structural and dynamic properties of water confined between two parallel, extended, either hydrophobic or hydrophilic crystalline surfaces of n-alkane C36H74 or n-alcohol C35H71OH, are studied by molecular dynamics simulations. Electron density profiles, directly compared with corresponding...... experimental data from x-ray reflectivity measurements, reveal a uniform weak de-wetting characteristic for the extended hydrophobic surface, while the hydrophilic surface is weakly wetted. These microscopic data are consistent with macroscopic contact angle measurements. Specific water orientation is present...... at both surfaces. The ordering is characteristically different between the surfaces and of longer range at the hydrophilic surface. Furthermore, the dynamic properties of water are different at the two surfaces and different from the bulk behavior. In particular, at the hydrophobic surface, time...

  2. Wetting behavior on hybrid surfaces with hydrophobic and hydrophilic properties

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Chun-Wei [Dept. of Mechanical Engineering, Texas A and M University, College Station, TX 77843 (United States); Alvarado, Jorge L., E-mail: Alvarado@entc.tamu.edu [Dept. of Engineering Technology and Industrial Distribution, Texas A and M University, College Station, TX 77843 (United States); Marsh, Charles P. [ERDC – Construction Engineering Research Laboratory, 2902 Newmark Dr., Champaign, IL 61826 (United States); Dept. of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61801 (United States); Jones, Barclay G. [Dept. of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61801 (United States); Collins, Michael K. [ERDC – Construction Engineering Research Laboratory, 2902 Newmark Dr., Champaign, IL 61826 (United States); Dept. of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61801 (United States)

    2014-01-30

    Hybrid surfaces consisting of a micropillar array of hydrophobic and hydrophilic sites were designed and fabricated to understand the effects of their unique surface morphology and chemistry on droplet condensation. Droplet impingement experiments have revealed that hybrid surfaces exhibit high contact angles, which is characteristic of purely hydrophobic surfaces. However, little is known about the wetting behavior of droplets that nucleate and grow on hybrid surfaces during condensation. In fact, condensed droplets display a distinct wetting behavior during the droplet growth phase which cannot be reproduced by simply impinging droplets on hybrid surfaces. In this study, hybrid surfaces with three different spacing ratios were subjected to condensation tests using an environmental scanning electron microscopy (ESEM) and a condensation cell under ambient conditions. For hybrid surfaces with spacing ratio below 2, droplets were observed to form on top and sides of the micropillars, where they grew, coalesced with adjacent droplets, and shed after reaching a given size. After shedding, the top surface remained partially dry, which allowed for immediate droplet growth. For hybrid surfaces with spacing ratio equal to 2, a different wetting behavior was observed, where droplets basically coalesced and formed a thin liquid film which was ultimately driven into the valleys of the microstructure. The liquid shedding process led to the renucleation of droplets primarily on top of the dry hydrophilic sites. To better understand the nature of droplet wetting on hybrid surfaces, a surface energy-based model was developed to predict the transition between the two observed wetting behaviors at different spacing ratios. The experimental and analytical results indicate that micropillar spacing ratio is the key factor for promoting different wetting behavior of condensed droplets on hybrid surfaces.

  3. Wetting behavior on hybrid surfaces with hydrophobic and hydrophilic properties

    International Nuclear Information System (INIS)

    Hybrid surfaces consisting of a micropillar array of hydrophobic and hydrophilic sites were designed and fabricated to understand the effects of their unique surface morphology and chemistry on droplet condensation. Droplet impingement experiments have revealed that hybrid surfaces exhibit high contact angles, which is characteristic of purely hydrophobic surfaces. However, little is known about the wetting behavior of droplets that nucleate and grow on hybrid surfaces during condensation. In fact, condensed droplets display a distinct wetting behavior during the droplet growth phase which cannot be reproduced by simply impinging droplets on hybrid surfaces. In this study, hybrid surfaces with three different spacing ratios were subjected to condensation tests using an environmental scanning electron microscopy (ESEM) and a condensation cell under ambient conditions. For hybrid surfaces with spacing ratio below 2, droplets were observed to form on top and sides of the micropillars, where they grew, coalesced with adjacent droplets, and shed after reaching a given size. After shedding, the top surface remained partially dry, which allowed for immediate droplet growth. For hybrid surfaces with spacing ratio equal to 2, a different wetting behavior was observed, where droplets basically coalesced and formed a thin liquid film which was ultimately driven into the valleys of the microstructure. The liquid shedding process led to the renucleation of droplets primarily on top of the dry hydrophilic sites. To better understand the nature of droplet wetting on hybrid surfaces, a surface energy-based model was developed to predict the transition between the two observed wetting behaviors at different spacing ratios. The experimental and analytical results indicate that micropillar spacing ratio is the key factor for promoting different wetting behavior of condensed droplets on hybrid surfaces.

  4. Electrokinetic Instability near Charge-Selective Hydrophobic Surfaces

    CERN Document Server

    Shelistov, V S; Ganchenko, G S

    2014-01-01

    The influence of the texture of a hydrophobic surface on the electro-osmotic slip of the second kind and the electrokinetic instability near charge-selective surfaces (permselective membranes, electrodes, or systems of micro- and nanochannels) is investigated theoretically using a simple model based on the Rubinstein-Zaltzman approach. A simple formula is derived to evaluate the decrease in the instability threshold due to hydrophobicity. The study is complemented by numerical investigations both of linear and nonlinear instabilities near a hydrophobic membrane surface. Theory predicts a significant enhancement of the ion flux to the surface and shows a good qualitative agreement with the available experimental data.

  5. Frictional forces between hydrophilic and hydrophobic particle coated nanostructured surfaces

    DEFF Research Database (Denmark)

    Hansson, Petra M; Claesson, Per M.; Swerin, Agne;

    2013-01-01

    by utilizing the atomic force microscope (AFM). The chemistry of the surfaces and the probe was varied between hydrophilic silica and hydrophobized silica. For hydrophilic silica surfaces, the friction coefficient was significantly higher for the particle coated surfaces than on the flat reference surface. All...... the particle coated surfaces exhibited similar friction coefficients, from which it may be concluded that the surface geometry, and not the roughness amplitude per se, influenced the measured friction. During measurements with hydrophobic surfaces, strong adhesive forces related to the formation of a bridging...... air cavity were evident from both normal force and friction force measurements. In contrast to the frictional forces between the hydrophilic surfaces, the friction coefficient for hydrophobic surfaces was found to depend on the surface structure and we believe that this dependence is related...

  6. Comparison of the Fouling Release Properties of Hydrophobic Fluorinated and Hydrophilic PEGylated Block Copolymer Surfaces

    International Nuclear Information System (INIS)

    To understand the role of surface wettability in adhesion of cells, the attachment of two different marine algae was studied on hydrophobic and hydrophilic polymer surfaces. Adhesion of cells of the diatom Navicula and sporelings (young plants) of the green macroalga Ulva to an underwater surface is mainly by interactions between the surface and the adhesive exopolymers, which the cells secrete upon settlement and during subsequent colonization and growth. Two types of block copolymers, one with poly(ethylene glycol) side-chains and the other with liquid crystalline, fluorinated side-chains, were used to prepare the hydrophilic and hydrophobic surfaces, respectively. The formation of a liquid crystalline smectic phase in the latter inhibited molecular reorganization at the surface, which is generally an issue when a highly hydrophobic surface is in contact with water. The adhesion strength was assessed by the fraction of settled cells (Navicula) or biomass (Ulva) that detached from the surface in a water flow channel with a wall shear stress of 53 Pa. The two species exhibited opposite adhesion behavior on the same sets of surfaces. While Navicula cells released more easily from hydrophilic surfaces, Ulva sporelings showed higher removal from hydrophobic surfaces. This highlights the importance of differences in cell-surface interactions in determining the strength of adhesion of cells to substrates

  7. Inorganic hydrophobic coatings: Surfaces mimicking the nature

    OpenAIRE

    Jiménez Reinosa, Julián; Romero Fanego, Juan José; Rubia López, Miguel Ángel de la; Campo García, Ángel Adolfo del; Fernández Lozano, José Francisco

    2012-01-01

    Added value products are being developed in ceramic industry. Different optical effects as bright metallic shine or new functionalities as hydrophobicity or bactericide characteristics are the new properties searched on the tiles. In this study, we prepare glassy coatings for tiles based on copper pigment by a conventional industrial process. The obtained coatings present different aesthetical aspects, including bright metallic aspect which confers a high decorative value to the tile. Further...

  8. Droplet Transport Mechanism on Horizontal Hydrophilic/Hydrophobic Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Myong, Hyon Kook [Kookmin University, Seoul (Korea, Republic of)

    2014-06-15

    A fluid transport technique is a key issue for the development of microfluidic systems. In this study, the movement of a droplet on horizontal hydrophilic/hydrophobic surfaces, which is a new concept to transport droplets without external power sources that was recently proposed by the author, was simulated using an in-house solution code(PowerCFD). This code employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with interface capturing method(CICSAM) in a volume of fluid(VOF) scheme for phase interface capturing. The droplet transport mechanism is examined through numerical results that include velocity vectors, pressure contours, and total kinetic energy inside and around the droplet.

  9. Ice friction: The effects of surface roughness, structure, and hydrophobicity

    Science.gov (United States)

    Kietzig, Anne-Marie; Hatzikiriakos, Savvas G.; Englezos, Peter

    2009-07-01

    The effect of surface roughness, structure, and hydrophobicity on ice friction is studied systematically over a wide range of temperature and sliding speeds using several metallic interfaces. Hydrophobicity in combination with controlled roughness at the nanoscale is achieved by femtosecond laser irradiation to mimic the lotus effect on the slider's surface. The controlled roughness significantly increases the coefficient of friction at low sliding speeds and temperatures well below the ice melting point. However, at temperatures close to the melting point and relatively higher speeds, roughness and hydrophobicity significantly decrease ice friction. This decrease in friction is mainly due to the suppression of capillary bridges in spite of the presence of surface asperities that facilitate their formation. Finally, grooves oriented in the sliding direction also significantly decrease friction in the low velocity range compared to scratches and grooves randomly distributed over a surface.

  10. Preservation of York Minster historic limestone by hydrophobic surface coatings.

    Science.gov (United States)

    Walker, Rachel A; Wilson, Karen; Lee, Adam F; Woodford, Julia; Grassian, Vicki H; Baltrusaitis, Jonas; Rubasinghege, Gayan; Cibin, Giannantonio; Dent, Andrew

    2012-01-01

    Magnesian limestone is a key construction component of many historic buildings that is under constant attack from environmental pollutants notably by oxides of sulfur via acid rain, particulate matter sulfate and gaseous SO(2) emissions. Hydrophobic surface coatings offer a potential route to protect existing stonework in cultural heritage sites, however, many available coatings act by blocking the stone microstructure, preventing it from 'breathing' and promoting mould growth and salt efflorescence. Here we report on a conformal surface modification method using self-assembled monolayers of naturally sourced free fatty acids combined with sub-monolayer fluorinated alkyl silanes to generate hydrophobic (HP) and super hydrophobic (SHP) coatings on calcite. We demonstrate the efficacy of these HP and SHP surface coatings for increasing limestone resistance to sulfation, and thus retarding gypsum formation under SO(2)/H(2)O and model acid rain environments. SHP treatment of 19th century stone from York Minster suppresses sulfuric acid permeation. PMID:23198088

  11. Surfactant Facilitated Spreading of Aqueous Drops on Hydrophobic Surfaces

    Science.gov (United States)

    Kumar, Nitin; Couzis, Alex; Maldareili, Charles; Singh, Bhim (Technical Monitor)

    2001-01-01

    Microgravity technologies often require aqueous phases to spread over nonwetting hydrophobic solid surfaces. Surfactants facilitate the wetting of water on hydrophobic surfaces by adsorbing on the water/air and hydrophobic solid/water interfaces and lowering the surface tensions of these interfaces. The tension reductions decrease the contact angle, which increases the equilibrium wetted area. Hydrocarbon surfactants; (i.e., amphiphiles with a hydrophobic moiety consisting of an extended chain of (aliphatic) methylene -CH2- groups attached to a large polar group to give aqueous solubility) are capable of reducing the contact angles on surfaces which are not very hydrophobic, but do not reduce significantly the contact angles of the very hydrophobic surfaces such as parafilm, polyethylene or self assembled monolayers. Trisiloxane surfactants (amphiphiles with a hydrophobe consisting of methyl groups linked to a trisiloxane backbone in the form of a disk ((CH3)3-Si-O-Si-O-Si(CH3)3) and an extended ethoxylate (-(OCH2CH2)a-) polar group in the form of a chain with four or eight units) can significantly reduce the contact angle of water on a very hydrophobic surface and cause rapid and complete (or nearly complete) spreading (termed superspreading). The overall goal of the research described in this proposal is to establish and verify a theory for how trisiloxanes cause superspreading, and then use this knowledge as a guide to developing more general hydrocarbon based surfactant systems which superspread. We propose that the trisiloxane surfactants superspread because their structure allows them to strongly lower the high hydrophobic solid/aqueous tension when they adsorb to the solid surface. When the siloxane adsorbs, the hydrophobic disk parts of the molecule adsorb onto the surface removing the surface water. Since the cross-sectional area of the disk is larger than that of the extended ethoxylate chain, the disks can form a space-filling mat on the surface which

  12. Surface Forces in Thin Liquid Films of H-Bonding Liquids Confined between Hydrophobic Surfaces

    OpenAIRE

    Xia, Zhenbo

    2015-01-01

    Hydrophobic interaction plays an important role in biology, daily lives, and a variety of industrial processes such as flotation. While the mechanisms of hydrophobic interactions at molecular scale, as in self-assembly and micellization, is relatively well understood, the mechanisms of macroscopic hydrophobic interactions have been controversial. It is, therefore, the objective of the present work to study the mechanisms of interactions between macroscopic hydrophobic surfaces in H-bonding li...

  13. Super-hydrophobic characteristics of butterfly wing surface

    Institute of Scientific and Technical Information of China (English)

    CONG Qian; CHEN Guang-hua; FANG Yan; REN Lu-quan

    2004-01-01

    Many biological surface are hydrophobic because of their complicated composition and surface microstructure. Eleven species (four families) of butterflies were selected to study their micro-, nano-structure and super-hydrophobic characteristic by means of Confocal Light Microscopy, Scanning Electron Microscopy and Contact Angle Measurement. The contact angles of water droplets on the butterfly wing surface were consistently measured to be about 150° and 100° with and without the squamas, respectively. The dust on the surface can be easily cleaned by moving spherical droplets when the inclining angle is larger than 3°. It can be concluded that the butterfly wing surface possess a super-hydrophobic, water-repellent,self-cleaning, or "Lotus-effect" characteristic. The contact angle measurement of water droplets on the wing surface with and without the squamas showed that the water-repellent characteristic is a consequence of the microstructure of the squamas.Each water droplet (diameter 2 mm) can cover about 700 squamas with a size of 40 μm×80 μm of each squama. The regular riblets with a width of 1000 nm to 1500 nm are clearly observed on each single squama. Such nanostructure should play a very important role in their super-hydrophobic and self-cleaning characteristic.

  14. Observation of water condensate on hydrophobic micro textured surfaces

    Science.gov (United States)

    Kim, Ki Wook; Do, Sang Cheol; Ko, Jong Soo; Jeong, Ji Hwan

    2013-07-01

    We visually observed that a dropwise condensation occurred initially and later changed into a filmwise condensation on hydrophobic textured surface at atmosphere pressure condition. It was observed that the condensate nucleated on the pillar side walls of the micro structure and the bottom wall adhered to the walls and would not be lifted to form a spherical water droplet using environmental scanning electron microscope.

  15. Hydrophobic and hydrophilic interactions in aqueous mixtures of alcohols at a hydrophobic surface.

    Science.gov (United States)

    Ballal, Deepti; Chapman, Walter G

    2013-09-21

    Aqueous solutions of alcohols are interesting because of their anomalous behavior that is believed to be due to the molecular structuring of water and alcohol around each other in solution. The interfacial structuring and properties are significant for application in alcohol purification processes and biomolecular structure. Here we study aqueous mixtures of short alcohols (methanol, ethanol, 1-propanol, and 2-propanol) at a hydrophobic surface using interfacial statistical associating fluid theory which is a perturbation density functional theory. The addition of a small amount of alcohol decreases the interfacial tension of water drastically. This trend in interfacial tension can be explained by the structure of water and alcohol next to the surface. The hydrophobic group of an added alcohol preferentially goes to the surface preserving the structure of water in the bulk. For a given bulk alcohol concentration, water mixed with the different alcohols has different interfacial tensions with propanol having a lower interfacial tension than methanol and ethanol. 2-propanol is not as effective in decreasing the interfacial tension as 1-propanol because it partitions poorly to the surface due to its larger excluded volume. But for a given surface alcohol mole fraction, all the alcohol mixtures give similar values for interfacial tension. For separation of alcohol from water, methods that take advantage of the high surface mole fraction of alcohol have advantages compared to separation using the vapor in equilibrium with a water-alcohol liquid.

  16. Droplet impact on hydrophobic surfaces with hierarchical roughness

    International Nuclear Information System (INIS)

    We investigate the dynamic properties of microliter droplets impacting with velocities up to 0.4 m s−1 on hydrophobic surfaces with hierarchical roughness. The substrates consist of multiple layers of silica microspheres, which are decorated with gold nanoparticles; the superstructures are hydrophobized by chemical modification. The initial impact event is analysed, primarily focusing on the bouncing of the droplets. The number of bounces increases exponentially with substrate hydrophobicity as expressed by the contact angle. The subsequent relaxation regime is analysed in terms of the frequency and damping rate of the droplet oscillations. Both quantities exhibit a substantial decrease for large contact angles. Results are discussed in relation to reports in literature; damping is most likely due to viscous dissipation. (paper)

  17. Interaction of surfactants with hydrophobic surfaces in nanopores.

    Science.gov (United States)

    Brumaru, Claudiu; Geng, Maxwell L

    2010-12-21

    Surfactant-induced wetting of hydrophobic nanopores is investigated. SDS micelles interact with the C18 layer on the nanopore walls with their hydrophobic tails, creating a charged wall lining with their head groups and inducing a breakthrough of the aqueous solution to wet the pores. The surface coverage of the surfactant molecules is evaluated electrophoretically. A surprising discovery is that pore wetting is achieved with 0.73 μmol/m(2) coverage of SDS surfactant, corresponding to only 18% of a monolayer on the walls of the nanopores. Clearly, the surfactant molecules cannot organize as a compact uninterrupted monolayer. Instead, formation of hemimicelles is thermodynamically favored. Modeling shows that, to be consistent with the experimental observations, the aggregation number of hemimicelles is lower than 25 and the size of hemimicelle is limited to a maximum radius of 11.7 Å. The hydrophobic tails of SDS thus penetrate into and intercalate with the C18 layer. The insight gained in the C18-surfactant interactions is essential in the surfactant-induced solubilization of hydrophobic nanoporous particles. The results have bearing on the understanding of the nature of hydrophobic interactions. PMID:21043464

  18. Effect of low-concentration rhamnolipid on adsorption of Pseudomonas aeruginosa ATCC 9027 on hydrophilic and hydrophobic surfaces.

    Science.gov (United States)

    Zhong, Hua; Jiang, Yongbing; Zeng, Guangming; Liu, Zhifeng; Liu, Liuxia; Liu, Yang; Yang, Xin; Lai, Mingyong; He, Yibin

    2015-03-21

    The effects of low-concentration monorhamnolipid (monoRL) on the adsorption of Pseudomonas aeruginosa ATCC 9027 grown on glucose or hexadecane to glass beads with hydrophobic or hydrophilic surfaces was investigated using batch adsorption experiments. Results showed that adsorption isotherms of the cells on both types of glass beads fitted the Freundlich equation better than the Langmuir equation. The Kf of the Freundlich equation for adsorption of hexadecane-grown cell to glass beads with hydrophobic surface was remarkably higher than that for adsorption of hexadecane-grown cell to glass beads with hydrophilic surface, or glucose-grown cell to glass beads with either hydrophilic or hydrophobic surface. Furthermore, it decreased with the increasing monoRL concentration. For both groups of cells, the zeta potential was close to each other and stable with the increase of monoRL concentration. The surface hydrophobicity of hexadecane-grown cells, however, was significantly higher than that of the glucose-grown cells and it decreased with the increase of monoRL concentration. The results indicate the importance of hydrophobic interaction on adsorption of bacterial cells to surfaces and monoRL plays a role in reducing the bacterial adsorption by affecting cell surface hydrophobicity.

  19. Preservation of York Minster historic limestone by hydrophobic surface coatings

    OpenAIRE

    Walker, Rachel A.; Karen Wilson; Lee, Adam F.; Julia Woodford; Grassian, Vicki H.; Jonas Baltrusaitis; Gayan Rubasinghege; Giannantonio Cibin; Andrew Dent

    2012-01-01

    Magnesian limestone is a key construction component of many historic buildings that is under constant attack from environmental pollutants notably by oxides of sulfur via acid rain, particulate matter sulfate and gaseous SO2 emissions. Hydrophobic surface coatings offer a potential route to protect existing stonework in cultural heritage sites, however, many available coatings act by blocking the stone microstructure, preventing it from ‘breathing' and promoting mould growth and salt efflores...

  20. Hydrophobic interaction governs unspecific adhesion of staphylococci: a single cell force spectroscopy study.

    Science.gov (United States)

    Thewes, Nicolas; Loskill, Peter; Jung, Philipp; Peisker, Henrik; Bischoff, Markus; Herrmann, Mathias; Jacobs, Karin

    2014-01-01

    Unspecific adhesion of bacteria is usually the first step in the formation of biofilms on abiotic surfaces, yet it is unclear up to now which forces are governing this process. Alongside long-ranged van der Waals and electrostatic forces, short-ranged hydrophobic interaction plays an important role. To characterize the forces involved during approach and retraction of an individual bacterium to and from a surface, single cell force spectroscopy is applied: A single cell of the apathogenic species Staphylococcus carnosus isolate TM300 is used as bacterial probe. With the exact same bacterium, hydrophobic and hydrophilic surfaces can be probed and compared. We find that as far as 50 nm from the surface, attractive forces can already be recorded, an indication of the involvement of long-ranged forces. Yet, comparing the surfaces of different surface energy, our results corroborate the model that large, bacterial cell wall proteins are responsible for adhesion, and that their interplay with the short-ranged hydrophobic interaction of the involved surfaces is mainly responsible for adhesion. The ostensibly long range of the attraction is a result of the large size of the cell wall proteins, searching for contact via hydrophobic interaction. The model also explains the strong (weak) adhesion of S. carnosus to hydrophobic (hydrophilic) surfaces. PMID:25247133

  1. Hydrophobic interaction governs unspecific adhesion of staphylococci: a single cell force spectroscopy study

    Directory of Open Access Journals (Sweden)

    Nicolas Thewes

    2014-09-01

    Full Text Available Unspecific adhesion of bacteria is usually the first step in the formation of biofilms on abiotic surfaces, yet it is unclear up to now which forces are governing this process. Alongside long-ranged van der Waals and electrostatic forces, short-ranged hydrophobic interaction plays an important role. To characterize the forces involved during approach and retraction of an individual bacterium to and from a surface, single cell force spectroscopy is applied: A single cell of the apathogenic species Staphylococcus carnosus isolate TM300 is used as bacterial probe. With the exact same bacterium, hydrophobic and hydrophilic surfaces can be probed and compared. We find that as far as 50 nm from the surface, attractive forces can already be recorded, an indication of the involvement of long-ranged forces. Yet, comparing the surfaces of different surface energy, our results corroborate the model that large, bacterial cell wall proteins are responsible for adhesion, and that their interplay with the short-ranged hydrophobic interaction of the involved surfaces is mainly responsible for adhesion. The ostensibly long range of the attraction is a result of the large size of the cell wall proteins, searching for contact via hydrophobic interaction. The model also explains the strong (weak adhesion of S. carnosus to hydrophobic (hydrophilic surfaces.

  2. Effect of morphology of hydrophobic surfaces on cavitation kinetics

    Energy Technology Data Exchange (ETDEWEB)

    LUZAR,ALENKA; LEUNG,KEVIN

    2000-04-24

    Cavitation has been suggested to be a possible source of long range interactions between mesoscopic hydrophobic surfaces. While evaporation is predicted by thermodynamics, little is known about its kinetics. Glauber dynamics Monte Carlo simulations of a lattice gas close to liquid-gas coexistence and confined between partially drying surfaces are used to model the effect of water confinement on the dynamics of surface-induced phase transition. Specifically, they examine how kinetics of induced evaporation change as the texture of hydrophobic surfaces is varied. Evaporation rates are considerably slowed with relatively small amount of hydrophilic coverage. However, the distribution of hydrophilic patches is found to be crucial, with the homogeneous one being much more effective in slowing the formation of vapor tubes which triggers the evaporation process. They estimate the free energy barrier of vapor tube formation via transition state theory, using a constrained forward-backward umbrella sampling technique applied to the metastable, confined liquid. Furthermore, to relate simulation rates to experimental ones, they perform simulations using the mass-conserving Kawasaki algorithm. They predict evaporation time scales that range from hundreds of picoseconds in the case of mesoscopic surfaces {approximately} 10{sup 4} nm{sup 2} to tens of nanoseconds for smaller surfaces {approximately} 40 nm{sup 2}, when the two surfaces are {approximately} 10 solvent layers apart. The present study demonstrates that cavitation is kinetically viable in real systems and should be considered in studies of processes at confined geometry.

  3. Water-Mediated Interactions between Hydrophilic and Hydrophobic Surfaces.

    Science.gov (United States)

    Kanduč, Matej; Schlaich, Alexander; Schneck, Emanuel; Netz, Roland R

    2016-09-01

    All surfaces in water experience at short separations hydration repulsion or hydrophobic attraction, depending on the surface polarity. These interactions dominate the more long-ranged electrostatic and van der Waals interactions and are ubiquitous in biological and colloidal systems. Despite their importance in all scenarios where the surface separation is in the nanometer range, the origin of these hydration interactions is still unclear. Using atomistic solvent-explicit molecular dynamics simulations, we analyze the interaction free energies of charge-neutral model surfaces with different elastic and water-binding properties. The surface polarity is shown to be the most important parameter that not only determines the hydration properties and thereby the water contact angle of a single surface but also the surface-surface interaction and whether two surfaces attract or repel. Elastic properties of the surfaces are less important. On the basis of surface contact angles and surface-surface binding affinities, we construct a universal interaction diagram featuring three different interaction regimes-hydration repulsion, cavitation-induced attraction-and for intermediate surface polarities-dry adhesion. On the basis of scaling arguments and perturbation theory, we establish simple combination rules that predict the interaction behavior for combinations of dissimilar surfaces.

  4. Effect of Eugenol on Cell Surface Hydrophobicity, Adhesion, and Biofilm of Candida tropicalis and Candida dubliniensis Isolated from Oral Cavity of HIV-Infected Patients

    OpenAIRE

    Suelen Balero de Paula; Thais Fernanda Bartelli; Vanessa Di Raimo; Jussevania Pereira Santos; Alexandre Tadachi Morey; Marina Andrea Bosini; Celso Vataru Nakamura; Lucy Megumi Yamauchi; Sueli Fumie Yamada-Ogatta

    2014-01-01

    Most Candida spp. infections are associated with biofilm formation on host surfaces. Cells within these communities display a phenotype resistant to antimicrobials and host defenses, so biofilm-associated infections are difficult to treat, representing a source of reinfections. The present study evaluated the effect of eugenol on the adherence properties and biofilm formation capacity of Candida dubliniensis and Candida tropicalis isolated from the oral cavity of HIV-infected patients. All is...

  5. Effect of hydrophobic microstructured surfaces on conductive ink printing

    International Nuclear Information System (INIS)

    Conductive ink was printed on various microstructured substrates to measure the printing quality. Poly-dimethylsiloxane (PDMS) substrates were used to test the printability of the hydrophobic surface material. Microstructured arrays of 10 µm regular PDMS cubes were prepared using the MEMS fabrication technique. The gap distance between the cubes was varied from 10 to 40 µm. The printing wettability of the microstructured surfaces was determined by measuring the contact angle of a droplet of silver conductive ink. Screen-printing methods were used in the conductive line printing experiment. Test line patterns with finely varying widths (30–250 µm) were printed repeatedly, and the conductivity of the printed lines was measured. The printability, which was defined as the ratio of the successfully printed patterns to the total number of printed patterns, was analyzed as a function of the linewidth and the gap distance of the microstructured surfaces

  6. Nanoscale imaging and hydrophobicity mapping of the antimicrobial effect of copper on bacterial surfaces.

    Science.gov (United States)

    Wang, Congzhou; Ehrhardt, Christopher J; Yadavalli, Vamsi K

    2016-09-01

    Copper has a long historical role in the arena of materials with antimicrobial properties. Various forms of copper ranging from surfaces to impregnation in textiles and particles, have attracted considerable interest owing to their versatility, potency, chemical stability, and low cost. However, the effects and mechanisms of their antimicrobial action is still unclear. In this study, the effect of copper particles on Escherichia coli was studied at the nanoscale using atomic force microscopy (AFM). Time-lapse AFM images at the single cell level show the morphological changes on live E. coli during antimicrobial treatment, in which for the first time, this process was followed in situ on the same cell over time. AFM-based hydrophobicity mapping further showed that incubating cells with Cu decreased the surface hydrophobicity with an increase of incubation time. Specifically, we are able to visualize both morphology and physico-chemical nature of the bacterial cell surface change in response to copper treatment, leading to the membrane damage and cytoplasm leakage. Overall, the time-lapse AFM imaging combined with hydrophobicity mapping approach presented here provides spatio-temporal insight into the antimicrobial mechanisms of copper at the single cell level, and can be applied to design of better metallic antimicrobial materials as well as investigate different microorganisms. PMID:27258941

  7. Launching droplets from a super-hydrophobic surface using electrowetting

    Science.gov (United States)

    Wang, Zhantao; Ende, Dirk Van Den; Cavalli, Andrea; Wijnperle, Daniel; Mugele, Frieder

    2015-11-01

    Electrowetting (EW) on super-hydrophobic surfaces in ambient air has been reported to be mostly irreversible due to the transition from the Cassie to the Wenzel state. By applying short voltage pulses using interdigitated electrodes, embedded in the substrate we demonstrate a reversible contact angle variation up to 70 degrees on a single-tier super-hydrophobic surface, which is much higher than previously reported. For a range of voltages and pulse durations the droplet can be launched from the substrate due to conversion of interfacial energy to kinetic energy of the center of mass. We have studied the jumping height as a function of the applied voltage and pulse duration and identified the parameters to maximize this height. The energy dissipation during the droplet detachment and subsequent bouncing was also analyzed by analyzing the drop shape and position from the side and bottom view recordings of the jumping drop. We also investigate the role of the ambient phase by considering the EW-actuated detachment of water drops in oils of different viscosities. We acknowledge financial support by the Dutch Technology Foundation STW.

  8. Studies on polyurethane adhesives and surface modification of hydrophobic substrates

    Science.gov (United States)

    Krishnamoorthy, Jayaraman

    studies involved making functionalized, thickness-controlled, wettability-controlled multilayers on hydrophobic substrates and the adsorption of carboxylic acid-terminated poly(styrene-b-isoprene) on alumina/silica substrates. Poly(vinyl alcohol) has been shown to adsorb onto hydrophobic surfaces irreversibly due to hydrophobic interactions. This thin semicrystalline coating is chemically modified using acid chlorides, butyl isocyanate and butanal to form thicker and hydrophobic coatings. The products of the modification reactions allow adsorption of a subsequent layer of poly(vinyl alcohol) that could subsequently be hydrophobized. This 2-step (adsorption/chemical modification) allows layer-by-layer deposition to prepare coatings with thickness, chemical structure and wettability control on any hydrophobic surface. Research on adsorption characteristics of carboxylic acid-terminated poly(styrene-b-isoprene) involved syntheses of block copolymers with the functional group present at specific ends. Comparative adsorption studies for carboxylic acid-terminated and hydrogen-terminated block copolymers was carried out on alumina and silica substrates.

  9. Control and characterization of textured, hydrophobic ionomer surfaces

    Science.gov (United States)

    Wang, Xueyuan

    Polymer thin films are of increasing interest in many industrial and technological applications. Superhydrophobic, self-cleaning surfaces have attracted a lot of attention for their application in self-cleaning, anti-sticking coatings, stain resistance, or anti-contamination surfaces in diverse technologies, including medical, transportation, textiles, electronics and paints. This thesis focuses on the preparation of nanometer to micrometer-size particle textured surfaces which are desirable for super water repellency. Textured surfaces consisting of nanometer to micrometer-sized lightly sulfonated polystyrene ionomer (SPS) particles were prepared by rapid evaporation of the solvent from a dilute polymer solution cast onto silica. The effect of the solvent used to spin coat the film, the molecular weight of the ionomer, and the rate of solvent evaporation were investigated. The nano-particle or micron-particle textured ionomer surfaces were prepared by either spin coating or solution casting ionomer solutions at controlled evaporation rates. The surface morphologies were consistent with a spinodal decomposition mechanism where the surface first existed as a percolated-like structure and then ripened into droplets if molecular mobility was retained for sufficient time. The SPS particles or particle aggregates were robust and resisted deformation even after annealing at 120°C for one week. The water contact angles on as-prepared surfaces were relatively low, ~ 90° since the polar groups in ionomer reduce the surface hydrophobicity. After chemical vapor deposition of 1H,1H,2H,2H-perfluorooctyltrichlorosilane, the surface contact angles increased to ~ 109° on smooth surfaces and ~140° on the textured surfaces. Water droplets stuck to these surfaces even when tilted 90 degrees. Superhydrophobic surfaces were prepared by spraying coating ionomer solutions and Chemical Vapor Deposition (CVD) of 1H,1H,2H,2H-perfluorooctyltrichlorosilane onto textured surfaces. The

  10. Flexible conformable hydrophobized surfaces for turbulent flow drag reduction

    Science.gov (United States)

    Brennan, Joseph C.; Geraldi, Nicasio R.; Morris, Robert H.; Fairhurst, David J.; McHale, Glen; Newton, Michael I.

    2015-05-01

    In recent years extensive work has been focused onto using superhydrophobic surfaces for drag reduction applications. Superhydrophobic surfaces retain a gas layer, called a plastron, when submerged underwater in the Cassie-Baxter state with water in contact with the tops of surface roughness features. In this state the plastron allows slip to occur across the surface which results in a drag reduction. In this work we report flexible and relatively large area superhydrophobic surfaces produced using two different methods: Large roughness features were created by electrodeposition on copper meshes; Small roughness features were created by embedding carbon nanoparticles (soot) into Polydimethylsiloxane (PDMS). Both samples were made into cylinders with a diameter under 12 mm. To characterize the samples, scanning electron microscope (SEM) images and confocal microscope images were taken. The confocal microscope images were taken with each sample submerged in water to show the extent of the plastron. The hydrophobized electrodeposited copper mesh cylinders showed drag reductions of up to 32% when comparing the superhydrophobic state with a wetted out state. The soot covered cylinders achieved a 30% drag reduction when comparing the superhydrophobic state to a plain cylinder. These results were obtained for turbulent flows with Reynolds numbers 10,000 to 32,500.

  11. Highly selective creation of hydrophilic micro-craters on super hydrophobic surface using electrohydrodynamic jet printing

    Science.gov (United States)

    Lee, Jaehyun; Hwang, Sangyeon; Prasetyo, Fariza Dian; Nguyen, Vu Dat; Hong, Jungwoo; Shin, Jennifer H.; Byun, Doyoung

    2014-11-01

    Selective surface modification is considered as an alternative to conventional printing techniques in high resolution patterning. Here, we present fabrication of hydrophilic patterns on the super hydrophobic surface, which makes structure on the hydrophilic region. The super hydrophobic surface is able to be chemically changed to hydrophilic with alcohols. As a consecutive process, electrohydrodynamic (EHD) jet printing was utilized to fabricate local hydrophilic craters with 30-200 μm sizes. 3 kinds of target liquids were deposited well on hydrophilic region; PEDOT (poly 3,4 ethylenediocythiophene), polystyrene nano-particles, and salmonella bacteria medium. Additionally, qualitative analysis were presented for modification mechanism and surface properties on super hydrophobic/hydrophilic by analysis of surface energy with contact angle, SEM (scanning electron microscopy) image, and SIMS (secondary ion mass spectroscopy) analysis. This new simple modification method provides possibility to be utilizing in bio-patterning engineering such as cell culturing microchip and lab on a chip. This research was supported by the Basi Science Research Program through the National Research Foundation of Korea (NRF) (Grand Number: 2014-023284).

  12. Transforming plastic surfaces with electrophilic backbones from hydrophobic to hydrophilic.

    Science.gov (United States)

    Kim, Samuel; Bowen, Raffick A R; Zare, Richard N

    2015-01-28

    We demonstrate a simple nonaqueous reaction scheme for transforming the surface of plastics from hydrophobic to hydrophilic. The chemical modification is achieved by base-catalyzed trans-esterification with polyols. It is permanent, does not release contaminants, and causes no optical or mechanical distortion of the plastic. We present contact angle measurements to show successful modification of several types of plastics including poly(ethylene terephthalate) (PET) and polycarbonate (PC). Its applicability to blood analysis is explored using chemically modified PET blood collection tubes and found to be quite satisfactory. We expect this approach will reduce the cost of manufacturing plastic devices with optimized wettability and can be generalized to other types of plastic materials having an electrophilic linkage as its backbone.

  13. Hydrophobic interaction governs unspecific adhesion of staphylococci: a single cell force spectroscopy study

    OpenAIRE

    Nicolas Thewes; Peter Loskill; Philipp Jung; Henrik Peisker; Markus Bischoff; Mathias Herrmann; Karin Jacobs

    2014-01-01

    Unspecific adhesion of bacteria is usually the first step in the formation of biofilms on abiotic surfaces, yet it is unclear up to now which forces are governing this process. Alongside long-ranged van der Waals and electrostatic forces, short-ranged hydrophobic interaction plays an important role. To characterize the forces involved during approach and retraction of an individual bacterium to and from a surface, single cell force spectroscopy is applied: A single cell of the apathogenic spe...

  14. [DSC and FTIR study of adsorbed lysozyme on hydrophobic surface].

    Science.gov (United States)

    Lei, Zu-meng; Geng, Xin-peng; Dai, Li; Geng, Xin-du

    2008-09-01

    During a process of hen egg white lysozyme adsorption and folding on a moderately hydrophobic surface (PEG-600), the effects of salt((NH4)2SO4) concentrations, surface coverage and denaturant (guanidine hydrochloride, GuHCl) concentrations on thermal stability and the changes in the molecular conformation of adsorbed native and denatured lysozyme without aqueous solution were studied with a combination of differential scanning calorimetry (DSC) with FTIR spectroscopy. The results showed that temperature due to endothermic peaks was reduced and the disturbance increased at higher temperature with the increase in salt concentration and surface coverage of adsorbed protein. beta-Sheet and beta-Turn stucture increased while alpha-Helix structure decreased after the adsorption. The peaks corresponding to both C-C stretching frequency in 1400-1425 cm(-1) and amide I band frequency in 1650-1670 cm(-1) of adsorbed denatured lysozyme can be detected in FTIR spectra while that due to amide I band frequency of adsorbed native lysozyme almost can't be observed. Adsorption resulted in structural loss of adsorbed native lysozyme, whose performance was less stable. PMID:19093560

  15. Study on hydrophobicity degradation of gas diffusion layer in proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Highlights: • The hydrophobicity degradation mechanism of GDL was proposed thoroughly. • C-O and C=O groups appeared on the surfaces of GDL after immersion. • The relative content of PTFE in GDL decreased after immersion. • The surfaces and inner structure of GDL destroyed after immersion. - Abstract: As one of the essential components of proton exchange membrane fuel cell (PEMFC), gas diffusion layer (GDL) is of importance on water management, as well on the performance and durability of PEMFC. In this paper, the hydrophobicity degradation of GDL was investigated by immersing it in the 1.0 mol L−1 H2SO4 solution saturated by air for 1200 h. From the measurements of contact angle and water permeability, the hydrophobic characteristics of the pristine and immersed GDLs were compared. To investigate the causes for hydrophobicity degradation, the GDLs were analyzed by scanning electron microscopy, X-ray photoelectron spectroscopy and thermogravimetry. Further, the chemical compositions of H2SO4 solutions before and after immersion test were analyzed with infrared spectroscopy. Results showed that the hydrophobicity of immersed GDL decreased distinctly, which was caused by the damage of physical structure and surface characteristics. Moreover, the immersed GDL showed a worse fuel cell performance than the pristine GDL, especially under a low humidity condition

  16. Utilizing an Automated Home-Built Surface Plasmon Resonance Apparatus to Investigate How Water Interacts with a Hydrophobic Surface

    Science.gov (United States)

    Poynor, Adele

    2011-03-01

    By definition hydrophobic substances hate water. Water placed on a hydrophobic surface will form a drop in order to minimize its contact area. What happens when water is forced into contact with a hydrophobic surface? One theory is that an ultra-thin low- density region forms near the surface. We have employed an automated home-built Surface Plasmon Resonance (SPR) apparatus to investigate this boundary.

  17. Fabrication of a super-hydrophobic surface on metal using laser ablation and electrodeposition

    Science.gov (United States)

    Kwon, Min Ho; Shin, Hong Shik; Chu, Chong Nam

    2014-01-01

    In this research, the fabrication process of a super-hydrophobic metallic surface using laser ablation and electrodeposition was investigated. Re-entrant structure and surface roughness play an important role in forming a super-hydrophobic surface on intrinsically hydrophilic material. A micro pillar array with a re-entrant structure of copper on stainless steel was fabricated through a sequential process of laser ablation, insulating, mechanical polishing and electrodeposition. Spacing of the micro pillars in the array played a major role in the structure hydrophobicity that was confirmed by measuring the water contact angle. Surface morphology changed relative to the parameters of the laser ablation process and electrodeposition process. Under a gradual increase in current density during the electrodeposition process, surface morphology roughness was maximized for fabricating a super-hydrophobic surface. Finally, the super-hydrophobic surface was successfully fabricated on metal.

  18. Facile Phase Transfer and Surface Biofunctionalization of Hydrophobic Nanoparticles Using Janus DNA Tetrahedron Nanostructures.

    Science.gov (United States)

    Li, Juan; Hong, Cheng-Yi; Wu, Shu-Xian; Liang, Hong; Wang, Li-Ping; Huang, Guoming; Chen, Xian; Yang, Huang-Hao; Shangguan, Dihua; Tan, Weihong

    2015-09-01

    Hydrophobic nanoparticles have shown substantial potential for bioanalysis and biomedical applications. However, their use is hindered by complex phase transfer and inefficient surface modification. This paper reports a facile and universal strategy for phase transfer and surface biofunctionalization of hydrophobic nanomaterials using aptamer-pendant DNA tetrahedron nanostructures (Apt-tet). The Janus DNA tetrahedron nanostructures are constructed by three carboxyl group modified DNA strands and one aptamer sequence. The pendant linear sequence is an aptamer, in this case AS1411, known to specifically bind nucleolin, typically overexpressed on the plasma membranes of tumor cells. The incorporation of the aptamers adds targeting ability and also enhances intracellular uptake. Phase-transfer efficiency using Apt-tet is much higher than that achieved using single-stranded DNA. In addition, the DNA tetrahedron nanostructures can be programmed to permit the incorporation of other functional nucleic acids, such as DNAzymes, siRNA, or antisense DNA, allowing, in turn, the construction of promising theranostic nanoagents for bioanalysis and biomedical applications. Given these unique features, we believe that our strategy of surface modification and functionalization may become a new paradigm in phase-transfer-agent design and further expand biomedical applications of hydrophobic nanomaterials. PMID:26302208

  19. Facile Phase Transfer and Surface Biofunctionalization of Hydrophobic Nanoparticles Using Janus DNA Tetrahedron Nanostructures.

    Science.gov (United States)

    Li, Juan; Hong, Cheng-Yi; Wu, Shu-Xian; Liang, Hong; Wang, Li-Ping; Huang, Guoming; Chen, Xian; Yang, Huang-Hao; Shangguan, Dihua; Tan, Weihong

    2015-09-01

    Hydrophobic nanoparticles have shown substantial potential for bioanalysis and biomedical applications. However, their use is hindered by complex phase transfer and inefficient surface modification. This paper reports a facile and universal strategy for phase transfer and surface biofunctionalization of hydrophobic nanomaterials using aptamer-pendant DNA tetrahedron nanostructures (Apt-tet). The Janus DNA tetrahedron nanostructures are constructed by three carboxyl group modified DNA strands and one aptamer sequence. The pendant linear sequence is an aptamer, in this case AS1411, known to specifically bind nucleolin, typically overexpressed on the plasma membranes of tumor cells. The incorporation of the aptamers adds targeting ability and also enhances intracellular uptake. Phase-transfer efficiency using Apt-tet is much higher than that achieved using single-stranded DNA. In addition, the DNA tetrahedron nanostructures can be programmed to permit the incorporation of other functional nucleic acids, such as DNAzymes, siRNA, or antisense DNA, allowing, in turn, the construction of promising theranostic nanoagents for bioanalysis and biomedical applications. Given these unique features, we believe that our strategy of surface modification and functionalization may become a new paradigm in phase-transfer-agent design and further expand biomedical applications of hydrophobic nanomaterials.

  20. A variable hydrophobic surface improves corrosion resistance of electroplating copper coating

    Science.gov (United States)

    Xu, Xiuqing; Zhu, Liqun; Li, Weiping; Liu, Huicong

    2011-04-01

    In this paper, Cu/liquid microcapsule composite coating was prepared by electroplating method. And a variable hydrophobic surface was obtained due to the slow release of microcapsules and the rough surface. The hydrophobic property and corrosion resistance of the composite was investigated by means of water contact angle instrument and electrochemical technique, respectively. The results suggest that the contact angle (CA) of composite increases gradually with the increasing storing time, and the stable super-hydrophobic property was exhibited after storing in air for 15 days. Meanwhile, the excellent corrosion resistance was displayed, which could be ascribed to the good stability of hydrophobic film on composite surface.

  1. Super hydrophobic surface of polytetrafluoroethylene fabricated by picosecond laser and phenomenon of total internal reflection underwater

    Science.gov (United States)

    Jiang, Yijian; Cao, Wenshen; Zhao, Yan; Wu, Yan; Ji, Lingfei

    2015-03-01

    A groove-shaped array with average 25 μm interval, 25 μm wall thickness, 75 μm depth and a columnar array with average 30 μm side length, 25 μm interval, 43 μm depth are processed by 1064 nm picosecond laser on polytetrafluoroethylene (PTFE) surface at room temperature. The water contact angle of modified PTFE surface can reach 167°, which show super hydrophobic surface of PTFE is prepared. It is observed super hydrophobic surface reflects metal luster underwater through the glassware when super hydrophobic PTFE entirely immerses in pure water. The experiment conducts super hydrophobic surface will enhance intensity of reflection of visible light underwater, which is due to total internal reflection of super hydrophobic surface und erwater.

  2. DESIGN AND FABRICATION OF SUPER-HYDROPHOBIC SURFACES ON SILICON WAFERS AND STUDY OF EFFECTS TO HYDROPHOBICITY

    Institute of Scientific and Technical Information of China (English)

    LI Baojia; ZHOU Ming; QIAN Kunxi; CAI Lan

    2008-01-01

    Some superhydrophobic siliconbased surfaces with periodic square pillar array microstructures were designed and fabricated, also their apparent contact angles (CAs) were quantitatively measured. On the basis of the classical Wenzel's theory and Cassie's theory, two generally applicable equations corresponding of the cases of wetted contact and composite contact, which could reflect the relations between geometrical parameters of square pillar microstructures and apparent CAs, were educed. Then a theoretical prediction of the fabricated siliconbased surfaces was carried out by the equations, which was compatible with the result of experimental measurement, and this showed the rationality of the educed equations. The CAs of the surface prepared by merely plasma etching to create microstructures and by only Teflon treating were compared, and the result indicated that the effect of the former on achieving hydrophobic surfaces was greater than that of the later. Under the premise of synthetically considering transition between the two contact states, the effects of geometrical parameters of the square pillar microstructures to hydrophobicity were analyzcation, thereon a design condition and a design principle for super-hydrophobic surfaces which would be of specific application value were summarized.

  3. Continuous droplet removal upon dropwise condensation of humid air on a hydrophobic micropatterned surface.

    Science.gov (United States)

    Zamuruyev, Konstantin O; Bardaweel, Hamzeh K; Carron, Christopher J; Kenyon, Nicholas J; Brand, Oliver; Delplanque, Jean-Pierre; Davis, Cristina E

    2014-08-26

    Combination of two physical phenomena, capillary pressure gradient and wettability gradient, allows a simple two-step fabrication process that yields a reliable hydrophobic self-cleaning condenser surface. The surface is fabricated with specific microscopic topography and further treatment with a chemically inert low-surface-energy material. This process does not require growth of nanofeatures (nanotubes) or hydrophilic-hydrophobic patterning of the surface. Trapezoidal geometry of the microfeatures facilitates droplet transfer from the Wenzel to the Cassie state and reduces droplet critical diameter. The geometry of the micropatterns enhances local coalescence and directional movement for droplets with diameter much smaller than the radial length of the micropatterns. The hydrophobic self-cleaning micropatterned condenser surface prevents liquid film formation and promotes continuous dropwise condensation cycle. Upon dropwise condensation, droplets follow a designed wettability gradient created with micropatterns from the most hydrophobic to the least hydrophobic end of the surface. The surface has higher condensation efficiency, due to its directional self-cleaning property, than a plain hydrophobic surface. We explain the self-actuated droplet collection mechanism on the condenser surface and demonstrate experimentally the creation of an effective wettability gradient over a 6 mm radial distance. In spite of its fabrication simplicity, the fabricated surface demonstrates self-cleaning property, enhanced condensation performance, and reliability over time. Our work enables creation of a hydrophobic condenser surface with the directional self-cleaning property that can be used for collection of biological (chemical, environmental) aerosol samples or for condensation enhancement.

  4. Continuous droplet removal upon dropwise condensation of humid air on a hydrophobic micropatterned surface.

    Science.gov (United States)

    Zamuruyev, Konstantin O; Bardaweel, Hamzeh K; Carron, Christopher J; Kenyon, Nicholas J; Brand, Oliver; Delplanque, Jean-Pierre; Davis, Cristina E

    2014-08-26

    Combination of two physical phenomena, capillary pressure gradient and wettability gradient, allows a simple two-step fabrication process that yields a reliable hydrophobic self-cleaning condenser surface. The surface is fabricated with specific microscopic topography and further treatment with a chemically inert low-surface-energy material. This process does not require growth of nanofeatures (nanotubes) or hydrophilic-hydrophobic patterning of the surface. Trapezoidal geometry of the microfeatures facilitates droplet transfer from the Wenzel to the Cassie state and reduces droplet critical diameter. The geometry of the micropatterns enhances local coalescence and directional movement for droplets with diameter much smaller than the radial length of the micropatterns. The hydrophobic self-cleaning micropatterned condenser surface prevents liquid film formation and promotes continuous dropwise condensation cycle. Upon dropwise condensation, droplets follow a designed wettability gradient created with micropatterns from the most hydrophobic to the least hydrophobic end of the surface. The surface has higher condensation efficiency, due to its directional self-cleaning property, than a plain hydrophobic surface. We explain the self-actuated droplet collection mechanism on the condenser surface and demonstrate experimentally the creation of an effective wettability gradient over a 6 mm radial distance. In spite of its fabrication simplicity, the fabricated surface demonstrates self-cleaning property, enhanced condensation performance, and reliability over time. Our work enables creation of a hydrophobic condenser surface with the directional self-cleaning property that can be used for collection of biological (chemical, environmental) aerosol samples or for condensation enhancement. PMID:25073014

  5. Experimental research on friction-reduction with super-hydrophobic surfaces

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jia-peng; DU Xiang-dang; SHI Xiu-hua

    2007-01-01

    Many recent studies have confirmed the existence of liquid slip over particular types of solid surfaces, and these so-called super-hydrophobic surfaces have been shown to generate effective liquid slip because of the air trapped between the surface structures. In this paper, based on boundary layer theory, the microscopic structure of the super-hydrophobic surface is analyzed. The liquid slip effect on friction-reduction over super-hydrophobic surfaces under various flow conditions is investigated by experiments with a flume and water tunnel. The experimental results show that the greatest amount of drag-reduction that can be achieved is 8.76% at a low Re.

  6. Controlled Synthesis, Manipulation of Surface Hydrophobicity and Self-Assembly of Hematite Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei [ORNL; Liang, Liyuan [ORNL; Johs, Alexander [ORNL; Gu, Baohua [ORNL

    2008-07-01

    The preparation of uniform iron oxide monolayer thin films is of great interest not only in advanced materials synthesis but also in studies of microbial cell and iron oxide mineral interface interactions by techniques such as neutron reflectometry, which requires the use of uniform thin films of the mineral on a substrate. Here we report three techniques for fabricating such uniform hematite ( -Fe2O3) nanocrystal thin films. The nanocrystals with controlled sizes and morphologies were first synthesized by thermal hydrolysis of Fe3+ ions in acidic aqueous solution. Three methods were tested to enhance the surface hydrophobicity of the synthesized nanoparticles, including thermal dissociation of surface hydroxyl groups, stepwise solvent exchange, and surfactant-assisted phase transfer. FTIR and Raman spectroscopic analyses were used to elucidate the mechanisms of surface hydrophobicity changes on hematite nanoparticles. Results indicate that techniques of thermal treatment and stepwise solvent exchange caused the dissociation of surface -Fe OH groups into Fe-O-Fe structures, whereas surfactant-assisted phase transfer gave rise to surface hydrophobicity due to sorbed hydrocarbon chains. These surface modified hematite nanoparticles were found to readily self-assemble into monolayers at the water-air interface, which provided an effective means to obtain hematite nanoparticle thin films with controlled packing density and layer thicknesses in a Langmuir-Blodgett trough. Langmuir isotherm, SEM, TEM, AFM, UV-visible spectroscopy, and neutron reflectometry were used to characterize these thin films for their stability and uniformity before they were used for studies of the interactions between hematite and macromolecules.

  7. Fabrication of Super Hydrophobic Surfaces on Copper by Solution-immersion

    Institute of Scientific and Technical Information of China (English)

    龚志金; 王建莉; 吴丽梅; 王小雨; 吕国诚; 廖立兵

    2013-01-01

    Super hydrophobic copper wafer was prepared by means of solution immersion and surface self-assembly methods. Different immersion conditions were explored for the best hydrophobic surface. Scanning electron mi-croscopy (SEM), X-ray diffraction (XRD), energy dispersive spectrometer (EDS) and water contact angle meas-urements were used to investigate the morphologies, microstructures, chemical compositions and hydrophobicity of the produced films on copper substrates, respectively. Results show that the super hydrophobic surface is composed of micro structure of Cu7S4. The films present a high water contact angle larger than 150°, a low sliding angle less than 3°, good abrasion resistance and storage stability. The molecular dynamics simulation confirms that N-dodecyl mercaptan molecules link up with Cu7S4 admirably, compared with Cu, which contributes to the stable super hy-drophobic surface.

  8. Overexpression of NRPS4 leads to increased surface hydrophobicity in Fusarium graminearum

    DEFF Research Database (Denmark)

    Hansen, Frederik Teilfeldt; Droce, Aida; Sørensen, Jens Laurids;

    2012-01-01

    brassicicola and Cochloibolus heterostrophus has been shown to result in mutants unable to repel water. In a time study of surface hydrophobicity we observed that water droplets could penetrate seven day old colonies of the NRPS4 deletion mutants. Loss in ability to repel water was first observed on 13 days...... old cultures of the wild type strain, whereas the overexpression strain remained water repellant throughout the 38 day time study. The conidia of both mutants were examined and those of the overexpression mutant showed distinct morphological differences in form of collapsed cells. These observations...

  9. Adsorption of Rotavirus, MS2 Bacteriophage and Surface-Modified Silica Nanoparticles to Hydrophobic Matter.

    Science.gov (United States)

    Farkas, Kata; Varsani, Arvind; Pang, Liping

    2015-09-01

    Adsorption to aquifer media is an important process in the removal of viruses from groundwater. Even though hydrophobic interactions have been shown to contribute to adsorption, little is known about the hydrophobicity of viruses found in groundwater. In this study, the hydrophobicity of rotavirus, MS2 bacteriophage and DNA-labelled silica nanoparticles (SiNPs) coated with glycoprotein, protein A and alpha-1-microglobulin/bikunin precursor (AMBP) was investigated. The hydrophobicity was experimentally determined by using a modified microbial adhesion to hydrocarbons (MATH) assay. The results were compared with the theoretical hydrophobicity of the viral capsid proteins and the proteins used to coat the nanoparticles, and with the results of adsorption tests with unmodified and organosilane-coated (hydrophobic) silica sand. While most theoretical protein hydrophobicity values were similar, the results of the MATH assay suggested fundamental differences in the hydrophobicity of the viruses and the SiNPs. MS2 was found to be highly hydrophobic as based on the MATH hydrophobicity and a significantly enhanced adsorption to hydrophobic sand, whereas rotavirus was relatively hydrophilic. The MATH assay revealed that protein-coating of SiNP introduced some degree of hydrophobicity to hydrophilic SiNPs, enabling them to more closely mimic viral hydrophobicity. Our study also demonstrated that the protein-coated SiNPs better mimicked rotavirus adsorption to sand media (coated or not coated with hydrophobic organic matter) than the MS2. This further supports previous findings that these surface-modified SiNPs are useful surrogates in mimicking rotavirus retention and transport in porous media.

  10. Effect of Hydrophobic and Hydrophilic Surfaces on the Stability of Double-Stranded DNA.

    Science.gov (United States)

    Elder, Robert M; Pfaendtner, Jim; Jayaraman, Arthi

    2015-06-01

    DNA hybridization is the foundation for numerous technologies like DNA origami and DNA sensing/microarrays. Using molecular simulations, enhanced-sampling methods, and free-energy calculations, we show the effects of hydrophilic and hydrophobic surfaces on DNA hybridization. Hydrophilic surfaces compete with terminal bases' H-bonds but stabilize central base stacking. Hydrophobic surfaces strengthen terminal H-bonds but destabilize central base stacking. Regardless of surface chemistry, for terminal bases, melting proceeds through breaking H-bonds, followed by unstacking from the neighboring base. For central bases in bulk or near hydrophobic surfaces, melting proceeds by disruption of H-bonds, followed by unstacking, whereas on hydrophilic surfaces, unstacking from one neighboring base precedes complete disruption of the H-bonds, followed by unstacking from the second neighboring base. Kinetic barriers to melting and hybridization show that the central bases melt rapidly near hydrophobic surfaces, which can accelerate conformational searching and thereby accelerate folding into the desired conformation.

  11. Saccharomyces cerevisiae SHSY detoxifies petroleum n-alkanes by an induced CYP52A58 and an enhanced order in cell surface hydrophobicity.

    Science.gov (United States)

    Hanano, Abdulsamie; Shaban, Mouhnad; Almousally, Ibrahem; Al-Ktaifani, Mahmoud

    2015-09-01

    Environmental hydrocarbon contamination has a serious hazard to human health. Alkanes, the major component of hydrocarbons, can be consumed by various species of yeast. We previously identified a new strain SHSY of Saccharomyces cerevisiae with a remarkable ability to utilize the petroleum crude-oil (PCO) in aqueous solution. The current study demonstrated that the n-alkanes-assimilation activity of S. cerevisiae SHSY was related to an induced microsomal protein of 59 kDa approximately. The identified ORF encoded a protein of 517 amino acids and shared 93% sequence identity with an alkane-inducible hydroxylase CYP52A53 isolated from Scheffersomyces stipitis CBS. It was therefore referred as CYP52A58. The catalytic activity of the recombinant CYP52A58 was confirmed by the hydroxylation of n-alkanes, it showed an optimal mono-terminal hydroxylation activity toward n-hexadecane. Moreover, the ability of the yeast to use n-alkanes was accompanied with an increasing level in cell wall mannoproteins. Two differential protein bands were detected in the mannoproteins extracted from PCO-grown yeast. In parallel, a significant increase in the fatty acids content with a high degree of unsaturation was subsequently detected in the PCO-grown yeast. This study characterizes a safe and potential microorganism to remove n-alkanes from the aquatic environment. PMID:25434275

  12. Preferential Condensation of water droplets using hybrid hydrophobic-hydrophilic surfaces

    OpenAIRE

    Paxson, Adam T.; Varanasi, Kripa K.; Deng, Tao; Hsu, Ming; Bhate, Nitin

    2010-01-01

    We present a hybrid microtextured surface with heterogeneous hydrophilic-hydrophobic regions for condensing water vapor while maintaining anti-wetting behavior. Fluid dynamics videos are shown demonstrating the difference between condensation on a homogeneous hydrophobic structure and the same structure with hybrid wetting regions.

  13. Influence of cosolvents on the hydrophobic surface immobilization topography of Candida antarctica lipase B

    Science.gov (United States)

    The presence of cosolvents and co-solutes during the immobilization of lipases on hydrophobic supports may influence the extent of lipase immobilization and the long-term catalytic stability of the biocatalyst. Candida antarctica B lipase immobilization was examined on a hydrophobic surface, i.e., ...

  14. Fabrication of TiO2/EP super-hydrophobic thin film on filter paper surface.

    Science.gov (United States)

    Gao, Zhengxin; Zhai, Xianglin; Liu, Feng; Zhang, Ming; Zang, Deli; Wang, Chengyu

    2015-09-01

    A composite filter paper with super-hydrophobicity was obtained by adhering micro/nano structure of amorphous titanium dioxide on the filter paper surface with modifying low surface energy material. By virtue of the coupling agent, which plays an important part in bonding amorphous titanium dioxide and epoxy resin, the structure of super-hydrophobic thin film on the filter paper surface is extremely stable. The microstructure of super-hydrophobic filter paper was characterized by scanning electron microscopy (SEM), the images showed that the as-prepared filter paper was covered with uniform amorphous titanium dioxide particles, generating a roughness structure on the filter paper surface. The super-hydrophobic performance of the filter paper was characterized by water contact angle measurements. The observations showed that the wettability of filter paper samples transformed from super-hydrophilicity to super-hydrophobicity with the water contact angle of 153 ± 1°. Some experiments were also designed to test the effect of water-oil separation and UV-resistant by the super-hydrophobic filter paper. The prepared super-hydrophobic filter paper worked efficiently and simply in water-oil separation as well as enduringly in anti-UV property after the experiments. This method offers an opportunity to the practical applications of the super-hydrophobic filter paper. PMID:26005136

  15. Do surfaces with mixed hydrophilic and hydrophobic areas enhance pool boiling?

    OpenAIRE

    Betz, Amy; Xu, Jie; Qiu, Huihe; Attinger, Daniel

    2010-01-01

    We demonstrate that smooth and flat surfaces combining hydrophilic and hydrophobic patterns improve pool boiling performance. Compared to a hydrophilic surface with 7 degree wetting angle, the measured critical heat flux and heat transfer coefficients of the enhanced surfaces are up to respectively 65 and 100% higher. Different networks combining hydrophilic and hydrophobic regions are characterized. While all tested networks enhance the heat transfer coefficient, large enhancements of critic...

  16. The Fabrication of Microstructure Surface of Super- hydrophobic Coating by Surface Gelation Technology

    Institute of Scientific and Technical Information of China (English)

    DUAN Hui; WANG Houzhi; ZHAO Lei; ZHAO Huizhong

    2008-01-01

    The microstructured surface of materials were fabricated by a two-step acid-base catalyzed sol-gel process. In fluorinated polymer with PTFE doping, the well-proportioned composite sols were prepared using sol-gel processing under the hydrochloric acid and deficiency of water conditions. After the substrate was coated by composite sols, and the gelation treatment on the surface of composite coating, the micrometer-scale and nanometer-scale hierarchical structures were formed in surface layer of material. XPS and TEM technologies were employed to identify that the gelation occurs just on the surface of composite coating. The morphology of coating surface was observed by SEM and AFM technologies. The microstructured surface of material can be fabricated using this inexpensive and easily controlled method on low surface energy resin materials, the super-hydrophobic coatings materials can be prepared.

  17. Do surfaces with mixed hydrophilic and hydrophobic areas enhance pool boiling?

    CERN Document Server

    Betz, Amy; Qiu, Huihe; Attinger, Daniel

    2010-01-01

    We demonstrate that smooth and flat surfaces combining hydrophilic and hydrophobic patterns improve pool boiling performance. Compared to a hydrophilic surface with 7^\\circ wetting angle, the measured critical heat flux and heat transfer coefficients of the enhanced surfaces are up to respectively 65 and 100% higher. Different networks combining hydrophilic and hydrophobic regions are characterized. While all tested networks enhance the heat transfer coefficient, large enhancements of critical heat flux are typically found for hydrophilic networks featuring hydrophobic islands. Hydrophilic networks indeed are shown to prevent the formation of an insulating vapor layer.

  18. Molecular explanation for why talc surfaces can be both hydrophilic and hydrophobic

    CERN Document Server

    Rotenberg, Benjamin; Chandler, David

    2011-01-01

    While individual water molecules adsorb strongly on a talc surface (hydrophilic behavior), a droplet of water beads up on the same surface (hydrophobic behavior). To rationalize this dichotomy, we investigate the influence of the microscopic structure of the surface and the strength of adhesive (surface-water) interactions on surface hydrophobicity. We show that at low relative humidity, the competition between adhesion and the favorable entropy of being in the vapor phase determines the surface coverage. However, at saturation, it is the competition between adhesion and cohesion (water-water interactions) that determines surface hydrophobicity. The adhesive interactions in talc are strong enough to overcome the unfavorable entropy, and water adsorbs strongly on talc surfaces. However, they are too weak to overcome the cohesive interactions, and water thus beads up on talc surfaces. Surprisingly, even (talc-like) surfaces that are highly adhesive, do not fully wet at saturation. Instead, a water droplet forms...

  19. Super-hydrophobic surfaces from a simple coating method: a bionic nanoengineering approach

    Science.gov (United States)

    Liu, Yuyang; Chen, Xianqiong; Xin, J. H.

    2006-07-01

    Inspired by the self-cleaning behaviour of lotus leaves in nature, we developed a simple coating method that can facilitate the bionic creation of super-hydrophobic surfaces on various substrates, thus providing a feasible way of fabricating super-hydrophobic surfaces for civil and industrial applications. Micro-nanoscale binary structured composite particles of silica/fluoropolymer were prepared using an emulsion-mediated sol-gel process, and then these composite particles were applied to various substrates to mimic the surface microstructures of lotus leaves. Super-hydrophobic surfaces with a water contact angle larger than 150° are obtained, and these super-hydrophobic surfaces are expected to have potential applications for rusting-resistant, anti-fog and self-cleaning treatments.

  20. Super-hydrophobic surfaces from a simple coating method: a bionic nanoengineering approach

    International Nuclear Information System (INIS)

    Inspired by the self-cleaning behaviour of lotus leaves in nature, we developed a simple coating method that can facilitate the bionic creation of super-hydrophobic surfaces on various substrates, thus providing a feasible way of fabricating super-hydrophobic surfaces for civil and industrial applications. Micro-nanoscale binary structured composite particles of silica/fluoropolymer were prepared using an emulsion-mediated sol-gel process, and then these composite particles were applied to various substrates to mimic the surface microstructures of lotus leaves. Super-hydrophobic surfaces with a water contact angle larger than 150 deg. are obtained, and these super-hydrophobic surfaces are expected to have potential applications for rusting-resistant, anti-fog and self-cleaning treatments

  1. Super-hydrophobic surfaces from a simple coating method: a bionic nanoengineering approach

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yuyang; Chen Xianqiong; Xin, J H [Nanotechnology Center, ITC, Hong Kong Polytechnic University, Hong Kong (China)

    2006-07-14

    Inspired by the self-cleaning behaviour of lotus leaves in nature, we developed a simple coating method that can facilitate the bionic creation of super-hydrophobic surfaces on various substrates, thus providing a feasible way of fabricating super-hydrophobic surfaces for civil and industrial applications. Micro-nanoscale binary structured composite particles of silica/fluoropolymer were prepared using an emulsion-mediated sol-gel process, and then these composite particles were applied to various substrates to mimic the surface microstructures of lotus leaves. Super-hydrophobic surfaces with a water contact angle larger than 150 deg. are obtained, and these super-hydrophobic surfaces are expected to have potential applications for rusting-resistant, anti-fog and self-cleaning treatments.

  2. The estimation of dynamic contact angle of ultra-hydrophobic surfaces using inclined surface and impinging droplet methods

    Science.gov (United States)

    Jasikova, Darina; Kotek, Michal

    2014-03-01

    The development of industrial technology also brings with optimized surface quality, particularly where there is contact with food. Application ultra-hydrophobic surface significantly reduces the growth of bacteria and facilitates cleaning processes. Testing and evaluation of surface quality are used two methods: impinging droplet and inclined surface method optimized with high speed shadowgraphy, which give information about dynamic contact angle. This article presents the results of research into new methods of measuring ultra-hydrophobic patented technology.

  3. The estimation of dynamic contact angle of ultra-hydrophobic surfaces using inclined surface and impinging droplet methods

    Directory of Open Access Journals (Sweden)

    Jasikova Darina

    2014-03-01

    Full Text Available The development of industrial technology also brings with optimized surface quality, particularly where there is contact with food. Application ultra-hydrophobic surface significantly reduces the growth of bacteria and facilitates cleaning processes. Testing and evaluation of surface quality are used two methods: impinging droplet and inclined surface method optimized with high speed shadowgraphy, which give information about dynamic contact angle. This article presents the results of research into new methods of measuring ultra-hydrophobic patented technology.

  4. Dynamic Behaviors and Energy Transition Mechanism of Droplets Impacting on Hydrophobic Surfaces

    Directory of Open Access Journals (Sweden)

    Qiaogao Huang

    2016-01-01

    Full Text Available The wettability of hydrophobic surfaces and the dynamic behaviors of droplets impacting on hydrophobic surfaces are simulated using a lattice Boltzmann method, and the condition for the rebound phenomenon of droplets impacting on solid surfaces is analyzed. The results show that there is a linear relationship between the intrinsic contact angle and the interaction strength of fluid-wall particles. For hydrophobic surfaces with the same intrinsic contact angle, the micromorphology can increase the surface hydrophobicity, especially the hierarchical micromorphology. The dynamic behaviors of droplets impacting on solid surfaces are affected by the wettability. The surface hydrophobicity is stronger, and the rebound phenomenon occurs easier. If the droplet’s kinetic energy is greater than the sum of the surface energy and the minimum conversion gravitational potential energy when the spreading and shrinking finish, the rebound phenomenon will occur. As the hydrophobic surface’s viscous dissipation is much smaller than the hydrophilic surface’s, the droplet still has high kinetic energy after the spreading and shrinking, which is advantageous to rebound for droplets.

  5. Quantifying effective slip length over micropatterned hydrophobic surfaces

    CERN Document Server

    Tsai, Peichun; Pirat, Christophe; Wessling, Matthias; Lammertink, Rob G H; Lohse, Detlef

    2009-01-01

    We employ micro-particle image velocimetry ($\\mu$-PIV) to investigate laminar micro-flows in hydrophobic microstructured channels, in particular the slip length. These microchannels consist of longitudinal micro-grooves, which can trap air and prompt a shear-free boundary condition and thus slippage enhancement. Our measurements reveal an increase of the slip length when the width of the micro-grooves is enlarged. The result of the slip length is smaller than the analytical prediction by Philip et al. [1] for an infinitely large and textured channel comprised of alternating shear-free and no-slip boundary conditions. The smaller slip length (as compared to the prediction) can be attributed to the confinement of the microchannel and the bending of the meniscus (liquid-gas interface). Our experimental studies suggest that the curvature of the meniscus plays an important role in microflows over hydrophobic micro-ridges.

  6. Comparison of the fouling release properties of hydrophobic fluorinated and hydrophilic PEGylated block copolymer surfaces: attachment strength of the diatom Navicula and the green alga Ulva.

    Science.gov (United States)

    Krishnan, Sitaraman; Wang, Nick; Ober, Christopher K; Finlay, John A; Callow, Maureen E; Callow, James A; Hexemer, Alexander; Sohn, Karen E; Kramer, Edward J; Fischer, Daniel A

    2006-05-01

    To understand the role of surface wettability in adhesion of cells, the attachment of two different marine algae was studied on hydrophobic and hydrophilic polymer surfaces. Adhesion of cells of the diatom Navicula and sporelings (young plants) of the green macroalga Ulva to an underwater surface is mainly by interactions between the surface and the adhesive exopolymers, which the cells secrete upon settlement and during subsequent colonization and growth. Two types of block copolymers, one with poly(ethylene glycol) side-chains and the other with liquid crystalline, fluorinated side-chains, were used to prepare the hydrophilic and hydrophobic surfaces, respectively. The formation of a liquid crystalline smectic phase in the latter inhibited molecular reorganization at the surface, which is generally an issue when a highly hydrophobic surface is in contact with water. The adhesion strength was assessed by the fraction of settled cells (Navicula) or biomass (Ulva) that detached from the surface in a water flow channel with a wall shear stress of 53 Pa. The two species exhibited opposite adhesion behavior on the same sets of surfaces. While Navicula cells released more easily from hydrophilic surfaces, Ulva sporelings showed higher removal from hydrophobic surfaces. This highlights the importance of differences in cell-surface interactions in determining the strength of adhesion of cells to substrates. PMID:16677026

  7. Reduced water density at hydrophobic surfaces: Effect of dissolved gases

    OpenAIRE

    Doshi, Dhaval A.; Watkins, Erik B.; Israelachvili, Jacob N.; Majewski, Jaroslaw

    2005-01-01

    Here, direct noninvasive neutron reflectivity measurements reveal the presence of a reduced (deuterated) water density region, with a sigmoidal density profile at the hydrophobic silane–water interface that depends on the type and concentration of dissolved gases in the water. Removal of dissolved gases decreases the width of the reduced water density region, and their reintroduction leads to its increase. When compared with recent computer simulations, a locally fluctuating density profile i...

  8. Analysis of Wetting Characteristics on Microstructured Hydrophobic Surfaces for the Passive Containment Cooling System

    Directory of Open Access Journals (Sweden)

    Wei Zhao

    2015-01-01

    Full Text Available As the heat transfer surface in the passive containment cooling system, the anticorrosion coating (AC of steel containment vessel (CV must meet the requirements on heat transfer performance. One of the wall surface ACs with simple structure, high mechanical strength, and well hydrophobic characteristics, which is conductive to form dropwise condensation, is significant for the heat removal of the CV. In this paper, the grooved structures on silicon wafers by lithographic methods are systematically prepared to investigate the effects of microstructures on the hydrophobic property of the surfaces. The results show that the hydrophobicity is dramatically improved in comparison with the conventional Wenzel and Cassie-Baxter model. In addition, the experimental results are successfully explained by the interface state effect. As a consequence, it is indicated that favorable hydrophobicity can be obtained even if the surface is with lower roughness and without any chemical modifications, which provides feasible solutions for improving the heat transfer performance of CV.

  9. Water in contact with extended hydrophobic surfaces: Direct evidence of weak dewetting

    DEFF Research Database (Denmark)

    Jensen, Torben René; Jensen, Morten Østergaard; Reitzel, Niels;

    2003-01-01

    X-ray reflectivity measurements reveal a significant dewetting of a large hydrophobic paraffin surface floating on water. The dewetting phenomenon extends less than 15 Angstrom into the bulk water phase and results in an integrated density deficit of about one water molecule per 25-30 Angstrom(2......) of water in contact with the paraffin surface. The results are supported by molecular dynamics simulations and related to the hydrophobic effect....

  10. Interactions between nano-TiO2 and the oral cavity: Impact of nanomaterial surface hydrophilicity/hydrophobicity

    International Nuclear Information System (INIS)

    Highlights: • Hydrophilic as well as hydrophobic TiO2 NPs agglomerated under oral physiological conditions. • Particles penetrated the upper and lower buccal epithelium, independent on the degree of hydrophilicity. • Most of the hydrophobic particles were found in vesicular structures, while hydrophilic particles were freely distributed in the cytoplasm. • Hydrophilic particles had a higher potential to trigger toxic effects (e.g., ROS) than hydrophobic particles. - Abstract: Titanium dioxide (TiO2) nanoparticles are available in a variety of oral applications, such as food additives and cosmetic products. Thus, questions about their potential impact on the oro-gastrointestinal route rise. The oral cavity represents the first portal of entry and is known to rapidly interact with nanoparticles. Surface charge and size contribute actively to the particle–cell interactions, but the influence of surface hydrophilicity/hydrophobicity has never been shown before. This study addresses the biological impact of hydrophilic (NM 103, rutile, 20 nm) and hydrophobic (NM 104, rutile, 20 nm) TiO2 particles within the buccal mucosa. Particle characterization was addressed with dynamic light scattering and laser diffraction. Despite a high agglomeration tendency, 10% of the particles/agglomerates were present in the nanosized range and penetrated into the mucosa, independent of the surface properties. However, significant differences were observed in intracellular particle localization. NM 104 particles were found freely distributed in the cytoplasm, whereas their hydrophobic counterparts were engulfed in vesicular structures. Although cell viability/membrane integrity was not affected negatively, screening assays demonstrated that NM 104 particles showed a higher potential to decrease the physiological mitochondrial membrane potential than NM 103, resulting in a pronounced generation of reactive oxygen species

  11. Interactions between nano-TiO{sub 2} and the oral cavity: Impact of nanomaterial surface hydrophilicity/hydrophobicity

    Energy Technology Data Exchange (ETDEWEB)

    Teubl, Birgit J.; Schimpel, Christa [Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, University of Graz, 8010 (Austria); Leitinger, Gerd [Institute of Cell Biology, Histology and Embryology, Research Unit Electron Microscopic Techniques, Medical University of Graz, 8010 (Austria); Center for Medical Research, Medical University of Graz, 8010 (Austria); BioTechMed, Graz 8010 (Austria); Bauer, Bettina [Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, University of Graz, 8010 (Austria); Fröhlich, Eleonore [Center for Medical Research, Medical University of Graz, 8010 (Austria); BioTechMed, Graz 8010 (Austria); Zimmer, Andreas [Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, University of Graz, 8010 (Austria); BioTechMed, Graz 8010 (Austria); Roblegg, Eva, E-mail: eva.roblegg@uni-graz.at [Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, University of Graz, 8010 (Austria); BioTechMed, Graz 8010 (Austria)

    2015-04-09

    Highlights: • Hydrophilic as well as hydrophobic TiO{sub 2} NPs agglomerated under oral physiological conditions. • Particles penetrated the upper and lower buccal epithelium, independent on the degree of hydrophilicity. • Most of the hydrophobic particles were found in vesicular structures, while hydrophilic particles were freely distributed in the cytoplasm. • Hydrophilic particles had a higher potential to trigger toxic effects (e.g., ROS) than hydrophobic particles. - Abstract: Titanium dioxide (TiO{sub 2}) nanoparticles are available in a variety of oral applications, such as food additives and cosmetic products. Thus, questions about their potential impact on the oro-gastrointestinal route rise. The oral cavity represents the first portal of entry and is known to rapidly interact with nanoparticles. Surface charge and size contribute actively to the particle–cell interactions, but the influence of surface hydrophilicity/hydrophobicity has never been shown before. This study addresses the biological impact of hydrophilic (NM 103, rutile, 20 nm) and hydrophobic (NM 104, rutile, 20 nm) TiO{sub 2} particles within the buccal mucosa. Particle characterization was addressed with dynamic light scattering and laser diffraction. Despite a high agglomeration tendency, 10% of the particles/agglomerates were present in the nanosized range and penetrated into the mucosa, independent of the surface properties. However, significant differences were observed in intracellular particle localization. NM 104 particles were found freely distributed in the cytoplasm, whereas their hydrophobic counterparts were engulfed in vesicular structures. Although cell viability/membrane integrity was not affected negatively, screening assays demonstrated that NM 104 particles showed a higher potential to decrease the physiological mitochondrial membrane potential than NM 103, resulting in a pronounced generation of reactive oxygen species.

  12. Improving Hydrophobicity of Glass Surface Using Dielectric Barrier Discharge Treatment in Atmospheric Air

    Institute of Scientific and Technical Information of China (English)

    FANG Zhi; QIU Yuchang; WANG Hui; E. KUFFEL

    2007-01-01

    Non-thermal plasmas under atmospheric pressure are of great interest in industrial applications, especially in material surface treatment. In this paper, the treatment of a glass surface for improving hydrophobicity using the non-thermal plasma generated by dielectric barrier discharge (DBD) at atmospheric pressure in ambient air is conducted, and the surface properties of the glass before and after the DBD treatment are studied by using contact angle measurement, surface resistance measurement and wet flashover voltage tests. The effects of the applied voltage and time duration of DBD on the surface modification are studied, and the optimal conditions for the treatment are obtained. It is found that a layer of hydrophobic coating is formed on the glass surface after spraying a thin layer of silicone oil and undergoing the DBD treatment, and the improvement of hydrophobicity depends on DBD voltage and treating time. It seems that there exists an optimum treating time for a certain applied voltage of DBD during the surface treatment. The test results of thermal aging and chemical aging show that the hydrophobic layer has quite stable characteristics. The interaction mechanism between the DBD plasma and the glass surface is discussed. It is concluded that CH3 and large molecule radicals can react with the radicals in the glass surface to replace OH, and the hydrophobicity of the glass surface is improved accordingly.

  13. Tuning the hydrophobicity of mica surfaces by hyperthermal Ar ion irradiation

    International Nuclear Information System (INIS)

    The hydrophobicity of surfaces has a strong influence on their interactions with biomolecules such as proteins. Therefore, for in vitro studies of bio-surface interactions model surfaces with tailored hydrophobicity are of utmost importance. Here, we present a method for tuning the hydrophobicity of atomically flat mica surfaces by hyperthermal Ar ion irradiation. Due to the sub-100 eV energies, only negligible roughening of the surface is observed at low ion fluences and also the chemical composition of the mica crystal remains almost undisturbed. However, the ion irradiation induces the preferential removal of the outermost layer of K+ ions from the surface, leading to the exposure of the underlying aluminosilicate sheets which feature a large number of centers for C adsorption. The irradiated surface thus exhibits an enhanced chemical reactivity toward hydrocarbons, resulting in the adsorption of a thin hydrocarbon film from the environment. Aging these surfaces under ambient conditions leads to a continuous increase of their contact angle until a fully hydrophobic surface with a contact angle >80 deg. is obtained after a period of about 3 months. This method thus enables the fabrication of ultrasmooth biological model surfaces with precisely tailored hydrophobicity.

  14. Improving Hydrophobicity of Glass Surface Using Dielectric Barrier Discharge Treatment in Atmospheric Air

    International Nuclear Information System (INIS)

    Non-thermal plasmas under atmospheric pressure are of great interest in industrial applications, especially in material surface treatment. In this paper, the treatment of a glass surface for improving hydrophobicity using the non-thermal plasma generated by dielectric barrier discharge (DBD) at atmospheric pressure in ambient air is conducted, and the surface properties of the glass before and after the DBD treatment are studied by using contact angle measurement, surface resistance measurement and wet flashover voltage tests. The effects of the applied voltage and time duration of DBD on the surface modification are studied, and the optimal conditions for the treatment are obtained. It is found that a layer of hydrophobic coating is formed on the glass surface after spraying a thin layer of silicone oil and undergoing the DBD treatment, and the improvement of hydrophobicity depends on DBD voltage and treating time. It seems that there exists an optimum treating time for a certain applied voltage of DBD during the surface treatment. The test results of thermal aging and chemical aging show that the hydrophobic layer has quite stable characteristics. The interaction mechanism between the DBD plasma and the glass surface is discussed. It is concluded that CH3 and large molecule radicals can react with the radicals in the glass surface to replace OH, and the hydrophobicity of the glass surface is improved accordingly

  15. A New Concept to Transport a Droplet on Horizontal Hydrophilic/Hydrophobic Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Myong, Hyon Kook [Kookmin Univ., Seoul (Korea, Republic of)

    2014-03-15

    A fluid transport technique is a key issue for the development of microfluidic systems. In this paper, a new concept for transporting a droplet without external power sources is proposed and verified numerically. The proposed device is a heterogeneous surface which has both hydrophilic and hydrophobic horizontal surfaces. The numerical simulation to demonstrate the new concept is conducted by an in-house solution code (PowerCFD) which employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with interface capturing method (CICSAM) in a volume of fluid (VOF) scheme for phase interface capturing. It is found that the proposed concept for droplet transport shows superior performance for droplet transport in microfluidic systems.

  16. Mapping hydrophobicity on the protein molecular surface at atom-level resolution.

    Directory of Open Access Journals (Sweden)

    Dan V Nicolau

    Full Text Available A precise representation of the spatial distribution of hydrophobicity, hydrophilicity and charges on the molecular surface of proteins is critical for the understanding of the interaction with small molecules and larger systems. The representation of hydrophobicity is rarely done at atom-level, as this property is generally assigned to residues. A new methodology for the derivation of atomic hydrophobicity from any amino acid-based hydrophobicity scale was used to derive 8 sets of atomic hydrophobicities, one of which was used to generate the molecular surfaces for 35 proteins with convex structures, 5 of which, i.e., lysozyme, ribonuclease, hemoglobin, albumin and IgG, have been analyzed in more detail. Sets of the molecular surfaces of the model proteins have been constructed using spherical probes with increasingly large radii, from 1.4 to 20 Å, followed by the quantification of (i the surface hydrophobicity; (ii their respective molecular surface areas, i.e., total, hydrophilic and hydrophobic area; and (iii their relative densities, i.e., divided by the total molecular area; or specific densities, i.e., divided by property-specific area. Compared with the amino acid-based formalism, the atom-level description reveals molecular surfaces which (i present an approximately two times more hydrophilic areas; with (ii less extended, but between 2 to 5 times more intense hydrophilic patches; and (iii 3 to 20 times more extended hydrophobic areas. The hydrophobic areas are also approximately 2 times more hydrophobicity-intense. This, more pronounced "leopard skin"-like, design of the protein molecular surface has been confirmed by comparing the results for a restricted set of homologous proteins, i.e., hemoglobins diverging by only one residue (Trp37. These results suggest that the representation of hydrophobicity on the protein molecular surfaces at atom-level resolution, coupled with the probing of the molecular surface at different geometric

  17. Polydimethylsiloxane Coating for a Palladium/MOF Composite: Highly Improved Catalytic Performance by Surface Hydrophobization.

    Science.gov (United States)

    Huang, Gang; Yang, Qihao; Xu, Qiang; Yu, Shu-Hong; Jiang, Hai-Long

    2016-06-20

    Surface wettability of active sites plays a crucial role in the activity and selectivity of catalysts. This report describes modification of surface hydrophobicity of Pd/UiO-66, a composite comprising a metal-organic framework (MOF) and stabilized palladium nanoparticles (NPs), using a simple polydimethylsiloxane (PDMS) coating. The modified catalyst demonstrated significantly improved catalytic efficiency. The approach can be extended to various Pd nanoparticulate catalysts for enhanced activity in reactions involving hydrophobic reactants, as the hydrophobic surface facilitates the enrichment of hydrophobic substrates around the catalytic site. PDMS encapsulation of Pd NPs prevents aggregation of NPs and thus results in superior catalytic recyclability. Additionally, PDMS coating is applicable to a diverse range of catalysts, endowing them with additional selectivity in sieving reactants with different wettability. PMID:27144320

  18. IgG Adhesion on Hydrophobic Surfaces: Theory, Modelling, and Application to ELISA

    CERN Document Server

    de Thier, P

    2016-01-01

    Enzyme-Linked ImmunoSorbent Assays (ELISA) are a range of widely used analytical methods whose implementation requires to build antibodies (IgG) thin films onto surfaces predominantly made of polystyrene. The high hydrophobicity of polystyrene ensures a spontaneous and strong adhesion of proteins allowing to easily build IgG monolayers. Since the ELISA improvements definitely lie in the comprehension of physico-chemical mechanisms on which IgG immobilization on hydrophobic surfaces are relied, this work develops a theorization essay (thermodynamics of the so-called hydrophobic effect and of thin films building) emphasized by numerical modelling (random sequential additions model, i.e. RSA) and experimental estimations by atomic force microscopy (AFM) and ELISA. Keeping in mind the hydrophobic effect, thermodynamics (of irreversible processes) allows to explain why IgG adhesion on polystyrene occurs whereas numerical modelling approaches show a way of surface saturation leading to promote IgG orientations expe...

  19. Enhancement of Water Evaporation on Solid Surfaces with Nanoscale Hydrophobic-Hydrophilic Patterns.

    Science.gov (United States)

    Wan, Rongzheng; Wang, Chunlei; Lei, Xiaoling; Zhou, Guoquan; Fang, Haiping

    2015-11-01

    Using molecular dynamics simulations, we show that the evaporation of nanoscale water on hydrophobic-hydrophilic patterned surfaces is unexpectedly faster than that on any surfaces with uniform wettability. The key to this phenomenon is that, on the patterned surface, the evaporation rate from the hydrophilic region only slightly decreases due to the correspondingly increased water thickness; meanwhile, a considerable number of water molecules evaporate from the hydrophobic region despite the lack of water film. Most of the evaporated water from the hydrophobic region originates from the hydrophilic region by diffusing across the contact lines. Further analysis shows that the evaporation rate from the hydrophobic region is approximately proportional to the total length of the contact lines.

  20. Control of surface wettability for inkjet printing by combining hydrophobic coating and plasma treatment

    International Nuclear Information System (INIS)

    We have obtained a wide range of surface wettabilities of PI substrate for inkjet printing by combining hydrophobic solution coating and O2 or Ar plasma treatments. Experiments were conducted to investigate the variation in inkjet-printed dot diameters with different surface treatments. The change in chemical and physical characteristics of treated surfaces was evaluated using static contact angle measurements, field emission scanning electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. Only hydrophobic coated surface produces the smallest dot diameter and the largest contact angle. Dot diameter increases and contact angle decreases as the plasma treatment time increases. Since the removal of hydrophobic layer from the surface occurs due to the etching effect of O2 and Ar plasma during the plasma treatments, F/C ratio decreases with increasing the plasma treatment time. Surface roughness variations are also observed after plasma treatments. The ranges of printed dot sizes for O2 and Ar plasma treatments are 38 μm–70 μm and 38 μm–92 μm, respectively. Ar plasma treatment shows a wider range of surface wettability because of higher removal rate of the hydrophobic layer. This combination of hydrophobic coating and plasma treatment can offer an effective way to obtain a wide range of surface wettabilities for high quality inkjet-printed patterns. - Highlights: • Hydrophobic coating and plasma treatments were used to control surface wettability. • Inkjet-printed dot diameters increase with O2 or Ar plasma treatment time. • Contact angles of Ag ink agree well with the variation tendency of dot diameters. • The removal of hydrophobic layer occurs during the plasma treatments. • Ar plasma treatment shows a wider range of surface wettability than O2 plasma

  1. Different assembly of type IV collagen on hydrophilic and hydrophobic substrata alters endothelial cells interaction

    Directory of Open Access Journals (Sweden)

    NM Coelho

    2010-06-01

    Full Text Available Considering the structural role of type IV collagen (Col IV in the assembly of the basement membrane (BM and the perspective of mimicking its organization for vascular tissue engineering purposes, we studied the adsorption pattern of this protein on model hydrophilic (clean glass and hydrophobic trichloro(octadecylsilane (ODS surfaces known to strongly affect the behavior of other matrix proteins. The amount of fluorescently labeled Col IV was quantified showing saturation of the surface for concentration of the adsorbing solution of about 50μg/ml, but with approximately twice more adsorbed protein on ODS. AFM studies revealed a fine – nearly single molecular size – network arrangement of Col IV on hydrophilic glass, which turns into a prominent and growing polygonal network consisting of molecular aggregates on hydrophobic ODS. The protein layer forms within minutes in a concentration-dependent manner. We further found that human umbilical vein endothelial cells (HUVEC attach less efficiently to the aggregated Col IV (on ODS, as judged by the significantly altered cell spreading, focal adhesions formation and the development of actin cytoskeleton. Conversely, the immunofluorescence studies for integrins revealed that the fine Col IV network formed on hydrophilic substrata is better recognized by the cells via both α1 and α2 heterodimers which support cellular interaction, apart from these on hydrophobic ODS where almost no clustering of integrins was observed.

  2. Preparation of biomimetic hydrophobic coatings on AZ91D magnesium alloy surface

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The hydrophobic coating has been a promising technology for improving surface performance. The surface performance of magnesium alloy has been limited in application. Furthermore, the hydrophobic of magnesium alloy is rarely investigated because magnesium alloy is an active metal alloy. In this paper, inspired by microstructure character of typical plant leaf surface such as lotus, the biomimetic hydrophobic coatings on AZ91D magnesium alloy surface were prepared by means of wet-chemical combining electroless. The samples were immersed into AgNO3 solution in wet-chemical method firstly. Then, biomimetic hydrophobic coatings were prepared by electroless after wet-method pretreatment. The microstructure was observed by SEM and the contact angles were measured by contact angle tester. The results indicated that the biomimetic hydrophobic coatings with uniform crystalline and dense structure could be obtained on AZ91D magnesium alloy surface. The results of contact angle revealed that the biomimetic nano-composite coatings were hydrophobic. The wet-chemical method treatment on the AZ91D magnesium alloy substrate provided a rough microstructure, thus improving adhesion of the coating and the substrate.

  3. Super-hydrophobic transparent surface by femtosecond laser micro-patterned catalyst thin film for carbon nanotube cluster growth

    Science.gov (United States)

    Tang, M.; Hong, M. H.; Choo, Y. S.; Tang, Z.; Chua, Daniel H. C.

    2010-11-01

    In this work, super-hydrophobic surfaces were fabricated by femtosecond laser micro-machining and chemical vapor deposition to constitute hybrid scale micro/nano-structures formed by carbon nanotube (CNT) clusters. Nickel thin-film microstructures, functioning as CNT growth catalyst, precisely control the distribution of the CNT clusters. To obtain minimal heat-affected zones, femtosecond laser was used to trim the nickel thin-film coating. Plasma treatment was subsequently carried out to enhance the lotus-leaf effect. The wetting property of the CNT surface is improved from hydrophilicity to super-hydrophobicity at an advancing contact angle of 161 degrees. The dynamic water drop impacting test further confirms its enhanced water-repellent property. Meanwhile, this super-hydrophobic surface exhibits excellent transparency with quartz as the substrate. This hybrid fabrication technique can achieve super-hydrophobic surfaces over a large area, which has potential applications as self-cleaning windows for vehicles, solar cells and high-rise buildings.

  4. Hydrophobic perfluoropolymer thin-film encapsulation for enhanced stability of inverted polymer solar cells

    International Nuclear Information System (INIS)

    We report hydrophobic perfluoropolymer thin-film encapsulation for enhancing the air ambient stability of inverted polymer solar cells (PSCs). Using a perfluoropolymer, poly(perfluorodecylmethacrylate) (PFDMA), as an encapsulation material, an orthogonal process that enables a solution-processing of encapsulation polymers to be coated directly on the inverted PSCs without damaging the underlying organic components is possible. Particularly, with PFDMA encapsulation, the air ambient stability was significantly enhanced, showing only an efficiency reduction of 23.3% after 456 hours of air exposure. The enhanced device stability can be attributed to the hydrophobic property of the PFDMA surface, which suppresses the transmission of air ambient gas molecules into the solar cells. Thus, the PFDMA coating can be beneficial in achieving high-stability organic electronics by using an easy-to-use route.

  5. A facile approach towards fabrication of super hydrophobic surface from functionalized silica particles

    Science.gov (United States)

    Awais, M.; Jalil, M.; Zulfiqar, U.; Husain, S. W.

    2016-08-01

    A facile and cost effective method for fabrication of super hydrophobic surface on a glass substrate is studied. The surface is fabricated from surface functionalized silica particles, synthesized by sol-gel process with the average size of 200±10nm. These particles were functionalized with stearic acid to induce hydrophobicity followed by coating on a glass substrate. After coating, substrate was dried to remove excess solvent. The drying temperature was optimized and its effect on contact angle of hydrophobic surface was studied. It was observed that surface exhibits higher contact angle with increased drying temperature till the decomposition temperature of Stearic acid. Silica particles were characterized by using Scanning electron microscopy (SEM), thermal analysis was performed with Thermo gravimetric analysis (TGA) while the coated surface was studied using SEM and Contact Angle (CA) measurement.

  6. Synthesis and texturization processes of (super)-hydrophobic fluorinated surfaces by atmospheric plasma

    CERN Document Server

    Hubert, Julie; Dufour, Thierry; Vandencasteele, Nicolas; Reniers, François; Viville, Pascal; Lazzaroni, Roberto; Raes, M; Terryn, Herman

    2016-01-01

    The synthesis and texturization processes of fluorinated surfaces by means of atmospheric plasma are investigated and presented through an integrated study of both the plasma phase and the resulting material surface. Three methods enhancing the surface hydrophobicity up to the production of super-hydrophobic surfaces are evaluated: (i) the modification of a polytetrafluoroethylene (PTFE) surface, (ii) the plasma deposition of fluorinated coatings and (iii) the incorporation of nanoparticles into those fluorinated films. In all the approaches, the nature of the plasma gas appears to be a crucial parameter for the desired property. Although a higher etching of the PTFE surface can be obtained with a pure helium plasma, the texturization can only be created if O2 is added to the plasma, which simultaneously decreases the total etching. The deposition of CxFy films by a dielectric barrier discharge leads to hydrophobic coatings with water contact angles (WCAs) of 115{\\textdegree}, but only the filamentary argon d...

  7. Investigations on reducing microbiologically-influenced corrosion of aluminum by using super-hydrophobic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Liu Tao, E-mail: liutao@shmtu.edu.c [Institute of Marine Materials Science and Engineering, Shanghai Maritime University, Shanghai 201306 (China); Dong Lihua; Liu Tong; Yin Yansheng [Institute of Marine Materials Science and Engineering, Shanghai Maritime University, Shanghai 201306 (China)

    2010-07-15

    Electrochemical impedance spectroscopy, potentiodynamic polarization and scanning electron microscopy were carried out to determine the effect of super-hydrophobic surfaces on the marine bacterium Vibrio natriegens (V. natriegens) adhesion. Four different samples were prepared in order to investigate the anti-biocorrosion mechanism of super-hydrophobic surfaces. Potentiodynamic polarization suggested that the V. natriegens attached on the surface mainly enhanced the reaction kinetics of the anodic reaction and accelerated the dissolution of aluminum. EIS results were interpreted with different equivalent circuits to model the physicoelectric characteristics of the electrode/biofilm/solution interface. The results showed that neither anodization nor chemical modification could decrease the bacterial adhesion and corrosion rate individually. V. natriegens showed only weak attachment to the super-hydrophobic surface, and the biocorrosion mechanism was closely associated with surface energy and surface topography.

  8. Characteristics of laser textured silicon surface and effect of mud adhesion on hydrophobicity

    Energy Technology Data Exchange (ETDEWEB)

    Yilbas, B.S., E-mail: bsyilbas@kfupm.edu.sa [ME Department, King Fahd University of Petroleum & Minerals, Kfupm box 1913, Dhahran 31261 (Saudi Arabia); Ali, H. [ME Department, King Fahd University of Petroleum & Minerals, Kfupm box 1913, Dhahran 31261 (Saudi Arabia); Khaled, M. [CHEM Department, King Fahd University of Petroleum & Minerals, Dhahran (Saudi Arabia); Al-Aqeeli, N.; Abu-Dheir, N. [ME Department, King Fahd University of Petroleum & Minerals, Kfupm box 1913, Dhahran 31261 (Saudi Arabia); Varanasi, K.K. [Mechanical Engineering, Massachusetts Institute of Technology, Boston, MA (United States)

    2015-10-01

    Highlights: • Laser treatment increases surface microhardness and slightly lowers surface fracture toughness. • Residual stress formed is compressive and self-annealing effect of laser tracks lowers residual stress. • Nitride species lowers surface energy and adhesion work required to remove dust. • Mud residues do not have notable effect on fracture toughness and microhardness of treated surface. • Mud residues lower surface hydrophobicity. - Abstract: Laser gas assisted texturing of silicon wafer surface is carried out. Morphological and metallurgical changes in the treated layer are examined using the analytical tools. Microhardness and fracture toughness of the laser treated surface are measured using the indentation technique while residual stress formed is determined from the X-ray diffraction data. The hydrophobicity of the textured surfaces are assessed incorporating the contact angle data and compared with those of as received workpiece surfaces. Environmental dust accumulation and mud formation, due to air humidity, at the laser treated and as received workpiece surfaces are simulated and the effect of the mud residues on the properties of the laser treated surface are studied. The adhesion work due to the presence of the mud on the laser treated surface is also measured. It is found that laser textured surface composes of micro/nano poles and fibers, which in turn improves the surface hydrophobicity significantly. In addition, formation of nitride species contributes to microhardness increase and enhancement of surface hydrophobicity due to their low surface energy. The mud residues do not influence the fracture toughness and microhardness of the laser textured surface; however, they reduced the surface hydrophobicity significantly.

  9. Ultra fast laser machined hydrophobic stainless ateel surface for drag reduction in laminar flows

    NARCIS (Netherlands)

    Jagdheesh, R.; Pathiraj, B.; Martin, A.G.; Del Cerro, D.A.; Lammertink, R.G.H.; Lohse, D.; Huis in 't Veld, A.J.; Römer, G.R.B.E.

    2010-01-01

    Hydrophobic surfaces have attracted much attention due to their potential in microfluidics, lab on chip devices and as functional surfaces for the automotive and aerospace industry. The combination of a dual scale roughness with an inherent low-surface-energy coating material is the pre-requisite fa

  10. Ultra fast laser machined hydrophobic stainless steel surface for drag reduction in laminar flows

    NARCIS (Netherlands)

    Jagdheesh, R.; Pathiraj, B.; Marin, A.G.; Arnaldo del Cerro, D.; Lammertink, R.G.H.; Lohse, D.; Huis in 't Veld, A.J.; Römer, G.R.B.E.

    2010-01-01

    Hydrophobic surfaces have attracted much attention due to their potential in microfluidics, lab on chip devices and as functional surfaces for the automotive and aerospace industry. The combination of a dual scale roughness with an inherent low-surface-energy coating material is the pre-requisite fa

  11. Development of super-hydrophobic PTFE and PET surfaces by means of plasma processes

    International Nuclear Information System (INIS)

    In this work, Poly(tetrafluoroethylene) and Poly(ethylene terephtalate) substrates were modified by means of plasma techniques for the creation of super-hydrophobic surfaces. Both the materials were etched with an O2 plasma, thus increasing their surface roughness which was investigated by means of Atomic Force Microscopy analysis. Plasma etching of PTFE surfaces under appropriate conditions results in the creation of super-hydrophobic surfaces, as assessed by measurements of dynamic contact angles and sliding angles. Chemical modifications of the PTFE surfaces was investigated with Attenuated Total Reflectance Fourier Transform Infrared spectroscopy and X-ray Photoelectron Spectroscopy analysis. The realization of super-hydrophobic PET surfaces needs the deposition of a hydrophobic top coating, which was realized through an hexamethyldisiloxane (HMDSO) plasma. The thickness of this top layer was varied by changing the plasma deposition time and the effects on the hydrophobic performances of the modified PET were investigated. Micro-nano structures created by plasma on PTFE and PET surfaces were characterized and correlated with the wettability

  12. Fabrication of super-hydrophobic surfaces on aluminum alloy substrates by RF-sputtered polytetrafluoroethylene coatings

    International Nuclear Information System (INIS)

    In this work, we present a method of fabricating super-hydrophobic surface on aluminum alloy substrate. The etching of aluminum surfaces has been performed using Beck's dislocation etchant for different time to create micrometer-sized irregular steps. An optimised etching time of 50 s is found to be essential before polytetrafluoroethylene (PTFE) coating, to obtain a highest water contact angle of 165±2° with a lowest contact angle hysteresis as low as 5±2°. The presence of patterned microstructure as revealed by scanning electron microscopy (SEM) together with the low surface energy ultrathin RF-sputtered PTFE films renders the aluminum alloy surfaces highly super-hydrophobic

  13. Hydrophobicity of mucosal surface and its relationship to gut barrier function.

    Science.gov (United States)

    Qin, Xiaofa; Caputo, Francis J; Xu, Da-Zhong; Deitch, Edwin A

    2008-03-01

    Loss of the gut barrier has been implicated in the pathogenesis of the multiple organ dysfunction syndrome, and, thus, understanding the intestinal barrier is of potential clinical importance. An important, but relatively neglected, component of the gut barrier is the unstirred mucus layer, which through its hydrophobic and other properties serves as an important barrier to bacterial and other factors within the gut lumen. Thus, the goal of this study was to establish a reproducible method of measuring mucosal hydrophobicity and test the hypothesis that conditions that decrease mucosal hydrophobicity are associated with increased gut permeability. Hydrophobicity was measured in various segments of normal gut by measuring the contact angle of an aqueous droplet placed on the mucosal surface using a commercial goniometer. Second, the effect of the mucolytic agent N-acetyl cysteine on mucosal hydrophobicity and gut permeability was measured, as was the effects of increasing periods of in vivo gut ischemia on these parameters. Gut ischemia was induced by superior mesenteric artery occlusion, and gut permeability was measured by the mucosal-to-serosal passage of fluoresceine isothiocyanate-dextran (4.3 kDa) (FD4) across the everted sacs of ileum. Intestinal mucosal hydrophobicity showed a gradual increase from the duodenum to the end of the ileum and remained at high level in the cecum, colon, and rectum. Both N-acetyl cysteine treatment and ischemia caused a dose-dependent decrease in mucosal hydrophobicity, which significantly correlated increased gut permeability. Mucosal hydrophobicity of the intestine can be reproducibly measured, and decreases in mucosal hydrophobicity closely correlate with increased gut permeability. These results suggest that mucosal hydrophobicity can be a reliable method of measuring the barrier function of the unstirred mucus layer and a useful parameter in evaluating the pathogenesis of gut barrier dysfunction.

  14. Hydrophobicity of mucosal surface and its relationship to gut barrier function.

    Science.gov (United States)

    Qin, Xiaofa; Caputo, Francis J; Xu, Da-Zhong; Deitch, Edwin A

    2008-03-01

    Loss of the gut barrier has been implicated in the pathogenesis of the multiple organ dysfunction syndrome, and, thus, understanding the intestinal barrier is of potential clinical importance. An important, but relatively neglected, component of the gut barrier is the unstirred mucus layer, which through its hydrophobic and other properties serves as an important barrier to bacterial and other factors within the gut lumen. Thus, the goal of this study was to establish a reproducible method of measuring mucosal hydrophobicity and test the hypothesis that conditions that decrease mucosal hydrophobicity are associated with increased gut permeability. Hydrophobicity was measured in various segments of normal gut by measuring the contact angle of an aqueous droplet placed on the mucosal surface using a commercial goniometer. Second, the effect of the mucolytic agent N-acetyl cysteine on mucosal hydrophobicity and gut permeability was measured, as was the effects of increasing periods of in vivo gut ischemia on these parameters. Gut ischemia was induced by superior mesenteric artery occlusion, and gut permeability was measured by the mucosal-to-serosal passage of fluoresceine isothiocyanate-dextran (4.3 kDa) (FD4) across the everted sacs of ileum. Intestinal mucosal hydrophobicity showed a gradual increase from the duodenum to the end of the ileum and remained at high level in the cecum, colon, and rectum. Both N-acetyl cysteine treatment and ischemia caused a dose-dependent decrease in mucosal hydrophobicity, which significantly correlated increased gut permeability. Mucosal hydrophobicity of the intestine can be reproducibly measured, and decreases in mucosal hydrophobicity closely correlate with increased gut permeability. These results suggest that mucosal hydrophobicity can be a reliable method of measuring the barrier function of the unstirred mucus layer and a useful parameter in evaluating the pathogenesis of gut barrier dysfunction. PMID:17693944

  15. Modification of epoxy resin, silicon and glass surfaces with alkyl- or fluoroalkylsilanes for hydrophobic properties

    Science.gov (United States)

    Marczak, Jacek; Kargol, Marta; Psarski, Maciej; Celichowski, Grzegorz

    2016-09-01

    Preparation of superhydrophobic materials inspired by nature has attracted a great scientific interest in recent decades. Some of these materials have hierarchical lotus-like structures, i.e. micro- and nano-objects coated by hydrophobic compounds. A major challenge of applying the superhydrophobic surfaces for the self-cleaning coatings preparation is their improved efficiency in varying atmospheric conditions, e.g. UV light. The objective of this research work was to investigate the effect of the different chemical structure and the surface free energy on the hydrophobic and tribological properties of the alkylsilanes and fluoroalkylsilanes deposited on silicon wafers, glass slides and epoxy resin. Tribological and hydrophobic properties of the modified surfaces were correlated with their chemical structures. Chemical structures of the deposited materials were examined by using Fourier transform infrared (FT-IR) spectroscopy and hydrophobic properties were investigated by water contact angle (WCA) and surface free energy (SFE) measurements. The modified surfaces exhibited water contact angles of above 100° for the selected modifiers. It was noticed that the replacement of hydrogen atoms by fluorine atoms in alkyl chain caused an increase in the water contact angle values and a decrease in friction coefficients. The obtained results showed that the carbon chain length of a modifier and its chemical structure can strongly affect the hydrophobic and tribological properties of the modified surfaces. The highest values of WCA, lowest values of SFE and coefficient of friction were obtained for samples covered by fluorinated compounds. Moreover, some preliminary aging test was performed to give an insight into the effectiveness of deposited alkylsilanes and fluoroalkylsilanes coatings. After accelerated UV exposure, no significant changes in the chemical structure, hydrophobic and tribological properties of the modified surfaces were noticed. The samples degradation

  16. Physical and numerical modelling of biomimetic approaches of natural hydrophobic surfaces

    Institute of Scientific and Technical Information of China (English)

    YAN YuYing

    2009-01-01

    Physical and numerical models of the hydrophobic and self-cleaning characteristics of an object sur-face are developed, and a micro/meso scope numerical approach and simulation based on the lattice Boltzmann method (LBM) is achieved. The modelling focuses on surface tension dominated behaviour of water droplets in air spreading on hydrophilic surface with hydrophobic strips of different sizes and contact angles under different physical and interracial conditions. Applying the LBM model, the drop-lets behaviours on heterogeneous partial wetting surfaces are studied and simulated. In the simula-tions, the interactions between the fluid-fluid interface and the partial wetting wall are typically con-sidered; the phenomena of droplets spreading and breaking up, as well as the effect of hydrophobic strips on the surface wettability or self-cleaning characteristics are simulated and studied.

  17. Super-hydrophobic surface treatment as corrosion protection for aluminum in seawater

    Energy Technology Data Exchange (ETDEWEB)

    He Tian; Wang Yuanchao; Zhang Yijian; Lv Qun; Xu Tugen [College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036 (China); Liu Tao [Institute of Ocean Materials and Engineering, Shanghai Maritime University, Shanghai 200135 (China)], E-mail: yys2003ouc@163.com

    2009-08-15

    'Underwater super-hydrophobic' surface applied in the corrosion protection was prepared by melting myristic acid (CH{sub 3}(CH{sub 2}){sub 12}COOH) adsorbed onto the anodized aluminum. The static contact angle for seawater on the surface was measured to be 154{sup o}. The surface structure and composition were then characterized by means of scanning electron microscopy (SEM) with energy dispersive X-ray spectrum (EDS) and atomic force microscope (AFM). The electrochemical measurements showed that the super-hydrophobic surface significantly improved the corrosion resistance of aluminum in sterile seawater. In addition, the mechanism of the underwater super-hydrophobic surface applied in the corrosion resistance was discussed using a schematic.

  18. Flexible conformable hydrophobized surfaces for turbulent flow drag reduction

    OpenAIRE

    Brennan, Joseph; Geraldi, Nicasio; Morris, Robert; Fairhurst, David; McHale, Glen; Newton, Michael

    2015-01-01

    In recent years extensive work has been focused onto using superhydrophobic surfaces for drag reduction applications. Superhydrophobic surfaces retain a gas layer, called a plastron, when submerged underwater in the Cassie-Baxter state with water in contact with the tops of surface roughness features. In this state the plastron allows slip to occur across the surface which results in a drag reduction. In this work we report flexible and relatively large area superhydrophobic surfaces produced...

  19. Wetting of soap bubbles on hydrophilic, hydrophobic and superhydrophobic surfaces

    CERN Document Server

    Arscott, Steve

    2013-01-01

    Wetting of sessile bubbles on solid and liquid surfaces has been studied. A model is presented for the contact angle of a sessile bubble based on a modified Young equation - the experimental results agree with the model. A hydrophilic surface results in a bubble contact angle of 90 deg whereas on a superhydrophobic surface one observes 134 deg. For hydrophilic surfaces, the bubble angle diminishes with bubble radius - whereas on a superhydrophobic surface, the bubble angle increases. The size of the Plateau borders governs the bubble contact angle - depending on the wetting of the surface.

  20. Super-hydrophobic surface on pure magnesium substrate by wet chemical method

    International Nuclear Information System (INIS)

    A layer of flower-like super-hydrophobic film was fabricated on pure Mg surface by chemical etching in H2SO4, H2O2 and subsequent immersion in stearic acid (CH3(CH2)16COOH) ethanol solution. The super-hydrophobic surface showed a static water contact angle of 154 deg. with the sliding angle of about 3o. With scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and Fourier-transform infrared (FT-IR) spectrometer, the microstructure and composition of the sample were analyzed. Results showed that the flower-like structure and the bonding of the CH3(CH2)16COO- on Mg surface can be responsible for the superior water-repellent property. Electrochemical impedance spectroscopy revealed that the transfer resistance of super-hydrophobic surface was increased about four times than bare Mg after one-hour immersion in 0.1 mol/L NaCl solution.

  1. Droplet nucleation on a well-defined hydrophilic-hydrophobic surface of 10 nm order resolution.

    Science.gov (United States)

    Yamada, Yutaka; Ikuta, Tatsuya; Nishiyama, Takashi; Takahashi, Koji; Takata, Yasuyuki

    2014-12-01

    Water condensation on a hybrid hydrophilic-hydrophobic surface was investigated to reveal nucleation mechanisms at the microscale. Focused ion beam (FIB) irradiation was used to change the wettability of the hydrophobic surface with 10 nm order spatial resolution. Condensation experiments were conducted using environmental scanning electron microscopy; droplets, with a minimum diameter of 800 nm, lined up on the FIB-irradiated hydrophilic lines. The heterogeneous nucleation theory was extended to consider the water molecules attracted to the hydrophilic area, thereby enabling explanation of the nucleation mechanism under unsaturated conditions. Our results showed that the effective surface coverage of the water molecules on the hydrophilic region was 0.1-1.1 at 0.0 °C and 560 Pa and was dependent on the width of the FIB-irradiated hydrophilic lines and hydrophobic area. The droplet nucleation mechanism unveiled in this work would enable the design of new surfaces with enhanced dropwise condensation heat transfer.

  2. Hydrophobic Surfaces: Topography Effects on Wetting by Supercooled Water and Freezing Delay

    DEFF Research Database (Denmark)

    Heydari, Golrokh; Thormann, Esben; Järn, Mikael;

    2013-01-01

    Hydrophobicity, and in particular superhydrophobicity, has been extensively considered to promote ice-phobicity. Dynamic contact angle measurements above 0 °C have been widely used to evaluate the water repellency. However, it is the wetting properties of supercooled water at subzero temperatures...... and the derived work of adhesion that are important for applications dealing with icing. In this work we address this issue by determining the temperature-dependent dynamic contact angle of microliter-sized water droplets on a smooth hydrophobic and a superhydrophobic surface with similar surface chemistry...... the dew point. In contrast, no significant wetting transition is observed on the smooth hydrophobic surface. The freezing temperature and the freezing delay time were determined for water droplets resting on a range of surfaces with similar chemistry but different topography, including smooth and rough...

  3. Hydrophobic cotton textile surfaces using an amphiphilic graphene oxide (GO) coating

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Different GO dispersions were prepared by sonicating different amounts of GO in water. Degree of exfoliation of these GO sheets in water was analyzed using Atomic Force Microscopy (AFM). • AFM results obtained showed higher the GO concentration on water more the size of GO sheets and lesser the degree of exfoliation. • GO with different amounts was deposited on cotton fabric using simple dyeing method. • High GO loading on cotton increase the surface area coverage of the textile fibers with GO sheets. This led to less edge to mid area ratio of grafted GO sheets. • As contribution of mid area of GO increase on fiber surface cotton fabric becomes more hydrophobic. • Amphiphilic property of GO sheets was used to lower the surface energy of the cotton fibers leading to hydrophobic property. - Abstract: We report for the first time hydrophobic properties on cotton fabric successfully achieved by grafting graphene oxide on the fabric surface, using a dyeing method. Graphite oxide synthesized by oxidizing natural flake graphite employing improved Hummer's method showed an inter layer spacing of ∼1 nm from XRD. Synthesized graphite oxide was exfoliated in water using ultrasound energy to obtain graphene oxide (GO). AFM data obtained for the graphene oxide dispersed in an aqueous medium revealed a non-uniform size distribution. FTIR characterization of the synthesized GO sheets showed both hydrophilic and hydrophobic functional groups present on the nano sheets giving them an amphiphilic property. GO flakes of different sizes were successfully grafted on to a cotton fabric surface using a dip dry method. Loading different amounts of graphene oxide on the cotton fiber surface allowed the fabric to demonstrate different degrees of hydrophobicity. The highest observed water contact angle was at 143° with the highest loading of graphene oxide. The fabric surfaces grafted with GO also exhibits adhesive type hydrophobicity

  4. Fabrication of semi-transparent super-hydrophobic surface based on silica hierarchical structures

    International Nuclear Information System (INIS)

    This study successfully develops a versatile method of producing superhydrophobic surfaces with micro/nano-silica hierarchical structures on glass surfaces. Optically transparent super hydrophobic silica thin films were prepared by spin-coating silica particles suspended in a precursor solution of silane, ethanol, and H2O with molar ratio of 1:4:4. The resulting super hydrophobic films were characterized by scanning electron microscopy (SEM), optical transmission, and contact angle measurements. The glass substrates in this study were modified with different particles: micro-silica particles, nano-silica particles, and hierarchical structures. This study includes SEM micrographs of the modified glass surfaces with hierarchical structures at different magnifications

  5. Low-order modelling of droplets on hydrophobic surfaces

    Science.gov (United States)

    Matar, Omar; Wray, Alex; Kahouadji, Lyes; Davis, Stephen

    2015-11-01

    We consider the behaviour of a droplet deposited onto a hydrophobic substrate. This and associated problems have garnered a wide degree of attention due to their significance in industrial and experimental settings, such as the post-rupture dewetting problem. These problems have generally defied low-order analysis due to the multi-valued nature of the interface, but we show here how to overcome this in this instance. We first discuss the static problem: when the droplet is stationary, its shape is prescribed by an ordinary differential equation (ODE) given by balancing gravitational and capillary stresses at the interface. This is dependent on the contact angle, the Bond number and the volume of the drop. In the high Bond number limit, we derive several low-order models of varying complexity to predict the shape of such drops. These are compared against numerical calculations of the ODE. We then approach the dynamic problem: in this case, the full Stokes equations throughout the drop must be considered. A low-order approach is used by solving the biharmonic equation in a coordinate system naturally mapping to the droplet shape. The results are compared against direct numerical simulations. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1, EPSRC Doctoral Prize Fellowship (AWW).

  6. Fabrication of hydrophobic alumina aerogel monoliths by surface modification and ambient pressure drying

    International Nuclear Information System (INIS)

    Hydrophobic crack-free alumina aerogel monoliths were fabricated by -Si(CH3)3 (trimethylsilyl substituent) modification of alcogels followed by an ambient pressure drying procedure. One-step solvent exchange and surface modification were simultaneously progressed by immersing alumina alcogels in trimethylmethoxysilane (TMMOS)/hexane solution. It is found that the hydrophobic property of alumina aerogels is affected by the contents of TMMOS from the measurements of contact angle and Fourier transform infrared spectrometry. Thermogravimetry/differential scanning calorimetry analyses reveal that the modified aerogels maintain their hydrophobic behavior up to a temperature of 260 deg. C. The structure and morphology of the obtained hydrophobic alumina aerogels were characterized by the measurements of N2 physical adsorption and scanning electron microscopy, which showed that they were highly porous materials with narrow slit-like pore geometry and a high degree of pore size uniformity.

  7. Hydrophobic treatment on polymethylmethacrylate surface by nanosecond-pulse DBDs in CF4 at atmospheric pressure

    International Nuclear Information System (INIS)

    Highlights: • Increase in hydrophobicity on PMMA is achieved after the DBD treatment in CF4, and the water contact angle can increase from 68° to 100° after treatment. • Nanosecond-pulse DBD is used for the surface treatment and the power density is about 114.8 mW/cm2. • The effects of applied voltage, CF4 flow, and time on plasma treatment are investigated. • Plasma treatment causes morphological change, significantly increases the roughness of the surface, and introduces fluorine-containing groups into the polymethylmethacrylate surface. • Hydrophobic behavior of the treated PMMA surface is slightly affected by the aging effect. - Abstract: Nanosecond-pulse dielectric barrier discharge (DBD) can provide non-thermal plasmas with extremely high energy and high density, which can result in a series of complicated physical and chemical reactions in the surface treatment of polymers. Therefore, in this paper, hydrophobic treatment of polymethylmethacrylate (PMMA) surface is conducted by nanosecond-pulse DBD in carbon tetrafluoride (CF4) at atmospheric pressure. Investigations on surface morphology and chemical composition before and after the DBD treatment in CF4 are conducted with the contact angle measurement, atomic force microscope, Fourier transform infrared spectroscopy, and X-ray photoelectron spectrometer. The effects of the applied voltage, CF4 flow rate, and treatment time on the hydrophobic modification are studied. Results show that the contact angles of the treated PMMA surface increases with the applied voltage, and it could be greatly affected by the CF4 flow rate and the treatment time. The water contact angle can increase from 68° to 100° after the treatment. Furthermore, both surface morphology and chemical composition of the PMMA samples are changed. Both the increase of the surface roughness and the occurrence of fluorine-containing functional groups on the PMMA surface treated by DBD in CF4 lead to the hydrophobicity improvement of

  8. Hydration of metal surfaces can be dynamically heterogeneous and hydrophobic

    OpenAIRE

    Limmer, David T.; Willard, Adam P.; Madden, Paul; Chandler, David

    2013-01-01

    We have applied molecular dynamics and methods of importance sampling to study structure and dynamics of liquid water in contact with metal surfaces. The specific surfaces considered resemble the 100 and 111 faces of platinum. Several results emerge that should apply generally, not just to platinum. These results are generic consequences of water molecules binding strongly to surfaces that are incommensurate with favorable hydrogen-bonding patterns. We show that adlayers of water under these ...

  9. Super-hydrophobic and super-wetting surfaces: analytical potential?

    OpenAIRE

    McHale, Glen; Shirtcliffe, Neil; Newton, Michael

    2004-01-01

    Roughening or texturing surfaces provides super-liquid repellent or film forming properties without alteration of the surface chemistry. These surfaces are easy to produce, can amplify wetting properties and can be either "sticky" or "slippy" to liquids. Their use as water-repellent coatings is established, but their potential for use in microfluidics and sensor applications remains largely unfulfilled. This article explains several key ideas and suggests why there may be potential for analyt...

  10. Effect of wettability and surface roughness on ice-adhesion strength of hydrophilic, hydrophobic and superhydrophobic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bharathidasan, T. [Surface Engineering Division, CSIR- National Aerospace Laboratories, Bangalore 560017 (India); Kumar, S. Vijay; Bobji, M.S. [Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560003 (India); Chakradhar, R.P.S. [Surface Engineering Division, CSIR- National Aerospace Laboratories, Bangalore 560017 (India); Basu, Bharathibai J., E-mail: bharathijbasu@gmail.com [Surface Engineering Division, CSIR- National Aerospace Laboratories, Bangalore 560017 (India)

    2014-09-30

    Highlights: • Anti-icing property is related to wettability and surface roughness. • Silicone based hydrophobic coating showed excellent ice-adhesion strength. • Superhydrophobic surfaces displayed poor anti-icing property. - Abstract: The anti-icing properties of hydrophilic, hydrophobic and superhydrophobic surfaces/coatings were evaluated using a custom-built apparatus based on zero-degree cone test method. The ice-adhesion reduction factor (ARF) of these coatings has been evaluated using bare aluminium alloy as a reference. The wettability of the surfaces was evaluated by measuring water contact angle (WCA) and sliding angle. It was found that the ice-adhesion strength (τ) on silicone based hydrophobic surfaces was ∼ 43 times lower than compared to bare polished aluminium alloy indicating excellent anti-icing property of these coatings. Superhydrophobic coatings displayed poor anti-icing property in spite of their high water repellence. Field Emission Scanning Electron Microscope reveal that Silicone based hydrophobic coatings exhibited smooth surface whereas the superhydrophobic coatings had a rough surface consisting of microscale bumps and protrusions superimposed with nanospheres. Both surface roughness and surface energy play a major role on the ice-adhesion strength of the coatings. The 3D surface roughness profiles of the coatings also indicated the same trend of roughness. An attempt is made to correlate the observed ice-adhesion strength of different surfaces with their wettability and surface roughness.

  11. Effect of wettability and surface roughness on ice-adhesion strength of hydrophilic, hydrophobic and superhydrophobic surfaces

    International Nuclear Information System (INIS)

    Highlights: • Anti-icing property is related to wettability and surface roughness. • Silicone based hydrophobic coating showed excellent ice-adhesion strength. • Superhydrophobic surfaces displayed poor anti-icing property. - Abstract: The anti-icing properties of hydrophilic, hydrophobic and superhydrophobic surfaces/coatings were evaluated using a custom-built apparatus based on zero-degree cone test method. The ice-adhesion reduction factor (ARF) of these coatings has been evaluated using bare aluminium alloy as a reference. The wettability of the surfaces was evaluated by measuring water contact angle (WCA) and sliding angle. It was found that the ice-adhesion strength (τ) on silicone based hydrophobic surfaces was ∼ 43 times lower than compared to bare polished aluminium alloy indicating excellent anti-icing property of these coatings. Superhydrophobic coatings displayed poor anti-icing property in spite of their high water repellence. Field Emission Scanning Electron Microscope reveal that Silicone based hydrophobic coatings exhibited smooth surface whereas the superhydrophobic coatings had a rough surface consisting of microscale bumps and protrusions superimposed with nanospheres. Both surface roughness and surface energy play a major role on the ice-adhesion strength of the coatings. The 3D surface roughness profiles of the coatings also indicated the same trend of roughness. An attempt is made to correlate the observed ice-adhesion strength of different surfaces with their wettability and surface roughness

  12. Hydrophobic and Metallophobic Surfaces: Highly Stable Non-wetting Inorganic Surfaces Based on Lanthanum Phosphate Nanorods.

    Science.gov (United States)

    Sankar, Sasidharan; Nair, Balagopal N; Suzuki, Takehiro; Anilkumar, Gopinathan M; Padmanabhan, Moothetty; Hareesh, Unnikrishnan Nair S; Warrier, Krishna G

    2016-01-01

    Metal oxides, in general, are known to exhibit significant wettability towards water molecules because of the high feasibility of synergetic hydrogen-bonding interactions possible at the solid-water interface. Here we show that the nano sized phosphates of rare earth materials (Rare Earth Phosphates, REPs), LaPO4 in particular, exhibit without any chemical modification, unique combination of intrinsic properties including remarkable hydrophobicity that could be retained even after exposure to extreme temperatures and harsh hydrothermal conditions. Transparent nanocoatings of LaPO4 as well as mixture of other REPs on glass surfaces are shown to display notable hydrophobicity with water contact angle (WCA) value of 120° while sintered and polished monoliths manifested WCA greater than 105°. Significantly, these materials in the form of coatings and monoliths also exhibit complete non-wettability and inertness towards molten metals like Ag, Zn, and Al well above their melting points. These properties, coupled with their excellent chemical and thermal stability, ease of processing, machinability and their versatile photo-physical and emission properties, render LaPO4 and other REP ceramics utility in diverse applications. PMID:26955962

  13. A low-cost filler-dissolved process for fabricating super-hydrophobic poly(dimethylsiloxane) surfaces with either lotus or petal effect

    International Nuclear Information System (INIS)

    A low-cost filler (salt) water-dissolved method is developed to produce large-area and flexible super-hydrophobic surfaces by using poly(dimethylsiloxane) (PDMS) material. Five levels of salt grain sizes are used to examine the filler size effect on fabricating the super-hydrophobic surfaces and on the hydrophobic mechanism involved. The results show that the surfaces fabricated using grain sizes of 53–74 and 74–104 µm exhibit the lotus effect (cell adhesion (CA) > 150° and self-adhesion (SA) < 10°); whereas those using grain sizes of 0–25 µm and above 104 µm reveal the petal effect (CA > 150° and high adhesion even upside-down). The super-hydrophobic characteristic is achieved mainly by the large micro rib-like structures, small micro rock-like bumps, and textures on the bump due to the fillers. (paper)

  14. Nisin adsorption on hydrophilic and hydrophobic surfaces: evidence of its interactions and antibacterial activity.

    Science.gov (United States)

    Karam, Layal; Jama, Charafeddine; Nuns, Nicolas; Mamede, Anne-Sophie; Dhulster, Pascal; Chihib, Nour-Eddine

    2013-06-01

    Study of peptides adsorption on surfaces remains a current challenge in literature. A complementary approach, combining X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to investigate the antimicrobial peptide nisin adsorption on hydrophilic and hydrophobic surfaces. The native low density polyethylene was used as hydrophobic support and it was grafted with acrylic acid to render it hydrophilic. XPS permitted to confirm nisin adsorption and to determine its amount on the surfaces. ToF-SIMS permitted to identify the adsorbed bacteriocin type and to observe its distribution and orientation behavior on both types of surfaces. Nisin was more oriented by its hydrophobic side to the hydrophobic substrate and by its hydrophilic side to the outer layers of the adsorbed peptide, in contrast to what was observed on the hydrophilic substrate. A correlation was found between XPS and ToF-SIMS results, the types of interactions on both surfaces and the observed antibacterial activity. Such interfacial studies are crucial for better understanding the peptides interactions and adsorption on surfaces and must be considered when setting up antimicrobial surfaces. PMID:23625525

  15. Nisin adsorption on hydrophilic and hydrophobic surfaces: evidence of its interactions and antibacterial activity.

    Science.gov (United States)

    Karam, Layal; Jama, Charafeddine; Nuns, Nicolas; Mamede, Anne-Sophie; Dhulster, Pascal; Chihib, Nour-Eddine

    2013-06-01

    Study of peptides adsorption on surfaces remains a current challenge in literature. A complementary approach, combining X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to investigate the antimicrobial peptide nisin adsorption on hydrophilic and hydrophobic surfaces. The native low density polyethylene was used as hydrophobic support and it was grafted with acrylic acid to render it hydrophilic. XPS permitted to confirm nisin adsorption and to determine its amount on the surfaces. ToF-SIMS permitted to identify the adsorbed bacteriocin type and to observe its distribution and orientation behavior on both types of surfaces. Nisin was more oriented by its hydrophobic side to the hydrophobic substrate and by its hydrophilic side to the outer layers of the adsorbed peptide, in contrast to what was observed on the hydrophilic substrate. A correlation was found between XPS and ToF-SIMS results, the types of interactions on both surfaces and the observed antibacterial activity. Such interfacial studies are crucial for better understanding the peptides interactions and adsorption on surfaces and must be considered when setting up antimicrobial surfaces.

  16. Standard Test Method for Hydrophobic Surface Films by the Water-Break Test

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 This test method covers the detection of the presence of hydrophobic (nonwetting) films on surfaces and the presence of hydrophobic organic materials in processing ambients. When properly conducted, the test will enable detection of molecular layers of hydrophobic organic contaminants. On very rough or porous surfaces, the sensitivity of the test may be significantly decreased. 1.2 The values stated in SI units are to be regarded as the standard. The inch-pound values given in parentheses are for information only. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  17. Standard Test Method for Hydrophobic Surface Films by the Atomizer Test

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1965-01-01

    1.1 This test method covers the detection of the presence of hydrophobic (nonwetting) films on surfaces and the presence of hydrophobic organic materials in processing ambients. When properly conducted, the test will enable detection of fractional molecular layers of hydrophobic organic contaminants. On very rough or porous surfaces the sensitivity of the test may be significantly decreased. 1.2 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  18. Biofilm retention on surfaces with variable roughness and hydrophobicity

    DEFF Research Database (Denmark)

    Tang, Lone; Pillai, Saju; Revsbech, Niels Peter;

    2011-01-01

    Biofilms on food processing equipment cause food spoilage and pose a hazard to consumers. The bacterial community on steel surfaces in a butcher’s shop was characterized, and bacteria representative of this community enriched from minced pork were used to study biofilm retention. Stainless steel ...

  19. Selective isolation of bacteria from soil with hydrophobic materials

    OpenAIRE

    Oku, Shota; Nishiyama, Masaya; Takao, Yuji

    2011-01-01

    Bacterial strains having a hydrophobic cell surface have often been considered as degraders of hydrophobic organic pollutants in soil. In this study, bacterial strains were isolated using hydrophobic materials from 12 soil samples, and their cell surface hydrophobicity was determined by evaluating their adherence to n-hexane. Bacterial strains isolated using polytetrafluoroethylene (PTFE) membrane were more hydrophobic on an average than those isolated with styrene-divinylbenzene (DVB) partic...

  20. Adhesion of Cryptosporidium parvum and Giardia lamblia to solid surfaces: the role of surface charge and hydrophobicity

    NARCIS (Netherlands)

    Dai, X.; Boll, J.; Hayes, M.E.; Aston, D.E.

    2004-01-01

    Adhesion of Cryptosporidium parvum and Giardia lamblia to four materials of different surface charge and hydrophobicity was investigated. Glass beads were used with and without three polymer coatings: aminosilines (A0750), fluorosilines (T2494), an amino cationic polymer. Surface charge density and

  1. Effect of various hydrophobic concentrations and base weights of gas diffusion layer for proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ko, T.H.; Huang, C.C.; Chen, W.C. [Department of Materials Science and Engineering, Feng Chia University, Taichung (China); Kuo, W.S. [Department of Aerospace and Systems Engineering, Feng Chia University, Taichung (China); Lin, Y.H. [Department of Biological Science and Technology, China Medical University, Taichung (China); Lin, J.H.

    2010-02-15

    This study investigates the gas permeability, conductivity and performance of two types of gas diffusion layer (90 g m{sup -2} and 190 g m{sup -2}) with various hydrophobic treatments. The performance is measured using a single proton exchange membrane fuel cell (PEMFC) with an active area of 25 cm{sup 2}. The results prove that 90 g m{sup -2} carbon paper has the best current density in 5% hydrophobic concentration. The polarisation curves of fuel cell were plotted by similar operating conditions with different micro-porous layers (MPLs) on carbon papers surface. These results provide a wide choice of hydrophobic agents. These results concerning the balance between base weights and performance provide important information for the fabrication of stacks and support for industrial applications. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  2. Effects of Surfactants and Polyelectrolytes on the Interaction between a Negatively Charged Surface and a Hydrophobic Polymer Surface

    OpenAIRE

    Rapp, MV; Donaldson, SH; Gebbie, MA; Gizaw, Y; Koenig, P; Roiter, Y; Israelachvili, JN

    2015-01-01

    © 2015 American Chemical Society. We have measured and characterized how three classes of surface-active molecules self-assemble at, and modulate the interfacial forces between, a negatively charged mica surface and a hydrophobic end-grafted polydimethylsiloxane (PDMS) polymer surface in solution. We provide a broad overview of how chemical and structural properties of surfactant molecules result in different self-assembled structures at polymer and mineral surfaces, by studying three charact...

  3. Conformation of bovine submaxillary mucin layers on hydrophobic surface as studied by biomolecular probes

    DEFF Research Database (Denmark)

    Pakkanen, Kirsi I.; Madsen, Jan Busk; Lee, Seunghwan

    2015-01-01

    In the present study, the conformational changes of bovine submaxillary mucin (BSM) adsorbed on a hydrophobic surface (polystyrene (PS)) as a function of concentration in bulk solution (up to 2mg/mL) have been investigated with biomolecular probe-based approaches, including bicinchoninic acid (BC...

  4. A finite-element method model for droplets moving down a hydrophobic surface

    DEFF Research Database (Denmark)

    Wind-Willassen, Øistein; Sørensen, Mads Peter

    2014-01-01

    We set up a 2D computational Finite-Element Method (FEM) model describing the initial descent of a droplet down an inclined hydrophobic substrate. We solve the full Navier-Stokes equations inside the drop domain, and use the arbitrary Lagrangian-Eulerian method to keep track of the droplet surface...

  5. Influence of acylation on the adsorption of GLP-2 to hydrophobic surfaces

    DEFF Research Database (Denmark)

    Pinholt, Charlotte; Kapp, Sebastian J; Bukrinsky, Jens T;

    2013-01-01

    of this work was to study the effect of acylation on the adsorption of GLP-2 from aqueous solution to a hydrophobic surface by comparing the adsorption of the 3766 Da GLP-2 with that of a GLP-2 variant acylated with a 16-carbon fatty acid chain through a ß-alanine linker. Adsorption of GLP-2 and acylated GLP-2...

  6. Synthesis and surface modification of hydrophobic magnetite to processible magnetite at silica-propylamine

    International Nuclear Information System (INIS)

    Hydrophobic magnetite nanoparticles with a narrow size distribution were prepared by thermal decomposition of Fe(CO)5 in octyl ether solution of oleic acid and by consecutive aeration. The nanoparticles were converted into magnetite core/silica shell (magnetite at silica) structured particles with hydrophilic and processible aminopropyl groups on their surfaces

  7. Preparation of hydrophobic coating on glass surface by dielectric barrier discharge using a 16 kHz power supply

    International Nuclear Information System (INIS)

    A 16 kHz power supply was used to investigate the preparation of hydrophobic film on glass surface by means of atmospheric pressure dielectric barrier discharge (DBD). Air nonthermal plasma was induced between the two parallel electrodes with a glass plate as dielectric barrier. The process for hydrophobic film includes two parts: one is plasma pretreatment to produce active layer on glass surface, another is to form hydrophobic film on glass surface by means of the interaction between air plasma and polydimethylsiloxane oil. The surface changes were observed using contact angle measurement and atomic force microscope. The results show DBD can increase surface roughness, and effectively improve glass surface activation and form a hydrophobic coating on glass surface, and it is possibility to prepare hydrophobic glass with middle frequency power supply

  8. Hydrophobic/hydrophilic switching on zinc oxide micro-textured surface

    Energy Technology Data Exchange (ETDEWEB)

    Myint, Myo Tay Zar [Center of Excellence in Nanotechnology, School of Engineering and Technology, Asian Institute of Technology, Klong Luang, Pathumthani 12120 (Thailand); Kumar, Nithin Senthur [School of Engineering, Vanderbilt University, Nashville, TN 37240 (United States); Hornyak, Gabor Louis [Center of Excellence in Nanotechnology, School of Engineering and Technology, Asian Institute of Technology, Klong Luang, Pathumthani 12120 (Thailand); Dutta, Joydeep, E-mail: joy@ait.asia [Center of Excellence in Nanotechnology, School of Engineering and Technology, Asian Institute of Technology, Klong Luang, Pathumthani 12120 (Thailand); Chair in Nanotechnology, Water Research Center, Sultan Qaboos University, 123 Al-Khoudh (Oman)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer Surface coverage less than 40% leads to hydrophobicity: theoretical and experimental approaches. Black-Right-Pointing-Pointer Reversible wettability of zinc oxide microrods coated surface with ultraviolet and infrared irradiation. Black-Right-Pointing-Pointer Potential application in designing surfaces with controlled wettability. - Abstract: Switchable wettability of zinc oxide (ZnO) microrod coated surfaces was controlled in two different ways: (1) by physical geometry (surface coverage area S{sub A}: the area covered by solid) and (2) by irradiation with ultraviolet (UV) light followed by infrared (IR) or furnace heating. In the first approach, the threshold coverage area for achieving hydrophobic surfaces was found to be <40%, which is in good agreement with predicted values in the literature leading to a metastable Cassie-Baxter regime. The transformation of hydrophobic to hydrophilic surfaces was studied by alternating cycles of 3 h exposure to ultraviolet ({lambda}{sub peak} {approx} 253 nm) light followed by 1 h of annealing or IR irradiation alone. Three different annealing temperatures (120 Degree-Sign C, 200 Degree-Sign C and 250 Degree-Sign C) were utilized. Results of this work can be applied for designing surfaces with controlled wettability.

  9. Interaction mechanism between hydrophobic and hydrophilic surfaces: using polystyrene and mica as a model system.

    Science.gov (United States)

    Faghihnejad, Ali; Zeng, Hongbo

    2013-10-01

    The interactions between hydrophobic and hydrophilic molecules, particles, or surfaces occur in many biological phenomena and industrial processes. In this work, polystyrene (PS) and mica were chosen as a model system to investigate the interaction mechanism between hydrophilic and hydrophobic surfaces. Using a surface forces apparatus (SFA) coupled with a top-view optical microscope, interaction forces between PS and mica surfaces were directly probed in five different electrolyte solutions (i.e., NaCl, CaCl2, NaOH, HCl, and CH3COOH) of various concentrations. Long-range repulsion was observed in low electrolyte concentration (e.g., 0.001 M) which was mainly due to the presence of microscopic and submicroscopic bubbles on PS surface. A modified Derjaguin-Landau-Verwey-Overbeek (DLVO) theory well fits the interaction forces by taking into account the effect of bubbles on PS surface. The range of the repulsion was dramatically reduced in 1.0 M solutions of NaCl, CaCl2, and NaOH but did not significantly change in 1.0 M HCl and CH3COOH, which was due to ion specificity effect on the formation and stability of bubbles on PS surface. The range of repulsion was also significantly reduced to forces dominate the interaction between hydrophilic surface (i.e., mica) and hydrophobic polymer (i.e., PS), while the types of electrolytes (ion specificity), electrolyte concentration, degassing, and surface hydrophobicity can significantly affect the formation and stability of bubbles on the interacting surfaces, thus affecting the range and magnitude of the interaction forces. PMID:24015905

  10. Laminar and turbulent flows over hydrophobic surfaces with shear-dependent slip length

    Science.gov (United States)

    Khosh Aghdam, Sohrab; Ricco, Pierre

    2016-03-01

    Motivated by extensive discussion in the literature, by experimental evidence and by recent direct numerical simulations, we study flows over hydrophobic surfaces with shear-dependent slip lengths and we report their drag-reduction properties. The laminar channel-flow and pipe-flow solutions are derived and the effects of hydrophobicity are quantified by the decrease of the streamwise pressure gradient for constant mass flow rate and by the increase of the mass flow rate for constant streamwise pressure gradient. The nonlinear Lyapunov stability analysis, first applied to a two-dimensional channel flow by Balogh et al. ["Stability enhancement by boundary control in 2-D channel flow," IEEE Trans. Autom. Control 46, 1696-1711 (2001)], is employed on the three-dimensional channel flow with walls featuring shear-dependent slip lengths. The feedback law extracted through the stability analysis is recognized for the first time to coincide with the slip-length model used to represent the hydrophobic surfaces, thereby providing a precise physical interpretation for the feedback law advanced by Balogh et al. The theoretical framework by Fukagata et al. ["A theoretical prediction of friction drag reduction in turbulent flow by superhydrophobic surfaces," Phys. Fluids 18, 051703 (2006)] is employed to model the drag-reduction effect engendered by the shear-dependent slip-length surfaces and the theoretical drag-reduction values are in very good agreement with our direct numerical simulation data. The turbulent drag reduction is measured as a function of the hydrophobic-surface parameters and is found to be a function of the time- and space-averaged slip length, irrespective of the local and instantaneous slip behaviour at the wall. For slip parameters and flow conditions that could be realized in the laboratory, the maximum computed turbulent drag reduction is 50% and the drag reduction effect degrades when slip along the spanwise direction is considered. The power spent by

  11. Biomimetic super-hydrophobic surfaces for use in enhanced dropwise condensation

    Science.gov (United States)

    Cheng, Kuok; Zhang, Bong June; Lee, Chi Young; Kennedy, Mike; Kim, Sunwoo; Yoon, Hyungkee; Kim, Kwang J.; Liu, Jiong; Skandan, Ganesh

    2011-04-01

    There have been many attempts to enhance heat transfer during the condensation (vapor to liquid) process since condensation is a critical heat transfer mechanism in many industrial processes. One conventional method of enhancing condensation heat transfer is to specially treat the condensing heat exchanger surface to adequately promote so-called "dropwise" condensation. Biomimetically constructed coating with hydrophobic materials is often employed for surface treatment. This coating on the condensing heat transfer surface effectively shifts the condensation mode from filmwise (the conventional heat transfer mode) to dropwise (similar to lotus leaves?), resulting in much higher condensation heat transfer. In this method the thickness of coatings is a key parameter governing the heat transfer rate. Thin coating benefits the heat transfer but can lead to weakening hydrophobicity and failure to have an acceptable life span. However, thick coating reduces or eliminates the merit of the dropwise condensation phenomenon because the coating introduces additional thermal resistance. Herein, we report an innovative biomimetic concept in connection with a surface treatment that potentially solves the aforementioned issues. Instead of using conventional dense coatings on the condensing surface, the concept of randomly arranged or structurally oriented nano or submicro-scale fins and/or porous surfaces similar to nature-invented hydrophobic surfaces allowing molecular clustering for effective steam condensation, is presented and experimentally verified.

  12. Hydrophobic surface modification of chitosan gels by stearyl for improving the activity of immobilized lipase

    Institute of Scientific and Technical Information of China (English)

    Hong Tao Deng; Juan Juan Wang; Miao Ma; Zhong Yang Liu; Fei Zheng

    2009-01-01

    The hydrophobic surface modification of chitosan gels was carded out using the amidating reaction of amido groups on a gel surface with steafic acid activated by 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC) and N-hydroxy-succinimide (NHS). Lipases from Candida rugosa were adsorbed on the nascent chitosan gels (CS) and stearyl-modified gels (SCS) with different degrees of amidation. The increased surface hydrophobicity of chitosan gels improved the adsorption capacity and activity of the immobilized lipase. SCS with 31.46% amidation showed the maximum activity retention (83.43%). The experimental results suggest that the moderate surface hydrophilicity/hydropbobicity of chitosan gels is necessary for the improvement of the activity of immobilized lipase.

  13. Antibody-ligand interactions for hydrophobic charge-induction chromatography: a surface plasmon resonance study.

    Science.gov (United States)

    Cheng, Fang; Li, Ming-Yang; Wang, Han-Qi; Lin, Dong-Qiang; Qu, Jing-Ping

    2015-03-24

    This article describes the use of surface plasmon resonance (SPR) spectroscopy to study antibody-ligand interactions for hydrophobic charge-induction chromatography (HCIC) and its versatility in investigating the surface and solution factors affecting the interactions. Two density model surfaces presenting the HCIC ligand (mercapto-ethyl-pyridine, MEP) were prepared on Au using a self-assembly technique. The surface chemistry and structure, ionization, and protein binding of such model surfaces were characterized by X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure (NEXAFS), contact-angle titration, and SPR, respectively. The influences of the surface and solution factors, e.g., ligand density, salt concentration, and solution pH, on protein adsorption were determined by SPR. Our results showed that ligand density affects both equilibrium and dynamic aspects of the interactions. Specifically, a dense ligand leads to an increase in binding strength, rapid adsorption, slow desorption, and low specificity. In addition, both hydrophobic interactions and hydrogen bonding contribute significantly to the protein adsorption at neutral pH, while the electrostatic repulsion is overwhelmed under acidic conditions. The hydrophobic interaction at a high concentration of lyotropic salt would cause drastic conformational changes in the adsorbed protein. Combined with the self-assembly technique, SPR proves to be a powerful tool for studying the interactions between an antibody and a chromatographic ligand.

  14. Differential adherence of hydrophobic and hydrophilic Candida albicans yeast cells to mouse tissues.

    OpenAIRE

    Hazen, K C; Brawner, D L; Riesselman, M H; Jutila, M A; Cutler, J E

    1991-01-01

    Using an ex vivo binding assay, we previously demonstrated that yeast cells grown at 37 degrees C display binding specificity in mouse spleen, lymph node, and kidney tissues. In spleen and lymph node tissues, binding was predominantly in regions rich in macrophages. Here, we tested the possibility that hydrophobic and hydrophilic cells bind differentially to host tissues. Hydrophobic and hydrophilic yeast cells of four Candida albicans strains were incubated for 15 min at 4 degrees C with cry...

  15. Fabrication and tribological properties of super-hydrophobic surfaces based on porous silicon

    International Nuclear Information System (INIS)

    In the present work, super-hydrophobic surfaces based on porous silicon (PS) were constructed by the self-assembled molecular films and their tribological properties were investigated. A simple chemical etching approach was developed to fabricate PS with the certain rough microstructure surface, which can be observed by the environmental scanning electron microscopy (ESEM). The hydrocarbon and fluorocarbon alkylsilane molecular films were self-assembled on PS, which was confirmed by the X-ray photoelectron spectroscopy (XPS) measurement. In contrast to PS, the alkylsilane molecular films modified PS (mPS) were super-hydrophobic since the apparent water contact angle (CA) exceeded 160 deg. The tribological properties of PS and the mPS were investigated by a ball-on-disk tribometer during the processes of different sliding velocities and normal loads. The experimental results showed that the alkylsilane molecular films could decrease the friction coefficient. Due to the difference of chain structure and functional groups, the fluorinated alkylsilane films are better candidates for improving the hydrophobicity and lubricating characteristics of PS comparing to the non-fluorinated ones. The carbon chain length of alkylsilane molecules self-assembling on the Si or PS substrates could have little effects on the hydrophobic properties and the tribology performances.

  16. Hydrophobic surface patches on LolA of Pseudomonas aeruginosa are essential for lipoprotein binding.

    Science.gov (United States)

    Remans, Kim; Pauwels, Kris; van Ulsen, Peter; Buts, Lieven; Cornelis, Pierre; Tommassen, Jan; Savvides, Savvas N; Decanniere, Klaas; Van Gelder, Patrick

    2010-09-01

    Many lipoproteins reside in the outer membrane (OM) of Gram-negative bacteria, and their biogenesis is dependent on the Lol (localization of lipoproteins) system. The periplasmic chaperone LolA accepts OM-destined lipoproteins that are released from the inner membrane by the LolCDE complex and transfers them to the OM receptor LolB. The exact nature of the LolA-lipoprotein complex is still unknown. The crystal structure of Escherichia coli LolA features an open beta-barrel covered by alpha helices that together constitute a hydrophobic cavity, which would allow the binding of one acyl chain. However, OM lipoproteins contain three acyl chains, and the stoichiometry of the LolA-lipoprotein complex is 1:1. Here we present the crystal structure of Pseudomonas aeruginosa LolA that projects clear hydrophobic surface patches. Since these patches are large enough to accommodate acyl chains, their role in lipoprotein binding was investigated. Several LolA mutant proteins were created, and their functionality was assessed by studying their capacity to release lipoproteins produced in sphaeroplasts. Interruption of the largest hydrophobic patch completely destroyed the lipoprotein-releasing capacity of LolA, while interruption of smaller patches apparently reduced efficiency. Thus, the results show a new lipoprotein transport model that places (some of) the acyl chains on the hydrophobic surface patches. PMID:20620146

  17. A hydrophobic perfluoropolyether elastomer as a patternable biomaterial for cell culture and tissue engineering.

    Science.gov (United States)

    Schulte, Vera A; Hu, Yibing; Diez, Mar; Bünger, Daniel; Möller, Martin; Lensen, Marga C

    2010-11-01

    We present a systematic study of a perfluoropolyether (PFPE)-based elastomer as a new biomaterial. Besides its excellent long-term stability and inertness, PFPE can be decorated with topographical surface structures by replica molding. Micrometer-sized pillar structures led to considerably different cell morphology of fibroblasts. Although PFPE is a very hydrophobic material we could show that PFPE substrates allow cell adhesion and spreading of primary human fibroblasts (HDF) very similar to that observed on standard cell culture substrates. Less advanced cell spreading was observed for L929 (murine fibroblast cell line) cells during the first 5 h in culture which was accompanied by retarded recruitment of α(v)β(3)-integrin into focal adhesions (FAs). After 24 h distinct FAs were evident also in L929 cells on PFPE. Furthermore, organization of soluble FN into a fibrillar ECM network was shown for hdF and L929 cells. Based on these results PFPE is believed to be a suitable substrate for several biological applications. On the one hand it is an ideal cell culture substrate for fundamental research of substrate-independent adhesion signaling due to its different characteristics (e.g. wettability, elasticity) compared to glass or TCPS. On the other hand it could be a promising implant material, especially due to its straightforward patternability, which is a tool to direct cell growth and differentiation. PMID:20708794

  18. Fabrication of self-healing super-hydrophobic surfaces on aluminium alloy substrates

    International Nuclear Information System (INIS)

    We present a method to fabricate a super-hydrophobic surface with a self-healing ability on an aluminium alloy substrate. The coatings are obtained by combining a two-step process (first, the substrate is immersed in a solution of HCl, HF and H2O, and then in boiling water) and succeeding surface fluorination with a solution of poly(vinylidene-fluoride-co-hexafluoropropylene) and a fluoroalkyl silane. The morphological features and chemical composition were studied by scanning electron micrometry and energy-dispersive X-ray spectroscopy. The prepared super-hydrophobic aluminium surfaces showed hierarchical structures forming pores, petals and particles with a contact angle of 161° and a sliding angle of 3°

  19. Fabrication of semi-transparent super-hydrophobic surface based on silica hierarchical structures

    KAUST Repository

    Chen, Ping-Hei

    2011-01-01

    This study successfully develops a versatile method of producing superhydrophobic surfaces with micro/nano-silica hierarchical structures on glass surfaces. Optically transparent super hydrophobic silica thin films were prepared by spin-coating silica particles suspended in a precursor solution of silane, ethanol, and H2O with molar ratio of 1:4:4. The resulting super hydrophobic films were characterized by scanning electron microscopy (SEM), optical transmission, and contact angle measurements. The glass substrates in this study were modified with different particles: micro-silica particles, nano-silica particles, and hierarchical structures. This study includes SEM micrographs of the modified glass surfaces with hierarchical structures at different magnifications. © 2011 The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg.

  20. Fabrication of self-healing super-hydrophobic surfaces on aluminium alloy substrates

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2015-04-01

    Full Text Available We present a method to fabricate a super-hydrophobic surface with a self-healing ability on an aluminium alloy substrate. The coatings are obtained by combining a two-step process (first, the substrate is immersed in a solution of HCl, HF and H2O, and then in boiling water and succeeding surface fluorination with a solution of poly(vinylidene-fluoride-co-hexafluoropropylene and a fluoroalkyl silane. The morphological features and chemical composition were studied by scanning electron micrometry and energy-dispersive X-ray spectroscopy. The prepared super-hydrophobic aluminium surfaces showed hierarchical structures forming pores, petals and particles with a contact angle of 161° and a sliding angle of 3°.

  1. Fabrication of self-healing super-hydrophobic surfaces on aluminium alloy substrates

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yang; Wei Liu, Xiao; Zhang, Hai Feng, E-mail: wy3121685@163.com; Zhou, Zhi Ping [Department of Microelectronics, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 (China)

    2015-04-15

    We present a method to fabricate a super-hydrophobic surface with a self-healing ability on an aluminium alloy substrate. The coatings are obtained by combining a two-step process (first, the substrate is immersed in a solution of HCl, HF and H{sub 2}O, and then in boiling water) and succeeding surface fluorination with a solution of poly(vinylidene-fluoride-co-hexafluoropropylene) and a fluoroalkyl silane. The morphological features and chemical composition were studied by scanning electron micrometry and energy-dispersive X-ray spectroscopy. The prepared super-hydrophobic aluminium surfaces showed hierarchical structures forming pores, petals and particles with a contact angle of 161° and a sliding angle of 3°.

  2. Morphology of gas cavities on patterned hydrophobic surfaces under reduced pressure

    Science.gov (United States)

    Xue, Yahui; Lv, Pengyu; Liu, Ying; Shi, Yipeng; Lin, Hao; Duan, Huiling

    2015-09-01

    Gas cavities trapped on structured hydrophobic surfaces play important roles in realizing functionalities such as superhydrophobicity, drag reduction, and surface cleaning. The morphology of the cavities exhibits strong dependence on system parameters which impact the performance of these surfaces. In this work, a complete theoretical analysis is presented to predict cavity morphological change under reduced liquid pressure, on a submerged hydrophobic surface patterned with cylindrical pores. Equilibrium solutions are derived for five different phases, namely, (I) pinned recession, (II) depinned recession, (III) Cassie-Baxter, (IV) expansion, and (V) coalescence; their stabilities are also analyzed. A phase map is developed outlining the different regimes with respect to the gas amount and liquid pressure. Importantly, phase (IV) exhibits a complex stability behavior that leads to two possible routes to coalescence, which lends two different mechanisms of cavitation. Accordingly, the threshold pressure for cavitation can be calculated. The theoretical model is supported by direct experimental measurements via confocal microscopy and demonstrates good quantitative accuracy. This work provides a predictive tool for the design of functional structured hydrophobic surfaces.

  3. Hydration and hydrogen bond network of water around hydrophobic surface investigated by terahertz spectroscopy.

    Science.gov (United States)

    Shiraga, K; Suzuki, T; Kondo, N; Ogawa, Y

    2014-12-21

    Water conformation around hydrophobic side chains of four amino acids (glycine, L-alanine, L-aminobutyric acid, and L-norvaline) was investigated via changes in complex dielectric constant in the terahertz (THz) region. Each of these amino acids has the same hydrophilic backbone, with successive additions of hydrophobic straight methylene groups (-CH2-) to the side chain. Changes in the degree of hydration (number of dynamically retarded water molecules relative to bulk water) and the structural conformation of the water hydrogen bond (HB) network related to the number of methylene groups were quantitatively measured. Since dielectric responses in the THz region represent water relaxations and water HB vibrations at a sub-picosecond and picosecond timescale, these measurements characterized the water relaxations and HB vibrations perturbed by the methylene apolar groups. We found each successive straight -CH2- group on the side chain restrained approximately two hydrophobic hydration water molecules. Additionally, the number of non-hydrogen-bonded (NHB) water molecules increased slightly around these hydrophobic side chains. The latter result seems to contradict the iceberg model proposed by Frank and Evans, where water molecules are said to be more ordered around apolar surfaces. Furthermore, we compared the water-hydrophilic interactions of the hydrophilic amino acid backbone with those with the water-hydrophobic interactions around the side chains. As the hydrophobicity of the side chain increased, the ordering of the surrounding water HB network was altered from that surrounding the hydrophilic amino acid backbone, thereby diminishing the fraction of NHB water and ordering the surrounding tetrahedral water HB network.

  4. Wetting hysteresis induced by temperature changes: Supercooled water on hydrophobic surfaces.

    Science.gov (United States)

    Heydari, Golrokh; Sedighi Moghaddam, Maziar; Tuominen, Mikko; Fielden, Matthew; Haapanen, Janne; Mäkelä, Jyrki M; Claesson, Per M

    2016-04-15

    The state and stability of supercooled water on (super)hydrophobic surfaces is crucial for low temperature applications and it will affect anti-icing and de-icing properties. Surface characteristics such as topography and chemistry are expected to affect wetting hysteresis during temperature cycling experiments, and also the freezing delay of supercooled water. We utilized stochastically rough wood surfaces that were further modified to render them hydrophobic or superhydrophobic. Liquid flame spraying (LFS) was utilized to create a multi-scale roughness by depositing titanium dioxide nanoparticles. The coating was subsequently made non-polar by applying a thin plasma polymer layer. As flat reference samples modified silica surfaces with similar chemistries were utilized. With these substrates we test the hypothesis that superhydrophobic surfaces also should retard ice formation. Wetting hysteresis was evaluated using contact angle measurements during a freeze-thaw cycle from room temperature to freezing occurrence at -7°C, and then back to room temperature. Further, the delay in freezing of supercooled water droplets was studied at temperatures of -4°C and -7°C. The hysteresis in contact angle observed during a cooling-heating cycle is found to be small on flat hydrophobic surfaces. However, significant changes in contact angles during a cooling-heating cycle are observed on the rough surfaces, with a higher contact angle observed on cooling compared to during the subsequent heating. Condensation and subsequent frost formation at sub-zero temperatures induce the hysteresis. The freezing delay data show that the flat surface is more efficient in enhancing the freezing delay than the rougher surfaces, which can be rationalized considering heterogeneous nucleation theory. Thus, our data suggests that molecular flat surfaces, rather than rough superhydrophobic surfaces, are beneficial for retarding ice formation under conditions that allow condensation and frost

  5. Wetting hysteresis induced by temperature changes: Supercooled water on hydrophobic surfaces.

    Science.gov (United States)

    Heydari, Golrokh; Sedighi Moghaddam, Maziar; Tuominen, Mikko; Fielden, Matthew; Haapanen, Janne; Mäkelä, Jyrki M; Claesson, Per M

    2016-04-15

    The state and stability of supercooled water on (super)hydrophobic surfaces is crucial for low temperature applications and it will affect anti-icing and de-icing properties. Surface characteristics such as topography and chemistry are expected to affect wetting hysteresis during temperature cycling experiments, and also the freezing delay of supercooled water. We utilized stochastically rough wood surfaces that were further modified to render them hydrophobic or superhydrophobic. Liquid flame spraying (LFS) was utilized to create a multi-scale roughness by depositing titanium dioxide nanoparticles. The coating was subsequently made non-polar by applying a thin plasma polymer layer. As flat reference samples modified silica surfaces with similar chemistries were utilized. With these substrates we test the hypothesis that superhydrophobic surfaces also should retard ice formation. Wetting hysteresis was evaluated using contact angle measurements during a freeze-thaw cycle from room temperature to freezing occurrence at -7°C, and then back to room temperature. Further, the delay in freezing of supercooled water droplets was studied at temperatures of -4°C and -7°C. The hysteresis in contact angle observed during a cooling-heating cycle is found to be small on flat hydrophobic surfaces. However, significant changes in contact angles during a cooling-heating cycle are observed on the rough surfaces, with a higher contact angle observed on cooling compared to during the subsequent heating. Condensation and subsequent frost formation at sub-zero temperatures induce the hysteresis. The freezing delay data show that the flat surface is more efficient in enhancing the freezing delay than the rougher surfaces, which can be rationalized considering heterogeneous nucleation theory. Thus, our data suggests that molecular flat surfaces, rather than rough superhydrophobic surfaces, are beneficial for retarding ice formation under conditions that allow condensation and frost

  6. Wetting behavior of nano-scale dual rough surfaces coated with hydrophobic DLC films

    International Nuclear Information System (INIS)

    Solid surface wettability can be controlled by chemical treatment of the material surface or modification of the surface topology. Superhydrophobic surfaces, having the water contact angle close to 180 degrees, have drawn much attention owing to its potential applications for water-repellent self cleaning surfaces, surface energy induced drop motion, and flow channels of low resistance for microfludics devices, etc. We showed earlier the superhydrophobic wetting behavior of a water droplet on nano-scale dual rough surfaces with hydrophobic DLC films. Here we report the results of systematic experiments of the evaporation of a water droplet on the superhydrophobic dual rough surfaces to measure the time evolution of the contact angle induced by the change of the Laplace pressure. The transition condition from Cassie-Baxter mode to Wenzel mode in the droplet wetting behavior was analyzed and compared with that of other superhydrophobic surfaces. The effectiveness and superhydrophobicity of the dual rough structure was also discussed

  7. Surface characterization of hydrophobic thin films deposited by inductively coupled and pulsed plasmas

    International Nuclear Information System (INIS)

    Different fluorocarbon thin films were deposited on Si substrates using a plasma-polymerization method. Fluorine-containing hydrophobic thin films were obtained by inductively coupled plasma (ICP) and pulsed plasma (PP) with a mixture of fluorocarbon precursors C2F6, C3F8, and c-C4F8 and the unsaturated hydrocarbons of C2H2. The influence on the fluorocarbon surfaces of the process parameters for plasma polymerization, including the gas ratio and the plasma power, were investigated under two plasma-polymerized techniques with different fluorocarbon gas precursors. The hydrophobic properties, surface morphologies, and chemical compositions were elucidated using water contact angle measurements, field emission-scanning electron microscope, x-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), and time-of-flight secondary ion mass spectrometry (TOF-SIMS). In this study, the ICP technique provides coarser grained films and more hydrophobic surfaces as well as a higher deposition rate compared to the PP technique. XPS, FT-IR, and TOF-SIMS analyses indicated that the ICP technique produced more fluorine-related functional groups, including CF2 and CF3, on the surface. From the curve-fitted XPS results, fluorocarbon films grown under ICP technique exhibited less degree of cross-linking and higher CF2 concentrations than those grown under PP technique.

  8. Surface modification to produce hydrophobic nano-silica particles using sodium dodecyl sulfate as a modifier

    Science.gov (United States)

    Qiao, Bing; Liang, Yong; Wang, Ting-Jie; Jiang, Yanping

    2016-02-01

    Hydrophobic silica particles were prepared using the surfactant sodium dodecyl sulfate (SDS) as a modifier by a new route comprising three processes, namely, aqueous mixing, spray drying and thermal treatment. Since SDS dissolves in water, this route is free of an organic solvent and gave a perfect dispersion of SDS, that is, there was excellent contact between SDS and silica particles in the modification reaction. The hydrophobicity of the modified surface was verified by the contact angle of the nano-sized silica particles, which was 107°. The SDS grafting density reached 1.82 nm-2, which is near the highest value in the literature. The optimal parameters of the SDS/SiO2 ratio in the aqueous phase, process temperature and time of thermal treatment were determined to be 20%, 200 °C and 30 min, respectively. The grafting mechanism was studied by comparing the modification with that on same sized TiO2 particles, which indicated that the protons of the Brønsted acid sites on the surface of SiO2 reacted with SDS to give a carbocation which then formed a Si-O-C structure. This work showed that the hydrophilic surface of silica can be modified to be a hydrophobic surface by using a water soluble modifier SDS in a new modification route.

  9. Condensation heat transfer on micro and nano structured super hydrophobic surface

    International Nuclear Information System (INIS)

    Condensation phenomena occur during the PCCS operation cooling the containment through phase change heat transfer. Accordingly it is important to enhance the condensation heat transfer performance. Condensation mode is commonly classified as filmwise condensation (FWC) and dropwise condensation (DWC). DWC heat transfer performance has an order of magnitude higher than FWC heat transfer performance. In DWC process, condensed liquid droplets attach to the surface and prevent transfer of heat to the cooled surface. Generally the condensate is removed by gravity. When removal rate of condensate is high, DWC heat transfer performance will be enhanced. In terms of removal rate, superhydrophobic surface, which is recently in the spotlight, is expected to have capability to enhance the DWC heat transfer efficiency by reducing droplet size. In this study, we investigated condensation heat transfer performance on micro and nano structured superhydrophobic surface. Condensation experiments on the micro and nano structured superhydrophobic surface were carried out and compared with those on the smooth hydrophobic surface in terms of heat transfer performance and condensed droplet morphologies. Through the experiments, we found that superhydrophobicity disappeared under the condensation circumstance. As a result, heat transfer performance on the superhydro-phobic structured surface decreased compared with that on the smooth hydrophobic surface. In order to enhance the condensation heat transfer performance with superhydrophobic property, condensation mechanism on superhydrophobic surface and the conditions for sustaining superhydrophobicity should be studied more

  10. Condensation heat transfer on micro and nano structured super hydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Donghyun; Hwang, Kyung Won; Park, Hyun Sun; Kim, Moo Hwan [POSTECH, Pohang (Korea, Republic of)

    2014-05-15

    Condensation phenomena occur during the PCCS operation cooling the containment through phase change heat transfer. Accordingly it is important to enhance the condensation heat transfer performance. Condensation mode is commonly classified as filmwise condensation (FWC) and dropwise condensation (DWC). DWC heat transfer performance has an order of magnitude higher than FWC heat transfer performance. In DWC process, condensed liquid droplets attach to the surface and prevent transfer of heat to the cooled surface. Generally the condensate is removed by gravity. When removal rate of condensate is high, DWC heat transfer performance will be enhanced. In terms of removal rate, superhydrophobic surface, which is recently in the spotlight, is expected to have capability to enhance the DWC heat transfer efficiency by reducing droplet size. In this study, we investigated condensation heat transfer performance on micro and nano structured superhydrophobic surface. Condensation experiments on the micro and nano structured superhydrophobic surface were carried out and compared with those on the smooth hydrophobic surface in terms of heat transfer performance and condensed droplet morphologies. Through the experiments, we found that superhydrophobicity disappeared under the condensation circumstance. As a result, heat transfer performance on the superhydro-phobic structured surface decreased compared with that on the smooth hydrophobic surface. In order to enhance the condensation heat transfer performance with superhydrophobic property, condensation mechanism on superhydrophobic surface and the conditions for sustaining superhydrophobicity should be studied more.

  11. The evaporation and wetting dynamics of sessile water droplets on submicron-scale patterned silicon hydrophobic surfaces

    International Nuclear Information System (INIS)

    The evaporation characteristics of 1 µl sessile water droplets on hydrophobic surfaces are experimentally examined. The proposed hydrophobic surfaces are composed of submicron diameter and 4.2 µm height silicon post arrays. A digital image analysis algorithm was developed to obtain time-dependent contact angles, contact diameters, and center heights for both non-patterned polydimethylsiloxane (PDMS) surfaces and patterned post array surfaces, which have the same hydrophobic contact angles. While the contact angles exhibit three distinct stages during evaporation in the non-patterned surface case, those in the patterned silicon post array surface case decrease linearly. In the case of post array hydrophobic surfaces, the initial contact diameter remains unchanged until the portion of the droplet above the posts completely dries out. The edge shrinking velocity of the droplet shows nonlinear characteristics, and the velocity magnitude increases rapidly near the last stage of evaporation.

  12. Ultra lightweight PMMA-based composite plates with robust super-hydrophobic surfaces.

    Science.gov (United States)

    Pareo, Paola; De Gregorio, Gian Luca; Manca, Michele; Pianesi, Maria Savina; De Marco, Luisa; Cavallaro, Francesco; Mari, Margherita; Pappadà, Silvio; Ciccarella, Giuseppe; Gigli, Giuseppe

    2011-11-15

    Extremely lightweight plates made of an engineered PMMA-based composite material loaded with hollow glass micro-sized spheres, nano-sized silica particles and aluminum hydroxide prismatic micro-flakes were realized by cast molding. Their interesting bulk mechanical properties were combined to properly tailored surface topography compatible with the achievement of a superhydrophobic behavior after the deposition of a specifically designed hydrophobic coating. With this aim, we synthesized two different species of fluoromethacrylic polymers functionalized with methoxysilane anchoring groups to be covalently grafted onto the surface protruding inorganic fillers. By modulating the feed composition of the reacting monomers, it was possible to combine the hydrophobic character of the polymer with an high adhesion strength to the substrate and hence to maximize both the water contact angle (up to 157°) and the durability of the easy-to-clean effect (up to 2000 h long outdoor exposure).

  13. Heat Transfer through a Condensate Droplet on Hydrophobic and Nanostructured Superhydrophobic Surfaces.

    Science.gov (United States)

    Chavan, Shreyas; Cha, Hyeongyun; Orejon, Daniel; Nawaz, Kashif; Singla, Nitish; Yeung, Yip Fun; Park, Deokgeun; Kang, Dong Hoon; Chang, Yujin; Takata, Yasuyuki; Miljkovic, Nenad

    2016-08-01

    Understanding the fundamental mechanisms governing vapor condensation on nonwetting surfaces is crucial to a wide range of energy and water applications. In this paper, we reconcile classical droplet growth modeling barriers by utilizing two-dimensional axisymmetric numerical simulations to study individual droplet heat transfer on nonwetting surfaces (90° environmental scanning electron microscopy on biphilic samples consisting of hydrophobic and nanostructured superhydrophobic regions, showing excellent agreement with the simulations for both constant base area and constant contact angle growth regimes. Our results demonstrate the importance of resolving local heat transfer effects for the fundamental understanding and high fidelity modeling of phase change heat transfer on nonwetting surfaces. PMID:27409353

  14. Biomimetic hydrophobic surface fabricated by chemical etching method from hierarchically structured magnesium alloy substrate

    Science.gov (United States)

    Liu, Yan; Yin, Xiaoming; Zhang, Jijia; Wang, Yaming; Han, Zhiwu; Ren, Luquan

    2013-09-01

    As one of the lightest metal materials, magnesium alloy plays an important role in industry such as automobile, airplane and electronic product. However, magnesium alloy is hindered due to its high chemical activity and easily corroded. Here, inspired by typical plant surfaces such as lotus leaves and petals of red rose with super-hydrophobic character, the new hydrophobic surface is fabricated on magnesium alloy to improve anti-corrosion by two-step methodology. The procedure is that the samples are processed by laser first and then immersed and etched in the aqueous AgNO3 solution concentrations of 0.1 mol/L, 0.3 mol/L and 0.5 mol/L for different times of 15 s, 40 s and 60 s, respectively, finally modified by DTS (CH3(CH2)11Si(OCH3)3). The microstructure, chemical composition, wettability and anti-corrosion are characterized by means of SEM, XPS, water contact angle measurement and electrochemical method. The hydrophobic surfaces with microscale crater-like and nanoscale flower-like binary structure are obtained. The low-energy material is contained in surface after DTS treatment. The contact angles could reach up to 138.4 ± 2°, which hydrophobic property is both related to the micro-nano binary structure and chemical composition. The results of electrochemical measurements show that anti-corrosion property of magnesium alloy is improved. Furthermore, our research is expected to create some ideas from natural enlightenment to improve anti-corrosion property of magnesium alloy while this method can be easily extended to other metal materials.

  15. SYNTHESIS AND CHARACTERIZATION OF POLY(PHTHALAZINONE ETHER NITRILE) COPOLYMERS WITH HYDROPHOBIC SURFACE

    OpenAIRE

    Dong, L M; G. X. LIAO; Liu, C; Yang, S.S.; X. G. JIAN

    2008-01-01

    Poly(phthalazinone ether nitrile) (PPEN) block copolymers containing polysiloxane were prepared so as to create a strongly hydrophobic polymer surface. The copolymers were synthesized from eugenol end-capped polydimethylsiloxane (PDMS) and fluoro-terminated PPEN oligomers by the aromatic nucleophilic substitution polycondensation in the presence of dimethyl sulfoxide/o-dichlorobenzene and K2CO3 as solvents and catalyst, respectively. The resultant copolymers were characterized by FTIR, 1H NMR...

  16. Biomimetic hydrophobic surface fabricated by chemical etching method from hierarchically structured magnesium alloy substrate

    International Nuclear Information System (INIS)

    As one of the lightest metal materials, magnesium alloy plays an important role in industry such as automobile, airplane and electronic product. However, magnesium alloy is hindered due to its high chemical activity and easily corroded. Here, inspired by typical plant surfaces such as lotus leaves and petals of red rose with super-hydrophobic character, the new hydrophobic surface is fabricated on magnesium alloy to improve anti-corrosion by two-step methodology. The procedure is that the samples are processed by laser first and then immersed and etched in the aqueous AgNO3 solution concentrations of 0.1 mol/L, 0.3 mol/L and 0.5 mol/L for different times of 15 s, 40 s and 60 s, respectively, finally modified by DTS (CH3(CH2)11Si(OCH3)3). The microstructure, chemical composition, wettability and anti-corrosion are characterized by means of SEM, XPS, water contact angle measurement and electrochemical method. The hydrophobic surfaces with microscale crater-like and nanoscale flower-like binary structure are obtained. The low-energy material is contained in surface after DTS treatment. The contact angles could reach up to 138.4 ± 2°, which hydrophobic property is both related to the micro–nano binary structure and chemical composition. The results of electrochemical measurements show that anti-corrosion property of magnesium alloy is improved. Furthermore, our research is expected to create some ideas from natural enlightenment to improve anti-corrosion property of magnesium alloy while this method can be easily extended to other metal materials.

  17. Biomimetic hydrophobic surface fabricated by chemical etching method from hierarchically structured magnesium alloy substrate

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yan; Yin, Xiaoming; Zhang, Jijia [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); Wang, Yaming [Institute for Advanced Ceramics, Harbin Institute of Technology, Harbin 150001 (China); Han, Zhiwu, E-mail: zwhan@jlu.edu.cn [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); Ren, Luquan [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China)

    2013-09-01

    As one of the lightest metal materials, magnesium alloy plays an important role in industry such as automobile, airplane and electronic product. However, magnesium alloy is hindered due to its high chemical activity and easily corroded. Here, inspired by typical plant surfaces such as lotus leaves and petals of red rose with super-hydrophobic character, the new hydrophobic surface is fabricated on magnesium alloy to improve anti-corrosion by two-step methodology. The procedure is that the samples are processed by laser first and then immersed and etched in the aqueous AgNO{sub 3} solution concentrations of 0.1 mol/L, 0.3 mol/L and 0.5 mol/L for different times of 15 s, 40 s and 60 s, respectively, finally modified by DTS (CH{sub 3}(CH{sub 2}){sub 11}Si(OCH{sub 3}){sub 3}). The microstructure, chemical composition, wettability and anti-corrosion are characterized by means of SEM, XPS, water contact angle measurement and electrochemical method. The hydrophobic surfaces with microscale crater-like and nanoscale flower-like binary structure are obtained. The low-energy material is contained in surface after DTS treatment. The contact angles could reach up to 138.4 ± 2°, which hydrophobic property is both related to the micro–nano binary structure and chemical composition. The results of electrochemical measurements show that anti-corrosion property of magnesium alloy is improved. Furthermore, our research is expected to create some ideas from natural enlightenment to improve anti-corrosion property of magnesium alloy while this method can be easily extended to other metal materials.

  18. Laser micro/nano patterning of hydrophobic surface by contact particle lens array

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Ashfaq, E-mail: Ashfaq.Khan@postgrad.manchester.ac.uk [Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Sackville Street, Manchester, M60 1QD (United Kingdom); Wang Zengbo; Sheikh, Mohammad A.; Whitehead, David J.; Li Lin [Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Sackville Street, Manchester, M60 1QD (United Kingdom)

    2011-11-01

    Direct laser surface micro/nanopatterning by using Contact Particle Lens Array (CPLA) has been widely utilized. The method involves laser scanning of a monolayer of transparent particles arranged on the substrate to be patterned. Despite the different techniques available for CPLA deposition; the particles monolayer can only be formed on hydrophilic surfaces, which restrict the range of substrates that could be patterned by this method. In this study, a technique for patterning of hydrophobic surfaces by using CPLA has been proposed. In the proposed technique, monolayer of CPLA is formed on a hydrophilic substrate and then transported to a hydrophobic substrate by using a flexible sticky plastic. The transported CPLA is then scanned by a laser for patterning the hydrophobic substrate. The plastic pre-selected for this work was transparent to the laser. Experimental investigations were carried out to generate bumps and bowl shaped patterns using transported particles. Features smaller than the diffraction limit have been generated. The optical near field and associated temperatures around the particles were numerically simulated with a coupled electromagnetic and thermal modelling technique.

  19. Hydrophobicity mechanism of non-smooth pattern on surface of butterfly wing

    Institute of Scientific and Technical Information of China (English)

    FANG Yan; SUN Gang; WANG TongQing; CONG Qian; REN LuQuan

    2007-01-01

    Twenty-nine species (24 genera, 6 families) of butterflies typical and common in northeast China were selected to make qualitative and quantitative studies on the pattern, hydrophobicity and hydrophobicity mechanism by means of scanning electron microscopy and contact angle measuring system. The scale surface is composed of submicro-class vertical gibbosities and horizontal links. The distance of scale is 48-91 μm, length 65-150 μm, and width 35-70 μm. The distance of submicro-class vertical gibbosities on scale is 1.06-2.74 μm, height 200-900 nm, and width 200-840 nm. The better hydrophobicity on the surface of butterfly wing (static contact angle 136.3°-156.6°) is contributed to the co-effects of micro-class scale and submicro-class vertical gibbosities on the wing surface. The Cassie equation was revised, and new mathematical models and equations were established.

  20. Novel strategy in increasing stability and corrosion resistance for super-hydrophobic coating on aluminum alloy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yin Bo [Department of Applied Physics, Chongqing University, Chongqing, 400044 (China); Fang Liang, E-mail: fangliangcqu@yahoo.com.cn [Department of Applied Physics, Chongqing University, Chongqing, 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044 (China); Tang Anqiong; Huang Qiuliu; Hu Jia; Mao Jianhui [Department of Applied Physics, Chongqing University, Chongqing, 400044 (China); Bai, Ge; Bai, Huan [State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing, 400044 (China)

    2011-10-15

    A novel super-hydrophobic coating was prepared by chemical modification on the anodized aluminum alloy surface. The surface structure was characterized by water contact angle measurement, scanning electron microscopy (SEM), and the composition was measured by X-ray photoelectron spectroscopy (XPS). The corrosion behavior of the super-hydrophobic coating was evaluated by the polarization curve and the electrochemical impedance spectroscopy (EIS). It was found that the static water contact angle on the surface of super-hydrophobic coating was as high as 167.7 {+-} 1.2 deg., and the sliding angle was 5 deg. The super-hydrophobic coating resulted in excellent corrosion resistance property and the super-hydrophobic coating showed a good stability.

  1. Self-Spreading of Lipid Bilayer on a Hydrophobic Surface Made by Self-Assembled Monolayer with Short Alkyl Chain.

    Science.gov (United States)

    Omori, Yuya; Sakaue, Hiroyuki; Takahagi, Takayuki; Suzuki, Hitoshi

    2016-04-01

    Behaviors of self-spreading of lipid bilayer membrane on a glass surface modified with self-assembled monolayer (SAM) with short alkyl chain were observed with fluorescence microscopy. Hydrophobic surface made by SAM was found to hamper the self-spreading phenomenon but the lipid bilayer spread on a hydrophilic one where SAM was decomposed by oxidation. On a binary surface having a hydrophobic region and a hydrophilic one, the lipid bilayer spread on the hydrophilic region but it stopped at the boundary of the hydrophobic region.

  2. Relationship between Wetting Hysteresis and Contact Time of a Bouncing Droplet on Hydrophobic Surfaces.

    Science.gov (United States)

    Shen, Yizhou; Tao, Jie; Tao, Haijun; Chen, Shanlong; Pan, Lei; Wang, Tao

    2015-09-23

    The contact time of impacting water droplets on superhydrophobic surfaces directly reflects the extent of thermal and energy conversions between the water droplet and the surface, which is also considered to be crucial to the practical applications. The purpose of this study was to reveal the relationship between the contact time and the wetting hysteresis. We designed and fabricated six classes of surfaces with different extent of hydrophobicity through modifying the microscale/nanoscale hierarchical textured titanium surfaces with 1H,1H,2H,2H-perfluorodecyltrimethoxysilane, and we filmed the contact process of the water droplet impacting on these surfaces using a high-speed camera. It can be concluded that wetting hysteresis played a significant role in determining how long the impacting water droplet can bounce off the surface, based on the interfacial wetting mechanism and the work done against the resistance force generated by contact angle hysteresis during the dynamic process.

  3. SURFACE HYDROPHOBICITY MODIFICATION OF CELLULOSE FIBERS BY LAYER-BY-LAYER SELF-ASSSEMBLY OF LIGNOSULFONATES

    Directory of Open Access Journals (Sweden)

    Hui Li

    2011-03-01

    Full Text Available Self-assembled multilayers of lignosulfonates (LS were built up on both quartz slides and cellulose fibers using a Cu2+-mediated layer-by-layer (LBL technique. The growth of LS multilayers on quartz slides was monitored by UV-Vis spectroscopy, and the absorbance at 205 nm as well as at 280 nm was found to linearly increase with the number of layers. The formation of LS multilayers on fibers surfaces was characterized by X-ray photoelectron spectroscopy (XPS and atomic force microscopy (AFM. The XPS results showed that the surface contents of the characteristic elements, S and Cu, of LS multilayers were increased with the number of layers, which suggests the deposition of LS-Cu2+ complexes on cellulose fibers. Furthermore, there was a good linear relationship between the calculated surface LS content and the increment of LS layers. The AFM morphology results confirmed that the cellulose microfibrils on fiber surface were gradually covered by LS particles, resulting in the increase of surface roughness as self-assembly proceeded. The hydrophobicity of cellulose fiber probed by dynamic contact angle was significantly increased due to LBL self-assembly of LS on its surface. The initial contact angle was increased from 0° to 115° as the cellulose fibers were modified with a 5-layer LS multilayer. The reduction rate of the contact angle was dependent on the number of layers. When the cellulose fiber was modified by a 5-layer LS multilayer, the contact angle shifted from 115 to 98° after 0.12 s, suggesting some degree of hydrophobic character. Therefore, this technique provides a simple but effective way for promoting hydrophobicity of cellulose fibers in a controllable manner.

  4. Anisotropic wetting characteristics versus roughness on machined surfaces of hydrophilic and hydrophobic materials

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • The aim is to investigate the influence of roughness on anisotropic wetting on machined surfaces. • The relationship between roughness and anisotropic wetting is modeled by thermodynamical analysis. • The effect of roughness on anisotropic wetting on hydrophilic materials is stronger than that on hydrophobic materials. • The energy barrier existing in the direction perpendicular to the lay is one of the main reasons for the anisotropic wetting. • The contact angle in the parallel direction is larger than that in the perpendicular direction. - Abstract: Anisotropic wetting of machined surfaces is widely applied in industries which can be greatly affected by roughness and solid's chemical properties. However, there has not been much work on it. A free-energy thermodynamic model is presented by analyzing geometry morphology of machined surfaces (2-D model surfaces), which demonstrates the influence of roughness on anisotropic wetting. It can be concluded that the energy barrier is one of the main reasons for the anisotropic wetting existing in the direction perpendicular to the lay. In addition, experiments in investigating anisotropic wetting, which was characterized by the static contact angle and droplet's distortion, were performed on machined surfaces with different roughness on hydrophilic and hydrophobic materials. The droplet's anisotropy found on machined surfaces increased with mean slope of roughness profile Kr. It indicates that roughness on anisotropic wetting on hydrophilic materials has a stronger effect than that on hydrophobic materials. Furthermore, the contact angles predicted by the model are basically consistent with the experimentally ones

  5. Effects of Surfactants and Polyelectrolytes on the Interaction between a Negatively Charged Surface and a Hydrophobic Polymer Surface.

    Science.gov (United States)

    Rapp, Michael V; Donaldson, Stephen H; Gebbie, Matthew A; Gizaw, Yonas; Koenig, Peter; Roiter, Yuri; Israelachvili, Jacob N

    2015-07-28

    We have measured and characterized how three classes of surface-active molecules self-assemble at, and modulate the interfacial forces between, a negatively charged mica surface and a hydrophobic end-grafted polydimethylsiloxane (PDMS) polymer surface in solution. We provide a broad overview of how chemical and structural properties of surfactant molecules result in different self-assembled structures at polymer and mineral surfaces, by studying three characteristic surfactants: (1) an anionic aliphatic surfactant, sodium dodecyl sulfate (SDS), (2) a cationic aliphatic surfactant, myristyltrimethylammonium bromide (MTAB), and (3) a silicone polyelectrolyte with a long-chain PDMS midblock and multiple cationic end groups. Through surface forces apparatus measurements, we show that the separate addition of three surfactants can result in interaction energies ranging from fully attractive to fully repulsive. Specifically, SDS adsorbs at the PDMS surface as a monolayer and modifies the monotonic electrostatic repulsion to a mica surface. MTAB adsorbs at both the PDMS (as a monolayer) and the mica surface (as a monolayer or bilayer), resulting in concentration-dependent interactions, including a long-range electrostatic repulsion, a short-range steric hydration repulsion, and a short-range hydrophobic attraction. The cationic polyelectrolyte adsorbs as a monolayer on the PDMS and causes a long-range electrostatic attraction to mica, which can be modulated to a monotonic repulsion upon further addition of SDS. Therefore, through judicious selection of surfactants, we show how to modify the magnitude and sign of the interaction energy at different separation distances between hydrophobic and hydrophilic surfaces, which govern the static and kinetic stability of colloidal dispersions. Additionally, we demonstrate how the charge density of silicone polyelectrolytes modifies both their self-assembly at polymer interfaces and the robust adhesion of thin PDMS films to target

  6. The enhanced SERS effect of Ag/ZnO nanoparticles through surface hydrophobic modification

    Science.gov (United States)

    Li, Zhenjiang; Zhu, Kaixing; Zhao, Qian; Meng, Alan

    2016-07-01

    Ag/ZnO nanocomposites modified by a mixture of stearic acid (SA) and polyvinylpyrrolidone (PVP) were obtained using a heating reflux method. Fourier transform infrared spectroscopy (FT-IR) suggests that organic SA/PVP was bonded onto the surface of Ag/ZnO nanocrystals, converting the wettability property of the nanostructures from hydrophilic to hydrophobic. The modified Ag/ZnO nanostructures were confirmed as effective Raman substrates, with a 3-fold signal enhancement compared to the ordinary hydrophilic Ag/ZnO substrate for detecting Rh B molecules due to the hydrophobic condensation effect. It is expected that the modified Ag/ZnO nanoparticles have potential for SERS-based rapid detection of molecules.

  7. Competitive adsorption of monoclonal antibodies and nonionic surfactants at solid hydrophobic surfaces

    DEFF Research Database (Denmark)

    Kapp, Sebastian J; Larsson, Iben; van de Weert, Marco;

    2015-01-01

    Two monoclonal antibodies from the IgG subclasses one and two were compared in their adsorption behavior with hydrophobic surfaces upon dilution to 10 mg/mL with 0.9% NaCl. These conditions simulate handling of the compounds at hospital pharmacies and surfaces encountered after preparation...... was investigated. Despite belonging to two different IgG subclasses, both antibodies displayed comparable adsorption behavior. Both antibodies readily adsorbed in the absence of PS80, whereas adsorption was reduced in the presence of 30 mg/L surfactant. The sequence of exposure of the surfactant and protein...

  8. Surface hydrophobic modification of cellulose membranes by plasma-assisted deposition of hydrocarbon films

    Directory of Open Access Journals (Sweden)

    Mudtorlep Nisoa

    2010-03-01

    Full Text Available Surface modification by plasma polymerization is an efficient method to change the surface properties of a membrane. Desirable functionality such as hydrophobicity or hydrophilicity can be obtained, depending on plasma chemistry of gas precursors and discharge conditions. In this work, RF magnetron plasma is produced using acetylene and nitrogen as precursor gases. Variations of RF power, particle flux, deposited time and pressure of the precursor gases have been made to observe coating effects on the cellulose membranes. When appropriated conditions are used, a thin brownish film of hydrocarbon was formed on the membrane, and the water contact angle increased from 35 to 130 degrees.

  9. Assembly and Structure of alpha-helical Peptide Films on Hydrophobic Fluorocarbon Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Weidner, T.; Samual, N; McCrea, K; Gamble, L; Ward, R; Castner, D

    2010-01-01

    The structure, orientation, and formation of amphiphilic {alpha}-helix model peptide films on fluorocarbon surfaces has been monitored with sum frequency generation (SFG) vibrational spectroscopy, near-edge x-ray absorption fine structure (NEXAFS) spectroscopy, and x-ray photoelectron spectroscopy (XPS). The {alpha}-helix peptide is a 14-mer of hydrophilic lysine and hydrophobic leucine residues with a hydrophobic periodicity of 3.5. This periodicity yields a rigid amphiphilic peptide with leucine and lysine side chains located on opposite sides. XPS composition analysis confirms the formation of a peptide film that covers about 75% of the surface. NEXAFS data are consistent with chemically intact adsorption of the peptides. A weak linear dichroism of the amide {pi}* is likely due to the broad distribution of amide bond orientations inherent to the {alpha}-helical secondary structure. SFG spectra exhibit strong peaks near 2865 and 2935 cm{sup -1} related to aligned leucine side chains interacting with the hydrophobic surface. Water modes near 3200 and 3400 cm{sup -1} indicate ordering of water molecules in the adsorbed-peptide fluorocarbon surface interfacial region. Amide I peaks observed near 1655 cm{sup -1} confirm that the secondary structure is preserved in the adsorbed peptide. A kinetic study of the film formation process using XPS and SFG showed rapid adsorption of the peptides followed by a longer assembly process. Peptide SFG spectra taken at the air-buffer interface showed features related to well-ordered peptide films. Moving samples through the buffer surface led to the transfer of ordered peptide films onto the substrates.

  10. Design of an outstanding super-hydrophobic surface by electro-spinning

    Science.gov (United States)

    Sarkar, Manas K.; Bal, Kausik; He, Fuen; Fan, Jintu

    2011-05-01

    A duel-layer super-hydrophobic surface, comprising polyvinylidene fluoride (PVDF) and fluorinated silane molecules (FSM), was engineered using electro-spinning a coating onto the glass. Scanning electron microscopy was used to confirm that, by reducing the percentage of PVDF in the spraying solution, the aspect ratio of the nano-beads could be changed and a sharp bead profile obtained. Energy dispersive spectroscopy was employed to ensure the maximum amount of FSM was present on the surface, which assists in achieving a high Water Contact Angle. Using a two-step process, involving PVDF and FSM, nano-beads, with high aspect ratio, were formed on a rough surface which produced a super-hydrophobic surface with a Water Contact Angle of 170.2° and a very low Water Roll-off Angle (<1°). Such a coating facilitates the speedy run-off of water drops from a surface and has many potential applications in buildings and other areas.

  11. 3D Imaging of Water-Drop Condensation on Hydrophobic and Hydrophilic Lubricant-Impregnated Surfaces

    Science.gov (United States)

    Kajiya, Tadashi; Schellenberger, Frank; Papadopoulos, Periklis; Vollmer, Doris; Butt, Hans-Jürgen

    2016-04-01

    Condensation of water from the atmosphere on a solid surface is an ubiquitous phenomenon in nature and has diverse technological applications, e.g. in heat and mass transfer. We investigated the condensation kinetics of water drops on a lubricant-impregnated surface, i.e., a micropillar array impregnated with a non-volatile ionic liquid. Growing and coalescing drops were imaged in 3D using a laser scanning confocal microscope equipped with a temperature and humidity control. Different stages of condensation can be discriminated. On a lubricant-impregnated hydrophobic micropillar array these are: (1) Nucleation on the lubricant surface. (2) Regular alignment of water drops between micropillars and formation of a three-phase contact line on a bottom of the substrate. (3) Deformation and bridging by coalescence which eventually leads to a detachment of the drops from the bottom substrate. The drop-substrate contact does not result in breakdown of the slippery behaviour. Contrary, on a lubricant-impregnated hydrophilic micropillar array, the condensed water drops replace the lubricant. Consequently, the surface loses its slippery property. Our results demonstrate that a Wenzel-like to Cassie transition, required to maintain the facile removal of condensed water drops, can be induced by well-chosen surface hydrophobicity.

  12. Rapid deposition of transparent super-hydrophobic layers on various surfaces using microwave plasma.

    Science.gov (United States)

    Irzh, Alexander; Ghindes, Lee; Gedanken, Aharon

    2011-12-01

    We report herein on a very fast and simple process for the fabrication of transparent superhydrophobic surfaces by using microwave (MW) plasma. It was found that the reaction of various organic liquids in MW argon plasma yields hydrophobic polymeric layers on a large assortment of surfaces, including glass, polymeric surfaces, ceramics, metals, and even paper. In most cases, these polymers are deposited as a rough layer composed of 10-15 nm nanoparticles (NPs). This roughness, together with the chemical hydrophobic nature of the coated materials, is responsible for the superhydrophobic nature of the surface. The typical reaction time of the coating procedure was 1-10 s. The stability of these superhydrophobic surfaces was examined outdoors, and was found to last 2-5 days under direct exposure to the environment and to last 2 months when the sample was protected by a quartz cover. A detailed characterization study of the chemical composition of the layers followed using XPS, solid-state NMR, and IR measurements. Modifications were introduced in the products leading to a substantial improvement in the stability of the products outdoors.

  13. Molecular dynamics simulation of free and forced BSA adsorption on a hydrophobic graphite surface.

    Science.gov (United States)

    Mücksch, Christian; Urbassek, Herbert M

    2011-11-01

    The adsorption of bovine serum albumin (BSA) onto a hydrophobic graphite surface is studied using molecular-dynamics simulation. In addition to the free, that is, unsteered, adsorption, we also investigate forced adsorption, in which the action of an AFM tip pushing the protein with constant force to the surface is modeled. Using an implicit inviscid water model, the adsorption dynamics and energetics are monitored for two different initial protein orientations toward the surface. In all cases, we find that the protein partially unfolds and spreads on the surface. The spreading is in agreement with the well-known high biocompatibility of graphite-based implants. The denaturation is, however, greatly enhanced in the case of forced adsorption. We follow the position of the so-called lipid-binding pocket found in subdomain IIIA (Sudlow site II) during adsorption and find that it is tilted and moved toward the graphite surface in all cases, in agreement with its hydrophobic character. The relevance of our findings for the common measurement procedure of studying protein adhesion using AFM experiments is discussed.

  14. Free surface transition and momentum augmentation of liquid flow in Micro/Nano-scale channels with hydrophobic and hydrophilic surfaces

    International Nuclear Information System (INIS)

    We propose a novel micro/nano-scale nozzle structure, featuring an interfacial line between the hydrophilic and the hydrophobic surfaces for a jetting system, such as an inkjet head or electrospray devices. This research will investigate the impact of the interfacial line on flow instability and momentum augmentation as the liquid meniscus moves across the line. The research methods used in this paper, in respect to micro-and nano-scale channels, are computational fluid dynamics (CFD) and non-equilibrium molecular dynamics (MD), respectively. With the growing interest in micro/ nano electromechanical systems (MEMS/NEMS), many studies have been conducted to develop an advanced micro/ nanofluidic system. However, until now, there have been few in-depth studies on passive flow control in micro and nano nozzles using the hydrophilic and hydrophobic surface characteristics. In this research, the sequential arrangement of hydrophilic and hydrophobic surfaces in the nozzle is presented along with an investigation into how flow instability and momentum augmentation are going to be applied to an efficient micro/nano jetting system. When a liquid meniscus arrives at the interfacial line between hydrophilic and hydrophobic surfaces, the meniscus shape changes from concave to convex and the fluid motion near the wall stops until the concave shape is fully converted. Because the momentum should be conserved, the lost momentum near the wall transfers to the center region, and therefore the liquid at the center region is accelerated as it crosses the line. If we use this nozzle structure and the augmentation of the momentum near the center, a tiny droplet can be easily generated

  15. USE OF CATIONIC SURFACTANTS TO MODIFY SOIL SURFACES TO PROMOTE SORPTION AND RETARD MIGRATION OF HYDROPHOBIC ORGANIC COMPOUNDS

    Science.gov (United States)

    Cationic surfactants can be used to modify surfaces of soils and subsurface materials to promote adsorption of hydrophobic organic compounds (HOC). Batch and column experiments were performed to investigate this phenomenon with the cationic surfactant dodecylpyridinium (DP), a se...

  16. Effect of temperature on the structure and phase behavior of water confined by hydrophobic, hydrophilic, and heterogeneous surfaces.

    Science.gov (United States)

    Giovambattista, Nicolas; Rossky, Peter J; Debenedetti, Pablo G

    2009-10-22

    We perform molecular dynamics simulations of water confined between atomically detailed hydrophobic, hydrophilic, and heterogeneous (patchy) nanoscale plates. We study the effects of temperature 220 isothermal compression, corresponding to paths of interest in protein denaturation. At a fixed temperature, water confined between hydrophobic plates can form vapor, liquid, or crystal (bilayer ice) phases, depending on the values of P and d. The P-d phase diagrams at T = 300 K and T = 220 K show that cooling suppresses the vapor phase and stabilizes the liquid and crystal phases. The critical separation d(c)(P), below which vapor forms, shifts to lower values of d and P upon cooling. The density profiles show that, upon cooling, water approaches the hydrophobic plates. Hence, the effective hydrophobicity of the plate decreases as T decreases, consistent with the suppression of the vapor phase upon cooling. However, both the orientation of water's molecules at the interface and the water contact angle on the hydrophobic surface show practically no temperature dependence. Simulations of water confined by heterogeneous plates decorated with hydrophobic and hydrophilic patches reveal that cooling leads to appreciable blurring of the differences between water densities at hydrophobic and hydrophilic surfaces. This observation, together with remarkable similarities in confined water's response to isobaric cooling and to isothermal compression, suggests that the invasion of hydrophobic cavities by water is an important mechanism underlying both pressure and cold denaturation of proteins. PMID:19435300

  17. Molecular Dynamics Simulation of Behaviours of Non-Polar Droplets Merging and Interactions with Hydrophobic Surfaces

    Institute of Scientific and Technical Information of China (English)

    Y.Y.Yan; C.Y.Ji

    2008-01-01

    This paper presents a molecular dynamics simulation of the behaviours of non-polar droplets merging and also the fluid molecules interacting with a hydrophobic surface. Such behaviours and transport phenomena are popular in general micro-channel flow boiling and two-phase flow. The droplets are assumed to be composed of Lennards-Jones type molecules. Periodic boundary conditions are applied in three coordinate directions ofa 3-D system, where there exist two liquid droplets and their vapour. The two droplets merge when they come within the prescribed small distance. The merging of two droplets apart from each other at different initial distances is tested and the possible larger (or critical) non-dimensional distance, in which droplets merging can occur, is discussed. The evolution of the merging process is simulated numerically by employing the Molecular Dynamics (MD) method. For interactions with hydrophobic solid wail, a system with fluid confined between two walls is used to study the wetting phenomena of fluid and solid wail. The results are compared with those of hydrophilic wall to show the unique characteristics of hydrophobic interactions by microscopic methods.

  18. The influence of surface treatment on hydrophobicity, protein adsorption and microbial colonisation of silicone hydrogel contact lenses

    OpenAIRE

    Santos, Lívia; Rodrigues, Diana Alexandra Ferreira; Lira, Madalena; Oliveira, M. Elisabete; Oliveira, Rosário; Yebra-Pimentel Vilar, Eva; Azeredo, Joana

    2007-01-01

    Purpose: To evaluate the influence of surface treatment of silicone-hydrogel CL on lens hydrophobicity, protein adsorption and microbial colonisation by studying several silicone hydrogel contact lenses (CL) with and without surface treatment. The lenses used in this study were Balafilcon A, Lotrafilcon A, Lotrafilcon B and Galyfilcon A. A conventional hydrogel CL (Etafilcon A) was also tested. Methods: Hydrophobicity was determined through contact angle measurement using the advancing typ...

  19. Preparation of Material Surface Structure Similar to Hydrophobic Structure of Lotus Leaf

    Institute of Scientific and Technical Information of China (English)

    CAO Feng; GUAN Zisheng; LI Dongxu

    2008-01-01

    Nano/micro replication,a technique widely applied in the microelectronics field,was introduced to prepare the hydrophobic bionics microstructure on material surface.Poly(vinyl alcohol)(PVA)and polystyrene(PS)moulds of the mastoid microstructure on lotus leaf surface were prepared respectively by the nano/micro replication technology.And poly(dimethylsiloxane)(PDMS)replicas with the mastoid-like microstructure were prepared from these two kinds of polymer moulds.Scanning electronic microscope(SEM) was employed to investigate the morphology and microstructures on moulds and replicas.Both the static and dynamic contact angles between water droplet and PDMS replicas'surface were also measured.As a result,similar microstructure Can be observed clearly on the surface of PDMS replicas and the static contact angle on PDMS replicas was enhanced dramatically by the existence of these microstructures.

  20. Versatile Route to Colloidal Stability and Surface Functionalization of Hydrophobic Nanomaterials.

    Science.gov (United States)

    Culver, Heidi R; Steichen, Stephanie D; Herrera-Alonso, Margarita; Peppas, Nicholas A

    2016-06-01

    We introduce a general method for the stabilization and surface functionalization of hydrophobic nanoparticles using an amphiphilic copolymer, poly(maleic anhydride-alt-1-octadecene)-poly(ethylene glycol) methacrylate (PMAO-PEGMA). Coating nanoparticles with PMAO-PEGMA results in colloidally stable nanoparticles decorated with reactive carboxylic acid and methacrylate functionalities, providing a versatile platform for chemical reactions. The versatility and ease of surface functionalization is demonstrated by varying both the core material and the chemistry used. Specifically, the carboxylic acid functionalities are used to conjugate wheat germ agglutinin to conducting polymer nanoparticles via carbodiimide-mediated coupling, and the methacrylate groups are used to link cysteamine to the surface of poly(ε-caprolactone) nanoparticles via thiol-ene click chemistry and to link temperature-responsive polymer shells to the surface of gold nanoparticles via free radical polymerization. PMID:27203863

  1. Hydrophobic and Metallophobic Surfaces: Highly Stable Non-wetting Inorganic Surfaces Based on Lanthanum Phosphate Nanorods

    OpenAIRE

    Sasidharan Sankar; Nair, Balagopal N.; Takehiro Suzuki; Gopinathan M. Anilkumar; Moothetty Padmanabhan; Unnikrishnan Nair S. Hareesh; Warrier, Krishna G.

    2016-01-01

    Metal oxides, in general, are known to exhibit significant wettability towards water molecules because of the high feasibility of synergetic hydrogen-bonding interactions possible at the solid-water interface. Here we show that the nano sized phosphates of rare earth materials (Rare Earth Phosphates, REPs), LaPO4 in particular, exhibit without any chemical modification, unique combination of intrinsic properties including remarkable hydrophobicity that could be retained even after exposure to...

  2. Surface characteristics of a self-polymerized dopamine coating deposited on hydrophobic polymer films.

    Science.gov (United States)

    Jiang, Jinhong; Zhu, Liping; Zhu, Lijing; Zhu, Baoku; Xu, Youyi

    2011-12-01

    This study aims to explore the fundamental surface characteristics of polydopamine (pDA)-coated hydrophobic polymer films. A poly(vinylidene fluoride) (PVDF) film was surface modified by dip coating in an aqueous solution of dopamine on the basis of its self-polymerization and strong adhesion feature. The self-polymerization and deposition rates of dopamine on film surfaces increased with increasing temperature as evaluated by both spectroscopic ellipsometry and scanning electronic microscopy (SEM). Changes in the surface morphologies of pDA-coated films as well as the size and shape of pDA particles in the solution were also investigated by SEM, atomic force microscopy (AFM), and transmission electron microscopy (TEM). The surface roughness and surface free energy of pDA-modified films were mainly affected by the reaction temperature and showed only a slight dependence on the reaction time and concentration of the dopamine solution. Additionally, three other typical hydrophobic polymer films of polytetrafluoroethylene (PTFE), poly(ethylene terephthalate) (PET), and polyimide (PI) were also modified by the same procedure. The lyophilicity (liquid affinity) and surface free energy of these polymer films were enhanced significantly after being coated with pDA, as were those of PVDF films. It is indicated that the deposition behavior of pDA is not strongly dependent on the nature of the substrates. This information provides us with not only a better understanding of biologically inspired surface chemistry for pDA coatings but also effective strategies for exploiting the properties of dopamine to create novel functional polymer materials. PMID:22011109

  3. The Many Faces of Heterogeneous Ice Nucleation: Interplay Between Surface Morphology and Hydrophobicity.

    Science.gov (United States)

    Fitzner, Martin; Sosso, Gabriele C; Cox, Stephen J; Michaelides, Angelos

    2015-10-28

    What makes a material a good ice nucleating agent? Despite the importance of heterogeneous ice nucleation to a variety of fields, from cloud science to microbiology, major gaps in our understanding of this ubiquitous process still prevent us from answering this question. In this work, we have examined the ability of generic crystalline substrates to promote ice nucleation as a function of the hydrophobicity and the morphology of the surface. Nucleation rates have been obtained by brute-force molecular dynamics simulations of coarse-grained water on top of different surfaces of a model fcc crystal, varying the water-surface interaction and the surface lattice parameter. It turns out that the lattice mismatch of the surface with respect to ice, customarily regarded as the most important requirement for a good ice nucleating agent, is at most desirable but not a requirement. On the other hand, the balance between the morphology of the surface and its hydrophobicity can significantly alter the ice nucleation rate and can also lead to the formation of up to three different faces of ice on the same substrate. We have pinpointed three circumstances where heterogeneous ice nucleation can be promoted by the crystalline surface: (i) the formation of a water overlayer that acts as an in-plane template; (ii) the emergence of a contact layer buckled in an ice-like manner; and (iii) nucleation on compact surfaces with very high interaction strength. We hope that this extensive systematic study will foster future experimental work aimed at testing the physiochemical understanding presented herein. PMID:26434775

  4. From hydration repulsion to dry adhesion between asymmetric hydrophilic and hydrophobic surfaces.

    Science.gov (United States)

    Kanduč, Matej; Netz, Roland R

    2015-10-01

    Using all-atom molecular dynamics (MD) simulations at constant water chemical potential in combination with basic theoretical arguments, we study hydration-induced interactions between two overall charge-neutral yet polar planar surfaces with different wetting properties. Whether the water film between the two surfaces becomes unstable below a threshold separation and cavitation gives rise to long-range attraction, depends on the sum of the two individual surface contact angles. Consequently, cavitation-induced attraction also occurs for a mildly hydrophilic surface interacting with a very hydrophobic surface. If both surfaces are very hydrophilic, hydration repulsion dominates at small separations and direct attractive force contribution can-if strong enough-give rise to wet adhesion in this case. In between the regimes of cavitation-induced attraction and hydration repulsion we find a narrow range of contact angle combinations where the surfaces adhere at contact in the absence of cavitation. This dry adhesion regime is driven by direct surface-surface interactions. We derive simple laws for the cavitation transition as well as for the transition between hydration repulsion and dry adhesion, which favorably compare with simulation results in a generic adhesion state diagram as a function of the two surface contact angles.

  5. Molecular dynamics simulation studies on some topics of water molecules on hydrophobic surfaces

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Molecular dynamics simulations have been used to study two topics of water molecules on hydrophobic surfaces. Some properties of the nanobubbles with different ingredients and behavior of single water chains in single-walled carbon nanochannels are exploited. Molecular simulations show that the density of the N2 and H2 are quite high, which is critical for the stability of the nanobubbles and may have potential applications, such as hydrogen storage, incorporated with recent experimental method to controllably produce hydrogen nanobubbles. The water molecules inside the nanochannel show an unexpected directed motion with long time period, which is indispensable in the future study of the dynamics of biological channels.

  6. Water adsorption on etched hydrophobic surfaces of L-, D- and DL-valine crystals

    Science.gov (United States)

    Segura, J. J.; Verdaguer, A.; Fraxedas, J.

    2014-03-01

    The adsorption of water on etched (001) surfaces of L-, D- and DL-valine crystals has been characterized by atomic force microscopy (AFM) using different operational modes (contact, non-contact and electrostatic) above and below the dew point, the temperature at which water vapor from humid air condenses into liquid water at constant atmospheric pressure. The analysis of the images suggests the formation of aggregates of solvated valine molecules that easily diffuse on the hydrophobic terraces only constrained by step barriers of the well-defined chiral parallelepipedic patterns induced by the etching process.

  7. Thermodynamics and kinetics of reduction and species conversion at a hydrophobic surface for mitochondrial cytochromes c and their cardiolipin adducts

    International Nuclear Information System (INIS)

    Highlights: • Cytochrome c and its adduct with cardiolipin can be immobilized on a hydrophobic SAM. • Adsorbed cytochrome c and its adduct undergo extensive unfolding and axial ligand substitution. • An equilibrium between a six-coordinated and a five-coordinated form is observed in both cases. • The reduced five-coordinated form is stabilized by cardiolipin binding. • Immobilized cytochrome c exchanges electrons more slowly upon cardiolipin binding. - Abstract: Cytochrome c (cytc) and its adduct with cardiolipin (CL) were immobilized on a hydrophobic SAM-coated electrode surface yielding a construct which mimics the environment experienced by the complex at the inner mitochondrial membrane where it plays a role in cell apoptosis. Under these conditions, both species undergo an equilibrium between a six-coordinated His/His-ligated and a five-coordinated His/- ligated forms stable in the oxidized and in the reduced state, respectively. The thermodynamics of the oxidation-state dependent species conversion were determined by temperature-dependent diffusionless voltammetry experiments. CL binding stabilizes the immobilized reduced His/- ligated form of cytc which was found previously to catalytically reduce dioxygen. Here, this adduct is also found to show pseudoperoxidase activity, catalysing reduction of hydrogen peroxide. These effects would impart CL with an additional role in the cytc-mediated peroxidation leading to programmed cell death. Moreover, immobilized cytc exchanges electrons more slowly upon CL binding possibly due to changes in solvent reorganization effects at the protein-SAM interface

  8. Mode pattern of internal flow in a water droplet on a vibrating hydrophobic surface.

    Science.gov (United States)

    Kim, Hun; Lim, Hee-Chang

    2015-06-01

    The objective of this study is to understand the mode pattern of the internal flow in a water droplet placed on a hydrophobic surface that periodically and vertically vibrates. As a result, a water droplet on a vibrating hydrophobic surface has a typical shape that depends on each resonance mode, and, additionally, we observed a diversified lobe size and internal flows in the water droplet. The size of each lobe at the resonance frequency was relatively greater than that at the neighboring frequencies, and the internal flow of the nth order mode was also observed in the flow visualization. In general, large symmetrical flow streams were generated along the vertical axis in each mode, with a large circulating movement from the bottom to the top, and then to the triple contact line along the droplet surface. In contrast, modes 2 and 4 generated a Y-shaped flow pattern, in which the flow moved to the node point in the lower part of the droplet, but modes 6 and 8 had similar patterns, with only a little difference. In addition, as a result of the PIV measurement, while the flow velocity of mode 4 was faster than that of model 2, those of modes 6 and 8 were almost similar.

  9. Conversion of an electrospun nanofibrous cellulose acetate mat from a super-hydrophilic to super-hydrophobic surface

    Science.gov (United States)

    Ding, Bin; Li, Chunrong; Hotta, Yoshio; Kim, Jinho; Kuwaki, Oriha; Shiratori, Seimei

    2006-09-01

    We report a new approach to convert an electrospun nanofibrous cellulose acetate mat surface from super-hydrophilic to super-hydrophobic. Super-hydrophilic cellulose acetate nanofibrous mats can be obtained by electrospinning hydrophilic cellulose acetate. The surface properties of the fibrous mats were modified from super-hydrophilic to super-hydrophobic with a simple sol-gel coating of decyltrimethoxysilane (DTMS) and tetraethyl orthosilicate (TEOS). The resultant samples were characterized by field emission scanning electron microscopy (FE-SEM), x-ray photoelectron spectroscopy (XPS), water contact angle, Brunauer-Emmett-Teller (BET) surface area, atomic force microscopy (AFM), and UV-visible measurements. The results of FE-SEM and XPS showed that the sol-gel (I) films were formed on the rough fibrous mats only after immersion in sol-gel. After the sol-gel (I) coating, the cellulose acetate fibrous mats formed in both 8 and 10 wt% cellulose acetate solutions showed the super-hydrophobic surface property. Additionally, the average sol-gel film thickness coated on 10 wt% cellulose acetate fibrous mats was calculated to be 80 nm. The super-hydrophobicity of fibrous mats was attributed to the combined effects of the high surface roughness of the electrospun nanofibrous mats and the hydrophobic DTMS sol-gel coating. Additionally, hydrophobic sol-gel nanofilms were found to be transparent according to UV-visible measurements.

  10. Hydrophobic interaction chromatography

    OpenAIRE

    O'Connor, Brendan; Cummins, Phil

    2011-01-01

    Most proteins and large polypeptides have hydrophobic regions at their surface. These hydrophobic ‘patches’ are due to the presence of the side chains of hydrophobic or non-polar amino acids such as phenylalanine, tryptophan, alanine and methionine. These surface hydrophobic regions are interspersed between more hydrophilic or polar regions and the number, size and distribution of them is a specific characteristic of each protein. Hydrophobic Interaction Chromatography (HIC) is a commonly use...

  11. Heat Transfer through a Condensate Droplet on Hydrophobic and Nanostructured Superhydrophobic Surfaces.

    Science.gov (United States)

    Chavan, Shreyas; Cha, Hyeongyun; Orejon, Daniel; Nawaz, Kashif; Singla, Nitish; Yeung, Yip Fun; Park, Deokgeun; Kang, Dong Hoon; Chang, Yujin; Takata, Yasuyuki; Miljkovic, Nenad

    2016-08-01

    Understanding the fundamental mechanisms governing vapor condensation on nonwetting surfaces is crucial to a wide range of energy and water applications. In this paper, we reconcile classical droplet growth modeling barriers by utilizing two-dimensional axisymmetric numerical simulations to study individual droplet heat transfer on nonwetting surfaces (90° dropwise and jumping-droplet condensation. To verify our simulation results, we study condensed water droplet growth using optical and environmental scanning electron microscopy on biphilic samples consisting of hydrophobic and nanostructured superhydrophobic regions, showing excellent agreement with the simulations for both constant base area and constant contact angle growth regimes. Our results demonstrate the importance of resolving local heat transfer effects for the fundamental understanding and high fidelity modeling of phase change heat transfer on nonwetting surfaces.

  12. Comparative Cellular Toxicity of Hydrophilic and Hydrophobic Microcystins on Caco-2 Cells

    Directory of Open Access Journals (Sweden)

    Jussi A. O. Meriluoto

    2012-10-01

    Full Text Available Microcystins (MC, cyanobacterial peptide hepatotoxins, comprise more than 100 different variants. They are rather polar molecules but some variants contain hydrophobic amino acid residues in the highly variable parts of the molecule. In MC-LF and MC-LW, the more hydrophobic phenylalanine (F and tryptophan (W, respectively, have replaced arginine (R in MC-LR. Depending on the structure, microcystins are expected to have different in vivo toxicity and bioavailability, but only a few studies have considered the toxic properties of the more hydrophobic variants. The present study shows that MC-LF and MC-LW have more pronounced cytotoxic effects on Caco-2 cells as compared to those of MC-LR. Treatment of Caco-2 cells with MC-LW and especially MC-LF showed clear apoptotic features including shrinkage and blebbing, and the cell–cell adhesion was lost. An obvious reduction of cell proliferation and viability, assessed as the activity of mitochondrial dehydrogenases, was observed with MC-LF, followed by MC-LW and MC-LR. Cytotoxicity was quantified by measuring lactate dehydrogenase leakage. The more hydrophobic MC-LW and MC-LF induced markedly enhanced lactate dehydrogenase leakage compared to controls and MC-LR, indicating that the plasma membrane was damaged. All of the three toxins examined inhibited protein phosphatase 1, with MC-LF and MC-LW to a weaker extent compared to MC-LR. The higher toxic potential of the more hydrophobic microcystins could not be explained by the biophysical experiments performed. Taken together, our data show that the more hydrophobic microcystin variants induce higher toxicity in Caco-2 cells.

  13. Liposome-based engineering of cells to package hydrophobic compounds in membrane vesicles for tumor penetration.

    Science.gov (United States)

    Lee, Junsung; Kim, Jiyoung; Jeong, Moonkyoung; Lee, Hyoungjin; Goh, Unbyeol; Kim, Hyaeyeong; Kim, Byungji; Park, Ji-Ho

    2015-05-13

    Natural membrane vesicles (MVs) derived from various types of cells play an essential role in transporting biological materials between cells. Here, we show that exogenous compounds are packaged in the MVs by engineering the parental cells via liposomes, and the MVs mediate autonomous intercellular migration of the compounds through multiple cancer cell layers. Hydrophobic compounds delivered selectively to the plasma membrane of cancer cells using synthetic membrane fusogenic liposomes were efficiently incorporated into the membrane of MVs secreted from the cells and then transferred to neighboring cells via the MVs. This liposome-mediated MV engineering strategy allowed hydrophobic photosensitizers to significantly penetrate both spheroids and in vivo tumors, thereby enhancing the therapeutic efficacy. These results suggest that innate biological transport systems can be in situ engineered via synthetic liposomes to guide the penetration of chemotherapeutics across challenging tissue barriers in solid tumors.

  14. Simulation of dynamic behavior of surfactants on a hydrophobic surface using periodic-shell boundary molecular dynamics.

    Science.gov (United States)

    Minami, Daiki; Horikoshi, Satoshi; Sakai, Kenichi; Sakai, Hideki; Abe, Masahiko

    2011-01-01

    The adsorption and aggregation behaviors of sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) on a hydrophobic graphite surface were examined using a novel molecular dynamics (MD) simulation with the periodic-shell boundary condition (PSBC). Differences in the adsorption behavior of SDS and CTAB molecules were clearly shown on the hydrophobic surface. Unexpectedly, the SDS molecules approached the graphite surface with their hydrophilic head groups. This unexpected approach mode was thought to be due to the aqueous layer on the graphite surface. The hydrophobic moiety of SDS molecules repeatedly adsorbed and desorbed on the graphite surface. In addition, SDS molecules kept moving on the graphite surface; thus, they did not form a stable adsorption layer. In contrast to SDS, the hydrophobic moiety of CTAB molecules approached the graphite surface at the primary step of adsorption. The hydrophobic moieties of CTAB molecules came close to each other, whereas the hydrophilic groups separated from one another. This result suggests that the CTAB molecules form molecular assemblies with a curved structure. The simulation results were consistent with the experimental observations. A clear difference between the adsorption behavior of SDS and CTAB molecules was revealed by MD simulations with PSBC.

  15. The apparent contact angle of water droplet on the micro-structured hydrophobic surface

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The apparent contact angle of Cassie-Baxter state water droplets can be calculated by the existing theoretical formula, but due to the defects of the micro-structured hydrophobic surface and some inevitable tiny disturbances in the experiment, Cassie-Baxter state water droplets will appear partly in Wenzel state, that is, the mixed state water droplets. In this paper, apparent contact angles of Cassie-Baxter state and mixed state water droplets on micro-structured hydrophobic surfaces are compared. The research shows that if the projected area fraction of water-solid F in the Cassie-Baxter formula is replaced by the local projected area fraction of water-solid F′, the apparent contact angles of water droplets in both Cassie-Baxter state and the mixed state can be calculated. Further experimental results indicate that the contact state of water droplets nearby the outermost three-phase contact line plays a more important role in determining the apparent contact angle. This conclusion is significant to the understanding of the apparent contact angle and wetting property.

  16. Influence of absorbed moisture on surface hydrophobization of ethanol pretreated and plasma treated ramie fibers

    International Nuclear Information System (INIS)

    The existence of moisture in the substrate material may influence the effect of atmospheric pressure plasma treatment. Our previous study has found that the employment of ethanol pretreatment and plasma treatment can effectively induce hydrophobic surface modification of cellulose fiber to enhance the compatibility to polypropylene (PP) matrix, and this study aims to investigate the influence of fiber moisture regain on the treatment effect of this technique. Ramie fibers with three different moisture regains (MR) (2.5, 6.1 and 23.5%) are pretreated with ethanol followed by atmospheric pressure plasma treatment. Scanning electron microscope (SEM) shows that the 2.5% MR group has the most significant plasma etching effect. X-ray photoelectron spectroscopy (XPS) analysis indicates an increase of C-C and a decrease of C-O bond in the plasma treated groups, and the largest raise of C-C bond for the 2.5% MR group. The water contact angles of the 2.5 and 6.1% MR groups increase, whereas no significant change is showed in the 23.5% MR group. The interfacial shear strengths (IFSS) measured by microbond pull-out test are raised by 44 and 25% when moisture regains are 2.5 and 6.1%, while presented no apparent improvement at high moisture regain of 23.5%. Therefore, it can be concluded that moisture regain has negative influence on the surface hydrophobization of ramie fibers in the improvement of adhesion property to PP matrix.

  17. Adsorption of sodium ions and hydrated sodium ions on a hydrophobic graphite surface via cation-π interactions

    Institute of Scientific and Technical Information of China (English)

    Shi Guo-Sheng; Wang Zhi-Gang; Zhao Ji-Jun; Hu Jun; Fang Hai-Ping

    2011-01-01

    Using density functional theory computation, we show that sodium ions and hydrated sodium ions can be strongly adsorbed onto a hydrophobic graphite surface via cation-π interactions. The key to this cation-π interaction is the coupling of the delocalized π states of graphite and the empty orbitals of sodium ions. This finding implies that the property of the graphite surface is extremely dependent on the existence of the ions on the surface, suggesting that the hydrophobic property of the graphite surface may be affected by the existence of the sodium ions.

  18. Ultimate Cavity Dynamics of Hydrophobic Spheres Impacting on Free Water Surfaces

    KAUST Repository

    Mansoor, Mohammad M.

    2012-12-01

    Cavity formation resulting from the water-entry of solid objects has been the subject of extensive research owing to its practical relevance in naval, military, industrial, sports and biological applications. The cavity formed by an impacting hydrophobic sphere normally seals at two places, one below (deep seal) and the other above the water surface (surface seal). For Froude numbers , the air flow into the resulting cavity is strong enough to suck the splash crown above the surface and disrupt the cavity dynamics before it deep seals. In this research work we eliminate surface seals by means of a novel practice of using cone splash-guards and examine the undisturbed transient cavity dynamics by impact of hydrophobic spheres for Froude numbers ranging . This enabled the measurement of extremely accurate pinch-off heights, pinch-off times, radial cavity collapse rates, and jet speeds in an extended range of Froude numbers compared to the previous work of Duclaux et al. (2007). Results in the extended regime were in remarkable agreement with the theoretical prediction of scaled pinch-off depth, and experimentally derived pinch-off time for . Furthermore, we investigated the influence of confinement on cavity formation by varying the cross-sectional area of the tank of liquid. In conjunction with surface seal elimination we observed the formation of multiple pinch-off points where a maximum of four deep seals were obtained in a sequential order for the Froude number range investigated. The presence of an elongated cavity beneath the first pinch-off point 5 resulted in evident "kinks" primarily related to the greatly diminished air pressure at the necking region caused by supersonic air flows (Gekle et al. 2010). Such flows passing through second pinch-offs were also found to choke the cavities beneath the first pinch- off depths causing radial expansion and hence disappearance of downward jets.

  19. Laser texturing of Hastelloy C276 alloy surface for improved hydrophobicity and friction coefficient

    Science.gov (United States)

    Yilbas, B. S.; Ali, H.

    2016-03-01

    Laser treatment of Hastelloy C276 alloy is carried out under the high pressure nitrogen assisting gas environment. Morphological and metallurgical changes in the laser treated layer are examined using the analytical tools including, scanning electron and atomic force microscopes, X-ray diffraction, energy dispersive spectroscopy, and Fourier transform infrared spectroscopy. Microhardness is measured and the residual stress formed in the laser treated surface is determined from the X-ray data. The hydrophibicity of the laser treated surface is assessed using the sessile drop method. Friction coefficient of the laser treated layer is obtained incorporating the micro-tribometer. It is found that closely spaced laser canning tracks create a self-annealing effect in the laser treated layer and lowers the thermal stress levels through modifying the cooling rates at the surface. A dense structure, consisting of fine size grains, enhances the microhardness of the surface. The residual stress formed at the surface is compressive and it is in the order of -800 MPa. Laser treatment improves the surface hydrophobicity significantly because of the formation of surface texture composing of micro/nano-pillars.

  20. Transport mechanism of an initially spherical droplet on a combined hydrophilic/hydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Myong, Hyon Kook; Kwon, Young Hoo [Dept. of Mechanical Engineering, Kookmin University, Seoul (Korea, Republic of)

    2015-11-15

    Fluid transport is a key issue in the development of microfluidic systems. Recently, Myong (2014) has proposed a new concept for droplet transport without external power sources, and numerically validated the results for a hypothetical 2D shape, initially having a hemicylindrical droplet shape. Myong and Kwon (2015) have also examined the transport mechanism for an actual water droplet, initially having a 3D hemispherical shape, on a horizontal hydrophilic/hydrophobic surface, based on the numerical results of the time evolution of the droplet shape, as well as the total kinetic, gravitational, pressure and surface free energies inside the droplet. In this study, a 3D numerical analysis of an initially spherical droplet is carried out to establish a new concept for droplet transport. Further, the transport mechanism of an actual water droplet is examined in detail from the viewpoint of the capillarity force imbalance through the numerical results of droplet shape and various energies inside the droplet.

  1. Dual Effect of (LK)nL Peptides on the Onset of Insulin Amyloid Fiber Formation at Hydrophobic Surfaces.

    Science.gov (United States)

    Chouchane, Karim; Vendrely, Charlotte; Amari, Myriam; Moreaux, Katie; Bruckert, Franz; Weidenhaupt, Marianne

    2015-08-20

    Soluble proteins are constantly in contact with material or cellular surfaces, which can trigger their aggregation and therefore have a serious impact on the development of stable therapeutic proteins. In contact with hydrophobic material surfaces, human insulin aggregates readily into amyloid fibers. The kinetics of this aggregation can be accelerated by small peptides, forming stable beta-sheets on hydrophobic surfaces. Using a series of (LK)nL peptides with varying length, we show that these peptides, at low, substoichiometric concentrations, have a positive, cooperative effect on insulin aggregation. This effect is based on a cooperative adsorption of (LK)nL peptides at hydrophobic surfaces, where they form complexes that help the formation of aggregation nuclei. At higher concentrations, they interfere with the formation of an aggregative nucleus. These effects are strictly dependent on the their adsorption on hydrophobic material surfaces and highlight the importance of the impact of materials on protein stability. (LK)nL peptides prove to be valuable tools to investigate the mechanism of HI aggregation nuclei formation on hydrophobic surfaces.

  2. Pining phenomena of an evaporated droplet on the hydrophobic micro-textured surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Dong In; Doh, Seung Woo; Park, Hyun Sun; Moriyama Kiyofumia; Kim, Moo Hwan; Kwak, Ho Jae [POSTECH, Pohang (Korea, Republic of); Ahn, Ho Seon [Incheon National University, Incheon (Korea, Republic of)

    2015-10-15

    When the decreased contact angle reaches the receding contact angle, the contact radius is reduced while maintaining a constant contact angle, i.e., this evaporation mode is known as the constant contact angle (CCA) mode. The emphasis of the droplet evaporation is that the transition from CCR to CCA modes is relative with the rate of the droplet evaporation, and it is markedly influenced by the surface wettability. In this study, it is focused on the evaporation mode transition. Especially, the transition from CCR to CCA modes is investigated on the hydrophobic microtextured surfaces. On the basis of the thermodynamics, the transition from CCR to CCA mode is theoretically analyzed. The thermodynamic model is developed to estimate the receding contact angle at the evaporation mode transition. Additionally, to compare between the theoretical model and experimental results, it is shown that the experimental receding contact angle is well estimated by the receding contact angle with the theoretical model. This study was performed to investigate the pinning phenomena of an evaporated droplet on the hydrophobic micro-textured surfaces. The pinning phenomena at the contact line were shown theoretically to be due to the most favorable thermodynamics process that caused the Gibbs free energy to rapidly reach an equilibrium state during droplet evaporation. The evaporation mode underwent a transition when the decrease in the Gibbs free energy was equivalent for the CCR and CCA modes. On the basis of the analysis described here, a theoretical model was developed to estimate the receding contact angle at the mode transition as a function of the surface conditions.

  3. Hydrophobic recovery of VUV/NH3 modified polyolefin surfaces: Comparison with plasma treatments in nitrogen

    International Nuclear Information System (INIS)

    Film samples of two very pure polyolefins (low density polyethylene, LDPE and biaxially oriented polypropylene, BOPP) were surface-modified by two different methods, namely vacuum ultraviolet (VUV) irradiation with a Kr resonant lamp in low-pressure NH3 gas, and atmospheric pressure glow discharge (APGD) plasma treatment in pure N2 gas. Samples were then stored in air and the time-dependence of surface properties (the surface energy and chemical composition) was monitored using several complementary surface-sensitive techniques: contact angle goniometry (CAG), X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). We show that the main mechanism responsible for hydrophobic recovery is the motion of polymer chains and chain segments, which governs an apparent 'loss' of functional groups, within the first monolayers of the surface (∼1 nm). Finally, comparing BOPP samples modified by both techniques, we show that aging can be reduced by crosslinking near the surface, as illustrated by depth-sensing nano-indentation measurements

  4. Hydrophobic recovery of VUV/NH3 modified polyolefin surfaces: Comparison with plasma treatments in nitrogen

    Science.gov (United States)

    Truica-Marasescu, F.; Guimond, S.; Jedrzejowski, P.; Wertheimer, M. R.

    2005-07-01

    Film samples of two very pure polyolefins (low density polyethylene, LDPE and biaxially oriented polypropylene, BOPP) were surface-modified by two different methods, namely vacuum ultraviolet (VUV) irradiation with a Kr resonant lamp in low-pressure NH3 gas, and atmospheric pressure glow discharge (APGD) plasma treatment in pure N2 gas. Samples were then stored in air and the time-dependence of surface properties (the surface energy and chemical composition) was monitored using several complementary surface-sensitive techniques: contact angle goniometry (CAG), X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). We show that the main mechanism responsible for hydrophobic recovery is the motion of polymer chains and chain segments, which governs an apparent "loss" of functional groups, within the first monolayers of the surface (∼1 nm). Finally, comparing BOPP samples modified by both techniques, we show that aging can be reduced by crosslinking near the surface, as illustrated by depth-sensing nano-indentation measurements.

  5. Hydrophobization of epoxy nanocomposite surface with 1H,1H,2H,2H-perfluorooctyltrichlorosilane for superhydrophobic properties

    Science.gov (United States)

    Psarski, Maciej; Marczak, Jacek; Celichowski, Grzegorz; Sobieraj, Grzegorz; Gumowski, Konrad; Zhou, Feng; Liu, Weimin

    2012-10-01

    Nature inspires the design of synthetic materials with superhydrophobic properties, which can be used for applications ranging from self-cleaning surfaces to microfluidic devices. Their water repellent properties are due to hierarchical (micrometer- and nanometre-scale) surface morphological structures, either made of hydrophobic substances or hydrophobized by appropriate surface treatment. In this work, the efficiency of two surface treatment procedures, with a hydrophobic fluoropolymer, synthesized and deposited from 1H,1H,2H,2H-perfluorooctyltrichlorosilane (PFOTS) is investigated. The procedures involved reactions from the gas and liquid phases of the PFOTS/hexane solutions. The hierarchical structure is created in an epoxy nanocomposite surface, by filling the resin with alumina nanoparticles and micron-sized glass beads and subsequent sandblasting with corundum microparticles. The chemical structure of the deposited fluoropolymer was examined using XPS spectroscopy. The topography of the modified surfaces was characterized using scanning electron microscopy (SEM), and atomic force microscopy (AFM). The hydrophobic properties of the modified surfaces were investigated by water contact and sliding angles measurements. The surfaces exhibited water contact angles of above 150° for both modification procedures, however only the gas phase modification provided the non-sticking behaviour of water droplets (sliding angle of 3°). The discrepancy is attributed to extra surface roughness provided by the latter procedure.

  6. Evaporation Flux Distribution of Drops on a Hydrophilic or Hydrophobic Flat Surface by Molecular Simulations.

    Science.gov (United States)

    Xie, Chiyu; Liu, Guangzhi; Wang, Moran

    2016-08-16

    The evaporation flux distribution of sessile drops is investigated by molecular dynamic simulations. Three evaporating modes are classified, including the diffusion dominant mode, the substrate heating mode, and the environment heating mode. Both hydrophilic and hydrophobic drop-substrate interactions are considered. To count the evaporation flux distribution, which is position dependent, we proposed an azimuthal-angle-based division method under the assumption of spherical crown shape of drops. The modeling results show that the edge evaporation, i.e., near the contact line, is enhanced for hydrophilic drops in all the three modes. The surface diffusion of liquid molecular absorbed on solid substrate for hydrophilic cases plays an important role as well as the space diffusion on the enhanced evaporation rate at the edge. For hydrophobic drops, the edge evaporation flux is higher for the substrate heating mode, but lower than elsewhere of the drop for the diffusion dominant mode; however, a nearly uniform distribution is found for the environment heating mode. The evidence shows that the temperature distribution inside drops plays a key role in the position-dependent evaporation flux.

  7. Surface Deposition and Phase Behavior of Oppositely Charged Polyion–Surfactant Ion Complexes. Delivery of Silicone Oil Emulsions to Hydrophobic and Hydrophilic Surfaces

    OpenAIRE

    Clauzel, Maryline; Johnson, Eric S.; Nylander, Tommy; Panandiker, Rajan K.; Sivik, Mark R.; Piculell, Lennart

    2011-01-01

    The adsorption from mixed polyelectrolyte–surfactant solutions at hydrophobized silica surfaces was investigated by in situ null-ellipsometry, and compared to similar measurements for hydrophilic silica surfaces. Three synthetic cationic copolymers of varying hydrophobicity and one cationic hydroxyethyl cellulose were compared in mixtures with the anionic surfactant sodium dodecylsulfate (SDS) in the absence or presence of a dilute silicone oil emulsion. The adsorption behavior was mapped whi...

  8. Volatility of Hydrophobicity on the Polluted Surface During Hydrophobicity Transfer%憎水迁移过程中的波动性

    Institute of Scientific and Technical Information of China (English)

    戴罕奇; 梅红伟; 王黎明; 赵晨龙; 贾志东; 关志成

    2014-01-01

    the moisture content in the pollution layer during migration is the main cause for the volatility. Air convection can help to promote drying of the pollution and reduce the fluctuation during hydrophobicity migration. Hydrophobicity on the pollution surface of artificial polluted composite insulators is growing with the increase of migration time overall. However, the feature of fluctuating and the influence of environment on hydrophobicity migration make the single parameter of migration time unable to describe the hydrophobicity strength of pollution layer precisely. In order to improve the equivalence between HTV insulators’ artificial pollution tests and natural pollution tests, more suitable parameters are needed to describe the hydrophobicity state of dirty layer.

  9. Quantitative Flow Field Imaging about a Hydrophobic Sphere Impacting on a Free Surface

    CERN Document Server

    La Foy, Roderick R; Techet, Alexandra H

    2008-01-01

    This fluid dynamics video shows the impact of a hydrophobic sphere impacting a water surface. The sphere has a mass ratio of $m^* =\\rho_s/\\rho_w = 1.15$, a wetting angle of $\\alpha$ = 110$^\\circ$, a diameter of 9.5 mm, and impacts the surface with a Froude number of $Fr = U_o/\\sqrt{gd} = 9.2$. The first sequence shows an impact of a sphere on the free surface illustrating the formation of the splash crown and air cavity. The cavity grows both in the axial and radial direction until it eventually collapses at a point roughly half of the distance from the free surface to the sphere, which is known as the pinch-off point. The second set of videos shows a sphere impacting the free surface under the same conditions using Particle Image Velocimetry (PIV) to quantify the flow field. A laser sheet illuminates the mid-plane of the sphere, and the fluid is seeded with particles whose motion is captured by a high-speed video camera. Velocity fields are then calculated from the images. The video sequences from left to ri...

  10. Protein adsorption on a hydrophobic surface: a molecular dynamics study of lysozyme on graphite.

    Science.gov (United States)

    Raffaini, Giuseppina; Ganazzoli, Fabio

    2010-04-20

    Adsorption of human lysozyme on hydrophobic graphite is investigated through atomistic computer simulations with molecular mechanics (MM) and molecular dynamics (MD) techniques. The chosen strategy follows a simulation protocol proposed by the authors to model the initial and the final adsorption stage on a bare surface. Adopting an implicit solvent and considering 10 starting molecular orientations so that all the main sides of the protein can face the surface, we first carry out an energy minimization to investigate the initial adsorption stage, and then long MD runs of selected arrangements to follow the surface spreading of the protein maximizing its adsorption strength. The results are discussed in terms of the kinetics of surface spreading, the interaction energy, and the molecular size, considering both the footprint and the final thickness of the adsorbed protein. The structural implications of the final adsorption geometry for surface aggregation and nanoscale structural organization are also pointed out. Further MD runs are carried out in explicit water for the native structure and the most stable adsorption state to assess the local stability of the geometry obtained in implicit solvent, and to calculate the statistical distribution of the water molecules around the whole lysozyme and its backbone.

  11. Construction of hydrophobic wood surfaces by room temperature deposition of rutile (TiO2) nanostructures

    International Nuclear Information System (INIS)

    Highlights: • A room temperature method for coating wood surfaces with rutile TiO2 nanostructures. • PFDTS-TiO2 treatment provided a highly hydrophobic wood surface. • PFDTS-TiO2 treatment of the wood decreased the rate of liquid water uptake. • PFDTS-TiO2 treatment delayed the onset of water saturation point of the wood. • This coating method may be applicable to the other forest biopolymer materials. - Abstract: A convenient room temperature approach was developed for growing rutile TiO2 hierarchical structures on the wood surface by direct hydrolysis and crystallization of TiCl3 in saturated NaCl aqueous solution. The morphology and the crystal structure of TiO2 coated on the wood surface were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The TiO2 morphology on the wood surface could be tuned by simply changing either the reaction time or pH value of the reaction mixture. After modification with perfluorodecyltriethoxysilane (PFDTS), the water contact angle (WCA) of the TiO2-treated wood (T1) surface increased to 140.0 ± 4.2°, which indicated a highly hydrophobic wood surface. In addition, compared with untreated control wood, PFDTS-TiO2 treatment (PFDTS-T1-treated) not only reduced liquid water uptake, but also delayed the onset of water saturation point of the wood substrate. The weight change of PFDTS-T1-treated wood after 24 h of water immersion was 19.3%, compared to 81.3% for the untreated control wood. After 867 h of water immersion, the weight change for the treated and untreated wood specimens was 117.1%, and 155.1%, respectively. The untreated control wood reached the steady state after 187 h, while the PFDTS-T1-treated wood did not reach the steady state until after 600 h of immersion

  12. Cell surface hydrophobicity and adherence of a strain of group B streptococci during the post-antibiotic effect of penicillin Hidrofobicidade de superfície celular e aderência de uma estirpe de estreptococos do grupo B durante o efeito pós-antibiótico da penicilina

    Directory of Open Access Journals (Sweden)

    Ângela Maria Mendes Araújo

    2008-08-01

    Full Text Available The minimum inhibitory concentration and post-antibiotic effects of an antimicrobial agent are parameters to be taken into consideration when determining its dosage schedules. The in vitro post-antibiotic effects on cell surface hydrophobicity and bacterial adherence were examined in one strain of group B streptococci. Exposure of the microorganism for 2 h at 37 °C to 1 x MIC of penicillin induced a PAE of 1.1 h. The cell surface charge of the Streptococcus was altered significantly during the post-antibiotic phase as shown by its ability to bind to xylene: hydrophobicity was decreased. Bacterial adherence to human buccal epithelial cells was also reduced. The results of the present investigation indicate that studies designed to determine therapeutic regimens should evaluate the clinical significance of aspects of bacterial physiology during the post-antibiotic period.A concentração mínima inibitória e os efeitos pós-antibióticos (EPA de um agente antimicrobiano são parâmetros que devem ser levados em consideração quando da determinação do esquema de dosagem. Os efeitos pós-antibióticos in vitro na hidrofobicidade de superfície celular e na aderência foram pesquisados em uma amostra de estreptococos do grupo B. A exposição do microrganismo por 2 h a 37 °C a 1 x CMI de penicilina induziu um EPA de 1,1 h. A carga da superfície celular da bactéria foi alterada significativamente durante a fase pós-antibiótica revelada através da capacidade de ligação ao xileno, indicada pela diminuição da hidrofobicidade. A aderência bacteriana às células epiteliais bucais humanas também foi reduzida. Os resultados da investigação demonstram que estudos clínicos destinados a determinar regimes terapêuticos deveriam incluir o conhecimento da fisiologia bacteriana durante o período pós-antibiótico.

  13. Synthesis of highly hydrophobic floating magnetic polymer nanocomposites for the removal of oils from water surface

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mudan, E-mail: chenmudan@163.com [National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing 210094 (China); Jiang, Wei, E-mail: climentjw@126.com [National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing 210094 (China); Wang, Fenghe [Department of Environmental Science and Engineering, Nanjing Normal University, Nanjing 210023 (China); Shen, Ping; Ma, Peichang; Gu, Junjun; Mao, Jianyu; Li, Fengsheng [National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2013-12-01

    The removal of organic contaminants, particularly oil spills from water surface is of great technological importance for environmental protection. In this article, we present a novel, economic and environment-friendly core–shell composite material based on magnetic hollow Fe{sub 3}O{sub 4} nanoparticles (MNPs) that was fabricated by two-step process, which can fast and efficiently separate oils from water surface under a magnetic field. The magnetic Fe{sub 3}O{sub 4} nanoparticles (MNPs) were coated with a polystyrene layer successfully to form water-repellent and oil-absorbing surfaces, which could float on water and selectively absorb lubricating oil up to 3 times of the particles’ weight while completely repelling water. More importantly, the oils could be readily removed from the surfaces of nanocomposites by a simple treatment and the nanocomposites still kept highly hydrophobic and superoleophilic characteristics, so the nanocomposites have an excellent recyclability in the oil-absorbent capacity. Several techniques such as transmission electron microscope (TEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA) were used in the characterization of the materials. In addition, magnetic force and oils removal capability tests were also performed. It will open up a potential and broad application in wastewater treatment.

  14. Synthesis of highly hydrophobic floating magnetic polymer nanocomposites for the removal of oils from water surface

    International Nuclear Information System (INIS)

    The removal of organic contaminants, particularly oil spills from water surface is of great technological importance for environmental protection. In this article, we present a novel, economic and environment-friendly core–shell composite material based on magnetic hollow Fe3O4 nanoparticles (MNPs) that was fabricated by two-step process, which can fast and efficiently separate oils from water surface under a magnetic field. The magnetic Fe3O4 nanoparticles (MNPs) were coated with a polystyrene layer successfully to form water-repellent and oil-absorbing surfaces, which could float on water and selectively absorb lubricating oil up to 3 times of the particles’ weight while completely repelling water. More importantly, the oils could be readily removed from the surfaces of nanocomposites by a simple treatment and the nanocomposites still kept highly hydrophobic and superoleophilic characteristics, so the nanocomposites have an excellent recyclability in the oil-absorbent capacity. Several techniques such as transmission electron microscope (TEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA) were used in the characterization of the materials. In addition, magnetic force and oils removal capability tests were also performed. It will open up a potential and broad application in wastewater treatment.

  15. Improvement of dropwise condensation heat transfer using hydrophobic nano porous surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Eun; Kim, Hyun Dae [Kyung Hee Univ., Seoul (Korea, Republic of)

    2012-10-15

    Recently interest of passive system in thermal hydraulic safety system of nuclear power plants has been increased. Passive residual heat removal system (PRHRS) is applied to SMART and APR+ for providing the sufficient cooling capacity against accident conditions. PRHRS is a device for removing the decay heat that cools steam through condensation heat transfer in emergency tank. Condensation is one of most important heat transfer methods in almost industry including the PRHRS. Condensation is classified, according to shape of condensate, into drop-wise condensation and film wise condensation. Drop-wise condensation (DWC) exhibits a significantly higher heat transfer coefficient than film wise condensation (FWC). Whether DWC or FWC occurs in a heat transfer surface is strongly affected by wettability of a surface. It is known that DWC is appears on low wettability surfaces while FWC is appears on high wettability one. In this study, nano-porous hydrophobic surfaces were prepared and tested for the improvement of dropwise condensation heat transfer performance.

  16. Hydrophobic high surface area zeolites derived from fly ash for oil spill remediation.

    Science.gov (United States)

    Sakthivel, Tamilselvan; Reid, David L; Goldstein, Ian; Hench, Larry; Seal, Sudipta

    2013-06-01

    Fly ash, a coal combustion byproduct with a predominantly aluminosilicate composition, is modified to develop an inexpensive sorbent for oil spill remediation. The as-produced fly ash is a hydrophilic material with poor sorption capacity. A simple two-step chemical modification process is designed to improve the oil sorption capacity. First, the fly ash was transformed to a zeolitic material via an alkali treatment, which increased the specific surface area up to 404 m(2) g(-1). Then, the material was surface functionalized to form a hydrophobic material with high contact angle up to 147° that floats on the surface of an oil-water mixture. The reported oil sorption capacities of X-type zeolite sorbent with different surface functionalization (propyl-, octyl-, octadecyl-trimethoxysilane and esterification) were estimated to 1.10, 1.02, 0.86, and 1.15 g g(-1), respectively. Oil sorption was about five times higher than the as-received fly ash (0.19 g g(-1)) and also had high buoyancy critical for economic cleanup of oil over water.

  17. Synthesis of highly hydrophobic floating magnetic polymer nanocomposites for the removal of oils from water surface

    Science.gov (United States)

    Chen, Mudan; Jiang, Wei; Wang, Fenghe; Shen, Ping; Ma, Peichang; Gu, Junjun; Mao, Jianyu; Li, Fengsheng

    2013-12-01

    The removal of organic contaminants, particularly oil spills from water surface is of great technological importance for environmental protection. In this article, we present a novel, economic and environment-friendly core-shell composite material based on magnetic hollow Fe3O4 nanoparticles (MNPs) that was fabricated by two-step process, which can fast and efficiently separate oils from water surface under a magnetic field. The magnetic Fe3O4 nanoparticles (MNPs) were coated with a polystyrene layer successfully to form water-repellent and oil-absorbing surfaces, which could float on water and selectively absorb lubricating oil up to 3 times of the particles’ weight while completely repelling water. More importantly, the oils could be readily removed from the surfaces of nanocomposites by a simple treatment and the nanocomposites still kept highly hydrophobic and superoleophilic characteristics, so the nanocomposites have an excellent recyclability in the oil-absorbent capacity. Several techniques such as transmission electron microscope (TEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA) were used in the characterization of the materials. In addition, magnetic force and oils removal capability tests were also performed. It will open up a potential and broad application in wastewater treatment.

  18. Hydrophobicity Patterning of Gas Diffusion Media for Polymer Electrolyte Fuel Cells

    OpenAIRE

    Biswas, Indro; Gazdzicki, Pawel; Tomas, Martin; Schulze, Mathias

    2014-01-01

    Polymer electrolyte fuel cells with their high gravimetric energy density face a water balance problem especially under variable loads, e.g. in automotive conditions: The excess product water needs to be removed from the fuel cell while maintaining a humidifed membrane. The gas diffusion layer, which also provides contact to the electro- chemically active components, has to achieve the passive management of the water balance. Heterogeneously hydrophobic gas diffusion media ...

  19. Oil and gas pipelines with hydrophobic surfaces better equipped to deal with gas hydrate flow assurance issues

    DEFF Research Database (Denmark)

    Perfeldt, Christine Malmos; Sharifi, Hassan; von Solms, Nicolas;

    2015-01-01

    Gas hydrate deposition can cause plugging in oil and gas pipelines with resultant flow assurance challenges. Presently, the energy industry uses chemical additives in order to manage hydrate formation, however these chemicals are expensive and may be associated with safety and environmental...... crystallizer. This indicates that 10 to 14 times less KHI is needed in the presence of a hydrophobically coated surface. These experimental studies suggest that the use of hydrophobic surfaces or pipelines could serve as an alternative or additional flow assurance approach for gas hydration mitigation...

  20. Towards increased selectivity of drug delivery to cancer cells: development of a LDL-based nanodelivery system for hydrophobic photosensitizers

    Science.gov (United States)

    Buzova, Diana; Huntosova, Veronika; Kasak, Peter; Petrovajova, Dana; Joniova, Jaroslava; Dzurova, Lenka; Nadova, Zuzana; Sureau, Franck; Midkovsky, Pavol; Jancura, Daniel

    2012-10-01

    Low-density lipoproteins (LDL), a natural in vivo carrier of cholesterol in the vascular system, play a key role in the delivery of hydrophobic photosensitizers (pts) to tumor cells in photodynamic therapy (PDT) of cancer. To make this delivery system even more efficient, we have constructed a nano-delivery system by coating of LDL surface by polyethylene glycol (PEG) and dextran. Fluorescence spectroscopy and confocal fluorescence imaging were used to characterize redistribution of hypericin (Hyp), a natural potent pts, loaded in LDL/PEG and LDL/dextran complexes to free LDL molecules as well as to monitor cellular uptake of Hyp by U87-MG cells. It was shown than the redistribution process of Hyp between LDL molecules is significantly suppressed by dextran coating of LDL surface. On the other hand, PEG does not significantly influence this process. The modification of LDL molecules by the polymers does not inhibit their recognition by cellular LDL receptors. U-87 MG cellular uptake of Hyp loaded in LDL/PEG and LDL/dextran complexes appears to be similar to that one observed for Hyp transported by unmodified LDL particles. It is proposed that by polymers modified LDL molecules could be used as a basis for construction of a drug transport system for targeted delivery of hydrophobic drugs to cancer cells expressing high level of LDL receptors.

  1. Switchable Super-Hydrophilic/Hydrophobic Indium Tin Oxide (ITO) Film Surfaces on Reactive Ion Etching (RIE) Textured Si Wafer.

    Science.gov (United States)

    Kim, Hwa-Min; Litao, Yao; Kim, Bonghwan

    2015-11-01

    We have developed a surface texturing process for pyramidal surface features along with an indium tin oxide (ITO) coating process to fabricate super-hydrophilic conductive surfaces. The contact angle of a water droplet was less than 5 degrees, which means that an extremely high wettability is achievable on super-hydrophilic surfaces. We have also fabricated a super-hydrophobic conductive surface using an additional coating of polytetrafluoroethylene (PTFE) on the ITO layer coated on the textured Si surface; the ITO and PTFE films were deposited by using a conventional sputtering method. We found that a super-hydrophilic conductive surface is produced by ITO coated on the pyramidal Si surface (ITO/Si), with contact angles of approximately 0 degrees and a resistivity of 3 x 10(-4) Ω x cm. These values are highly dependent on the substrate temperature during the sputtering process. We also found that the super-hydrophobic conductive surface produced by the additional coating of PTFE on the pyramidal Si surface with an ITO layer (PTFE/ITO/Si) has a contact angle of almost 160 degrees and a resistivity of 3 x 10(-4) Ω x cm, with a reflectance lower than 9%. Therefore, these processes can be used to fabricate multifunctional features of ITO films for switchable super-hydrophilic and super-hydrophobic surfaces. PMID:26726545

  2. Toward a Molecular Understanding of the Mechanism of Cryopreservation by Polyampholytes: Cell Membrane Interactions and Hydrophobicity.

    Science.gov (United States)

    Rajan, Robin; Hayashi, Fumiaki; Nagashima, Toshio; Matsumura, Kazuaki

    2016-05-01

    Cryopreservation enables long-term preservation of cells at ultralow temperatures. Current cryoprotective agents (CPAs) have several limitations, making it imperative to develop CPAs with advanced properties. Previously, we developed a novel synthetic polyampholyte-based CPA, copolymer of 2-(dimethylamino)ethyl methacrylate (DMAEMA) and methacrylic acid(MAA) (poly(MAA-DMAEMA)), which showed excellent efficiency and biocompatibility. Introduction of hydrophobicity increased its efficiency significantly. Herein, we investigated the activity of other polyampholytes. We prepared two zwitterionic polymers, poly(sulfobetaine) (SPB) and poly(carboxymethyl betaine) (CMB), and compared their efficiency with poly(MAA-DMAEMA). Poly-SPB showed only intermediate property and poly-CMB showed no cryoprotective property. These data suggested that the polymer structure strongly influences cryoprotection, providing an impetus to elucidate the molecular mechanism of cryopreservation. We investigated the mechanism by studying the interaction of polymers with cell membrane, which allowed us to identify the interactions responsible for imparting different properties. Results unambiguously demonstrated that polyampholytes cryopreserve cells by strongly interacting with cell membrane, with hydrophobicity increasing the affinity for membrane interaction, which enables it to protect the membrane from various freezing-induced damages. Additionally, cryoprotective polymers, especially their hydrophobic derivatives, inhibit the recrystallization of ice, thus averting cell death. Hence, our results provide an important insight into the complex mechanism of cryopreservation, which might facilitate the rational design of polymeric CPAs with improved efficiency. PMID:27077533

  3. Tolerance of a protein to multiple polar-to-hydrophobic surface substitutions.

    OpenAIRE

    Cordes, M. H.; Sauer, R T

    1999-01-01

    Hydrophobic substitutions at solvent-exposed positions in two alpha-helical regions of the bacteriophage P22 Arc repressor were introduced by combinatorial mutagenesis. In helix A, hydrophobic residues were tolerated individually at each of the five positions examined, but multiple substitutions were poorly tolerated as shown by the finding that mutants with more than two additional hydrophobic residues were biologically inactive. Several inactive helix A variants were purified and found to h...

  4. Super-mercuryphobic and hydrophobic diamond surfaces with hierarchical structures: Vanishment of the contact angle hysteresis with mercury

    International Nuclear Information System (INIS)

    Increased roughness is known to enhance the natural wetting properties of surfaces, making them either more hydrophobic or more hydrophilic. In this work we study the wetting properties of water and mercury drops in contact with boron doped diamond films with progressively increased surface roughnesses. We show how thermal oxidation of a microcrystalline film creates pyramids decorated with sub-micron protrusions that turn its naturally mercuryphobic surface into super-mercuryphobic. With this liquid, we observe the vanishment of the contact angle hysteresis that is expected for rough surfaces as the contact angle approaches 180, making small drops of mercury roll along out of the surface at an apparent zero tilt-angle. In contrast, the incorporation of nano-globules on the oxidized surface through a silanization process is necessary to increase the hydrophobic properties of the film for which the contact angle with water reaches 138°. The wetting states that dominate in each case are discussed.

  5. Fabrication of hydrophobic surface of titanium dioxide films by successive ionic layer adsorption and reaction (SILAR) method

    International Nuclear Information System (INIS)

    Titanium dioxide (TiO2) films were fabricated on fluorine doped tin oxide (FTO) coated glass substrate using successive ionic layer adsorption and reaction (SILAR) method. The X-ray diffraction, scanning electron microscopy, transmission electron microscopy, optical absorption and contact angle measurement were applied to study the structural, surface morphological, optical and surface wettability properties of the as-deposited and annealed TiO2 films. The X-ray diffraction studies revealed both as-deposited and annealed TiO2 films are amorphous. Irregular shaped spherical grains of random size and well covered to the fluorine doped tin oxide coated glass substrates were observed from SEM studies with some cracks after annealing. The optical band gap values of virgin TiO2, annealed, methyl violet and rose bengal sensitized TiO2 were found to be 3.6, 3.5, 2.87 and 2.95 eV, respectively. Surface wettability studied in contact with liquid interface, showed hydrophobic nature as water contact angles were greater than 90 deg. The adsorption of dyes, as confirmed by the photographs, is one of the prime requirements for dye sensitized solar cells (DSSC).

  6. Switchable hydrophobic/hydrophilic surface of electrospun poly (L-lactide) membranes obtained by CF4 microwave plasma treatment

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • A facile method to control the surface wettability of electrospun poly (L-lactide) microfibrous membranes via CF4 microwave plasma treatment. • The etching and grafting process synergistically affected the final surface wettability of poly (L-lactide) membranes. • Both hydrophobic and hydrophilic surface could be obtained by adjusting the plasma power and treatment time during the CF4 plasma treatment. - Abstract: A switchable surface that promotes either hydrophobic or hydrophilic wettability of poly (L-lactide) (PLLA) microfibrous membranes is obtained by CF4 microwave plasma treatment in this paper. The results indicated that both etching and grafting process occurred during the CF4 plasma treatment and these two factors synergistically affected the final surface wettability of PLLA membranes. When plasma treatment was taken under a relatively low power, the surface wettability of PLLA membranes turned from hydrophobic to hydrophilic. Especially when CF4 plasma treatment was taken under 100 W for 10 min and 150 W for 5 min, the water contact angle sharply decreased from 116 ± 3.0° to ∼0°. According to Field-emission scanning electron microscopy (FESEM) results, the PLLA fibers were notably etched by CF4 plasma treatment. Combined with the X-ray photoelectron spectroscopy (XPS) measurements, only a few fluorine-containing groups were grafted onto the surface, so the etching effect directly affected the surface wettability of PLLA membranes in low plasma power condition. However, with the plasma power increasing to 200 W, the PLLA membrane surface turned to hydrophobic again. In contrast, the morphology changes of PLLA fiber surfaces were not obvious while a large number of fluorine-containing groups grafted onto the surface. So the grafting effect gradually became the major factor for the final surface wettability

  7. The five Ws (and one H) of super-hydrophobic surfaces in medicine

    KAUST Repository

    Gentile, F.

    2014-05-05

    Super-hydrophobic surfaces (SHSs) are bio-inspired, artificial microfabricated interfaces, in which a pattern of cylindrical micropillars is modified to incorporate details at the nanoscale. For those systems, the integration of different scales translates into superior properties, including the ability of manipulating biological solutions. The five Ws, five Ws and one H or the six Ws (6W), are questions, whose answers are considered basic in information-gathering. They constitute a formula for getting the complete story on a subject. According to the principle of the six Ws, a report can only be considered complete if it answers these questions starting with an interrogative word: who, why, what, where, when, how. Each question should have a factual answer. In what follows, SHSs and some of the most promising applications thereof are reviewed following the scheme of the 6W. We will show how these surfaces can be integrated into bio-photonic devices for the identification and detection of a single molecule. We will describe how SHSs and nanoporous silicon matrices can be combined to yield devices with the capability of harvesting small molecules, where the cut-off size can be adequately controlled. We will describe how this concept is utilized for obtaining a direct TEM image of a DNA molecule. 2014 by the authors; licensee MDPI, Basel, Switzerland.

  8. The Five Ws (and one H of Super-Hydrophobic Surfaces in Medicine

    Directory of Open Access Journals (Sweden)

    Francesco Gentile

    2014-05-01

    Full Text Available Super-hydrophobic surfaces (SHSs are bio-inspired, artificial microfabricated interfaces, in which a pattern of cylindrical micropillars is modified to incorporate details at the nanoscale. For those systems, the integration of different scales translates into superior properties, including the ability of manipulating biological solutions. The five Ws, five Ws and one H or the six Ws (6W, are questions, whose answers are considered basic in information-gathering. They constitute a formula for getting the complete story on a subject. According to the principle of the six Ws, a report can only be considered complete if it answers these questions starting with an interrogative word: who, why, what, where, when, how. Each question should have a factual answer. In what follows, SHSs and some of the most promising applications thereof are reviewed following the scheme of the 6W. We will show how these surfaces can be integrated into bio-photonic devices for the identification and detection of a single molecule. We will describe how SHSs and nanoporous silicon matrices can be combined to yield devices with the capability of harvesting small molecules, where the cut-off size can be adequately controlled. We will describe how this concept is utilized for obtaining a direct TEM image of a DNA molecule.

  9. Analysis of the effect of hydrophobic properties of surfaces in the flow part of centrifugal pumps on their operational performance

    Science.gov (United States)

    Volkov, A. V.; Parygin, A. G.; Lukin, M. V.; Ryzhenkov, A. V.; Khovanov, G. P.; Naumov, A. V.; Soukal, J.; Pochyly, F.; Fialova, S.

    2015-11-01

    The results of experimental studies focused on evaluating the effect of different conditions of wetting of functional surfaces in flow parts of centrifugal pumps (specifically, impellers) used in heat- and watersupply systems on their operational performance are presented. The conditions of interaction of the pumped medium with the impeller surfaces were altered through hydrophobization of functional surfaces that was implemented using the techniques developed at the Moscow Power Engineering Institute and the Brno University of Technology. It is demonstrated that this hydrophobization produced a considerable positive effect and raised the efficiency of pump units based on centrifugal KM pumps of three different form factors produced by ZAO Pompa (Shchelkovo) and a K centrifugal pump produced by Sigma. The efficiency was increased by 2-6% depending on the pump model. The results of experimental studies of the effect of hydrophobization of the surface of a canonical plate-type domain with a working medium flowing longitudinally along it in a hydrodynamic bed (Moscow Power Engineering Institute) are detailed. Two flat plates with a length of 250 mm and a width of 252 mm were studied. The surfaces of these plates had different roughness values, since one of the plates was polished prior to hydrophobization. Different wetting conditions, which were monitored by measuring the contact angle with a KRUSS MobileDrop goniometer, were established after hydrophobization. The obtained experimental data showed that the surface friction of the modified plate with a higher initial roughness (unpolished plate) was reduced by as much as 23%. This result agrees completely with the Cassie hypothesis.

  10. On the stability of the polymer brushes formed by adsorption of Ionomer Complexes on hydrophilic and hydrophobic surfaces

    NARCIS (Netherlands)

    Brzozowska, A. M.; Spruijt, E.; de Keizer, A.; Stuart, M. A. Cohen; Norde, W.

    2011-01-01

    We have studied the effect of normal forces and shear forces on the stability and functionality of a polymer brush layer formed upon adsorption of polymeric micelles on hydrophilic and hydrophobic surfaces. The micelles consist of oppositely charged polyelectrolyte blocks (poly(acrylic acid) and pol

  11. Study on hierarchical structured PDMS for surface super-hydrophobicity using imprinting with ultrafast laser structured models

    Science.gov (United States)

    Liu, Bin; Wang, Wenjun; Jiang, Gedong; Mei, Xuesong; Wang, Zibao; Wang, Kedian; Cui, Jianlei

    2016-02-01

    We report a simple and inexpensive method for producing super-hydrophobic surfaces through direct replication of micro/nano-structures on polydimethylsiloxane (PDMS) from a replication master prepared by ultrafast-laser texturing process. Gratings were obtained on 304L stainless steel plate using picosecond laser ablation. It has been used as a master with grating areas of different structural features. PDMS negative replica was prepared from the masters, and PDMS positive replica was prepared from the negative replica thereafter. Wettability of samples of the steel master, negative and positive replicas was distinguished using the apparent contact angle (CA) of water drop. Relationships between the CAs on three kinds of samples and structural features were presented. Super-hydrophobic behavior with self-cleaning, exhibited by a water contact angle of 164.5° and sliding angle of 8.44°, was observed on the PDMS negative replica surface. The negative and positive replicas were sputtered on gold films, which were used to metalized PDMS and eliminate the submicron/nano-structures in hierarchical structures. Results prove that submicro/nano-structures of hierarchical structures enhance the hydrophobicity of material surface remarkably. This replication method can be applied for large scale production of micro/nano textured super-hydrophobic surfaces for commercial applications.

  12. Effects of DNP on the cell surface properties of marine bacteria and its implication for adhesion to surfaces

    Digital Repository Service at National Institute of Oceanography (India)

    Jain, A.; Nishad, K.K.; Bhosle, N.B.

    The effect of 2, 4-dinitrophenol (DNP) on extracelluar polysaccharides (EPS), cell surface charge, and hydrophobicity of six marine bacterial cultures was studied, and its influence on attachment of these bacteria to glass and polystyrene...

  13. Nisin-activated hydrophobic and hydrophilic surfaces: assessment of peptide adsorption and antibacterial activity against some food pathogens.

    Science.gov (United States)

    Karam, Layal; Jama, Charafeddine; Mamede, Anne-Sophie; Boukla, Samir; Dhulster, Pascal; Chihib, Nour-Eddine

    2013-12-01

    An effective antimicrobial packaging or food contact surface should be able to kill or inhibit micro-organisms that cause food-borne illnesses. Setting up such systems, by nisin adsorption on hydrophilic and hydrophobic surfaces, is still a matter of debate. For this purpose, nisin was adsorbed on two types of low-density polyethylene: the hydrophobic native film and the hydrophilic acrylic acid-treated surface. The antibacterial activity was compared for those two films and it was highly dependent on the nature of the surface and the nisin-adsorbed amount. The hydrophilic surfaces presented higher antibacterial activity and higher amount of nisin than the hydrophobic surfaces. The effectiveness of the activated surfaces was assessed against Listeria innocua and the food pathogens Listeria monocytogenes, Bacillus cereus, and Staphylococcus aureus. S. aureus was more sensitive than the three other test bacteria toward both nisin-functionalized films. Simulation tests to mimic refrigerated temperature showed that the films were effective at 20 and 4 °C with no significant difference between the two temperatures after 30 min of exposure to culture media.

  14. Physical study on Cobalt-Indium Co-doped ZnO nanofilms as hydrophobic surfaces

    Science.gov (United States)

    Mimouni, R.; Mahdhi, N.; Boubaker, K.; Madouri, A.; Amlouk, M.

    2016-03-01

    The present work reports some physical investigations on (Co,In) codoped zinc oxide nanofilms deposited on glass substrates at 460 °C by the spray pyrolysis technique. The effect of Co and In concentration on the structural, morphological, optical and surface wettability properties have been investigated using X-ray diffraction (XRD) patterns, Raman spectroscopy, SEM, optical measurement, photoluminescence spectroscopy as well as the measurement of hydrophobicity in terms of water contact angle. It is found that all films crystallized in würtzite ZnO phase, with a preferentially orientation towards (002) direction parallel to c-axis. The Raman spectra of the samples exhibit the presence of E2high characteristic mode of würtzite structure with high crystallinity as well as two dominant bands 1LO and 2LO. Also, no additional modes introduced by codopoing have been found. SEM micrographs show the uniform deposition of fine grains on surface films. Thicknesses of films are less than 100 nm. In addition, optical investigations indicate that the band gap narrowing of (Co,In) codoped ZnO thin films is due to the increase in the band tail width. Indeed, PL study indicates that (Co,In) codoped ZnO nanofilms exhibit a large decrease of the UV luminescence, which is assigned to the trapping of photo-generated electrons by both In3+ and Co2+ ions as well as an improvement of charge separation in the ZnO thin films. Finally, the (Co,In) codoping influences the surface wettability property and transform the ZnO character from hydrophilic (θ 90°) for (Co,In) codoped ZnO ones.

  15. Elaboration of highly hydrophobic polymeric surface — a potential strategy to reduce the adhesion of pathogenic bacteria?

    Energy Technology Data Exchange (ETDEWEB)

    Poncin-Epaillard, F., E-mail: fabienne.poncin-epaillard@univ-lemans.fr [Institut des Molécules et Matériaux du Mans (IMMM), département Polymères, Colloïdes et Interfaces, UMR CNRS 6283 Université LUNAM, av. O. Messiaen, 72085 Le Mans (France); Herry, J.M. [INRA-AgroParisTech, UMR 1319 MICALIS, équipe B2HM, 25 avenue de la République, 91300 Massy (France); Marmey, P.; Legeay, G. [CTTM, 20 rue Thalès de Milet 72000 Le Mans (France); Debarnot, D. [Institut des Molécules et Matériaux du Mans (IMMM), département Polymères, Colloïdes et Interfaces, UMR CNRS 6283 Université LUNAM, av. O. Messiaen, 72085 Le Mans (France); Bellon-Fontaine, M.N. [INRA-AgroParisTech, UMR 1319 MICALIS, équipe B2HM, 25 avenue de la République, 91300 Massy (France)

    2013-04-01

    Different polymeric surfaces have been modified in order to reach a high hydrophobic character, indeed the superhydrophobicity property. For this purpose, polypropylene and polystyrene have been treated by RF or μwaves CF{sub 4} plasma with different volumes, the results were compared according to the density of injected power. The effect of pretreatment such as mechanical abrasion or plasma activation was also studied. The modified surfaces were shown as hydrophobic, or even superhydrophobic depending of defects density. They were characterized by measurement of wettability and roughness at different scales, i.e. macroscopic, mesoscopic and atomic. It has been shown that a homogeneous surface at the macroscopic scale could be heterogeneous at lower mesoscopic scale. This was associated with the crystallinity of the material. The bioadhesion tests were performed with Gram positive and negative pathogenic strains: Listeria monocytogenes, Pseudomonas aeruginosa and Hafnia alvei. They have demonstrated an antibacterial efficiency of very hydrophobic and amorphous PS treated for all strains tested and a strain-dependent efficiency with modified PP surface being very heterogeneous at the mesoscopic scale. Thus, these biological results pointed out not only the respective role of the surface chemistry and topography in bacterial adhesion, but also the dependence on the peaks and valley distribution at bacteria dimension scale. Highlights: ► Simple, eco-friendly modification of polymers leading to highly hydrophobic property ► Plasma treatment inducing surface fluorination and roughness ► Study of non-adhesion of different types of bacteria onto such polymeric surfaces ► Dependence of their non-adhesion on surface topography whatever their characteristics.

  16. Elaboration of highly hydrophobic polymeric surface — a potential strategy to reduce the adhesion of pathogenic bacteria?

    International Nuclear Information System (INIS)

    Different polymeric surfaces have been modified in order to reach a high hydrophobic character, indeed the superhydrophobicity property. For this purpose, polypropylene and polystyrene have been treated by RF or μwaves CF4 plasma with different volumes, the results were compared according to the density of injected power. The effect of pretreatment such as mechanical abrasion or plasma activation was also studied. The modified surfaces were shown as hydrophobic, or even superhydrophobic depending of defects density. They were characterized by measurement of wettability and roughness at different scales, i.e. macroscopic, mesoscopic and atomic. It has been shown that a homogeneous surface at the macroscopic scale could be heterogeneous at lower mesoscopic scale. This was associated with the crystallinity of the material. The bioadhesion tests were performed with Gram positive and negative pathogenic strains: Listeria monocytogenes, Pseudomonas aeruginosa and Hafnia alvei. They have demonstrated an antibacterial efficiency of very hydrophobic and amorphous PS treated for all strains tested and a strain-dependent efficiency with modified PP surface being very heterogeneous at the mesoscopic scale. Thus, these biological results pointed out not only the respective role of the surface chemistry and topography in bacterial adhesion, but also the dependence on the peaks and valley distribution at bacteria dimension scale. Highlights: ► Simple, eco-friendly modification of polymers leading to highly hydrophobic property ► Plasma treatment inducing surface fluorination and roughness ► Study of non-adhesion of different types of bacteria onto such polymeric surfaces ► Dependence of their non-adhesion on surface topography whatever their characteristics

  17. Molecular dynamics simulations of the nano-droplet impact process on hydrophobic surfaces

    International Nuclear Information System (INIS)

    Large-scale molecular dynamics simulations are used to study the dynamic processes of a nano-droplet impacting on hydrophobic surfaces at a microscopic level. Both the impact phenomena and the velocity distributions are recorded and analyzed. According to the simulation results, similar phenomena are obtained to those in macro-experiments. Impact velocity affects the spread process to a greater degree than at a level of contact angle when the velocity is relatively high. The velocity distribution along the X axis during spread is wave-like, either W- or M-shaped, and the velocity at each point is oscillatory; while the edges have the highest spread velocity and there are crests in the distribution curve which shift toward the edges over time. The distribution along the Y axis is <- or >-shaped, and the segments above the middle have the lowest decrease rate in the spreading process and the highest increase rate in the retraction process. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  18. Fabrication of hydrophobic polymer foams with double acid sites on surface of macropore for conversion of carbohydrate.

    Science.gov (United States)

    Pan, Jianming; Mao, Yanli; Gao, Heping; Xiong, Qingang; Qiu, Fengxian; Zhang, Tao; Niu, Xiangheng

    2016-06-01

    Herein we reported a simple and novel synthetic strategy for the fabrication of two kinds of hydrophobic polymer foam catalysts (i.e. Cr(3+)-HPFs-1-H(+) and HPFs-1-H(+)) with hierarchical porous structure, inhomogeneous acidic composition and Lewis-Brønsted double acid sites distributed on the surface, which was used to one-pot conversion of carbohydrate (such as cellulose, glucose and fructose) to a key chemical platform (i.e. 5-hydroxymethylfurfural, HMF). The water-in-oil (W/O) high internal phase emulsions (HIPEs), stabilized by both Span 80 and acidic prepolymers as analogous particles offered the acidic actives, were used as the template for simultaneous polymerization of oil phase in the presence of divinylbenzene (DVB) and styrene (St). After subsequent ion-exchange process, Lewis and Brønsted acid sites derived from exchanged Cr(3+) and H(+) ion were both fixed on the surface of cell of the catalysts. The HPFs-1-H(+) and Cr(3+)-HPFs-1-H(+) had similar hierarchical porous, hydrophobic surface and acid sites (HPFs-1-H(+) with macropores ranging from 0.1 μm to 20 μm, uniform mesopores in 14.4 nm, water contact angle of 122° and 0.614 mmolg(-1) of Brønsted acid sites, as well as Cr(3+)-HPFs-1-H(+) with macropores ranging from 0.1 μm to 20 μm, uniform mesopores in 13.3 nm, water contact angle of 136° and 0.638 mmolg(-1) of Lewis-Brønsted acid sites). It was confirmed that Lewis acid sites of catalyst had a slight influence on the HMF yield of fructose came from the function of Brønsted acid sites, and Lewis acid sites were in favor of improving the HMF yield from cellulose and glucose. This work opens up a simple and novel route to synthesize multifunctional polymeric catalysts for efficient one-pot conversion of carbohydrate to HMF. PMID:27083362

  19. Hydrophobic Organic Hole Transporters for Improved Moisture Resistance in Metal Halide Perovskite Solar Cells.

    Science.gov (United States)

    Leijtens, Tomas; Giovenzana, Tommaso; Habisreutinger, Severin N; Tinkham, Jonathan S; Noel, Nakita K; Kamino, Brett A; Sadoughi, Golnaz; Sellinger, Alan; Snaith, Henry J

    2016-03-01

    Solar cells based on organic-inorganic perovskite semiconductor materials have recently made rapid improvements in performance, with the best cells performing at over 20% efficiency. With such rapid progress, questions such as cost and solar cell stability are becoming increasingly important to address if this new technology is to reach commercial deployment. The moisture sensitivity of commonly used organic-inorganic metal halide perovskites has especially raised concerns. Here, we demonstrate that the hygroscopic lithium salt commonly used as a dopant for the hole transport material in perovskite solar cells makes the top layer of the devices hydrophilic and causes the solar cells to rapidly degrade in the presence of moisture. By using novel, low cost, and hydrophobic hole transporters in conjunction with a doping method incorporating a preoxidized salt of the respective hole transporters, we are able to prepare efficient perovskite solar cells with greatly enhanced water resistance. PMID:26859777

  20. Fast fabrication of super-hydrophobic surfaces on polypropylene by replication of short-pulse laser structured molds

    Science.gov (United States)

    Bekesi, J.; Kaakkunen, J. J. J.; Michaeli, W.; Klaiber, F.; Schoengart, M.; Ihlemann, J.; Simon, P.

    2010-06-01

    A new two-step method, facilitating the rapid generation of super-hydrophobic surface structures via parallel laser processing followed by a replica generation by injection molding is reported. A self-made fused silica-based diffractive optical element (DOE) is applied to distribute the laser energy into a 25×25 dot matrix. This DOE is used as a transmission mask for surface ablation of metal molds, applying short-pulse UV laser pulses. In a subsequent process step, replicas of the processed stamp are produced by variothermal injection molding, enabling the mass production of the surface pattern on plastics parts. The resulting topography facilitates a super-hydrophobic behavior of the fabricated components.

  1. Role of metal ions of Langmuir–Blodgett film in hydrophobic to hydrophilic transition of HF-treated Si surface

    International Nuclear Information System (INIS)

    Highlights: ► Investigation of stability of wet chemically prepared H–Si surface under high pH solution. ► Investigation of hydrophobicity and hydrophilicity of surface by studying structure of LB film. ► Investigation of role of metal containing headgroups of Langmuir–Blodgett film in oxidation. ► Hydrophobic to hydrophilic transition of substrate in proximity of LB film. - Abstract: Hydrophobic to hydrophilic transition of HF-treated Si surface strongly depends upon the metal ions, which are present in the headgroups of the deposited Langmuir–Blodgett (LB) film. Structure of LB films studied by X-ray reflectivity technique and chemical analysis of LB film–substrate interfaces studied by X-ray photoelectron spectroscopy combinedly suggest that the partial transition or partial oxidation of the HF-treated Si surface takes place under the subphase water but further transition or oxidation is possible only in the presence of metal ions. Electrovalent and covalent natures of the metal ions tune this transition or oxidation. Ni ions, for which bonding with headgroups are electrovalent in nature, are favorable for such transition/oxidation and as a result, complete transition/oxidation takes place when nickel arachidate LB film is deposited. On the other hand, Cd ions, for which bonding with headgroups show covalent nature, is not favorable for such transition and can not oxidize the underlying H-passivated Si substrate totally when cadmium arachidate LB film is deposited on such HF-treated Si surface. This ion-specific hydrophobic to hydrophilic transition is visualized by X-ray reflectivity, contact angle and X-ray photoelectron spectroscopy measurements.

  2. The effect of geometrical presentation of multimodal cation-exchange ligands on selective recognition of hydrophobic regions on protein surfaces.

    Science.gov (United States)

    Woo, James; Parimal, Siddharth; Brown, Matthew R; Heden, Ryan; Cramer, Steven M

    2015-09-18

    The effects of spatial organization of hydrophobic and charged moieties on multimodal (MM) cation-exchange ligands were examined by studying protein retention behavior on two commercial chromatographic media, Capto™ MMC and Nuvia™ cPrime™. Proteins with extended regions of surface-exposed aliphatic residues were found to have enhanced retention on the Capto MMC system as compared to the Nuvia cPrime resin. The results further indicated that while the Nuvia cPrime ligand had a strong preference for interactions with aromatic groups, the Capto MMC ligand appeared to interact with both aliphatic and aromatic clusters on the protein surfaces. These observations were formalized into a new set of protein surface property descriptors, which quantified the local distribution of electrostatic and hydrophobic potentials as well as distinguishing between aromatic and aliphatic properties. Using these descriptors, high-performing quantitative structure-activity relationship (QSAR) models (R(2)>0.88) were generated for both the Capto MMC and Nuvia cPrime datasets at pH 5 and pH 6. Descriptors of electrostatic properties were generally common across the four models; however both Capto MMC models included descriptors that quantified regions of aliphatic-based hydrophobicity in addition to aromatic descriptors. Retention was generally reduced by lowering the ligand densities on both MM resins. Notably, elution order was largely unaffected by the change in surface density, but smaller and more aliphatic proteins tended to be more affected by this drop in ligand density. This suggests that modulating the exposure, shape and density of the hydrophobic moieties in multimodal chromatographic systems can alter the preference for surface exposed aliphatic or aromatic residues, thus providing an additional dimension for modulating the selectivity of MM protein separation systems. PMID:26292626

  3. Enhancing trimethylolpropane esters synthesis through lipase immobilized on surface hydrophobic modified support and appropriate substrate feeding methods.

    Science.gov (United States)

    Tao, Yifeng; Cui, Caixia; Shen, Huaqing; Liu, Luo; Chen, Biqiang; Tan, Tianwei

    2014-05-10

    Candida sp. 99-125 lipase immobilized on surface hydrophobic modified support and appropriate substrate feeding methods were used to improve the synthesis of tri-substituted trimethylolpropane (TMP) esters, which can be used as raw materials for biodegradable lubricants. The proposed novel production method is environmentally friendly. Lipase was adsorbed on surface hydrophobic silk fibers that were pretreated by amino-modified polydimethylsiloxane. A 5-level-4-factors central composite model, including reaction time, temperature, enzyme amount, and molar ratio of fatty acid to TMP, was designed to evaluate the interaction of process variables in the enzymatic esterification. The water activity was kept constant using a LiCl-saturated salt solution. Under the optimum conditions with 30% enzyme amount and substrates molar ratio 8.4 at 45°C for 47h, the total conversion of caprylic acid is 97.3% and the yield of tri-substituted TMP esters is 95.5%. The surface hydrophobic treatment resulted in less cluster water accumulated on the surface immobilized lipase, which was demonstrated by near-infrared spectra. Consequently, the optimum temperature and water tolerance of immobilized lipase were increased. Two TMP-feeding methods were used to maintain high molar ratio of fatty acid to TMP, and increase the final tri-substituted TMP esters content exceeding 85% (w/w) in reactant.

  4. Reversible Interactions of Proteins with Mixed Shell Polymeric Micelles: Tuning the Surface Hydrophobic/Hydrophilic Balance toward Efficient Artificial Chaperones.

    Science.gov (United States)

    Wang, Jianzu; Song, Yiqing; Sun, Pingchuan; An, Yingli; Zhang, Zhenkun; Shi, Linqi

    2016-03-22

    Molecular chaperones can elegantly fine-tune its hydrophobic/hydrophilic balance to assist a broad spectrum of nascent polypeptide chains to fold properly. Such precious property is difficult to be achieved by chaperone mimicking materials due to limited control of their surface characteristics that dictate interactions with unfolded protein intermediates. Mixed shell polymeric micelles (MSPMs), which consist of two kinds of dissimilar polymeric chains in the micellar shell, offer a convenient way to fine-tune surface properties of polymeric nanoparticles. In the current work, we have fabricated ca. 30 kinds of MSPMs with finely tunable hydrophilic/hydrophobic surface properties. We investigated the respective roles of thermosensitive and hydrophilic polymeric chains in the thermodenaturation protection of proteins down to the molecular structure. Although the three kinds of thermosensitive polymers investigated herein can form collapsed hydrophobic domains on the micellar surface, we found distinct capability to capture and release unfolded protein intermediates, due to their respective affinity for proteins. Meanwhile, in terms of the hydrophilic polymeric chains in the micellar shell, poly(ethylene glycol) (PEG) excels in assisting unfolded protein intermediates to refold properly via interacting with the refolding intermediates, resulting in enhanced chaperone efficiency. However, another hydrophilic polymer-poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) severely deteriorates the chaperone efficiency of MSPMs, due to its protein-resistant properties. Judicious combination of thermosensitive and hydrophilic chains in the micellar shell lead to MSPM-based artificial chaperones with optimal efficacy.

  5. Fusion peptide P15-CSP shows antibiofilm activity and pro-osteogenic activity when deposited as a coating on hydrophilic but not hydrophobic surfaces.

    Science.gov (United States)

    Li, Xian; Contreras-Garcia, Angel; LoVetri, Karen; Yakandawala, Nandadeva; Wertheimer, Michael R; De Crescenzo, Gregory; Hoemann, Caroline D

    2015-12-01

    In the context of porous bone void filler for oral bone reconstruction, peptides that suppress microbial growth and promote osteoblast function could be used to enhance the performance of a porous bone void filler. We tested the hypothesis that P15-CSP, a novel fusion peptide containing collagen-mimetic osteogenic peptide P15, and competence-stimulating peptide (CSP), a cationic antimicrobial peptide, has emerging properties not shared by P15 or CSP alone. Peptide-coated surfaces were tested for antimicrobial activity toward Streptoccocus mutans, and their ability to promote human mesenchymal stem cell (MSC) attachment, spreading, metabolism, and osteogenesis. In the osteogenesis assay, peptides were coated on tissue culture plastic and on thin films generated by plasma-enhanced chemical vapor deposition to have hydrophilic or hydrophobic character (water contact angles 63°, 42°, and 92°, respectively). S. mutans planktonic growth was specifically inhibited by CSP, whereas biofilm formation was inhibited by P15-CSP. MSC adhesion and actin stress fiber formation was strongly enhanced by CSP, P15-CSP, and fibronectin coatings and modestly enhanced by P15 versus uncoated surfaces. Metabolic assays revealed that CSP was slightly cytotoxic to MSCs. MSCs developed alkaline phosphatase activity on all surfaces, with or without peptide coatings, and consistently deposited the most biomineralized matrix on hydrophilic surfaces coated with P15-CSP. Hydrophobic thin films completely suppressed MSC biomineralization, consistent with previous findings of suppressed osteogenesis on hydrophobic bioplastics. Collective data in this study provide new evidence that P15-CSP has unique dual capacity to suppress biofilm formation, and to enhance osteogenic activity as a coating on hydrophilic surfaces.

  6. Fusion peptide P15-CSP shows antibiofilm activity and pro-osteogenic activity when deposited as a coating on hydrophilic but not hydrophobic surfaces.

    Science.gov (United States)

    Li, Xian; Contreras-Garcia, Angel; LoVetri, Karen; Yakandawala, Nandadeva; Wertheimer, Michael R; De Crescenzo, Gregory; Hoemann, Caroline D

    2015-12-01

    In the context of porous bone void filler for oral bone reconstruction, peptides that suppress microbial growth and promote osteoblast function could be used to enhance the performance of a porous bone void filler. We tested the hypothesis that P15-CSP, a novel fusion peptide containing collagen-mimetic osteogenic peptide P15, and competence-stimulating peptide (CSP), a cationic antimicrobial peptide, has emerging properties not shared by P15 or CSP alone. Peptide-coated surfaces were tested for antimicrobial activity toward Streptoccocus mutans, and their ability to promote human mesenchymal stem cell (MSC) attachment, spreading, metabolism, and osteogenesis. In the osteogenesis assay, peptides were coated on tissue culture plastic and on thin films generated by plasma-enhanced chemical vapor deposition to have hydrophilic or hydrophobic character (water contact angles 63°, 42°, and 92°, respectively). S. mutans planktonic growth was specifically inhibited by CSP, whereas biofilm formation was inhibited by P15-CSP. MSC adhesion and actin stress fiber formation was strongly enhanced by CSP, P15-CSP, and fibronectin coatings and modestly enhanced by P15 versus uncoated surfaces. Metabolic assays revealed that CSP was slightly cytotoxic to MSCs. MSCs developed alkaline phosphatase activity on all surfaces, with or without peptide coatings, and consistently deposited the most biomineralized matrix on hydrophilic surfaces coated with P15-CSP. Hydrophobic thin films completely suppressed MSC biomineralization, consistent with previous findings of suppressed osteogenesis on hydrophobic bioplastics. Collective data in this study provide new evidence that P15-CSP has unique dual capacity to suppress biofilm formation, and to enhance osteogenic activity as a coating on hydrophilic surfaces. PMID:26097095

  7. Structure of DNA-Cationic Surfactant Complexes at Hydrophobically Modified and Hydrophilic Silica Surfaces as Revealed by Neutron Reflectometry

    DEFF Research Database (Denmark)

    Cardenas Gomez, Marite; Wacklin, Hanna; Campbell, Richard A.;

    2011-01-01

    In this article, we discuss the structure and composition of mixed DNA-cationic surfactant adsorption layers on both hydrophobic and hydrophilic solid surfaces. We have focused on the effects of the bulk concentrations, the surfactant chain length, and the type solid surface on the interfacial...... layer structure (the location, coverage, and conformation the e DNA and surfactant molecules). Neutron reflectometry is the technique of choice for revealing the surface layer structure by means of selective deuteration. We start by studying the interfacial complexation of DNA...

  8. Facile fabrication of hydrophobic surfaces on mechanically alloyed-Mg/HA/TiO2/MgO bionanocomposites

    International Nuclear Information System (INIS)

    Highlights: • Mg/HA/TiO2-based nanocomposite was produced using mechanical alloying. • The hydrophobic surface coverage was fabricated on the mechanical alloyed samples by annealing. • The morphological characteristics, phase evolution and wettability of nanocomposites and the hydrophobic surface coverage were investigated. • The activation energies and reaction kinetic of the powder mixture of nanocomposites were calculated. - Abstract: The effect of mechanical alloying and post-annealing on the phase evolution, microstructure, wettability and thermal stability of Mg–HA–TiO2–MgO composites was investigated in this study. Phase evolution and microstructure analysis were performed using X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy and atomic force microscopy, as well as the wettability determined by contact angle measurements with SBF. The 16-h mechanical alloying resulted in the formation of MgTiO3, CaTiO3, Mg3(PO4)2 and Mg(OH)2 phases and a decrease in wettability of the nanocomposites. A hydrophobic film with hierarchical structures comprising nanoflakes of MgTiO3, nano-cuboids of CaTiO3, microspheres of Mg3(PO4)2 and Mg(OH)2 was successfully constructed on the surface of the Mg-based nanocomposites substrates as a result of the post-annealing process. After 1-h annealing at 630 °C, the synthesized hydrophobic surface on the nanocomposite substrates decreased the wettability, as the 8-h-mechanically alloyed samples exhibited a contact angle close to 93°. The formation activation energies and reaction kinetics of the powder mixture were investigated using differential thermal analysis and thermal gravimetric analysis. The released heat, weight loss percentage and reaction kinetics increased, while the formation activation energies of the exothermic reactions decreased following an increase in the milling time

  9. Basic surface properties of mononuclear cells from Didelphis marsupialis.

    Science.gov (United States)

    Nacife, V P; de Meirelles, M de N; Silva Filho, F C

    1998-01-01

    The electrostatic surface charge and surface tension of mononuclear cells/monocytes obtained from young and adult marsupials (Didelphis marsupialis) were investigated by using cationized ferritin and colloidal iron hydroxyde, whole cell electrophoresis, and measurements of contact angles. Anionic sites were found distributed throughout the entire investigated cell surfaces. The results revealed that the anionic character of the cells is given by electrostatic charges corresponding to -18.8 mV (cells from young animals) and -29.3 mV (cells from adult animals). The surface electrostatic charge decreased from 10 to 65.2% after treatment of the cells with each one of trypsin, neuraminidase and phospholipase C. The hydrophobic nature of the mononuclear cell surfaces studied by using the contact angle method revealed that both young and adult cells possess cell surfaces of high hidrofilicity since the angles formed with drops of saline water were 42.5 degrees and 40.8 degrees, respectively. Treatment of the cells with trypsin or neuraminidase rendered their surfaces more hydrophobic, suggesting that sialic acid-containing glycoproteins are responsible for most of the hydrophilicity observed in the mononuclear cell surfaces from D. marsupialis. PMID:9921307

  10. Basic Surface Properties of Mononuclear Cells from Didelphis marsupialis

    Directory of Open Access Journals (Sweden)

    Nacife Valéria Pereira

    1998-01-01

    Full Text Available The electrostatic surface charge and surface tension of mononuclear cells/monocytes obtained from young and adult marsupials (Didelphis marsupialis were investigated by using cationized ferritin and colloidal iron hydroxyde, whole cell electrophoresis, and measurements of contact angles. Anionic sites were found distributed throughout the entire investigated cell surfaces. The results revealed that the anionic character of the cells is given by electrostatic charges corresponding to -18.8 mV (cells from young animals and -29.3 mV (cells from adult animals. The surface electrostatic charge decreased from 10 to 65.2% after treatment of the cells with each one of trypsin, neuraminidase and phospholipase C. The hydrophobic nature of the mononuclear cell surfaces studied by using the contact angle method revealed that both young and adult cells possess cell surfaces of high hidrofilicity since the angles formed with drops of saline water were 42.5°and 40.8°, respectively. Treatment of the cells with trypsin or neuraminidase rendered their surfaces more hydrophobic, suggesting that sialic acid-containing glycoproteins are responsible for most of the hydrophilicity observed in the mononuclear cell surfaces from D. marsupialis.

  11. A hydrophobic gold surface triggers misfolding and aggregation of the amyloidogenic Josephin domain in monomeric form, while leaving the oligomers unaffected.

    Directory of Open Access Journals (Sweden)

    Alessandra Apicella

    Full Text Available Protein misfolding and aggregation in intracellular and extracellular spaces is regarded as a main marker of the presence of degenerative disorders such as amyloidoses. To elucidate the mechanisms of protein misfolding, the interaction of proteins with inorganic surfaces is of particular relevance, since surfaces displaying different wettability properties may represent model systems of the cell membrane. Here, we unveil the role of surface hydrophobicity/hydrophilicity in the misfolding of the Josephin domain (JD, a globular-shaped domain of ataxin-3, the protein responsible for the spinocerebellar ataxia type 3. By means of a combined experimental and theoretical approach based on atomic force microscopy, Fourier transform infrared spectroscopy and molecular dynamics simulations, we reveal changes in JD morphology and secondary structure elicited by the interaction with the hydrophobic gold substrate, but not by the hydrophilic mica. Our results demonstrate that the interaction with the gold surface triggers misfolding of the JD when it is in native-like configuration, while no structural modification is observed after the protein has undergone oligomerization. This raises the possibility that biological membranes would be unable to affect amyloid oligomeric structures and toxicity.

  12. Hydrophobic photonic crystal fibers.

    Science.gov (United States)

    Xiao, Limin; Birks, T A; Loh, W H

    2011-12-01

    We propose and demonstrate hydrophobic photonic crystal fibers (PCFs). A chemical surface treatment for making PCFs hydrophobic is introduced. This repels water from the holes of PCFs, so that their optical properties remain unchanged even when they are immersed in water. The combination of a hollow core and a water-repellent inner surface of the hydrophobic PCF provides an ultracompact dissolved-gas sensor element, which is demonstrated for the sensing of dissolved ammonia gas. PMID:22139276

  13. Enhanced surface friction coefficient and hydrophobicity of TPE substrates using an APPJ system

    Energy Technology Data Exchange (ETDEWEB)

    Sainz-García, Elisa, E-mail: elisa.sainzg@unirioja.es; Alba-Elías, Fernando, E-mail: fernando.alba@unirioja.es; Múgica-Vidal, Rodolfo, E-mail: rodolfo.mugica@alum.unirioja.es; González-Marcos, Ana, E-mail: ana.gonzalez@unirioja.es

    2015-02-15

    Highlights: • Coatings on thermoplastic elastomers by atmospheric pressure plasma jet. • Study of influence of APTES and FLUSI percentage on the coating's properties. • The best sample (AF{sub 75}) used 75% of APTES and 25% of FLUSI as precursor mixture. • Sample AF{sub 75} reduced a 51.5% the FC and increased a 4.4% the WCA. - Abstract: An APPJ system was used to deposit a coating that combines a low friction coefficient with a high water contact angle (WCA) on a thermoplastic elastomer substrate (TPE) that is used in automotive profiling. The main drawback of this research is that groups that improve the hydrophobicity of the surface worsen its tribological properties. To overcome this, this study explored the use of various mixtures of differing proportions of two precursors. They were a siloxane, aminopropyltriethoxysilane (APTES) that was used to reduce the friction coefficient by its content of SiO{sub x} and a fluorinated compound, (heptadecafluoro-1,1,2,2-tetrahydrodecyl)trimethoxysilane (FLUSI) that was used to improve the water-repellency characteristics, due to the presence of CF{sub 2} long chains. The coatings were characterized by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), X-ray Photoelectron Spectroscopy (XPS), dynamic Water Contact Angle (WCA), stability tests and tribological tests. It was found that an increase of the absorbance area under the SiOSi peak and inorganic groups is related to lower friction coefficients. On the other hand, the higher the CF{sub 2} percentage is, the higher the WCA is. The sample that was coated with 25% of FLUSI and 75% of APTES combined the improvements of both functional properties, the friction coefficient and the WCA. It has an average friction coefficient that is (0.530 ± 0.050) 51.5% lower and a WCA that is (θ{sub adv} = 119.8° ± 4.75) 4.4% higher than the uncoated TPE sample. A satisfactory

  14. Drying of crystalline drug nanosuspensions-the importance of surface hydrophobicity on dissolution behavior upon redispersion.

    Science.gov (United States)

    Van Eerdenbrugh, Bernard; Froyen, Ludo; Van Humbeeck, Jan; Martens, Johan A; Augustijns, Patrick; Van den Mooter, Guy

    2008-09-01

    the compounds of the second and the third group was linked to the compound's characteristics. It was found that compounds with a more hydrophobic surface resulted in agglomerates which were harder to disintegrate, for which dissolution was compromised upon drying. The same was found for compounds having higher logP values.

  15. Enhanced surface friction coefficient and hydrophobicity of TPE substrates using an APPJ system

    International Nuclear Information System (INIS)

    Highlights: • Coatings on thermoplastic elastomers by atmospheric pressure plasma jet. • Study of influence of APTES and FLUSI percentage on the coating's properties. • The best sample (AF75) used 75% of APTES and 25% of FLUSI as precursor mixture. • Sample AF75 reduced a 51.5% the FC and increased a 4.4% the WCA. - Abstract: An APPJ system was used to deposit a coating that combines a low friction coefficient with a high water contact angle (WCA) on a thermoplastic elastomer substrate (TPE) that is used in automotive profiling. The main drawback of this research is that groups that improve the hydrophobicity of the surface worsen its tribological properties. To overcome this, this study explored the use of various mixtures of differing proportions of two precursors. They were a siloxane, aminopropyltriethoxysilane (APTES) that was used to reduce the friction coefficient by its content of SiOx and a fluorinated compound, (heptadecafluoro-1,1,2,2-tetrahydrodecyl)trimethoxysilane (FLUSI) that was used to improve the water-repellency characteristics, due to the presence of CF2 long chains. The coatings were characterized by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), X-ray Photoelectron Spectroscopy (XPS), dynamic Water Contact Angle (WCA), stability tests and tribological tests. It was found that an increase of the absorbance area under the SiOSi peak and inorganic groups is related to lower friction coefficients. On the other hand, the higher the CF2 percentage is, the higher the WCA is. The sample that was coated with 25% of FLUSI and 75% of APTES combined the improvements of both functional properties, the friction coefficient and the WCA. It has an average friction coefficient that is (0.530 ± 0.050) 51.5% lower and a WCA that is (θadv = 119.8° ± 4.75) 4.4% higher than the uncoated TPE sample. A satisfactory stability in humid ambient for

  16. Simulation study of the effects of surface chemistry and temperature on the conformations of ssDNA oligomers near hydrophilic and hydrophobic surfaces

    International Nuclear Information System (INIS)

    We study the effects of the presence of a hydrophilic and a hydrophobic surface on the conformations and interactions of a single-stranded DNA (ssDNA) oligomer using atomistic molecular dynamics, umbrella sampling, and temperature-replica exchange. Our simulations capture the expected interactions between the ssDNA and the two surfaces (e.g., hydrogen bonds, hydrophobic interactions), but we find that the surface chemistry does not strongly affect the exposure of the relatively hydrophobic nucleobases or the hydrophilic phosphate backbone in a 16-base ssDNA. Likewise, the surfaces do not strongly affect the preferred size of the ssDNA compared to bulk solution, although the hydrophilic surface does favor slightly more compact ssDNA conformations than the hydrophobic surface. In more compact conformations, the negative charge of the ssDNA is more concentrated, and the energetic interactions of the DNA and DNA-bound counterions with the hydrophilic surface are more favorable, which consequently favors smaller ssDNA sizes. Increasing temperature, regardless of the presence or chemistry of a surface, makes it less unfavorable for the ssDNA to assume both compact and extended conformations. With increasing temperature the free energy cost of assuming a compact conformation is reduced to a greater extent than the cost of assuming an extended conformation. The reason for this difference is the entropically favorable release of DNA-bound water molecules upon assuming a compact conformation. Increasing temperature decreases water-DNA interactions while surprisingly increasing counterion-DNA interactions, changes which are attributed to the relative balance of entropic and energetic contributions for water molecules and counterions bound to the ssDNA

  17. Fast fabrication of super-hydrophobic surfaces on polypropylene by replication of short-pulse laser structured molds

    OpenAIRE

    Bekesi, J.; Kaakkunen, J.; Michaeli, W.; Klaiber, F.; Schoengart, M.; Ihlemann, J.; Simon, P.

    2010-01-01

    A new two-step method, facilitating the rapid generation of super-hydrophobic surface structures via parallel laser processing followed by a replica generation by injection molding is reported. A self-made fused silica-based diffractive optical element (DOE) is applied to distribute the laser energy into a 25×25 dot matrix. This DOE is used as a transmission mask for surface ablation of metal molds, applying short-pulse UV laser pulses. In a subsequent process step, replicas of the processed ...

  18. Molecular Scale Hydrophobicity in Varying Degree of Planar Hydrophobic Nanoconfinement

    OpenAIRE

    Nepal, Sudip; Kumar, Pradeep

    2015-01-01

    We have studied the molecular scale hydrophobicity of an apolar solute, argon, confined between hydrophobic planar surfaces with different confinement widths. Specifically, we find that the hydrophobicity exhibits a non-monotonic behavior with confinement width. While hydrophobicity is usually large compared to bulk value, we find a narrow range of confinement width where the hydrophobicity displays similar values as in bulk water. Furthermore, we develop a simple model taking into account th...

  19. Hydrophobic recovery of UV/ozone treated poly(dimethylsiloxane): adhesion studies by contact mechanics and mechanism of surface modification

    International Nuclear Information System (INIS)

    Silicone elastomers (Sylgard 184 and 170), based on poly(dimethylsiloxane) (PDMS), were surface treated by a combined exposure to UV and ozone. The effects of the treatments were analyzed as a function of time elapsed after stopping the treatments using different standard surface characterization techniques, such as water contact angle measurements, XPS and atomic force microscopy (AFM). However, the primary focus of this study was to apply the Johnson-Kendall-Roberts (JKR) contact mechanics approach to investigate PDMS samples prior to and following UV/ozone surface treatment. A gradual formation of a hydrophilic, silica-like surface layer with increasing modulus was observed with increasing UV/ozone exposure. A subsequent hydrophobic recovery after UV/ozone exposure was observed, as indicated by increasing contact angles. This supports the hypothesis that the hydrophobic recovery is mainly caused by the gradual coverage of a permanent silica-like structure with free siloxanes and/or reorientation of polar groups. PDMS containing a homogenously dispersed filler (Sylgard 184), exhibited a decreasing surface roughness (by AFM) when the oxidized surface region 'collapsed' into a smooth SiOx layer (final surface roughness <2 nm). PDMS containing heterogeneously distributed, aggregated filler particles (Sylgard 170), exhibited an increasing surface roughness with treatment dose, which was attributed to the 'collapse' of the oxidized surface region thus exposing the contours of the underlying filler aggregates (final surface roughness ∼140 nm). A dedicated device was designed and built to study the contact mechanics behavior of PDMS prior to, and following surface treatment. The value of the combined elastic modulus obtained for PDMS lens and semi-infinite flat surface system showed an increase in full agreement with the formation of a silica-like layer exhibiting a high elastic modulus (compared with untreated PDMS). The work of adhesion observed in JKR experiments

  20. Hydrophobic recovery of UV/ozone treated poly(dimethylsiloxane): adhesion studies by contact mechanics and mechanism of surface modification

    Science.gov (United States)

    Oláh, Attila; Hillborg, Henrik; Vancso, G. Julius

    2005-01-01

    Silicone elastomers (Sylgard 184 and 170), based on poly(dimethylsiloxane) (PDMS), were surface treated by a combined exposure to UV and ozone. The effects of the treatments were analyzed as a function of time elapsed after stopping the treatments using different standard surface characterization techniques, such as water contact angle measurements, XPS and atomic force microscopy (AFM). However, the primary focus of this study was to apply the Johnson-Kendall-Roberts (JKR) contact mechanics approach to investigate PDMS samples prior to and following UV/ozone surface treatment. A gradual formation of a hydrophilic, silica-like surface layer with increasing modulus was observed with increasing UV/ozone exposure. A subsequent hydrophobic recovery after UV/ozone exposure was observed, as indicated by increasing contact angles. This supports the hypothesis that the hydrophobic recovery is mainly caused by the gradual coverage of a permanent silica-like structure with free siloxanes and/or reorientation of polar groups. PDMS containing a homogenously dispersed filler (Sylgard 184), exhibited a decreasing surface roughness (by AFM) when the oxidized surface region "collapsed" into a smooth SiO x layer (final surface roughness Sylgard 170), exhibited an increasing surface roughness with treatment dose, which was attributed to the "collapse" of the oxidized surface region thus exposing the contours of the underlying filler aggregates (final surface roughness ˜140 nm). A dedicated device was designed and built to study the contact mechanics behavior of PDMS prior to, and following surface treatment. The value of the combined elastic modulus obtained for PDMS lens and semi-infinite flat surface system showed an increase in full agreement with the formation of a silica-like layer exhibiting a high elastic modulus (compared with untreated PDMS). The work of adhesion observed in JKR experiments exhibited an increasing trend as a function of treatment done in agreement with

  1. Formation and Mechanism of Superhydrophobic/Hydrophobic Surfaces Made from Amphiphiles through Droplet-Mediated Evaporation-Induced Self-Assembly.

    Science.gov (United States)

    Dong, Fangyuan; Zhang, Mi; Tang, Wai-Wa; Wang, Yi

    2015-04-23

    Superhydrophobic/hydrophobic surfaces have attracted wide attention because of their broad applications in various regions, including coating, textile, packaging, electronic devices, and bioengineering. Many studies have been focused on the fabrication of superhydrophobic/hydrophobic surfaces using natural materials. In this paper, superhydrophobic/hydrophobic surfaces were formed by an amphiphilic natural protein, zein, using electrospinning. Water contact angle (WCA) and scanning electron microscopy (SEM) were used to characterize the hydrophobicity and surface morphology of the electrospun structures. The highest WCA of the zein electrospun surfaces could reach 155.5 ± 1.4°. To further understand the mechanism of superhydrophobic surface formation from amphiphiles using electrospinning, a synthetic amphiphilic polymer was selected, and also, a method similar to electrospinning, spray drying, was tried. The electrospun amphiphilic polymer surface showed a high hydrophobicity with a WCA of 141.4 ± 0.7°. WCA of the spray-dried zein surface could reach 125.3 ± 2.1°. The secondary structures of the zein in the electrospun film and cast-dried film were studied using ATR-FTIR, showing that α-helix to β-sheet transformation happened during the solvent evaporation in the cast drying process but not in the electrospinning process. A formation mechanism was proposed on the basis of the orientation of the amphiphiles during the solvent evaporation of different fabrication methods. The droplet-based or jet-based evaporation during electrospinning and spray drying led to the formation of the superhydrophobic/hydrophobic surface by the accumulation of the hydrophobic groups of the amphiphiles on the surface, while the surface-based evaporation during cast drying led to the formation of the hydrophilic surface by the accumulation of the hydrophilic groups of the amphiphiles on the surface.

  2. Hydrophobic ZnO-TiO2 Nanocomposite with Photocatalytic Promoting Self-Cleaning Surface

    Directory of Open Access Journals (Sweden)

    Qiang Wei

    2015-01-01

    Full Text Available The hydrophobicity and self-cleaning are the important influence factors on the precision and environment resistance of quartz crystal microbalance (QCM in detecting organic gas molecules. In this paper, ZnO nanorod array is prepared via the in situ method on the QCM coated with Au film via hydrothermal process. ZnO nanorod array film on QCM is modified by β-CD in hydrothermal process and then decorated by TiO2 after being impregnated in P25 suspension. The results show that as-prepared ZnO-TiO2 nanocomposite exhibits excellent hydrophobicity for water molecules and superior self-cleaning property for organic molecules under UV irradiation.

  3. Temporal changes in extracellular polymeric substances on hydrophobic and hydrophilic membrane surfaces in a submerged membrane bioreactor.

    Science.gov (United States)

    Matar, Gerald; Gonzalez-Gil, Graciela; Maab, Husnul; Nunes, Suzana; Le-Clech, Pierre; Vrouwenvelder, Johannes; Saikaly, Pascal E

    2016-05-15

    Membrane surface hydrophilic modification has always been considered to mitigating biofouling in membrane bioreactors (MBRs). Four hollow-fiber ultrafiltration membranes (pore sizes ∼0.1 μm) differing only in hydrophobic or hydrophilic surface characteristics were operated at a permeate flux of 10 L/m(2) h in the same lab-scale MBR fed with synthetic wastewater. In addition, identical membrane modules without permeate production (0 L/m(2) h) were operated in the same lab-scale MBR. Membrane modules were autopsied after 1, 10, 20 and 30 days of MBR operation, and total extracellular polymeric substances (EPS) accumulated on the membranes were extracted and characterized in detail using several analytical tools, including conventional colorimetric tests (Lowry and Dubois), liquid chromatography with organic carbon detection (LC-OCD), fluorescence excitation - emission matrices (FEEM), fourier transform infrared (FTIR) and confocal laser scanning microscope (CLSM). The transmembrane pressure (TMP) quickly stabilized with higher values for the hydrophobic membranes than hydrophilic ones. The sulfonated polysulfone (SPSU) membrane had the highest negatively charged membrane surface, accumulated the least amount of foulants and displayed the lowest TMP. The same type of organic foulants developed with time on the four membranes and the composition of biopolymers shifted from protein dominance at early stages of filtration (day 1) towards polysaccharides dominance during later stages of MBR filtration. Nonmetric multidimensional scaling of LC-OCD data showed that biofilm samples clustered according to the sampling event (time) regardless of the membrane surface chemistry (hydrophobic or hydrophilic) or operating mode (with or without permeate flux). These results suggest that EPS composition may not be the dominant parameter for evaluating membrane performance and possibly other parameters such as biofilm thickness, porosity, compactness and structure should be

  4. Temporal Changes in Extracellular Polymeric Substances on Hydrophobic and Hydrophilic Membrane Surfaces in a Submerged Membrane Bioreactor

    KAUST Repository

    Matar, Gerald

    2016-03-02

    Membrane surface hydrophilic modification has always been considered to mitigating biofouling in membrane bioreactors (MBRs). Four hollow-fiber ultrafiltration membranes (pore sizes ∼0.1 μm) differing only in hydrophobic or hydrophilic surface characteristics were operated at a permeate flux of 10 L/m2.h in the same lab-scale MBR fed with synthetic wastewater. In addition, identical membrane modules without permeate production (0 L/m2.h) were operated in the same lab-scale MBR. Membrane modules were autopsied after 1, 10, 20 and 30 days of MBR operation, and total extracellular polymeric substances (EPS) accumulated on the membranes were extracted and characterized in detail using several analytical tools, including conventional colorimetric tests (Lowry and Dubois), liquid chromatography with organic carbon detection (LC-OCD), fluorescence excitation - emission matrices (FEEM), fourier transform infrared (FTIR) and confocal laser scanning microscope (CLSM). The transmembrane pressure (TMP) quickly stabilized with higher values for the hydrophobic membranes than hydrophilic ones. The sulfonated polysulfone (SPSU) membrane had the highest negatively charged membrane surface, accumulated the least amount of foulants and displayed the lowest TMP. The same type of organic foulants developed with time on the four membranes and the composition of biopolymers shifted from protein dominance at early stages of filtration (day 1) towards polysaccharides dominance during later stages of MBR filtration. Nonmetric multidimensional scaling of LC-OCD data showed that biofilm samples clustered according to the sampling event (time) regardless of the membrane surface chemistry (hydrophobic or hydrophilic) or operating mode (with or without permeate flux). These results suggest that EPS composition may not be the dominant parameter for evaluating membrane performance and possibly other parameters such as biofilm thickness, porosity, compactness and structure should be considered

  5. High-performance liquid chromatography as a technique to determine protein adsorption onto hydrophilic/hydrophobic surfaces.

    Science.gov (United States)

    Huang, Tongtong; Anselme, Karine; Sarrailh, Segolene; Ponche, Arnaud

    2016-01-30

    The purpose of this study is to evaluate the potential of simple high performance liquid chromatography (HPLC) setup for quantification of adsorbed proteins on various type of plane substrates with limited area (HPLC were reliable. By simple adsorption test at the contact of hydrophilic (glass) and hydrophobic (polydimethylsiloxane: PDMS) surfaces, kinetics of adsorption were determined and amounts of adsorbed bovine serum albumin, myoglobin and lysozyme were obtained: as expected for each protein, the amount adsorbed at the plateau on glass (between 0.15 μg/cm(2) and 0.4 μg/cm(2)) is lower than for hydrophobic PDMS surfaces (between 0.45 μg/cm(2) and 0.8 μg/cm(2)). These results were consistent with bicinchoninic acid protein determination. According to ICH guidelines, both Reversed Phase and Size Exclusion HPLC can be validated for quantification of adsorbed protein. However, we consider the size exclusion approach more interesting in this field because additional informations can be obtained for aggregative proteins. Indeed, monomer, dimer and oligomer of bovine serum albumin (BSA) were observed in the chromatogram. On increasing the temperature, we found a decrease of peak intensity of bovine serum albumin as well as the fraction of dimer and oligomer after contact with PDMS and glass surface. As the surface can act as a denaturation parameter, these informations can have a huge impact on the elucidation of the interfacial behavior of protein and in particular for aggregation processes in pharmaceutical applications.

  6. Exposed hydrophobic residues in human immunodeficiency virus type 1 Vpr helix-1 are important for cell cycle arrest and cell death.

    Directory of Open Access Journals (Sweden)

    R Anthony Barnitz

    Full Text Available The human immunodeficiency virus type 1 (HIV-1 accessory protein viral protein R (Vpr is a major determinant for virus-induced G2/M cell cycle arrest and cytopathicity. Vpr is thought to perform these functions through the interaction with partner proteins. The NMR structure of Vpr revealed solvent exposed hydrophobic amino acids along helices 1 and 3 of Vpr, which could be putative protein binding domains. We previously showed that the hydrophobic patch along helix-3 was important for G2/M blockade and cytopathicity. Mutations of the exposed hydrophobic residues along helix-1 were found to reduce Vpr-induced cell cycle arrest and cell death as well. The levels of toxicity during virion delivery of Vpr correlated with G2/M arrest. Thus, the exposed hydrophobic amino acids in the amino-terminal helix-1 are important for the cell cycle arrest and cytopathicity functions of Vpr.

  7. Evolution and accumulation of organic foulants on hydrophobic and hydrophilic membrane surfaces in a submerged membrane bioreactor

    KAUST Repository

    Matar, Gerald

    2015-09-07

    Membrane surface modification is attracting more attention to mitigate biofouling in membrane bioreactors (MBRs). Five membranes differing in chemistry and hydrophobic/hydrophilic potential were run in parallel in a lab-scale MBR under the same conditions. Membranes were sampled after 1, 10, 20 and 30 days of MBR operation with synthetic wastewater. Subsequently, accumulated organic foulants were characterised using several chemical analytical tools. Results showed similar development of organic foulants with time, illustrating that membrane surface chemistry did not affect the selection of specific organic foulants. Multivariate analysis showed that biofilm samples clustered according to the day of sampling. The composition of organic foulants shifted from protein-like substances towards humics and polysaccharides-like substances. We propose that to control biofouling in MBRs, one should focus less on the membrane surface chemistry.

  8. Preparation of hydrophobic coatings

    Science.gov (United States)

    Branson, Eric D.; Shah, Pratik B.; Singh, Seema; Brinker, C. Jeffrey

    2009-02-03

    A method for preparing a hydrophobic coating by preparing a precursor sol comprising a metal alkoxide, a solvent, a basic catalyst, a fluoroalkyl compound and water, depositing the precursor sol as a film onto a surface, such as a substrate or a pipe, heating, the film and exposing the film to a hydrophobic silane compound to form a hydrophobic coating with a contact angle greater than approximately 150.degree.. The contact angle of the film can be controlled by exposure to ultraviolet radiation to reduce the contact angle and subsequent exposure to a hydrophobic silane compound to increase the contact angle.

  9. Investigating plantation-induced near-surface soil hydrophobicity and its impact on groundwater recharge in the Nebraska Sand Hills, USA

    Science.gov (United States)

    Adane, Z. A.; Nasta, P.; Gates, J. B.

    2014-12-01

    Although numerous studies in diverse environmental settings have demonstrated that plantations tend to reduce soil moisture and recharge rates, research on physical mechanisms affecting these linkages tend to focus mainly on the effects of evapotranspiration and interception. This study investigates the extent of soil hydrophobicity resulting from land use changes and its impact on groundwater recharge in a century-old experimental forest surrounded by grassland in the Northern High Plains (Nebraska National Forest). Water Drop Penetration Tests (WDPT) and Nuclear Magnetic Resonance (NMR) spectroscopy were used to investigate soil hydrophobicity on 50 cm soil cores collected from experimental plots beneath 5 land cover types. WDPT analysis indicated that most near-surface soils (0-12.5 and 12.5-25 cm) beneath pine plots were moderately to strongly hydrophobic. NMR spectroscopy analysis comparing ratios of hydrophobic (3.2-0.5 and 8.5-6.5 ppm) to hydrophilic (6.5-3.2 ppm) regions suggests that surface soils beneath the plantations were uniformly more hydrophobic than grasslands (by ~30 to 260%). Unsaturated zone soil cores were collected from beneath each experimental plot for comparison of hydrophobicity with recharge rates based on chloride and sulfate mass balance. Recharge estimates beneath the plantations (4-10 mm yr-1) represent reductions of 86-94% relative to the surrounding native grassland, suggesting a link between soil hydrophobicity and reduced infiltration beneath the plantations.

  10. Six-Year Survival and Early Failure Rate of 2918 Implants with Hydrophobic and Hydrophilic Enossal Surfaces

    Directory of Open Access Journals (Sweden)

    Olivier Le Gac

    2015-02-01

    Full Text Available The aim of this chart review was to obtain an objective, quantitative assessment of the clinical performance of an implant line used in an implantological office setting. Implants with hydrophilic (INICELL and hydrophobic (TST; both: Thommen Medical AG, Grenchen, Switzerland enossal surfaces were compared and the cumulative implant survival rate was calculated. The data of 1063 patients that received 2918 implants (1337 INICELL, 1581 TST was included. The average follow up time was 2.1 (1.1–5.4 years for INICELL and 4.5 (1.3–5.9 years for TST implants (Thommen Medical AG, Switzerland. In the reported period 7 implants with INICELL (0.5% and 23 TST implants (1.5% failed. This difference was statistically significant. The analysis of cases treated and followed up in a single implantological office for 6 years confirmed the very good clinical outcome that was achieved with both used implant lines. Within the limitations of this retrospective analysis, the overall early failure rate of the hydrophilic implants was significantly lower than that of hydrophobic implants. The use of hydrophilic implants allows the clinician to obtain less early failures, hence the interest of an up-to-date surface for the daily work of an implant practice.

  11. Synthesis of Environmentally Responsive Polymers by Atom Transfer Radical Polymerization: Generation of Reversible Hydrophilic and Hydrophobic Surfaces

    Directory of Open Access Journals (Sweden)

    Vikas Mittal

    2010-05-01

    Full Text Available Environmentally responsive poly(N-isopropylacrylamide brushes were grafted from the surface of polymer particles or flat surfaces in order to generate reversible hydrophilic and hydrophobic surfaces. The use of atom transfer radical polymerization was demonstrated for the grafting of polymer brushes as it allows efficient control on the amount of grafted polymer. The polymer particles were generated with or without surfactant in the emulsion polymerization and their surface could be modified with the atom transfer radical polymerization (ATRP initiator. The uniform functionalization of the surface with ATRP initiator was responsible for the uniform grafting of polymer brushes. The grafted brushes responded reversibly with changes in temperature indicating that the reversible responsive behavior could be translated to the particle surfaces. The particles were observed to adsorb and desorb protein and virus molecules by changing the temperatures below or higher than 32 °C. The initiator functionalized particles could also be adsorbed on the flat surfaces. The adsorption process also required optimization of the heat treatment conditions to form a uniform layer of the particles on the substrate. The grafted polymer brushes also responded to the changes in temperatures similar to the spherical particles studied through water droplets placed on the flat substrates.

  12. A rheological study of hydrophobic-surface-active polymer systems structuration; Etude rheologique de la structuration de systemes polymere hydrophobe-tensioactif

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich, E.

    1997-01-29

    This work deals with the study of the rheology and the structuration of hydrophobic polymer and surfactant systems. The used associative polymers are acrylamide/nonyl methacrylate copolymers and the surfactant is nonionic. They are particularly used for hydrocarbons extraction techniques as drilling (drilling fluids) or wells cementation. The studied materials are first characterized by different analytic techniques. This preliminary stage of the work gives a good insight of the physico-chemical parameters of the systems. The effect of surfactant was shown by studying the variation of Newtonian viscosity as a function of surfactant concentration. This yields bell curves, whose maximum determines the critical aggregation concentration (cac). The hydrophobic effect is analysed in different polymer concentration regimes, in quasi-static conditions, and under shear. The study of the dynamic visco-elasticity of semi-dilute solutions allows to observe the effect of the hydrophobic associations on the relaxation time of the chains. The system can be described as a superposition of two networks of junctions: the network of physical entanglements and a second one formed by the hydrophobic links. Phenomena of structuration have been observed at room temperature for surfactant concentrations close to the cac. The increase of viscosity or elastic modulus can be 3 to 4 orders of magnitude. The effect of the temperature on the structure of the systems is studied as well. The rheological characterization of the Sol-Gel transition is developed and the rheological behavior of the solutions in a structured state shows a critical stress for rupture of the structure. Microscopic observations of the birefringence of the solutions display the existence of lamellar vesicles, which leads to the following assumption: the formation of big spherulites create a rigidification of the macromolecular network. (author) 190 refs.

  13. How microorganisms use hydrophobicity and what does this mean for human needs?

    Directory of Open Access Journals (Sweden)

    Anna eKrasowska

    2014-08-01

    Full Text Available Cell surface hydrophobicity (CSH plays a crucial role in the attachment to, or detachment from the surfaces. The influence of CSH on adhesion of microorganisms to biotic and abiotic surfaces in medicine as well as in bioremediation and fermentation industry has both negative and positive aspects. Hydrophobic microorganisms cause the damage of surfaces by biofilm formation; on the other hand, they can readily accumulate on organic pollutants and decompose them. Hydrophilic microorganisms also play a considerable role in removing organic wastes from the environment because of their high resistance to hydrophobic chemicals. Despite the many studies on the environmental and metabolic factors affecting cell surface hydrophobicity (CSH, the knowledge of this subject is still scanty and is in most cases limited to observing the impact of hydrophobicity on adhesion, aggregation or flocculation. The future of research seems to lie in finding a way to managing the microbial adhesion process, perhaps by steering cell hydrophobicity.

  14. Polycations increase the permeability of Mycobacterium vaccae cell envelopes to hydrophobic compounds.

    Science.gov (United States)

    Korycka-Machala, M; Ziółkowski, A; Rumijowska-Galewicz, A; Lisowska, K; Sedlaczek, L

    2001-10-01

    Polycations [protamine, polymyxin B nonapeptide (PMBN) and polyethyleneimine (PEI)] have been shown to increase the cell wall permeability of Mycobacterium vaccae to highly hydrophobic compounds, as manifested in enhanced intracellular bioconversion of beta-sitosterol to 4-androsten-3,17-dione (AD) and 1,4-androstadien-3,17-dione (ADD), and cell sensitization to erythromycin and rifampicin. The quantity of AD(D) formed per biomass unit was twice as high in the presence of PMBN and PEI, and three times higher with protamine. The sensitization factor, i.e. the MIC(50) ratio of the control bacteria to those exposed to polycations, ranged from 4 to 16, depending on the polycation/antibiotic combination. Non-covalently bound free lipids were extracted from the control and polycation-treated cells and fractionated with the use of chloroform, acetone and methanol. Chloroform- and acetone-eluted fractions (mainly neutral lipids and glycolipids, respectively) showed significant polycation-induced alterations in their quantitative and qualitative composition. The fatty acid profile of neutral lipids was reduced in comparison to control, whereas acetone-derived lipids were characterized by a much higher level of octadecenoic acid (C(18:1)) and a considerably lower content of docosanoic acid (C(22:0)), the marker compound of mycolate-containing glycolipids. Methanol-eluted fractions remained unaltered. Cell-wall-linked mycolates obtained from delipidated cells were apparently unaffected by the action of polycations, as judged from the TLC pattern of mycolic acid subclasses, the mean weight of mycolate preparations and the C(22:0) acid content in the mycolates, determined by GC/MS and pyrolysis GC. The results suggest the involvement of the components of non-covalently bound lipids in the outer layer in the M. vaccae permeability barrier.

  15. Hydrophobic recovery of VUV/NH{sub 3} modified polyolefin surfaces: Comparison with plasma treatments in nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Truica-Marasescu, F. [Groupe de Couches Minces (GCM), and Department of Engineering Physics, Ecole Polytechnique, C.P. 6079, Succ. Centre-Ville, Montreal, QC, H3C 3A7 (Canada); Guimond, S. [Groupe de Couches Minces (GCM), and Department of Engineering Physics, Ecole Polytechnique, C.P. 6079, Succ. Centre-Ville, Montreal, QC, H3C 3A7 (Canada); Jedrzejowski, P. [Groupe de Couches Minces (GCM), and Department of Engineering Physics, Ecole Polytechnique, C.P. 6079, Succ. Centre-Ville, Montreal, QC, H3C 3A7 (Canada); Wertheimer, M.R. [Groupe de Couches Minces (GCM), and Department of Engineering Physics, Ecole Polytechnique, C.P. 6079, Succ. Centre-Ville, Montreal, QC, H3C 3A7 (Canada)]. E-mail: michel.wertheimer@polymtl.ca

    2005-07-01

    Film samples of two very pure polyolefins (low density polyethylene, LDPE and biaxially oriented polypropylene, BOPP) were surface-modified by two different methods, namely vacuum ultraviolet (VUV) irradiation with a Kr resonant lamp in low-pressure NH{sub 3} gas, and atmospheric pressure glow discharge (APGD) plasma treatment in pure N{sub 2} gas. Samples were then stored in air and the time-dependence of surface properties (the surface energy and chemical composition) was monitored using several complementary surface-sensitive techniques: contact angle goniometry (CAG), X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). We show that the main mechanism responsible for hydrophobic recovery is the motion of polymer chains and chain segments, which governs an apparent 'loss' of functional groups, within the first monolayers of the surface ({approx}1 nm). Finally, comparing BOPP samples modified by both techniques, we show that aging can be reduced by crosslinking near the surface, as illustrated by depth-sensing nano-indentation measurements.

  16. From hydration repulsion to dry adhesion between asymmetric hydrophilic and hydrophobic surfaces

    OpenAIRE

    Kanduč, Matej; Netz, Roland R.

    2015-01-01

    Besides van der Waals and electrostatic interactions, surfaces in water experience solvation forces arising from the interfacial water structure that become dominant at small surface separations. Using a combination of atomistic simulations and theoretical arguments, we construct a universal adhesion state diagram for two neutral surfaces with different water affinities. We find an intermediate regime of affinity combinations where the surfaces adhere to each other without an intervening wate...

  17. Effect of TiO2 Powder on the Surface Morphology of Micro/Nanoporous Structured Hydrophobic Fluoropolymer Based Composite Material

    Directory of Open Access Journals (Sweden)

    Bichitra Nanda Sahoo

    2013-01-01

    Full Text Available The present work reports a simple and effective way to produce hydrophobic foams with polyvinylidene fluoride (PVDF and TiO2 by using a phase separation technique. This method involved the phase separation during the deposition of PVDF from its DMF solution with nonsolvent water in the presence of TiO2. The surface morphology of hydrophobic surfaces was characterized by Field Emission Scanning Electron Microscope (FESEM. The maximum water contact angle of 129° was observed. The results confirm that the surface texture of polymer composite exhibits mixture of microporous and nanoporous structure. The impact of TiO2 on the wettability property of polymer composite has been studied. The proposed methodology might find applications in the preparation of hydrophobic surfaces for industrial applications.

  18. Surface analysis of PEGylated nano-shields on nanoparticles installed by hydrophobic anchors

    DEFF Research Database (Denmark)

    Ebbesen, M F; Whitehead, Bradley Joseph; Gonzalez, Borja Ballarin;

    2013-01-01

    Purpose: This work describes a method for functionalisation of nanoparticle surfaces with hydrophilic "nano-shields" and the application of advanced surface characterisation to determine PEG amount and accumulation at the outmost 10 nm surface that is the predominant factor in determining protein...

  19. No-Loss Transportation of Water Droplets by Patterning a Desired Hydrophobic Path on a Superhydrophobic Surface.

    Science.gov (United States)

    Hu, Haibao; Yu, Sixiao; Song, Dong

    2016-07-26

    The directional transportation of droplets on solid surfaces is essential in a wide range of engineering applications. It is convenient to guide liquid droplets in a given direction by utilizing the gradient of wettability, by which the binding forces can be produced. In contrast to the mass-loss transportation of a droplet moving along hydrophilic paths on a horizontal superhydrophobic surface, we present no-loss transportation by fabricating a hydrophobic path on the same surface under tangential wind. In experimental exploration and theoretical analysis, the conditions of no-loss transportation of a droplet are mainly considered. We demonstrate that the lower (or upper) critical wind velocity, under which the droplet starts on the path (or is derailed from the path), is determined by the width of the path, the length of the contact area in the direction parallel to the path, the drift angle between the path and the wind direction, and the surface wettability of the pattern. Meanwhile, the no-loss transportation of water droplets along the desired path zigzagging on a superhydrophobic surface can be achieved steadily under appropriate conditions. We anticipate that such robust no-loss transportation will find an extensive range of applications.

  20. Adsorption and nanowear properties of bovine submaxillary mucin films on solid surfaces: Influence of solution pH and substrate hydrophobicity

    DEFF Research Database (Denmark)

    Sotres, Javier; Madsen, Jan Busk; Arnebrant, Thomas;

    2014-01-01

    The adsorption and mechanical stability of bovine submaxillary mucins (BSM) films at solid-liquid interfaces were studied with respect to both substrate hydrophobicity and solution pH. Dynamic light scattering revealed a single peak distribution in neutral aqueous solution (pH 7.4) and a small...... fraction with enhanced aggregation was observed in acidic solution (pH 3.8). Both substrate hydrophobicity and solution pH were found to affect the spontaneous adsorption of BSM onto solid surfaces; BSM adsorbed more onto hydrophobic surfaces than hydrophilic ones, and adsorbed more at pH 3.8 than at pH 7.......4. Thus, the highest "dry" adsorbed mass was observed for hydrophobic surfaces in pH 3.8 solution. However, a highest "wet" adsorbed mass, i.e. which includes the solvent coupled to the film, was observed for hydrophobic surfaces at pH 7.4. The mechanical stability of the films was studied...

  1. Influence of impurities and contact scale on the lubricating properties of bovine submaxillary mucin (BSM) films on a hydrophobic surface

    DEFF Research Database (Denmark)

    Nikogeorgos, Nikolaos; Madsen, Jan Busk; Lee, Seunghwan

    2014-01-01

    Lubricating properties of bovine submaxillary mucin (BSM) on a compliant, hydrophobic surface were studied as influenced by impurities, in particular bovine serum albumin (BSA), at macro and nanoscale contacts by means of pin-on-disk tribometry and friction force microscopy (FFM), respectively....... At both contact scales, the purity of BSM and the presence of BSA were quantitatively discriminated. The presence of BSA was responsible for higher frictional forces observed from BSM samples containing relatively larger amount of BSA. But, the mechanisms contributing to higher friction forces by BSA were...... different at different contact scales. At the macroscale contact, higher friction forces were caused by faster and dominant adsorption of BSA into the contacting area under a continuous cycle of desorption and re-adsorption of the macromolecules from tribostress. Nevertheless, all BSMs lowered...

  2. Surface analysis and anti-graffiti behavior of a weathered polyurethane-based coating embedded with hydrophobic nano silica

    Science.gov (United States)

    Rabea, A. Mohammad; Mohseni, M.; Mirabedini, S. M.; Tabatabaei, M. Hashemi

    2012-03-01

    In this study, a permanent anti-graffiti polyurethane coating was prepared using concomitant loading of an OH-functional silicone modified polyacrylate additive ranging from 2 to 15 mol% and hydrophobic silica nanoparticles from 1 to 5 wt%. UV-visible spectroscopy, contact angle measurement and dynamic mechanical thermal analysis (DMTA) analysis were conducted on selected samples to study the weathering performance of samples containing various amounts of silica nanoparticles before and after accelerated weathering conditions. The results showed that higher amounts of additive had inferior effects on the anti-graffiti performance of the coating samples after exposure. However, silica nanoparticles could positively affect the anti-graffiti performance against ageing cycles. This improvement was attributed to lower degradation of samples containing silica nanoparticles and barrier property of nanoparticles against graffiti penetration. The presence of silica nanoparticles did not have any significant effect on the surface free energy of the samples prior and after ageing.

  3. Enhanced hydrophobicity of polyurethane via non-solvent induced surface aggregation of silica nanoparticles.

    Science.gov (United States)

    Seyfi, Javad; Hejazi, Iman; Jafari, Seyed Hassan; Khonakdar, Hossein Ali; Simon, Frank

    2016-09-15

    Fabrication of superhydrophobic surfaces from hydrophilic polymers has always been regarded as a challenge. In this study, to achieve superhydrophobic polyurethane (PU) surfaces, silica nanoparticles and ethanol as non-solvent were simultaneously utilized during a solution casting-based process. Such modified version of phase separation process was found to be highly efficient, and also it required much lower concentration of nanoparticles to achieve superhydrophobicity as compared to the previously reported methods in the literature. According to the proposed mechanism, non-solvent induces a more profound aggregation of silica nanoparticles at the surface's top layer causing the surface energy to be highly diminished, and thus, the water repellency is improved. Morphology and topography results showed that a unique "triple-sized" structure was formed on the surface of superhydrophobic samples. X-ray photoelectron spectroscopy results proved that both PU macromolecules and silica nanoparticles were concurrently present at the surface layer of the superhydrophobic sample. It was concluded that surface composition and roughness could be regarded as competing factors in achieving superhydrophobicity. Based on the obtained results, the proposed method exhibits a promising potential in large-scale fabrication of surface layers with superhydrophobic property. Moreover, a mechanism was also presented to further explicate the physics behind the suggested method. PMID:27288577

  4. Wetting property of smooth and textured hydrophobic surfaces under condensation condition

    Science.gov (United States)

    Hao, PengFei; Lv, CunJing; Yao, ZhaoHui; Niu, FengLei

    2014-11-01

    Static and dynamic wetting behaviors of sessile droplet on smooth, microstructured and micro/nanostructured surface under condensation condition are systematically studied. In contrast to the conventional droplet wetting on such natural materials by dropping, we demonstrate here that when dropwise condensation occurs, the sessile droplet will transit from the Cassie-Baxter wetting state to the Wenzel wetting state or partial Cassie-Baxter wetting state on the microstructured surface or the micro/nanostructured surface, which leads to a strong adhesion between the droplet and the substrate. In contrast, the apparent contact angle and the sliding angle on the smooth surface changes a little before and after the condensation because of small roughness. Theoretical analysis shows that the roughness factor controls the adhesion force of the droplet during condensation, and a theoretical model is constructed which will be helpful for us to understand the relationship between the adhesion force and the geometry of the surface.

  5. Fabrication of multi-scale micro-lens arrays on hydrophobic surfaces using a drop-on-demand droplet generator

    Science.gov (United States)

    Zhu, Xiaoyang; Zhu, Li; Chen, Hejuan; Yang, Mei; Zhang, Weiyi

    2015-03-01

    A simple method was demonstrated for the fabrication of multi-scale polymer microlenses (μ-lenses) and microlens arrays (MLAs) using a drop-on-demand (DOD) droplet generator. A ultraviolet (UV) curable polymer used as the ink was DOD printed on the hydrophobic surfaces with different wetting conditions and cured by a UV lamp. The high quality μ-lenses and MLAs with good geometrical uniformity were fabricated. The shapes of the μ-lenses and MLAs were controlled by the different surface wetting conditions, and these shape changes affected the optical properties of the μ-lenses and MLAs, such as the numerical aperture (NA), focal distance (f) and the f-number (f#). The surface roughness of the μ-lens was measured by a white light interferometer (VSI mode) and atomic force microscope (AFM) and proved satisfactory. The influences of the surface wetting conditions on imaging and light gathering characteristics of the MLAs were evaluated by an optical microscope.

  6. Femtosecond laser fabrication of highly hydrophobic stainless steel surface with hierarchical structures fabricated by combining ordered microstructures and LIPSS

    Science.gov (United States)

    Martínez-Calderon, M.; Rodríguez, A.; Dias-Ponte, A.; Morant-Miñana, M. C.; Gómez-Aranzadi, M.; Olaizola, S. M.

    2016-06-01

    In this work we have developed hierarchical structures that consist of micro-patterned surfaces covered by nanostructures with a femtosecond laser. The first part of this work is a study to determine the microscale modifications produced on a stainless steel alloy (AISI304) surface at high pulse energy, different velocities, and number of overscans in order to obtain microstructures with a selected depth of around 10 μm and line widths of 20 μm. The second part of the work is focused on finding the optimal irradiation parameters to obtain the nanostructure pattern. Nanostructures have been defined by means of Laser Induced Periodical Surface Structures (LIPSS) around 250 nm high and a period of 580 nm, which constitute the nanostructure pattern. Finally, dual scale gratings of 50 mm2 were fabricated with different geometries and their effect on the measured contact angle. Combining the micro-pattern with the LIPSS nano-pattern, highly hydrophobic surfaces have been developed with measured static contact angles higher than 150° on a stainless steel alloy.

  7. Water jet rebounds on hydrophobic surfaces : a first step to jet micro-fluidics.

    OpenAIRE

    Celestini, Franck; Kofman, R.; Noblin, Xavier; Pellegrin, Mathieu

    2010-01-01

    International audience When a water jet impinges upon a solid surface it produces a so called hydraulic jump that everyone can observe in the sink of its kitchen. It is characterized by a thin liquid sheet bounded by a circular rise of the surface due to capillary and gravitational forces. In this phenomenon, the impact induces a geometrical transition, from the cylindrical one of the jet to the bi-dimensional one of the film. A true jet rebound on a solid surface, for which the cylindrica...

  8. Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface.

    Science.gov (United States)

    Zhu, Guang; Su, Yuanjie; Bai, Peng; Chen, Jun; Jing, Qingshen; Yang, Weiqing; Wang, Zhong Lin

    2014-06-24

    Energy harvesting from ambient water motions is a desirable but underexplored solution to on-site energy demand for self-powered electronics. Here we report a liquid-solid electrification-enabled generator based on a fluorinated ethylene propylene thin film, below which an array of electrodes are fabricated. The surface of the thin film is charged first due to the water-solid contact electrification. Aligned nanowires created on the thin film make it hydrophobic and also increase the surface area. Then the asymmetric screening to the surface charges by the waving water during emerging and submerging processes causes the free electrons on the electrodes to flow through an external load, resulting in power generation. The generator produces sufficient output power for driving an array of small electronics during direct interaction with water bodies, including surface waves and falling drops. Polymer-nanowire-based surface modification increases the contact area at the liquid-solid interface, leading to enhanced surface charging density and thus electric output at an efficiency of 7.7%. Our planar-structured generator features an all-in-one design without separate and movable components for capturing and transmitting mechanical energy. It has extremely lightweight and small volume, making it a portable, flexible, and convenient power solution that can be applied on the ocean/river surface, at coastal/offshore areas, and even in rainy places. Considering the demonstrated scalability, it can also be possibly used in large-scale energy generation if layers of planar sheets are connected into a network. PMID:24745893

  9. 3D Imaging of Water-Drop Condensation on Hydrophobic and Hydrophilic Lubricant-Impregnated Surfaces

    OpenAIRE

    Tadashi Kajiya; Frank Schellenberger; Periklis Papadopoulos; Doris Vollmer; Hans-Jürgen Butt

    2016-01-01

    Condensation of water from the atmosphere on a solid surface is an ubiquitous phenomenon in nature and has diverse technological applications, e.g. in heat and mass transfer. We investigated the condensation kinetics of water drops on a lubricant-impregnated surface, i.e., a micropillar array impregnated with a non-volatile ionic liquid. Growing and coalescing drops were imaged in 3D using a laser scanning confocal microscope equipped with a temperature and humidity control. Different stages ...

  10. Wetting property of smooth and textured hydrophobic surfaces under condensation condition

    Institute of Scientific and Technical Information of China (English)

    HAO PengFei; LV CunJing; YAO ZhaoHui; NIU FengLei

    2014-01-01

    Static and dynamic wetting behaviors of sessile droplet on smooth,microstructured and micro/nanostructured surface under condensation condition are systematically studied.In contrast to the conventional droplet wetting on such natural materials by dropping,we demonstrate here that when dropwise condensation occurs,the sessile droplet will transit from the Cassie-Baxter wetting state to the Wenzel wetting state or partial Cassie-Baxter wetting state on the microstructured surface or the micro/nanostructured surface,which leads to a strong adhesion between the droplet and the substrate.In contrast,the apparent contact angle and the sliding angle on the smooth surface changes a little before and after the condensation because of small roughness.Theoretical analysis shows that the roughness factor controls the adhesion force of the droplet during condensation,and a theoretical model is constructed which will be helpful for us to understand the relationship between the adhesion force and the geometry of the surface.

  11. Exposure of the hydrophobic components of porcine lung surfactant to oxidant stress alters surface tension properties.

    OpenAIRE

    Gilliard, N; Heldt, G P; Loredo, J.; Gasser, H; Redl, H; Merritt, T A; Spragg, R G

    1994-01-01

    We have tested the hypothesis that oxidation of lung surfactant results in loss of surface tension lowering function. Porcine lung surfactant was exposed to conditions known to cause lipid peroxidation (0.2 mM FeCl2 + 0.1 mM H2O2 or 5 microM CuCl2). Lipid peroxidation was verified by detection of conjugated dienes, thiobarbituric acid reactive substances, fluorescent products, hydroxy alkenals, and loss of unsaturated fatty acids. Exposed samples had significantly diminished surface tension l...

  12. Bacterial adhesion and biofilm formation on surfaces of variable roughness and hydrophobicity

    DEFF Research Database (Denmark)

    Tang, Lone; Pillai, Saju; Iversen, Anders;

    adhesion. Sol-gel technology and the recent availability of organic modified silicas have lead to development of hybrid organic/inorganic glass ceramic coatings with specialised surface properties. In this study we investigate bacterial adhesion and the subsequent biofilm formation on stainless steel (SS...

  13. PLASMA POLYMERIZATION OF HYDROPHILIC AND HYDROPHOBIC MONOMERS FOR SURFACE MODIFICATION OF NUCLE-MICROPOROUS MEMBRANE

    Institute of Scientific and Technical Information of China (English)

    LI Xuefen; LI Zhifen; CHEN Chuanfu; WU Wenhui

    1990-01-01

    Surface modification of nucle-microporous membrane by plasma polymerization of HEMA, NVP and D4 has been studied. The hydrophilicity of membranes was increased with increasing of plasma polymerization time of hydrophilic monomers HEMA and NVP. The flow rate of water through the membrane was increased remarkably after plasma polymerization of HEMA on it.

  14. The surface reactivity of chalk (biogenic calcite) with hydrophilic and hydrophobic functional groups

    Science.gov (United States)

    Okhrimenko, D. V.; Dalby, K. N.; Skovbjerg, L. L.; Bovet, N.; Christensen, J. H.; Stipp, S. L. S.

    2014-03-01

    The surface properties of calcium carbonate minerals play an important role in a number of industrial and biological processes. Properties such as wettability and adsorption control liquid-solid interface behaviour and thus have a strong influence on processes such as biomineralisation, remediation of aquifers and oil recovery. We investigated how two model molecules of different polarity, namely water and ethanol, interact with reservoir and outcrop chalk samples and we compared their behaviour with that of pure, inorganically precipitated calcite. Thermodynamic quantities, such as the work of wetting, surface energy and isosteric adsorption enthalpy, were determined from vapour adsorption isotherms. The chalks were studied fresh and after extraction of organic residues that were originally present in these samples. The work of wetting correlates with the amount of organic matter present in the chalk samples but we observed a fundamental difference between the adsorption properties of chalk and pure, inorganically precipitated calcite toward the less polar, ethanol molecule. Further analysis of the chemical composition of the organic matter extracted from the chalk samples was made by gas chromatography (GC-MS). Monitoring surface composition by X-ray photoelectron spectroscopy (XPS) before and after extraction of the organic material, and with atomic force microscopy (AFM), showed that nanometer sized clay crystals observed on the chalk particle surfaces could be an important part of the reason for the differences. Removal of the extractable portion of the hydrocarbons liberates adsorption sites that have different wetting properties than the rest of the chalk and these have an energy distribution that is similar to clays. Thus, the results exemplify the complexity of biogenic calcite adsorption behaviour and demonstrate that chalk wetting in drinking water aquifers as well as oil reservoirs is controlled partly by the nanoparticles of clay that have grown on the

  15. Cellular Behavior of Human Adipose-Derived Stem Cells on Wettable Gradient Polyethylene Surfaces

    Directory of Open Access Journals (Sweden)

    Hyun Hee Ahn

    2014-01-01

    Full Text Available Appropriate surface wettability and roughness of biomaterials is an important factor in cell attachment and proliferation. In this study, we investigated the correlation between surface wettability and roughness, and biological response in human adipose-derived stem cells (hADSCs. We prepared wettable and rough gradient polyethylene (PE surfaces by increasing the power of a radio frequency corona discharge apparatus with knife-type electrodes over a moving sample bed. The PE changed gradually from hydrophobic and smooth surfaces to hydrophilic (water contact angle, 90° to ~50° and rough (80 to ~120 nm surfaces as the power increased. We found that hADSCs adhered better to highly hydrophilic and rough surfaces and showed broadly stretched morphology compared with that on hydrophobic and smooth surfaces. The proliferation of hADSCs on hydrophilic and rough surfaces was also higher than that on hydrophobic and smooth surfaces. Furthermore, integrin beta 1 gene expression, an indicator of attachment, and heat shock protein 70 gene expression were high on hydrophobic and smooth surfaces. These results indicate that the cellular behavior of hADSCs on gradient surface depends on surface properties, wettability and roughness.

  16. Vibration-induced Wenzel-Cassie wetting transition on microstructured hydrophobic surfaces

    Science.gov (United States)

    Lei, Wei; Jia, Zhi-Hai; He, Ji-Chang; Cai, Tai-Min; Wang, Gang

    2014-05-01

    Wetting transitions were studied with vertically vibrated droplet on various polydimethylsiloxane surfaces with square array of pillars. Our experiments show that the increase of the pillar spacing, at each given frequency, leads to a decrease of the critical amplitude (which is required to achieve a Wenzel to Cassie transition). The physical mechanism of Wenzel-Cassie transition by vibration is presented. Compared with other studies of wetting transition by vibration, we demonstrate that Wenzel-Cassie transition comes up when R(θ)fn2Acr2≈const (where fn is the resonance frequency, Acr is the threshold amplitude, and R(θ) is the initial radius of the droplet).

  17. SURFACE HYDROPHOBICITY MODIFICATION OF CELLULOSE FIBERS BY LAYER-BY-LAYER SELF-ASSSEMBLY OF LIGNOSULFONATES

    OpenAIRE

    Hui Li; Hao Liu; Shiyu Fu; Huaiyu Zhan

    2011-01-01

    Self-assembled multilayers of lignosulfonates (LS) were built up on both quartz slides and cellulose fibers using a Cu2+-mediated layer-by-layer (LBL) technique. The growth of LS multilayers on quartz slides was monitored by UV-Vis spectroscopy, and the absorbance at 205 nm as well as at 280 nm was found to linearly increase with the number of layers. The formation of LS multilayers on fibers surfaces was characterized by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM...

  18. Enhanced super-hydrophobic and switching behavior of ZnO nanostructured surfaces prepared by simple solution--immersion successive ionic layer adsorption and reaction process.

    Science.gov (United States)

    Suresh Kumar, P; Sundaramurthy, J; Mangalaraj, D; Nataraj, D; Rajarathnam, D; Srinivasan, M P

    2011-11-01

    A simple and cost-effective successive ionic layer adsorption and reaction (SILAR) method was adopted to fabricate hydrophobic ZnO nanostructured surfaces on transparent indium-tin oxide (ITO), glass and polyethylene terephthalate (PET) substrates. ZnO films deposited on different substrates show hierarchical structures like spindle, flower and spherical shape with diameters ranging from 30 to 300 nm. The photo-induced switching behaviors of ZnO film surfaces between hydrophobic and hydrophilic states were examined by water contact angle and X-ray photoelectron spectroscopy (XPS) analysis. ZnO nanostructured films had contact angles of ~140° and 160°±2 on glass and PET substrates, respectively, exhibiting hydrophobic behavior without any surface modification or treatment. Upon exposure to ultraviolet (UV) illumination, the films showed hydrophilic behavior (contact angle: 15°±2), which upon low thermal stimuli revert back to its original hydrophobic nature. Such reversible and repeatable switching behaviors were observed upon cyclical exposure to ultraviolet radiation. These biomimetic ZnO surfaces exhibit good anti-reflective properties with lower reflectance of 9% for PET substrates. Thus, the present work is significant in terms of its potential application in switching devices, solar coatings and self-cleaning smart windows.

  19. Detachment of colloidal particles from collector surfaces with different electrostatic charge and hydrophobicity by attachment to air bubbles in a parallel plate flow chamber

    NARCIS (Netherlands)

    Suarez, CG; van der Mei, HC; Busscher, HJ

    1999-01-01

    The detachment of polystyrene particles adhering to collector surfaces with different electrostatic charge and hydrophobicity by attachment to a passing air bubble has been studied in a parallel plate flow chamber. Particle detachment decreased linearly with increasing air bubble velocity and decrea

  20. INTERFACIAL SELF-ASSEMBLY OF A HYDROPHOBIN INTO AN AMPHIPATHIC PROTEIN MEMBRANE MEDIATES FUNGAL ATTACHMENT TO HYDROPHOBIC SURFACES

    NARCIS (Netherlands)

    WOSTEN, HAB; SCHUREN, FHJ; WESSELS, JGH

    1994-01-01

    The SC3p hydrophobin of Schizophyllum commune is a small hydrophobic protein (100-101 amino acids with eight cysteine residues) that self-assembles at a water/air interface and coats aerial hyphae with an SDS-insoluble protein membrane, at the outer side highly hydrophobic and with a typical rodlet

  1. Adhesion defective BHK cell mutant has cell surface heparan sulfate proteoglycan of altered properties

    DEFF Research Database (Denmark)

    Couchman, J R; Austria, R; Woods, A;

    1988-01-01

    sulfation, reduced affinity for fibronectin and decreased half-life on the cell surface when compared to the normal counterpart. Our conclusions based on this data are that these altered properties may, in part, account for the adhesion defect in the ricin-resistant mutant. Whether this results from......In the light of accumulating data that implicate cell surface heparan sulfate proteoglycans (HSPGs) with a role in cell interactions with extracellular matrix molecules such as fibronectin, we have compared the properties of these molecules in wild-type BHK cells and an adhesion-defective ricin......-resistant mutant (RicR14). Our results showed that the mutant, unlike BHK cells, cannot form focal adhesions when adherent to planar substrates in the presence of serum. Furthermore, while both cell lines possess similar amounts of cell surface HSPG with hydrophobic properties, that of RicR14 cells had decreased...

  2. Structural and Mechanical Properties of Thin Films of Bovine Submaxillary Mucin versus Porcine Gastric Mucin on a Hydrophobic Surface in Aqueous Solutions

    DEFF Research Database (Denmark)

    Madsen, Jan Busk; Sotres, Javier; Pakkanen, Kirsi I.;

    2016-01-01

    on hydrophobic polydimethylsiloxane (PDMS) surfaces from spontaneous adsorption arising from their amphiphilic characteristic. However, BSM formed more elastic films than PGM at neutral pH condition. This structural difference was manifested from the initial film formation processes to the responses to shear...... the central and terminal regions of BSM molecule, whereas a similar magnitude of negative charges is localized at the termini of PGM molecule. Given that hydrophobic motifs acting as an anchor are also localized in the terminal region, electrostatic repulsion between anchoring units of PGM molecules...

  3. Thermal, Electrical and Surface Hydrophobic Properties of Electrospun Polyacrylonitrile Nanofibers for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Ibrahim M. Alarifi

    2015-10-01

    Full Text Available This paper presents an idea of using carbonized electrospun Polyacrylonitrile (PAN fibers as a sensor material in a structural health monitoring (SHM system. The electrospun PAN fibers are lightweight, less costly and do not interfere with the functioning of infrastructure. This study deals with the fabrication of PAN-based nanofibers via electrospinning followed by stabilization and carbonization in order to remove all non-carbonaceous material and ensure pure carbon fibers as the resulting material. Electrochemical impedance spectroscopy was used to determine the ionic conductivity of PAN fibers. The X-ray diffraction study showed that the repeated peaks near 42° on the activated nanofiber film were α and β phases, respectively, with crystalline forms. Contact angle, thermogravimetric analysis (TGA, differential scanning calorimetry (DSC and Fourier transform infrared spectroscopy (FTIR were also employed to examine the surface, thermal and chemical properties of the carbonized electrospun PAN fibers. The test results indicated that the carbonized PAN nanofibers have superior physical properties, which may be useful for structural health monitoring (SHM applications in different industries.

  4. Permeable reactive barrier of surface hydrophobic granular activated carbon coupled with elemental iron for the removal of 2,4-dichlorophenol in water

    Energy Technology Data Exchange (ETDEWEB)

    Yang Ji, E-mail: yangji@ecust.edu.cn [School of Resources and Environmental Engineering, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237 (China); Cao Limei; Guo Rui; Jia Jinping [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2010-12-15

    Granular activated carbon was modified with dimethyl dichlorosilane to improve its surface hydrophobicity, and therefore to improve the performance of permeable reactive barrier constructed with the modified granular activated carbon and elemental iron. X-ray photoelectron spectroscopy shows that the surface silicon concentration of the modified granular activated carbon is higher than that of the original one, leading to the increased surface hydrophobicity. Although the specific surface area decreased from 895 to 835 m{sup 2} g{sup -1}, the modified granular activated carbon could adsorb 20% more 2,4-dichlorophenol than the original one did in water. It is also proven that the permeable reactive barrier with the modified granular activated carbon is more efficient at 2,4-dichlorophenol dechlorination, in which process 2,4-dichlorophenol is transformed to 2-chlorophenol or 4-chlorophenol then to phenol, or to phenol directly.

  5. Water at hydrophobic interfaces delays proton surface-to-bulk transfer and provides a pathway for lateral proton diffusion.

    Science.gov (United States)

    Zhang, Chao; Knyazev, Denis G; Vereshaga, Yana A; Ippoliti, Emiliano; Nguyen, Trung Hai; Carloni, Paolo; Pohl, Peter

    2012-06-19

    Fast lateral proton migration along membranes is of vital importance for cellular energy homeostasis and various proton-coupled transport processes. It can only occur if attractive forces keep the proton at the interface. How to reconcile this high affinity to the membrane surface with high proton mobility is unclear. Here, we tested whether a minimalistic model interface between an apolar hydrophobic phase (n-decane) and an aqueous phase mimics the biological pathway for lateral proton migration. The observed diffusion span, on the order of tens of micrometers, and the high proton mobility were both similar to the values previously reported for lipid bilayers. Extensive ab initio simulations on the same water/n-decane interface reproduced the experimentally derived free energy barrier for the excess proton. The free energy profile G(H(+)) adopts the shape of a well at the interface, having a width of two water molecules and a depth of 6 ± 2RT. The hydroniums in direct contact with n-decane have a reduced mobility. However, the hydroniums in the second layer of water molecules are mobile. Their in silico diffusion coefficient matches that derived from our in vitro experiments, (5.7 ± 0.7) 10(-5) cm(2) s(-1). Conceivably, these are the protons that allow for fast diffusion along biological membranes. PMID:22675120

  6. Flax Fiber Hydrophobic Extract Inhibits Human Skin Cells Inflammation and Causes Remodeling of Extracellular Matrix and Wound Closure Activation.

    Science.gov (United States)

    Styrczewska, Monika; Kostyn, Anna; Kulma, Anna; Majkowska-Skrobek, Grazyna; Augustyniak, Daria; Prescha, Anna; Czuj, Tadeusz; Szopa, Jan

    2015-01-01

    Inflammation is the basis of many diseases, with chronic wounds amongst them, limiting cell proliferation and tissue regeneration. Our previous preclinical study of flax fiber applied as a wound dressing and analysis of its components impact on the fibroblast transcriptome suggested flax fiber hydrophobic extract use as an anti-inflammatory and wound healing preparation. The extract contains cannabidiol (CBD), phytosterols, and unsaturated fatty acids, showing great promise in wound healing. In in vitro proliferation and wound closure tests the extract activated cell migration and proliferation. The activity of matrix metalloproteinases in skin cells was increased, suggesting activation of extracellular components remodeling. The expression of cytokines was diminished by the extract in a cannabidiol-dependent manner, but β-sitosterol can act synergistically with CBD in inflammation inhibition. Extracellular matrix related genes were also analyzed, considering their importance in further stages of wound healing. The extract activated skin cell matrix remodeling, but the changes were only partially cannabidiol- and β-sitosterol-dependent. The possible role of fatty acids also present in the extract is suggested. The study shows the hydrophobic flax fiber components as wound healing activators, with anti-inflammatory cannabidiol acting in synergy with sterols, and migration and proliferation promoting agents, some of which still require experimental identification.

  7. The Plant Cell Surface

    Institute of Scientific and Technical Information of China (English)

    Anne-Mie C.Emons; Kurt V.Fagerstedt

    2010-01-01

    @@ Multicellular organization and tissue construction has evolved along essentially different lines in plants and animals. Since plants do not run away, but are anchored in the soil, their tissues are more or less firm and stiff. This strength stems from the cell walls, which encase the fragile cytoplasm, and protect it.

  8. Mesoscopic Simulations of the Phase Behavior of Aqueous EO 19 PO 29 EO 19 Solutions Confined and Sheared by Hydrophobic and Hydrophilic Surfaces

    KAUST Repository

    Liu, Hongyi

    2012-01-25

    The MesoDyn method is used to investigate associative structures in aqueous solution of a nonionic triblock copolymer consisting of poly(propylene oxide) capped on both ends with poly(ethylene oxide) chains. The effect of adsorbing (hydrophobic) and nonadsorbing (hydrophilic) solid surfaces in contact with aqueous solutions of the polymer is elucidated. The macromolecules form self-assembled structures in solution. Confinement under shear forces is investigated in terms of interfacial behavior and association. The formation of micelles under confinement between hydrophilic surfaces occurs faster than in bulk aqueous solution while layered structures assemble when the polymers are confined between hydrophobic surfaces. Micelles are deformed under shear rates of 1 μs -1 and eventually break to form persistent, adsorbed layered structures. As a result, surface damage under frictional forces is prevented. Overall, this study indicates that aqueous triblock copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) (Pluronics, EO mPO nEO m) act as a boundary lubricant for hydrophobic surfaces but not for hydrophilic ones. © 2011 American Chemical Society.

  9. Differential neuroprotective potential of CRMP2 peptide aptamers conjugated to cationic, hydrophobic, and amphipathic cell penetrating peptides

    Directory of Open Access Journals (Sweden)

    Aubin eMoutal

    2015-01-01

    Full Text Available The microtubule-associated axonal specification collapsin response mediator protein 2 (CRMP2 is a novel target for neuroprotection. A CRMP2 peptide (TAT-CBD3 conjugated to the HIV transactivator of transcription (TAT protein’s cationic cell penetrating peptide motif (CPP protected neurons in the face of toxic levels of Ca2+ influx leaked in via N-methyl-D-aspartate receptor (NMDAR hyperactivation. Here we tested whether replacing the hydrophilic TAT motif with alternative cationic (nona-arginine (R9, hydrophobic (membrane transport sequence (MTS of k-fibroblast growth factor or amphipathic (model amphipathic peptide (MAP CPPs could be superior to the neuroprotection bestowed by TAT-CBD3. In giant plasma membrane vesicles (GPMVs derived from cortical neurons, the peptides translocated across plasma membranes with similar efficiencies. Cortical neurons, acutely treated with peptides prior to a toxic glutamate challenge, demonstrated enhanced efflux of R9-CBD3 compared to others. R9-CBD3 inhibited N-methyl-D-aspartate (NMDA-evoked Ca2+ influx to a similar extent as TAT-CBD3 while MTS-CBD3 was ineffective which correlated with the ability of R9- and TAT-CBD3, but not MTS-CBD3, to block NMDAR interaction with CRMP2. Unrestricted Ca2+ influx through NMDARs leading to delayed calcium dysregulation and neuronal cell death was blocked by all peptides but MAP-CBD3. When applied acutely for 10 minutes, R9-CBD3 was more effective than TAT-CBD3 at neuroprotection while MTS- and MAP-CBD3 were ineffective. In contrast, long-term (> 24 hours treatment with MTS-CBD3 conferred neuroprotection where TAT-CBD3 failed. Neither peptide altered surface trafficking of NMDARs. Neuroprotection conferred by MTS-CBD3 peptide is likely due to its increased uptake coupled with decreased efflux when compared to TAT-CBD3. Overall, our results demonstrate that altering CPPs can bestow differential neuroprotective potential onto the CBD3 cargo.

  10. Hydrophobic organization of membrane proteins

    OpenAIRE

    Rees, D C; DeAntonio, L.; Eisenberg, D.

    1989-01-01

    Membrane-exposed residues are more hydrophobic than buried interior residues in the transmembrane regions of the photosynthetic reaction center from Rhodobacter sphaeroides. This hydrophobic organization is opposite to that of water-soluble proteins. The relative polarities of interior and surface residues of membrane and water soluble proteins are not simply reversed, however. The hydrophobicities of interior residues of both membrane and water-soluble proteins are comparable, whereas the bi...

  11. Mechanism of formation of humus coatings on mineral surfaces 2. Attenuated total reflectance spectra of hydrophobic and hydrophilic fractions of organic acids from compost leachate on alumina

    Science.gov (United States)

    Wershaw, R. L.; Llaguno, E.C.; Leenheer, J.A.; Sperline, R.P.; Song, Y.

    1996-01-01

    Hydrophobic and hydrophilic fractions were isolated from a compost leachate. The adsorption isotherms of both fractions on alumina were measured by attenuated total reflectance infrared spectroscopy. The shapes of the adsorption isotherms of the two fractions were different. The isotherms for the hydrophilic fraction showed little change in surface excess with increasing solution concentration above 4 mg L-1. The isotherms for the hydrophobic fraction, on the other hand, displayed a marked increase in surface excess with increasing solution concentration. This increase is evidence for the formation of aggregates (admicelles or hemimicelles) on the alumina surface. Linear dichroism calculations indicated that more of the carboxylate groups in the adsorbed hydrophobic molecules than in the absorbed hydrophilic fraction were free to rotate. The hindered rotation of the carboxylate groups in the adsorbed hydrophilic-fraction molecules probably indicates that these groups are bound to surface aluminum ions by a bidentate mechanism in which the two oxygen atoms of a single carboxylate group bind to separate aluminum ions.

  12. Morphological investigations of cells that adhered to the irregular patterned polydimethylsiloxane (PDMS) surface without reagents.

    Science.gov (United States)

    Chung, Sung Hee; Min, Junhong

    2009-07-01

    Polydimethylsiloxane (PDMS) surface consisting irregular pattern was investigated to develop cell-based biochip using PDMS. PDMS surface was modified with nano- and micro-combined patterns using surface deformation technology. Hydrophobicity of nano-patterned PDMS surface was sustained. Nevertheless it has irregular patterns consisting of micro- and nano-patterns. According to atomic force microscopy (AFM), scanning electron microscopy (SEM) and confocal microscopy results by immunostaining method, human mammary epithelial cells (HMEC) adhered well on irregularly patterned surface without any reagents such as gelatin and collagen, compared to commercial culture dish. It implies PDMS material can be utilized as template for cell-based biochip without any reagents. PMID:19427124

  13. The cell-surface interaction.

    Science.gov (United States)

    Hayes, J S; Czekanska, E M; Richards, R G

    2012-01-01

    The realm of surface-dependent cell and tissue responses is the foundation of orthopaedic-device-related research. However, to design materials that elicit specific responses from tissues is a complex proposition mainly because the vast majority of the biological principles controlling the interaction of cells with implants remain largely ambiguous. Nevertheless, many surface properties, such as chemistry and topography, can be manipulated in an effort to selectively control the cell-material interaction. On the basis of this information there has been much research in this area, including studies focusing on the structure and composition of the implant interface, optimization of biological and chemical coatings and elucidation of the mechanisms involved in the subsequent cell-material interactions. Although a wealth of information has emerged, it also advocates the complexity and dynamism of the cell-material interaction. Therefore, this chapter aims to provide the reader with an introduction to the basic concepts of the cell-material interaction and to provide an insight into the factors involved in determining the cell and tissue response to specific surface features, with specific emphasis on surface microtopography. PMID:21984613

  14. Hydrophobic adhesin of E coli in ulcerative colitis.

    OpenAIRE

    Burke, D A; Axon, A T

    1988-01-01

    Pathogenic E coli have adhesive properties which are mirrored by an increase in their surface hydrophobicity. E coli isolated from patients with ulcerative colitis possess a mannose resistant adhesin similar to that found in pathogenic E coli. In this study 42 E coli isolates from patients with colitis have been compared with 15 from controls to assess hydrophobicity and cellular adherence. The salting out method and the buccal epithelial cell technique were used respectively. E coli isolated...

  15. Synthesis of Janus-like gold nanoparticles with hydrophilic/hydrophobic faces by surface ligand exchange and their self-assemblies in water.

    Science.gov (United States)

    Iida, Ryo; Kawamura, Hitoshi; Niikura, Kenichi; Kimura, Takashi; Sekiguchi, Shota; Joti, Yasumasa; Bessho, Yoshitaka; Mitomo, Hideyuki; Nishino, Yoshinori; Ijiro, Kuniharu

    2015-04-14

    This study aims at the synthesis of Janus gold nanoparticles (Janus GNPs) with hydrophilic/hydrophobic faces by a simple ligand exchange reaction in an homogeneous system and at the elucidation of the self-assembled structures of the Janus GNPs in water. As hydrophilic surface ligands, we synthesized hexaethylene glycol (E6)-terminated thiolate ligands with C3, C7, or C11 alkyl chains, referred to as E6C3, E6C7, and E6C11, respectively. As a hydrophobic ligand, a butyl-headed thiolate ligand C4-E6C11, in which a C4 alkyl was introduced on the E6C11 terminus, was synthesized. The degree of segregation between the two ligands on the GNPs (5 nm in diameter) was examined by matrix-assisted laser desorption/ionization time-of fright mass spectrometry (MALDI-TOF MS) analysis. We found that the choice of immobilization methods, one-step or two-step addition of the two ligands to the GNP solution, crucially affects the degree of segregation. The two-step addition of a hydrophilic ligand (E6C3) followed by a hydrophobic ligand (C4-E6C11) produced a large degree of segregation on the GNPs, providing Janus-like GNPs. When dispersed in water, these Janus-like GNPs formed assemblies of ∼160 nm in diameter, whereas Domain GNPs, in which the two ligands formed partial domains on the surface, were precipitated even when the molar ratio of the hydrophilic ligand and the hydrophobic ligand on the surface of the NPs was almost 1:1. The assembled structure of the Janus-like GNPs in water was directly observed by pulsed coherent X-ray solution scattering using an X-ray free-electron laser, revealing irregular spherical structures with uneven surfaces.

  16. Investigation of the hydrophobic recovery of various polymeric biomaterials after 172 nm UV treatment using contact angle, surface free energy and XPS measurements

    International Nuclear Information System (INIS)

    Surface modification as a route to improving the performance of polymeric biomaterials is an area of much topical interest. Ultraviolet (UV) light treatment has received much attention, but polymers so treated revert to their original surface condition over a period of time-an effect known as hydrophobic recovery. It is important to develop an understanding of the underlying processes contributing to the effect, since it has an impact on the applicability of UV treatment. In this work a number of polymeric biomaterials were surface-modified using 172 nm UV light from an excimer lamp. The modified polymers were characterised using contact angle, surface free energy (SFE) measurements and X-Ray Photoelectron Spectroscopy (XPS) techniques. The wettability, variation in surface free energy and chemical functionality changes were analysed on the surfaces immediately after UV treatment and subsequently over a period of 28 days. It was noted that hydrophobic recovery proceeds at a different rate for each polymer, is generally a two-phase process and that surfaces are still more hydrophilic after 28 days than the original untreated state. XPS analysis reveals that particular chemical configurations move from the surface at a faster rate than others which may contribute to the two-phase nature of the process.

  17. Research Progress in Anti-frosting Performance of Super-hydrophobic Surfaces%超疏水表面抑制结霜研究进展

    Institute of Scientific and Technical Information of China (English)

    陈小娇; 武卫东; 汪德龙

    2015-01-01

    Super-hydrophobic surfaces are widely used in manufacturing, owning to its high apparent contact angle and low sliding angle. This article summarized the latest international and domestic research progresses in the anti-frosting performance of super-hydrophobic surfaces and introduced the process characteristics of condensation, icing and frost depositing processes as well as the influence of super-hydrophobicity on the frosting process. A large body of evidence indicated that the time needed for con-densing and frosting was extended with thinner frost layer, fluffier and weaker structure, which could be easily removed by external force. However, some super-hydrophobic surfaces suffered from loss of super-hydrophobicity during condensing, which limited the potential of super-hydrophobic surfaces as anti-frosting materials. Super-hydrophobic surfaces with nano-structures solve the afore-mentioned weakness, some of them show excellent performances owning to jumping of condensate on those surfaces. Finally, the future development of super-hydrophobic surfaces was prospected.%超疏水表面以其超高的表观接触角和很小的滚动角在工业中获得广泛的应用。综述了近期国内外超疏水表面在抑霜方面的研究新进展,归纳了超疏水表面的冷凝、结冰和落霜过程的过程特点和疏水性对结霜过程的影响。超疏水表面能显著延迟冷凝发生和开始结霜的时间,降低霜层的厚度。与普通表面相比,超疏水表面的霜层结构更为蓬松脆弱,可在外力作用下轻松去除,表现出较好的抑霜性能。由于部分超疏水表面在冷凝阶段丧失疏水性从而丧失抑霜性能,大大地限制了超疏水表面在抑制结霜方面的潜力。纳米结构超疏水表面较好地解决了上述问题,一部分纳米表面由于冷凝液滴的弹跳现象而表现出极佳的抑霜性能。最后,对超疏水表面研究的发展进行了展望。

  18. High-fidelity solvent-resistant replica molding of hydrophobic polymer surfaces produced by femtosecond laser nanofabrication.

    Science.gov (United States)

    De Marco, Carmela; Eaton, Shane M; Levi, Marinella; Cerullo, Giulio; Turri, Stefano; Osellame, Roberto

    2011-07-01

    We demonstrate that hydrophobic areas formed by femtosecond laser irradiation on poly(methyl methacrylate) (PMMA) and polystyrene (PS) polymer substrates can be faithfully replicated on samples of the same material via a solvent-resistant perfluoropolyether (PFPE) elastomer mold. The replicated PMMA and PS samples show nearly identical micro-nanoscale topography and hydrophobic wetting characteristics as the laser-patterned master substrates. This work combines the femtosecond laser capability of spatially tailoring the wettability with a high-resolution parallel replication method, offering the potential for the efficient production of microfluidic devices with selectively tailored flow behavior. PMID:21631121

  19. Cell surface physico chemistry alters biofilm development of Pseudomonas aeruginosa lipopolysaccharide mutants

    NARCIS (Netherlands)

    Flemming, CA; Palmer, RJ; Arrage, AA; Van der Mei, HC; White, DC

    1999-01-01

    The hydrophobic and electrostatic characteristics of bacterial cell surfaces were compared with attachment proclivity and biomass accumulation over time between wildtype Pseudomonas aeruginosa serotype O6 (possesses A and B band LPS), and three LPS-deficient mutants, vi;. A28 (A(+)B(-)), R5 (A(+)B(-

  20. Ions at hydrophobic interfaces

    International Nuclear Information System (INIS)

    We review the present understanding of the behavior of ions at the air–water and oil–water interfaces. We argue that while the alkali metal cations remain strongly hydrated and are repelled from the hydrophobic surfaces, the anions must be classified into kosmotropes and chaotropes. The kosmotropes remain strongly hydrated in the vicinity of a hydrophobic surface, while the chaotropes lose their hydration shell and can become adsorbed to the interface. The mechanism of adsorption is still a subject of debate. Here, we argue that there are two driving forces for anionic adsorption: the hydrophobic cavitational energy and the interfacial electrostatic surface potential of water. While the cavitational contribution to ionic adsorption is now well accepted, the role of the electrostatic surface potential is much less clear. The difficulty is that even the sign of this potential is a subject of debate, with the ab initio and the classical force field simulations predicting electrostatic surface potentials of opposite sign. In this paper, we will argue that the strong anionic adsorption found in the polarizable force field simulations is the result of the artificial electrostatic surface potential present in the classical water models. We will show that if the adsorption of anions were as large as predicted by the polarizable force field simulations, the excess surface tension of the NaI solution would be strongly negative, contrary to the experimental measurements. While the large polarizability of heavy halides is a fundamental property and must be included in realistic modeling of the electrolyte solutions, we argue that the point charge water models, studied so far, are incompatible with the polarizable ionic force fields when the translational symmetry is broken. The goal for the future should be the development of water models with very low electrostatic surface potential. We believe that such water models will be compatible with the polarizable force fields

  1. Method for producing hydrophobic aerogels

    Science.gov (United States)

    Hrubesh, Lawrence W.; Poco, John F.; Coronado, Paul R.

    1999-01-01

    A method for treating a dried monolithic aerogel containing non-dispersed particles, with an organometallic surface modifying agent to produce hydrophobic aerogels. The dried, porous hydrophobic aerogels contain a protective layer of alkyl groups, such as methyl groups, on the modified surfaces of the pores of the aerogel. The alkyl groups at the aerogel surface typically contain at least one carbon-metal bond per group.

  2. Surface Hydrophobicity and Foaming Ability of Oat Protein Isolates%燕麦分离蛋白疏水性及起泡性研究

    Institute of Scientific and Technical Information of China (English)

    田斌强; 邓乾春; 黄娟; 谢笔钧

    2015-01-01

    Oat protein isolates (OPI) were prepared by alkali extraction and isoelectric precipitation from defatted oat groats. OPI contains 93.01%protein. The amino acid composition of the isolates was analyzed , and found that OPI has more hydrophobic amino acids than soy protein isolates and the amino acids composition of OPI is close to the ideal model recommended by FAO/WHO. The hydrophobicity and the isolates were measured using ANS fluorescent probe method at various pH and different concentration solution with NaCl, sucrose, CaCl2, AlCl3 and urea. The foaming ability of OPI was investigated at the same condition. The results showed that pH had the highest influence on the surface hydrophobicity of OPI and the hydrophobicity reaches its peak at pH2;the hydrophobicity of OPI at acid pH was much stronger than that at alkali pH. The trend of effect of different salts on protein hydrophobicity was not same. With AlCl3 and urea concentration increased, the OPI hydrophobicity decreased, but CaCl2 and sucrose was on the contrary. The hydrophobicity decreased in NaCl solution with low concentrations (< 0.6 mol/L) while hydrophobicity enhanced with concentration rising. Different factors had great influence on OPI foaming , the trend was consistent with the hydrophobic. In addition, the addition of sucrose can improve foaming stability of OPI, and the accession to the NaCl reduced it.%采用碱提酸沉法从脱脂燕麦粉中提取得到了蛋白含量为93.01%的分离蛋白(OPI),分析其氨基酸组成,并用ANS荧光探针法研究pH、NaCl、蔗糖、CaCl2、AlCl3和尿素对燕麦分离蛋白疏水性和起泡性的影响。结果表明,OPI氨基酸组成接近FAO/WHO理想模式,pH对燕麦分离蛋白疏水性的影响最大,pH 2时疏水性最强,且酸性环境下的疏水性远远超过碱性环境。不同盐离子对蛋白疏水性的影响程度和趋势不一样,随AlCl3和尿素浓度增加,OPI疏水性减弱;而CaCl2和蔗糖浓度升

  3. Surface Hydrophobic Modification of Fifth-Generation Hydroxyl-Terminated Poly(amidoamine Dendrimers and Its Effect on Biocompatibility and Rheology

    Directory of Open Access Journals (Sweden)

    Paul D. Hamilton

    2009-08-01

    Full Text Available Water-soluble, commercially-available poly(amidoamine (PAMAM dendrimers are highly-branched, well-defined, monodisperse macromolecules having an ethylenediamine core and varying surface functional groups. Dendrimers are being employed in an increasing number of biomedical applications. In this study, commercially obtained generation 5 hydroxyl-terminated (G5OH PAMAM dendrimers were studied as potential proteomimetics for ophthalmic uses. To this end, the surface of G5OH PAMAM dendrimers were hydrophobically modified with varying amounts of dodecyl moieties, (flexible long aliphatic chains, or cholesteryl moieties (rigid lipid found in abundance in biological systems. Dendrimers were characterized by 1H-NMR, DLS, DSC and HPLC. The hydrophobic modification caused aggregation and molecular interactions between dendrimers that is absent in unmodified dendrimers. In vitro tissue culture showed that increasing the amount of dodecyl modification gave a proportional increase in toxicity of the dendrimers, while with increasing cholesteryl modification there was no corresponding increase in toxicity. Storage and loss modulus were measured for selected formulations. The hydrophobic modification caused an increase in loss modulus, while the effect on storage modulus was more complex. Rheological properties of the dendrimer solutions were comparable to those of porcine lens crystallins.

  4. Cell wall sorting signals in surface proteins of gram-positive bacteria.

    OpenAIRE

    Schneewind, O; Mihaylova-Petkov, D; Model, P

    1993-01-01

    Staphylococcal protein A is anchored to the cell wall, a unique cellular compartment of Gram-positive bacteria. The sorting signal sufficient for cell wall anchoring consists of an LPXTG motif, a C-terminal hydrophobic domain and a charged tail. Homologous sequences are found in many surface proteins of Gram-positive bacteria and we explored the universality of these sequences to serve as cell wall sorting signals. We show that several signals are able to anchor fusion proteins to the staphyl...

  5. 疏水冷面霜晶生长的有限扩散凝聚模型%DLA Model for Frost Crystal Growth on Hydrophobic Cold Surface

    Institute of Scientific and Technical Information of China (English)

    雷洪; 乔娜; 耿佃桥; 张红伟

    2012-01-01

    为了深入了解霜晶的动态生长过程,以有限扩散凝聚模型为基础建立了疏水冷面霜晶二维生长模型.通过在表面上设置不同冰珠数量来模拟冷面不同疏水性能,无涂层金属表面则布满冰珠;采用粒子在网格节点上随机移动来描述水蒸气分子的运动,粒子沿各方向移动的概率相同.数值结果表明,霜晶动态生长的可视化结果与实验图像在形态上保持一致;树枝状霜晶具有分形特征,相应的分形维数为1.44~1.78,与实验值相近.疏水冷面霜晶生长缓慢且分布稀疏;采用疏水效果不好的冷面的结霜情况与金属表面相似.%On the base of DLA (Diffusion-Limited Aggregation) model, a two-dimensional mathematical model was developed to describe the frost crystal growth on the hydrophobic cold surface in order to have a deep insight into the dynamic growth process of frost crystal. In this model, the surfaces with different ice beads were used to simulate the different hydrophobic surfaces, and the metal surface was covered with ice beads. The movement of the water-vapor molecule was described by the particle's movement in the grid-nodes, and the probability for the particle to move at each direction was the same. Numerical results showed that the predicted frost dynamic growth process of frost crystal conforms to the existed experimental result. The predicted dendritic frost crystal has the fractal structure, and its fractal dimension is between 1.44 and 1.78. Such results are in good agreement with the experimental data. The frost crystal grows up slowly and distributes sparsely on the hydrophobic cold surface, and the frost formation on the cold surface with bad hydrophobic coating is similar to that on the metal surface.

  6. The effect of working pressure on the chemical bond structure and hydrophobic properties of PET surface treated by N ion beams bombardment

    International Nuclear Information System (INIS)

    Polyethylene terephthalate (PET) surface was bombarded by N ion beams at room temperature. Varying the working pressure of the ion beams, PET surfaces with different composition and properties were obtained. Characterization by X-ray photoelectron spectrometry showed that only on film surface, ester bonds, especially C-O bonds, were broken and N element chemical bonded with C. The influence depth was less than 5 nm because of the lower ion energy (about 103 eV). Contact angle results revealed that with increasing the working pressure of ion beams, the contact angle of PET surface to pure water increased from 51 deg. to 130 deg.. With these results, one conclusion could be deduced that the hydrophilic and hydrophobic properties of PET surface could be influenced by N atom chemical bond with C, which in turn is controlled by the working pressure of N ion beams.

  7. Cell patterning on polylactic acid through surface-tethered oligonucleotides.

    Science.gov (United States)

    Matsui, Toshiki; Arima, Yusuke; Takemoto, Naohiro; Iwata, Hiroo

    2015-02-01

    Polylactic acid (PLA) is a candidate material to prepare scaffolds for 3-D tissue regeneration. However, cells do not adhere or proliferate well on the surface of PLA because it is hydrophobic. We report a simple and rapid method for inducing cell adhesion to PLA through DNA hybridization. Single-stranded DNA (ssDNA) conjugated to poly(ethylene glycol) (PEG) and to a terminal phospholipid (ssDNA-PEG-lipid) was used for cell surface modification. Through DNA hybridization, modified cells were able to attach to PLA surfaces modified with complementary sequence (ssDNA'). Different cell types can be attached to PLA fibers and films in a spatially controlled manner by using ssDNAs with different sequences. In addition, they proliferate well in a culture medium supplemented with fetal bovine serum. The coexisting modes of cell adhesion through DNA hybridization and natural cytoskeletal adhesion machinery revealed no serious effects on cell growth. The combination of a 3-D scaffold made of PLA and cell immobilization on the PLA scaffold through DNA hybridization will be useful for the preparation of 3-D tissue and organs.

  8. Monolayer Adsorption of a “Bald” Mutant of the Highly Adhesive and Hydrophobic Bacterium Acinetobacter sp. Strain Tol 5 to a Hydrocarbon Surface▿

    OpenAIRE

    Hori, Katsutoshi; Watanabe, Hisami; Ishii, Shun'ichi; Tanji, Yasunori; Unno, Hajime

    2008-01-01

    The affinity of microbial cells for hydrophobic interfaces is important because it directly affects the efficiency of various bioprocesses, including green biotechnologies. The toluene-degrading bacterium Acinetobacter sp. strain Tol 5 has filamentous appendages and a hydrophobic cell surface, shows high adhesiveness to solid surfaces, and self-agglutinates. A “bald” mutant of this bacterium, strain T1, lacks the filamentous appendages and has decreased adhesiveness but retains a hydrophobic ...

  9. Selective area in situ conversion of Si (0 0 1) hydrophobic to hydrophilic surface by excimer laser irradiation in hydrogen peroxide

    International Nuclear Information System (INIS)

    We report on a method of rapid conversion of a hydrophobic to hydrophilic state of an Si (0 0 1) surface irradiated with a relatively low number of pulses of an excimer laser. Hydrophilic Si (0 0 1), characterized by the surface contact angle (CA) of near 15°, is fabricated following irradiation with either KrF or ArF excimer lasers of hydrophobic samples (CA ∼ 75°) immersed in a 0.01% H2O2/H2O solution. The chemical and structural analysis carried with x-ray photoelectron spectroscopy and atomic force microscopy measurements confirmed the formation of OH-terminated Si (0 0 1) surface with no detectable change in the surface morphology of the laser-irradiated material. To investigate the efficiency of this laser-induced hydrophilization process, we demonstrate a selective area immobilization of biotin-conjugated fluorescein-stained nanospheres outside of the laser-irradiated area. The results demonstrate the potential of the method for the fabrication of biosensing architectures and advancements of the Si-based microfluidic device technology. (paper)

  10. The synergistic effect of nanotopography and sustained dual release of hydrophobic and hydrophilic neurotrophic factors on human mesenchymal stem cell neuronal lineage commitment.

    Science.gov (United States)

    Teo, Benjamin Kim Kiat; Tan, Guo-Dong Sean; Yim, Evelyn K F

    2014-08-01

    A combination of nanotopography and controlled release is a potential platform for neuronal tissue engineering applications. Previous studies showed that combining both physical and chemical guidance was more effective than individual cues in the directional promotion of neurite outgrowth. Nanotopography can direct human mesenchymal stem cells (hMSCs) into neuronal lineage, while controlled release of neurotrophic factors can deliver temporally controlled biochemical signals. Hypothesizing that the synergistic effect will enhance neuronal lineage commitment of hMSCs, a fabrication method for multiple neurotrophic factors delivery from a single nanopatterned (350 nm gratings), poly-ɛ-caprolactone (PCL) film was developed and evaluated. Our results showed a synergistic effect on hMSC differentiation cultured on substrates with both nanotopographical and biochemical cues. The protein/drug encapsulation into PCL nanopatterned films was first optimized using a hydrophilic model protein, bovine serum albumin. The hydrophobic retinoic acid (RA) molecule was directly incorporated into PCL films. To achieve sustained release, hydrophilic nerve growth factor (NGF) was first encapsulated within polyelectrolyte complexation fibers before they were embedded within the nanopatterned PCL film. Our results showed that nanotopography on the fabricated polymer films remained intact, while release of bioactive RA and NGF was sustained over a period of 3 weeks. Under the combinatorial effect of physical and biochemical cues, we observed an enhanced upregulation of neuronal genes such as microtubule-associated protein 2 (MAP2) and neurofilament light (NFL) as compared with sustained delivery of individual cues and bolus delivery. Quantitative polymerase chain reaction analysis showed that MAP2 and NFL gene upregulation in hMSCs was most pronounced on the nanogratings with sustained release of both RA and NGF. The fabricated platforms supported the sustained delivery of multiple

  11. Porcine reproductive and respiratory syndrome virus (PRRSV) subverts normal development of adaptive immunity by proliferation of germline-encoded B cells with hydrophobic HCDR3

    Science.gov (United States)

    Isolator piglets infected with porcine reproductive and respiratory syndrome virus (PRRSV) develop severe hypergammaglobulinemia, lymph node adenopathy and autoimmune disease. The expanded B cell clones in this disease are unusual in bearing hydrophobic HCDR3 regions and these are disseminated to mo...

  12. Modification of the hydrophilic/hydrophobic characteristic of zein film surfaces by contact with oxygen plasma treated PDMS and oleic acid content.

    Science.gov (United States)

    Gezer, P Gizem; Brodsky, Serena; Hsiao, Austin; Liu, G Logan; Kokini, Jozef L

    2015-11-01

    Zein has been widely studied as a biopolymer due to its unique film-forming abilities. Surface properties are of high importance for certain applications which include microfluidics and tissue engineering, as they drastically affect the end result. It is important to develop techniques to modify zein surface properties without compromising bulk material properties. In this study, we developed a facile technique to change the water affinity of zein film surfaces, compatible with patterning techniques via soft lithography. This is achieved by a simple solvent casting technique onto a polydimethylsilohexane (PDMS) substrate that was exposed to oxygen plasma. Water contact angle measurements (WCA) were used to assess the hydrophillicity of zein surfaces and they reached as low as 20°. Atomic force microscopy, optical absorbance and light microscopy were used to study the characteristics of the film and its surface topography. Hydrophilic zein surfaces had higher roughness values compared to hydrophobic ones. Surface roughness, introduced by sandpaper and gratings does not have the same effect as surface chemistry. The amphiphilic nature of plasticizer oleic acid also contributed to the change in the water contact angle of the films. In conclusion, we demonstrated that zein film's surface properties can be controlled by its ability to self-assemble depending on the substrate that it is being cast on.

  13. Hydrophobicity of rare-earth oxide ceramics

    Science.gov (United States)

    Azimi, Gisele; Dhiman, Rajeev; Kwon, Hyuk-Min; Paxson, Adam T.; Varanasi, Kripa K.

    2013-04-01

    Hydrophobic materials that are robust to harsh environments are needed in a broad range of applications. Although durable materials such as metals and ceramics, which are generally hydrophilic, can be rendered hydrophobic by polymeric modifiers, these deteriorate in harsh environments. Here we show that a class of ceramics comprising the entire lanthanide oxide series, ranging from ceria to lutecia, is intrinsically hydrophobic. We attribute their hydrophobicity to their unique electronic structure, which inhibits hydrogen bonding with interfacial water molecules. We also show with surface-energy measurements that polar interactions are minimized at these surfaces and with Fourier transform infrared/grazing-angle attenuated total reflection that interfacial water molecules are oriented in the hydrophobic hydration structure. Moreover, we demonstrate that these ceramic materials promote dropwise condensation, repel impinging water droplets, and sustain hydrophobicity even after exposure to harsh environments. Rare-earth oxide ceramics should find widespread applicability as robust hydrophobic surfaces.

  14. Synthesis of uniform and size-controllable carbon nanospheres by a simple hydrothermal method and fabrication of carbon nanosphere super-hydrophobic surface

    International Nuclear Information System (INIS)

    Highlights: • A simple hydrothermal method was used to produce carbon nanospheres (CNSs). • The size of CNSs was controlled by the concentration of initial sucrose solution. • The size of CNSs was reduced to 100 nm by post-annealing of the CNSs. • A glass substrate was coated with CNSs thick film using spin coating method. • Contact angle of a water droplet was 153° indicating the film is super-hydrophobic. - Abstract: A simple hydrothermal method was used to produce high yield, monodisperse and tightly controllable size of carbon nanospheres (CNSs) by adjusting the concentration of initial sucrose solution in a sealed autoclave at 170 °C for 8 h. By changing the solution concentration from 0.5 to 0.1 mol l−1, the sizes of carbon spheres (CS) were reduced from about 2500 to about 300 nm. Also by increasing the solution volume to the vessel volume ratio (Vs/Vv) from 5/6 to 11/13, the yield of CS was increased from 25% up to about 55% of initial raw materials. It was found that by post-annealing of the 300 nm CNSs at 435 °C for 30 min, their diameters were reduced to 100 nm. Moreover, annealing in air atmosphere had a noticeable influence on the surface functional groups and bonds of CNSs. In addition, CNSs were used to fabricate hydrophobic surfaces by coating their ethanolic colloidal solution on glass substrates. The measured contact angle (CA) of a water droplet was about 153°, indicating that the CNSs thick layers were super-hydrophobic. The size dependence of CNSs on the different parameters has been discussed

  15. Synthesis of uniform and size-controllable carbon nanospheres by a simple hydrothermal method and fabrication of carbon nanosphere super-hydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Joula, Mohsen Heidari; Farbod, Mansoor, E-mail: farbod_m@scu.ac.ir

    2015-08-30

    Highlights: • A simple hydrothermal method was used to produce carbon nanospheres (CNSs). • The size of CNSs was controlled by the concentration of initial sucrose solution. • The size of CNSs was reduced to 100 nm by post-annealing of the CNSs. • A glass substrate was coated with CNSs thick film using spin coating method. • Contact angle of a water droplet was 153° indicating the film is super-hydrophobic. - Abstract: A simple hydrothermal method was used to produce high yield, monodisperse and tightly controllable size of carbon nanospheres (CNSs) by adjusting the concentration of initial sucrose solution in a sealed autoclave at 170 °C for 8 h. By changing the solution concentration from 0.5 to 0.1 mol l{sup −1}, the sizes of carbon spheres (CS) were reduced from about 2500 to about 300 nm. Also by increasing the solution volume to the vessel volume ratio (V{sub s}/V{sub v}) from 5/6 to 11/13, the yield of CS was increased from 25% up to about 55% of initial raw materials. It was found that by post-annealing of the 300 nm CNSs at 435 °C for 30 min, their diameters were reduced to 100 nm. Moreover, annealing in air atmosphere had a noticeable influence on the surface functional groups and bonds of CNSs. In addition, CNSs were used to fabricate hydrophobic surfaces by coating their ethanolic colloidal solution on glass substrates. The measured contact angle (CA) of a water droplet was about 153°, indicating that the CNSs thick layers were super-hydrophobic. The size dependence of CNSs on the different parameters has been discussed.

  16. Time-resolved imaging and immobilization study of biomaterials on hydrophobic and superhydrophobic surfaces by means of laser-induced forward transfer

    International Nuclear Information System (INIS)

    In this work, we present the generation of high velocity liquid jets of a photosynthetic biomaterial in buffer solution (i.e. thylakoid membranes) and a test solution, using the laser-induced forward transfer (LIFT) technique. The high impact pressure of the collision of the jets on solid substrates, ranging from 0.045 MPa–35 MPa, resulted in strong physical immobilization of the photosynthetic biomaterial on superhydrophobic (SH) poly(methyl methacrylate) (PMMA) surfaces and hydrophobic gold surfaces. The immobilization efficiency was evaluated by fluorescence microscopy, while time-resolved imaging of the LIFT process was carried out to study the corresponding LIFT dynamics. The results show that this simple, direct and chemical-linkers-free immobilization technique is valuable for several biosensors and microfluidic applications since it can be applied to a variety of hydrophobic and SH substrates, leading to the selective immobilization of the biomaterials, due to the high spatial printing resolution of the LIFT technique. (letter)

  17. Force nanoscopy of hydrophobic interactions in the fungal pathogen Candida glabrata.

    Science.gov (United States)

    El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Derclaye, Sylvie; Alsteens, David; Kucharíková, Soňa; Van Dijck, Patrick; Dufrêne, Yves F

    2015-02-24

    Candida glabrata is an opportunistic human fungal pathogen which binds to surfaces mainly through the Epa family of cell adhesion proteins. While some Epa proteins mediate specific lectin-like interactions with human epithelial cells, others promote adhesion and biofilm formation on plastic surfaces via nonspecific interactions that are not yet elucidated. We report the measurement of hydrophobic forces engaged in Epa6-mediated cell adhesion by means of atomic force microscopy (AFM). Using single-cell force spectroscopy, we found that C. glabrata wild-type (WT) cells attach to hydrophobic surfaces via strongly adhesive macromolecular bonds, while mutant cells impaired in Epa6 expression are weakly adhesive. Nanoscale mapping of yeast cells using AFM tips functionalized with hydrophobic groups shows that Epa6 is massively exposed on WT cells and conveys strong hydrophobic properties to the cell surface. Our results demonstrate that Epa6 mediates strong hydrophobic interactions, thereby providing a molecular basis for the ability of this adhesin to drive biofilm formation on abiotic surfaces.

  18. The Hydrophobic Effect.

    Science.gov (United States)

    Huque, Entazul M.

    1989-01-01

    Discusses the physical basis and current understanding of hydrophobic effects. The thermodynamic background of the effects, hydrophobic hydration, and hydrophobic interactions are described. Four existing controversies are outlined. (YP)

  19. Melittin interaction with sulfated cell surface sugars.

    Science.gov (United States)

    Klocek, Gabriela; Seelig, Joachim

    2008-03-01

    Melittin is a 26-residue cationic peptide with cytolytic and antimicrobial properties. Studies on the action mechanism of melittin have focused almost exclusively on the membrane-perturbing properties of this peptide, investigating in detail the melittin-lipid interaction. Here, we report physical-chemical studies on an alternative mechanism by which melittin could interact with the cell membrane. As the outer surface of many cells is decorated with anionic (sulfated) glycosaminoglycans (GAGs), a strong Coulombic interaction between the two oppositely charged molecules can be envisaged. Indeed, the present study using isothermal titration calorimetry reveals a high affinity of melittin for several GAGs, that is, heparan sulfate (HS), dermatan sulfate, and heparin. The microscopic binding constant of melittin for HS is 2.4 x 10 (5) M (-1), the reaction enthalpy is Delta H melittin (0) = -1.50 kcal/mol, and the peptide-to-HS stoichiometry is approximately 11 at 10 mM Tris, 100 mM NaCl at pH 7.4 and 28 degrees C. Delta H melittin (0) is characterized by a molar heat capacity of Delta C P (0) = -227 cal mol (-1) K (-1). The large negative heat capacity change indicates that hydrophobic interactions must also be involved in the binding of melittin to HS. Circular dichroism spectroscopy demonstrates that the binding of the peptide to HS induces a conformational change to a predominantly alpha-helical structure. A model for the melittin-HS complex is presented. Melittin binding was compared with that of magainin 2 and nisin Z to HS. Magainin 2 is known for its antimicrobial properties, but it does not cause lysis of the eukaryotic cells. Nisin Z shows activity against various Gram-positive bacteria. Isothermal titration calorimetry demonstrates that magainin 2 and nisin Z do not bind to HS (5-50 degrees C, 10 mM Tris, and 100 mM NaCl at pH 7.4). PMID:18220363

  20. Sugar-fiber Imprinting to Generate Microgrooves on Polymeric Film Surfaces for Contact Guidance of Cells

    Institute of Scientific and Technical Information of China (English)

    屈泽华; 丁建东

    2012-01-01

    Anisotropic surface topography is known to induce the contact guidance of cells, and facile and biocompatible approaches of the physical modification of the pertinent matrix surfaces are thus meaningful for biomaterials. Herein, we put forward a sugar-fiber imprinting technique to generate microgrooves on hydrophobic polymers demonstrated by the poly(lactic-eo-glycolic acid) (PLGA) films. Microgrooves were conveniently generated after removing sugar fibers simply by water. The resulting locally anisotropic microgrooves were confirmed to elongate the cells cultured on the surface.

  1. Surface wettability of plasma SiOx:H nanocoating-induced endothelial cells' migration and the associated FAK-Rho GTPases signalling pathways.

    Science.gov (United States)

    Shen, Yang; Wang, Guixue; Huang, Xianliang; Zhang, Qin; Wu, Jiang; Tang, Chaojun; Yu, Qingsong; Liu, Xiaoheng

    2012-02-01

    Vascular endothelial cell (EC) adhesion and migration are essential processes in re-endothelialization of implanted biomaterials. There is no clear relationship and mechanism between EC adhesion and migration behaviour on surfaces with varying wettabilities. As model substrates, plasma SiO(x):H nanocoatings with well-controlled surface wettability (with water contact angles in the range of 98.5 ± 2.3° to 26.3 ± 4.0°) were used in this study to investigate the effects of surface wettability on cell adhesion/migration and associated protein expressions in FAK-Rho GTPases signalling pathways. It was found that EC adhesion/migration showed opposite behaviour on the hydrophilic and hydrophobic surfaces (i.e. hydrophobic surfaces promoted EC migration but were anti-adhesions). The number of adherent ECs showed a maximum on hydrophilic surfaces, while cells adhered to hydrophobic surfaces exhibited a tendency for cell migration. The focal adhesion kinase (FAK) inhibitor targeting the Y-397 site of FAK could significantly inhibit cell adhesion/migration, suggesting that EC adhesion and migration on surfaces with different wettabilities involve (p)FAK and its downstream signalling pathways. Western blot results suggested that the FAK-Rho GTPases signalling pathways were correlative to EC migration on hydrophobic plasma SiO(x):H surfaces, but uncertain to hydrophilic surfaces. This work demonstrated that surface wettability could induce cellular behaviours that were associated with different cellular signalling events. PMID:21715399

  2. The Cell Surface Proteome of Human Mesenchymal Stromal Cells

    OpenAIRE

    Christian Niehage; Charlotte Steenblock; Theresia Pursche; Martin Bornhäuser; Denis Corbeil; Bernard Hoflack

    2011-01-01

    BACKGROUND: Multipotent human mesenchymal stromal cells (hMSCs) are considered as promising biological tools for regenerative medicine. Their antibody-based isolation relies on the identification of reliable cell surface markers. METHODOLOGY/PRINCIPAL FINDINGS: To obtain a comprehensive view of the cell surface proteome of bone marrow-derived hMSCs, we have developed an analytical pipeline relying on cell surface biotinylation of intact cells using cell impermeable, cleavable sulfo-NHS-SS-bio...

  3. Hydrophobic-hydrophilic monolithic dual-phase layer for two-dimensional thin-layer chromatography coupled with surface-enhanced Raman spectroscopy detection.

    Science.gov (United States)

    Zheng, Binxing; Liu, Yanhua; Li, Dan; Chai, Yifeng; Lu, Feng; Xu, Jiyang

    2015-08-01

    Hydrophobic-hydrophilic monolithic dual-phase plates have been prepared by a two-step polymerization method for two-dimensional thin-layer chromatography of low-molecular-weight compounds, namely, several dyes. The thin 200 μm poly(glycidyl methacrylate-co-ethylene dimethacrylate) layers attached to microscope glass plates were prepared using a UV-initiated polymerization method within a simple glass mold. After cutting and cleaning the specific area of the layer, the reassembled mold was filled with a polymerization mixture of butyl methacrylate and ethylene dimethacrylate and subsequently irradiated with UV light. During the second polymerization process, the former layer was protected from the UV light with a UV mask. After extracting the porogens and hydrolyzing the poly(glycidyl methacrylate-co-ethylene dimethacrylate) area, these two-dimensional layers were used to separate a mixture of dyes with great difference in their polarity using reversed-phase chromatography mode within the hydrophobic layer and then hydrophilic interaction chromatography mode along the hydrophilic area. In the latter dimension only the specific spot was developed further. Detection of the separated dyes could be achieved with surface-enhanced Raman spectroscopy.

  4. A hydrophobic dye-encapsulated nano-hybrid as an efficient fluorescent probe for living cell imaging.

    Science.gov (United States)

    Chang, Shu; Wu, Xumeng; Li, Yongsheng; Niu, Dechao; Ma, Zhi; Zhao, Wenru; Gu, Jinlou; Dong, Wenjie; Ding, Feng; Zhu, Weihong; Shi, Jianlin

    2012-07-01

    Water-soluble hydrophobic-dye@nano-hybrids (DPN@NHs) with extraordinarily enhanced fluorescent performance were fabricated by encapsulating the hydrophobic dye molecules into the core of the hybrid nanospheres based on the self-assembly of amphiphilic block copolymers followed by shell cross-linking using 3-mercaptopropyltrimethoxy-silane. The DPN@NHs are 50 nm in size, are monodispersed in aqueous solution and have a quantum yield enhanced by 30 times.

  5. Hydrophobicity of Antifungal β-Peptides Is Associated with Their Cytotoxic Effect on In Vitro Human Colon Caco-2 and Liver HepG2 Cells

    Science.gov (United States)

    Mora-Navarro, Camilo; Méndez-Vega, Janet; Caraballo-León, Jean; Lee, Myung-ryul; Palecek, Sean; Torres-Lugo, Madeline; Ortiz-Bermúdez, Patricia

    2016-01-01

    The widespread distribution of fungal infections, with their high morbidity and mortality rate, is a global public health problem. The increase in the population of immunocompromised patients combined with the selectivity of currents treatments and the emergence of drug-resistant fungal strains are among the most imperative reasons to develop novel antifungal formulations. Antimicrobial β-peptides are peptidomimetics of natural antimicrobial peptides (AMPs), which have been proposed as developmental platforms to enhance the AMPs selectivity and biostability. Their tunability allows the design of sequences with remarkable activity against a wide spectrum of microorganisms such as the human pathogenic Candida spp., both in planktonic and biofilm morphology. However, the β-peptide’s effect on surrounding host cells remains greatly understudied. Assessments have mainly relied on the extent of hemolysis that a candidate peptide is able to cause. This work investigated the in vitro cytotoxicity of various β-peptides in the Caco-2 and HepG2 mammalian cell lines. Results indicated that the cytotoxic effect of the β-peptides was influenced by cell type and was also correlated to structural features of the peptide such as hydrophobicity. We found that the selectivity of the most hydrophobic β-peptide was 2–3 times higher than that of the least hydrophobic one, for both cell types according to the selectivity index parameter (IC50/MIC). The IC50 of Caco-2 and HepG2 increased with hydrophobicity, which indicates the importance of testing putative therapeutics on different cell types. We report evidence of peptide-cell membrane interactions in Caco-2 and HepG2 using a widely studied β-peptide against C. albicans. PMID:26992117

  6. Hydrophobicity of Antifungal β-Peptides Is Associated with Their Cytotoxic Effect on In Vitro Human Colon Caco-2 and Liver HepG2 Cells.

    Directory of Open Access Journals (Sweden)

    Camilo Mora-Navarro

    Full Text Available The widespread distribution of fungal infections, with their high morbidity and mortality rate, is a global public health problem. The increase in the population of immunocompromised patients combined with the selectivity of currents treatments and the emergence of drug-resistant fungal strains are among the most imperative reasons to develop novel antifungal formulations. Antimicrobial β-peptides are peptidomimetics of natural antimicrobial peptides (AMPs, which have been proposed as developmental platforms to enhance the AMPs selectivity and biostability. Their tunability allows the design of sequences with remarkable activity against a wide spectrum of microorganisms such as the human pathogenic Candida spp., both in planktonic and biofilm morphology. However, the β-peptide's effect on surrounding host cells remains greatly understudied. Assessments have mainly relied on the extent of hemolysis that a candidate peptide is able to cause. This work investigated the in vitro cytotoxicity of various β-peptides in the Caco-2 and HepG2 mammalian cell lines. Results indicated that the cytotoxic effect of the β-peptides was influenced by cell type and was also correlated to structural features of the peptide such as hydrophobicity. We found that the selectivity of the most hydrophobic β-peptide was 2-3 times higher than that of the least hydrophobic one, for both cell types according to the selectivity index parameter (IC50/MIC. The IC50 of Caco-2 and HepG2 increased with hydrophobicity, which indicates the importance of testing putative therapeutics on different cell types. We report evidence of peptide-cell membrane interactions in Caco-2 and HepG2 using a widely studied β-peptide against C. albicans.

  7. Cells behaviors and genotoxicity on topological surface

    Energy Technology Data Exchange (ETDEWEB)

    Yang, N.; Yang, M.K.; Bi, S.X. [Tianjin Key Laboratory of Fiber Modification and Functional Fiber, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin, 300387 (China); Chen, L., E-mail: chenlis@tjpu.edu.cn [Tianjin Key Laboratory of Fiber Modification and Functional Fiber, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin, 300387 (China); Zhu, Z.Y.; Gao, Y.T.; Du, Z. [Tianjin Key Laboratory of Artificial Cell, Tianjin Third Central Hospital, Tianjin, 300170 (China)

    2013-08-01

    To investigate different cells behaviors and genotoxicity, which were driven by specific microenvironments, three patterned surfaces (pillars, wide grooves and narrow grooves) and one smooth surface were prepared by template-based technique. Vinculin is a membrane-cytoskeletal protein in focal adhesion plaques and associates with cell–cell and cell–matrix junctions, which can promote cell adhesion and spreading. The immunofluorescence staining of vinculin revealed that the narrow grooves patterned substrate was favorable for L929 cell adhesion. For cell multiplication, the narrow grooves surface was fitted for the proliferation of L929, L02 and MSC cells, the pillars surface was only in favor of L929 cells to proliferate during 7 days of cell cultivation. Cell genetic toxicity was evaluated by cellular micronuclei test (MNT). The results indicated that topological surfaces were more suitable for L929 cells to proliferate and maintain the stability of genome. On the contrary, the narrow grooves surface induced higher micronuclei ratio of L02 and MSC cells than other surfaces. With the comprehensive results of cell multiplication and MNT, it was concluded that the wide grooves surface was best fitted for L02 cells to proliferate and have less DNA damages, and the smooth surface was optimum for the research of MSC cells in vitro. - Highlights: • Different cells behaviors on microstructure surfaces were discussed in this paper. • The expression of cell protein of Vinculin was studied in this research. • Cellular micronuclei test was applied to evaluate cells' genotoxicity. • Cell genotoxicity was first studied in the research field of topological surfaces.

  8. Hydrophobic hydration driven self-assembly of curcumin in water: Similarities to nucleation and growth under large metastability, and an analysis of water dynamics at heterogeneous surfaces

    Science.gov (United States)

    Hazra, Milan Kumar; Roy, Susmita; Bagchi, Biman

    2014-11-01

    As the beneficial effects of curcumin have often been reported to be limited to its small concentrations, we have undertaken a study to find the aggregation properties of curcumin in water by varying the number of monomers. Our molecular dynamics simulation results show that the equilibrated structure is always an aggregated state with remarkable structural rearrangements as we vary the number of curcumin monomers from 4 to 16 monomers. We find that the curcumin monomers form clusters in a very definite pattern where they tend to aggregate both in parallel and anti-parallel orientation of the phenyl rings, often seen in the formation of β-sheet in proteins. A considerable enhancement in the population of parallel alignments is observed with increasing the system size from 12 to 16 curcumin monomers. Due to the prevalence of such parallel alignment for large system size, a more closely packed cluster is formed with maximum number of hydrophobic contacts. We also follow the pathway of cluster growth, in particular the transition from the initial segregated to the final aggregated state. We find the existence of a metastable structural intermediate involving a number of intermediate-sized clusters dispersed in the solution. We have constructed a free energy landscape of aggregation where the metatsable state has been identified. The course of aggregation bears similarity to nucleation and growth in highly metastable state. The final aggregated form remains stable with the total exclusion of water from its sequestered hydrophobic core. We also investigate water structure near the cluster surface along with their orientation. We find that water molecules form a distorted tetrahedral geometry in the 1st solvation layer of the cluster, interacting rather strongly with the hydrophilic groups at the surface of the curcumin. The dynamics of such quasi-bound water molecules near the surface of curcumin cluster is considerably slower than the bulk signifying a restricted

  9. Surface Activities of Calix[4] resorcinarenes Bearing Four Hydrophobic Chains and Its Sol ubilization for Organic Compounds

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Calix [4] resorcinarenes bearing four hydrophobic side chains (4] Ar-Rn, [4] Ar-Ph, and [4] Ar-N) orient stably on water oil interface and show high solubilization capacities for organic compounds, such as long-chain alcohols, benzene, toluene and dyes. The capacities are high even near the omc of polyalkylated calix [4] resorcinarenes, but the solubilities of organic compounds(solubilizates) decrease with the increase of the size of the solubilizates. [4] Ar-R6, with a chain-length of six carbons, is the most effective among [4] Ar-Rn,[4] Ar-Ph, and [4] Ar-N; 11-fold mol of hexanol is dissolved in 2×10-3 mol/I [4]Ar-R6. Moreover,[4] Ar-Rn bearing four alkyl side chains solubilizes the chain alcohols of the same chain length mostly. The solubilization capacities are presumably brought by inclusion in a large cavity of the polyalkylated calix[4] resorcinarcnes and by an efficient orientation of the solubilizates.

  10. Particles that slide over the water surface: Synthesis and characterization of iron oxides particles coated with PDMS, with hydrophobic and magnetic properties

    International Nuclear Information System (INIS)

    Magnetic nanoparticles have been of great scientific interest because of their possible industrial and biomedical applications. The magnetic iron oxide was synthesized by the co precipitation of alkaline hydrolysis of ions Fe2+ and Fe3+ in aqueous system. The coated particles were obtained by heating (50 and 250 °C) mixed magnetic iron oxide and polydimethylsiloxane oil for 30 min obtaining magnetic dust particles with hydrophobic behavior. These were used to learn the dragging effects and removal of nonpolar organic compound in aqueous systems. The samples were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), chemical analysis by potenciometric titration, thermogravimetric analysis (TGA), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), contact angle measurement and Mössbauer spectroscopy. The diffractogram of X-ray presented peaks that were assigned to presence of spinel structure maghemite and magnetite with medium sized crystallites of 10.95 nm for the polymeric coated magnetic iron oxide, confirmed by TEM, with superparamagnetic character, also confirmed by VSM. The infrared spectrum showed absorption band at 570 cm−1 characteristic of the Fe-O bonding in inverted spinel structure and the absorption bands in 1263, 1105, 1025 and 800 cm−1 indicating the presence of PDMS on the magnetic iron oxide particles. Thermogravimetric analysis has been used to estimate the sample thermal stability of polymeric material (9.7 ± 4) % on the inorganic matrices. Contact angle measurement of the coated samples at 250 °C presented a better nonpolar character in comparison to the coated samples at 50 °C. The samples at room temperature (25 °C) presented the phases of magnetite and maghemite which were also confirmed by Mössbauer spectroscopy. It was possible to obtain iron oxides particles coated with PDMS, with hydrophobic and magnetic properties, which slide over the water surface when

  11. The cataract-associated V41M mutant of human γS-crystallin shows specific structural changes that directly enhance local surface hydrophobicity

    Energy Technology Data Exchange (ETDEWEB)

    Bharat, Somireddy Venkata; Shekhtman, Alexander; Pande, Jayanti, E-mail: jpande@albany.edu

    2014-01-03

    Highlights: •We present NMR analysis of V41M, a cataract-causing mutant of human γS-crystallin. •Mutation alters strand–strand interactions throughout the N-terminal domain. •Mutation directly affects Trp46 due to key Met41-S–Trp46-pi interactions. •We identify the basis of the surface hydrophobicity increase and residues involved. -- Abstract: The major crystallins expressed in the human lens are γS-, γC- and γD-crystallins. Several mutations in γS-crystallin are associated with hereditary cataracts, one of which involves the substitution of a highly conserved Valine at position 41 to Methionine. According to a recent report, the mutant protein, V41M, shows lower stability and increased surface hydrophobicity compared to the wild-type, and a propensity for self-aggregation. Here we address the structural differences between the two proteins, with residue-level specificity using NMR spectroscopy. Based on the structural model of the mutant protein, our results clearly show that the mutation creates a major local perturbation almost at the junction of the first and second “Greek-key” motifs in the N-terminal domain. A larger section of the second motif (residues 44–86) appears to be mainly affected. Based on the sizeable chemical shift of the imino proton of the indole side-chain of Trp46 in V41M, we suggest that the sulphur atom of Met41 is involved in an S–π interaction with Trp46. This interaction would bring the last β-strand of the first “Greek-key” motif closer to the first β-strand of the second motif. This appears to lead to a domino effect, towards both the N- and C-terminal ends, even as it decays off substantially beyond the domain interface. During this process discreet hydrophobic surface patches are created, as revealed by ANS-binding. Such changes would not affect the secondary structure or cause a major change in the tertiary structure, but can lead to self-aggregation or aberrant binding interactions of the mutant

  12. Particles that slide over the water surface: Synthesis and characterization of iron oxides particles coated with PDMS, with hydrophobic and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Souza Neto, Francisco N.de [Sciences and Technology Unit of the University – UnUCET, State University of Goiás, 75132-903 Anápolis, GO (Brazil); Araújo, Olacir Alves, E-mail: olacir.araujo@ueg.br [Sciences and Technology Unit of the University – UnUCET, State University of Goiás, 75132-903 Anápolis, GO (Brazil); Guilherme, Luciana R.; Garg, Vijayendra K. [Sciences and Technology Unit of the University – UnUCET, State University of Goiás, 75132-903 Anápolis, GO (Brazil); Oliveira, Aderbal C.; Souza, Paulo E.N. de [Institute of Physics, University of Brasília, 70910-900 Brasília, DF (Brazil); Franco Júnior, Adolfo [Institute of Physics, Federal University of Goiás, 74001-970 Goiânia, GO (Brazil)

    2015-07-15

    water surface when magnetic field is applied. This character was used successfully, by testing, for removal of small fraction vegetable oil on the water surface. - Graphical abstract: Display Omitted - Highlights: • Magnetic iron oxide synthesized by coprecipitation. • Magnetic iron oxide particles coated with polydimethylsiloxane. • Particles with hydrophobic and magnetic properties, which slide over the water surface.

  13. The effect of cerium valence states at cerium oxide nanoparticle surfaces on cell proliferation

    KAUST Repository

    Naganuma, Tamaki

    2014-05-01

    Understanding and controlling cell proliferation on biomaterial surfaces is critical for scaffold/artificial-niche design in tissue engineering. The mechanism by which underlying integrin ligates with functionalized biomaterials to induce cell proliferation is still not completely understood. In this study, poly-l-lactide (PL) scaffold surfaces were functionalized using layers of cerium oxide nanoparticles (CNPs), which have recently attracted attention for use in therapeutic application due to their catalytic ability of Ce4+ and Ce3+ sites. To isolate the influence of Ce valance states of CNPs on cell proliferation, human mesenchymal stem cells (hMSCs) and osteoblast-like cells (MG63) were cultured on the PL/CNP surfaces with dominant Ce4+ and Ce3+ regions. Despite cell type (hMSCs and MG63 cells), different surface features of Ce4+ and Ce3+ regions clearly promoted and inhibited cell spreading, migration and adhesion behavior, resulting in rapid and slow cell proliferation, respectively. Cell proliferation results of various modified CNPs with different surface charge and hydrophobicity/hydrophilicity, indicate that Ce valence states closely correlated with the specific cell morphologies and cell-material interactions that trigger cell proliferation. This finding suggests that the cell-material interactions, which influence cell proliferation, may be controlled by introduction of metal elements with different valence states onto the biomaterial surface. © 2014 Elsevier Ltd.

  14. Efficient Isolation and Quantitative Proteomic Analysis of Cancer Cell Plasma Membrane Proteins for Identification of Metastasis-Associated Cell Surface Markers

    DEFF Research Database (Denmark)

    Lund, Rikke; Leth-Larsen, Rikke; Jensen, Ole N;

    2009-01-01

    Cell surface membrane proteins are involved in central processes such as cell signaling, cell-cell interactions, ion and solute transport, and they seem to play a pivotal role in several steps of the metastatic process of cancer cells. The low abundance and hydrophobic nature of cell surface...... membrane proteins complicate their purification and identification by MS. We used two isogenic cell lines with opposite metastatic capabilities in nude mice to optimize cell surface membrane protein purification and to identify potential novel markers of metastatic cancer. The cell surface membrane...... proteins were isolated by centrifugation/ultracentrifugation steps, followed by membrane separation using a Percoll/sucrose density gradient. The gradient fractions containing the cell surface membrane proteins were identified by enzymatic assays. Stable isotope labeling of the proteome of the metastatic...

  15. Hydrophobic Surfaces of Spacecraft Components Enhance the Aggregation of Microorganisms and May Lead to Higher Survival Rates on Mars

    Science.gov (United States)

    Schuerger, A. C.; Kern, R. G.

    2003-01-01

    In order to minimize the forward contamination of Mars, spacecraft are assembled under clean-room conditions that often require several procedures to clean and sterilize components. Surface characteristics of spacecraft materials may contribute to microbial survival by protecting spores from sterilizing agents, including UV irradiation on the surface of Mars. The primary objective of this study was to evaluate the effects of surface characteristics of several spacecraft materials on the survival of Bacillus subtilis spores under simulated Martian conditions.

  16. Interaction of progenitor bone cells with different surface modifications of titanium implant

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wen-Cheng, E-mail: wencchen@fcu.edu.tw [Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, College of Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Chen, Ya-Shun [Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, College of Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Ko, Chia-Ling [Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, College of Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Dental Medical Devices and Materials Research Center, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Lin, Yi; Kuo, Tzu-Huang; Kuo, Hsien-Nan [Medical Device Development Division, Metal Industries Research and Development Centre, Kaohsiung 82151, Taiwan (China)

    2014-04-01

    Changes in the physical and chemical properties of Ti surfaces can be attributed to cell performance, which improves surface biocompatibility. The cell proliferation, mineralization ability, and gene expression of progenitor bone cells (D1 cell) were compared on five different Ti surfaces, namely, mechanical grinding (M), electrochemical modification through potentiostatic anodization (ECH), sandblasting and acid etching (SLA), sandblasting, hydrogen peroxide treatment, and heating (SAOH), and sandblasting, alkali heating, and etching (SMART). SAOH treatment produced the most hydrophilic surface, whereas SLA produced the most hydrophobic surface. Cell activity indicated that SLA and SMART produced significantly rougher surfaces and promoted D1 cell attachment within 1 day of culturing, whereas SAOH treatment produced moderate roughness (Ra = 1.26 μm) and accelerated the D1 cell proliferation up to 7 days after culturing. The ECH surface significantly promoted alkaline phosphatase (ALP) expression and osteocalcin (OCN) secretion in the D1 cells compared with the other surface groups. The ECH and SMART-treated Ti surfaces resulted in maximum ALP and OCN expressions during the D1 cell culture. SLA, SAOH, and SMART substrate surfaces were rougher and exhibited better cell metabolic responses during the early stage of cell attachment, proliferation, and morphologic expressions within 1 day of D1 cell culture. The D1 cells cultured on the ECH and SMART substrates exhibited higher differentiation, and higher ALP and OCN expressions after 10 days of culture. Thus, the ECH and SMART treatments promote better ability of cell mineralization in vitro, which demonstrate their great potential for clinical use. - Highlights: • Progenitor bone cells onto Ti with different modifications are characterized. • Surface roughness and hydrophilicity encourage early stage cell attachment. • Composition and surface treatments are more vital in bone cell mineralization.

  17. Interaction of progenitor bone cells with different surface modifications of titanium implant

    International Nuclear Information System (INIS)

    Changes in the physical and chemical properties of Ti surfaces can be attributed to cell performance, which improves surface biocompatibility. The cell proliferation, mineralization ability, and gene expression of progenitor bone cells (D1 cell) were compared on five different Ti surfaces, namely, mechanical grinding (M), electrochemical modification through potentiostatic anodization (ECH), sandblasting and acid etching (SLA), sandblasting, hydrogen peroxide treatment, and heating (SAOH), and sandblasting, alkali heating, and etching (SMART). SAOH treatment produced the most hydrophilic surface, whereas SLA produced the most hydrophobic surface. Cell activity indicated that SLA and SMART produced significantly rougher surfaces and promoted D1 cell attachment within 1 day of culturing, whereas SAOH treatment produced moderate roughness (Ra = 1.26 μm) and accelerated the D1 cell proliferation up to 7 days after culturing. The ECH surface significantly promoted alkaline phosphatase (ALP) expression and osteocalcin (OCN) secretion in the D1 cells compared with the other surface groups. The ECH and SMART-treated Ti surfaces resulted in maximum ALP and OCN expressions during the D1 cell culture. SLA, SAOH, and SMART substrate surfaces were rougher and exhibited better cell metabolic responses during the early stage of cell attachment, proliferation, and morphologic expressions within 1 day of D1 cell culture. The D1 cells cultured on the ECH and SMART substrates exhibited higher differentiation, and higher ALP and OCN expressions after 10 days of culture. Thus, the ECH and SMART treatments promote better ability of cell mineralization in vitro, which demonstrate their great potential for clinical use. - Highlights: • Progenitor bone cells onto Ti with different modifications are characterized. • Surface roughness and hydrophilicity encourage early stage cell attachment. • Composition and surface treatments are more vital in bone cell mineralization.

  18. Ethyl cellulose amphiphilic graft copolymers with LCST-UCST transition: Opposite self-assembly behavior, hydrophilic-hydrophobic surface and tunable crystalline morphologies.

    Science.gov (United States)

    Yuan, Hua; Chi, Hai; Yuan, Weizhong

    2016-08-20

    Novel and well-defined graft copolymer with block copolymer side chain, ethyl cellulose-graft-(poly(ε-caprolactone)-block-poly(N,N-dimethylaminoethylmeth acrylate)) (EC-g-(PCL-b-PDMAEMA)) with a lower critical solution temperature (LCST) was successfully synthesized via the combination of ring-opening polymerization (ROP) and atom transfer radical polymerization (ATRP). EC-g-(PCL-b-PDMAEMA) copolymers with various PCL-b-PDMAEMA block lengths were obtained by adjusting the molar ratios of the N,N-dimethylaminoethyl methacrylate monomer to ε-caprolactone. The EC-g-(PCL-b-PDMAPS) with an upper critical solution temperature (UCST) was obtained via facile quaternization reaction of PDMAEMA with 1,3-propane sultone. EC-g-(PCL-b-PDMAEMA) and EC-g-(PCL-b-PDMAPS) micelle solutions showed opposite thermoresponsiviness and hydrophilic-hydrophobic surface. Moreover, the tunable crystalline morphologies could be obtained from these graft copolymers through changing the polymer structure and PDMAEMA contents. PMID:27178932

  19. Hydrophobic recovery of UV/ozone treated poly(dimethylsiloxane): adhesion studies by contact mechanics and mechanism of surface modification

    NARCIS (Netherlands)

    Oláh, Attila; Hillborg, Henrik; Vancso, G. Julius

    2005-01-01

    Silicone elastomers (Sylgard 184 and 170), based on poly(dimethylsiloxane) (PDMS), were surface treated by a combined exposure to UV and ozone. The effects of the treatments were analyzed as a function of time elapsed after stopping the treatments using different standard surface characterization te

  20. Surface modification of PVDF using non-mammalian sources of collagen for enhancement of endothelial cell functionality

    OpenAIRE

    Wang, Jun Kit; Xiong, Gordon Minru; Luo, Baiwen; Choo, Chee Chong; Yuan, Shaojun; Tan, Nguan Soon; Choong, Cleo

    2016-01-01

    Although polyvinylidene fluoride (PVDF) is non-toxic and stable in vivo, its hydrophobic surface has limited its bio-applications due to poor cell-material interaction and thrombus formation when used in blood contacting devices. In this study, surface modification of PVDF using naturally derived non-mammalian collagen was accomplished via direct surface-initiated atom transfer radical polymerisation (SI-ATRP) to enhance its cytocompatibility and hemocompatibility. Results showed that Type I ...

  1. Hydrophobic Side-Chain Length Determines Activity and Conformational Heterogeneity of a Vancomycin Derivative Bound to the Cell Wall of Staphylococcus aureus§

    OpenAIRE

    Kim, Sung Joon; Schaefer, Jacob

    2008-01-01

    Disaccharide modified glycopeptides with hydrophobic sidechains are active against vancomycin-resistant enterococci and vancomycin-resistant S. aureus. The activity depends on the length of the sidechain. The benzyl sidechain of N-(4-fluorobenzyl)vancomycin (FBV) has the minimal length sufficient for enhancement in activity against vancomycin-resistant pathogens. The conformation of FBV bound to the peptidoglycan in whole cells of S. aureus has been determined using rotational-echo double res...

  2. Surface-Coated Polylactide Fiber Meshes as Tissue Engineering Matrices with Enhanced Cell Integration Properties

    Directory of Open Access Journals (Sweden)

    Matthias Schnabelrauch

    2014-01-01

    Full Text Available Poly(L-lactide-co-D/L-lactide-based fiber meshes resembling structural features of the native extracellular matrix have been prepared by electrospinning. Subsequent coating of the electrospun fibers with an ultrathin plasma-polymerized allylamine (PPAAm layer after appropriate preactivation with continuous O2/Ar plasma changed the hydrophobic nature of the polylactide surface into a hydrophilic polymer network and provided positively charged amino groups on the fiber surface able to interact with negatively charged pericellular matrix components. In vitro cell experiments using different human cell types (epithelial origin: gingiva and uroepithelium; bone cells: osteoblasts revealed that the PPAAm-activated surfaces promoted the occupancy of the meshes by cells accompanied by improved initial cell spreading. This nanolayer is stable in its cell adhesive characteristics also after γ-sterilization. An in vivo study in a rat intramuscular implantation model demonstrated that the local inflammatory tissue response did not differ between PPAAm-coated and untreated polylactide meshes.

  3. Functions of proteoglycans at the cell surface

    DEFF Research Database (Denmark)

    Höök, M; Woods, A; Johansson, S;

    1986-01-01

    Proteoglycans (primarily heparan sulphate proteoglycans) are found at the surface of most adherent eukaryotic cells. Earlier studies suggest that these molecules can be associated with the cell surface principally by two different mechanisms. Proteoglycans may occur as membrane-intercalated glyco......Proteoglycans (primarily heparan sulphate proteoglycans) are found at the surface of most adherent eukaryotic cells. Earlier studies suggest that these molecules can be associated with the cell surface principally by two different mechanisms. Proteoglycans may occur as membrane......-intercalated glycoproteins, where the core protein of the proteoglycan is anchored in the lipid interior of the plasma membrane, or they may be bound via the polysaccharide components of the molecule to specific anchoring proteins present at the cell surface. A number of functions have been proposed for cell surface...

  4. Probe microscopy: Scanning below the cell surface

    Science.gov (United States)

    Sahin, Ozgur

    2008-08-01

    Conventional atomic force microscopy probes only the surface of specimens. A related technique called scanning near-field ultrasonic holography can now image nanoparticles buried below the surfaces of cells, which could prove useful in nanotoxicology.

  5. Changes in cell surface properties of shiga toxigenic Escherichia coli by Quercus infectoria G. Olivier.

    Science.gov (United States)

    Voravuthikunchai, Supayang Piyawan; Suwalak, Sakol

    2009-08-01

    The effects of Quercus infectoria (family Fagaceae) nutgalls on cell surface properties of Shiga toxigenic Escherichia coli (STEC) were investigated with an assay of microbial adhesion to hydrocarbon. The surface of bacterial cells treated with Q. infectoria exhibited a higher level of cell surface hydrophobicity (CSH) toward toluene than did the surface of untreated cells. With 50% ethanolic extract, the CSH of the three strains of STEC O157:H7 treated with 4X MIC of the extract resulted in moderate or strong hydrophobicity, whereas at 2x MIC and MIC, the CSH of only one strain of E. coli O157:H7 was significantly affected. The 95% ethanolic extract had a significant effect on CSH of all three strains at both 4X MIC and 2X MIC but not at the MIC. The effect on bacterial CSH was less pronounced with the other STEC strains. At 4X MIC, the 50% ethanolic extract increased the CSH of all non-O157 STEC strains significantly. At 2X MIC and 4X MIC, the 95% ethanolic extract affected the CSH of E. coli O26:H11 significantly but did not affect E. coli O111 :NM or E. coli O22. Electro microscopic examination revealed the loss of pili in the treated cells. The ability of Q. infectoria extract to modify hydrophobic domains enables this extract to partition the lipids of the bacterial cell membrane, rendering the membrane more permeable and allowing leakage of ions and other cell contents, which leads to cell death. Further studies are required to evaluate the effects of Q. infectoria extract in food systems or in vivo and provide support for the use of this extract as a food additive for control of these STEC pathogens. PMID:19722403

  6. Programming Surface Chemistry with Engineered Cells.

    Science.gov (United States)

    Zhang, Ruihua; Heyde, Keith C; Scott, Felicia Y; Paek, Sung-Ho; Ruder, Warren C

    2016-09-16

    We have developed synthetic gene networks that enable engineered cells to selectively program surface chemistry. E. coli were engineered to upregulate biotin synthase, and therefore biotin synthesis, upon biochemical induction. Additionally, two different functionalized surfaces were developed that utilized binding between biotin and streptavidin to regulate enzyme assembly on programmable surfaces. When combined, the interactions between engineered cells and surfaces demonstrated that synthetic biology can be used to engineer cells that selectively control and modify molecular assembly by exploiting surface chemistry. Our system is highly modular and has the potential to influence fields ranging from tissue engineering to drug development and delivery.

  7. Fabrication of hydrophobic structures on coronary stent surface based on direct three-beam laser interference lithography

    Science.gov (United States)

    Gao, Long-yue; Zhou, Wei-qi; Wang, Yuan-bo; Wang, Si-qi; Bai, Chong; Li, Shi-ming; Liu, Bin; Wang, Jun-nan; Cui, Cheng-kun; Li, Yong-liang

    2016-05-01

    To solve the problems with coronary stent implantation, coronary artery stent surface was directly modified by three-beam laser interference lithography through imitating the water-repellent surface of lotus leaf, and uniform micro-nano structures with the controllable period were fabricated. The morphological properties and contact angle (CA) of the microstructure were measured by scanning electron microscope (SEM) and CA system. The water repellency of stent was also evaluated by the contact and then separation between the water drop and the stent. The results show that the close-packed concave structure with the period of about 12 μm can be fabricated on the stent surface with special parameters (incident angle of 3°, laser energy density of 2.2 J·cm-2 and exposure time of 80 s) by using the three-beam laser at 1 064 nm, and the structure has good water repellency with CA of 120°.

  8. Washable and wear-resistant superhydrophobic surfaces with self-cleaning property by chemical etching of fibers and hydrophobization.

    Science.gov (United States)

    Xue, Chao-Hua; Li, Ya-Ru; Zhang, Ping; Ma, Jian-Zhong; Jia, Shun-Tian

    2014-07-01

    Superhydrophobic poly(ethylene terephthalate) (PET) textile surfaces with a self-cleaning property were fabricated by treating the microscale fibers with alkali followed by coating with polydimethylsiloxane (PDMS). Scanning electron microscopy analysis showed that alkali treatment etched the PET and resulted in nanoscale pits on the fiber surfaces, making the textiles have hierarchical structures. Coating of PDMS on the etched fibers affected little the roughening structures while lowered the surface energy of the fibers, thus making the textiles show slippery superhydrophobicity with a self-cleaning effect. Wettability tests showed that the superhydrophobic textiles were robust to acid/alkaline etching, UV irradiation, and long-time laundering. Importantly, the textiles maintained superhydrophobicity even when the textiles are ruptured by severe abrasion. Also colorful images could be imparted to the superhydrophobic textiles by a conventional transfer printing without affecting the superhydrophobicity. PMID:24942304

  9. Synthesis of novel lanthanide acylpyrazolonato ligands with long aliphatic chains and immobilization of the Tb complex on the surface of silica pre-modified via hydrophobic interactions.

    Science.gov (United States)

    Pettinari, C; Marchetti, F; Pettinari, R; Belousov, Y A; Taydakov, I V; Krasnobrov, V D; Petukhov, D I; Drozdov, A A

    2015-09-01

    Five new complexes Ln(Q(C17))3(H2O)(Solv) (Ln = Y, Solv = H2O, Ln = Tb, Dy, Sm or Eu, Solv = EtOH) were synthesized with the acylpyrazolonato ligand Q(C17) bearing a long aliphatic C17H35 chain in the acyl moiety, and the crystal structure of Y(Q(C17))3(H2O)2 shows the three aliphatic chains from the coordinated ligands positioned in the same direction, affording plane layers built by Y(Q(C17))3(H2O)2 molecules connected through H-bonding interactions. The layers are stitched to each other like in "hook & loop" tapes. Luminescence of complexes was determined and the complex Tb(Q(C17))3(H2O)(EtOH) was immobilized on the surface of silica preprocessed using a C17H35CONH(CH2)3Si(OEt)3 reagent via hydrophobic interactions of long aliphatic chains. Luminescent properties and micromorphology of the obtained hybrid particles and hybrid films were investigated. Intensive green emission of the complex retains after grafting onto the silica surface. Inclusion of the complex on the surface of silica materials occurs as separate molecules, after the disruption of the H-bonding network present in the crystalline phase of the pure terbium sample.

  10. The pancreatic beta cell surface proteome

    OpenAIRE

    Stützer, I.; Esterházy, D.; Stoffel, M.

    2012-01-01

    The pancreatic beta cell is responsible for maintaining normoglycaemia by secreting an appropriate amount of insulin according to blood glucose levels. The accurate sensing of the beta cell extracellular environment is therefore crucial to this endocrine function and is transmitted via its cell surface proteome. Various surface proteins that mediate or affect beta cell endocrine function have been identified, including growth factor and cytokine receptors, transporters, ion channels and prote...

  11. Increasing binding density of yeast cells by control of surface charge with allylamine grafting to ion modified polymer surfaces.

    Science.gov (United States)

    Tran, Clara T H; Kondyurin, Alexey; Chrzanowski, Wojciech; Bilek, Marcela M M; McKenzie, David R

    2014-10-01

    Plasma immersion ion implantation (PIII) treatment of polymers creates a biointerface capable of direct covalent immobilization of biomolecules. The immobilization of protein molecules is achieved by covalent bonds formed between embedded radicals on the treated surface and amino acid side chains and cells can be immobilized through cell-wall proteins. The attachment density of negatively charged entities on a PIII treated surface is inhibited by its negative surface charge at neutral pH. To reduce the negative charge of PIII treated surfaces in phosphate buffer (pH 7.4, 11mM), we develop an effective approach of grafting allylamine monomers onto the treated surface. The results reveal reactions between allylamine and radicals on the PIII treated surface. One of these triggers polymerization, increasing the number of amine groups grafted. As a consequence, the PIII treated polystyrene surface after allylamine exposure becomes more hydrophobic and less negatively charged in phosphate buffer. Using yeast cells as an example, we have shown a significant improvement (6-15 times) of cell density immobilized on the PIII treated surface after exposure to allylamine. PMID:25092587

  12. Tribology and hydrophobicity of a biocompatible GPTMS/PFPE coating on Ti6Al4V surfaces.

    Science.gov (United States)

    Panjwani, Bharat; Sinha, Sujeet K

    2012-11-01

    Tribological properties of perfluoropolyether (PFPE) coated 3-glycidoxypropyltrimethoxy silane (GPTMS) SAMs (self-assembled monolayers) onto Ti6Al4V alloy substrate were studied using ball-on-disk experiments. GPTMS SAMs deposition onto a Ti6Al4V alloy surface was carried out using solution phase method. Ultra-thin layer of PFPE was dip-coated onto SAMs modified specimens. Tribological tests were carried out at 0.2 N normal load and rotational speed of 200 rpm using track radius of 2 mm. Wear track and counterface surface conditions were investigated using optical microscopy. PFPE modified specimens were baked at 150 °C for 1h to investigate the effect of thermal treatment on tribological properties. Surface characterization tests such as contact angle measurement, AFM morphology and X-ray photoelectron spectroscopy were carried out for differently modified specimens. PFPE overcoat meets the requirements of cytotoxicity test using the ISO 10993-5 elution method. PFPE top layer lowered the coefficient of friction and increased wear durability for different specimens (with and without GPTMS intermediate layer). PFPE overcoat onto GPTMS showed significant increase in the wear resistance compared with overcoat onto bare Ti6Al4V specimens. The observed improvement in the tribological properties can be attributed to the change in the interaction of PFPE molecules with the substrate surface due to the GPTMS intermediate layer.

  13. Measurements on hydrophobic and hydrophilic surfaces using a porous gamma alumina nanoparticle aggregate mounted on Atomic Force Microscopy cantilevers

    NARCIS (Netherlands)

    Das, Theerthankar; Becker, Thomas; Nair, Balagopal N.

    2010-01-01

    Atomic Force Microscopy (AFM) measurements are extensively used for a detailed understanding of molecular and surface forces. In this study, we present a technique for measuring such forces, using an AFM cantilever attached with a porous gamma alumina nanoparticle aggregate. The modified cantilever

  14. Adsorption of Pluronic F-127 on Surfaces with Different Hydrophobicities Probed by Quartz Crystal Microbalance with Dissipation

    NARCIS (Netherlands)

    Nejadnik, M.R.; Olsson, A.L.J.; Sharma, P.K.; Mei, van der H.C.; Norde, W.; Busscher, H.J.

    2009-01-01

    Triblock copolymers of polyethylene oxide (PEO) and polypropylene oxide (PPO), that is, PEOn-PPOm-PEOn, better known as Pluronic can adsorb to surfaces in either a pancake or a brushlike configuration. The brushlike configuration is advantageous in numerous applications, since it constitutes a surfa

  15. Adsorption of Pluronic F-127 on Surfaces with Different Hydrophobicities Probed by Quartz Crystal Microbalance with Dissipation

    NARCIS (Netherlands)

    Nejadnik, M. Reza; Olsson, Adam L. J.; Sharma, Prashant K.; van der Mei, Henny C.; Norde, Willem; Busscher, Henk J.

    2009-01-01

    Triblock copolymers of polyethylene oxide (PEO) and polypropylene oxide (PPO), that is, PEO(n)-PPO(m)-PEO(n), better known as Pluronic can adsorb to surfaces in either a pancake or a brushlike configuration. The brushlike configuration is advantageous in numerous applications, since it constitutes a

  16. Surface Functionalization for Protein and Cell Patterning

    Science.gov (United States)

    Colpo, Pascal; Ruiz, Ana; Ceriotti, Laura; Rossi, François

    The interaction of biological systems with synthetic material surfaces is an important issue for many biological applications such as implanted devices, tissue engineering, cell-based sensors and assays, and more generally biologic studies performed ex vivo. To ensure reliable outcomes, the main challenge resides in the ability to design and develop surfaces or artificial micro-environment that mimic 'natural environment' in interacting with biomolecules and cells without altering their function and phenotype. At this effect, microfabrication, surface chemistry and material science play a pivotal role in the design of advanced in-vitro systems for cell culture applications. In this chapter, we discuss and describe different techniques enabling the control of cell-surface interactions, including the description of some techniques for immobilization of ligands for controlling cell-surface interactions and some methodologies for the creation of well confined cell rich areas.

  17. Controlled surface chemistries and quantitative cell response

    Science.gov (United States)

    Plant, Anne L.

    2002-03-01

    Living cells experience a large number of signaling cues from their extracellular matrix. As a result of these inputs, a variety of intracellular signaling pathways are apparently initiated simultaneously. The vast array of alternative responses that result from the integration of these inputs suggests that it may be reasonable to look for cellular response not as an 'on' or 'off' condition but as a distribution of responses. A difficult challenge is to determine whether variations in responses from individual cells arise from the complexity of intracellular signals or are due to variations in the cell culture environment. By controlling surface chemistry so that every cell 'sees' the same chemical and physical environment, we can begin to assess how the distribution of cell response is affected strictly by changes in the chemistry of the cell culture surface. Using the gene for green fluorescent protein linked to the gene for the promoter of the extracellular matrix protein, tenascin, we can easily probe the end product in a signaling pathway that is purported to be linked to surface protein chemistry and to cell shape. Cell response to well-controlled, well-characterized, and highly reproducible surfaces prepared using soft lithography techniques are compared with more conventional ways of preparing extracellular matrix proteins for cell culture. Using fluorescence microscopy and image analysis of populations of cells on these surfaces, we probe quantitatively the relationship between surface chemistry, cell shape and variations in gene expression endpoint.

  18. Determination of functionalized gold nanoparticles incorporated in hydrophilic and hydrophobic microenvironments by surface modification of quartz crystal microbalance

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Tsui-Hsun [Institute of Biomedical Engineering, College of Engineering, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC (China); Institute of Medical Mechatronics, Chang Gung University, Tao-Yuan, Taiwan, ROC (China); Liao, Shu-Chuan [Center of Thin Film Technologies and Applications, Mingchi University of Technology, Taipei, Taiwan, ROC (China); Chen, Ying-Fang [Department of Dentistry, Yun-Lin Branch, National Taiwan University Hospital, Dou-Liu, Yun-Lin, Taiwan, ROC (China); Huang, Yi-You [Institute of Biomedical Engineering, College of Engineering, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC (China); Wei, Yi-Syuan [Department of Materials Engineering, Tatung University, 40 Zhongshan North Road, 3rd Section, Taipei 104, Taiwan, ROC (China); Tu, Shu-Ju, E-mail: sjt@cgu.edu.tw [Department of Medical Imaging and Radiological Sciences, Chang Gung University, 259 Wen-Hwa, 1st Road, Kwei-Shan, Tao-Yuan 133, Taiwan, ROC (China); Chen, Ko-Shao, E-mail: kschen@ttu.edu.tw [Department of Materials Engineering, Tatung University, 40 Zhongshan North Road, 3rd Section, Taipei 104, Taiwan, ROC (China)

    2013-06-01

    In this study, plasma deposition methods were used to immobilize Au electrode of a quartz crystal microbalance (QCM) to create different microenvironments for mass measurement of various modified Au nanoparticles (AuNPs). AuNPs were modified by 11-mercaptoundecanoic acid (MUA) and 1-decanethiol (DCT) for potential applications to drug release, protective coatings, and immunosensors. We aimed to develop a highly sensitive and reliable method to quantify the mass of various modified AuNPs. The surface of AuNPs and Au electrode was coated with polymer films, as determined by Fourier transform infrared spectroscopy and atomic force microscopy. Measurements obtained for various AuNPs and the plasma-treated surface of the Au electrode were compared with those obtained for an untreated Au electrode. According to the resonant frequency shift of QCM, a linear relationship was observed that significantly differed for AuNPs, MUA-AuNPs, and DCT-AuNPs (R{sup 2} range, 0.94–0.965, 0.934–0.972, and 0.874–0.9514, respectively). Compared to inductively coupled plasma and micro-computerized tomography, the QCM method with plasma treatment has advantages of real-time monitoring, greater sensitivity, and lower cost. Our results demonstrate that surface modifications measured by a QCM system for various modified AuNPs were reliable.

  19. The cell surface of Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Wanderley de Souza

    1984-01-01

    Full Text Available The cell surface of trypanosomatids is formed by the plasma membrane and a layer of sub-pellicular microtubules which are connected to the plasma membrane. The plasma membrane is composed by proteins, lipids and carbohydrates which form the glycocalix. In this paper we will review briefly aspects related to the organization of the cell surface of Trypanosoma cruzi.

  20. The N-terminal repeat and the ligand binding domain A of SdrI protein is involved in hydrophobicity of S. saprophyticus.

    Science.gov (United States)

    Kleine, Britta; Ali, Liaqat; Wobser, Dominique; Sakιnç, Türkân

    2015-03-01

    Staphylococcus saprophyticus is an important cause of urinary tract infection, and its cell surface hydrophobicity may contribute to virulence by facilitating adherence of the organism to uroepithelia. S. saprophyticus expresses the surface protein SdrI, a member of the serine-aspartate repeat (SD) protein family, which has multifunctional properties. The SdrI knock out mutant has a reduced hydrophobicity index (HPI) of 25%, and expressed in the non-hydrophobic Staphylococcus carnosus strain TM300 causes hydrophobicity. Using hydrophobic interaction chromatography (HIC), we confined the hydrophobic site of SdrI to the N-terminal repeat region. S. saprophyticus strains carrying different plasmid constructs lacking either the N-terminal repeats, both B or SD-repeats were less hydrophobic than wild type and fully complemented SdrI mutant (HPI: 51%). The surface hydrophobicity and HPI of both wild type and the complemented strain were also influenced by calcium (Ca(2+)) and were reduced from 81.3% and 82.4% to 10.9% and 12.3%, respectively. This study confirms that the SdrI protein of S. saprophyticus is a crucial factor for surface hydrophobicity and also gives a first significant functional description of the N-terminal repeats, which in conjunction with the B-repeats form an optimal hydrophobic conformation.

  1. The N-terminal repeat and the ligand binding domain A of SdrI protein is involved in hydrophobicity of S. saprophyticus.

    Science.gov (United States)

    Kleine, Britta; Ali, Liaqat; Wobser, Dominique; Sakιnç, Türkân

    2015-03-01

    Staphylococcus saprophyticus is an important cause of urinary tract infection, and its cell surface hydrophobicity may contribute to virulence by facilitating adherence of the organism to uroepithelia. S. saprophyticus expresses the surface protein SdrI, a member of the serine-aspartate repeat (SD) protein family, which has multifunctional properties. The SdrI knock out mutant has a reduced hydrophobicity index (HPI) of 25%, and expressed in the non-hydrophobic Staphylococcus carnosus strain TM300 causes hydrophobicity. Using hydrophobic interaction chromatography (HIC), we confined the hydrophobic site of SdrI to the N-terminal repeat region. S. saprophyticus strains carrying different plasmid constructs lacking either the N-terminal repeats, both B or SD-repeats were less hydrophobic than wild type and fully complemented SdrI mutant (HPI: 51%). The surface hydrophobicity and HPI of both wild type and the complemented strain were also influenced by calcium (Ca(2+)) and were reduced from 81.3% and 82.4% to 10.9% and 12.3%, respectively. This study confirms that the SdrI protein of S. saprophyticus is a crucial factor for surface hydrophobicity and also gives a first significant functional description of the N-terminal repeats, which in conjunction with the B-repeats form an optimal hydrophobic conformation. PMID:25497915

  2. Microarray of neuroblastoma cells on the selectively functionalized nanocrystalline diamond thin film surface

    Science.gov (United States)

    Park, Young-Sang; Son, Hyeong-Guk; Kim, Dae-Hoon; Oh, Hong-Gi; Lee, Da-Som; Kim, Min-Hye; Lim, Ki-Moo; Song, Kwang-Soup

    2016-01-01

    Nanocrystalline diamond (NCD) film surfaces were modified with fluorine or oxygen by plasma treatment in an O2 or C3F8 gas environment in order to induce wettability. The oxygenated-NCD (O-NCD) film surface was hydrophilic and the fluorinated-NCD (F-NCD) surface was hydrophobic. The efficiency of early cell adhesion, which is dependent on the wettability of the cell culture plate and necessary for the growth and proliferation of cells, was 89.62 ± 3.92% on the O-NCD film and 7.78 ± 0.77% on the F-NCD film surface after 3 h of cell culture. The wettability of the NCD film surface was artificially modified using a metal mask and plasma treatment to fabricate a micro-pattern. Four types of micro-patterns were fabricated (line, circle, mesh, and word) on the NCD film surface. We precisely arrayed the neuroblastoma cells on the micro-patterned NCD film surfaces by controlling the surface wettability and cell seeding density. The neuroblastoma cells adhered and proliferated along the O-NCD film surface.

  3. How specific halide adsorption varies hydrophobic interactions.

    Science.gov (United States)

    Stock, Philipp; Müller, Melanie; Utzig, Thomas; Valtiner, Markus

    2016-03-11

    Hydrophobic interactions (HI) are driven by the water structure around hydrophobes in aqueous electrolytes. How water structures at hydrophobic interfaces and how this influences the HI was subject to numerous studies. However, the effect of specific ion adsorption on HI and hydrophobic interfaces remains largely unexplored or controversial. Here, the authors utilized atomic force microscopy force spectroscopy at well-defined nanoscopic hydrophobic interfaces to experimentally address how specific ion adsorption of halide ions as well as NH4 (+), Cs(+), and Na(+) cations alters interaction forces across hydrophobic interfaces. Our data demonstrate that iodide adsorption at hydrophobic interfaces profoundly varies the hydrophobic interaction potential. A long-range and strong hydration repulsion at distances D > 3 nm, is followed by an instability which could be explained by a subsequent rapid ejection of adsorbed iodides from approaching hydrophobic interfaces. In addition, the authors find only a weakly pronounced influence of bromide, and as expected no influence of chloride. Also, all tested cations do not have any significant influence on HI. Complementary, x-ray photoelectron spectroscopy and quartz-crystal-microbalance with dissipation monitoring showed a clear adsorption of large halide ions (Br(-)/I(-)) onto hydrophobic self-assembled monolayers (SAMs). Interestingly, iodide can even lead to a full disintegration of SAMs due to specific and strong interactions of iodide with gold. Our data suggest that hydrophobic surfaces are not intrinsically charged negatively by hydroxide adsorption, as it was generally believed. Hydrophobic surfaces rather interact strongly with negatively charged large halide ions, leading to a surface charging and significant variation of interaction forces.

  4. Observation of metal-metal interface and of hydrophilic/hydrophobic thin film surface by neutron reflectometry

    International Nuclear Information System (INIS)

    The object of this research is to apply the neutron reflectometry as a means for the measurement of the tripology phenomena on interfaces, that is, to confirm that the lubricant materials are in the interfaces between metals and to measure its thickness of thin films, and furthermore to measure the surface of Diamond-like-Carbon (DLC) film with various wettability. A material in the interface between Si blocks was determined. The thickness of DLC film, which is more than 10 nm, was estimated from neutron reflectivity. (M.H.)

  5. Radioimmunoassay to quantitatively measure cell surface immunoglobulins

    International Nuclear Information System (INIS)

    A radioimmunoassay techniques developed to quantitatively measure the presence of immunoglobulins on the surface of cells, is described. The amount of immunoglobulins found on different tumor cells varied from 200 to 1140 ng/106 cells. Determination of immunoglobulins on the peripheral lymphocytes obtained from different cancer patients varied between 340 to 1040 ng/106 cells. Cultured tumor cells, on the other hand, were found to contain negligible quantities of human IgG

  6. Experimental study of the Marangoni flow in evaporating water droplet placed on vertical vibration and heated hydrophobic surface

    Science.gov (United States)

    Park, Chang Seok; Lim, Hee Chang

    2015-11-01

    In general, the heated surface generates a Marangoni flow inside a droplet yielding a coffee stain effect in the end. This study aims to visualize and control the Marangoni flow by using periodic vertical vibration. While the droplet is evaporating, the variation of contact angle and internal volume of droplet was observed by using the combination of a continuous light and a DSLR still camera. Regarding the internal velocity, the PIV(Particle Image Velocimetry) system was applied to visualize the internal Marangoni flow. In order to estimate the temperature gradient inside and surface tension on the droplet, a commercial software Comsol Multiphysics was used. In the result, the internal velocity increases with the increase of the plate temperature and both flow directions of Marangoni and gravitational flow are opposite so that there seems to be a possibility to control the coffee stain effect. In addition, the Marangoni flow was controlled at relatively lower range of frequency 30 ~ 50Hz. Work supported by Korea government Ministry of Trade, Industry and Energy KETEP grant No. 20134030200290, Ministry of Education NRF grant No. NRF2013R1A1A2005347.

  7. Cell-surface remodelling during mammalian erythropoiesis.

    Science.gov (United States)

    Wraith, D C; Chesterton, C J

    1982-10-15

    Current evidence suggests that the major cell-surface modification occurring during mammalian erythropoiesis could be generated by two separate mechanisms: either selective loss of membrane proteins during enucleation or endocytosis at the subsequent reticulocyte and erythrocyte stages. The former idea was tested by collecting developing rabbit erythroid cells before and after the enucleation step and comparing their cell-surface protein composition via radiolabelling and electrophoresis. Few changes were observed. Our data thus lend support to the endocytosis mechanism.

  8. Durability of hydrophobic treatment of concrete

    NARCIS (Netherlands)

    Vries, J. de; Polder, R.B.; Borsje, H.

    1998-01-01

    The subject of this study was the performance of hydrophobic treatment to protect concrete against chloride penetration from de-icing salts. Hydrophobic treatment makes a concrete surface absorb less water and less chloride. Test methods and requirements for commercial products were established. In

  9. Durability of hydrophobic treatment of concrete

    NARCIS (Netherlands)

    Vries, J. de; Polder, R.B.; Borsje, H.

    1998-01-01

    The subject of this study was the performance of hydrophobic treatment to protect concrete against chloride penetration from de-icing salts. Hydrophobic treatment makes a concrete surface absorb less water and less chloride. Several types of tests were carried out to study the performance of hydroph

  10. Nanostructuring of Solar Cell Surfaces

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Schmidt, Michael Stenbæk

    schemes such as atomic layer deposition (ALD) of Al2O3. ALD Al2O3 passivation on black Si yields surface recombination velocity (SRV) below 80 cm/s and implied open-circuit voltage (iVOC) of 680 mV. Surface recombination velocity of 20 cm/s and implied open-circuit voltage of 695 mV is obtained for black...

  11. Cell behaviour on chemically microstructured surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Magnani, Agnese; Priamo, Alfredo; Pasqui, Daniela; Barbucci, Rolando

    2003-03-03

    Micropatterned surfaces with different chemical topographies were synthesised in order to investigate the influence of surface chemistry and topography on cell behaviour. The microstructured materials were synthesised by photoimmobilising natural Hyaluronan (Hyal) and its sulphated derivative (HyalS), both adequately functionalised with a photorective moiety, on glass substrates. Four different grating patterns (10, 25, 50 and 100 {mu}m) were used to pattern the hyaluronan. The micropatterned samples were analysed by Secondary Ions Mass Spectrometry, Scanning Electron Microscopy (SEM) and Atomic Force Microscopy to investigate the chemistry and the topography of the surfaces. The spectroscopic and microscopic analysis of the microstructured surfaces revealed that the photoimmobilisation process was successful, demonstrating that the photomask patterns were well reproduced on the sample surface. The influence of chemical topographies on the cell behaviour was then analysed. Human and 3T3 fibroblasts, bovine aortic and human (HGTFN line) endothelial cells were used and their behaviour on the micropatterned surfaces was analysed in terms of adhesion, proliferation, locomotion and orientation. Both chemical and topographical controls were found to be important for cell guidance. By decreasing the stripe dimensions, a more fusiform shape of cell was observed. At the same time, the cell locomotion and orientation parallel to the structure increased. However, differences in cell behaviour were detected according to both cell type and micropattern dimensions.

  12. Influence of cell surface characteristics on adhesion of Saccharomyces cerevisiae to the biomaterial hydroxylapatite.

    Science.gov (United States)

    White, Jane S; Walker, Graeme M

    2011-02-01

    The influence of the physicochemical properties of biomaterials on microbial cell adhesion is well known, with the extent of adhesion depending on hydrophobicity, surface charge, specific functional groups and acid-base properties. Regarding yeasts, the effect of cell surfaces is often overlooked, despite the fact that generalisations may not be made between closely related strains. The current investigation compared adhesion of three industrially relevant strains of Saccharomyces cerevisiae (M-type, NCYC 1681 and ALY, strains used in production of Scotch whisky, ale and lager, respectively) to the biomaterial hydroxylapatite (HAP). Adhesion of the whisky yeast was greatest, followed by the ale strain, while adhesion of the lager strain was approximately 10-times less. According to microbial adhesion to solvents (MATS) analysis, the ale strain was hydrophobic while the whisky and lager strains were moderately hydrophilic. This contrasted with analyses of water contact angles where all strains were characterised as hydrophilic. All yeast strains were electron donating, with low electron accepting potential, as indicated by both surface energy and MATS analysis. Overall, there was a linear correlation between adhesion to HAP and the overall surface free energy of the yeasts. This is the first time that the relationship between yeast cell surface energy and adherence to a biomaterial has been described.

  13. Liquid extraction surface analysis (LESA) of hydrophobic TLC plates coupled to chip-based nanoelectrospray high-resolution mass spectrometry.

    Science.gov (United States)

    Himmelsbach, Markus; Varesio, Emmanuel; Hopfgartner, Gérard

    2014-01-01

    Direct identification and structural characterization of analyte spots on TLC plates have always been of great interest and the development of interfaces that allow TLC to be combined with MS is making steady progress. The recently introduced liquid extraction surface analysis (LESA) approach has the potential to hyphenate TLC with MS. A mixture of lipid standards was separated on HPTLC RP-18 glass plates using chloroform:methanol :acetonitrile 2:1:1 (v:v:v) as mobile phase. After visualization with primuline dye (0.02% in acetone:water 8:2 (v:v)), LESA was performed, followed by a chip-based nanoflow infusion in combination with FTICRMS. The optimized extraction solvent composition was methanol:chloroform:water:formic acid 52:24:24:0.2 (v:v:v:v). A nanoelectrospray voltage of 1.6 kV and a gas pressure of 0.2 psi were applied in all experiments. All phospholipids were extracted successfully and detected unambiguously using the optimized TLC-LESA-FTICRMS procedure. Sampling the tricaprylin spot gave the most intense signals and also tricaprin was detected. Three other triacylglycerols of higher molecular mass have logP values between 15.5 and 21.6, which are the highest among all investigated compounds and are not detected from their corresponding spots, due to the fact that the solubility of very apolar lipids is not high enough in the extraction solvent. It was demonstrated that TLC can be elegantly combined with mass spectrometry based on the LESA approach. In general, apart from the analysis of lipids, TLC-LESA-MS has a high potential for medium-polar compounds separated on reversed-phase TLC plates, but limitations are present when very apolar compounds have to be extracted. PMID:24801846

  14. Surface Tension Estimates for Droplet Formation in Slurries with Low Concentrations of Hydrophobic Particles, Polymer Flocculants or Surface-Active Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Gauglitz, Phillip A.; Mahoney, Lenna A.; Blanchard, Jeremy; Bamberger, Judith A.

    2011-06-10

    In support of the K-Basin project, Pacific Northwest National Laboratory (PNNL) was requested to evaluate the appropriate surface tension value to use in models predicting the formation of droplets from spray leaks of K-Basin slurries. The specific issue was whether it was more appropriate to use the surface tension of pure water in model predictions for all plausible spray leaks or to use a lower value. The surface tension of K-Basin slurries is potentially affected not only by particles but by low concentrations of nonionic polyacrylamide flocculant and perhaps by contaminants with surfactant properties, which could decrease the surface tension below that of water. A lower surface tension value typically results in smaller droplets being formed with a larger fraction of droplets in the respirable size range, so using the higher surface tension value of pure water is not conservative and thus needs a strong technical basis.

  15. Development of Hydrophobized Alginate Hydrogels for the Vessel-Simulating Flow-Through Cell and Their Usage for Biorelevant Drug-Eluting Stent Testing

    OpenAIRE

    Semmling, Beatrice; Nagel, Stefan; Sternberg, Katrin; Weitschies, Werner; Seidlitz, Anne

    2013-01-01

    The vessel-simulating flow-through cell (vFTC) has been used to examine release and distribution from drug-eluting stents in an in vitro model adapted to the stent placement in vivo. The aim of this study was to examine the effect of the admixture of different hydrophobic additives to the vessel wall simulating hydrogel compartment on release and distribution from model substance-coated stents. Four alginate-based gel formulations containing reversed-phase column microparticles LiChroprep® RP...

  16. Functional dynamics of cell surface membrane proteins

    Science.gov (United States)

    Nishida, Noritaka; Osawa, Masanori; Takeuchi, Koh; Imai, Shunsuke; Stampoulis, Pavlos; Kofuku, Yutaka; Ueda, Takumi; Shimada, Ichio

    2014-04-01

    Cell surface receptors are integral membrane proteins that receive external stimuli, and transmit signals across plasma membranes. In the conventional view of receptor activation, ligand binding to the extracellular side of the receptor induces conformational changes, which convert the structure of the receptor into an active conformation. However, recent NMR studies of cell surface membrane proteins have revealed that their structures are more dynamic than previously envisioned, and they fluctuate between multiple conformations in an equilibrium on various timescales. In addition, NMR analyses, along with biochemical and cell biological experiments indicated that such dynamical properties are critical for the proper functions of the receptors. In this review, we will describe several NMR studies that revealed direct linkage between the structural dynamics and the functions of the cell surface membrane proteins, such as G-protein coupled receptors (GPCRs), ion channels, membrane transporters, and cell adhesion molecules.

  17. Effects of the Incorporation of a Hydrophobic Middle Block into a PEG-Polycation Diblock Copolymer on the Physicochemical and Cell Interaction Properties of the Polymer-DNA Complexes

    OpenAIRE

    Sharma, Rahul; Lee, Jae-Sung; Bettencourt, Ryan C.; Xiao, Chuan; Konieczny, Stephen F.; Won, You-Yeon

    2008-01-01

    One-component homopolymers of cationic monomers (polycations) and diblock copolymers comprising poly(ethylene glycol) (PEG) and a polycation block have been the most widely used types of polymers for formulation of polymer-based gene delivery systems. In this study, we incorporate a hydrophobic middle block into the conventional PEG-polycation architecture, and investigate the effects of this hydrophobic modification on the physicochemical and cell-level biological properties of the polymer-D...

  18. Adhesion of cells to polystyrene surfaces

    OpenAIRE

    1983-01-01

    The surface treatment of polystyrene, which is required to make polystyrene suitable for cell adhesion and spreading, was investigated. Examination of surfaces treated with sulfuric acid or various oxidizing agents using (a) x-ray photoelectron and attenuated total reflection spectroscopy and (b) measurement of surface carboxyl-, hydroxyl-, and sulfur-containing groups by various radiochemical methods showed that sulfuric acid produces an insignificant number of sulfonic acid groups on polyst...

  19. Erosion and flow of hydrophobic granular materials

    Science.gov (United States)

    Utter, Brian; Benns, Thomas; Foltz, Benjamin; Mahler, Joseph

    2015-03-01

    We experimentally investigate submerged granular flows of hydrophobic and hydrophilic grains both in a rotating drum geometry and under erosion by a surface water flow. While slurry and suspension flows are common in nature and industry, effects of surface chemistry on flow behavior have received relatively little attention. In the rotating drum, we use varying concentrations of hydrophobic and hydrophilic grains of sand submerged in water rotated at a constant angular velocity. Sequential images of the resulting avalanches are taken and analyzed. High concentrations of hydrophobic grains result in an effectively cohesive interaction between the grains forming aggregates, with aggregate size and repose angle increasing with hydrophobic concentration. However, the formation and nature of the aggregates depends significantly on the presence of air in the system. We present results from a related experiment on erosion by a surface water flow designed to characterize the effects of heterogeneous granular surfaces on channelization and erosion.

  20. Nanotomography of Cell Surfaces with Evanescent Fields

    Directory of Open Access Journals (Sweden)

    Michael Wagner

    2008-01-01

    Full Text Available The technique of variable-angle total internal reflection fluorescence microscopy (TIRFM and its application to nanotomography of cell surfaces are described. Present applications include (1 3D imaging of chromosomes in their metaphase to demonstrate axial resolution in the nanometre range, (2 measurements of cell-substrate topology, which upon cholesterol depletion shows some loosening of cell-substrate contacts, and (3 measurements of cell topology upon photodynamic therapy (PDT, which demonstrate cell swelling and maintenance of focal contacts. The potential of the method for in vitro diagnostics, but also some requirements and limitations are discussed.

  1. Cell Adhesion on Surface-Functionalized Magnesium.

    Science.gov (United States)

    Wagener, Victoria; Schilling, Achim; Mainka, Astrid; Hennig, Diana; Gerum, Richard; Kelch, Marie-Luise; Keim, Simon; Fabry, Ben; Virtanen, Sannakaisa

    2016-05-18

    The biocompatibility of commercially pure magnesium-based (cp Mg) biodegradable implants is compromised of strong hydrogen evolution and surface alkalization due to high initial corrosion rates of cp Mg in the physiological environment. To mitigate this problem, the addition of corrosion-retarding alloying elements or coating of implant surfaces has been suggested. In the following work, we explored the effect of organic coatings on long-term cell growth. cp Mg was coated with aminopropyltriehtoxysilane + vitamin C (AV), carbonyldiimidazole (CDI), or stearic acid (SA). All three coatings have been previously suggested to reduce initial corrosion and to enhance protein adsorption and hence cell adhesion on magnesium surfaces. Endothelial cells (DH1+/+) and osteosarcoma cells (MG63) were cultured on coated samples for up to 20 days. To quantify Mg corrosion, electrochemical impedance spectroscopy (EIS) was measured after 1, 3, and 5 days of cell culture. We also investigated the speed of initial cell spreading after seeding using fluorescently labeled fibroblasts (NIH/3T3). Hydrogen evolution after contact with cell culture medium was markedly decreased on AV- and SA-coated Mg compared to uncoated Mg. These coatings also showed improved cell adhesion and spreading after 24 h of culture comparable to tissue-treated plastic surfaces. On AV-coated cp Mg, a confluent layer of endothelial cells formed after 5 days and remained intact for up to 20 days. Together, these data demonstrate that surface coating with AV is a viable strategy for improving long-term biocompatibility of cp Mg-based implants. EIS measurements confirmed that the presence of a confluent cell layer increased the corrosion resistance. PMID:27089250

  2. Hydrophobic Forces in Flotation

    OpenAIRE

    Pazhianur, Rajesh R

    1999-01-01

    An atomic force microscope (AFM) has been used to conduct force measurements to better understand the role of hydrophobic forces in flotation. The force measurements were conducted between a flat mineral substrate and a hydrophobic glass sphere in aqueous solutions. It is assumed that the hydrophobic glass sphere may simulate the behavior of air bubbles during flotation. The results may provide information relevant to the bubble-particle interactions occurring during flotation. The glass ...

  3. Surface engineering and characterization of quantum dots and its application in living cell imaging

    Directory of Open Access Journals (Sweden)

    Han QIU

    2016-06-01

    Full Text Available Objective  Surface modification of hydrophobic nanoparticles is a key process for their application in the biological medicine fields. The aim of present study is to prepare the immunofluorescent probes by conjugation of hydrophilic surface-engineered quantum dots (QDs and monoclonal antibody for use of fluorescence labeled cells tracing. Methods  The bovine serum albumin (BSA with excellent water-solubility and biocompatibility was employed as the emulsifying agent, and used for surface modification of hydrophobic QDs under ultrasonication. The diameter, fluorescence spectrum and cytotoxicity of BSA-coated QDs (BSA-triP.QDs were analyzed. Then the BSA-coated QDs were conjugated with trastuzumab, which can be recognized and bound specifically to HER2. SKBR-3 breast cancer cells, with over-expression of HER-2, were labeled with hydrophilic QDstrastuzumab and imaged on a fluorescence planar imaging system. Results  The experimental results revealed that BSA as the emulsifying agent, combined with other polymers, can effectively phase transfer hydrophobic QDs. The BSA functionalized QDs exhibited excellent colloidal stability with fine hydrodynamic size distribution (about 70nm in a wide range of pH and ionic strengths values. Moreover, no significant cytotoxic effect was observed in SKBR-3 cells treated with BSA-coated QDs. After being coupled with trastuzumab, the hydrophilic QDs can be used as an immunofluorescence probe for HER2-positive breast cancer cell imaging. Conclusions  The advantages of BSA-coated QDs include straight forward synthesis, high colloidal stability, and promising immunofluorescence characteristic when coupled with specific antibody. These are therefore proved to be ideal nano systems for biomedical labeling, targeting, and imaging. DOI: 10.11855/j.issn.0577-7402.2016.05.04

  4. Hydrophobic treatment of concrete as protection against chloride penetration

    NARCIS (Netherlands)

    Vries, J. de; Polder, R.B.; Borsje, H.

    1996-01-01

    Hydrophobic treatment makes a concrete surface absorb less water and less chloride. Hydrophobic treatment was studied as a protection agninst chloride penetration from deicing salts. Test methods were designed. Nine hydrophobic products were tested, of which three complied to the requirements on fin

  5. 基于激光烧蚀和水热法的超疏水表面制备%Fabrication of Super-hydrophobicity Surfaces Based on Laser Ablation and Hydrothermal Process

    Institute of Scientific and Technical Information of China (English)

    王泽; 徐修玲; 叶霞; 戴国洪

    2012-01-01

    为了获得具有超疏水性的功能表面,以粗糙表面的石墨为基底,采用水热法使甲酰胺与锌片建立反应体系,产生具有超疏水性的氧化锌.采用扫描电子显微镜对其形貌进行表征,用接触角测量仪对其接触角进行测定.结果表明,在粗糙的石墨表面制备的氧化锌为球状结构,类似蒲公英,与水的接触角155°.球状结构的氧化锌可使粗糙的石墨表面产生超水性.%In order to manufacture special surfaces with super-hydrophobicity, taking formamide and Zn as reaction system in hydrothermal process, the super-hydrophobic zinc oxide on the rough graphite surface structured by nanosecond laser was formed. The topography was observed by SEM.and the contact angle was tested by OCA. The results show the topography of ZnO on the rough surface is globular and is similar to dandelion. The contact angle with water is 153°. The globular ZnO can make the rough graphite surface produce super-hydrophobicity.

  6. Hydrophobic nature and effects of culture conditions on biofilm formation by the cellulolytic actinomycete Thermobifida fusca

    Directory of Open Access Journals (Sweden)

    Almaris N. Alonso

    2015-09-01

    Full Text Available Thermobifida fusca produces a firmly attached biofilm on nutritive and non-nutritive surfaces, such as cellulose, glass, plastic, metal and Teflon®. The ability to bind to surfaces has been suggested as a competitive advantage for microbes in soil environments. Results of previous investigations indicated that a Gram-positive cellulolytic soil bacteria, Cellulomonas uda, a facultative aerobe, specifically adhered to nutritive surfaces forming biofilms, but cells did not colonize non-nutritive surfaces. Cell surface hydrophobicity has been implicated in the interactions between bacteria and the adhesion to surfaces. It was recently described that the cellulolytic actinomycete T. fusca cells hydrophobicity was measured and compared to the cellulolytic soil bacteria C. uda. Also, T. fusca biofilm formation on non-nutritive surface, such as polyvinyl chloride, was examined by testing various culture ingredients to determine a possible trigger mechanism for biofilm formation. Experimental results showed that partitioning of bacterial cells to various hydrocarbons was higher in T. fusca cells than in C. uda. The results of this study suggest that the attachment to multiple surfaces by T. fusca could depend on nutrient availability, pH, salt concentrations, and the higher hydrophobic nature of bacterial cells. Possibly, these characteristics may confer T. fusca a selective advantage to compete and survive among the many environments it thrives.

  7. Intrinsic Hydrophobicity of Rammed Earth

    Science.gov (United States)

    Holub, M.; Stone, C.; Balintova, M.; Grul, R.

    2015-11-01

    Rammed earth is well known for its vapour diffusion properties, its ability to regulate humidity within the built environment. Rammed earth is also an aesthetically iconic material such as marble or granite and therefore is preferably left exposed. However exposed rammed earth is often coated with silane/siloxane water repellents or the structure is modified architecturally (large roof overhangs) to accommodate for the hydrophilic nature of the material. This paper sets out to find out optimal hydrophobicity for rammed earth based on natural composite fibres and surface coating without adversely affecting the vapour diffusivity of the material. The material is not required to be waterproof, but should resist at least driving rain. In order to evaluate different approaches to increase hydrophobicity of rammed earth surface, peat fibres and four types of repellents were used.

  8. Surface chemical functionalities affect the behavior of human adipose-derived stem cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xujie [State key laboratory of new ceramics and fine processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Feng, Qingling, E-mail: biomater@mail.tsinghua.edu.cn [State key laboratory of new ceramics and fine processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Bachhuka, Akash [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia); Vasilev, Krasimir [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia); School of Advanced Manufacturing, University of South Australia, Mawson Lakes 5095 (Australia)

    2013-04-01

    This study examines the effect of surface chemical functionalities on the behavior of human adipose-derived stem cells (hASCs) in vitro. Plasma polymerized films rich in amine (-NH{sub 2}), carboxyl (-COOH) and methyl (-CH{sub 3}), were generated on hydroxyapatite (HAp) substrates. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy (XPS). The ability of different substrates to absorb proteins was evaluated. The results showed that substrates modified with hydrophilic functional group (-COOH and -NH{sub 2}) can absorb more proteins than these modified with more hydrophobic functional group (-CH{sub 3}). The behavior of human adipose-derived stem cells (hASCs) cultured on different substrates was investigated in vitro: cell counting kit-8 (CCK-8) analysis was used to characterize cell proliferation, scanning electronic microscopy (SEM) analysis was used to characterize cell morphology and alkaline phosphatase (ALP) activity analysis was used to account for differentiation. The results of this study demonstrated that the -NH{sub 2} modified surfaces encourage osteogenic differentiation; the -COOH modified surfaces promote cell adhesion and spreading and the -CH{sub 3} modified surfaces have the lowest ability to induce osteogenic differentiation. These findings confirmed that the surface chemical states of biomaterials can affect the behavior of hASCs in vitro.

  9. Quasi-solid-state dye-sensitized solar cells from hydrophobic poly(hydroxyethyl methacrylate/glycerin)/polyaniline gel electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qinghua [National Defence Key Discipline Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang 330063 (China); Tang, Qunwei, E-mail: tangqunwei@hotmail.com [Institute of Materials Science and Engineering, Ocean University of China, Shandong Province, Qingdao 266100 (China); Chen, Haiyan [Institute of Materials Science and Engineering, Ocean University of China, Shandong Province, Qingdao 266100 (China); Xu, Haitao; Qin, Yuancheng [National Defence Key Discipline Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang 330063 (China); He, Benlin, E-mail: blhe@ouc.edu.cn [Institute of Materials Science and Engineering, Ocean University of China, Shandong Province, Qingdao 266100 (China); Liu, Zhichao; Jin, Suyue; Chu, Lei [Institute of Materials Science and Engineering, Ocean University of China, Shandong Province, Qingdao 266100 (China)

    2014-04-01

    Hydrophobic poly(hydroxyethyl methacrylate/glycerin) [poly(HEMA/GR)] gel with a three-dimensional (3D) framework was successfully fabricated and employed to integrate with polyaniline (PANi). The resultant poly(HEMA/GR)/PANi gel electrolyte exhibited interconnective porous structure for holding I{sup −}/I{sub 3}{sup −}, giving a similar conduction mechanism and ionic conductivity to that of liquid system but a much enhanced retention of I{sup −}/I{sub 3}{sup −} redox couple. Fourier transform infrared spectroscopy, X-ray diffraction patterns, cyclic voltammograms as well as electrochemical impedance spectroscopy were employed to evaluate the molecular structure, crystallinity, and the electrochemical behaviors, showing that the combination of PANi with poly(HEMA/GR) caused a lower charge-transfer resistance and higher electrocatalytic activity for the I{sub 3}{sup −}/I{sup −} redox reaction in the gel electrolyte. An efficiency of 6.63% was recorded from the quasi-solid-state DSSC assembled with the poly(HEMA/GR)/PANi gel electrolyte at 100 mW cm{sup −2}. - Graphical abstract: A poly(HEMA/GR)/PANi gel electrolyte is synthesized through in situ polymerization of PANi in 3D framework of poly(HEMA/GR) hydrophobic hydrogel. The recorded ionic conductivity and electrochemical performances are significantly enhanced by integrating with PANi The resultant overall photo-to-electric conversion efficiency is 6.63%. The high ionic conductivity, along with good electrolyte retention ability, reasonable DSSC performance, low cost, simple and scalable synthesis procedure, and competitive cost, promises the electrolyte to find applications in quasi-solid-state DSSCs. - Highlights: • Poly(HEMA/GR) was employed to combine with PANi in the 3D framework. • The conductivity and electrochemical performances were enhanced. • The conversion efficiency of the quasi-solid-state DSSC was 6.63%.

  10. Quasi-solid-state dye-sensitized solar cells from hydrophobic poly(hydroxyethyl methacrylate/glycerin)/polyaniline gel electrolyte

    International Nuclear Information System (INIS)

    Hydrophobic poly(hydroxyethyl methacrylate/glycerin) [poly(HEMA/GR)] gel with a three-dimensional (3D) framework was successfully fabricated and employed to integrate with polyaniline (PANi). The resultant poly(HEMA/GR)/PANi gel electrolyte exhibited interconnective porous structure for holding I−/I3−, giving a similar conduction mechanism and ionic conductivity to that of liquid system but a much enhanced retention of I−/I3− redox couple. Fourier transform infrared spectroscopy, X-ray diffraction patterns, cyclic voltammograms as well as electrochemical impedance spectroscopy were employed to evaluate the molecular structure, crystallinity, and the electrochemical behaviors, showing that the combination of PANi with poly(HEMA/GR) caused a lower charge-transfer resistance and higher electrocatalytic activity for the I3−/I− redox reaction in the gel electrolyte. An efficiency of 6.63% was recorded from the quasi-solid-state DSSC assembled with the poly(HEMA/GR)/PANi gel electrolyte at 100 mW cm−2. - Graphical abstract: A poly(HEMA/GR)/PANi gel electrolyte is synthesized through in situ polymerization of PANi in 3D framework of poly(HEMA/GR) hydrophobic hydrogel. The recorded ionic conductivity and electrochemical performances are significantly enhanced by integrating with PANi The resultant overall photo-to-electric conversion efficiency is 6.63%. The high ionic conductivity, along with good electrolyte retention ability, reasonable DSSC performance, low cost, simple and scalable synthesis procedure, and competitive cost, promises the electrolyte to find applications in quasi-solid-state DSSCs. - Highlights: • Poly(HEMA/GR) was employed to combine with PANi in the 3D framework. • The conductivity and electrochemical performances were enhanced. • The conversion efficiency of the quasi-solid-state DSSC was 6.63%

  11. Surface cell immobilization within perfluoroalkoxy microchannels

    Energy Technology Data Exchange (ETDEWEB)

    Stojkovič, Gorazd; Krivec, Matic [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana (Slovenia); Vesel, Alenka [Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia); Marinšek, Marjan [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana (Slovenia); Žnidaršič-Plazl, Polona, E-mail: polona.znidarsic@fkkt.uni-lj.si [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana (Slovenia)

    2014-11-30

    Graphical abstract: - Highlights: • A very efficient approach for immobilization of cells into microreactors is presented. • It is applicable to various materials, including PFA and cyclic olefin (co)polymers. • It was used to immobilize different prokaryotic and eukaryotic microbes. • Cells were immobilized on the surface in high density and showed good stability. • Mechanisms of APTES interactions with target materials are proposed. - Abstract: Perfluoroalkoxy (PFA) is one of the most promising materials for the fabrication of cheap, solvent resistant and reusable microfluidic chips, which have been recently recognized as effective tools for biocatalytic process development. The application of biocatalysts significantly depends on efficient immobilization of enzymes or cells within the reactor enabling long-term biocatalyst use. Functionalization of PFA microchannels by 3-aminopropyltriethoxysilane (ATPES) and glutaraldehyde was used for rapid preparation of microbioreactors with surface-immobilized cells. X-ray photoelectron spectroscopy and scanning electron microscopy were used to accurately monitor individual treatment steps and to select conditions for cell immobilization. The optimized protocol for Saccharomyces cerevisiae immobilization on PFA microchannel walls comprised ethanol surface pretreatment, 4 h contacting with 10% APTES aqueous solution, 10 min treatment with 1% glutaraldehyde and 20 min contacting with cells in deionized water. The same protocol enabled also immobilization of Escherichia coli, Pseudomonas putida and Bacillus subtilis cells on PFA surface in high densities. Furthermore, the developed procedure has been proved to be very efficient also for surface immobilization of tested cells on other materials that are used for microreactor fabrication, including glass, polystyrene, poly (methyl methacrylate), polycarbonate, and two olefin-based polymers, namely Zeonor{sup ®} and Topas{sup ®}.

  12. Enthalpic and Entropic Contributions to Hydrophobicity

    Science.gov (United States)

    2016-01-01

    Hydrophobic hydration plays a key role in a vast variety of biological processes, ranging from the formation of cells to protein folding and ligand binding. Hydrophobicity scales simplify the complex process of hydration by assigning a value describing the averaged hydrophobic character to each amino acid. Previously published scales were not able to calculate the enthalpic and entropic contributions to the hydrophobicity directly. We present a new method, based on Molecular Dynamics simulations and Grid Inhomogeneous Solvation Theory, that calculates hydrophobicity from enthalpic and entropic contributions. Instead of deriving these quantities from the temperature dependence of the free energy of hydration or as residual of the free energy and the enthalpy, we directly obtain these values from the phase space occupied by water molecules. Additionally, our method is able to identify regions with specific enthalpic and entropic properties, allowing to identify so-called “unhappy water” molecules, which are characterized by weak enthalpic interactions and unfavorable entropic constraints. PMID:27442443

  13. The cell surface proteome of human mesenchymal stromal cells.

    Directory of Open Access Journals (Sweden)

    Christian Niehage

    Full Text Available BACKGROUND: Multipotent human mesenchymal stromal cells (hMSCs are considered as promising biological tools for regenerative medicine. Their antibody-based isolation relies on the identification of reliable cell surface markers. METHODOLOGY/PRINCIPAL FINDINGS: To obtain a comprehensive view of the cell surface proteome of bone marrow-derived hMSCs, we have developed an analytical pipeline relying on cell surface biotinylation of intact cells using cell impermeable, cleavable sulfo-NHS-SS-biotin to enrich the plasma membrane proteins and mass spectrometry for identification with extremely high confidence. Among the 888 proteins identified, we found ≈200 bona fide plasma membrane proteins including 33 cell adhesion molecules and 26 signaling receptors. In total 41 CD markers including 5 novel ones (CD97, CD112, CD239, CD276, and CD316 were identified. The CD markers are distributed homogenously within plastic-adherent hMSC populations and their expression is modulated during the process of adipogenesis or osteogenesis. Moreover, our in silico analysis revealed a significant difference between the cell surface proteome of hMSCs and that of human embryonic stem cells reported previously. CONCLUSIONS/SIGNIFICANCE: Collectively, our analytical methods not only provide a basis for further studies of mechanisms maintaining the multipotency of hMSCs within their niches and triggering their differentiation after signaling, but also a toolbox for a refined antibody-based identification of hMSC populations from different tissues and their isolation for therapeutic intervention.

  14. In vitro evaluation of tissue adhesives composed of hydrophobically modified gelatins and disuccinimidyl tartrate

    Directory of Open Access Journals (Sweden)

    Miyuki Matsuda

    2012-01-01

    Full Text Available The effect of the hydrophobic group content in gelatin on the bonding strength of novel tissue–penetrating tissue adhesives was evaluated. The hydrophobic groups introduced into gelatin were the saturated hexanoyl, palmitoyl, and stearoyl groups, and the unsaturated oleoyl group. A collagen casing was employed as an adherend to model soft tissue for the in vitro determination of bonding strength of tissue adhesives composed of various hydrophobically modified gelatins and disuccinimidyl tartrate. The adhesive composed of stearoyl-modified gelatin (7.4% stearoyl; 10Ste and disuccinimidyl tartrate showed the highest bonding strength. The bonding strength of the adhesives decreased as the degree of substitution of the hydrophobic groups increased. Cell culture experiments demonstrated that fluorescein isothiocyanate-labeled 10Ste was integrated onto the surface of smooth muscle cells and showed no cytotoxicity. These results suggest that 10Ste interacted with the hydrophobic domains of collagen casings, such as hydrophobic amino acid residues and cell membranes. Therefore, 10Ste–disuccinimidyl tartrate is a promising adhesive for use in aortic dissection.

  15. In-cell thermodynamics and a new role for protein surfaces.

    Science.gov (United States)

    Smith, Austin E; Zhou, Larry Z; Gorensek, Annelise H; Senske, Michael; Pielak, Gary J

    2016-02-16

    There is abundant, physiologically relevant knowledge about protein cores; they are hydrophobic, exquisitely well packed, and nearly all hydrogen bonds are satisfied. An equivalent understanding of protein surfaces has remained elusive because proteins are almost exclusively studied in vitro in simple aqueous solutions. Here, we establish the essential physiological roles played by protein surfaces by measuring the equilibrium thermodynamics and kinetics of protein folding in the complex environment of living Escherichia coli cells, and under physiologically relevant in vitro conditions. Fluorine NMR data on the 7-kDa globular N-terminal SH3 domain of Drosophila signal transduction protein drk (SH3) show that charge-charge interactions are fundamental to protein stability and folding kinetics in cells. Our results contradict predictions from accepted theories of macromolecular crowding and show that cosolutes commonly used to mimic the cellular interior do not yield physiologically relevant information. As such, we provide the foundation for a complete picture of protein chemistry in cells.

  16. Surface Characteristics and Adhesion Behavior of Escherichia coli O157:H7: Role of Extracellular Macromolecules

    Science.gov (United States)

    Surface macromolecule cleavage experiments were conducted on enterohaemorrhagic Escherichia coli O157:H7 cells to investigate the influence of these macromolecules on cell surface properties. Electrophoretic mobility, hydrophobicity, and titration experiments were carried out on proteinase K treate...

  17. Super-hydrophobic fluorine containing aerogels

    Science.gov (United States)

    Coronado, Paul R.; Poco, John F.; Hrubesh, Lawrence W.

    2007-05-01

    An aerogel material with surfaces containing fluorine atoms which exhibits exceptional hydrophobicity, or the ability to repel liquid water. Hydrophobic aerogels are efficient absorbers of solvents from water. Solvents miscible with water are separated from it because the solvents are more volatile than water and they enter the porous aerogel as a vapor across the liquid water/solid interface. Solvents that are immisicble with water are separated from it by selectively wetting the aerogel. The hydrophobic property is achieved by formulating the aerogel using fluorine containing molecules either directly by addition in the sol-gel process, or by treating a standard dried aerogel using the vapor of fluorine containing molecules.

  18. Novel hydrophobically associative polyacrylamide with tunable viscosity

    Institute of Scientific and Technical Information of China (English)

    Xu Feng Zhang; Wen Hui Wu

    2009-01-01

    Hydrophobically associative polyacrylamide (HAPAM) were prepared in aqueous solution by radical copolymerization of novel cationic surface-active monomer, dimethylhexadecyl(3-acrylamidopropyl)ammonium bromide (DMHAB), with acrylarnide (AM) in the presence of DMHAB/CTAB mixed micelles. The length of hydrophobic microblock (N_H) in HAPAM is controlled by the molar fraction of DMHAB in mixed micelles, which can be mediated by the ratio of CTAB to DMHAB. The results of steady-state fluorescence probe and viscometry experiments showed the ability of HAPAM association was determined by the length of the hydrophobic microblock. HAPAM with tunable association ability are promising materials for thickening agent.

  19. [The flotation characteristics of Bacillus cells and spores].

    Science.gov (United States)

    Stabnikova, E V; Gregirchak, N N; Taranenko, T O

    1991-01-01

    Variations in hydrophobicity of the surface of bacillary cells and their capacity to flotation in the process of batch cultivation have been studied. It is shown that hydrophobicity of the cell surface increases in the course of batch cultivation of Bacillus thuringiensis, B. licheniformis and B. megaterium. Hydrophobicity of spores of the mentioned cultures is considerably higher than that of the vegetative cells. The increase of hydrophobicity of bacillary cells positively correlated with their capacity to flotation. That is why the use of flotation for the age fractionation of bacillary cells is possible: spores are concentrated in the foam while vegetative cells remain in the culture liquid. PMID:1779906

  20. Femtosecond fabricated surfaces for cell biology

    Science.gov (United States)

    Day, Daniel; Gu, Min

    2010-08-01

    Microfabrication using femtosecond pulse lasers is enabling access to a range of structures, surfaces and materials that was not previously available for scientific and engineering applications. The ability to produce micrometre sized features directly in polymer and metal substrates is demonstrated with applications in cell biology. The size, shape and aspect ratio of the etched features can be precisely controlled through the manipulation of the fluence of the laser etching process with respect to the properties of the target material. Femtosecond laser etching of poly(methyl methacrylate) and aluminium substrates has enabled the production of micrometre resolution moulds that can be accurately replicated using soft lithography. The moulded surfaces are used in the imaging of T cells and demonstrate the improved ability to observe biological events over time periods greater than 10 h. These results indicate the great potential femtosecond pulse lasers may have in the future manufacturing of microstructured surfaces and devices.

  1. Display of fungal hydrophobin on the Pichia pastoris cell surface and its influence on Candida antarctica lipase B.

    Science.gov (United States)

    Wang, Pan; He, Jie; Sun, Yufei; Reynolds, Matthew; Zhang, Li; Han, Shuangyan; Liang, Shuli; Sui, Haixin; Lin, Ying

    2016-07-01

    To modify the Pichia pastoris cell surface, two classes of hydrophobins, SC3 from Schizophyllum commune and HFBI from Trichoderma reesei, were separately displayed on the cell wall. There was an observable increase in the hydrophobicity of recombinant strains. Candida antarctica lipase B (CALB) was then co-displayed on the modified cells, generating strains GS115/SC3-61/CALB-51 and GS115/HFBI-61/CALB-51. Interestingly, the hydrolytic and synthetic activities of strain GS115/HFBI-61/CALB-51 increased by 37 and 109 %, respectively, but decreased by 26 and 43 %, respectively, in strain GS115/SC3-61/CALB-51 compared with the hydrophobin-minus recombinant strain GS115/CALB-GCW51. The amount of glycerol by-product from the transesterification reaction adsorbed on the cell surface was significantly decreased following hydrophobin modification, removing the glycerol barrier and allowing substrates to access the active sites of lipases. Electron micrographs indicated that the cell wall structures of both recombinant strains appeared altered, including changes to the inner glucan layer and outer mannan layer. These results suggest that the display of hydrophobins can change the surface structure and hydrophobic properties of P. pastoris and affect the catalytic activities of CALB displayed on the surface of P. pastoris cells. PMID:26969039

  2. Engineering novel cell surface chemistry for selective tumor cell targeting

    Energy Technology Data Exchange (ETDEWEB)

    Bertozzi, C.R. [Univ. of California, Berkeley, CA (United States)]|[Lawrence Berkeley National Lab., CA (United States)

    1997-12-31

    A common feature of many different cancers is the high expression level of the two monosaccharides sialic acid and fucose within the context of cell-surface associated glycoconjugates. A correlation has been made between hypersialylation and/or hyperfucosylation and the highly metastatic phenotype. Thus, a targeting strategy based on sialic acid or fucose expression would be a powerful tool for the development of new cancer cell-selective therapies and diagnostic agents. We have discovered that ketone groups can be incorporated metabolically into cell-surface associated sialic acids. The ketone is can be covalently ligated with hydrazide functionalized proteins or small molecules under physiological conditions. Thus, we have discovered a mechanism to selectively target hydrazide conjugates to highly sialylated cells such as cancer cells. Applications of this technology to the generation of novel cancer cell-selective toxins and MRI contrast reagents will be discussed, in addition to progress towards the use of cell surface fucose residues as vehicles for ketone expression.

  3. Hydrophobic properties of Candida spp. under the influence of selected essential oils.

    Science.gov (United States)

    Rajkowska, Katarzyna; Kunicka-Styczyńska, Alina; Pęczek, Marlena

    2015-01-01

    Processes of colonization of biotic and abiotic surfaces and biofilm formation depend inter alia on hydrophobic properties of Candida spp. The aim of this research was to determine the effect of tea tree, thyme and clove essential oils on hydrophobic properties of environmental and clinical Candida isolates. The relative cell surface hydrophobicity of strains tested was high, and ranged from 68.7% to 91.2%, with the highest value for a C. rugosa food-borne strain. The effectiveness of essential oils was diversified and depended on the type of essential oil, concentration and yeast strain. Statistically significant decrease of hydrophobicity indexes was observed after application of tea tree oil for C. krusei, clove oil for C. albicans reference strain, and all essential oils tested for C. rugosa. Only in the case of C. famata food-borne strain and C. albicans clinical isolate, solely used essential oils did not affect their hydrophobic properties. To determine the interactions of essential oils, their mixtures (1 MIC:1 MIC, 1 MIC:2 MIC and 2 MIC:1 MIC) were applied. Generally, essential oils used in combinations influenced yeast's hydrophobic properties much more than applied separately. The essential oils' mixtures reduced hydrophobicity of Candida yeasts in the range of 8.2 to 45.1%, depending on combination and strain. The interaction indexes of essential oils used in combinations predominantly indicate their additive effect. The application of tea tree, thyme and clove essential oils, especially in combinations, decreases hydrophobicity of the tested Candida isolates with implications of a probable advantageous limitation of their ability to colonize the food production industry environment. PMID:26601324

  4. Drops on hydrophobic surfaces & vibrated fluid surfaces

    DEFF Research Database (Denmark)

    Wind-Willassen, Øistein

    in the literature. Furthermore, we quantify the energy associated with center of mass translation and internal fluid motion. The model predicts trajectories for tracer particles deposited inside the drop, and satisfactorily describes the sliding motion of steadily accelerating droplets. The model can be used...... the case where the fluid bath is also rotated around its center-line. The drop then experiences an effective Coriolis force, and previous studies have made a comparison between emerging unstable radii in this system and Landau levels for a charged particle in a magnetic field. The system is treated...

  5. Selective labelling of cell-surface proteins using CyDye DIGE Fluor minimal dyes.

    Science.gov (United States)

    Hagner-McWhirter, Asa; Winkvist, Maria; Bourin, Stephanie; Marouga, Rita

    2008-01-01

    Surface proteins are central to the cell's ability to react to its environment and to interact with neighboring cells. They are known to be inducers of almost all intracellular signaling. Moreover, they play an important role in environmental adaptation and drug treatment, and are often involved in disease pathogenesis and pathology (1). Protein-protein interactions are intrinsic to signaling pathways, and to gain more insight in these complex biological processes, sensitive and reliable methods are needed for studying cell surface proteins. Two-dimensional (2-D) electrophoresis is used extensively for detection of biomarkers and other targets in complex protein samples to study differential changes. Cell surface proteins, partly due to their low abundance (1 2% of cellular proteins), are difficult to detect in a 2-D gel without fractionation or some other type of enrichment. They are also often poorly represented in 2-D gels due to their hydrophobic nature and high molecular weight (2). In this study, we present a new protocol for intact cells using CyDye DIGE Fluor minimal dyes for specific labeling and detection of this important group of proteins. The results showed specific labeling of a large number of cell surface proteins with minimal labeling of intracellular proteins. This protocol is rapid, simple to use, and all three CyDye DIGE Fluor minimal dyes (Cy 2, Cy 3 and Cy 5) can be used to label cell-surface proteins. These features allow for multiplexing using the 2-D Fluorescence Difference Gel Electrophoresis (2-D DIGE) with Ettan DIGE technology and analysis of protein expression changes using DeCyder 2-D Differential Analysis Software. The level of cell-surface proteins was followed during serum starvation of CHO cells for various lengths of time (see Table 1). Small changes in abundance were detected with high accuracy, and results are supported by defined statistical methods.

  6. Adsorption behavior of human plasma fibronectin on hydrophobic and hydrophilic Ti6Al4V substrata and its influence on bacterial adhesion and detachment.

    Science.gov (United States)

    Vadillo-Rodríguez, Virginia; Pacha-Olivenza, Miguel A; Gónzalez-Martín, M Luisa; Bruque, José M; Gallardo-Moreno, Amparo M

    2013-05-01

    Biomaterial implant-associated infections, a common cause of medical devices' failure, are initiated by bacterial adhesion to an adsorbed protein layer on the implant material surface. In this study, the influence of protein surface orientation on bacterial adhesion has been examined using three clinically relevant bacterial strains known to express specific binding sites for human plasma fibronectin (HFN). HFN was allowed to adsorb on hydrophobic Ti6Al4V and physically modified hydrophilic Ti6Al4V substrata. Ellipsometric data reveal that the characteristics of the adsorbed protein layers primary depend on solid surface tension and the initial protein concentration in solution. In particular, HFN molecules adopt a more extended conformation on hydrophobic than hydrophilic surfaces, an effect that is more pronounced at low than at high initial protein concentrations. Moreover, the extended conformation of the protein molecules on these surfaces likely facilitates the exposure of specific sites for adhesion, resulting in the higher bacterial-cell attachment observed regardless of the strain considered. Contact angle measurements and the analysis of the number of remaining adhering cells after being subjected to external forces further suggest that both specific and nonspecific (hydrophobic) interactions play an important role on bacterial attachment. This study is the first one to evaluate the influence of surface hydrophobicity on protein adsorption and its subsequent effect on bacterial adhesion using a material whose hydrophobicity was not modified using chemical treatments that potentially led to surface properties changes other than hydrophobicity.

  7. Adsorption of Amorphous Silica Nanoparticles onto Hydroxyapatite Surfaces Differentially Alters Surfaces Properties and Adhesion of Human Osteoblast Cells.

    Science.gov (United States)

    Kalia, Priya; Brooks, Roger A; Kinrade, Stephen D; Morgan, David J; Brown, Andrew P; Rushton, Neil; Jugdaohsingh, Ravin

    2016-01-01

    hydrophobicity, respectively. AFM showed an increase in surface roughness of the 6 mM Si treated surface, which correlated well with an increase in number of vinculin plaques. These findings suggest that NSP of the right size (relative to charge) adsorb readily to the HA surface, changing the surface characteristics and, thus, improving osteoblast cell adhesion. This treatment provides a simple way to modify plasma-coated HA surfaces that may enable improved osseointegration of bone implants. PMID:26863624

  8. Characterization of physicochemical forces involved in adhesion of Listeria monocytogenes to surfaces.

    OpenAIRE

    Mafu, A A; Roy, D; GOULET, J.; Savoie, L

    1991-01-01

    This study investigated the physicochemical forces involving the adhesion of Listeria monocytogenes to surfaces. A total of 22 strains of L. monocytogenes were compared for relative surface hydrophobicity with the salt aggregation test. Cell surface charges and hydrophobicity of L. monocytogenes Scott A were also determined by electrophoretic mobility, hydrophobic-interaction chromatography, and contact angle measurements. Electrokinetic measurements indicated that the strain Scott A has a ne...

  9. Alteration in cell surface properties of Burkholderia spp. during surfactant-aided biodegradation of petroleum hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Sagarika; Mukherji, Suparna [Indian Institute of Technology Bombay, Mumbai (India). Centre for Environmental Science and Engineering (CESE)

    2012-04-15

    Chemical surfactants may impact microbial cell surface properties, i.e., cell surface hydrophobicity (CSH) and cell surface charge, and may thus affect the uptake of components from non-aqueous phase liquids (NAPLs). This work explored the impact of Triton X-100, Igepal CA 630, and Tween 80 (at twice the critical micelle concentration, CMC) on the cell surface characteristics of Burkholderia cultures, Burkholderia cepacia (ES1, aliphatic degrader) and Burkholderia multivorans (NG1, aromatic degrader), when grown on a six-component model NAPL. In the presence of Triton X-100, NAPL biodegradation was enhanced from 21% to 60% in B. cepacia and from 18% to 53% in B. multivorans. CSH based on water contact angle (50-52 ) was in the same range for both strains while zeta potential at neutral pH was -38 and -31 mV for B. cepacia and B. multivorans, respectively. In the presence of Triton X-100, their CSH increased to greater than 75 and the zeta potential decreased. This induced a change in the mode of uptake and initiated aliphatic hydrocarbon degradation by B. multivorans and increased the rate of aliphatic hydrocarbon degradation in B. cepacia. Igepal CA 630 and Tween 80 also altered the cell surface properties. For B. cepacia grown in the presence of Triton X-100 at two and five times its CMC, CSH increased significantly in the log growth phase. Growth in the presence of the chemical surfactants also affected the abundance of chemical functional groups on the cell surface. Cell surface changes had maximum impact on NAPL degradation in the presence of emulsifying surfactants, Triton X-100 and Igepal CA630.

  10. Adhesion of MRC-5 and A549 cells on poly(dimethylsiloxane) surface modified by proteins.

    Science.gov (United States)

    Zuchowska, Agnieszka; Kwiatkowski, Piotr; Jastrzebska, Elzbieta; Chudy, Michal; Dybko, Artur; Brzozka, Zbigniew

    2016-02-01

    PDMS is a very popular material used for fabrication of Lab-on-a-Chip systems for biological applications. Although PDMS has numerous advantages, it is a highly hydrophobic material, which inhibits adhesion and proliferation of the cells. PDMS surface modifications are used to enrich growth of the cells. However, due to the fact that each cell type has specific adhesion, it is necessary to optimize the parameters of these modifications. In this paper, we present an investigation of normal (MRC-5) and carcinoma (A549) human lung cell adhesion and proliferation on modified PDMS surfaces. We have chosen these cell types because often they are used as models for basic cancer research. To the best of our knowledge, this is the first presentation of this type of investigation. The combination of a gas-phase processing (oxygen plasma or ultraviolet irradiation) and wet chemical methods based on proteins' adsorption was used in our experiments. Different proteins such as poly-l-lysine, fibronectin, laminin, gelatin, and collagen were incubated with the activated PDMS samples. To compare with other works, here, we also examined how ratio of prepolymer to curing agent (5:1, 10:1, and 20:1) influences PDMS hydrophilicity during further modifications. The highest adhesion of the tested cells was observed for the usage of collagen, regardless of PDMS ratio. However, the MRC-5 cell line demonstrated better adhesion than A549 cells. This is probably due to the difference in their morphology and type (normal/cancer). PMID:26311334

  11. Developing a general interaction potential for hydrophobic and hydrophilic interactions.

    Science.gov (United States)

    Donaldson, Stephen H; Røyne, Anja; Kristiansen, Kai; Rapp, Michael V; Das, Saurabh; Gebbie, Matthew A; Lee, Dong Woog; Stock, Philipp; Valtiner, Markus; Israelachvili, Jacob

    2015-02-24

    We review direct force measurements on a broad class of hydrophobic and hydrophilic surfaces. These measurements have enabled the development of a general interaction potential per unit area, W(D) = -2γ(i)Hy exp(-D/D(H)) in terms of a nondimensional Hydra parameter, Hy, that applies to both hydrophobic and hydrophilic interactions between extended surfaces. This potential allows one to quantitatively account for additional attractions and repulsions not included in the well-known combination of electrostatic double layer and van der Waals theories, the so-called Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The interaction energy is exponentially decaying with decay length D(H) ≈ 0.3-2 nm for both hydrophobic and hydrophilic interactions, with the exact value of D(H) depending on the precise system and conditions. The pre-exponential factor depends on the interfacial tension, γ(i), of the interacting surfaces and Hy. For Hy > 0, the interaction potential describes interactions between partially hydrophobic surfaces, with the maximum hydrophobic interaction (i.e., two fully hydrophobic surfaces) corresponding to Hy = 1. Hydrophobic interactions between hydrophobic monolayer surfaces measured with the surface forces apparatus (SFA) are shown to be well described by the proposed interaction potential. The potential becomes repulsive for Hy < 0, corresponding to partially hydrophilic (hydrated) interfaces. Hydrated surfaces such as mica, silica, and lipid bilayers are discussed and reviewed in the context of the values of Hy appropriate for each system.

  12. Evaluation of biocompatible stabilised gelled soya bean oil nanoparticles as new hydrophobic reservoirs.

    Science.gov (United States)

    Boudier, Ariane; Kirilov, Plamen; Franceschi-Messant, Sophie; Belkhelfa, Haouaria; Hadioui, Laila; Roques, Christine; Perez, Emile; Rico-Lattes, Isabelle

    2010-01-01

    Based on the organogel concept, in which an oil is trapped in a network of low-molecular-mass organic gelator fibres creating a gel, a formulation of gelled soya bean oil nanoparticles was evaluated for its capacity to form biocompatible hydrophobic reservoirs. The aqueous dispersions of nanoparticles were prepared by hot emulsification (T° > Tgel) and cooling at room temperature in the presence of polyethyleneimine (PEI). The dispersions were stabilised by the electrostatic interactions between the positively charged amino groups of the PEI and the negatively charged carboxylates of the gelator fibres present at the surface of the particles. The aqueous dispersions were highly stable (several months) and the gelled particles were able to entrap a hydrophobic fluorescent model molecule (Nile red), allowing testing in cells. The gelled oil nanoparticles were found to be biocompatible with the tested cells (keratinocytes) and had the ability to become rapidly internalised. Thus, organogel-based nanoparticles are a promising hydrophobic drug delivery system.

  13. Ionic Liquid-Assisted Electropolymerization for Lithographical Perfluorocarbon Deposition and Hydrophobic Patterning.

    Science.gov (United States)

    Wu, Jhih-Guang; Lee, Cheng-Yang; Wu, Shao-Shuo; Luo, Shyh-Chyang

    2016-08-31

    We developed a novel approach for hydrophobic patterning: combining the photolithography technique with ionic-liquid (IL)-based electropolymerization to fabricate a hydrophobic pattern. Perfluoro-functionalized 3,4-ethylenedioxythiophene (EDOT-F) dispersed in ILs was directly electropolymerized on substrates, which were patterned in advance with positive photoresists. The positive photoresists did not dissolve in ionic liquids during the electropolymerization process, and the poly(EDOT-F) film created hydrophobic domains, which resulted in hydrophobic patterning. This approach provides desired patterns with a lateral resolution consistent with the mask for photolithography. Two kinds of modified indium-tin-oxide-coated glass (ITO-glass) substrates were used to demonstrate the feasibility of process for creating a hydrophobic pattern: ITO-glass substrates coated with nanostructured PEDOT, and the same substrates coated with Au nanoparticles. By confining water droplets on these two patterned substrates to form droplet arrays, we demonstrated two potential applications: multiple droplet-type electrochemical cells and surface-enhanced Raman scattering platforms. In addition, we also applied this approach to create hydrophobic patterning on ITO-coated polyethylene terephthalate (ITO-PET) substrates. The droplet arrays remained well-organized on the ITO-PET substrates even when the substrates were bent. Our work successfully introduced ILs into the photolithography process, implying great potential for these green solvents. PMID:27509480

  14. Dropwise Condensation on Hydrophobic Cylinders

    CERN Document Server

    Park, Kyoo-Chul; Hoang, Michelle; McManus, Brendan; Aizenberg, Joanna

    2016-01-01

    In this work, we studied the effect of the diameter of horizontal hydrophobic cylinders on droplet growth. We postulate that the concentration gradient created by natural convection around a horizontal circular cylinder is related to the droplet growth on the cylinder by condensation. We derive a simple scaling law of droplet growth and compare it with experimental results. The predicted negative exponent of drop diameter (d) as a function of cylinder diameter (D) at different time points is similar to the general trend of experimental data. Further, this effect of cylinder diameter on droplet growth is observed to be stronger than the supersaturation conditions created by different surface temperatures.

  15. CZTSSe thin film solar cells: Surface treatments

    Science.gov (United States)

    Joglekar, Chinmay Sunil

    Chalcopyrite semiconducting materials, specifically CZTS, are a promising alternative to traditional silicon solar cell technology. Because of the high absorption coefficient; films of the order of 1 micrometer thickness are sufficient for the fabrication of solar cells. Liquid based synthesis methods are advantageous because they are easily scalable using the roll to roll manufacturing techniques. Various treatments are explored in this study to enhance the performance of the selenized CZTS film based solar cells. Thiourea can be used as a sulfur source and can be used to tune band gap of CZTSSe. Bromine etching can be used to manipulate the thickness of sintered CZTSSe film. The etching treatment creates recombination centers which lead to poor device performance. Various after treatments were used to improve the performance of the devices. It was observed that the performance of the solar cell devices could not be improved by any of the after treatment steps. Other surface treatment processes are explored including KCN etching and gaseous H2S treatments. Hybrid solar cells which included use of CIGS nanoparticles at the interface between CZTSSe and CdS are also explored.

  16. Fabrication of hydrophobic/super-hydrophobic nanofilms on magnesium alloys by polymer plating

    Energy Technology Data Exchange (ETDEWEB)

    Kang Zhixin, E-mail: zxkang@scut.edu.cn; Lai Xiaoming; Sang Jing; Li Yuanyuan

    2011-11-01

    Hydrophobic/super-hydrophobic nanofilms with improved corrosion resistance were fabricated on the surfaces of Mg-Mn-Ce magnesium alloy by a surface modification technique, named as polymer plating, which has been developed to modify superficial characteristics of magnesium alloys with polymeric nanofilms through synthesized organic compounds of triazine dithiol containing functional groups. The nanofilms were prepared by the electrochemical and polymerization reactions during polymer plating analyzed from characteristics of Fourier transform infrared spectrophotometer, X-ray photoelectron spectroscopy and scanning electron microscopy. The fabricated nanofilms changed the surface wettability of blank magnesium alloy from hydrophilic to hydrophobic with contact angle 119.0 Degree-Sign of distilled water with lower surface free energy of 20.59 mJ/m{sup 2} and even super-hydrophobic with contact angle 158.3 Degree-Sign with lowest surface free energy of 4.68 mJ/m{sup 2} by different functional nanofilms on their surfaces. Alteration of wettability from hydrophilic to hydrophobic and super-hydrophobic resulted from their low surface free energy and surface morphology with micro- and nano-rough structures. The corrosion behaviors from potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) show that the super-hydrophobic nanofilm has higher corrosion resistance and stability in 0.1 mol/L NaCl solution and lower corrosion current density (I{sub corr}) with R{sub ct} increasing two orders of magnitude of 16,500 {Omega}{center_dot}cm{sup 2} compared to that obtained for blank of 485 {Omega}{center_dot}cm{sup 2}.

  17. Frequency Selective Surfaces with Nanoparticles Unit Cell

    Directory of Open Access Journals (Sweden)

    Nga Hung Poon

    2015-09-01

    Full Text Available The frequency selective surface (FSS is a periodic structure with filtering performance for optical and microwave signals. The general periodic arrays made with patterned metallic elements can act as an aperture or patch on a substrate. In this work, two kinds of materials were used to produce unit cells with various patterns. Gold nanoparticles of 25 nm diameter were used to form periodic monolayer arrays by a confined photocatalytic oxidation-based surface modification method. As the other material, silver gel was used to create multiple layers of silver. Due to the ultra-thin nature of the self-assembled gold nanoparticle monolayer, it is very easy to penetrate the FSS with terahertz radiation. However, the isolated silver islands made from silver gel form thicker multiple layers and contribute to much higher reflectance. This work demonstrated that multiple silver layers are more suitable than gold nanoparticles for use in the fabrication of FSS structures.

  18. Engineering interaction between bone marrow derived endothelial cells and electrospun surfaces for artificial vascular graft applications.

    Science.gov (United States)

    Ahmed, Furqan; Dutta, Naba K; Zannettino, Andrew; Vandyke, Kate; Choudhury, Namita Roy

    2014-04-14

    The aim of this investigation was to understand and engineer the interactions between endothelial cells and the electrospun (ES) polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) nanofiber surfaces and evaluate their potential for endothelialization. Elastomeric PVDF-HFP samples were electrospun to evaluate their potential use as small diameter artificial vascular graft scaffold (SDAVG) and compared with solvent cast (SC) PVDF-HFP films. We examined the consequences of fibrinogen adsorption onto the ES and SC samples for endothelialisation. Bone marrow derived endothelial cells (BMEC) of human origin were incubated with the test and control samples and their attachment, proliferation, and viability were examined. The nature of interaction of fibrinogen with SC and ES samples was investigated in detail using ELISA, XPS, and FTIR techniques. The pristine SC and ES PVDF-HFP samples displayed hydrophobic and ultrahydrophobic behavior and accordingly, exhibited minimal BMEC growth. Fibrinogen adsorbed SC samples did not significantly enhance endothelial cell binding or proliferation. In contrast, the fibrinogen adsorbed electrospun surfaces showed a clear ability to modulate endothelial cell behavior. This system also represents an ideal model system that enables us to understand the natural interaction between cells and their extracellular environment. The research reported shows potential of ES surfaces for artificial vascular graft applications. PMID:24564790

  19. Improving Anti-frosting Performance for Super-hydrophobic Nanocomposite Coatings

    Institute of Scientific and Technical Information of China (English)

    Hao WANG; Xiao Min WU; Li Ming TANG; Wan Tian DAI; Feng You JIN

    2006-01-01

    New super-hydrophobic nanocomposite coatings were formed from modified nano-sized CaCO3 particles and polyacrylate at weight ratio of 9/1-8/2. SEM and XPS analysis indicated that such hydrophobicity could be attributed to the surface nano-microstructure and the surface enrichment of fluorine atoms. As the surface hydrophobicity increased, longer time was required for formation the initial frost, which makes super-hydrophobic coatings suitable for anti-frosting purpose.

  20. Hydrophobic organic chemicals (HOCs) removal from biologically treated landfill leachate by powder-activated carbon (PAC), granular-activated carbon (GAC) and biomimetic fat cell (BFC).

    Science.gov (United States)

    Liyan, Song; Youcai, Zhao; Weimin, Sun; Ziyang, Lou

    2009-04-30

    Biological pretreatment efficiently remove organic matter from landfill leachate, but further removal of refractory hydrophobic organic chemicals (HOCs) is hard even with advanced treatment. In this work, three-stage-aged refuse bioreactor (ARB) efficiently removed chemical oxygen demand (COD) and biochemical oxygen demand (BOD) of fresh leachate produced in Shanghai laogang landfill, from 8603 to 451 mg L(-1) and 1368 to 30 mg L(-1), respectively. In downstream treatment, 3 g L(-1) powder-activated carbon (PAC), granular-activated carbon (GAC) and biomimetic fat cell (BFC) removed 89.2, 73.4 and 81.1% HOCs, but only 24.6, 19.1 and 8.9% COD, respectively. Through the specific HOCs accumulation characteristics of BFC, about 11.2% HOCs with low molecular weight (BFC. It was also found that the biologically treated leachate effluent exhibited a wide molecular weight distribution (34-514,646 Da). These constitutes are derived from both autochthonous and allochthonous matters as well as biological activities.

  1. Wettability influences cell behavior on superhydrophobic surfaces with different topographies

    NARCIS (Netherlands)

    Lourenco, B.N.; Marchioli, G.; Song, W; Reis, R.L.; Blitterswijk, van C.A.; Karperien, H.B.J.; Apeldoorn, van A.A.; Mano, J.F.

    2012-01-01

    Surface wettability and topography are recognized as critical factors influencing cell behavior on biomaterials. So far only few works have reported cell responses on surfaces exhibiting extreme wettability in combination with surface topography. The goal of this work is to study whether cell behavi

  2. Hydrophobic treatment of concrete

    NARCIS (Netherlands)

    Vries, J.de; Polder, R.B.

    1997-01-01

    As part of the maintenance policy of the dutch Ministry of Transport, Civil Engineering Division, hydrophobic treatment of concrete was considered as an additional protective measure against penetration of aggressive substances, for instance deicing salts in bridge decks. A set of tests was designed

  3. Hydrophobic treatment of concrete

    NARCIS (Netherlands)

    Vries, J. de; Polder, R.B.

    1996-01-01

    As part of the maintenance policy of the Dutch Ministry of Transport, Civil Engineering Division, hydrophobic treatment of concrete was considered as an additional protective measure against penetration of aggressive substances, for instance deicing salts in bridge decks. A set of tests was designed

  4. Hydrophobic, Porous Battery Boxes

    Science.gov (United States)

    Bragg, Bobby J.; Casey, John E., Jr.

    1995-01-01

    Boxes made of porous, hydrophobic polymers developed to contain aqueous potassium hydroxide electrolyte solutions of zinc/air batteries while allowing air to diffuse in as needed for operation. Used on other types of batteries for in-cabin use in which electrolytes aqueous and from which gases generated during operation must be vented without allowing electrolytes to leak out.

  5. Biosurfactant-enhanced bioremediation of hydrophobic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Cameotra, S.S.; Makkar, R.S. [Inst. of Microbial Technology, Chandigarh (India)

    2010-01-15

    Biosurfactants are surface-active compounds synthesized by a wide variety of microorganisms. They are molecules that have both hydrophobic and - philic domains and are capable of lowering the surface tension and the interfacial tension of the growth medium. Biosurfactants possess different chemical structures-lipopeptides, glycolipids, neutral lipids, and fatty acids. They are nontoxic biomolecules that are biodegradable. Biosurfactants also exhibit strong emulsification of hydrophobic compounds and form stable emulsions. Polycyclic aromatic hydrocarbons (PAHs), crude on sludge, and pesticides call be toxic, mutagenic, and carcinogenic compounds that pollute the environment. They are released into the environment as a result of oil spillage and by-products of coal treatment processes. The low water solubility of these compounds limits their availability to microorganisms, which is a potential problem for bioremediation of contaminated sites. Microbially produced surfactants enhance the bioavailability of these hydrophobic compounds for bioremediation. Therefore, biosurfactant-enhanced solubility of pollutants has potential hioremediation applications.

  6. Micelle Structure and Hydrophobic Hydration.

    Science.gov (United States)

    Long, Joshua A; Rankin, Blake M; Ben-Amotz, Dor

    2015-08-26

    Despite the ubiquity and utility of micelles self-assembled from aqueous surfactants, longstanding questions remain regarding their surface structure and interior hydration. Here we combine Raman spectroscopy with multivariate curve resolution (Raman-MCR) to probe the hydrophobic hydration of surfactants with various aliphatic chain lengths, and either anionic (carboxylate) or cationic (trimethylammonium) head groups, both below and above the critical micelle concentration. Our results reveal significant penetration of water into micelle interiors, well beyond the first few carbons adjacent to the headgroup. Moreover, the vibrational C-D frequency shifts of solubilized deuterated n-hexane confirm that it resides in a dry, oil-like environment (while the localization of solubilized benzene is sensitive to headgroup charge). Our findings imply that the hydrophobic core of a micelle is surrounded by a highly corrugated surface containing hydrated non-polar cavities whose depth increases with increasing surfactant chain length, thus bearing a greater resemblance to soluble proteins than previously recognized. PMID:26222042

  7. Heterogeneous Nucleation and Growth of Barium Sulfate at Organic–Water Interfaces: Interplay between Surface Hydrophobicity and Ba 2+ Adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Chong; Stack, Andrew G.; Koishi, Ayumi; Fernandez-Martinez, Alejandro; Lee, Sang Soo; Hu, Yandi

    2016-05-31

    Barium sulfate (BaSO4) is a common scale-forming mineral in natural and engineered systems, yet the rates and mechanisms of heterogeneous BaSO4 nucleation are not understood. To address these, we created idealized interfaces on which to study heterogeneous nucleation rates and mechanisms, which also are good models for organic–water interfaces: self-assembled thin films terminated with different functional groups (i.e., -COOH, -SH, or mixed -SH & COOH) coated on glass slides. BaSO4 precipitation on coatings from Barite-supersaturated solutions (saturation index, SI, = 1.1) was investigated using grazing-incidence small-angle X-ray scattering. After reaction for 1 h, a little amount of BaSO4 formed on hydrophilic bare and -COOH coated glasses. Meanwhile, BaSO4 nucleation was significantly promoted on hydrophobic -SH and mixed -SH & COOH coatings. This is because substrate hydrophobicity likely affected the interfacial energy and hence thermodynamic favorability of heterogeneous nucleation. The heterogeneous BaSO4 nucleation and growth kinetics were found to be affected by the amount of Ba2+ adsorption onto the substrate and incipient BaSO4 nuclei. The importance of Ba2+ adsorption was further corroborated by the finding that precipitation rate increased under [Ba2+]/[SO42–] concentration ratios >1. These observations suggest that thermodynamic favorability for nucleation is governed by substrate–water interfacial energy, while given favorable thermodynamics, the rate is governed by ion attachment to substrates and incipient nuclei.

  8. Modulation of hydrophobic interactions by proximally immobilized ions.

    Science.gov (United States)

    Ma, C Derek; Wang, Chenxuan; Acevedo-Vélez, Claribel; Gellman, Samuel H; Abbott, Nicholas L

    2015-01-15

    The structure of water near non-polar molecular fragments or surfaces mediates the hydrophobic interactions that underlie a broad range of interfacial, colloidal and biophysical phenomena. Substantial progress over the past decade has improved our understanding of hydrophobic interactions in simple model systems, but most biologically and technologically relevant structures contain non-polar domains in close proximity to polar and charged functional groups. Theories and simulations exploring such nanometre-scale chemical heterogeneity find it can have an important effect, but the influence of this heterogeneity on hydrophobic interactions has not been tested experimentally. Here we report chemical force microscopy measurements on alkyl-functionalized surfaces that reveal a dramatic change in the surfaces' hydrophobic interaction strengths on co-immobilization of amine or guanidine groups. Protonation of amine groups doubles the strength of hydrophobic interactions, and guanidinium groups eliminate measurable hydrophobic interactions in all pH ranges investigated. We see these divergent effects of proximally immobilized cations also in single-molecule measurements on conformationally stable β-peptides with non-polar subunits located one nanometre from either amine- or guanidine-bearing subunits. Our results demonstrate the importance of nanometre-scale chemical heterogeneity, with hydrophobicity not an intrinsic property of any given non-polar domain but strongly modulated by functional groups located as far away as one nanometre. The judicious placing of charged groups near hydrophobic domains thus provides a strategy for tuning hydrophobic driving forces to optimize molecular recognition or self-assembly processes.

  9. Chemistry and material science at the cell surface

    Directory of Open Access Journals (Sweden)

    Weian Zhao

    2010-04-01

    Full Text Available Cell surfaces are fertile ground for chemists and material scientists to manipulate or augment cell functions and phenotypes. This not only helps to answer basic biology questions but also has diagnostic and therapeutic applications. In this review, we summarize the most recent advances in the engineering of the cell surface. In particular, we focus on the potential applications of surface engineered cells for 1 targeting cells to desirable sites in cell therapy, 2 programming assembly of cells for tissue engineering, 3 bioimaging and sensing, and ultimately 4 manipulating cell biology.

  10. Cell adhesive and antifouling polyvinyl chloride surfaces via wet chemical modification.

    Science.gov (United States)

    Gabriel, Matthias; Strand, Dennis; Vahl, Christian-Friedrich

    2012-09-01

    Polyvinyl chloride (PVC) is one of the most frequently used polymers for the manufacturing of medical devices. Limitations for its usage are based upon unfavorable surface properties of the polymer including its hydrophobicity and lack of functionalities in order to increase its versatility. To address this issue, wet chemical modification of PVC was performed through surface amination using the bifunctional compound ethylene diamine. The reaction was conducted in order to achieve maximum surface amination while leaving the bulk material unaffected. The initial activation step was characterized by means of various methods including contact angle measurements, colorimetric amine quantification, infrared spectroscopy, and gel permeation chromatography. Depth profiles were obtained by a confocal microscopic method using fluorescence labeling. Exclusive surface modification was thus confirmed. To demonstrate biological applications of the presented technique, two examples were chosen: The covalent immobilization of the cell adhesive Asp-Gly-Asp-Ser-peptide (RGD) onto PVC samples yielded a surface that strongly supported cellular adhesion and proliferation of fibroblasts. In contrast, the decoration of PVC with the hydrophilic polymer polyethylene glycol prevented cellular adhesion to a large extent. The impact of these modifications was demonstrated by cell culture experiments.

  11. Hydrophobic interactions and chemical reactivity

    NARCIS (Netherlands)

    Otto, Sijbren; Engberts, Jan B.F.N.

    2003-01-01

    This perspective describes how kinetic studies of organic reactions can be used to increase our understanding of hydrophobic interactions. In turn, our understanding of hydrophobic interactions can be used as a tool to influence chemical reactions.

  12. Hydrophobic compounds reshape membrane domains.

    Directory of Open Access Journals (Sweden)

    Jonathan Barnoud

    2014-10-01

    Full Text Available Cell membranes have a complex lateral organization featuring domains with distinct composition, also known as rafts, which play an essential role in cellular processes such as signal transduction and protein trafficking. In vivo, perturbations of membrane domains (e.g., by drugs or lipophilic compounds have major effects on the activity of raft-associated proteins and on signaling pathways, but they are difficult to characterize because of the small size of the domains, typically below optical resolution. Model membranes, instead, can show macroscopic phase separation between liquid-ordered and liquid-disordered domains, and they are often used to investigate the driving forces of membrane lateral organization. Studies in model membranes have shown that some lipophilic compounds perturb membrane domains, but it is not clear which chemical and physical properties determine domain perturbation. The mechanisms of domain stabilization and destabilization are also unknown. Here we describe the effect of six simple hydrophobic compounds on the lateral organization of phase-separated model membranes consisting of saturated and unsaturated phospholipids and cholesterol. Using molecular simulations, we identify two groups of molecules with distinct behavior: aliphatic compounds promote lipid mixing by distributing at the interface between liquid-ordered and liquid-disordered domains; aromatic compounds, instead, stabilize phase separation by partitioning into liquid-disordered domains and excluding cholesterol from the disordered domains. We predict that relatively small concentrations of hydrophobic species can have a broad impact on domain stability in model systems, which suggests possible mechanisms of action for hydrophobic compounds in vivo.

  13. Hydrophobic sugar holograms

    Science.gov (United States)

    Mejias-Brizuela, N. Y.; Olivares-Pérez, A.; Páez-Trujillo, G.; Hernández-Garay, M. P.; Fontanilla-Urdaneta, R.; Fuentes-Tapia, I.

    2008-02-01

    The sugar matrix is used to record of phase holograms; it was modified with the purpose of obtaining a hydrophobic material to improve the stability of the registered image and to stimulate the photosensitivity of the sugar. The new material is formed by a sugar, pectin and vanillin dissolution. The diffraction efficiency parameter increases in comparison with only the sugar matrix, obtaining already of 10%.

  14. Hydrophobically modified polyelectrolytes synthesis, properties and interactions with surfactants.

    NARCIS (Netherlands)

    Nieuwkerk, A.C.

    1998-01-01

    Hydrophobically modified polyelectrolytes can form micelle-like aggregates, so-called microdomains, in aqueous solution. The hydrophobic side chains constitute the apolar inner part of these microdomains and the hydrophilic groups on the polyelectrolyte backbone are at the surface of the microdomain

  15. Interaction of O-acylated chitosans with biomembrane models: probing the effects from hydrophobic interactions and hydrogen bonding.

    Science.gov (United States)

    Pavinatto, Adriana; Souza, Adriano L; Delezuk, Jorge A M; Pavinatto, Felippe J; Campana-Filho, Sérgio P; Oliveira, Osvaldo N

    2014-02-01

    One of the major challenges in establishing the mechanisms responsible for the chitosan action in biomedical applications lies in the determination of the molecular-level interactions with the cell membrane. In this study, we probed hydrophobic interactions and H-bonding in experiments with O,O'-diacetylchitosan (DACT) and O,O'-dipropionylchitosan (DPPCT) incorporated into monolayers of distinct phospholipids, the zwitterionic dipalmitoyl phosphatidyl choline (DPPC), and the negatively charged dipalmitoyl phosphatidyl glycerol (DPPG) and dimyristoyl phosphatidic acid (DMPA). The importance of hydrophobic interactions was confirmed with the larger effects observed for DACT and DPPCT than for parent chitosan (Chi), particularly for the more hydrophobic DPPCT. Such larger effects were noted in surface pressure isotherms and elasticity of the monolayers. Since H-bonding is hampered for the chitosan derivatives, which have part of their hydroxyl groups shielded by O-acylation, these effects indicate that H-bonding does not play an important role in the chitosan-membrane interactions. Using polarization-modulated infrared reflection absorption (PM-IRRAS) spectroscopy, we found that the chitosan derivatives were incorporated into the hydrophobic chain of the phospholipids, even at high surface pressures comparable to those in a real cell membrane. Taken together, these results indicate that the chitosan derivatives containing hydrophobic moieties would probably be more efficient than parent chitosan as antimicrobial agents, where interaction with the cell membrane is crucial.

  16. Is there an optimal topographical surface in nano-scale affecting protein adsorption and cell behaviors? Part II

    Energy Technology Data Exchange (ETDEWEB)

    Wang Huajie, E-mail: wanghuajie972001@163.com; Sun Yuanyuan; Cao Ying, E-mail: caoying1130@sina.com; Wang Kui; Yang Lin [Henan Normal University, College of Chemistry and Environmental Science (China); Zhang Yidong; Zheng Zhi [Xuchang University, Institute of Surface Micro and Nano Materials (China)

    2012-05-15

    Although nano-structured surfaces exhibit superior biological activities to the smooth or micro-structured surfaces, whether there is an optimal topographical surface in nano-scale affecting protein adsorption and cell behaviors is still controversial. In this study, porous aluminum oxide membranes with different pore sizes ranging from 25 to 120 nm were prepared by the anodic oxidation technique. The surface morphology, topography and wettability were analyzed by scanning electron microscope, atomic force microscope and water contact angle measurement, respectively. The results indicated that the synergistic action of the nano-topography structure and hydrophilic/hydrophobic properties resulted in a highest protein adsorption on the aluminum oxide membrane with 80 nm pore size. Additionally, the morphological, metabolic and cell counting methods showed that cells had different sensitivity to porous aluminum oxide membranes with different surface features. Furthermore, this sensitivity was cell type dependent. The optimal pore size of aluminum oxide membranes for cell growth was 80 nm for PC12 cells and 50 nm for NIH 3T3 cells.

  17. Hydrophobic Surfaces of Spacecraft Components Enhance the Aggregation of Microorganisms and May Lead to Higher Survival Rates of Bacteria on Mars Landers

    Science.gov (United States)

    Schuerger, Andrew C.; Kern, Roger G.

    2004-01-01

    In order to minimize the forward contamination of Mars, spacecraft are assembled under cleanroom conditions that require several procedures to clean and sterilize components. Surface characteristics of spacecraft materials may contribute to microbial survival on the surface of Mars by protecting spores from sterilizing agents, including UV irradiation. The primary objective of this study was to evaluate the effects of surface characteristics of several spacecraft materials on the survival of Bacillus subtilis spores under simulated Martian conditions.

  18. Drag reduction on hydrophobic transverse gro oved surface by underwater gas formed naturally%基于微空泡效应的疏水性展向微沟槽表面水下减阻研究

    Institute of Scientific and Technical Information of China (English)

    王宝; 汪家道; 陈大融

    2014-01-01

    超疏水表面在水下的减阻效果随着来流冲刷时间的增加会逐渐减小甚至会出现粗糙增阻的现象,而这种现象的本质在于超疏水表面裂隙中驻留的气相结构在来流的作用下会不断地从表面脱离。针对超疏水表面的裂隙中驻留的气相结构在水下不稳定的情况。本文通过对表面微结构的设计,利用疏水性展向微沟槽结构使驻留在沟槽内部的气相结构被相邻沟槽间的脊状结构挡住,从而不能轻易的被水流冲刷掉。实验结果表明该表面不仅能使气相结构在表面微结构内稳定驻留,而且基于稳定驻留在表面结构内的气相结构,在来流作用下会有新的气相结构生成。虽然表面上不稳定的气相结构会随流速的增加而加剧地脱离表面,但是可再生的气相结构能够补充由于冲刷从表面脱离的气体。最终在固/液界面间构建相对稳定的气模。通过粒子图像测速系统(PIV)对近壁面流场进行分析,可得到大于15%的速度滑移量。%Low fluid friction is difficult to obtain on super-hydrophobic surfaces for a large flow velocity, because the entrapped gas within the surface is weakened substantially. Once the gas removed, the friction of the fluid increases markedly due to its own surface roughness. In this study, a hydrophobic transverse microgrooved surface is designed to sustain the air pockets in the valleys for a long time. Direct optical measurements are conducted to observe the entrapped gas when water flows past the surface in the perpendicular direction of grating patterns. More importantly, this hydrophobic transverse micro-grooved surface has been determined to have the capability of automatic formation of gas. Some of the gas is continually carried away from the surface and new gas is continually generated to substitute the lost gas. And the stable slippages at the surface are achieved corresponding to the relative stable gas on this

  19. In Situ Confocal Raman Microscopy of Hydrated Early Stages of Bacterial Biofilm Formation on Various Surfaces in a Flow Cell.

    Science.gov (United States)

    Smith-Palmer, Truis; Lin, Sicheng; Oguejiofor, Ikenna; Leng, Tianyang; Pustam, Amanda; Yang, Jin; Graham, Lori L; Wyeth, Russell C; Bishop, Cory D; DeMont, M Edwin; Pink, David

    2016-02-01

    Bacterial biofilms are precursors to biofouling by other microorganisms. Understanding their initiation may allow us to design better ways to inhibit them, and thus to inhibit subsequent biofouling. In this study, the ability of confocal Raman microscopy to follow the initiation of biofouling by a marine bacterium, Pseudoalteromonas sp. NCIMB 2021 (NCIMB 2021), in a flow cell, using optical and confocal Raman microscopy, was investigated. The base of the flow cell comprised a cover glass. The cell was inoculated and the bacteria attached to, and grew on, the cover glass. Bright field images and Raman spectra were collected directly from the hydrated biofilms over several days. Although macroscopically the laser had no effect on the biofilm, within the first 24 h cells migrated away from the position of the laser beam. In the absence of flow, a buildup of extracellular substances occurred at the base of the biofilm. When different coatings were applied to cover glasses before they were assembled into the flow cells, the growth rate, structure, and composition of the resulting biofilm was affected. In particular, the ratio of Resonance Raman peaks from cytochrome c (CC) in the extracellular polymeric substances, to the Raman phenylalanine (Phe) peak from protein in the bacteria, depended on both the nature of the surface and the age of the biofilm. The ratios were highest for 24 h colonies on a hydrophobic surface. Absorption of a surfactant with an ethyleneoxy chain into the hydrophobic coating created a surface similar to that given with a simple PEG coating, where bacteria grew in colonies away from the surface rather than along the surface, and CC:Phe ratios were initially low but increased at least fivefold in the first 48 h.

  20. Surface cell differentiation controls tissue surface tension and tissue positioning during zebrafish gastrulation

    Science.gov (United States)

    Krens, S. F. G.

    2011-03-01

    Differences in tissue surface tension (TST) between different tissue types are thought to guide tissue organization and cell sorting in development. Measurements of TST have been useful to predict the outcome of in vitro cell sorting and envelopment experiments. However, the outcome of cell sorting experiments in vitro often substantially differs from tissue positioning in vivo, raising questions as to the actual contribution of TST to tissue positioning within the developing embryo. Here, we show that surface tension of germ layer tissues during zebrafish gastrulation critically relies on the differentiation of their surface cells. We also show that surface differentiation of the different germ layer tissues varies and is considerably different between the situation in vitro and in vivo, explaining the apparent dissimilar outcome of cell segregation between these two situations. To analyze germ layer TST as a function of surface cell differentiation, we interfere with surface cell properties of germ layer aggregates by misexpressing genes involved in surface cell differentiation specifically within surface cells using the GAL4-UAS system, and measure tissue surface tension using both parallel plate compression and micropipette aspiration techniques. Our data provides evidence in favor of a critical function of surface cell differentiation in modulating TST and subsequently tissue positioning within the developing embryo.