WorldWideScience

Sample records for cell somatic electromotility

  1. Effects of salicylate on shape, electromotility and membrane characteristics of isolated outer hair cells from guinea pig cochlea.

    Science.gov (United States)

    Shehata, W E; Brownell, W E; Dieler, R

    1991-01-01

    A reversible tinnitus and hearing loss have long been known to result from large doses of salicylate. Cochlear electrophysiology and otoacoustic emission studies suggest that the drug may interfere with outer hair cell electromotility. Exposure of isolated outer hair cells to sodium salicylate concentrations ranging from 0.05 to 10 mM reveals a dose dependent, reversible loss of turgidity and dimunition of electromotility. There was also a change in membrane conductance with salicylate superfusion that occurred later in time from the onset of shape and electromotility changes. There was no evidence of dose dependence for the change in membrane conductance, nor was the change reversible. The changes in shape and electromotility that we observe in vitro may impair cochlear partition movements in vivo and could account, at least in part, for the salicylate-induced hearing loss and effects on otoacoustic emissions.

  2. Frequency response for electromotility of isolated outer hair cells of the guinea pig

    NARCIS (Netherlands)

    Wit, HP; vanDijk, P; Segenhout, HM

    1996-01-01

    Frequency and impulse responses were determined for isolated guinea pig outer hair cells by electrically stimulating the cells between two wire electrodes with white noise. Cells were attached to the bottom of a small culture dish at one end while the other end was freely moving. Results have the ch

  3. Monitoring Milk Somatic Cell Counts

    Directory of Open Access Journals (Sweden)

    Gheorghe Şteţca

    2014-11-01

    Full Text Available The presence of somatic cells in milk is a widely disputed issue in milk production sector. The somatic cell counts in raw milk are a marker for the specific cow diseases such as mastitis or swollen udder. The high level of somatic cells causes physical and chemical changes to milk composition and nutritional value, and as well to milk products. Also, the mastitic milk is not proper for human consumption due to its contribution to spreading of certain diseases and food poisoning. According to these effects, EU Regulations established the maximum threshold of admitted somatic cells in raw milk to 400000 cells / mL starting with 2014. The purpose of this study was carried out in order to examine the raw milk samples provided from small farms, industrial type farms and milk processing units. There are several ways to count somatic cells in milk but the reference accepted method is the microscopic method described by the SR EN ISO 13366-1/2008. Generally samples registered values in accordance with the admissible limit. By periodical monitoring of the somatic cell count, certain technological process issues are being avoided and consumer’s health ensured.

  4. Bovine somatic cell nuclear transfer.

    Science.gov (United States)

    Ross, Pablo J; Cibelli, Jose B

    2010-01-01

    Somatic cell nuclear transfer (SCNT) is a technique by which the nucleus of a differentiated cell is introduced into an oocyte from which its genetic material has been removed by a process called enucleation. In mammals, the reconstructed embryo is artificially induced to initiate embryonic development (activation). The oocyte turns the somatic cell nucleus into an embryonic nucleus. This process is called nuclear reprogramming and involves an important change of cell fate, by which the somatic cell nucleus becomes capable of generating all the cell types required for the formation of a new individual, including extraembryonic tissues. Therefore, after transfer of a cloned embryo to a surrogate mother, an offspring genetically identical to the animal from which the somatic cells where isolated, is born. Cloning by nuclear transfer has potential applications in agriculture and biomedicine, but is limited by low efficiency. Cattle were the second mammalian species to be cloned after Dolly the sheep, and it is probably the most widely used species for SCNT experiments. This is, in part due to the high availability of bovine oocytes and the relatively higher efficiency levels usually obtained in cattle. Given the wide utilization of this species for cloning, several alternatives to this basic protocol can be found in the literature. Here we describe a basic protocol for bovine SCNT currently being used in our laboratory, which is amenable for the use of the nuclear transplantation technique for research or commercial purposes.

  5. Embryonic stem cell-somatic cell fusion and postfusion enucleation.

    Science.gov (United States)

    Sumer, Huseyin; Verma, Paul J

    2015-01-01

    Embryonic stem (ES) cells are able to reprogram somatic cells following cell fusion. The resulting cell hybrids have been shown to have similar properties to pluripotent cells. It has also been shown that transcriptional changes can occur in a heterokaryon, without nuclear hybridization. However it is unclear whether these changes can be sustained following removal of the dominant ES nucleus. In this chapter, methods are described for the cell fusion of mouse tetraploid ES cells with somatic cells and enrichment of the resulting heterokaryons. We next describe the conditions for the differential removal of the ES cell nucleus, allowing for the recovery of somatic cells.

  6. Nonchromosomal cytogenetic analysis of mammal somatic cells

    Directory of Open Access Journals (Sweden)

    Kovalova O. А.

    2013-01-01

    Full Text Available The mutational events that take place in mammalian somatic cells influenced with different endogenous and exogenous factors are presented in this review. The nonchromosomal method of research allows taking into account the complex cell characteristics without time-consuming analysis of the chromosomes as such. As a result, the information can be obtained about the mitotic (phases of mitosis, the number of nuclei per cell, micronuclei, pathology of mitosis and vital (mitotic index, apoptosis cell statuses, as well as about the state of chromosomal integrity (the presence of nucleoplasmic bridges, nucleus protrusions, chromosome fragmentation, micronuclei. Depending on the material studied (erythrocytes and lymphocytes of peripheral blood, buccal cells, permanent cell lines etc., a complex of cytogenetic characteristics can be selected for each case which is the most informative for determination of the mutational spectra in mammalian somatic cells.

  7. China Succeeded in Somatic Cell Cloning

    Institute of Scientific and Technical Information of China (English)

    Song Jianlan

    2002-01-01

    @@ Chinese scientists have succeeded in cloning a colony of cattle from fully differentiated somatic cells. The news was announced jointly by the Chinese Academy of Sciences (CAS), National Natural Science Foundation of China (NSFC) and the government of Shandong Province at a press conference held on March 7, 2002.

  8. [Reprogramming of somatic cells. Problems and solutions].

    Science.gov (United States)

    Schneider, T A; Fishman, V S; Liskovykh, M A; Ponamartsev, S V; Serov, O L; Tomilin, A N; Alenina, N

    2014-01-01

    An adult mammal is composed of more than 200 different types of specialized somatic cells whose differentiated state remains stable over the life of the organism. For a long time it was believed that the differentiation process is irreversible, and the transition between the two types of specialized cells is impossible. The possibility of direct conversion of one differentiated cell type to another was first shown in the 80s of the last century in experiments on the conversion of fibroblasts into myoblasts by ectopic expression of the transcription factor MyoD. Surprisingly, this technology has remained unclaimed in cell biology for a long time. Interest in it revived after 200 thanks to the research of Novel Prize winner Shinya Yamanaka who has shown that a small set of transcription factors (Oct4, Sox2, Klf4 and c-Myc) is capable of restoring pluripotency in somatic cells which they lost in the process of differentiation. In 2010, using a similar strategy and the tissue-specific transcription factors Vierbuchen and coauthors showed the possibility of direct conversion of fibroblasts into neurons, i. e. the possibility of transdifferentiation of one type of somatic cells in the other. The works of these authoras were a breakthrough in the field of cell biology and gave a powerful impulse to the development of cell technologies for the needs of regenerative medicine. The present review discusses the main historical discoveries that preceded this work, evaluates the status of the problem and the progress in the development of methods for reprogramming at the moment, describes the main approaches to solving the problems of reprogramming of somatic cells into neuronal, and briefly discusses the prospect of application of reprogramming and transdifferentiation of cells for such important application areas as regenerative medicine, cell replacement therapy and drug screening.

  9. Dogs cloned from adult somatic cells.

    Science.gov (United States)

    Lee, Byeong Chun; Kim, Min Kyu; Jang, Goo; Oh, Hyun Ju; Yuda, Fibrianto; Kim, Hye Jin; Hossein, M Shamim; Shamim, M Hossein; Kim, Jung Ju; Kang, Sung Keun; Schatten, Gerald; Hwang, Woo Suk

    2005-08-04

    Several mammals--including sheep, mice, cows, goats, pigs, rabbits, cats, a mule, a horse and a litter of three rats--have been cloned by transfer of a nucleus from a somatic cell into an egg cell (oocyte) that has had its nucleus removed. This technology has not so far been successful in dogs because of the difficulty of maturing canine oocytes in vitro. Here we describe the cloning of two Afghan hounds by nuclear transfer from adult skin cells into oocytes that had matured in vivo. Together with detailed sequence information generated by the canine-genome project, the ability to clone dogs by somatic-cell nuclear transfer should help to determine genetic and environmental contributions to the diverse biological and behavioural traits associated with the many different canine breeds.

  10. Somatic Cell Nuclear Transfer in the Mouse

    Science.gov (United States)

    Kishigami, Satoshi; Wakayama, Teruhiko

    Somatic cell nuclear transfer (SCNT) has become a unique and powerful tool for epigenetic reprogramming research and gene manipulation in animals since “Dolly,” the first animal cloned from an adult cell was reported in 1997. Although the success rates of somatic cloning have been inefficient and the mechanism of reprogramming is still largely unknown, this technique has been proven to work in more than 10 mammalian species. Among them, the mouse provides the best model for both basic and applied research of somatic cloning because of its abounding genetic resources, rapid sexual maturity and propagation, minimal requirements for housing, etc. This chapter describes a basic protocol for mouse cloning using cumulus cells, the most popular cell type for NT, in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. In particular, we focus on a new, more efficient mouse cloning protocol using trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, which increases both in vitro and in vivo developmental rates from twofold to fivefold. This new method including TSA will be helpful to establish mouse cloning in many laboratories.

  11. Hemoglobins, programmed cell death and somatic embryogenesis.

    Science.gov (United States)

    Hill, Robert D; Huang, Shuanglong; Stasolla, Claudio

    2013-10-01

    Programmed cell death (PCD) is a universal process in all multicellular organisms. It is a critical component in a diverse number of processes ranging from growth and differentiation to response to stress. Somatic embryogenesis is one such process where PCD is significantly involved. Nitric oxide is increasingly being recognized as playing a significant role in regulating PCD in both mammalian and plant systems. Plant hemoglobins scavenge NO, and evidence is accumulating that events that modify NO levels in plants also affect hemoglobin expression. Here, we review the process of PCD, describing the involvement of NO and plant hemoglobins in the process. NO is an effector of cell death in both plants and vertebrates, triggering the cascade of events leading to targeted cell death that is a part of an organism's response to stress or to tissue differentiation and development. Expression of specific hemoglobins can alter this response in plants by scavenging the NO, thus, interrupting the death process. Somatic embryogenesis is used as a model system to demonstrate how cell-specific expression of different classes of hemoglobins can alter the embryogenic process, affecting hormone synthesis, cell metabolite levels and genes associated with PCD and embryogenic competence. We propose that plant hemoglobins influence somatic embryogenesis and PCD through cell-specific expression of a distinct plant hemoglobin. It is based on the premise that both embryogenic competence and PCD are strongly influenced by cellular NO levels. Increases in cellular NO levels result in elevated Zn(2+) and reactive-oxygen species associated with PCD, but they also result in decreased expression of MYC2, a transcription factor that is a negative effector of indoleacetic acid synthesis, a hormone that positively influences embryogenic competence. Cell-specific hemoglobin expression reduces NO levels as a result of NO scavenging, resulting in cell survival.

  12. Human embryonic stem cells derived by somatic cell nuclear transfer.

    Science.gov (United States)

    Tachibana, Masahito; Amato, Paula; Sparman, Michelle; Gutierrez, Nuria Marti; Tippner-Hedges, Rebecca; Ma, Hong; Kang, Eunju; Fulati, Alimujiang; Lee, Hyo-Sang; Sritanaudomchai, Hathaitip; Masterson, Keith; Larson, Janine; Eaton, Deborah; Sadler-Fredd, Karen; Battaglia, David; Lee, David; Wu, Diana; Jensen, Jeffrey; Patton, Phillip; Gokhale, Sumita; Stouffer, Richard L; Wolf, Don; Mitalipov, Shoukhrat

    2013-06-06

    Reprogramming somatic cells into pluripotent embryonic stem cells (ESCs) by somatic cell nuclear transfer (SCNT) has been envisioned as an approach for generating patient-matched nuclear transfer (NT)-ESCs for studies of disease mechanisms and for developing specific therapies. Past attempts to produce human NT-ESCs have failed secondary to early embryonic arrest of SCNT embryos. Here, we identified premature exit from meiosis in human oocytes and suboptimal activation as key factors that are responsible for these outcomes. Optimized SCNT approaches designed to circumvent these limitations allowed derivation of human NT-ESCs. When applied to premium quality human oocytes, NT-ESC lines were derived from as few as two oocytes. NT-ESCs displayed normal diploid karyotypes and inherited their nuclear genome exclusively from parental somatic cells. Gene expression and differentiation profiles in human NT-ESCs were similar to embryo-derived ESCs, suggesting efficient reprogramming of somatic cells to a pluripotent state.

  13. Induced pluripotent stem cell lines derived from human somatic cells.

    Science.gov (United States)

    Yu, Junying; Vodyanik, Maxim A; Smuga-Otto, Kim; Antosiewicz-Bourget, Jessica; Frane, Jennifer L; Tian, Shulan; Nie, Jeff; Jonsdottir, Gudrun A; Ruotti, Victor; Stewart, Ron; Slukvin, Igor I; Thomson, James A

    2007-12-21

    Somatic cell nuclear transfer allows trans-acting factors present in the mammalian oocyte to reprogram somatic cell nuclei to an undifferentiated state. We show that four factors (OCT4, SOX2, NANOG, and LIN28) are sufficient to reprogram human somatic cells to pluripotent stem cells that exhibit the essential characteristics of embryonic stem (ES) cells. These induced pluripotent human stem cells have normal karyotypes, express telomerase activity, express cell surface markers and genes that characterize human ES cells, and maintain the developmental potential to differentiate into advanced derivatives of all three primary germ layers. Such induced pluripotent human cell lines should be useful in the production of new disease models and in drug development, as well as for applications in transplantation medicine, once technical limitations (for example, mutation through viral integration) are eliminated.

  14. Epigenetic reprogramming by somatic cell nuclear transfer in primates.

    Science.gov (United States)

    Sparman, Michelle; Dighe, Vikas; Sritanaudomchai, Hathaitip; Ma, Hong; Ramsey, Cathy; Pedersen, Darlene; Clepper, Lisa; Nighot, Prashant; Wolf, Don; Hennebold, Jon; Mitalipov, Shoukhrat

    2009-06-01

    We recently demonstrated that somatic cells from adult primates could be reprogrammed into a pluripotent state by somatic cell nuclear transfer. However, the low efficiency with donor cells from one monkey necessitated the need for large oocyte numbers. Here, we demonstrate nearly threefold higher blastocyst development and embryonic stem (ES) cell derivation rates with different nuclear donor cells. Two ES cell lines were isolated using adult female rhesus macaque skin fibroblasts as nuclear donors and oocytes retrieved from one female, following a single controlled ovarian stimulation. In addition to routine pluripotency tests involving in vitro and in vivo differentiation into various somatic cell types, primate ES cells derived from reprogrammed somatic cells were also capable of contributing to cells expressing markers of germ cells. Moreover, imprinted gene expression, methylation, telomere length, and X-inactivation analyses were consistent with accurate and extensive epigenetic reprogramming of somatic cells by oocyte-specific factors.

  15. Aneuploidy in mammalian somatic cells in vivo.

    Science.gov (United States)

    Cimino, M C; Tice, R R; Liang, J C

    1986-01-01

    Aneuploidy is an important potential source of human disease and of reproductive failure. Nevertheless, the ability of chemical agents to induce aneuploidy has been investigated only sporadically in intact (whole-animal) mammalian systems. A search of the available literature from the EMCT Aneuploidy File (for years 1970-1983) provided 112 papers that dealt with aneuploidy in mammalian somatic cells in vivo. 59 of these papers did not meet minimal criteria for analysis and were rejected from subsequent review. Of the remaining 53 papers that dealt with aneuploidy induction by chemical agents in mammalian somatic cells in vivo, only 3 (6%) contained data that were considered to be supported conclusively by adequate study designs, execution, and reporting. These 3 papers dealt with 2 chemicals, one of which, mercury, was negative for aneuploidy induction in humans, and the other, pyrimethamine, was positive in an experimental rodent study. The majority of papers (94%) were considered inconclusive for a variety of reasons. The most common reasons for calling a study inconclusive were (a) combining data on hyperploidy with those on hypoploidy and/or polyploidy, (b) an inadequate or unspecified number of animals and/or cells per animal scored per treatment group, and (c) poor data presentation such that animal-to-animal variability could not be assessed. Suggestions for protocol development are made, and the future directions of research into aneuploidy induction are discussed.

  16. Human somatic cell nuclear transfer is alive and well.

    Science.gov (United States)

    Cibelli, Jose B

    2014-06-05

    In this issue, Chung et al. (2014) generate human embryonic stem cells by fusing an adult somatic cell to a previously enucleated human oocyte, in agreement with recent reports by the Mitalipov and Egli groups. We can now safely say that human somatic cell nuclear transfer is alive and well.

  17. Endangered wolves cloned from adult somatic cells.

    Science.gov (United States)

    Kim, Min Kyu; Jang, Goo; Oh, Hyun Ju; Yuda, Fibrianto; Kim, Hye Jin; Hwang, Woo Suk; Hossein, Mohammad Shamim; Kim, Joung Joo; Shin, Nam Shik; Kang, Sung Keun; Lee, Byeong Chun

    2007-01-01

    Over the world, canine species, including the gray wolf, have been gradually endangered or extinct. Many efforts have been made to recover and conserve these canids. The aim of this study was to produce the endangered gray wolf with somatic cell nuclear transfer (SCNT) for conservation. Adult ear fibroblasts from a female gray wolf (Canis lupus) were isolated and cultured in vitro as donor cells. Because of limitations in obtaining gray wolf matured oocytes, in vivo matured canine oocytes obtained by flushing the oviducts from the isthmus to the infundibulum were used. After removing the cumulus cells, the oocyte was enucleated, microinjected, fused with a donor cell, and activated. The reconstructed cloned wolf embryos were transferred into the oviducts of the naturally synchronized surrogate mothers. Two pregnancies were detected by ultrasonography at 23 days of gestation in recipient dogs. In each surrogate dog, two fetal sacs were confirmed by early pregnancy diagnosis at 23 days, but only two cloned wolves were delivered. The first cloned wolf was delivered by cesarean section on October 18, 2005, 60 days after embryo transfer. The second cloned wolf was delivered on October 26, 2005, at 61 days postembryo transfer. Microsatellite analysis was performed with genomic DNA from the donor wolf, the two cloned wolves, and the two surrogate female recipients to confirm the genetic identity of the cloned wolves. Analysis of 19 microsatellite loci confirmed that the cloned wolves were genetically identical to the donor wolf. In conclusion, we demonstrated live birth of two cloned gray wolves by nuclear transfer of wolf somatic cells into enucleated canine oocyte, indicating that SCNT is a practical approach for conserving endangered canids.

  18. Recent advancements in cloning by somatic cell nuclear transfer.

    Science.gov (United States)

    Ogura, Atsuo; Inoue, Kimiko; Wakayama, Teruhiko

    2013-01-05

    Somatic cell nuclear transfer (SCNT) cloning is the sole reproductive engineering technology that endows the somatic cell genome with totipotency. Since the first report on the birth of a cloned sheep from adult somatic cells in 1997, many technical improvements in SCNT have been made by using different epigenetic approaches, including enhancement of the levels of histone acetylation in the chromatin of the reconstructed embryos. Although it will take a considerable time before we fully understand the nature of genomic programming and totipotency, we may expect that somatic cell cloning technology will soon become broadly applicable to practical purposes, including medicine, pharmaceutical manufacturing and agriculture. Here we review recent progress in somatic cell cloning, with a special emphasis on epigenetic studies using the laboratory mouse as a model.

  19. Genotype by environment interaction for somatic cell score across bulk milk somatic cell count and days in milk

    NARCIS (Netherlands)

    Calus, M.P.L.; Janss, L.L.G.; Veerkamp, R.F.

    2006-01-01

    The objective of this paper was to investigate the importance of a genotype x environment interaction (G x E) for somatic cell score (SCS) across levels of bulk milk somatic cell count (BMSCC), number of days in milk (DIM), and their interaction. Variance components were estimated with a model inclu

  20. Producing primate embryonic stem cells by somatic cell nuclear transfer.

    Science.gov (United States)

    Byrne, J A; Pedersen, D A; Clepper, L L; Nelson, M; Sanger, W G; Gokhale, S; Wolf, D P; Mitalipov, S M

    2007-11-22

    Derivation of embryonic stem (ES) cells genetically identical to a patient by somatic cell nuclear transfer (SCNT) holds the potential to cure or alleviate the symptoms of many degenerative diseases while circumventing concerns regarding rejection by the host immune system. However, the concept has only been achieved in the mouse, whereas inefficient reprogramming and poor embryonic development characterizes the results obtained in primates. Here, we used a modified SCNT approach to produce rhesus macaque blastocysts from adult skin fibroblasts, and successfully isolated two ES cell lines from these embryos. DNA analysis confirmed that nuclear DNA was identical to donor somatic cells and that mitochondrial DNA originated from oocytes. Both cell lines exhibited normal ES cell morphology, expressed key stem-cell markers, were transcriptionally similar to control ES cells and differentiated into multiple cell types in vitro and in vivo. Our results represent successful nuclear reprogramming of adult somatic cells into pluripotent ES cells and demonstrate proof-of-concept for therapeutic cloning in primates.

  1. Translational research on reprogramming of somatic cells

    Institute of Scientific and Technical Information of China (English)

    Yanhua Li; Jiahui Yin; Bingbing Zhang; Ping Zhou; Bin Feng; Fangyi Zhang; Yongzhong Lin; Zhanhua Liang; Jianling Du; Minghui Lü; Tiezheng Zheng; Jie Lin; Siyu Liu; Hao Hong; Xing Meng; Dandan Xia; Yang Sun; Pan Wei; Nan Cai; Hongye Li; Shuang Wu; Hui Zhao; Changkai Sun; Yuyuan Li; Changyu Gao; Wei Li; Ye Dai; Junde Wang; Hui Zhao; Xiaoxin Tan; Lili Men; Hui Ma; Jun Xu; Xiaohan Yang; Zengchun Hu; Ling Wang; Hong Wang; Pin Sun; Huifang Guo; Guirong Song; Hui Liu1; Baoshuai Shan; Lu Han; Linlang Liang; Min Wang; Xiaochen Wang; Dan Wang; Guihua Chen; Jianting Chen; Xiangyou Sun; Jun Xue; Zhiqi Wang; Jing Wang; Yongqing Zhang; Dongfeng Cai; Mozhen Liu; Guiping Zhang; Guoming Luan; Jianli Wang; Ming Fan; Xuetao Cao; Chao Wan; Qigui Liu; Anchun Yin

    2014-01-01

    Cerebrovascular diseases,dementia,diabetes,malignant tumors and degenerative bone diseases remain high prevalence,incidence,disability and mortality rates.One important reason might be the slow or stagnated progress in translating and applying cytoprotection and cellular repair researches into clinical practice.Based on collaboration among biomedical re-searchers,database experts,computer programmers,statisticians and management engineers,this is the first study to apply quanti-tative comparison on the overall characteristics and partial correlation analysis on the large-scale complex information and data regarding the topic“mature cells can be reprogrammed to become pluripotent”proposed by Sir John B.Gurdon and Shinya Yamanaka who were jointly awarded with 2012 Nobel Prize in Physiology or Medicine,as well as articles that cited publications of the two Nobel Laureates to discuss the prospects of translating somatic cell reprogramming researches into clinical practice and cor-responding implementation strategies.The study found that there was statistically significant difference between the two Nobel Laureates with regard to the number,publication date,subject categories and scientific and technological focuses of their origi-nal researches.The study revealed the importance,objectives,approaches and research trends of translational medicine,especially translational neuroscience.The study also identified the challenges that China should overcome to improve its medical research management scheme.

  2. Mouse cloning and somatic cell reprogramming using electrofused blastomeres

    Institute of Scientific and Technical Information of China (English)

    Amjad Riaz; Xiaoyang Zhao; Xiangpeng Dai; Wei Li; Lei Liu; Haifeng Wan; Yang Yu; Liu Wang; Qi Zhou

    2011-01-01

    Mouse cloning from fertilized eggs can assist development of approaches for the production of "genetically tailored" human embryonic stem(ES)cell lines that are not constrained by the limitations of oocyte availability. However, to date only zygotes have been successfully used as recipients of nuclei from terminally differentiated somatic cell donors leading to ES cell lines. In fertility clinics, embryos of advanced embryonic stages are usually stored for future use, but their ability to support the derivation of ES cell lines via somatic nuclear transfer has not yet been proved.Here, we report that two-cell stage electrofused mouse embryos, arrested in mitosis, can support developmental reprogramming of nuclei from donor cells ranging from blastomeres to somatic cells. Live, full-term cloned pups from embryonic donors, as well as pluripotent ES cell lines from embryonic or somatic donors, were successfully generated from these reconstructed embryos. Advanced stage pre-implantation embryos were unable to develop normally to term after electrofusion and transfer of a somatic cell nucleus, indicating that discarded pre-implantation human embryos could be an important resource for research that minimizes the ethical concerns for human therapeutic cloning. Our approach provides an attractive and practical alternative to therapeutic cloning using donated oocytes for the generation of patient-specific human ES cell lines.

  3. Mouse cloning and somatic cell reprogramming using electrofused blastomeres.

    Science.gov (United States)

    Riaz, Amjad; Zhao, Xiaoyang; Dai, Xiangpeng; Li, Wei; Liu, Lei; Wan, Haifeng; Yu, Yang; Wang, Liu; Zhou, Qi

    2011-05-01

    Mouse cloning from fertilized eggs can assist development of approaches for the production of "genetically tailored" human embryonic stem (ES) cell lines that are not constrained by the limitations of oocyte availability. However, to date only zygotes have been successfully used as recipients of nuclei from terminally differentiated somatic cell donors leading to ES cell lines. In fertility clinics, embryos of advanced embryonic stages are usually stored for future use, but their ability to support the derivation of ES cell lines via somatic nuclear transfer has not yet been proved. Here, we report that two-cell stage electrofused mouse embryos, arrested in mitosis, can support developmental reprogramming of nuclei from donor cells ranging from blastomeres to somatic cells. Live, full-term cloned pups from embryonic donors, as well as pluripotent ES cell lines from embryonic or somatic donors, were successfully generated from these reconstructed embryos. Advanced stage pre-implantation embryos were unable to develop normally to term after electrofusion and transfer of a somatic cell nucleus, indicating that discarded pre-implantation human embryos could be an important resource for research that minimizes the ethical concerns for human therapeutic cloning. Our approach provides an attractive and practical alternative to therapeutic cloning using donated oocytes for the generation of patient-specific human ES cell lines.

  4. Somatic Embryogenesis of Lilium from Microbulb Transverse Thin Cell Layers.

    Science.gov (United States)

    Marinangeli, Pablo

    2016-01-01

    A reliable somatic embryogenesis protocol is a prerequisite for application of other plant biotechniques. Several protocols were reported for genus Lilium, with variable success. Between them, transverse Thin Cell Layers (tTCL) were used efficiently to induce indirect somatic embryogenesis of Lilium. Somatic embryogenesis potential is dependent on the genotype, explant, and culture medium composition, especially as for plant growth regulators and environmental conditions. Usually, the process comprises three phases: embryogenic callus induction, embryogenic callus proliferation and somatic embryo germination. Somatic embryo germination can be achieved in light or dark. In the first case, complete plantlets are formed, with green leaves and pseudobulb in the base. In darkness, microbulbs are formed from single somatic embryos or clusters. A last phase of microbulb enlargement allows plantlets or microbulbs to increase their biomass. These enlarged microbulbs do not need special acclimatization conditions when transferred to soil and quickly produce sturdy plants. This chapter describes a protocol for somatic embryogenesis of Lilium using tTCL from microbulbs.

  5. Manipulating Somatic Cells to Remove Barriers in Induced Pluripotent Stem Cell Reprogramming

    OpenAIRE

    Chung, Julia

    2013-01-01

    Development leads unidirectionally towards a more restricted cell fate that is usually stable. However, it has been proven that developmental systems are reversible by the success of animal cloning of a differentiated somatic genome through somatic cell nuclear transfer (SCNT). Recently, reprogramming of somatic cells to a pluripotent embryonic stem cell (ESC)-like state by introducing defined transcripton factor has been achieved, resulting in the generation of induced pluripotent stem cells...

  6. Reprogramming to pluripotency can conceal somatic cell chromosomal instability.

    NARCIS (Netherlands)

    Hamada, M.; Malureanu, L.A.; Wijshake, T.; Zhou, W.; Deursen, J.M.A. van

    2012-01-01

    The discovery that somatic cells are reprogrammable to pluripotency by ectopic expression of a small subset of transcription factors has created great potential for the development of broadly applicable stem-cell-based therapies. One of the concerns regarding the safe use of induced pluripotent stem

  7. Somatic mutations of KIT in familial testicular germ cell tumours

    NARCIS (Netherlands)

    Rapley, EA; Hockley, S; Warren, W; Johnson, L; Huddart, R; Crockford, G; Forman, D; Leahy, MG; Oliver, DT; Tucker, K; Friedlander, M; Phillips, KA; Hogg, D; Jewett, MAS; Lohynska, R; Daugaard, G; Richard, S; Heidenreich, A; Geczi, L; Bodrogi, [No Value; Olah, E; Ormiston, WJ; Daly, PA; Looijenga, LHJ; Guilford, P; Aass, N; Fossa, SD; Heimdal, K; Tjulandin, SA; Liubchenko, L; Stoll, H; Weber, W; Einhorn, L; Weber, BL; McMaster, M; Greene, MH; Bishop, DT; Easton, D; Stratton, M

    2004-01-01

    Somatic mutations of the KIT gene have been reported in mast cell diseases and gastrointestinal stromal tumours. Recently, they have also been found in mediastinal and testicular germ cell tumours (TGCTs), particularly in cases with bilateral disease. We screened the KIT coding sequence ( except exo

  8. Buffalo milk: proteins electrophoretic profile and somatic cell count

    Directory of Open Access Journals (Sweden)

    S. Mattii

    2011-03-01

    Full Text Available Water buffalo milk differs from the cow’s milk for greater fat and protein content, very important features in cheese making. Proteins, casein and whey-proteins in particular, are the most important factors determining cheese yield. Several previous research discussed the rule of SCC in cow milk production (Varisco, 1999 and the close relationship existing between cow’s milk cheese yield and somatic cell count (Barbano, 2000. In particular the inverse correlation between cheese yields and somatic cells’content have been demonstrated. In Italy the regulation in force DPR 54/97 acknowledges what expressed in EEC 46/92 Directive (Tripodi, 1999 without fixing the limit threshold of somatic cells for buffalo’s milk....

  9. Somatic cell reprogramming-free generation of genetically modified pigs

    Science.gov (United States)

    Tanihara, Fuminori; Takemoto, Tatsuya; Kitagawa, Eri; Rao, Shengbin; Do, Lanh Thi Kim; Onishi, Akira; Yamashita, Yukiko; Kosugi, Chisato; Suzuki, Hitomi; Sembon, Shoichiro; Suzuki, Shunichi; Nakai, Michiko; Hashimoto, Masakazu; Yasue, Akihiro; Matsuhisa, Munehide; Noji, Sumihare; Fujimura, Tatsuya; Fuchimoto, Dai-ichiro; Otoi, Takeshige

    2016-01-01

    Genetically modified pigs for biomedical applications have been mainly generated using the somatic cell nuclear transfer technique; however, this approach requires complex micromanipulation techniques and sometimes increases the risks of both prenatal and postnatal death by faulty epigenetic reprogramming of a donor somatic cell nucleus. As a result, the production of genetically modified pigs has not been widely applied. We provide a simple method for CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 gene editing in pigs that involves the introduction of Cas9 protein and single-guide RNA into in vitro fertilized zygotes by electroporation. The use of gene editing by electroporation of Cas9 protein (GEEP) resulted in highly efficient targeted gene disruption and was validated by the efficient production of Myostatin mutant pigs. Because GEEP does not require the complex methods associated with micromanipulation for somatic reprogramming, it has the potential for facilitating the genetic modification of pigs. PMID:27652340

  10. Global Splicing Pattern Reversion during Somatic Cell Reprogramming

    Directory of Open Access Journals (Sweden)

    Sho Ohta

    2013-10-01

    Full Text Available Alternative splicing generates multiple transcripts from a single gene, and cell-type-specific splicing profiles are important for the properties and functions of the cells. Recently, somatic cells have been shown to undergo dedifferentiation after the forced expression of transcription factors. However, it remains unclear whether somatic cell splicing is reorganized during reprogramming. Here, by combining deep sequencing with high-throughput absolute qRT-PCR, we show that somatic splicing profiles revert to pluripotent ones during reprogramming. Remarkably, the splicing pattern in pluripotent stem cells resembles that in testes, and the regulatory regions have specific characteristics in length and sequence. Furthermore, our siRNA screen has identified RNA-binding proteins that regulate splicing events in iPSCs. We have then demonstrated that two of the RNA-binding proteins, U2af1 and Srsf3, play a role in somatic cell reprogramming. Our results indicate that the drastic alteration in splicing represents part of the molecular network involved in the reprogramming process.

  11. Functional evaluation of ES-somatic cell hybrids in vitro and in vivo.

    Science.gov (United States)

    Sumer, Huseyin; Kim, Kitai; Liu, Jun; Ng, Kitwa; Daley, George Q; Verma, Paul J

    2014-06-01

    Embryonic stem cells (ESCs) have previously been reported to reprogram somatic cells following fusion. The resulting ES-somatic cell hybrids have been shown to adopt the transcriptional profile of ESCs, suggesting that the pluripotent program is dominant. ES-somatic cell hybrids have most characteristics of pluripotent cells in vitro; however, it remains unclear whether the somatic genome is an active partner in the hybrid cells or simply retained predominately as silent cargo. Furthermore, the functional properties of ES-somatic cell hybrids in vivo have been limited to studies on their contribution to teratomas and developing embryos/chimeras. The extent of their pluripotency remains largely unclear. Here we determined that the somatic genome is actively transcribed by generating ES-somatic cell hybrids using Rag2-deficient ESCs fused to autologous wild-type somatic cells. Rag2 expression was detected during in vitro differentiation, suggesting that the somatic genome follows the correct temporal cues during differentiation. Furthermore, ES-somatic cell hybrids maintain their tetraploid state following 4 weeks of differentiation in vivo and are immune tolerated when transferred into matched individuals. The ES-somatic cell hybrids can efficiently differentiate into hematopoietic precursors in both myeloid and lymphoid lineages in vitro, suggesting that the somatic genome is actively transcribed following cell fusion based reprogramming. However, the ES-somatic cell hybrids showed an altered hematopoietic potential following in vitro differentiation and were unable to show hematopoietic engraftment in a mouse model.

  12. Reshaping the transcriptional frontier: epigenetics and somatic cell nuclear transfer.

    Science.gov (United States)

    Long, Charles R; Westhusin, Mark E; Golding, Michael C

    2014-02-01

    Somatic-cell nuclear transfer (SCNT) experiments have paved the way to the field of cellular reprogramming. The demonstrated ability to clone over 20 different species to date has proven that the technology is robust but very inefficient, and is prone to developmental anomalies. Yet, the offspring from cloned animals exhibit none of the abnormalities of their parents, suggesting the low efficiency and high developmental mortality are epigenetic in origin. The epigenetic barriers to reprogramming somatic cells into a totipotent embryo capable of developing into a viable offspring are significant and varied. Despite their intimate relationship, chromatin structure and transcription are often not uniformly reprogramed after nuclear transfer, and many cloned embryos develop gene expression profiles that are hybrids between the donor cell and an embryonic blastomere. Recent advances in cellular reprogramming suggest that alteration of donor-cell chromatin structure towards that found in an normal embryo is actually the rate-limiting step in successful development of SCNT embryos. Here we review the literature relevant to the transformation of a somatic-cell nucleus into an embryo capable of full-term development. Interestingly, while resetting somatic transcription and associated epigenetic marks are absolutely required for development of SCNT embryos, life does not demand perfection.

  13. File list: Unc.Emb.20.AllAg.Gonadal_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Emb.20.AllAg.Gonadal_somatic_cells mm9 Unclassified Embryo Gonadal somatic cell...s http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Emb.20.AllAg.Gonadal_somatic_cells.bed ...

  14. File list: ALL.Emb.50.AllAg.Gonadal_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.50.AllAg.Gonadal_somatic_cells mm9 All antigens Embryo Gonadal somatic cell...s SRX685753 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Emb.50.AllAg.Gonadal_somatic_cells.bed ...

  15. File list: Unc.Emb.10.AllAg.Gonadal_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Emb.10.AllAg.Gonadal_somatic_cells mm9 Unclassified Embryo Gonadal somatic cell...s http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Emb.10.AllAg.Gonadal_somatic_cells.bed ...

  16. File list: ALL.Emb.05.AllAg.Gonadal_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.05.AllAg.Gonadal_somatic_cells mm9 All antigens Embryo Gonadal somatic cell...s SRX685753 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Emb.05.AllAg.Gonadal_somatic_cells.bed ...

  17. File list: Unc.Emb.05.AllAg.Gonadal_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Emb.05.AllAg.Gonadal_somatic_cells mm9 Unclassified Embryo Gonadal somatic cell...s http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Emb.05.AllAg.Gonadal_somatic_cells.bed ...

  18. File list: ALL.Emb.10.AllAg.Gonadal_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.10.AllAg.Gonadal_somatic_cells mm9 All antigens Embryo Gonadal somatic cell...s SRX685753 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Emb.10.AllAg.Gonadal_somatic_cells.bed ...

  19. File list: ALL.Emb.20.AllAg.Gonadal_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.20.AllAg.Gonadal_somatic_cells mm9 All antigens Embryo Gonadal somatic cell...s SRX685753 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Emb.20.AllAg.Gonadal_somatic_cells.bed ...

  20. File list: Unc.Emb.50.AllAg.Gonadal_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Emb.50.AllAg.Gonadal_somatic_cells mm9 Unclassified Embryo Gonadal somatic cell...s http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Emb.50.AllAg.Gonadal_somatic_cells.bed ...

  1. File list: His.Gon.05.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Gon.05.AllAg.Testicular_somatic_cells mm9 Histone Gonad Testicular somatic cell...s SRX591729,SRX591717 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Gon.05.AllAg.Testicular_somatic_cells.bed ...

  2. File list: His.Gon.50.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Gon.50.AllAg.Testicular_somatic_cells mm9 Histone Gonad Testicular somatic cell...s SRX591729,SRX591717 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Gon.50.AllAg.Testicular_somatic_cells.bed ...

  3. File list: His.Gon.20.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Gon.20.AllAg.Testicular_somatic_cells mm9 Histone Gonad Testicular somatic cell...s SRX591729,SRX591717 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Gon.20.AllAg.Testicular_somatic_cells.bed ...

  4. File list: His.Gon.10.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Gon.10.AllAg.Testicular_somatic_cells mm9 Histone Gonad Testicular somatic cell...s SRX591729,SRX591717 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Gon.10.AllAg.Testicular_somatic_cells.bed ...

  5. The Somatic Genomic Landscape of Chromophobe Renal Cell Carcinoma

    NARCIS (Netherlands)

    Davis, Caleb F; Ricketts, Christopher J; Wang, Min; Yang, Lixing; Cherniack, Andrew D; Shen, Hui; Buhay, Christian; Kang, Hyojin; Kim, Sang Cheol; Fahey, Catherine C; Hacker, Kathryn E; Bhanot, Gyan; Gordenin, Dmitry A; Chu, Andy; Gunaratne, Preethi H; Biehl, Michael; Seth, Sahil; Kaipparettu, Benny A; Bristow, Christopher A; Donehower, Lawrence A; Wallen, Eric M; Smith, Angela B; Tickoo, Satish K; Tamboli, Pheroze; Reuter, Victor; Schmidt, Laura S; Hsieh, James J; Choueiri, Toni K; Hakimi, A Ari; Chin, Lynda; Meyerson, Matthew; Kucherlapati, Raju; Park, Woong-Yang; Robertson, A Gordon; Laird, Peter W; Henske, Elizabeth P; Kwiatkowski, David J; Park, Peter J; Morgan, Margaret; Shuch, Brian; Muzny, Donna; Wheeler, David A; Linehan, W Marston; Gibbs, Richard A; Rathmell, W Kimryn; Creighton, Chad J

    2014-01-01

    We describe the landscape of somatic genomic alterations of 66 chromophobe renal cell carcinomas (ChRCCs) on the basis of multidimensional and comprehensive characterization, including mtDNA and whole-genome sequencing. The result is consistent that ChRCC originates from the distal nephron compared

  6. Somatic cell count distributions during lactation predict clinical mastitis

    NARCIS (Netherlands)

    Green, M.J.; Green, L.E.; Schukken, Y.H.; Bradley, A.J.; Peeler, E.J.; Barkema, H.W.; Haas, de Y.; Collis, V.J.; Medley, G.F.

    2004-01-01

    This research investigated somatic cell count (SCC) records during lactation, with the purpose of identifying distribution characteristics (mean and measures of variation) that were most closely associated with clinical mastitis. Three separate data sets were used, one containing quarter SCC (n = 14

  7. Lineage development of cell fusion hybrids upon somatic reprogramming

    OpenAIRE

    2011-01-01

    Tese de mestrado. Biologia (Biologia Molecular e Genética). Universidade de Lisboa, Faculdade de Ciências, 2011 Somatic cell reprogramming has been extensively studied over the last years and opened new perspectives in the use of pluripotent cells for regenerative biomedical purposes. Spontaneous cell fusion has been suggested to be involved in regenerative processes in vivo. Strong evidences support the hypothesis that the reprogrammed hybrids resulting from the fusion between a pluripote...

  8. Cell-of-Origin-Specific 3D Genome Structure Acquired during Somatic Cell Reprogramming

    NARCIS (Netherlands)

    Krijger, Peter Hugo Lodewijk; Di Stefano, Bruno; de Wit, Elzo; Limone, Francesco; van Oevelen, Chris; de Laat, Wouter; Graf, Thomas

    2016-01-01

    Forced expression of reprogramming factors can convert somatic cells into induced pluripotent stem cells (iPSCs). Here we studied genome topology dynamics during reprogramming of different somatic cell types with highly distinct genome conformations. We find large-scale topologically associated doma

  9. Cloning mice and ES cells by nuclear transfer from somatic stem cells and fully differentiated cells.

    Science.gov (United States)

    Wang, Zhongde

    2011-01-01

    Cloning animals by nuclear transfer (NT) has been successful in several mammalian species. In addition to cloning live animals (reproductive cloning), this technique has also been used in several species to establish cloned embryonic stem (ntES) cell lines from somatic cells. It is the latter application of this technique that has been heralded as being the potential means to produce isogenic embryonic stem cells from patients for cell therapy (therapeutic cloning). These two types of cloning differ only in the steps after cloned embryos are produced: for reproductive cloning the cloned embryos are transferred to surrogate mothers to allow them to develop to full term and for therapeutic cloning the cloned embryos are used to derive ntES cells. In this chapter, a detailed NT protocol in mouse by using somatic stem cells (neuron and skin stem cells) and fully differentiated somatic cells (cumulus cells and fibroblast cells) as nuclear donors is described.

  10. Derivation of induced pluripotent stem cells from pig somatic cells.

    Science.gov (United States)

    Ezashi, Toshihiko; Telugu, Bhanu Prakash V L; Alexenko, Andrei P; Sachdev, Shrikesh; Sinha, Sunilima; Roberts, R Michael

    2009-07-07

    For reasons that are unclear the production of embryonic stem cells from ungulates has proved elusive. Here, we describe induced pluripotent stem cells (iPSC) derived from porcine fetal fibroblasts by lentiviral transduction of 4 human (h) genes, hOCT4, hSOX2, hKLF4, and hc-MYC, the combination commonly used to create iPSC in mouse and human. Cells were cultured on irradiated mouse embryonic fibroblasts (MEF) and in medium supplemented with knockout serum replacement and FGF2. Compact colonies of alkaline phosphatase-positive cells emerged after approximately 22 days, providing an overall reprogramming efficiency of approximately 0.1%. The cells expressed porcine OCT4, NANOG, and SOX2 and had high telomerase activity, but also continued to express the 4 human transgenes. Unlike human ESC, the porcine iPSC (piPSC) were positive for SSEA-1, but negative for SSEA-3 and -4. Transcriptional profiling on Affymetrix (porcine) microarrays and real time RT-PCR supported the conclusion that reprogramming to pluripotency was complete. One cell line, ID6, had a normal karyotype, a cell doubling time of approximately 17 h, and has been maintained through >220 doublings. The ID6 line formed embryoid bodies, expressing genes representing all 3 germ layers when cultured under differentiating conditions, and teratomas containing tissues of ectoderm, mesoderm, and endoderm origin in nude mice. We conclude that porcine somatic cells can be reprogrammed to form piPSC. Such cell lines derived from individual animals could provide a means for testing the safety and efficacy of stem cell-derived tissue grafts when returned to the same pigs at a later age.

  11. File list: His.Emb.50.AllAg.Gonadal_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Emb.50.AllAg.Gonadal_somatic_cells mm9 Histone Embryo Gonadal somatic cells SRX...685753 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Emb.50.AllAg.Gonadal_somatic_cells.bed ...

  12. File list: Oth.Emb.50.AllAg.Gonadal_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Emb.50.AllAg.Gonadal_somatic_cells mm9 TFs and others Embryo Gonadal somatic ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Emb.50.AllAg.Gonadal_somatic_cells.bed ...

  13. File list: Pol.Emb.50.AllAg.Gonadal_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.50.AllAg.Gonadal_somatic_cells mm9 RNA polymerase Embryo Gonadal somatic ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Emb.50.AllAg.Gonadal_somatic_cells.bed ...

  14. File list: Pol.Emb.10.AllAg.Gonadal_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.10.AllAg.Gonadal_somatic_cells mm9 RNA polymerase Embryo Gonadal somatic ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Emb.10.AllAg.Gonadal_somatic_cells.bed ...

  15. File list: His.Emb.10.AllAg.Gonadal_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Emb.10.AllAg.Gonadal_somatic_cells mm9 Histone Embryo Gonadal somatic cells SRX...685753 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Emb.10.AllAg.Gonadal_somatic_cells.bed ...

  16. File list: His.Emb.20.AllAg.Gonadal_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Emb.20.AllAg.Gonadal_somatic_cells mm9 Histone Embryo Gonadal somatic cells SRX...685753 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Emb.20.AllAg.Gonadal_somatic_cells.bed ...

  17. File list: Oth.Emb.10.AllAg.Gonadal_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Emb.10.AllAg.Gonadal_somatic_cells mm9 TFs and others Embryo Gonadal somatic ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Emb.10.AllAg.Gonadal_somatic_cells.bed ...

  18. File list: Pol.Emb.20.AllAg.Gonadal_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.20.AllAg.Gonadal_somatic_cells mm9 RNA polymerase Embryo Gonadal somatic ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Emb.20.AllAg.Gonadal_somatic_cells.bed ...

  19. File list: Pol.Emb.05.AllAg.Gonadal_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.05.AllAg.Gonadal_somatic_cells mm9 RNA polymerase Embryo Gonadal somatic ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Emb.05.AllAg.Gonadal_somatic_cells.bed ...

  20. File list: Oth.Emb.20.AllAg.Gonadal_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Emb.20.AllAg.Gonadal_somatic_cells mm9 TFs and others Embryo Gonadal somatic ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Emb.20.AllAg.Gonadal_somatic_cells.bed ...

  1. File list: DNS.Emb.10.AllAg.Gonadal_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Emb.10.AllAg.Gonadal_somatic_cells mm9 DNase-seq Embryo Gonadal somatic cells h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Emb.10.AllAg.Gonadal_somatic_cells.bed ...

  2. File list: His.Emb.05.AllAg.Gonadal_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Emb.05.AllAg.Gonadal_somatic_cells mm9 Histone Embryo Gonadal somatic cells SRX...685753 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Emb.05.AllAg.Gonadal_somatic_cells.bed ...

  3. File list: DNS.Emb.05.AllAg.Gonadal_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Emb.05.AllAg.Gonadal_somatic_cells mm9 DNase-seq Embryo Gonadal somatic cells h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Emb.05.AllAg.Gonadal_somatic_cells.bed ...

  4. File list: Pol.Gon.50.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Gon.50.AllAg.Testicular_somatic_cells mm9 RNA polymerase Gonad Testicular somatic... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Gon.50.AllAg.Testicular_somatic_cells.bed ...

  5. File list: Oth.Gon.50.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Gon.50.AllAg.Testicular_somatic_cells mm9 TFs and others Gonad Testicular somatic... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Gon.50.AllAg.Testicular_somatic_cells.bed ...

  6. File list: DNS.Gon.10.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Gon.10.AllAg.Testicular_somatic_cells mm9 DNase-seq Gonad Testicular somatic ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Gon.10.AllAg.Testicular_somatic_cells.bed ...

  7. File list: ALL.Gon.20.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Gon.20.AllAg.Testicular_somatic_cells mm9 All antigens Gonad Testicular somatic... cells SRX591728,SRX591729,SRX591717,SRX591716 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Gon.20.AllAg.Testicular_somatic_cells.bed ...

  8. File list: Oth.Gon.10.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Gon.10.AllAg.Testicular_somatic_cells mm9 TFs and others Gonad Testicular somatic... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Gon.10.AllAg.Testicular_somatic_cells.bed ...

  9. File list: Unc.Gon.50.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Gon.50.AllAg.Testicular_somatic_cells mm9 Unclassified Gonad Testicular somatic... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Gon.50.AllAg.Testicular_somatic_cells.bed ...

  10. File list: ALL.Gon.50.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Gon.50.AllAg.Testicular_somatic_cells mm9 All antigens Gonad Testicular somatic... cells SRX591728,SRX591729,SRX591717,SRX591716 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Gon.50.AllAg.Testicular_somatic_cells.bed ...

  11. File list: Unc.Gon.10.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Gon.10.AllAg.Testicular_somatic_cells mm9 Unclassified Gonad Testicular somatic... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Gon.10.AllAg.Testicular_somatic_cells.bed ...

  12. File list: DNS.Gon.05.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Gon.05.AllAg.Testicular_somatic_cells mm9 DNase-seq Gonad Testicular somatic ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Gon.05.AllAg.Testicular_somatic_cells.bed ...

  13. File list: Pol.Gon.10.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Gon.10.AllAg.Testicular_somatic_cells mm9 RNA polymerase Gonad Testicular somatic... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Gon.10.AllAg.Testicular_somatic_cells.bed ...

  14. File list: Pol.Gon.20.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Gon.20.AllAg.Testicular_somatic_cells mm9 RNA polymerase Gonad Testicular somatic... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Gon.20.AllAg.Testicular_somatic_cells.bed ...

  15. File list: Oth.Gon.05.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Gon.05.AllAg.Testicular_somatic_cells mm9 TFs and others Gonad Testicular somatic... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Gon.05.AllAg.Testicular_somatic_cells.bed ...

  16. File list: Unc.Gon.20.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Gon.20.AllAg.Testicular_somatic_cells mm9 Unclassified Gonad Testicular somatic... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Gon.20.AllAg.Testicular_somatic_cells.bed ...

  17. File list: ALL.Gon.05.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Gon.05.AllAg.Testicular_somatic_cells mm9 All antigens Gonad Testicular somatic... cells SRX591729,SRX591728,SRX591717,SRX591716 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Gon.05.AllAg.Testicular_somatic_cells.bed ...

  18. File list: Unc.Gon.05.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Gon.05.AllAg.Testicular_somatic_cells mm9 Unclassified Gonad Testicular somatic... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Gon.05.AllAg.Testicular_somatic_cells.bed ...

  19. File list: DNS.Gon.50.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Gon.50.AllAg.Testicular_somatic_cells mm9 DNase-seq Gonad Testicular somatic ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Gon.50.AllAg.Testicular_somatic_cells.bed ...

  20. File list: Pol.Gon.05.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Gon.05.AllAg.Testicular_somatic_cells mm9 RNA polymerase Gonad Testicular somatic... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Gon.05.AllAg.Testicular_somatic_cells.bed ...

  1. File list: Oth.Gon.20.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Gon.20.AllAg.Testicular_somatic_cells mm9 TFs and others Gonad Testicular somatic... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Gon.20.AllAg.Testicular_somatic_cells.bed ...

  2. File list: DNS.Gon.20.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Gon.20.AllAg.Testicular_somatic_cells mm9 DNase-seq Gonad Testicular somatic ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Gon.20.AllAg.Testicular_somatic_cells.bed ...

  3. Somatic cell nuclear transfer cloning: practical applications and current legislation.

    Science.gov (United States)

    Niemann, H; Lucas-Hahn, A

    2012-08-01

    Somatic cloning is emerging as a new biotechnology by which the opportunities arising from the advances in molecular genetics and genome analysis can be implemented in animal breeding. Significant improvements have been made in SCNT protocols in the past years which now allow to embarking on practical applications. The main areas of application of SCNT are: Reproductive cloning, therapeutic cloning and basic research. A great application potential of SCNT based cloning is the production of genetically modified (transgenic) animals. Somatic cell nuclear transfer based transgenic animal production has significant advances over the previously employed microinjection of foreign DNA into pronuclei of zygotes. This cell based transgenesis is compatible with gene targeting and allows both, the addition of a specific gene and the deletion of an endogenous gene. Efficient transgenic animal production provides numerous opportunities for agriculture and biomedicine. Regulatory agencies around the world have agreed that food derived from cloned animals and their offspring is safe and there is no scientific basis for questioning this. Commercial application of somatic cloning within the EU is via the Novel Food regulation EC No. 258/97. Somatic cloning raises novel questions regarding the ethical and moral status of animals and their welfare which has prompted a controversial discussion in Europe which has not yet been resolved.

  4. Reprogramming to pluripotency can conceal somatic cell chromosomal instability.

    Directory of Open Access Journals (Sweden)

    Masakazu Hamada

    Full Text Available The discovery that somatic cells are reprogrammable to pluripotency by ectopic expression of a small subset of transcription factors has created great potential for the development of broadly applicable stem-cell-based therapies. One of the concerns regarding the safe use of induced pluripotent stem cells (iPSCs in therapeutic applications is loss of genomic integrity, a hallmark of various human conditions and diseases, including cancer. Structural chromosome defects such as short telomeres and double-strand breaks are known to limit reprogramming of somatic cells into iPSCs, but whether defects that cause whole-chromosome instability (W-CIN preclude reprogramming is unknown. Here we demonstrate, using aneuploidy-prone mouse embryonic fibroblasts (MEFs in which chromosome missegregation is driven by BubR1 or RanBP2 insufficiency, that W-CIN is not a barrier to reprogramming. Unexpectedly, the two W-CIN defects had contrasting effects on iPSC genomic integrity, with BubR1 hypomorphic MEFs almost exclusively yielding aneuploid iPSC clones and RanBP2 hypomorphic MEFs karyotypically normal iPSC clones. Moreover, BubR1-insufficient iPSC clones were karyotypically unstable, whereas RanBP2-insufficient iPSC clones were rather stable. These findings suggest that aneuploid cells can be selected for or against during reprogramming depending on the W-CIN gene defect and present the novel concept that somatic cell W-CIN can be concealed in the pluripotent state. Thus, karyotypic analysis of somatic cells of origin in addition to iPSC lines is necessary for safe application of reprogramming technology.

  5. The role of p53 in limiting somatic cell reprogramming

    Institute of Scientific and Technical Information of China (English)

    Yan Liu; Ruben Hoya-Arias; Stephen D Nimer

    2009-01-01

    @@ The first successful generation of induced pluripotent stem(iPS)cells from somatic cells was accomplished by introducing four genes into the cell,0ct3/4,Sox2,Klf4,and c-myc [1].While a tour-de-force,this approach to iPS cell generation is inefficient,and unlikely to be directly translated into therapeutic use since it involves the use of retroviruses to introduce these genes into the cell.Subsequent studies have used non-integrating genetic elements,chemical compounds,or proteins rather than DNA to bypass concerns about retroviral insertional mutagenesis [2-5].

  6. [Retrotransposons: selfish DNA or active epigenetic players in somatic cells?].

    Science.gov (United States)

    Guidez, Fabien

    2014-01-01

    Transposable elements (TE) represent around 40% of the human genome. They are endogenous mobile DNA sequences able to jump and duplicate in the host genome. TE have long been considered as "junk" DNA but are now believed to be important regulators of gene expression by participating to the establishment of the DNA methylation profile. Recent advances in genome sequencing reveals a higher transposition frequency and TE driven gene expression in somatic cells than previously thought. As TE propagation is deleterious and may be involved in oncogenic mechanisms, host cells have developed silencing mechanisms mainly described in germinal and embryonic cells. However, somatic cells are also proned to TE transposition and use specific mechanisms involving tumor suppressor proteins including p53, Rb and PLZF. These transcription factors specifically target genomic retrotransposon sequences, histone deacetylase and DNA methylase activities, inducing epigenetic modifications related to gene silencing. Thus, these transcription factors negatively regulate TE expression by the formation of DNA methylation profil in somatic cells possibly associated with oncogenic mechanisms.

  7. Regulation of L-threonine dehydrogenase in somatic cell reprogramming.

    Science.gov (United States)

    Han, Chuanchun; Gu, Hao; Wang, Jiaxu; Lu, Weiguang; Mei, Yide; Wu, Mian

    2013-05-01

    Increasing evidence suggests that metabolic remodeling plays an important role in the regulation of somatic cell reprogramming. Threonine catabolism mediated by L-threonine dehydrogenase (TDH) has been recognized as a specific metabolic trait of mouse embryonic stem cells. However, it remains unknown whether TDH-mediated threonine catabolism could regulate reprogramming. Here, we report TDH as a novel regulator of somatic cell reprogramming. Knockdown of TDH inhibits, whereas induction of TDH enhances reprogramming efficiency. Moreover, microRNA-9 post-transcriptionally regulates the expression of TDH and thereby inhibits reprogramming efficiency. Furthermore, protein arginine methyltransferase (PRMT5) interacts with TDH and mediates its post-translational arginine methylation. PRMT5 appears to regulate TDH enzyme activity through both methyltransferase-dependent and -independent mechanisms. Functionally, TDH-facilitated reprogramming efficiency is further enhanced by PRMT5. These results suggest that TDH-mediated threonine catabolism controls somatic cell reprogramming and indicate the importance of post-transcriptional and post-translational regulation of TDH.

  8. Self-Renewal and Pluripotency Acquired through Somatic Reprogramming to Human Cancer Stem Cells.

    OpenAIRE

    2012-01-01

    Human induced pluripotent stem cells (iPSCs) are reprogrammed by transient expression of transcription factors in somatic cells. Approximately 1% of somatic cells can be reprogrammed into iPSCs, while the remaining somatic cells are differentially reprogrammed. Here, we established induced pluripotent cancer stem-like cells (iCSCs) as self-renewing pluripotent cell clones. Stable iCSC lines were established from unstable induced epithelial stem cell (iESC) lines through re-plating followed by...

  9. Somatic cell bovine cloning: Effect of donor cell and recipients

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Adult somatic cell nuclear transfer was conducted by using cultured ear fibroblast cells obtained from a Holstein female cow (GN) and a Galoway herd bull (GLV). The percentages of reconstructed eggs developed into blastocysts were similar in GN (23.98%, 123 of 513) and in GLV groups (29.55%, 138 of 467). However, the rate of reconstructed female (GN) embryos developed into term was higher than that of male (GLV) (8.02% and 1.82%, respectively). Three kinds of cows, Luxi Yellow cows, Holstein heifers and Holstein cows with normal reproductive records were used as recipients. When the reconstructed embryos from GN were transferred, there was no difference in the pregnancy rate among three kinds of recipients, but the abortion rate of Luxi Yellow cows was significantly higher (85.71%) than in the other two groups (14.29% and 0%, respectively; P < 0.05). And the percentages of newborn calves in transferred embryos were significantly different between Luxi Yellow cows and Holstein breed (1.54%, 10.39% and 20.0%, respectively, P < 0.05). However, when reconstructed embryos from GLV were transferred, there was no difference among three kinds of recipients in the pregnancy rate, the abortion rate and the delivery rate.

  10. Somatic cell nuclear transfer in horses.

    Science.gov (United States)

    Galli, Cesare; Lagutina, Irina; Duchi, Roberto; Colleoni, Silvia; Lazzari, Giovanna

    2008-07-01

    The cloning of equids was achieved in 2003, several years after the birth of Dolly the sheep and also after the cloning of numerous other laboratory and farm animal species. The delay was because of the limited development in the horse of more classical-assisted reproductive techniques required for successful cloning, such as oocyte maturation and in vitro embryo production. When these technologies were developed, the application of cloning also became possible and cloned horse offspring were obtained. This review summarizes the main technical procedures that are required for cloning equids and the present status of this technique. The first step is competent oocyte maturation, this is followed by oocyte enucleation and reconstruction, using either zona-enclosed or zona-free oocytes, by efficient activation to allow high cleavage rates and finally by a suitable in vitro embryo culture technique. Cloning of the first equid, a mule, was achieved using an in vivo-matured oocytes and immediate transfer of the reconstructed embryo, i.e. at the one cell stage, to the recipient oviduct. In contrast, the first horse offspring was obtained using a complete in vitro procedure from oocyte maturation to embryo culture to the blastocyst stage, followed by non-surgical transfer. Later studies on equine cloning report high efficiency relative to that for other species. Cloned equid offspring reported to date appear to be normal and those that have reached puberty have been confirmed to be fertile. In summary, horse cloning is now a reproducible technique that offers the opportunity to preserve valuable genetics and notably to generate copies of castrated champions and therefore, offspring from those champions that would be impossible to obtain otherwise.

  11. Cloning Endangered Felids by Interspecies Somatic Cell Nuclear Transfer.

    Science.gov (United States)

    Gómez, Martha C; Pope, C Earle

    2015-01-01

    In 2003, the first wild felid was produced by interspecies somatic cell nuclear transfer. Since then other wild felid clone offspring have been produced by using the same technique with minor modifications. This chapter describes detailed protocols used in our laboratory for (1) the isolation, culture, and preparation of fibroblast cells as donor nucleus, and (2) embryo reconstruction with domestic cat enucleated oocytes to produce cloned embryos that develop to the blastocyst stage in vitro and, after transfer into synchronized recipients, establish successful pregnancies.

  12. A stochastic model of epigenetic dynamics in somatic cell reprogramming

    Directory of Open Access Journals (Sweden)

    Max eFloettmann

    2012-06-01

    Full Text Available Somatic cell reprogramming has dramatically changed stem cell research inrecent years. The high pace of new findings in the field and an ever increasingamount of data from new high throughput techniques make it challengingto isolate core principles of the process. In order to analyze suchmechanisms, we developed an abstract mechanistic model of a subset of theknown regulatory processes during cell differentiation and production of inducedpluripotent stem cells. This probabilistic Boolean network describesthe interplay between gene expression, chromatin modifications and DNAmethylation. The model incorporates recent findings in epigenetics and reproducesexperimentally observed reprogramming efficiencies and changes inmethylation and chromatin remodeling. It enables us to investigate in detail,how the temporal progression of the process is regulated. It also explicitlyincludes the transduction of factors using viral vectors and their silencing inreprogrammed cells, since this is still a standard procedure in somatic cellreprogramming. Based on the model we calculate an epigenetic landscape.Simulation results show good reproduction of experimental observations duringreprogramming, despite the simple stucture of the model. An extensiveanalysis and introduced variations hint towards possible optimizations of theprocess, that could push the technique closer to clinical applications. Fasterchanges in DNA methylation increase the speed of reprogramming at theexpense of efficiency, while accelerated chromatin modifications moderatelyimprove efficiency.

  13. Generation of cloned calves from different types of somatic cells

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Six types of bovine somatic cell lines,including a granulosa cell line of Chinese red-breed yellow cattle(YGR),a granulosa cell line of Holstein cow(HGR),two skin fibroblast cell lines of two adult Holstein cows respectively(AFB1 and AFB2),a skin fibroblast cell line(FFB)and an oviduct epithelial cell line(FOV)of a Holstein fetus,were established.Somatic cell nuclear transfer(SCNT)was carried out using these cells as nuclei donor,and a total of 12 healthy calves were cloned.The effects of different types of donor cells on developmental potential of bovine SCNT embryos were investigated.(i)There was no significant difference in development rates to the blastocyst stage for SCNT embryos from YGR and HGR(33.2% and 35.1%,respectively).Pregnancy rates of them were 33.3% and 30.2%,respectively; and birth rates were 16.7%and 11.6%,respectively.(ii)Development rates to the blastocyst stage for SCNT embryos from diffetent individuals(AFB1 and AFB2)differed significantly(27.9% and 39.4%,respectively,P <0.05).Pregnancy rates of them were 36.2% and 36.4%,respectively; and birth rates were 14.9% and 27.3%,respectively.(iii)There was significant difference in development rates to the blastocyst stage for SCNT embryos from FFB and FOV of the same fetus(37.9% and 41.5%,respectively,P < 0.05).Pregnancy rates of them were 45.7% and 24.1%,respectively; and birth rates were 22.9 % and 10.3%,respectively.Finally,developmental potential of bovine SCNT embryos from all four types of somatic cells from Holstein cows(HGR,AFB,FFB and FOV)were compared.For in vitro development stage,development rates to the blastocyst stage for SCNT embryos from HGR,AFB,FFB and FOV were 35.1%A,29.4%B,37.9%A and 41.5%C,respectively(pABC<0.05); for in vivo development stage,pregnancy rates of them were 30.2%,36.2%,45.7%and 24.1%,respectively; and birth rates of them were 11.6%,17.2%,22.9% and 10.3% respectively.

  14. Recent Progress of Somatic Cell Nuclear Transfer in Pigs

    Institute of Scientific and Technical Information of China (English)

    Xu Xiaoming; Dou Zhongying

    2005-01-01

    Research in the field of somatic cell nuclear transfer (SCNT) and transgenic cloning in pigs has become a global hotspot, because porcine organs probably can be the first source of donor organs for human xenotransplantation. In recent years, though great progress has been made in porcine SCNT, the efficiency of nuclear transfer remains very low (<1% ). Thus, it is necessary to improve the procedure of nuclear transfer and to investigate some basic problems further. Recent progress and the related problems of SCNT in pigs are reviewed and analyzed so as to offer some beneficial illumination to researchers.

  15. Reconstruction of human embryos derived from somatic cells

    Institute of Scientific and Technical Information of China (English)

    LU Changfu; LIN Ge; XIE Changqing; GONG Fei; ZHOU Hong; TAN Yueqiu; LU Guangxiu

    2003-01-01

    Reconstruction of human nuclear transfer embryos is a necessary step of therapeutic cloning. In this study we injected somatic cell nuclei into MⅡ oocytes and activated reconstructed oocytes with calcium ionophore A23187 (CaA) and 6-dimethylaminopurine (6-DMAP). After oocyte activation and 2PN formation, we removed the female PN. By using this method, we avoided the application of DNA fluorescent stain and ultraviolet light for oocyte enucleation, and over elimination of ooplasm was also mitigated. Some reconstructed embryos developed into theblastocyst stage in vitro.

  16. Applications of somatic cell nuclear transfer in goats

    Directory of Open Access Journals (Sweden)

    Ton Yoisungnern

    2014-06-01

    Full Text Available A number of animals with genetically identical appearance can be produced by somatic cell nuclear transfer (SCNT. From current advancement of SCNT and molecular techniques, production of a transgenic animal becomes easier. Although cloning efficiency in goat is low, the ability to propagate genetically identical animals, with a gene or genes of interest, would be important for increasing productivity and ultimately the economic livelihood. In this paper, the potential applications and uses of SCNT technology like production of transgenic goat for production of quality milk and meat are discussed.

  17. Mutational History of a Human Cell Lineage from Somatic to Induced Pluripotent Stem Cells.

    Directory of Open Access Journals (Sweden)

    Foad J Rouhani

    2016-04-01

    Full Text Available The accuracy of replicating the genetic code is fundamental. DNA repair mechanisms protect the fidelity of the genome ensuring a low error rate between generations. This sustains the similarity of individuals whilst providing a repertoire of variants for evolution. The mutation rate in the human genome has recently been measured to be 50-70 de novo single nucleotide variants (SNVs between generations. During development mutations accumulate in somatic cells so that an organism is a mosaic. However, variation within a tissue and between tissues has not been analysed. By reprogramming somatic cells into induced pluripotent stem cells (iPSCs, their genomes and the associated mutational history are captured. By sequencing the genomes of polyclonal and monoclonal somatic cells and derived iPSCs we have determined the mutation rates and show how the patterns change from a somatic lineage in vivo through to iPSCs. Somatic cells have a mutation rate of 14 SNVs per cell per generation while iPSCs exhibited a ten-fold lower rate. Analyses of mutational signatures suggested that deamination of methylated cytosine may be the major mutagenic source in vivo, whilst oxidative DNA damage becomes dominant in vitro. Our results provide insights for better understanding of mutational processes and lineage relationships between human somatic cells. Furthermore it provides a foundation for interpretation of elevated mutation rates and patterns in cancer.

  18. Burkitt's lymphoma is a malignancy of mature B cells expressing somatically mutated V region genes.

    OpenAIRE

    Klein, U.; Klein, G.; Ehlin-Henriksson, B.; Rajewsky, K.; Küppers, R.

    1995-01-01

    BACKGROUND: The developmental stage from which stems the malignant B cell population in Burkitt's lymphoma (BL) is unclear. An approach to answering this question is provided by the sequence analysis of rear-ranged immunoglobulin (Ig) variable region (V) genes from BL for evidence of somatic mutations, together with a phenotypic characterization. As somatic hypermutation of Ig V region genes occurs in germinal center B cells, somatically mutated Ig genes are found in germinal center B cells a...

  19. Injection molded pinched flow fractionation device for enrichment of somatic cells in cow milk

    DEFF Research Database (Denmark)

    Jensen, Marie Pødenphant; Marie, Rodolphe; Olesen, Tom;

    2014-01-01

    In this paper the continuous microfluidic separation technique pinched flow fractionation is applied to the enrichment of somatic cells from cow milk. Somatic cells were separated from the smallest fat particles and proteins thus better imaging and analysis of the cells can be achieved...

  20. Rhesus monkey embryos produced by nuclear transfer from embryonic blastomeres or somatic cells.

    Science.gov (United States)

    Mitalipov, Shoukhrat M; Yeoman, Richard R; Nusser, Kevin D; Wolf, Don P

    2002-05-01

    Production of genetically identical nonhuman primates would reduce the number of animals required for biomedical research and dramatically impact studies pertaining to immune system function, such as development of the human-immunodeficiency-virus vaccine. Our long-term goal is to develop robust somatic cell cloning and/or twinning protocols in the rhesus macaque. The objective of this study was to determine the developmental competence of nuclear transfer (NT) embryos derived from embryonic blastomeres (embryonic cell NT) or fetal fibroblasts (somatic cell NT) as a first step in the production of rhesus monkeys by somatic cell cloning. Development of cleaved embryos up to the 8-cell stage was similar among embryonic and somatic cell NT embryos and comparable to controls created by intracytoplasmic sperm injection (ICSI; mean +/- SEM, 81 +/- 5%, 88 +/- 7%, and 87 +/- 4%, respectively). However, significantly lower rates of development to the blastocyst stage were observed with somatic cell NT embryos (1%) in contrast to embryonic cell NT (34 +/- 15%) or ICSI control embryos (46 +/- 6%). Development of somatic cell NT embryos was not markedly affected by donor cell treatment, timing of activation, or chemical activation protocol. Transfer of embryonic, but not of somatic cell NT embryos, into recipients resulted in term pregnancy. Future efforts will focus on optimizing the production of somatic cell NT embryos that develop in high efficiency to the blastocyst stage in vitro.

  1. Gnotobiotic Miniature Pig Interbreed Somatic Cell Nuclear Transfer for Xenotransplantation.

    Science.gov (United States)

    Hwang, Jeong Ho; Kim, Sang Eun; Gupta, Mukesh Kumar; Lee, HoonTaek

    2016-08-01

    Transgenic animal producing technology has improved consistently over the last couple of decades. Among the available methods, somatic cell nuclear transfer (SCNT) technology was officially the most popular. However, SCNT has low efficiency and requires a highly skilled individual. Additionally, the allo-SCNT nuclear reprogramming mechanism is poorly understood in the gnotobiotic miniature pig, which is a candidate for xenotransplantation, making sampling in oocytes very difficult compared to commercial hybrid pigs. Therefore, interbreed SCNT (ibSCNT), which is a combination of miniature pig and commercial pig (Landrace based), was analyzed and was found to be similar to SCNT in terms of the rate of blastocyst formation (12.6% ± 2.9% vs. 15.5% ± 2.2%; p > 0.05). However, a significantly lower fusion rate was observed in the ibSCNT compared to normal SCNT with Landrace pig somatic cells (29.6% ± 0.8% vs. 65.0% ± 4.9%). Thus, the optimization of fusion parameters was necessary for efficient SCNT. Our results further revealed that ibSCNT by the whole-cell intracytoplasmic injection (WCICI) method had a significantly higher blastocyst forming efficiency than the electrofusion method (31.1 ± 8.5 vs. 15.5% ± 2.2%). The nuclear remodeling and the pattern of changes in acetylation at H3K9 residue were similar in both SCNT and ibSCNT embryos.

  2. Agronomic traits and RAPD analysis of two mutants derived from rice somatic cell culturing

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Genetic variation, including agronomic trait variation, often occurs in somatic cell culturing. In this study, we compared the main agronomic traits of two rice mutants, M3 and M14, which were derived from Shenxiangjing 5 somatic cell culturing. Significant differences were found between the two mutants and the wild rice Shenxiangjing 5 (Table 1). Results were as follows:

  3. Production of transgenic calves by somatic cell nuclear transfer

    Institute of Scientific and Technical Information of China (English)

    GONG Guochun; WAN Rong; HUANG Yinghua; LI Ning; DAI Yunping; FAN Baoliang; ZHU Huabing; WANG Lili; WANG Haiping; TANG Bo; LIU Ying; LI Rong

    2004-01-01

    Bovine fetal oviduct epithelial cells were transfected with constructed double marker selective vector (pCE-EGFP-IRES-Neo-dNdB) containing the enhanced green fluorescent protein (EGFP) and neomycin-resistant (Neor) genes by electroporation, and a transgenic cell line was obtained. Somatic cell nuclear transfer (SCNT) was carried out using the transgenic cells as nuclei donor. A total of 424 SCNT embryos were reconstructed and 208 (49.1%) of them developed to blastocyst stage. 17 blastocysts on D 7 after reconstruction were transferred to 17 surrogate calves, and 5 (29.4%) recipients were found to be pregnant. Three of them maintained to term and delivered three cloned calves. PCR and Southern blot analysis confirmed the integration of transgene in all of the three cloned calves. In addition, expression of EGFP was detected in biopsy isolated from the transgenic cloned calves and fibroblasts derived from the biopsy. Our results suggest that transgenic calves could be efficiently produced by SCNT using transgenic cells as nuclei donor. Furthermore, all cloned animals could be ensured to be transgenic by efficiently pre-screening transgenic cells and SCNT embryos using the constructed double marker selective vector.

  4. Somatic cell and factors which affect their count in milk

    Directory of Open Access Journals (Sweden)

    Zrinka Čačić

    2003-01-01

    Full Text Available Milk quality is determined by chemical composition, physical characteristics and hygienic parameters. The main indicators of hygienic quality of milk are total number of microorganisms and somatic cell count (SCC. Environmental factors have the greatest influence on increasing SCC. The most important environmental parameters are status of udder infection, age of cow, stage of lactation, number of lactation, breed, housing, geographicalarea and seasons, herd size, stress, heavy physical activity and, milking. A farmer (milk producer himself can control a great number of environmental factors using good management practise and permanent education. Since SCC participate in creating the price of milk, it is necessary to inform milk producers how to organise their production so that they would produce maximum quantity of good hygienic quality milk.

  5. Somatic Stem Cells and Their Dysfunction in Endometriosis

    Science.gov (United States)

    Djokovic, Dusan; Calhaz-Jorge, Carlos

    2015-01-01

    Emerging evidence indicates that somatic stem cells (SSCs) of different types prominently contribute to endometrium-associated disorders such as endometriosis. We reviewed the pertinent studies available on PubMed, published in English language until December 2014 and focused on the involvement of SSCs in the pathogenesis of this common gynecological disease. A concise summary of the data obtained from in vitro experiments, animal models, and human tissue analyses provides insights into the SSC dysregulation in endometriotic lesions. In addition, a set of research results is presented supporting that SSC-targeting, in combination with hormonal therapy, may result in improved control of the disease, while a more in-depth characterization of endometriosis SSCs may contribute to the development of early-disease diagnostic tests with increased sensitivity and specificity. Key message: Seemingly essential for the establishment and progression of endometriotic lesions, dysregulated SSCs, and associated molecular alterations hold a promise as potential endometriosis markers and therapeutic targets. PMID:25593975

  6. CYTOLOGICAL QUALITY OF GOAT MILK ON THE BASIS OF THE SOMATIC CELL COUNT

    Directory of Open Access Journals (Sweden)

    Henryka BERNACKA

    2007-07-01

    Full Text Available The aim of the present paper was to evaluate the cytological quality of goat milk based on the somatic cell count in respective months of lactation. Besides there was defined the effect of somatic cell on the milk production and chemical composition of milk. The research covered goats of color improved breed in the 2nd and 3rd lactation. Daily milk yield, chemical composition of milk and its somatic cell count were defined based on monthly morning and evening control milkings from both teats, following the A4 method applied in District Animal Evaluation Stations. The research indicated that the greater the somatic cell count in milk, the lower the daily milk yield, however the greater the somatic cell count, the greater the percentage content of fat and dry matter and the lower the content of lactose.

  7. Birth of Beagle dogs by somatic cell nuclear transfer.

    Science.gov (United States)

    Hossein, Mohammad Shamim; Jeong, Yeon Woo; Park, Sun Woo; Kim, Joung Joo; Lee, Eugine; Ko, Kyeong Hee; Hyuk, Park; Hoon, Song Seung; Kim, Yeun Wook; Hyun, Sang Hwan; Shin, Taeyoung; Hwang, Woo Suk

    2009-09-01

    The present study was undertaken to evaluate two enucleation methods for somatic cell nuclear transfer (SCNT), and to standardize the optimum number of embryos for transfer to each recipient for canines. Oocytes retrieved from outbreed dogs were reconstructed with adult somatic cells from a male Beagle dog. A total of 134 or 267 oocytes were enucleated either by aspiration or squeezing method, fused with two DC pulses of 1.75 kV/cm for 15 micros electrical stimulation, chemically activated after 1h of fusion using 10 microM calcium ionophore for 4 min and cultured 4h in 1.9 mM 6-dimethylaminopurine. Finally, 103 or 214 embryos for aspiration or squeezing method were transferred to 6 or 11 naturally synchronized recipients, respectively. A total of 53, 317 and 342 embryos were transferred to 7, 17 and 12 recipients for the group of 4-10, 11-25 and 26-40 embryos, respectively. There was no difference between fusion rate (76.87% vs. 80.15%), full term pregnancy rate (16.66% vs. 27.27%) and percent of live puppies born (0.97% vs. 1.87%) for aspiration and squeezing method (P>0.05). Production efficiency of cloned dogs was significantly affected by the number of embryos transferred to each recipient. No pregnancy was established for the group of 4-10 embryos (n=7) and 26-40 embryos (n=12) while pregnancy was detected in 23.53% recipients received a group of 11-25 embryos (n=17). Among them, five (1.76%) live puppies were born (P<0.05). These data show an increase in the overall efficiency of SCNT in canine species.

  8. Deterministic direct reprogramming of somatic cells to pluripotency.

    Science.gov (United States)

    Rais, Yoach; Zviran, Asaf; Geula, Shay; Gafni, Ohad; Chomsky, Elad; Viukov, Sergey; Mansour, Abed AlFatah; Caspi, Inbal; Krupalnik, Vladislav; Zerbib, Mirie; Maza, Itay; Mor, Nofar; Baran, Dror; Weinberger, Leehee; Jaitin, Diego A; Lara-Astiaso, David; Blecher-Gonen, Ronnie; Shipony, Zohar; Mukamel, Zohar; Hagai, Tzachi; Gilad, Shlomit; Amann-Zalcenstein, Daniela; Tanay, Amos; Amit, Ido; Novershtern, Noa; Hanna, Jacob H

    2013-10-03

    Somatic cells can be inefficiently and stochastically reprogrammed into induced pluripotent stem (iPS) cells by exogenous expression of Oct4 (also called Pou5f1), Sox2, Klf4 and Myc (hereafter referred to as OSKM). The nature of the predominant rate-limiting barrier(s) preventing the majority of cells to successfully and synchronously reprogram remains to be defined. Here we show that depleting Mbd3, a core member of the Mbd3/NuRD (nucleosome remodelling and deacetylation) repressor complex, together with OSKM transduction and reprogramming in naive pluripotency promoting conditions, result in deterministic and synchronized iPS cell reprogramming (near 100% efficiency within seven days from mouse and human cells). Our findings uncover a dichotomous molecular function for the reprogramming factors, serving to reactivate endogenous pluripotency networks while simultaneously directly recruiting the Mbd3/NuRD repressor complex that potently restrains the reactivation of OSKM downstream target genes. Subsequently, the latter interactions, which are largely depleted during early pre-implantation development in vivo, lead to a stochastic and protracted reprogramming trajectory towards pluripotency in vitro. The deterministic reprogramming approach devised here offers a novel platform for the dissection of molecular dynamics leading to establishing pluripotency at unprecedented flexibility and resolution.

  9. Stress-mediated p38 activation promotes somatic cell reprogramming

    Institute of Scientific and Technical Information of China (English)

    Xinxiu Xu; Quan Wang; Yuan Long; Ru Zhang; Xiaoyuan Wei; Mingzhe Xing; Haifeng Gu

    2013-01-01

    Environmental stress-mediated adaptation plays essential roles in the evolution of life.Cellular adaptation mechanisms usually involve the regulation of chromatin structure,transcription,mRNA stability and translation,which eventually lead to efficient changes in gene expression.Global epigenetic change is also involved in the reprogramming of somatic cells into induced pluripotent stem (iPS) cells by defined factors.Here we report that environmental stress such as hyperosmosis not only facilitates four factor-mediated reprogramming,but also enhances two or one factor-induced iPS cell generation.Hyperosmosis-induced p38 activation plays a critical role in this process.Constitutive active p38 mimics the positive effect of hyperosmosis,while dominant negative p38 and p38 inhibitor block the effect of hyperosmosis.Further study indicates stress-mediated p38 activation may promote reprogramming by reducing the global DNA methylation level and enhancing the expression of pluripotency genes.Our results demonstrate how simple environmental stress like hyperosmosis helps to alter the fate of cells via intracellular signaling and epigenetic modulation.

  10. Somatic deletions implicated in functional diversity of brain cells of individuals with schizophrenia and unaffected controls.

    Science.gov (United States)

    Kim, Junho; Shin, Jong-Yeon; Kim, Jong-Il; Seo, Jeong-Sun; Webster, Maree J; Lee, Doheon; Kim, Sanghyeon

    2014-01-22

    While somatic DNA copy number variations (CNVs) have been identified in multiple tissues from normal people, they have not been well studied in brain tissues from individuals with psychiatric disorders. With ultrahigh depth sequencing data, we developed an integrated pipeline for calling somatic deletions using data from multiple tissues of the same individual or a single tissue type taken from multiple individuals. Using the pipelines, we identified 106 somatic deletions in DNA from prefrontal cortex (PFC) and/or cerebellum of two normal controls subjects and/or three individuals with schizophrenia. We then validated somatic deletions in 18 genic and in 1 intergenic region. Somatic deletions in BOD1 and CBX3 were reconfirmed using DNA isolated from non-pyramidal neurons and from cells in white matter using laser capture microdissection (LCM). Our results suggest that somatic deletions may affect metabolic processes and brain development in a region specific manner.

  11. The mechanism of gene targeting in human somatic cells.

    Directory of Open Access Journals (Sweden)

    Yinan Kan

    2014-04-01

    Full Text Available Gene targeting in human somatic cells is of importance because it can be used to either delineate the loss-of-function phenotype of a gene or correct a mutated gene back to wild-type. Both of these outcomes require a form of DNA double-strand break (DSB repair known as homologous recombination (HR. The mechanism of HR leading to gene targeting, however, is not well understood in human cells. Here, we demonstrate that a two-end, ends-out HR intermediate is valid for human gene targeting. Furthermore, the resolution step of this intermediate occurs via the classic DSB repair model of HR while synthesis-dependent strand annealing and Holliday Junction dissolution are, at best, minor pathways. Moreover, and in contrast to other systems, the positions of Holliday Junction resolution are evenly distributed along the homology arms of the targeting vector. Most unexpectedly, we demonstrate that when a meganuclease is used to introduce a chromosomal DSB to augment gene targeting, the mechanism of gene targeting is inverted to an ends-in process. Finally, we demonstrate that the anti-recombination activity of mismatch repair is a significant impediment to gene targeting. These observations significantly advance our understanding of HR and gene targeting in human cells.

  12. The mechanism of gene targeting in human somatic cells.

    Science.gov (United States)

    Kan, Yinan; Ruis, Brian; Lin, Sherry; Hendrickson, Eric A

    2014-04-01

    Gene targeting in human somatic cells is of importance because it can be used to either delineate the loss-of-function phenotype of a gene or correct a mutated gene back to wild-type. Both of these outcomes require a form of DNA double-strand break (DSB) repair known as homologous recombination (HR). The mechanism of HR leading to gene targeting, however, is not well understood in human cells. Here, we demonstrate that a two-end, ends-out HR intermediate is valid for human gene targeting. Furthermore, the resolution step of this intermediate occurs via the classic DSB repair model of HR while synthesis-dependent strand annealing and Holliday Junction dissolution are, at best, minor pathways. Moreover, and in contrast to other systems, the positions of Holliday Junction resolution are evenly distributed along the homology arms of the targeting vector. Most unexpectedly, we demonstrate that when a meganuclease is used to introduce a chromosomal DSB to augment gene targeting, the mechanism of gene targeting is inverted to an ends-in process. Finally, we demonstrate that the anti-recombination activity of mismatch repair is a significant impediment to gene targeting. These observations significantly advance our understanding of HR and gene targeting in human cells.

  13. Somatic Embryogenesis from Cell Suspension Cultures of Aspen Clone

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Suspension cultures initiated from callus derived from petiole explants of aspen hybrid (Populus tremuloides × P.tremula) produced somatic embryos. Callus was induced on a MS medium supplemented with 5 mg·L-1 2,4-D and 0.05 mg·L-1 zeatin under light conditions. Embryogenic calli were obtained when a subsequent subculture of calli was suspended in the same basal medium with 10 mg·L-1 2,4-D. The highest number of globular embryos were induced from embryogenic calli by cell suspension culture in a MS liquid medium supplemented with 10 mg·L-1 2,4-D. Genotype and 2,4-D concentration were vital to the induction of embryogenic calli producing competent cells. Embryogenic calli for each genotype were heterogeneous. Green calli with gel-like consistency could yield more competent cells than light yellow embryogenic calli. However, some globular embryos broke into slices and some developed abnormally after one month of culture under the same or other hormonal conditions.

  14. File list: NoD.Emb.50.AllAg.Gonadal_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Emb.50.AllAg.Gonadal_somatic_cells mm9 No description Embryo Gonadal somatic ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Emb.50.AllAg.Gonadal_somatic_cells.bed ...

  15. File list: InP.Emb.50.AllAg.Gonadal_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.50.AllAg.Gonadal_somatic_cells mm9 Input control Embryo Gonadal somatic cel...ls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Emb.50.AllAg.Gonadal_somatic_cells.bed ...

  16. File list: NoD.Emb.05.AllAg.Gonadal_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Emb.05.AllAg.Gonadal_somatic_cells mm9 No description Embryo Gonadal somatic ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Emb.05.AllAg.Gonadal_somatic_cells.bed ...

  17. File list: InP.Emb.05.AllAg.Gonadal_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.05.AllAg.Gonadal_somatic_cells mm9 Input control Embryo Gonadal somatic cel...ls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Emb.05.AllAg.Gonadal_somatic_cells.bed ...

  18. File list: InP.Emb.10.AllAg.Gonadal_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.10.AllAg.Gonadal_somatic_cells mm9 Input control Embryo Gonadal somatic cel...ls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Emb.10.AllAg.Gonadal_somatic_cells.bed ...

  19. File list: NoD.Emb.10.AllAg.Gonadal_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Emb.10.AllAg.Gonadal_somatic_cells mm9 No description Embryo Gonadal somatic ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Emb.10.AllAg.Gonadal_somatic_cells.bed ...

  20. File list: NoD.Emb.20.AllAg.Gonadal_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Emb.20.AllAg.Gonadal_somatic_cells mm9 No description Embryo Gonadal somatic ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Emb.20.AllAg.Gonadal_somatic_cells.bed ...

  1. File list: NoD.Gon.20.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Gon.20.AllAg.Testicular_somatic_cells mm9 No description Gonad Testicular somatic... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Gon.20.AllAg.Testicular_somatic_cells.bed ...

  2. File list: NoD.Gon.05.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Gon.05.AllAg.Testicular_somatic_cells mm9 No description Gonad Testicular somatic... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Gon.05.AllAg.Testicular_somatic_cells.bed ...

  3. File list: NoD.Gon.10.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Gon.10.AllAg.Testicular_somatic_cells mm9 No description Gonad Testicular somatic... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Gon.10.AllAg.Testicular_somatic_cells.bed ...

  4. File list: InP.Gon.10.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Gon.10.AllAg.Testicular_somatic_cells mm9 Input control Gonad Testicular somatic... cells SRX591728,SRX591716 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Gon.10.AllAg.Testicular_somatic_cells.bed ...

  5. File list: NoD.Gon.50.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Gon.50.AllAg.Testicular_somatic_cells mm9 No description Gonad Testicular somatic... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Gon.50.AllAg.Testicular_somatic_cells.bed ...

  6. File list: InP.Gon.20.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Gon.20.AllAg.Testicular_somatic_cells mm9 Input control Gonad Testicular somatic... cells SRX591728,SRX591716 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Gon.20.AllAg.Testicular_somatic_cells.bed ...

  7. File list: InP.Gon.50.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Gon.50.AllAg.Testicular_somatic_cells mm9 Input control Gonad Testicular somatic... cells SRX591728,SRX591716 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Gon.50.AllAg.Testicular_somatic_cells.bed ...

  8. Somatic cell nuclear transfer and derivation of embryonic stem cells in the mouse.

    Science.gov (United States)

    Markoulaki, Styliani; Meissner, Alexander; Jaenisch, Rudolf

    2008-06-01

    Addressing the fundamental questions of nuclear equivalence in somatic cells has fascinated scientists for decades and has resulted in the development of somatic cell nuclear transfer (SCNT) or animal cloning. SCNT involves the transfer of the nucleus of a somatic cell into the cytoplasm of an egg whose own chromosomes have been removed. In the mouse, SCNT has not only been successfully used to address the issue of nuclear equivalence, but has been used as a model system to test the hypothesis that embryonic stem cells (ESCs) derived from NT blastocysts have the potential to correct--through genetic manipulations--degenerative diseases. This paper aims to provide a comprehensive description of SCNT in the mouse and the derivation of ESCs from blastocysts generated by this technique. SCNT is a very challenging and inefficient procedure because it is technically complex, it bypasses the normal events of gamete interactions and egg activation, and it depends on adequate reprogramming of the somatic cell nucleus in vivo. Improvements in any or all those aspects may enhance the efficiency and applicability of SCNT. ESC derivation from SCNT blastocysts, on the other hand, requires the survival of only a few successfully reprogrammed cells, which have the capacity to proliferate indefinitely in vitro, maintain correct genetic and epigenetic status, and differentiate into any cell type in the body--characteristics that are essential for transplantation therapy or any other in vivo application.

  9. Antigen receptors and somatic hypermutation in B-cell chronic lymphocytic leukemia with Richter's transformation

    NARCIS (Netherlands)

    L.A. Smit; F. van Maldegem; A.W. Langerak; C.E. van der Schoot; M.J. de Wit; S. Bea; E. Campo; R.J. Bende; C.J.M. van Noesel

    2006-01-01

    Background and Objectives. Activation-induced cytidine deaminase is essential for somatic hypermutation and class switch recombination of the immunoglobulin genes in B cells. It has been proposed that aberrant targeting of the somatic hypermutation machinery is instrumental in initiation and progres

  10. Direct reprogramming of somatic cells into neural stem cells or neurons for neurological disorders

    Institute of Scientific and Technical Information of China (English)

    Shaoping Hou; Paul Lu

    2016-01-01

    Direct reprogramming of somatic cells into neurons or neural stem cells is one of the most important fron-tier ifelds in current neuroscience research. Without undergoing the pluripotency stage, induced neurons or induced neural stem cells are a safer and timelier manner resource in comparison to those derived from induced pluripotent stem cells. In this prospective, we review the recent advances in generation of induced neurons and induced neural stem cellsin vitro andin vivo and their potential treatments of neurological disorders.

  11. Propagation of elite rescue dogs by somatic cell nuclear transfer.

    Science.gov (United States)

    Oh, Hyun Ju; Choi, Jin; Kim, Min Jung; Kim, Geon A; Jo, Young Kwang; Choi, Yoo Bin; Lee, Byeong Chun

    2016-01-01

    The objective of the present study was to compare the efficiency of two oocyte activation culture media to produce cloned dogs from an elite rescue dog and to analyze their behavioral tendencies. In somatic cell nuclear transfer procedure, fused couplets were activated by calcium ionophore treatment for 4 min, cultured in two media: modified synthetic oviduct fluid (mSOF) with 1.9 mmol/L 6-dimethylaminopyridine (DMAP) (SOF-DMAP) or porcine zygote medium (PZM-5) with 1.9 mmol/L DMAP (PZM-DMAP) for 4 h, and then were transferred into recipients. After embryo transfer, pregnancy was detected in one out of three surrogate mothers that received cloned embryos from the PZM-DMAP group (33.3%), and one pregnancy (25%) was detected in four surrogate mothers receiving cloned embryos from the SOF-DMAP group. Each pregnant dog gave birth to one healthy cloned puppy by cesarean section. We conducted the puppy aptitude test with two cloned puppies; the two cloned puppies were classified as the same type, accepting humans and leaders easily. The present study indicated that the type of medium used in 6-DMAP culture did not increase in cloning efficiency and dogs cloned using donor cells derived from one elite dog have similar behavioral tendencies.

  12. From cloned frogs to patient matched stem cells: induced pluripotency or somatic cell nuclear transfer?

    Science.gov (United States)

    Yamada, Mitsutoshi; Byrne, James; Egli, Dieter

    2015-10-01

    Nuclear transfer has seen a remarkable comeback in the past few years. Three groups have independently reported the derivation of stem cell lines by somatic cell nuclear transfer, from either adult, neonatal or fetal cells. Though the ability of human oocytes to reprogram somatic cells to stem cells had long been anticipated, success did not arrive on a straightforward path. Little was known about human oocyte biology, and nuclear transfer protocols developed in animals required key changes to become effective with human eggs. By overcoming these challenges, human nuclear transfer research has contributed to a greater understanding of oocyte biology, provided a point of reference for the comparison of induced pluripotent stem cells, and delivered a method for the generation of personalized stem cells with therapeutic potential.

  13. Privileged Communication Embryonic Development Following Somatic Cell Nuclear Transfer Impeded by Persisting Histone Methylation

    OpenAIRE

    Matoba, Shogo; Liu, Yuting; Lu, Falong; Iwabuchi, Kumiko A.; Shen, Li; Inoue, Azusa; Zhang, Yi

    2014-01-01

    Mammalian oocytes can reprogram somatic cells into a totipotent state enabling animal cloning through somatic cell nuclear transfer (SCNT). However, the majority of SCNT embryos fail to develop to term due to undefined reprogramming defects. Here we identify histone H3 lysine 9 trimethylation (H3K9me3) of donor cell genome as a major epigenetic barrier for efficient reprogramming by SCNT. Comparative transcriptome analysis identified reprogramming resistant regions (RRRs) that are expressed n...

  14. Cell therapy using induced pluripotent stem cells or somatic stem cells: this is the question.

    Science.gov (United States)

    Somoza, Rodrigo A; Rubio, Francisco J

    2012-05-01

    A lot of effort has been developed to bypass the use of embryonic stem cells (ES) in human therapies, because of several concerns and ethical issues. Some unsolved problems of using stem cells for human therapies, excluding the human embryonic origin, are: how to regulate cell plasticity and proliferation, immunological compatibility, potential adverse side-effects when stem cells are systemically administrated, and the in vivo signals to rule out a specific cell fate after transplantation. Currently, it is known that almost all tissues of an adult organism have somatic stem cells (SSC). Whereas ES are primary involved in the genesis of new tissues and organs, SSC are involved in regeneration processes, immuno-regulatory and homeostasis mechanisms. Although the differentiating potential of ES is higher than SSC, several studies suggest that some types of SSC, such as mesenchymal stem cells (MSC), can be induced epigenetically to differentiate into tissue-specific cells of different lineages. This unexpected pluripotency and the variety of sources that they come from, can make MSC-like cells suitable for the treatment of diverse pathologies and injuries. New hopes for cell therapy came from somatic/mature cells and the discovery that could be reprogrammed to a pluripotent stage similar to ES, thus generating induced pluripotent stem cells (iPS). For this, it is necessary to overexpress four main reprogramming factors, Sox2, Oct4, Klf4 and c-Myc. The aim of this review is to analyze the potential and requirements of cellular based tools in human therapy strategies, focusing on the advantage of using MSC over iPS.

  15. The Influence of Interspecies Somatic Cell Nuclear Transfer on Epigenetic Enzymes Transcription in Early Embryos

    DEFF Research Database (Denmark)

    Morovic, Martin; Murin, Matej; Strejcek, Frantisek;

    2016-01-01

    One of the main reason for the incorrect development of embryos derived from somatic cell nuclear transfer is caused by insufficient demethylation of injected somatic chromatin to a state comparable with an early embryonic nucleus. It is already known that the epigenetic enzymes transcription....... In spite of the detection of ooplasmic DNA methyltransferases, the somatic genes for DNMT1 and DNMT3a enzymes were not expressed and the development of intergeneric embryos stopped at the 4-cell stage. Our results indicate that the epigenetic reprogramming during early mammalian development is strongly...

  16. Guidelines for monitoring bulk tank milk somatic cell and bacterial counts.

    Science.gov (United States)

    Jayarao, B M; Pillai, S R; Sawant, A A; Wolfgang, D R; Hegde, N V

    2004-10-01

    This study was conducted to establish guidelines for monitoring bulk tank milk somatic cell count and bacterial counts, and to understand the relationship between different bacterial groups that occur in bulk tank milk. One hundred twenty-six dairy farms in 14 counties of Pennsylvania participated, each providing one bulk tank milk sample every 15 d for 2 mo. The 4 bulk tank milk samples from each farm were examined for bulk tank somatic cell count and bacterial counts including standard plate count, preliminary incubation count, laboratory pasteurization count, coagulase-negative staphylococcal count, environmental streptococcal count, coliform count, and gram-negative noncoliform count. The milk samples were also examined for presence of Staphylococcus aureus, Streptococcus agalactiae, and Mycoplasma. The bacterial counts of 4 bulk tank milk samples examined over an 8-wk period were averaged and expressed as mean bacterial count per milliliter. The study revealed that an increase in the frequency of isolation of Staphylococcus aureus and Streptococcus agalactiae was significantly associated with an increased bulk tank somatic cell count. Paired correlation analysis showed that there was low correlation between different bacterial counts. Bulk tank milk with low (standard plate count also had a significantly low level of mean bulk tank somatic cell count (count (count (counts (count (count was less likely to be associated with somatic cell or other bacterial counts. Herd size and farm management practices had considerable influence on somatic cell and bacterial counts in bulk tank milk. Dairy herds that used automatic milking detachers, sand as bedding material, dip cups for teat dipping instead of spraying, and practiced pre-and postdipping had significantly lower bulk tank somatic cell and/or bacterial counts. In conclusion, categorized bulk tank somatic cell and bacterial counts could serve as indicators and facilitate monitoring of herd udder health and milk

  17. Human somatic cell nuclear transfer and reproductive cloning: an Ethics Committee opinion.

    Science.gov (United States)

    2016-04-01

    This document presents arguments that conclude that it is unethical to use somatic cell nuclear transfer (SCNT) for infertility treatment due to concerns about safety; the unknown impact of SCNT on children, families, and society; and the availability of other ethically acceptable means of assisted reproduction. This document replaces the ASRM Ethics Committee report titled, "Human somatic cell nuclear transfer and cloning," last published in Fertil Steril 2012;98:804-7.

  18. The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming

    Institute of Scientific and Technical Information of China (English)

    Athanasia D Panopoulos; Margaret Lutz; W Travis Berggren; Kun Zhang; Ronald M Evans; Gary Siuzdak; Juan Carlos Izpisua Belmonte; Oscar Yanes; SergioRuiz; Yasuyuki S Kida; Dinh Diep; Ralf Tautenhahn; Aida Herrerias; Erika M Batchelder; Nongluk Plongthongkum

    2012-01-01

    Metabolism is vital to every aspect of cell function,yet the metabolome of induced pluripotent stem cells (iPSCs)remains largely unexplored.Here we report,using an untargeted metabolomics approach,that human iPSCs share a pluripotent metabolomic signature with embryonic stem cells (ESCs) that is distinct from their parental cells,and that is characterized by changes in metabolites involved in cellular respiration.Examination of cellular bioenergetics corroborated with our metabolomic analysis,and demonstrated that somatic cells convert from an oxidative state to a glycolytic state in pluripotency.Interestingly,the bioenergetics of various somatic cells correlated with their reprogramming efficiencies.We further identified metabolites that differ between iPSCs and ESCs,which revealed novel metabolic pathways that play a critical role in regulating somatic cell reprogramming.Our findings are the first to globally analyze the metabolome of iPSCs,and provide mechanistic insight into a new layer of regulation involved in inducing pluripotency,and in evaluating iPSC and ESC equivalence.

  19. Epigenetic reprogramming by somatic cell nuclear transfer: questions and potential solutions.

    Science.gov (United States)

    Huili, Ji; Haosheng, Lu; Dengke, Pan

    2014-12-01

    Somatic cell nuclear transfer (SCNT) is a technology by which a highly differentiated somatic nucleus is transferred into an enucleated oocyte to generate a reconstructed embryo that subsequently develops to an offspring. However, to date, the efficiency of cloned animal is still low. The major reason is incomplete nuclear reprogramming of donor cells after nuclear transfer, which results in abnormal epigenetic modifications, including DNA methylation, histone acetylation, gene imprinting, X-chromosome inactivation, and telomere length. Most improvements have been made in somatic epigenetic reprogramming with small molecules and manipulating expression of specific genes. It is expected that SCNT will soon have broad applications in both basic research and practical production. In this review, we summarize the recent progress in epigenetic reprogramming by somatic cell nuclear transfer; in particular, we focus on strategies for rescuing the epigenetic errors occurring during SCNT.

  20. Factors affecting somatic cell count in dairy goats: a review

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Granda, R.; Sanchez-Rodriguez, M.; Arce, C.; Rodriguez-Estevez, V.

    2014-06-01

    Somatic cell count (SCC) in monitoring udder health has been described in numerous studies as a useful method for the diagnosis of intramammary infection (IMI), and it is considered in standards of quality and hygiene of cows milk in many countries. However, several authors have questioned the validity of SCC as a reliable IMI diagnosis tool in dairy goats. This review attempts to reflect the importance of different infectious and non-infectious factors that can modify SCC values in goat milk, and must, therefore, be taken into account when using the SCC as a tool in the improvement of udder health and the quality of milk in this species. In dairy goats, some investigations have shown that mammary bacterial infections are a major cause of increased SCC and loss of production. In goats however, the relationship between bacterial infections and SCC values is not as simple as in dairy cattle, since non-infectious factors also have a big impact on SCC. Intrinsic factors are those that depend directly on the animal: time and number of lactation (higher SCC late in lactation and in aged goats), prolificity (higher SCC in multiple births), milking time (higher SCC in evening compared to morning milking) and number of milkings per day, among others. Extrinsic factors include: milking routine (lower SCC in machine than in manual milking), seasonality and food. In addition, milk secretion in goats is mostly apocrine and therefore characterized by the presence of epithelial debris or cytoplasmic particles, which makes the use of DNA specific counters mandatory. All this information is of interest in order to correctly interpret the SCC in goat milk and to establish differential SCC standards. (Author)

  1. Factors affecting somatic cell count in dairy goats: a review

    Directory of Open Access Journals (Sweden)

    Rocío Jiménez-Granado

    2014-02-01

    Full Text Available Somatic cell count (SCC in monitoring udder health has been described in numerous studies as a useful method for the diagnosis of intramammary infection (IMI, and it is considered in standards of quality and hygiene of cow’s milk in many countries. However, several authors have questioned the validity of SCC as a reliable IMI diagnosis tool in dairy goats. This review attempts to reflect the importance of different infectious and non-infectious factors that can modify SCC values in goat milk, and must, therefore, be taken into account when using the SCC as a tool in the improvement of udder health and the quality of milk in this species. In dairy goats, some investigations have shown that mammary bacterial infections are a major cause of increased SCC and loss of production. In goats however, the relationship between bacterial infections and SCC values is not as simple as in dairy cattle, since non-infectious factors also have a big impact on SCC. Intrinsic factors are those that depend directly on the animal: time and number of lactation (higher SCC late in lactation and in aged goats, prolificity (higher SCC in multiple births, milking time (higher SCC in evening compared to morning milking and number of milkings per day, among others. Extrinsic factors include: milking routine (lower SCC in machine than in manual milking, seasonality and food. In addition, milk secretion in goats is mostly apocrine and therefore characterized by the presence of epithelial debris or cytoplasmic particles, which makes the use of DNA specific counters mandatory. All this information is of interest in order to correctly interpret the SCC in goat milk and to establish differential SCC standards.

  2. Somatic cell nuclear transfer-derived embryonic stem cell lines in humans: pros and cons.

    Science.gov (United States)

    Langerova, Alena; Fulka, Helena; Fulka, Josef

    2013-12-01

    The recent paper, published by Mitalipov's group in Cell (Tachibana et al., 2013 ), reporting the production of human somatic cell nuclear transfer (SCNT) embryonic stem cells (ESCs), opens again the debate if, in the era of induced pluripotent stem cells (iPSCs), the production of these cells is indeed necessary and, if so, whether they are different from ESCs produced from spare embryos and iPSCs. It is our opinion that these questions are very difficult to answer because it is still unclear whether and how normal ESCs differ from iPSCs.

  3. Self-renewal and pluripotency acquired through somatic reprogramming to human cancer stem cells.

    Directory of Open Access Journals (Sweden)

    Shogo Nagata

    Full Text Available Human induced pluripotent stem cells (iPSCs are reprogrammed by transient expression of transcription factors in somatic cells. Approximately 1% of somatic cells can be reprogrammed into iPSCs, while the remaining somatic cells are differentially reprogrammed. Here, we established induced pluripotent cancer stem-like cells (iCSCs as self-renewing pluripotent cell clones. Stable iCSC lines were established from unstable induced epithelial stem cell (iESC lines through re-plating followed by embryoid body formation and serial transplantation. iCSCs shared the expression of pluripotent marker genes with iPSCs, except for REX1 and LIN28, while exhibited the expression of somatic marker genes EMP1 and PPARγ. iESCs and iCSCs could generate teratomas with high efficiency by implantation into immunodeficient mice. The second iCSCs isolated from dissociated cells of teratoma from the first iCSCs were stably maintained, showing a gene expression profile similar to the first iCSCs. In the first and second iCSCs, transgene-derived Oct4, Sox2, Klf4, and c-Myc were expressed. Comparative global gene expression analyses demonstrated that the first iCSCs were similar to iESCs, and clearly different from human iPSCs and somatic cells. In iCSCs, gene expression kinetics of the core pluripotency factor and the Myc-related factor were pluripotent type, whereas the polycomb complex factor was somatic type. These findings indicate that pluripotent tumorigenicity can be conferred on somatic cells through up-regulation of the core pluripotency and Myc-related factors, prior to establishment of the iPSC molecular network by full reprogramming through down-regulation of the polycomb complex factor.

  4. Self-renewal and pluripotency acquired through somatic reprogramming to human cancer stem cells.

    Science.gov (United States)

    Nagata, Shogo; Hirano, Kunio; Kanemori, Michele; Sun, Liang-Tso; Tada, Takashi

    2012-01-01

    Human induced pluripotent stem cells (iPSCs) are reprogrammed by transient expression of transcription factors in somatic cells. Approximately 1% of somatic cells can be reprogrammed into iPSCs, while the remaining somatic cells are differentially reprogrammed. Here, we established induced pluripotent cancer stem-like cells (iCSCs) as self-renewing pluripotent cell clones. Stable iCSC lines were established from unstable induced epithelial stem cell (iESC) lines through re-plating followed by embryoid body formation and serial transplantation. iCSCs shared the expression of pluripotent marker genes with iPSCs, except for REX1 and LIN28, while exhibited the expression of somatic marker genes EMP1 and PPARγ. iESCs and iCSCs could generate teratomas with high efficiency by implantation into immunodeficient mice. The second iCSCs isolated from dissociated cells of teratoma from the first iCSCs were stably maintained, showing a gene expression profile similar to the first iCSCs. In the first and second iCSCs, transgene-derived Oct4, Sox2, Klf4, and c-Myc were expressed. Comparative global gene expression analyses demonstrated that the first iCSCs were similar to iESCs, and clearly different from human iPSCs and somatic cells. In iCSCs, gene expression kinetics of the core pluripotency factor and the Myc-related factor were pluripotent type, whereas the polycomb complex factor was somatic type. These findings indicate that pluripotent tumorigenicity can be conferred on somatic cells through up-regulation of the core pluripotency and Myc-related factors, prior to establishment of the iPSC molecular network by full reprogramming through down-regulation of the polycomb complex factor.

  5. Evaluation of porcine stem cell competence for somatic cell nuclear transfer and production of cloned animals.

    Science.gov (United States)

    Secher, Jan O; Liu, Ying; Petkov, Stoyan; Luo, Yonglun; Li, Dong; Hall, Vanessa J; Schmidt, Mette; Callesen, Henrik; Bentzon, Jacob F; Sørensen, Charlotte B; Freude, Kristine K; Hyttel, Poul

    2017-03-01

    Porcine somatic cell nuclear transfer (SCNT) has been used extensively to create genetically modified pigs, but the efficiency of the methodology is still low. It has been hypothesized that pluripotent or multipotent stem cells might result in increased SCNT efficacy as these cells are closer than somatic cells to the epigenetic state found in the blastomeres and therefore need less reprogramming. Our group has worked with porcine SCNT during the last 20 years and here we describe our experience with SCNT of 3 different stem cell lines. The porcine stem cells used were: Induced pluripotent stem cells (iPSCs) created by lentiviral doxycycline-dependent reprogramming and cultered with a GSK3β- and MEK-inhibitor (2i) and leukemia inhibitor factor (LIF) (2i LIF DOX-iPSCs), iPSCs created by a plasmid-based reprogramming and cultured with 2i and fibroblast growth factor (FGF) (2i FGF Pl-iPSCs) and embryonic germ cells (EGCs), which have earlier been characterized as being multipotent. The SCNT efficiencies of these stem cell lines were compared with that of the two fibroblast cell lines from which the iPSC lines were derived. The blastocyst rates for the 2i LIF DOX-iPSCs were 14.7%, for the 2i FGF Pl-iPSC 10.1%, and for the EGCs 34.5% compared with the fibroblast lines yielding 36.7% and 25.2%. The fibroblast- and EGC-derived embryos were used for embryo transfer and produced live offspring at similar low rates of efficiency (3.2 and 4.0%, respectively) and with several instances of malformations. In conclusion, potentially pluripotent porcine stem cells resulted in lower rates of embryonic development upon SCNT than multipotent stem cells and differentiated somatic cells.

  6. 40 CFR 798.5300 - Detection of gene mutations in somatic cells in culture.

    Science.gov (United States)

    2010-07-01

    ... cells in culture. 798.5300 Section 798.5300 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY....5300 Detection of gene mutations in somatic cells in culture. (a) Purpose. Mammalian cell culture... selected by resistance to ouabain. (2) Description. Cells in suspension or monolayer culture are exposed...

  7. Genome-wide reprogramming in hybrids of somatic cells and embryonic stem cells.

    Science.gov (United States)

    Ambrosi, Dominic J; Tanasijevic, Borko; Kaur, Anupinder; Obergfell, Craig; O'Neill, Rachel J; Krueger, Winfried; Rasmussen, Theodore P

    2007-05-01

    Recent experiments demonstrate that somatic nuclei can be reprogrammed to a pluripotent state when fused to ESCs. The resulting hybrids are pluripotent as judged by developmental assays, but detailed analyses of the underlying molecular-genetic control of reprogrammed transcription in such hybrids are required to better understand fusion-mediated reprogramming. We produced hybrids of mouse ESCs and fibroblasts that, although nearly tetraploid, exhibit characteristics of normal ESCs, including apparent immortality in culture, ESC-like colony morphology, and pluripotency. Comprehensive analysis of the mouse embryonic fibroblast/ESC hybrid transcriptome revealed global patterns of gene expression reminiscent of ESCs. However, combined analysis of variance and hierarchical clustering analyses revealed at least seven distinct classes of differentially regulated genes in comparisons of hybrids, ESCs, and somatic cells. The largest class includes somatic genes that are silenced in hybrids and ESCs, but a smaller class includes genes that are expressed at nearly equivalent levels in hybrids and ESCs that contain many genes implicated in pluripotency and chromatin function. Reprogrammed genes are distributed throughout the genome. Reprogramming events include both transcriptional silencing and activation of genes residing on chromosomes of somatic origin. Somatic/ESC hybrid cell lines resemble their pre-fusion ESC partners in terms of behavior in culture and pluripotency. However, they contain unique expression profiles that are similar but not identical to normal ESCs. ESC fusion-mediated reprogramming provides a tractable system for the investigation of mechanisms of reprogramming. Disclosure of potential conflicts of interest is found at the end of this article.

  8. Transcriptional signatures of somatic neoblasts and germline cells in Macrostomum lignano.

    Science.gov (United States)

    Grudniewska, Magda; Mouton, Stijn; Simanov, Daniil; Beltman, Frank; Grelling, Margriet; de Mulder, Katrien; Arindrarto, Wibowo; Weissert, Philipp M; van der Elst, Stefan; Berezikov, Eugene

    2016-12-20

    The regeneration-capable flatworm Macrostomum lignano is a powerful model organism to study the biology of stem cells in vivo. As a flatworm amenable to transgenesis, it complements the historically used planarian flatworm models, such as Schmidtea mediterranea. However, information on the transcriptome and markers of stem cells in M. lignano is limited. We generated a de novo transcriptome assembly and performed the first comprehensive characterization of gene expression in the proliferating cells of M. lignano, represented by somatic stem cells, called neoblasts, and germline cells. Knockdown of a selected set of neoblast genes, including Mlig-ddx39, Mlig-rrm1, Mlig-rpa3, Mlig-cdk1, and Mlig-h2a, confirmed their crucial role for the functionality of somatic neoblasts during homeostasis and regeneration. The generated M. lignano transcriptome assembly and gene expression signatures of somatic neoblasts and germline cells will be a valuable resource for future molecular studies in M. lignano.

  9. Reprogramming somatic cells to pluripotency: a fresh look at Yamanaka's model.

    Science.gov (United States)

    Li, Yangxin; Shen, Zhenya; Shelat, Harnath; Geng, Yong-Jian

    2013-12-01

    In 2006, Dr Shinya Yamanaka succeeded to reprogram somatic cells into pluripotent stem cells (iPSC) by delivering the genes encoding Oct4, Sox2, Klf4, and c-Myc. This achievement represents a fundamental breakthrough in stem cell biology and opens up a new era in regenerative medicine. However, the molecular processes by which somatic cells are reprogrammed into iPSC remain poorly understood. In 2009, Yamanaka proposed the elite and stochastic models for reprogramming mechanisms. To date, many investigators in the field of iPSC research support the concept of stochastic model, i.e., somatic cell reprogramming is an event of epigenetic transformation. A mathematical model, f (Cd, k), has also been proposed to predict the stochastic process. Here we wish to revisit the Yamanaka model and summarize the recent advances in this research field.

  10. Role of ooplasm in nuclear and nucleolar remodeling of intergeneric somatic cell nuclear transfer embryos during the first cell cycle

    DEFF Research Database (Denmark)

    Østrup, Olga; Strejcek, Frantisek; Petrovicova, Ida

    2011-01-01

    Initially, development of the zygote is under control of the oocyte ooplasm. However, it is presently unknown if and to what extent is the ooplasm able to interact with a transferred somatic cell from another species in the context of interspecies somatic cell nuclear transfer (SCNT). Here, one-cell...... intergeneric SCNT embryos were compared to their parthenogenetic counterparts to assess the effects of the introduced somatic cell. Despite the absence of morphological remodeling (premature chromatin condensation, nuclear envelope breakdown), reconstructed embryos showed nuclear and nucleolar precursor body...... (NPB) morphology similar to the host ooplasm, which, together with detected posttranslational activity of somatic cell introduced into the bovine ooplasm, suggests a universal function of ooplasmic factors. However, the lack of distinct UBF localization in intergeneric embryos indicates failures...

  11. Relationship between Somatic Cell Counts, Mastitis and Milk Quality in Ettawah Grade and PESA Goats

    Directory of Open Access Journals (Sweden)

    Molefe PETLANE

    2013-12-01

    Full Text Available Mastitis is a bacterial disease that leads to increased somatic cell counts and reduced milk quality in dairy goats. Reduction in quality is manifested through a reduction in fat, protein, lactose content and an increase in milk somatic cell counts and salts content. Thus mastitis affects productivity of animals and hence their economic value. The aim of this study was to analyze the effects of somatic cell counts (SCC and mastitis on milk quality in PE and PESA. On-Farm mastitis tests were performed on 38 lactating dairy goats and milk samples were collected from both mastitis positive and healthy animals from which quality parameters were measured using a milko tester while bacterial isolation and enumeration were done following standard protocols. Data was analyzed descriptively and the results showed that somatic cell counts and somatic cell score correlate positively with mastitis (P < 0.05. Lactose and fat content decreased with severity of mastitis in both breeds whereas in PESA protein content increased with mastitis. Salt content increases with mastitis in both breeds. S. aureus was the most isolated bacteria and associated with high SCC whereas E. coli was poorly isolated. The study concludes that mastitis leads to increased SCC and reduced milk quality in dairy goats.

  12. Embryo production and possible species preservation by nuclear transfer of somatic cells isolated from bovine semen.

    Science.gov (United States)

    Liu, Jie; Westhusin, Mark; Long, Charles; Johnson, Gregory; Burghardt, Robert; Kraemer, Duane

    2010-12-01

    Somatic cells in semen are a potential source of nuclei for nuclear transfer to produce genetically identical animals; this is especially important when an animal has died and the only viable genetic material available is frozen semen. Usefulness of somatic cells obtained from fresh (cultured) and frozen (isolated, not cultured) bovine semen for nuclear transfer was evaluated. Twelve ejaculates were collected from nine bulls representing three breeds: Charolais, Brahman, and crossbred Rodeo bull. All samples were processed immediately and cell growth was obtained from seven of the twelve ejaculates (58.3%). Cells from three bulls (with the best growth rates) were evaluated by optical microscopy and used in cloning experiments. In culture, these cells exhibited classic epithelial morphology and expressed cytokeratin and vimentin, indicating they were of epithelial origin. When cells from the three bulls were used as donor cells, 15.9% (18/113), 34.5% (29/84), and 14.4% (13/90) of the fused embryos developed into blastocysts, respectively. Of the blastocyst stage embryos, 38.9% (7/18), 72.4% (21/29), and 61.5% (8/13) hatched, respectively. Somatic cells isolated (not cultured) from frozen bovine semen were also used in the cloning experiments. Although cleavage occurred, no compact morulae or blastocysts were obtained. In conclusion, epithelial cell growth was obtained from fresh bovine ejaculates with relatively high efficiency. Somatic cells from semen can be used as nucleus donors to produce cloned blastocyst-stage embryos.

  13. Genetic effects in somatic and germ cells, induced by ionizing radiations

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, B.; Benova, D.; Bajrakova, A.; Bulanova, M.; Vyglenov, A.; Rupova, I.; Georgieva, I. (Meditsinska Akademiya, Sofia (Bulgaria). Nauchen Inst. po Rentgenologiya i Radiobiologiya)

    1983-01-01

    Quantitative data are reported on injuries to hereditary structures in somatic and sex cells, induced by different types of ionizing radiation. The model systems used were human peripheral blood lymphocytes, in vitro irradiated with different doses: bone-marrow cells of mice and rats irradiated in vivo: mouse, rat, rabbit and hamster sex cells. To evaluate the dose-effect dependency after acute and chronic irradiation, the authors used mathematical models, describing the amount of chromosomal injuries. Attempt was made to estimate the somatic and genetic risk, following acute and chronic irradiation with different doses of ionizing radiations.

  14. The Epigenetic Reprogramming Roadmap in Generation of iPSCs from Somatic Cells.

    Science.gov (United States)

    Brix, Jacob; Zhou, Yan; Luo, Yonglun

    2015-12-20

    Reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) is a comprehensive epigenetic process involving genome-wide modifications of histones and DNA methylation. This process is often incomplete, which subsequently affects iPSC reprogramming, pluripotency, and differentiation capacity. Here, we review the epigenetic changes with a focus on histone modification (methylation and acetylation) and DNA modification (methylation) during iPSC induction. We look at changes in specific epigenetic signatures, aberrations and epigenetic memory during reprogramming and small molecules influencing the epigenetic reprogramming of somatic cells. Finally, we discuss how to improve iPSC generation and pluripotency through epigenetic manipulations.

  15. Development of buffalo (Bubalus bubalis embryonic stem cell lines from somatic cell nuclear transferred blastocysts

    Directory of Open Access Journals (Sweden)

    Syed Mohmad Shah

    2015-11-01

    Full Text Available We developed buffalo embryonic stem cell lines from somatic cell nuclear transfer derived blastocysts, produced by hand-guided cloning technique. The inner cell mass of the blastocyst was cut mechanically using a Microblade and cultured onto feeder cells in buffalo embryonic stem (ES cell culture medium at 38 °C in a 5% CO2 incubator. The stem cell colonies were characterized for alkaline phosphatase activity, karyotype, pluripotency and self-renewal markers like OCT4, NANOG, SOX2, c-Myc, FOXD3, SSEA-1, SSEA-4, TRA-1-60, TRA-1-81 and CD90. The cell lines also possessed the capability to differentiate across all the three germ layers under spontaneous differentiation conditions.

  16. Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells.

    Science.gov (United States)

    Abyzov, Alexej; Mariani, Jessica; Palejev, Dean; Zhang, Ying; Haney, Michael Seamus; Tomasini, Livia; Ferrandino, Anthony F; Rosenberg Belmaker, Lior A; Szekely, Anna; Wilson, Michael; Kocabas, Arif; Calixto, Nathaniel E; Grigorenko, Elena L; Huttner, Anita; Chawarska, Katarzyna; Weissman, Sherman; Urban, Alexander Eckehart; Gerstein, Mark; Vaccarino, Flora M

    2012-12-20

    Reprogramming somatic cells into induced pluripotent stem cells (iPSCs) has been suspected of causing de novo copy number variation. To explore this issue, here we perform a whole-genome and transcriptome analysis of 20 human iPSC lines derived from the primary skin fibroblasts of seven individuals using next-generation sequencing. We find that, on average, an iPSC line manifests two copy number variants (CNVs) not apparent in the fibroblasts from which the iPSC was derived. Using PCR and digital droplet PCR, we show that at least 50% of those CNVs are present as low-frequency somatic genomic variants in parental fibroblasts (that is, the fibroblasts from which each corresponding human iPSC line is derived), and are manifested in iPSC lines owing to their clonal origin. Hence, reprogramming does not necessarily lead to de novo CNVs in iPSCs, because most of the line-manifested CNVs reflect somatic mosaicism in the human skin. Moreover, our findings demonstrate that clonal expansion, and iPSC lines in particular, can be used as a discovery tool to reliably detect low-frequency CNVs in the tissue of origin. Overall, we estimate that approximately 30% of the fibroblast cells have somatic CNVs in their genomes, suggesting widespread somatic mosaicism in the human body. Our study paves the way to understanding the fundamental question of the extent to which cells of the human body normally acquire structural alterations in their DNA post-zygotically.

  17. DNA Methylation in Peripheral Blood Cells of Pigs Cloned by Somatic Cell Nuclear Transfer

    DEFF Research Database (Denmark)

    Gao, Fei; Li, Shengting; Lin, Lin;

    2011-01-01

    in cloned pigs is required. In this study we applied methylation-specific digital karyotyping tag sequencing by Solexa technology and investigated the genome-wide DNA methylation profiles of peripheral blood cells in cloned pigs with normal phenotypes in comparison with their naturally bred controls......To date, the genome-wide DNA methylation status of cloned pigs has not been investigated. Due to the relatively low success rate of pig cloning by somatic cell nuclear transfer, a better understanding of the epigenetic reprogramming and the global methylation patterns associated with development...

  18. Factors Affecting on Somatic Cells Count in Slovak Simmental Dairy Cows

    Directory of Open Access Journals (Sweden)

    Jozef Bujko

    2014-11-01

    Full Text Available The aim this work was to analyse factors affecting on the somatic cells count in Slovak Simmental dairy cows. Data were analysed using the SAS version 9.1.3. and linear model with fixed effects of herd, years and months controls, sire and breeding types. The analyses by the effect on somatic cells count was the highest effect of herd-years-months of control R2 = 0.151316 and effect of sire R2 = 0.054182. These effects were high statistical significant P<0.01. Correlation coefficients between milk in kg, fat, protein, lactose in % with somatic cells count were r= -0.25096, r= 0.02593, r= 0.22321and r=-0.39567.

  19. Burkitt's lymphoma is a malignancy of mature B cells expressing somatically mutated V region genes.

    Science.gov (United States)

    Klein, U.; Klein, G.; Ehlin-Henriksson, B.; Rajewsky, K.; Küppers, R.

    1995-01-01

    BACKGROUND: The developmental stage from which stems the malignant B cell population in Burkitt's lymphoma (BL) is unclear. An approach to answering this question is provided by the sequence analysis of rear-ranged immunoglobulin (Ig) variable region (V) genes from BL for evidence of somatic mutations, together with a phenotypic characterization. As somatic hypermutation of Ig V region genes occurs in germinal center B cells, somatically mutated Ig genes are found in germinal center B cells and their descendents. MATERIALS AND METHODS: Rearranged V kappa region genes from 10 kappa-expressing sporadic and endemic BL-derived cell lines (9 IgM and 1 IgG positive) and three kappa-expressing endemic BL biopsy specimens were amplified by polymerase chain reaction and sequenced. In addition, VH region gene sequences from these cell lines were determined. RESULTS: All BL cell lines and the three biopsy specimens carried somatically mutated V region genes. The average mutation frequency of rearranged V kappa genes from eight BL cell lines established from sporadic BL was 1.8%. A higher frequency (6%) was found in five endemic cases (three biopsy specimens and two BL cell lines). CONCLUSIONS: The detection of somatic mutations in the rearranged V region genes suggests that both sporadic and endemic BL represent a B-cell malignancy originating from germinal center B cells or their descendants. Interestingly, the mutation frequency detected in sporadic BL is in a range similar to that characteristic for IgM-expressing B cells in the human peripheral blood and for mu chain-expressing germinal center B cells, whereas the mutation frequency found in endemic BL is significantly higher. PMID:8529116

  20. Sex-specific DoublesexM expression in subsets of Drosophila somatic gonad cells

    Directory of Open Access Journals (Sweden)

    Oliver Brian

    2007-10-01

    Full Text Available Abstract Background In Drosophila melanogaster, a pre-mRNA splicing hierarchy controls sexual identity and ultimately leads to sex-specific Doublesex (DSX transcription factor isoforms. The male-specific DSXM represses genes involved in female development and activates genes involved in male development. Spatial and temporal control of dsx during embryogenesis is not well documented. Results Here we show that DSXM is specifically expressed in subsets of male somatic gonad cells during embryogenesis. Following testis formation, germ cells remain in contact with DSXM-expressing cells, including hub cells and premeiotic somatic cyst cells that surround germ cells during spermatogenesis in larval and adult testes. Conclusion We show that dsx is transcriptionally regulated in addition to being regulated at the pre-mRNA splicing level by the sex determination hierarchy. The dsx locus is spatially controlled by somatic gonad identity. The continuous expression of DSXM in cells contacting the germline suggests an ongoing short-range influence of the somatic sex determination pathway on germ cell development.

  1. The Epigenetic Reprogramming Roadmap in Generation of iPSCs from Somatic Cells

    DEFF Research Database (Denmark)

    Brix, Jacob; Zhou, Yan; Luo, Yonglun

    2015-01-01

    Reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) is a comprehensive epigenetic process involving genome-wide modifications of histones and DNA methylation. This process is often incomplete, which subsequently affects iPSC reprograming, pluripotency, and differentiation cap...

  2. Human oocytes reprogram adult somatic nuclei of a type 1 diabetic to diploid pluripotent stem cells.

    Science.gov (United States)

    Yamada, Mitsutoshi; Johannesson, Bjarki; Sagi, Ido; Burnett, Lisa Cole; Kort, Daniel H; Prosser, Robert W; Paull, Daniel; Nestor, Michael W; Freeby, Matthew; Greenberg, Ellen; Goland, Robin S; Leibel, Rudolph L; Solomon, Susan L; Benvenisty, Nissim; Sauer, Mark V; Egli, Dieter

    2014-06-26

    The transfer of somatic cell nuclei into oocytes can give rise to pluripotent stem cells that are consistently equivalent to embryonic stem cells, holding promise for autologous cell replacement therapy. Although methods to induce pluripotent stem cells from somatic cells by transcription factors are widely used in basic research, numerous differences between induced pluripotent stem cells and embryonic stem cells have been reported, potentially affecting their clinical use. Because of the therapeutic potential of diploid embryonic stem-cell lines derived from adult cells of diseased human subjects, we have systematically investigated the parameters affecting efficiency of blastocyst development and stem-cell derivation. Here we show that improvements to the oocyte activation protocol, including the use of both kinase and translation inhibitors, and cell culture in the presence of histone deacetylase inhibitors, promote development to the blastocyst stage. Developmental efficiency varied between oocyte donors, and was inversely related to the number of days of hormonal stimulation required for oocyte maturation, whereas the daily dose of gonadotropin or the total number of metaphase II oocytes retrieved did not affect developmental outcome. Because the use of concentrated Sendai virus for cell fusion induced an increase in intracellular calcium concentration, causing premature oocyte activation, we used diluted Sendai virus in calcium-free medium. Using this modified nuclear transfer protocol, we derived diploid pluripotent stem-cell lines from somatic cells of a newborn and, for the first time, an adult, a female with type 1 diabetes.

  3. Human endometrial side population cells exhibit genotypic, phenotypic and functional features of somatic stem cells.

    Directory of Open Access Journals (Sweden)

    Irene Cervelló

    Full Text Available During reproductive life, the human endometrium undergoes around 480 cycles of growth, breakdown and regeneration should pregnancy not be achieved. This outstanding regenerative capacity is the basis for women's cycling and its dysfunction may be involved in the etiology of pathological disorders. Therefore, the human endometrial tissue must rely on a remarkable endometrial somatic stem cells (SSC population. Here we explore the hypothesis that human endometrial side population (SP cells correspond to somatic stem cells. We isolated, identified and characterized the SP corresponding to the stromal and epithelial compartments using endometrial SP genes signature, immunophenotyping and characteristic telomerase pattern. We analyzed the clonogenic activity of SP cells under hypoxic conditions and the differentiation capacity in vitro to adipogenic and osteogenic lineages. Finally, we demonstrated the functional capability of endometrial SP to develop human endometrium after subcutaneous injection in NOD-SCID mice. Briefly, SP cells of human endometrium from epithelial and stromal compartments display genotypic, phenotypic and functional features of SSC.

  4. Genotoxicity of two arsenic compounds in germ cells and somatic cells of Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Ramos-Morales, P.; Rodriguez-Arnaiz, R. [Laboratorio de Genetica, Coyoacan (Mexico)

    1995-12-31

    Two arsenic compounds, sodium arsenite (NaAsO{sup 2}) and sodium arsenate (Na{sub 2}HasO{sub 4}), were tested for their possible genotoxicity in germinal and somatic cells of Drosophila melanagaster. For germinal cells, the sex-linked recessive lethal test (SLRLT) and the sea chromosome loss test (SCLT) were used. In both tests, a broad scheme of 2-3-3 days was employed. Two routes of administration were used for the SLRLT: adult male injection (0.38, 0.77 mM used for Sodium arsenite; and 0.01, 0.02 mM for sodium arsenate). The the SCLT the compounds were injected into males. Controls were treated with a solution of 5% sucrose which was employed as solvent. The somatic mutation and recombination test (SMART) was run in the w{sup +}/w eye assay as well as in the mwh +/+ flr{sup 3} wing test, employing the standard and insecticide-resistant strains. In both tests, third instar larvae were treated for 6 hr with sodium arsenite (0.38, 0.77, 1.15 mM), and sodium arsenate (0.54, 1.34, 2.69 mM). In the SLRLT, both compounds were positive, but they were negative in the SCLT. The genotoxicity of both compounds was localized mainly in somatic cells, in agreement with reports on the carcinogenic potential of arsenical compounds Solium and arsenite was an order of magnitude more toxic and mutagenic than sodium arsenate. This study confirms the reliability of the Drosophila in vivo system to test the genotoxicity of environmental compounds. 75 refs., 4 figs., 4 tabs.

  5. Embryonic stem cells generated by nuclear transfer of human somatic nuclei into rabbit oocytes

    Institute of Scientific and Technical Information of China (English)

    YING CHEN; QING ZHANG YANG; DA YUAN CHEN; MIN KANG WANG; JIN SONG LI; SHAO LIANG HUANG; XIANG YIN KONG; YAO ZHOU SHI; ZHI QIANG WANG; JIA HUI XIA; ZHI GAO LONG; ZHI XU HE; ZHI GANG XUE; WEN XIANG DING; HUI ZHEN SHENG; AILIAN LIU; KAI WANG; WEN WEI MAO; JIAN XIN CHU; YONG LU; ZHENG FU FANG; YING TANG SHI

    2003-01-01

    To solve the problem of immune incompatibility, nuclear transplantation has been envisaged as a means to produce cells or tissues for human autologous transplantation. Here we have derived embryonic stem cells by the transfer of human somatic nuclei into rabbit oocytes. The number of blastocysts that developed from the fused nuclear transfer was comparable among nuclear donors at ages of 5, 42, 52 and 60 years, and nuclear transfer (NT) embryonic stem cells (ntES cells) were subsequently derived from each of the four age groups. These results suggest that human somatic nuclei can form ntES cells independent of the age of the donor. The derived ntES cells are human based on karyotype, isogenicity, in situ hybridization, PGR and immunocytochemistry with probes that distinguish between the various species. The ntES cells maintain the capability of sustained growth in an undifferentiated state, and form embryoid bodies, which, on further induction, give rise to cell types such as neuron and muscle, as well as mixed cell populations that express markers representative of all three germ layers. Thus, ntES cells derived from human somatic cells by NT to rabbit eggs retain phenotypes similar to those of conventional human ES cells, including the ability to undergo multilineage cellular differentiation.

  6. Transient acquisition of pluripotency during somatic cell transdifferentiation with iPSC reprogramming factors.

    Science.gov (United States)

    Maza, Itay; Caspi, Inbal; Zviran, Asaf; Chomsky, Elad; Rais, Yoach; Viukov, Sergey; Geula, Shay; Buenrostro, Jason D; Weinberger, Leehee; Krupalnik, Vladislav; Hanna, Suhair; Zerbib, Mirie; Dutton, James R; Greenleaf, William J; Massarwa, Rada; Novershtern, Noa; Hanna, Jacob H

    2015-07-01

    Somatic cells can be transdifferentiated to other cell types without passing through a pluripotent state by ectopic expression of appropriate transcription factors. Recent reports have proposed an alternative transdifferentiation method in which fibroblasts are directly converted to various mature somatic cell types by brief expression of the induced pluripotent stem cell (iPSC) reprogramming factors Oct4, Sox2, Klf4 and c-Myc (OSKM) followed by cell expansion in media that promote lineage differentiation. Here we test this method using genetic lineage tracing for expression of endogenous Nanog and Oct4 and for X chromosome reactivation, as these events mark acquisition of pluripotency. We show that the vast majority of reprogrammed cardiomyocytes or neural stem cells obtained from mouse fibroblasts by OSKM-induced 'transdifferentiation' pass through a transient pluripotent state, and that their derivation is molecularly coupled to iPSC formation mechanisms. Our findings underscore the importance of defining trajectories during cell reprogramming by various methods.

  7. In vivo studies on chemically induced aneuploidy in mouse somatic and germinal cells.

    Science.gov (United States)

    Leopardi, P; Zijno, A; Bassani, B; Pacchierotti, F

    1993-05-01

    Within the context of a coordinated program to study aneuploidy induction sponsored by the European Community, nine chemicals were tested in mouse bone marrow and spermatocytes after intraperitoneal injection. In somatic cells, cell progression delay, hyperploidy, polyploidy induction and induction of micronucleated polychromatic erythrocyte (MnPCE) were studied. In germ cells hyperploidy induction was evaluated. The chemicals selected were: colchicine (COL), econazole (EZ), hydroquinone (HQ), thiabendazole (TB), diazepam (DZ), chloral hydrate (CH), cadmium chloride (CD), pyrimethamine (PY) and thimerosal (TM). Using literature data on c-mitotic effects in bone marrow as a reference, the same doses were tested in somatic and germ cells in order to compare the effects induced. Bone marrow cells were sampled 18 or 24 h after treatment. Germ cells were sampled 6, 8 or 18 h after treatment. Effects of COL and HQ in bone marrow have been reported elsewhere. Somatic effects were induced by CH (hyperploidy and cell cycle lengthening), TB (MnPCEs and cell cycle lengthening) and by PY (MnPCEs). EZ, DZ, CD and TM did not induce any kind of somatic effects. An increase in the incidence of hyperploid spermatocytes was induced by COL, at three dose levels, and by one dose of HQ and TB. All the other chemicals did not induce germinal aneuploidy at any dose or time tested. The hyperploidy control frequency ranged between 0.4 and 1.0% in somatic cells and from 0.3 to 0.9% in germ cells. In both somatic and germ cells, the maximum yield of induced hyperploidy did not exceed 3.5%. The time period of target cell sensitivity is probably restricted and this, associated with the heterogeneity and the asynchrony of cellular maturation processes, may account for our data. Under these circumstances, the negative data should be interpreted with some caution, particularly in germ cells, where additional indicators of chemical-cell interaction and cell cycle effects were not provided by

  8. Somatic cell nuclear transfer in its first and the second decade: sussesses, setbacks, paradoxes and perspectives

    DEFF Research Database (Denmark)

    Vajta, Gabor

    2007-01-01

    The present review gives a subjective outline of the past and future of somatic cell nuclear trensfer (SCNT). The first decade was full of contradictions: amazing successes were followed by frustrating fiascos. Although the possibility of reversing somatic cell differentiation completely is a mor...

  9. Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation.

    Science.gov (United States)

    Matoba, Shogo; Liu, Yuting; Lu, Falong; Iwabuchi, Kumiko A; Shen, Li; Inoue, Azusa; Zhang, Yi

    2014-11-06

    Mammalian oocytes can reprogram somatic cells into a totipotent state enabling animal cloning through somatic cell nuclear transfer (SCNT). However, the majority of SCNT embryos fail to develop to term due to undefined reprogramming defects. Here, we identify histone H3 lysine 9 trimethylation (H3K9me3) of donor cell genome as a major barrier for efficient reprogramming by SCNT. Comparative transcriptome analysis identified reprogramming resistant regions (RRRs) that are expressed normally at 2-cell mouse embryos generated by in vitro fertilization (IVF) but not SCNT. RRRs are enriched for H3K9me3 in donor somatic cells and its removal by ectopically expressed H3K9me3 demethylase Kdm4d not only reactivates the majority of RRRs, but also greatly improves SCNT efficiency. Furthermore, use of donor somatic nuclei depleted of H3K9 methyltransferases markedly improves SCNT efficiency. Our study thus identifies H3K9me3 as a critical epigenetic barrier in SCNT-mediated reprogramming and provides a promising approach for improving mammalian cloning efficiency.

  10. A chemical genetics approach for specific differentiation of stem cells to somatic cells: a new promising therapeutical approach.

    Science.gov (United States)

    Sachinidis, Agapios; Sotiriadou, Isaia; Seelig, Bianca; Berkessel, Albrecht; Hescheler, Jürgen

    2008-01-01

    Cell replacement therapy of severe degenerative diseases such as diabetes, myocardial infarction and Parkinson's disease through transplantation of somatic cells generated from embryonic stem (ES) cells is currently receiving considerable attention for the therapeutic applications. ES cells harvested from the inner cell mass (ICM) of the early embryo, can proliferate indefinitely in vitro while retaining the ability to differentiate into all somatic cells thereby providing an unlimited renewable source of somatic cells. In this context, identifying soluble factors, in particular chemically synthesized small molecules, and signal cascades involved in specific differentiation processes toward a defined tissue specific cell type are crucial for optimizing the generation of somatic cells in vitro for therapeutic approaches. However, experimental models are required allowing rapid and "easy-to-handle" parallel screening of chemical libraries to achieve this goal. Recently, the forward chemical genetic screening strategy has been postulated to screen small molecules in cellular systems for a specific desired phenotypic effect. The current review is focused on the progress of ES cell research in the context of the chemical genetics to identify small molecules promoting specific differentiation of ES cells to desired cell phenotype. Chemical genetics in the context of the cell ES-based cell replacement therapy remains a challenge for the near future for several scientific fields including chemistry, molecular biology, medicinal physics and robotic technologies.

  11. Ultrastructure of germ cells and adjacent somatic cells correlated to initiation of meiosis in the fetal pig.

    Science.gov (United States)

    Byskov, A G; Høyer, P E; Björkman, N; Mørk, A B; Olsen, B; Grinsted, J

    1986-01-01

    The ultrastructure of female and male germ cells and associated somatic cells were studied in morphologically sex differentiated fetal pig gonads from day 27 to day 95 post insemination. Before meiosis starts in the ovary, the organelles of germ cells and somatic cells of both sexes are poorly developed. In oocytes in leptotene stage, the endoplasmic reticulum attains close proximity to the plasma membrane forming characteristic contact areas which in addition are only seen in male germ cells of the same age. As meiosis progresses, the organelles of the oocyte increase in number and degree of differentiation. In particular the ER is prominent in the diplotene stage. At midgestation the male germ cells become polarized, the organelles gathering at one side of the nucleus. In the granulosa cells the number and extension of organelles increase concomitantly with the oocytes proceeding through meiosis. The Sertoli cells grow progressively complex in shape, with numerous mitochondria and a prominent ER, whereas the Golgi complex remains poorly developed. Small dense bodies are present both in germ cells and somatic cells. They are electron dense, membrane bounded, rounded or elongated granules often connected with endoplasmic reticulum. No activity of peroxidase, catalase or acid phosphatase could be traced in the granules, making them improbable candidates as peroxisomes or lysosomes. Their number is high in all germ cells and somatic cells on day 27 post insemination and in germ cells in leptotene stage.

  12. A Comparative View on Human Somatic Cell Sources for iPSC Generation

    Directory of Open Access Journals (Sweden)

    Stefanie Raab

    2014-01-01

    Full Text Available The breakthrough of reprogramming human somatic cells was achieved in 2006 by the work of Yamanaka and Takahashi. From this point, fibroblasts are the most commonly used primary somatic cell type for the generation of induced pluripotent stem cells (iPSCs. Various characteristics of fibroblasts supported their utilization for the groundbreaking experiments of iPSC generation. One major advantage is the high availability of fibroblasts which can be easily isolated from skin biopsies. Furthermore, their cultivation, propagation, and cryoconservation properties are uncomplicated with respect to nutritional requirements and viability in culture. However, the required skin biopsy remains an invasive approach, representing a major drawback for using fibroblasts as the starting material. More and more studies appeared over the last years, describing the reprogramming of other human somatic cell types. Cells isolated from blood samples or urine, as well as more unexpected cell types, like pancreatic islet beta cells, synovial cells, or mesenchymal stromal cells from wisdom teeth, show promising characteristics for a reprogramming strategy. Here, we want to highlight the advantages of keratinocytes from human plucked hair as a widely usable, noninvasive harvesting method for primary material in comparison with other commonly used cell types.

  13. Longitudinal Analysis of Somatic Cell Count for Joint Genetic Evaluation of Mastitis and Recovery Liability

    DEFF Research Database (Denmark)

    Welderufael, Berihu Gebremedhin; de Koning, D J; Janss, Luc;

    Abstract Text: Better models of genetic evaluation for mastitis can be developed through longitudinal analysis of somatic cell count (SCC) which usually is used as a proxy for mastitis. Mastitis and recovery data with weekly observations of SCC were simulated for daughter groups of 60 and 240 per...

  14. Correlations among somatic cell count, hygienic safety and quality of milk of primiparous cows

    Directory of Open Access Journals (Sweden)

    Adamov Nikola

    2009-11-01

    Full Text Available In this work we examined a total of 518 milk samples on the following parameters: somatic cell count (SCC, total bacteria count (CFU and IBC, fat, protein, lactose and dry matter non fat (DMNF contents, which were obtained from primiparous cows divided in three groups depending on the stage of lactation: the first group included the primiparous cows that were 10-100 days in lactation, the second group 101-200 days in lactation and the third group 201 and more days in lactation. The somatic cell count and the total bacterial count had highest values for the first group, intermediate for the third group, and lowest for the second group with these differences being statistically significant. Milk component contents varied among groups differently from previous two parameters but their differences were not significant in neither case. The somatic cell count of all three groups was positively and significantly correlated to the bacterial counts while these two parameters were generally in negative correlation with the milk component contents. No matter if the parameters that define the milk hygienic safety were positively or negatively correlated with the milk component contents, the correlation coefficients were not significant in neither case, which implies that significant reduction of milk components can be expected at somatic cell counts higher than the maximal obtained in this research of 236.000 SCC/ml.

  15. STUDY REGARDING THE CORELATION BETWEEN SOMATIC CELLS COUNT AND MAJOR CHEMICAL COMPOUNDS IN RAW MILK

    Directory of Open Access Journals (Sweden)

    S. ACATINCĂI

    2013-12-01

    Full Text Available This study approaches the dynamic of somatic cells number and chemical composition of milk during 13 months of control. The study also investigates the correlations between the number of somatic cells and some chemical parameters in milk. Studies were carried out on Romanian Black and White cows between March 2005 and March 2006 at the Didactical farm of the Banat University of Agricultural Sciences Timisoara. As quality indicator, the number of somatic cells has different values among the controls. Average values for the 13 months of control, with the exception of three controls, were below maximum limit admitted from 1th of January 2007 (600000 SCC/ml milk. There weren’t any significant differences for SCC between the two seasons. Chemical parameters in milk varied in close limits and the differences were not significant, with one exception for fat percent. Fat percent is higher (p<0.05 in the cold season 3.87% compared with 3.55% during the warm season. Somatic cells number is weak correlated with lactose and strong correlated with proteins.

  16. Time-series models on somatic cell score improve detection of matistis

    DEFF Research Database (Denmark)

    Norberg, E; Korsgaard, I R; Sloth, K H M N

    2008-01-01

    In-line detection of mastitis using frequent milk sampling was studied in 241 cows in a Danish research herd. Somatic cell scores obtained at a daily basis were analyzed using a mixture of four time-series models. Probabilities were assigned to each model for the observations to belong to a norma...

  17. A proteomic perspective on the changes in milk proteins due to high somatic cell count

    NARCIS (Netherlands)

    Zhang, L.; Boeren, J.A.; Hooijdonk, van A.C.M.; Vervoort, J.J.M.; Hettinga, K.A.

    2015-01-01

    Although cows with subclinical mastitis have no difference in the appearance of their milk, milk composition and milk quality are altered because of the inflammation. To know the changes in milk quality with different somatic cell count (SCC) levels, 5 pooled bovine milk samples with SCC from 105 to

  18. Somatic cell count assessment at the quarter or cow milking level

    NARCIS (Netherlands)

    Mollenhorst, H.; Tol, van der P.P.J.; Hogeveen, H.

    2010-01-01

    The aim was to investigate whether on-line somatic cell count (SCC) assessment, when combined with electrical conductivity (EC), should be implemented at the udder quarter or at the cow level. Data were collected from 3 farms with automatic milking systems, resulting in 3,191 quarter milkings used i

  19. Cloning endangered gray wolves (Canis lupus) from somatic cells collected postmortem.

    Science.gov (United States)

    Oh, H J; Kim, M K; Jang, G; Kim, H J; Hong, S G; Park, J E; Park, K; Park, C; Sohn, S H; Kim, D Y; Shin, N S; Lee, B C

    2008-09-01

    The objective of the present study was to investigate whether nuclear transfer of postmortem wolf somatic cells into enucleated dog oocytes, is a feasible method to produce a cloned wolf. In vivo-matured oocytes (from domestic dogs) were enucleated and fused with somatic cells derived from culture of tissue obtained from a male gray wolf 6h after death. The reconstructed embryos were activated and transferred into the oviducts of naturally synchronous domestic bitches. Overall, 372 reconstructed embryos were transferred to 17 recipient dogs; four recipients (23.5%) were confirmed pregnant (ultrasonographically) 23-25 d after embryo transfer. One recipient spontaneously delivered two dead pups and three recipients delivered, by cesarean section, four cloned wolf pups, weighing 450, 190, 300, and 490g, respectively. The pup that weighed 190g died within 12h after birth. The six cloned wolf pups were genetically identical to the donor wolf, and their mitochondrial DNA originated from the oocyte donors. The three live wolf pups had a normal wolf karyotype (78, XY), and the amount of telomeric DNA, assessed by quantitative fluorescence in situ hybridization, was similar to, or lower than, that of the nuclear donor. In conclusion, the present study demonstrated the successful cloning of an endangered male gray wolf via interspecies transfer of somatic cells, isolated postmortem from a wolf, and transferred into enucleated dog oocytes. Therefore, somatic cell nuclear transfer has potential for preservation of canine species in extreme situations, including sudden death.

  20. Associations between somatic cell count patterns and the incidence of clinical mastitis

    NARCIS (Netherlands)

    Haas, de Y.; Barkema, H.W.; Schukken, Y.H.; Veerkamp, R.F.

    2005-01-01

    Associations between clinical mastitis (CM) and the proportional distribution of patterns in somatic cell count (SCC) on a herd level were determined in this study. Data on CM and SCC over a 12-month period from 274 Dutch herds were used. The dataset contained parts of 29,719 lactations from 22,955

  1. A matter of identity — Phenotype and differentiation potential of human somatic stem cells

    Directory of Open Access Journals (Sweden)

    S.E.P. New

    2015-07-01

    Full Text Available Human somatic stem cells with neural differentiation potential can be valuable for developing cell-based therapies, including treatment of birth-related defects, while avoiding issues associated with cell reprogramming. Precisely defining the “identity” and differentiation potential of somatic stem cells from different sources, has proven difficult, given differences in sets of specific markers, protocols used and lack of side-by-side characterization of these cells in different studies. Therefore, we set to compare expression of mesenchymal and neural markers in human umbilical cord-derived mesenchymal stem cells (UC-MSCs, pediatric adipose-derived stem cells (p-ADSCs in parallel with human neural stem cells (NSCs. We show that UC-MSCs at a basal level express mesenchymal and so-called “neural” markers, similar to that we previously reported for the p-ADSCs. All somatic stem cell populations studied, independently from tissue and patient of origin, displayed a remarkably similar expression of surface markers, with the main difference being the restricted expression of CD133 and CD34 to NSCs. Expression of certain surface and neural markers was affected by the expansion medium used. As predicted, UC-MSCs and p-ADSCs demonstrated tri-mesenchymal lineage differentiation potential, though p-ADSCs display superior chondrogenic differentiation capability. UC-MSCs and p-ADSCs responded also to neurogenic induction by up-regulating neuronal markers, but crucially they appeared morphologically immature when compared with differentiated NSCs. This highlights the need for further investigation into the use of these cells for neural therapies. Crucially, this study demonstrates the lack of simple means to distinguish between different cell types and the effect of culture conditions on their phenotype, and indicates that a more extensive set of markers should be used for somatic stem cell characterization, especially when developing therapeutic

  2. Gravity separation of fat, somatic cells, and bacteria in raw and pasteurized milks.

    Science.gov (United States)

    Caplan, Z; Melilli, C; Barbano, D M

    2013-04-01

    The objective of experiment 1 was to determine if the extent of gravity separation of milk fat, bacteria, and somatic cells is influenced by the time and temperature of gravity separation or the level of contaminating bacteria present in the raw milk. The objective of experiment 2 was to determine if different temperatures of milk heat treatment affected the gravity separation of milk fat, bacteria, and somatic cells. In raw milk, fat, bacteria, and somatic cells rose to the top of columns during gravity separation. About 50 to 80% of the fat and bacteria were present in the top 8% of the milk after gravity separation of raw milk. Gravity separation for 7h at 12°C or for 22h at 4°C produced equivalent separation of fat, bacteria, and somatic cells. The completeness of gravity separation of fat was influenced by the level of bacteria in the milk before separation. Milk with a high bacterial count had less (about 50 to 55%) gravity separation of fat than milk with low bacteria count (about 80%) in 22h at 4°C. Gravity separation caused fat, bacteria, and somatic cells to rise to the top of columns for raw whole milk and high temperature, short-time pasteurized (72.6°C, 25s) whole milk. Pasteurization at ≥76.9°C for 25s prevented all 3 components from rising, possibly due to denaturation of native bovine immunoglobulins that normally associate with fat, bacteria, and somatic cells during gravity separation. Gravity separation can be used to produce reduced-fat milk with decreased bacterial and somatic cell counts, and may be a critical factor in the history of safe and unique traditional Italian hard cheeses produced from gravity-separated raw milk. A better understanding of the mechanism of this natural process could lead to the development of new nonthermal thermal technology (that does not involve heating the milk to high temperatures) to remove bacteria and spores from milk or other liquids.

  3. Epigenetic reprogramming in somatic cells induced by extract from germinal vesicle stage pig oocytes.

    Science.gov (United States)

    Bui, Hong-Thuy; Kwon, Deug-Nam; Kang, Min-Hui; Oh, Mi-Hye; Park, Mi-Ryung; Park, Woo-Jin; Paik, Seung-Sam; Van Thuan, Nguyen; Kim, Jin-Hoi

    2012-12-01

    Genomic reprogramming factors in the cytoplasm of germinal vesicle (GV) stage oocytes have been shown to improve the efficiency of producing cloned mouse offspring through the exposure of nuclei to a GV cytoplasmic extract prior to somatic cell nuclear transfer (SCNT) to enucleated oocytes. Here, we developed an extract of GV stage pig oocytes (GVcyto-extract) to investigate epigenetic reprogramming events in treated somatic cell nuclei. This extract induced differentiation-associated changes in fibroblasts, resulting in cells that exhibit pluripotent stem cell-like characteristics and that redifferentiate into three primary germ cell layers both in vivo and in vitro. The GVcyto-extract treatment induced large numbers of high-quality SCNT-generated blastocysts, with methylation and acetylation of H3-K9 and expression of Oct4 and Nanog at levels similar to in vitro fertilized embryos. Thus, GVcyto-extract could elicit differentiation plasticity in treated fibroblasts, and SCNT-mediated reprogramming reset the epigenetic state in treated cells more efficiently than in untreated cells. In summary, we provide evidence for the generation of stem-like cells from differentiated somatic cells by treatment with porcine GVcyto-extract.

  4. Knockout of exogenous EGFP gene in porcine somatic cells using zinc-finger nucleases

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Masahito [Japan Science and Technology Agency (JST), ERATO, Nakauchi Stem Cell and Organ Regeneration Project, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); Umeyama, Kazuhiro [Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); International Cluster for Bio-Resource Research, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); Matsunari, Hitomi [Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); Takayanagi, Shuko [Japan Science and Technology Agency (JST), ERATO, Nakauchi Stem Cell and Organ Regeneration Project, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); Haruyama, Erika; Nakano, Kazuaki; Fujiwara, Tsukasa; Ikezawa, Yuka [Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); Nakauchi, Hiromitsu [Japan Science and Technology Agency (JST), ERATO, Nakauchi Stem Cell and Organ Regeneration Project, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, Tokyo University, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); and others

    2010-11-05

    Research highlights: {yields} EGFP gene integrated in porcine somatic cells could be knocked out using the ZFN-KO system. {yields} ZFNs induced targeted mutations in porcine primary cultured cells. {yields} Complete absence of EGFP fluorescence was confirmed in ZFN-treated cells. -- Abstract: Zinc-finger nucleases (ZFNs) are expected as a powerful tool for generating gene knockouts in laboratory and domestic animals. Currently, it is unclear whether this technology can be utilized for knocking-out genes in pigs. Here, we investigated whether knockout (KO) events in which ZFNs recognize and cleave a target sequence occur in porcine primary cultured somatic cells that harbor the exogenous enhanced green fluorescent protein (EGFP) gene. ZFN-encoding mRNA designed to target the EGFP gene was introduced by electroporation into the cell. Using the Surveyor nuclease assay and flow cytometric analysis, we confirmed ZFN-induced cleavage of the target sequence and the disappearance of EGFP fluorescence expression in ZFN-treated cells. In addition, sequence analysis revealed that ZFN-induced mutations such as base substitution, deletion, or insertion were generated in the ZFN cleavage site of EGFP-expression negative cells that were cloned from ZFN-treated cells, thereby showing it was possible to disrupt (i.e., knock out) the function of the EGFP gene in porcine somatic cells. To our knowledge, this study provides the first evidence that the ZFN-KO system can be applied to pigs. These findings may open a new avenue to the creation of gene KO pigs using ZFN-treated cells and somatic cell nuclear transfer.

  5. Cell cycle synchronization of canine ear fibroblasts for somatic cell nuclear transfer.

    Science.gov (United States)

    Koo, Ok Jae; Hossein, Mohammad Shamim; Hong, So Gun; Martinez-Conejero, Jose A; Lee, Byeong Chun

    2009-02-01

    Cycle synchronization of donor cells in the G0/G1 stage is a crucial step for successful somatic cell nuclear transfer. In the present report, we evaluated the effects of contact inhibition, serum starvation and the reagents - dimethyl sulphoxide (DMSO), roscovitine and cycloheximide (CHX) - on synchronization of canine fibroblasts at the G0/G1 stage. Ear fibroblast cells were collected from a beagle dog, placed into culture and used for analysis at passages three to eight. The population doubling time was 36.5 h. The proportion of G0/G1 cells was significantly increased by contact inhibition (77.1%) as compared with cycling cells (70.1%); however, extending the duration of culture did not induce further synchronization. After 24 h of serum starvation, cells were effectively synchronized at G0/G1 (77.1%). Although synchronization was further increased gradually after 24 h and even showed significant difference after 72 h (82.8%) of starvation, the proportion of dead cells also significantly increased after 24 h. The percentage of cells at the G0/G1 phase was increased (as compared with controls) after 72 h treatment with DMSO (76.1%) and after 48 h treatment with CHX (73.0%) or roscovitine (72.5%). However, the rate of cell death was increased after 24 and 72 h of treatment with DMSO and CHX, respectively. Thus, we recommend the use of roscovitine for cell cycle synchronization of canine ear fibroblasts as a preparatory step for SCNT.

  6. Nuclear transfer of goat somatic cells transgenic for human lactoferrin gene

    Institute of Scientific and Technical Information of China (English)

    Lan LI; Wei SHEN; Lingjiang MIN; Qingyu PAN; Yujiang SUN; Jixian DENG; Qingjie PAN

    2008-01-01

    Transgenic animal mammary gland bioreactors are used to produce recombinant proteins with appropri-ate post-translational modifications.The nuclear transfer of transgenic somatic cells is a powerful method to pro-duce mammary gland bioreactors.We established an effi-cient gene transfer and nuclear transfer approach in goat somatic cells.Gene targeting vector pGBC2LF was con-structed by cloning human lactoferrin (LF) gene cDNA into exon 2 of the milk goat beta-casein gene and the endogenous start codon was replaced by that of human LF gene.Goat fetal fibroblasts were transfected with lin-earized pGBC2LF and 14 cell lines were positive accord-ing to PCR and Southern blot.The transgenic cells were used as donor cells of nuclear transfer and some of recon-structed embryos could develop into blastocyst in vitro.

  7. Telomere length status of somatic cell sheep clones and their offspring.

    Science.gov (United States)

    Alexander, Basil; Coppola, Gianfranco; Perrault, Steven D; Peura, Teija T; Betts, Dean H; King, W Allan

    2007-12-01

    This study was carried out to determine the telomere length status of sheep clones and their offspring, and to examine telomere dynamics and chromosomal abnormalities in culture propagated donor cells. Skin samples were collected from somatic cell nuclear transfer-derived sheep clones, and three of their progeny generated by natural mating. Samples were collected from control animals (n = 35), spanning in age from 1 month to 36 months of age. Genomic DNA was extracted from cell/tissue samples and their telomere lengths were assessed by terminal restriction fragment (TRF) analysis. Results revealed: that (a) sheep clones derived from cultured somatic cells have shortened telomere lengths compared to age-matched controls; (b) the offspring derived from natural mating between clones had normal telomere lengths compared to their age-matched counterparts; and donor cell cultures beyond 20 population doublings had significantly (P < 0.05) shortened telomeres and exhibited a higher numerical and structural chromosomal abnormalities.

  8. Induced DNA damage by dental resin monomers in somatic cells.

    Science.gov (United States)

    Arossi, Guilherme Anziliero; Lehmann, Mauricio; Dihl, Rafael Rodrigues; Reguly, Maria Luiza; de Andrade, Heloisa Helena Rodrigues

    2010-02-01

    The present in vivo study investigated the genotoxicity of four dental resin monomers: triethyleneglycoldimethacrylate (TEGDMA), hydroxyethylmethacrylate (HEMA), urethanedimethacrylate (UDMA) and bisphenol A-glycidylmethacrylate (BisGMA). The Somatic Mutation and Recombination Test (SMART) in Drosophila melanogaster was applied to analyse their genotoxicity expressed as homologous mitotic recombination, point and chromosomal mutation. SMART detects the loss of heterozygosity of marker genes expressed phenotypically on the fly's wings. This fruit fly has an extensive genetic homology to mammalians, which makes it a suitable model organism for genotoxic investigations. The present findings provide evidence that the mechanistic basis underlying the genotoxicity of UDMA and TEGDMA is related to homologous recombination and gene/chromosomal mutation. A genotoxic pattern can correspondingly be discerned for both UDMA and TEGDMA: their genotoxicity is attributed respectively to 49% and 44% of mitotic recombination, as well as 51% and 56% of mutational events, including point and chromosomal alterations. The monomer UDMA is 1.6 times more active than TEGDMA to induce mutant clones per treatment unit. BisGMA and HEMA had no statistically significant effect on total spot frequencies - suggesting no genotoxic action in the SMART assay. The clinical significance of these observations has to be interpreted for data obtained in other bioassays.

  9. The influence of interspecies somatic cell nuclear transfer on epigenetic enzymes transcription in early embryos

    Directory of Open Access Journals (Sweden)

    Martin Morovic

    2016-10-01

    Full Text Available One of the main reason for the incorrect development of embryos derived from somatic cell nuclear transfer is caused by insufficient demethylation of injected somatic chromatin to a state comparable with an early embryonic nucleus. It is already known that the epigenetic enzymes transcription in oocytes and early embryos of several species including bovine and porcine zygotes is species-dependent process and the incomplete DNA methylation correlates with the nuclear transfer failure rate in mammals. In this study the transcription of DNA methyltransferase 1 and 3a (DNMT1, DNMT3a genes in early embryonic stages of interspecies (bovine, porcine nuclear transfer embryos (iSCNT by RT-PCR were analyzed. Coming out from the diverse timing of embryonic genome activation (EGA in porcine and bovine preimplantation embryos, the intense effect of ooplasm on transferred somatic cell nucleus was expected. In spite of the detection of ooplasmic DNA methyltransferases, the somatic genes for DNMT1 and DNMT3a enzymes were not expressed and the development of intergeneric embryos stopped at the 4-cell stage. Our results indicate that the epigenetic reprogramming during early mammalian development is strongly infl uenced by the ooplasmic environment.

  10. discs large regulates somatic cyst cell survival and expansion in Drosophila testis

    Institute of Scientific and Technical Information of China (English)

    Fani Papagiannouli; Bernard M Mechler

    2009-01-01

    Gonad development requires a coordinated snma-germline interaction that ensures renewal and differentiation of germline and somatic stem cells to ultimately produce mature gametes. The Drosophila tumour suppressor gene discs sion, and formation of neuromuscular junctions. Here, we report the role of dig in testis development and its critical function in somatic cyst cells (SCCs). In these cells dig is primarily required for their survival and expansion, and contributes to spermatocyte cyst differentiation. Cell death primarily occurred in SCCs at the end of spermatogo-nial amplification at a time when Dig becomes restricted in wild-type (wt) testes to the distal somatic cells capping the growing spermatocyte cysts. RNAi depletion of dig transcripts in early SCCs fully prevented testis development, whereas depletion in late SCCs resulted in a breakdown of spermatocyte cyst structure and germ cell individualiza-tion. Specific dig expression in SCCs resulted in developmental rescue of dig mutant testes, whereas its expression in germ cells exerted no such effect, dig overexpression in wt testes led to spermatocyte cyst expansion at the expense of spermatogonial cysts. Our data demonstrate that dig is essentially required in SCCs for their survival, expansion, and differentiation, and for the encapsulation of the germline cells.

  11. Somatic (CSS and differential cell count (DCC during a lactation period in ass’milk

    Directory of Open Access Journals (Sweden)

    Paolo Polidori

    2010-01-01

    Full Text Available Hypoallergenic properties of ass’s milk protein fractions have been recently con- firmed, allowing ass’s milk to be considered as a valid substitute of the available hypoallergenic infant formulas. The objective of this study was to give a further contribution to the knowledge of ass’s milk safety and quality characteristics. A new procedure has been developed with a cytospin centrifuge in differential counts of milk somatic cells. Somatic cells count (SCC, differential somatic cells count (DCC and cultural examinations have been carried out in 62 milk samples collected from 11 asses at three different stages of lactation. Four major cells populations had been identified in ass’s milk too: lymphocytes (Ly, monocytes/macrophages (MA, polymorphonuclear neutrophils (PMNL, and epithelial cells (CE. The patterns of these cells have been discussed in comparison with cells found in dairy cows and ewes milk. In conclusion, a reproducible standard procedure has been developed to determine cell count of ass’s milk.

  12. Production of transgenic blastocyst by nuclear transfer from different types of somatic cells in cattle

    Institute of Scientific and Technical Information of China (English)

    GONG Guochun; LI Rong; LI Ning; DAI Yunping; FAN Baoliang; ZHU Huabing; WANG Haiping; WANG Lili; FANG Changge; WAN Rong; LIU Ying

    2004-01-01

    The present study examined the effects of genetic manipulation to the donor cell and different types of transgenic donor cells on developmental potential of bovine nuclear transfer (NT) embryos. Four types of bovine somatic cells, including granulosa cells, fetal fibroblasts, fetal oviduct epithelial cells and fetal ovary epithelial cells, were transfected with a plasmid (pCE-EGFP-Ires-Neo-dNdB) containing the enhanced green fluorescent protein (EGFP) and neomycin-resistant (Neor) genes by electroporation. After 14 days selection with 800 μg/mL G418, transgenic cell lines from each type of somatic cells were obtained. Nontransgenic granulosa cells and all 4 types of transgenic somatic cells were used as nuclear donor to produce transgenic embryos by NT. There was no significant difference in development rates to the blastocyst stage for NT embryos from transgenic and nontransgenic granulosa cells (44.6% and 42.8%, respectively), and transfer of NT embryos derived from transgenic and nontransgenic granulosa cells to recipients resulted in similar pregnancy rates on day 90 (19% and 25%, respectively). The development rates to the blastocyst stage of NT embryos were significantly different among different types of transgenic donor cells (P<0.05). Blastocyst rates from fetal oviduct epithelial cell and granulosa cell (49.1% and 44.6%, respectively) were higher than those from fetal fibroblast (32.7%) and fetal ovary epithelial cell (22.5%). These results suggest that (i) genetic manipulation to donor cells has no negative effect on in vitro and early in vivo developmental competence of bovine NT embryos and (ii) granulosa and fetal oviduct epithelial cells can be used to produce transgenic bovine NT embryos more efficiently. In addition, GFP can be used to select transgenic NT embryos as a non-invasive selective marker.

  13. Epigenetic memory in somatic cell nuclear transfer and induced pluripotency: evidence and implications.

    Science.gov (United States)

    Firas, Jaber; Liu, Xiaodong; Polo, Jose M

    2014-07-01

    Six decades ago, seminal work conducted by John Gurdon on genome conservation resulted in major advancements towards nuclear reprogramming technologies such as somatic cell nuclear transfer (SCNT), cell fusion and transcription factor mediated reprogramming. This revolutionized our views regarding cell fate conversion and development. These technologies also shed light on the role of the epigenome in cellular identity, and how the memory of the cell of origin affects the reprogrammed cell. This review will discuss recent work on epigenetic memory retained in pluripotent cells derived by SCNT and transcription factor mediated reprogramming, and the challenges attached to it.

  14. Culture and selection of somatic hybrids using an auxotrophic cell line.

    Science.gov (United States)

    Hein, T; Przewoźny, T; Schieder, O

    1983-01-01

    Protoplast fusions between Nicotiana tabacum and N. paniculata and between N. tabacum and N. sylvestris were obtained by polyethylene glycol and Ca(NO3)2 treatment. The protoplasts of one parent originated from cell suspensions, while the protoplasts of the other originated from leaf mesophyll. The heterokaryons were detectable by their intermediate phenotype, namely the green chloroplasts from mesophyll and the dense cytoplasm from suspension cells. They were isolated with micropipettes immediately after fusion using a micromanipulator and were transferred into a protoplast suspension of an auxotrophic cell line serving as a nursery. This mutant is not able to utilize nitrate and had to be supplemented with amino acids. The somatic hybrids were selected by a stepwise reduction of the supplements, which caused the death of the mutant cell colonies, while the autotrophic somatic hybrids continued to grow. The hybrid character of the selected colonies was confirmed by isoenzyme investigations.

  15. Cigarette smoking during early pregnancy reduces the number of embryonic germ and somatic cells

    DEFF Research Database (Denmark)

    Mamsen, Linn; Lutterodt, M C; Andersen, Elisabeth Anne Wreford

    2010-01-01

    BACKGROUND: Cigarette smoking during pregnancy is associated with negative reproductive consequences for male fetuses in adult life such as reduced testicular volume and sperm concentration. The present study evaluates the number of germ and somatic cells present in human embryonic first...... stereological methods were used to estimate gonadal cell numbers in histological sections. Results were also evaluated in the context of previously published data on ovaries from our laboratory. RESULTS: A significant reduction in the number of germ cells by 55% [95% confidence interval (CI) 74-21% reduction, P...... = 0.004] and somatic cells by 37% (95% CI 59-3%, P = 0.023) was observed in testes prenatally exposed to maternal cigarette smoking, compared with unexposed. The effect of maternal smoking was dose-dependent being higher in the heavy smokers and remained consistent after adjusting for possible...

  16. Production of transgenic7blastocyst of sheep by somatic cell cloning

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Five samples from primary cultures of five sheep ovarian granulosa cells were transfeeted by pEGFP N1 DNA. Five transgenic positive cell lines, each from one of the five samples above, were used as donor nuclei for somatic nucleus transfer. A total of 352 in vitro matured and enucle ated sheep oocytes were fused electrically with transgenic granulosa cells and 329 reconstructed embryos were ob tained after activation by Ionomycin/6-DMAP, and these embryos were cultured in SOFaaBSA medium for 7 d. The result shows that 312 embryos (94.8%) had gone through cleavage and among them 63 (19.1%) had developed to the blastocyst stage. Expression of GFP gene was detected in various stages of early embryonic development by sampling randomly. Blastocyst rates given by the four cells treated with 0.5% FCS starvation was 19.6% (55/280) and it had not shown difference significantly (P>0.05) with the result ob tained with another cell line that had not gone through se rum starvation (16.3%, 8/49). This experiment indicates that sheep transgenic embryos up to the blastocyst stage can be produced effectively by the combination of gene transfection in somatic cells in culture and somatic cell cloning.

  17. Genomic Stability of Lyophilized Sheep Somatic Cells before and after Nuclear Transfer

    OpenAIRE

    Domenico Iuso; Marta Czernik; Fiorella Di Egidio; Silvestre Sampino; Federica Zacchini; Michal Bochenek; Zdzislaw Smorag; Modlinski, Jacek A.; Grazyna Ptak; Pasqualino Loi

    2013-01-01

    The unprecedented decline of biodiversity worldwide is urging scientists to collect and store biological material from seriously threatened animals, including large mammals. Lyophilization is being explored as a low-cost system for storage in bio-banks of cells that might be used to expand or restore endangered or extinct species through the procedure of Somatic Cell Nuclear Transfer (SCNT). Here we report that the genome is intact in about 60% of lyophylized sheep lymphocytes, whereas DNA da...

  18. Xyloglucan Endotransglycosylase Activity in Carrot Cell Suspensions during cell Elongation and Somatic Embryogenesis.

    Science.gov (United States)

    Hetherington, P. R.; Fry, S. C.

    1993-11-01

    Xyloglucan endotransglycosylase (XET) has been proposed to contribute to cell elongation through wall loosening. To explore this relationship further, we assayed this enzyme activity in suspensions of carrot (Daucus carota L.) cells exhibiting various rates of cell elongation. In one cell line, elongation was induced by dilution into dichlorophenoxyacetic acid (2,4-D)-free medium. During this elongation, 93% of the XET activity was found in the culture medium; in nonelongating controls, by contrast, 68% was found in the cell extracts even though the specific activity of these extracts was lower than in the elongating cells. By far the highest rates of XET secretion per cell were in the elongating cells. A second cell line was induced to undergo somatic embryogenesis by dilution into 2,4-D-free medium. During the first 6 d, numerous globular embryoids composed of small, isodiametric cells were formed in the absence of cell elongation; extracellular XET activity was almost undetectable, and intracellular specific activity markedly declined. After 6 d, heart, torpedo, and cotyledonary embryoids began to appear (i.e. cell elongation resumed); the intracellular specific activity of XET rose rapidly and >80% of the XET activity accumulated in the medium. Thus, nonexpanding cell suspensions (whether or not they were rapidly dividing) produced and secreted less XET activity than did expanding cells. We propose that a XET molecule has an ephemeral wall-loosening role while it passes through the load-bearing layer of the wall on its way from the protoplast into the culture medium.

  19. Reprogramming of somatic cells induced by fusion of embryonic stem cells using hemagglutinating virus of Japan envelope (HVJ-E)

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Xiao-shan [Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Department of Biomolecular Engineering, Graduate School of Bioscience and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501 (Japan); Fujishiro, Masako [Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Toyoda, Masashi [Department of Reproductive Biology, National Institute for Child Health and Development, 2-10-1, Okura, Setagaya-ku, Tokyo 157-8535 (Japan); Akaike, Toshihiro [Department of Biomolecular Engineering, Graduate School of Bioscience and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501 (Japan); Ito, Yoshihiro, E-mail: y-ito@riken.jp [Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Department of Biomolecular Engineering, Graduate School of Bioscience and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501 (Japan)

    2010-04-16

    In this research, hemagglutinating virus of Japan envelope (HVJ-E) was used to reprogram somatic cells by fusion with mouse embryonic stem (ES) cells. Neomycin-resistant mouse embryonic fibroblasts (MEFs) were used as somatic cells. Nanog-overexpressing puromycin-resistant EB3 cells were used as mouse ES cells. These two cells were fused by exposing to HVJ-E and the generated fusion cells were selected by puromycin and G418 to get the stable fusion cell line. The fusion cells form colonies in feeder-free culture system. Microsatellite analysis of the fusion cells showed that they possessed genes from both ES cells and fibroblasts. The fusion cells were tetraploid, had alkali phosphatase activity, and expressed stem cell marker genes such as Pou5f1, Nanog, and Sox2, but not the fibroblast cell marker genes such as Col1a1 and Col1a2. The pluripotency of fusion cells was confirmed by their expression of marker genes for all the three germ layers after differentiation induction, and by their ability to form teratoma which contained all the three primary layers. Our results show that HVJ-E can be used as a fusion reagent for reprogramming of somatic cells.

  20. Optimization of somatic cell injection in the perspective of nuclear transfer in goldfish

    Directory of Open Access Journals (Sweden)

    Mahe Sophie

    2010-06-01

    Full Text Available Abstract Background Nuclear transfer has the potential to become one strategy for fish genetic resources management, by allowing fish reconstruction from cryopreserved somatic cells. Survival rates after nuclear transfer are still low however. The part played by unsuitable handling conditions is often questioned, but the different steps in the procedure are difficult to address separately. In this work led on goldfish (Carassius auratus, the step of somatic cells injection was explored. Non-enucleated metaphase II oocytes were used as a template to explore the toxicity of the injection medium, to estimate the best location where the cell should be injected, and to assess the delay necessary between cell injection and oocyte activation. Results Trout coelomic fluid was the most suitable medium to maintain freshly spawned oocytes at the metaphase II stage during oocyte manipulation. Oocytes were then injected with several media to test their toxicity on embryo development after fertilization. Trout coelomic fluid was the least toxic medium after injection, and the smallest injected volume (10 pL allowed the same hatching rates as the non injected controls (84.8% ± 23. In somatic cell transfer experiments using non enucleated metaphase II oocytes as recipient, cell plasma membrane was ruptured within one minute after injection. Cell injection at the top of the animal pole in the oocyte allowed higher development rates than cell injection deeper within the oocyte (respectively 59% and 23% at mid-blastula stage. Embryo development rates were also higher when oocyte activation was delayed for 30 min after cell injection than when activation was induced without delay (respectively 72% and 48% at mid-blastula stage. Conclusions The best ability of goldfish oocytes to sustain embryo development was obtained when the carrier medium was trout coelomic fluid, when the cell was injected close to the animal pole, and when oocyte activation was induced 30 min

  1. Somatic cell nuclear transfer in Oregon: expanding the pluripotent space and informing research ethics.

    Science.gov (United States)

    Lomax, Geoffrey P; DeWitt, Natalie D

    2013-12-01

    In May, Oregon Health and Science University (OHSU) announced the successful derivation, by the Mitalipov laboratory, of embryonic stem cells by somatic cell nuclear transfer. This experiment was recognized as a "formidable technical feat" and potentially a key step toward developing cell-based therapies. The OHSU report is also an example of how a scientific breakthrough can inform research ethics. This article suggests ways that nuclear transfer embryonic stem cell lines may contribute to research ethics by adding rigor to studies addressing pressing research questions important to the development of cell-based therapies.

  2. Interpretation of reprogramming to predict the success of somatic cell cloning.

    Science.gov (United States)

    Eckardt, Sigrid; McLaughlin, K John

    2004-07-01

    In the context of mammalian somatic cell cloning, the term reprogramming refers to the processes that enable a somatic cell nucleus to adopt the role of a zygotic nucleus. Gene re-expression is one measure of reprogramming if correlated with subsequent developmental potential. This paper describes several experiments utilizing pre-implantation gene expression to evaluate reprogramming and clone viability. We have established a direct correlation between Oct4 expression in mouse clones at the blastocyst stage and their potential to maintain pluripotent embryonic cells essential for post-implantation development. Furthermore, the quality of gene expression in clones dramatically improves when genetically identical clones are combined in clone-clone aggregate chimeras. Clone--clone aggregates exhibit a higher developmental potential than single clones both in vitro and in vivo. This could be mediated by complementation between blastomeres from epigenetically different clones within the aggregate rather than by the increase in cell number resulting from aggregation. We also discuss the use of tetraploid embryos as a model to evaluate reprogramming using gene expression and demonstrate that somatic cell nuclei can be reprogrammed by blastomeres to re-express embryonic specific genes but not to contribute to post-implantation development.

  3. Sodium copper chlorophyllin (SCC) induces genetic damage in postmeiotic and somatic wing cells of Drosophila melanogaster.

    Science.gov (United States)

    Peñaloza, Emilio Pimentel; Cruces Martínez, Martha Patricia

    2013-01-01

    There is no apparent evidence to indicate that sodium copper chlorophyllin (SCC) is mutagenic. The aim of the present study was thus to determine the mutagenic effect of SCC, in postmeiotic germ cells of the adult male Drosophila. This investigation was based on the ability to examine whether SCC induced sex-linked recessive lethal mutations (SLRL), as well as the somatic mutation and recombination test (SMART). Four different SCC concentrations were used: 0, 45, 69, 80, and 100 mM. For SLRL, two broods were generated to test sperm and primarily spermatids. Results showed a significant frequency of recessive lethal mutations compared with control sperm cells with SCC at 69, 80, and 100 mM. In contrast, the frequency of somatic mutations rose by 0.21 only with 100 mM of SCC. These findings provide evidence that SCC is a weak mutagen in both cell lines. The differential response may be attributed to repair mechanisms that are active in somatic cells but almost absent in germ cells.

  4. Effects of herd management practices on somatic cell counts in an arid climate

    Directory of Open Access Journals (Sweden)

    Ali Sadeghi-Sefidmazgi

    2014-09-01

    Full Text Available The objective of this study was to evaluate associations between average lactation somatic cell counts (SCC and herd management practices in an arid climate. A total of 38,530 average lactation SCC records for 10,216 Holstein cows gathered on 25 dairy farms from January 2009 to October 2012 in Isfahan (Iran were analyzed. Average lactation SCC (cells × 1,000 was 250.79 ranging from 90.31 to 483.23 cells/mL across investigated farms. Herd-level management factors associated with average lactation SCC were determined separately using mixed linear models in the MIXED procedure with average lactation somatic cell score (SCS included as the dependent variable. Some of the management practices associated with low average lactation SCS included sawdust combined with sand bedding, using automatic cup removers, disinfection of the teats by dipping into disinfectant, using washable towels for teat cleaning, free-stall barns, wet disposable tissue for udder washing, wearing gloves during milking and the use of humidifiers and shade. Lower-production herds and larger-size herds had lower average lactation somatic cell counts. Most herd management practices associated with average lactation SCC in dairy herds in the arid region of Isfahan are in agreement with most previous studies. However, different results are found for use of humidifier, bedding materials and herd size.

  5. Generation of embryonic stem cells from mouse adipose-tissue derived cells via somatic cell nuclear transfer.

    Science.gov (United States)

    Qin, Yiren; Qin, Jilong; Zhou, Chikai; Li, Jinsong; Gao, Wei-Qiang

    2015-01-01

    Somatic cells can be reprogrammed into embryonic stem cells (ESCs) by nuclear transfer (NT-ESCs), or into induced pluripotent stem cells (iPSCs) by the "Yamanaka method." However, recent studies have indicated that mouse and human iPSCs are prone to epigenetic and transcriptional aberrations, and that NT-ESCs correspond more closely to ESCs derived from in vitro fertilized embryos than iPSCs. In addition, the procedure of NT-ESCs does not involve gene modification. Demonstration of generation of NT-ESCs using an easily-accessible source of adult cell types would be very important. Adipose tissue is a source of readily accessible donor cells and can be isolated from both males and females at different ages. Here we report that NT-ESCs can be generated from adipose tissue-derived cells (ADCs). At morphological, mRNA and protein levels, these NT-ESCs show classic ESC colonies, exhibit alkaline phosphatase (AP) activity, and display normal diploid karyotypes. Importantly, these cells express pluripotent markers including Oct4, Sox2, Nanog and SSEA-1. Furthermore, they can differentiate in vivo into various types of cells from 3 germinal layers by teratoma formation assays. This study demonstrates for the first time that ESCs can be generated from the adipose tissue by somatic cell nuclear transfer (SCNT) and suggests that ADCs can be a new donor-cell type for potential therapeutic cloning.

  6. Roles of small molecules in somatic cell reprogramming.

    Science.gov (United States)

    Su, Jian-bin; Pei, Duan-qing; Qin, Bao-ming

    2013-06-01

    The Nobel Prize in Physiology and Medicine 2012 was awarded to Sir John B GURDON and Shinya YAMANAKA for their discovery that mature cells can be reprogrammed to become pluripotent. This event reaffirms the importance of research on cell fate plasticity and the technology progress in the stem cell field and regenerative medicine. Indeed, reprogramming technology has developed at a dazzling speed within the past 6 years, yet we are still at the early stages of understanding the mechanisms of cell fate identity. This is particularly true in the case of human induced pluripotent stem cells (iPSCs), which lack reliable standards in the evaluation of their fidelity and safety prior to their application. Along with the genetic approaches, small molecules nowadays become convenient tools for modulating endogenous protein functions and regulating key cellular processes, including the mesenchymal-to-epithelial transition, metabolism, signal transduction and epigenetics. Moreover, small molecules may affect not only the efficiency of clone formation but also the quality of the resulting cells. With increasing availability of such chemicals, we can better understand the biology of stems cells and further improve the technology of generation of stem cells.

  7. Roles of small molecules in somatic cell reprogramming

    Institute of Scientific and Technical Information of China (English)

    Jian-bin SU; Duan-qing PEI; Bao-ming QIN

    2013-01-01

    The Nobel Prize in Physiology and Medicine 2012 was awarded to Sir John B GURDON and Shinya YAMANAKA for their discovery that mature cells can be reprogrammed to become pluripotent.This event reaffirms the importance of research on cell fate plasticity and the technology progress in the stem cell field and regenerative medicine.Indeed,reprogramming technology has developed at a dazzling speed within the past 6 years,yet we are still at the early stages of understanding the mechanisms of cell fate identity.This is particularly true in the case of human induced pluripotent stem ceils (iPSCs),which lack reliable standards in the evaluation of their fidelity and safety prior to their application.Along with the genetic approaches,small molecules nowadays become convenient tools for modulating endogenous protein functions and regulating key cellular processes,including the mesenchymal-to-epithelial transition,metabolism,signal transduction and epigenetics.Moreover,small molecules may affect not only the efficiency of clone formation but also the quality of the resulting cells.With increasing availability of such chemicals,we can better understand the biology of stems cells and further improve the technology of generation of stem cells.

  8. Transposable DNA elements and life history traits: II. Transposition of P DNA elements in somatic cells reduces fitness, mating activity, and locomotion of Drosophila melanogaster.

    Science.gov (United States)

    Woodruff, R C; Thompson, J N; Barker, J S; Huai, H

    1999-01-01

    Some transposable DNA elements in higher organisms are active in somatic cells, as well as in germinal cells. What effect does the movement of DNA elements in somatic cells have on life history traits? It has previously been reported that somatically active P and mariner elements in Drosophila induce genetic damage and significantly reduce lifespan. In this study, we report that the movement of P elements in somatic cells also significantly reduces fitness, mating activity, and locomotion of Drosophila melanogaster. If other elements cause similar changes in life history traits, it is doubtful if transposable DNA elements remain active for long in somatic cells in natural populations.

  9. Telomere Elongation and Naive Pluripotent Stem Cells Achieved from Telomerase Haplo-Insufficient Cells by Somatic Cell Nuclear Transfer

    Directory of Open Access Journals (Sweden)

    Li-Ying Sung

    2014-12-01

    Full Text Available Haplo-insufficiency of telomerase genes in humans leads to telomere syndromes such as dyskeratosis congenital and idiopathic pulmonary fibrosis. Generation of pluripotent stem cells from telomerase haplo-insufficient donor cells would provide unique opportunities toward the realization of patient-specific stem cell therapies. Recently, pluripotent human embryonic stem cells (ntESCs have been efficiently achieved by somatic cell nuclear transfer (SCNT. We tested the hypothesis that SCNT could effectively elongate shortening telomeres of telomerase haplo-insufficient cells in the ntESCs with relevant mouse models. Indeed, telomeres of telomerase haplo-insufficient (Terc+/− mouse cells are elongated in ntESCs. Moreover, ntESCs derived from Terc+/− cells exhibit naive pluripotency as evidenced by generation of Terc+/− ntESC clone pups by tetraploid embryo complementation, the most stringent test of naive pluripotency. These data suggest that SCNT could offer a powerful tool to reprogram telomeres and to discover the factors for robust restoration of telomeres and pluripotency of telomerase haplo-insufficient somatic cells.

  10. Screening for the Most Suitable Reference Genes for Gene Expression Studies in Equine Milk Somatic Cells.

    Directory of Open Access Journals (Sweden)

    Jakub Cieslak

    Full Text Available Apart from the well-known role of somatic cell count as a parameter reflecting the inflammatory status of the mammary gland, the composition of cells isolated from milk is considered as a valuable material for gene expression studies in mammals. Due to its unique composition, in recent years an increasing interest in mare's milk consumption has been observed. Thus, investigating the genetic background of horse's milk variability presents and interesting study model. Relying on 39 milk samples collected from mares representing three breeds (Polish Primitive Horse, Polish Cold-blooded Horse, Polish Warmblood Horse we aimed to investigate the utility of equine milk somatic cells as a source of mRNA and to screen the best reference genes for RT-qPCR using geNorm and NormFinder algorithms. The results showed that despite relatively low somatic cell counts in mare's milk, the amount and the quality of the extracted RNA are sufficient for gene expression studies. The analysis of the utility of 7 potential reference genes for RT-qPCR experiments for the normalization of equine milk somatic cells revealed some differences between the outcomes of the applied algorithms, although in both cases the KRT8 and TOP2B genes were pointed as the most stable. Analysis by geNorm showed that the combination of 4 reference genes (ACTB, GAPDH, TOP2B and KRT8 is required for apropriate RT-qPCR experiments normalization, whereas NormFinder algorithm pointed the combination of KRT8 and RPS9 genes as the most suitable. The trial study of the relative transcript abundance of the beta-casein gene with the use of various types and numbers of internal control genes confirmed once again that the selection of proper reference gene combinations is crucial for the final results of each real-time PCR experiment.

  11. Total bacterial count and somatic cell count in refrigerated raw milk stored in communal tanks

    Directory of Open Access Journals (Sweden)

    Edmar da Costa Alves

    2014-09-01

    Full Text Available The current industry demand for dairy products with extended shelf life has resulted in new challenges for milk quality maintenance. The processing of milk with high bacterial counts compromises the quality and performance of industrial products. The study aimed to evaluate the total bacteria counts (TBC and somatic cell count (SCC in 768 samples of refrigerated raw milk, from 32 communal tanks. Samples were collected in the first quarter of 2010, 2011, 2012 and 2013 and analyzed by the Laboratory of Milk Quality - LQL. Results showed that 62.5%, 37.5%, 15.6% and 27.1% of the means for TBC in 2010, 2011, 2012 and 2013, respectively, were above the values established by legislation. However, we observed a significant reduction in the levels of total bacterial count (TBC in the studied periods. For somatic cell count, 100% of the means indicated values below 600.000 cells/mL, complying with the actual Brazilian legislation. The values found for the somatic cell count suggests the adoption of effective measures for the sanitary control of the herd. However, the results must be considered with caution as it highlights the need for quality improvements of the raw material until it achieves reliable results effectively.

  12. Aberrant histone H4 acetylation in dead somatic cell-cloned calves

    Institute of Scientific and Technical Information of China (English)

    Lei Zhang; Shaohua Wang; Qiang Li; Xiangdong Ding; Yunping Dai; Ning Li

    2008-01-01

    In somatic cell-cloned animals, inefficient epigenetic reprogramming can result in an inappropriate gene expression and histone H4 acetylation is one of the key epigenetic modifications regulating gene expression. In this study, we investigated the levels of histone H4 acetylation of 11 development-related genes and expression levels of 19 genes in lungs of three normal control calves and nine aber-rant somatic cell-cloned calves. The results showed that nine studied genes had decreased acetylation levels in aberrant clones (p 0.05). Whereas 13 genes had significantly decreased expression (p 0.05), and only one gene had higher expression level in clones (p < 0.05). Furthermore, FGFR, GHR, HGFR and IGF1 genes showed lowered levels of both histone H4 acetylation and expression in aberrant clones than in controls, and the level of histone H4 acetylation was even more lowered in aberrant clones than those in controls. It was suggested that the lower levels of histone H4 acetylation in aberrant clones caused by the previous memory of cell differentiation might not support enough chromatin reprogramming, thus affecting appropriate gene expressions, and growth and development of the cloned calves. To our knowledge, this is the first study on how histone H4 acetylation affects gene expression in organs of somatic cell-cloned calves.

  13. Genetic Analysis of Somatic Cell Score in Danish Holsteins Using a Liability-Normal Mixture Model

    DEFF Research Database (Denmark)

    Madsen, P; Shariati, M M; Ødegård, J

    2008-01-01

    Mixture models are appealing for identifying hidden structures affecting somatic cell score (SCS) data, such as unrecorded cases of subclinical mastitis. Thus, liability-normal mixture (LNM) models were used for genetic analysis of SCS data, with the aim of predicting breeding values for such cas...... categorizing only the most extreme SCS observations as mastitic, and such cases of subclinical infections may be the most closely related to clinical (treated) mastitis...

  14. Efficacy of clinoptilolite supplementation on milk yield and somatic cell count

    OpenAIRE

    Deniz Alic Ural

    2014-01-01

    ABSTRACTObjective. To determine the efficiency of clinoptilolite supplements on milk production and somatic cell count (SCC). Materials and methods. 80 Holstein–Friesian cows were used, between 2 and 4 years of age ad between their first and third lactation. Two groups made up of 40 animals were constituted, and one of the following treatments were assigned randomly: Control group (n=40) with a basal diet, and experimental group (Clinoptilolite; n=40) with a basal diet + 3% (p/p) of clinoptil...

  15. Progress toward generating a ferret model of cystic fibrosis by somatic cell nuclear transfer

    OpenAIRE

    Engelhardt John F; Li Ziyi

    2003-01-01

    Abstract Mammalian cloning by nuclear transfer from somatic cells has created new opportunities to generate animal models of genetic diseases in species other than mice. Although genetic mouse models play a critical role in basic and applied research for numerous diseases, often mouse models do not adequately reproduce the human disease phenotype. Cystic fibrosis (CF) is one such disease. Targeted ablation of the cystic fibrosis transmembrane conductance regulator (CFTR) gene in mice does not...

  16. Perspectives for induced pluripotent stem cell technology: new insights into human physiology involved in somatic mosaicism.

    Science.gov (United States)

    Nagata, Naoki; Yamanaka, Shinya

    2014-01-31

    Induced pluripotent stem cell technology makes in vitro reprogramming of somatic cells from individuals with various genetic backgrounds possible. By applying this technology, it is possible to produce pluripotent stem cells from biopsy samples of arbitrarily selected individuals with various genetic backgrounds and to subsequently maintain, expand, and stock these cells. From these induced pluripotent stem cells, target cells and tissues can be generated after certain differentiation processes. These target cells/tissues are expected to be useful in regenerative medicine, disease modeling, drug screening, toxicology testing, and proof-of-concept studies in drug development. Therefore, the number of publications concerning induced pluripotent stem cells has recently been increasing rapidly, demonstrating that this technology has begun to infiltrate many aspects of stem cell biology and medical applications. In this review, we discuss the perspectives of induced pluripotent stem cell technology for modeling human diseases. In particular, we focus on the cloning event occurring through the reprogramming process and its ability to let us analyze the development of complex disease-harboring somatic mosaicism.

  17. MicroRNA-Mediated Reprogramming of Somatic Cells into Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Sandmaier, Shelley E S; Telugu, Bhanu Prakash V L

    2015-01-01

    MicroRNAs or miRNAs belong to a class of small noncoding RNAs that play a crucial role in posttranscriptional regulation of gene expression. Nascent miRNAs are expressed as a longer transcript, which are then processed into a smaller 18-23-nucleotide mature miRNAs that bind to the target transcripts and induce cleavage or inhibit translation. MiRNAs therefore represent another key regulator of gene expression in establishing and maintaining unique cellular fate. Several classes of miRNAs have been identified to be uniquely expressed in embryonic stem cells (ESC) and regulated by the core transcription factors Oct4, Sox2, and Klf4. One such class of miRNAs is the mir-302/367 cluster that is enriched in pluripotent cells in vivo and in vitro. Using the mir-302/367 either by themselves or in combination with the Yamanaka reprogramming factors (Oct4, Sox2, c-Myc, and Klf4) has resulted in the establishment of induced pluripotent stem cells (iPSC) with high efficiencies. In this chapter, we outline the methodologies for establishing and utilizing the miRNA-based tools for reprogramming somatic cells into iPSC.

  18. Effect of donor cell type on nuclear remodelling in rabbit somatic cell nuclear transfer embryos.

    Science.gov (United States)

    Tian, J; Song, J; Li, H; Yang, D; Li, X; Ouyang, H; Lai, L

    2012-08-01

    Cloned rabbits have been produced for many years by somatic cell nuclear transfer (SCNT). The efficiency of cloning by SCNT, however, has remained extremely low. Most cloned embryos degenerate in utero, and the few that develop to term show a high incidence of post-natal death and abnormalities. The cell type used for donor nuclei is an important factor in nuclear transfer (NT). As reported previously, NT embryos reconstructed with fresh cumulus cells (CC-embryos) have better developmental potential than those reconstructed with foetal fibroblasts (FF-embryos) in vivo and in vitro. The reason for this disparity in developmental capacity is still unknown. In this study, we compared active demethylation levels and morphological changes between the nuclei of CC-embryos and FF-embryos shortly after activation. Anti-5-methylcytosine immunofluorescence of in vivo-fertilized and cloned rabbit embryos revealed that there was no detectable active demethylation in rabbit zygotes or NT-embryos derived from either fibroblasts or CC. In the process of nuclear remodelling, however, the proportion of nuclei with abnormal appearance in FF-embryos was significantly higher than that in CC-embryos during the first cell cycle. Our study demonstrates that the nuclear remodelling abnormality of cloned rabbit embryos may be one important factor for the disparity in developmental success between CC-embryos and FF-embryos.

  19. Targeted Gene Knockin in Porcine Somatic Cells Using CRISPR/Cas Ribonucleoproteins

    Directory of Open Access Journals (Sweden)

    Ki-Eun Park

    2016-05-01

    Full Text Available The pig is an ideal large animal model for genetic engineering applications. A relatively short gestation interval and large litter size makes the pig a conducive model for generating and propagating genetic modifications. The domestic pig also shares close similarity in anatomy, physiology, size, and life expectancy, making it an ideal animal for modeling human diseases. Often, however, the technical difficulties in generating desired genetic modifications such as targeted knockin of short stretches of sequences or transgenes have impeded progress in this field. In this study, we have investigated and compared the relative efficiency of CRISPR/Cas ribonucleoproteins in engineering targeted knockin of pseudo attP sites downstream of a ubiquitously expressed COL1A gene in porcine somatic cells and generated live fetuses by somatic cell nuclear transfer (SCNT. By leveraging these knockin pseudo attP sites, we have demonstrated subsequent phiC31 integrase mediated integration of green fluorescent protein (GFP transgene into the site. This work for the first time created an optimized protocol for CRISPR/Cas mediated knockin in porcine somatic cells, while simultaneously creating a stable platform for future transgene integration and generating transgenic animals.

  20. CHEMICAL COMPOSITION AND SOMATIC CELL EVOLUTION DURING LACTATION IN ROMANIAN BLACK AND WHITE COWS

    Directory of Open Access Journals (Sweden)

    L.T. CZISZTER

    2013-12-01

    Full Text Available The aim of the paper was to study the evolution of the chemical composition and somatic cell count during lactation in Romanian Black and White cows and effect of calving season on the shape of the lactation curve. Lactations form 125 multiparous cows were studied. Milk yield and sampling were carried out using the official performance control method A4. Milk was analyzed for composition in infrared spectrometry and for SCC using a viscosimeter. Results were modeled using Wood’s incomplete gamma function y=abxe(-cx, and season effect was assessed using ANOVA/MANOVA. A discussion was carried out regarding the shape of the lactation curves for milk yield, each milk component and SCC. The calving season had a significant effect (p<0.005 on the shape of the lactation curve for milk yield, milk chemical composition and milk somatic cell count. Summer calving cows had flatter lactation curves for milk yield and composition compared to winter calving cows. For somatic cell count spring calving cows had the flattest lactation curve while autumn calving cows has the steepest lactation curve.

  1. Development of porcine tetraploid somatic cell nuclear transfer embryos is influenced by oocyte nuclei.

    Science.gov (United States)

    Fu, Bo; Liu, Di; Ma, Hong; Guo, Zhen-Hua; Wang, Liang; Li, Zhong-Qiu; Peng, Fu-Gang; Bai, Jing

    2016-02-01

    Cloning efficiency in mammalian systems remains low because reprogramming of donor cells is frequently incomplete. Nuclear factors in the oocyte are removed by enucleation, and this removal may adversely affect reprogramming efficiency. Here, we investigated the role of porcine oocyte nuclear factors during reprogramming. We introduced somatic cell nuclei into intact MII oocytes to establish tetraploid somatic cell nuclear transfer (SCNT) embryos containing both somatic nuclei and oocyte nuclei. We then examined the influence of the oocyte nucleus on tetraploid SCNT embryo development by assessing characteristics including pronucleus formation, cleavage rate, and blastocyst formation. Overall, tetraploid SCNT embryos have a higher developmental competence than do standard diploid SCNT embryos. Therefore, we have established an embryonic model in which a fetal fibroblast nucleus and an oocyte metaphase II plate coexist. Tetraploid SCNT represents a new research platform that is potentially useful for examining interactions between donor nuclei and oocyte nuclei. This platform should facilitate further understanding of the roles played by nuclear factors during reprogramming.

  2. Targeted Gene Knockin in Porcine Somatic Cells Using CRISPR/Cas Ribonucleoproteins.

    Science.gov (United States)

    Park, Ki-Eun; Park, Chi-Hun; Powell, Anne; Martin, Jessica; Donovan, David M; Telugu, Bhanu P

    2016-05-26

    The pig is an ideal large animal model for genetic engineering applications. A relatively short gestation interval and large litter size makes the pig a conducive model for generating and propagating genetic modifications. The domestic pig also shares close similarity in anatomy, physiology, size, and life expectancy, making it an ideal animal for modeling human diseases. Often, however, the technical difficulties in generating desired genetic modifications such as targeted knockin of short stretches of sequences or transgenes have impeded progress in this field. In this study, we have investigated and compared the relative efficiency of CRISPR/Cas ribonucleoproteins in engineering targeted knockin of pseudo attP sites downstream of a ubiquitously expressed COL1A gene in porcine somatic cells and generated live fetuses by somatic cell nuclear transfer (SCNT). By leveraging these knockin pseudo attP sites, we have demonstrated subsequent phiC31 integrase mediated integration of green fluorescent protein (GFP) transgene into the site. This work for the first time created an optimized protocol for CRISPR/Cas mediated knockin in porcine somatic cells, while simultaneously creating a stable platform for future transgene integration and generating transgenic animals.

  3. vasa is expressed in somatic cells of the embryonic gonad in a sex-specific manner in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Andrew D. Renault

    2012-08-01

    Vasa is a DEAD box helicase expressed in the Drosophila germline at all stages of development. vasa homologs are found widely in animals and vasa has become the gene of choice in identifying germ cells. I now show that Drosophila vasa expression is not restricted to the germline but is also expressed in a somatic lineage, the embryonic somatic gonadal precursor cells. This expression is sexually dimorphic, being maintained specifically in males, and is regulated post-transcriptionally. Although somatic Vasa expression is not required for gonad coalescence, these data support the notion that Vasa is not solely a germline factor.

  4. Intra-hematopoietic cell fusion as a source of somatic variation in the hematopoietic system.

    Science.gov (United States)

    Skinner, Amy M; Grompe, Markus; Kurre, Peter

    2012-06-15

    Cell fusion plays a well-recognized, physiological role during development. Bone-marrow-derived hematopoietic cells have been shown to fuse with non-hematopoietic cells in a wide variety of tissues. Some organs appear to resolve the changes in ploidy status, generating functional and mitotically-competent events. However, cell fusion exclusively involving hematopoietic cells has not been reported. Indeed, genomic copy number variation in highly replicative hematopoietic cells is widely considered a hallmark of malignant transformation. Here we show that cell fusion occurs between cells of the hematopoietic system under injury as well as non-injury conditions. Experiments reveal the acquisition of genetic markers in fusion products, their tractable maintenance during hematopoietic differentiation and long-term persistence after serial transplantation. Fusion events were identified in clonogenic progenitors as well as differentiated myeloid and lymphoid cells. These observations provide a new experimental model for the study of non-pathogenic somatic diversity in the hematopoietic system.

  5. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention.

    Science.gov (United States)

    Tomasetti, Cristian; Li, Lu; Vogelstein, Bert

    2017-03-24

    Cancers are caused by mutations that may be inherited, induced by environmental factors, or result from DNA replication errors (R). We studied the relationship between the number of normal stem cell divisions and the risk of 17 cancer types in 69 countries throughout the world. The data revealed a strong correlation (median = 0.80) between cancer incidence and normal stem cell divisions in all countries, regardless of their environment. The major role of R mutations in cancer etiology was supported by an independent approach, based solely on cancer genome sequencing and epidemiological data, which suggested that R mutations are responsible for two-thirds of the mutations in human cancers. All of these results are consistent with epidemiological estimates of the fraction of cancers that can be prevented by changes in the environment. Moreover, they accentuate the importance of early detection and intervention to reduce deaths from the many cancers arising from unavoidable R mutations.

  6. Production of nuclear transfer embryos by using somatic cells isolated from milk in buffalo (Bubalus bubalis).

    Science.gov (United States)

    Golla, K; Selokar, N L; Saini, M; Chauhan, M S; Manik, R S; Palta, P; Singla, S K

    2012-10-01

    Somatic cells in milk are a potential source of nuclei for nuclear transfer to produce genetically identical animals; this is especially important in animals that are susceptible to risks of bacterial infection on biopsy collection. In this study, a minimum of 10 milk samples were collected from each of the three buffaloes representing Murrah breed. All the samples were processed immediately and cell colonies were obtained. Cell colonies from one buffalo (MU-442) survived beyond 10 passages and were evaluated by fluorescence microscopy and used in nuclear transfer experiments. In culture, these cells expressed vimentin, indicating they were of fibroblast origin similar to ear cells. We compared the effectiveness of cloning using those milk-derived fibroblast (MDF) cells and fibroblast cells derived from the ear derived fibroblast (EDF). Fusion and cleavage rates of MDF-NT and EDF-NT embryos were found to be similar (92.43 ± 1.28% vs 94.98 ± 1.24%, and 80.27 ± 1.75% vs 84.56 ± 3.73%, respectively; p > 0.01); however, development to blastocyst stage and total cell number was higher for EDF-NT embryos (50.24 ± 2.54%, 227.14 ± 13.04, respectively, p somatic cells from milk can be cultured effectively and used as nucleus donor to produce cloned blastocyst-stage embryos.

  7. Potential of primary kidney cells for somatic cell nuclear transfer mediated transgenesis in pig

    Directory of Open Access Journals (Sweden)

    Richter Anne

    2012-11-01

    Full Text Available Abstract Background Somatic cell nuclear transfer (SCNT is currently the most efficient and precise method to generate genetically tailored pig models for biomedical research. However, the efficiency of this approach is crucially dependent on the source of nuclear donor cells. In this study, we evaluate the potential of primary porcine kidney cells (PKCs as cell source for SCNT, including their proliferation capacity, transfection efficiency, and capacity to support full term development of SCNT embryos after additive gene transfer or homologous recombination. Results PKCs could be maintained in culture with stable karyotype for up to 71 passages, whereas porcine fetal fibroblasts (PFFs and porcine ear fibroblasts (PEFs could be hardly passaged more than 20 times. Compared with PFFs and PEFs, PKCs exhibited a higher proliferation rate and resulted in a 2-fold higher blastocyst rate after SCNT and in vitro cultivation. Among the four transfection methods tested with a GFP expression plasmid, best results were obtained with the NucleofectorTM technology, resulting in transfection efficiencies of 70% to 89% with high fluorescence intensity, low cytotoxicity, good cell proliferation, and almost no morphological signs of cell stress. Usage of genetically modified PKCs in SCNT resulted in approximately 150 piglets carrying at least one of 18 different transgenes. Several of those pigs originated from PKCs that underwent homologous recombination and antibiotic selection before SCNT. Conclusion The high proliferation capacity of PKCs facilitates the introduction of precise and complex genetic modifications in vitro. PKCs are thus a valuable cell source for the generation of porcine biomedical models by SCNT.

  8. Effect of season on milk temperature, milk growth hormone, prolactin, and somatic cell counts of lactating cattle

    Science.gov (United States)

    Igono, M. O.; Johnson, H. D.; Steevens, B. J.; Hainen, W. A.; Shanklin, M. D.

    1988-09-01

    Monthly fluctuations in milk temperature, somatic cell counts, milk growth hormone and prolactin of lactating cows were measured in milk samples over a 1 year period. The seasonal patterns in milk temperature, somatic cell count and milk prolactin concentration showed a positive trend with increasing environmental temperatures. Milk growth hormone concentration increased with lactation level and declined significantly during summer heat. Milk temperature and the measured hormonal levels may serve as indicators of the impact of the climatic environment on lactating cattle.

  9. A comparison of somatic cell count and antimicrobial susceptibility of subclinical mastitis pathogens in organic and conventional dairy herds

    OpenAIRE

    Boutet, Philippe; Detilleux, Johann; Motkin, Michel; Deliege, M.; PIRAUX, E.; Depinois, A.; Debliquy, P.; Mainil, Jacques; Czaplicki, G.; Lekeux, Pierre

    2005-01-01

    A comparison of somatic cell count and antimicrobial susceptibility of subclinical mastitis pathogens in organic and conventional dairy herds.Bovine subclinical mastitis is the most important disease affecting dairy cows. The fluctuating increase in somatic cell count (SCC) that occurs causes major economic losses in dairy industry. This comparative study between conventional and organic dairy herds was conducted in the aim to better characterize which consequences might have different manage...

  10. Two 5S genes are expressed in chicken somatic cells.

    OpenAIRE

    Lazar, E; Haendler, B.; Jacob, M

    1983-01-01

    Two 5S RNA species were detected in chicken cells. 5S I RNA has the nucleotide sequence of chicken 5S RNA previously published by Brownlee et al. (1) and 5S II RNA differs from it by 10 mutations. The secondary structure of both species is compatible with that proposed for other eukaryotic 5S RNAs. 5S II RNA represents 50-60% of 5S I RNA. Both species were found in total chicken liver and brain and were present in polysomes in the same relative proportions. Only one 5S RNA species could be de...

  11. Differentiation between antibodies to protamines and somatic nuclear antigens by means of a comparative fluorescence study on swollen nuclei of spermatozoa and somatic cells.

    Science.gov (United States)

    Samuel, T

    1978-05-01

    The indirect immunofluorescence test on swollen nuclei of rat thymocytes, chicken red blood cells and human and salmon spermatozoa was found to be an easy and satisfactory method for the discrimination between antibodies to sperm-specific nuclear antigens and somatic nuclear antigens. This study shows that nuclear antibodies present in the sera of vasectomized men and in rabbit antisera to human protamines are directed against the human sperm-specific nuclear antigens (protamines), and that they may cross-react with salmon protamine. These sera do not react with somatic nuclear antigens. This comparative fluorescence study and a complement fixation study, performed with sera from diabetic patients, proved that the administration of insulin retard (protamine-zinc-insulin) may lead to the formation of antibodies to the fish protamine. These antibodies may reveal a weak cross reaction with human protamines. The results obtained in this study also prove that the nuclei of chicken red blood cells and human sperm do not contain, or contain very small amounts of, histone fraction H1, and that salmon sperm nuclei do not contain any of the histone fractions, and suggest that the nuclei of mature human spermatozoa contain smaller amounts of histones in comparison to somatic cell nuclei.

  12. Mammary-Stem-Cell-Based Somatic Mouse Models Reveal Breast Cancer Drivers Causing Cell Fate Dysregulation

    Directory of Open Access Journals (Sweden)

    Zheng Zhang

    2016-09-01

    Full Text Available Cancer genomics has provided an unprecedented opportunity for understanding genetic causes of human cancer. However, distinguishing which mutations are functionally relevant to cancer pathogenesis remains a major challenge. We describe here a mammary stem cell (MaSC organoid-based approach for rapid generation of somatic genetically engineered mouse models (GEMMs. By using RNAi and CRISPR-mediated genome engineering in MaSC-GEMMs, we have discovered that inactivation of Ptpn22 or Mll3, two genes mutated in human breast cancer, greatly accelerated PI3K-driven mammary tumorigenesis. Using these tumor models, we have also identified genetic alterations promoting tumor metastasis and causing resistance to PI3K-targeted therapy. Both Ptpn22 and Mll3 inactivation resulted in disruption of mammary gland differentiation and an increase in stem cell activity. Mechanistically, Mll3 deletion enhanced stem cell activity through activation of the HIF pathway. Thus, our study has established a robust in vivo platform for functional cancer genomics and has discovered functional breast cancer mutations.

  13. CRISPR mediated somatic cell genome engineering in the chicken.

    Science.gov (United States)

    Véron, Nadège; Qu, Zhengdong; Kipen, Phoebe A S; Hirst, Claire E; Marcelle, Christophe

    2015-11-01

    Gene-targeted knockout technologies are invaluable tools for understanding the functions of genes in vivo. CRISPR/Cas9 system of RNA-guided genome editing is revolutionizing genetics research in a wide spectrum of organisms. Here, we combined CRISPR with in vivo electroporation in the chicken embryo to efficiently target the transcription factor PAX7 in tissues of the developing embryo. This approach generated mosaic genetic mutations within a wild-type cellular background. This series of proof-of-principle experiments indicate that in vivo CRISPR-mediated cell genome engineering is an effective method to achieve gene loss-of-function in the tissues of the chicken embryo and it completes the growing genetic toolbox to study the molecular mechanisms regulating development in this important animal model.

  14. THE EFFECT OF BLOOD AND MILK SERUM ZINC CONCENTRATION ON MILK SOMATIC CELL COUNT IN DAIRY COWS

    Directory of Open Access Journals (Sweden)

    Ivana Davidov

    2016-11-01

    Full Text Available The objective of this study was to evaluate the effect of blood and milk zinc concentration on somatic cell count and occurrence of subclinical mastitis cases. The study was performed on thirty Holstein cows approximate same body weight, ages 3 to 5 years, with equally milk production. Blood samples were taken after the morning milking from the caudal vein and milk from all four quarters was taken before morning milking. All samples of blood and milk were taken to determined zinc, using inductively coupled plasma mass spectrometry. 37.67% (11/30 cows have blood serum zinc concentration below 7µmol/l, and 63.33% or 19/30 cows have blood serum zinc concentration higher then 13µmol/l. Also 30% (9/30 cows have somatic cell count lower then 400.000/ml which indicate absence of subclinical mastitis, but 70% (21/30 cows have somatic cell count higher then 400.000/ml which indicate subclinical mastitis. Results indicate that cows with level of zinc in blood serum higher then 13 µmol/l have lower somatic cell count. Cows with lower zinc blood serum concentration then 7 µmol/l have high somatic cell count and high incidence of subclinical mastitis. According to results in this research there is no significant effect of milk serum zinc concentration on somatic cell count in dairy cows.

  15. Bacteria-human somatic cell lateral gene transfer is enriched in cancer samples.

    Directory of Open Access Journals (Sweden)

    David R Riley

    Full Text Available There are 10× more bacterial cells in our bodies from the microbiome than human cells. Viral DNA is known to integrate in the human genome, but the integration of bacterial DNA has not been described. Using publicly available sequence data from the human genome project, the 1000 Genomes Project, and The Cancer Genome Atlas (TCGA, we examined bacterial DNA integration into the human somatic genome. Here we present evidence that bacterial DNA integrates into the human somatic genome through an RNA intermediate, and that such integrations are detected more frequently in (a tumors than normal samples, (b RNA than DNA samples, and (c the mitochondrial genome than the nuclear genome. Hundreds of thousands of paired reads support random integration of Acinetobacter-like DNA in the human mitochondrial genome in acute myeloid leukemia samples. Numerous read pairs across multiple stomach adenocarcinoma samples support specific integration of Pseudomonas-like DNA in the 5'-UTR and 3'-UTR of four proto-oncogenes that are up-regulated in their transcription, consistent with conversion to an oncogene. These data support our hypothesis that bacterial integrations occur in the human somatic genome and may play a role in carcinogenesis. We anticipate that the application of our approach to additional cancer genome projects will lead to the more frequent detection of bacterial DNA integrations in tumors that are in close proximity to the human microbiome.

  16. Preliminary assessment of somatic cell nuclear transfer in the dromedary (Camelus dromedarius).

    Science.gov (United States)

    Khatir, H; Anouassi, A

    2008-12-01

    Somatic cloning may enable the maintenance/expansion of the population of camels with the highest potential for milk production or the best racing performances. However, there have been no reports of embryonic or somatic nuclear transfer in camels. The aim of this study was to produce dromedary embryos by nuclear transfer using in vitro matured oocytes and two somatic cells from two sources (adult fibroblasts or granulosa cells). A total of 58 adult females were superstimulated by a single dose of eCG (3500 IU). Ten days later, their ovaries were collected postmortem. Cumulus-oocytes-complexes (COCs) were aspirated from stimulated follicles and were matured in vitro for 30 h. Fibroblasts (from live adult male) and granulosa cells (from slaughtered adult females) were used as donor karyoplasts and injected into mature enucleated dromedary oocytes. The cleavage rate was significantly higher (Pdromedary embryos from the two sources of donor cells (fibroblasts; n=5 vs. granulosa cells; n=7) was examined by transferring them to synchronized recipients. Two females (fibroblasts: 1/5; 20%, granulosa cells: 1/7; 14%) were confirmed pregnant by ultrasonography at 15 and 25 days following transfer. Later, the pregnancies were followed by pregnancy empirical-symptoms. These two pregnancies were lost between 25 and 60 days following transfer, respectively. In conclusion, the present study shows for the first time that the development of dromedary NT embryos derived from either adult fibroblasts or granulosa cells can occur in vitro and the transfer of these cloned embryos to recipients can result in pregnancies.

  17. Effect of Hypoxia on Ldh-c Expression in Somatic Cells of Plateau Pika.

    Science.gov (United States)

    Wei, Dengbang; Wei, Linna; Li, Xiao; Wang, Yang; Wei, Lian

    2016-08-01

    Sperm specific lactate dehydrogenases (LDH-C₄) is a lactate dehydrogenase that catalyzes the conversion of pyruvate to lactate. In mammals, Ldh-c was originally thought to be expressed only in testes and spermatozoa. Plateau pika (Ochotona curzoniae), which belongs to the genus Ochotona of the Ochotonidea family, is a hypoxia-tolerant mammal living 3000-5000 m above sea level on the Qinghai-Tibet Plateau, an environment which is strongly hypoxic. Ldh-c is expressed not only in testes and sperm, but also in the somatic tissues of plateau pika. To reveal the effect of hypoxia on pika Ldh-c expression, we investigated the mRNA and protein level of Ldh-c as well as the biochemical index of anaerobic glycolysis in pika somatic tissues at the altitudes of 2200 m, 3200 m and 3900 m. Our results showed that mRNA and protein expression levels of Ldh-c in the tissues of pika's heart, liver, brain and skeletal muscle were increased significantly from 2200 m to 3200 m, but had no difference from 3200 m to 3900 m; the activities of LDH and the contents of lactate showed no difference from 2200 m to 3200 m, but were increased significantly from 3200 m to 3900 m. Hypoxia up-regulated and maintained the expression levels of Ldh-c in the pika somatic cells. Under the hypoxia condition, plateau pikas increased anaerobic glycolysis in somatic cells by LDH-C₄, and that may have reduced their dependence on oxygen and enhanced their adaptation to the hypoxic environment.

  18. Analysis of in vivo somatic mutations in normal human cells

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, P.K.; Sahota, A.; Boyadjiev, S.A. [Indiana Univ. School of Medicine, Indianapolis, IN (United States)] [and others

    1994-09-01

    We have used the APRT locus located at 16q24.3 to study the nature of loss of heterozygosity (LOH) in human T lymphocytes in vivo. T lymphocytes were isolated from blood from APRT (+/{minus}) obligated heterozygotes with known germline mutations. The cells were immediatley placed in culture medium containing 100 {mu}M 2,6-diaminopurine (DAP) to select for drug-resistant clones ({minus}/{minus}) already present. These clones were first examined using polymorphic CA microsatellite repeat markers D16S303 and D16S305 that are distal and proximal to APRT, respectively. The retention of heterozygosity of these markers is suggestive of minor changes in the APRT gene, the exact nature of which were determined by DNA sequencing. Nineteen out of 70 DAP-resistant clones from one heterozygote showed APRT sequence changes. The loss of heterozygosity of markers D16S303 and D16S305 in the remaining clones suggests LOH involving multilocus chromosomal events. These clones were then sequentially typed using additional CA repeat markers proximal and distal to APRT. The extent of LOH in these clones was found to vary from <5 cM to almost the entire 16q arm. Preliminary results suggest that there are multiple sites along the chromosome from which LOH proceeds distally in these clones. Cytogenetic analysis of 10 clones suggested mitotic recombination in 9 and deletion in one. Studies are in progress to further characterize the molecular mechanisms of LOH.

  19. Analysis of protein-coding mutations in hiPSCs and their possible role during somatic cell reprogramming.

    Science.gov (United States)

    Ruiz, Sergio; Gore, Athurva; Li, Zhe; Panopoulos, Athanasia D; Montserrat, Nuria; Fung, Ho-Lim; Giorgetti, Alessandra; Bilic, Josipa; Batchelder, Erika M; Zaehres, Holm; Schöler, Hans R; Zhang, Kun; Izpisua Belmonte, Juan Carlos

    2013-01-01

    Recent studies indicate that human-induced pluripotent stem cells contain genomic structural variations and point mutations in coding regions. However, these studies have focused on fibroblast-derived human induced pluripotent stem cells, and it is currently unknown whether the use of alternative somatic cell sources with varying reprogramming efficiencies would result in different levels of genetic alterations. Here we characterize the genomic integrity of eight human induced pluripotent stem cell lines derived from five different non-fibroblast somatic cell types. We show that protein-coding mutations are a general feature of the human induced pluripotent stem cell state and are independent of somatic cell source. Furthermore, we analyse a total of 17 point mutations found in human induced pluripotent stem cells and demonstrate that they do not generally facilitate the acquisition of pluripotency and thus are not likely to provide a selective advantage for reprogramming.

  20. Extracellular matrix of dental pulp stem cells: Applications in pulp tissue engineering using somatic MSCs

    Directory of Open Access Journals (Sweden)

    Sriram eRavindran

    2014-01-01

    Full Text Available Dental Caries affects approximately 90% of the world’s population. At present, the clinical treatment for dental caries is root canal therapy. This treatment results in loss of tooth sensitivity and vitality. Tissue engineering can potentially solve this problem by enabling regeneration of a functional pulp tissue. Dental pulp stem cells (DPSCs have been shown to be an excellent source for pulp regeneration. However, limited availability of these cells hinders its potential for clinical translation. We have investigated the possibility of using somatic mesenchymal stem cells from other sources for dental pulp tissue regeneration using a biomimetic dental pulp extracellular matrix (ECM incorporated scaffold. Human periodontal ligament stem cells (PDLSCs and human bone marrow stromal cells (HMSCs were investigated for their ability to differentiate towards an odontogenic lineage. In vitro real-time PCR results coupled with histological and immunohistochemical examination of the explanted tissues confirmed the ability of PDLSCs and HMSCs to form a vascularized pulp-like tissue. These findings indicate that the dental pulp stem derived ECM scaffold stimulated odontogenic differentiation of PDLSCs and HMSCs without the need for exogenous addition of growth and differentiation factors. This study represents a translational perspective toward possible therapeutic application of using a combination of somatic stem cells and extracellular matrix for pulp regeneration.

  1. EVALUATION OF METHODS OF ANALYSIS TO DETERMINE THE SOMATIC CELL COUNT IN RAW MILK, KEPT IN THE COOLING TANK

    Directory of Open Access Journals (Sweden)

    Manoel Pereira Neto

    2014-06-01

    Full Text Available We analyzed the quality of raw milk from eight dairy property in Rio Grande do Norte, Brazil, stored in a cooling tank, in order to evaluate methods for determining somatic cell counts (SCC. The Somaticell® kit and a portable Direct Cell Counter (DCC were compared with each other and with the MilkoScanTM FT+ (FOSS Denmark, which uses Fourier Transform Infrared Spectroscopy (FTIS. Direct cell counter data were processed for somatic cell scores (log-transformed somatic cell count and analyzed with the SAS®, Statistical Analysis System. Comparison of means and correlation of somatic cell scores were conducted using Pearson’s correlation coefficient and the Tukey Test at 1%. No significant difference was observed for comparison of means. The correlation between somatic cell scores was significant, that is, 0.907 and 0.876 between the MilkoScanTM FT + and the Somaticell® kit and Direct Cell Count (DCC respectively, and 0.943 between the Somaticell® kit and Direct Cell Count (DCC. The methods can be recommended for monitoring the quality of raw milk kept in a cooling tank in the production unit.

  2. Production of transgenic canine embryos using interspecies somatic cell nuclear transfer.

    Science.gov (United States)

    Hong, So Gun; Oh, Hyun Ju; Park, Jung Eun; Kim, Min Jung; Kim, Geon A; Koo, Ok Jae; Jang, Goo; Lee, Byeong Chun

    2012-02-01

    Somatic cell nuclear transfer (SCNT) has emerged as an important tool for producing transgenic animals and deriving transgenic embryonic stem cells. The process of SCNT involves fusion of in vitro matured oocytes with somatic cells to make embryos that are transgenic when the nuclear donor somatic cells carry 'foreign' DNA and are clones when all the donor cells are genetically identical. However, in canines, it is difficult to obtain enough mature oocytes for successful SCNT due to the very low efficiency of in vitro oocyte maturation in this species that hinders canine transgenic cloning. One solution is to use oocytes from a different species or even a different genus, such as bovine oocytes, that can be matured easily in vitro. Accordingly, the aim of this study was: (1) to establish a canine fetal fibroblast line transfected with the green fluorescent protein (GFP) gene; and (2) to investigate in vitro embryonic development of canine cloned embryos derived from transgenic and non-transgenic cell lines using bovine in vitro matured oocytes. Canine fetal fibroblasts were transfected with constructs containing the GFP and puromycin resistance genes using FuGENE 6®. Viability levels of these cells were determined by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay. Interspecies SCNT (iSCNT) embryos from normal or transfected cells were produced and cultured in vitro. The MTT measurement of GFP-transfected fetal fibroblasts (mean OD = 0.25) was not significantly different from non-transfected fetal fibroblasts (mean OD = 0.35). There was no difference between transgenic iSCNT versus non-transgenic iSCNT embryos in terms of fusion rates (73.1% and 75.7%, respectively), cleavage rates (69.7% vs. 73.8%) and development to the 8-16-cell stage (40.1% vs. 42.7%). Embryos derived from the transfected cells completely expressed GFP at the 2-cell, 4-cell, and 8-16-cell stages without mosaicism. In summary, our results demonstrated that

  3. A cloned toy poodle produced from somatic cells derived from an aged female dog.

    Science.gov (United States)

    Jang, G; Hong, S G; Oh, H J; Kim, M K; Park, J E; Kim, H J; Kim, D Y; Lee, B C

    2008-03-15

    To date, dogs have been cloned with somatic cell nuclear transfer (SCNT), using donor cells derived from large-breed dogs 2 months to 3 years of age. The objective of the present study was to use SCNT to produce a small-breed dog from ear fibroblasts of an aged poodle, using large-breed oocyte donors and surrogate females, and to determine the origin of its mitochondrial DNA (mtDNA) and the length of its telomeres. Oocytes were derived from large-breed donors, matured in vivo, collected by flushing oviducts, and reconstructed with somatic cells derived from an aged (14-year-old) female toy poodle. Oocytes and donor cells were fused by electric stimuli, activated chemically, and transferred into the oviducts of large-breed recipient females. Overall, 358 activated couplets were surgically transferred into the oviducts of 20 recipient dogs. Two recipients became pregnant; only one maintained pregnancy to term, and a live puppy (weighing 190 g) was delivered by Caesarean section. The cloned poodle was phenotypically and genetically identical to the nuclear donor dog; however, its mtDNA was from the oocyte donor, and its mean telomere length was not significantly different from that of the nuclear donor. In summary, we demonstrated that a small-breed dog could be cloned by transferring activated couplets produced by fusion of somatic cells from a small-breed, aged donor female with enucleated in-vivo-matured oocytes of large-breed females, and transferred into the oviduct of large-breed recipient female dogs.

  4. Stimulus-triggered Fate Conversion of Somatic Cells into Pluripotency in Chronic Wounds in Human Beings?

    Directory of Open Access Journals (Sweden)

    Basavraj S. Nagoba

    2015-10-01

    Full Text Available Bone-marrow derived stem cells are multi potential or totipotent and are able to differentiate into numerous cell types. Their application is indicated in various reconstructive and restorative surgeries for rapid healing. A technique for creating cells that have the embryonic ability to turn into almost any cell type in the mammalian body has been reported. Recently, an unexpected phenomenon of somatic cell reprogramming into pluripotent cells by exposing to sublethal stimuli such as citrate based acidic medium has been reported. With the concept of creating acidic environment in chronic infected wounds to make a condition unsuitable for growth and multiplication of bacteria using 3% citric acid has been reported. It would be interesting to study whether the phenomenon of pluripotency takes place in chronic infected wounds in human beings following the application of 3% citric acid and plays an important role in formation of healthy granulation tissue.

  5. Generation of biallelic knock-out sheep via gene-editing and somatic cell nuclear transfer.

    Science.gov (United States)

    Li, Honghui; Wang, Gui; Hao, Zhiqiang; Zhang, Guozhong; Qing, Yubo; Liu, Shuanghui; Qing, Lili; Pan, Weirong; Chen, Lei; Liu, Guichun; Zhao, Ruoping; Jia, Baoyu; Zeng, Luyao; Guo, Jianxiong; Zhao, Lixiao; Zhao, Heng; Lv, Chaoxiang; Xu, Kaixiang; Cheng, Wenmin; Li, Hushan; Zhao, Hong-Ye; Wang, Wen; Wei, Hong-Jiang

    2016-09-22

    Transgenic sheep can be used to achieve genetic improvements in breeds and as an important large-animal model for biomedical research. In this study, we generated a TALEN plasmid specific for ovine MSTN and transfected it into fetal fibroblast cells of STH sheep. MSTN biallelic-KO somatic cells were selected as nuclear donor cells for SCNT. In total, cloned embryos were transferred into 37 recipient gilts, 28 (75.7%) becoming pregnant and 15 delivering, resulting in 23 lambs, 12 of which were alive. Mutations in the lambs were verified via sequencing and T7EI assay, and the gene mutation site was consistent with that in the donor cells. Off-target analysis was performed, and no off-target mutations were detected. MSTN KO affected the mRNA expression of MSTN relative genes. The growth curve for the resulting sheep suggested that MSTN KO caused a remarkable increase in body weight compared with those of wild-type sheep. Histological analyses revealed that MSTN KO resulted in muscle fiber hypertrophy. These findings demonstrate the successful generation of MSTN biallelic-KO STH sheep via gene editing in somatic cells using TALEN technology and SCNT. These MSTN mutant sheep developed and grew normally, and exhibited increased body weight and muscle growth.

  6. Somatic cell nuclear transfer: infinite reproduction of a unique diploid genome.

    Science.gov (United States)

    Kishigami, Satoshi; Wakayama, Sayaka; Hosoi, Yoshihiko; Iritani, Akira; Wakayama, Teruhiko

    2008-06-10

    In mammals, a diploid genome of an individual following fertilization of an egg and a spermatozoon is unique and irreproducible. This implies that the generated unique diploid genome is doomed with the individual ending. Even as cultured cells from the individual, they cannot normally proliferate in perpetuity because of the "Hayflick limit". However, Dolly, the sheep cloned from an adult mammary gland cell, changes this scenario. Somatic cell nuclear transfer (SCNT) enables us to produce offspring without germ cells, that is, to "passage" a unique diploid genome. Animal cloning has also proven to be a powerful research tool for reprogramming in many mammals, notably mouse and cow. The mechanism underlying reprogramming, however, remains largely unknown and, animal cloning has been inefficient as a result. More momentously, in addition to abortion and fetal mortality, some cloned animals display possible premature aging phenotypes including early death and short telomere lengths. Under these inauspicious conditions, is it really possible for SCNT to preserve a diploid genome? Delightfully, in mouse and recently in primate, using SCNT we can produce nuclear transfer ES cells (ntES) more efficiently, which can preserve the eternal lifespan for the "passage" of a unique diploid genome. Further, new somatic cloning technique using histone-deacetylase inhibitors has been developed which can significantly increase the previous cloning rates two to six times. Here, we introduce SCNT and its value as a preservation tool for a diploid genome while reviewing aging of cloned animals on cellular and individual levels.

  7. Effects of pigment glands andgossypol on somatic cell cul-ture of upland cotton (Gos-sypium hirsutum L.)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effects of pigment glands and gossypol on the somatic cell culture of upland cotton were studied, using the materials as follows: three pairs of glanded and glandless upland cotton near isogenic lines, TM-1, and Coker 312. The results showed that the pigment glands and gossypol contents in the explants had great inhibiting effect on the induction and growth of callus in somatic cell culture of upland cotton, and the induction rate of callus and the single callus weight of glandless cotton were much higher than those of their glanded near isogenic lines. It was easier to obtain regeneration plants from glandless cotton than from their glanded near isogenic lines. There was a significant inverse correlation between the gossypol contents in the explants and callus induction rate, with the correlation coefficient of ?0.84. The vitro gossypol in the medium had some inhibiting effect on the induction and growth of callus, especially for the glandless cotton. However, a certain concentration of vitro gossypol in the medium (0.1 mg/L) was an aid to the steadiness growth of callus in glandless cotton somatic cell culture, with a high rate of embryogenic cells which was in favor of plant regeneration, and it was also relatively easy to obtain regeneration plants when they were transferred into differentiation medium with 0.1 mg/L of vitro gossypol, even for some cultivars which are difficult in somatic cell culture. In addition, the gossypol content and its variation in the seedlings and callus during culture of Coker 312 were discussed, as well as the relationship between gossypol variation in the explants and its somatic cell culture. The probability of vitro gossypol used in cotton somatic cell culture for the improvement of somatic cell culture was suggested.

  8. Transcriptional reprogramming of gene expression in bovine somatic cell chromatin transfer embryos

    Directory of Open Access Journals (Sweden)

    Page Grier P

    2009-04-01

    Full Text Available Abstract Background Successful reprogramming of a somatic genome to produce a healthy clone by somatic cells nuclear transfer (SCNT is a rare event and the mechanisms involved in this process are poorly defined. When serial or successive rounds of cloning are performed, blastocyst and full term development rates decline even further with the increasing rounds of cloning. Identifying the "cumulative errors" could reveal the epigenetic reprogramming blocks in animal cloning. Results Bovine clones from up to four generations of successive cloning were produced by chromatin transfer (CT. Using Affymetrix bovine microarrays we determined that the transcriptomes of blastocysts derived from the first and the fourth rounds of cloning (CT1 and CT4 respectively have undergone an extensive reprogramming and were more similar to blastocysts derived from in vitro fertilization (IVF than to the donor cells used for the first and the fourth rounds of chromatin transfer (DC1 and DC4 respectively. However a set of transcripts in the cloned embryos showed a misregulated pattern when compared to IVF embryos. Among the genes consistently upregulated in both CT groups compared to the IVF embryos were genes involved in regulation of cytoskeleton and cell shape. Among the genes consistently upregulated in IVF embryos compared to both CT groups were genes involved in chromatin remodelling and stress coping. Conclusion The present study provides a data set that could contribute in our understanding of epigenetic errors in somatic cell chromatin transfer. Identifying "cumulative errors" after serial cloning could reveal some of the epigenetic reprogramming blocks shedding light on the reprogramming process, important for both basic and applied research.

  9. Effective donor cell fusion conditions for production of cloned dogs by somatic cell nuclear transfer.

    Science.gov (United States)

    Park, JungEun; Oh, HyunJu; Hong, SoGun; Kim, MinJung; Kim, GeonA; Koo, OkJae; Kang, SungKeun; Jang, Goo; Lee, ByeongChun

    2011-03-01

    As shown by the birth of the first cloned dog 'Snuppy', a protocol to produce viable cloned dogs has been reported. In order to evaluate optimum fusion conditions for improving dog cloning efficiency, in vivo matured oocytes were reconstructed with adult somatic cells from a female Pekingese using different fusion conditions. Fusion with needle vs chamber methods, and with low vs high pulse strength was compared by evaluating fusion rate and in vivo development of canine cloned embryos. The fusion rates in the high voltage groups were significantly higher than in the low voltage groups regardless of fusion method (83.5 vs 66.1% for the needle fusion method, 67.4 vs 37.9% for the fusion chamber method). After embryo transfer, one each pregnancy was detected after using the needle fusion method with high and low voltage and in the chamber fusion method with high voltage, whereas no pregnancy was detected using the chamber method with low voltage. However, only the pregnancy from the needle fusion method with high voltage was maintained to term and one healthy puppy was delivered. The results of the present study demonstrated that two DC pulses of 3.8 to 4.0 kV/cm for 15 μsec using the needle fusion method were the most effective method for the production of cloned dogs under the conditions of this experiment.

  10. Genomic stability of lyophilized sheep somatic cells before and after nuclear transfer.

    Directory of Open Access Journals (Sweden)

    Domenico Iuso

    Full Text Available The unprecedented decline of biodiversity worldwide is urging scientists to collect and store biological material from seriously threatened animals, including large mammals. Lyophilization is being explored as a low-cost system for storage in bio-banks of cells that might be used to expand or restore endangered or extinct species through the procedure of Somatic Cell Nuclear Transfer (SCNT. Here we report that the genome is intact in about 60% of lyophylized sheep lymphocytes, whereas DNA damage occurs randomly in the remaining 40%. Remarkably, lyophilized nuclei injected into enucleated oocytes are repaired by a robust DNA repairing activity of the oocytes, and show normal developmental competence. Cloned embryos derived from lyophylized cells exhibited chromosome and cellular composition comparable to those of embryos derived from fresh donor cells. These findings support the feasibility of lyophylization as a storage procedure of mammalian cells to be used for SCNT.

  11. Pig transgenesis by piggyBac transposition in combination with somatic cell nuclear transfer.

    Science.gov (United States)

    Wu, Zhenfang; Xu, Zhiqian; Zou, Xian; Zeng, Fang; Shi, Junsong; Liu, Dewu; Urschitz, Johann; Moisyadi, Stefan; Li, Zicong

    2013-12-01

    The production of animals by somatic cell nuclear transfer (SCNT) is inefficient, with approximately 2% of micromanipulated oocytes going to term and resulting in live births. However, it is the most commonly used method for the generation of cloned transgenic livestock as it facilitates the attainment of transgenic animals once the nuclear donor cells are stably transfected and more importantly as alternatives methods of transgenesis in farm animals have proven even less efficient. Here we describe piggyBac-mediated transposition of a transgene into porcine primary cells and use of these genetically modified cells as nuclear donors for the generation of transgenic pigs by SCNT. Gene transfer by piggyBac transposition serves to provide an alternative approach for the transfection of nuclear donor cells used in SCNT.

  12. Bidirectional communication between oocytes and ovarian follicular somatic cells is required for meiotic arrest of mammalian oocytes

    Science.gov (United States)

    Wigglesworth, Karen; Lee, Kyung-Bon; O’Brien, Marilyn J.; Peng, Jia; Matzuk, Martin M.; Eppig, John J.

    2013-01-01

    Coordinated regulation of oocyte and ovarian follicular development is essential for fertility. In particular, the progression of meiosis, a germ cell-specific cell division that reduces the number of chromosomes from diploid to haploid, must be arrested until just before ovulation. Follicular somatic cells are well-known to impose this arrest, which is essential for oocyte–follicle developmental synchrony. Follicular somatic cells sustain meiotic arrest via the natriuretic peptide C/natriuretic peptide receptor 2 (NPPC/NPR2) system, and possibly also via high levels of the purine hypoxanthine in the follicular fluid. Upon activation by the ligand NPPC, NPR2, the predominant guanylyl cyclase in follicular somatic cells, produces cyclic guanosine monophosphate (cGMP), which maintains meiotic arrest after transfer to the oocyte via gap junctions. Here we report that both the NPPC/NPR2 system and hypoxanthine require the activity of inosine monophosphate dehydrogenase (IMPDH), the rate-limiting enzyme required for the production of guanylyl metabolites and cGMP. Furthermore, oocyte-derived paracrine factors, particularly the growth differentiation factor 9–bone morphogenetic protein 15 heterodimer, promote expression of Impdh and Npr2 and elevate cGMP levels in cumulus cells. Thus, although the somatic compartment of ovarian follicles plays an essential role in the maintenance of oocyte meiotic arrest, as has been known for many years, this function of the somatic cells is surprisingly regulated by signals from the oocyte itself. PMID:23980176

  13. Dynamic and static maintenance of epigenetic memory in pluripotent and somatic cells.

    Science.gov (United States)

    Shipony, Zohar; Mukamel, Zohar; Cohen, Netta Mendelson; Landan, Gilad; Chomsky, Elad; Zeliger, Shlomit Reich; Fried, Yael Chagit; Ainbinder, Elena; Friedman, Nir; Tanay, Amos

    2014-09-04

    Stable maintenance of gene regulatory programs is essential for normal function in multicellular organisms. Epigenetic mechanisms, and DNA methylation in particular, are hypothesized to facilitate such maintenance by creating cellular memory that can be written during embryonic development and then guide cell-type-specific gene expression. Here we develop new methods for quantitative inference of DNA methylation turnover rates, and show that human embryonic stem cells preserve their epigenetic state by balancing antagonistic processes that add and remove methylation marks rather than by copying epigenetic information from mother to daughter cells. In contrast, somatic cells transmit considerable epigenetic information to progenies. Paradoxically, the persistence of the somatic epigenome makes it more vulnerable to noise, since random epimutations can accumulate to massively perturb the epigenomic ground state. The rate of epigenetic perturbation depends on the genomic context, and, in particular, DNA methylation loss is coupled to late DNA replication dynamics. Epigenetic perturbation is not observed in the pluripotent state, because the rapid turnover-based equilibrium continuously reinforces the canonical state. This dynamic epigenetic equilibrium also explains how the epigenome can be reprogrammed quickly and to near perfection after induced pluripotency.

  14. Farm management factors associated with bulk tank somatic cell count in Irish dairy herds

    Directory of Open Access Journals (Sweden)

    Kelly PT

    2009-04-01

    Full Text Available Abstract The relationship between bulk tank somatic cell count (SCC and farm management and infrastructure was examined using data from 398 randomly selected, yet representative, Irish dairy farms where the basal diet is grazed grass. Median bulk tank SCC for the farms was 282,887 cells/ml ranging from 82,209 to 773,028 cells/ml. Two questionnaires were administered through face-to-face contact with each farmer. Herd-level factors associated with bulk tank SCC were determined using linear models with annual somatic cell score (i.e., arithmetic mean of the natural logarithm of bulk tank SCC included as the dependent variable. All herd level factors were analysed individually in separate regression models, which included an adjustment for geographical location of the farm; a multiple regression model was subsequently developed. Management practices associated with low SCC included the use of dry cow therapy, participation in a milk recording scheme and the use of teat disinfection post-milking. There was an association between low SCC and an increased level of hygiene and frequency of cleaning of the holding yard, passageways and cubicles. Herd management factors associated with bulk tank SCC in Irish grazing herds are generally in agreement with most previous studies from confinement systems of milk production.

  15. Farm management factors associated with bulk tank somatic cell count in Irish dairy herds

    Science.gov (United States)

    2009-01-01

    The relationship between bulk tank somatic cell count (SCC) and farm management and infrastructure was examined using data from 398 randomly selected, yet representative, Irish dairy farms where the basal diet is grazed grass. Median bulk tank SCC for the farms was 282,887 cells/ml ranging from 82,209 to 773,028 cells/ml. Two questionnaires were administered through face-to-face contact with each farmer. Herd-level factors associated with bulk tank SCC were determined using linear models with annual somatic cell score (i.e., arithmetic mean of the natural logarithm of bulk tank SCC) included as the dependent variable. All herd level factors were analysed individually in separate regression models, which included an adjustment for geographical location of the farm; a multiple regression model was subsequently developed. Management practices associated with low SCC included the use of dry cow therapy, participation in a milk recording scheme and the use of teat disinfection post-milking. There was an association between low SCC and an increased level of hygiene and frequency of cleaning of the holding yard, passageways and cubicles. Herd management factors associated with bulk tank SCC in Irish grazing herds are generally in agreement with most previous studies from confinement systems of milk production. PMID:22081962

  16. Microarray analysis of siberian ginseng cyclic somatic embryogenesis culture systems provides insight into molecular mechanisms of embryogenic cell cluster generation.

    Directory of Open Access Journals (Sweden)

    Chenguang Zhou

    Full Text Available Four systems of cyclic somatic embryogenesis of Siberian ginseng (Eleutherococcus senticosus Maxim were used to study the mechanism of embryonic cell cluster generation. The first, direct somatic embryo induction (DSEI, generates secondary embryos directly from the primary somatic embryos; the second, direct embryogenic cell cluster induction (DEC, induces embryogenic cell clusters directly from somatic embryos in agar medium. Subsequently, we found that when DEC-derived somatic embryos are transferred to suspension culture or a bioreactor culture, only somatic embryos are induced, and embryogenic cell clusters cannot form. Therefore, these new lines were named DEC cultured by liquid medium (ECS and DEC cultured by bioreactor (ECB, respectively. Transmission electron microscopy showed that DEC epidermal cells contained a variety of inclusions, distinct from other lines. A cDNA library of DEC was constructed, and 1,948 gene clusters were obtained and used as probes. RNA was prepared from somatic embryos from each of the four lines and hybridized to a microarray. In DEC, 7 genes were specifically upregulated compared with the other three lines, and 4 genes were downregulated. EsXTH1 and EsPLT1, which were among the genes upregulated in DEC, were cloned using the rapid amplification of cDNA ends (RACE. Real-time quantitative PCR showed EsXTH1 was more highly expressed in DEC than in other lines throughout the culture cycle, and EsPLT1 expression in DEC increased as culture duration increased, but remained at a low expression level in other lines. These results suggest that EsXTH1 and EsPLT1 may be the essential genes that play important roles during the induction of embryogenic cell clusters.

  17. RESEARCHES REGARDING THE SOMATIC CELLS NUMBER FROM RAW MILK USED IN TELEMEA CHEESE TECHNOLOGICAL PROCESS

    Directory of Open Access Journals (Sweden)

    ANDRA SULER

    2013-12-01

    Full Text Available It is known that by milk production hygiene must be assure: milk microbiological security, increase the sensorial and nutritive properties, increase term of availability and consumption. The milk hygienic national strategies involved: raw material risk contamination avoiding and reducing as can is possible and the microorganisms destroying or stopping development of those. In this paper it is presented the results of somatic cells number determination by raw milk used in Telemea cheese technological processes within 5 research stations. Determinations were effectuated on 2 series with 57 samples each of them, prelevated in reception phase in summer and winter seasons.

  18. Frequent somatic mosaicism of NEMO in T cells of patients with X-linked anhidrotic ectodermal dysplasia with immunodeficiency.

    Science.gov (United States)

    Kawai, Tomoki; Nishikomori, Ryuta; Izawa, Kazushi; Murata, Yuuki; Tanaka, Naoko; Sakai, Hidemasa; Saito, Megumu; Yasumi, Takahiro; Takaoka, Yuki; Nakahata, Tatsutoshi; Mizukami, Tomoyuki; Nunoi, Hiroyuki; Kiyohara, Yuki; Yoden, Atsushi; Murata, Takuji; Sasaki, Shinya; Ito, Etsuro; Akutagawa, Hiroshi; Kawai, Toshinao; Imai, Chihaya; Okada, Satoshi; Kobayashi, Masao; Heike, Toshio

    2012-06-07

    Somatic mosaicism has been described in several primary immunodeficiency diseases and causes modified phenotypes in affected patients. X-linked anhidrotic ectodermal dysplasia with immunodeficiency (XL-EDA-ID) is caused by hypomorphic mutations in the NF-κB essential modulator (NEMO) gene and manifests clinically in various ways. We have previously reported a case of XL-EDA-ID with somatic mosaicism caused by a duplication mutation of the NEMO gene, but the frequency of somatic mosaicism of NEMO and its clinical impact on XL-EDA-ID is not fully understood. In this study, somatic mosaicism of NEMO was evaluated in XL-EDA-ID patients in Japan. Cells expressing wild-type NEMO, most of which were derived from the T-cell lineage, were detected in 9 of 10 XL-EDA-ID patients. These data indicate that the frequency of somatic mosaicism of NEMO is high in XL-ED-ID patients and that the presence of somatic mosaicism of NEMO could have an impact on the diagnosis and treatment of XL-ED-ID patients.

  19. Exogenous melatonin reduces somatic cell count of milk in Holstein cows

    Science.gov (United States)

    Yang, Minghui; Shi, Jianmin; Tian, Jianhua; Tao, Jingli; Chai, Menglong; Wang, Jing; Xu, Zhiyuan; Song, Yukun; Zhu, Kuanfeng; Ji, Pengyun; Liu, Guoshi

    2017-01-01

    High somatic cell counts in milk caused by mastitis significantly influence the quality of milk and result in substantial annual economic loss. This study evaluated the beneficial effects of melatonin (MT) on milk somatic cell count (SCC) in cows. To examine the effects of melatonin on SCC, one hundred twenty cows were divided into four groups based on milk SCC. In each group, half of the cows were treated with melatonin (S.C.). Melatonin treatment significantly reduced milk SCC. To explore the potential mechanism, 20 cows with relatively high SCC were selected to evaluate the biochemical and immunological profiles of their blood after melatonin treatment. Treatment with MT significantly reduced SCC in milk, lowered serum cortisol concentrations and increased the levels of albumin, alanine transaminase and lactate dehydrogenase. Following treatment with MT, the concentration of IgG and IgM rose transiently then decreased significantly, similar to changes observed for white blood cells and lymphocytes. In conclusion, MT treatment improved the quality of milk by reducing SCC. This may be due to melatonin improving immune activity in cows. PMID:28240296

  20. Supplement of autologous ooplasm into porcine somatic cell nuclear transfer embryos does not alter embryo development.

    Science.gov (United States)

    Lee, W-J; Lee, J-H; Jeon, R-H; Jang, S-J; Lee, S-C; Park, J-S; Lee, S-L; King, W-A; Rho, G-J

    2017-02-13

    Somatic cell nuclear transfer (SCNT) is considered as the technique in which a somatic cell is introduced into an enucleated oocyte to make a cloned animal. However, it is unavoidable to lose a small amount of the ooplasm during enucleation step during SCNT procedure. The present study was aimed to uncover whether the supplement of autologous ooplasm could ameliorate the oocyte competence so as to improve low efficiency of embryo development in porcine SCNT. Autologous ooplasm-transferred (AOT) embryos were generated by the supplementation with autologous ooplasm into SCNT embryos. They were comparatively evaluated with respect to embryo developmental potential, the number of apoptotic body formation and gene expression including embryonic lineage differentiation, apoptosis, epigenetics and mitochondrial activity in comparison with parthenogenetic, in vitro-fertilized (IVF) and SCNT embryos. Although AOT embryos showed perfect fusion of autologous donor ooplasm with recipient SCNT embryos, the supplement of autologous ooplasm could not ameliorate embryo developmental potential in regard to the rate of blastocyst formation, total cell number and the number of apoptotic body. Furthermore, overall gene expression of AOT embryos was presented with no significant alterations in comparison with that of SCNT embryos. Taken together, the results of AOT demonstrated inability to make relevant values improved from the level of SCNT embryos to their IVF counterparts.

  1. Stn1 is critical for telomere maintenance and long-term viability of somatic human cells.

    Science.gov (United States)

    Boccardi, Virginia; Razdan, Neetu; Kaplunov, Jessica; Mundra, Jyoti J; Kimura, Masayuki; Aviv, Abraham; Herbig, Utz

    2015-06-01

    Disruption of telomere maintenance pathways leads to accelerated entry into cellular senescence, a stable proliferative arrest that promotes aging-associated disorders in some mammals. The budding yeast CST complex, comprising Cdc13, Stn1, and Ctc1, is critical for telomere replication, length regulation, and end protection. Although mammalian homologues of CST have been identified recently, their role and function for telomere maintenance in normal somatic human cells are still incompletely understood. Here, we characterize the function of human Stn1 in cultured human fibroblasts and demonstrate its critical role in telomere replication, length regulation, and function. In the absence of high telomerase activity, shRNA-mediated knockdown of hStn1 resulted in aberrant and fragile telomeric structures, stochastic telomere attrition, increased telomere erosion rates, telomere dysfunction, and consequently accelerated entry into cellular senescence. Oxidative stress augmented the defects caused by Stn1 knockdown leading to almost immediate cessation of cell proliferation. In contrast, overexpression of hTERT suppressed some of the defects caused by hStn1 knockdown suggesting that telomerase can partially compensate for hStn1 loss. Our findings reveal a critical role for human Stn1 in telomere length maintenance and function, supporting the model that efficient replication of telomeric repeats is critical for long-term viability of normal somatic mammalian cells.

  2. Risk factors associated with clinical mastitis in low somatic cell count British dairy herds.

    Science.gov (United States)

    Peeler, E J; Green, M J; Fitzpatrick, J L; Morgan, K L; Green, L E

    2000-11-01

    A cross-sectional survey of dairy farms with low bulk milk somatic cell counts was carried out to assess the level of clinical mastitis and to quantify risk factors associated with the incidence rate of clinical mastitis. Questionnaires were sent to 3009 milk operations with an annual mean bulk milk somatic cell count of less than 100,000 cells/ml during 1997. A response rate was 61%. The mean incidence of clinical mastitis reported was 22.8 cases per 100 cows/yr. Negative binomial regression models were used to assess statistically significant risk factors associated with the incidence of clinical mastitis. The incidence increased when farmers reported that they had straw yard housing for milking cows (compared with cubicle housing), mucked out the calving area less frequently than once per month, kept cows standing in a yard after milking, always practiced postmilking teat disinfection, had greater than 50% replacement rate, had some cows that leaked milk on entry to the parlor, had some cows that leaked milk at other times, and foremilked before cluster attachment. The incidence of clinical mastitis was lower on farms when the gathering yard used before milking was scraped at least twice a day, cows were offered feed after both milkings, rubber gloves were not worn during milking, teat liners were changed after 6000 milkings, and the average dry period was less than 40 d. The study has identified areas of the environment in which efforts to improve hygiene should be focused.

  3. Autologous somatic cell nuclear transfer in pigs using recipient oocytes and donor cells from the same animal.

    Science.gov (United States)

    Lee, Eunsong; Song, Kilyoung

    2007-12-01

    The objective of the present study was to examine the feasibility of the production of autologous porcine somatic cell nuclear transfer (SCNT) blastocysts using oocytes and donor cells from slaughtered ovaries. Therefore, we attempted to optimize autologous SCNT by examining the effects of electrical fusion conditions and donor cell type on cell fusion and the development of SCNT embryos. Four types of donor cells were used: 1) denuded cumulus cells (DCCs) collected from in vitro-matured (IVM) oocytes; 2) cumulus cells collected from oocytes after 22 h of IVM and cultured for 18 h (CCCs); 3) follicular cells obtained from follicular contents and cultured for 40 h (CFCs); and 4) adult skin fibroblasts. The DCCs showed a significantly (p cells before SCNT enhances cell fusion with oocytes and that CFCs are superior to CCCs in the production of higher numbers of autologous SCNT blastocysts.

  4. Will brain cells derived from induced pluripotent stem cells or directly converted from somatic cells (iNs) be useful for schizophrenia research?

    Science.gov (United States)

    Filippich, Cheryl; Wolvetang, Ernst J; Mowry, Bryan J

    2013-09-01

    The reprogramming of nonneuronal somatic cells to induced pluripotent stem cells and their derivation to functional brain cells as well as the related methods for direct conversion of somatic cells to neurons have opened up the possibility of conducting research on cellular disease models from living schizophrenia patients. We review the published literature on schizophrenia that has used this rapidly developing technology, highlighting the need for specific aims and reproducibility. The key issues for consideration for future schizophrenia research in this field are discussed and potential investigations using this technology are put forward for critical assessment by the reader.

  5. Diphtheria toxin resistance in human lymphocytes and lymphoblasts in the in vivo somatic cell mutation test

    Energy Technology Data Exchange (ETDEWEB)

    Tomkins, D.J.; Wei, L.; Laurie, K.E.

    1985-01-01

    It has been shown that circulating peripheral blood lymphocytes can be used for the enumeration of 6-thioguanine-resistant cells that presumably arise by mutation in vivo. This somatic cell mutation test has been studied in lymphocytes from human populations exposed to known mutagens and/or carcinogens. The sensitivity of the test could be further enhanced by including other gene markers, since there is evidence for locus-specific differences in response to mutagens. Resistance to diphtheria toxin (Dip/sup r/) seemed like a potential marker to incorporate into the test because the mutation acts codominantly, can readily be selected in human diploid fibroblasts and Chinese hamster cells with no evidence for cell density or cross-feeding effects, and can be assayed for in nondividing cells by measuring protein synthesis inhibition. Blood samples were collected from seven individuals, and fresh, cryopreserved, or Epstein-Barr virus (EBV)-transformed lymphocytes were tested for continued DNA synthesis (TH-thymidine, autoradiography) or protein synthesis (TVS-methionine, scintillation counting). Both fresh and cryopreserved lymphocytes, stimulated to divide with phytohemagglutinin (PHA), continued to synthesize DNA in the presence of high doses of diphtheria toxin (DT). Similarly, both dividing (PHA-stimulated) and nondividing fresh lymphocytes carried on significant levels of protein synthesis even 68 hr after exposure to 100 flocculating units (LF)/ml DT. The results suggest that human T and B lymphocytes may not be as sensitive to DT protein synthesis inhibition as human fibroblast and Chinese hamster cells. For this reason, Dip/sup r/ may not be a suitable marker for the somatic cell mutation test.

  6. Transcription factor Oct1 is a somatic and cancer stem cell determinant.

    Directory of Open Access Journals (Sweden)

    Jessica Maddox

    Full Text Available Defining master transcription factors governing somatic and cancer stem cell identity is an important goal. Here we show that the Oct4 paralog Oct1, a transcription factor implicated in stress responses, metabolic control, and poised transcription states, regulates normal and pathologic stem cell function. Oct1(HI cells in the colon and small intestine co-express known stem cell markers. In primary malignant tissue, high Oct1 protein but not mRNA levels strongly correlate with the frequency of CD24(LOCD44(HI cancer-initiating cells. Reducing Oct1 expression via RNAi reduces the proportion of ALDH(HI and dye efflux(HI cells, and increasing Oct1 increases the proportion of ALDH(HI cells. Normal ALDH(HI cells harbor elevated Oct1 protein but not mRNA levels. Functionally, we show that Oct1 promotes tumor engraftment frequency and promotes hematopoietic stem cell engraftment potential in competitive and serial transplants. In addition to previously described Oct1 transcriptional targets, we identify four Oct1 targets associated with the stem cell phenotype. Cumulatively, the data indicate that Oct1 regulates normal and cancer stem cell function.

  7. Making cardiomyocytes with your chemistry set:Small molecule-induced cardiogenesis in somatic cells

    Institute of Scientific and Technical Information of China (English)

    Woong-Hee; Kim; Da-Woon; Jung; Darren; Reece; Williams

    2015-01-01

    Cell transplantation is an attractive potential therapy for heart diseases. For example, myocardial infarction(MI) is a leading cause of mortality in many countries. Numerous medical interventions have been developed to stabilize patients with MI and, although this has increased survival rates, there is currently no clinically approved method to reverse the loss of cardiac muscle cells(cardiomyocytes) that accompanies this disease. Cell transplantation has been proposed as a method to replace cardiomyocytes, but a safe and reliable source of cardiogenic cells is required. An ideal source would be the patients’ own somatic tissue cells, which could be converted into cardiogenic cells and transplanted into the site of MI. However, these are difficult to produce in large quantities and standardized protocols to produce cardiac cells would be advantageous for the research community. To achieve these research goals, small molecules represent attractive tools to control cell behavior. In this editorial, we introduce the use of small molecules in stem cell research and summarize their application to the induction of cardiogenesis in noncardiac cells. Exciting new developments in this field are discussed, which we hope will encourage cardiac stem cell biologists to further consider employing small molecules in their culture protocols.

  8. Interspecies somatic cell nuclear transfer is dependent on compatible mitochondrial DNA and reprogramming factors.

    Directory of Open Access Journals (Sweden)

    Yan Jiang

    Full Text Available Interspecies somatic cell nuclear transfer (iSCNT involves the transfer of a nucleus or cell from one species into the cytoplasm of an enucleated oocyte from another. Once activated, reconstructed oocytes can be cultured in vitro to blastocyst, the final stage of preimplantation development. However, they often arrest during the early stages of preimplantation development; fail to reprogramme the somatic nucleus; and eliminate the accompanying donor cell's mitochondrial DNA (mtDNA in favour of the recipient oocyte's genetically more divergent population. This last point has consequences for the production of ATP by the electron transfer chain, which is encoded by nuclear and mtDNA. Using a murine-porcine interspecies model, we investigated the importance of nuclear-cytoplasmic compatibility on successful development. Initially, we transferred murine fetal fibroblasts into enucleated porcine oocytes, which resulted in extremely low blastocyst rates (0.48%; and failure to replicate nuclear DNA and express Oct-4, the key marker of reprogramming. Using allele specific-PCR, we detected peak levels of murine mtDNA at 0.14±0.055% of total mtDNA at the 2-cell embryo stage and then at ever-decreasing levels to the blastocyst stage (<0.001%. Furthermore, these embryos had an overall mtDNA profile similar to porcine embryos. We then depleted porcine oocytes of their mtDNA using 10 µM 2',3'-dideoxycytidine and transferred murine somatic cells along with murine embryonic stem cell extract, which expressed key pluripotent genes associated with reprogramming and contained mitochondria, into these oocytes. Blastocyst rates increased significantly (3.38% compared to embryos generated from non-supplemented oocytes (P<0.01. They also had significantly more murine mtDNA at the 2-cell stage than the non-supplemented embryos, which was maintained throughout early preimplantation development. At later stages, these embryos possessed 49.99±2.97% murine mtDNA. They

  9. Somatic Cell Fusions Reveal Extensive Heterogeneity in Basal-like Breast Cancer

    DEFF Research Database (Denmark)

    Su, Ying; Subedee, Ashim; Bloushtain-Qimron, Noga;

    2015-01-01

    genetic and epigenetic (DNA methylation and chromatin) profiling. We found that the basal-like trait is generally dominant and is largely defined by epigenetic repression of luminal transcription factors. Definition of super-enhancers highlighted a core program common in luminal cells but a high degree......Basal-like and luminal breast tumors have distinct clinical behavior and molecular profiles, yet the underlying mechanisms are poorly defined. To interrogate processes that determine these distinct phenotypes and their inheritance pattern, we generated somatic cell fusions and performed integrated...... of heterogeneity in basal-like breast cancers that correlates with clinical outcome. We also found that protein extracts of basal-like cells are sufficient to induce a luminal-to-basal phenotypic switch, implying a trigger of basal-like autoregulatory circuits. We determined that KDM6A might be required...

  10. Simplification of bovine somatic cell nuclear transfer by application of a zona-free manipulation technique

    DEFF Research Database (Denmark)

    Booth, P J; Tan, S J; Reipurth, R

    2001-01-01

    Contemporary nuclear transfer techniques often require the involvement of skilled personnel and extended periods of micromanipulation. Here, we present details of the development of a nuclear transfer technique for somatic cells that is both simpler and faster than traditional methods.......8% of cultured oocytes). Subsequent application of the optimized technique for nuclear transfer using nine different granulosa cell primary cultures (cultured in 0.5% serum for 5-12 days) generated 37.6 +/- 3.9% (11 replicates; range, 16.4-58.1 blastocysts per successfully fused and surviving reconstructed...... embryo (after activation), and 33.6 +/- 3.7% blastocysts per attempted reconstructed embryo. Mean day 7 total blastocyst cell numbers from 5 clone families was 128.1 +/- 15.3. The ongoing pregnancy rate of recipients each receiving two nuclear transfer blastocysts is 3/13 (23.1 recipients pregnant at 5...

  11. Genotoxicity effects of Flusilazole on the somatic cells of Allium cepa.

    Science.gov (United States)

    Ozakca, Dilek Unal; Silah, Hulya

    2013-09-01

    The aim of this study was to evaluate the effects of the fungicide flusilazole on somatic cells of Allium cepa. For evaluation of cytogenetic effects, root meristem cells of A. cepa were treated with 10, 20, 30 and 45 ppm (EC50 concentration) for 24, 48 and 72 h. The mitotic index and different types of chromosomal abnormalities such as bridges, stickiness and laggards were determined in both control and test groups. Acridine orange/Ethidium bromide double staining and fluorescence microscope was used to determine the stability of chromosome structure. Data obtained from staining process indicated that ratio of necrotic cells significantly increased by the flusilazole presoaking. The RAPD-PCR method was used and the higher doses treated-group (45 ppm) was more distant to the control group compare with others.

  12. Targeted disruption of Ataxia-telangiectasia mutated gene in miniature pigs by somatic cell nuclear transfer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young June; Ahn, Kwang Sung; Kim, Minjeong; Kim, Min Ju; Park, Sang-Min; Ryu, Junghyun; Ahn, Jin Seop; Heo, Soon Young; Kang, Jee Hyun; Choi, You Jung [Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan (Korea, Republic of); Choi, Seong-Jun [Institute of Tissue Regeneration Engineering, Dankook University, Cheonan (Korea, Republic of); Shim, Hosup, E-mail: shim@dku.edu [Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan (Korea, Republic of); Institute of Tissue Regeneration Engineering, Dankook University, Cheonan (Korea, Republic of); Department of Physiology, Dankook University School of Medicine, Cheonan (Korea, Republic of)

    2014-10-03

    Highlights: • ATM gene-targeted pigs were produced by somatic cell nuclear transfer. • A novel large animal model for ataxia telangiectasia was developed. • The new model may provide an alternative to the mouse model. - Abstract: Ataxia telangiectasia (A-T) is a recessive autosomal disorder associated with pleiotropic phenotypes, including progressive cerebellar degeneration, gonad atrophy, and growth retardation. Even though A-T is known to be caused by the mutations in the Ataxia telangiectasia mutated (ATM) gene, the correlation between abnormal cellular physiology caused by ATM mutations and the multiple symptoms of A-T disease has not been clearly determined. None of the existing ATM mouse models properly reflects the extent to which neurological degeneration occurs in human. In an attempt to provide a large animal model for A-T, we produced gene-targeted pigs with mutations in the ATM gene by somatic cell nuclear transfer. The disrupted allele in the ATM gene of cloned piglets was confirmed via PCR and Southern blot analysis. The ATM gene-targeted pigs generated in the present study may provide an alternative to the current mouse model for the study of mechanisms underlying A-T disorder and for the development of new therapies.

  13. Aberrant Expression of Xist in Aborted Porcine Fetuses Derived from Somatic Cell Nuclear Transfer Embryos

    Directory of Open Access Journals (Sweden)

    Lin Yuan

    2014-11-01

    Full Text Available Cloned pigs generated by somatic cell nuclear transfer (SCNT show a greater ratio of early abortion during mid-gestation than normal controls. X-linked genes have been demonstrated to be important for the development of cloned embryos. To determine the relationship between the expression of X-linked genes and abortion of cloned porcine fetuses, the expression of X-linked genes were investigated by quantitative real-time polymerase chain reaction (q-PCR and the methylation status of Xist DMR was performed by bisulfate-specific PCR (BSP. q-PCR analysis indicated that there was aberrant expression of X-linked genes, especially the upregulated expression of Xist in both female and male aborted fetuses compared to control fetuses. Results of BSP suggested that hypomethylation of Xist occurred in aborted fetuses, whether male or female. These results suggest that the abnormal expression of Xist may be associated with the abortion of fetuses derived from somatic cell nuclear transfer embryos.

  14. Progress toward generating a ferret model of cystic fibrosis by somatic cell nuclear transfer

    Directory of Open Access Journals (Sweden)

    Engelhardt John F

    2003-11-01

    Full Text Available Abstract Mammalian cloning by nuclear transfer from somatic cells has created new opportunities to generate animal models of genetic diseases in species other than mice. Although genetic mouse models play a critical role in basic and applied research for numerous diseases, often mouse models do not adequately reproduce the human disease phenotype. Cystic fibrosis (CF is one such disease. Targeted ablation of the cystic fibrosis transmembrane conductance regulator (CFTR gene in mice does not adequately replicate spontaneous bacterial infections observed in the human CF lung. Hence, several laboratories are pursuing alternative animal models of CF in larger species such as the pig, sheep, rabbits, and ferrets. Our laboratory has focused on developing the ferret as a CF animal model. Over the past few years, we have investigated several experimental parameters required for gene targeting and nuclear transfer (NT cloning in the ferret using somatic cells. In this review, we will discuss our progress and the hurdles to NT cloning and gene-targeting that accompany efforts to generate animal models of genetic diseases in species such as the ferret.

  15. Efficacy of clinoptilolite supplementation on milk yield and somatic cell count

    Directory of Open Access Journals (Sweden)

    Deniz Alic Ural

    2014-09-01

    Full Text Available Objective. To determine the efficiency of clinoptilolite supplements on milk production and somatic cell count (SCC. Materials and methods. 80 Holstein–Friesian cows were used, between 2 and 4 years of age ad between their first and third lactation. Two groups made up of 40 animals were constituted, and one of the following treatments were assigned randomly: Control group (n=40 with a basal diet, and experimental group (Clinoptilolite; n=40 with a basal diet + 3% (p/p of clinoptilolite. The basal diet consisted of corn, hay, sunflower flour, barley grains, wheat bran and soy flour. The experiment lasted 16 weeks (February to June 2013 and began 4 weeks before the expected delivery date. 2560 milk samples were taken (morning and evening, and the farm was visited twice a week. Results. The mean values for the control group and the clinoptilolite group were 30.63±0.851 and 33.66±0.756, respectively. Milk prouction for the clinoptilolite group was higher than that of the control group (p<0.01. SCC for the control and clinoptilolite groups was 5.06±0.045 and 4.79±0.011, respectively (p<0.01. Conclusions. Supplementing with 3% (p/p clinoptilolite in dairy cows increases milk production and decreases somatic cell count.

  16. Systematic mapping of occluded genes by cell fusion reveals prevalence and stability of cis-mediated silencing in somatic cells

    Science.gov (United States)

    Looney, Timothy J.; Zhang, Li; Chen, Chih-Hsin; Lee, Jae Hyun; Chari, Sheila; Mao, Frank Fuxiang; Pelizzola, Mattia; Zhang, Lu; Lister, Ryan; Baker, Samuel W.; Fernandes, Croydon J.; Gaetz, Jedidiah; Foshay, Kara M.; Clift, Kayla L.; Zhang, Zhenyu; Li, Wei-Qiang; Vallender, Eric J.; Wagner, Ulrich; Qin, Jane Yuxia; Michelini, Katelyn J.; Bugarija, Branimir; Park, Donghyun; Aryee, Emmanuel; Stricker, Thomas; Zhou, Jie; White, Kevin P.; Ren, Bing; Schroth, Gary P.; Ecker, Joseph R.; Xiang, Andy Peng; Lahn, Bruce T.

    2014-01-01

    Both diffusible factors acting in trans and chromatin components acting in cis are implicated in gene regulation, but the extent to which either process causally determines a cell's transcriptional identity is unclear. We recently used cell fusion to define a class of silent genes termed “cis-silenced” (or “occluded”) genes, which remain silent even in the presence of trans-acting transcriptional activators. We further showed that occlusion of lineage-inappropriate genes plays a critical role in maintaining the transcriptional identities of somatic cells. Here, we present, for the first time, a comprehensive map of occluded genes in somatic cells. Specifically, we mapped occluded genes in mouse fibroblasts via fusion to a dozen different rat cell types followed by whole-transcriptome profiling. We found that occluded genes are highly prevalent and stable in somatic cells, representing a sizeable fraction of silent genes. Occluded genes are also highly enriched for important developmental regulators of alternative lineages, consistent with the role of occlusion in safeguarding cell identities. Alongside this map, we also present whole-genome maps of DNA methylation and eight other chromatin marks. These maps uncover a complex relationship between chromatin state and occlusion. Furthermore, we found that DNA methylation functions as the memory of occlusion in a subset of occluded genes, while histone deacetylation contributes to the implementation but not memory of occlusion. Our data suggest that the identities of individual cell types are defined largely by the occlusion status of their genomes. The comprehensive reference maps reported here provide the foundation for future studies aimed at understanding the role of occlusion in development and disease. PMID:24310002

  17. Targeting cellular memory to reprogram the epigenome, restore potential, and improve somatic cell nuclear transfer.

    Science.gov (United States)

    Eilertsen, K J; Power, R A; Harkins, L L; Misica, P

    2007-03-01

    Successful cloning by somatic cell nuclear transfer (SCNT) is thought to require reprogramming of a somatic nucleus to a state of restored totipotentiality [Dean, W., Santos, F., Reik, W., 2003. Epigenetic programming in early mammalian development and following somatic cell nuclear transfer. Semin. Cell. Dev. Biol. 14, 93-100; Jouneau, A., Renard, J.P., 2003. Reprogramming in nuclear transfer. Curr. Opin. Genet. Dev. 13, 486-491; ]. Though SCNT-induced reprogramming is reminiscent of the reprogramming that occurs after fertilization, reprogramming a differentiated nucleus to an embryonic state is delayed and incomplete in comparison (for review, see ). This is likely due to the existence of an epigenetic-based cellular memory, or program, that serves to regulate global patterns of gene expression, and is the basis of a genome defense mechanism that silences viruses and transposons. The mechanisms of this memory include CpG methylation and modification of histones. Recent evidence by Feng et al. [Feng, Y.-Q., Desprat, R., Fu, H., Olivier, E., Lin, C.M., Lobell, A., Gowda, S.N., Aladjem, M.I., Bouhasira, E.E., 2006. DNA methylation supports intrinsic epigenetic memory in mammalian cells. PLOS Genet. 2, 0461-0470], using a transgenic experimental system, indicates that these marks may be acquired in more than one order and thus, silent heterochromatic structure can be initiated by either methylation of CpG dinucleotides or by histone modifications. In this system, however, CpG methylation appears to differ from histone modifications because it bestows a persistent epigenetic, or cellular, memory. In other words, CpG methylation can independently confer cellular memory, whereas histone modifications appear to be limited in this capacity. Therefore, in the context of genomic reprogramming induced by SCNT, efficient demethylation is likely a key (if not the only) rate-limiting step to improving the efficiency and outcomes of SCNT cloning. This review discusses the

  18. Cumulus-specific genes are transcriptionally silent following somatic cell nuclear transfer in a mouse model

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This study investigated whether four cumulus-specific genes: follicular stimulating hormone receptor (FSHr), hyaluronan synthase 2 (Has2), prostaglandin synthase 2 (Ptgs2) and steroidogenic acute regulator protein (Star), were correctly reprogrammed to be transcriptionally silent following somatic cell nuclear transfer (SCNT) in a murine model. Cumulus cells of C57×CBA F1 female mouse were injected into enucleated oocytes, followed by activation in 10 μmol/L strontium chloride for 5 h and subsequent in vitro culture up to the blastocyst stage. Expression of cumulus-specific genes in SCNT-derived embryos at 2-cell, 4-cell and day 4.5 blastocyst stages was compared with corresponding in vivo fertilized embryos by real-time PCR. It was demonstrated that immediately after the first cell cycle, SCNT-derived 2-cell stage embryos did not express all four cumulus-specific genes, which continually remained silent at the 4-cell and blastocyst stages. It is therefore concluded that all four cumulus-specific genes were correctly reprogrammed to be silent following nuclear transfer with cumulus donor cells in the mouse model. This would imply that the poor preimplantation developmental competence of SCNT embryos derived from cumulus cells is due to incomplete reprogramming of other embryonic genes, rather than cumulus-specific genes.

  19. Mitochondrial DNA heteroplasmy in ovine fetuses and sheep cloned by somatic cell nuclear transfer

    Directory of Open Access Journals (Sweden)

    Müller Mathias

    2007-12-01

    Full Text Available Abstract Background The mitochondrial DNA (mtDNA of the cloned sheep "Dolly" and nine other ovine clones produced by somatic cell nuclear transfer (SCNT was reported to consist only of recipient oocyte mtDNA without any detectable mtDNA contribution from the nucleus donor cell. In cattle, mouse and pig several or most of the clones showed transmission of nuclear donor mtDNA resulting in mitochondrial heteroplasmy. To clarify the discrepant transmission pattern of donor mtDNA in sheep clones we analysed the mtDNA composition of seven fetuses and five lambs cloned from fetal fibroblasts. Results The three fetal fibroblast donor cells used for SCNT harboured low mtDNA copy numbers per cell (A: 753 ± 54, B: 292 ± 33 and C: 561 ± 88. The ratio of donor to recipient oocyte mtDNAs was determined using a quantitative amplification refractory mutation system (ARMS PCR (i.e. ARMS-qPCR. For quantification of SNP variants with frequencies below 0.1% we developed a restriction endonuclease-mediated selective quantitative PCR (REMS-qPCR. We report the first cases (n = 4 fetuses, n = 3 lambs of recipient oocyte/nuclear donor mtDNA heteroplasmy in SCNT-derived ovine clones demonstrating that there is no species-effect hindering ovine nucleus-donor mtDNA from being transmitted to the somatic clonal offspring. Most of the heteroplasmic clones exhibited low-level heteroplasmy (0.1% to 0.9%, n = 6 indicating neutral transmission of parental mtDNAs. High-level heteroplasmy (6.8% to 46.5% was observed in one case. This clone possessed a divergent recipient oocyte-derived mtDNA genotype with three rare amino acid changes compared to the donor including one substitution at an evolutionary conserved site. Conclusion Our study using state-of-the-art techniques for mtDNA quantification, like ARMS-qPCR and the novel REMS-qPCR, documents for the first time the transmission of donor mtDNA into somatic sheep clones. MtDNA heteroplasmy was detected in seven of 12 clones

  20. Stochastic modeling indicates that aging and somatic evolution in the hematopoetic system are driven by non-cell-autonomous processes.

    Science.gov (United States)

    Rozhok, Andrii I; Salstrom, Jennifer L; DeGregori, James

    2014-12-01

    Age-dependent tissue decline and increased cancer incidence are widely accepted to be rate-limited by the accumulation of somatic mutations over time. Current models of carcinogenesis are dominated by the assumption that oncogenic mutations have defined advantageous fitness effects on recipient stem and progenitor cells, promoting and rate-limiting somatic evolution. However, this assumption is markedly discrepant with evolutionary theory, whereby fitness is a dynamic property of a phenotype imposed upon and widely modulated by environment. We computationally modeled dynamic microenvironment-dependent fitness alterations in hematopoietic stem cells (HSC) within the Sprengel-Liebig system known to govern evolution at the population level. Our model for the first time integrates real data on age-dependent dynamics of HSC division rates, pool size, and accumulation of genetic changes and demonstrates that somatic evolution is not rate-limited by the occurrence of mutations, but instead results from aged microenvironment-driven alterations in the selective/fitness value of previously accumulated genetic changes. Our results are also consistent with evolutionary models of aging and thus oppose both somatic mutation-centric paradigms of carcinogenesis and tissue functional decline. In total, we demonstrate that aging directly promotes HSC fitness decline and somatic evolution via non-cell-autonomous mechanisms.

  1. Somatically expressed germ-granule components, PGL-1 and PGL-3, repress programmed cell death in C. elegans

    Science.gov (United States)

    Al-Amin, Mohammad; Min, Hyemin; Shim, Yhong-Hee; Kawasaki, Ichiro

    2016-01-01

    We previously reported that germline apoptosis in C. elegans increased by loss of PGL-1 and PGL-3, members of a family of constitutive germ-granule components, from germ cells in adult hermaphrodite gonads. In this study, we found that somatic apoptosis was reduced in synthetic multivulva class B (synMuv B) mutants due to ectopic expression of PGL-1 and PGL-3 in the soma. In synMuv B-mutant somatic cells, CED-4 expression level was reduced due to ectopic expression of PGL-1. Furthermore, in contrast to wild type, somatic apoptosis in synMuv B mutants increased following DNA damage in a SIR-2.1-dependent manner. Intriguingly, somatic apoptosis was repressed not only in synMuv B mutants but also by ectopically expressing pgl-1 and/or pgl-3 transgenes in wild-type somatic cells. Our study demonstrates that germ-granule components, PGL-1 and PGL-3, can serve as negative regulators of apoptosis not only in the germline but also in the soma in C. elegans. PMID:27650246

  2. Somatic inactivation of ATM in hematopoietic cells predisposes mice to cyclin D3 dependent T cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Ehrlich, Lori A; Yang-Iott, Katherine; DeMicco, Amy; Bassing, Craig H

    2015-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is a cancer of immature T cells that exhibits heterogeneity of oncogenic lesions, providing an obstacle for development of more effective and less toxic therapies. Inherited deficiency of ATM, a regulator of the cellular DNA damage response, predisposes young humans and mice to T-ALLs with clonal chromosome translocations. While acquired ATM mutation or deletion occurs in pediatric T-ALLs, the role of somatic ATM alterations in T-ALL pathogenesis remains unknown. We demonstrate here that somatic Atm inactivation in haematopoietic cells starting as these cells differentiate in utero predisposes mice to T-ALL at similar young ages and harboring analogous translocations as germline Atm-deficient mice. However, some T-ALLs from haematopoietic cell specific deletion of Atm were of more mature thymocytes, revealing that the developmental timing and celluar origin of Atm inactivation influences the phenotype of ATM-deficient T-ALLs. Although it has been hypothesized that ATM suppresses cancer by preventing deletion and inactivation of TP53, we find that Atm inhibits T-ALL independent of Tp53 deletion. Finally, we demonstrate that the Cyclin D3 protein that drives immature T cell proliferation is essential for transformation of Atm-deficient thymocytes. Our study establishes a pre-clinical model for pediatric T-ALLs with acquired ATM inactivation and identifies the cell cycle machinery as a therapeutic target for this aggressive childhood T-ALL subtype.

  3. Dominance of parental genomes in embryonic stem cell/fibroblast hybrid cells depends on the ploidy of the somatic partner.

    Science.gov (United States)

    Kruglova, Anna A; Matveeva, Natalia M; Gridina, Maria M; Battulin, Nariman R; Karpov, Anton; Kiseleva, Elena V; Morozova, Ksenia N; Serov, Oleg L

    2010-06-01

    Two dozen hybrid clones were produced by fusion of diploid embryonic stem (ES) cells positive for green fluorescent protein (GFP) with tetraploid fibroblasts derived from DD/c and C57BL-I(I)1RK mice. Cytogenetic analysis demonstrated that most cells from these hybrid clones contained near-hexaploid chromosome sets. Additionally, the presence of chromosomes derived from both parental cells was confirmed by polymerase chain reaction (PCR) analysis of polymorphic microsatellites. All hybrid cells were positive for GFP and demonstrated growth characteristics and fibroblast-like morphology. In addition, most hybrid cells were positive for collagen type I, fibronectin, and lamin A/C but were negative for Oct4 and Nanog proteins. Methylation status of the Oct4 and Nanog gene promoters was evaluated by bisulfite genomic sequencing analysis. The methylation sites (CpG-sites) of the Oct4 and Nanog gene promoters were highly methylated in hybrid cells, whereas the CpG-sites were unmethylated in the parental ES cells. Thus, the fibroblast genome dominated the ES genome in the diploid ES cell/tetraploid fibroblast hybrid cells. Immunofluorescent analysis of the pluripotent and fibroblast markers demonstrated that establishment of the fibroblast phenotype occurred shortly after fusion and that the fibroblast phenotype was further maintained in the hybrid cells. Fusion of karyoplasts and cytoplast derived from tetraploid fibroblasts with whole ES cells demonstrated that karyoplasts were able to establish the fibroblast phenotype of the reconstructed cells but not fibroblast cytoplasts. Thus, these data suggest that the dominance of parental genomes in hybrid cells of ES cell/somatic cell type depends on the ploidy of the somatic partner.

  4. A differentially methylated region of the DAZ1 gene in spermatic and somatic cells

    Institute of Scientific and Technical Information of China (English)

    Zuo-Xiang Li; Xu Ma; Zhao-Hui Wang

    2006-01-01

    Aim: To investigate the methylation status of the deleted in azoospermia 1 (DAZ1) gene promoter region in different cell types. Methods: Using CpG island Searcher software, a CpG island was found in the promoter region of the DAZ1 gene. The methylation status of this region was analyzed in sperm and leukocytes by bisulfited sequencing.Results: The methylation status of the CpG island in the DAZ1 gene promoter region differed in leukocytes and sperm: it was methylated in leukocytes, but unmethylated in sperm. Conclusion: A differentially methylated region of the DAZ1 gene exists in spermatic and somatic cells, suggesting that methylation of this region may regulate DAZ1 gene expression in different tissues.

  5. Influence of somatic cell count on mineral content and salt equilibria of milk

    Directory of Open Access Journals (Sweden)

    Primo Mariani

    2010-01-01

    Full Text Available Aim of this research was to study the effect of somatic cell count on mineral content and salt equilibria at the level of quarter milk samples. Ten Italian Friesian cows, in which two homologous quarters (front quarters in 1 cow, rear quarters in 6 cows and both rear and front quarters in 3 cows were characterised by a milk SCC400,000 cells/mL (HC-milk, respectively, were selected. Cows were milked at quarter level during the morning milking and a single sample was collected from each selected quarter, thus, 26 quarter milk samples were collected. Compared to LC-milk, HC-milk was characterised by a lower content of phosphorus and potassium and by a higher content of both sodium and chloride. The equilibrium of calcium, phosphorus and magnesium between the colloidal and soluble phase of milk and the mineralisation degree of the casein micelles, were not different between HC and LC milk.

  6. Direct cell fate conversion of human somatic stem cells into cone and rod photoreceptor-like cells by inhibition of microRNA-203

    OpenAIRE

    Choi, Soon Won; Shin, Ji-Hee; Kim, Jae-Jun; Shin, Tae-Hoon; Seo, Yoojin; Kim, Hyung-Sik; Kang, Kyung-Sun

    2016-01-01

    Stem cell-based photoreceptor differentiation strategies have been the recent focus of therapies for retinal degenerative diseases. Previous studies utilized embryonic stem (ES) cells and neural retina differentiation cocktails, including DKK1 and Noggin. Here, we show a novel microRNA-mediated strategy of retina differentiation from somatic stem cells, which are potential allogeneic cell sources. Human amniotic epithelial stem cells (AESCs) and umbilical cord blood-derived mesenchymal stem c...

  7. Genetic toxicology of dental composite resin extracts in somatic cells in vivo.

    Science.gov (United States)

    Arossi, Guilherme Anziliero; Dihl, Rafael Rodrigues; Lehmann, Mauricio; Reguly, Maria Luiza; de Andrade, Heloísa Helena Rodrigues

    2010-07-01

    The aim of this study was to assess the potential genetic toxicity associated to nine aqueous extracts from dental composite resins (Charisma, Fill Magic, Fill Magic Flow, Durafill, TPH Spectrum, Concept, Natural Look, Filtek Z250 and Filtek P60) and one random extract. Homologous mitotic recombination, point and chromosomal mutation effects were determined in somatic proliferative cells of Drosophila melanogaster exposed to aqueous extracts of the clinically used composites. Reproducible increases in clone mutant spot frequencies induced by diluted extract of Fill Magic Flow were observed. These increments were exclusively associated to the induction of homologous recombination - a genetic phenomenon involved in the loss of heterozygosis. The other eight composite resins and the random extract had no statistically significant effect on total spot frequencies - suggesting that they are non-genotoxic in the somatic mutation and recombination test assay, which agrees with the applications they have in dentistry. These findings - supported by numerous studies showing a positive correlation between carcinogenicity in man and genotoxicity in the Drosophila wing spot test - point to the potential risks some composite resins pose to the health of patients and dentistry personnel.

  8. Quantitative analysis of somatic mitochondrial DNA mutations by single-cell single-molecule PCR.

    Science.gov (United States)

    Kraytsberg, Yevgenya; Bodyak, Natalya; Myerow, Susan; Nicholas, Alexander; Ebralidze, Konstantin; Khrapko, Konstantin

    2009-01-01

    Mitochondrial genome integrity is an important issue in somatic mitochondrial genetics. Development of quantitative methods is indispensable to somatic mitochondrial genetics as quantitative studies are required to characterize heteroplasmy and mutation processes, as well as their effects on phenotypic developments. Quantitative studies include the identification and measurement of the load of pathogenic and non-pathogenic clonal mutations, screening mitochondrial genomes for mutations in order to determine the mutation spectra and characterize an ongoing mutation process. Single-molecule PCR (smPCR) has been shown to be an effective method that can be applied to all areas of quantitative studies. It has distinct advantages over conventional vector-based cloning techniques avoiding the well-known PCR-related artifacts such as the introduction of artificial mutations, preferential allelic amplifications, and "jumping" PCR. smPCR is a straightforward and robust method, which can be effectively used for molecule-by-molecule mutational analysis, even when mitochondrial whole genome (mtWG) analysis is involved. This chapter describes the key features of the smPCR method and provides three examples of its applications in single-cell analysis: di-plex smPCR for deletion quantification, smPCR cloning for clonal point mutation quantification, and smPCR cloning for whole genome sequencing (mtWGS).

  9. Condensin II subunit dCAP-D3 restricts retrotransposon mobilization in Drosophila somatic cells.

    Directory of Open Access Journals (Sweden)

    Andrew T Schuster

    2013-10-01

    Full Text Available Retrotransposon sequences are positioned throughout the genome of almost every eukaryote that has been sequenced. As mobilization of these elements can have detrimental effects on the transcriptional regulation and stability of an organism's genome, most organisms have evolved mechanisms to repress their movement. Here, we identify a novel role for the Drosophila melanogaster Condensin II subunit, dCAP-D3 in preventing the mobilization of retrotransposons located in somatic cell euchromatin. dCAP-D3 regulates transcription of euchromatic gene clusters which contain or are proximal to retrotransposon sequence. ChIP experiments demonstrate that dCAP-D3 binds to these loci and is important for maintaining a repressed chromatin structure within the boundaries of the retrotransposon and for repressing retrotransposon transcription. We show that dCAP-D3 prevents accumulation of double stranded DNA breaks within retrotransposon sequence, and decreased dCAP-D3 levels leads to a precise loss of retrotransposon sequence at some dCAP-D3 regulated gene clusters and a gain of sequence elsewhere in the genome. Homologous chromosomes exhibit high levels of pairing in Drosophila somatic cells, and our FISH analyses demonstrate that retrotransposon-containing euchromatic loci are regions which are actually less paired than euchromatic regions devoid of retrotransposon sequences. Decreased dCAP-D3 expression increases pairing of homologous retrotransposon-containing loci in tissue culture cells. We propose that the combined effects of dCAP-D3 deficiency on double strand break levels, chromatin structure, transcription and pairing at retrotransposon-containing loci may lead to 1 higher levels of homologous recombination between repeats flanking retrotransposons in dCAP-D3 deficient cells and 2 increased retrotransposition. These findings identify a novel role for the anti-pairing activities of dCAP-D3/Condensin II and uncover a new way in which dCAP-D3/Condensin

  10. Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer.

    Science.gov (United States)

    Zhou, Xiaoqing; Xin, Jige; Fan, Nana; Zou, Qingjian; Huang, Jiao; Ouyang, Zhen; Zhao, Yu; Zhao, Bentian; Liu, Zhaoming; Lai, Sisi; Yi, Xiaoling; Guo, Lin; Esteban, Miguel A; Zeng, Yangzhi; Yang, Huaqiang; Lai, Liangxue

    2015-03-01

    The domestic pig has been widely used as an important large animal model. Precise and efficient genetic modification in pig provides a great promise in biomedical research. Recently, clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system has been successfully used to produce many gene-targeted animals. However, these animals have been generated by co-injection of Cas9 mRNA and single-guide RNA (sgRNA) into one-cell stage embryos, which mostly resulted in mosaicism of the modification. One or two rounds of further breeding should be performed to obtain homozygotes with identical genotype and phenotype. To address this issue, gene-targeted somatic cells can be used as donor for somatic cell nuclear transfer (SCNT) to produce gene-targeted animals with single and identical mutations. In this study, we applied Cas9/sgRNAs to effectively direct gene editing in porcine fetal fibroblasts and then mutant cell colonies were used as donor to generate homozygous gene-targeted pigs through single round of SCNT. As a result, we successfully obtained 15 tyrosinase (TYR) biallelic mutant pigs and 20 PARK2 and PINK1 double-gene knockout (KO) pigs. They were all homozygous and no off-target mutagenesis was detected by comprehensive analysis. TYR (-/-) pigs showed typical albinism and the expression of parkin and PINK1 were depleted in PARK2 (-/-)/PINK1 (-/-) pigs. The results demonstrated that single- or double-gene targeted pigs can be effectively achieved by using the CRISPR/Cas9 system combined with SCNT without mosaic mutation and detectable off-target effects. This gene-editing system provides an efficient, rapid, and less costly manner to generate genetically modified pigs or other large animals.

  11. Biomimetic Extracellular Matrix Mediated Somatic Stem Cell Differentiation: Applications in Dental Pulp Tissue Regeneration.

    Directory of Open Access Journals (Sweden)

    Sriram eRavindran

    2015-04-01

    Full Text Available Dental caries is one of the most widely prevalent infectious diseases in the world. It affects more than half of the world’s population. The current treatment for necrotic dental pulp tissue arising from dental caries is root canal therapy. This treatment results in loss of tooth sensitivity and vitality making it prone for secondary infections. Over the past decade, several tissue-engineering approaches have attempted regeneration of the dental pulp tissue. Although several studies have highlighted the potential of dental stem cells, none have transitioned into a clinical setting owing to limited availability of dental stem cells and the need for growth factor delivery systems. Our strategy is to utilize the intact ECM of pulp cells to drive lineage specific differentiation of bone marrow derived mesenchymal stem cells. From a clinical perspective, pulp ECM scaffolds can be generated using cell lines and patient specific somatic stem cells can be used for regeneration. Our published results have shown the feasibility of using pulp ECM scaffolds for odontogenic differentiation of non-dental mesenchymal cells. This focused review discusses the issues surrounding dental pulp tissue regeneration and the potential of our strategy to overcome these issues.

  12. Biomimetic extracellular matrix mediated somatic stem cell differentiation: applications in dental pulp tissue regeneration

    Science.gov (United States)

    Ravindran, Sriram; George, Anne

    2015-01-01

    Dental caries is one of the most widely prevalent infectious diseases in the world. It affects more than half of the world's population. The current treatment for necrotic dental pulp tissue arising from dental caries is root canal therapy. This treatment results in loss of tooth sensitivity and vitality making it prone for secondary infections. Over the past decade, several tissue-engineering approaches have attempted regeneration of the dental pulp tissue. Although several studies have highlighted the potential of dental stem cells, none have transitioned into a clinical setting owing to limited availability of dental stem cells and the need for growth factor delivery systems. Our strategy is to utilize the intact ECM of pulp cells to drive lineage specific differentiation of bone marrow derived mesenchymal stem cells. From a clinical perspective, pulp ECM scaffolds can be generated using cell lines and patient specific somatic stem cells can be used for regeneration. Our published results have shown the feasibility of using pulp ECM scaffolds for odontogenic differentiation of non-dental mesenchymal cells. This focused review discusses the issues surrounding dental pulp tissue regeneration and the potential of our strategy to overcome these issues. PMID:25954205

  13. Biomimetic extracellular matrix mediated somatic stem cell differentiation: applications in dental pulp tissue regeneration.

    Science.gov (United States)

    Ravindran, Sriram; George, Anne

    2015-01-01

    Dental caries is one of the most widely prevalent infectious diseases in the world. It affects more than half of the world's population. The current treatment for necrotic dental pulp tissue arising from dental caries is root canal therapy. This treatment results in loss of tooth sensitivity and vitality making it prone for secondary infections. Over the past decade, several tissue-engineering approaches have attempted regeneration of the dental pulp tissue. Although several studies have highlighted the potential of dental stem cells, none have transitioned into a clinical setting owing to limited availability of dental stem cells and the need for growth factor delivery systems. Our strategy is to utilize the intact ECM of pulp cells to drive lineage specific differentiation of bone marrow derived mesenchymal stem cells. From a clinical perspective, pulp ECM scaffolds can be generated using cell lines and patient specific somatic stem cells can be used for regeneration. Our published results have shown the feasibility of using pulp ECM scaffolds for odontogenic differentiation of non-dental mesenchymal cells. This focused review discusses the issues surrounding dental pulp tissue regeneration and the potential of our strategy to overcome these issues.

  14. Differentiation and function of the ovarian somatic cells in the pseudoscorpion, Chelifer cancroides (Linnaeus, 1761) (Chelicerata: Arachnida: Pseudoscorpionida).

    Science.gov (United States)

    Jędrzejowska, Izabela; Mazurkiewicz-Kania, Marta; Garbiec, Arnold; Kubrakiewicz, Janusz

    2013-01-01

    Pseudoscorpion females carry fertilized eggs and embryos in specialized brood sacs, where embryos are fed with a nutritive fluid produced and secreted by somatic ovarian cells. We used various microscopic techniques to analyze the organization of the somatic cells in the ovary of a pseudoscorpion, Chelifer cancroides. In young specimens, the ovary is a cylindrical mass of internally located germline cells (oogonia and early previtellogenic oocytes) and two types of somatic cells: the epithelial cells of the ovarian wall and the internal interstitial cells. In subsequent stages of the ovary development, the oocytes grow and protrude from the ovary into the hemocoel (opisthosomal cavity). At the same time the interstitial cells differentiate into the follicular cells that directly cover the oocyte surface, whereas some epithelial cells of the ovarian wall form the oocyte stalks - tubular structures that connect the oocytes with the ovarian tube. The follicular cells do not seem to participate in oogenesis. In contrast, the cells of the stalk presumably have a dual function. During ovulation the stalk cells appear to contribute to the formation of the external egg envelope (chorion), while in the post-ovulatory phase of ovary function they cooperate with the other cells of the ovarian wall in the production of the nutritive fluid for the developing embryos.

  15. Direct and indirect measurement of somatic cell count as indicator of intramammary infection in dairy goats

    Directory of Open Access Journals (Sweden)

    Olofsson Ida

    2011-03-01

    Full Text Available Abstract Background Mastitis is the most important and costly disease in dairy goat production. Subclinical mastitis is common in goats and is mainly caused by contagious bacteria. Several methods to diagnose subclinical mastitis are available. In this study indirect measurement of somatic cell count (SCC by California Mastitis Test (CMT and direct measurement of SCC using a portable deLaval cell counter (DCC are evaluated. Swedish goat farmers would primarily benefit from diagnostic methods that can be used at the farm. The purpose of the study was to evaluate SCC measured by CMT and DCC as possible markers for intramammary infection (IMI in goats without clinical symptoms of mastitis. Moreover to see how well indirect measurement of SCC (CMT corresponded to direct measurement of SCC (DCC. Method Udder half milk samples were collected once from dairy goats (n = 111, in five different farms in Northern and Central Sweden. Only clinically healthy animals were included in the study. All goats were in mid to late lactation at sampling. Milk samples were analyzed for SCC by CMT and DCC at the farm, and for bacterial growth at the laboratory. Results Intramammary infection, defined as growth of udder pathogens, was found in 39 (18% of the milk samples. No growth was found in 180 (81% samples while 3 (1% samples were contaminated. The most frequently isolated bacterial species was coagulase negative staphylococci (CNS (72% of all isolates, followed by Staphylococcus aureus (23% of all isolates. Somatic cell count measured by DCC was strongly (p = 0.000 associated with bacterial growth. There was also a very strong association between CMT and bacterial growth. CMT 1 was associated with freedom of IMI while CMT ≥2 was associated with IMI. Indirect measurement of SCC by CMT was well correlated with SCC measured by DCC. Conclusions According to the results, SCC measured with CMT or DCC can predict udder infection in goats, and CMT can be used as a

  16. Remodeling of ribosomal genes in somatic cells by Xenopus egg extract

    Energy Technology Data Exchange (ETDEWEB)

    Ostrup, Olga, E-mail: osvarcova@gmail.com [Institute of Basic Animal and Veterinary Sciences, Faculty of Life Sciences, University of Copenhagen, Frederiksberg C (Denmark); Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo (Norway); Norwegian Center for Stem Cell Research, Oslo (Norway); Hyttel, Poul; Klaerke, Dan A. [Institute of Basic Animal and Veterinary Sciences, Faculty of Life Sciences, University of Copenhagen, Frederiksberg C (Denmark); Collas, Philippe, E-mail: philc@medisin.uio.no [Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo (Norway); Norwegian Center for Stem Cell Research, Oslo (Norway)

    2011-09-02

    Highlights: {yields} Xenopus egg extract remodels nuclei and alter cell growth characteristics. {yields} Ribosomal genes are reprogrammed within 6 h after extract exposure. {yields} rDNA reprogramming involves promoter targeting of SNF2H remodeling complex. {yields} Xenopus egg extract does not initiate stress-related response in somatic cells. {yields} Aza-cytidine elicits a stress-induced response in reprogrammed cells. -- Abstract: Extracts from Xenopus eggs can reprogram gene expression in somatic nuclei, however little is known about the earliest processes associated with the switch in the transcriptional program. We show here that an early reprogramming event is the remodeling of ribosomal chromatin and gene expression. This occurs within hours of extract treatment and is distinct from a stress response. Egg extract elicits remodeling of the nuclear envelope, chromatin and nucleolus. Nucleolar remodeling involves a rapid and stable decrease in ribosomal gene transcription, and promoter targeting of the nucleolar remodeling complex component SNF2H without affecting occupancy of the transcription factor UBF and the stress silencers SUV39H1 and SIRT1. During this process, nucleolar localization of UBF and SIRT1 is not altered. On contrary, azacytidine pre-treatment has an adverse effect on rDNA remodeling induced by extract and elicits a stress-type nuclear response. Thus, an early event of Xenopus egg extract-mediated nuclear reprogramming is the remodeling of ribosomal genes involving nucleolar remodeling complex. Condition-specific and rapid silencing of ribosomal genes may serve as a sensitive marker for evaluation of various reprogramming methods.

  17. Relationship between mastitis causative pathogens and somatic cell counts in milk of dairy cows

    Directory of Open Access Journals (Sweden)

    Sharaf Eldeen Idriss

    2013-12-01

    Full Text Available Milk somatic cell count is a key component of national and international regulation for milk quality and an indicator of udder health and of the prevalence of clinical and subclinical mastitis in dairy herds. The objective of this study was to evaluate the presence of mastitis pathogens in milk samples differed by somatic cell count (SCC in microbiologically positive samples. Also frequency of distribution of samples differed by SCC were studied in non infected samples as well. The milk samples were collected from individual quarters from the dairy farms located in Nitra region with problematic udder health of herd for SCC and bacteriological analysis. Totally, 390 milk samples were examined, and 288 (73.85% positive milk samples were detected. Four SCC groups of samples (400×103 /ml were used to identify presence of microorganisms in positive samples. The most frequently isolated pathogens in samples with high SCC >400×103 /ml according to year were Coagulase-negative Staphylococci (29.11 % in 2012, followed by Staphylococcus aureus (28.0% in 2010, yeasts (24.05% in 2012, Escherichia coli (22.78% in 2012, Bacillus sp. (20% in 2010 and Pseudomonas aerugenosa (11.88% in 2011. Coagulase-negative Staphylococci (66.67% were the predominantly identified in the samples with low SCC <100×103 cells/ml, followed by Bacillus spp (50%, Entrococcus spp. (33.33% and Staphylococcus aureus (16.67% and E. coli (16.67%. The results of this study indicated that the SCC of individual milk samples corresponded with the health status of the udder of dairy cows represented by presence of mastitis microorganisms in milk. However, the contamination of milk samples could be also connected with low SCC. On the ohter side the samples with high SCC were found out without presence of microorganism. The further study is needed to identify the reason of high SCC in milk from negative samples.

  18. BIX-01294 increases pig cloning efficiency by improving epigenetic reprogramming of somatic cell nuclei.

    Science.gov (United States)

    Huang, Jiaojiao; Zhang, Hongyong; Yao, Jing; Qin, Guosong; Wang, Feng; Wang, Xianlong; Luo, Ailing; Zheng, Qiantao; Cao, Chunwei; Zhao, Jianguo

    2016-01-01

    Accumulating evidence suggests that faulty epigenetic reprogramming leads to the abnormal development of cloned embryos and results in the low success rates observed in all mammals produced through somatic cell nuclear transfer (SCNT). The aberrant methylation status of H3K9me and H3K9me2 has been reported in cloned mouse embryos. To explore the role of H3K9me2 and H3K9me in the porcine somatic cell nuclear reprogramming, BIX-01294, known as a specific inhibitor of G9A (histone-lysine methyltransferase of H3K9), was used to treat the nuclear-transferred (NT) oocytes for 14-16 h after activation. The results showed that the developmental competence of porcine SCNT embryos was significantly enhanced both in vitro (blastocyst rate 16.4% vs 23.2%, Pcloning rate 1.59% vs 2.96%) after 50 nm BIX-01294 treatment. BIX-01294 treatment significantly decreased the levels of H3K9me2 and H3K9me at the 2- and 4-cell stages, which are associated with embryo genetic activation, and increased the transcriptional expression of the pluripotency genes SOX2, NANOG and OCT4 in cloned blastocysts. Furthermore, the histone acetylation levels of H3K9, H4K8 and H4K12 in cloned embryos were decreased after BIX-01294 treatment. However, co-treatment of activated NT oocytes with BIX-01294 and Scriptaid rescued donor nuclear chromatin from decreased histone acetylation of H4K8 that resulted from exposure to BIX-01294 only and consequently improved the preimplantation development of SCNT embryos (blastocyst formation rates of 23.7% vs 21.5%). These results indicated that treatment with BIX-01294 enhanced the developmental competence of porcine SCNT embryos through improvements in epigenetic reprogramming and gene expression.

  19. Uncoupled embryonic and extra-embryonic tissues compromise blastocyst development after somatic cell nuclear transfer.

    Directory of Open Access Journals (Sweden)

    Séverine A Degrelle

    Full Text Available Somatic cell nuclear transfer (SCNT is the most efficient cell reprogramming technique available, especially when working with bovine species. Although SCNT blastocysts performed equally well or better than controls in the weeks following embryo transfer at Day 7, elongation and gastrulation defects were observed prior to implantation. To understand the developmental implications of embryonic/extra-embryonic interactions, the morphological and molecular features of elongating and gastrulating tissues were analysed. At Day 18, 30 SCNT conceptuses were compared to 20 controls (AI and IVP: 10 conceptuses each; one-half of the SCNT conceptuses appeared normal while the other half showed signs of atypical elongation and gastrulation. SCNT was also associated with a high incidence of discordance in embryonic and extra-embryonic patterns, as evidenced by morphological and molecular "uncoupling". Elongation appeared to be secondarily affected; only 3 of 30 conceptuses had abnormally elongated shapes and there were very few differences in gene expression when they were compared to the controls. However, some of these differences could be linked to defects in microvilli formation or extracellular matrix composition and could thus impact extra-embryonic functions. In contrast to elongation, gastrulation stages included embryonic defects that likely affected the hypoblast, the epiblast, or the early stages of their differentiation. When taking into account SCNT conceptus somatic origin, i.e. the reprogramming efficiency of each bovine ear fibroblast (Low: 0029, Med: 7711, High: 5538, we found that embryonic abnormalities or severe embryonic/extra-embryonic uncoupling were more tightly correlated to embryo loss at implantation than were elongation defects. Alternatively, extra-embryonic differences between SCNT and control conceptuses at Day 18 were related to molecular plasticity (high efficiency/high plasticity and subsequent pregnancy loss. Finally

  20. Single cell analysis demonstrating somatic mosaicism involving 11p in a patient with paternal isodisomy and Beckwith-Wiedemann Syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Bischoff, F.Z.; McCaskill, C.; Subramanian, S. [Baylor College of Medicine, Houston, TX (United States)] [and others

    1994-09-01

    Beckwith-Wiedemann Syndrome (BWS) is characterized by numerous growth abnormalities including exomphalos, macroglossia, gigantism, and hemihypertrophy or hemihyperplasia. The {open_quotes}BWS gene{close_quotes} appears to be maternally repressed and is suspected to function as a growth factor or regulator of somatic growth, since activation of this gene through a variety of mechanisms appears to result in somatic overgrowth and tumor development. Mosaic paternal isodisomy of 11p has been observed previously by others in patients with BWS by Southern blot analysis of genomic DNA. The interpretation of these results was primarily based on the intensities of the hybridization signals for the different alleles. In our study, we demonstrate somatic mosaicism directly through PCR and single cell analysis. Peripheral blood was obtained from a patient with BWS and initial genomic DNA analysis by PCR was suggestive of somatic mosaicism for paternal isodisomy of 11p. Through micromanipulation, single cells were isolated and subjected to primer extention preamplification. Locus-specific microsatellite marker analyses by PCR were performed to determine the chromosome 11 origins in the preamplified individual cells. Two populations of cells were detected, a population of cells with normal biparental inheritance and a population of cells with paternal isodisomy of 11p and biparental disomy of 11q. Using the powerful approach of single cell analysis, the detected somatic mosaicism provides evidence for a mitotic recombinational event that has resulted in loss of the maternal 11p region and gain of a second copy of paternal 11p in some cells. The direct demonstration of mosaicism may explain the variable phenotypes and hemihypertrophy often observed in BWS.

  1. Development of interspecies nuclear transfer embryos reconstructed with argali (Ovis ammon) somatic cells and sheep ooplasm.

    Science.gov (United States)

    Pan, Xiaoyan; Zhang, Yanli; Guo, Zhiqin; Wang, Feng

    2014-02-01

    Interspecies nuclear transfer has already achieved success in several species, which shows great potential in recovery and conservation of endangered animals. The study was conducted to establish an efficient system for in vitro argali (Ovis ammon)-sheep embryo reconstruction via interspecies somatic cell nuclear transfer (iSCNT). The competence of domestic sheep cytoplasts to reprogram the adult argali fibroblast nuclei was evaluated, and the effects of enucleation methods and donor cell passage and cell state on the in vitro development of argali-sheep cloned embryos were also examined. Sheep oocytes could support argali and sheep fibroblast cell nuclei transfer and develop to blastocysts in vitro. Oocytes matured for 21–23 h and enucleated by chemically assisted enucleation (CAE) had a higher enucleation rate than blind enucleation (BE), but the development rate of iSCNTembryos was the same (P>0.05). Moreover, passage numbers of fibroblast cells cell cycle stages did not affect the development rate of iSCNT reconstructed embryos. Thus sheep cytoplasm successfully supports argali nucleus development to blastocyst stage after optimising the nuclear transfer procedure, which indicates that iSCNT can be used to conserve endangered argali in the near future.

  2. Relationship of Somatic Cell Count with Milk Yield and Composition in Chinese Holstein Population

    Institute of Scientific and Technical Information of China (English)

    GUO Jia-zhong; LIU Xiao-lin; XU A-juan; XIA Zhi

    2010-01-01

    The objective of this study was to analyze the relationship of somatic cell count(SCC)with milk yield,fat and protein percentage,fat and protein yield using analysis of variance and correlation analysis in Chinese Holstein population.The10 524 test-day records of 568 Chinese Holstein Cattle were obtained from 2 commercial herds in Xi'an region of China during February 2002 to March 2009.Milk yield,fat percentage,fat and protein yield initially increased and then dropped down with parity,whereas protein percentage decreased and SCC increased.Analysis of variance showed highly significant effects of different subclasses SCC on milk yield and composition(P0.05).The results of the present study first time provide the relevant base-line data for assessing milk production at Xi'an region of China.

  3. Conservation of the Sapsaree (Canis familiaris), a Korean Natural Monument, using somatic cell nuclear transfer.

    Science.gov (United States)

    Jang, Goo; Hong, SoGun; Kang, JungTaek; Park, JungEun; Oh, HyunJu; Park, ChanKyu; Ha, JiHong; Kim, DaeYong; Kim, MinKyu; Lee, ByeongChun

    2009-09-01

    A recent emerging technology, somatic cell nuclear transfer (SCNT), has been considered for conserving threatened or endangered species. Sapsaree is a native breed in Korea and has been designated as a Natural Monument. The aim of this study was to produce a Sapsaree by SCNT for breed conservation. Donor fibroblasts from a 9-year-old male Sapsaree were placed into the perivitelline spaces of enucleated in vivo matured oocytes and fused electrically. A total of 309 cloned embryos were transferred into the oviducts of 15 naturally synchronized recipients. Two recipients were diagnosed as pregnant, and each delivered one cloned puppy, both of which weighed 530 g. Overall, this study demonstrated that an endangered canine breed can be conserved by SCNT.

  4. Communication between oocytes and somatic cells regulates volatile pheromone production in Caenorhabditis elegans.

    Science.gov (United States)

    Leighton, Daniel H W; Choe, Andrea; Wu, Shannon Y; Sternberg, Paul W

    2014-12-16

    Males of the androdioecious species Caenorhabditis elegans are more likely to attempt to mate with and successfully inseminate C. elegans hermaphrodites that do not concurrently harbor sperm. Although a small number of genes have been implicated in this effect, the mechanism by which it arises remains unknown. In the context of the battle of the sexes, it is also unknown whether this effect is to the benefit of the male, the hermaphrodite, or both. We report that successful contact between mature sperm and oocyte in the C. elegans gonad at the start of fertilization causes the oocyte to release a signal that is transmitted to somatic cells in its mother, with the ultimate effect of reducing her attractiveness to males. Changes in hermaphrodite attractiveness are tied to the production of a volatile pheromone, the first such pheromone described in C. elegans.

  5. Somatic cell nuclear transfer and transgenesis in large animals: current and future insights.

    Science.gov (United States)

    Galli, C; Lagutina, I; Perota, A; Colleoni, S; Duchi, R; Lucchini, F; Lazzari, G

    2012-06-01

    Somatic cell nuclear transfer (SCNT) was first developed in livestock for the purpose of accelerating the widespread use of superior genotypes. Although many problems still exist now after fifteen years of research owing to the limited understanding of genome reprogramming, SCNT has provided a powerful tool to make copies of selected individuals in different species, to study genome pluripotency and differentiation, opening new avenues of research in regenerative medicine and representing the main route for making transgenic livestock. Besides well-established methods to deliver transgenes, recent development in enzymatic engineering to edit the genome provides more precise and reproducible tools to target-specific genomic loci especially for producing knockout animals. The interest in generating transgenic livestock lies in the agricultural and biomedical areas and it is, in most cases, at the stage of research and development, with few exceptions that are making the way into practical applications.

  6. Repression of germline RNAi pathways in somatic cells by retinoblastoma pathway chromatin complexes.

    Directory of Open Access Journals (Sweden)

    Xiaoyun Wu

    Full Text Available The retinoblastoma (Rb tumor suppressor acts with a number of chromatin cofactors in a wide range of species to suppress cell proliferation. The Caenorhabditis elegans retinoblastoma gene and many of these cofactors, called synMuv B genes, were identified in genetic screens for cell lineage defects caused by growth factor misexpression. Mutations in many synMuv B genes, including lin-35/Rb, also cause somatic misexpression of the germline RNA processing P granules and enhanced RNAi. We show here that multiple small RNA components, including a set of germline-specific Argonaute genes, are misexpressed in the soma of many synMuv B mutant animals, revealing one node for enhanced RNAi. Distinct classes of synMuv B mutants differ in the subcellular architecture of their misexpressed P granules, their profile of misexpressed small RNA and P granule genes, as well as their enhancement of RNAi and the related silencing of transgenes. These differences define three classes of synMuv B genes, representing three chromatin complexes: a LIN-35/Rb-containing DRM core complex, a SUMO-recruited Mec complex, and a synMuv B heterochromatin complex, suggesting that intersecting chromatin pathways regulate the repression of small RNA and P granule genes in the soma and the potency of RNAi. Consistent with this, the DRM complex and the synMuv B heterochromatin complex were genetically additive and displayed distinct antagonistic interactions with the MES-4 histone methyltransferase and the MRG-1 chromodomain protein, two germline chromatin regulators required for the synMuv phenotype and the somatic misexpression of P granule components. Thus intersecting synMuv B chromatin pathways conspire with synMuv B suppressor chromatin factors to regulate the expression of small RNA pathway genes, which enables heightened RNAi response. Regulation of small RNA pathway genes by human retinoblastoma may also underlie its role as a tumor suppressor gene.

  7. Chromosome engineering: generation of mono- and dicentric isochromosomes in a somatic cell hybrid system.

    Science.gov (United States)

    Higgins, A W; Schueler, M G; Willard, H F

    1999-08-01

    The most common isochromosome found in humans involves the long arm of the X, i(Xq), and is associated with a subset of Turner syndrome cases. To study the formation and behavior of isochromosomes in a more tractable experimental system, we have developed a somatic cell hybrid model system that allows for the selection of mono- or dicentric isochromosomes involving the short arm of the X, i(Xp). Simultaneous positive and negative counterselection of a mouse/human somatic cell hybrid containing a human X chromosome, selecting for retention of the UBE1 locus in Xp but against the HPRT locus in Xq, results in a variety of abnormalities of the X chromosome involving deletions of Xq. We have generated 70 such "Pushmi-Pullyu" hybrids derived from seven independent X chromosomes. Cytogenetic analysis of these hybrids using fluorescence in situ hybridization showed i(Xp) chromosomes in approximately 19% of the hybrids. Southern blot and polymerase chain reaction analyses of the Pushmi-Pullyu hybrids revealed a distribution of breakpoints along Xq. The distance between the centromeres of the dicentric i(Xp)s generated ranged from approximately 2 Mb to approximately 20 Mb. To examine centromeric activity in these dicentric i(Xp)s, we used indirect immunofluorescence with antibodies to centromere protein E (CENP-E). CENP-E was detected at only one of the centromeres of a dicentric i(Xp) with approximately 2-3 Mb of Xq DNA. In contrast, CENP-E was detected at both centromeres of a dicentric i(Xp) with approximately 14 Mb of Xq DNA. Two other dicentric i(Xp) chromosomes were heterogeneous with respect to centromeric activity, suggesting that centromeric activity and chromosome stability of dicentric chromosomes may be more complicated than previously thought. The Pushmi-Pullyu model system presented in this study may provide a tool for examining the structure and function of mammalian centromeres.

  8. Cloning missy: obtaining multiple offspring of a specific canine genotype by somatic cell nuclear transfer.

    Science.gov (United States)

    Hossein, Mohammad Shamim; Jeong, Yeon Woo; Park, Sun Woo; Kim, Joung Joo; Lee, Eugine; Ko, Kyeong Hee; Kim, Huen Suk; Kim, Yeun Wook; Hyun, Sang Hwan; Shin, Taeyoung; Hawthorne, Lou; Hwang, Woo Suk

    2009-03-01

    The present study was undertaken to evaluate two activation methods for somatic cell nuclear transfer (SCNT), namely, fusion and simultaneous activation (FSA, fusion medium contains calcium), versus fusion followed by chemical activation (F+CA, fusion medium does not contain calcium), and to evaluate the effects of parity of recipient dogs on the success of SCNT. Oocytes retrieved from outbred dogs were reconstructed with adult somatic cells collected from an 11-year-old female dog named Missy. In the FSA method, oocytes were fused and activated at the same time using two DC pulses of 1.75 kV/cm for 15 microsec. In the F+CA method, oocytes were fused with two DC pulses of 1.75 kV/cm for 15 microsec, and then activated 1 h after fusion by 10 microM calcium ionophore for 4 m and cultured for 4 h in 1.9 mM 6-dimethylaminopurine for postactivation. Activation method had a significant impact on the production efficiency of cloned dogs. There was a significant difference in full-term pregnancy rate and percentage of live puppies between the two methods (6.3% and 38.5% for FSA and F+CA, respectively). In our study, four out of five live offspring produced by F+CA survived versus FSA, which did not result in any surviving puppies. Overall, as few as 14 dogs and 54 reconstructed embryos were needed to produce a cloned puppy. In addition, the parity of recipient bitches had no effect on the success of SCNT in canine species. Both the nullipara and multipara bitches produced live puppies following SCNT-ET.

  9. Birth of viable female dogs produced by somatic cell nuclear transfer.

    Science.gov (United States)

    Jang, G; Kim, M K; Oh, H J; Hossein, M S; Fibrianto, Y H; Hong, S G; Park, J E; Kim, J J; Kim, H J; Kang, S K; Kim, D Y; Lee, B C

    2007-03-15

    Since the only viable cloned offspring born in dogs was a male, the purpose of the present study was to produce female puppies by somatic cell nuclear transfer (SCNT). Adult ear fibroblasts from a 2-month-old female Afghan hound were isolated and used as donor cells. In vivo-matured canine oocytes surgically collected (approximately 72h after ovulation) from the oviducts of 23 donors were used for SCNT. After removal of the cumulus cells, oocytes were enucleated, microinjected, fused with a donor cell, and activated. A total of 167 reconstructed SCNT embryos were surgically transferred (Day 0) into the oviducts of 12 recipient bitches (average 13.9 embryos/recipient, range 6-22) with spontaneous, synchronous estrous cycles. Three pregnancies were detected by ultrasonography on Day 23, maintained to term, and three healthy female puppies (520, 460, and 520g), were delivered by Caesarean section on Day 60. These puppies were phenotypically and genotypically identical to the cell donor. In conclusion, we have provided the first demonstration that female dogs can be produced by nuclear transfer of ear fibroblasts into enucleated canine oocytes.

  10. Somatic cell count and biochemical components of milk related to udder health in buffaloes

    Directory of Open Access Journals (Sweden)

    S.T. Singh

    2010-02-01

    Full Text Available The 399 clinically healthy quarters from 101 Murrah buffaloes were analyzed for somatic cell count (SCC; DCC and microscope methods and biochemical composition of milk in relation to udder health. The udder health revealed specific subclinical mastitis (SSM in 7% and non-specific mastitis (NSM in 49% of quarters. Latent infections comprised 1%. Staphylococci (43%, streptococci (39% and corynebacteria (18% constituted chief etiological agents in SSM. Electrical conductivity increased significantly both in SSM and NSM compared to healthy quarters. Significant effects for SNF and density were seen in SSM only. DCC and microscope depicted similar cell counts with a correlation coefficient of 0.89. The correlations of DCC with CMT and EC were 0.85 and 0.51, respectively. Quarters with negative CMT reactions had DCC values of < 3 × 105 cells/ml. The DCC means for negative, trace, and +1 to 2 CMT scores were 122, 238, and 593 (× 103 cells/ml, respectively. Lactose with discrimination ability of 83.76% was found better indicator of udder inflammation in buffaloes. Buffaloes unlike cows have low numbers of quarter infections, respond similarly as cows to udder inflammation but at different levels, and DCC may be effectively employed for expressing milk cell count in this species.

  11. Bcl6 Is Required for Somatic Hypermutation and Gene Conversion in Chicken DT40 Cells

    Science.gov (United States)

    Williams, Alan M.; Maman, Yaakov; Alinikula, Jukka; Schatz, David G.

    2016-01-01

    The activation induced cytosine deaminase (AID) mediates diversification of B cell immunoglobulin genes by the three distinct yet related processes of somatic hypermutation (SHM), class switch recombination (CSR), and gene conversion (GCV). SHM occurs in germinal center B cells, and the transcription factor Bcl6 is a key regulator of the germinal center B cell gene expression program, including expression of AID. To test the hypothesis that Bcl6 function is important for the process of SHM, we compared WT chicken DT40 B cells, which constitutively perform SHM/GCV, to their Bcl6-deficient counterparts. We found that Bcl6-deficient DT40 cells were unable to perform SHM and GCV despite enforced high level expression of AID and substantial levels of AID in the nucleus of the cells. To gain mechanistic insight into the GCV/SHM dependency on Bcl6, transcriptional features of a highly expressed SHM target gene were analyzed in Bcl6-sufficient and -deficient DT40 cells. No defect was observed in the accumulation of single stranded DNA in the target gene as a result of Bcl6 deficiency. In contrast, association of Spt5, an RNA polymerase II (Pol II) and AID binding factor, was strongly reduced at the target gene body relative to the transcription start site in Bcl6-deficient cells as compared to WT cells. However, partial reconstitution of Bcl6 function substantially reconstituted Spt5 association with the target gene body but did not restore detectable SHM. Our observations suggest that in the absence of Bcl6, Spt5 fails to associate efficiently with Pol II at SHM targets, perhaps precluding robust AID action on the SHM target DNA. Our data also suggest, however, that Spt5 binding is not sufficient for SHM of a target gene even in DT40 cells with strong expression of AID. PMID:26900682

  12. Bcl6 Is Required for Somatic Hypermutation and Gene Conversion in Chicken DT40 Cells.

    Directory of Open Access Journals (Sweden)

    Alan M Williams

    Full Text Available The activation induced cytosine deaminase (AID mediates diversification of B cell immunoglobulin genes by the three distinct yet related processes of somatic hypermutation (SHM, class switch recombination (CSR, and gene conversion (GCV. SHM occurs in germinal center B cells, and the transcription factor Bcl6 is a key regulator of the germinal center B cell gene expression program, including expression of AID. To test the hypothesis that Bcl6 function is important for the process of SHM, we compared WT chicken DT40 B cells, which constitutively perform SHM/GCV, to their Bcl6-deficient counterparts. We found that Bcl6-deficient DT40 cells were unable to perform SHM and GCV despite enforced high level expression of AID and substantial levels of AID in the nucleus of the cells. To gain mechanistic insight into the GCV/SHM dependency on Bcl6, transcriptional features of a highly expressed SHM target gene were analyzed in Bcl6-sufficient and -deficient DT40 cells. No defect was observed in the accumulation of single stranded DNA in the target gene as a result of Bcl6 deficiency. In contrast, association of Spt5, an RNA polymerase II (Pol II and AID binding factor, was strongly reduced at the target gene body relative to the transcription start site in Bcl6-deficient cells as compared to WT cells. However, partial reconstitution of Bcl6 function substantially reconstituted Spt5 association with the target gene body but did not restore detectable SHM. Our observations suggest that in the absence of Bcl6, Spt5 fails to associate efficiently with Pol II at SHM targets, perhaps precluding robust AID action on the SHM target DNA. Our data also suggest, however, that Spt5 binding is not sufficient for SHM of a target gene even in DT40 cells with strong expression of AID.

  13. Cloning adult farm animals: a review of the possibilities and problems associated with somatic cell nuclear transfer.

    Science.gov (United States)

    Edwards, J L; Schrick, F N; McCracken, M D; van Amstel, S R; Hopkins, F M; Welborn, M G; Davies, C J

    2003-08-01

    In 1997, Wilmut et al. announced the birth of Dolly, the first ever clone of an adult animal. To date, adult sheep, goats, cattle, mice, pigs, cats and rabbits have been cloned using somatic cell nuclear transfer. The ultimate challenge of cloning procedures is to reprogram the somatic cell nucleus for development of the early embryo. The cell type of choice for reprogramming the somatic nucleus is an enucleated oocyte. Given that somatic cells are easily obtained from adult animals, cultured in the laboratory and then genetically modified, cloning procedures are ideal for introducing specific genetic modifications in farm animals. Genetic modification of farm animals provides a means of studying genes involved in a variety of biological systems and disease processes. Moreover, genetically modified farm animals have created a new form of 'pharming' whereby farm animals serve as bioreactors for production of pharmaceuticals or organ donors. A major limitation of cloning procedures is the extreme inefficiency for producing live offspring. Dolly was the only live offspring produced after 277 attempts. Similar inefficiencies for cloning adult animals of other species have been described by others. Many factors related to cloning procedures and culture environment contribute to the death of clones, both in the embryonic and fetal periods as well as during neonatal life. Extreme inefficiencies of this magnitude, along with the fact that death of the surrogate may occur, continue to raise great concerns with cloning humans.

  14. Repeatability of differential goat bulk milk culture and associations with somatic cell count, total bacterial count, and standard plate count

    NARCIS (Netherlands)

    Koop, G.; Dik, N.; Nielen, M.; Lipman, L.J.A.

    2010-01-01

    The aims of this study were to assess how different bacterial groups in bulk milk are related to bulk milk somatic cell count (SCC), bulk milk total bacterial count (TBC), and bulk milk standard plate count (SPC) and to measure the repeatability of bulk milk culturing. On 53 Dutch dairy goat farms,

  15. Derivation of factors to estimate daily fat, protein, and somatic cell score from one milking of cows milked twice daily

    Science.gov (United States)

    The objective was to derive factors to predict daily fat (F) and protein (P) yield or somatic cell score (SCS) when milk is sampled once for cows milked twice per d. Milk samples were collected for each milking on test-day by Dairy Herd Improvement personnel from herds recording milking times and m...

  16. Are in-line measurements of somatic cell counts equally or more useful for genetic evaluations as those from DHI?

    DEFF Research Database (Denmark)

    Sørensen, Lars Peter; Løvendahl, Peter

    2012-01-01

    The aim was to estimate and compare genetic parameters for logtransformed somatic cell counts (SCC) based on in-line measurements (OCC, DeLaval) in automatic milking systems with monthly test-day SCC from traditional herd testing schemes. Data was collected during a 29-mo interval from 6 herds an...

  17. Receiver-operating characteristic curves for somatic cell scores and California mastitis test in Valle del Be lice dairy sheep

    NARCIS (Netherlands)

    Riggio, V.; Pesce, L.L.; Morreale, S.; Portolano, B.

    2013-01-01

    Using receiver-operating characteristic (ROC) curve methodology this study was designed to assess the diagnostic effectiveness of somatic cell count (SCC) and the California mastitis test (CMT) in Valle del Belice sheep, and to propose and evaluate threshold values for those tests that would optimal

  18. Impact of areas and sire by herd interaction on heritability estimates for somatic cell count in Italian Holstein Friesian cows

    NARCIS (Netherlands)

    Samoré, A.B.; Arendonk, van J.A.M.; Groen, A.F.

    2001-01-01

    The aim of the paper was to estimate variance components for somatic cell scores for Italian Holsteins using data from three different areas of the country. A total of 2,202,804 first-parity test-day records, collected from 1990 to 1997 in three areas of Italy (Mantova, Milano, and Parmigiano cheese

  19. Production of transgenic dairy goat expressing human α-lactalbumin by somatic cell nuclear transfer.

    Science.gov (United States)

    Feng, Xiujing; Cao, Shaoxian; Wang, Huili; Meng, Chunhua; Li, Jingxin; Jiang, Jin; Qian, Yong; Su, Lei; He, Qiang; Zhang, Qingxiao

    2015-02-01

    Production of human α-lactalbumin (hα-LA) transgenic cloned dairy goats has great potential in improving the nutritional value and perhaps increasing the yield of dairy goat milk. Here, a mammary-specific expression vector 5A, harboring goat β-lactoglobulin (βLG) promoter, the hα-LA gene, neo(r) and EGFP dual markers, was constructed. Then, it was effectively transfected into goat mammary epithelial cells (GMECs) and the expression of hα-LA was investigated. Both the hα-LA transcript and protein were detected in the transfected GMECs after the induction of hormonal signals. In addition, the 5A vector was introduced into dairy goat fetal fibroblasts (transfection efficiency ≈60-70%) to prepare competent transgenic donor cells. A total of 121 transgenic fibroblast clones were isolated by 96-well cell culture plates and screened with nested-PCR amplification and EGFP fluorescence. After being frozen for 8 months, the transgenic cells still showed high viabilities, verifying their ability as donor cells. Dairy goat cloned embryos were produced from these hα-LA transgenic donor cells by somatic cell nuclear transfer (SCNT), and the rates of fusion, cleavage, and the development to blastocyst stages were 81.8, 84.4, and 20.0%, respectively. A total of 726 reconstructed embryos derived from the transgenic cells were transferred to 74 recipients and pregnancy was confirmed at 90 days in 12 goats. Of six female kids born, two carried hα-LA and the hα-LA protein was detected in their milk. This study provides an effective system to prepare SCNT donor cells and transgenic animals for human recombinant proteins.

  20. Somatic mosaicism in families with hemophilia B: 11% of germline mutations originate within a few cell divisions post-fertilization

    Energy Technology Data Exchange (ETDEWEB)

    Knoell, A.; Ketterling, R.P.; Vielhaber, E. [Mayo Clinic/Foundation, Rochester, MN (United States)] [and others

    1994-09-01

    Previous molecular estimates of mosaicism in the dystrophin and other genes generally have focused on the transmission of the mutated allele to two or more children by an individual without the mutation in leukocyte DNA. We have analyzed 414 families with hemophilia B by direct genomic sequencing and haplotype analysis, and have deduced the origin of mutation in 56 families. There was no origin individual who transmitted a mutant allele to more than one child. However, somatic mosaicism was detected by sequence analysis of four origin individuals (3{female} and 1{male}). The sensitivity of this analysis is typically one part in ten. In one additional female who had close to a 50:50 ratio of mutant to normal alleles, three of four noncarrier daughters inherited the haplotype associated with the mutant allele. This highlights a caveat in molecular analysis: a presumptive carrier in a family with sporadic disease does not necessarily have a 50% probability of transmitting the mutant allele to her offspring. After eliminating those families in which mosaicism could not be detected because of a total gene deletion or absence of DNA from a deduced origin individual, 5 of 43 origin individuals exhibited somatic mosaicism at a level that reflects a mutation within the first few cell divisions after fertilization. In one patient, analysis of cervical scrapings and buccal mucosa confirm the generalized distribution of somatic mutation. Are the first few cell divisions post-fertilization highly mutagenic, or do mutations at later divisions also give rise to somatic mosaicism? To address this question, DNA from origin individuals are being analyzed to detect somatic mosaicism at a sensitivity of 1:1000. Single nucleotide primer extension (SNuPE) has been utilized in eight families to date and no mosaicism has been detected. When the remaining 30 samples are analyzed, it will be possible to compare the frequency of somatic mosaicism at 0.1-10% with that of {ge}10%.

  1. Assessment of imidacloprid-induced mutagenic effects in somatic cells of Swiss albino male mice.

    Science.gov (United States)

    Bagri, Preeti; Kumar, Vinod; Sikka, Anil K

    2016-10-01

    Pesticides are being used for plant protection to increase food protection and to reduce insect-borne diseases worldwide. Exposure to the pesticides may cause genotoxic effects on both the target and nontarget organisms, including man. Therefore, the mutagenicity evaluation of such pesticides has become a priority area of research. Imidacloprid (IMI), a neonicotinoid insecticide, is widely used in agriculture either alone or in combination with other insecticides. A combined approach employing micronucleus test (MNT) and chromosomal aberrations assay (CA) was utilized to assess the mutagenicity of imidacloprid in bone marrow of Swiss albino male mice. IMI suspension was prepared in 3% gum acacia and administered at doses of 5.5, 11 and 22 mg/kg body weight for 7, 14 and 28 days to mice. IMI treatment resulted in a dose and time-dependant increase in the frequencies of micronuclei per cell and chromosomal aberrations in bone marrow cells. A statistically significant increase in chromosomal aberrations and micronuclei/cell was found only after daily treatment of IMI at highest selected dose (22 mg/kg body weight) for longest selected time period (28 days) compared to the control group. Thus, daily exposure of imidacloprid at a dose level of 22 mg/kg body weight for 28 days caused mutagenic effects on the somatic cells of Swiss albino male mice.

  2. Somatic Cell Fusions Reveal Extensive Heterogeneity in Basal-like Breast Cancer

    Directory of Open Access Journals (Sweden)

    Ying Su

    2015-06-01

    Full Text Available Basal-like and luminal breast tumors have distinct clinical behavior and molecular profiles, yet the underlying mechanisms are poorly defined. To interrogate processes that determine these distinct phenotypes and their inheritance pattern, we generated somatic cell fusions and performed integrated genetic and epigenetic (DNA methylation and chromatin profiling. We found that the basal-like trait is generally dominant and is largely defined by epigenetic repression of luminal transcription factors. Definition of super-enhancers highlighted a core program common in luminal cells but a high degree of heterogeneity in basal-like breast cancers that correlates with clinical outcome. We also found that protein extracts of basal-like cells are sufficient to induce a luminal-to-basal phenotypic switch, implying a trigger of basal-like autoregulatory circuits. We determined that KDM6A might be required for luminal-basal fusions, and we identified EN1, TBX18, and TCF4 as candidate transcriptional regulators of the luminal-to-basal switch. Our findings highlight the remarkable epigenetic plasticity of breast cancer cells.

  3. Production of Cloned Korean Native Pig by Somatic Cell Nuclear Transfer.

    Science.gov (United States)

    Hwang, In-Sul; Kwon, Dae-Jin; Oh, Keun Bong; Ock, Sun-A; Chung, Hak-Jae; Cho, In-Cheol; Lee, Jeong-Woong; Im, Gi-Sun; Hwang, Seongsoo

    2015-06-01

    The Korean native pig (KNP) have been considered as animal models for animal biotechnology research because of their relatively small body size and their presumably highly inbred status due to the closed breeding program. However, little is reported about the use of KNP for animal biotechnology researches. This study was performed to establish the somatic cell nuclear transfer (SCNT) protocol for the production of swine leukocyte antigens (SLA) homotype-defined SCNT KNP. The ear fibroblast cells originated from KNP were cultured and used as donor cell. After thawing, the donor cells were cultured for 1 hour with 15 μM roscovitine prior to the nuclear transfer. The numbers of reconstructed and parthenogenetic embryos transferred were 98 ± 35.2 and 145 ± 11.2, respectively. The pregnancy and delivery rate were 3/5 (60%) and 2/5 (40%). One healthy SLA homotype-defined SCNT KNP was successfully generated. The recipient-based individual cloning efficiency ranged from 0.65 to 1.08%. Taken together, it can be postulated that the methodological establishment of the production of SLA homotype-defined cloned KNP can be applied to the generation of transgenic cloned KNP as model animals for human disease and xenotransplantation researches.

  4. Production of human apolipoprotein(a) transgenic NIBS miniature pigs by somatic cell nuclear transfer.

    Science.gov (United States)

    Shimatsu, Yoshiki; Horii, Wataru; Nunoya, Tetsuo; Iwata, Akira; Fan, Jianglin; Ozawa, Masayuki

    2016-01-01

    Most cases of ischemic heart disease and stroke occur as a result of atherosclerosis. The purpose of this study was to produce a new Nippon Institute for Biological Science (NIBS) miniature pig model by somatic cell nuclear transfer (SCNT) for studying atherosclerosis. The human apolipoprotein(a) (apo(a)) genes were transfected into kidney epithelial cells derived from a male and a female piglet. Male cells were used as donors initially, and 275 embryos were transferred to surrogates. Three offspring were delivered, and the production efficiency was 1.1% (3/275). Serial female cells were injected into 937 enucleated oocytes. Eight offspring were delivered (production efficiency: 0.9%) from surrogates. One male and 2 female transgenic miniature pigs matured well. Lipoprotein(a) was found in the male and one of the female transgenic animals. These results demonstrate successful production of human apo(a) transgenic NIBS miniature pigs by SCNT. Our goal is to establish a human apo(a) transgenic NIBS miniature pig colony for studying atherosclerosis.

  5. Plasma α-tocopherol content and its relationship with milk somatic cells count in Italian commercial herds.

    Directory of Open Access Journals (Sweden)

    Adriano Pilotto

    2015-07-01

    Full Text Available This work was aimed to investigate relationship between plasma vitamin E concentration and milk somatic cell count in healthy cows in commercial herds. 49 multiparous cows from two commercial dairy herds were monitored from the day of dry off until 90 DIM. BCS was assessed and blood samples were collected at dry off, day 0, 30, 60 and 90 postpartum. Plasma was analyzed for α-tocopherol content. Quantification of NEFA, BOHB, Zn and Se was performed in serum samples. Milk production and composition was obtained from routinely test-day of Italian milk producers association. Somatic Cell Score (SCS was calculated and included in the dataset. Analysis of data was performed using MIXED repeated and CORR procedures of SAS.We did not observe a correlation between plasmatic vitamin E and somatic cell score, and this can be explained by the low level of somatic cell score (averages 1.64 and 1.26. The lowest value of vitamin E was observed at parturition (1.64 µg/ml and 1.95 µg/ml. A significant (P<0.01 negative (-20% correlation was observed between NEFA serum content and α-tocopherol plasma concentration. Serum selenium content was positively correlated (+42%, P<0.0001 to zinc concentration. Grouping cows on the basis of their plasma α-tocopherol content higher or lower than 3 μg/mL at dry off, SCS at 30 and 60 DIM tended to be higher in lactating animals with lower content of α-tocopherol (1.12 vs. 1.72, P=0.18 at 30d; 0.92 vs. 1.72, P=0.07 at 60d. However, plasma α-tocopherol content at dry off could be usefully correlated with somatic cell count in fresh cows.

  6. Dynamics of somatic cell counts and intramammary infections across the dry period.

    Science.gov (United States)

    Pantoja, J C F; Hulland, C; Ruegg, P L

    2009-07-01

    The objectives of this research were to study the relationship between somatic cell count (SCC) and intramammary infection (IMI) across the dry period and the risk of subclinical mastitis at the first dairy herd improvement (DHI) test of the subsequent lactation. A secondary objective was to determine SCC test characteristics for diagnosis of IMI at both the cow and quarter levels. A total of 218 cows from a university herd were enrolled at dry-off. Duplicate quarter milk samples were collected from all quarters at dry-off, calving and on the day of the first DHI test. Somatic cell count status across the dry period was defined based on the comparison of quarter SCC from dry-off and the post-calving sampling periods and comparison of composite SCC from DHI samples from the last test and first test of the following lactation. Of new IMI detected from post-calving milk samples (n=45), 46.7, 26.7 and 11% were caused by CNS, Streptococci and Gram-negative bacteria, respectively. Of cured IMI at post-calving (n=91), 61.5, 23.1 and 9.9% had CNS, Streptococci and Coryneforms isolated from dry-off milk samples. The most frequent microorganisms related to cured IMI were CNS (33%). Of chronically infected quarters across the dry period (n=10), only one had the same species of pathogen isolated from dry-off and post-calving samples. The sensitivity of a SCC threshold of 200,000 cells/mL for detection of subclinical IMI was 0.64, 0.69 and 0.65 for milk samples obtained at dry-off, post-calving and first DHI test, respectively. The specificity was 0.66, 0.84 and 0.93 for milk samples obtained at dry-off, post-calving and first DHI test, respectively. Quarters with SCC> or =200,000 cells/mL at both dry-off and post-calving sampling periods were 20.4 times more likely to be subclinically infected by a major pathogen (rather than being uninfected) and 5.6 times more likely to be subclinically infected by a minor pathogen (rather than being uninfected) at the first DHI test than

  7. Assessing somatic hypermutation in Ramos B cells after overexpression or knockdown of specific genes.

    Science.gov (United States)

    Upton, Dana C; Unniraman, Shyam

    2011-11-01

    B cells start their life with low affinity antibodies generated by V(D)J recombination. However, upon detecting a pathogen, the variable (V) region of an immunoglobulin (Ig) gene is mutated approximately 100,000-fold more than the rest of the genome through somatic hypermutation (SHM), resulting in high affinity antibodies. In addition, class switch recombination (CSR) produces antibodies with different effector functions depending on the kind of immune response that is needed for a particular pathogen. Both CSR and SHM are initiated by activation-induced cytidine deaminase (AID), which deaminates cytosine residues in DNA to produce uracils. These uracils are processed by error-prone forms of repair pathways, eventually leading to mutations and recombination. Our current understanding of the molecular details of SHM and CSR come from a combination of studies in mice, primary cells, cell lines, and cell-free experiments. Mouse models remain the gold standard with genetic knockouts showing critical roles for many repair factors (e.g. Ung, Msh2, Msh6, Exo1, and polymerase η). However, not all genes are amenable for knockout studies. For example, knockouts of several double-strand break repair proteins are embryonically lethal or impair B-cell development. Moreover, sometimes the specific function of a protein in SHM or CSR may be masked by more global defects caused by the knockout. In addition, since experiments in mice can be lengthy, altering expression of individual genes in cell lines has become an increasingly popular first step to identifying and characterizing candidate genes. Ramos - a Burkitt lymphoma cell line that constitutively undergoes SHM - has been a popular cell-line model to study SHM. One advantage of Ramos cells is that they have a built-in convenient semi-quantitative measure of SHM. Wild type cells express IgM and, as they pick up mutations, some of the mutations knock out IgM expression. Therefore, assaying IgM loss by fluorescence

  8. Inducing pluripotency in somatic cells from the snow leopard (Panthera uncia), an endangered felid.

    Science.gov (United States)

    Verma, R; Holland, M K; Temple-Smith, P; Verma, P J

    2012-01-01

    Induced pluripotency is a new approach to produce embryonic stem-like cells from somatic cells that provides a unique means to understand both pluripotency and lineage assignment. To investigate whether this technology could be applied to endangered species, where the limited availability of gametes makes production and research on embryonic stem cells difficult, we attempted generation of induced pluripotent stem (iPS) cells from snow leopard (Panthera uncia) fibroblasts by retroviral transfection with Moloney-based retroviral vectors (pMXs) encoding four factors (OCT4, SOX2, KLF4 and cMYC). This resulted in the formation of small colonies of cells, which could not be maintained beyond four passages (P4). However, addition of NANOG, to the transfection cocktail produced stable iPS cell colonies, which formed as early as D3. Colonies of cells were selected at D5 and expanded in vitro. The resulting cell line was positive for alkaline phosphatase (AP), OCT4, NANOG, and Stage-Specific embryonic Antigen-4 (SSEA-4) at P14. RT-PCR also confirmed that endogenous OCT4 and NANOG were expressed by snow leopard iPS cells from P4. All five human transgenes were transcribed at P4, but OCT4, SOX2 and NANOG transgenes were silenced as early as P14; therefore, reprogramming of the endogenous pluripotent genes had occurred. When injected into immune-deficient mice, snow leopard iPS cells formed teratomas containing tissues representative of the three germ layers. In conclusion, this was apparently the first derivation of iPS cells from the endangered snow leopard and the first report on induced pluripotency in felid species. Addition of NANOG to the reprogramming cocktail was essential for derivation of iPS lines in this felid. The iPS cells provided a unique source of pluripotent cells with utility in conservation through cryopreservation of genetics, as a source of reprogrammed donor cells for nuclear transfer or for directed differentiation to gametes in the future.

  9. Effects of somatic cell count on quality and shelf-life of pasteurized fluid milk.

    Science.gov (United States)

    Ma, Y; Ryan, C; Barbano, D M; Galton, D M; Rudan, M A; Boor, K J

    2000-02-01

    Milk was collected from eight Holstein cows four times before and four times after intramammary infection with Streptococcus agalactiae. Postinfection milk had significantly higher somatic cell count (SCC) (849,000 cells/ml) than preinfection milk (45,000 cells/ml). High SCC raw milk had more lipolysis and proteolysis than low SCC raw milk. Pasteurized, homogenized, 2% fat milks from pre- and postinfection periods were stored at 5 degrees C and analyzed for lipolysis, proteolysis, microbial quality, and sensory attributes at 1, 7, 14, and 21 d post processing. During refrigerated storage, the average rates of free fatty acid increase (i.e., lipolysis) and casein hydrolysis in high SCC milk were, respectively, three and two times faster than those in low SCC milk. In general, standard plate counts, coliform counts, and psychrotrophic bacterial counts of both the high and low SCC milks remained low (<100,000 cfu/ ml) during 5 degrees C storage. Low SCC milk maintained high organoleptic quality for the entire 21-d shelf-life period. However, for high SCC milk, between 14 and 21 d, sensory defects were detected, which resulted in low overall quality ratings. The sensory defects mainly included rancidity and bitterness and were consistent with higher levels of lipolysis and proteolysis. Hence, mastitis adversely affected the quality of pasteurized fluid milk. It is recommended that the fluid milk industry consider implementation of premium quality payment programs for low SCC milks.

  10. Isolation of the phagocytosis-inducing IgG-binding antigen on senescent somatic cells

    Science.gov (United States)

    Kay, Marguerite M. B.

    1981-02-01

    To remove senescent red blood cells (RBCs) from the circulation, macrophages must distinguish them from mature RBCs. That is achieved by a specific recognition system1,2. An antigen that develops on the surface of a senescing RBC is recognized and bound by the Fab region1 of an IgG autoantibody in the serum2. Subsequently the Fc region of the autoantibody is recognized and bound by a macrophage3, which proceeds to phagocytose the RBC. The antigenic molecule can be extracted from senescent but not young RBCs with Triton X-100 (ref. 4), although 10-30% as much antigen can be extracted from middle-aged as from senescent RBCs4. I have now used IgG autoantibodies eluted from senescent RBCs to isolate and purify the IgG-binding antigen on senescent RBCs, andto detect the antigen on other somatic cells. The antigen is a ~=62,000-Mr protein which is present on stored platelets, lymphocytes and neutrophils, and on cultured human adult liver and embryonic kidney cells, as well as senescent RBCs.

  11. Green fluorescent protein (GFP) transgenic pig produced by somatic cell nuclear transfer

    Institute of Scientific and Technical Information of China (English)

    LIU ZhongHua; SUN Shuang; LI YuTian; WANG HongBin; R S PRATHER; SONG Jun; WANG ZhenKun; TIAN JiangTian; KONG QingRan; ZHENG Zhong; YIN Zhi; GAO Li; MA HaiKun

    2008-01-01

    Transgenic somatic cell nuclear transfer is a very promising route for producing transgenic farm ani-mals. Research on GFP transgenic pigs can provide useful information for breeding transgenic pigs, human disease models and human organ xenotransplantation. In this study, a liposomal transfection system was screened and transgenic embryos were reconstructed by nuclear transfer of GFP positive cells into enucleated in vitro matured oocytes. The development of reconstructed embryos both in vitro and in vivo was observed, and GFP expression was determined. The results showed that porcine fe-tal-derived fibroblast cells cultured with 4.0 plJmL liposome and 1.6 pg/mL plasmid DNA for 6 h re-sulted in the highest transfection rate (3.6%). The percentage of GFP reconstructed embryos that de-veloped in vitro to the blastocyst stage was 10%. Of those the GFP positive percentage was 48%. Re-constructed transgenic embryos were transferred to 10 recipients. 5 of them were pregnant, and 3 de-livered 6 cloned piglets in which 4 piglets were transgenic for the GFP as verified by both GFP protein expression and GFP DNA sequence analysis. The percentage of reconstructed embryos that resulted in cloned piglets was 1.0%; while the percentage of piglets that were transgenic was 0.7%. This is the first group of transgenic cloned pigs born in China, marking a great progress in Chinese transgenic cloned pig research.

  12. Exome-wide somatic microsatellite variation is altered in cells with DNA repair deficiencies.

    Directory of Open Access Journals (Sweden)

    Zalman Vaksman

    Full Text Available Microsatellites (MST, tandem repeats of 1-6 nucleotide motifs, are mutational hot-spots with a bias for insertions and deletions (INDELs rather than single nucleotide polymorphisms (SNPs. The majority of MST instability studies are limited to a small number of loci, the Bethesda markers, which are only informative for a subset of colorectal cancers. In this paper we evaluate non-haplotype alleles present within next-gen sequencing data to evaluate somatic MST variation (SMV within DNA repair proficient and DNA repair defective cell lines. We confirm that alleles present within next-gen data that do not contribute to the haplotype can be reliably quantified and utilized to evaluate the SMV without requiring comparisons of matched samples. We observed that SMV patterns found in DNA repair proficient cell lines without DNA repair defects, MCF10A, HEK293 and PD20 RV:D2, had consistent patterns among samples. Further, we were able to confirm that changes in SMV patterns in cell lines lacking functional BRCA2, FANCD2 and mismatch repair were consistent with the different pathways perturbed. Using this new exome sequencing analysis approach we show that DNA instability can be identified in a sample and that patterns of instability vary depending on the impaired DNA repair mechanism, and that genes harboring minor alleles are strongly associated with cancer pathways. The MST Minor Allele Caller used for this study is available at https://github.com/zalmanv/MST_minor_allele_caller.

  13. Successful cloning of coyotes through interspecies somatic cell nuclear transfer using domestic dog oocytes.

    Science.gov (United States)

    Hwang, Insung; Jeong, Yeon Woo; Kim, Joung Joo; Lee, Hyo Jeong; Kang, Mina; Park, Kang Bae; Park, Jung Hwan; Kim, Yeun Wook; Kim, Woo Tae; Shin, Taeyoung; Hyun, Sang Hwan; Jeung, Eui-Bae; Hwang, Woo Suk

    2013-01-01

    Interspecies somatic cell nuclear transfer (iSCNT) is an emerging assisted reproductive technology (ART) for preserving Nature's diversity. The scarcity of oocytes from some species makes utilisation of readily available oocytes inevitable. In the present study, we describe the successful cloning of coyotes (Canis latrans) through iSCNT using oocytes from domestic dogs (Canis lupus familiaris or dingo). Transfer of 320 interspecies-reconstructed embryos into 22 domestic dog recipients resulted in six pregnancies, from which eight viable offspring were delivered. Fusion rate and cloning efficiency during iSCNT cloning of coyotes were not significantly different from those observed during intraspecies cloning of domestic dogs. Using neonatal fibroblasts as donor cells significantly improved the cloning efficiency compared with cloning using adult fibroblast donor cells (Pcloning of coyotes in the present study holds promise for cloning other endangered species in the Canidae family using similar techniques. However, there are still limitations of the iSCNT technology, as demonstrated by births of morphologically abnormal coyotes and the clones' inheritance of maternal domestic dog mitochondrial DNA.

  14. Histone deacetylase inhibitor significantly improved the cloning efficiency of porcine somatic cell nuclear transfer embryos.

    Science.gov (United States)

    Huang, Yongye; Tang, Xiaochun; Xie, Wanhua; Zhou, Yan; Li, Dong; Yao, Chaogang; Zhou, Yang; Zhu, Jianguo; Lai, Liangxue; Ouyang, Hongsheng; Pang, Daxin

    2011-12-01

    Valproic acid (VPA), a histone deacetylase inbibitor, has been shown to generate inducible pluripotent stem (iPS) cells from mouse and human fibroblasts with a significant higher efficiency. Because successful cloning by somatic cell nuclear transfer (SCNT) undergoes a full reprogramming process in which the epigenetic state of a differentiated donor nuclear is converted into an embryonic totipotent state, we speculated that VPA would be useful in promoting cloning efficiency. Therefore, in the present study, we examined whether VPA can promote the developmental competence of SCNT embryos by improving the reprogramming state of donor nucleus. Here we report that 1 mM VPA for 14 to 16 h following activation significantly increased the rate of blastocyst formation of porcine SCNT embryos constructed from Landrace fetal fibroblast cells compared to the control (31.8 vs. 11.4%). However, we found that the acetylation level of Histone H3 lysine 14 and Histone H4 lysine 5 and expression level of Oct4, Sox2, and Klf4 was not significantly changed between VPA-treated and -untreated groups at the blastocyst stage. The SCNT embryos were transferred to 38 surrogates, and the cloning efficiency in the treated group was significantly improved compared with the control group. Taken together, we have demonstrated that VPA can improve both in vitro and in vivo development competence of porcine SCNT embryos.

  15. CD27− B-Cells Produce Class Switched and Somatically Hyper-Mutated Antibodies during Chronic HIV-1 Infection

    Science.gov (United States)

    Cagigi, Alberto; Du, Likun; Dang, Linh Vu Phuong; Grutzmeier, Sven; Atlas, Ann; Chiodi, Francesca

    2009-01-01

    Class switch recombination and somatic hypermutation occur in mature B-cells in response to antigen stimulation. These processes are crucial for the generation of functional antibodies. During HIV-1 infection, loss of memory B-cells, together with an altered differentiation of naïve B-cells result in production of low quality antibodies, which may be due to impaired immunoglobulin affinity maturation. In the current study, we evaluated the effect of HIV-1 infection on class switch recombination and somatic hypermutation by studying the expression of activation-induced cytidine deaminase (AID) in peripheral B-cells from a cohort of chronically HIV-1 infected patients as compared to a group of healthy controls. In parallel, we also characterized the phenotype of B-cells and their ability to produce immunoglobulins in vitro. Cells from HIV-1 infected patients showed higher baseline levels of AID expression and increased IgA production measured ex-vivo and upon CD40 and TLR9 stimulation in vitro. Moreover, the percentage of CD27−IgA+ and CD27−IgG+ B-cells in blood was significantly increased in HIV-1 infected patients as compared to controls. Interestingly, our results showed a significantly increased number of somatic hypermutations in the VH genes in CD27− cells from patients. Taken together, these results show that during HIV-1 infection, CD27− B-cells can also produce class switched and somatically hypermutated antibodies. Our data add important information for the understanding of the mechanisms underlying the loss of specific antibody production observed during HIV-1 infection. PMID:19412542

  16. CD27(- B-cells produce class switched and somatically hyper-mutated antibodies during chronic HIV-1 infection.

    Directory of Open Access Journals (Sweden)

    Alberto Cagigi

    Full Text Available Class switch recombination and somatic hypermutation occur in mature B-cells in response to antigen stimulation. These processes are crucial for the generation of functional antibodies. During HIV-1 infection, loss of memory B-cells, together with an altered differentiation of naïve B-cells result in production of low quality antibodies, which may be due to impaired immunoglobulin affinity maturation. In the current study, we evaluated the effect of HIV-1 infection on class switch recombination and somatic hypermutation by studying the expression of activation-induced cytidine deaminase (AID in peripheral B-cells from a cohort of chronically HIV-1 infected patients as compared to a group of healthy controls. In parallel, we also characterized the phenotype of B-cells and their ability to produce immunoglobulins in vitro. Cells from HIV-1 infected patients showed higher baseline levels of AID expression and increased IgA production measured ex-vivo and upon CD40 and TLR9 stimulation in vitro. Moreover, the percentage of CD27(-IgA+ and CD27(-IgG+ B-cells in blood was significantly increased in HIV-1 infected patients as compared to controls. Interestingly, our results showed a significantly increased number of somatic hypermutations in the VH genes in CD27(- cells from patients. Taken together, these results show that during HIV-1 infection, CD27(- B-cells can also produce class switched and somatically hypermutated antibodies. Our data add important information for the understanding of the mechanisms underlying the loss of specific antibody production observed during HIV-1 infection.

  17. Testicular germ cell tumours in dogs are predominantly of spermatocytic seminoma type and are frequently associated with somatic cell tumours

    DEFF Research Database (Denmark)

    Bush, J M; Gardiner, D W; Palmer, J S

    2011-01-01

    Unlike seminomas in humans, seminomas in animals are not typically sub-classified as classical or spermatocytic types. To compare testicular germ cell tumours (TGCT) in dogs with those of men, archived tissues from 347 cases of canine testicular tumours were morphologically evaluated...... and characterized using human classification criteria. Histopathological and immunohistological analysis of PLAP, KIT, DAZ and DMRT1 expression revealed that canine seminomas closely resemble human spermatocytic seminomas. In addition, a relatively frequent concomitant presence of somatic cell tumours was noted...... in canine TGCT. None of the canine TGCT evaluated demonstrated the presence of carcinoma in situ cells, a standard feature of human classical seminomas, suggesting that classical seminomas either do not occur in dogs or are rare in occurrence. Canine spermatocytic seminomas may provide a useful model...

  18. Effective combination of aligned nanocomposite nanofibers and human unrestricted somatic stem cells for bone tissue engineering

    Institute of Scientific and Technical Information of China (English)

    Behnaz BAKHSHANDEH; Masoud SOLEIMANI; Nasser GHAEMI; Iman SHABANI

    2011-01-01

    Aim: Bioartificial bone tissue engineering is an increasingly popular technique to solve bone defect challenges. This study aimed to investigate the interactions between matrix composition and appropriate cell type, focusing on hydroxyapatite (HA), to achieve a more effective combination for bone regeneration.Methods: Human unrestricted somatic stem cells (USSCs) were isolated from placental cord blood. The cellular and molecular events during the osteo-induction of USSCs were evaluated for 21 d under the following conditions: (1) in basal culture, (2) supplemented with hydroxyapatite nanoparticle (nHA) suspension, and (3) seeded on electrospun aligned nanoflbrous poly-ε-caprolactone/poly-L-lactic acid/nHA (PCL/PLLA/nHA) scaffolds. The scaffolds were characterized using scanning electron microscope (SEM), fourier transform infrared spectroscopy (FTIR) and tensile test.Results: Maintenance of USSCs for 21 d in basal or osteogenic culture resulted in significant increase in osteoblast differentiation. With nHA suspension, even soluble osteo-inductive additives were ineffective, probably due to induced apoptosis of the cells. In con-trast to the hindrance of proliferation by nHA suspension, the scaffolds improved cell growth. The scaffolds mimic the nanostructure of natural bone matrix with the combination of PLLA/PCL (organic phase) and HA (inorganic phase) offering a favorable surface topogra-phy, which was demonstrated to possess suitable properties for supporting USSCs. Quantitative measurement of osteogenic markers, enzymatic activity and mineralization indicated that the scaffolds did not disturb, but enhanced the osteogenic potential of USSCs.Moreover, the alignment of the fibers led to cell orientation during cell growth.Conclusion: The results demonstrated the synergism of PCL/PLLA/nHA nanoflbrous scaffolds and USSCs in the augmentation of osteo-genic differentiation. Thus, nHA grafted into PCI./PLLA scaffolds can be a suitable choice for bone tissue

  19. Prediction of total quarter milk somatic cell counts based on foremilk sampling.

    Science.gov (United States)

    Wellnitz, Olga; Doherr, Marcus G; Woloszyn, Marta; Bruckmaier, Rupert M

    2009-08-01

    Determination of somatic cell count (SCC) is used worldwide in dairy practice to describe the hygienic status of the milk and the udder health of cows. When SCC is tested on a quarter level to detect single quarters with high SCC levels of cows for practical reasons, mostly foremilk samples after prestimulation (i.e. cleaning of the udder) are used. However, SCC is usually different in different milk fractions. Therefore, the goal of this study was the investigation of the use of foremilk samples for the estimation of total quarter SCC. A total of 378 milkings in 19 dairy cows were performed with a special milking device to drain quarter milk separately. Foremilk samples were taken after udder stimulation and before cluster attachment. SCC was measured in foremilk samples and in total quarter milk. Total quarter milk SCC could not be predicted precisely from foremilk SCC measurements. At relatively high foremilk SCC levels (>300 x 10(3) cells/ml) foremilk SCC were higher than total quarter milk. At around (50-300) x 10(3) cells/ml foremilk and total quarter SCC did not differ considerably. Most interestingly, if foremilk SCC was lower than 50 x 10(3) cells/ml the total quarter SCC was higher than foremilk SCC. In addition, individual cows showed dramatic variations in foremilk SCC that were not very well related to total quarter milk SCC. In conclusion, foremilk samples are useful to detect high quarter milk SCC to recognize possibly infected quarters, only if precise cell counts are not required. However, foremilk samples can be deceptive if very low cell numbers are to be detected.

  20. PUF-8 suppresses the somatic transcription factor PAL-1 expression in C. elegans germline stem cells.

    Science.gov (United States)

    Mainpal, Rana; Priti, Agarwal; Subramaniam, Kuppuswamy

    2011-12-01

    RNA-binding proteins of the PUF family are well conserved post-transcriptional regulators that control a variety of developmental processes. The C. elegans protein PUF-8 is essential for several aspects of germ cell development including the maintenance of germline stem cells (GSCs). To explore the molecular mechanisms underlying its function, we have identified 160 germline-expressed mRNAs as potential targets of PUF-8. We generated GFP::H2B-3' UTR fusions for 17 mRNAs to assay their post-transcriptional regulation in germ cells. Twelve transgenes were not expressed in the mitotic germ cells, and depletion of PUF-8 led to misexpression of six of them in these cells. In contrast, the expression of 3' UTR fusion of hip-1, which encodes the HSP-70 interacting protein, was dependent on PUF-8. These results indicate that PUF-8 may regulate the expression of its targets both negatively as well as positively. We investigated the PUF-8-mediated post-transcriptional control of one mRNA, namely pal-1, which encodes a homeodomain transcription factor responsible for muscle development. Our results show that PUF-8 binds in vitro to specific sequences within pal-1 3' UTR that are critical for post-transcriptional suppression in GSCs. Removal of PUF-8 resulted in PAL-1 misexpression, and PAL-1-dependent misexpression of the myogenic promoter HLH-1 in germ cells. We propose that PUF-8 protects GSCs from the influence of somatic differentiation factors such as PAL-1, which are produced in the maternal germline but meant for embryogenesis.

  1. Generation of hypoxanthine phosphoribosyltransferase gene knockout rabbits by homologous recombination and gene trapping through somatic cell nuclear transfer

    OpenAIRE

    Mingru Yin; Weihua Jiang; Zhenfu Fang; Pengcheng Kong; Fengying Xing; Yao Li; Xuejin Chen; Shangang Li

    2015-01-01

    The rabbit is a common animal model that has been employed in studies on various human disorders, and the generation of genetically modified rabbit lines is highly desirable. Female rabbits have been successfully cloned from cumulus cells, and the somatic cell nuclear transfer (SCNT) technology is well established. The present study generated hypoxanthine phosphoribosyltransferase (HPRT) gene knockout rabbits using recombinant adeno-associated virus-mediated homologous recombination and SCNT....

  2. Transcriptional landscape of ncRNA and Repeat elements in somatic cells

    KAUST Repository

    Ghosheh, Yanal

    2016-12-01

    The advancement of Nucleic acids (DNA and RNA) sequencing technology has enabled many projects targeted towards the identification of genome structure and transcriptome complexity of organisms. The first conclusions of the human and mouse projects have underscored two important, yet unexpected, findings. First, while almost the entire genome is transcribed, only 5% of it encodes for proteins. Thereby, most transcripts are noncoding RNA. This includes both short RNA (<200 nucleotides (nt)) comprising piRNAs; microRNAs (miRNAs); endogenous Short Interfering RNAs (siRNAs) among others, and includes lncRNA (>200nt). Second, a significant portion of the mammalian genome (45%) is composed of Repeat Elements (REs). RE are mostly relics of ancestral viruses that during evolution have invaded the host genome by producing thousands of copies. Their roles within their host genomes have yet to be fully explored considering that they sometimes produce lncRNA, and have been shown to influence expression at the transcriptional and post-transcriptional levels. Moreover, because some REs can still mobilize within host genomes, host genomes have evolved mechanisms, mainly epigenetic, to maintain REs under tight control. Recent reports indicate that REs activity is regulated in somatic cells, particularily in the brain, suggesting a physiological role of RE mobilization during normal development. In this thesis, I focus on the analysis of ncRNAs, specifically REs; piRNAs; lncRNAs in human and mouse post-mitotic somatic cells. The main aspects of this analysis are: Using sRNA-Seq, I show that piRNAs, a class of ncRNAs responsible for the silencing of Transposable elements (TEs) in testes, are present also in adult mouse brain. Furthermore, their regulation shows only a subset of testes piRNAs are expressed in the brain and may be controlled by known neurogenesis factors. To investigate the dynamics of the transcriptome during cellular differentiation, I examined deep RNA-Seq and Cap

  3. Correlation between electrical conductivity and somatic cell score for mastitis evaluation in dairy Gir cattle

    Directory of Open Access Journals (Sweden)

    Ingrid Borges Valdevite

    2012-12-01

    Full Text Available Mastitis is an inflammation of the mammary gland, caused by bacteria, viruses, fungi and yeasts. During the processes of inflammation, chloride (Cl and sodium (Na ions, immunoglobulins and other serum proteins present in blood, flow through capillaries direct to the alveoli lumen of the gland, thus increasing its concentration. This is due to the increase of vascular permeability, the destruction of tight junctions and the active ion-pumping system, while the concentration of casein, lactose, triglycerides and potassium (K decreases. This work aimed to study a method to evaluate mastitis in Gir dairy cattle, where the milk electric conductivity (EC was correlated to milk somatic cell count (SCC. This method will provide an early diagnosis, which can be used daily with conductivity meter in mechanical milking machine or weekly in properties with manual milking. The measurement of EC in milk was accomplished through the appliance of AK83 BENCHTOP PORTATIL. The experiment was conducted in two farms: Calciolândia, Arcos/MG and Bom Jardim da Serra, Mococa/SP, totaling 123 Gir cows. In Calciolândia farm, milking was manual and in Bom Jardim da Serra milking was manual and mechanical but both with the presence of the calf . The milk collection took place in 10 ml bottles at ambience temperature, and the samples were in duplicate, one to measure the EC and the other for SCC and components. The correlations were calculated using SAS software, through data collected from farms. The correlations found between EC and SCC were 40.9% and 42.7%, respectively to Bom Jardim da Serra and Calciolândia farms. Environmental factors that influences SCC and EC where not considered in the analysis, order of birth, lactation stage, age of cow, number of milk per day and jet of milk collected sample of complete collection of first milking or jets of milk. For now we can conclude that there is strong evidence of an analogy between electrical current (EC and the milk

  4. Use of somatic cells from goat milk for dynamic studies of gene expression in the mammary gland.

    Science.gov (United States)

    Boutinaud, M; Rulquin, H; Keisler, D H; Djiane, J; Jammes, H

    2002-05-01

    Somatic cells are present in the milk throughout lactation and consist of leukocytes and epithelial cells exfoliated from the mammary epithelium. Our objective was to determine the efficacy of using somatic cells from goat milk for dynamic studies of gene expression in the mammary gland. Over a 4-wk interval, cells were isolated from daily morning milk samples and samples taken 30 min after milking. They were characterized by direct cell counts and by flow cytometry analysis after immunostaining with antibodies directed against cytokeratin and CD45, a common leukocyte antigen. Epithelial cell counts within the morning milk ranged from 15 to 45% of total milk somatic cells. After-milking samples contained twice as many cells as did morning milk samples. The RNA was extracted from the somatic cells of both types of milk samples with equivalent efficiency (a mean of 1.2 microg RNA/mL of milk). Four mRNA variants of the alpha-S1 casein gene were detected by Northern blot analysis and the amount of each mRNA in milk cells was related to protein concentration in milk. The comparison between mRNA from the mammary gland and from congruently collected milk cells showed that relative amounts of mRNA for each milk-protein (alpha-S1 and kappa-casein and alactalbumin) were conserved. In a third experiment, daily milk cell RNA preparations were extracted to assess the effect of growth hormone (GH) on mammary gene expression; four goats were separated into two groups in order to perform a switch-back design consisting of three treatment weeks: Control, GH-Control or GH-Control-GH. In this study, treatment of goats with GH increased milk yields by 5%. Throughout the control and GH treatments, the expression of the three milk-protein genes studied were highly and significantly correlated (r = 0.949 and r = 0.958, P milk-protein mRNA abundances increased with the same pattern. In conclusion, the opportunity to use milk somatic cells for RNA preparation and analysis provides a

  5. Flow Cytometry Approach to Quantify the Viability of Milk Somatic Cell Counts after Various Physico-Chemical Treatments.

    Science.gov (United States)

    Li, Na; Richoux, Romain; Perruchot, Marie-Hélène; Boutinaud, Marion; Mayol, Jean-François; Gagnaire, Valérie

    2015-01-01

    Flow cytometry has been used as a routine method to count somatic cells in milk, and to ascertain udder health and milk quality. However, few studies investigate the viability of somatic cells and even fewer at a subpopulation level to follow up how the cells can resist to various stresses that can be encountered during technological processes. To address this issue, a flow cytometry approach was used to simultaneously identify cell types of bovine milk using cell-specific antibodies and to measure the cell viability among the identified subpopulations by using a live/dead cell viability kit. Confirmation of the cell viability was performed by using conventional microscopy. Different physico-chemical treatments were carried out on standardized cell samples, such as heat treatment, various centrifugation rates and storage in milk or in PBS pH 7.4 for three days. Cytometry gating strategy was developed by using blood cell samples stored at 4°C in PBS and milk cell samples heat-treated at 80°C for 30 min as a control for the maximum (95.9%) and minimum (0.7%) values of cell viability respectively. Cell viability in the initial samples was 39.5% for all cells and varied for each cell population from 26.7% for PMNs, to 32.6% for macrophages, and 58.3% for lymphocytes. Regarding the physico-chemical treatments applied, somatic cells did not sustain heat treatment at 60°C and 80°C in contrast to changes in centrifugation rates, for which only the higher level, i.e. 5000×g led to a cell viability decrease, down to 9.4%, but no significant changes within the cell subpopulation distribution were observed. Finally, the somatic cells were better preserved in milk after 72h storage, in particular PMNs, that maintained a viability of 34.0 ± 2.9% compared to 4.9±1.9% in PBS, while there was almost no changes for macrophages (41.7 ± 5.7% in milk vs 31.2 ± 2.4% in PBS) and lymphocytes (25.3 ± 3.0% in milk vs 11.4 ± 3.1% in PBS). This study provides a new array to better

  6. PDGF-AB and 5-Azacytidine induce conversion of somatic cells into tissue-regenerative multipotent stem cells

    Science.gov (United States)

    Chandrakanthan, Vashe; Yeola, Avani; Kwan, Jair C.; Oliver, Rema A.; Qiao, Qiao; Kang, Young Chan; Zarzour, Peter; Beck, Dominik; Boelen, Lies; Unnikrishnan, Ashwin; Villanueva, Jeanette E.; Nunez, Andrea C.; Knezevic, Kathy; Palu, Cintia; Nasrallah, Rabab; Carnell, Michael; Macmillan, Alex; Whan, Renee; Yu, Yan; Hardy, Philip; Grey, Shane T.; Gladbach, Amadeus; Delerue, Fabien; Ittner, Lars; Mobbs, Ralph; Walkley, Carl R.; Purton, Louise E.; Ward, Robyn L.; Wong, Jason W. H.; Hesson, Luke B.; Walsh, William; Pimanda, John E.

    2016-01-01

    Current approaches in tissue engineering are geared toward generating tissue-specific stem cells. Given the complexity and heterogeneity of tissues, this approach has its limitations. An alternate approach is to induce terminally differentiated cells to dedifferentiate into multipotent proliferative cells with the capacity to regenerate all components of a damaged tissue, a phenomenon used by salamanders to regenerate limbs. 5-Azacytidine (AZA) is a nucleoside analog that is used to treat preleukemic and leukemic blood disorders. AZA is also known to induce cell plasticity. We hypothesized that AZA-induced cell plasticity occurs via a transient multipotent cell state and that concomitant exposure to a receptive growth factor might result in the expansion of a plastic and proliferative population of cells. To this end, we treated lineage-committed cells with AZA and screened a number of different growth factors with known activity in mesenchyme-derived tissues. Here, we report that transient treatment with AZA in combination with platelet-derived growth factor–AB converts primary somatic cells into tissue-regenerative multipotent stem (iMS) cells. iMS cells possess a distinct transcriptome, are immunosuppressive, and demonstrate long-term self-renewal, serial clonogenicity, and multigerm layer differentiation potential. Importantly, unlike mesenchymal stem cells, iMS cells contribute directly to in vivo tissue regeneration in a context-dependent manner and, unlike embryonic or pluripotent stem cells, do not form teratomas. Taken together, this vector-free method of generating iMS cells from primary terminally differentiated cells has significant scope for application in tissue regeneration. PMID:27044077

  7. Correlation between standard plate count and somatic cell count milk quality results for Wisconsin dairy producers.

    Science.gov (United States)

    Borneman, Darand L; Ingham, Steve

    2014-05-01

    The objective of this study was to determine if a correlation exists between standard plate count (SPC) and somatic cell count (SCC) monthly reported results for Wisconsin dairy producers. Such a correlation may indicate that Wisconsin producers effectively controlling sanitation and milk temperature (reflected in low SPC) also have implemented good herd health management practices (reflected in low SCC). The SPC and SCC results for all grade A and B dairy producers who submitted results to the Wisconsin Department of Agriculture, Trade, and Consumer Protection, in each month of 2012 were analyzed. Grade A producer SPC results were less dispersed than grade B producer SPC results. Regression analysis showed a highly significant correlation between SPC and SCC, but the R(2) value was very small (0.02-0.03), suggesting that many other factors, besides SCC, influence SPC. Average SCC (across 12 mo) for grade A and B producers decreased with an increase in the number of monthly SPC results (out of 12) that were ≤ 25,000 cfu/mL. A chi-squared test of independence showed that the proportion of monthly SCC results >250,000 cells/mL varied significantly depending on whether the corresponding SPC result was ≤ 25,000 or >25,000 cfu/mL. This significant difference occurred in all months of 2012 for grade A and B producers. The results suggest that a generally consistent level of skill exists across dairy production practices affecting SPC and SCC.

  8. Cytogenetic effects of leachates from tannery solid waste on the somatic cells of Vicia faba.

    Science.gov (United States)

    Chandra, Saurabh; Chauhan, L K S; Pande, P N; Gupta, S K

    2004-04-01

    The contamination of surface- and groundwater by the leaching of solid wastes generated by industrial activities as a result of water runoff and rainfall is a matter of great concern. The leachates from tannery solid waste (TSW), a major environmental pollutant, were examined for their possible genotoxic effects on the somatic cells of Vicia faba. Leachates were prepared from solid wastes procured from leather-tanning industrial sites, and V. faba seedlings were exposed to three test concentrations, 2.5%, 5%, and 10%, through soil and aqueous media for 5 days. The root tips examined for cytogenetic damage revealed that leachate of TSW significantly inhibited the mitotic index and induced significantly frequent chromosomal and mitotic aberrations (CA/MA) in a dose-dependent manner. The chemical analysis of TSW samples revealed that the chief constituents were chromium and nickel, which may cause genetic abnormalities. The frequency of aberrations was found to be higher in the root meristematic cells of Vicia faba exposed through the aqueous medium than those exposed through the soil medium. The results of the present study indicated that contamination of potable water bodies by leachates of TSW may cause genotoxicity. For the biomonitoring of complex mixtures of toxicants with the V. faba bioassay, the use of the aqueous medium seems to be a more promising method than the use of the soil medium.

  9. The Effect of Udder Measurements on Somatic Cell Count and Daily Milk Production in Holstein Cattle

    Directory of Open Access Journals (Sweden)

    Ayhan Ceyhan

    2013-12-01

    Full Text Available This study was carried out to investigate the effect of udder measurements group on somatic cell count (SCC and daily milk production. Milk samples and udder measurements were collected monthly from 79 lactating Holstein cows on commercial dairy in the province of Niğde. In the study, front teat length (FTL, rear teat length (RTL, front teat diameter (FTD, rear teat diameter (RTD, distance between front teats (DBFT, distance between rear teats (DBRT, front udder height, (FTH, rear udder height (RUH, distance between front and rear teats (DBST were obtained in before afternoon milking. Udder measurements were divided into 5 groups according to the measurements. The effect of DBFT, DBRT, FTH, RTD, FTD and DBRT groups on daily milk production were statistically significant, while FTH, RUH and DBRT were found non-significant. The effect of udder measurements groups on SCC was found not significant, except rear teat diameter (RTD. Average daily milk production and SCC were estimated as 28.25 kg/day and 274.90 cell/ml, respectively. In conclusion, it can be said that the distance between teats, teat’s diameter and front udder height of Holstein cattle is important factor for milk yield of Holstein dairy cattle. Also, SCC is effected by rear teat diameter.

  10. Current status and applications of somatic cell nuclear transfer in dogs.

    Science.gov (United States)

    Jang, Goo; Kim, Min Kyu; Lee, Byeong Chun

    2010-11-01

    Although somatic cell nuclear transfer (SCNT) technology and applications are well developed in most domesticated and laboratory animals, their use in dogs has advanced only slowly. Many technical difficulties had to be overcome before preliminary experiments could be conducted. First, due to the very low efficiency of dog oocyte maturation in vitro, in vivo matured oocytes were generally used. The nucleus of an in vivo matured oocyte was removed and a donor cell (from fetal or adult fibroblasts) was injected into the oocyte. Secondly, fusion of the reconstructed oocytes was problematic, and it was found that a higher electrical voltage was necessary, in comparison to other mammalian species. By transferring the resulting fused oocytes into surrogate females, several cloned offspring were born. SCNT was also used for producing cloned wolves, validating reproductive technologies for aiding conservation of endangered or extinct breeds. Although examples of transgenesis in canine species are very sparse, SCNT studies are increasing, and together with the new field of gene targeting technology, they have been applied in many fields of veterinary or bio-medical science. This review summarizes the current status of SCNT in dogs and evaluates its potential future applications.

  11. Usp16 contributes to somatic stem-cell defects in Down's syndrome.

    Science.gov (United States)

    Adorno, Maddalena; Sikandar, Shaheen; Mitra, Siddhartha S; Kuo, Angera; Nicolis Di Robilant, Benedetta; Haro-Acosta, Veronica; Ouadah, Youcef; Quarta, Marco; Rodriguez, Jacqueline; Qian, Dalong; Reddy, Vadiyala M; Cheshier, Samuel; Garner, Craig C; Clarke, Michael F

    2013-09-19

    Down's syndrome results from full or partial trisomy of chromosome 21. However, the consequences of the underlying gene-dosage imbalance on adult tissues remain poorly understood. Here we show that in Ts65Dn mice, which are trisomic for 132 genes homologous to genes on human chromosome 21, triplication of Usp16 reduces the self-renewal of haematopoietic stem cells and the expansion of mammary epithelial cells, neural progenitors and fibroblasts. In addition, Usp16 is associated with decreased ubiquitination of Cdkn2a and accelerated senescence in Ts65Dn fibroblasts. Usp16 can remove ubiquitin from histone H2A on lysine 119, a critical mark for the maintenance of multiple somatic tissues. Downregulation of Usp16, either by mutation of a single normal Usp16 allele or by short interfering RNAs, largely rescues all of these defects. Furthermore, in human tissues overexpression of USP16 reduces the expansion of normal fibroblasts and postnatal neural progenitors, whereas downregulation of USP16 partially rescues the proliferation defects of Down's syndrome fibroblasts. Taken together, these results suggest that USP16 has an important role in antagonizing the self-renewal and/or senescence pathways in Down's syndrome and could serve as an attractive target to ameliorate some of the associated pathologies.

  12. Usp16 contributes to somatic stem cell defects in Down syndrome

    Science.gov (United States)

    Adorno, Maddalena; Sikandar, Shaheen; Mitra, Siddhartha S.; Kuo, Angera; Di Robilant, Benedetta Nicolis; Haro-Acosta, Veronica; Ouadah, Youcef; Quarta, Marco; Rodriguez, Jacqueline; Qian, Dalong; Reddy, Vadiyala M.; Cheshier, Samuel; Garner, Craig C.; Clarke, Michael F.

    2013-01-01

    SUMMARY Down syndrome (DS) results from full or partial trisomy of chromosome 21. However, the consequences of the underlying gene-dosage imbalance on adult tissues remain poorly understood. Here we show that in Ts65Dn mice, trisomic for 132 genes homologous to HSA21, triplication of Usp16 reduces self-renewal of hematopoietic stem cells and expansion of mammary epithelial cells, neural progenitors, and fibroblasts. Moreover, Usp16 is associated with decreased ubiquitination of Cdkn2a and accelerated senescence in Ts65Dn fibroblasts. Usp16 can remove ubiquitin from H2AK119, a critical mark for the maintenance of multiple somatic tissues. Downregulation of Usp16, either by mutation of a single normal USP16 allele or by shRNAs, largely rescues all these defects. Furthermore, in human tissues overexpression of USP16 reduces the expansion of normal fibroblasts and post-natal neural progenitors while downregulation of USP16 partially rescues the proliferation defects of DS fibroblasts. Taken together, these results suggest that USP16 plays an important role in antagonizing the self-renewal and/or senescence pathways in Down syndrome and could serve as an attractive target to ameliorate some of the associated pathologies. PMID:24025767

  13. Spt5 accumulation at variable genes distinguishes somatic hypermutation in germinal center B cells from ex vivo-activated cells.

    Science.gov (United States)

    Maul, Robert W; Cao, Zheng; Venkataraman, Lakshmi; Giorgetti, Carol A; Press, Joan L; Denizot, Yves; Du, Hansen; Sen, Ranjan; Gearhart, Patricia J

    2014-10-20

    Variable (V) genes of immunoglobulins undergo somatic hypermutation by activation-induced deaminase (AID) to generate amino acid substitutions that encode antibodies with increased affinity for antigen. Hypermutation is restricted to germinal center B cells and cannot be recapitulated in ex vivo-activated splenic cells, even though the latter express high levels of AID. This suggests that there is a specific feature of antigen activation in germinal centers that recruits AID to V genes which is absent in mitogen-activated cultured cells. Using two Igh knock-in mouse models, we found that RNA polymerase II accumulates in V regions in B cells after both types of stimulation for an extended distance of 1.2 kb from the TATA box. The paused polymerases generate abundant single-strand DNA targets for AID. However, there is a distinct accumulation of the initiating form of polymerase, along with the transcription cofactor Spt5 and AID, in the V region from germinal center cells, which is totally absent in cultured cells. These data support a model where mutations are prevalent in germinal center cells, but not in ex vivo cells, because the initiating form of polymerase is retained, which affects Spt5 and AID recruitment.

  14. Deletion of Dicer in Somatic Cells of the Female Reproductive Tract Causes Sterility

    Science.gov (United States)

    Nagaraja, Ankur K.; Andreu-Vieyra, Claudia; Franco, Heather L.; Ma, Lang; Chen, Ruihong; Han, Derek Y.; Zhu, Huifeng; Agno, Julio E.; Gunaratne, Preethi H.; DeMayo, Francesco J.; Matzuk, Martin M.

    2008-01-01

    Dicer is an evolutionarily conserved ribonuclease III that is necessary for microRNA (miRNA) processing and the synthesis of small interfering RNAs from long double-stranded RNA. Although it has been shown that Dicer plays important roles in the mammalian germline and early embryogenesis, the functions of Dicer-dependent pathways in the somatic cells of the female reproductive tract are unknown. Using a transgenic line in which Cre recombinase is driven by the anti-Müllerian hormone receptor type 2 promoter, we conditionally inactivated Dicer1 in the mesenchyme of the developing Müllerian ducts and postnatally in ovarian granulosa cells and mesenchyme-derived cells of the oviducts and uterus. Deletion of Dicer in these cell types results in female sterility and multiple reproductive defects including decreased ovulation rates, compromised oocyte and embryo integrity, prominent bilateral paratubal (oviductal) cysts, and shorter uterine horns. The paratubal cysts act as a reservoir for spermatozoa and oocytes and prevent embryos from transiting the oviductal isthmus and passing the uterotubal junction to enter the uterus for implantation. Deep sequencing of small RNAs in oviduct revealed down-regulation of specific miRNAs in Dicer conditional knockout females compared with wild type. The majority of these differentially expressed miRNAs are predicted to regulate genes important for Müllerian duct differentiation and mesenchyme-derived structures, and several of these putative target genes were significantly up-regulated upon conditional deletion of Dicer1. Thus, our findings reveal diverse and critical roles for Dicer and its miRNA products in the development and function of the female reproductive tract. PMID:18687735

  15. Transcript levels of several epigenome regulatory genes in bovine somatic donor cells are not correlated with their cloning efficiency.

    Science.gov (United States)

    Zhou, Wenli; Sadeghieh, Sanaz; Abruzzese, Ronald; Uppada, Subhadra; Meredith, Justin; Ohlrichs, Charletta; Broek, Diane; Polejaeva, Irina

    2009-09-01

    Among many factors that potentially affect somatic cell nuclear transfer (SCNT) embryo development is the donor cell itself. Cloning potentials of somatic donor cells vary greatly, possibly because the cells have different capacities to be reprogrammed by ooplasma. It is therefore intriguing to identify factors that regulate the reprogrammability of somatic donor cells. Gene expression analysis is a widely used tool to investigate underlying mechanisms of various phenotypes. In this study, we conducted a retrospective analysis investigating whether donor cell lines with distinct cloning efficiencies express different levels of genes involved in epigenetic reprogramming including histone deacetylase-1 (HDAC1), -2 (HDAC2); DNA methyltransferase-1 (DNMT1), -3a (DNMT3a),-3b (DNMT3b), and the bovine homolog of yeast sucrose nonfermenting-2 (SNF2L), a SWI/SNF family of ATPases. Cell samples from 12 bovine donor cell lines were collected at the time of nuclear transfer experiments and expression levels of the genes were measured using quantitative polymerase chain reaction (PCR). Our results show that there are no significant differences in expression levels of these genes between donor cell lines of high and low cloning efficiency defined as live calving rates, although inverse correlations are observed between in vitro embryo developmental rates and expression levels of HDAC2 and SNF2L. We also show that selection of stable reference genes is important for relative quantification, and different batches of cells can have different gene expression patterns. In summary, we demonstrate that expression levels of these epigenome regulatory genes in bovine donor cells are not correlated with cloning potential. The experimental design and data analysis method reported here can be applied to study any genes expressed in donor cells.

  16. Isolation, culture and characterisation of somatic cells derived from semen and milk of endangered sheep and eland antelope.

    Science.gov (United States)

    Nel-Themaat, L; Gómez, M C; Damiani, P; Wirtu, G; Dresser, B L; Bondioli, K R; Lyons, L A; Pope, C E; Godke, R A

    2007-01-01

    Semen and milk are potential sources of somatic cells for genome banks. In the present study, we cultured and characterised cells from: (1) cooled sheep milk; (2) fresh, cooled and frozen-thawed semen from Gulf Coast native (GCN) sheep (Ovis aries); and (3) fresh eland (Taurotragus oryx) semen. Cells attached to the culture surface from fresh (29%), cooled (43%) and slow-frozen (1 degrees C/min; 14%) ram semen, whereas no attachment occurred in the fast-frozen (10 degrees C/min) group. Proliferation occurred in fresh (50%) and cooled (100%) groups, but no cells proliferated after passage 1 (P1). Eland semen yielded cell lines (100%) that were cryopreserved at P1. In samples from GCN and cross-bred milk, cell attachment (83% and 95%, respectively) and proliferation (60% and 37%, respectively) were observed. Immunocytochemical detection of cytokeratin indicated an epithelial origin of semen-derived cells, whereas milk yielded either fibroblasts, epithelial or a mixture of cell types. Deoxyribonucleic acid microsatellite analysis using cattle-derived markers confirmed that eland cells were from the semen donor. Eland epithelial cells were transferred into eland oocytes and 12 (71%), six (35%) and two (12%) embryos cleaved and developed to morulae or blastocyst stages, respectively. In conclusion, we have developed a technique for obtaining somatic cells from semen. We have also demonstrated that semen-derived cells can serve as karyoplast donors for nuclear transfer.

  17. TCPs, WUSs, and WINDs: Families of transcription factors that regulate shoot meristem formation, stem cell maintenance, and somatic cell differentiation

    Directory of Open Access Journals (Sweden)

    Miho eIkeda

    2014-09-01

    Full Text Available In contrast to somatic mammalian cells, which cannot alter their fate, plant cells can dedifferentiate to form totipotent callus cells and regenerate a whole plant, following treatment with specific phytohormones. However, the regulatory mechanisms and key factors that control differentiation-dedifferentiation and cell totipotency have not been completely clarified in plants. Recently, several plant transcription factors that regulate meristem formation and dedifferentiation have been identified and include members of the TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP, WUSCHEL (WUS, and WOUND INDUCED DEDIFFERENTIATION (WIND1 families. WUS and WIND positively control plant cell totipotency, while TCP negatively controls it. Interestingly, TCP is a transcriptional activator that acts as a negative regulator of shoot meristem formation, and WUS is a transcriptional repressor that positively maintains totipotency of the stem cells of the shoot meristem. We describe here the functions of TCP, WUS and WIND transcription factors in the regulation of differentiation-dedifferentiation by positive and negative transcriptional regulators.

  18. Establishment and characterization of fetal fibroblast cell lines for generating human lysozyme transgenic goats by somatic cell nuclear transfer.

    Science.gov (United States)

    Liu, Jun; Luo, Yan; Zheng, Liming; Liu, Qingqing; Yang, Zhongcai; Wang, Yongsheng; Su, Jianmin; Quan, Fusheng; Zhang, Yong

    2013-10-01

    This study was performed to qualify goat fetal fibroblast (GFF) cell lines for genetic modification and somatic cell nuclear transfer (SCNT) to produce human lysozyme (hLYZ) transgenic goats. Nine GFF cell lines were established from different fetuses, and the proliferative lifespan and chromosomal stability were analyzed. The results suggested that cell lines with a longer lifespan had stable chromosomes compared with those of cells lines with a shorter lifespan. According to the proliferative lifespan, we divided GFF cell lines into two groups: cell lines with a long lifespan (GFF1/2/7/8/9; group L) and cell lines with a short lifespan (GFF3/4/5/6; group S). Next, a hLYZ expression vector was introduced into these cell lines by electroporation. The efficiencies of colony formation, expansion in culture, and the quality of transgenic clonal cell lines were significant higher in group L than those in group S. The mean fusion rate and blastocyst rate in group L were higher than those in group S (80.3 ± 1.7 vs. 65.1 ± 4.2 % and 19.5 ± 0.6 vs. 15.1 ± 1.1 %, respectively, P embryos into the oviducts of recipient goats, three live kids were born. PCR and Southern blot analyses confirmed integration of the transgene in cloned goats. In conclusion, the lifespan of GFF cell lines has a major effect on the efficiency to produce transgenic cloned goats. Therefore, the proliferative lifespan of primary cells may be used as a criterion to characterize the quality of cell lines for genetic modification and SCNT.

  19. Passage number of porcine embryonic germ cells affects epigenetic status and blastocyst rate following somatic cell nuclear transfer.

    Science.gov (United States)

    Li, Juan; Gao, Yu; Petkov, Stoyan; Purup, Stig; Hyttel, Poul; Callesen, Henrik

    2014-06-10

    Epigenetic instability of donor cells due to long-term in vitro culture may influence the success rate of subsequent somatic cell nuclear transfer (SCNT). Therefore, the present study was designed (1) to investigate the epigenetic changes after prolonged culture in vitro of porcine embryonic germ (EG) cells, including differences in expression levels of both DNA methylation and demethylation-related genes and catalyses of histone modifications, and (2) to assess the efficiency of SCNT using EG cells from different passages. Results showed that genes either associated with DNA demethylation including DNMTs and TET1 or genes related to histone acetylation including HDACs were highly expressed in EG cells at higher passages when compared to EG cells at lower passages. In addition, the expression level of H3K27me3 functional methylase EZH2 increased while no changes were observed on H3K27me3 demethylase JMJD3 in relation to passage number. Moreover, the expression levels of both the H3K4me3 methylase MLL1 and the H3K4me3 demethylase RBP2 were increased at high passages. By using lower passage (numbers 3-5) EG cells as donor cells, the SCNT efficiency was significantly lower compared with use of fetal fibroblast donor cells. However, similar blastocyst rates were achieved when using higher passage (numbers 9-12) EG cells as donor cells. In conclusion, the present study suggests that the epigenetic status of EG cells change with increasing passage numbers, and that higher passage number EG cells are better primed for SCNT.

  20. Somatic hypermutation of immunoglobulin genes: lessons from proliferating cell nuclear antigenK164R mutant mice.

    Science.gov (United States)

    Langerak, Petra; Krijger, Peter H L; Heideman, Marinus R; van den Berk, Paul C M; Jacobs, Heinz

    2009-03-12

    Proliferating cell nuclear antigen (PCNA) encircles DNA as a ring-shaped homotrimer and, by tethering DNA polymerases to their template, PCNA serves as a critical replication factor. In contrast to high-fidelity DNA polymerases, the activation of low-fidelity translesion synthesis (TLS) DNA polymerases seems to require damage-inducible monoubiquitylation (Ub) of PCNA at lysine residue 164 (PCNA-Ub). TLS polymerases can tolerate DNA damage, i.e. they can replicate across DNA lesions. The lack of proofreading activity, however, renders TLS highly mutagenic. The advantage is that B cells use mutagenic TLS to introduce somatic mutations in immunoglobulin (Ig) genes to generate high-affinity antibodies. Given the critical role of PCNA-Ub in activating TLS and the role of TLS in establishing somatic mutations in immunoglobulin genes, we analysed the mutation spectrum of somatically mutated immunoglobulin genes in B cells from PCNAK164R knock-in mice. A 10-fold reduction in A/T mutations is associated with a compensatory increase in G/C mutations-a phenotype similar to Poleta and mismatch repair-deficient B cells. Mismatch recognition, PCNA-Ub and Poleta probably act within one pathway to establish the majority of mutations at template A/T. Equally relevant, the G/C mutator(s) seems largely independent of PCNAK(164) modification.

  1. Single-Cell, Genome-wide Sequencing Identifies Clonal Somatic Copy-Number Variation in the Human Brain

    Directory of Open Access Journals (Sweden)

    Xuyu Cai

    2014-09-01

    Full Text Available De novo copy-number variants (CNVs can cause neuropsychiatric disease, but the degree to which they occur somatically, and during development, is unknown. Single-cell whole-genome sequencing (WGS in >200 single cells, including >160 neurons from three normal and two pathological human brains, sensitively identified germline trisomy of chromosome 18 but found most (≥95% neurons in normal brain tissue to be euploid. Analysis of a patient with hemimegalencephaly (HMG due to a somatic CNV of chromosome 1q found unexpected tetrasomy 1q in ∼20% of neurons, suggesting that CNVs in a minority of cells can cause widespread brain dysfunction. Single-cell analysis identified large (>1 Mb clonal CNVs in lymphoblasts and in single neurons from normal human brain tissue, suggesting that some CNVs occur during neurogenesis. Many neurons contained one or more large candidate private CNVs, including one at chromosome 15q13.2-13.3, a site of duplication in neuropsychiatric conditions. Large private and clonal somatic CNVs occur in normal and diseased human brains.

  2. Elucidating fish oil-induced milk fat depression in dairy sheep: Milk somatic cell transcriptome analysis

    Science.gov (United States)

    Suárez-Vega, Aroa; Toral, Pablo G.; Gutiérrez-Gil, Beatriz; Hervás, Gonzalo; Arranz, Juan José; Frutos, Pilar

    2017-01-01

    In this study, RNA sequencing was used to obtain a comprehensive profile of the transcriptomic changes occurring in the mammary gland of lactating sheep suffering from fish oil-induced milk fat depression (FO-MFD). The milk somatic cell transcriptome analysis of four control and four FO-MFD ewes generated an average of 42 million paired-end reads per sample. In both conditions, less than 220 genes constitute approximately 89% of the total counts. These genes, which are considered as core genes, were mainly involved in cytoplasmic ribosomal proteins and electron transport chain pathways. In total, 117 genes were upregulated, and 96 genes were downregulated in FO-MFD samples. Functional analysis of the latter indicated a downregulation of genes involved in the SREBP signaling pathway (e.g., ACACA, ACSL, and ACSS) and Gene Ontology terms related to lipid metabolism and lipid biosynthetic processes. Integrated interpretation of upregulated genes indicated enrichment in genes encoding plasma membrane proteins and proteins regulating protein kinase activity. Overall, our results indicate that FO-MFD is associated with the downregulation of key genes involved in the mammary lipogenesis process. In addition, the results also suggest that this syndrome may be related to upregulation of other genes implicated in signal transduction and codification of transcription factors. PMID:28378756

  3. Comparing milk yield, chemical properties and somatic cell count from organic and conventional mountain farming systems

    Directory of Open Access Journals (Sweden)

    Marcello Bianchi

    2010-01-01

    Full Text Available A study was undertaken to investigate the effects of farming systems (organic vs. conventional, diet (hay/concentrate vs. pasture and their interaction on milk yield, gross composition and fatty acid (FA profile of dairy cows bred in mountainous areas. For this purpose four dairy farms (two organic and two conventional were chosen in the alpine territory of Aosta Valley (NW Italy; individual milk yield was recorded daily and bulk milk samples were collected monthly from February to September 2007 to cover dietary variations. Higher levels of milk production (P<0.05 and lower milk protein amounts (P<0.01 were observed in the organic farms with respect to the conventional ones, while no significant differences were noticed in milk fat and lactose contents and in somatic cell count. Concerning fatty acids, only small differences were detected between organic and conventional milk and such differences seemed to be related mainly to the stabled period. Diet affected almost all variables studied: pasture feeding provided a significant improvement in the fatty acid composition in both organic and conventional systems leading to lower hypercholesterolemic saturated fatty acids, higher mono- and polyunsaturated fatty acids and conjugated linoleic acid amounts (P<0.001.

  4. Cloned pigs derived from somatic cell nuclear transfer embryos cultured in vitro at low oxygen tension

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Pig cloning has great potential to human xenotransplantation. The present study was designed to establish a more efficient system for producing cloned pigs by somatic cell nuclear transfer (SCNT). Our approach was as follows: SCNT embryos were reconstructed by using fetal fibroblasts of Chinese miniature pig as donors and in vitro matured oocytes of prepubertal gilts as recipients. Reconstructed embryos were induced by electrical fusion/activation and cultured in BSA-containing North Carolina State University 23 medium (NCSU-23) or Porcine Zygote Medium (PZM-3) at the gas condition of 5% CO2, 7% O2, 88% N2. A total of 230 cloned embryos were transferred to three surrogate sows, producing three piglets. One of them is apparently healthy. The clonal provenance of the piglet was indicated by its coat color and confirmed by DNA microsatellite analysis. These results indicate that the use of in vitro matured oocytes from prepubertal gilts as recipient, combined with cloned embryos cultured at low oxygen tension is an effective way to produce cloned pigs.

  5. Association between BoLA-DRB3 and somatic cell count in Holstein cattle from Argentina.

    Science.gov (United States)

    Baltian, L R; Ripoli, M V; Sanfilippo, S; Takeshima, S N; Aida, Y; Giovambattista, G

    2012-07-01

    Different studies have proved that the resistance/susceptibility to mastitis is genetically determined. The major histocompatibility complex in cows is known as bovine lymphocyte antigen (BoLA). Genes from the BoLA have been associated with the occurrence of infectious diseases such as mastitis and leukosis, especially the BoLA-DRB gene. The object of the present study was to detect associations between BoLA-DRB3 alleles and somatic cell count (SCC), as an indicator of resistance/susceptibility to mastitis in Holstein cattle (N = 123) from La Pampa, Argentina. Fisher's exact test and Woolf-Haldane odds ratio were applied to study the association between SCC and BoLA-DRB3 allele frequencies. Significant association was noted between BoLA-DRB3.2*23 and *27 alleles (p DRB3.2*20 and *25 exhibit suggestive association with high SCC (p < 0.1). These results were partially in agreement with data reported from Japanese Holstein cattle, but differed from those published by other authors. A possible explanation for the contrasting results could be that the mastitis is a multifactor disease caused by different pathogens. Moreover, most of the studies were carried out using PCR-RFLP method, which has less resolution than PCR-SBT because PCR-RFLP defined alleles included more than one sequenced alleles.

  6. Somatic cell nuclear transfer in the sheep induces placental defects that likely precede fetal demise.

    Science.gov (United States)

    Fletcher, C J; Roberts, C T; Hartwich, K M; Walker, S K; McMillen, I C

    2007-01-01

    The efficiency of cloning by somatic cell nuclear transfer (SCNT) is poor in livestock with approximately 5% of transferred cloned embryos developing to term. SCNT is associated with gross placental structural abnormalities. We aimed to identify defects in placental histology and gene expression in failing ovine cloned pregnancies to better understand why so many clones generated by SCNT die in utero. Placentomes from SCNT pregnancies (n = 9) and age matched, naturally mated controls (n = 20) were collected at two gestational age ranges (105-134 days and 135-154 days; term = 147 days). There was no effect of cloning on total placental weight. However, cloning reduced the number of placentomes at both gestational ages (105-134 days: control 55.0 +/- 4.2, clone 44.7 +/- 8.0 and 135-154 days: control 72.2 +/- 5.1, clone 36.6 +/- 5.1; P clone 18.6 +/- 2.8 g and 135-154 days: control 6.6 +/- 0.6 g, clone 7.0 +/- 2.0 g; P cloned pregnancies had a significant volume of shed trophoblast and fetal villous hemorrhage, absent in controls, at both gestational age ranges (P clones. In addition, cloning reduced placental expression of key genes in placental differentiation and function. Thus, cloning by SCNT results in both gross and microscopic placental abnormalities. We speculate that trophoblast apoptosis, shedding, and hemorrhage may be causal in fetal death in ovine clones.

  7. Effect of somatic cell count and lactation stage on sheep milk quality

    Directory of Open Access Journals (Sweden)

    Emilia Duranti

    2010-01-01

    Full Text Available In order to evaluate the effects of mammary health status and lactation phase on the qualitative parameters of ovinemilk, 213 individual milk samples were repeatedly collected from 40 primiparous Sarda ewes on a monthly basis. Yield,physico-chemical characteristics, casein fractions quantitative distribution, somatic cell count (SCC, cheese making propertiesand plasmin-plasminogen activity were determined on each sample. Repeated individual milk SCC were used as amarker of udder health status, allowing the definition of three classes: “Healthy” (H, “Infected” (I or “Doubtful” (D.Samples were grouped into 4 classes of days in milk (DIM. To evaluate the influence of mammary health status andphase of lactation, a mixed model was performed using the ewe as random effect. Milk physico-chemical parameters wereinfluenced both by the udder health status and by lactation phase. In particular, the udder health status adversely affectedαs1 and β1-casein fractions (Pand 64.60% in “H”, “D” and “I,” respectively. Lactation phase influenced the overall milk composition and technologicalcharacteristics. Plasmin activity was higher in the “I” group than in the others (16.1 vs 11.8 and 11.2 U/ml; Pit significantly (Pexert a detrimental effect on milk quality since they enhance its endogenous proteolytic activity.

  8. Generation of transgenic Wuzhishan miniature pigs expressing monomeric red fluorescent protein by somatic cell nuclear transfer.

    Science.gov (United States)

    Lu, Yue; Kang, Jin-Dan; Li, Suo; Wang, Wei; Jin, Jun-Xue; Hong, Yu; Cui, Cheng-du; Yan, Chang-Guo; Yin, Xi-Jun

    2013-08-01

    Red fluorescent protein and its variants enable researchers to study gene expression, localization, and protein-protein interactions in vitro in real-time. Fluorophores with higher wavelengths are usually preferred since they efficiently penetrate tissues and produce less toxic emissions. A recently developed fluorescent protein marker, monomeric red fluorescent protein (mRFP1), is particularly useful because of its rapid maturation and minimal interference with green fluorescent protein (GFP) and GFP-derived markers. We generated a pCX-mRFP1-pgk-neoR construct and evaluated the ability of mRFP1 to function as a fluorescent marker in transgenic Wuzhishan miniature pigs. Transgenic embryos were generated by somatic cell nuclear transfer (SCNT) of nuclei isolated from ear fibroblasts expressing mRFP1. Embryos generated by SCNT developed into blastocysts in vitro (11.65%; 31/266). Thereafter, a total of 685 transgenic embryos were transferred into the oviducts of three recipients, two of which became pregnant. Of these, one recipient had six aborted fetuses, whereas the other recipient gave birth to four offspring. All offspring expressed the pCX-mRFP1-pgk-neoR gene as shown by PCR and fluorescence in situ hybridization analysis. The transgenic pigs expressed mRFP1 in all organs and tissues at high levels. These results demonstrate that Wuzhishan miniature pigs can express mRFP1. To conclude, this transgenic animal represents an excellent model with widespread applications in medicine and agriculture.

  9. Targeted disruption of Ataxia-telangiectasia mutated gene in miniature pigs by somatic cell nuclear transfer.

    Science.gov (United States)

    Kim, Young June; Ahn, Kwang Sung; Kim, Minjeong; Kim, Min Ju; Park, Sang-Min; Ryu, Junghyun; Ahn, Jin Seop; Heo, Soon Young; Kang, Jee Hyun; Choi, You Jung; Choi, Seong-Jun; Shim, Hosup

    2014-10-03

    Ataxia telangiectasia (A-T) is a recessive autosomal disorder associated with pleiotropic phenotypes, including progressive cerebellar degeneration, gonad atrophy, and growth retardation. Even though A-T is known to be caused by the mutations in the Ataxia telangiectasia mutated (ATM) gene, the correlation between abnormal cellular physiology caused by ATM mutations and the multiple symptoms of A-T disease has not been clearly determined. None of the existing ATM mouse models properly reflects the extent to which neurological degeneration occurs in human. In an attempt to provide a large animal model for A-T, we produced gene-targeted pigs with mutations in the ATM gene by somatic cell nuclear transfer. The disrupted allele in the ATM gene of cloned piglets was confirmed via PCR and Southern blot analysis. The ATM gene-targeted pigs generated in the present study may provide an alternative to the current mouse model for the study of mechanisms underlying A-T disorder and for the development of new therapies.

  10. Growth and hematologic characteristics of cloned dogs derived from adult somatic cell nuclear transfer.

    Science.gov (United States)

    Park, Jung Eun; Kim, Min Kyu; Kang, Jung Taek; Oh, Hyun Ju; Hong, So Gun; Kim, Dae Young; Jang, Goo; Lee, Byeong Chun

    2010-04-01

    Three viable female dogs, which have the same genotype, have been successfully produced by somatic cell nuclear transfer (SCNT); however, data on the growth pattern of cloned dogs are lacking. Thus, the aim of this study was (1) to assess growth parameters among those cloned dogs with measurement of body weight, height, and radiographic analysis of skull size and bone plate, and (2) to compare hematologic characteristics among the donor dog, cloned dogs, and age-matched control dogs. The cloned dogs were kept in the same environmental conditions. The body weight increased from 0.52, 0.46, and 0.52 kg at birth to 21.9, 22.9, and 20.4 kg at 68 weeks of age for individual cloned dogs, respectively. The withers height increased from 34.5, 32.6, and 35.2 cm at 8 weeks of age to 67.1 cm at 68 weeks of age in the three clones. The radiographic data demonstrated that patterns of bone growth were similar among cloned dogs, and all measured parameters of matured cloned dogs were similar with that of the fully grown donor dog. An age-specific pattern was identified on hematologic and serum biochemical measurements in both cloned dogs and age-matched controls. The parameters examined were within the normal reference ranges for healthy dogs. In conclusion, three genetically identical cloned dogs showed similar growth characteristics and had normal hematological and serum biochemical parameters.

  11. Inheritance of mitochondrial DNA in serially recloned pigs by somatic cell nuclear transfer (SCNT)

    Energy Technology Data Exchange (ETDEWEB)

    Do, Minhwa; Jang, Won-Gu; Hwang, Jeong Hee; Jang, Hoon; Kim, Eun-Jung; Jeong, Eun-Jeong [Regenerative Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305 806 (Korea, Republic of); Shim, Hosup [Department of Physiology, Dankook University School of Medicine, Cheonan 330 714 (Korea, Republic of); Hwang, Sung Soo; Oh, Keon Bong; Byun, Sung June [Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Suwon (Korea, Republic of); Kim, Jin-Hoi [Department of Animal Biotechnology, Konkuk University, Seoul 143 701 (Korea, Republic of); Lee, Jeong Woong, E-mail: jwlee@kribb.re.kr [Regenerative Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305 806 (Korea, Republic of)

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer We success serial SCNT through the third generation using pig fibroblasts. Black-Right-Pointing-Pointer Donor-specific mtDNA in the recloned pigs was detected. Black-Right-Pointing-Pointer SCNT affect mtDNA mounts. -- Abstract: Somatic cell nuclear transfer (SCNT) has been established for the transmission of specific nuclear DNA. However, the fate of donor mitochondrial DNA (mtDNA) remains unclear. Here, we examined the fate of donor mtDNA in recloned pigs through third generations. Fibroblasts of recloned pigs were obtained from offspring of each generation produced by fusion of cultured fibroblasts from a Minnesota miniature pig (MMP) into enucleated oocytes of a Landrace pig. The D-loop regions from the mtDNA of donor and recipient differ at nucleotide sequence positions 16050 (A{yields}T), 16062 (T{yields}C), and 16135 (G{yields}A). In order to determine the fate of donor mtDNA in recloned pigs, we analyzed the D-loop region of the donor's mtDNA by allele-specific PCR (AS-PCR) and real-time PCR. Donor mtDNA was successfully detected in all recloned offspring (F1, F2, and F3). These results indicate that heteroplasmy that originate from donor and recipient mtDNA is maintained in recloned pigs, resulting from SCNT, unlike natural reproduction.

  12. Somatic cell count determination in cow's milk by near-infrared spectroscopy: a new diagnostic tool.

    Science.gov (United States)

    Tsenkova, R; Atanassova, S; Kawano, S; Toyoda, K

    2001-10-01

    The potential of near-infrared spectroscopy (NIR) in the region from 1,100 to 2,500 nm to measure somatic cell count (SCC) content of cow's milk was investigated. A total of 196 milk samples from seven Holstein cows were collected for 28, consecutive days, starting from 7th d after calving, and analyzed for fat, protein, lactose, and SCC. Three of the cows were healthy, and the remainder had periods of mastitis during the experiment. Near-infrared transflectance milk spectra were obtained using an InfraAlyzer 500 spectrophotometer. The calibration for logSCC was performed using partial least square (PLS) regression and different spectral data pretreatment. The best accuracy of determination was found for an equation that was obtained using smoothed absorbance data and 10 PLS factors. The standard error of calibration was 0.361, the calibration coefficient of multiple correlation was 0.868, the standard error of prediction for independent validation set of samples was 0.382, the correlation coefficient was 0.854, and the coefficient of variation was 7.63%. The accuracy of logSCC determination by NIR spectroscopy would allow health screening of cows and differentiation between healthy and mastitic milk samples. It has been found that SCC determination by NIR milk spectra is based on the related changes in milk composition. The most significant factors that simultaneously influenced milk spectra with the elevation of SCC were alteration of milk proteins and changes in ionic concentration of milk.

  13. Management practices associated with low, medium, and high somatic cell counts in bulk milk.

    Science.gov (United States)

    Barkema, H W; Schukken, Y H; Lam, T J; Beiboer, M L; Benedictus, G; Brand, A

    1998-07-01

    Management practices associated with bulk milk somatic cell counts (SCC) were studied for 201 dairy herds grouped into three categories according to bulk milk SCC. The cumulative production of fat-corrected milk over 305 d of lactation and category for bulk milk SCC were highly correlated; herds within the low category had the highest milk production. Differences in bulk milk SCC among the categories were well explained by the management practices studied. This correlation was not only true for the difference between the high (250,000 to 400,000) and low (teat disinfection, and antibiotic treatment of clinical mastitis, were also found to be important in the explanation of the difference between herds in the medium and low categories for bulk milk SCC. More attention was paid to hygiene for herds in the low category than for herds in the medium or high category. Supplementation of the diet with minerals occurred more frequently for cows in the low category for bulk milk SCC than for cows in the medium and high categories.

  14. A new strategy to generate functional insulin-producing cell lines by somatic gene transfer into pancreatic progenitors.

    Directory of Open Access Journals (Sweden)

    Philippe Ravassard

    Full Text Available BACKGROUND: There is increasing interest in developing human cell lines to be used to better understand cell biology, but also for drug screening, toxicology analysis and future cell therapy. In the endocrine pancreatic field, functional human beta cell lines are extremely scarce. On the other hand, rodent insulin producing beta cells have been generated during the past years with great success. Many of such cell lines were produced by using transgenic mice expressing SV40T antigen under the control of the insulin promoter, an approach clearly inadequate in human. Our objective was to develop and validate in rodent an alternative transgenic-like approach, applicable to human tissue, by performing somatic gene transfer into pancreatic progenitors that will develop into beta cells. METHODS AND FINDINGS: In this study, rat embryonic pancreases were transduced with recombinant lentiviral vector expressing the SV40T antigen under the control of the insulin promoter. Transduced tissues were next transplanted under the kidney capsule of immuno-incompetent mice allowing insulinoma development from which beta cell lines were established. Gene expression profile, insulin content and glucose dependent secretion, normalization of glycemia upon transplantation into diabetic mice validated the approach to generate beta cell lines. CONCLUSIONS: Somatic gene transfer into pancreatic progenitors represents an alternative strategy to generate functional beta cell lines in rodent. Moreover, this approach can be generalized to derive cells lines from various tissues and most importantly from tissues of human origin.

  15. Vitamin C enhances in vitro and in vivo development of porcine somatic cell nuclear transfer embryos

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yongye; Tang, Xiaochun; Xie, Wanhua; Zhou, Yan; Li, Dong; Zhou, Yang; Zhu, Jianguo; Yuan, Ting; Lai, Liangxue [Jilin Province Key Laboratory of Animal Embryo Engineering, College of Animal Science and Veterinary Medicine, Jilin University, 5333 Xi An DaLu, Changchun 130062 (China); Pang, Daxin, E-mail: pdx@jlu.edu.cn [Jilin Province Key Laboratory of Animal Embryo Engineering, College of Animal Science and Veterinary Medicine, Jilin University, 5333 Xi An DaLu, Changchun 130062 (China); Ouyang, Hongsheng, E-mail: ouyh@jlu.edu.cn [Jilin Province Key Laboratory of Animal Embryo Engineering, College of Animal Science and Veterinary Medicine, Jilin University, 5333 Xi An DaLu, Changchun 130062 (China)

    2011-07-29

    Highlights: {yields} Report for the first time that vitamin C has a beneficial effect on the development of porcine SCNT embryos. {yields} The level of acH4K5 and Oct4 expression at blastocyst-stage was up-regulated after treatment. {yields} A higher rate of gestation and increased number of piglets born were harvested in the treated group. -- Abstract: The reprogramming of differentiated cells into a totipotent embryonic state through somatic cell nuclear transfer (SCNT) is still an inefficient process. Previous studies revealed that the generation of induced pluripotent stem (iPS) cells from mouse and human fibroblasts could be significantly enhanced with vitamin C treatment. Here, we investigated the effects of vitamin C, to our knowledge for the first time, on the in vitro and in vivo development of porcine SCNT embryos. The rate of blastocyst development in SCNT embryos treated with 50 {mu}g/mL vitamin C 15 h after activation (36.0%) was significantly higher than that of untreated SCNT embryos (11.5%). The enhanced in vitro development rate of vitamin C-treated embryos was associated with an increased acetylation level of histone H4 lysine 5 and higher Oct4, Sox2 and Klf4 expression levels in blastocysts, as determined by real-time PCR. In addition, treatment with vitamin C resulted in an increased pregnancy rate in pigs. These findings suggest that treatment with vitamin C is beneficial for enhancement of the in vitro and in vivo development of porcine SCNT embryos.

  16. Lactoperoxidase activity in milk is correlated with somatic cell count in dairy cows.

    Science.gov (United States)

    Isobe, N; Kubota, H; Yamasaki, A; Yoshimura, Y

    2011-08-01

    Lactoperoxidase (LPO) is a milk protein with antimicrobial function. The present study was undertaken to examine the correlation between LPO activity and somatic cell count (SCC) in milk to use LPO activity as an indicator of mastitis. Composite milk of 36 cows and quarter milk of 3 cows were collected once per week from 0 to 300 d postpartum and twice per day for 1 wk, respectively. For the measurement of LPO activity, milk was mixed with tetramethylbenzidine solution and incubated at 37°C for 30 min, followed by the measurement of optical density. When only milk with low SCC (132±12×10(3) cells/mL) was used, a significant decrease in LPO activity was detected in primiparous cows from 0 to 4 mo postpartum. Lactoperoxidase activities of primiparous cows in mo 1, 2, and 3 postpartum were significantly higher than those in multiparous cows. When composite milk was divided based on LPO activity, the SCC was significantly higher in the groups with LPO activity >5 and from 3 to 3.9 U/mL in the second- and fourth-parity cows, respectively, compared with the group with LPO activity <2U/mL. Extremely high SCC were found in the ≥fifth-parity cows, even in low-LPO activity groups. In the case of quarter milk, higher LPO activity was associated with increased SCC in all 3 cows. The percentage of quarter milk samples with high SCC (4,062±415×10(3) cells/mL) increased with an increase in the LPO activity. The percentage of quarter milk samples with high SCC was 50.0 to 100% in the milk with LPO activity ≥5 U/mL. These results indicate that the correlation of LPO activity to the SCC in bovine milk may point to the potential use of the former as an indicator of SCC.

  17. Reproductive semi-cloning respecting biparental embryo origin: embryos from syngamy between a gamete and a haploidized somatic cell.

    Science.gov (United States)

    Tesarik, J

    2002-08-01

    Embryos formed by somatic cell nuclear transfer to enucleated oocytes (cloning) have given rise to viable offspring in several mammalian species. The possibility of future application of this technique to human assisted reproduction (reproductive cloning) has been widely debated. On this background there is current discussion of the potential for a cloning-derived technique, which aims at syngamy between a gamete nucleus from one parent and a somatic cell nucleus from the other. Critical analysis of the clinical indications, the current state of the art, biological concerns and ethical considerations relative to this technique, called here reproductive semi-cloning, are presented. Such a technique requires validation by further research before it can be considered as a treatment option. This debate explores issues raised by the technique.

  18. The effect of discontinuation of postmilking teat disinfection in low somatic cell count herds. I. Incidence of clinical mastitis.

    Science.gov (United States)

    Lam, T J; van Vliet, J H; Schukken, Y H; Grommers, F J; van Velden-Russcher, A; Barkema, H W; Brand, A

    1997-06-01

    Results are described of a split-udder trial on the effect of discontinuation of postmilking teat disinfection on the incidence of clinical mastitis in seven dairy herds with a low bulk milk somatic cell count and a high incidence of clinical mastitis. Overall incidence of clinical mastitis was non-significantly lower (18%), whereas the incidence of the most prevalent pathogen associated with clinical mastitis, Escherichia coli, was significantly lower in quarters for which postmilking teat disinfection was discontinued. We concluded that discontinuation of postmilking teat disinfection may decrease the incidence of clinical Escherichia coli mastitis in herds for which standard mastitis prevention measures are executed adequately, bulk milk somatic cell count is low, and incidence of clinical mastitis is high. However, because an increase in intramammary infections with contagious pathogens may occur, care is recommended when advising discontinuation of postmilking teat disinfection.

  19. The effect of discontinuation of postmilking teat disinfection in low somatic cell count herds. II. Dynamics of intramammary infections.

    Science.gov (United States)

    Lam, T J; van Vliet, J H; Schukken, Y H; Grommers, F J; van Velden-Russcher, A; Barkema, H W; Brand, A

    1997-06-01

    Results of a 20 month split-udder trial on the effect of discontinuation of postmilking teat disinfection on intramammary infections (IMI) with major and minor pathogens in seven dairy herds with a low somatic cell count are described. The incidence of Escherichia coli IMI was found to be significantly lower, whereas the incidence of IMI with Staphylococcus aureus and minor pathogens was significantly higher in quarters for which postmilking teat disinfection was discontinued than in disinfected quarters. It was concluded that discontinuation of postmilking teat disinfection decreased the incidence of E. coli IMI, accompanied by a, from a practical point of view, acceptable rise in somatic cell count. However, the possible increase in the incidence of S. aureus IMI calls for careful monitoring of the dynamics of IMI with contagious pathogens, when postmilking teat disinfection is discontinued in an attempt to reduce E. coli mastitis.

  20. Effects of season, milking routine and cow cleanliness on bacterial and somatic cell counts of bulk tank milk.

    Science.gov (United States)

    Zucali, Maddalena; Bava, Luciana; Tamburini, Alberto; Brasca, Milena; Vanoni, Laura; Sandrucci, Anna

    2011-11-01

    The aim of the study was to investigate the effects of season, cow cleanliness and milking routine on bacterial and somatic cell counts of bulk tank milk. A total of 22 dairy farms in Lombardy (Italy) were visited three times in a year in different seasons. During each visit, samples of bulk tank milk were taken for bacterial and somatic cell counts; swabs from the teat surface of a group of cows were collected after teat cleaning and before milking. Cow cleanliness was assessed by scoring udder, flanks and legs of all milking cows using a 4-point scale system. Season affected cow cleanliness with a significantly higher percentage of non-clean (NC) cows during Cold compared with Mild season. Standard plate count (SPC), laboratory pasteurization count (LPC), coliform count (CC) and somatic cell count, expressed as linear score (LS), in milk significantly increased in Hot compared with Cold season. Coagulase-positive staphylococci on teat swabs showed higher counts in Cold season in comparison with the other ones. The effect of cow cleanliness was significant for SPC, psychrotrophic bacterial count (PBC), CC and Escherichia coli in bulk tank milk. Somatic cell count showed a relationship with udder hygiene score. Milking operation routine strongly affected bacterial counts and LS of bulk tank milk: farms that accomplished a comprehensive milking scheme including two or more operations among forestripping, pre-dipping and post-dipping had lower teat contamination and lower milk SPC, PBC, LPC, CC and LS than farms that did not carry out any operation.

  1. Repeatability of differential goat bulk milk culture and associations with somatic cell count, total bacterial count, and standard plate count

    OpenAIRE

    Koop, G.; Dik, N; Nielen, M; Lipman, L. J. A.

    2010-01-01

    The aims of this study were to assess how different bacterial groups in bulk milk are related to bulk milk somatic cell count (SCC), bulk milk total bacterial count (TBC), and bulk milk standard plate count (SPC) and to measure the repeatability of bulk milk culturing. On 53 Dutch dairy goat farms, 3 bulk milk samples were collected at intervals of 2 wk. The samples were cultured for SPC, coliform count, and staphylococcal count and for the presence of Staphylococcus aureus. Furthermore, SCC ...

  2. Stochastic anomaly of methylome but persistent SRY hypermethylation in disorder of sex development in canine somatic cell nuclear transfer

    OpenAIRE

    Young-Hee Jeong; Hanlin Lu; Chi-Hun Park; Meiyan Li; Huijuan Luo; Joung Joo Kim; Siyang Liu; Kyeong Hee Ko; Shujia Huang; In Sung Hwang; Mi Na Kang; Desheng Gong; Kang Bae Park; Eun Ji Choi; Jung Hyun Park

    2016-01-01

    Somatic cell nuclear transfer (SCNT) provides an excellent model for studying epigenomic reprogramming during mammalian development. We mapped the whole genome and whole methylome for potential anomalies of mutations or epimutations in SCNT-generated dogs with XY chromosomal sex but complete gonadal dysgenesis, which is classified as 78, XY disorder of sex development (DSD). Whole genome sequencing revealed no potential genomic variations that could explain the pathogenesis of DSD. However, e...

  3. Genetic parameters for lactation traits of milking ewes: protein content and composition, fat, somatic cells and individual laboratory cheese yield

    Directory of Open Access Journals (Sweden)

    De la Fuente Luis

    2002-09-01

    Full Text Available Abstract The effects of some environmental variation factors and the genetic parameters for total milk traits (fat content, protein content, casein content, serum protein content, lactation mean of individual laboratory cheese yield (LILCY, lactation mean of somatic cell count (LSCC, and milk yield were estimated from the records of 1 111 Churra ewes. Genetic parameters were estimated by multivariate REML. Heritability for fat content was low (0.10 as is usually found in the Churra breed. Heritabilities for protein content, casein content, serum protein content, LILCY, milk yield and somatic cell count were 0.31, 0.30, 0.22, 0.09, 0.26 and 0.11, respectively. The highest heritability estimates were for protein and casein contents. Casein content is not advisable as an alternative to protein content as a selection criterion for cheese yield improvement; it does not have any compelling advantages and its measurement is costly. Our results for LSCC indicated that efforts should focus on improving the level of management rather than selecting for somatic cells, in the actual conditions of the Churra breed.

  4. A conditional Orco requirement in the somatic cyst cells for maintaining spermatids in a tight bundle in Drosophila testis

    Indian Academy of Sciences (India)

    Pankaj Dubey; Prakash Joti; Krishanu Ray

    2016-06-01

    Odorant receptors (OR) heterodimerizes with the OR co-receptor (Orco), forming specific odorant-gated cation channels, which are key to odor reception at the olfactory sensory neurons (OSN). Mammalian ORs are expressed in many other tissues, including testis. However, their biological implications are yet to be fully ascertained. In the mosquito, Orco is localized along the sperm tail and is indicated to maintain fidelity. Here, we show that orco expresses in Drosophila testis. The levels are higher in the somatic cyst cells. The orco-null mutants are perfectly fertile at 25°C. At 28°C, the coiled spermatid bundles are severely disrupted. The loss of Orco also disrupts the actin cap, which forms inside the head cyst cell at the rostral ends of the spermatid nuclei after coiling, and plays a key role in preventing the abnormal release of spermatids from the cyst enclosure. Both the defects are rescued by the somatic cyst cell-specific expression of the UAS-orco transgene. These results highlight a novel role of Orco in the somatic tissue during sperm release.

  5. Are we Genomic Mosaics? Variations of the Genome of Somatic Cells can Contribute to Diversify our Phenotypes.

    Science.gov (United States)

    Astolfi, P A; Salamini, F; Sgaramella, V

    2010-09-01

    Theoretical and experimental evidences support the hypothesis that the genomes and the epigenomes may be different in the somatic cells of complex organisms. In the genome, the differences range from single base substitutions to chromosome number; in the epigenome, they entail multiple postsynthetic modifications of the chromatin. Somatic genome variations (SGV) may accumulate during development in response both to genetic programs, which may differ from tissue to tissue, and to environmental stimuli, which are often undetected and generally irreproducible. SGV may jeopardize physiological cellular functions, but also create novel coding and regulatory sequences, to be exposed to intraorganismal Darwinian selection. Genomes acknowledged as comparatively poor in genes, such as humans', could thus increase their pristine informational endowment. A better understanding of SGV will contribute to basic issues such as the "nature vs nurture" dualism and the inheritance of acquired characters. On the applied side, they may explain the low yield of cloning via somatic cell nuclear transfer, provide clues to some of the problems associated with transdifferentiation, and interfere with individual DNA analysis. SGV may be unique in the different cells types and in the different developmental stages, and thus explain the several hundred gaps persisting in the human genomes "completed" so far. They may compound the variations associated to our epigenomes and make of each of us an "(epi)genomic" mosaic. An ensuing paradigm is the possibility that a single genome (the ephemeral one assembled at fertilization) has the capacity to generate several different brains in response to different environments.

  6. Reproductive and growth performance in Jin Hua pigs cloned from somatic cell nuclei and the meat quality of their offspring.

    Science.gov (United States)

    Shibata, Masatoshi; Otake, Masayoshi; Tsuchiya, Seiko; Chikyu, Mikio; Horiuchi, Atsushi; Kawarasaki, Tatsuo

    2006-10-01

    Somatic cell cloning is expected to be a valuable method for conserving genetic resources in pigs. In this study, we compared the reproductive and growth performance of Jin Hua cloned pigs with that of naturally bred Jin Hua pigs. In addition, we generated offspring from the cloned sows and examined the productivity and quality of meat in the progeny. The birth weights and growth rates of somatic cell-cloned pigs were similar to those of Jin Hua pigs. The cloned pigs reached puberty very early, and this is typical of the Jin Hua breed. Furthermore, reproductive performance, in terms of traits such as gestation period, litter size, and raising rate in the cloned pigs were similar to Jin Hua pigs. Although the offspring of the cloned (OC) pigs had lower birth weights than the Jin Hua breed, the daily weight gain of the OC pigs was significantly higher, especially at the finishing stage. The carcass quality of the OC pigs had similar characteristics to the Jin Hua breed, namely thick back fat and a small loin area. Furthermore, the meat qualities of the OC pigs were similar to those of Jin Hua pigs in terms of intramuscular fat content and tenderness. These results demonstrate that cloned pigs and their offspring were similar to the Jin Hua breed in most of the growth, reproductive, and meat productive performances. This strongly suggests that pigs cloned from somatic cell nuclei have the potential to be a valuable genetic resource for breeding.

  7. Differential resistance of human embryonic stem cells and somatic cell types to hydrogen peroxide-induced genotoxicity may be dependent on innate basal intracellular ROS levels.

    Science.gov (United States)

    Vinoth, Kumar Jayaseelan; Manikandan, Jayapal; Sethu, Swaminathan; Balakrishnan, Lakshmidevi; Heng, Alexis; Lu, Kai; Poonepalli, Anuradha; Hande, Manoor Prakash; Cao, Tong

    2015-01-01

    Previously, we demonstrated that undifferentiated human embryonic stem cells (hESC) displayed higher resistance to oxidative and genotoxic stress compared to somatic cells, but did not further probe the underlying mechanisms. Using H₂O₂-induced genotoxicity as a model, this study investigated whether higher resistance of hESC to oxidative and genotoxic stress could be due to lower innate basal intracellular levels of reactive oxygen species (ROS), as compared to their differentiated fibroblastic progenies (H1F) and two other somatic cell types - human embryonic palatal mesenchymal (HEPM) cells and peripheral blood lymphocytes (PBL). Comet assay demonstrated that undifferentiated hESC consistently sustained lower levels of DNA damage upon acute exposure to H₂O₂ for 30 min, compared to somatic cells. DCFDA and HE staining with flow cytometry showed that undifferentiated hESC had lower innate basal intracellular levels of reactive oxygen species compared to somatic cells, which could lead to their higher resistance to genotoxic stress upon acute exposure to H₂O₂.

  8. Placental abnormalities associated with post-natal mortality in sheep somatic cell clones.

    Science.gov (United States)

    Loi, Pasqualino; Clinton, Michael; Vackova, Irena; Fulka, Josef; Feil, Robert; Palmieri, Chiara; Della Salda, Leonardo; Ptak, Grazyna

    2006-04-01

    We report on cloning experiments designed to explore the causes of peri- and post-natal mortality of cloned lambs. A total of 93 blastocysts obtained by nuclear transfer of somatic cells (granulosa cells) were transferred into 41 recipient ewes, and pregnancies were monitored by ultrasound scanning. In vitro derived, fertilized embryos (IVF, n=123) were also transferred to assess oocyte competence, and naturally mated ewes (n=120) were analysed as well. Cloned embryos developed to the blastocyst stage and implanted at the same rate as IVF embryos. After day 30 of gestation, however, dramatic losses occurred, and only 12 out of 93 (13%) clones reached full-term development, compared to 51 out of 123 (41.6%) lambs born from the IVF control embryos. Three full-term lamb clones were delivered stillborn, as a result of placental degeneration. A further five clone recipients developed hydroallantois. Their lambs died within 24h following delivery by caesarian section, and displayed degenerative lesions in liver and kidney resulting from the severe hydroallantois. One set of twins was delivered by assisted parturition at day 150, but died 24h later due to respiratory distress syndrome. The remaining two clone recipients underwent caesarian section, and the corresponding two lambs displayed signs of respiratory dysfunction and died at approximately 1 month of age due to a bacterial complication. Blood samples collected from the cloned lambs after birth revealed a wide range of abnormalities indicative of kidney and liver dysfunction. Macroscopical and histopathological examination of the placentae revealed a marked reduction in vascularization, particularly at the apex of the villous processes, as well as a loss of differentiation of the trophoblastic epithelium. Our results strongly suggest that post-mortality in cloned lambs is mainly caused by placental abnormalities.

  9. Short communication: Bulk milk somatic cell penalties in herds enrolled in Dairy Herd Improvement programs.

    Science.gov (United States)

    Hand, K J; Godkin, M A; Kelton, D F

    2012-01-01

    The objective of this study was to determine the effect of somatic cell count (SCC) monitoring at the cow level through Dairy Herd Improvement (DHI) programs on the risk of bulk tank SCC (BTSCC) penalties. For the year 2009, BTSCC for all producers in Ontario were examined, for a total of 2,898 DHI herds, 1,186 non-DHI herds, and 48,250 BTSCC records. Two penalty levels were examined, where BTSCC exceeded 499,000 (P500) and 399,000 (P400) cells/mL. Data were modeled first to determine the odds of a BTSCC exceeding a set penalty threshold and second to determine the odds of incurring a penalty under the Ontario Milk Act. All data were modeled as a generalized mixed model with a binary link function. Random effects included herd, fixed effects included season of BTSCC (summer, May to September, and winter, October to April), total milk shipped per month (L), fat paid per month (kg), protein paid per month (kg), and participation or not in the DHI program. The likelihood of a BTSCC exceeding a penalty threshold in a non-DHI herd compared with a DHI herd was significantly greater than 1 at both penalty levels, where the odds ratios were estimated to be 1.42 [95% confidence interval (CI): 1.19 to 1.69] and 1.38 (95% CI: 1.25 to 1.54) for P500 and P400, respectively. The likelihood of incurring a BTSCC penalty (where 3 out of 4 consecutive BTSCC exceeded penalty thresholds) was not significantly different at P500; however, it was significantly different for P400, where the odds ratio was estimated to be 1.42 (95% CI: 1.12 to 1.81).

  10. Effect of an automated dipping and backflushing system on somatic cell counts.

    Science.gov (United States)

    Olde Riekerink, R G M; Ohnstad, I; van Santen, B; Barkema, H W

    2012-09-01

    Postmilking teat disinfection is an effective management practice to prevent transmission of contagious mastitis pathogens from cow to cow. With farms increasing in size and an increase in the number of rotary milking parlors, the need for automation of postmilking teat disinfection is mounting. Automated teat dipping and backflushing (ADB) systems have existed for some years, but their effect on udder health was never examined in a field study on commercial dairy farms. The objectives of this study were, therefore, to evaluate the effect of introducing an ADB system in a herd on (1) bulk milk somatic cell count (SCC), (2) individual cow SCC, and (3) the proportion of newly elevated SCC. Dairy herd improvement data were collected over a 30-mo period on 25 sets of 3 farms. Each set of 3 farms contained a farm that installed an ADB system, one that disinfected teats using dipping after milking, and one that sprayed teats after milking. Data were analyzed using linear mixed models. Bulk milk SCC on farms that sprayed or dipped before installing an ADB system were 16,000 and 30,000 cells/mL lower in the period 6 to 18 mo after installation, respectively, than on farms that continued spraying or dipping the teats after milking. In the same period after installing an ADB system, proportions of cows with elevated SCC were 4.3 and 1.2% lower, respectively, compared with spraying and with dipping. Similarly, proportions of cows that had newly elevated SCC were 1.5% lower and 0.3% higher, respectively, compared with farms that sprayed or dipped. Installing an ADB system had a beneficial effect on bulk milk SCC, individual cow SCC, and the proportion of newly elevated SCC. The effect was most prominent in the period 6 to 18 mo after installation of an ADB system.

  11. Using a nano-flare probe to detect RNA in live donor cells prior to somatic cell nuclear transfer.

    Science.gov (United States)

    Fu, Bo; Ren, Liang; Liu, Di; Ma, Jian-Zhang; An, Tie-Zhu; Yang, Xiu-Qin; Ma, Hong; Guo, Zhen-Hua; Zhu, Meng; Bai, Jing

    2016-01-01

    Many transgenes are silenced in mammalian cells (donor cells used for somatic cell nuclear transfer [SCNT]). Silencing correlated with a repressed chromatin structure or suppressed promoter, and it impeded the production of transgenic animals. Gene transcription studies in live cells are challenging because of the drawbacks of reverse-transcription polymerase chain reaction and fluorescence in situ hybridization. Nano-flare probes provide an effective approach to detect RNA in living cells. We used 18S RNA, a housekeeping gene, as a reference gene. This study aimed to establish a platform to detect RNA in single living donor cells using a Nano-flare probe prior to SCNT and to verify the safety and validity of the Nano-flare probe in order to provide a technical foundation for rescuing silenced transgenes in transgenic cloned embryos. We investigated cytotoxic effect of the 18S RNA-Nano-flare probe on porcine fetal fibroblasts, characterized the distribution of the 18S RNA-Nano-flare probe in living cells and investigated the effect of the 18S RNA-Nano-flare probe on the development of cloned embryos after SCNT. The cytotoxic effect of the 18S RNA-Nano-flare probe on porcine fetal fibroblasts was dose-dependent, and 18S RNA was detected using the 18S RNA-Nano-flare probe. In addition, treating donor cells with 500 pM 18S RNA-Nano-flare probe did not have adverse effects on the development of SCNT embryos at the pre-implantation stage. In conclusion, we established a preliminary platform to detect RNA in live donor cells using a Nano-flare probe prior to SCNT.

  12. Comparison of the efficiency of Banna miniature inbred pig somatic cell nuclear transfer among different donor cells.

    Science.gov (United States)

    Wei, Hongjiang; Qing, Yubo; Pan, Weirong; Zhao, Hongye; Li, Honghui; Cheng, Wenmin; Zhao, Lu; Xu, Chengsheng; Li, Hong; Li, Si; Ye, Lei; Wei, Taiyun; Li, Xiaobing; Fu, Guowen; Li, Wengui; Xin, Jige; Zeng, Yangzhi

    2013-01-01

    Somatic cell nuclear transfer (SCNT) is an important method of breeding quality varieties, expanding groups, and preserving endangered species. However, the viability of SCNT embryos is poor, and the cloned rate of animal production is low in pig. This study aims to investigate the gene function and establish a disease model of Banna miniature inbred pig. SCNT with donor cells derived from fetal, newborn, and adult fibroblasts was performed, and the cloning efficiencies among the donor cells were compared. The results showed that the cleavage and blastocyst formation rates did not significantly differ between the reconstructed embryos derived from the fetal (74.3% and 27.4%) and newborn (76.4% and 21.8%) fibroblasts of the Banna miniature inbred pig (P>0.05). However, both fetal and newborn fibroblast groups showed significantly higher rates than the adult fibroblast group (61.9% and 13.0%; Pcells and that the genetic homozygosity of the Banna miniature inbred pig was higher than those of the recipients. Therefore, the offspring was successfully cloned using the fetal, newborn, and adult fibroblasts of Banna miniature inbred pig as donor cells.

  13. Direct cell fate conversion of human somatic stem cells into cone and rod photoreceptor-like cells by inhibition of microRNA-203.

    Science.gov (United States)

    Choi, Soon Won; Shin, Ji-Hee; Kim, Jae-Jun; Shin, Tae-Hoon; Seo, Yoojin; Kim, Hyung-Sik; Kang, Kyung-Sun

    2016-07-05

    Stem cell-based photoreceptor differentiation strategies have been the recent focus of therapies for retinal degenerative diseases. Previous studies utilized embryonic stem (ES) cells and neural retina differentiation cocktails, including DKK1 and Noggin. Here, we show a novel microRNA-mediated strategy of retina differentiation from somatic stem cells, which are potential allogeneic cell sources. Human amniotic epithelial stem cells (AESCs) and umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) treated with a retina differentiation cocktail induced gene expressions of retina development-relevant genes. Furthermore, microRNA-203 (miR-203) is abundantly expressed in human AESCs and human UCB-MSCs. This miR-203 is predicted to target multiple retina development-relevant genes, particularly DKK1, CRX, RORβ, NEUROD1, NRL and THRB. The inhibition of miR-203 induced a retina differentiation of AESCs and UCB-MSCs. Moreover, successive treatments of anti-miR-203 led to the expression of both mature photoreceptor (PR) markers, rhodopsin and opsin. In addition, we determined that CRX, NRL and DKK1 are direct targets of miR-203 using a luciferase assay. Thus, the work presented here suggests that somatic stem cells can potentially differentiate into neural retina cell types when treated with anti-miR-203. They may prove to be a source of both PR subtypes for future allogeneic stem cell-based therapies of non-regenerative retina diseases.

  14. Trichostatin A rescues the disrupted imprinting induced by somatic cell nuclear transfer in pigs.

    Directory of Open Access Journals (Sweden)

    Yanjun Huan

    Full Text Available Imprinting disorders induced by somatic cell nuclear transfer (SCNT usually lead to the abnormalities of cloned animals and low cloning efficiency. Histone deacetylase inhibitors have been shown to improve gene expression, genomic methylation reprogramming and the development of cloned embryos, however, the imprinting statuses in these treated embryos and during their subsequent development remain poorly studied. In this study, we investigated the dynamics of H19/Igf2 methylation and transcription in porcine cloned embryos treated with trichostatin A (TSA, and examined H19/Igf2 imprinting patterns in cloned fetuses and piglets. Our results showed that compared with the maintenance of H19/Igf2 methylation in fertilized embryos, cloned embryos displayed aberrant H19/Igf2 methylation and lower H19/Igf2 transcripts. When TSA enhanced the development of cloned embryos, the disrupted H19/Igf2 imprinting was largely rescued in these treated embryos, more similar to those detected in fertilized counterparts. Further studies displayed that TSA effectively rescued the disrupted imprinting of H19/Igf2 in cloned fetuses and piglets, prevented the occurrence of cloned fetus and piglet abnormalities, and enhanced the full-term development of cloned embryos. In conclusion, our results demonstrated that aberrant imprinting induced by SCNT led to the abnormalities of cloned fetuses and piglets and low cloning efficiency, and TSA rescued the disrupted imprinting in cloned embryos, fetuses and piglets, and prevented the occurrence of cloned fetus and piglet abnormalities, thereby improving the development of cloned embryos. This study would have important implications in improving cloning efficiency and the health of cloned animals.

  15. Monitoring nonlactating cow intramammary infection dynamics using DHI somatic cell count data.

    Science.gov (United States)

    Cook, N B; Bennett, T B; Emery, K M; Nordlund, K V

    2002-05-01

    Although the nonlactating period presents a risk for intramammary infection, efficient systems to monitor infection status of recently calved cows have not been developed, and benchmarks for interpretation have not been established. Individual cow somatic cell count (SCC) data for the current and previous six monthly Dairy Herd Improvement milk tests and the last SCC of the previous lactation and first SCC of the current lactation were summarized for all milking cows in a selection of Wisconsin dairy herds. Prevalence of infection, herd new infection rate, fresh cow contribution to herd new infection rate, dry cow new infection rate, heifer new infection rate, and dry cow cure rate were estimated using a threshold of 200,000/ml. In 145 herds, mean (range) heifer new infection rate was 21.3% (0 to 58%). The cut-point for the 10th percentile of herds was 8%. Mean (range) dry cow new infection rate in cows that were uninfected at the last test before dry off was 22.4% (0 to 71%), and the cut-point for the 10th percentile of herds was 9%. Although nonlactating cow and heifer new infection rates increased with weighted 6-mo mean herd SCC, the between-herd variation was large, suggesting that on-farm factors are important in determining the rates of infection. In a subset of 51 Wisconsin dairy herds, significant monthly variation in weighted SCC, prevalence, herd new infection rate, and fresh cow contribution to herd new infection rate were detected. Elevations in SCC and prevalence of infection during the summer (July through September) were associated with significant increases in fresh cow and herd new infection rates.

  16. Significant improvement of pig cloning efficiency by treatment with LBH589 after somatic cell nuclear transfer.

    Science.gov (United States)

    Jin, Jun-Xue; Li, Suo; Gao, Qing-Shan; Hong, Yu; Jin, Long; Zhu, Hai-Ying; Yan, Chang-Guo; Kang, Jin-Dan; Yin, Xi-Jun

    2013-10-01

    The low success rate of animal cloning by somatic cell nuclear transfer (SCNT) associates with epigenetic aberrancy, including the abnormal acetylation of histones. Altering the epigenetic status by histone deacetylase inhibitors (HDACi) enhances the developmental potential of SCNT embryos. In the current study, we examined the effects of LBH589 (panobinostat), a novel broad-spectrum HDACi, on the nuclear reprogramming and development of pig SCNT embryos in vitro. In experiment 1, we compared the in vitro developmental competence of nuclear transfer embryos treated with different concentrations of LBH589. Embryos treated with 50 nM LBH589 for 24 hours showed a significant increase in the rate of blastocyst formation compared with the control or embryos treated with 5 or 500 nM LBH589 (32.4% vs. 11.8%, 12.1%, and 10.0%, respectively, P < 0.05). In experiment 2, we examined the in vitro developmental competence of nuclear transfer embryos treated with 50 nM LBH589 for various intervals after activation and 6-dimethylaminopurine. Embryos treated for 24 hours had higher rates of blastocyst formation than the other groups. In experiment 3, when the acetylation of H4K12 was examined in SCNT embryos treated for 6 hours with 50 nM LBH589 by immunohistochemistry, the staining intensities of these proteins in LBH589-treated SCNT embryos were significantly higher than in the control. In experiment 4, LBH589-treated nuclear transfer and control embryos were transferred into surrogate mothers, resulting in three (100%) and two (66.7%) pregnancies, respectively. In conclusion, LBH589 enhances the nuclear reprogramming and developmental potential of SCNT embryos by altering the epigenetic status and expression, and increasing blastocyst quality.

  17. Increased colostral somatic cell counts reduce pre-weaning calf immunity, health and growth.

    Science.gov (United States)

    Ferdowsi Nia, E; Nikkhah, A; Rahmani, H R; Alikhani, M; Mohammad Alipour, M; Ghorbani, G R

    2010-10-01

    Our objective was to study the relationships between colostral somatic cell counts (SCC, a criterion for mastitis severity at parturition) and early calf growth, blood indicators of immunity, and pre-weaning faecal and health states. Sixty-nine Holstein cows were assigned to three groups of greater (n = 21, 5051 × 10(3)), medium (n = 38, 2138 × 10(3)) and lower (n = 10, 960 × 10(3)) colostral SCC (per ml) in a completely randomized design. Calves received 2 l of colostrum on day 1, and jugular blood was sampled at birth, at 3 h after the first colostrum feeding and at 42 days of age for immunoglobulin G (IgG) measurements. Calves were fed transition milk from their dams until 3 days of age and whole milk from 4 to 60 days of age twice daily at 10% of body weight. Health status and faecal physical scores were recorded daily for 42 days. Increased colostral SCC was associated with increased serum IgG at parturition. Colostral pH increased and fat percentage decreased linearly with the rising SCC. Feeding colostrum with greater SCC was associated with reduced serum IgG concentrations at 3 h after first colostrum feeding, greater incidences of diarrhoea and compromised health status during the first 42 days of age, and reduced weaning weight gain, but had no effects on calf body length and withers height. Colostral volume and percentages of protein, lactose, solids-non-fat, total solids and IgG were comparable among groups. Results suggest a role for SCC, as an indicator of mastitis and colostral health quality, in affecting calf health. As a result of the novelty of calf health dependence on colostral SCC found, future studies to further characterize such relationships and to uncover or rule out possible mediators are required before colostral SCC could be recommended for routine on-farm use in managing dry cow and calf production.

  18. Effect of synchronization of donor cells in early G1-phase using shake-off method on developmental potential of somatic cell nuclear transfer embryos in cattle.

    Science.gov (United States)

    Goto, Yuji; Hirayama, Muneyuki; Takeda, Kazuya; Tukamoto, Nobuyuki; Sakata, Osamu; Kaeriyama, Hiroshi; Geshi, Masaya

    2013-08-01

    In this study, we compared the developmental ability of somatic cell nuclear transfer (SCNT) embryos reconstructed with three bovine somatic cells that had been synchronized in G0-phase (G0-SCNT group) or early G1-phase (eG1-SCNT group). Furthermore, we investigated the production efficiency of cloned offspring for NT embryos derived from these donor cells. The G0-phase and eG1-phase cells were synchronized, respectively, using serum starvation and antimitotic reagent treatment combined with shaking of the plate containing the cells (shake-off method). The fusion rate in the G0-SCNT groups (64.2 ± 1.8%) was significantly higher than that of eG1-SCNT groups (39.2 ± 1.9%) (P cells in eG1-phase using the shake-off method improved the overall production efficiency of the clone offspring per transferred embryo.

  19. Diploidized eggs reprogram adult somatic cell nuclei to pluripotency in nuclear transfer in medaka fish (Oryzias latipes).

    Science.gov (United States)

    Bubenshchikova, Ekaterina; Kaftanovskaya, Elena; Motosugi, Nami; Fujimoto, Takafumi; Arai, Katsutoshi; Kinoshita, Masato; Hashimoto, Hisashi; Ozato, Kenjiro; Wakamatsu, Yuko

    2007-12-01

    Reprogramming of adult somatic cell nuclei to pluripotency has been unsuccessful in non-mammalian animals, primarily because of chromosomal aberrations in nuclear transplants, which are considered to be caused by asynchrony between the cell cycles of the recipient egg and donor nucleus. In order to normalize the chromosomal status, we used diploidized eggs by retention of second polar body release, instead of enucleated eggs, as recipients in nuclear transfer of primary culture cells from the caudal fin of adult green fluorescent protein gene (GFP) transgenic medaka fish (Oryzias latipes). We found that 2.7% of the reconstructed embryos grew into adults that expressed GFP in various tissues in the same pattern as in the donor fish. Moreover, these fish were diploid, fertile and capable of passing the marker gene to the next generation in Mendelian fashion. We hesitate to call these fish 'clones' because we used non-enucleated eggs as recipients; in effect, they may be chimeras consisting of cells derived from diploid recipient nuclei and donor nuclei. In either case, fish adult somatic cell nuclei were reprogrammed to pluripotency and differentiated into a variety of cell types including germ cells via the use of diploidized recipient eggs.

  20. Nuclear transfer of synchronized African wild cat somatic cells into enucleated domestic cat oocytes

    Science.gov (United States)

    Gomez, M.C.; Jenkins, J.A.; Giraldo, A.; Harris, R.F.; King, A.; Dresser, B.L.; Pope, C.E.

    2003-01-01

    The African wild cat is one of the smallest wild cats and its future is threatened by hybridization with domestic cats. Nuclear transfer, a valuable tool for retaining genetic variability, offers the possibility of species continuation rather than extinction. The aim of this study was to investigate the ability of somatic cell nuclei of the African wild cat (AWC) to dedifferentiate within domestic cat (DSH) cytoplasts and to support early development after nuclear transplantation. In experiment 1, distributions of AWC and DSH fibroblasts in each cell-cycle phase were assessed by flow cytometry using cells cultured to confluency and disaggregated with pronase, trypsin, or mechanical separation. Trypsin (89.0%) and pronase (93.0%) yielded higher proportions of AWC nuclei in the G0/G1 phase than mechanical separation (82.0%). In contrast, mechanical separation yielded higher percentages of DSH nuclei in the G0/G1 phase (86.6%) than pronase (79.7%) or trypsin (74.2%) treatments. In both species, pronase induced less DNA damage than trypsin. In experiment 2, the effects of serum starvation, culture to confluency, and exposure to roscovitine on the distribution of AWC and DSH fibroblasts in various phases of the cell cycle were determined. Flow cytometry analyses revealed that the dynamics of the cell cycle varied as culture conditions were modified. Specifically, a higher percentage of AWC and DSH nuclei were in the G0/G1 phase after cells were serum starved (83% vs. 96%) than were present in cycling cells (50% vs. 64%), after contact inhibition (61% vs. 88%), or after roscovitine (56% vs. 84%) treatment, respectively. In experiment 3, we evaluated the effects of cell synchronization and oocyte maturation (in vivo vs. in vitro) on the reconstruction and development of AWC-DSH- and DSH-DSH-cloned embryos. The method of cell synchronization did not affect the fusion and cleavage rate because only a slightly higher percentage of fused couplets cleaved when donor nuclei

  1. Relationship between somatic cell count and milk yield in different stages of lactation.

    Science.gov (United States)

    Hagnestam-Nielsen, C; Emanuelson, U; Berglund, B; Strandberg, E

    2009-07-01

    The association between somatic cell count (SCC) and daily milk yield in different stages of lactation was investigated in cows free of clinical mastitis (CM). Data were recorded between 1989 and 2004 in a research herd, and consisted of weekly test-day (TD) records from 1,155 lactations of Swedish Holstein and Swedish Red cows. The main data set (data set A) containing 36,117 records excluded TD affected by CM. In this data set, the geometric mean SCC was 55,000 and 95,000 cells/mL in primiparous and multiparous cows, respectively. A subset of data set A (data set B), containing 27,753 records excluding all TD sampled in lactations affected by CM, was created to investigate the effect of subclinical mastitis (SCM) in lactations free of CM. Daily milk yields were analyzed using a mixed linear model with lactation stage; linear, quadratic and cubic regressions of log(2)-transformed and centered SCC nested within lactation stage; weeks in lactation; TD season; parity; breed; pregnancy status; year-season of calving; calving, reproductive, metabolic and claw disorders; and housing system as fixed effects. A random regression was included to further improve the modeling of the lactation curve. Primiparous and multiparous cows were analyzed separately. The magnitude of daily milk loss associated with increased SCC depended on stage of lactation and parity, and was most extensive in late lactation irrespective of parity. In data set A, daily milk loss at an SCC of 500,000 cells/mL ranged from 0.7 to 2.0 kg (3 to 9%) in primiparous cows, depending on stage of lactation. In multiparous cows, corresponding loss was 1.1 to 3.7 kg (4 to 18%). Regression coefficients of primiparous cows estimated from data set B were consistent with those obtained from data set A, whereas data set B generated more negative regression coefficients of multiparous cows suggesting a higher milk loss associated with increased SCC in lactations in which the cow did not develop CM. The 305-d milk

  2. Live imaging of Drosophila gonad formation reveals roles for Six4 in regulating germline and somatic cell migration

    Directory of Open Access Journals (Sweden)

    Jarman Andrew P

    2007-05-01

    Full Text Available Abstract Background Movement of cells, either as amoeboid individuals or in organised groups, is a key feature of organ formation. Both modes of migration occur during Drosophila embryonic gonad development, which therefore provides a paradigm for understanding the contribution of these processes to organ morphogenesis. Gonads of Drosophila are formed from three distinct cell types: primordial germ cells (PGCs, somatic gonadal precursors (SGPs, and in males, male-specific somatic gonadal precursors (msSGPs. These originate in distinct locations and migrate to associate in two intermingled clusters which then compact to form the spherical primitive gonads. PGC movements are well studied, but much less is known of the migratory events and other interactions undergone by their somatic partners. These appear to move in organised groups like, for example, lateral line cells in zebra fish or Drosophila ovarian border cells. Results We have used time-lapse fluorescence imaging to characterise gonadal cell behaviour in wild type and mutant embryos. We show that the homeodomain transcription factor Six4 is required for the migration of the PGCs and the msSGPs towards the SGPs. We have identified a likely cause of this in the case of PGCs as we have found that Six4 is required for expression of Hmgcr which codes for HMGCoA reductase and is necessary for attraction of PGCs by SGPs. Six4 affects msSGP migration by a different pathway as these move normally in Hmgcr mutant embryos. Additionally, embryos lacking fully functional Six4 show a novel phenotype in which the SGPs, which originate in distinct clusters, fail to coalesce to form unified gonads. Conclusion Our work establishes the Drosophila gonad as a model system for the analysis of coordinated cell migrations and morphogenesis using live imaging and demonstrates that Six4 is a key regulator of somatic cell function during gonadogenesis. Our data suggest that the initial association of SGP clusters

  3. Proteose-peptone content in the milk of Italian Friesian cows with moderate and high somatic cell values

    Directory of Open Access Journals (Sweden)

    P. Mariani

    2011-03-01

    Full Text Available Milk with elevated somatic cell count has an impaired quality and reduced value, especially for the manufacture of cheese (Schællibaum, 2002. If the milk has a high cell count, the deterioration during syneresis with a longer clotting time and weak curd leads to an increased moisture content and a lower dry matter yield (Politis and Ng-Kwai-Hang, 1988; Urech et al., 1999; Cooney et al., 2000. Most of proteose-peptones (PP and γ-caseins of the milk result from the enzymatic hydrolysis of the native casein (Pâquet, 1989; Bastian and Brown, 1996......

  4. An ideal oocyte activation protocol and embryo culture conditions for somatic cell nuclear transfer using sheep oocytes.

    Science.gov (United States)

    Patel, Hiren; Chougule, Shruti; Chohan, Parul; Shah, Naval; Bhartiya, Deepa

    2014-10-01

    Pluripotent stem cells are possibly the best candidates for regenerative medicine, and somatic cell nuclear transfer (SCNT) is one of the viable options to make patient-specific embryonic stem cells. Till date efficacy of SCNT embryos is very low and requires further improvement like ideal oocyte activation and in vitro culture system. The aim of the present study was to evaluate ideal oocyte activation using different stimulation protocols and to study the effect of cumulus co-culture conditions on embryo development. Results demonstrate that between electric stimulation and chemical stimulation using calcium ionomycin and ionophore, best oocyte activation was obtained using calcium ionomycin (5 microM for 5 min) which resulted in 83% cleavage followed by 7% of early blastocyst which further increased to 15% when a cumulus bed was also introduced during embryo culture. Sequential modified Charles Rosenkrans 2 (mCR2) medium was used for embryo culture in which glucose levels were increased from 1 mM to 5 mM from Day 3 onwards. SCNT using cumulus cells as donor somatic cell, calcium ionomycin to activate the reconstructed oocyte and embryo culture on a cumulus bed in sequential mCR2 medium, resulted in the development of 6% embryos to early blastocyst stage. Such technological advances will make SCNT a viable option to make patient-specific pluripotent stem cell lines in near future.

  5. PiggyBac Transposon Mediated Efficient eGFP Expression in Porcine Somatic Cells and Cloned Embryos

    Institute of Scientific and Technical Information of China (English)

    Luo Yi-bo; Zhang Li; Zhu Jiang; Wu Mei-ling; Huan Yan-jun; Yin Zhi; Mu Yan-shuang; Xia Ping; LiuZhong-hua

    2012-01-01

    PiggyBac transposon has demonstrated its long-term and stable transposition on genomes of various species but lacking of the evidence on farm animal genomes. In this study, we constructed a piggyBac transposon marked with enhanced green fluorescent protein (eGFP) and showed efficient transposition in porcine somatic cells and cloned embryos. Our results demonstrated that piggyBac transposase could efficiently catalyze transposition in porcine fetal fibroblast cells, as well as in embryos. PiggyBac transposition generated 18-fold more eGFP-positive cell colonies compared to pEGFP-C1 random insertion mutagenesis, but excessive transposase might affect the transfection rate. Also piggyBac mediated 4-fold more eGFP expression than random insertion in cells and 17-fold in cloned embryos at mRNA level. When the mutagenized cells were used for somatic cell nuclear transfer (SCNT), the cleavage rate and blastocyst rate of constructed embryos harboring piggyBac transposition had no difference with random insertion group. This study provides key information on the piggyBac transposon system as a tool for creating transgenic pigs.

  6. Identification and regulation of receptor tyrosine kinases Rse and Mer and their ligand Gas6 in testicular somatic cells.

    Science.gov (United States)

    Chan, M C; Mather, J P; McCray, G; Lee, W M

    2000-01-01

    Receptor tyrosine kinases act to convey extracellular signals to intracellular signaling pathways and ultimately control cell proliferation and differentiation. Rse, Axl, and Mer belong to a newly identified family of cell adhesion molecule-related receptor tyrosine kinase. They bind the vitamin K-dependent protein growth arrest-specific gene 6 (Gas6), which is also structurally related to the anticoagulation factor Protein S. The aim of this study is to investigate the possible role of Rse/Axl/Mer tyrosine kinase receptors and their ligand in regulating testicular functions. Gene expression of Rse, Axl, Mer, and Gas6 in the testis was studied by reverse transcriptase-polymerase chain reaction (RT-PCR) and Northern blot analysis. The results indicated that receptors Rse and Mer and the ligand Gas6 were expressed in the rat endothelial cell line (TR1), mouse Leydig cell line (TM3), rat peritubular myoid cell line (TRM), mouse Sertoli cell line (TM4), and primary rat Sertoli cells. Axl was not expressed in the testicular somatic cells by RT-PCR or Northern blot analysis. The highest level of expression of Gas6 messenger RNA (mRNA) was observed in the Sertoli cells, and its expression was responsive to the addition of forskolin in vitro. The effects of serum, insulin, and transferrin on Gas6 expression by TM4 cells were examined. It was shown that they all exhibited an up-regulating effect on Gas6 expression. The forskolin-stimulated Gas6 expression was accompanied by an increase in tyrosine phosphorylation of the Rse receptor in vitro, suggesting that Gas6 may exhibit an autocrine effect in the Sertoli cells through multiple tyrosine kinase receptors. Our studies so far have demonstrated that tyrosine kinase receptors Rse and Mer and their ligand Gas6 are widely expressed in the testicular somatic cell lines and may play a marked role in promoting testicular cell survival.

  7. Production of wild buffalo (Bubalus arnee) embryos by interspecies somatic cell nuclear transfer using domestic buffalo (Bubalus bubalis) oocytes.

    Science.gov (United States)

    Priya, D; Selokar, N L; Raja, A K; Saini, M; Sahare, A A; Nala, N; Palta, P; Chauhan, M S; Manik, R S; Singla, S K

    2014-04-01

    The objective of this study was to explore the possibility of producing wild buffalo embryos by interspecies somatic cell nuclear transfer (iSCNT) through handmade cloning using wild buffalo somatic cells and domestic buffalo (Bubalus bubalis) oocytes. Somatic cells derived from the ear skin of wild buffalo were found to express vimentin but not keratin and cytokeratin-18, indicating that they were of fibroblast origin. The population doubling time of skin fibroblasts from wild buffalo was significantly (p cell proliferation rate was significantly (p cell number (TCN) was significantly (p < 0.05) lower (192.0 ± 25.6 vs 345.7 ± 42.2), and the apoptotic index was significantly (p < 0.05) higher (15.1 ± 3.1 vs 8.0 ± 1.4) for interspecies than that for intraspecies cloned embryos. Following vitrification in open-pulled straws (OPS) and warming, although the cryosurvival rate of both types of cloned embryos, as indicated by their re-expansion rate, was not significantly different (34.8 ± 1.5% vs 47.8 ± 7.8), the apoptotic index was significantly (p < 0.05) higher for vitrified-warmed interspecies than that for corresponding intraspecies cloned embryos (48.9 ± 7.2 vs 23.9 ± 2.8). The global level of H3K18ac was significantly (p < 0.05) lower in interspecies cloned embryos than that in intraspecies cloned embryos. The expression level of HDAC1, DNMT3a and CASPASE3 was significantly (p < 0.05) higher, that of P53 was significantly (p < 0.05) lower in interspecies than in intraspecies embryos, whereas that of DNMT1 was similar between the two types of embryos. In conclusion, these results demonstrate that wild buffalo embryos can be produced by iSCNT.

  8. Survival of glucose phosphate isomerase null somatic cells and germ cells in adult mouse chimaeras.

    Science.gov (United States)

    Keighren, Margaret A; Flockhart, Jean H; West, John D

    2016-05-15

    The mouse Gpi1 gene encodes the glycolytic enzyme glucose phosphate isomerase. Homozygous Gpi1(-/-) null mouse embryos die but a previous study showed that some homozygous Gpi1(-/-) null cells survived when combined with wild-type cells in fetal chimaeras. One adult female Gpi1(-/-)↔Gpi1(c/c) chimaera with functional Gpi1(-/-) null oocytes was also identified in a preliminary study. The aims were to characterise the survival of Gpi1(-/-) null cells in adult Gpi1(-/-)↔Gpi1(c/c) chimaeras and determine if Gpi1(-/-) null germ cells are functional. Analysis of adult Gpi1(-/-)↔Gpi1(c/c) chimaeras with pigment and a reiterated transgenic lineage marker showed that low numbers of homozygous Gpi1(-/-) null cells could survive in many tissues of adult chimaeras, including oocytes. Breeding experiments confirmed that Gpi1(-/-) null oocytes in one female Gpi1(-/-)↔Gpi1(c/c) chimaera were functional and provided preliminary evidence that one male putative Gpi1(-/-)↔Gpi1(c/c) chimaera produced functional spermatozoa from homozygous Gpi1(-/-) null germ cells. Although the male chimaera was almost certainly Gpi1(-/-)↔Gpi1(c/c), this part of the study is considered preliminary because only blood was typed for GPI. Gpi1(-/-) null germ cells should survive in a chimaeric testis if they are supported by wild-type Sertoli cells. It is also feasible that spermatozoa could bypass a block at GPI, but not blocks at some later steps in glycolysis, by using fructose, rather than glucose, as the substrate for glycolysis. Although chimaera analysis proved inefficient for studying the fate of Gpi1(-/-) null germ cells, it successfully identified functional Gpi1(-/-) null oocytes and revealed that some Gpi1(-/-) null cells could survive in many adult tissues.

  9. Enhanced homologous recombination is induced by alpha-particle radiation in somatic cells of Arabidopsis thaliana

    Science.gov (United States)

    Bian, Po; Liu, Ping; Wu, Yuejin

    Almost 9 percent of cosmic rays which strike the earth's atmosphere are alpha particles. As one of the ionizing radiations (IR), its biological effects have been widely studied. However, the plant genomic instability induced by alpha-particle radiation was not largely known. In this research, the Arabidopsis thaliana transgenic for GUS recombination substrate was used to evaluate the genomic instability induced by alpha-particle radiation (3.3MeV). The pronounced effects of systemic exposure to alpha-particle radiation on the somatic homologous recombination frequency (HRF) were found at different doses. The 10Gy dose of radiation induced the maximal HRF which was 1.9-fold higher than the control. The local radiation of alpha-particle (10Gy) on root also resulted in a 2.5-fold increase of somatic HRF in non-radiated aerial plant, indicating that the signal(s) of genomic instability was transferred to non-radiated parts and initiated their genomic instability. Concurrent treatment of seedlings of Arabidopsis thaliana with alpha-particle and DMSO(ROS scavenger) both in systemic and local radiation signifi- cantly suppressed the somatic HR, indicating that the free radicals produced by alpha-particle radiation took part in the production of signal of genomic instability rather than the signal transfer. Key words: alpha-particle radiation, somatic homologous recombination, genomic instability

  10. Relationship between somatic cell count status and subsequent clinical mastitis in Dutch dairy cows.

    Science.gov (United States)

    van den Borne, B H P; Vernooij, J C M; Lupindu, A M; van Schaik, G; Frankena, K; Lam, T J G M; Nielen, M

    2011-12-15

    High composite somatic cell counts (CSCC) in dairy cows may develop into clinical mastitis (CM), suggesting that prevention or intervention of high CSCC may prevent CM later in lactation. The objective of this study was to quantify the relationship between high CSCC in dairy cows and the first subsequent case of CM in the same lactation. Farmer-diagnosed cases of CM and test day CSCC measurements during 1 year of 13,917 cows in 196 randomly selected Dutch dairy herds were available for analysis. Cows were followed in 1 lactation from the first test day postpartum until CM, drying off, culling or end of study. Cox proportional hazards models with time-varying CSCC levels were used to estimate the effect of high CSCC (≥200,000cells/ml) on the time until the first case of CM. A shared frailty effect was included to adjust for clustering of cows within herds. The proportion of cows developing CM after a CSCC measurement was 11%. Primiparae with a high CSCC had a 4-fold higher hazard for subsequent CM than primiparae with a low CSCC; multiparae with a high CSCC had a 2-fold higher hazard than multiparae with a low CSCC. Additionally, multiparae with a low CSCC had a 2-fold higher hazard for CM occurrence than primiparae with a low CSCC. Increasing the threshold for high CSCC showed that the risk for CM increased. If the last CSCC before CM was low, CSCC information of 2 preceding test days was more predictive than CSCC information from only the last test day. When the last CSCC was high, CSCC information of 2 preceding test days did not have added predictive value. This study identified that approximately 25% of first subsequent CM cases after a CSCC measurement can potentially be prevented when cows are prevented to get high CSCC or when high CSCC cows are removed from the population. This corresponded with a decrease in the proportion of lactating cows with CM after a CSCC measurement from 11% to 7%.

  11. Temporal trends in bulk tank somatic cell count and total bacterial count in Irish dairy herds during the past decade.

    Science.gov (United States)

    Berry, D P; O'Brien, B; O'Callaghan, E J; Sullivan, K O; Meaney, W J

    2006-10-01

    The objective of this study was to document temporal trends in bulk tank somatic cell count (SCC) and total bacterial counts (TBC) in Irish dairy herds during the years 1994 to 2004. Three milk processors participated in the study, providing data on 2,754,270 individual bulk tank SCC and 2,056,992 individual bulk tank TBC records from 9,113 herds. Somatic cell counts decreased during the years 1994 to 2000, followed by an annual increase thereafter of more than 2,000 cells/mL. A tendency existed for TBC to decrease over time. Across all years, bulk tank SCC were the lowest in April and highest in November; TBC were the lowest in May and highest in December. The significant seasonal pattern observed in herd SCC and TBC was an artifact of seasonal calving in Ireland. In general, herds selling more milk had lower bulk tank SCC and TBC. Herds having the highest SCC (i.e., > 450,000 cells/mL) and the lowest SCC (i.e., < or = 150,000 cells/mL) both contributed substantially to the mean SCC of the milk pool collected by the milk processors. Derived transition matrices showed that between adjacent years, herds had the greatest probability of remaining in the same annual mean SCC or TBC category.

  12. A protocol for embryonic stem cell derivation by somatic cell nuclear transfer into human oocytes

    OpenAIRE

    sprotocols

    2014-01-01

    Authors: Dieter Egli & Gloryn Chia ### Abstract Here we describe detailed methods that allowed us to derive embryonic stem cell lines by nuclear transfer of fibroblasts from a newborn and from a type 1 diabetic adult. The protocol is based on the insight that 1) agents for cell fusion can act as potent mediators of oocyte activation by compromising maintaining plasma membrane integrity; minimizing the concentration at which they are used, and at least transiently remove calcium f...

  13. Comparison of the efficiency of Banna miniature inbred pig somatic cell nuclear transfer among different donor cells.

    Directory of Open Access Journals (Sweden)

    Hongjiang Wei

    Full Text Available Somatic cell nuclear transfer (SCNT is an important method of breeding quality varieties, expanding groups, and preserving endangered species. However, the viability of SCNT embryos is poor, and the cloned rate of animal production is low in pig. This study aims to investigate the gene function and establish a disease model of Banna miniature inbred pig. SCNT with donor cells derived from fetal, newborn, and adult fibroblasts was performed, and the cloning efficiencies among the donor cells were compared. The results showed that the cleavage and blastocyst formation rates did not significantly differ between the reconstructed embryos derived from the fetal (74.3% and 27.4% and newborn (76.4% and 21.8% fibroblasts of the Banna miniature inbred pig (P>0.05. However, both fetal and newborn fibroblast groups showed significantly higher rates than the adult fibroblast group (61.9% and 13.0%; P<0.05. The pregnancy rates of the recipients in the fetal and newborn fibroblast groups (60% and 80%, respectively were higher than those in the adult fibroblast group. Eight, three, and one cloned piglet were obtained from reconstructed embryos of the fetal, newborn, and adult fibroblasts, respectively. Microsatellite analyses results indicated that the genotypes of all cloning piglets were identical to their donor cells and that the genetic homozygosity of the Banna miniature inbred pig was higher than those of the recipients. Therefore, the offspring was successfully cloned using the fetal, newborn, and adult fibroblasts of Banna miniature inbred pig as donor cells.

  14. Oocyte induction of EGF responsiveness in somatic cells is associated with the acquisition of porcine oocyte developmental competence.

    Science.gov (United States)

    Ritter, Lesley J; Sugimura, Satoshi; Gilchrist, Robert B

    2015-06-01

    Oocytes progressively acquire the competence to support embryo development as oogenesis proceeds with ovarian folliculogenesis. The objectives of this study were to investigate oocyte-secreted factor (OSF) participation in the development of somatic cell epidermal growth factor (EGF) responsiveness associated with oocyte developmental competence. A well-established porcine model was employed using oocytes from small (4 mm) antral follicles, representing low vs moderate developmental competence, respectively. Cumulus-oocyte complexes (COCs) were treated in vitro with inducers of oocyte maturation, and cumulus cell functions and oocyte developmental competence were assessed. COCs from small follicles responded to FSH but, unlike COCs from larger follicles, were incapable of responding to EGF family growth factors known to mediate oocyte maturation in vivo, exhibiting perturbed cumulus expansion and expression of associated transcripts (HAS2 and TNFAIP6). Low and moderate competence COCs expressed equivalent levels of EGF receptor (EGFR) mRNA; however, the former had less total EGFR protein leading to failed activation of phospho-EGFR and phospho-ERK1/2, despite equivalent total ERK1/2 protein levels. Native OSFs from moderate, but not from low, competence oocytes established EGF responsiveness in low competence COCs. Four candidate recombinant OSFs failed to mimic the actions of native OSFs in regulating cumulus expansion. Treatment with OSFs and EGF enhanced oocyte competence but only of the low competence COCs. These data suggest that developmental acquisition by the oocyte of capacity to regulate EGF responsiveness in the oocyte's somatic cells is a major milestone in the oocyte's developmental program and contributes to coordinated oocyte and somatic cell development.

  15. Effect of Somatic Cell Types and Culture Medium on in vitro Maturation, Fertilization and Early Development Capability of Buffalo Oocytes

    Directory of Open Access Journals (Sweden)

    H. Jamil*, H. A. Samad, N. Rehman, Z. I. Qureshi and L. A. Lodhi

    2011-04-01

    Full Text Available This study was designed to evaluate the efficacy of different somatic cell types and media in supporting in vitro maturation (IVM, in vitro fertilization (IVF and early embryonic development competence of buffalo follicular oocytes. Cumulus oocyte complexes were collected for maturation from follicles (>6mm of buffalo ovaries collected at the local abattoir. Oocytes were co-cultured in tissue culture medium (TCM-199 with either granulosa cells, cumulus cells, or buffalo oviductal epithelial cells (BOEC @ 3x106 cells/ml or in TCM-199 without helper cells (control at 39°C and 5%CO2 in humidified air. Fresh semen was prepared in modified Ca++ free Tyrode medium. Fertilization was carried out in four types of media: i Tyrode lactate albumin pyruvate (TALP, ii TALP+BOEC, iii modified Ca++ free Tyrode and iv modified Ca++ free Tyrode+BOEC. Fertilized oocytes were cultured for early embryonic development in TCM-199 with and without BOEC. Higher maturation rates were observed in the granulosa (84.24% and cumulus cells (83.44% than BOEC co culture system (73.37%. Highest fertilization rate was obtained in modified Ca++ free Tyrode with BOEC co culture (70.42%, followed by modified Ca++ free Tyrode alone (63.77%, TALP with BOEC (36.92% and TALP alone (10.94%. Development of early embryos (8-cell stage improved in TCM-199 with BOEC co culture than TCM-199 alone. From the results of this study, it can be concluded that addition of somatic cells (granulosa cells, cumulus cells results in higher maturation rates of buffalo follicular oocytes than BOEC co culture system, while fertilization rate improved in modified Ca++ free Tyrode with and without BOEC. Addition of BOEC to TCM-199 improved the developmental capacity of early embryo.

  16. Generation of hypoxanthine phosphoribosyltransferase gene knockout rabbits by homologous recombination and gene trapping through somatic cell nuclear transfer.

    Science.gov (United States)

    Yin, Mingru; Jiang, Weihua; Fang, Zhenfu; Kong, Pengcheng; Xing, Fengying; Li, Yao; Chen, Xuejin; Li, Shangang

    2015-11-02

    The rabbit is a common animal model that has been employed in studies on various human disorders, and the generation of genetically modified rabbit lines is highly desirable. Female rabbits have been successfully cloned from cumulus cells, and the somatic cell nuclear transfer (SCNT) technology is well established. The present study generated hypoxanthine phosphoribosyltransferase (HPRT) gene knockout rabbits using recombinant adeno-associated virus-mediated homologous recombination and SCNT. Gene trap strategies were employed to enhance the gene targeting rates. The male and female gene knockout fibroblast cell lines were derived by different strategies. When male HPRT knockout cells were used for SCNT, no live rabbits were obtained. However, when female HPRT(+/-) cells were used for SCNT, live, healthy rabbits were generated. The cloned HPRT(+/-) rabbits were fertile at maturity. We demonstrate a new technique to produce gene-targeted rabbits. This approach may also be used in the genetic manipulation of different genes or in other species.

  17. Effect of colostrum on gravity separation of milk somatic cells in skim milk.

    Science.gov (United States)

    Geer, S R; Barbano, D M

    2014-02-01

    Our objective was to determine if immunoglobulins play a role in the gravity separation (rising to the top) of somatic cells (SC) in skim milk. Other researchers have shown that gravity separation of milk fat globules is enhanced by IgM. Our recent research found that bacteria and SC gravity separate in both raw whole and skim milk and that heating milk to >76.9 °C for 25s stopped gravity separation of milk fat, SC, and bacteria. Bovine colostrum is a good natural source of immunoglobulins. An experiment was designed where skim milk was heated at high temperatures (76 °C for 7 min) to stop the gravity separation of SC and then colostrum was added back to try to restore the gravity separation of SC in increments to achieve 0, 0.4, 0.8, 2.0, and 4.0 g/L of added immunoglobulins. The milk was allowed to gravity separate for 22 h at 4 °C. The heat treatment of skim milk was sufficient to stop the gravity separation of SC. The treatment of 4.0 g/L of added immunoglobulins was successful in restoring the gravity separation of SC as compared with raw skim milk. Preliminary spore data on the third replicate suggested that bacterial spores gravity separate the same way as the SC in heated skim milk and heated skim milk with 4.0 g/L of added immunoglobulins. Strong evidence exists that immunoglobulins are at least one of the factors necessary for the gravity separation of SC and bacterial spores. It is uncertain at this time whether SC are a necessary component for gravity separation of fat, bacteria, and spores to occur. Further research is needed to determine separately the role of immunoglobulins and SC in gravity separation of bacteria and spores. Understanding the mechanism of gravity separation may allow the development of a continuous flow technology to remove SC, bacteria, and spores from milk.

  18. Two-factor reprogramming of somatic cells to pluripotent stem cells reveals partial functional redundancy of Sox2 and Klf4

    OpenAIRE

    Nemajerova, A; Kim, S. Y.; Petrenko, O.; Moll, U.M.

    2012-01-01

    Ectopic expression of defined sets of transcription factors in somatic cells enables them to adopt the qualities of pluripotency. Mouse embryonic fibroblasts (MEFs) are the classic target cell used to elucidate the core principles of nuclear reprogramming. However, their phenotypic and functional heterogeneity represents a major hurdle for mechanistic studies aimed at defining the molecular nature of cellular plasticity. We show that reducing the complexity of MEFs by flow cytometry allows th...

  19. An integrated inspection of the somatic mutations in a lung squamous cell carcinoma using next-generation sequencing.

    Directory of Open Access Journals (Sweden)

    Lucy F Stead

    Full Text Available Squamous cell carcinoma (SCC of the lung kills over 350,000 people annually worldwide, and is the main lung cancer histotype with no targeted treatments. High-coverage whole-genome sequencing of the other main subtypes, small-cell and adenocarcinoma, gave insights into carcinogenic mechanisms and disease etiology. The genomic complexity within the lung SCC subtype, as revealed by The Cancer Genome Atlas, means this subtype is likely to benefit from a more integrated approach in which the transcriptional consequences of somatic mutations are simultaneously inspected. Here we present such an approach: the integrated analysis of deep sequencing data from both the whole genome and whole transcriptome (coding and non-coding of LUDLU-1, a SCC lung cell line. Our results show that LUDLU-1 lacks the mutational signature that has been previously associated with tobacco exposure in other lung cancer subtypes, and suggests that DNA-repair efficiency is adversely affected; LUDLU-1 contains somatic mutations in TP53 and BRCA2, allelic imbalance in the expression of two cancer-associated BRCA1 germline polymorphisms and reduced transcription of a potentially endogenous PARP2 inhibitor. Functional assays were performed and compared with a control lung cancer cell line. LUDLU-1 did not exhibit radiosensitisation or an increase in sensitivity to PARP inhibitors. However, LUDLU-1 did exhibit small but significant differences with respect to cisplatin sensitivity. Our research shows how integrated analyses of high-throughput data can generate hypotheses to be tested in the lab.

  20. Production of cloned dogs by decreasing the interval between fusion and activation during somatic cell nuclear transfer.

    Science.gov (United States)

    Kim, Sue; Park, Sun Woo; Hossein, Mohammad Shamim; Jeong, Yeon Woo; Kim, Joung Joo; Lee, Eugine; Kim, Yeun Wook; Hyun, Sang Hwan; Shin, Taeyoung; Hwang, Woo Suk

    2009-05-01

    To improve the efficiency of somatic cell nuclear transfer (SCNT) in dogs, we evaluated whether or not the interval between fusion and activation affects the success rate of SCNT. Oocytes retrieved from outbred dogs were reconstructed with adult somatic cells from a male or female Golden Retriever. In total, 151 and 225 reconstructed oocytes were transferred to 9 and 14 naturally synchronized surrogates for male and female donor cells, respectively. Chromosomal morphology was evaluated in 12 oocytes held for an interval of 2 hr between fusion and activation and 14 oocytes held for an interval of 4 hr. Three hundred seventy-six and 288 embryos were transferred to 23 and 16 surrogates for the 2 and 4 hr interval groups, respectively. Both the male (two pregnant surrogates gave birth to three puppies) and female (one pregnant surrogate gave birth to one puppy) donor cells gave birth to live puppies (P > 0.05). In the 2 hr group, significantly more reconstructed oocytes showed condensed, metaphase-like chromosomes compared to the 4 hr group (P dogs carried pregnancies to term and four puppies were born. These results demonstrate that decreasing the interval between fusion and activation increases the success rate of clone production and pregnancy. These results may increase the overall efficiency of SCNT in the canine family.

  1. Pathogen-Specific Effects of Quantitative Trait Loci Affecting Clinical Mastitis and Somatic Cell Count in Danish Holstein Cattle

    DEFF Research Database (Denmark)

    Sørensen, Lars Peter; Guldbrandtsen, Bernt; Thomasen, Jørn Rind;

    2008-01-01

    The aim of this study was to investigate whether quantitative trait loci (QTL) affecting the risk of clinical mastitis (CM) and QTL affecting somatic cell score (SCS) exhibit pathogen-specific effects on the incidence of mastitis. Bacteriological data on mastitis pathogens were used to investigate...... against coagulase-negative staphylococci and Strep. uberis. Our results show that particular mastitis QTL are highly likely to exhibit pathogen-specificity. However, the results should be interpreted carefully because the results are sensitive to the sampling method and method of analysis. Field data were...

  2. Developmental disparity between in vitro-produced and somatic cell nuclear transfer bovine days 14 and 21 embryos

    DEFF Research Database (Denmark)

    Alexopoulos, Natalie I.; Maddox-Hyttel, Poul; Tveden-Nyborg, Pernille Yde;

    2008-01-01

    the application of new reproductive technologies such as somatic cell nuclear transfer (SCNT). In the present study, days 14 and 21 bovine embryos, generated by either in vitro-production (IVP) or SCNT, performed by either subzonal injection (SUZI) or handmade cloning (HMC), were compared by stereomicroscopy...... recovered from the embryos transferred respectively, and similar low recovery rates were noted on D21, suggesting that most of the embryonic loss had already occurred by D14. A number of D14 IVP, SUZI, and HMC embryos lacked an epiblast, but presented trophectoderm and hypoblast. When the epiblast...

  3. Somatic cell count patterns. Improvement of udder health by genetics and management

    NARCIS (Netherlands)

    Haas, de Y.

    2003-01-01

    Keywords:Pathogen-specific clinical mastitis, Somatic ce

  4. Somatic embryogenesis and plant regeneration from cell suspension and tissue cultures of mature himalayan poplar (Populus ciliata).

    Science.gov (United States)

    Cheema, G S

    1989-02-01

    Somatic embryogenesis and plantlet formation were obtained from callus and cell suspension cultures of 40-year- old Himalayan Poplar (Populus ciliata Wall ex Royle). Callus and cell suspensions were obtained by transfer of inoculum of semiorganized leaf cultures, which were maintained on Murashige and Skoog (MS) medium supplemented with benzylaminopurine (BAP), to MS with 2,4-dichlorophenoxyacetic acid (2,4-D). Reduction of 2,4-D concentration during subsequent subculture of cell suspensions resulted in the formation of embryoids. These embryoids developed further only after being transferred to agar-based MS medium supplemented with BAP and naphthalene acetic acid. Loss of embryogenic potential was observed in cell suspensions after 6 subcultures. However, callus cultures retained the embryogenic potential even after repeated subcultures for more than a year. Plantlets could be successfully hardened and grown in natural outdoor conditions.

  5. Susceptibility to cephalosporins of bacteria causing intramammary infections in dairy cows with a high somatic cell count in Germany.

    Science.gov (United States)

    Wente, N; Zoche-Golob, V; Behr, M; Krömker, V

    2016-09-01

    The objective of this cross-sectional study was to determine the minimal inhibitory concentrations of cephalosporins of the first (cefalonium and cefapirin) and fourth generation (cefquinome) against bacteria isolated from intramammary infections in dairy cows with elevated somatic cell counts in Germany. Additionally, possible regional differences of the minimal inhibitory concentrations within Germany should be evaluated. In total, 6936 quarter milk samples from cows with a somatic cell count >200,000cells/ml were taken in 43 herds. The concentrations of the first generation cephalosporins inhibiting at least 90% of the isolates of a pathogen (MIC90) were ≥64μg/ml against Gram-negative bacteria and enterococci whereas the respective MIC90 against the other Gram-positive bacteria were ≤4μg/ml. The MIC90 of cefquinome were ≥16μg/ml against Gram-negative bacteria, bacilli and enterococci, and ≤2μg/ml against the other Gram-positive bacteria. Only the minimal inhibitory concentrations against coagulase-negative staphylococci differed significantly between regions in parametric survival models with shared frailties for the herds. However, the minimal inhibitory concentrations of cefquinome against staphylococci were higher than the minimal inhibitory concentrations of the tested cephalosporins of the first generation. Therefore, cefquinome should not be the first choice to treat staphylococcal mastitis in dairy cows.

  6. Activation of ribosomal RNA genes in porcine embryos produced in vitro or by somatic cell nuclear transfer

    DEFF Research Database (Denmark)

    Bjerregaard, Bolette; Pedersen, Hanne Gervi; Jakobsen, Anne Sørig

    2007-01-01

    The onset of ribosomal RNA (rRNA) synthesis occurs during the second half of the third cell cycle, that is, at the four-cell stage, in porcine embryos developed in vivo. In the present study the onset of rRNA synthesis was investigated in porcine embryos produced in vitro (IVP) or by somatic cell...... nuclear transfer (SCNT) using fluorescence in situ hybridization (FISH) with an rDNA probe and subsequent visualization of the nucleolar proteins by silver staining. In the 205 IVP embryos investigated, all two-cell embryos (n = 34) were categorized as transcriptionally inactive. At the late four-cell...... and active cells at the eight-cell, 16-cell and blastocyst stage, respectively. In the 143 SCNT embryos investigated, all two-cell embryos (n = 34) and early four-cell embryos (n = 12) were also transcriptionally inactive. At the late four-cell stage (n = 33) and at the eight-cell stage (n = 24) there were...

  7. DNA methylation in porcine preimplantation embryos developed in-vivo or produced by in-vitro fertilization, parthenogenetic activation and somatic cell nuclear transfer

    DEFF Research Database (Denmark)

    Deshmukh, Rahul Shahaji; Østrup, Olga; Østrup, Esben;

    2011-01-01

    DNA demethylation and remethylation are crucial for reprogramming of the differentiated parental/somatic genome in the recipient ooplasm upon somatic cell nuclear transfer. Here, we analyzed the DNA methylation dynamics during porcine preimplantation development. Porcine in vivo developed (IV......), in vitro fertilized (IVF), somatic cell nuclear transfer (SCNT) and parthenogenetically activated (PA) embryos were evaluated for DNA methylation quantification at different developmental stages. Fertilized (IV and IVF) one-cell stages lacked a substantial active demethylation of the paternal genome....... Embryos produced under in vitro conditions had higher levels of DNA methylation than IV. A lineage-specific DNA methylation (hypermethylation of the inner cell mass and hypomethylation of the trophectoderm) was observed in porcine IV late blastocysts, but was absent in PA- and SCNT-derived blastocysts...

  8. DNA methylation in porcine preimplantation embryos developed in vivo and produced by in vitro fertilization, parthenogenetic activation and somatic cell nuclear transfer

    DEFF Research Database (Denmark)

    Deshmukh, Rahul Shahaji; Østrup, Olga; Østrup, Esben;

    2011-01-01

    DNA demethylation and remethylation are crucial for reprogramming of the differentiated parental/somatic genome in the recipient ooplasm upon somatic cell nuclear transfer. Here, we analyzed the DNA methylation dynamics during porcine preimplantation development. Porcine in vivo developed (IV......), in vitro fertilized (IVF), somatic cell nuclear transfer (SCNT) and parthenogenetically activated (PA) embryos were evaluated for DNA methylation quantification at different developmental stages. Fertilized (IV and IVF) one-cell stages lacked a substantial active demethylation of the paternal genome....... Embryos produced under in vitro conditions had higher levels of DNA methylation than IV. A lineage-specific DNA methylation (hypermethylation of the inner cell mass and hypomethylation of the trophectoderm) was observed in porcine IV late blastocysts, but was absent in PA- and SCNT-derived blastocysts...

  9. DNA methylation in porcine preimplantation embryos developed in vivo or produced by in vitro fertilization, parthenogenetic activation and somatic cell nuclear transfer

    DEFF Research Database (Denmark)

    Deshmukh, Rahul Shahaji; Østrup, Olga; Østrup, Esben;

    2011-01-01

    DNA demethylation and remethylation are crucial for reprogramming of the differentiated parental/somatic genome in the recipient ooplasm upon somatic cell nuclear transfer. Here, we analyzed the DNA methylation dynamics during porcine preimplantation development. Porcine in vivo developed (IV......), in vitro fertilized (IVF), somatic cell nuclear transfer (SCNT) and parthenogenetically activated (PA) embryos were evaluated for DNA methylation quantification at different developmental stages. Fertilized (IV and IVF) one-cell stages lacked a substantial active demethylation of the paternal genome....... Embryos produced under in vitro conditions had higher levels of DNA methylation than IV. A lineage-specific DNA methylation (hypermethylation of the inner cell mass and hypomethylation of the trophectoderm) was observed in porcine IV late blastocysts, but was absent in PA- and SCNT-derived blastocysts...

  10. Global epigenetic changes during somatic cell reprogramming to iPS cells

    Institute of Scientific and Technical Information of China (English)

    Anna Mattout; Alva Biran; Eran Meshorer

    2011-01-01

    Embryonic stem cells (ESCs) exhibit unique chromatin features,including a permissive transcriptional program and an open,decondensed chromatin state.Induced pluripotent stem cells (iPSCs),which are very similar to ESCs,hold great promise for therapy and basic research.However,the mechanisms by which reprogramming occurs and the chromatin organization that underlies the reprogramming process are largely unknown.Here we characterize and compare the epigenetic landscapes of partially and fully reprogrammed iPSCs to mouse embryonic fibroblasts (MEFs) and ESCs,which serves as a standard for pluripotency.Using immunofluorescence and biochemical fractionations,we analyzed the levels and distribution of a battery of histone modifications (H3ac,H4ac,H4KSac,H3Kgac,H3K27ac,H3K4me3,H3K36me2,H3K9me3,H3K27me3,and yH2AX),as well as HP1α and lamin A.We find that fully reprogrammed iPSCs are epigenetically identical to ESCs,and that partially reprogrammed iPSCs are closer to MEFs.Intriguingly,combining both time-course reprogramming experiments and data from the partially reprogrammed iPSCs,we find that heterochromatin reorganization precedes Nanog expression and active histone marking.Together,these data delineate the global epigenetic state of iPSCs in conjunction with their pluripotent state,and demonstrate that heterochromatin precedes euchromatin in reorganization during reprogramming.

  11. Development capacity of pre- and postpubertal pig oocytes evaluated by somatic cell nuclear transfer and parthenogenetic activation

    DEFF Research Database (Denmark)

    Skovsgaard, Hanne; Li, Rong; Liu, Ying;

    2013-01-01

    Most of the porcine oocytes used for in vitro studies are collected from gilts. Our aims were to study development capacity of gilt v. sow oocytes (pre- and postpubertal respectively) using 2 techniques illustrating development competence [parthenogenetic activation (PA) and somatic cell nuclear...... transfer (SCNT)], and to describe a simple method to select the most competent oocytes. Inside-ZP diameter of in vitro-matured gilt oocytes was measured (µm; small ≤110; medium >110; large ≥120). Gilt and sow oocytes were morphologically grouped as good (even cytoplasm, smooth cell membrane, visible...... perivitelline space) or bad before used for PA (good and bad) or SCNT (good). The PA and SCNT were performed as before with minor modifications (Cryobiol. 64, 60; Cell. Reprogr. 13, 521) before culture for 6 days in a standard or timelapse incubator. Rates of cleavage (CL%, Day 2), blastocyst (BL%, Day 6...

  12. Nuclear-mitochondrial incompatibility in interorder rhesus monkey-cow embryos derived from somatic cell nuclear transfer.

    Science.gov (United States)

    Kwon, Daekee; Koo, Ok-Jae; Kim, Min-Jung; Jang, Goo; Lee, Byeong Chun

    2016-10-01

    Monkey interorder somatic cell nuclear transfer (iSCNT) using enucleated cow oocytes yielded poor blastocysts development and contradictory results among research groups. Determining the reason for this low blastocyst development is a prerequisite for optimizing iSCNT in rhesus monkeys. The aim of this study was to elucidate nuclear-mitochondrial incompatibility of rhesus monkey-cow iSCNT embryos and its relationship to low blastocyst development. Cytochrome b is a protein of complex III of the electron transport chain (ETC). According to meta-analysis of amino acid sequences, the homology of cytochrome b is 75 % between rhesus monkeys and cattle. To maintain the function of ETC after iSCNT, 4n iSCNT embryos were produced by fusion of non-enucleated cow oocytes and rhesus monkey somatic cells. The blastocyst development rate of 4n iSCNT embryos was higher than that of 2n embryos (P monkey iSCNT embryos reconstructed with cow oocytes have nuclear-mitochondrial incompatibility due to fundamental species differences between rhesus monkeys and cattle. Nuclear-mitochondrial incompatibility seems to correlate with low ETC activity and extremely low blastocyst development of rhesus monkey-cow iSCNT embryos.

  13. Selection of suitable reference genes for quantitative gene expression studies in milk somatic cells of lactating cows (Bos indicus).

    Science.gov (United States)

    Varshney, N; Mohanty, A K; Kumar, S; Kaushik, J K; Dang, A K; Mukesh, M; Mishra, B P; Kataria, R; Kimothi, S P; Mukhopadhyay, T K; Malakar, D; Prakash, B S; Grover, S; Batish, V K

    2012-06-01

    We assessed the suitability of 9 internal control genes (ICG) in milk somatic cells of lactating cows to find suitable reference genes for use in quantitative PCR (qPCR). Eighteen multiparous lactating Sahiwal cows were used, 6 in each of 3 lactation stages: early (25 ± 5 d in milk), mid (160 ± 15 d in milk), and late (275 ± 25 d in milk) lactation. Nine candidate reference genes [glyceraldehyde 3-phosphate dehydrogenase (GAPDH), protein phosphatase 1 regulatory subunit 11 (PPP1R11), β-actin (ACTB), β-2 microglobulin (B2M), 40S ribosomal protein S15a (RPS15A), ubiquitously expressed transcript (UXT), mitochondrial GTPase 1 (MTG1), 18S rRNA (RN18S1), and ubiquitin (UBC)] were evaluated. Three genes, β-casein (CSN2), lactoferrin (LTF), and cathelicidin (CAMP) were chosen as target genes. Very high amplification was observed in 7 ICG and very low level amplification was observed in 2 ICG (UXT and MTG1). Thus, UXT and MTG1 were excluded from further analysis. The qPCR data were analyzed by 2 software packages, geNorm and NormFinder, to determine suitable reference genes, based on their stability and expression. Overall, PPP1R11, ACTB, UBC, and GAPDH were stably expressed among all candidate reference genes. Therefore, these genes could be used as ICG for normalization of qPCR data in milk somatic cells through lactation.

  14. Creation of Mice Bearing a Partial Duplication of HPRT Gene Marked with a GFP Gene and Detection of Revertant Cells In Situ as GFP-Positive Somatic Cells.

    Directory of Open Access Journals (Sweden)

    Asao Noda

    Full Text Available It is becoming clear that apparently normal somatic cells accumulate mutations. Such accumulations or propagations of mutant cells are thought to be related to certain diseases such as cancer. To better understand the nature of somatic mutations, we developed a mouse model that enables in vivo detection of rare genetically altered cells via GFP positive cells. The mouse model carries a partial duplication of 3' portion of X-chromosomal HPRT gene and a GFP gene at the end of the last exon. In addition, although HPRT gene expression was thought ubiquitous, the expression level was found insufficient in vivo to make the revertant cells detectable by GFP positivity. To overcome the problem, we replaced the natural HPRT-gene promoter with a CAG promoter. In such animals, termed HPRT-dup-GFP mouse, losing one duplicated segment by crossover between the two sister chromatids or within a single molecule of DNA reactivates gene function, producing hybrid HPRT-GFP proteins which, in turn, cause the revertant cells to be detected as GFP-positive cells in various tissues. Frequencies of green mutant cells were measured using fixed and frozen sections (liver and pancreas, fixed whole mount (small intestine, or by means of flow cytometry (unfixed splenocytes. The results showed that the frequencies varied extensively among individuals as well as among tissues. X-ray exposure (3 Gy increased the frequency moderately (~2 times in the liver and small intestine. Further, in two animals out of 278 examined, some solid tissues showed too many GFP-positive cells to score (termed extreme jackpot mutation. Present results illustrated a complex nature of somatic mutations occurring in vivo. While the HPRT-dup-GFP mouse may have a potential for detecting tissue-specific environmental mutagens, large inter-individual variations of mutant cell frequency cause the results unstable and hence have to be reduced. This future challenge will likely involve lowering the

  15. High in vitro development after somatic cell nuclear transfer and trichostatin A treatment of reconstructed porcine embryos

    DEFF Research Database (Denmark)

    Li, J.; Østrup, Olga; Villemoes, Klaus

    2008-01-01

    Abnormal epigenetic modification is supposed to be one of factors accounting for inefficient reprogramming of the donor cell nuclei in ooplasm after somatic cell nuclear transfer (SCNT). Trichostatin A (TSA) is an inhibitor of histone deacetylase, potentially enhancing cloning efficiency. The aim...

  16. Mesenchymal stem cells develop tumor tropism but do not accelerate breast cancer tumorigenesis in a somatic mouse breast cancer model.

    Directory of Open Access Journals (Sweden)

    Lydia Usha

    Full Text Available The role of mesenchymal stem cells (MSCs on breast cancer progression, growth and tumorigenesis remains controversial or unknown. In the present study, we investigated the role of MSCs on breast tumor induction and growth in a clinically relevant somatic breast cancer model. We first conducted in vitro studies and found that conditioned media (CM of RCAS-Neu and RCAS-PyMT breast cancer cell lines and tumor cells themselves dramatically increased the proliferation and motility of MSCs and induced morphological changes of MSCs and differentiation into fibroblast-like cells. In contrast, the CM of MSCs inhibited the proliferation of two breast cancer cell lines by arresting the cell cycle at the G0/G1 phase. In vivo studies revealed that fluorescence dye-labeled MSCs migrated into tumor tissues. Unexpectedly, single or multiple intravenous injections of MSCs did not affect the latency of breast cancer in TVA- transgenic mice induced by intraductal injection of the RCAS vector encoding polyoma middle-T antigen (PyMT or Neu oncogenes. Moreover, MSCs had no effect on RCAS-Neu tumor growth in a syngeneic ectopic breast cancer model. While our studies consistently demonstrated the ability of breast cancer cells to profoundly induce MSCs migration, differentiation, and proliferation, the anti-proliferative effect of MSCs on breast tumor cells observed in vitro could not be translated into an antitumor activity in vivo, probably reflecting the antagonizing or complex effects of MSCs on tumor environment and tumor cells themselves.

  17. Somatic Symptoms

    DEFF Research Database (Denmark)

    Eliasen, Marie; Kreiner, Svend; Ebstrup, Jeanette F

    2016-01-01

    ) the associations between the symptoms, and 3) the associations between the somatic symptoms, self-perceived health and limitations due to physical health accounting for the co-occurrence of symptoms. Information on 19 somatic symptoms, self-perceived health and limitations due to physical health was achieved from...... a population-based questionnaire survey of 36,163 randomly selected adults in the Capital Region of Denmark in 2006/07. Chain graph models were used to transparently identify and describe the associations between symptoms, self-perceived health and limitations due to physical health. In total, 94...... all strongly directly associated with both of the outcomes (γ>0.30). Chest pain was strongly associated with self-perceived health, and other musculoskeletal symptoms and urinary retention were strongly associated with limitations due to physical health. Other symptoms were either moderate...

  18. Frequent somatic hypermutation of the 5' noncoding region of the BCL6 gene in B-cell lymphoma.

    Science.gov (United States)

    Migliazza, A; Martinotti, S; Chen, W; Fusco, C; Ye, B H; Knowles, D M; Offit, K; Chaganti, R S; Dalla-Favera, R

    1995-01-01

    The BCL6 gene encodes a zinc-finger transcription factor and is altered by chromosomal arrangements in its 5' noncoding region in approximately 30% of diffuse large-cell lymphoma (DLCL). We report here that, in 22/30 (73%) DLCL and 7/15 (47%) follicular lymphoma (FL), but not in other tumor types, the BCL6 gene is also altered by multiple (1.4 x 10(-3) -1.6 x 10(-2) per bp), often biallelic, mutations clustering in its 5' noncoding region. These mutations are of somatic origin and are found in cases displaying either normal or rearranged BLC6 alleles indicating their independence from chromosomal rearrangements and linkage to immunoglobulin genes. These alterations identify a mechanism of genetic instability in malignant B cells and may have been selected during lymphomagenesis for their role in altering BCL6 expression. Images Fig. 2 Fig. 4 PMID:8618933

  19. Polycomb group genes Psc and Su(z)2 maintain somatic stem cell identity and activity in Drosophila.

    Science.gov (United States)

    Morillo Prado, Jose Rafael; Chen, Xin; Fuller, Margaret T

    2012-01-01

    Adult stem cells are essential for the proper function of many tissues, yet the mechanisms that maintain the proper identity and regulate proliferative capacity in stem cell lineages are not well understood. Polycomb group (PcG) proteins are transcriptional repressors that have recently emerged as important regulators of stem cell maintenance and differentiation. Here we describe the role of Polycomb Repressive Complex 1 (PRC1) genes Posterior sex combs (Psc) and Suppressor of zeste two (Su(z)2) in restricting the proliferation and maintaining the identity of the Cyst Stem Cell (CySC) lineage in the Drosophila testis. In contrast, Psc and Su(z)2 seem to be dispensable for both germline stem cell (GSC) maintenance and germ cell development. We show that loss of Psc and Su(z)2 function in the CySC lineage results in the formation of aggregates of mutant cells that proliferate abnormally, and display abnormal somatic identity correlated with derepression of the Hox gene Abdominal-B. Furthermore, we show that tumorigenesis in the CySC lineage interferes non-cell autonomously with maintenance of GSCs most likely by displacing them from their niche.

  20. Loss of wild-type ATRX expression in somatic cell hybrids segregates with activation of Alternative Lengthening of Telomeres.

    Science.gov (United States)

    Bower, Kylie; Napier, Christine E; Cole, Sara L; Dagg, Rebecca A; Lau, Loretta M S; Duncan, Emma L; Moy, Elsa L; Reddel, Roger R

    2012-01-01

    Alternative Lengthening of Telomeres (ALT) is a non-telomerase mechanism of telomere lengthening that occurs in about 10% of cancers overall and is particularly common in astrocytic brain tumors and specific types of sarcomas. Somatic cell hybridization analyses have previously shown that normal telomerase-negative fibroblasts and telomerase-positive immortalized cell lines contain repressors of ALT activity, indicating that activation of ALT results from loss of one or more unidentified repressors. More recently, ATRX or DAXX was shown to be mutated both in tumors with telomere lengths suggestive of ALT activity and in ALT cell lines. Here, an ALT cell line was separately fused to each of four telomerase-positive cell lines, and four or five independent hybrid lines from each fusion were examined for expression of ATRX and DAXX and for telomere lengthening mechanism. The hybrid lines expressed either telomerase or ALT, with the other mechanism being repressed. DAXX was expressed normally in all parental cell lines and in all of the hybrids. ATRX was expressed normally in each of the four telomerase-positive parental cell lines and in every telomerase-positive hybrid line, and was abnormal in the ALT parental cells and in all but one of the ALT hybrids. This correlation between ALT activity and loss of ATRX expression is consistent with ATRX being a repressor of ALT.

  1. Loss of wild-type ATRX expression in somatic cell hybrids segregates with activation of Alternative Lengthening of Telomeres.

    Directory of Open Access Journals (Sweden)

    Kylie Bower

    Full Text Available Alternative Lengthening of Telomeres (ALT is a non-telomerase mechanism of telomere lengthening that occurs in about 10% of cancers overall and is particularly common in astrocytic brain tumors and specific types of sarcomas. Somatic cell hybridization analyses have previously shown that normal telomerase-negative fibroblasts and telomerase-positive immortalized cell lines contain repressors of ALT activity, indicating that activation of ALT results from loss of one or more unidentified repressors. More recently, ATRX or DAXX was shown to be mutated both in tumors with telomere lengths suggestive of ALT activity and in ALT cell lines. Here, an ALT cell line was separately fused to each of four telomerase-positive cell lines, and four or five independent hybrid lines from each fusion were examined for expression of ATRX and DAXX and for telomere lengthening mechanism. The hybrid lines expressed either telomerase or ALT, with the other mechanism being repressed. DAXX was expressed normally in all parental cell lines and in all of the hybrids. ATRX was expressed normally in each of the four telomerase-positive parental cell lines and in every telomerase-positive hybrid line, and was abnormal in the ALT parental cells and in all but one of the ALT hybrids. This correlation between ALT activity and loss of ATRX expression is consistent with ATRX being a repressor of ALT.

  2. Morphological abnormalities, impaired fetal development and decrease in myostatin expression following somatic cell nuclear transfer in dogs.

    Science.gov (United States)

    Hong, Il-Hwa; Jeong, Yeon-Woo; Shin, Taeyoung; Hyun, Sang-Hwan; Park, Jin-Kyu; Ki, Mi-Ran; Han, Seon-Young; Park, Se-Il; Lee, Ji-Hyun; Lee, Eun-Mi; Kim, Ah-Young; You, Sang-Young; Hwang, Woo-Suk; Jeong, Kyu-Shik

    2011-05-01

    Several mammals, including dogs, have been successfully cloned using somatic cell nuclear transfer (SCNT), but the efficiency of generating normal, live offspring is relatively low. Although the high failure rate has been attributed to incomplete reprogramming of the somatic nuclei during the cloning process, the exact cause is not fully known. To elucidate the cause of death in cloned offspring, 12 deceased offspring cloned by SCNT were necropsied. The clones were either stillborn just prior to delivery or died with dyspnea shortly after birth. On gross examination, defects in the anterior abdominal wall and increased heart and liver sizes were found. Notably, a significant increase in muscle mass and macroglossia lesions were observed in deceased SCNT-cloned dogs. Interestingly, the expression of myostatin, a negative regulator of muscle growth during embryogenesis, was down-regulated at the mRNA level in tongues and skeletal muscles of SCNT-cloned dogs compared with a normal dog. Results of the present study suggest that decreased expression of myostatin in SCNT-cloned dogs may be involved in morphological abnormalities such as increased muscle mass and macroglossia, which may contribute to impaired fetal development and poor survival rates.

  3. Integration-free reprogramming of human somatic cells to induced pluripotent stem cells (iPSCs) without viral vectors, recombinant DNA, and genetic modification.

    Science.gov (United States)

    Heng, Boon Chin; Fussenegger, Martin

    2014-01-01

    Stem cells are envisaged to be integral components of multicellular systems engineered for therapeutic applications. The reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) via recombinant expression of a limited number of transcription factors, which was first achieved by Yamanaka and colleagues in 2007, heralded a major breakthrough in the stem cell field. Since then, there has been rapid progress in the field of iPSC generation, including the identification of various small molecules that can enhance reprogramming efficiency and reduce the number of different transcription factors required for reprogramming. Nevertheless, the major obstacles facing clinical applications of iPSCs are safety concerns associated with the use of viral vectors and recombinant DNA for expressing the appropriate transcription factors during reprogramming. In particular, permanent genetic modifications to newly reprogrammed iPSCs have to be avoided in order to meet stringent safety requirements for clinical therapy. These safety challenges can be overcome by new technology platforms that enable cellular reprogramming to iPSCs without the need to utilize either recombinant DNA or viral vectors. The use of recombinant cell-penetrating peptides and direct transfection of synthetic mRNA encoding appropriate transcription factors have both been shown to successfully reprogram somatic cells to iPSCs. It has also been shown more recently that the direct transfection of certain miRNA species can reprogram somatic cells to pluripotency without the need for any of the transcription factors commonly utilized for iPSC generation. This chapter describes protocols for iPSC generation with these new techniques, which would obviate the use of recombinant DNA and viral vectors in cellular reprogramming, thus avoiding permanent genetic modification to the reprogrammed cells.

  4. Revisiting oocyte–somatic cell interactions: in search of novel intrafollicular predictors and regulators of oocyte developmental competence

    Science.gov (United States)

    Li, Qinglei; McKenzie, Laurie J.; Matzuk, Martin M.

    2008-01-01

    Prediction and improvement of oocyte competence are two critical issues in assisted reproductive technology to improve infertility therapy. The lack of reliable and objective predictors of oocyte developmental competence for oocyte/embryo selection during in vitro fertilization hampers the effectiveness of this technology. Likewise, the low pregnancy rate resulting from in vitro maturation of human oocytes represents a major obstacle for its clinical application. Oocyte competence is progressively acquired during follicular development, and the oocyte plays a dominant role in regulating granulosa cell functions and maintaining the microenvironment appropriate for the development of its competence. Hence, granulosa cell functions are reflective of oocyte competence, and molecular markers of granulosa cells are potentially reliable predictors of oocyte quality. With the advent of the functional genomics era, the transcriptome of granulosa cells has been extensively characterized. Experimental data supporting granulosa cell markers as predictors of oocyte competence are now emerging in both animal models and humans. Future efforts should focus on integrating granulosa cell genetic markers as parameters for oocyte/embryo selection. Moreover, novel in vitro evidence highlights the effectiveness of exogenous oocyte-secreted factors in promoting oocyte developmental competence in animal models. The challenge in evaluating the effect of oocyte-secreted factors on oocyte quality in a clinical setting is to standardize the various preparations of these recombinant proteins and decipher their complex interactions/cooperativity within the germline-somatic cell regulatory loop. PMID:18996952

  5. Lysine methyltransferase G9a is not required for DNMT3A/3B anchoring to methylated nucleosomes and maintenance of DNA methylation in somatic cells

    Directory of Open Access Journals (Sweden)

    Sharma Shikhar

    2012-01-01

    Full Text Available Abstract Background DNA methylation, histone modifications and nucleosome occupancy act in concert for regulation of gene expression patterns in mammalian cells. Recently, G9a, a H3K9 methyltransferase, has been shown to play a role in establishment of DNA methylation at embryonic gene targets in ES cells through recruitment of de novo DNMT3A/3B enzymes. However, whether G9a plays a similar role in maintenance of DNA methylation in somatic cells is still unclear. Results Here we show that G9a is not essential for maintenance of DNA methylation in somatic cells. Knockdown of G9a has no measurable effect on DNA methylation levels at G9a-target loci. DNMT3A/3B remain stably anchored to nucleosomes containing methylated DNA even in the absence of G9a, ensuring faithful propagation of methylated states in cooperation with DNMT1 through somatic divisions. Moreover, G9a also associates with nucleosomes in a DNMT3A/3B and DNA methylation-independent manner. However, G9a knockdown synergizes with pharmacologic inhibition of DNMTs resulting in increased hypomethylation and inhibition of cell proliferation. Conclusions Taken together, these data suggest that G9a is not involved in maintenance of DNA methylation in somatic cells but might play a role in re-initiation of de novo methylation after treatment with hypomethylating drugs, thus serving as a potential target for combinatorial treatments strategies involving DNMTs inhibitors.

  6. Animal models of melanoma: a somatic cell gene delivery mouse model allows rapid evaluation of genesimplicated in human melanoma%Animal models of melanoma: a somatic cell gene delivery mouse model allows rapid evaluation of genes implicated in human melanoma

    Institute of Scientific and Technical Information of China (English)

    Andrea J. McKinney; Sheri L. Holmen

    2011-01-01

    The increasing incidence and mortality associated with advanced stages of melanoma are cause for concern. Few treatment options are available for advanced melanoma and the 5-year survival rate is less than 15%. Targeted therapies may revolutionize melanoma treatment by providing less toxic and more effective strategies. However, maximizing effectiveness requires further understanding of the molecular alterations that drive tumor formation, progression, and maintenance, as well as elucidating the mechanisms of resistance. Several different genetic alterations identified in human melanoma have been recapitulated in mice. This review outlines recent progress made in the development of mouse models of melanoma and summarizes what these findings reveal about the human disease. We begin with a discussion of traditional models and conclude with the recently developed RCAS/TVA somatic cell gene delivery mouse model of melanoma.

  7. Remodeling of ribosomal genes in somatic cells by Xenopus egg extract

    DEFF Research Database (Denmark)

    Østrup, Olga; Hyttel, Poul; Klærke, Dan Arne;

    2011-01-01

    . This occurs within hours of extract treatment and is distinct from a stress response. Egg extract elicits remodeling of the nuclear envelope, chromatin and nucleolus. Nucleolar remodeling involves a rapid and stable decrease in ribosomal gene transcription, and promoter targeting of the nucleolar remodeling...... complex component SNF2H without affecting occupancy of the transcription factor UBF and the stress silencers SUV39H1 and SIRT1. During this process, nucleolar localization of UBF and SIRT1 is not altered. On contrary, azacytidine pre-treatment has an adverse effect on rDNA remodeling induced by extract......Extracts from Xenopus eggs can reprogram gene expression in somatic nuclei, however little is known about the earliest processes associated with the switch in the transcriptional program. We show here that an early reprogramming event is the remodeling of ribosomal chromatin and gene expression...

  8. Bovine conceptus of Bos indicus produced by somatic cell nuclear transfer and parthenogenesis present morphological variations since the blastocyst stage

    Directory of Open Access Journals (Sweden)

    F.D. Oliveira

    2015-12-01

    Full Text Available In cattle, embryo development is characterized by the appearance of two distinct cell layers, the trophectoderm and the inner cell mass. The latter will undergo differentiation to form the embryonic disc consisting of the epiblast and hypoblast. The aim of this study was to ultrastructurally characterize the bovine embryo from different in vitro production techniques, with emphasis on trophectoderm and inner cell mass cells. Bovine embryos on day 7 (conception = D1 of pregnancy, derived via in vitro production techniques, were fixed for light and transmission electron microscopy processing. Results suggested that embryos produced by nuclear transfer of somatic cells and parthenogenesis showed significant changes in macroscopic and microscopic structure. Size was reduced, and the inner cell mass had no defined shape. Furthermore, organelles responsible for the absorption processes, communication, growth, and cellular metabolism were fewer and had changes in shape, when compared to results in embryos produced by in vitrofertilization. We concluded that embryos produced by parthenogenesis and SCNT exhibit morphological differences when compared with IVF embryos, such as undeveloped blastocoel, poorly defined distribution of ICM, and morphological differences in organelles.

  9. Raised herd somatic cell count due to Staphylococcus aureus following the failure of an automatic teat spraying system.

    Science.gov (United States)

    Edmondson, P W

    2012-03-01

    This study describes the failure of a single jet exit race automatic teat spray (ATS) system resulting in the spread of Staphylococcus aureus infection in a 135-cow dairy herd, which showed an increased herd somatic cell count from 91,000/ml to 554,000/ml over a nine-month period. S aureus was isolated from 34 of 46 high cell count cows. The milking procedures were modified and manual teat spraying was restarted. Bacteriology was used to identify S aureus positive high cell count cows, and first and second lactation cows were treated during lactation. If their cell counts were not reduced, these were then culled. High cell count S aureus cows in lactation three or above were culled. The three-month geometric mean cell count fell to below 150,000/ml within five months. As all replacements were home-bred, S aureus infection must have spread from within the herd itself. All other causes have been eliminated, and this spread is attributed to the failure of the ATS to carry out effective postmilking teat disinfection. The advantages and disadvantages of ATS systems are discussed, especially in relation to robotic or voluntary milking systems.

  10. Production of rhesus monkey cloned embryos expressing monomeric red fluorescent protein by interspecies somatic cell nuclear transfer

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hai-Ying; Kang, Jin-Dan; Li, Suo; Jin, Jun-Xue; Hong, Yu; Jin, Long; Guo, Qing; Gao, Qing-Shan; Yan, Chang-Guo; Yin, Xi-Jun, E-mail: yinxj33@msn.com

    2014-02-21

    Highlights: • Rhesus monkey cells were electroporated with a plasmid containing mRFP1, and an mRFP1-expressing cell line was generated. • For the first time, mRFP1-expressing rhesus monkey cells were used as donor cells for iSCNT. • The effect of VPA on the development of embryos cloned using iSCNT was determined. - Abstract: Interspecies somatic cell nuclear transfer (iSCNT) is a promising method to clone endangered animals from which oocytes are difficult to obtain. Monomeric red fluorescent protein 1 (mRFP1) is an excellent selection marker for transgenically modified cloned embryos during somatic cell nuclear transfer (SCNT). In this study, mRFP-expressing rhesus monkey cells or porcine cells were transferred into enucleated porcine oocytes to generate iSCNT and SCNT embryos, respectively. The development of these embryos was studied in vitro. The percentage of embryos that underwent cleavage did not significantly differ between iSCNT and SCNT embryos (P > 0.05; 71.53% vs. 80.30%). However, significantly fewer iSCNT embryos than SCNT embryos reached the blastocyst stage (2.04% vs. 10.19%, P < 0.05). Valproic acid was used in an attempt to increase the percentage of iSCNT embryos that developed to the blastocyst stage. However, the percentages of embryos that underwent cleavage and reached the blastocyst stage were similar between untreated iSCNT embryos and iSCNT embryos treated with 2 mM valproic acid for 24 h (72.12% vs. 70.83% and 2.67% vs. 2.35%, respectively). These data suggest that porcine-rhesus monkey interspecies embryos can be generated that efficiently express mRFP1. However, a significantly lower proportion of iSCNT embryos than SCNT embryos reach the blastocyst stage. Valproic acid does not increase the percentage of porcine-rhesus monkey iSCNT embryos that reach the blastocyst stage. The mechanisms underling nuclear reprogramming and epigenetic modifications in iSCNT need to be investigated further.

  11. Genetic analysis of somatic cell score in Danish dairy cattle using ramdom regression test-day model

    DEFF Research Database (Denmark)

    Elsaid, Reda; Sabry, Ayman; Lund, Mogens Sandø;

    2011-01-01

    with fifth order LP for PE effect and genetic effect were adequate to fit the data. The average heritability differed over the lactation and was lowest at the beginning (0.098) and higher at the end of lactation (0.138 to 0.151). Genetic correlations between daily SCS were high for adjacent tests (nearly 1......The objective of this study was to estimate the genetic and permanent environmental (PE) covariance functions for test-day records of logarithm of somatic cell count (SCS) of the first lactation for Danish Holstein cattle, and to test the hypotheses that: genetic and environmental variances change......,233 Danish Holstein cows, were extracted from the national milk recording database. Each data set was analyzed with random regression models using AI-REML. Fixed effects in all models were age at first calving, herd test day, days carrying calf, effects of germ plasm importation (e.g. additive breed effects...

  12. Class-switched marginal zone B cells in spleen have relatively low numbers of somatic mutations

    NARCIS (Netherlands)

    Hendricks, Jacobus; Visser, Annie; Dammers, Peter M.; Burgerhof, Johannes G. M.; Bos, Nicolaas A.; Kroese, Frans G. M.

    2011-01-01

    The vast majority of rodent splenic marginal zone (MZ)-B cells are naive IgM(+) cells. A small fraction of these MZ-B cells carry mutated V-genes, and represent IgM(+) memory MZ-B cells. Here we reveal further heterogeneity of B cells with a MZ-B cell phenotype, by providing evidence for the existen

  13. Identifying components of the hair-cell interactome involved in cochlear amplification

    Directory of Open Access Journals (Sweden)

    Cheatham MaryAnn

    2009-03-01

    Full Text Available Abstract Background Although outer hair cells (OHCs play a key role in cochlear amplification, it is not fully understood how they amplify sound signals by more than 100 fold. Two competing or possibly complementary mechanisms, stereocilia-based and somatic electromotility-based amplification, have been considered. Lacking knowledge about the exceptionally rich protein networks in the OHC plasma membrane, as well as related protein-protein interactions, limits our understanding of cochlear function. Therefore, we focused on finding protein partners for two important membrane proteins: Cadherin 23 (cdh23 and prestin. Cdh23 is one of the tip-link proteins involved in transducer function, a key component of mechanoelectrical transduction and stereocilia-based amplification. Prestin is a basolateral membrane protein responsible for OHC somatic electromotility. Results Using the membrane-based yeast two-hybrid system to screen a newly built cDNA library made predominantly from OHCs, we identified two completely different groups of potential protein partners using prestin and cdh23 as bait. These include both membrane bound and cytoplasmic proteins with 12 being de novo gene products with unknown function(s. In addition, some of these genes are closely associated with deafness loci, implying a potentially important role in hearing. The most abundant prey for prestin (38% is composed of a group of proteins involved in electron transport, which may play a role in OHC survival. The most abundant group of cdh23 prey (55% contains calcium-binding domains. Since calcium performs an important role in hair cell mechanoelectrical transduction and amplification, understanding the interactions between cdh23 and calcium-binding proteins should increase our knowledge of hair cell function at the molecular level. Conclusion The results of this study shed light on some protein networks in cochlear hair cells. Not only was a group of de novo genes closely associated

  14. Age-related decrease in the proportion of germinal center B cells from mouse Peyer's patches is accompanied by an accumulation of somatic mutations in their immunoglobulin genes.

    Science.gov (United States)

    González-Fernández, A; Gilmore, D; Milstein, C

    1994-11-01

    Somatic hypermutation of immunoglobulin genes and the generation of memory B cells seems to take place in germinal centers, which are chronically present in Peyer's patches. Age-associated changes in the germinal center B cell compartment of Peyer's patches and in the mutations of a kappa light chain transgene were analyzed in unimmunized mice. Somatic mutations accumulate in germinal center B cells slowly and continuously to reach an apparent plateau when the animals are around 5 months old. In contrast, the proportion of germinal center B cells reaches a maximum in very young mice (about 2 months old) and decreases progressively thereafter. These results suggest that the highly mutated B cells in older mice arise by the successive accumulation of mutations in memory cells. The data also show that the optimum time for the analysis of hypermutation of transgenes in Peyer's patches is when the mice are about 5 months old.

  15. Effects of atmospheric pollutants on somatic and germ cells of Tradescantia pallida (Rose D.R. HUNT cv. purpurea

    Directory of Open Access Journals (Sweden)

    BRUNO A. CRISPIM

    2014-12-01

    Full Text Available Anatomical alterations in leaves and DNA damage in cells caused by the accumulation of atmospheric pollutants can be measured by epidermal leaf analyses and Tradescantia micronuclei assay with early pollen tetrad cells. The present study examined the feasibility of using somatic and germ cells of Tradescantia pallida for biomonitoring purposes in the city of Dourados, state of Mato Grosso do Sul (MS, Brazil. Stomatal, micronucleus and epidermal leaf analyses were performed, using standard methodologies, on plants growing at three locations during six different time periods. Tradescantia micronuclei data were analyzed using SAS 9.2 software package and stomatal data were analyzed using SANEST software. Analyses of stomatal characteristics and micronuclei examination in T. pallida were found to be an efficient tool for monitoring atmospheric pollution. The micronucleus assay suggested that the number of micronuclei in early pollen tetrad cells was related to the intensity of vehicular traffic. Increased number of epidermal cells and stomata and increased stomatal density observed at locations with greater vehicular traffic are likely physiological responses of those plants to the increased gas exchange in highly polluted environments.

  16. Hope for restoration of dead valuable bulls through cloning using donor somatic cells isolated from cryopreserved semen.

    Science.gov (United States)

    Selokar, Naresh L; Saini, Monika; Palta, Prabhat; Chauhan, Manmohan S; Manik, Radheysham; Singla, Suresh K

    2014-01-01

    Somatic cells were isolated from cryopreserved semen of 4 buffalo bulls, 3 of which had died over 10 years earlier, and were established in culture. The cells expressed cytokeratin-18, keratin and vimentin indicating that they were of epithelial origin. The cells were used as nuclear donors for hand-made cloning for producing buffalo embryos. The blastocyst rate and quality, as indicated by apoptotic index, were comparable among embryos produced using cells obtained from fresh or frozen-thawed semen or those obtained from conventional cell sources such as skin. Examination of the epigenetic status revealed that the global level of H3K27me3 but not that of H3K9/14ac and H4K5ac differed significantly (Pcloned embryos from different bulls. The relative mRNA abundance of HDAC1, DNMT1, P53 and CASPASE 3 but not that of DNMT3a differed in cells and in cloned embryos. Following transfer of 24 cloned embryos produced from fresh semen-derived cells to 12 recipients, one calf weighing 55 kg, which is now 6 months of age and is normal, was born through normal parturition. Following transfer of 20 embryos produced from frozen-thawed semen-derived cells to 10 recipients, 2 became pregnant, one of which aborted in the first trimester; the calf born was severely underweight (17 kg), and died 12 h after birth. The ability of cells derived from fresh and frozen-thawed semen to produce live offspring confirms the ability of these cells to be reprogrammed. Our findings pave the way for restoration of highly precious progeny-tested bulls, which has immense economic importance, and can also be used for restoration of endangered species.

  17. Positive effects of treatment of donor cells with aphidicolin on the preimplantation development of somatic cell nuclear transfer embryos in Chinese Bama mini-pig (Sus Scrofa).

    Science.gov (United States)

    Zhang, Ting-Yu; Dai, Jian-Jun; Wu, Cai-Feng; Gu, Xiao-Long; Liu, Liang; Wu, Zhi-Qiang; Xie, Yi-Ni; Wu, Bin; Chen, Hui-Lan; Li, Yao; Chen, Xue-Jin; Zhang, De-Fu

    2012-02-01

    To optimize somatic cell nuclear transfer (SCNT) procedures in mini-pigs, the present study was designed to examine the effects of donor cell types and aphidicolin (APC) treatment on in vitro development of reconstructed embryos. Oviduct epithelial cells (OEC), ear fibroblast cells (EFC) and cumulus cells (CC) derived from mini-pigs were treated with serum starvation only or serum starvation followed by treatment of 0.1 µg/mL APC. The reconstructed embryos were cultured for 7 days to evaluate their developmental competency. Cleavage and blastocyst formation rates of reconstructed embryos derived from the OEC by APC treatment were significantly higher than the serum starvation (61.82% vs. 56.25%, 24.55% vs. 17.86%; P cell types. Therefore, our results suggest that treatment of CC with serum starvation plus APC prior to nuclear transfer is more suitable in SCNT of mini-pigs.

  18. Direct reprogramming of adult somatic cells towards adventitious root formation in forest tree species: the effect of the juvenile-adult transition

    Directory of Open Access Journals (Sweden)

    Carmen eDiaz-Sala

    2014-07-01

    Full Text Available Cellular plasticity refers, among others, to the capability of differentiated cells to switch the differentiation process and acquire new fates. One way by which plant cell plasticity is manifested is through de novo regeneration of organs from somatic differentiated cells in an ectopic location. However, switching the developmental program of adult cells prior to organ regeneration is difficult in many plant species, especially in forest tree species. In these species, a decline in the capacity to regenerate shoots, roots or embryos from somatic differentiated cells is associated with tree age and maturation. The decline in the ability to form adventitious roots from stem cuttings is one of the most dramatic effects of maturation, and has been the subject of investigations on the basic nature of the process. Cell fate switches, both in plants and animals, are characterized by remarkable changes in the pattern of gene expression, as cells switch from the characteristic expression pattern of a somatic cell to a new one directing a new developmental pathway. Therefore, determining the way by which cells reset their gene expression pattern is crucial to understand cellular plasticity. The presence of specific cellular signalling pathways or tissue-specific factors underlying the establishment, maintenance and redirection of gene expression patterns in the tissues involved in adventitious root formation could be crucial for cell fate switch and for the control of age-dependent cellular plasticity.

  19. Derivation of factors to estimate daily, fat, protein, and somatic cell score from one milking of cows milked three times daily

    Science.gov (United States)

    The objective was to derive factors to predict daily fat (F) and protein (P) yield and somatic cell score (SCS) when milk is sampled once per d for cows milked three times (3x) per d. Daily milk weights were recorded automatically and samples were collected from 8 herds for each milking on test-day ...

  20. Genetic parameters for somatic cell score according to udder infection status in Valle del Belice dairy sheep and impact of imperfect diagnosis of infection.

    NARCIS (Netherlands)

    Riggio, V.; Portolano, B.; Bovenhuis, H.; Scatassa, S.; Bishop, S.C.

    2010-01-01

    Background Somatic cell score (SCS) has been promoted as a selection criterion to improve mastitis resistance. However, SCS from healthy and infected animals may be considered as separate traits. Moreover, imperfect sensitivity and specificity could influence animals' classification and impact on es

  1. Genetic parameters for somatic cell score according to udder infection status in Valle del Belice dairy sheep and impact of imperfect diagnosis of infection

    NARCIS (Netherlands)

    Riggio, V.; Portolano, B.; Bovenhuis, H.; Scatassa, S.; Caracappa, S.; Bishop, S.C.

    2011-01-01

    BACKGROUND: Somatic cell score (SCS) has been promoted as a selection criterion to improve mastitis resistance. However, SCS from healthy and infected animals may be considered as separate traits. Moreover, imperfect sensitivity and specificity could influence animals' classification and impact on e

  2. Correlation between somatic cell count and chemical composition of cooled raw milk in properties of Rio Grande do Norte, Brazil

    Directory of Open Access Journals (Sweden)

    Adriano Henrique do Nascimento Rangel

    2014-06-01

    Full Text Available Due to the damage caused by subclinical mastitis in loss of production and quality of milk, the present study aimed to verify the correlation between somatic cell count (SCC and the chemical composition of cooled raw milk collected in the Agreste region of Rio Grande do Norte, Brazil, in drought and rain seasons. Samples were collected in seven dairy farms during morning time, between January 2010 and March 2012, and sent to the Brazilian et of Milk Quality Laboratory (ESALQ/USP. The contents of protein, fat, lactose, casein, total solids, nonfat dry extract and urea nitrogen, besides of SCC and total bacterial count were performed. Data were submitted to analysis of variance, correlation analysis and comparison of means by Tuckey test , 5%. The average SCC was 604,000 cells/mL and had significant variation in the dry period (558 000 cells/mL and rainy (650 000 cells/mL. The SCC was positively correlated with fat and total solids but negatively with the lactose cow’s milk of bulk tank, regardless of the season in the Agreste of Rio Grande do Norte.

  3. Activation of the LMO2 oncogene through a somatically acquired neomorphic promoter in T-cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Rahman, Sunniyat; Magnussen, Michael; León, Theresa E; Farah, Nadine; Li, Zhaodong; Abraham, Brian J; Alapi, Krisztina Z; Mitchell, Rachel J; Naughton, Tom; Fielding, Adele K; Pizzey, Arnold; Bustraan, Sophia; Allen, Christopher; Popa, Teodora; Pike-Overzet, Karin; Garcia-Perez, Laura; Gale, Rosemary E; Linch, David C; Staal, Frank J T; Young, Richard A; Look, A Thomas; Mansour, Marc R

    2017-03-07

    Somatic mutations within non-coding genomic regions that aberrantly activate oncogenes have remained poorly characterized. Here we describe recurrent activating intronic mutations of LMO2, a prominent oncogene in T-cell acute lymphoblastic leukemia (T-ALL). Heterozygous mutations were identified in PF-382 and DU.528 T-ALL cell lines, in addition to 3.7% (6/160) of pediatric and 5.5% (9/163) of adult T-ALL patient samples. The majority of indels harbour putative de novo MYB, ETS1 or RUNX1 consensus binding sites. Analysis of 5'-capped RNA transcripts in mutant cell lines identified the usage of an intermediate promoter site, with consequential monoallelic LMO2 overexpression. CRISPR/Cas9-mediated disruption of the mutant allele in PF-382 cells markedly downregulated LMO2 expression, establishing clear causality between the mutation and oncogene dysregulation. Furthermore, the spectrum of CRISPR/Cas9-derived mutations provide important insights into the interconnected contributions of functional transcription factor binding. Finally, these mutations occur in the same intron as retroviral integration sites in gene therapy induced T-ALL, suggesting that such events occur at preferential sites in the non-coding genome.

  4. Production of hGFAP-DsRed transgenic Guangxi Bama mini-pigs via somatic cell nuclear transfer.

    Science.gov (United States)

    Hu, L L; Lu, Y Q; Xu, H Y; Yang, X G; Lu, S S; Lu, K H

    2015-12-08

    The mini-pig is a useful animal model for human biomedical research due to its physiological similarity to humans and the ease of handling. In order to optimize the efficiency of production of transgenic Bama mini-pigs through somatic cell nuclear transfer (SCNT), we examined the effects of contact inhibition, roscovitine treatment, and serum starvation on the cell cycle synchronization and transgenic cloned embryo development in vivo and in vitro after nuclear transfer. The analysis showed that the rates of G0/G1 stage cells in the contact inhibition (92.11%) and roscovitine treatment groups (89.59%) were significantly higher than in serum starvation group (80.82%). A higher rate of apoptosis was seen in the serum starvation group (14.13%) compared to the contact inhibition and roscovitine treatment groups (6.71 and 2.46% respectively, P transferred to surrogate sows; one pregnancy was established and three embryos from the roscovitine treatment group successfully completed gestation. These results indicate that the roscovitine treatment was more effective at synchronizing transgenic kidney cells in Bama mini-pigs and allowed reconstructed embryos to develop to full term.

  5. Effects of trichostatin A on histone acetylation and methylation characteristics in early porcine embryos after somatic cell nuclear transfer.

    Science.gov (United States)

    Cong, Peiqing; Zhu, Kongju; Ji, Qianqian; Zhao, Haijing; Chen, Yaosheng

    2013-09-01

    Until now, the efficiency of animal cloning by somatic cell nuclear transfer (SCNT) has remained low. Efforts to improve cloning efficiency have demonstrated a positive role of trichostatin A (TSA), an inhibitor of deacetylases, on the development of nuclear transfer (NT) embryos in many species. Here, we report the effects of TSA on pre-implantation development of porcine NT embryos. Our results showed that treatment of reconstructed porcine embryos with 50 nmol/L TSA for 24 h after activation significantly improved the production of blastocysts (P cells with the same solution resulted in increases in cleavage rates and blastomere numbers (P cells and SCNT embryos did not improve blastocyst production, nor did it increase blastomere numbers. Using indirect immunofluorescence, we found that TSA treatment of NT embryos could improve the reprogramming of histone acetylation at lysine 9 of histone 3 (H3K9) and affect nuclear swelling of transferred nuclei. However, no apparent effect of TSA treatment on H3K9 dimethylation (H3K9me2) was observed. These findings suggest a positive effect of TSA treatment (either treating NT embryos or donor cells) on the development of porcine NT embryos, which is achieved by improving epigenetic reprogramming.

  6. Influence of somatic cell donor breed on reproductive performance and comparison of prenatal growth in cloned canines.

    Science.gov (United States)

    Jeong, Yeon Woo; Kim, Joung Joo; Hossein, Mohammad Shamim; Hwang, Kyu Chan; Hwang, In-sung; Hyun, Sang Hwan; Kim, Nam-Hyung; Han, Ho Jae; Hwang, Woo Suk

    2014-06-01

    Using in vivo-flushed oocytes from a homogenous dog population and subsequent embryo transfer after nuclear transfer, we studied the effects of donor cells collected from 10 different breeds on cloning efficiency and perinatal development of resulted cloned puppies. The breeds were categorized into four groups according to their body weight: small (≤9 kg), medium (>9-20 kg), large (>20-40 kg), and ultra large (>40 kg). A total of 1611 cloned embryos were transferred into 454 surrogate bitches for production of cloned puppies. No statistically significant differences were observed for initial pregnancy rates at Day 30 of embryo transfer for the donor cells originated from different breeds. However, full-term pregnancy rates were 16.5%, 11.0%, 10.0%, and 7.1% for the donor cells originated from ultra-large breed, large, medium, and small breeds, respectively, where pregnancy rate in the ultra-large group was significantly higher compared with the small breeds (P transferred and litter size. Taken together, the efficiency of somatic cell cloning and fetal survival after embryo transfer may be affected significantly by selecting the appropriate genotype.

  7. DNA ligase III and DNA ligase IV carry out genetically distinct forms of end joining in human somatic cells.

    Science.gov (United States)

    Oh, Sehyun; Harvey, Adam; Zimbric, Jacob; Wang, Yongbao; Nguyen, Thanh; Jackson, Pauline J; Hendrickson, Eric A

    2014-09-01

    Ku-dependent C-NHEJ (classic non-homologous end joining) is the primary DNA EJing (end joining) repair pathway in mammals. Recently, an additional EJing repair pathway (A-NHEJ; alternative-NHEJ) has been described. Currently, the mechanism of A-NHEJ is obscure although a dependency on LIGIII (DNA ligase III) is often implicated. To test the requirement for LIGIII in A-NHEJ we constructed a LIGIII conditionally-null human cell line using gene targeting. Nuclear EJing activity appeared unaffected by a deficiency in LIGIII as, surprisingly, so were random gene targeting integration events. In contrast, LIGIII was required for mitochondrial function and this defined the gene's essential activity. Human Ku:LIGIII and Ku:LIGIV (DNA ligase IV) double knockout cell lines, however, demonstrated that LIGIII is required for the enhanced A-NHEJ activity that is observed in Ku-deficient cells. Most unexpectedly, however, the majority of EJing events remained LIGIV-dependent. In conclusion, although human LIGIII has an essential function in mitochondrial maintenance, it is dispensable for most types of nuclear DSB repair, except for the A-NHEJ events that are normally suppressed by Ku. Moreover, we describe that a robust Ku-independent, LIGIV-dependent repair pathway exists in human somatic cells.

  8. Induction of differentiation by down-regulation of Nanog and Rex-1 in cord blood derived unrestricted somatic stem cells.

    Science.gov (United States)

    Langroudi, Lida; Forouzandeh, Mehdi; Soleimani, Masoud; Atashi, Amir; Golestaneh, Azadeh Fahim

    2013-07-01

    Stem cells with high self-renewal and tissue regeneration potentials are the core components of regenerative medicine. Adult stem cells with many available sources, high repairing ability, and also possessing no ethical issues are popular candidates in the clinical field. In this study we looked upon the effects of two transcription factors Nanog and Rex-1 in self-renewal and differentiation abilities of a subpopulation of cord blood stem cells known as unrestricted somatic stem cells (USSCs). USSCs were expanded and transfected in vitro with siRNAs targeting either Nanog, Rex-1, and in combination. Gene suppressions were achieved at both transcript and proteome level. Differentiations were evaluated by specific Real time PCR and differentiating staining. Nanog knock down revealed a significant increase in osteogenic markers, Osteocalcin and Osteopontin expression as well as a positive Alizarin Red staining, which proposes Osteogenesis. This treatment also became positive for Oil Red staining, implying adipogenic differentiation as well. In contrast, Rex-1 knock down showed an increase in MAP II and Nestin expression, which is a hall mark of neural differentiation. Surprisingly, treatment with both siRNAs did not express any changes in any of the assessed markers. Therefore, our results indicated a bilateral mesenchymal differentiation for Nanog and a neural lineage fate for Rex-1 suppression. Considering that both transcription factors are core activators of self-renewal and also are orchestrating with other factors, our results imply a positive feedback in response to changes in the regulatory network of self-renewal.

  9. Antimutagenic and antirecombinagenic activities of noni fruit juice in somatic cells of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    LEONARDO P. FRANCHI

    2013-06-01

    Full Text Available Noni, a Hawaiian name for the fruit of Morinda citrifolia L., is a traditional medicinal plant from Polynesia widely used for the treatment of many diseases including arthritis, diabetes, asthma, hypertension and cancer. Here, a commercial noni juice (TNJ was evaluated for its protective activities against the lesions induced by mitomycin C (MMC and doxorrubicin (DXR using the Somatic Mutation and Recombination Test (SMART in Drosophila melanogaster. Three-day-old larvae, trans-heterozygous for two genetic markers (mwh and flr3 , were co-treated with TNJ plus MMC or DXR. We have observed a reduction in genotoxic effects of MMC and DXR caused by the juice. TNJ provoked a marked decrease in all kinds of MMC- and DXR-induced mutant spots, mainly due to its antirecombinagenic activity. The TNJ protective effects were concentration-dependent, indicating a dose-response correlation, that can be attributed to a powerful antioxidant and/or free radical scavenger ability of TNJ.

  10. Assessment of the mutagenic, recombinagenic and carcinogenic potential of orlistat in somatic cells of Drosophila melanogaster.

    Science.gov (United States)

    Orsolin, P C; Silva-Oliveira, R G; Nepomuceno, J C

    2012-08-01

    In this study the mutagenic, recombinagenic, carcinogenic and anticarcinogenic potential of orlistat was assessed using the somatic mutation and recombination test (SMART) and the epithelial tumor detection test (wts). The experiments were conducted on Drosophila melanogaster. In the assessment using SMART, larvae, descendants from the standard (ST) cross and the high bioactivation (HB) cross, were treated chronically with three orlistat concentrations. The results revealed a recombinagenic effect, associated with orlistat, in the descendants of the HB cross, at all three levels of concentration. Homologous recombination can function as a determinant at different stages of carcinogenesis. For verification, larvae from the wts test, descendants of the wts/TM3 virgin female and mwh/mwh male cross, were treated with the same three orlistat concentrations separately and in association with mitomicin C (0.1mM). The results did not, however, provide evidence that orlistat has carcinogenic potential nor was it associated with the reduction of tumors induced by mitomicin C in D. melanogaster.

  11. Characteristics of the somatic hypermutation in the Camelus dromedarius T cell receptor gamma (TRG) and delta (TRD) variable domains.

    Science.gov (United States)

    Ciccarese, Salvatrice; Vaccarelli, Giovanna; Lefranc, Marie-Paule; Tasco, Gianluca; Consiglio, Arianna; Casadio, Rita; Linguiti, Giovanna; Antonacci, Rachele

    2014-10-01

    In previous reports, we had shown in Camelus dromedarius that diversity in T cell receptor gamma (TRG) and delta (TRD) variable domains can be generated by somatic hypermutation (SHM). In the present paper, we further the previous finding by analyzing 85 unique spleen cDNA sequences encoding a total of 331 mutations from a single animal, and comparing the properties of the mutation profiles of dromedary TRG and TRD variable domains. The transition preference and the significant mutation frequency in the AID motifs (dgyw/wrch and wa/tw) demonstrate a strong dependence of the enzymes mediating SHM in TRG and TRD genes of dromedary similar to that of immunoglobulin genes in mammals. Overall, results reveal no asymmetry in the motifs targeting, i.e. mutations are equally distributed among g:c and a:t base pairs and replacement mutations are favored at the AID motifs, whereas neutral mutations appear to be more prone to accumulate in bases outside of the motifs. A detailed analysis of clonal lineages in TRG and TRD cDNA sequences also suggests that clonal expansion of mutated productive rearrangements may be crucial in shaping the somatic diversification in the dromedary. This is confirmed by the fact that our structural models, computed by adopting a comparative procedure, are consistent with the possibility that, irrespective of where (in the CDR-IMGT or in FR-IMGT) the diversity was generated by mutations, both clonal expansion and selection seem to be strictly related to an enhanced structural stability of the γδ subunits.

  12. Effects of different nuclear transfer and activation methods on the development of mouse somatic cell cloned embryos

    Institute of Scientific and Technical Information of China (English)

    Wang ErYao; YU Yang; Li XueMei; JIAO LiHong; Wang Liu

    2007-01-01

    A group of adult somatic cell cloned mice were obtained by using cumulus cells as nuclei donor cells. To study the effect of different nuclear transfer (NT) and activation methods on the development of mouse cloned embryos, embryos were reconstructed using two traditional NT methods (electrofusion and direct injection) and four activation treatments (electric pulse, ethanol, SrCl2 and electric pulse combined with SrCl2). The data showed that the efficiency of reconstruction using the direct injection method is significantly higher (90.7%) than that of the electrofusion method (49.7%). Parthenogenetic embryos can develop to blastocyst stage with three activation conditions, including ethanol, electric pulse and SrCl2; however, the rates of development to blastocyst after ethanol and electric pulse activation (52.4%, 54.2%) are significantly lower than after SrCl2 activation (76.9%). Treatment of embryos for 6 h with 10 mmol/L SrCl2 was found to be the best condition for activation of parthenogenetic as well as reconstructed embryos. By contrast, reconstructed embryos failed to develop to blastocyst stage after being activated by ethanol. The use of either injection or electrofusion for embryo reconstruction affected the pre-implantation development. However, after transfer in pseudopregnant mice, cloned mice were obtained from both methods.

  13. An investigation on somatic cell count in milk samples collected from dairy farms at Tabriz region of Iran

    Directory of Open Access Journals (Sweden)

    Rahim Beheshti,

    2011-08-01

    Full Text Available The aim of present study was somatic cell count in milk samples collected from dairy farms at Tabriz region, Northwest of Iran. Three flocks selected based on high productivity and similar characteristics (use of family labour, Holstein herds and average production between upper than 11 kg/cow/day. Milk samples obtained from three parity classes were collect individually from the cows in the second and fifth month of lactation in two seasons: autumn-winter and spring-summer. Results show higher SCC for dairy cattle with second or upper milking. Cows at fifth or upper lactation period had 1000- 5000 ×103 cells/ml commonly but at first lactation there was no any cow with 1000-2500 ×103 cells/ml. In conclusion, incidence of high SCC rate (1000-5000×103 is considerably high during fifth or upper parity but 250 to 750 ×103 SCC cows are considerably low in number compared with first parity cows. Cows at first lactation commonly had 250-500×103 SCC at Tabriz regional farms.

  14. DNMT3B isoforms without catalytic activity stimulate gene body methylation as accessory proteins in somatic cells.

    Science.gov (United States)

    Duymich, Christopher E; Charlet, Jessica; Yang, Xiaojing; Jones, Peter A; Liang, Gangning

    2016-04-28

    Promoter DNA methylation is a key epigenetic mechanism for stable gene silencing, but is correlated with expression when located in gene bodies. Maintenance and de novo DNA methylation by catalytically active DNA methyltransferases (DNMT1 and DNMT3A/B) require accessory proteins such as UHRF1 and DNMT3L. DNMT3B isoforms are widely expressed, although some do not have active catalytic domains and their expression can be altered during cell development and tumourigenesis, questioning their biological roles. Here, we show that DNMT3B isoforms stimulate gene body methylation and re-methylation after methylation-inhibitor treatment. This occurs independently of the isoforms' catalytic activity, demonstrating a similar functional role to the accessory protein DNMT3L, which is only expressed in undifferentiated cells and recruits DNMT3A to initiate DNA methylation. This unexpected role for DNMT3B suggests that it might substitute for the absent accessory protein DNMT3L to recruit DNMT3A in somatic cells.

  15. Efficient production of omega-3 fatty acid desaturase (sFat-1)-transgenic pigs by somatic cell nuclear transfer

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Omega-3(ω-3) fatty acid desaturase transgenic pigs may improve carcass fatty acid composition. The use of transgenic pigs is also an excellent large animal model for studying the role of ω-3 fatty acids in the prevention and treatment of coronary heart disease and cancer. Transgenic pigs carrying synthesized fatty acid desaturase-1 gene (sFat-1) from Caenorhabditis briggsae by somatic cell nuclear transfer (SCNT) were produced for the first time in China. Porcine fetal fibroblast cells were transfected with a sFat-1 expression cassette by the liposome-mediated method. Transgenic embryos were reconstructed by nuclear transfer of positive cells into enucleated in vitro matured oocytes. A total of 1889 reconstructed embryos were transferred into 10 naturally cycling gilts. Nine early pregnancies were established, 7 of which went to term. Twenty-one piglets were born. The cloning efficiency was 1.1% (born piglets/transferred embryos). The integration of the sFat-1 gene was confirmed in 15 live cloned piglets by PCR and Southern blot except for 2 piglets. Expression of the sFat-1 gene in 12 of 13 piglets was detected with RT-PCR. The data demonstrates that an efficient system for sFat-1 transgenic cloned pigs was developed, which led to the successful production of piglets expressing the sFat-1 gene.

  16. Expression of human factor IX in rat capillary endothelial cells: Toward somatic gene therapy for hemophilia B

    Energy Technology Data Exchange (ETDEWEB)

    Shounan Yao; Wilson, J.M.; Nabel, E.G.; Kurachi, Sumiko; Hachiya, H.L.; Kurachi, Kotoku (Univ. of Michigan, Ann Arbor (United States))

    1991-09-15

    In aiming to develop a gene therapy approach for hemophilia B, the authors expressed and characterized human factor IX in rat capillary endothelial cells (CECs). Moloney murine leukemia virus-derived retrovirus vectors that contain human factor IX cDNA linked to heterologous promoters and the neomycin-resistant gene were constructed and employed to prepare recombinant retroviruses. Rat CECs and NIH 3T3 cells infected with these viruses were selected with the neomycin analogue, G418 sulfate, and tested for expression of factor IX. A construct with the factor IX cDNA under direct control by long terminal repeat gave the highest level of expression as quantitated by immunoassays as well as clotting activity assays. A single RNA transcript of 4.4 kilobases predicted by the construct and a recombinant factor IX were found. The recombinant human factor IX produced showed full clotting activity, demonstrating that CECs have an efficient mechanism for posttranslational modifications, including {gamma}-carboxylation, essential for its biological activity. These results, in addition to other properties of the endothelium, including large number of cells, accessibility, and direct contact with the circulating blood, suggest that CECs can serve as an efficient drug delivery vehicle producing factor IX in a somatic gene therapy for hemophilia B.

  17. Efficient production of omega-3 fatty acid desaturase (sFat-1)-transgenic pigs by somatic cell nuclear transfer.

    Science.gov (United States)

    Pan, DengKe; Zhang, Li; Zhou, YanRong; Feng, Chong; Long, Chuan; Liu, Xiao; Wan, Rong; Zhang, Jian; Lin, AiXing; Dong, EnQiu; Wang, ShuChen; Xu, HouGang; Chen, HongXing

    2010-04-01

    Omega-3(omega-3) fatty acid desaturase transgenic pigs may improve carcass fatty acid composition. The use of transgenic pigs is also an excellent large animal model for studying the role of omega-3 fatty acids in the prevention and treatment of coronary heart disease and cancer. Transgenic pigs carrying synthesized fatty acid desaturase-1 gene (sFat-1) from Caenorhabditis briggsae by somatic cell nuclear transfer (SCNT) were produced for the first time in China. Porcine fetal fibroblast cells were transfected with a sFat-1 expression cassette by the liposome-mediated method. Transgenic embryos were reconstructed by nuclear transfer of positive cells into enucleated in vitro matured oocytes. A total of 1889 reconstructed embryos were transferred into 10 naturally cycling gilts. Nine early pregnancies were established, 7 of which went to term. Twenty-one piglets were born. The cloning efficiency was 1.1% (born piglets/transferred embryos). The integration of the sFat-1 gene was confirmed in 15 live cloned piglets by PCR and Southern blot except for 2 piglets. Expression of the sFat-1 gene in 12 of 13 piglets was detected with RT-PCR. The data demonstrates that an efficient system for sFat-1 transgenic cloned pigs was developed, which led to the successful production of piglets expressing the sFat-1 gene.

  18. Regulation of the DNA Methylation Landscape in Human Somatic Cell Reprogramming by the miR-29 Family

    Directory of Open Access Journals (Sweden)

    Eriona Hysolli

    2016-07-01

    Full Text Available Reprogramming to pluripotency after overexpression of OCT4, SOX2, KLF4, and MYC is accompanied by global genomic and epigenomic changes. Histone modification and DNA methylation states in induced pluripotent stem cells (iPSCs have been shown to be highly similar to embryonic stem cells (ESCs. However, epigenetic differences still exist between iPSCs and ESCs. In particular, aberrant DNA methylation states found in iPSCs are a major concern when using iPSCs in a clinical setting. Thus, it is critical to find factors that regulate DNA methylation states in reprogramming. Here, we found that the miR-29 family is an important epigenetic regulator during human somatic cell reprogramming. Our global DNA methylation and hydroxymethylation analysis shows that DNA demethylation is a major event mediated by miR-29a depletion during early reprogramming, and that iPSCs derived from miR-29a depletion are epigenetically closer to ESCs. Our findings uncover an important miRNA-based approach to generate clinically robust iPSCs.

  19. Genotoxic damage induced by isopropanol in germinal and somatic cells of Drosophila melanogaster.

    Science.gov (United States)

    Palermo, Ana María; Mudry, Marta Dolores

    2011-12-24

    Isopropanol (isopropyl alcohol, 2-propanol, IPA) is a volatile solvent widely used in domestic or industrial environments and reported as innocuous in various test systems. The aim of this work was to search for in vivo genotoxic effects of IPA in Drosophila melanogaster, studying its ability to induce nondisjunction (ND) in females, sex linked recessive lethals (SLRL) in males, and somatic mutation and/or recombination (SMART) in larvae. Treatments were acute (60min) and were administered via inhalation. IPA had low toxicity in adult flies (75% IPA mortality index, MI=12.7% (females) and 2.6% (males)) and larvae (MI=14.3%, 75% IPA). Female fertility was severely affected during the first 24h (brood I, BI) after treatment, but, afterwards, control values were recovered. IPA induced a 50-fold increase of ND (%) in 24h old females, and a six-fold rise in 4-5 d old BI offspring. Nondisjunction frequencies (%) in the offspring of broods II to V (24h in each case) were similar to control values. IPA doses of 25% and 50% (v/v), tested in 24h old females, showed a significant dose-dependent increase of ND(%)in BI only, with control values in subsequent broods. Flies gave normal offspring when kept in regular media for 24h before mating. The eye spot test (SMART) showed a significant increase at 50% IPA (p<0.05, m=2), but the response was not dose-dependent. IPA failed to induce SLRL in any of the spermatogenesis stages tested. These findings suggest that the main effect of IPA is to induce chromosomal malsegregation; IPA must be present at the resumption of M-phase I after fertilization, to exert these effects. The alcohol does not affect DNA directly, but perturbations of the nuclear membrane may be responsible for induction of ND.

  20. The number of oogonia and somatic cells in the human female embryo and fetus in relation to whether or not exposed to maternal cigarette smoking

    DEFF Research Database (Denmark)

    Lutterodt, M C; Sørensen, K P; Larsen, K B

    2009-01-01

    of in utero exposure to cigarette smoking. METHODS: Twenty-nine human first-trimester ovaries from legal abortions [aged 38-64 days post-conception (p.c.)] were collected. Mothers filled out a questionnaire about their smoking habits and delivered a urine sample for cotinine analysis. The ovarian cell numbers...... were estimated using stereological methods. RESULTS: A non-linear correlation between the numbers of oogonia and somatic cells in relation to age of the embryo/fetus was shown in 28 ovaries, including the first estimates performed in ovaries younger than 47 days p.c. Prenatal exposure to smoke showed...... a significant decrease in the number of somatic cells (P cell types decreased considerably from 1:45 to 1:23 from 38 to 46 days p.c. and was not affected...

  1. Distribution of cells labelled by a novel somatic stem cell-recognizing antibody (A3) in pulmonary genesis and bleomycin induced pulmonary fibrosis in rats.

    Science.gov (United States)

    Hori, M; Juniantito, V; Izawa, T; Ichikawa, C; Tanaka, M; Tanaka, K; Takenaka, S; Kuwamura, M; Yamate, J

    2013-05-01

    Stem cells play important roles in organogenesis and remodelling after tissue injury. A monoclonal antibody (A3) has been produced against rat somatic stem cells. The present study investigated the distribution of cells labelled by A3 in the lung of fetal, neonatal and adult rats, as well as in the lung of rats with bleomycin (BLM) induced pulmonary fibrosis. In developing fetal lungs, A3(+) interstitial cells were present around the bronchi/bronchioles and arterioles, while in neonatal and adult lungs, the A3 reactivity of the interstitial cells gradually disappeared and instead, vascular endothelial cells in alveolar capillaries and arterioles expressed A3. By double immunofluorescence labelling, the A3(+) interstitial cells also expressed vimentin (a mesenchymal marker) and CD34 (a marker of immature mesenchymal cells), indicating that the interstitial cells were immature mesenchymal cells concentrated in organs as precursors to cells of connective tissues. A3(+)endothelial cells were co-expressed RECA-1 (a marker of rat endothelial cells) and A3 was localized to the cell membrane and cytoplasm of these cells by immunoelectron microscopy. In BLM induced fibrotic lesions, there were many A3(+) cells, which also expressed vimentin or RECA-1 by dual immunofluorescence labelling. There were few CD34(+)/A3(+) double positive cells. No cells co-expressed A3 and α-smooth muscle actin (a marker of well-differentiated myofibroblastic cells). Although the detailed properties of cells labelled by A3 remain to be discovered, A3 would appear to be a useful marker of immature mesenchymal cells and vascular endothelial cells in developing lungs and in pulmonary fibrosis.

  2. Toxicity of silver nanoparticles in mouse embryonic stem cells and chemical based reprogramming of somatic cells to sphere cells

    Science.gov (United States)

    Rajanahalli Krishnamurthy, Pavan

    Abstract 1: Silver nanoparticles (Ag Np's) have an interesting surface chemistry and unique plasmonic properties. They are used in a wide variety of applications ranging from consumer products like socks, medical dressing, computer chips and it is also shown to have antimicrobial, anti bacterial activity and wound healing. Ag Np toxicity studies have been limited to date which needs to be critically addressed due to its wide applications. Mouse embryonic stem (MES) cells represent a unique cell population with the ability to undergo both self renewal and differentiation. They exhibit very stringent and tightly regulated mechanisms to circumvent DNA damage and stress response. We used 10 nm coated (polysaccharide) and uncoated Ag Np's to test its toxic effects on MES cells. MES cells and embryoid bodies (EB's) were treated with two concentrations of Ag Np's: 5 microg/ml and 50 ug/ml and exposed for 24, 48 and 72 hours. Increased cell death, ROS production and loss of mitochondrial membrane potential and alkaline phosphatase (AP) occur in a time and a concentration dependant manner. Due to increased cell death, there is a progressive increase in Annexin V (apoptosis) and Propidium Iodide (PI) staining (necrosis). Oct4 and Nanog undergo ubiquitination and dephosphorylation post-translational modifications in MES cells thereby altering gene expression of pluripotency factors and differentiation of EB's into all the three embryonic germ layers with specific growth factors were also inhibited after Ag Np exposure. Flow cytometry analysis revealed Ag Np's treated cells had altered cell cycle phases correlating with altered self renewal capacity. Our results suggest that Ag Np's effect MES cell self renewal, pluripotency and differentiation and serves as a perfect model system for studying toxicity induced by engineered Ag Np's. Abstract 2: The reprogramming of fibroblasts to pluripotent stem cells and the direct conversion of fibroblasts to functional neurons has been

  3. Assignment of heregulin (HGL) to human chromosome 8p22-p11 by PCR analysis of somatic cell hybrid DNA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.; Wood, W.I. (Genentech, Inc., South San Francisco, CA (United States))

    1993-06-01

    Heregulin is a recently described ligand and specific activator of the receptor tyrosine kinase designated HER2 (also called erbB2 or neu). Heregulin is a secreted 45-kDa protein that contains a region with amino acid sequence similarity to epidermal growth factor (EGF). The receptors for heregulin and EGF are encoded by related protooncogenes that can produce cellular transformation and are associated with human malignancies. The overexpression of HER2 correlates with a poor prognosis in breast, ovarian, and other cancers. Heregulin was purified from the conditioned medium of a human breast cancer cell line. The isolation of cDNA clones encoding heregulin show that several alternatively spliced variants of the protein are produced. The mature protein is derived from the N-terminal half of a 640-amino-acid precursor that includes a hydrophobic domain that may anchor the precursor in the cell membrane. Recombinantly produced heregulin stimulates the tyrosine phosphorylation of HER2 in a number of cell lines and augments the proliferation of the HER2-overexpressing cell line, SK-BR-3. Heregulin mRNA is expressed in many human tissues including breast, brain, ovary, testis, small intestine, and others. The rat homologue of heregulin has also been isolated, and cDNA clones encoding this protein have been described. The rat protein has been termed Neu differentiation factor based on its ability to induce the differentiation of a mammary tumor cell line. The gene for heregulin was mapped to human chromosome 8 by PCR amplification using primers specific for human but not rodent DNA in somatic cell hybrids.

  4. Mapping of Microsatellite SW943 to Porcine Chromosome 12p11-(2/3p13) Using Primed in situ Synthesis and Somatic Cell Hybrid Panel

    Institute of Scientific and Technical Information of China (English)

    LIU Bang; WANG Yong-qiang; ZHANG Qing-de; YU Mei; ZHAO Shu-hong; XIONG Tong-an; LI Kui

    2002-01-01

    The porcine microsatellite SW943 was regionally localized on 12p11-(2/3p13) by the two methods: the Primed in situ (PRINS) labelling on the pachytene bivalents of pigs using the Dig-11-dUTP as the report molecule and pig × rodent Somatic Cell Hybrid PaneI(SCHP) which contains 27 cell lines through PCR amplification. Advantages and disadvantages of the two methods for physical mapping of microsatellites were also discussed.

  5. Nucleologenesis and embryonic genome activation are defective in interspecies cloned embryos between bovine ooplasm and rhesus monkey somatic cells

    Directory of Open Access Journals (Sweden)

    Han Yong-Mahn

    2009-07-01

    Full Text Available Abstract Background Interspecies somatic cell nuclear transfer (iSCNT has been proposed as a tool to address basic developmental questions and to improve the feasibility of cell therapy. However, the low efficiency of iSCNT embryonic development is a crucial problem when compared to in vitro fertilization (IVF and intraspecies SCNT. Thus, we examined the effect of donor cell species on the early development of SCNT embryos after reconstruction with bovine ooplasm. Results No apparent difference in cleavage rate was found among IVF, monkey-bovine (MB-iSCNT, and bovine-bovine (BB-SCNT embryos. However, MB-iSCNT embryos failed to develop beyond the 8- or 16-cell stages and lacked expression of the genes involved in embryonic genome activation (EGA at the 8-cell stage. From ultrastructural observations made during the peri-EGA period using transmission electron microscopy (TEM, we found that the nucleoli of MB-iSCNT embryos were morphologically abnormal or arrested at the primary stage of nucleologenesis. Consistent with the TEM analysis, nucleolar component proteins, such as upstream binding transcription factor, fibrillarin, nucleolin, and nucleophosmin, showed decreased expression and were structurally disorganized in MB-iSCNT embryos compared to IVF and BB-SCNT embryos, as revealed by real-time PCR and immunofluorescence confocal laser scanning microscopy, respectively. Conclusion The down-regulation of housekeeping and imprinting genes, abnormal nucleolar morphology, and aberrant patterns of nucleolar proteins during EGA resulted in developmental failure in MB-iSCNT embryos. These results provide insight into the unresolved problems of early embryonic development in iSCNT embryos.

  6. Robotic milking and milk quality: effects on bacterial counts, somatic cell counts, freezing point and free fatty acids

    Directory of Open Access Journals (Sweden)

    Yvonne van der Vorst

    2010-01-01

    Full Text Available Changes in milk quality after the introduction of automatic milking systems (AM-systems on dairy farms in TheNetherlands, Germany and Denmark were examined and the data were compared with milk quality results of farms withconventional milking technology. After introduction, a small, but significant increase in total bacterial count, somatic cellcount, freezing point and free fatty acids was observed. The highest levels for total plate count and cell count are foundin the first six months after introduction. After this period the milk quality slightly improves to a more stable level.Risk factors related with milk quality concern general farm characteristics, animal health, AM-system, cleaning and cooling,housing, management skills of the farmer and the hygiene on the farm. Total plate count was significantly relatedto milk yield of the herd, cleaning of the area around the AM-system and the overall hygiene on the farm. Bulk milksomatic cell count appeared to be significantly related to milk yield of the herd and the number of milkings before replacementof the liners. An increased milking frequency is not the only explanation of increased free fatty acid levels. Technicalfactors related to free fatty acids mainly concerned the air inlet in the teat cups, bubbling (excessive air inlet and a toolong post run time of the milk pump. However, several questions regarding the causes of increased free fatty acid levelsremained unclear.

  7. Modulatory effects of the antioxidant ascorbic acid on the direct genotoxicity of doxorubicin in somatic cells of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Edson José Fragiorge

    2007-03-01

    Full Text Available In this study two different crosses involving the wing cell markers mwh and flr³ (standard (ST cross and high bioactivation (HB cross, the latter being characterized by a high constitutive level of cytochrome P450 which leads to an increased sensitivity to a number of promutagens and procarcinogens were used to investigate the modulatory effects of ascorbic acid (AA combined with the antitumor agent doxorubicin (DXR in Drosophila melanogaster. We observed that the two different concentrations of AA (50 or 100 mM had no effect on spots frequencies, while DXR treatments (0.2 or 0.4 mM gave positive results for all types of spots, when compared to negative control. For marker-heterozygous (MH flies, a protective effect was observed with the lower concentration of AA (50 mM that was able to statistically decrease the frequency of spots induced by DXR (0.2 mM, while an enhanced frequency of spots induced by DXR was observed with the higher concentration of AA (100 mM, when compared to DXR treatment (p < 0.05. These results suggest that AA may interfere with free radicals generated by DXR and with other possible reactive metabolites. The efficiency of AA in protecting the somatic cells of D. melanogaster against mutation and recombination induced by DXR is dependent on the dose used and the protection is directly related to the activity of cytochrome P450 enzymes.

  8. Day-3 Medium Changes can Affect Developmental Potential of Porcine Somatic Cell Nuclear Transfer and Parthenogenesis Embryos In Vitro

    Directory of Open Access Journals (Sweden)

    Dibyendu Biswas and Sang Hwan Hyun*

    2011-01-01

    Full Text Available The aim of the present study was to compare the developmental competence of porcine parthenotes and somatic cell nuclear transfer (SCNT embryos after day-3 medium change with fresh embryo culture medium to that of embryos that did not have a medium change (monoculture system. The parthenogenetic and SCNT blastocyst formation rates were significantly (P<0.05 higher in the no-medium-change group (43.3±2.3, 18.5±1.1%, respectively compared with the day-3 medium-change group (35.9±2.4, 7.9±0.9%, respectively. Total cell number in parthenotes and SCNT blastocysts was also significantly (P<0.05 higher in the no-media-change group (92.0±4.2, 66.9±7.7, respectively compared with the media-change group (81.5±3.1, 46.6±4.9, respectively. No significant difference in cleavage rate was found in either group for parthenotes or SCNT embryos. This result suggests that day-3 medium changes have negative effects on porcine parthenotes and SCNT embryos in vitro.

  9. Improved cloning efficiency and developmental potential in bovine somatic cell nuclear transfer with the oosight imaging system.

    Science.gov (United States)

    Kim, Eun Young; Park, Min Jee; Park, Hyo Young; Noh, Eun Ji; Noh, Eun Hyung; Park, Kyoung Sik; Lee, Jun Beom; Jeong, Chang Jin; Riu, Key Zung; Park, Se Pill

    2012-08-01

    In somatic cell nuclear transfer (SCNT) procedures, exquisite enucleation of the recipient oocyte is critical to cloning efficiency. The purpose of this study was to compare the effects of two enucleation systems, Hoechst staining and UV irradiation (hereafter, irradiation group) and Oosight imaging (hereafter, Oosight group), on the in vitro production of bovine SCNT embryos. In the Oosight group, the apoptotic index (2.8 ± 0.5 vs. 7.3 ± 1.2) was lower, and the fusion rate (75.6% vs. 62.9%), cleavage rate (78.0% vs. 63.7%), blastocyst rate (40.2% vs. 29.2%), and total cell number (128.3±4.8 vs. 112.2 ± 7.6) were higher than those in the irradiation group (all p<0.05). The overall efficiency after SCNT was twice as high in the Oosight group as that in the irradiation group (p<0.05). The relative mRNA expression levels of Oct4, Nanog, Interferon-tau, and Dnmt3A were higher and those of Caspase-3 and Hsp70 were lower in the Oosight group compared with the irradiation group (p<0.05). This is the first report to show the positive effect of the Oosight imaging system on molecular gene expression in the SCNT embryo. The Oosight imaging system may become the preferred choice for enucleation because it is less detrimental to the developmental potential of bovine SCNT embryos.

  10. Euploidy in somatic cells from R6/2 transgenic Huntington's disease mice

    Directory of Open Access Journals (Sweden)

    Stewénius Ylva

    2005-09-01

    Full Text Available Abstract Background Huntington's disease (HD is a hereditary neurodegenerative disorder caused by a CAG repeat expansion in the HD gene. The huntingtin protein expressed from HD has an unknown function but is suggested to interact with proteins involved in the cell division machinery. The R6/2 transgenic mouse is the most widely used model to study HD. In R6/2 fibroblast cultures, a reduced mitotic index and high frequencies of multiple centrosomes and aneuploid cells have recently been reported. Aneuploidy is normally a feature closely connected to neoplastic disease. To further explore this unexpected aspect of HD, we studied cultures derived from 6- and 12-week-old R6/2 fibroblasts, skeletal muscle cells, and liver cells. Results Cytogenetic analyses revealed a high frequency of polyploid cells in cultures from both R6/2 and wild-type mice with the greatest proportions of polyploid cells in cultures derived from skeletal muscle cells of both genotypes. The presence of polyploid cells in skeletal muscle in vivo was confirmed by fluorescence in situ hybridisation with centromeric probes. Enlarged and supernumerary centrosomes were found in cultures from both R6/2 and wild-type mice. However, no aneuploid cells could be found in any of the tissues. Conclusion We conclude that polyploid cells are found in fibroblast and skeletal muscle cultures derived from both R6/2 and wild-type littermate mice and that aneuploidy is unlikely to be a hallmark of HD.

  11. The Determination of Somatic Cell Count and Some Components of Raw Milk Evaluated By a Private Company in Trakya

    Directory of Open Access Journals (Sweden)

    A. R. Onal

    2007-05-01

    Full Text Available The aim of this study was to determine the amount of bulk tank somatic cell counts. Chemical and microbiological compositions of raw milk produced in Trakya were also reached in order to evaluate the structure of milk production. For this purpose 36 raw milk samples were collected from bulk milk tank within three different location of Trakya (18 samples from Edirne, 10 from Tekirdağ and 8 from Kırklareli. The arithmetic means and standard errors of fat percentages, non-fat dry matter, protein percentages, BTSCC (Bulk Tank Milk Somatic Cell Count and TB (Total Bacteria for Edirne, Tekirdağ and Kırklareli provinces were; 3.70 0.052, 3.60 0.098, 3.76 0.064; 8.34 0.025, 8.50 0.035, 8.39 0.038; 3.05 0.012, 3.09 0.019, 3.05 0.016; 308.555 26.510 SCC/ml (log 5.459 0.04 SCC/ml, 350.200 53.627 SCC/ml (Log 5.500 0.06 SCC/ml, 254.500 37.645 SCC/ml (Log 5.370 0.06 SCC/ml; 479.481 51.777 cfu/ml (Log 5.630 0.05 cfu/ml, 435.716 91.194 cfu/ml (Log 5.5230.12 cfu/ml, 446.958 81.515 cfu/ml (Log 5.602 0.075 cfu/ml respectively. Consequentially, the correlation coefficient for LogBTSCC and fat percentage, non-fat dry matter, protein percentage and LogTB were found to be 0.036, 0.251, 0.421 and 0.219 respectively. A significant (p<0.05 correlation coefficient was obtained between LogBTSCC and protein percentage.

  12. Chromatin dynamics in Pollen Mother Cells underpin a common scenario at the somatic-to-reproductive fate transition of both the male and female lineages in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Wenjing eShe

    2015-04-01

    Full Text Available Unlike animals, where the germline is established early during embryogenesis, plants set aside their reproductive lineage late in development in dedicated floral organs. The specification of pollen mother cells (PMCs committed to meiosis takes place in the sporogenous tissue in anther locules and marks the somatic-to-reproductive cell fate transition towards the male reproductive lineage. Here we show that Arabidopsis PMCs differentiation is accompanied by large-scale changes in chromatin organization. This is characterized by significant increase in nuclear volume, chromatin decondensation, reduction in heterochromatin, eviction of linker histones and the H2AZ histone variant. These structural alterations are accompanied by dramatic, quantitative changes in histone modifications levels compared to that of surrounding somatic cells that do not share a sporogenic fate. All these changes are highly reminiscent of those we have formerly described in female megaspore mother cells (MMCs. This indicates that chromatin reprogramming is a common underlying scenario in the somatic-to-reproductive cell fate transition in both male and female lineages.

  13. Chromatin dynamics in pollen mother cells underpin a common scenario at the somatic-to-reproductive fate transition of both the male and female lineages in Arabidopsis.

    Science.gov (United States)

    She, Wenjing; Baroux, Célia

    2015-01-01

    Unlike animals, where the germline is established early during embryogenesis, plants set aside their reproductive lineage late in development in dedicated floral organs. The specification of pollen mother cells (PMC) committed to meiosis takes place in the sporogenous tissue in anther locules and marks the somatic-to-reproductive cell fate transition toward the male reproductive lineage. Here we show that Arabidopsis PMC differentiation is accompanied by large-scale changes in chromatin organization. This is characterized by significant increase in nuclear volume, chromatin decondensation, reduction in heterochromatin, eviction of linker histones and the H2AZ histone variant. These structural alterations are accompanied by dramatic, quantitative changes in histone modifications levels compared to that of surrounding somatic cells that do not share a sporogenic fate. All these changes are highly reminiscent of those we have formerly described in female megaspore mother cells (MMC). This indicates that chromatin reprogramming is a common underlying scenario in the somatic-to-reproductive cell fate transition in both male and female lineages.

  14. In Vitro and In Vivo Hepatic Differentiation of Adult Somatic Stem Cells and Extraembryonic Stem Cells for Treating End Stage Liver Diseases

    Directory of Open Access Journals (Sweden)

    Chenxia Hu

    2015-01-01

    Full Text Available The shortage of liver donors is a major handicap that prevents most patients from receiving liver transplantation and places them on a waiting list for donated liver tissue. Then, primary hepatocyte transplantation and bioartificial livers have emerged as two alternative treatments for these often fatal diseases. However, another problem has emerged. Functional hepatocytes for liver regeneration are in short supply, and they will dedifferentiate immediately in vitro after they are isolated from liver tissue. Alternative stem-cell-based therapeutic strategies, including hepatic stem cells (HSCs, embryonic stem cells (ESCs, induced pluripotent stem cells (iPSCs, and mesenchymal stem cells (MSCs, are more promising, and more attention has been devoted to these approaches because of the high potency and proliferation ability of the cells. This review will focus on the general characteristics and the progress in hepatic differentiation of adult somatic stem cells and extraembryonic stem cells in vitro and in vivo for the treatment of end stage liver diseases. The hepatic differentiation of stem cells would offer an ideal and promising source for cell therapy and tissue engineering for treating liver diseases.

  15. Somatic-cell selection is a major determinant of the blood-cell phenotype in heterozygotes for glucose-6-phosphate dehydrogenase mutations causing severe enzyme deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Filosa, S.; Giacometti, N.; Wangwei, C.; Martini, G. [Istituto Internazionale di Genetica e Biofisica, Naples (Italy)] [and others

    1996-10-01

    X-chromosome inactivation in mammals is regarded as an essentially random process, but the resulting somatic-cell mosaicism creates the opportunity for cell selection. In most people with red-blood-cell glucose-6-phosphate dehydrogenase (G6PD) deficiency, the enzyme-deficient phenotype is only moderately expressed in nucleated cells. However, in a small subset of hemizygous males who suffer from chronic nonspherocytic hemolytic anemia, the underlying mutations (designated class I) cause more-severe G6PD deficiency, and this might provide an opportunity for selection in heterozygous females during development. In order to test this possibility we have analyzed four heterozygotes for class I G6PD mutations: two with G6PD Portici (1178G{r_arrow}A) and two with G6PD Bari (1187C{r_arrow}T). We found that in fractionated blood cell types (including erythroid, myeloid, and lymphoid cell lineages) there was a significant excess of G6PD-normal cells. The significant concordance that we have observed in the degree of imbalance in the different blood-cell lineages indicates that a selective mechanism is likely to operate at the level of pluripotent blood stem cells. Thus, it appears that severe G6PD deficiency affects adversely the proliferation or the survival of nucleated blood cells and that this phenotypic characteristic is critical during hematopoiesis. 65 refs., 6 figs., 3 tabs.

  16. Production of transgenic cashmere goat embryos expressing red fluorescent protein and containing IGF1 hair-follicle-cell specific expression cassette by somatic cell nuclear transfer

    Institute of Scientific and Technical Information of China (English)

    BOU; ShorGan

    2009-01-01

    In the present study, cashmere goat fetal fibroblasts were transfected with pCDsR-KI, a hair-follicle-cell specific expression vector for insulin-like growth factor 1 (IGF1) that contains two markers for selection (red fluorescent protein gene and neomycin resistant gene). The transgenic fibroblasts cell lines were obtained after G418 selection. Prior to the somatic cell nuclear transfer (SCNT), the maturation rate of caprine cumulus oocytes complexes (COCs) was optimized to an in vitro maturation time of 18 h. Parthenogenetic ooctyes were used as a model to investigate the effect of two activation methods, one with calcium ionophore IA23187 plus 6-DMAP and the other with ethanol plus 6-DMAP. The cleavage rates after 48 h were respectively 88.7% and 86.4%, with no significant difference (P>0.05). There was no significant difference between the cleavage rate and the blastocyst rate in two different media (SO- Faa and CR1aa; 86.3% vs 83.9%, P>0.05 and 23.1% vs 17.2%,P>0.05). The fusion rate of a 190 V/mm group (62.4%) was significantly higher than 130 V/mm (32.8%) and 200 V/mm (42.9%), groups (P<0.05). After transgenic somatic cell nuclear transfer (TSCNT) manipulation, 203 reconstructed embryos were obtained in which the cleavage rate after in vitro development (IVD) for 48 h was 79.3% (161/203). The blastocyst rate after IVD for 7 to 9 d was 15.3% (31/203). There were 17 embryos out of 31 strongly ex- pressing red fluorescence. Two of the red fluorescent blastocysts were randomly selected to identify transgene by polymerase chain reaction. Both were positive. These results showed that: (i) RFP and Neor genes were correctly expressed indicating that transgenic somatic cell lines and positive trans- genic embryos were obtained; (ii) one more selection at the blastocyst stage was necessary although the donor cells were transgenic positive, because only partially transgenic embryos expressing red fluorescence were obtained; and (iii) through TSCNT manipulation and

  17. Production of transgenic cashmere goat embryos expressing red fluorescent protein and containing IGF1 hair-follicle-cell specific expression cassette by somatic cell nuclear transfer

    Institute of Scientific and Technical Information of China (English)

    GUO XuDong; YANG DongShan; Ao XuDong; WU Xia; LI GuangPeng; WANG LingLing; BAO MingTao; XUE Lian; BOU ShorGan

    2009-01-01

    In the present study, cashmere goat fetal flbroblasta were transfected with pCDsR-KI, a hair-follicle-cell specific expression vector for insulin-like growth factor 1(IGF1) that contains two markers for selection (red fluorescent protein gene and neomycin resistant gene). The transgenic fibroblasta cell lines were obtained after G418 selection. Prior to the somatic cell nuclear transfer (SCNT), the maturation rate of caprine cumulus